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| will draw out and make precise some differences in the mathematical
representations of “interaction” and “evolution” in classical mechanics
and quantum mechanics, and begin to draw some conceptual lessons
from that analysis.

In particular, | will propose that the lack of a clear distinction between
interaction and evolution in QM, and the concomitant “decoupling” of
quantum dynamics from background spacetime structure, jointly
suggest a natural way to conceive of indefinite causal order
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in sum, classical (Newtonian) mechanics and Lagrangian mechanics:

1. characterize “interaction” and “evolution” as naturally distinguished mathe-
matically, physically and conceptually by the dynamics alone (and so intrin-
sic to it)

2. = natural distinction between configuration and momentum

3. = natural characterization of free evolution

4. = construction of (a priori relation to) spacetime geometry

5. clean separation of system's degrees of freedom from environment's

in sum, Hamiltonian mechanics:

1. NO natural distinction between interaction and evolution intrinsic to dy-
namics

= NO natural distinction between configuration and momentum
= NO natural characterization of free evolution
= NO construction of (a priori relation to) spacetime geometry

ok wbd

still, QUALIFIED clean separation of system’s degrees of freedom from envi-
ronment’s
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in sum, in quantum mechanics:

1. NO natural distinction between interaction and evolution intrinsic to dy-
namics

= NO natural distinction between configuration and momentum
= NO natural characterization of free evolution

= NO construction of (a priori relation to) spacetime geometry

LA ol

NO clean separation of system’s degrees of freedom from environment'’s

then “indefinite causal order":

@ different sets of (s and Ps, each satisfying canonical commutation relation
@ each set determined by a different null-cone structure

@ the different null-cone structures related by geometrical operations that
induce algebraic relations between the sets of Qs and Ps

@ relation to process matrices?
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Interaction and Evolution in Newtonian and Lagrangian Mechanics



classical system, rough first pass

1. space of states S is even-dimensional manifold

2. evolution governed by Newton's Second Law (family of dynami-
cal vector fields D)

3. “interaction”: applying an “external force” to the system (“inter-
vention”)

4. distinguished “free” evolution (“isolation” = no external force)
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Newton’s Second Law

free particle

X=vV

v=0 (1)

dynamical vector field has components: (v, 0)

with interaction turned on (“hit it with a stick”)

X=V

(2)

vV = Fstick

dynamical vector field: (v, Fya)
interaction vector field: (0, Fq)
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o dynamical evolution represented by vector field that always has v

for the component of the — part

ox
@ interaction represented by vector field that always has 0 for the

component of the — part: it “points only in velocital directions”
X

(an acceleration, instantaneous change in velocity, not in posi-
tion)

@ any magnitude of force in any direction can be applied to any
system (in principle)

e multiple simultaneously applied forces sum vectorially
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Definition
A classical system is fully characterized by:

1. space of states is even-dimensional manifold;

2. the family of interaction vector fields J has the structure of a
vector space, whose integral curves determine a family of disjoint
submanitfolds of S each half its dimension and jointly foliating it
(and which satisfies a few more technical conditions);

3. the family of dynamical vector fields © has the structure of an
affine space modeled on J.

(the “fully characterized by" is justified by the theorem soon to come)
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"“obvious” from formulation of Newton's Second Law and the
representations of © and J:

1. crudely, if | can hit a particle with two different sticks, | can hit it
with both at the same time

2. the difference between any two evolutions is just the force | need to
apply to one to get to the other

3. this yields classification of quantities as “configurative” and “velocital'—
if two points of S are connected by an integral curve of an interaction
vector field, then those states “have the same configuration”, and a
quantity is configurative iff it's constant on all corresponding subman-
ifolds of S

4. free dynamical vector field distinguished by fact that only configura-
tive quantities change

(one can make this all precise and rigorous, for finite-dimensional systems AND
fields with infinite-dimensional spaces of state)
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conceptually, the family of possible interactions allows one to distinguish
“configuration” from “velocity”” quantities in a principled way:

@ interactions directly modify the system'’s evolutions only in “velocital
directions”, i.e., as generalized “accelerations”

@ “velocity” quantities are always dynamical derivatives of “configura-
tion” ones (in sense of affine structure on family of dynamical vector

fields)

= the physical meaning of “configuration”: those quantities encode the
possible interactions the system can have with its environment
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Lagrangian mechanics

Theorem (Curiel 2014)

Given classical system with space of states S and families of vector fields © and
j'.

