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as a philosopher and gad-fly one of my duties is to take a step back
and remind us all from time to time of some basic ideas that we
tend to lose sight of, so much part of the ground of our framing
conceptual landscape are they

so I begin with a few basic—almost trite—observations about
energy and entropy in classical physics (non-relativistic,
non-quantum), to set the stage for the discussion of more
advanced, abstract matters, far removed from our empirical access

in any event, one never goes wrong by invoking Fermi’s Pleasure
Principle to begin a talk



what energy and entropy share in common in classical physics:

1. their universality—every theory treating every kind of physical sys-
tem attributes (or can attribute) both to them, except perhaps en-
tropy for the simple mechanics of rigid bodies

2. and except—most interestingly—the Newtonian gravitational field
(if one tries to attribute a “Bekenstein entropy” to a “Newtonian
black hole”, it doesn’t work for many reasons, among them that the
geometry of Newtonian spacetime does not admit event horizons,
nor even trapping horizons)

3. their fungibility—all forms of each are, respectively, transformable
into each other

4. both are affine quantities (no natural zero point)

5. each obeys a characteristic relation among all their possible forms,
for energy an equality (conservation) and for entropy an inequality
(the Second Law), and both of those relations have an intimate
connection with time



what energy and entropy share in common in classical physics
(cont.):

6. indeed, there are (we tend to forget) two entirely separate
conceptions of energy in classical physics, the generator of
time translations (“Hamiltonian”) and the capacity to do work
(“Lagrangian”)

7. that they are a priori independent of each other is seen most
clearly by the fact that, since work depends only on spatial
paths, the latter makes not even an implicit reference to time1

1. the work 1-form in Lagrangian mechanics is transverse to “accelerations”;
the energy, as a function of the Lagrangian, does not generate dynamical evo-
lution as the Hamiltonian does; one cannot represent “work” at all, much less
dissipative processes, in Hamiltonian mechanics



what energy and entropy share in common in classical physics
(cont.):

8. the two conceptions of energy are brought into contact with
each other through the principle of conservation, which itself
is balanced by the introduction of the idea of heat (neither a
generator of time translations nor the capacity to do work)
and thus, inevitably, the introduction of entropy from ener-
getic considerations

9. thus there are in fact three conceptions of energy in classi-
cal physics, united by the conservation principle and by the
Second Law (for the latter, most explicitly in the form of the
Kelvin Postulate)

10. and, tantalizingly, by the characterization of equilibrium, as
the maximizer of entropy and the minimizer of free energy
(Kelvin’s “Principle of Dissipated Energy”)



Now when the appearance of one thing is strictly con-
nected with the appearance of another, so that the
amount which exists of the one thing depends on and can
be calculated from the amount of the other which has
disappeared, we conclude that the one has been formed
at the expense of the other, and that they are both forms
of the same thing.

– James Clerk Maxwell
Theory of Heat (1891, ch. iv, p. 93)



note how careful Maxwell’s formulation is: it applies
both to energy (conservation, an equality) and to
entropy (Second Law, an inequality)



nonetheless, there are clear conceptual and physical
differences, most fundamentally:

1. they are not jointly fungible

2. there is no such thing as an entropometer, but there are
ergometers (“entropy mediates no physical couplings be-
tween systems”—it is a purely modal quantity)

3. energy conservation must be postulated, but plays essen-
tial roles in derivation of many important, general results

4. entropy increase can be derived, but plays no essential
role in derivation of any important, general results (“the
Second Law lacks fecundity”)

5. entropy constrains the possible future transformations of
a system more severely than does energy conservation



Emden (1938, p. 909) (see rest of article as well):

As a student, I read with advantage a small book by
F. Wald entitled ‘The Mistress of the World and her
Shadow’. These meant energy and entropy. In the course
of advancing knowledge the two seem to me to have ex-
changed places. In the huge manufactory of natural pro-
cesses, the principle of entropy occupies the position of
manager, for it dictates the manner and method of the
whole business, whilst the principle of energy merely does
the bookkeeping, balancing credits and debits.
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many (but not all) properties of energy carry over from classical
physics, and are even deepened and become more subtle, for they
are now united (along with momental quantities) in a single new
quantity, viz., stress-energy:
universality matter couples with “gravity” (“the universal force”,

viz., spacetime curvature) by way of stress-energy, attributed
promiscuously to every kind of matter field

fungibility every form of stress-energy can be transformed (in
principle) into every other kind

conservation one now has in general only “hyperlocal” conserva-
tion (∇nTna = 0), no integral conservation laws (“gravitational
energy is non-local”)2

zero point no longer an affine quantity (“Tab = 0” is unambigu-
ous)

