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recall from yesterday:

testing theories of dark energy requires a great chain with many
links joining high theory to material measures

far more than a sudden juxtaposition of, on the one hand, the
EFE, modifications thereof, models of novel scalar fields, . . . ,
and, on the other hand, the “simple readout” of observation

the point: it is not just theories of dark energy under test

tests test more than bare fundamental laws—they engage the
long chain of theory, solutions, approximation, simulations, nu-
merical calculations, . . .

the very idea of a test in this sphere is more rightly attributed to
that whole chain of links binding equations and other theoretical
structures to the structured observational data themselves the
product of much theory

an expansion of the too-simple philosophical picture of a pure
and simple theory/observation dichotomy. . .
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it is appreciated that one must analyze and control
for errors and selection (and other) biases in empirical
data, in ever more sophisticated ways as precision and
resolution increases

perhaps not so widely recognized that theoretical mod-
els, both in themselves and when used to structure and
interpret data, require the analogous: delimiting the
regime of applicability of those theoretical tools

we must have the theories and their relations to possi-
ble observations under epistemic control
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epistemic control includes at a minimum:

1. understanding the physical theory’s regime of applicability and so, a
fortiori, its breakdown scales

2. understanding the theory’s relations to other valuable theories (the-
ories precedent to the theory itself, e.g., NGT vis-à-vis GR, and the-
ories laterally and antecedently related, e.g., fluid dynamics vis-à-vis
solid state and vis-à-vis molecular kinetics, respectively)—not just
by approximation and limiting relations and such, but also relations
among concepts

3. understanding what will and will not count as evidence in favor and
against

4. understanding the asymptotics of physically important quantities and
dynamics

5. understanding what approximations and idealizations are justified

6. understanding the conditions under which we do and do not need
explicit schematization of the observer, and understanding how to do
it

7. understanding as well what kinds of physicalities the different parts
of the physical theory’s formalism and structures all respectively can
have and when (“exist or not” is too crude)
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it is characteristic of appropriately unified kind of physical system,
treated by a single theory, that there exist a set of scales at each of
which all theoretical quantities simultaneously lose definition

every theory, in so far as it treats an appropriately unified kind of
physical system, not only has a regime of applicability, but it has a
single, unified one, bounded on all sides by scales characterized by
the values of different combinations of its quantities

for Navier-Stokes fluids, e.g., the definitions of pressure, fluid flow,
viscosity, . . . , break down at spatial and temporal scales a few orders
of magnitude greater than the mean free-path of the constituent
molecules

all quantities also lose definition when the fluid enters a strong enough
state of turbulence, which can be characterized by (inter alia) a ratio
of the fluid’s kinetic energy to a measure of its viscous damping—a
scale independent of that characterized by the mean free-path
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This seems, indeed, to be one of the markers of a physical
theory:

the existence of a set of characteristic scales for its physical
quantities
at each of which all the theory’s physical quantities simul-
taneously lose definition—
“places” where all the kinematically and dynamically rele-
vant structures of the theory break down all at once
in the sense that the theory becomes inadequate for an ap-
propriate treatment of any system beyond the determined
boundaries
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although we perhaps naively tend to think of scales determined
by spatial, temporal and energetic quantities when considering
how and where theories break down in their capacity to provide
sound representations of phenomena, any quantity in any theory
can provide such a measure

velocity provides a breakdown scale for Newtonian mechanics

acceleration and scalar curvature provide different breakdown
scales for various theories of gravity, such as GR

no breakdown scale, moreover, can be a single number holding
for all systems the theory treats

Navier-Stokes theory, for instance, becomes inadequate for dif-
ferent fluids at different energies and spatial and temporal scales
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often it is not a bound on a single quantity, such as a value of
energy, a value of spatial length, etc.: classical Maxwell theory,
e.g., breaks down when the ratio of the field’s amplitude to its
frequency approaches ℏ

nor is it ever the case that there is a single characteristic scale
for each theory

Navier-Stokes theory breaks down:

1. when various measures of flow complexity indicate the fluid
is approaching turbulence

2. when the fluid is too viscous
3. over time scales comparable to equilibration time after a

sharp disturbance
4. when temperatures become large enough that heat loss

due to emission of blackbody radiation becomes non-
neglible

5. when ambient electromagnetic field becomes strong enough
to ionize the fluid’s constituent molecules

