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Translator’s Notes

Translator’s footnotes are marked by numbers preceded by ‘T’, e.g., ‘T1’. All other footnotes
are the author’s. They are Old Skool, marked by a superscripted number prepended to a right
parenthesis, e.g., ‘1)’.

Y. Fourès-Bruhat, « Le probléme de Cauchy dans la théorie

relativiste de l’électromagnétisme et dans la théorie unitaire

de Jordan-Thiry »

The Cauchy Problem in the Relativistic Theory of Elec-
tromagnetism and in the Unitary Theory of Jordan-Thiry

by Mme. Y. Fourès-Bruhat (Aix-Marseille)

1. In general relativity the electromagnetic field, external form (cf. [1]) F = Fijdx
i ∧ dxj , and

the metric, quadratic form g = gijdx
idxj , are linked by the equations of Einstein

Sij = Rij −
1

2
gijR = ξTij (1)

Tij =
1

4
gijFhkF

hk − FihF jj
and the equations of Maxwell which can be written (for a zero current-vector):

dF = δF = 0 (2)

where dF and δF designate differentiation and codifferentiation with respect to the metric g.T1

I first look for a solution such that F = dφ. Equation (2) takes then the form

δdφ. (2’)

Fix, at the initial instant x4 = 0, φ and g and the derivatives ∂φj/∂x4, ∂gij/∂x4 satisfying the
necessary conditions

S4
i = 0, (δdφ)4 = 0. (3)

The initial coordinates being isothermal (cf. [2]),T2

F i ≡ ∇jg(i)j ≡ gjhΓijh = 0 for x4 = 0 (4)

and the potential vector φ being normalized by

δφ = −∇iφi = 0 for x4 = 0. (5)

T1. ‘Differentiation’ here clearly means “differentiation with respect to the exterior derivative” (and so indepen-
dent of the metric), and ‘codifferentiation’ means “divergence with respect to the Levi-Civita derivative operator
associated with the metric”.
T2. These are perhaps better known as harmonic coordinates.
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We deduce from (3), (4) and (5)

∂F i/∂x4 = ∂(∇iφi)/∂x4 for x4 = 0.

The identities

Rij ≡
1

2
ghk

∂2gij
∂xh∂xk

+Hij(∂hglk, glk) +
1

2
gih∂jF

h +
1

2
gjh∂iF

h (6)

(δ∂φ)i ≡ ghk
∂2φi

∂xh∂xk
+ Pi(∂kφh, ∂kglh, glh) + ∂i(∇hφh + Fhφh) (7)

show that in isothermal coordinates, and for a potential vector normalised by δφ = 0, the equations
of Maxwell-Einstein take the form of a system of second-order hyperbolic, nonlinear equations
where the derivatives of second order are separatedT3 and have the same coefficients for all equa-
tions. I have constructed [3] a (unique) solution of the Cauchy problem for such a system without
any assumption of analyticity: its value at a point depends only on the initial data inside a conoid
the vertex of which is the point (from which follows wave propagation and the identity of the
gravitational and electromagnetic propagations) and depends continuously on the initial data.T4

The conservation identities and the identity δδψ = 0 allow the demonstration that this solution
is isothermal and that φ satisfies the condition δψ = 0. We have thus effectively constructed a
solution of the Maxwell-Einstein equations (1) and (2). We [also] show that this solution is
physically unique.

T3. I.e., they do not appear in terms multiplied by the field values or their first derivatives.
T4. She elliptically draws attention to a nexus of subtle and important points all grounded in the fact that she
has not assumed the solution to be an analytic function (as, indeed, the solutions to hyperbolic partial-differential
equations in general are not, as opposed to those of elliptic and parabolic partial-differential equations). That
implies, first, that traditional brute force analytical techniques for proving existence and uniqueness—e.g., calcu-
lating coefficients term by term in a Taylor-series expansion—were not available to her. She had to develop more
manifestly “geometrical” methods to solve the problem. Second, her solution is more robustly realistic as a solu-
tion to a problem in physics (as opposed to pure mathematics). Analytic functions are physically pathological in
so far as their values everywhere are determined by their values in arbitrarily small regions anywhere, a peculiar
form of hyperdeterminism. To know an analytic solution in an arbitrarily small region, therefore, determines its
initial data everywhere, and in particular in regions outside the causal past of the region. The values of her solu-
tion in an arbitrarily small region, by contrast, provably depend only on initial data contained in the causal past
of that region.

Alex Blum (email, 16 Nov 2021):

I’m a little confused by one point in the Fourès-Bruhat paper: in the older papers I’ve read (going
back to Hadamard) the focus always seems to be on the analyticity of the initial value data, while
she emphasizes the assumed analyticity of the putative solution. Is there a subtle distinction there?

I reply:

There is the fact that that hyperbolic PDEs are the only ones whose solutions are not guaranteed
to be analytic (as opposed to solutions of parabolic and elliptic), irrespective of the character of the
initial data. But that doesn’t seem like it would answer your question, since, presumably, everyone
reading her paper and listening to her presentation would already know that. The only thing that
really makes sense to me is the interpretive issue I point to, about causality, which really does turn
on the difference between the analyticity of initial data restricted to a 3-surface (who cares about
“hyper-determinism” there, it’s no worse than the kinds of global correlations imposed on a space-
like 3-surface by the fact that, e.g., the divergence of the electric field here is determined by a local
charge distribution way over there), and that of a 4-d solution, which seems manifestly problematic
(kind of like Bell correlations, really).
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We can equally as well determine F by 2F ≡ dδF+δdF = 0 without using the vector potential
φ whose existence is assumed by the previous reasoning (φ could exist only locally). A uniqueness
theorem then guarantess the existence of φ given its existence at the initial time.

2. Unitary theory of Jordan-Thiry: the fifteen unknowns γλµ are the coefficients of the metric
of a five dimensional Riemannian space, cylindrical with respect to x0:

ds2 = γλµdx
ldxµ = −ξ2(dx0 + βφidx

i) + dŝ2

dŝ2 = gijdx
idxj is the metric of the space-time, φi the vector potential, ξ a fifteenth potential

whose interpretation is up for discussion (cf. the talk by A. Lichnerowicz).T5

Outside the mass distribution, the unknowns γλµ satisfy the equations:

Rab = 0 (8)

(Rab, the Ricci tensor of the five-dimensional space). We give at the initial time x4 = 0 the γλµ,
∂γλµ/∂x

4 (i.e., gij , φi, ξ and their first derivatives) satisfying the necessary conditions:

S4
λ = 0 for x4 = 0. (9)

The initial coordinates being isothermal

Fµ ≡ ∇λγλ(µ) = 0 for x4 = 0, (9)

we derive from (9) and (10)
∂fF

µ = 0 for x4 = 0. (10)

A decomposition analogous to (6) allows us to solve equations (8) in isothermal coordinates, the
conservation conditions ∇λSλµ ≡ 0 showing again that we have effectively a physically unique
solution of these equations. This solution depends continuously on the initial data (in particular ξ
remains constant if it is so at the initial time).