2. Perhaps we can posit a non-local gravitational energy to save conserva-
tion, as they did heat in the 19th Century? And so gravitational energy really
is an energy associated with dissipative, hidden degrees of freedom. . .



and energy conditions make their first appearance

• constraints on measure of curvature (usually Ricci or
Einstein), given physical interpretation by way of stress-
energy tensor in EFE

• EFE on its own has almost no physical content without
them

• almost every general, deep result in GR assumes an en-
ergy condition for its proof

• by way of guaranteeing focusing of geodesics

most characteristic role of energy in GR



also most characteristic of energy conditions:

• in classical GR, as in most theories, one has a great deal of
freedom in what one takes as primitive and what as derived

• think of the geodesic principle and covariant conservation of
stress-energy, inter-derivable

• this is not true of the classical energy conditions, neither pointil-
liste nor impressionist

• one can’t derive energy conditions in classical GR

• they are always taken as primitive (Curiel 2017)

• perhaps they reach down to and get ahold of spacetime struc-
ture at a very deep level?



• this is not so of entropy conditions in classical GR3

• Bousso (1999a, 1999b), e.g., used the DEC in his original
work to motivate his covariant entropy bound (“the total
entropy flux SL through any null hypersurface L satis-
fying some natural geometrical conditions must be such
that SL ≤ A/4, where A is a spatial area canonically as-
sociated with L”)

• Flanagan et al. (2000) then proved it using the NEC

3. Putting aside for the moment what one means by entropy, here, what
kind of entropy one is dealing with—just assume for the moment that “black
hole area is something like an entropy”.



the relations between energy and entropy are neighborly, but not
intimate:
1. relation between energy conditions and entropy conditions is

“one way” only

2. there is no explicit unification of different types of entropy (in
something like a GSL, e.g.), as there is for energy

3. as in classical thermodynamics—if one accepts the orthodox
dogma (Wald’s Way), that there is no consistent thermody-
namical theory of purely classical black holes—energy and en-
tropy are not jointly fungible (throwing mass into a classical
black hole doesn’t increase its entropy)

4. there is still no entropometer

5. and relation of both stress-energy and entropy to equilibrium
(existence of timelike Killing field) is obscure at best



in any event, already energy here goes beyond the role it plays
in non-relativistic physics. . .

to paraphrase Emden’s marvelous remark, in the huge
manufactory of natural processes, energy begins to occupy the
position of, if not manager, at least assistant manager, for it
constrains the manner and method of the whole business



Carlo Rovelli (personal communication, his emphases):
Entropy (and thermodynamics in general) is not yet un-
derstood (by anybody) even in CLASSICAL gravity. . . .
What is well understood (since Tolman) is the thermo-
dynamics of matter fields on a given geometry, which
is to say: disregarding dissipation into gravitational de-
grees of freedom. But dissipation into gravitational de-
grees of freedom has no reason not to occur (which in
the Black Hole case is the classical analog of your obser-
vation about gravity getting entangled with the Hawking
radiation, for instance). So the classical thermodynamics
of the gravitational field is a topic for which we do not
have a science at all, yet.



I agree

Maybe we can make some progress in SCG.
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How did classical general relativity know that the
horizon area would turn out to be a form of entropy,
and that surface gravity is a temperature?

Ted Jacobson
“Thermodynamics of Spacetime:
The Einstein Equation of State”



first hints of more intimate relations between energy and entropy,4

provisionally accepting BHT:

fungibility energy can now be directly transformed into entropy
(“throw stuff into black hole”), and vice-versa (Hawking radia-
tion); each is a direct measure of the other (“area and mass tell
you each other”)

zero point they both have natural zero points, which is the same
state (Schwarzschild M = 0)

equilibrium heuristic but compelling arguments that stationary
black holes minimize free energy (“M − Mirr”) and maximize
entropy

entropometer! we can measure area of event horizon directly (not
a modal quantity)—which is also, in this case an ergometer, as
area gives you mass

4. Here, we take the black hole area to be uncontroversially (more or less) a
thermodynamical entropy.



but the relations—including equalities—between entropy and
energy even beyond those just stated become now a
promiscuous, libertine, orgiastic debauch. . .

Sodom and Gomorrah, during the fun times!



