
ar
X

iv
:1

91
0.

06
16

1v
1 

 [
m

at
h-

ph
] 

 1
4 

O
ct

 2
01

9
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Abstract. The notions of two-dimensional area, Killing fields and matter flux are
introduced in the setting of causal fermion systems. It is shown that for critical points
of the causal action, the area change of two-dimensional surfaces under a Killing flow
in null directions is proportional to the matter flux through these surfaces. This
relation generalizes an equation in classical general relativity due to Ted Jacobson
to the setting of causal fermion systems.
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1. Introduction

In 1995, Ted Jacobson derived the Einstein field equations from thermodynamic
principles [19]. At the heart of his argument is the formula

d

dτ
A(Sτ ) = c F (Sτ ) (1.1)

which states that the area change of a family of two-surfaces Sτ propagating along a
null Killing direction is proportional to the matter flux F (Sτ ) across these surfaces
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(with c a constant). The relation (1.1) has similarity to the Einstein equations

Rij −
1

2
R gij + Λ gij = 8πκ Tij (1.2)

in that it gives a connection between geometry and matter. In order to make this con-
nection precise, Jacobson combined (1.1) with the Raychaudhuri equation to conclude
that (1.1) implies (1.2), up to an unspecified value of the cosmological constant. Jacob-
son’s starting point for the derivation of (1.1) is the thermodynamic formula δQ = T dS
relating the heat flux to the change of entropy. Using that the entropy of a horizon
in thermal equilibrium is given by its area, the change of entropy can be associated
to an area change. Moreover, identifying the heat flux with the matter flux, one ob-
tains (1.1), with the proportionality constant c given by the Hawking temperature of
the horizon. The connection between thermodynamic concepts and the Einstein equa-
tions has been explored and discussed extensively; see the review [21] and references
therein.

The theory of causal fermion systems is a recent approach to fundamental physics
where space-time is no longer modelled by a Lorentzian manifold but may instead have
a nontrivial, possibly discrete structure on a microscopic length scale (which can be
thought of as the Planck scale). In the setting of causal fermion systems, the physical
equations are formulated via a variational principle, the causal action principle. The
corresponding Euler-Lagrange (EL) equations read (for details see the preliminaries in
Section 2)

ℓκ|M ≡ inf
F

ℓκ = 0 . (1.3)

In [6, Chapter 4] it is shown that in a specific limiting case, the so-called continuum
limit, the EL equations give rise to the Einstein equations, up to possible higher
order corrections in curvature (which scale in powers of (δ2 Riem), where δ is the
Planck length and Riem is the curvature tensor). In this limiting case, space-time goes
over to a Lorentzian manifold, whereas the gravitational coupling constant κ ∼ δ2 is
determined by the length scale δ of the microscopic space-time structure.

The derivation of the Einstein equations in [6, Chapter 4] has two disadvantages.
First, it is rather technical, because it relies on the detailed form of the regular-
ized light-cone expansion of the kernel of the fermionic projector. Consequently, the
derivation does not give a good intuitive understanding of the underlying mechanisms.
Second and more importantly, the Einstein equations are recovered only in the contin-
uum limit, but the methods do not give any insight into the geometric meaning of the
EL equations (1.3) for more general “quantum” space-times. This raises the following
question:

Given a general causal fermion system, how do the EL equations (1.3)
relate matter to the geometry of space-time?

For a general causal fermion system we cannot work with tensor fields, making it
impossible to formulate the Einstein equations. There are general notions of connection
and curvature [9], but these geometric objects enter the EL equations in such an
implicit way that so far it has not been possible to give the EL equations a direct
geometric interpretation.

Despite these principle difficulties, we here partially answer the above question by
deriving an analog of Jacobson’s relation (1.1) from the EL equations (1.3). We thus
establish a connection between geometric properties (the change of the area of two-
surfaces) and matter (the matter flux through these surfaces). In order to derive
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the Einstein equations, the remaining task would be to generalize the notion of null
geodesics as well as the Raychaudhuri equation to the setting of causal fermion sys-
tems. At present, this construction can be carried out only in the continuum limit.
For the sake of greater generality and conceptual clarity, we here restrict attention to
the derivation of (1.1). In this way, for the first time we obtain a direct and intuitive
understanding of how the EL equations (1.3) relate matter fields to geometric quanti-
ties. We point out that, in contrast to Jacobson’s derivation, we do not use concepts
of thermodynamics. Indeed, at present it is unknown how “entropy” or “temperature”
could be defined in the general setting of causal fermion systems. But, turning Jacob-
son’s arguments around, we do get a surprising connection between the EL equations of
the causal action principle and concepts from thermodynamics. Exploring these con-
nections more thoroughly and in more detail seems a promising objective for future
research.

Our main task is to give the notions of “two-dimensional area” and “matter flux”
a precise mathematical meaning in the setting of causal fermion systems. Once this
has been achieved, the relation (1.1) follows from the EL equations (1.3) by direct
computation. The starting point are surface layer integrals as introduced in [13] which
generalize the notion of a three-dimensional surface integral to causal fermion systems.
Moreover, the conservation laws for such surface layer integrals derived in [14, 15] give
analogs of the Green’s formula and the Gauß divergence theorem. In order to get
from three-dimensional to two-dimensional surface integrals, for technical simplicity
we restrict attention to smooth space-times (see Definition 3.1) and use so-called inner
solutions (see Definition 3.2) in order to localize the integration domain to the trans-
verse intersection of a three-dimensional hypersurface and a surface layer (see Figure 1
on page 9).

The paper is organized as follows. In Section 2 we provide the necessary background
on causal fermion systems. Section 3 is devoted to defining inner solutions and to col-
lecting some of their properties. This makes it possible to define two-dimensional area
and area change (Section 4). In Section 5 we introduce a notion of Killing symmetries
(see Definition 5.1) which is then used to define the matter flux through a two-surface.
In Section 6 we consider the limiting case that the Killing direction becomes lightlike.
In this limiting case, our formulas for the area change and the matter flux coincide,
giving (1.1). A detailed appendix specifies the scalings of different contributions to
the causal Lagrangian. In particular, it is shown that the contributions by the matter
fields are much smaller than the vacuum contributions, a fact which is essential for
our definition of Killing symmetries to be physically sensible.