If we make ξ = const. in the first fourteen equations of the unitary theory of Jordan-Thiry,
we obtain the equations of the Kaluza-Klein theory, equivalent to the Maxwell-Einstein

equations, which allows us to recover the results of §1.

Bibliography

[1] Lichnéreowicz, A., Théories relativistes de la gravitation et de l’électromagnétisme,
Masson (1955).

[2] Darmois, G., Equations de la gravitation einsteinienne, Memorial Sci. Math. (1927).T6

[3] Fourès-Bruhut, Y., Acta Matem. (1952).T7

T5. Is she being catty or serious? I suspect the former.
T6. The full reference is

Georges Darmois, 1927, Les équations de la gravitation einsteinienne, Mémorial des Sciences mathé-
matiques dirigé par Henri Villat, fasc. xxv, Gauthier-Villars et Cte, Paris.

T7. The full reference is
Y. Fourès (Choquet)-Bruhut, 1952, “Théorème d’existence pour certains systèmes d’équations aux
dérivées partielles non linéaires”, Acta Mathematica 88:141–225, doi:10.1007/BF02392131
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A. Lichnerowicz, « Problèmes généraux d’intégration des

équations de la relativité »

General Problems in Integrating the Equations of RelativityT1

by André Lichnerowicz (Collège de France)

In this lecture, I intend to show what are the problems posed by the mathematical study
of the relativistic equations of gravitation and electromagnetism and to indicate the main results
obtained in this field during the most recent years. This lecture will be devoted mainly to ‘classical’
general relativity, but, along the way, I will be led to show that the mathematical problems posed
by unitary theories, whether they are of the Jordan-Thiry type or non-symmetric type, do not
differ much from those concerning general relativity. As we shall see, the few mathematical facts
brought to light by these theories help shed some light on the fundamental difficulty of unitary
theories: to obtain a precise physical interpretation of the elements of the refined geometrical
schemes they bring into play.

I will add that the spirit of my exposition will be that of the mathematical physicist.

1. The Structure of the Field Equations

1. The space-time manifold.

In any gravitational field theory, the primitive element is constituted by a 4-dimensional “space-
time” manifold, endowed with the structure of a differentiable manifold, which it is necessary to
fix in what follows.

For reasons closely related to the covariance of the formalism, and that will appear in detail
through the analysis of the equations of the gravitational field, we are led to suppose that in the
intersection of the domains of two admissible coordinate systems, the local coordinates of a point
in one of the systems are 4-times differentiable functions of the coordinates of this point in the
other system, the first and second derivatives being continuous, the third and fourth derivatives
being only piecewise continuous, and the Jacobian non-zero.T2

We will render this by saying that the manifold V4 is (C2, piecewise C4).
A Riemannian metric ds2 of normal hyperbolic typeT3 is defined on V4, with one positive and

three negative squares.T4 The local expression of this metric in an admissible coordinate system
is:

ds2 = gαβdx
αdxβ (α, β and all Greek indices = 0, 1, 2, 3). (1)

T1. Early on in the translating, I got tired of transcribing the debauch of indices in the mathematical formulæ,
and so began inserting images of the formulæ taken directly from the original (Lichnerowicz 1956) wherever possi-
ble.
T2. This is more cautious than the standard use of smooth structures by theoretical physicists and by philoso-
phers today, without the mania shown by contemporary mathematical physicists for reducing the order of differ-
entiability of all possible structures by as much as possible in all standard results, come Hell or High Water and
with no regard for physical significance.
T3. In modern terms, a Lorentz metric.
T4. Using this signature, rather than (−, +, +, +), was, to the best of my knowledge, unusual at that time in
the context of physics; it is a modern style.
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The “gravitational tensor” gαβ is assumed exactly (C1, piecewise C3), which is strictly compat-
ible with the structure imposed on V4. Any additional global precision of the differential structure
or metric, with regard to differentiability, must be regarded as physically meaningless.T5

The equation ds2 = 0 defines at each point x of V4 the fundamental cone at x. Its interior
and exterior define respectively the timelike and the spacelike directions.T6 For a hypersurface Σ,
defined locally by f(xa) = 0, to be spacelike it is necessary and sufficient that

If the timelike line L is represented by xi = const. (i and all Latin indices = 1, 2, 3), we have
g00 > 0, and the quadratic forms of coefficients, dual to each other,

are defined to be negative.
The manifold V4 is not topologically arbitrary since it admits a metric field of normal hyperbolic

type;T7 by using an elliptic metricT8 we see that V4 certainly admits a timelike direction field.T9

The orbits of this field provide a global system of “time lines”.
When topological considerations are necessary, it is often admitted, more or less explicitly, that

V4 is the topological product of a 3-dimensional manifold V3 by a 1-dimensional manifold, the
1-dimensional submanifold factors being timelike in V4. In this case, for many problems, only the
topology of V3 is important. The usual cases are those where V3 is homeomorphic to the ordinary
R3 or is a compact manifold.

The different assumptions imposed on the metric (1) characterize the so-called regular metrics.

2. Einstein’s equations of general relativity.

In the following, I will designate by Rαβ the Ricci tensor of the metric (1) and will set

T5. An explicit show of greater sensitivity than shown by most mathematical physicists today to the issue of
physical significance, with regard to the order of differentiability of standard results.
T6. I here permit myself the anachronistic terms ‘timelike’ and ‘spacelike’, as the more literal translations of
Lichnerowicz’s ‘l’orientation dans le temps’ and ‘l’orientation dans l’espace’ might confuse the modern reader,
since the English word ‘orientation’ now has a different meaning in the context of contemporary differential geom-
etry.
T7. I am impressed, and somewhat confused. It is a corollary of a famous theorem due to Geroch (1969) that a
manifold admits a Lorentz metric iff it is non-compact and paracompact, or else it is compact and has vanishing
Euler characteristic. (Thus, for instance, neither the 2-sphere nor the Cartesian product of the long line with itself
admits a Lorentz metric.) I find it hard to credit that Lichnerowicz knew anything like this result. I am therefore
curious what was known at the time about the constraints topology places on Lorentzian geometry. Does anyone
know a good historian of early 20th Century topology and differential geometry? (I should check Steenrod 1951.)
T8. In modern terms, a positive-definite metric.
T9. I am somewhat confident that Lichnerowicz really means “direction field” (for the definition and use of
which, see, e.g., Geroch and Horowitz 1979, §2) and not “vector field” for two reasons: first, it is false that ev-
ery manifold that admits a Lorentz metric also admits a nowhere-vanishing timelike vector field; second, a man-
ifold admits a direction field if and only if it admits a Lorentz metric, and the standard construction showing
this works by fixing an arbitrary positive-definite metric (Geroch and Horowitz 1979, p. 219). Still, I would love
to consult a historian of early 20th Century mathematics, to verify that these sorts of results were known at the
time. (I should check Steenrod 1951 and Schouten (1954).)
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The equations of Einstein, which in the framework of general relativity limit the generality of the
metric can be written:T10

