RELATIVITY:
THE GENERAL THEORY

BY

J. L. SYNGE
School of Theoretical Physics
Dublin Institute for Advanced Studies

1960
NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM
To my friends J. P. and J. J.
who bought nothing half so precious
as what they sold
PREFACE

Of all physicists, the general relativist has the least social commitment. He is the great specialist in gravitational theory, and gravitation is socially significant, but he is not consulted in the building of a tower, a bridge, a ship, or an aeroplane, and even the astronauts can do without him until they start wondering which ether their signals travel in.

Splitting hairs in an ivory tower is not to everyone’s taste, and no doubt many a relativist looks forward to the day when governments will seek his opinion on important questions. But what does ‘important’ mean? Science has a dual aim, to understand nature and to conquer nature, but in the intellectual life of man surely it is the understanding which is the more important. Then let the relativist rejoice in the ivory tower where he has peace to seek understanding of Einstein’s theory as long as the busy world is satisfied to do its jobs without him. Let him be satisfied with the difficult task of gaining for himself as much understanding as he can, and the still more difficult task of transmitting to others the scraps of understanding he has been able to gain.

It is hard for an author to detach himself from his book and view it objectively. But it seems to me that the spirit of this book is best described by the word irony, used in the sense of the eiporela of Socrates, and that sense is not at all easy to explain. There are heavy calculations in the book, but there are places where the reader will find me sitting on the fence, whistling, instead of rushing into the fray. Would it not be better to get something done, even though one might not quite understand what? But that is precisely what irony forbids. The lust for calculation must be tempered by periods of inaction, in which the mechanism is completely unscrewed and then put together again. It is the decarbonization of the mind. It would perhaps seem that irony of this sort belongs to evaluation rather than to creation, but in the whole history of science there is no greater example of irony than when Einstein said he did not know what absolute time was, a thing which everyone knew.
For the purposes of this book, the general theory of relativity means that theory of gravitation to which Einstein gave definite form in 1916. But there is no attempt to give a survey of all the work done in that field in the past forty-odd years. Rather the book attempts to combine an account of a selection of outstanding topics with the development of a new method. This method is based on a certain function introduced into tensor calculus by H. S. Ruse nearly thirty years ago, but since that time hardly used. This function (called world-function here) is, to within a trivial factor, the square of the geodesic distance between two events in space-time, regarded as a function of their eight coordinates. It proves a powerful tool in calculations, since the usual method of approximation by power series may be used without abandoning the facilities of tensor calculus.

In compensation for lack of completeness in the coverage of the subject, there is a fairly extensive Bibliography. To keep this from getting altogether too large, it was necessary to select, and for any omissions of important references which should have been included I offer a sincere apology in advance. To increase the utility of the Bibliography, reviews are cited in almost all cases. If such a Bibliography were expanded into one or two volumes by including not merely the references to reviews but the reviews themselves, the result would be most useful to students of relativity.

I have described the spirit of this book as ironical, but it is also geometrical. Perhaps the two things go together, for a simple space-time diagram will often bring out the inner meaning of a mass of calculations. Surely one of the reasons why the general theory of relativity remains a mystery to so many physicists is that they do not realize how easy it is to form a qualitative geometrical image of what is going on. It is in fact easier to deal with space-time diagrams, which remain fixed, than with the kinematical pictures of Newtonian mechanics.

If we accept the idea that space-time is a Riemannian four-space (and if we are relativists we must), then surely our first task is to get the feel of it just as early navigators had to get the feel of a spherical ocean. And the first thing we have to get the feel of is the Riemann tensor, for it is the gravitational field — if it vanishes, and only then, there is no field. Yet, strangely enough, this most important element has been pushed into the background. When I started to write this book, I did not know what were the values in my study of the twenty
invariant components of the Riemann tensor, nor did I know the value of the first curvature of my world-line, let alone the second and third. I know more now, and what I know I have put into the book. I know now that if I break my neck by falling off a cliff, my death is not to be blamed on the force of gravity (what does not exist is necessarily guiltless), but on the fact that I did not maintain the first curvature of my world-line, 'exchanging its security for a dangerous geodesic. To the ironical mind there is little distinction between the mundane and the exalted, and that is no doubt why Socrates had to drink the hemlock cup.

I am much indebted to the well known books of Pauli, Eddington, Tolman, Bergmann, Møller and Lichnerowicz, but the geometrical way of looking at space-time comes directly from Minkowski. He protested against the use of the word 'relativity' to describe a theory based on an 'absolute' (space-time), and, had he lived to see the general theory of relativity, I believe he would have repeated his protest in even stronger terms. However, we need not bother about the name, for the word 'relativity' now means primarily Einstein's theory and only secondarily the obscure philosophy which may have suggested it originally. It is to support Minkowski's way of looking at relativity that I find myself pursuing the hard path of the missionary. When, in a relativistic discussion, I try to make things clearer by a space-time diagram, the other participants look at it with polite detachment and, after a pause of embarrassment as if some childish indecency had been exhibited, resume the debate in their own terms. Perhaps they speak of the Principle of Equivalence. If so, it is my turn to have a blank mind, for I have never been able to understand this Principle. Does it mean that the signature of the space-time metric is $+2$ (or -2 if you prefer the other convention)? If so, it is important, but hardly a Principle. Does it mean that the effects of a gravitational field are indistinguishable from the effects of an observer's acceleration? If so, it is false. In Einstein's theory, either there is a gravitational field or there is none, according as the Riemann tensor does not or does vanish. This is an absolute property; it has nothing to do with any observer's world-line. Space-time is either flat or curved, and in several places in the book I have been at considerable pains to separate truly gravitational effects due to curvature of space-time from those due to curvature of the observer's world-line (in most ordinary cases the latter predominate). The Principle of Equivalence
performed the essential office of midwife at the birth of general relativity, but, as Einstein remarked, the infant would never have got beyond its long-clothes had it not been for Minkowski’s concept. I suggest that the midwife be now buried with appropriate honours and the facts of absolute space-time faced.

Attention is drawn to the Appendixes at the end of the book. Appendix A explains the notation, with a polemic against certain conventions (mere trivialities, of course), while Appendix B contains a modest proposal for the names of multiples and submultiples of units, and also a list of physical quantities, all expressed in seconds; I have found this list very useful for a rapid comparison of magnitudes.

For a number of years, at the University of Toronto, the patience of a graduate class permitted me to get some understanding of relativity by lecturing on it, and that understanding has been increased and consolidated, during the past eleven years, by many seminars and informal discussions in the School of Theoretical Physics at the Dublin Institute for Advanced Studies. In particular, I owe much to Professors C. Lanczos and E. Schrödinger, in spite of (or perhaps because of) the fact that our points of view have often differed. The Scholars of our School, coming from various countries with a wide variety of background, have been such a powerful stimulus that I feel I have stolen from them much more than I have been able to give. Work by Balazs, Bass, Bertotti, Das, Israel, Mast, O’Brien, O’Raifeartaigh, Pirani, Rayner and Strathdee is cited in the Bibliography; in writing this book, I believe that I have subconsciously (even at times consciously) had these Scholars, past and present, in mind as an unofficial Board of Censors to eliminate obscurity and nonsense.

I thank Mr. A. Das and Dr. F. A. E. Pirani for their labours in reading the proofs of the book, but my gratitude extends beyond that. In many discussions they helped me to explore regions of which I was partially or completely ignorant. Thanks to Mr. Das (and in some measure to Dr. W. B. Bonnor also) I was encouraged to lay aside for a while the garment of geometry (what you see makes sense) and wrestle naked with the formalism of axial symmetry and those universes here called electrovac, both offspring of the subtle mind of Hermann Weyl. Dr. Pirani introduced me to the transport law of Fermi which plays an important part in the book, and my attempt to turn Riemannian geometry into observational physics (measure the Riemann tensor!)
originated largely in discussions with him, with further developments in discussions with Dr. C. B. Mast. Dr. Pirani’s comments on the book when in proof have been most helpful, but to him and to Mr. Das I give the usual clearance: all the errors in the book are mine.

Dublin, 1960

J. L. S.
CONTENTS

Preface ... VII

Chapter I. ESSENTIAL TENSOR FORMULAE FOR RIE-
MANNIAN SPACE-TIME

1. The metric tensor and admissible coordinates 1
2. Derivatives and geodesics .. 3
3. Orthonormal tetrads and Frenet-Serret formulae 8
4. Parallel transport and Fermi-Walker transport 12
5. The tensors of Riemann, Ricci and Einstein 15
6. The deviation of geodesics .. 19
7. Hamiltonian theory of rays and waves 25
8. Gaussian coordinates ... 35
9. Junction conditions across a 3-space of discontinuity 39
10. Theorems of Stokes and Green 41

Chapter II. THE WORLD-FUNCTION \(\Omega \)

1. The world-function \(\Omega \) and its covariant derivatives as
a two-point invariant and two-point tensors 47
2. Coincidence limits .. 51
3. Evaluation of the second derivatives of the world-
function by use of the parallel propagator 57
4. Evaluation of the covariant derivatives of the parallel
propagator ... 64
5. Evaluation of the higher derivatives of the world-
function ... 67
6. Solution of finite geodesic triangles in space-time of
small curvature .. 70
7. Solution of small geodesic triangles 73
8. Quasi-Cartesian coordinates 76
9. Changing the origin of quasi-Cartesian coordinates 81
10. Fermi coordinates and optical coordinates 83
11. Metrics for Fermi coordinates and optical coordinates 87
12. Geodesics in terms of Fermi coordinates and optical coordinates 91
13. The world-function and its derivatives for two points on a timelike curve 95
14. The world-function in terms of Fermi coordinates for two points on adjacent timelike curves 100

CHAPTER III. CHRONOMETRY IN RIEMANNIAN SPACE-TIME

1. Natural observations (NO) and mathematical observations (MO) 103
2. Chronometry and the Riemannian hypothesis ... 105
3. The geodesic hypothesis .. 109
4. Spatial measure, orthogonality, and scalar products ... 112
5. Born rigidity and frames of reference ... 114
6. The measurement of direction ... 118
7. Relative velocity and the Doppler effect .. 119
8. Fermi transport and the bouncing photon .. 123
9. The falling apple ... 132
10. The ballistic suicide problem ... 141
11. Statical measurement of gravitational fields ... 144
12. Fermi-Walker transport along a spacelike curve and its physical meaning 150
13. The physical meaning of absolute differentiation and the systematic measurement of gravitational fields 156

