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A Technical Appendix: Limits of Spacetimes

I sketch here the construction of Geroch (1969) (whose exposition I closely follow), which grounds

the arguments of section 3 in Curiel (2016). (I simplify his construction in non-essential ways for our

purposes, and gloss over unnecessary technicalities.) Consider a 1-parameter family of relativistic

spacetimes, by which I mean a family {(Mλ, g
ab(λ))}λ∈(0,1], where each (Mλ, g

ab(λ)) is a relativistic

spacetime with signature (+, −, −, −) for gab(λ). (It will be clear in a moment why I work with the

contravariant form of the metric tensor.) In particular, I do not assume that Mλ is diffeomorphic to

Mλ′ for λ 6= λ′. The problem is to find a limit of this family, in some suitable sense, as λ → 0. To

solve the problem in full generality, we will use a geometrical construction, gluing the manifolds Mλ

of the family together to form a 5-dimensional manifold M, so that each Mλ is itself a 4-dimensional

submanifold of M in such a way that the collection of all of them foliate M.1 λ becomes a scalar

†These are technical appendices to the paper “On the Existence of Spacetime Structure” (forthcoming 2016 in

British Journal for Philosophy of Science, early online publication, free access: doi:10.1093/bjps/axw014), working

out details of some of that paper’s constructions and arguments.
‡textbfAuthor’s address: Munich Center for Mathematical Philosophy, Ludwigstraße 31, Ludwig-Maximilians-

Universität, 80539 München, Germany; email: erik@strangebeautiful.com
1In general what will result is not a foliation in the strict sense of differential topology, but will rather be a stratified

space (Thom 1969). It is close enough to a foliation, however, to warrant using the more familiar term for simplicity

of exposition, as nothing hinges on the technical differences between the two.
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field on M, and the metrics gab(λ) on each submanifold fit together to form a tensor field gAB on M,

of signature (0, +, −, −, −). (I use majuscule indices for objects on M.) The gradient of λ on M

determines the singular part of gAB : gAN∇Nλ = 0. (This is why I work with the contravariant form

of the metric; otherwise, we could not contravect its five-dimensional parent in any natural way with

the gradient of λ.) Note that gAB by itself already determines the submanifolds Mλ (viz., as the

surfaces defined by gAN∇Nλ = 0), and that it does so in a way that does not fix any identification

of points among them. In other words, the structure I posit does not allow one to say that a point in

Mλ is “the same point in spacetime” as a point in a different Mλ′ (as I shall discuss at some length

below).

To define a limit of the family now reduces to the problem of the attachment of a suitable bound-

ary to M “at λ = 0”. A limiting envelopment for M, then, is an ordered quadruplet (M̂, ĝAB , λ̂, Ψ),

where M̂ is a 5-dimensional manifold with paracompact, Hausdorff, connected and non-trivial bound-

ary ∂M̂, ĝAB a tensor field on M̂, λ̂ a scalar field on M̂ taking values in [0, 1], and Ψ a diffeomorphism

of M to the interior of M̂, all such that

1. Ψ takes gAB to ĝAB (i.e., Ψ is an isometry) and takes λ to λ̂

2. ∂M̂ is the region defined by λ̂ = 0

3. ĝAB has signature (0, +, −, −, −) on ∂M̂

This makes precise the sense in which M̂ represents M with a boundary attached in such a way

that the metric on the boundary (ĝAB restricted to ∂M̂) can be naturally identified as a limit of the

metrics on the Mλ (gAB on M). I call {(Mλ, g
ab(λ))}λ∈(0,1] an ancestral family of the spacetime

represented by ∂M̂, and I call ∂M̂ the limit space of the family with respect to the given envelopment.

In general, a given spacetime will have many ancestral families, and an ancestral family will have

many different limit spaces. For the sake of convenience I will often not distinguish between M and

the interior of M̂. (Although it is tempting also to abbreviate ‘∂M̂’ by ‘M0’, I will not do so, because

part of the point of the construction is that different spacetimes can have the same ancestral family.)