Sαβ = χTαβ . (4)

The momentum-energy tensor Tαβ , which plays the role of source of the field, fully describes the
energy state at the point considered in V4 (the interior case) or, in the regions not occupied by
energy, is identically zero (the exterior case).T11 It thus generalizes the second term of Poisson’s
equation.T12

The tensor Sαβ ,T13 of geometrical origin, which depends only on the gαβ and their derivatives up
to second order, is linear with respect to the second-order derivatives and satisfies the conservation
identities

The system of Einstein’s equations having, as we shall see, a normal hyperbolic character,
the first problem we have to deal with is that of Cauchy, which is closely related to relativistic
determinism. We shall begin with a local elementary study and, in order to keep ourselves to
the essentials, we shall not introduce a second term and shall consider only the external Cauchy

problem. Its preliminary study is moreover necessary for the Cauchy problem with a second
term.T14 Our problem is therefore the following: Problem. Given, on a hypersurface Σ, the poten-
tials gαβ and their first derivatives, to determine off Σ the potentials supposed to satisfy Einstein’s
equations in the external case.T15

On Σ, represented locally by x0 = 0, the “Cauchy data” are the values of gαβ and δ0gαβ . We
will designate by f(d · C) a function whose value on Σ can be derived from the Cauchy data by
algebraic operations and derivations restricted to Σ.

T10. This is a common sentiment still today among physicists, that being a “solution to the Einstein field equa-
tion” somehow limits the possible form or character of a Lorentz metric. But that is nonsense. Every Lorentz
metric is a “solution to the Einstein field equation”, for that very stress-energy tensor defined by 1/8π (or 1/χ for
Lichnerowicz) times the Einstein tensor. It may not be a physically interesting or even meaningful stress-energy
tensor, but that makes no nevermind. Generally, therefore, when people say “this metric is (not) a solution to the
EFE,” they usually mean, “it’s (not) a metric that satisfies one of my favorite properties, such as this nifty energy
condition, or being derived from a minimally coupled Lagrangian, or being an exact solution for this groovy kind
of matter field, or . . . .” So what did Lichnerowicz mean?
T11. I am not familiar with the terminology ‘intérieur’ and ‘extérieur’ used in this way, but Lichnerowicz clearly
defines what he means by them, so I’m using the English terms that most literally translate them, so as to remain
faithful to the flavor of the original, even though it induces, at least today, non-standard terminology in English.
I suspect he means ‘interior’ to refer to the interior of a material body (or, more generally, the interior of its 4-
dimensional world-tube), and so ‘exterior’ to refer to the vacuum outside of such bodies. This suspicion gains
credence from his later use of the terms.
T12. I.e., the righthand side of Poisson’s equation, the mass density in Newtonian gravitational theory or electric
charge in electrostatics.
T13. Today called the ‘Einstein tensor’.
T14. I.e., necessary in order to treat the Cauchy problem with material sources, i.e., non-zero Tab. I take it Lich-
nerowicz really means “useful”, or something like that.
T15. Conceiving of the components of gab as a “potentials”, in analogy, I take it, with the scalar potential in New-
tonian gravitational theory, is, I think, an old-fashioned way of understanding the problem; I think it only mud-
dies the conceptual waters.
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We will assume for the moment that Σ is spacelike (g00 > 0). If we seek to use Einstein’s
equations to find the second derivatives δ00gαβ whose values on Σ are unknown, we are led to
replace these equations by the equivalent system composed of the two groups of equations:

A necessary condition for the Cauchy problem to be possibleT16 is that the equations (7) be
satisfied on Σ by the Cauchy data. On the other hand, g00 being 6= 0, the equations (6) provide
the values of δ00gij on Σ. No equation contains the 4 derivatives δ00gλ0 and we have to analyze
this fact.

Our purely local study has been carried out in the domain of a certain coordinate system. But
the data on Σ, viz. the Cauchy data in the domain considered, leave open the possibility of a
coordinate change preserving the numerical values of the coordinates of every point of Σ as well
as the Cauchy data.T17 The change of coordinates

where e(λ) is infinitesimally small at the time x0, serves the purpose. In such a coordinate change,
the derivatives δ00gij are not modified, while the δ00gλ0 can be given arbitrary values. By using a
coordinate change where the φ(λ) are different on either side of Σ, which is allowed by the structure
chosen for V4,T18 one can make possible discontinuities of these second derivatives appear or
disappear, discontinuities that are thus devoid of any physical meaning. Thus, the δ00gij are
continuous through Σ and the δ00gλ0 can be forced to be continuous for a suitable coordinate
system.T19

Here we grasp the mechanism that links the covariance of the formalism to the structure
chosen for V4.T20 This being the case, it is easy to see that the system of Einstein’s equations
is in involution: if a ds2 satisfies equations (6) and, on Σ, equations (7), then it also satisfies
equations (7) off of Σ. This is an immediate consequence of the conservation identities (5). Our
initial problem must be divided into two distinct problems: Problem I or the initial conditions. It
consists in the search for Cauchy data satisfying on Σ the system S0

α = 0, viz., a system of initial
conditions. Problem II or the problem of evolution. It consists in the integration of the system (6)
for Cauchy data satisfying the conditions of the first problem.