2. Preliminaries

2.1. Causal Fermion Systems and the Causal Action Principle.

Definition 2.1. (causal fermion system) Given a separable complex Hilbert space H
with scalar product 〈.|.〉H and a parameter n ∈ N (the “spin dimension”), we let F ⊂
L(H) be the set of all self-adjoint operators on H of finite rank, which (counting
multiplicities) have at most n positive and at most n negative eigenvalues. On F we
are given a positive measure ρ (defined on a σ-algebra of subsets of F), the so-called
universal measure. We refer to (H,F, ρ) as a causal fermion system.

A causal fermion system describes a space-time together with all structures and ob-
jects therein. In order to single out the physically admissible causal fermion systems,
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one must formulate physical equations. To this end, we impose that the universal
measure should be a minimizer of the causal action principle, which we now intro-
duce. For any x, y ∈ F, the product xy is an operator of rank at most 2n. However,
in general it is no longer a selfadjoint operator because (xy)∗ = yx, and this is dif-
ferent from xy unless x and y commute. As a consequence, the eigenvalues of the
operator xy are in general complex. We denote these eigenvalues counting algebraic
multiplicities by λxy1 , . . . , λ

xy
2n ∈ C (more specifically, denoting the rank of xy by k ≤ 2n,

we choose λxy1 , . . . , λ
xy
k as all the non-zero eigenvalues and set λxyk+1, . . . , λ

xy
2n = 0). We

introduce the Lagrangian and the causal action by

Lagrangian: L(x, y) =
1

4n

2n
∑

i,j=1

(

∣

∣λxyi
∣

∣−
∣

∣λxyj
∣

∣

)2

causal action: S(ρ) =

∫∫

F×F

L(x, y) dρ(x) dρ(y) .

The causal action principle is to minimize S by varying the measure ρ under the
following constraints:

volume constraint: ρ(F) = const (2.1)

trace constraint:

∫

F

tr(x) dρ(x) = const (2.2)

boundedness constraint:

∫∫

F×F

|xy|2 dρ(x) dρ(y) ≤ C , (2.3)

where C is a given constant, tr denotes the trace of a linear operator on H, and the
absolute value of xy is the so-called spectral weight,

|xy| :=
2n
∑

j=1

∣

∣λxyj
∣

∣ .

This variational principle is mathematically well-posed if H is finite-dimensional and
if one varies the measure in the class of regular Borel measures (with respect to the
topology on L(H) induced by the operator norm). For the existence theory and the
analysis of general properties of minimizing measures we refer to [3, 5, 1].

Let ρ be a minimizing measure. Space-time is defined as the support of this measure,

M := suppρ ,

Thus the space-time points are selfadjoint linear operators on H. These operators
contain a lot of additional information, which, if interpreted correctly, gives rise to
space-time structures like causal and metric structures, spinors and interacting fields.
This is explained in detail in [6, Chapter 1].

2.2. The Euler-Lagrange Equations. We now outline how the resulting Euler-
Lagrange equations look like. For technical simplicity, we work in the finite-dimensional
setting, i.e. f := dimH <∞. Moreover, we assume that ρ is regular in the sense that
all operators in M have exactly n positive and exactly n negative eigenvalues. As is
worked out in detail in [1], under certain technical assumptions the constraints (2.1)–
(2.3) can be treated as follows. The trace constraint (2.2) implies that the minimizing
measure is supported on operators of constant trace, i.e.

tr(x) = c for all x ∈M (2.4)
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for some c > 0. The volume constraint (2.1) and the boundedness constraint (2.3), on
the other hand, can be taken into account by positive Lagrange multipliers, which we
denote by s and κ, respectively. Thus we introduce the Lagrangian Lκ by adding a
Lagrange multiplier term to the causal Lagrangian,

Lκ : F × F → R , Lκ(x, y) := L(x, y) + κ |xy|2 . (2.5)

Moreover, we introduce the function ℓκ by

ℓκ(x) =

∫

M

Lκ(x, y) dρ(y)− s . (2.6)

Then the EL equations state that this function vanishes and is minimal on the support
of ρ, (1.3). For the derivation and technical details we refer to [14].

In view of the above regularity assumption as well as the fact that the trace is
constant (2.4), space-timeM is a subset of the set Freg defined as the set of all operators
on H with the following properties:

(i) F is selfadjoint, has finite rank and (counting multiplicities) has exactly n positive
and n negative eigenvalues.

(ii) The trace is constant, i.e. tr(F ) = c.

The set F
reg has a smooth manifold structure (see the concept of a flag manifold

in [18] or the detailed construction in [12, Section 3]). Therefore, working in F
reg,

we are in the setting of causal variational principles in the non-compact setting as
introduced in [14, Section 2]. Since in this paper we shall work with F

reg throughout,
for notational simplicity we leave out the superscript and denote the set of operators
with the above properties (i) and (ii) again by F (for more details on this procedure
see also [8, Section 6.1]). For clarity, we point out that the smoothness of F does
not imply smoothness of M . Indeed, at this stage space-time M merely is a subset
of F, but it does not need to be a smooth submanifold of F (smoothness of M will be
introduced in Definition 3.1 below).

2.3. The Weak Euler-Lagrange Equations and Jet Derivatives. The EL equa-
tions (1.3) are nonlocal in the sense that they make a statement on ℓκ even for
points x ∈ F which are far away from space-time M . It turns out that for the ap-
plications we have in mind, it is preferable to evaluate the EL equations locally in a
neighborhood of M . This concept leads to the weak EL equations introduced in [14,
Section 4]. We here give a slightly less general version of these equations which is suf-
ficient for our purposes. In order to explain how the weak EL equations come about,
we begin with the simplified situation that ℓκ is a smooth function on F. In this case,
the minimality of ℓκ implies that the derivative of ℓκ vanishes on M , i.e.