To characterize the metrical structure of the limit space using structure of members of the

ancestral family, I introduce one more construction. An orthonormal tetrad ξ(λ) at a point pλ ∈Mλ

is a collection of 4 tangent vectors at the point mutually orthogonal with respect to gab(λ). Let γ

be a smooth curve on M nowhere tangent to any Mλ such that it intersects each exactly once. γ

then is composed of a set of points pλ ∈Mλ, one for each λ. A family of frames along γ is a family

of orthonormal tetrads, one at each point of the curve such that each vector in the tetrad is tangent

to its associated Mλ, whose members vary smoothly along it. In general, a family of frames will

have no well defined limit in M̂ as λ→ 0, i.e., there will be no tetrad ξ(0) at a point of ∂M̂ that the

family ξ(λ) converges to; in this case, I say the family is degenerate. It is always possible, however,

given a tetrad ξ(0) at a point on the boundary to find some family of frames that does converge to

it.

Now, fix ξ(0) at p0 ∈ ∂M̂ and a family of frames ξ(λ) that converges to it. We can represent

the metric tensor gab(λ) in a normal neighborhood of pλ in Mλ using the normal coordinate system
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that ξ(λ) defines in the neighborhood. In a normal neighborhood of p0, the components of the

metric with respect to these coordinates converge as λ → 0, and the limiting numbers are just the

components of gab(0) at p0 with respect to the normal coordinates that ξ(0) defines. In this way,

we can characterize all structure on the limit space based on the behavior of the corresponding

structures along the family of frames in the ancestral family.

I turn now to an example immediately relevant to my arguments. Consider a family

{(Mλ, g
ab(λ))} of Reissner-Nordström spacetimes each element of the family having the same fixed

value M for its mass and all parametrized by electric charge λ, which converge smoothly to 0.2

Construct their envelopment. One can now impose a natural collection of families of frames on

the family, with Schwarzschild spacetime as the limit.3 Now, comparison of figures 3.1 and 3.2 in

Curiel (2016) suggests that something drastic happens in the limit. All the points in the throat of

the Reissner-Nordström spacetimes (the shaded region in the diagram) seem to get swallowed by

the central singularity in Schwarzschild spacetime—in some way or other, they vanish. Using our

machinery we can make precise the question of their behavior in the limit λ→ 0 in the envelopment.

Consider the points in the shaded region in figure 3.2 in Curiel (2016), between the lines r = 0

and r = r−. (r is the radial coordinate in a system that respects the spacetime’s spherical symmetry;

the coordinate values r− and r+ define boundaries of physical significance in the spacetime, which

in large part serve to characterize the central region of the spacetime as a black hole.) Fix a natural

family of frames along a curve in M composed of points qλ each of which lies in the shaded region in

its respective spacetime. It is straightforward to verify that the family of frames along the curve does

not have a well defined limit: roughly speaking, the curve runs into the Schwarzschild singularity

at r = 0. In this sense, no point in Reissner-Nordström spacetime to the future of the horizon

r = r− has a corresponding point in the limit space. To sum up: one begins with a family of

Reissner-Nordström spacetimes continuously parametrized by electric charge, which converges to 0,

and constructs the envelopment of the family; one constructs the limit space by a choice of families

of frames; the collection of families of frames enforces an identification of points among different

members of the family of spacetimes, including a division of those points that have a limit from

those that do not; and that identification, in turn, dictates the identification of spacetime points

in the limit space (which points in the ancestral family lie within the Schwarzschild radius, e.g.,

and which do not). Thus one can identify points within the limit Schwarzschild spacetime, one’s

idealized model, only by reference to the metrical structure of members of the ancestral family; one

can, moreover, identify points in the limit space with points in the more complex, initial models

one is idealizing only by reference to the metrical structure of the members of the ancestral family

as well. It is only by the latter identification, however, that one can construe the limit space as

an idealized model of one’s initial models, for the whole point is to simplify the reckoning of the

2I ignore the fact that electric charge is a discrete quantity in the real world, an appropriate idealization in this

context.
3The frames are natural in the sense that they conform to and respect the spherical and the timelike symmetries

in all the spacetimes. One could use this fact to explicate the claim that Schwarzschild spacetime is the canonical

limit of Reissner-Nordström spacetime, in the sense that it is what one expects on physical grounds, whatever exactly

that may come to, in the limit of vanishing charge while leaving all else about the spacetime fixed.