1. one can reconstruct the system’s configuration space C from the algebraic
structure of J;

2. S is canonically isomorphic to TC (using the distinguished free dynamical
vector field to define the isomorphism);

3. @ is then isomorphic to the family of vector fields on TC representing all
solutions to the Euler-Lagrange equation ('second-order vector fields”, i.e.,
lifts of vector fields from configuration space to the tangent bundle);

4. 7 is isomorphic to the family of vector fields on TC representing generalized
forces (‘vertical vector fields”, pointing straight up and down the fibers);

5. in particular, the vertical vector fields have the structure of a vector space,

and the second-order vector fields the structure of an affine space modeled
on it.
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the geometry of the Euler-Lagrange equation

Theorem (Curiel 2014)

If a manifold M admits a formulation of the Euler-Lagrange equation, in
the sense of having an operator mapping scalar fields to a family of vector
fields © having the appropriate structure (“integrable, complete almost-
tangent structure”), then:

1. it is diffeomorphic to a tangent bundle;

2. that operator allows one to construct configuration space C, and to
construct a canonical isomorphism between M and TC taking © to
the second-order vector fields;

3. in particular © is an affine space modeled on the vector space of vec-
tor fields on M mapped to the vertical vector fields on TC.
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classical mechanics just is
Lagrangian mechanics
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Lagrangian mechanics defines and enforces:

1. configuration and velocity, and the difference between them

2. the fixed kinematical relation between them (the latter is the “dynami-
cal derivative” of the former)?

3. a notion of interaction (“interventions”) distinct from dynamical evolu-
tion

4. a distinguished notion of “isolation”

1. Technically:

J"a(dg),, =0
T (dv), = (%)a 3

where J;, is the canonical almost-tangent structure on the tangent bundle, and (g, v)
are natural coordinates. This is the geometrical, generalized version of x = v.
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if | know only the space of states as an abstract manifold and how to
solve the Euler-Lagrange equation (or Newton's Second Law), | can
reconstruct everything else

= the dynamics by itself intrinsically and automatically

e defines and encodes the difference between “configuration” and
“velocity”

e and, correlatively, between “evolution” and “interaction”,

e and uniquely determines "“isolation” (“free evolution”)
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this is what | mean by “classical system’":
1. mathematical and conceptual distinction between “configuration”
and “velocity” encoded in the dynamics

2. mathematical and conceptual distinction between “evolution” and
“interaction” encoded in the difference between configuration and
velocity

3. and so a naturally distinguished “free” evolution
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always a clean separation between a system’s degrees of
freedom and those of its environment:

@ no matter the interaction, | can determine the system’s evolution
without knowing any details about the environment's degrees of
freedom or its evolution

o | treat the environment like a black box, everything relevant en-
coded in interaction vector field

(akin to Don Howard's reconstruction of Bohr's notion of “classical”, made
rigorous; difficult to see how to analyze general relativity according to these ideas)
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Maxwell fields are classical systems too
free field

V-B=0
B=-VxE

V-E=0
E=VxB

components of dynamical vector field: (0, —V x E, 0, V x B)

turn on interaction

V-B=0
B=-VxE

V-E=p
E=VxB+y

dynamical vector field: (0, =V x E, p, V x B 4 3)
interaction vector field: (0, 0, p, 7)

(why B is “configuration” in Lagrangian formulation of Maxwell theory, and E “velocity")
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Even classical fields not in the Newtonian framework have
the same structure!
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Classical Spacetime Structure



in classical mechanics, evolution characterizes time and its
geometry, while interaction (including “isolation”)
characterizes space and its geometry

both jointly determine the full 4-dimensional flat affine
geometry of classical (“neo-Newtonian") spacetime
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. because the family of dynamical vector fields has the structure of an affine
space, the dynamical evolutions (integral curves) have a natural affine para-
metrization

. that determines the temporal metric: the ratios of the “lengths” of different
intervals on the same curve is determined by the affine structure

. the interactions determine configuration space; how to show that it encodes
Euclidean R3?