CHAPTER IV. THE MATERIAL CONTINUUM

1. A statistical model .. 159
2. Conservation laws in the statistical model ... 165
3. Kinematics of a continuum .. 169
4. The energy tensor of a continuum .. 173
5. The field equations and the Newtonian comparison ... 179
6. Survey of field equations and coordinate conditions ... 184
7. Note on the motion of an isolated body .. 194

CHAPTER V. SOME PROPERTIES OF EINSTEIN FIELDS

1. The basic formula for retarded or advanced potential ... 200
2. The linear approximation .. 202

Chapter IX. Gravitational Waves

1. Plane gravitational waves 343
2. The world-function for a plane gravitational wave and quasi-Cartesian coordinates 347
3. A particular plane gravitational wave and remarks on cylindrical and spherical waves 350

Chapter X. Electromagnetism

1. Maxwell’s equations and the electromagnetic energy tensor ... 354
2. The Cauchy problem for an incoherent charged fluid . 360
3. Integral electromagnetic theorems 363
4. Electrovac universes ... 367

Chapter XI. Geometrical Optics

1. Wave-kinematics in space-time 372
2. Waves, rays and photons in a dispersive medium 375
3. Variational principles in geometrical optics 380
4. Geometrical optics in a static universe 386
5. Astronomical observations 390
6. Stellar aberration ... 393
7. Differential chronometry 401
8. A five-point curvature detector 408
9. Spectral shift in a continuum 411

Appendix

A. Notation .. 415
B. Numerical values of some physical quantities expressed in seconds ... 421
Bibliography ... 427
Index ... 491
CHAPTER I

ESSENTIAL TENSOR FORMULAE FOR
RIEMANNIAN SPACE-TIME

§ 1. THE METRIC TENSOR AND ADMISSIBLE COORDINATES

A knowledge of tensor calculus is assumed, but it is convenient to set down in this first chapter some essential tensor formulae and developments from them. The next chapter is devoted to a rather novel tensorial technique (world-function), and physical ideas do not appear until Chapter III. Some readers may prefer to start there, and refer back to the first two chapters as the occasion arises.

We have before us a Riemannian space of four dimensions, to which we give the name space-time. Using Latin suffixes\(^1\) for the range of values 1, 2, 3, 4, with the usual summation convention, we denote the coordinates by \(x^i\) and the metric (or fundamental) tensor by \(g_{ij} (= g_{ji})\). The invariant

\[
\Phi = g_{ij}dx^idx^j
\]

is the metric (or fundamental) form. It has the signature + 2, which means that, at any selected point, \(g_{ij}\) is reducible to the diagonal matrix \((1, 1, 1, -1)\).

How smooth are the ten functions \(g_{ij}\)? In physics we usually lay such questions aside until they are forced on us, and we would be inclined to accept extreme smoothness (i.e. infinite differentiability). However it is convenient to adopt for the sun, the earth, or other body, a model in which there is an abrupt change from matter to vacuum, and some discontinuity in the smoothness of \(g_{ij}\) will occur as a result of this abrupt change. Some hypothesis must be made to cover such a situation, and we shall here follow LICHTEROWICZ [1955a].

We assume that space-time can be broken up into overlapping domains, with a system of admissible coordinates \(x^i\) in each domain,

\(^1\) See Appendix A for remarks on notation, which is in general that of SYNGE and SCHILD [1956]. All references are to the Bibliography at the end of the book.
and C^3 transformations \(^1\) between the overlapping coordinates. But this is not the important thing — we may be able to cover all space-time with a single system of admissible coordinates. The essential thing is that each domain of the admissible coordinates may happen to be divided into a number of subdomains by 3-spaces of discontinuity. Over the whole domain, g_{ij} are only C^1, but in the subdomains they are C^3; thus we expect discontinuities in the second derivatives of g_{ij} when we cross a 3-space of discontinuity. This may look a very artificial assumption. The justification is that it fits in with physical ideas when we apply it, and (although this is a somewhat dubious justification) it is analogous to what we have in the theory of potential if we regard the ten quantities g_{ij} as analogues of the Newtonian potential.

The reader is advised not to bother about the above refinement until consideration of discontinuities is forced upon him, but rather to assume in what follows that g_{ij} may be differentiated as often as we please.

For any contravariant vector V^i, the quadratic form $g_{ij}V^iV^j$ is positive, negative or zero. If the value is not zero, we define the \textit{indicator} of V^i, denoted by $\varepsilon(V)$, to be ± 1 so as to make

$$\varepsilon(V)g_{ij}V^iV^j > 0. \quad (2)$$

We use the following terminology:

$$g_{ij}V^iV^j < 0, \quad \varepsilon(V) = -1, \text{ the vector is timelike};$$

$$g_{ij}V^iV^j > 0, \quad \varepsilon(V) = 1, \text{ the vector is spacelike};$$

$$g_{ij}V^iV^j = 0, \quad \text{the vector is null}.$$

In the case of a null vector it is sometimes convenient to assign an indicator ± 1; it does not matter which value we choose, because it is multiplied by zero.

An infinitesimal vector dx^i at a point x^i has a \textit{magnitude} or \textit{norm}

$$ds = (\varepsilon g_{ij}dx^idx^j)^{\frac{1}{2}} > 0, \quad (3)$$

where ε is the indicator of dx^i. We may also call it the \textit{infinitesimal measure} of the vector dx^i. For any curve C joining points A and B, the

\(^1\) Transformations with continuous third derivatives.
integral
\[L = \int_A^B \left(e g_{ij} dx^i dx^j \right) \]
(4)
defines a finite measure, which of course depends on the curve \(C \).

Some well known formulae are listed here for convenience of reference (commas indicate partial derivatives):
\[\text{Kronecker delta} = \delta_{ij}^k = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases} \]
(5)

\[g = \det g_{ij} < 0. \]
(6)

\[g^{ij} g_{ik} = \delta_{k}^i. \]
(7)

Christoffel symbols:
\[[ij, k] = \frac{1}{2} \left(g_{ik,I} + g_{jk,I} - g_{ij,k} \right), \]
\[\Gamma_{jk}^i = \{ k, i \} = g^{ia} [jk, a], \]
\[\Gamma_{ai}^i = \frac{1}{2} [\log(-g)]_i = \frac{1}{2} g^{-1} g_{ia}, \]
\[g_{ij,k} = g_{ia} \Gamma_{jk}^a + g_{ja} \Gamma_{ik}^a. \]
(8)

Given any point \(^2\) \(P \), it is possible to choose coordinates such that at \(P \)
\[g_{ij,k} = 0, \quad [ij, k] = 0, \quad \Gamma_{jk}^i = 0. \]
(9)

This greatly reduces the complexity of certain algebraic computations.

§ 2. DERIVATIVES AND GEODESICS

For vector and tensor fields defined throughout a domain of space-time, the covariant derivatives (indicated by a vertical stroke) are as follows:
\[V_{ij}^i = V_{i,j}^i + \Gamma_{ja}^i V^a, \]
(10)

\[V_{i,j} = V_{i,j} + \Gamma_{ija}^i V^a, \]
(11)

\[T_{ij,k}^i = T_{ij,k}^i + \Gamma_{jka}^i T^a + \Gamma_{jka}^a T_i^a, \]
(12)

\[T_{i,j,k}^i = T_{i,j,k}^i + \Gamma_{jka}^i T_j^a - \Gamma_{jka}^a T_i^a, \]
(13)

\[T_{i,j,k} = T_{i,j,k} - \Gamma_{ika}^a T_{aj} - \Gamma_{ika}^a T_{ia}. \]
(14)

\(^1\) Abstract geometry borrows words from elementary physical geometry, and this leads to considerable semantic confusion. The geometer is inclined to use the word length for the integral \(L \). But this is dangerous, because the word length has already got some sort of physical meaning which may, or may not, agree with this mathematical definition of the term. We shall avoid the word length here, and introduce it only in Chapter III with suitable caution.

\(^2\) It is also possible to satisfy (9) along a given curve or, under certain conditions, on a given subspace; cf. Fermi [1922], O'Raifeartaigh [1958b].
with similar formulae for tensors of higher orders. We have identically

\[g_{ij;k} = 0, \quad \delta^i_{j;k} = 0, \quad g_{ij}^i = 0. \quad (15) \]

The covariant derivative of a scalar is the partial derivative.

For vector and tensor fields defined on a curve \(x^i = x^i(u) \), the *absolute derivatives* \(^1\) are as follows:

\[\frac{\delta V^i}{\delta u} = \frac{dV^i}{du} + \Gamma^i_{ab} V^a \frac{dx^b}{du}, \quad (16) \]

\[\frac{\delta V_i}{\delta u} = \frac{dV_i}{du} - \Gamma^a_{ib} V^a \frac{dx^b}{du}, \quad (17) \]

\[\frac{\delta T^{ij}}{\delta u} = \frac{dT^{ij}}{du} + \Gamma^i_{ab} T^{aj} \frac{dx^b}{du} + \Gamma^j_{ab} T^{ia} \frac{dx^b}{du}, \quad (18) \]

\[\frac{\delta T^i}{\delta u} = \frac{dT^i}{du} + \Gamma^i_{ab} T^a_j \frac{dx^b}{du} - \Gamma^a_{ib} T^j_a \frac{dx^b}{du}, \quad (19) \]

\[\frac{\delta T_{ij}}{\delta u} = \frac{dT_{ij}}{du} - \Gamma^a_{ib} T^{aj} \frac{dx^b}{du} - \Gamma^a_{jb} T^{ia} \frac{dx^b}{du}, \quad (20) \]

with similar formulae for tensors of higher orders. We have identically

\[\frac{\delta}{\delta u} g_{ij} = 0, \quad \frac{\delta}{\delta u} \delta^i_j = 0, \quad \frac{\delta}{\delta u} g^{ij} = 0. \quad (21) \]

The absolute derivative of a scalar is the ordinary derivative.