Erik Curiel 3 September 6, 2016



Technical Appendices

physical behavior of systems at particular points of spatiotemporal regions of one’s initial models.

One can, moreover, use different families of natural frames to construct Schwarzschild spacetime

from the same ancestral family, with the result that in each case the same point of Schwarzschild

spacetime is identified with a different family of points in the ancestral family. More generally,

different families of frames will yield limit spaces different from Schwarzschild spacetime, with no

canonical way to identify a point in one limit space (one idealized model the theoretician constructs)

with one in another. In other words, the identification of points in the limit space depends sensitively

on the way the limit is taken, i.e., on the way the model is constructed. In consequence, in so

far as one conceives of Schwarzschild spacetime as an idealized model of a richer, more complete

representation, one can identify points in it only by reference to the metrical structure of one of its

ancestral families, and one can do that in a variety of ways.

Every spacetime has at least one ancestral family, the trivial one consisting of the continuous

sequence of itself, so to speak. Construct an envelopment M for it, with it itself as the limit space,

and apply a slight twist, so to speak, to every metric in every model in the family so as to render

each model non-isometric to any other, i.e., so as to render the family non-trivial. (One can make

this idea precise in any of a number of simple ways, such as using a smoothly varying 1-parameter

family of homotopies or linear perturbations.) On a curve in M, fix a family of frames that has a

well defined limit on ∂M̂. Now, define a family of Lorentz transformations along that curve, one

transformation at each point, such that the family varies smoothly along the curve, and such that

when one applies each transformation to the tetrad at its point, the result is a family of frames

that has no well defined limit. (One can always do this; for example, the Lorentz transformations

can cause the tetrads to oscillate wildly as λ → 0.) The points of the ancestral family along that

curve have no corresponding point in the limit space defined by the resulting family of frames. This

proves:

Proposition A.1 Every spacetime has a non-trivial ancestral family with vanishing points. Every

non-trivial ancestral family has a limit space with respect to which some of its points vanish.

B Technical Appendix: Pointless Constructions

I give here the constructions relevant to the arguments of section 4 in Curiel (2016). The basic idea

of the construction of a pointless manifold is simple. I posit a class of sets of rational numbers to rep-

resent the possible values of physical fields, with a bit of additional structure in the form of primitive

relations among them just strong enough to ground the definition of a derived relation whose natural

interpretation is “lives at the same point of spacetime as”. A point of spacetime, then, consists of an

equivalence class of the derived relation. The derived relation, moreover, provides just enough rope

to allow for the definition of a topology and a differential structure on the family of all equivalence

classes, and from this the definition of all tensor bundles over the resultant manifold, completing

the construction. The posited primitive and derived relations have a straightforward physical in-

terpretation, as the designators of instances of a schematic representation of a fundamental type of
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procedure the experimental physicist performs on physical fields when he attempts to ascertain rela-

tions of physical proximity and superposition among their observed values. An important example

of such an experimental procedure is his use of the observed values of physical quantities associated

with experimental apparatus to determine the values of quantities associated with other systems,

those he investigates by use of the apparatus. This interpretation of the relations motivates the

claim that the constructed structure suffices, for our purposes, as a representation of spacetime in

the context of a particular type of experimental investigation as modeled by mathematical physics,

and is not (only) an abstract mathematical toy. Because of limitations of space, I give only a bare

sketch of the construction. SeeCuriel (2015)

I begin the construction by laying down some definitions. Let Q be the set of rational numbers.