6. and on and on
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all of which shows, moreover, that sometimes a breakdown
scale is determined by physical quantities not even repre-
sentable in the theory (such as the electromagnetic field for
Navier-Stokes)
sometimes, moreover, approximations used to construct
models of particular behavior, such as surface waves in
fluid dynamics, have characteristic breakdown scales dif-
ferent from those of the material in which the phenomena
manifest (Lamb 1932, ch. ix)
in such cases, the theory can provide appropriate and ad-
equate models of the systems in the relevant states, only
not in the way the approximations definitive of the behav-
ior at issue require
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A breakdown scale, then, is something like the following:

a measure of or function of or relation among quanti-
ties, such that, when the joint state of the system and
its environment imply that the values of some of the
system’s quantities do not satisfy the measure, func-
tion or relation, then the theory can no longer provide
good models of the system
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breakdown scales can never be determined by analysis of
the formalism and theoretical machinery of the theory
alone, without input from knowledge acquired by experi-
mentation in particular and empirical investigation in gen-
eral

they are rather fixed by knowledge that one can gather
only from investigations grounded in that part of the epis-
temic content of the theory not captured by the formalism
by itself, largely in experimental and observational practice

as such, they change with the increasing scope and depth
of our experimental reach
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what does it mean to say that the theory cannot provide good models of
systems outside its breakdown scales?

one of the most important markers of this is that the system’s quan-
tities lose unambiguous definition with respect to the theory’s re-
sources for modeling them

for a Navier-Stokes fluid, for example, different sorts of thermometers
that allow spatial discrimination on scales only a couple of orders of
magnitude greater than the mean free path of the fluid’s molecules
will record markedly different “temperatures” depending on charac-
teristics of the joint system that one can ignore at larger scales—the
fine details of the fluid’s convective flow in relation to the geometry
of the thermometric system, for instance, and even the transparency
of each thermometer to the fluid’s particles1

as the fluid approaches turbulence, to take another example, the val-
ues of all its quantities begin to vary rapidly in time and eventually
cannot be measured by any conventional means—the quantities are
no longer well defined

1. See, e.g., Benedict (1969) for detailed exposition of the complex interplay
among theory, model and experiment one must take account of in attempting
to define a physical quantity such as temperature based on the behavior of real
measuring devices.
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without knowledge of a theory’s regime of
applicability, and in particular when a given system
of interest lies in its scope, we have no grounds
whatsoever for trusting what the theory purports
to say about the system
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– but it is exactly such knowledge we lack for all
theories about dark energy

– we have no idea what their respective regimes of
applicability are, for we have no direct
experimental or observational knowledge of their
postulated constituents
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The vague accuracy of events
dancing two by two with language,
which they forever surpass

– William Carlos Williams
Paterson
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‘represent’
standard philosophical senses of designative, depictive or verisimilous
representation of world by mathematics of physical theories

e.g.:

Tarskian relation of designation between elements of mathemat-
ical space (“the space of states”) and states of physical system:
semantic view (designative—Suppes 1960; van Fraassen 1980)

or possible-worlds semantics (depictive—Lewis 1970; Butterfield
1984)

or existence of “homomorphism” kind between mathematical
stuff and stuff in the world à la the structuralists (verisimilous—
da Costa and French 2003; Giere 2010)
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The Motto

meaning is fixed by ontology

even instrumentalists and empiricists (e.g., Carnap and van
Fraassen) subscribe to (e.g.) Tarskian-like semantics such
as to give empirical content to the mathematical formalism
of theories

⇒ meaning of mathematical formalism determined by stan-
dard representational relations with respect to a fixed on-
tology

even though not realists about ontology
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natural accompaniment:

empirical content accrues to the mathematical for-
malism of theory largely if not wholly by virtue of
this kind of representation—any physical signifi-
cance the mathematics has derives from it

van Fraassen (1980, p. 8, his emphasis):
Science aims to give us, in its theories, a literally true
story of what the world is like; and acceptance of
a scientific theory involves the belief that it is true.
This is the correct statement of scientific realism.
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the breakdown of theories

we use theories to model systems, and to model them well, i.e.,
fruitfully, in a way that teaches us much and also displays our
conceptual mastery of them and their behavior. . .