. at every point of configuration space, the tangent plane can be naturally
identified with the free dynamical vector field (the system moving freely
with all possible velocities with respect to the frame of reference naturally
defined by that configuration, viz., the stationarity of that configuration)

. those velocity differences correspond to Galilean boosts, the family of which
naturally has the structure of Euclidean R3, once the zero point is fixed,
which the frame of reference does

(it begs no question to use Galilean boosts: | am not assuming they are symmetries of
the system; | need only that interactions, considered as differences between dynamical
evolutions, are invariant under the addition of boosts to the dynamical evolutions—they
are symmetries of interactions)
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. the free vector field on the Newtonian space of states induces an affine con-
nection on the induced configuration space: at each point of configuration
space, each tangent vector (“velocity) determines a unique geodesic, that
one that lifts to one of the integral curves of the free vector field on the
space of states

. this affine connection is flat

. it projects down to a flat affine connection on the Euclidean R? constructed
previously, and is naturally identified with the canonical flat affine connec-
tion on Newtonian 3-space

. Lie-deriving it with respect to the free evolution vector field yields the canon-
ical flat affine connection on 4-dimensional Newtonian spacetime
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the distinction between time and space is
built in to the structure of the dynamics,
as is the geometry of spacetime itself
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Theorem (Curiel 2019)

The Euclidean geometry of ordinary space, the metri-

cal structure of time, and the flat affine geometry of 4-
dimensional Newtonian spacetime is entirely determined by
the dynamical structure of a classical system.
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Conjecture

All the affine structures induced on configuration space by a different

choice of conservative second-order vector field are equivalent in the sense
that they yield the same Newton-Cartan spacetime (i.e., in the same equiv-
alence class in the sense of Trautman, related to each other by addition of
an appropriate difference tensor to the derivative operator—see Malament

2012)).
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Interaction and Evolution in Hamiltonian Mechanics



Hamiltonian mechanics

@ phase space is a symplectic manifold

e family of dynamical vector fields © is a Lie algebra, formed from
solving Hamilton's equation for all Hamiltonians (¢ = Q(V H))

o only fixed relations between q and p are canonical Poisson brack-

ets:
{¢i, ¢;} =0
{qi, p;} = 0ij
{pi, pj} =0

@ “interaction” is adding another Hamiltonian:

) is same as J
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Theorem (Curiel 2014)

Fix an even-dimensional, orientable manifold with a Poisson bracket struc-
ture and a vector space of vector fields on it. Then:

1. the Poisson bracket arises from a symplectic structure,
2. and the vector space includes all and only solutions to Hamilton's

equation formulated with it

if and only if

1. the vector fields span the tangent planes,

2. and the manifold has a family of coordinate systems whose coordinate
functions satisfy the canonical Poisson bracket relations,

3. and the associated coordinate vector fields leave the vector space in-
variant under the action of the Lie bracket,

4. and the vector space is maximal under these properties.
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Hamiltonian mechanics is not a classical framework:

1. the families of evolution and interaction vector fields are identi-
cal, having the structure of a Lie algebra (vector space) — “inter-
action” is just adding another Hamiltonian

2. there is no principled distinction between “configuration” and
“momentum”; in particular the latter is not the dynamical deriva-
tive of the former, and their fixed relations are symmetric

3. a fortiori, there is no naturally distinguished “free evolution” vec-
tor field (the zero vector field is not a good candidate—too
degenerate—one wants to allow “constant changes to configura-
tion" for free evolution)
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if | give you a manifold and tell you how to formulate Hamilton's equation
on it (a symplectic structure), i.e., if | tell you the structure of the
dynamics:
1. you can't tell me what's configuration and what’s momentum (“space”
versus temporal derivatives)

2. you can't distinguish interactions from evolutions (“interventions”)
3. you can't tell what is free evolution (“isolation”)

4. you can't reconstruct structure of spacetime, how dynamics hooks up
to it

BUT once | fix all this (by fiat, by divine revelation, ...), then there is
clean separation between a system's degrees of freedom and those of its
environment: | can ignore details of environment's degrees of freedom, treat
it as black-box, everything relevant encoded in “interaction Hamiltonian”
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Why, then, does Hamiltonian mechanics work so well to model
“classical” systems? Because

1. by fiat, we identify some variables as “momentum”

2. then restrict attention only to Hamiltonians having a special
form, those “purely quadratic in momentum”

3. this reproduces the fixed kinematical relations between configura-
tion and velocity in classical systems

examples:

e H = p*+ 1¢% is a simple harmonic oscillator, yielding the correct classical
relation v = ¢ under the Legendre transform

o think of H = 1p? + 142 + p, however—that yields v = ¢ + 1, which is
physically meaningless

@ H = p®/? or H = sin(q) are even worse
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Hamiltonian mechanics is an odd no-man's land, sharing features of both
classical and quantum mechanics:

1. there is no mathematical or conceptual distinction between interaction
and evolution (J = D);

2. but there is still a clean separation of the system’s degrees of freedom
from those of the environment, in the precise sense that | can “turn
on” an interaction (in scare-quotes, since this is not distinct from an
evolution) while treating the environment as a black-box, i.e., not
needing to give an explicit representation of its degrees of freedom
and their evolution in order to fully treat the character and evolution
of the system.
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One way to underscore the point:

1.

in so far as the genus of a system is largely determined by its set of
kinematic and dynamic quantities, turning on an interaction does not
change its genus.