A simple pointless field φ (or just simple field) is a disjoint union
⊎
p∈Q4

fp, indexed by the set Q4,

such that

1. every fp ∈ Q

2. there is exactly one fp ∈ φ for each p ∈ Q4

3. there are two strictly positive numbers Bl and Bu such that Bl < |fp| < Bu for all p ∈ Q4

4. the function φ̄ : Q4 → Q defined by φ̄(p) = fp is continuous in the natural topologies on those

spaces, except perhaps across a finite number of compact three-dimensional boundaries in Q4

Our eventual interpretation of such a thing as a candidate result for an experimentalist’s deter-

mination of the values for a physical field motivates the set of conditions. That we index φ over

Q4 means we assume that the experimentalist by the use of actual measurements and observations

alone can impose on spacetime at most the structure of a countable lattice indexed by quadruplets of

rational numbers (and even this only in a highly idealized sense); in other words, the spatiotemporal

precision of measurements is limited. Condition 1 says that all measurements have only a finite pre-

cision in the determination of the field’s value. Condition 2 says that the field the experimentalist

measures has a definite value at every point of spacetime. Condition 3 says that there is an upper

and a lower limit to the magnitude of values the experimentalist can attribute to the field using

the proposed experimental apparatus and technique; for instance, any device for the measurement

of the energy of a system has only a finite precision, and thus can attribute only absolute values

greater than a certain magnitude, and the device will be unable to cope with energies above a given

magnitude. Condition 4 tries to capture the ideas that (local) experiments involve only a finite

number of bounded physical systems (apparatuses and objects of study), and that classical physical

systems bear physical quantities the magnitudes of which vary continously (if not more smoothly),

except perhaps across the boundaries of the systems.

Fix a family Φ of simple pointless fields. The link at p, λp, is the set containing the elements

from all simple fields in Φ indexed by p ∈ Q4. A linked family of simple pointless fields F is an

ordered pair (Φ, Λ) where Φ is a collection of distinct simple fields, and Λ is the family of links on

Φ, a linkage, complete in the sense that it contains exactly one link for each p ∈ Q4. The idea is that
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the values of the simple fields in the same link all live “at the same point of spacetime”, namely that

designated by p. One can think of the linkage as a coordinate system on an underlying, abstract

point set.

We are almost ready to define the point-structure of the spacetime manifold. We require only

a few more definitions and two more constructions, which I give in an abbreviated fashion so as to

convey the main points without getting bogged down in unnecessary technical detail. First, given

an open set O ∈ Q4 and a simple pointless field φ, let φO be the field restricted to fp for p ∈ O.

Given a family of simple pointless fields Φ, denote by ‘ΦO’ the family of simple pointless fields in Φ

restricted to O, and similarly for ‘ΛO’, defined in the obvious way. Now, let F = (Φ, Λ) be a linked

family containing a countable number of simple fields; we call it a simple fundamental family. Let

F̂ = (Φ̂, Λ̂) be another. Let FO be the family of simple pointless fields and the linkage in F restricted

to the open set O. We want a way to relate the linkages of FO and F̂Ô, for open sets O and Ô,

so as to be able to represent the relation between the coordinate systems of two different charts on

the same neighborhood of the spacetime manifold, or on the intersection of two neighborhoods. A

cross-linkage between two simple fundamental families F and F̂ is an ordered triplet (O, Ô, χ) where

O, Ô ⊆ Q4 are open sets, such that either both are the null set or else both are homeomorphic to

Q4, and χ is a homeomorphism of O to Ô. The link λp ∈ Λ for p ∈ O, then, will designate the same

point in the underlying manifold as λ̂χ(p) ∈ Λ̂ for χ(p) ∈ Ô; in this case, we say the links touch. If

O and Ô are the null set, then the represented neighborhoods do not intersect. (We do not require

that the values of the scalar fields in the two different simple fundamental families be numerically

equal at any given point, as the two scalar fields may represent different physical quantities, e.g.,

a component of the fluid velocity and a component of the shear-stress tensor of a viscous fluid.) F

and F̂ are to represent coordinate charts on open sets of the underlying spacetime manifold, and the

cross-linkage the relation between the ways that FO and F̂Ô respectively “assign coordinates” to the

same spacetime region, viz., the one defined by the intersection of the “domains” of F and F̂. (The

idea of a cross-linkage can be extended to cover more than two simple fundamental families in the

obvious way.)