The results of this first analysis are not entirely modified if Σ is timelike.T21 Contrarily, if Σ

is tangent to the elementary cone, i.e., if g00 = 0, then the second derivatives of the potentials

T16. Lichnerowicz must mean “a necessary condition for the Cauchy problem to be consistent”, or perhaps even
“a necessary condition for it to be possible to solve the Cauchy problem”; I am not familiar with the use of the
French ‘possible’ for this.
T17. The original had ‘S’ rather than ‘Σ’, but that is clearly a typo. First, no region of spacetime S has been or
will be defined; second, the coordinate change (8) does indeed leave the values of everything on Σ unchanged.
T18. Lichnerowicz means the fact that V4 is the Cartesian product of R with R3 or a standard compact 3-
manifold.
T19. Again, I’m digging his attitude toward questions of differentiability.
T20. This is a deep remark. He is nodding toward the fact that general covariance is a tricky issue indeed in 3+1
decompositions of spacetimes in general relativity.
T21. Gallic understatement? Or ignorance of the potential complications? See Callender (2017, ch. 8) for a
thoughtful discussion of the Cauchy-like problem posed on a timelike hypersurface, and for further references to
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of a solution of the Einstein equations may be discontinuous at the crossing of Σ; in this case,
there may exist an infinite number of solutions of Einstein’s equations corresponding to the
given Cauchy’s equations on Σ. We know classical results of the theory of partial differential
equations concerning the characteristic surfaces (or wavefronts). Cx is the characteristic cone for
the equations of Einstein and the characteristic surfaces are the tangent planes to these cones;
these are the solutions of

We immediately deduce that the bicharacteristics – or rays – are the null geodesics of ds2. Those
curves that originate from a point x of V4 are the two layers of the characteristic conic with vertex
x.

In the case of the interior Cauchy problem, with the form of a fluid for example, an analogous
analysis can be made, but one substitutes for (7) the equations

S0
α = χT 0

α

that relate the Cauchy data on Σ with the material elements.T22 The integration problem then
concerns a system of the type (2–3) but with a second memberT23 satisfying the conservation
equations

∇βT βα = 0.

Three kinds of exceptional surfaces are encountered: gravitational waves, surfaces generated by
material flow lines,T24 and hydrodynamic waves.

Within the framework of general relativity, we can always introduce the electromagnetic field,
which has to satisfy the equations of Maxwell and which makes a contribution to the second
member of the equations of Einstein. The analysis of the Cauchy problem for the equations of
Maxwell shows that, in the vacuum case,T25 Cx is still a characteristic for these equations, which

the mathematical physics literature. I was surprised to see Lichnerowicz even mention this possibility, since it
is highly non-standard in the modern era to consider such problems. I suspect he does so because his seemingly
Machian commitments, spelled out in §8 (starting on p. 15 below), suggest to him—somewhat naively, if so!—that
the matter distribution inside 4-dimensional world-tubes ought to determine in a well posed way the metric in the
vacuum regions surrounding those world-tubes, and so, in particular, the boundaries of those world-tubes being
timelike hypersurfaces, one should have a well posed initial-value problem on such hypersurfaces. If it is not that,
then I am truly baffled as to why he mentions it here.
T22. This depends essentially on the fact that the stress-energy tensor is Hawking-Ellis type i, viz., having the
same form as a perfect fluid.
T23. Viz., a non-trivial righthand side.
T24. I am not entirely sure of this translation for the French ‘lignes de courant’. The only translations I am al-
ready familiar with for that expression, in the context of physics, are variations on ‘electric current’. He could
mean the surfaces associated with electromagnetic radiation, which would make sense in context, but the start of
the very next paragraph suggests he does not mean that here. If ‘material flow-lines’ is correct, then perhaps he
means something like the paths of dust particles? The paths of the kinds of small body that were studied in the
context of the problem of motion? Something like this—worldlines of material particles—is suggested by the use
of the phrase in §9 (see footnote T63 below on p. 19), where it unambiguously means something like that. If it
does mean “material flow-lines” in that sense here, then the “exceptional surface” is the boundary between a re-
gion of spacetime occupied by matter and the surrounding vacuum, further cementing my opinion that the essay’s
tacit bête noire is Einstein’s views on matter and motion. (See my footnote T51 on p. 16 below.)
T25. I take it that he means “the absence of electric charges and currents”—and so a source-free Maxwell field—
not “the absence of all matter fields”, since a Maxwell field is, under any reasonable construal, a matter field. In
contemporary terms, he is considering an “electrovac” solution.
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establishes the identity of the propagations of the two fields; but here all the first derivatives of the
electromagnetic field on a hypersurface which is not tangent to a characteristic, can be determined.

3. The equations of the unitary theory of Jordan-Thiry1)

In the theory of Jordan-Thiry, the initial element consists of a differentiable manifold V5 of
class (C2, piecewise C4) with a metric dσ2, which I will assume to be hyperbolic normalT26 and to
admit a 1-parameter group of isometries leaving no point invariant, with orbits homeomorphic to
a circle and oriented dσ2 < 0.T27

The manifold V4 resulting from the quotient of V5 by the equivalence relation defined by the
group of isometries is identified with a differential space-time manifold of general relativity. From
the quotient of V5 we derive a normal hyperbolic metric ds2 = gαβdx

αdxβ , an antisymmetric form
βFαβ (β = const.)T28 with zero external derivative and a scalar ξ intrinsically defined on V4. I
will deliberately not discuss for the moment the physical interpretations that one can give to this
framework.T29

As field equations, we will adopt in V5 equations identical to those of general relativity (4).
Translated into V4, these equations in the so-called exterior unitary case are written:

For ξ = 1, the first 14 equations reduce to the form of the equations of the pure electromagnetic
field in general relativity (Kaluza-Klein theory). The analysis of the Cauchy problem for a
hypersurface of V5 defined by orbits of the group of isometries as well as its decomposition is
similar to the previous one,T30 the exceptional surfaces in V4 always being the tangent surfaces to

.1) Gonseth and Juvet have also studied, in a classical work, [trans. note: i.e., as a non-quantum theory,] a
5-dimensional theory.
T26. It is clear from what follows that he uses the same signature convention as in general relativity, viz.,
(+, −, −, −, −).
T27. I.e., the orbits are the integral curves of a vector field whose squared norm is everywhere negative with re-
spect to the hyperbolic metric. (For the more mathematically persnickety: “squared norm” is mildly abusive but
well intentioned shorthand for “metric inner-product with itself”. I reserve the right to repeat the abuse without
further remark.) Thus, the orbits are “spacelike” with respect to the 5-metric.
T28. Unfortunate notation—the β stated to be a constant here is the coefficient of the 2-form F , not its tensor
index. In any event, this β being a constant, it is not clear to me why it is not absorbed into F . Perhaps it is
something like a coupling constant? Because, as Lichnerowicz immediately goes on to remark, he refrains from
attempting to give the mathematics a physical interaction, there are no further clues here. Perhaps someone fa-
miliar with Jordan-Thiry theory knows?
T29. The French ‘volontairement’ can also be translated in some contexts as ‘with malice aforethought’; I believe
Lichnerowicz deliberately invokes the connotation—not least, in light of the fact that the moment lasts a long
time, and when it ends he opens a can of whoop-ass on Jordan and Thiry.
T30. A hypersurface so defined has a naturally induced positive-definite, i.e., Riemannian, metric on it. Thus
the Cauchy problem here is indeed analogous to that of general relativity: a Riemannian metric on a (d-1)-
dimensional surface is treated as configuration; it and its “conjugate momentum” in the direction orthogonal
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the elemental cones defined by ds2 = 0.T31

4. The equations of the non-symmetric unitary theory2)

In the non-symmetric unitary theory, we give ourselves, on a differentiable manifold V4, always
of class (C2, piecewise C4),

10 a field of nonsymmetric tensors gαβ of class (C1, piecewise C3) with determinant g 6= 0 and
whose associated quadratic form is normal hyperbolic,

20 an affine connection of class (C0, piecewise C2) for which we designate by Sα the torsion
vector.