A Navier-Stokes fluid is a Navier-Stokes fluid in large part because it
bears the physical quantities shear viscosity, bulk viscosity, thermocon-
ductivity, fluid velocity, shear-stress, heat flux, et al.

. the first three are treated as constants, and fluid velocity is a vector,

shear-stress a symmetric tensor, and so on

turning on an interaction does not change any of this, and therefore
does not change the type of system one is dealing with
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So perhaps Hamiltonian mechanics is best described as quasi-classical. . .

a criollo miscegenation between classical and quantum mechanics, in which

@ one loses the distinction between interaction and evolution
@ and the intrinsic differentiation between configuration and momentum

@ but one still has a clean separation of the system'’s degrees of freedom
from those of the environment.
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Interaction and Evolution in Quantum Mechanics



. dynamical vector fields (“evolutions”) are unitary flows on Hilbert
space

. unitary flows are exponentiated Hamiltonians (self-adjoint opera-
tors)

3. “interaction” is just adding another Hamiltonian

4. only fixed relation between “configuration” and “momentum” is

canonical commutation relation

(Q, P] = ihl
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if | give you a Hilbert space and its family of self-adjoint operators,
i.e., the dynamics:

1. you can't distinguish interactions from evolutions (“external in-
terventions” such as coupling the system with another)

2. you can't tell me what's configuration and what's momentum
3. you can't tell what is free evolution (“isolation”)

4. indeed, even if | give you a “standard” Hamiltonian in some funky
basis, and ask you to decompose it into its “free” part and its
“interaction” part, you won't be able to do it
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| need an explicit representation both of degrees of freedom of the
environment, and their intertwining with those of the system, in order to
appropriately and adequately treat the system “during an interaction”.

More specifically, | need:

1. to change the space of states | use to treat the system, now the ten-
sor product of its “isolated” Hilbert space with that of the environ-

ment;
2. to change its set of physical quantities, now the algebra of observables
on the tensor-product Hilbert space;

3. to change the structure of the quantities encoding evolution, now
Hamiltonians on the tensor-product.

that most quantum of quantum mechanical phenomena
has now made its entrance, entanglement
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— no clean separation in quantum mechanics between a
system’s degrees of freedom and those of its environment

if | want to understand how a system evolves under interaction with
the environment, | have to know how to model the environment's
degrees of freedom and dynamics

(akin to Don Howard's reconstruction of Bohr's understanding of entanglement,
and his insistence on “complementarity” in quantum measurements, made
rigorous)
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in quantum mechanics, the transition
to non-classicality is complete
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How do we distinguish the s and the Ps in quantum mechanics, and
so define a “free” evolution? Two ways:

1. by fiat

2. introduce representation of Poincaré or Galileian group a /a
Wigner, and define () as the generator of momentum transla-
tions, etc.

In both cases, we must explicitly and by hand hook the dynamics up
to the background spacetime structure to get a principled distinction
between configuration and momentum, and so define “free” and
“interacting”

we don't get it from the dynamics alone

as in classical mechanics
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WILD SPECULATION

perhaps the lesson is that there is at bottom no real difference
between ) and P in quantum mechanics

this would strongly suggest that quantum gravity should not be
formulated in a 3+1 framework
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Perhaps most strikingly, moreover, in so far as the genus of system is determined
in part by its set of kinematic and dynamic quantities, turning on an interaction
changes its genus, in so far as it now has a new set of both kinds of quantities—

we are now working, in a precise sense, with an entirely new kind of physical
system!

Or, (a little) more precisely:

@ the system cum environment now has a distinctive set of kinematic and
dynamic quantities, which cannot be determined as or reduced to a function
of those of the isolated system and those of the isolated environment taken
individually

@ and one must take account of those new “global” quantities in order to give
an appropriate and adequate treatment of the original system
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Indefinite Causal Orders



[DRAW SOME PICTURES]
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