• one of the most natural ways to think of gravitational en-
ergy in GR (yet largely unexplored) is by way of geodesic
deviation (focusing) (Penrose 1966; Curiel 1997)

• one can extract energy from a gravitational field when
and only when there is geodesic deviation (focusing) (Bondi
and McCrea 1960; Curiel 1997)

• as we’ll see, entropy now becomes associated with geodesic
deviation (focusing) as well



entropy conditions5 take on the classical role of energy conditions, by
guaranteeing geodesic focusing:

1. GSL proves a singularity theorem, and rules out traversable worm-
holes, negative masses, other forms of faster-than-light travel be-
tween asymptotic regions, restarting inflation and CTCs: Wall
(2013)

2. Bousso bound proves a singularity theorem: Bousso and Shahbazi-
Moghaddam (2022)

3. quantum Penrose inequality using generalized entropy of bulk light
sheets to constrain lower bound of ADM mass: Bousso et al. (2019)

4. quantum focusing implies singularity theorems, the GSL and bound-
ary causality: Shahbazi-Moghaddam (2022)

(N.b.: the last only a conjecture, with supporting plausibility arguments and
evidence from test cases)

5. It now becomes almost wholly unclear what is meant by entropy in any
given application, and whether, in any event, they are jointly consistent.



the principle of entropy increase (GSL) becomes
fecund!



one now has, for the first time, not only derivations of energy
conditions, but ones based on entropy conditions, and vice-versa

1. proving the (A)ANEC from the GSL: Wall (2010)

2. proving the ANEC from the QNEC: Bousso et al. (2016)

3. proving the NEC from the GSL: Parikh and Svesko (2017)

(we’ll come to the QNEC—Quantum Null Energy Condition—next)



QNEC, Bousso et al. (2016)

1. any point p and null vector ka define (at least locally) a null
plane N

2. given any codimension-2 surface Σ that contains p and lies on
N , consider the von Neumann entropy Sout of the quantum
state of the ambient quantum fields restricted to one side of
Σ

3. a second variation S′′
out can be defined by deforming Σ along

N , in a small neighborhood of p, by an area A
4. QNEC:

⟨Tkk(p)⟩ ≥
ℏ
2π

lim
A→0

S′′
out/A



Figure

class of states of a 1þ 1-dimensional conformal field
theory (CFT) [27]. The QNEC emerged as a general
constraint on quantum field theories when it was noted
that the quantum focusing conjecture (QFC) implies Eq. (1)
in an appropriate limit [23]. We will briefly describe the
QFC and outline how the QNEC arises from it.
A generalized entropy can be ascribed not only to

horizon slices, but to any surface that splits a Cauchy
surface [28–32]. Moreover, one can define a quantum
expansion Θ½Σ; y1#, the rate (per unit area) at which the
generalized entropy changes when the infinitesimal area
element of ν at a point y1 is deformed in one of its future
orthogonal null directions [23] (see Fig. 1). This quantity
limits to the classical (geometric) expansion as ℏ → 0. The
QFC states that the quantum expansion Θ½Σ; y1# will not
increase under any second variation of Σ along the same
future congruence, be it at y1 or at some other point y2 [23].
The QFC, in turn, was proposed as a quantum version of

the covariant entropy bound (Bousso bound) [33–35], a
quantum gravity conjecture which bounds the entropy on a
nonexpanding null surface in terms of the difference
between its initial and final area. The QFC implies the
Bousso bound; but because the generalized entropy appears
to be insensitive to the UV cutoff [36–38], the QFC remains
well defined in more general settings. (The QFC is distinct
from the quantum Bousso bound of Refs. [39,40], which
defines the entropy by vacuum subtraction [41], a pro-
cedure applicable if the gravitational effects of matter are
negligible.)
In the case where y1 ≠ y2, it can be shown [23] that the

QFC follows from strong subadditivity, an entropy inequal-
ity which all quantum systems must obey.1 For y1 ¼ y2, the
QFC remains a conjecture in general, but in special cases
it can be proven. The QFC constrains a combination of
“geometric” terms proportional to G−1 that stem from the
classical expansion, as well as “matter entropy” terms that
stem from Sout and do not involve Newton’s constant. The
classical expansion is governed by Raychaudhuri’s equa-
tion, θ0 ¼ −θ2=2 − σ2 − 8πGhTkki.2 If the expansion θ and
the shear σ vanish at y1, then the rate of change of the
expansion is governed by a term proportional to G. In this
case, all G’s cancel in the terms of the QFC, and Eq. (1)
emerges as an apparently nongravitational statement.

A. Outline

In this paper, we will prove the QNEC in a broad arena.
Our proof applies to free or super-renormalizable, massive

or massless bosonic fields, in all cases where the surface Σ
lies on a stationary null hypersurface (one with everywhere
vanishing expansion). The most important example is
Minkowski space, with Σ lying on a Rindler horizon.
Such a horizon exists at every point p, with every
orientation ka, so the QNEC constrains all null components
of the stress tensor everywhere in Minkowski space.
A similar situation arises in a de Sitter background,

where p and ka specify a de Sitter horizon, and in anti–de
Sitter space, where they specify a Poincaré horizon. Other
examples include an eternal Schwarzschild or Kerr black
hole, but in this case our proof applies only to points on the
horizon, with ka tangent to the horizon generators. These
should all be viewed as fixed background spacetimes with
no dynamical gravity; our proof establishes that a free
scalar field theory on these backgrounds satisfies Eq. (1).
We give a brief review of the formal statement of the