ℓκ|M ≡ 0 and Dℓκ|M ≡ 0 (2.7)

(whereDℓκ(p) : TpF → R is the derivative). In order to combine these two equations in
a compact form, it is convenient to consider a pair u := (a, u) consisting of a real-valued
function a on M and a vector field u on TF along M , and to denote the combination
of multiplication and directional derivative by

∇uℓκ(x) := a(x) ℓκ(x) +
(

Duℓκ
)

(x) . (2.8)

The equations (2.7) imply that ∇uℓκ(x) vanishes for all u and for all x ∈ M . The
pair u = (a, u) is referred to as a jet.
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The Lagrangian Lκ (2.5) of the causal action principle is not everywhere smooth.
Therefore, the directional derivative Duℓκ in (2.8) need not exist. The method for deal-
ing with this difficulty is to restrict attention to vector fields for which the directional
derivative is well-defined. We denote the resulting jet space by

J
test ⊂ J := C∞(M,R)⊕ Γ(M,TF)

(where a function on M is by definition smooth if it is the restriction of a smooth
function on F; for technical details we refer to [14, Section 4] or [11, Section 2.2]).
Then the weak EL equations read

∇uℓκ|M = 0 for all u ∈ J
test . (2.9)

For brevity, a solution of the weak EL equations is also referred to as a critical measure.

2.4. The Linearized Field Equations. Usually, linearized fields are obtained by
considering a family of nonlinear solutions and linearizing with respect to a parameter τ
describing the field strength. The analogous notion in the setting of causal fermion
systems is a linearization of a family of measures (ρ̃τ ) which all satisfy the weak
EL equations (2.9). It turns out to be fruitful to construct this family of measures by
multiplying a given critical measure ρ by a weight function fτ and then “transporting”
the resulting measure with a mapping Fτ . More precisely, one considers the ansatz

ρ̃τ = (Fτ )∗
(

fτ ρ
)

, (2.10)

where fτ ∈ C∞(M,R+) and Fτ ∈ C∞(M,F) are smooth mappings, and (Fτ )∗µ denotes
the push-forward of a measure µ (defined for a subset Ω ⊂ F by ((Fτ )∗µ)(Ω) =
µ(F−1

τ (Ω)); see for example [2, Section 3.6]).
The property of the family of measures ρ̃τ of the form (2.10) to satisfy the weak EL

equation for all τ means infinitesimally in τ that the jet v defined by

v = (b, v) :=
d

dτ
(fτ , Fτ )

∣

∣

τ=0

satisfies the linearized field equations (for the derivation see [8, Section 3.3] or, in the
simplified smooth setting, the textbook [16, Chapter 6])

〈u,∆v〉|M = 0 for all u ∈ Jtest , (2.11)

where for any x ∈M ,

〈u,∆v〉(x) := ∇u

(
∫

M

(

∇1,v +∇2,v

)

Lκ(x, y) dρ(y)−∇v s

)

(2.12)

(and ∇1 and ∇2 act on the arguments x and y of the Lagrangian, respectively). We
denote the vector space of all solutions of the linearized field equations by Jlin ⊂ J.

2.5. Surface Layer Integrals and Conservation Laws. In the setting of causal
fermion systems, the usual integrals over hypersurfaces in space-time are undefined.
Instead, one considers so-called surface layer integrals, being double integrals of the
form

∫

Ω
dρ(x)

∫

M\Ω
dρ(y) (· · · ) Lκ(x, y) , (2.13)

where Ω is a subset of M and (· · · ) stands for a differential operator acting on the
Lagrangian. The structure of such surface layer integrals can be understood most easily
in the special situation that the Lagrangian is of short range in the sense that Lκ(x, y)
vanishes unless x and y are close together. In this situation, we get a contribution to
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the double integral (2.13) only if both x and y are close to the boundary ∂Ω. With this
in mind, surface layer integrals can be understood as an adaptation of surface integrals
to the setting of causal variational principles (for a more detailed explanation see [13,
Section 2.3]).

Surface layer integrals were first introduced in [13] in order to formulate Noether-
like theorems for causal variational principles. In particular, it was shown that there
is a conserved surface layer integral which generalizes the Dirac current in relativistic
quantum mechanics (see [13, Section 5]). More recently, in [14] another conserved
surface layer integral was discovered which gives rise to a symplectic form on the
solutions of the linearized field equations (see [14, Sections 3.3 and 4.3]). A systematic
study of conservation laws for surface layer integrals is given in [15]. The conservation
law which is most relevant for our purposes is summarized in the next lemma.

Lemma 2.2. For any linearized solution v ∈ Jlin,
∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

∇1,v −∇2,v

)

Lκ(x, y) =

∫

Ω
∇v s dρ . (2.14)

Proof. In view of the anti-symmetry of the integrand,
∫

Ω
dρ(x)

∫

Ω
dρ(y)

(

∇1,v −∇2,v

)

Lκ(x, y) = 0 .

Adding this equation to the left side of (2.14), we obtain
∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

∇1,v −∇2,v

)

Lκ(x, y)

=

∫

Ω
dρ(x)

∫

M

dρ(y)
(

∇1,v −∇2,v

)

Lκ(x, y)

=

∫

Ω
dρ(x)

(

2∇v

(

ℓκ(x) + s

)

−
(

∆v
)

(x)−∇v s

)

,

where in the last line we used the definitions of ℓκ and ∆ (see (2.6) and (2.12)).
Applying the weak EL equations (2.9) and the linearized field equations (2.11) gives
the result. �

We shall also encounter surface layer integrals which depend on two jets u and v

and have similarity to the surface layer integral

IΩ(u, v) :=

∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

∇1,u −∇2,u

)(

∇1,v +∇2,v

)

Lκ(x, y) , (2.15)

which was introduced in [15] and shown to satisfy a conservation law. Symmetrizing
and anti-symmetrizing in u and v gives the so-called surface layer inner product and
the symplectic form, respectively.