Rαβ being the Ricci tensor of the connection, the field equations are based on a variational
principle for the integral

which generalizes the variational principle of general relativity. By subtracting from the initial
connection the connection with zero torsion vector admitting the same parallelism, one obtains
the equations of the field in a convenient form involving the gαβ , the new connection Lγαβ and
the vector Sα. According to a study by Madame Tonnelat and Hlavaty, one of the partial
systemsT32 provides the connection as an algebraic function of the gαβ and their first derivatives,
except in an exceptional case which we will discard. We are thus led to define the field by the set
(gαβ , Sα) subject to the equations.

where Rαβ is now relative to the new connection and considered as a function of the gλµ and their
derivatives of the first two orders.

The existence of a variational principle leads, according to a classical procedure, to the existence
of conservation identities.T33 On the other hand, with the help of the change of coordinates already
used in general relativity, one can see, without explicit calculations which would be intractable,
which second-order derivatives relative to a hypersurface Σ occur in Rαβ . By a study too long to

to the surface then serve as initial data for “dynamical evolution” in that transverse direction, as determined
by the field equations. This, by the by, is why he must have assumed the signature of the metric on V5 to be
(+, −, −, −, −); otherwise, the boundary-value problem for induced initial-data on a hypersurface defined by
orbits of the isometry would not be of Cauchy type.
T31. This last, about the exceptional surfaces in V4, is somewhat cryptic, or at least severely elliptical. I believe
he has in mind the following. The Cauchy problem on V5 so constructed naturally induces a standard Cauchy
problem in V4 considered as a spacetime manifold (because the initial-data surface in V5 is fixed by the orbits of
the isometry, which themselves were used to define the equivalence relation whose modulus is V4); the hyperbolic
characteristics of the Cauchy problem in V5 are the null cones of the pseudo-Riemannian metric (because we treat
only the exterior, i.e., “vacuum” or source-free, case); those null cones map by construction to the null cones on
V4, which are themselves the hyperbolic characteristics of the induced Cauchy problem there, since the induced
Cauchy problem is that of the free Maxwell field.

.2) ( ) and [ ] are the symbols for symmetrization and anti-symmetrization.
T32. I am not sure what ‘partial systems’ refers to.
T33. He may mean a number of things by this—most likely either Noether’s Theorem or the mopping up of the
diffeomorphism freedom (in a way expressed with peculiar clarity and insight by Schrödinger 1950, ch. xi).
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be given here, these results allow us to establish that the system (9) is in involution and that by
introducing an auxiliary condition of normalization of Sα, for example

it has the same local mathematical coherence as the system of equations of general relativity; in
particular the values of the δ00(g(0λ)

√
|g|) on Σ (x0 = 0) are unnecessary.

The main result of this study is that (9) admits the characteristic surfaces defined by the
quadratic form of hyperbolic normal type with coefficients

lαβ = g(αβ)

and which differs from the quadratic form interpreted by Einstein as defining the gravitational
part. The bicharacteristics are here the null geodesics of

ds2 = lαβdx
αdxβ

where lαβ is dual to lαβ . A second cone defined by a linear combination γαβ of lαβ and hαβ = g(αβ)

also appears1). This study thus leads to the conclusion that it is lαβ or a proportional tensor which
must be interpreted as a gravitational tensor.

2. Existence and Uniqueness for the Field Equations

5. The theorem of Mme FourèsT34

The preceding study leads naturally to the search, without any assumptions of analyticity,
for theorems of existence and uniqueness at least local to the evolution problems of the different
theories.T35 This is a difficult problem in the theory of partial differential equations, and it is with
a view to this problem that Madame Fourès has studied the following type of symmetry:

TheW are unknown functions of 4 independent variables xα, Aαβ and fS are given functions ofWR,
δαWR and xα, the quadratic form AαβXαXβ is of normal hyperbolic type. On the hypersurface
Σ (x0 = 0) the Cauchy data are:

The following hypotheses are laid down for the system (ES) and the Cauchy data:

10 In a neighborhood D0 in Σ surrounding a point y with coordinates (yi) and defined by
|xi − yi| ≤ d, φS and ψS admit derivatives up to orders 6 and 5 respectively, continuous,
bounded and satisfying the Lipschitz conditions.T36

.1) Added in proofs
T34. He refers to the result Fourès-Bruhat presented in the paper translated above.
T35. For a brief discussion of the importance of the lack of an assumption of analyticity, see my footnote T4 on
p. 3 in the paper by Fourès-Bruhat translated above.
T36. The Lipschitz conditions for φS are (mildly abusing notation, but only for its own good): for each 0 ≤ S ≤
N and 0 ≤ n ≤ 6, there exists a KS,n ≥ 0 such that |∂nφS(x) − ∂nφS(z)| ≤ KS,n|x − z| for all x, z ∈ D0, where
‘∂n’ denotes an nth-order derivative; mutatis mutandis for ψS , with 0 ≤ n ≤ 5.
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20 In the domain D defined by |xi−yi| ≤ d, |x0| ≤ ε and for values of the unknowns such that:

a) the Aαβ and fS admit derivatives up to order 5, continuous, bounded and satisfying Lips-

chitz conditions;

b) the quadratic form AαβXαXβ is of normal hyperbolic type, the variable x0 representing the
temporal character and the variables xi the spatial character (A00 > 0, AijXiXj negative
definite).

Under these conditions, Mme Fourès has established that the Cauchy problem for (ES)

admits one solution and only one in a certain neighborhood of D0. In the case where the Aαβ does
not contain the W nor their derivatives, which is the case in relativistic applications, a unity can
be attained for all orders of differentiability.T37

It is impossible for me to sketch here the long study that leads to these results. I will limit
myself to saying that a generalization of the classical Kirchhoff formulasT38 play an essential
role: in the linear case, these formulas express the values of the unknown functions at a point x1
near D0 based on their values on the surface of the characteristic conoid of vertex x1 and from the
Cauchy data in the region of Σ inside this conoid.