For both covariant and absolute differentiation, the ordinary rule for differentiating a product holds. This important fact may be exhibited in brief form, the suffixes on the tensors \(A \) and \(B \) being suppressed:

\[(AB)_i = A_{1i} B + AB_{1i}, \quad (22) \]

\[\frac{\delta}{\delta u} (AB) = \frac{\delta A}{\delta u} B + A \frac{\delta B}{\delta u}. \quad (23) \]

\(^1\) It is a curious fact, historically, that the formulae (10)–(15) occupy a more prominent position in works on relativity than the much more powerful formulae (16)–(21). However we shall make little use of either the one or the other in explicit form. Our aim should be to work as far as possible in tensors, and the \(\Gamma \)'s, not being the components of a tensor, should be hidden from sight in a notation which shows only covariant and absolute derivatives, and the curvature tensor. The formulae (22) and (23) are of fundamental importance.
The operation of absolute differentiation can be applied with respect to each of the parameters for vector or tensor fields defined over a subspace of two or three dimensions. Consider a 2-space with the parametric equations
\[x^i = x^i(u, v). \]
(24)

On it we have the two vector fields
\[U^i = \frac{\partial x^i}{\partial u}, \quad V^i = \frac{\partial x^i}{\partial v}. \]
(25)

If we take absolute derivatives of these vector fields with respect to \(v \) and \(u \) respectively, we find by (16) that
\[\frac{\delta U^i}{\delta v} = \frac{\delta V^i}{\delta u}. \]
(26)

This result may be seen immediately by recognizing that it is a tensor equation, and that it is true for a coordinate system which makes the Christoffel symbols vanish at the point in question.

Eq. (26) might suggest that the operators \(\delta/\delta u \) and \(\delta/\delta v \) commute; but that is not true in general (cf. § 5).

The theory of geodesics (in particular, null geodesics) is familiar in tensor calculus. However, with a view to applying the ideas to the world-function in Chapter II, it will be convenient to set up the theory afresh according to the plan adopted by Møller [1952, p. 228].

Let \(C_0 \) and \(C_1 \) be two curves (Fig. 1), and let them be joined by a single infinity of curves such as \(A_0A_1 \) and \(B_0B_1 \). The family of joining curves forms a 2-space with equations \(x^i = x^i(u, v) \), where \(u \) is a parameter running between fixed end-values (\(u_0 \) on \(C_0 \) and \(u_1 \) on \(C_1 \)) and \(v \) a parameter constant on each of the joining curves. Consider the
integral

\[I(v) = \frac{1}{2} (u_1 - u_0) \int_{u_0}^{u_1} g_{ij} \frac{\partial x^i}{\partial u} \frac{\partial x^j}{\partial u} \, du, \tag{27} \]

taken along any one of the curves \(v = \text{const.} \); or, in the notation of (25),

\[I(v) = \frac{1}{2} (u_1 - u_0) \int_{u_0}^{u_1} g_{ij} U^i U^j du. \tag{28} \]

Then, with use of (26), we obtain

\[
\frac{dI}{dv} = (u_1 - u_0) \int_{u_0}^{u_1} g_{ij} U^i \frac{\delta V^j}{\delta u} \, du
\]

\[
= (u_1 - u_0) \int_{u_0}^{u_1} \frac{\partial}{\partial u} (g_{ij} U^i V^j) du - (u_1 - u_0) \int_{u_0}^{u_1} g_{ij} \frac{\delta U^i}{\delta u} V^j du
\]

\[
= (u_1 - u_0) \left[g_{ij} U^i V^j \right]_{u_0}^{u_1} - (u_1 - u_0) \int_{u_0}^{u_1} g_{ij} \frac{\delta U^i}{\delta u} V^j du. \tag{29} \]

We now take the particular case where the curves \(C_0, C_1 \) collapse into the points \(A_0, A_1 \) (Fig. 2), so that we have a family of curves with fixed end-points. Now \(V^j = 0 \) at the end-points, and (29) becomes

\[
\frac{dI}{dv} = -(u_1 - u_0) \int_{u_0}^{u_1} g_{ij} \frac{\delta U^i}{\delta u} V^j du. \tag{30} \]

We define a geodesic to be a curve which gives a stationary value to \(I \) for variations which leave the end-points fixed. This demands \(dI/dv = 0 \) for \(V^j \) arbitrary except at the end-points, and so a geodesic satisfies

\[
\frac{\delta U^i}{\delta u} = \frac{\delta}{\delta u} \frac{dx^i}{du} = \frac{d^2 x^i}{du^2} + \Gamma^i_{jk} \frac{dx^j}{du} \frac{dx^k}{du} = 0. \tag{31} \]
These equations possess the first integral

\[
\frac{dx^t}{du} \frac{dx^j}{du} = \epsilon k^2, \quad \text{or} \quad ds = k du,
\]

(32)

where \(k \) is a constant and \(\epsilon \) the indicator for a timelike or spacelike geodesic; the geodesic is a null geodesic if \(k = 0 \). We shall, in general, use the word 'geodesic' to include 'null geodesic'.

Every geodesic has a class of special parameters for which the equations are as in (31), and the transformation from one special parameter to another is linear:

\[
u' = au + b. \tag{33}\]

For other transformations of the parameter, a term proportional to \(d^2x^i/du^2 \) appears on the right hand side.

If the geodesic is not null, we can find special parameters for which \(k = 1 \), and it is clear that for such a parameter we have \(du = ds \). Thus the equation (31) may be written

\[
\frac{\delta}{\delta s} \frac{dx^i}{ds} = \frac{d^2 x^i}{ds^2} + \Gamma^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0. \tag{34}\]

In applying the variational principle \(\delta I = 0 \) for fixed end-points, we have found not only a class of curves (geodesics), but also a class of special parameters on them. In order to interpret the integral \(I \), we note that for any non-null curve \(x^i = x^i(u) \) with \(u_0 \leq u \leq u_1 \) it is possible to pick out a particular parameter, say \(u' \), defined by

\[
u' = u - u_0 = (u_1 - u_0)s/L, \tag{35}\]

where \(s \) is the measure of the current point from the point where \(u = u_0 \), and \(L \) is the value of \(s \) for \(u = u_1 \). For such a parameter, the integral \(I \) of (27) is easily seen to be

\[
I(v) = \frac{1}{2} \epsilon L^2. \tag{36}\]

This holds even for null curves, since then it reads \(0 = 0 \).

Thus the variational principle which we have used implies

\[
\delta (L^2) = 0, \tag{37}\]

and this implies the more usual variational equation

\[
\delta L = \delta \int ds = 0, \tag{38}\]
provided \(L \neq 0 \); the advantage of the method adopted above is that null geodesics fit in without any special treatment, and perhaps it would be well to relegate (38) to the history of science.

What has been done above is closely connected with the theory of the world-function, to be treated in Chapter II. Here we shall only push the argument one stage further. Let us go back to Fig. 1 and equation (29). Let the joining curves in Fig. 1 be geodesics, and let \(u \) be a special parameter on each of them, running between the fixed end-values \(u_0, u_1 \). Then (29) reduces to

\[
\frac{dI}{dv} = (u_1 - u_0) [g_{ij} U^i V^j]_{u_0}^{u_1},
\]

or, with the variational \(\delta \)

\[
\delta I = (u_1 - u_0) [g_{ij} U^i \delta x^j]_{u_0}^{u_1}.
\]

Now the integral \(I \) is a function of the coordinates of \(A_0 \) (say \(x^i \)) and the coordinates of \(A_1 \) (say \(x^i \)), and (40) gives for the derivatives of this function

\[
\frac{\partial I}{\partial x^i} = (u_1 - u_0) \left(g_{ij} \frac{dx^j}{du} \right)_{A_1}, \quad \frac{\partial I}{\partial x^i'} = - (u_1 - u_0) \left(g_{ij} \frac{dx^j}{du} \right)_{A_0}.
\]

These formulae hold even for a null geodesic. The right hand sides are invariant under transformation of the special parameter. If the geodesic is not null, we have the simpler formulae

\[
\frac{\partial I}{\partial x^i} = L \lambda^i, \quad \frac{\partial I}{\partial x^i'} = - L \lambda^i',
\]

where \(\lambda^i \) and \(\lambda^i' \) are the unit tangent vectors to the geodesic at \(A_0 \) and \(A_1 \) respectively, both of these vectors pointing in the sense \(A_0A_1 \); \(L \) is the finite measure \(A_0A_1 \).

\section*{§ 3. ORTHONORMAL TETRADS AND FRENET-SERRET FORMULAE}

Four mutually orthogonal unit vectors are said to form an \textit{orthonormal tetrad} (briefly OT). The vectors of an OT may be denoted by \(\lambda^i_{(a)} \), where \(i \) is the contravariant tensor index and \((a) \) a label distinguishing the particular vector; the covariant components of the same OT are

\[
\lambda_{(a)i} = g_{ij} \lambda^j_{(a)}.
\]
Three of the vectors of an OT are necessarily spacelike and one is timelike. We shall always so label the vectors that \(\lambda_{(a)}^i \) is timelike. Then the conditions of orthonormality may be written
\[
\lambda_{(a)}^i \lambda_{(b)}^j = \eta(a b),
\]
where
\[
\eta(a b) = \eta^{(a b)} = \text{diag}(1, 1, 1, -1),
\]
a diagonal invariant matrix with the elements indicated; it satisfies
\[
\eta(a b) \eta(a c) = \delta^b_c,
\]
and is therefore, in matrix language, a square root of unity.

To secure simplicity later, we introduce a complication. The labels on the vectors have no tensorial meaning, but nevertheless we shall raise and lower them by means of the \(\eta \)-matrix. Thus we define
\[
\lambda^{(a)}_i = \eta(a b) \lambda_{(b)}^i, \quad \lambda^{(a)}_i = \eta(a b) \lambda_{(b)}^i,
\]
and deduce, by (46)
\[
\lambda_{(a)}^i = \eta(a b) \lambda_{(b)}^i, \quad \lambda_{(a)}^i = \eta(a b) \lambda_{(b)}^i.
\]
Now (44) may be written more neatly as
\[
\lambda_{(a)}^i \lambda_{(b)}^i = \delta^b_a,
\]
and it is an algebraic consequence of this that
\[
\lambda_{(a)}^i \lambda^{(a)}_j = \delta^i_j.
\]

The two tetrads \(\lambda_{(a)}^i \) and \(\lambda^{(a)}_i \) are closely connected: their spacelike vectors are the same and their timelike vectors are opposed to one another.