even when the systems are in states such that the models are in
no way predictively accurate

when, that is, there can be no question of the math representing
the system in any standard sense.
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predictive accuracy of Navier-Stokes theory irremediably
breaks down, e.g., as a fluid approaches turbulence—it
leaves its regime of adequacy
nevertheless, even while the dynamical equations of the
theory no longer yield accurate predictions by any reason-
able measure. . .
other parts of the theory, the kinematical relations and
constraints among its quantities (e.g., that the shear-stress
tensor is symmetric, and that heat flux is always indepen-
dent of the pressure gradient), still are meaningfully applied
to model some aspects and features of the system in those
states
it is still in its regime of propriety (Curiel 2017, 2025)
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we use those kinematical, not the dynamical, relations,
among other purposes, to guide the design of instruments
to probe the systems (Curiel 2025)
indeed, satisfaction of the kinematical constraints is neces-
sary for the dynamics to be well posed (Curiel 2022)
⇒ cannot even investigate the possible truth of dynamical
claims unless kinematical constraints are satisfied
shows that the theory can capture something of deep phys-
ical significance about the systems even when it is not
wholly descriptively, much less predictively, accurate of
them

but, again, there can be no question of standard
representation without predictive accuracy
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standard views cannot capture at
all a large part—I think, indeed, the
large majority—of the empirical con-
tent of physical theories
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– indeed, standard views of representation
cannot even get off the ground without the
prior fixing of a regime of applicability

– an almost wholly pragmatic affair that
requires much of the meaning of the the-
ory’s terms to have been already fixed, and
which in turn provides the basis for much
of that meaning
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without knowledge of the theory’s regimes
of propriety, of adequacy, of applicability—

we have no epistemic control
over the theory at all
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one of the problems with traditional confirmation theory (a prej-
udice inherited from Popper):
any discrepancy between theory and observation theory is viewed
as a disconfirmation

but that is deeply wrong, from an epistemological standpoint

often, a violation rather serves to show the boundary of the
regime of applicability

other times, it shows merely that we are awaiting better calcu-
lational techniques, or the capacity to incorporate more details
in our models, which we suspect to be relevant but do not yet
know how to handle

the interesting question, then, is when a mis-match between
prediction and experimental result constitutes a crisis (to use
the Kuhnian locution) for a theory, a true anomaly
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consider the case of the calculation of Lithium-7 abundance due to early
universe nucleosynthesis, a prediction of ΛCDM

the calculated prediction differs from observed values by a factor of at
least 2 or 3

but no one seriously worries that this constitutes a crisis for QFT, GR
or ΛCDM:

1. the two main sources of observational data from which mea-
sured abundance values are calculated—baryon-to-photon ratios
derived from the CMB, and the abundance directly observed in
Population ii stars—themselves disagree, suggesting that better
measurements are needed to truly test the predictions

2. while the theoretical discrepancies with both measured values
are “relatively small”, they are still unacceptable but nonetheless
not so gross that it freaks people out

3. ⇒ because we can plausibly believe that more accurate calcula-
tions, taking into account more and finer details of interactions
and dynamics, higher-order effects, and so on, will significantly
lessen the discrepancies

30/89



no one has yet argued convincingly that this cannot be done, as
Le Verrier (1859) did for Mercury’s anomalous precession, gen-
erating a true crisis in astronomy and the theory of Newtonian
gravitational theory in the second half of the 19th Century

in light of the fact that successive theoretically improved mod-
els, taking ever more systematic dependencies of the systems
into account, and observationally improved data have whittled
the discrepancy for Lithium down, we feel soothed and com-
forted (the method of successive approximations—Smith 2014;
Harper 2011; Smith and Seth 2020)

it’s nothing like the case of Mercury, where everything was tried,
both theoretically and experimentally, and nothing worked to
lessen the discrepancy even the slightest bit
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A man said to the universe:
“Sir, I exist!”
“However,” replied the universe,
“The fact has not created in me
A sense of obligation.”

— Stephen Crane
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common forms of questions

probability of particular kinds of observations, given our
cosmological situation

probability that value of universal constant lies in fixed
range

probability that initial conditions of particular kind occurred

probability that particular large-scale structures would form
or local features obtain

probability that a particular global (causal, topological, pro-
jective, conformal, affine, metrical) property obtains
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common examples
probability that observers such as ourselves would come to
exist in the sort of spatiotemporal region we occupy in a
spacetime of this sort

probability that we are “typical” observers in the universe

probability that conscious observers exist at all

probability that the cosmological constant has any non-zero
value, and has, moreover, the one actually observed