3. Inner Solutions

In preparation for introducing two-dimensional surface layer integrals, we now con-
struct a simple class of solutions of the linearized field equations. These solutions
do not have a dynamics of their own, but they can be used for describing flows in
space-time and for “localizing” objects on surface layers.

We again define space-time M := suppρ ⊂ F as the support of the universal mea-
sure. Furthermore we make the following simplifying assumption:
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Definition 3.1. Space-time is smooth and four-dimensional if M is a four-
dimensional smooth oriented submanifold of F. Moreover, in every local chart (x,U)
of M , the universal measure should be of the form

dρ = h(x) d4x with h ∈ C∞(U,R+) . (3.1)

From now on, we always assume that ρ is smooth and four-dimensional.
Let v ∈ Γ(M,TM) be a vector field. Then, under the above assumptions, its

divergence div v ∈ C∞(M,R) can be defined by the relation
∫

M

div v η(x) dρ = −

∫

M

Dvη(x) dρ(x) ,

to be satisfied by all test functions η ∈ C∞
0 (M,R). In a local chart (x,U), the diver-

gence is computed by

div v =
1

h
∂j
(

h vj
)

(3.2)

(where following the Einstein summation convention we sum over j = 0, 1, 2, 3).

Definition 3.2. An inner solution is a jet v ∈ J of the form

v = (div v, v) with v ∈ Γ(M,TM) .

The vector space of all inner solution is denoted by Jin ⊂ J.

The name “inner solution” is justified by the following lemma:

Lemma 3.3. Every inner solution v ∈ Jin is a solution of the linearized field equations,
i.e.

〈u,∆v〉M = 0 for all u ∈ Jtest .

Proof. Applying the Gauss divergence theorem, one finds that for every f ∈ C1
0 (M,R),

∫

M

∇vf dρ =

∫

M

(

div v f +Dvf
)

dρ =

∫

M

div
(

fv
)

dρ = 0 .

Likewise, in the linearized field equations we may integrate by parts in y,

〈u,∆v〉M = ∇u

(
∫

M

(

∇1,v +∇2,v

)

Lκ(x, y) −∇v s

)

= ∇u

(
∫

M

∇1,vLκ(x, y)−∇v s

)

= ∇u∇vℓκ(x) = ∇v

(

∇uℓκ(x)
)

= 0 ,

where in the last step we used that the function ℓκ vanishes identically on M in view
of the weak EL equations. Therefore, it is differentiable in the direction of every vector
field on M , and this directional derivative is zero. �

Inner solutions have the nice property that surface layer integrals simplify to stan-
dard surface integrals, as is exemplified in the following lemma.

Definition 3.4. Let Ω ⊂ M be closed with smooth boundary ∂Ω. On the boundary,
we define the measure dµ(v, x) as the contraction of the volume form on M with v,
i.e. in local charts

dµ(v, x) = h ǫijkl v
i dxjdxkdxl ,

where ǫijkl is the totally anti-symmetric Levi-Civita symbol (normalized by ǫ0123 = 1).
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V

Ω

∂ΩτS

Sτ

v

Figure 1. Two-dimensional area and area change.

Lemma 3.5. For every inner solution v ∈ Jin and any compact Ω ⊂M ,
∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

∇1,v −∇2,v

)

Lκ(x, y) = s

∫

∂Ω
dµ(v, x) .

Proof. Integrating by parts with the help of the Gauß divergence theorem, we obtain
∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

∇1,v −∇2,v

)

Lκ(x, y)

=

∫

∂Ω
dµ(v, x)

∫

M\Ω
dρ(y) Lκ(x, y) +

∫

Ω
dρ(x)

∫

∂Ω
dµ(v, y) Lκ(x, y)

=

∫

∂Ω
dµ(v, x)

∫

M

dρ(y) Lκ(x, y) ,

where in the last step we used the symmetry of Lκ. Employing the EL equations gives
the result. �

4. Two-Dimensional Area and Area Change

In what follows, we assume that ρ is a critical measure and that the corresponding
space-time M := suppρ is smooth and four-dimensional (see Definition 3.1). Let V ⊂
M be an open subset of space-time with smooth boundary ∂V . Moreover, we let v
be a vector field on M which is tangential to ∂V and denote the corresponding inner
solution by v = (b := div v, v). Moreover, we let Ω ⊂ M be another open set. We
assume that the boundaries of Ω and V intersect transversely, meaning that

S := ∂Ω ∩ ∂V

is a two-dimensional surface (see Figure 1). We define its area by

A :=

∫

∂Ω∩V
dµ(v, x)

∫

M\V
dρ(y) Lκ(x, y) .

Again integrating by parts and assuming that the vector field v vanishes in the past,
this area can be written alternatively as

A =

∫

Ω∩V
dρ(x)∇v

∫

M\V
dρ(y) Lκ(x, y)

=

∫

Ω∩V
dρ(x)

∫

M\V
dρ(y)

(

∇1,v ±∇2,v

)

Lκ(x, y) (4.1)

(the notation ± means that the formula holds for either choice of the sign; this is be-
cause the corresponding terms vanishes after integrating by parts in view of Lemma 3.5
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and the fact that v is tangential to ∂V ). Before going on, we point out that our def-
inition of area involves a scaling factor coming from the Lagrangian (in Appendix A,
this scaling factor is computed and given in (A.17)).

The vector field also defines a flow of surfaces. Indeed, let Φτ the diffeomorphism
generated by the vector field v and Ωτ := Φτ (Ω). Then the surface S flows to

Sτ := Φτ (A) = ∂Ωτ ∩ ∂V .