If, at a point in space-time, we are given two OT, \(\lambda_{(a)}^i \) and \(\mu_{(a)}^i \), they are connected by a Lorentz transformation. To discuss this transformation, we introduce the invariant Lorentz matrix
\[
L^{(a)}_{(b)} = \lambda_{(a)}^i \mu_{(b)}^i,
\]
so that, in matrix notation, \(L = 1 \) if the two OT coincide. Multiplication of (51) in turn by \(\mu_{(b)}^j \) and \(\lambda_{(a)}^i \) gives
\[
\lambda_{(a)}^j = L^{(a)}_{(b)} \mu_{(b)}^j, \quad \mu_{(b)}^j = L^{(a)}_{(b)} \lambda_{(a)}^j.
\]
These are equivalent expressions for the Lorentz transformation. We need a name for the indices in parentheses (the labels); we shall call
them Lorentz indices to distinguish them from the ordinary tensorial indices.

Multiplying the second of (52) by $\mu_{(c)}$, and using (44), we get
\[\eta_{(bc)} = L^{(a)}_{(b)} \lambda^{i}_{(a)} \mu_{(c)} = L^{(a)}_{(b)} \eta^{(a)} \lambda^{(d)}_{j} \mu^{j}_{(c)} = L^{(a)}_{(b)} \eta^{(a)} L^{(d)}_{(c)}. \quad (53a) \]
If we regard $L^{(a)}_{(b)}$ as a 4×4 matrix, with the upper index denoting row and the lower index column, we have in matrix notation
\[\tilde{L} \eta L = \eta, \quad L \eta \tilde{L} = \eta, \quad (53b) \]
the second equation following from the first because $\eta^{2} = 1$.

Any vector or any tensor may be resolved into components along an OT $\lambda^{i}_{(a)}$. These components are invariants in the tensorial sense (i.e. with respect to coordinate transformation), but they depend on the choice of the OT, and are either contravariant or covariant with respect to Lorentz transformations of the OT. We have the following typical formulae:
\[
\begin{align*}
V_{(a)} &= V_{i} \lambda^{i}_{(a)}, & V^{(a)} &= V^{i} \lambda^{(a)}_{i}, \\
V_{i} &= V_{(a)} \lambda^{i}_{(a)}, & V^{i} &= V^{(a)} \lambda^{(a)}_{i}, \\
T_{(ab)} &= T_{ij} \lambda^{i}_{(a)} \lambda^{j}_{(b)}, & T_{ij} &= T_{(ab)} \lambda^{(a)}_{i} \lambda^{(b)}_{j}, \\
R_{(abcd)} &= R_{ijkm} \lambda^{i}_{(a)} \lambda^{j}_{(b)} \lambda^{k}_{(c)} \lambda^{m}_{(d)}, \\
R_{ijkm} &= R_{(abcd)} \lambda^{(a)}_{i} \lambda^{(b)}_{j} \lambda^{(c)}_{k} \lambda^{(d)}_{m}, \\
R_{ijkm} &= R^{(abcd)} \lambda^{(a)}_{i} \lambda^{(b)}_{j} \lambda^{(c)}_{k} \lambda^{(d)}_{m},
\end{align*}
\]
\[(54) \]
\[
\begin{align*}
V_{(a)} &= \eta_{(ab)} V_{(b)}, & V^{(a)} &= \eta^{(ab)} V^{(b)}, \\
T_{(ab)} &= \eta_{(ac)} \eta_{(bd)} T^{(cd)}, & T^{(ab)} &= \eta^{(ac)} \eta^{(bd)} T_{(cd)}.
\end{align*}
\]

One quickly gains confidence in the manipulation of the Lorentz indices, and their interplay with tensorial indices. The ‘up-and-down’ rule prevails throughout.

Associated with each point of a curve Γ in space-time (we shall consider only a timelike curve) there is a particularly interesting OT. Consider the following equations:
\[
\begin{align*}
\delta A^{i} / \delta s &= b B^{i}, \\
\delta B^{i} / \delta s &= c C^{i} + b A^{i}, \\
\delta C^{i} / \delta s &= d D^{i} - c B^{i}, \\
\delta D^{i} / \delta s &= - d C^{i},
\end{align*}
\]
\[(55a) \]
\[(55b) \]
\[(55c) \]
\[(55d) \]
together with
\[A^i A_i = -1, \quad B^i B_i = C^i C_i = D^i D_i = 1. \]
(55e)
The coefficients \(b, c, d \) are non-negative\(^1\) scalars. Let
\[A^i = dx^i/\delta s, \]
(56)
the unit tangent to \(\Gamma \); this is consistent with (55e). Then (55a) and (55e) define \(B^i \) and \(b \), (55b) and (55e) define \(C^i \) and \(c \), and (55c) and (55e) define \(D^i \) and \(d \). By (55e) the four vector are unit vectors. We shall show that they form an OT by establishing their orthogonality. Finally we shall verify (55d).

The argument proceeds as follows. By (55e) we have
\[A_i \delta A^i/\delta s = 0, \]
(57)
and so (55a) implies
\[A_i B^i = 0; \]
(58)
thus \(B^i \) is orthogonal to \(A^i \). To show that \(C^i \) is orthogonal to \(A^i \) and \(B^i \), we form from (55b) the products
\[cA_i C^i = A_i \delta B^i/\delta s + b, \]
(59)
\[cB_i C^i = B_i \delta B^i/\delta s. \]
(60)
Differentiation of (58), with (55a), gives
\[A_i \delta B^i/\delta s = -B_i \delta A^i/\delta s = -b, \]
(61)
and so, by (59), we have \(A_i C^i = 0 \). By (55e), (60) gives \(B_i C^i = 0 \). Thus \(C^i \) is orthogonal to \(A^i \) and \(B^i \). The proof that \(D^i \) is orthogonal to \(A^i \), \(B^i \) and \(C^i \) follows the same lines.

To establish (55d), we note that any vector can be resolved along the tetrad \((A, B, C, D) \), and so we can write
\[\delta D^i/\delta s = \alpha A^i + \beta B^i + \gamma C^i + \delta D^i. \]
(62)
Multiplying this equation in turn by \(A_i, B_i, C_i, D_i \), and using (55a–c) and the orthogonalities already established, we find that
\[\alpha = \beta = \delta = 0, \quad \gamma = -d, \]
(63)
and so (55d) is verified.

The formulae (55) are the \textit{Frenet-Serret formulae}; \(B^i, C^i, D^i \) are the

\[^1\] If zeros of \(b, c, d \) occur on \(\Gamma \), it is better to allow these scalars to take both positive and negative values in order to secure continuity of the vectors \(B^i, C^i, D^i \).
first, second and third normals to \(\Gamma\), respectively, and \(b, c, d\) are the first, second and third curvatures.

The simplest of all timelike curves is a geodesic. For it we have \(b = c = d = 0\). The next simplest is the timelike \textit{circle}\(^1\), defined by

\[
 b = \text{const.}, \quad c = d = 0; \tag{64}
\]

for it the Frenet-Serret formulae reduce to

\[
\frac{\delta A^i}{\delta s} = b B^i, \quad \frac{\delta B^i}{\delta s} = b A^i, \quad \frac{\delta C^i}{\delta s} = 0, \quad \frac{\delta D^i}{\delta s} = 0. \tag{65}
\]

Then we have the timelike \textit{helix} with

\[
 b = \text{const.}, \quad c = \text{const.}, \quad d = 0, \tag{66}
\]

\[
\frac{\delta A^i}{\delta s} = b B^i, \quad \frac{\delta B^i}{\delta s} = c C^i + b A^i, \quad \frac{\delta C^i}{\delta s} = -c B^i, \quad \frac{\delta D^i}{\delta s} = 0. \tag{67}
\]

§ 4. \textsc{Parallel Transport and Fermi-Walker Transport}

Consider a curve \(\Gamma\) with equations \(x^i = x^i(u)\) and a vector field \(V^i\) defined along \(\Gamma\). The vector is said to undergo \textit{parallel transport} ([Text C] [1917d]) along \(\Gamma\) if its absolute derivative vanishes:

\[
\frac{\delta V^i}{\delta u} = 0. \tag{68}
\]

This definition is valid even if \(\Gamma\) is a null curve. Further, (68) is invariant in form under transformation of the parameter \(u\).

It is obvious that under parallel transport the magnitude of a vector is unchanged, and the scalar product of two vectors is unchanged:

\[
\left\{ \begin{array}{l}
\frac{\delta U^i}{\delta u} = 0 \\
\frac{\delta V^i}{\delta u} = 0
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}
\frac{d}{du} (U_i U^i) = 0, \quad \frac{d}{du} (V_i V^i) = 0, \\
\frac{d}{du} (U_i V^i) = 0.
\end{array} \right\} \tag{69}
\]

The eq. (68) defines \(V^i\) along \(\Gamma\) if \(V^i\) is given at any one point on \(\Gamma\). It is clear from (69) that an OT \(\mathcal{L}_{(a)}\) [cf. § 3] remains an OT under parallel transport; and if a vector \(V^i\) also undergoes parallel transport, then its components \(V_{(a)}\) on the OT, as in (54), remain constant.

The unit tangent vector to a geodesic undergoes parallel transport because, as in (34),

\[
\frac{\delta}{\delta s} \frac{dx^i}{ds} = 0. \tag{70}
\]

\(^1\) This circle is not a closed curve. One might prefer to call it \textit{hyperbola of constant curvature}.
In the case of a null geodesic, the tangent vector dx^i/du undergoes parallel transport, provided u is a special parameter; for then, as in (31),

$$\frac{\delta}{\delta u} \frac{dx^i}{du} = 0. \tag{71}$$

Consider now a timelike curve Γ with equations $x^i = x^i(s)$. For the unit tangent vector we write $A^i = dx^i/ds$. We define Fermi-Walker transport \(^1\) (briefly, F-W transport) of a vector F^i along Γ by the equation

$$\frac{\delta F^i}{\delta s} = bF_j(A^iB^j - A^jB^i), \tag{72}$$

where B^i and b are the first normal and curvature of Γ, as in (55a). As in the case of parallel transport, this equation defines F^i along Γ if F^i is given at any one point of Γ.