probability that a generic spacetime is singular to the fu-
ture

various “fine-tuning problems”: approximate flatness of
observed universe; approximate homogeneity of observed
universe; seemingly required special entropic state of very
early universe; seeming exact canceling of Λv by ΛE
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common ways to try to make questions precise
fix non-probability measure on family of spacetimes, look
for properties forming a set with large or with zero or near-
zero measure

fix topology on family of spacetimes, look for properties
forming an open, dense set or a nowhere-dense set

statistical mechanics and thermodynamics: standard con-
siderations give rise to appropriate probability distributions
on a family of spacetimes

anthropic principles: existence of conscious observers, or
of large-scale or local structure of a particular form, or of
. . . , places sufficient constraints to determine an a priori
probability distribution on family of spacetimes
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Most Common Way
1. no measure is defined, but assumed that there really is

a natural, appropriate one

2. a topology is crudely postulated

3. hands are waved at vague notions of properties form-
ing open or nowhere-dense sets

4. underlying intuition is implicitly, silently invoked that
“real underlying measure” is consonant with topology

5. conclusion:
“open” ⇒ “generic”, “highly likely”
“nowhere-dense” ⇒ “rare”, “highly unlikely”
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one is generally also concerned about the stability
of these conclusions “under small perturbations”

(consonance of measure and topology)
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Problems
1. meaning of probability, when there is only one physical

system of the type at issue to observe

2. justification, kinds of evidence available, when one can-
not measure frequencies

3. isolation, clarification and justification of various as-
sumptions one must make in order to apply probabilis-
tic reasoning

4. physical significance of measures and topologies, rele-
vance to property or feature at issue

5. relationship between topological and measure-
theoretic concepts and methods, especially in infinite-
dimensional cases
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“generic” ≈ “most systems are similar in this re-
spect”
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“most” is a measure-theoretic notion

“similar in this respect” is a topological notion
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we need a Borel measure

(the measure is defined on all open sets, the Borel sets)

“large is open and dense, small is nowhere-dense”

(If the topology arises from or is compatible with a complete metric,
one can use the more general criterion that a “large” set be a Gδ-set,
i.e., that it be a countable intersection of open dense subsets, in so
far as the complement of a Gδ-set in this case is nowhere dense. In
the same case, one can use the more general criterion that a “small”
set be meagre, i.e., that it be a countable union of nowhere dense
subsets, in so far as the complement of a meagre set in this case is
dense. This is known as the Baire Category Theorem.)
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“stable” ≈ “small changes in values shouldn’t
significantly change likelihoods of being similar”
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“small changes in values” is an algebraic notion
(addition, multiplication, translation)
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we need an appropriately translation-invariant
Borel measure

(not always in physics: e.g., the exponential distribution for
radioactive decay; but here we need it)
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vague conceptual speculation
in physics, topology is generally prior to, more fundamental
than measure in probabilistic reasoning:

we need to characterize similarity before we can formu-
late comparison class (σ-algebra) to achieve quantita-
tive rigor of assigning exact probabilities

we need to show stability to trust our testing of the
predicted probabilities
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four standard topologies on families of spacetimes
family of cross-sections G on the fiber bundle of Lorentz metrics
over a candidate spacetime manifold M (connected, paracom-
pact, Hausdorff, four-dimensional):
1. compact-open
2. Whitney (open)
3. Sobolev
4. parameter topology

Sobolev is strictly finer than Whitney, which is strictly finer then
compact-open; in general, no strict relation to parameter topol-
ogy (we’ll discuss this later)

idea: fix standard of “distance” between Lorentz metrics by
fixing arbitrary positive-definite metric on M , use it to assign
magnitudes to the algebraic differences of Lorentz metrics
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compact-open topology
A neighborhood of gab ∈ G, N (hab, K, ϵ; gab), determined by
a positive-definite metric hab on M , K ⊂ M compact, and real
number ϵ > 0. g′ab ∈ G is in the neighborhood if and only if

hmnhrs(gmr − g′mr)(gns − g′ns) < ϵ

everywhere in K.