The area change is obtained by differentiating (4.1)

Proposition 4.1. The infinitesimal change of the area (4.1) in the direction of the
vector field v is given by

d

dτ
A(Sτ )

∣

∣

∣

τ=0
=

∫

Ω∩V
dρ(x)

∫

M\V
dρ(y)

(

∇1,v +∇2,v

)(

∇1,v −∇2,v

)

Lκ(x, y) (4.2)

+

∫

Ω∩V
dρ(x)

∫

M\V
dρ(y) Lκ(x, y)

(

Dvdiv v(x)−Dvdiv v(y)
)

(4.3)

+

∫

Ω∩V
dρ(x)

∫

M\V
dρ(y)

(

∇1,v −∇2,v

)

Lκ(x, y)
(

div v(x) + div v(y)
)

. (4.4)

Proof. The inner solution can be written as v = (div v, ∂τ ). When differentiating (4.1)
with respect to τ , one must take into account that, according to (3.1) and (3.2),
the measure dρ depends smoothly on τ and that its τ -derivative is the signed mea-
sure div v dρ. Moreover, one must differentiate the factors div v in the scalar component
of v. This gives the result. �

5. Killing Fields and Matter Flux

In differential geometry, a Killing field describes a symmetry of the metric tensor.
Here instead of the metric we must work with the structures of the causal fermion
system: the measure ρ and the Lagrangian L. In view of (3.1) and (3.2), the con-
dition that ρ should be invariant in the direction of the vector field v simply means
that div v = 0. Then the corresponding inner solution has a vanishing scalar compo-
nent,

v = (0, v) .

A symmetry of the Lagrangian, on the other hand, is captured in the expression (D1,v+
D2,v)L(x, y) where both arguments are differentiated in the direction of the vector
field v. Since the Lagrangian also involves the matter fields, it would be a too strong
condition to demand that this expression is zero. Instead, this expression must be suf-
ficiently small, as stated in the next definition and worked out in detail in the appendix
(wherem is the mass of the Dirac particles of the system, δ is the Planck length, ε is the
regularization length, and for convenience we chose the scaling parameters σ = λ = 1).

Definition 5.1. A vector field v on M is called Killing field of the causal fermion
system if the following conditions hold:

(i) The divergence (3.2) of v vanishes,

div v = 0 .

(ii) The directional derivative of the Lagrangian is small in the sense that

(

D1,v +D2,v

)

Lκ(x, y) .
m4

ε4 δ4
. (5.1)
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V

Ω

S

v

u

Figure 2. Matter flux through S.

The contributions allowed in (5.1) describe the derivative of the matter content in
the direction of v (for more details and computations in the static case see [17]). Next,
we let u be a vector field which is tangential to ∂Ω (see Figure 2) and u = (div u, u) the
corresponding inner solution. Then the matter flux through the surface S in direction u
can be defined in analogy to (2.15) by

F (Sτ ) :=

∫

Ω∩V
dρ(x)

∫

M\V
dρ(y)

(

∇1,u −∇2,u

)(

∇1,v +∇2,v

)

Lκ(x, y) . (5.2)

6. The Limiting Case of Lightlike Propagation

We now consider the limiting case of a lightlike Killing direction. By this we simply
mean the limiting case that the vector fields v and u coincide. Then the divergence and
its derivatives in (4.3) and (4.4) vanish. As a consequence, we also obtain agreement
between the formulas for the change of area in Proposition 4.1 and the matter flux
in (5.2),

d

dτ
A(Sτ ) = F (Sτ ) . (6.1)

This generalizes the analogous formula used by Ted Jacobson (1.1). We note for
clarity that the constant c in (1.1) is explicitly contained in (6.1) as well. Indeed,
the orders in ε and δ in (5.1) together with the scaling of the causal Lagrangian
determines this constant. We do not enter the details because it is clear already from
dimensional consideration and from consistency to the Einstein equations as derived
in [6, Chapter 4] that the resulting gravitational constant scales like κ ∼ δ2.

Appendix A. Scaling of the Causal Lagrangian

The goal of this appendix is to derive the scaling of the contributions on the right
side of the Killing equation (5.1). To this end, we analyze the scaling of the causal
Lagrangian and of the constraints both in the Minkowski vacuum and in the presence
of matter. Our limited knowledge on the microscopic structure of space-time will be
reflected in a number of unknown parameters (denoted by p, q and q̂). As we shall
see, the scalings in (5.1) are universal in the sense that they are independent of these
unknowns.

A.1. Relevant Length Scales. We recall the length scales which enter the construc-
tion of causal fermion systems. We always work in natural units where ~ = c = 1. Then
the gravitational coupling constant κ has dimension length squared. More precisely,

κ ≃ δ2 ,

where δ ≈ 1.6 · 10−35 meters denotes the Planck length. The rest mass of the Dirac
particles determines another length scale, the Compton length m−1. Next, there is the
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regularization length ε. The simplest and most natural assumption is to identify the
regularization length with the Planck length. However, as is explained in detail in [6,
Chapter 4], this assumption is too naive, because the regularization length should be
much smaller than the Planck length. Therefore, we must treat ε and δ as different
parameters. We merely assume that

ε≪ δ ≪
1

m
.

Finally, there is the length scale lmacro of macroscopic physics. Clearly, this length
scale depends on the physical system under considerations. Since energies much larger
than the rest masses of the heaviest fermions are not accessible to experiments, we
always assume that

1

m
. lmacro .

A.2. Freedom in Rescaling Solutions of the Euler-Lagrange Equations. Let ρ
be a critical measure of the causal action principle. Then for suitable Lagrange mul-
tipliers c, s > 0, the equations (2.4) and (1.3) hold. We now write the function ℓκ
defined by (2.6) as

ℓκ(x) := ℓ(x) + κ t(x) ,

where

ℓ(x) :=

∫

M

Lκ(x, y) dρ(y)− s

t(x) :=

∫

M

|xy|2 dρ(y) .

There is a two-parameter family of rescalings which again give critical measures.
Indeed, the new measure ρ̃ defined by

ρ̃(Ω) = σ ρ
(Ω

λ

)

with λ, σ > 0 , (A.1)

again satisfies the EL equation with new Lagrange multipliers

c̃ = λ c and s̃ = σ λ4 s .

This rescaling freedom could be fixed for example by imposing that

c = s = 1 .