An important feature of F-W transport is that the unit tangent vector A^i itself automatically undergoes F-W transport; for it is easy to verify that

$$\frac{\delta A^i}{\delta s} = bA_j(A^iB^j - A^jB^i), \tag{73}$$

by virtue of (55a), (55e) and (58).

F-W transport resembles parallel transport in the conservation of magnitude and scalar product. For, if U_i and V_i both undergo F-W transport, then

$$\frac{d}{ds} (V_iV^i) = 2V_i \frac{\delta V^i}{\delta s} = 2bV_iV_j(A^iB^j - A^jB^i) = 0, \tag{74}$$

$$\frac{d}{ds} (U_iV^i) = U_i \frac{\delta V^i}{\delta s} + V_i \frac{\delta U^i}{\delta s}$$

$$= b(U_iV_j + V_iU_j)(A^iB^j - A^jB^i) = 0. \tag{75}$$

It is clear that, as in parallel transport, F-W transport conserves an OT and the components of a vector on the OT.

Since it is defined by a simpler equation, parallel transport is more fundamental mathematically than F-W transport, but F-W transport is more important in some physical situations. The reason for this is

\(^1\) Fermi [1922]; Walker [1932].
shown in Fig. 3. If we take an OT on Γ, with the fourth member tangent to Γ at some point (so that $\lambda^i_{(4)} = A^i$), then, under parallel transport, $\lambda^i_{(4)}$ wanders away from A^i (unless Γ happens to be a geodesic). But under F-W transport $\lambda^i_{(4)}$ remains tangent to Γ. Thus F-W transport not only provides us with an OT along Γ; it also provides an orthonormal triad orthogonal to Γ. This forms a ‘spatial frame of reference’ for an observer whose history in space-time is Γ and, as we shall see later on, it is this frame of reference which appears to give us the correct relativistic generalization of the Newtonian concept of a ‘non-rotating frame’.

![Diagram](image)

Fig. 3 – (a) Parallel transport. (b) Fermi-Walker transport

If Γ is a geodesic, parallel transport and F-W transport coincide [put $b = 0$ in (72)], provided Γ is not a null geodesic. Since F-W transport involves s, it is undefined along any null line.

To complete this discussion of F-W transport, let us consider an OT $\lambda^i_{(a)}$ undergoing F-W transport along Γ, with

$$\lambda^i_{(4)} = A^i,$$ \hspace{1cm} (76)

the unit tangent to Γ. Each of the four vectors $\delta \lambda^i_{(a)} / \delta s$ can be resolved on the tetrad, so that we may write

$$\frac{\delta \lambda^i_{(a)}}{\delta s} = Q_{(ab)} \eta^{(bc)} \lambda^i_{(c)},$$ \hspace{1cm} (77)

the η-factor (45) being inserted for notational convenience. Multiply by $\lambda_{(a)i}$ and use (44): this gives

$$Q_{(ad)} = \lambda_{(a)i} \frac{\delta \lambda^i_{(a)}}{\delta s},$$ \hspace{1cm} (78)
because
\[\eta^{(bc)} \eta_{(cd)} = \delta_d^b. \]
(79)

But, by (72),
\[\frac{\delta \lambda^i_{(a)}}{\delta s} = b \lambda_{(a)j}(\lambda^i_{(4)} B^j - \lambda^i_{(4)} B^j), \]
and so
\[Q_{(ad)} = b (B_{(a)} \eta_{(d4)} - B_{(d)} \eta_{(a4)}), \]
(81)
where
\[B_{(a)} = B_i \lambda_{(a)}^i, \]
(82)

the invariant components of the first normal vector on the tetrad [cf. (54)]. The invariant matrix \(Q \) is important because it sums up the behaviour of the OT under F-W transport. It is skew-symmetric, and all its elements vanish identically except the following:
\[Q_{(4x)} = - Q_{(4x)} = b B_{(x)}, \]
(83)
the Greek suffix running 1, 2, 3.

If F-W transport is applied in particular to a vector \(F^i \) which is orthogonal to the tangent \(A^i \) at some point on \(I \), it of course remains orthogonal to \(A^i \), and the formula (72) then simplifies to
\[\frac{\delta F^i}{\delta s} = b A^i F_j B^j. \]
(84)

This is the transport law originally given by Fermi [1922]. We shall refer to this as Fermi transport, but we shall use it only for vectors which are orthogonal to \(A^i \).

The rotation of the orthonormal triad of normals \((B^i, C^i, D^i) \) of § 3, relative to an orthonormal triad of Fermi vectors \(\lambda^i_{(x)} \), is discussed in III–§ 9.

§ 5. THE TENSORS OF RIEMANN, RICCI AND EINSTEIN

The Riemann tensor (or curvature tensor) can be expressed in several equivalent forms as follows:
\[R_{ijkm} = \frac{1}{2} (g_{im,jk} + g_{jk,im} - g_{ik,jm} - g_{jm,ik}) \]
+ \[g^{ab} ([im,a][jk,b] - [ik,a][jm,b]), \]
(85)
\[R_{ijkm} = \frac{1}{2} \left(g_{im,jk} + g_{jk,im} - g_{ik,jm} - g_{jm,ik} \right) + g_{ab}(\Gamma^a_{im} \Gamma^b_{jk} - \Gamma^a_{ik} \Gamma^b_{jm}), \quad (86) \]

\[R_{ijkm} = [jm,i]_{,k} - [jk,i]_{,m} + \Gamma^a_{jk}[im,a] - \Gamma^a_{jm}[ik,a], \quad (87) \]

\[R^i_{jk} = \Gamma^i_{jk,m} - \Gamma^i_{jk,m} + \Gamma^a_{jm} \Gamma^i_{ak} - \Gamma^a_{jk} \Gamma^i_{am}. \quad (88) \]

The Riemann tensor satisfies the following symmetry equations:

\[R_{ijkm} = - R_{jikm} = - R_{ijmk} = R_{kmij}, \quad (89) \]

\[R_{iabc} + R_{ibca} + R_{icab} = 0. \quad (90) \]

There are 20 independent components, and they are most compactly exhibited in a notation which correlates ordered pairs of numbers from the range 1, 2, 3, 4 with the numbers 1, 2, \ldots 6 according to the scheme

\[23 \leftrightarrow 1, 31 \leftrightarrow 2, 12 \leftrightarrow 3, 14 \leftrightarrow 4, 24 \leftrightarrow 5, 34 \leftrightarrow 6. \quad (91) \]

Capital letters having the range 1, 2, \ldots 6, all non-zero covariant components of the Riemann tensor are comprised in the symmetric \(6 \times 6 \) matrix \(\bar{R}_{AB} \), where, for example,

\[R_{2331} = R_{3123} = \bar{R}_{12} = \bar{R}_{21}. \quad R_{2314} = R_{1423} = \bar{R}_{14} = \bar{R}_{41}. \quad (92) \]

This symmetric matrix contains 21 elements when allowance is made for its symmetry. The cyclic identity (90) imposes the equation

\[R_{2314} + R_{3124} + R_{1234} = \bar{R}_{14} + \bar{R}_{25} + \bar{R}_{36} = 0, \quad (93) \]

reducing the number from 21 to 20.

For covariant differentiation and for absolute differentiation on a 2-space \(x^i = x^i(u, v) \) the commutation rules are as follows (we write \(U^i = \partial x^i/\partial u, \ V^i = \partial x^i/\partial v \)):

\[T_{i|jk} - T_{i|kj} = R^a_{i|jk}T_a, \quad (94) \]

\[\frac{\delta^2 T^i}{\delta u \delta v} - \frac{\delta^2 T^i}{\delta v \delta u} = R^i_{abc} T^a U^b V^c, \quad (95) \]

\[T_{ij|km} - T_{ij|m} = R^a_{i|km} T_a + R^a_{i|km} T_a, \quad (96) \]

\[\frac{\delta^2 T^i}{\delta u \delta v} - \frac{\delta^2 T^i}{\delta v \delta u} = R^i_{abc} T^a U^b V^c + R^i_{abc} T^a U^b V^c. \quad (97) \]

Similar commutation rules hold for tensors of higher orders. The rules are most easily verified by using coordinates which make \(\Gamma^i_{jk} = 0 \) at the point under consideration.
The Riemann tensor satisfies the Bianchi identities:
\[R_{ijab|c} + R_{ijbc|a} + R_{ijca|b} = 0. \]
(98)

The Riemannian curvature associated with a pair of vectors \(\xi^i, \eta^i \) is the invariant
\[K = \frac{R_{ijkm}\xi^i\eta^j\xi^k\eta^m}{g_{abcd}\xi^a\eta^b\xi^c\eta^d} \]
(99)

where
\[g_{abcd} = g_{ag}g_{bd} - g_{ad}g_{bc}. \]
(100)

This last tensor has the same symmetry as the Riemann tensor.

For a space of constant curvature \(K \), we have
\[R_{ijkm} = Kg_{ijkm}. \]
(101)

Space-time is flat if, and only if, \(R_{ijkm} = 0 \). In flat space-time there exist coordinates such that
\[g_{ij} = \eta_{ij} = \text{diag}(1, 1, 1, -1), \]
(102)
\[ds^2 = \varepsilon \eta_{ij}dx^i dx^j \]
\[= \varepsilon[(dx^1)^2 + (dx^2)^2 + (dx^3)^2 - (dx^4)^2]. \]
(103)

This reduction can, of course, always be effected at a single point.

The Ricci tensor \(R_{ij} \) is defined by \(^1\)
\[R_{ij} = R_{ijk}^{k} = g^{km}R_{kijm} = R_{ji}. \]
(104)
Explicitly we have
\[R_{ij} = \Gamma_{ai,j}^{a} - \Gamma_{ij,a}^{a} + \Gamma_{bi}^{a}\Gamma_{aj}^{b} - \Gamma_{ij}^{a}\Gamma_{ab}^{b}, \]
(105)
\[R_{ij} = \frac{1}{2}[\log(-g)]_{,ij} - \Gamma_{ij,a}^{a} - \frac{1}{2}\Gamma_{ij}^{a}[\log(-g)]_{,a} + \Gamma_{bi}^{a}\Gamma_{aj}^{b}. \]
(106)

The curvature invariant is
\[R = g^{ij}R_{ij} = R_{i}^{i}, \]
(107)
and the Einstein tensor is
\[G_{ij} = R_{ij} - \frac{1}{2}g_{ij}R = G_{ji}, \]
(108)
or, in mixed form,
\[G_{i}^{i} = R_{j}^{i} - \frac{1}{2}\delta_{i}^{i}R. \]
(109)

\(^1\) Some authors reverse the sign.