6. Existence for the equations of Einstein

The previous results apply in an elegant way to the Einstein equations of general relativity
by introducing isothermal coordinates.T39 The idea is to associate to the Einstein system an
equation with only one unknown function f that admits the same characteristics as the system1).
The simplest way to achieve this is to consider the equation of Laplace on V4

A system (xρ) of local coordinates on V4 is isothermal if

are zero for all ρ. It is easy to show, in particular with the help of the theorem of Mme Fourès,
that given a local spacelike hypersurface Σ, it can always be considered as a coordinate manifold
x0 = 0 of a system of isothermal coordinates.

The quantities F ρ appear in a simple way in the expression of the components of the Ricci

tensor. Indeed, we have identically

Rαβ ≡ −Gαβ − Lαβ (11)

T37. I have no idea what he means by this. I suspect it is something straightforward and I am just being stoopid.
Help.
T38. See https://encyclopediaofmath.org/wiki/Kirchhoff_formula.
T39. Lichnerowicz means harmonic coordinates, using the same terminology as Fourès-Bruhat in the paper trans-
lated above.

.1) The theory and interpretation of isothermal coordinates are due to Georges Darmois. [trans. note: I pre-
sume this refers to the same work cited as ‘[2]’ in the paper of Fourès-Bruhat translated above, since she also
refers to it for the use of isothermal coordinates.]
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with

and

the Hαβ designating polynomials with respect to gλµ, gλµ and their first derivatives. It is the
structure of Rαβ thus revealed that we will exploit. To simplify the expressions, we will limit
ourselves to equations without a cosmological constant.

Let us consider a hypersurface Σ in V4 carrying the Cauchy data. On Σ (x0 = 0) these data
satisfy

Moreover, since we propose to use coordinates isothermal relative to the sought-after metric, we
will assume, without loss of generality, that they satisfy

We propose to study existence and uniqueness of the problem of Cauchy for the system of Ein-

stein

Rαβ ≡ −Gαβ − Lαβ = 0

whose first members are related by conservation identities.T40 The stages of the reasoning are the
following.

10 Resolution of the Cauchy problem for the system Gαβ = 0.T41 This system is of Mme
Fourès’s type; we will make the following hypotheses in a neighborhood D0 of Σ.

a) The Cauchy data gαβ and δ0gαβ admit partial derivatives up to orders 5 and 4 respectively,
which are continuous, bounded and satisfy Lipschitz conditions.

b) On Σ, the form gαβXαXβ is of normal hyperbolic type with g00 > 0 and gijXiXj negative
definite. Under these conditions, the Cauchy problem for Gαβ = 0 has a unique solution in
a neighborhood of D0, a solution which admits partial derivatives up to order 4, continuous
and bounded.

20 The solution found satisfies the isothermal conditions. In virtue of (14) and (15) there
results

(δ0F
µ)x0=0 = 0 .

On the other hand, for any solution of Gαβ = 0, the conservation identities reduce to the
equations

T40. I take it he means the Bianchi identities.
T41. The most salient fact about the condition Gαβ = 0 is that it results in an expression for the Ricci tensor
(and so the Ricci scalar and so the Einstein tensor) with derivatives of the metric only up to first order. One thus
has a great deal of freedom in setting terms to zero by a judicious choice of coordinate system.
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where Pµ is linear with respect to δαF ρ, the coefficients being polynomials in gαβ , gαβ and
their first derivatives. This system is of Mme Fourès’s type and the uniqueness of the
corresponding Cauchy problem implies Fµ = 0.

Thus the solution found for Gαβ = 0 is a solution of the Einstein system Rαβ = 0 compatible
with the Cauchy data and related to isothermal coordinates. We have thus obtained a local
existence theorem for the Einstein system, without any assumption of analyticity.

7. Uniqueness for the equations of Einstein

It is clear that the uniqueness of the problem of Cauchy for the system of Einstein must
be understood in a completely different sense than the usual uniqueness, which is used here, for
example for the system Gαβ = 0. We understand, for the Einstein system, uniqueness [to mean]
up to a coordinate change preserving the numerical values of the coordinates of any point of Σ as
well as the Cauchy data on Σ.T42 In this sense, it is possible to speak of “physical uniqueness”.

To establish this physical uniqueness, it must be shown that any solution for the Cauchy

problem with Rαβ = 0 can be deduced, by means of a change of coordinates satisfying the previous
hypotheses, from the unique solution of the same problem for Gαβ . This uniqueness was previously
established by Stellmacher following the work of Friedrichs and Hans Lewy.

I have developed here methods and results for the equations of general relativity. This method
can be adapted, without major difficulties, to the theory of Jordan-Thiry. By contrast, the anal-
ogous theorems for the non-symmetric unitary theory present difficulties related to the properties
of the “isothermal coordinates” in that theory.T43

3. Models of the Universe and Global Problems

8. Models of the universe in general relativity

The previous studies were purely local, but in fact the fundamental mathematical problems of
any relativistic field theory must be essentially global in nature.T44

I will first limit myself to gravitation and the theory of general relativity 1). The question that
arises is the following: when is a problem of gravitation actually solved?T45

T42. This is far more restrictive than is actually needed. Is he worried about problems related to the Hole Argu-
ment?
T43. I am curious whether the non-symmetric unitary theory admits “analogous theorems”, or whether he really
means to say that the analogous propositions, which may or may not be theorems in the theory, cannot be proved
in the same way, viz., using isothermal coordinates. Any experts in the audience?
T44. I think we must be cautious in trying to understand what he means by ‘global’, and in particular not assume
that he means what mathematical and theoretical physicists in the 1960s and later meant by it.

.1) without a cosmological constant for simplicity.
T45. I have a feeling we’re about to get into some heavy shit. This feeling is strengthened by the lack of mathe-
matical formulæ, nay, even mathematical symbols, in the immediately subsequent text.