QNEC in Sec. II. We then set up the calculation of all
relevant terms in Sec. III. In Sec. III A, we review the null
surface quantization of the theory, on the particular null
surface N that is orthogonal to Σ with tangent vector ka.
Null quantization has the remarkable feature that thevacuum
state factorizes in the transverse spatial directions. This
reduces any purely kinematic problem (such as ours) to the
analysis of a large number of copies of the free chiral scalar
CFT in 1þ 1 dimensions. We then restrict attention to the
particular chiral CFT on the infinitesimal pencil that passes
through the pointpwhereΣ is varied. The state on this pencil
is entangled with an auxiliary quantum system which
contains both the information crossing the other generators
of N, and the information that does not fall across N at all.

FIG. 1. The spatial surface Σ splits a Cauchy surface, one side
of which is shown in yellow. The generalized entropy Sgen is the
area of Σ plus the von Neumann entropy Sout of the yellow region.
The quantum expansion Θ at one point of Σ is the rate at which
Sgen changes under a small variation dλ of Σ, per cross-sectional
area A of the variation. The quantum focusing conjecture states
that the quantum expansion cannot increase under a second
variation in the same direction. If the classical expansion and
shear vanish (as they do for the green null surface in the figure),
the quantum null energy condition is implied as a limiting case.
Our proof involves quantization on the null surface; the entropy
of the state on the yellow spacelike slice is related to the entropy
of the null quantized state on the future (brighter green) part of the
null surface.

1Some recent articles [42,43] considered a different type of
second derivative of the entropy in 1þ 1 field theory. These
inequalities involve varying the two end points of an interval
independently, and therefore follow from strong subadditivity
alone, without making reference to the stress tensor.

2Raychaudhuri’s equation immediately implies that, in cases
where the classical geometrical terms dominate, the QFC is true
iff the classical spacetime obeys the null curvature condition.

RAPHAEL BOUSSO et al. PHYSICAL REVIEW D 93, 024017 (2016)

024017-2

[*** shamelessly cribbed from Bousso et al. (2016) ***]



one gets equivalences of entropic and energetic quantities:

1. Leichenauer et al. (2018): for null shape deformations as they
appear in the QNEC, modulo a plausible, supported conjec-
ture, second variations of the von Neumann entropy determine
the full stress-energy tensor expectation value as an equality
(and so, à la Jacobson 1995, one gets the EFE)

2. Wang (2020): (quasi-local) Bartnik-Bray inner mass exactly
equals the (generally non-local) irreducible mass corresponding
to the (generally non-local) outer entropy (Engelhardt and
Wall 2018)



perhaps most striking (argument due to Manus Visser):

1. set
⟨Kξ⟩ :=

∫
Σ

⟨Tm
n⟩ξmdΣn

2. then SCG First Law:

δM =
κ

8π
δA+ δ⟨Kξ⟩

3. invoke First Law of quantum thermodynamics, a.k.a., First Law of
entanglement

δ⟨Kξ⟩ = THδSent

where δSent = −Tr ρ log ρ and ρ =
1

Z
e−βHKξ

4. ⇒ δM = THδSgen

where Sgen = A+ Sent = SBH + Sent

and TH =
κ

8π



Sgen obeys both a First Law and a Second Law!!!



Now when the appearance of one thing is strictly con-
nected with the appearance of another, so that the
amount which exists of the one thing depends on and can
be calculated from the amount of the other which has
disappeared, we conclude that the one has been formed
at the expense of the other, and that they are both forms
of the same thing.

– James Clerk Maxwell
The Theory of Heat (ch. iv, p. 93)



Are energy and entropy different aspects, different
forms, of the same underlying entity? Should this be
one of the unifications we seek now in physics?



two paths to the EFE: (1) entropy

further hints from Jacobson (1995):

1. assume form of entropy (proportional to area)

2. assume form of heat (matter flux of particular sort, = 0 when
Tab = 0)

3. assume Clausius relation (temperature from Unruh effect)

4. ⇒ Einstein field equation as consistency condition on thermo-
dynamical relations (“equation of state”)

⇒ null energy condition as local law of entropy increase

(see also Curiel et al. 2020)



two paths to the EFE: (2) stress-energy

Theorem (Curiel 2019)
The only two covariant-index, symmetric, divergence-free,
second-order concomitants of the metric with physical dimen-
sion of stress-energy (in geometrized units) are constant mul-
tiples of the Einstein tensor.

⇒ physical dimension of stress-energy (Tab invariant under
constant recalings of gab) determines coupling of curvature to
matter
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