Note that the Lagrange multiplier κ remains unchanged; it is a dimensionless parameter
which characterizes the solution independent of the values of c and s. For what follows,
it is preferable not to fix this rescaling freedom, because this simplifies the comparison
of our formulas with the computations in [4, 7].

A.3. Scalings in the Minkowski Vacuum. For most of the following formulas,
it makes no difference how we regularize. Therefore, we mainly work in the iε-
regularization introduced in [6, Section 2.4.1]. Whenever the form of the regularization
does matter, we shall discuss the results of the paper [4] where the regularization ef-
fects were analyzed for a general class of regularizations. Implementing the scaling
freedom in (A.1), the kernel of the fermionic project takes the form

P (x, y) ≃ λ

∫

d4k

(2π)4
(/k +m) δ(k2 −m2)Θ(−k0) exp

(

εk0
)

e−ik(x−y) ,
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where ε > 0 is the regularization length. Power counting shows that this distribution
has length dimension

P (x, y) ≃
λ

l3

(where l has dimension length). We infer that the closed chain, its eigenvalues and the
Lagrangian scale like

Axy, λ
xy
i ∼

λ2

l6
(A.2)

L(x, y),

2n
∑

i=1

∣

∣λxyi
∣

∣

2
∼
λ4

l12
. (A.3)

In particular, the local trace scales like (for details see [6, Section 2.5])

tr(x) = Tr
(

P (x, x)
)

≃
λm

ε2
. (A.4)

Following the constructions in [6, Section 1.2], the measure ρ is chosen as the push-
forward of the Lebesgue measure on Minkowski space. Taking into account the scaling
in (A.1), we set

ρ̃ = F ε
∗ (σ µ) with dµ = d4x .

The Lagrange multiplier term involving κ is non-zero even in the massless case. There-
fore, its scaling can be determined by power counting,

κ t(x) ≃ κ
σ λ4

ε8
. (A.5)

In more detail, this scaling behavior is obtained in the formalism of the continuum
limit (as introduced in [6, Sections 2.4, 3.5 and 4.2]) by writing

2n
∑

i=1

∣

∣λxyi
∣

∣

2
≃ λ2 (deg = 6) , (A.6)

Here the factor (deg = 6) is a contribution which is localized on the light cone and has
length dimension l−12. It can be written more explicitly as

(deg = 6) =
h(ξ)

(εt)5
δε(ξ

2) ǫ(ξ0) , (A.7)

where ξ2 := 〈ξ, ξ〉 denotes the Minkowski inner product, δε is a function which in the
limit ε ց 0 converges to the δ-distribution, and ǫ is the step function. Moreover,
the function h is smooth away from the origin and bounded from above and below,
uniformly in ε. Integrating in (A.6) and (A.7) over y gives the scaling (A.5).

The scaling of the Lagrangian is more subtle because there are different contributions
involving different powers in the mass. We discuss them after each other.

A.3.1. Contributions Away from the Light Cone. Away from the light cone (i.e. if (y−
x)2 6= 0), the fermionic projector is smooth, so that the Lagrangian is well-defined
without a regularization. The resulting contribution to ℓ is bounded. Expanding in
powers of the mass, the lowest order is given by L(x, y) ∼ m6 (for details see [10]
and [4]). If this contribution extended up to the light cone, the corresponding contri-
bution to ℓ could be computed similar to (A.5) with power counting to be

ℓ(x) + s =

∫

M

L(x, y) dρ(y) ≃
σ λ4m6

ε2
.
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However, this picture is not quite correct because the detailed analysis in [4] reveals
that the regularization effects make the Lagrangian small in a strip of size εα with α <
1. For our purposes, it suffices to note that as a consequence of these regularization
effects, the function ℓ is much smaller than the scaling obtained from simple power
counting,

ℓ(x) + s .
σ λ4m6

ε2
. (A.8)

A.3.2. Contributions on the Light Cone. As explained in [6, Chapter 4] and [7, Sec-
tion 3.2], in the Minkowski vacuum there are also contributions to the Lagrangian
which are localized on the light cone. Since these contributions do not involve the
mass m, power counting gives the scaling

ℓ(x) + s ≃ σ λ4
1

δ8

(δ

ε

)ŝ

(A.9)

with an undetermined parameter ŝ. In order to determine the possible values of this
parameter, we write the corresponding contribution to the Lagrangian in the formalism
of the continuum limit as

L(x, y) ≃
λ4

δ8
(deg = 2)

(ε

t

)q̂

, (A.10)

where the factor (deg = 2) is again a contribution which is localized on the light cone
and has length dimension l−4, i.e.

(deg = 2) =
h(ξ)

εt
δε(ξ

2) ǫ(ξ0) ,

and the function h is again smooth away from the origin and bounded from above
and below, uniformly in ε. Moreover, the factor (ε/t)q̂ with q̂ ∈ N0 takes into account
the so-called regularization expansion. When integrating (A.10) over y, one must keep
in mind that the mass expansion in powers of 1/δ is admissible only if r . δ2/ε.
Therefore, we must only integrate over the range 0 ≤ r ≤ δ2/ε. We thus obtain the
scaling (A.9) with ŝ given by

ŝ = max
(

0, 2− 2q̂
)

∈ {0, 2} . (A.11)

A.3.3. Contributions at the Origin. We now consider the contributions to the La-
grangian L(x, y) at the origin (i.e. near the diagonal x ≈ y). The scaling of these
contributions was clarified only more recently based on the connection obtained in [20]
between the lowest angular momentum shell of a Dirac system in Minkowski space
and the three-dimensional Dirac sphere in [5, Example 2.9]. In order to explain the
resulting scalings, following the procedure in [4] we consider a spherically symmetric

regularization. We set ξ = y−x, write its components as ξ = (t, ~ξ) and denote r = |~ξ|.
Then for r ≪ ε, the fermionic projector can be expanded as

P (t, r) ≃ λ
(

γ0
1

ε3
+ r γr

1

ε4
+
m

ε2
11
)(

1 + O

(r

ε

))

,

where γr denotes the radial Dirac matrices, i.e.