15



I propose to call model of the universe a manifold V4 with an everywhere regular metric,
satisfying the equations of Einstein for the different cases and possibly [under the imposition of]
asymptotic conditions.T46 In the neighborhood of the timelike hypersurfaces separating the regions
occupied by energyT47 from the vacuum regions, there must exist, in accordance with our general
axioms, admissible local coordinates such that, when crossing the hypersurfaces, the corresponding
potentials and their first derivatives are continuous, the second derivatives being discontinuous.T48

It is when it is possible to construct such a model of the universe that the exterior field can be
considered as effectively produced by the different masses or energy distributions in motion, and it
is the connection of the internal fields of the different distributions with a single field that ensures
the interdependence of the motions.T49 What is called the principle of geodesics is an easy corollary
of this fact and the fundamental tool is basically the continuity, when crossing Σ (x0 = 0), of the
quantities S0

α.T50

Only such a model of the universe is susceptible to physical interpretation.T51 In a region ∆0

T46. I think ‘different cases’ must mean “both vacuum and non-vacuum”, i.e., vanishing and non-vanishing stress-
energy tensor, in order to make sense of what comes next.
T47. Literally “swept by energy” (‘balayées par l’énergie’), which either is Lichnerowicz waxing poetic or else is a
technical usage I am unfamiliar with.
T48. He seems to be envisaging a universe that consists of regions of vacuum surrounding regions filled with
matter—empty space filled with dust, stars, and so on, and no CMBR, since that was yet unknown. In such a
universe, the boundaries of the regions swept by energy, viz., filled with matter (“world tubes”), would be timelike
hypersurfaces.
T49. We have entered the heavy shit. He seems to be gesturing at several complex ideas at once, the clearest of
which to me are: that something like Mach’s Principle can be said to hold only in such spacetimes; that the met-
ric field plays the role of coordinator of inertial motion for all material bodies; and that the metric field medi-
ates all interactions among material bodies. Again, the unspoken target seems to be Einstein’s views on matter
and motion. (See my footnote T51 on p. 16 below.) Lichnerowicz seem to think that, on Einstein’s view, strictly
speaking, matter can never serve as a source for the metric field, as matter is always singular. For coeval discus-
sion of Mach’s Principle directly relevant to all the issues Lichnerowicz raises here, see Pirani (1956), the lecture
delivered by him at the same conference, in the session immediately following that in which Lichnerowicz deliv-
ered this. Indeed, the discussion by Pirani illuminates many issues that this essay by Lichnerowicz importantly
but only implicitly bears on, such as the struggle of researchers in the 1950s to develop methods to handle the
representation of physical phenomena in general relativity with global features and properties.
T50. Recall that

S0
α = χT 0

α

so he is in effect claiming, rightly, that the geodesic principle follows from conservation of stress-energy, but he
also seems to me to be claiming, at best confusedly or misleadingly and at worst illegitimately, that the principle
is essentially tied to the peculiar character of universe-model spacetimes.
T51. Damn! Shit just got real. Where is this coming from? What are Lichnerowicz’s philosophical commitments?
I guess we first have to figure out what “such a model” means—just regularity, as suggested by the next sentence?
But then why go into detail about the interior and exterior regions? A fully vacuum spacetime can be regular ac-
cording to the definition Lichnerowicz gave in §1 of the paper (p. 6 above) but, I suspect, would for Lichnerowicz
not be susceptible to physical interpretation. Now that I’ve thought about the matter more, however, it occurs to
me that Lichnerowicz’s true target is Einstein’s views on matter and motion in general relativity, particularly as
worked out by Einstein and Grommer (1927) and Einstein et al. (January 1938), and explained lucidly by Dennis
in Lehmkuhl (2019), according to which matter is modeled as a singularity. That would explain the emphasis on
regularity, and also makes sense of the otherwise baffling proposal in the second subsequent sentence, to replace
a non-regular metric in a region of spacetime with a regular metric arising from a matter distribution imposed on
the region. And this is borne out by the discussion of §10 below (p. 19). Even putting all that aside, it also seems
to be the case that Lichnerowicz is not a fan of severe idealization in the modeling of the universe—not, perhaps,
a standard attitude for one manifesting the spirit of the mathematical physicist.
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of V4 where there is no regularity, a metric is not susceptible of any interpretation. One should,
in order to try to arrive at a model of the universe, see whether it is possible to furnish such a
region,T52 i.e., to choose a hypersurface Σ bounding a region ∆ containing ∆0 and to construct
in ∆ an energy distribution and a metric related by the equations of Einstein, the metric being
everywhere regular in ∆ and connecting along [the boundary of] ∆ with the previously given
metric. It should be noted that such a problem is essentially global in nature and has some
analogy with classical problems in hydrodynamics. About the solution of such problems, we know
almost nothing.

In a model of a universe, in the sense that we have defined it, it should be impossible to
introduce new energy distributions whose associated metrics are connected with the external field.
We must therefore study the validity, in relativity, of the following proposition: The introduction
of energy distributions in a given external field can only be done in domains where this field is not
regular (proposition A).T53

Closely related to this proposition is the following: A model of the universe constituted by an
everywhere regular external field must be trivial, that is, locally Euclidean (proposition B).T54

The introduction of an electromagnetic field in general relativity or the Jordan-Thiry theory
leads to analogous concepts and statements concerning the set of two fields.

Such propositions do not seem valid under the general axioms I have indicated, as shown
by a few somewhat teratologicalT55 counterexamples. But, as we shall see, they are valid for
stationary fields and consequently for fields sufficiently close to stationary fields, which appears to
be reassuring.

A definition of what would be called a universe model in a non-symmetric unitary theory has
never been given. If one wants to avoid the artificial introduction of sources – and this was obviously
Einstein’s intention – it would be advisable to pass, if I may say so, to the second member and
to physically interpret certain terms of the field equations, the new first members still satisfying
conservation conditions.T56 Nothing worthwhile has yet been done in this direction.T57

T52. I like this metaphor, of supplying regularizing furniture to efface the singularity of matter of Einstein’s view;
one may perhaps be permitted to speak here of an urbane Cosmic Interior Decorator, a much happier profession
than Penrose’s finical Cosmic Censor.
T53. We need to talk about this.
T54. Ditto.
T55. Ouch! We also need to talk about this. What are these monstrous spacetimes he has in mind? Proposition
B in particular, if I understand what he is saying, is just trivially false, and one needs nothing monstrous to show
it—unless he considers interior Schwarzschild, cylindrical gravitational waves and the menagerie of Weyl and Levi-
Civita solutions to be monstrous. If so, perhaps fair enough. In any event, it seems again as if Lichnerowicz is
hostile to what may reasonably be thought of as extreme idealizations in the modeling of relativistic systems.
T56. The awkwardness of the translation comes from the fact that I feel like I grasp only dimly at best what
Lichnerowicz is saying here—something like “move some stuff from the lefthand side of the field equations to the
righthand side, and re-interpret the new stuff as matter, all in such a way that both sides are still covariantly
conserved”—but I can’t be sure, in large part because I have no understanding of the non-symmetric unitary the-
ory at all. Help?
T57. I feel you, brother. (See my previous footnote.)
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9. Global problems for stationary fields

In general relativity, a field is stationary if the Riemannian manifold V4 admits a 1-parameter
group of isometries with timelike orbits (time lines).T58 The metric can be written:

where the potentials are independent of the time variable x0 (ξ2 = g00 > 0). These assumptions
correspond physically to a permanent steady-state.