Synge
By virtue of the Bianchi identities (98), the Einstein tensor satisfies the four conservation equations (or identities)

\[G^a_{ia} = 0. \]

(110)

These equations are important physically in connection with the conservation of momentum and energy. They may also be written

\[G^i_{\dot{a}a} = 0. \]

(111)

If we multiply (110) by \((- g)^i_\dot{a}\), the equation may be changed into the following alternative forms: \(^1\)

\[
(\text{-}\ g)^i_\dot{a}G^a_i, a - \frac{1}{2}(\text{-}\ g)^i_\dot{a}G^{ab}g_{ab, i} = 0, \\
(\text{-}\ g)^i_\dot{a}G^a_i, a + \frac{1}{2}(\text{-}\ g)^i_\dot{a}G_{ab}g^{ab}, i = 0.
\]

(112)

(113)

The numerical permutation symbol \(\varepsilon_{ijkm}\) is defined by the following properties: (a) it vanishes if two suffixes are the same, (b) \(\varepsilon_{ijkm} = 1\), (c) it changes sign when two suffixes are interchanged. The permutation tensor \(^2\) is, in contravariant and covariant forms,

\[
\eta^{ijkm} = (- g)^{-i}_j \varepsilon_{ijkm}, \quad \eta_{ijkm} = - (- g)^{-i}_j \varepsilon_{ijkm}.
\]

(114)

The double dual \(^3\) of the Riemann tensor is

\[
\tilde{\mathcal{R}}_{ijkm} = \frac{1}{4}\varepsilon_{ijab}R_{abde}\eta^{cdkm},
\]

(115)

or equivalently in mixed form

\[
\tilde{\mathcal{R}}_{\dot{i}\dot{j}km} = \frac{1}{4}\varepsilon_{\dot{i}\dot{j}ab}R_{\dot{a}\dot{b}cd}\eta_{dekm} \\
= - \frac{1}{4}\varepsilon_{\dot{i}\dot{j}ab}R_{\dot{a}\dot{b}cd}\eta_{dekm}.
\]

(116)

Thus, for example,

\[
\tilde{R}_{..23}^{23} = - R^{14}_{..14}, \quad \tilde{R}_{..31}^{23} = - R^{24}_{..14}, \quad \tilde{R}_{..34}^{12} = - R_{..34}^{12}.
\]

(117)

Also, by (115),

\[
g\tilde{R}_{..23}^{2314} = - R_{1423}, \quad g\tilde{R}_{..31}^{3124} = - R_{2431}, \quad g\tilde{R}_{..34}^{1234} = - R_{3412}.
\]

(118)

\(^1\) Cf. MÖLLER [1952], pp. 337, 338.

\(^2\) The notation here used for these oriented tensors differs from that used in SYNGE and SCHILD [1956], p. 249. In (114) the second \(\eta\)-symbol is obtained from the first by lowering the superscripts in the usual way.

\(^3\) One often uses a single star for the dual and a double star for the double dual; cf. X-§ 3.
The double dual tensor satisfies the symmetry equations
\[\ddot{R}^i{}_{jkm} = - \ddot{R}^i{}_{jkm} = - \ddot{R}^i{}_{jmk} = \ddot{R}^i{}_{kmij}, \] (119)
\[\ddot{R}^i{}_{abc} + \ddot{R}^i{}_{ibca} + \ddot{R}^i{}_{icab} = 0. \] (120)

Except for the raising of the subscripts, these are of the same form as the symmetry equations (89), (90) for the Riemann tensor. Eq. (119) are obvious, and (119) imply (120) unless \((iabc)\) are distinct, i.e. a permutation of \((1234)\). Thus (120) follows from (118) and (93).

The double dual tensor is connected in an interesting way with the Einstein tensor. Putting \(m = i\) in (116), we get
\[\ddot{R}^i{}_{..ki} = \frac{1}{4} \delta^{iab} R^c{}_{..ab}, \] (121)
where
\[\delta^{iab} = \epsilon_{ikab} \epsilon_{ikcd}. \] (122)

This generalized Kronecker delta is a tensor, and obeys the following rules: (i) it vanishes unless \((jab)\) are distinct numbers and \((kcd)\) is a permutation of \((jab)\), and (ii) it is \(+1\) or \(-1\) according as that permutation is even or odd. In fact
\[\delta^{iab}_{kcd} = \begin{vmatrix} \delta^i_k & \delta^i_c & \delta^i_d \\ \delta^a_k & \delta^a_c & \delta^a_d \\ \delta^b_k & \delta^b_c & \delta^b_d \end{vmatrix}. \] (123)

Substituting this in (121), we get, after a simple reduction \(^1\),
\[\ddot{R}^i{}_{..ki} = G^i_k. \] (124)

For the symmetrized Riemann tensor, see II–§ 2.

\section*{§ 6. THE DEVIATION OF GEODESICS}

Consider a single infinity of curves \(I(v)\) with equations \(x^i = x^i(u, v)\), where \(v = \text{const.}\) along each curve (Fig. 4). They form a 2-space. Let us write
\[\partial x^i / \partial u = U^i, \quad \partial x^i / \partial v = V^i; \] (125)
then, by (26),
\[\delta U^i / \partial v = \delta V^i / \partial u. \] (126)

\(^1\) Cf. Lanczos [1938].
In studying a pair of adjacent curves, \(\Gamma(v) \) and \(\Gamma(v + \delta v) \), it is sometimes intuitively pleasant to deal with the infinitesimal deviation vector \(\eta^i \),

\[
\eta^i = V^i \delta v; \tag{127}
\]

but since \(\delta v \) is merely an infinitesimal constant, \(\eta^i \) and \(V^i \) are essentially equivalent to one another, and we avoid those mental confusions associated with infinitesimals by using the finite vector \(V^i \).

To find out how \(\Gamma(v + \delta v) \) deviates from \(\Gamma(v) \), we write down the following equations, using (126) and (95):

\[
\frac{\delta^2 V^i}{\delta u^2} = \frac{\delta}{\delta u} \frac{\delta V^i}{\delta u} = \frac{\delta}{\delta u} \frac{\delta U^i}{\delta v} = \frac{\delta}{\delta v} \frac{\delta U^i}{\delta u} + R^i_{jkm} U^j U^k V^m. \tag{128}
\]

So far the curves \(\Gamma(v) \) have been general. Henceforth we shall take them to be geodesics (perhaps some or all of them are null geodesics), the parameter \(u \) on each of them being a special parameter, so that, by (31),

\[
\frac{\delta U^i}{\delta u} = 0. \tag{129}
\]

The first term on the right hand side of (128) vanishes, and we have the equation of geodesic deviation

\[
\frac{\delta^2 V^i}{\delta u^2} + R^i_{jkm} U^j V^k U^m = 0, \tag{130}
\]

or, equivalently,

\[
\frac{\delta^2 \eta^i}{\delta u^2} + R^i_{jkm} U^j \eta^k U^m = 0. \tag{131}
\]

Since \(u \) is a special parameter on each of the curves, the correspondence between points on \(\Gamma(v) \) and \(\Gamma(v + \delta v) \) is not of a general character, because the special parameter on any geodesic can be subjected only to a linear transformation (cf. § 2). We have, in fact,

\[
\frac{\partial}{\partial u} (U^i V^i) = U^i \frac{\delta V^i}{\delta u} = U^i \frac{\delta U^i}{\delta v} = \frac{1}{2} \frac{\partial}{\partial v} (U^i U^i). \tag{132}
\]
Under two circumstances this vanishes: (a) if the curves $I(v)$ are null geodesics, for then $U_iU^i = 0$, or (b) if the curves are ordinary geodesics and $u = s$ on each of them, for then $U_iU^i = \pm 1$. Under either of these conditions we have, along $I(v)$,

$$U_iV^i = \text{const.}, \quad \text{or} \quad \eta_i \frac{\partial x^i}{\partial u} = \text{const.} \quad (133)$$

In particular, if V^i (or η^i) is orthogonal to $I(v)$ at any point, it remains orthogonal.

Null geodesics are of great importance in relativity, because nearly all astronomical information comes to us optically, i.e. by photons, and, as we shall see later, the history of a photon is a null geodesic in space-time. In preparation for later physical developments, we shall pursue the geometry of null geodesics a little further here.

Let C_1 and C_2 (Fig. 5) be two timelike curves (not necessarily geodesics, although they might be); they represent an observer and a source of light respectively. Let P_1 be any point on C_1. The totality of null geodesics drawn through P_1 form a null cone, with two sheets, which are called the past sheet and the future sheet (see Chap. III). We here consider the past sheet only. It is cut by the curve C_2 at some point P_2, so that we may say that the null cone maps P_1 on P_2. Thus the whole curve C_1 is mapped pointwise on C_2; Fig. 5 shows two of the null geodesics (P_1P_2, Q_1Q_2) which effect this mapping. The totality of these null geodesics form a 2-space, which is determined once C_1 and C_2 are given.

Let u_1 and u_2 be any two numbers. Since we have the liberty of a linear transformation (and that only) in the choice of special parameters on a null geodesic, there exists on each of the null geodesics considered above a unique special parameter u for which $u = u_1$ on C_1 and $u = u_2$ on C_2. The parameter u being so defined over the 2-space, we choose a second parameter v which is constant along each of the null geodesics (we might choose $v = s$ on C_1). Now we are back
in the situation dealt with earlier, and we can apply the equation of geodesic deviation to the system of null geodesics represented by \(P_1P_2\) and \(Q_1Q_2\). The infinitesimal vectors \(P_1Q_1\) and \(P_2Q_2\) represent the infinitesimal deviation vector \(\eta^i\) at \(P_1\) and \(P_2\) respectively. As in (133), we have

\[
U_i V^i = \text{function of } u \text{ only.} \tag{134}
\]

Let us now return to the deviation equation (130) and discuss its solutions. What follows applies generally to a family of geodesics, whether null or not; the condition (134) may hold or it may not.