=⇒ cares only whether metrics are similar on bounded regions
in interior of spacetime; doesn’t care about relative asymptotic
behavior; the coarsest physically reasonable topology to use on
G (jointly continuous)
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example (Geroch 1971)

R4, Minkowskian coordinate system (t, x, y, z)

sequence of metrics: diag(tm, −1, −1, −1), for m ∈ I+,
where

tm := 1 +
m

1 + (x−m)1/2

roughly, each metric essentially flat almost everywhere ex-
cept for sharp curvature peak around t-y-z-hypersurface
x = m

as m increases, curvature peak becomes higher and
sharper, as it moves further out the x-axis
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not “physically reasonable” that the sequence converges to
Minkowski spacetime
because curvature grows without bound
yet it does so converge under the compact-open topology
⇒ problem: compact-open topology too coarse
“not enough open sets” to stop pathological sequences
from converging
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Whitney (Open) Topology
A neighborhood of gab ∈ G, N (hab, ϵ; gab), determined by
positive-definite metric hab on M , and real number ϵ > 0.
g′ab ∈ G is in the neighborhood if and only if

hmnhrs(gmr − g′mr)(gns − g′ns) < ϵ

everywhere in M .

=⇒ cares about behavior on entire manifold, accounts for
relative asymptotic behavior
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example (Geroch 1970, 1971)

R4, Minkowskian coordinate system (t, x, y, z)

sequence of metrics: diag(tm, −1, −1, −1), for m ∈ I+,
where

tm := 1 +
1

m2 + x2 + y2 + z2

roughly, each metric essentially flat almost everywhere ex-
cept for spherically symmetric bump of curvature centered
on origin;
bump decreases smoothly to zero as m increases
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“physically reasonable” that the sequence should converge
to Minkowski spacetime (it does in compact-open)
yet it doesn’t under Whitney topology
problem: Whitney topology is too fine—
too many open sets, reasonable sequences can’t converge
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example (Geroch 1971)

one-parameter family of metrics {λgab}, for λ ∈ R+, where
gab is any Lorentz metric on any non-compact M

fails to form continuous curve under the Whitney
topology
but each metric in the family represents the same
physical spacetime!
multiplying metric by a constant only “changes units”
(e.g., km to cm)
Riemann tensor, Ricci tensor, Einstein tensor, stress-
energy tensor, derivative operator (affine structure),
projective structure, . . . , all remain the same
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I conclude. . .

compact-open
example doesn’t show it’s bad for all purposes, but surely not
good for global cosmological arguments, where asymptotic be-
havior matters

Whitney
physically meaningless; especially no good for global arguments

Sobolev
even worse, since strictly finer than Whitney
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situation is nice in Rn

natural topology ⇒ Borel sets, σ-algebra

well defined notion of translation (addition)

Lebesgue measure is unique complete, translation-
invariant Borel measure
Lebesgue measure is:

locally finite (every p has neighborhood with finite
measure)
strictly positive (non-empty open sets have posi-
tive measure)

59/89



recall:

Definition
A Fréchet space is a metrizable, locally convex topolog-
ical vector space, complete with respect to a translation-
invariant metric.

Definition
A Fréchet manifold is a differential manifold modeled on
a Fréchet space (rather than on Rn).

if you don’t feel comfortable with this, just think “really big,
non-linear space with derivatives”
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Theorem

The only locally finite, translation-invariant Borel measure on
an infinite-dimensional, separable Fréchet space is the trivial
measure (viz., the one that assigns measure zero to every mea-
surable set).

⇓

Any translation-invariant measure of physical interest on any
reasonably well behaved infinite-dimensional linear space assigns
infinite measure to all open sets, unless the measure is the trivial
measure.

(“trivial”: measure assigns all open sets zero)
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families of spacetimes relevant to cosmology generally
form infinite-dimensional Fréchet manifolds
sum of 2 Lorentz metrics generally not a Lorentz met-
ric. . .
why family of spacetimes is a Fréchet manifold, not a
Fréchet space

(more precisely: appropriate subspaces of the space of cross-sections
of the bundle of Lorentz metrics over a spacetime manifold have the
structure of an infinite-dimensional Fréchet manifold modeled on the
infinite-dimensional Fréchet space of symmetric two-index tensor
fields; in fact, the Fréchet manifold of metrics is an open, convex
submanifold of the Fréchet space of symmetric, two-index tensor
fields)
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Is there a physically reasonable
translation-invariant Borel measure on families of
metrics (infinite-dimensional Fréchet manifolds)?
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First problem: what topology to use?
compact-open: coarsest “reasonable” one; doesn’t
care about asymptotic behavior, so no good for cos-
mology

Whitney: no physical significance at all (λgab is not
even a continuous curve for λ ∈ R+)