γr :=
~ξ~γ

r
.

As a consequence, the closed chain scales like

A = P (t, r)P (t, r)∗ ≃ λ2
( 1

ε6
+
m

ε5
γ0 +

r

ε7
i
[

γ0, γr
]

)(

1 + O

(r

ε

))

.
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0 ε

mε2

t

~ξ

Figure 3. Scaling of the timelike region near the origin.

The leading contribution ∼ λ2ε6 is compatible with the scaling of the eigenvalues
as given in (A.2). The contribution ∼ λ2mε−5 γ0 removes the degeneracy of the
eigenvalues and gives rise to two real eigenvalues (i.e. to timelike separation of x and y).
In particular,

L(x, x) ≃ λ4
m2

ε10
. (A.12)

The eigenvalues of the bilinear contribution ∼ λ2rε−7 i
[

γ0, γr
]

, on the other hand, are
imaginary, giving rise to spacelike separation. At the boundary between timelike and
spacelike separation the last two contribution have the same size, i.e.

m

ε5
∼

r

ε7

or equivalently
r ∼ mε2 . (A.13)

Hence the timelike region near the origin has a cylinder-type shape, with the radius
of the cylinder being much smaller than the Planck scale. In the time direction, on
the other hand, the size of this cylinder is of the order of the regularization scale (see
Figure 3).

Using these findings, the resulting contribution to ℓ+ s is computed by

ℓ(x) + s ≃ L(x, x) σ ε
(

mε2
)3 (A.12)

∼ σλ4
m2

ε10
m3 ε7

and thus

ℓ(x) + s ≃
σ λ4m5

ε3
. (A.14)

This scaling requires a few explanations. First, one should note that the resulting
contribution to ℓ+ s is much smaller than the scaling obtained by multiplying L(x, x)
by the volume of a four-dimensional cube of the size of the regularization length

L(x, x) ε4 ≃ λ4
m2

ε6
.

The additional scaling factor (εm)3 in (A.14) is a result of the effect first observed for
the three-dimensional Dirac sphere in [5, Example 2.9] that bilinear contributions can
be used to “shrink” the light cone and thus to reduce the causal action. This effect
can also be understood qualitatively as the reason why Dirac systems are favorable
when minimizing the causal action. The scaling (A.13) also shows that visualizing
regularized space-time as a four-dimensional lattice with lattice spacing ε is too naive.
When working with a discrete space-time, the spatial lattice must be much finer with
spacing mε2. In the time direction, however, a lattice spacing ε seems sufficient.
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We also point out that, despite this effect, the contribution near the origin (A.14)
is by a scaling factor (εm)−1 larger than the upper bound for the contributions away
from the light cone in (A.8). This raises the question whether the contribution near
the origin can be made even smaller. There is no reason why the scaling (A.14)
should be optimal. On the other hand, at present there is no method for improving
the scaling (A.14). Here we shall not enter the discussion of how one could possibly
improve (A.14). Instead, we merely add the contributions (A.9) and (A.14) to obtain
the scaling

ℓ(x) + s ≃ σ λ4
(

(εm)p

ε8
+

1

δ8

(δ

ε

)ŝ
)

(A.15)

with p ≥ 5 and ŝ as given by (A.11). Choosing p = 5 gives the scaling (A.14) obtained
by regularizing Dirac sea structures. A value of p > 5 can cover potential future
improvements of (A.14).

A.3.4. Scaling of the Lagrange Multipliers. We now compute the Lagrange Multipli-
ers κ and s. The Lagrange multiplier κ is obtained by minimizing the causal action,
keeping in mind the constraints. The volume constraint forces us not to change σ. For
ease in notation, we set σ = 1. In order to build in the trace constraint, we fix the
local trace. For convenience, we arrange that the local trace is equal to one. Thus in
view of (A.4) we choose

λ =
ε2

m
.

Then ℓκ becomes (cf. (A.15) and (A.5))

ℓκ(x) + s := ℓ(x) + κ t(x)

≃ σ λ4
(

(εm)p

ε8
+

1

δ8

(δ

ε

)ŝ
)

+ κ
σ λ4

ε8
=

(

(εm)p

m4
+

1

m4

(ε

δ

)8−ŝ
)

+
κ

m4
.

The remaining parameters to vary are the rest mass m and the parameter δ. Since
the parameter δ has the purpose of generating a contribution to the mass expansion
of the neutrino sector (for details see [6, Chapter 4]), the parameters m and δ cannot
be varied independently. Having a minimizer of the causal action implies that ℓκ is
minimal under such variations (for details see [1]). Moreover, the parameter s is chosen
such that this minimum is zero. If one varies keeping the productmδ fixed, in order for
a minimum to exist we must assume that p > 4 (in agreement with our finding p ≥ 5
in (A.15)). Moreover, we find

κ . (εm)p +
(ε

δ

)8−ŝ

. (A.16)

Note that κ is dimensionless. Using this value for κ, both contributions (A.5) and (A.15)
have the same scaling. Since they are both positive, we conclude that s scales like

s ≃
σ λ4

ε8

(

(εm)p +
(ε

δ

)8−ŝ
)

. (A.17)

A.4. Scalings in the Presence of Matter Fields.
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A.4.1. Contributions by Matter Fields. As worked out in detail in [6, Section 4.5]
and [7, Section 3.7], the leading contribution of the matter fields has the form

L(x, y) ≃
1

δ4
·
(

δ−2Rij + c Tij [ψ] + c′ Tij [A]
)

ξiξj (deg = 3) ,

where Tij and Rij denote the energy-momentum tensor and the Ricci tensor, respec-
tively. These contributions cancel each other as a consequence of the Einstein equa-
tions, but the contributions of the corresponding regularization expansion remain.
With this in mind, the relevant contributions of the matter fields to the Lagrangian
are of the form

L(x, y) ≃
λ4

δ4
Tij ξ

iξj (deg = 3)
(ε

t

)q

=
λ4

δ4
Tij ξ

iξj
(ε

t

)q h(ξ)