In (130) we have four ordinary differential equations satisfied by the four functions \(V^i(u)\) along the curve \(\Gamma\). Let \(\lambda^i_{(a)}\) be an orthonormal tetrad (OT, cf. § 3) chosen arbitrarily at some point of \(\Gamma\), and defined along \(\Gamma\) by parallel transport, so that we have

\[
\frac{\delta \lambda^i_{(a)}}{\delta u} = 0. \tag{135}
\]

Multiplying (130) by \(\lambda_{(a)i}\), we get

\[
D^2 V_{(a)} + R_{ijklm} \lambda^i_{(a)} U^j V^k U^m = 0, \tag{136}
\]

where \(D = d/du\) and \(V_{(a)}\) are invariant components on the OT, so that, as in (54),

\[
V_{(a)} = V_i \lambda^i_{(a)}, \quad V^i = V^{(a)} \lambda^i_{(a)}. \tag{137}
\]

Let us introduce other invariant components:

\[
U_{(a)} = U_i \lambda^i_{(a)}, \quad R_{(abcd)} = R_{ijklmn} \lambda^i_{(a)} \lambda^j_{(b)} \lambda^k_{(c)} \lambda^m_{(d)}. \tag{138}
\]

We note that, by (129) and (135),

\[
U_{(a)} = \text{const.} \tag{139}
\]

along \(\Gamma\). In terms of the invariant components, we can now write (136) in the form

\[
D^2 V_{(a)} + K^{(a)} V_{(c)} = 0, \tag{140}
\]

where

\[
K^{(a)} = R_{(a)bc} U^{(b)} U^{(d)}
= \eta^{(a)} R_{(bc)de} U^{(b)} U^{(d)}. \tag{141}
\]

We have thus passed from the tensorial deviation equation (130) to the invariant deviation equation (140), which it is convenient to
write in matrix notation as

$$D^2 \mathbf{V} + K \mathbf{V} = 0,$$

(142)

\(K\) being the \(4 \times 4\) invariant matrix (141) and \(\mathbf{V}\) the column matrix \(V^{(a)}\).

The motivation behind what follows is that we seek to solve (142) in the range \(u_1 \leq u \leq u_2\) with assigned values of \(\mathbf{V}\) at the ends of the range. However, under certain circumstances a solution does not exist, and it is less confusing to study any existent solution, writing

$$\mathbf{V}(u_1) = \mathbf{V}_1, \quad \mathbf{V}(u_2) = \mathbf{V}_2.$$

(143)

Let \(G(u, u')\) be the Green’s function defined by

$$G(u, u') = \begin{cases} k(u - u_1)(u_2 - u') & \text{for } u \leq u', \\ k(u' - u_1)(u_2 - u) & \text{for } u \geq u', \end{cases}$$

(144)

where

$$k = (u_2 - u_1)^{-1}.$$

(145)

Writing \(D = \partial / \partial u\), \(D' = \partial / \partial u'\), we have then

$$DG = k(u_2 - u'), \quad D'G = -k(u - u_1) \quad \text{for } u \leq u',$$

$$DG = -k(u' - u_1), \quad D'G = k(u_2 - u) \quad \text{for } u \geq u'.$$

(146)

Now multiply (142) by \(G(u, u')du\), with \(u'\) arbitrary in the range \(u_1 \leq u' \leq u_2\), and integrate over this range. Integrating by parts and noting that \(G(u, u') = 0\) at the ends of the range, we get

$$\int_{u_1}^{u_2} DG \mathbf{V} du = \int_{u_1}^{u_2} G K \mathbf{V} du.$$

(147)

But, by (146), \(DG\) is constant in each of the two parts into which \(u'\) divides the whole range, and so, if we split the range of integration, it comes outside the integral sign. Thus we get

$$k(u_2 - u')(\mathbf{V'} - \mathbf{V}_1) - k(u' - u_1)(\mathbf{V}_2 - \mathbf{V'}) = \int_{u_1}^{u_2} G K \mathbf{V} du,$$

(148)

where \(\mathbf{V'} = \mathbf{V}(u')\). Hence

$$\mathbf{V'} = k(u_2 - u') \mathbf{V}_1 + k(u' - u_1) \mathbf{V}_2 + \int_{u_1}^{u_2} G K \mathbf{V} du.$$

(149)

This is an integral equation for \(\mathbf{V}\), incorporating the end-values. If
these end-values are consistent with a unique solution, we can obtain that solution by iteration; thus
\[V' = k(u_2 - u')V_1 + k(u' - u_1)V_2 \]
\[+ k \int_{u_1}^{u_2} GK[(u_2 - u)V_1 + (u - u_1)V_2]du + O_2, \quad (150) \]
where \(O_2 \) stands for terms involving \(K \) in the second and higher degrees. Since, in the relativistic applications, the curvature of space-time (and hence \(K \)) is small, it usually suffices to retain in (150) only the terms shown explicitly.

With regard to those end-values of \(V \) which are consistent with a solution, we note that if (133) holds, as it does in the case of null geodesics, then these end-values must satisfy
\[U_{(a)}(V^{(a)})_{u = u_1} = U_{(a)}(V^{(a)})_{u = u_2}; \quad (151) \]
we recall that \(U_{(a)} = \text{const.} \) along \(\Gamma \).

To investigate the first derivative of a solution, we differentiate (149) with respect to \(u' \). To carry this out, we split the range of the integral at \(u' \), and differentiate with respect to \(u' \) as a limit of integration and also with respect to \(u' \) as a parameter in \(G \). However, since \(G(u, u') \) is continuous across \(u = u' \), we get zero from differentiation with respect to the limits, and so, using the values of \(D'G \) from (146), we obtain
\[D'V' = k(V_2 - V_1) - k \int_{u_1}^{u_2} (u - u_1)KVdu + k \int_{u_1}^{u_2} (u_2 - u)KVdu. \quad (152) \]
Thus, in particular,
\[(DV)_{u = u_1} = k(V_2 - V_1) + k \int_{u_1}^{u_2} (u_2 - u)KVdu. \quad (153) \]

If we now substitute in the integral for \(V \) from (150), we get
\[(DV)_{u = u_1} = k(V_2 - V_1) + k^2 \int_{u_1}^{u_2} (u_2 - u)K[(u_2 - u)V_1 \]
\[+ (u - u_1)V_2]du + O_2. \quad (154) \]
A case of particular physical interest is that in which we are dealing with null geodesics as in Fig. 5, and the curves \(C_1 \) and \(C_2 \) are far apart, the curvature of space-time being extremely small except fairly near these curves. We idealize this situation, for mathematical simplicity,
by assuming space-time to be flat for
\[u_1 \leq \tilde{u}_1 \leq u \leq \tilde{u}_2 \leq u_2, \]
so that we have a ‘cut-off’ as shown in Fig. 6. Since \(K = 0 \) for \(\tilde{u}_1 \leq u \leq \tilde{u}_2 \), (153) gives
\[
(DV)_{u=u_1} = k(V_2 - V_1) + k \int_{u_1}^{u_2} (u_2 - u)K \text{d}u
\]
\[
+ k \int_{u_1}^{u_2} (u_2 - u)K \text{d}u. \tag{155}
\]
To allow for the curves \(C_1 \) and \(C_2 \) being ‘far apart’, we now let \((u_2 - u_1)\) tend to infinity (i.e. \(k \to 0 \)), at the same time holding \((\tilde{u}_1 - u_1)\) and \((u_2 - \tilde{u}_2)\) finite. Then the product \(k(u_2 - u) \) tends to unity in the first integral and to zero in the second integral, so that we get
\[
(DV)_{u=u_1} = \int_{u_1}^{u_2} K \text{d}u. \tag{156}
\]
If we now substitute for \(V \) in the integral from (150), we obtain the simple formula
\[
(DV)_{u=u_1} = \int_{u_1}^{u_2} K \text{d}u(V_1 + O_2). \tag{157}
\]
This formula expresses the initial value of the derivative of the deviation in terms of the initial value of the deviation and an integral of the Riemann tensor. From the standpoint of pure geometry, the argument may seem a little tedious on account of the artificial character of the assumptions made. But when we come to deal with aberration in Chap. XI, it will be convenient to have the idea of a cut-off already explained.

The deviation of geodesics is discussed again in II–§3 with a different notation which uses parallel propagators.

§ 7. HAMILTONIAN THEORY OF RAYS AND WAVES

The Hamiltonian theory of rays and waves is of a very general nature and is best explained in a rather abstract form.\(^1\) Thus, while

\(^1\) For various aspects of Hamiltonian theory, see Synge [1954a], [1956b], and a forthcoming article on Classical Dynamics in Handbuch der Physik, Vol. 3.
we continue to think of 4-dimensional space-time, for the present we shall not assume the existence of a tensor g_{ij}.

For the moment we take a still wider view and think of an 8-dimensional space V_8 with coordinates (x^i, y_i), using a subscript for the y’s for reasons which will appear later. The essence of the Hamiltonian approach lies in the assumption of some Hamiltonian surface Σ in V_8, a subspace of seven dimensions for which we write the equation

$$\omega(x, y) = 0. \quad (158)$$

It is important to note that it is the surface Σ which is given, and not the function $\omega(x, y)$. In elementary geometry, a unit circle may be represented by a great variety of equations, such as

$$x^2 + y^2 = 1, \quad (x^2 + y^2)^\frac{1}{2} = 1, \quad (x^2 + y^2)^2 = 1,$$

$$\quad (x^2 + y^2 - 1)^2 = 0, \quad (159)$$

and in the same way Σ may be represented by a great variety of equations, i.e. by a great variety of functions ω in (158). However, no matter what function ω we select to represent Σ, a displacement $(\delta x^i, \delta y_i)$ lies in Σ if, and only if,

$$\frac{\partial \omega}{\partial x^i} \delta x^i + \frac{\partial \omega}{\partial y_i} \delta y_i = 0; \quad (160)$$

thus, at an assigned point of Σ, the ratios of the eight quantities

$$\frac{\partial \omega}{\partial x^i}, \quad \frac{\partial \omega}{\partial y_i} \quad (161)$$

have definite values. In fact, we may write

$$\frac{\partial \omega}{\partial x^i} = \theta \phi_i, \quad \frac{\partial \omega}{\partial y_i} = \theta \psi_i, \quad (162)$$

where the eight quantities ϕ_i, ψ_i are given once for all over Σ and θ is an arbitrary function of position on Σ.