I further assume, although it is not strictly necessary, that V4 is homeomorphic to the topo-
logical product of a 3-dimensional manifold and a line, where the factor-manifold W3 of V4 can
be represented by x0 = const., the factor-lines being the time-lines. The W3 are equipped with a
negative definite metric with coefficients:

By local calculations one shows on W3

where h and p are vectors in W3 depending only on the potentials and their first derivatives, and
where H2 = 0 expresses the fact that the congruence of the time lines is a normal congruence for
spatial sections.T59

With the help of (16) one can easily establish proposition A for stationary fields.T60 As for
proposition B, one assumesW3 to be compact or to admit a domain at infinity with asymptotically
Euclidean behavior; its proof then uses the relations (17) and (18) and proceeds by reduction from
the case of the stationary field to the case of the static field, in the sense of Levi-Civita, i.e.,
H2 = 0.T61 The results thus obtained can be extended without difficulty to the case where there
is an electromagnetic field or to the theory of Jordan-Thiry.

In the absence of a cosmological constant, there cannot exist a model of a stationary universe
with compact W3.T62 For a stationary universe model with an infinite domain for which the flow

T58. This is more restrictive than the modern definition, which demands only that the orbits of the isometries
(Killing fields) be asymptotically timelike, in order to accommodate spacetimes such as Schwarzschild, where the
stationary Killing field is null on the event horizon and spacelike inside. Lichnerowicz seems to lose nothing by
the restriction, since he would not have approved of such terata.
T59. H2 = 0 iff the subspaces in the tangent planes orthogonal to the vectors tangent to the time lines are inte-
grable in the sense of Frobenius. This follows from (17).
T60. We need to talk about this.
T61. Ditto.
T62. True. And a deep general result, not tied to particular solutions or types of matter or types of configura-
tion or symmetry. That’s the sort of thing, folklore has it, that didn’t get started until the Golden Age of Global
Structure in the 1960s, at the hands of Penrose, Geroch, Misner, Hawking, et al. Note also that it is independent
of the assumptiom of an energy condition, perhaps the most typical feature of the global theorems of the Golden
Age—happenstance or indicative of something deeper? I would love to track down when such general theorems
started appearing, from whom, and why.
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linesT63 inside the masses coincide with the time lines, we can deduce by integration of (18) that
H2 = 0 everywhere.T64 It follows in particular that the postulates usually introduced for the
construction of the Schwarzschild universe model are overabundant.T65

10. Approximations and equations of motion

Even if many of the rigorous problems of relativistic theory seem to be beyond our powers, it
is possible to treat by approximations the problem of the motion of n gravitating masses.

The coordinates are assumed to be isothermal, the metric quasi-Euclidean and the behav-
ior asymptotically Euclidean, and the potentials are developed in powers of c−2. For the initial
technique of Einstein, Infeld, Hoffmann which used a representation of the masses as pure
singularities of the external field, a representation which could be spurious, it is preferable to sub-
stitute a technique where the momentum-energy tensor plays its role.T66 Such a technique, which
gives satisfactory results, was initiated by Fock and by Papapetrou and has been developed
more rigorously by Madame Hennequin. The equations of motion of the masses arise essentially
from the integration, in the tubes swept out by them, of divergences suggested by the first mem-
bers of the conservation conditions, so as to express the fact that the quantities S0

α are zero at the
boundary of those tubes.

I will not go into the details of this technique, but I will point out that the same procedure has
been applied to the equations of the Jordan-Thiry theory and that the approximations obtained
suggest the following interpretation, which differs from the one initially given by the authors of
the theory: in the notation of §3 [p. 10 above], it is ds

2
= ξ ds2 that represents the gravitational

metric;T67 the electromagnetic field is represented by the set of two proportional tensors

where F̄ has zero external derivative and ξ3 plays the role of a dielectric permittivity of the vacuum.
In the exterior unitary case the field equations are written with the ds

2
metric:

where Kαβ depends only on the first derivatives of log ξ and where τ̄αβ is the momentum-energy
tensor of the electromagnetic field

T63. ‘Lignes de courant’ clearly means here something like “worldlines of mass particles”.
T64. Again true and deep, in so far as it plays global topological properties off of local metric ones. Note as well
again that, because the argument depends only on the fact that the values of the mixed timelike-spacelike compo-
nents of the Ricci tensor are not all zero, it cannot depend on an energy condition.
T65. No idea what “the postulates usually introduced” for Schwarzschild are, but it seems clear that Lichnerowicz
just showed some of them to be otiose—those of you who know history, please help!
T66. YES! I knew it!!! He is obsessed with Einstein’s views on matter and motion. He rather wants to take gen-
eral relativity seriously on its own terms.
T67. It is not clear to me what Lichnerowicz means by “the gravitational metric”. The one governing the inertial
paths of massive bodies and light rays? The one that measures proper time? What?
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The gravitational factor β2/2 is then constant.
We have tried to review the mathematical issues presented by the relativistic field equations.

Much work remains to be done.

Diskussion – Discussion

D. van Dantzig: 1. Since the gravitational equations are nonlinear, the cone of the bicharac-
teristics will depend in general on the considered solution. Is it known under which conditions one
can be sure that, when extending a local solution, the signature of gij will be preserved, especially
that the bicharacteristic cone will not become degenerate?

2. Can the solution to the Cauchy data be represented by means of ordinary integrals,
either on the cone or inside the cone (or a combination of both), or are difficulties of the type of
Hadamard, where one must take the “finite part” of an infinite integral, inevitable?T68

Mme. Y. Fourès-Bruhat: 1. It is not known, in the general case, under which conditions
one can extend a given solution. This would solve the problem of the existence of regular global
solutions, a problem whose answer would be very important to know, but is certainly very difficult.

2. The solution is obtained by solving integral equations (based on ordinary integrals defined
on the bicharacteristic cone) by successive approximations. The solution depends on the initial
data inside the cone (wave propagation, in general spread out).T69

Mme. A. Tonnelat: I would like to point out that it is also possible to define isothermal
coordinate systems in the non-symmetric theory (gµνΓρµν = 0). Their use should lead to a great
number of simplifications. Nevertheless, to my knowledge, no serious application of this choice of
coordinates has been proposed.
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