To finish the preparatory work, we must move from rationals to reals. Fix a simple fundamental

family F containing all simple pointless fields, a complete simple fundamental family. First, we

attribute to F the algebraic structure of a module over Q. For example, the sum of two simple

pointless fields φ and ψ in Φ is a simple pointless field ξ such that xp ≡ fp + gp is the value in ξ

labeled by the index p, where fp ∈ φ and gp ∈ ψ. ξ is clearly itself a simple pointless field with a

natural embedding in the linkage on F, and so belongs to Φ. Now, roughly speaking, we take a double

Cauchy-like completion of Φ over both the points p ∈ Q4 and the values fp̂ ∈ Q, yielding the family

Φ̄ of all disjoint unions of real numbers continuously indexed by quadruplets of real numbers.4 This

procedure makes sense, because every continuous real scalar field on R4 is, again roughly speaking,

the double limit of some sequence of bounded, continuous rational fields defined on Q4. We thus

4In order to get the completion we require, standard Cauchy convergence does not in fact suffice. We must rather

use a more general method, such as Moore-Smith convergence based on topological nets. The technical details are

not important. See, e.g., Kelley (1955, ch. 2) for details.
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obtain what is in effect the family Φ̄ of all continuous real scalar fields on R4, though I refer to them

as pointless fields, in so far as, at this point, they are still only indexed disjoint unions. The limiting

procedure, moreover, induces on Φ̄ the structure of a module over R from that on Φ. Finally, in

the obvious way, we take the completion, as it were, of Λ using the same limiting procedure to

obtain a linkage Λ̄ on Φ̄. I call F̄ = (Φ̄, Λ̄) a complete fundamental family. A cross-linkage on a pair

of fundamental families is the same as for simple fundamental families, except only that one uses

homeomorphisms on subsets of R rather than Q. If we have two simple fundamental families with

a cross-linkage on them and take limits to yield two fundamental families, then the nature of the

limiting process guarantees a unique cross-linkage on the two fundamental families consistent with

the original.

We can at last construct a real topological manifold from a collection a cross-linkage on a family

of simple fundamental fields. The basic idea is that a complete fundamental family represents the

family of continuous real functions on the interior of a bounded, normal neighborhood of what

will be the spacetime manifold. Because a spacetime manifold must be paracompact (otherwise it

could not bear a Lorentz metric), there is always a countable collection of such bounded, normal

neighborhoods that cover it. This suggests

Definition B.1 A pointless topological manifold is an ordered pair ({Fi}i∈N, χ) consisting of a

countable set of complete simple fundamental families and a cross-linkage on them.

To justify the definition, I sketch the construction of the full point-manifold and its topology. First,

we take the joint limit of all simple fundamental families to yield a countable collection of fundamen-

tal families with the induced cross-linkage. A point in the manifold, then, is an equivalence class of

links, at most one link from each family, under the equivalence relation “touches”. The set of links

associated with one of the families, then, becomes a representation, with respect to the equivalence

relation, of the interior of a compact, normal neighborhood in the manifold, and the fields in that

family represent the collection of continous real functions on that neighborhood. The cross-linkage

defines the intersections among all these neighborhoods, yielding the entire point-set of the man-

ifold. By assumption, the collection of all such neighborhoods forms a sub-base for the topology

of the manifold, and so, by constructing the unique topological base from the given sub-base, the

point-set becomes a true topological manifold. It is straightforward to verify, for example, that a

real scalar field on the constructed manifold is continuous if and only if its restriction to any of the

basic neighborhoods defines a field in the fundamental family associated with that neighborhood.

Now, to complete the construction, we can define the manifold’s differential structure in a

straightforward way using similar techniques. First, demarcate the family of smooth scalar fields as

a sub-set of the continuous ones, which one can do in any of a number straightforward ways with

clear physical content based on the idea of directional derivatives. (The algebraic modular structure

of the fields comes into play in the definition of the directional derivative.) The family of all smooth

scalar fields on a topological manifold, however, fixes its differential structure (Chevalley 1947). The

directional derivatives themselves suffice for the definition of the tangent bundle over the manifold,

and from that one obtains all tensor bundles.
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C Appendix: Observability

This discussion supplements that of section 6 in Curiel (2016).

One does not have to be an instrumentalist or an empiricist to accept that the possible observ-

ability of physical phenomena is one of the most fundamental reasons we have to think such things

are physical in the first place. The question of the observability of various kinds of global structure in

general relativity, therefore, poses particularly interesting problems for arguments about physicality.