Sobolev: finer than Whitney, so even worse; still,
mathematically useful for proving stability results about
initial-value problems, where ultra-fineness is a virtue
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what about a parameter topology, based on values of finite
number of parameters characterizing a family of metrics (open
set is product of intervals)?

seems good for super-simple perturbation problems, but not for
much else

but that’s what’s often relevant in cosmology

but serious problem for us:
1. in the contexts of interest, like “calculating probabilities for

values of Λ”—
2. e.g., inhomogeneous perturbations of FLRW characterized

by a finite number of “coarse-grained” parameters—
3. strictly speaking the family of spacetimes is still infinite

dimensional
4. since each tuple of determinate parameter values does not

single out a unique metric
5. only an infinite family of metrics all giving rise to the same

“coarse-grained” parameter values

(similar problem arises for inflaton potentials in multiverse in eternal
inflation)
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let’s bracket the whole problem, and just pretend
we have a good, physically significant topology
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Second problem: what does “translation-invariant”
mean here, i.e., what is physically significant notion
of “translation” for a metric in a family of metrics?

(recall: no linear structure on families of metrics)
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Solution: look at how cosmologists handle
perturbations (translation of one metric to nearby
one) to get a grip on this.
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not inaccurate caricature of “small” perturbation
one-parameter family of spacetimes Mϵ := {(M, (1 +
ϕλ)gab) : λ ∈ [0, ϵ)}, for some small ϵ

each ϕλ is a non-negative smooth function on M such
that supM ϕλ′ < λ′ < supM ϕλ < λ, for all λ′, λ ∈ [0, ϵ)

the family of functions {ϕλ} varies smoothly with respect
to λ in the supremum norm, and the supremum approaches
zero “slowly”

by local Fréchet property, all the (1 + ϕλ)gab are Lorentzian
for small enough ϵ

Then a small perturbation (1st-order, linear):(
1 +

dϕλ

dλ

∣∣∣∣
λ=0

)
gab (1)
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crude sketch of appropriate generalization:
1. fix metric gab ∈ G

2. define “nearby metrics” by exponentiating gab using
natural fibre-wise action of Lie algebra of GL(4) (quo-
tiented by Lie algebra of Poincaré group)

3. the (λ, ϵ)-affine translate of gab, where λ is element
of the Lie algebra and ϵ > 0, is the exponentiation of
gab in the λ direction for an “affine length” of ϵ

Definition
A measure is locally affine-translation invariant if, for
all gab and all λ and all “small enough neighborhoods of
gab” Ng, there exists ϵ such that the measure of the (λ, ϵ)-
affine translate of Ng equals the measure of Ng.
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Theorem (Curiel 2019)

There is no non-trivial, locally affine-translation
invariant Borel measure on an infinite-dimensional
Fréchet manifold F .

(“non-trivial”: measures assigns at least some open sets finite
measure)
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There are three kinds of lies: lies, damned
lies, and statistics [in cosmology].

– Mark Twain
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genericity of future collapse singularities in spatially
open spacetimes

arguments due to Geroch (1966) that singularities are
“generic” in spatially open spacetimes

BUT arguments depend on assuming relation between
topology and measure that just don’t hold for any rea-
sonable topology and measure on this family of space-
times:
1. assumed that “small perturbations” (in topological

sense) that destroy property means family of space-
times with that property has zero measure

2. assumed that “small perturbations” (in topological
sense) that preserve property means family of space-
times with that property has non-trivial measure
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Weinberg’s 1987 anthropic argument for value of Λ
1. work with family of near-FLRW spacetimes (say, Szekeres

spacetimes, to make problem precise)
2. existence of large, gravitationally bound systems places up-

per and lower bounds on possible values of Λ (too positive,
potentially bound systems pulled apart, too negative, uni-
verse recollapses before they can form)

3. argue for topological stability of formation of such bound
systems under small changes in value of Λ

4. use anthropic argument (presence of conscious observers
as selection effect, assume we are “typical” observers, i.e.,
value of Λ in our spacetime is “typical”) to fix shape and
peak of measure

BUT: implicitly assumed that topological stability implies large-
ness of size in fixed measure, which doesn’t obtain in relevant
spaces
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Gibbons-Hawking-Stewart (GHS) Measure

“minisuperspace” (Γ): roughly speaking, family of ini-
tial data for FLRW spacetimes with compact Cauchy
surfaces—

compact, constant curvature 3-geometries sourced by
homogeneous, minimally coupled scalar fields, construct
constraint-reduced phase space for appropriately gauge-
fixed Hamiltonian formulation