(εt)2
δε(ξ

2) ǫ(ξ0) , (A.18)

where we again used the notation introduced before (A.7). Moreover, the factor (ε/t)q

in (A.10) with q ≥ 0 again takes into account the contributions of the regularization
expansion. Using that the energy-momentum tensor has the length dimension l−4, the
contribution to the Lagrangian (A.18) has the desired scaling ∼ λ4 l−12 (see (A.3)).
Integrating over y in the range 0 ≤ r ≤ δ2/ε (see the explanation before (A.9)), the
resulting contribution to the function ℓ has the scaling

ℓ(x) ≃ σ λ4
1

δ4
T (x)

(δ

ε

)s

(A.19)

with

s = max
(

0, 4 − 2q
)

∈ {0, 2, 4} (A.20)

(for simplicity, we omit logarithms in ε and δ, because they are much less singular
than negative powers). We also need to compute the contribution to the Lagrange
multiplier term for κ. Matter enters the integrand of the boundedness constraint by

2n
∑

i=1

∣

∣λixy
∣

∣

2
≃ λ4 Tij ξ

iξj (deg = 5) . (A.21)

Integrating over y and using (A.16), we obtain the scaling

κ t(x) . σ λ4
(

(εm)p +
(ε

δ

)8−ŝ
)

1

ε4
T (x) . (A.22)

Let us consider which of the contributions in (A.19) and (A.22) is larger. In the case
when the second summand in (A.22) dominates, i.e. if

(εm)p .
(ε

δ

)8−ŝ

,

the contribution (A.19) dominates because ε . δ. In the remaining case when the first
argument of the maximum dominates, the contribution (A.22) differs from (A.19) by
a scaling factor (εm)p (δ/ε)4−s. This scaling factor is indeed very small because, using
that p ≥ 5, m . 1/δ and s ≥ 0, we find that

(εm)p .
(ε

δ

)4−s

.

We conclude that the contribution (A.22) is much smaller than (A.19) and can there-
fore be disregarded. Thus again the contribution (A.19) dominates.

Our findings are summarized as follows.
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L(x, y)

~ξ

|xy|20 0

ξ0
away from the lightcone

at the origin

on the lightcone

λ4

δ8
(deg = 2)

+
λ4

δ4
Tij ξ

iξj (deg = 3)
(ε

t

)q

λ4 (deg = 6)

+λ4 Tij ξ
iξj (deg = 5)

Figure 4. Different contributions to the causal action in space-time.

Proposition A.1. Under the assumption

p ≥ 5 ,

in the presence of matter the function ℓκ(x) scales like

ℓκ(x) + s ≃
σ λ4

ε4
T (x)

(ε

δ

)4−s

(A.23)

where s again scales as in (A.17), and s is given by (A.20).

We note that the energy-momentum typically scales like

T ≃
m

l3
macro

. m4 . (A.24)

As a consequence, the contribution on the right side of (A.23) is at least by a scaling
factor (mδ)4 smaller than the vacuum contributions given in (A.15).

The different contributions to the causal Lagrangian and to the integrand of the
boundedness constraint are shown in Figure 4. We point out that the plot of the
contributions away from the light cone is only schematic; more details can be found
in [4].

A.4.2. Changing the Weight of the Measure. Clearly, as a consequence of the matter
contributions, the function ℓκ in (A.23) no longer satisfies the EL equations (1.3). A
simple method to arrange them is to change the integration measure by a smooth
weight function. Thus we change the measure ρ̃ in (A.1) to

(

1− h(x)
)

dρ̃ with h(x) ≃ ε4
(

ε
δ

)4−s

(εm)p +
(

ε
δ

)8−ŝ
T .

Then

ℓκ(x) = 0

ℓ(x) ≃ −
σ λ4

ε8

(

(εm)p +
(ε

δ

)8−ŝ
)

−
σ λ4

ε4
T (x)

(ε

δ

)4−s

.

A.5. Scalings in the Killing Equation in Curved Space-Time. We now gener-
alize the previous results to curved space-time and use them to determine the scalings
in the Killing equation. We first explain why in a Gaussian coordinates the results
of Minkowski space apply: When describing a curved space-time by a causal fermion
system with a critical measure ρ, the constant c in the trace constraint as well as the
Lagrange parameters κ and s in the EL equations are global constants. These constants
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fix the rescaling freedom and determine the form of the EL equations. As a conse-
quence, in a Gaussian coordinate system the contributions to the causal Lagrangian
considered above have the same form as in Minkowski space.

In the definition of the Killing field (Definition 5.1), we have the situation in mind
that the vector field v describes a symmetry of the geometry, but not of the matter
fields. Therefore, when taking the directional derivatives in (5.1), only the contribu-
tions of the matter fields in (A.18) and (A.21) must be taken into account (see also
Figure 4). Applying again (A.16) and using that the energy-momentum tensor scales
according to (A.24), we obtain the right side of (5.1).
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Valencia, Valencia 46022, Spain

E-mail address: joissan@mat.upv.es

http://arxiv.org/abs/0911.5004

	1. Introduction
	2. Preliminaries
	2.1. Causal Fermion Systems and the Causal Action Principle
	2.2. The Euler-Lagrange Equations
	2.3. The Weak Euler-Lagrange Equations and Jet Derivatives
	2.4. The Linearized Field Equations
	2.5. Surface Layer Integrals and Conservation Laws

	3. Inner Solutions
	4. Two-Dimensional Area and Area Change
	5. Killing Fields and Matter Flux
	6. The Limiting Case of Lightlike Propagation
	Appendix A. Scaling of the Causal Lagrangian
	A.1. Relevant Length Scales
	A.2. Freedom in Rescaling Solutions of the Euler-Lagrange Equations
	A.3. Scalings in the Minkowski Vacuum
	A.4. Scalings in the Presence of Matter Fields
	A.5. Scalings in the Killing Equation in Curved Space-Time

	References