Manchak (2009, 2011) shows that, in a precise sense, local observations can never suffice to determine

the complete global structure of spacetime in general, and in particular cannot determine whether a

spacetime is inextendible or stably causal (Manchak 2011, p. 418, proposition 3). Nonetheless, there

remain several things to say and ask about the matter of physicality here.

Take, for example, the Euler number of the spacetime manifold, a global topological structure.5

It is a topological invariant that, in part, constrains the possible existence of everywhere non-zero

vector fields on a manifold. That an even-dimensional sphere, for example, possesses no everywhere

non-zero vector field (and indeed no Lorentzian metric) follows directly from the computation of

its Euler number. If we were to live in a world whose underlying manifold possessed a non-trivial

Euler number, and so could support no physical process that would manifest itself as an everywhere

non-zero vector field, this would constitute a physical fact about the world in an indubitable sense.

It is not clear to me, however, whether in some precise sense the Euler number of the spacetime

manifold could ever be determined by direct observation.

The orientability of spacetime is an example of a global topological structure that seems to be

strictly inobservable in an intuitive sense. This follows from the fact that one can construct an

orientable manifold from any non-orientable one by lifting the structures on it to a suitable covering

space, which is automatically orientable. The lift of the spacetime metric to a covering manifold,

however, would yield a representation of exactly the same physical spacetime as the original: every

physical phenomena in the one has an isometric analogue, as it were, in the other, and vice-versa.

Whether or not a spacetime manifold is simply connected, moreover, seems to be in the same boat,

for the universal covering manifold of a manifold is guaranteed to be simply connected.6

Nonetheless, I think those answers about the possible observability of a manifold’s orientability

and simple connectedness may be too pat. If one were to observe that any member of a certain

5See, e.g., Alexandrov (1957, ch. viii).
6In order for a manifold to possess a universal covering manifold, it must be semi-locally simply connected.

Intuitively, this means that it cannot contain “arbitrarily small holes”. More precisely, it means that every point

in the space has a neighborhood such that every loop in the neighborhood can be continuously contracted to a

point. (The contraction need not occur entirely with the given neighborhood.) The so-called Hawaiian Ear-Ring is

an example of a topological space that is not semi-locally simply connected (Biss 2000). Whether or not a spacetime

manifold is semi-locally simply connected presents us with yet another type of question related to physicality: strictly

speaking, there is no physical need for a manifold to possess a universal cover, and it is difficult, to say the least,

to see what other physical relevance being semi-locally simply connected could have; and yet the construction of the

universal cover is such an extraordinarily useful theoretical device (Geroch 1967) that one wants to demand that a

candidate spacetime manifold be semi-locally simply connected. What status does such a demand have? A purely

pragmatic one?
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family of closed, physically distinguished spatiotemporal loops could not be continuously deformed

into any member of another family of closed, physically distinguished spatiotemporal loops, one

would have shown that the spacetime manifold is not simply connected. Similarly, if one could

show that to parallely propagate a fixed orthonormal tetrad around a given closed spatiotemporal

loop would result in its inversion, one would have demonstrated that spacetime is not orientable. I

personally have no idea what sorts of experiment could show either of those things. The history of

physics, however, if it shows us nothing else, does show us never to underestimate the ingenuity of

experimentalists, no matter what the theoretician may tell them is impossible to observe or measure.

The first Betti number of the spacetime manifold offers another interesting example of this sort.

The first Betti number of a topological space is the number of distinct connected components it

has; any manifold with a first Betti number greater than one is ipso facto not connected. Say that

we posited a non-connected spacetime manifold. According to the principles of general relativity,

any phenomena in one component would be strictly inobservable in any other. By this criterion, it

makes no sense to attribute physicality to regions of spacetime disconnected from our own.

So, are these possibly inobservable global structures physical? Well, it seems to me that in some

senses they are, and in others they are not. The only lesson I want to draw here is that questions

of this sort require in-depth investigation sensitive both to the technical details of the mathematics

and to the physical details of how such structures may and may not bear on other phenomena we

think of as manifestly physical, even if they turn out to be indubitably inobservable.7
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