Γ is four-dimensional! (parametrized by field-intensity ϕ,
field “time-derivative” off Cauchy surface ϕ̇, scalar curva-
ture 3R, cosmological constant Λ, all constant on Cauchy
surface by homogeneity)

µghs is standard Liouville measure on Γ (modulo a few
technical difficulties)

77/89



problem of justification: equilibration
use of Liouville measure in statistical mechanics most easily jus-
tified by arguments based on properties of dynamical evolution
and equilibration of system (e.g., amount of time system spends
in a portion of phase space proportional to its Liouville mea-
sure); these arguments not available when:
1. the system is not ergodic

2. OR one has not waited a time much greater than the equi-
libration time after the system was prepared

3. OR the system has a time dependent Hamiltonian that is
varying on a timescale that is small or comparable to the
equilibration time

but all those hold for “dynamics” of general relativity repre-
sented by minisuperspace and its Hamiltonian
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put problem of justification aside for sake of argument:
looks good?

rigorously defined Borel measure on a finite-dimensional
space!
BUT: can’t be turned into a probability measure,
µghs(Γ) = ∞ (Γ not compact)

What to do?
still, can we meaningfully attribute a probability to occurrence
of physical property X? Let PX ⊂ Γ be subfamily of Γ evincing
X. Then 4 possibilities:
1. PX is not measurable
2. µghs(PX) < ∞:
3. µghs(Γ \ PX) < ∞
4. µghs(PX) = ∞ and µghs(Γ \ PX) = ∞
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Responses
1. can say nothing, but one assumes or stipulates or

hopes or demands or pleads that physically significant
properties not manifest such topological pathology in
their distribution across spacetimes

2. unambiguously attribute a probability of zero to X

3. unambiguously attribute a probability of one to X

4. one can say nothing simple or straightforward, without
ambiguity, but now one does not even have the solace
of yelling at the property and demanding that it not be
pathological, as in the first case, for there is nothing
pathological about such topological behavior at all—
but this is case of most interest
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Regularization for Case 4
1. assume Γ is σ-finite (is a countable union of subsets of

finite measure, and minisuperspace is)
2. find “physically appropriate” nested sequence of subsets

of Γ, {Si}, such that Γ =
⋃

i Si and µghs(Si) < ∞

3. define Pr(PX) = lim
i→∞

µghs(PX ∩ Si)

µghs(Si)

Obvious Problem
one can get any answer one wants by judicious choice of
{Si}

81/89



Example: Probability of Inflation in Γ

using “natural” regularizations derived from arguments
based on (topological) stability of initial conditions yield-
ing slow-roll inflation:

Gibbons and Turok (2008) deduced extremely low
probability for N ≫ 1 e-foldings of inflation
Carroll and Tam (2010) deduced extremely high proba-
bility for N ≫ 1 e-foldings of inflation

Resolution: they used different characterizations of topo-
logical stability—regularizations—for initial conditions
yielding inflation
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I must emphasize:
I do not claim that the conclusions of
such arguments are wrong, only that the
arguments currently given have serious
mathematical, physical and conceptual
problems that must be addressed before
any real confidence can be had in those
conclusions.
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Guth (2000, p. 572), in discussing proposed regularization
procedure for computing probabilities in eternal inflation of
Vilenkin (1998) (emphases mine):

[A]lthough the results of [Vilenkin’s] method seem rea-
sonable, I do not at this point find them compelling.
That is, it is not clear what principles of physics or
probability theory ensure that this particular method
of regularizing the spacetime is the one that leads to
correct predictions. Perhaps there is no way to answer
this question, so we may be forced to accept this pro-
posal, or something similar to it, as a postulate.

85/89



why demand that we be able to calculate probabilities in all
contexts, under any circumstances. . .
even to the point that one is willing simply to postulate a
method for doing so based on no principled reasons
but rather constructed ad hoc to give one the results one a
priori wants?

That is not science.

I find it more attractive to give up requirement that one
always be able to calculate probabilities
that would require reconceiving ideas of predictions and
their confirmation in such contexts. . .
but I find that more palatable—
more reasonable, more in line with the requirement that
science be grounded in empirical data
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– We want to be able to reason about the cosmos
in particular ways, to answer questions of a
particular sort.

– As poignantly intimated by the poem serving as
this talk’s epigraph, that bare want does not
suffice to guarantee that the universe be such as to
support the required reasoning.
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