Consider any curve Γ in Σ and the integral

$$I = \int y_i dx^i \quad (163)$$

taken along Γ. We seek the extremals of I ($\delta I = 0$), with the varied curve also lying on Σ; to allow for this side-condition, we replace the
integral \(I \) by
\[
J = \int (y_i dx^i - \lambda \omega du),
\]
where \(u \) is a parameter running between the same end-values for all the curves under consideration and \(\lambda(u) \) is a Lagrange multiplier. Applying a variation and integrating by parts, we get
\[
\delta J = [y_i \delta x^i] + \int \left(\delta y_i dx^i - \delta x^i dy_i \\
- \omega \delta \lambda du - \lambda \frac{\partial \omega}{\partial x^i} \delta x^i du - \lambda \frac{\partial \omega}{\partial y_i} \delta y_i du \right),
\]
and for an extremal we demand \(\delta J = 0 \) for arbitrary variations \(\delta x^i, \delta y_i, \delta \lambda \), subject only to \(\delta x^i = 0 \) at the ends of \(I \). Hence we obtain the equations of the extremals in the form
\[
\frac{dx^i}{du} = \lambda \frac{\partial \omega}{\partial y_i}, \quad \frac{dy_i}{du} = -\lambda \frac{\partial \omega}{\partial x^i}, \quad \omega = 0.
\]
The Lagrange function \(\lambda(u) \) remains indeterminate; this corresponds to the indeterminacy of \(\theta \) in (162). For any chosen function \(\omega \), we can choose the parameter \(u \) so that the equations of the extremal take the Hamiltonian or canonical form
\[
\frac{dx^i}{du} = \frac{\partial \omega}{\partial y_i}, \quad \frac{dy_i}{du} = -\frac{\partial \omega}{\partial x^i}.
\]
An extremal is determined by the values of \((x^i, y_i) \) for \(u = 0 \), subject of course to \(\omega(x, y) = 0 \).

Let us now reinterpret the foregoing, using as geometrical background 4-dimensional space-time with coordinates \(x^i \), instead of \(V_8 \). We now regard \(y_i \) as a vector associated with the point \(x^i \). The Hamiltonian surface \(\Sigma \) no longer appears as a 7-space immersed in \(V_8 \), but as a set of 3-spaces, one such 3-space, say \(Y_3 \), being associated with each point of space-time. We have to think, in fact, of a 4-dimensional \(y \)-space attached to each \(x \)-point, and we regard \(Y_3 \) as a 3-space in that \(y \)-space; its equation is \(\omega(x, y) = 0 \), with \(x^i \) held fixed. In the \(y \)-space the coordinates are \(y_i \), and, in order that the theory may be invariant under arbitrary transformations of the \(x \)'s in space-time, it is necessary that \(y_i dx^i \) shall be an invariant in (163); this means that \(y_i \) must transform like a covariant vector.

Viewed in \(V_8 \), an extremal is a curve drawn on \(\Sigma \). Viewed in space-time, it is a curve \(x^i = x^i(u) \) bearing an associated vector field
\(y_t = y_t(u) \). It should be clearly understood that we are dealing with one single mathematical theory; only the geometrical interpretation changes when we change our viewpoint from \(V_8 \) to space-time. Henceforth we shall use the space-time viewpoint, so that a \textit{point} means a set of \(x \)-values.

Given two points, \(A(x') \) and \(B(x) \), there may happen to be no extremal joining them. (Actually, this is a rather exceptional case, but it should be borne in mind.) If such an extremal does exist, we write

\[
S(x', x) = S(A, B) = \int_A^B y_t \, dx^t,
\]

the integral being taken along the extremal. This is Hamilton's \textit{principal} or \textit{characteristic} \(^1\) function. If we now vary \(A \) and \(B \) and compare the new extremal with the old one, we get from (165) (the integral vanishes for an extremal)

\[
\delta S = y_t \delta x^t - y_{t'} \delta x^{t'}.
\]

If the eight differentials \(\delta x^i \), \(\delta x^{t'} \) may be given arbitrary values (this is not always possible — we may not get varied points which can be joined by an extremal), then we have

\[
\frac{\partial S}{\partial x^i} = y_i, \quad \frac{\partial S}{\partial x^{t'}} = -y_{t'}.
\]

Substitution in \(\omega(x, y) = 0 \) then gives the \textit{Hamilton-Jacobi equation}

\[
\omega \left(x, \frac{\partial S}{\partial x} \right) = 0,
\]

with of course a second equation corresponding to the second of (170).

Consider now a set of extremals in space-time, forming a domain \(D \) which may be of two, three or four dimensions. Throughout \(D \) there is a vector field \(y_t \) defined by the extremals, and we may speak meaningfully of the \textit{circulation}

\[
\kappa = \oint_C y_t \, dx^t
\]

in any closed circuit \(C \) contained in \(D \). We say that the set of extremals

\(^1\) Not to be confused with the world-function \(\Omega \) of Chap. II; in Riemannian space \(S \) and \(\Omega \) are closely related, for we have \(S^2 = |2\Omega| \).
form a **coherent system** if $\kappa = 0$ for all \(^1\) closed circuits C in D. The extremals forming a coherent system are called **rays**.

For a coherent system, let A be a fixed point in D and B a variable point in D. Then, since $\kappa = 0$, the integral

$$I(A, B) = \int_A^B \gamma I \, dx$$ \hspace{1cm} (173)$$

is independent of the path of integration. If b is any constant, the equation

$$I(A, B) = b$$ \hspace{1cm} (174)$$

limits B to a subspace of D; this subspace is called a **wave**. By varying the constant b, we get a set of waves; it is easy to see that (since $\kappa = 0$) this set of waves is independent of the choice of A in D. In fact, the waves are the integrals of the total differential equation

$$\gamma I \, dx = 0.$$ \hspace{1cm} (175)$$

It is to be particularly noted that every set of extremals does not define rays and waves; they are defined only for coherent systems, for which $\kappa = 0$ and hence (175) is integrable in D.

The simplest set of rays and waves is that associated with a set of extremals drawn from a fixed point A and forming a domain D. It is easy to show that this set is coherent. For if $S(A, B)$ is the principal function, then by (169) we have, for any closed circuit C in D,

$$\oint_C \gamma I \, dx = \oint_C dS = 0.$$ \hspace{1cm} (176)$$

The associated waves are

$$S(A, B) = \text{const.},$$ \hspace{1cm} (177)$$

where B is a variable point; or, to be more precise, the waves are the intersections of (177) with D.

The integral (173) for a coherent system is a function of B only since A is fixed. It is called the **one-point principal function** of the system; denoting it by $U(x)$, we may write the equations of the waves

$$U(x) = \text{const.}$$ \hspace{1cm} (178)$$

We shall now construct the most general coherent system, starting from some subspace W of space-time; W may be of zero, one, two, or

\(^1\) For simplicity, we consider only the case where D is simply connected.
three dimensions. On \(W \) we assign some function of position \(U' \), and then choose on \(W \) a vector field \(y_t \), satisfying
\[
\omega(x', y') = 0, \quad y_t' \delta x'^t = \delta U'
\]
for every displacement \(\delta x'^t \) in \(W \). The choice of \(W \) and \(U' \) may be such that this is impossible, but we shall suppose it possible. The next step is to draw from the points of \(W \) extremals with the initial values \((x', y_t') \) (Fig. 7). Then to any point \(B(x) \) in the domain covered by these extremals we assign the function
\[
U(x) = \int_A^B y_t \, dx^t + U'(A),
\]
where \(A \) is the point at which the extremal through \(B \) leaves \(W \), and the integral is taken along the extremal. Varying \(B \), we get
\[
\delta U(x) = y_t \delta x^t - y_t' \delta x'^t + \delta U' = y_t \delta x^t
\]
by (179). This is an exact differential in the domain covered by the extremals, so that the circulation \(\kappa \) vanishes. Therefore the extremals form a coherent system of rays, with waves given by \(U(x) = \text{const.} \); \(U(x) \) is in fact the one-point principal function, as in (178).

So much for general Hamiltonian theory. Let us now return to Riemannian space-time with tensor \(g_{ij} \). As we have seen, Hamiltonian theory is based on the choice of a surface \(\Sigma \) with equation \(\omega(x, y) = 0 \). We can superimpose the two ideas; we have then two sets of important curves in space-time — geodesics and Hamiltonian extremals — with no obvious connection between the one and the other \(^1\).

On the other hand we can develop the theory of rays and waves in Riemannian space-time, using nothing but the tensor \(g_{ij} \). This is done by taking for the Hamiltonian surface \(\Sigma \) the equation
\[
\omega(x, y) = \omega_1(x, y) \omega_2(x, y) \omega_3(x, y) = 0,
\]
where
\[
\omega_1(x, y) = g^{ij} y_i y_j, \quad \omega_2(x, y) = g^{ij} y_i y_j + 1, \quad \omega_3(x, y) = g^{ij} y_i y_j - 1.
\]
\(^1\) In the geometrical optics of a medium (cf. Chap. XI-§ 2) a connection is set up. The Hamiltonian extremals are optical rays; the geodesics are of secondary importance.
Then the 3-space Y_3 for fixed x-values (so that g^{ij} are constants) is an algebraic surface of the sixth degree. It breaks up into sheets as shown in Fig. 8. We have the cone $\omega_1 = 0$, a cone with two sheets; the two-sheeted hyperboloid $\omega_2 = 0$; and the one-sheeted hyperboloid $\omega_3 = 0$. The y-vector must have its extremity on one of these sheets.

By (166) we have the following equations for the extremals:

$$\frac{dx^i}{du} = 2\lambda g^{ij}y_j,$$

$$\frac{dy_i}{du} = -\lambda g^{jk}_{,l}y_jy_k, \quad (184)$$

were λ is some scalar; by changing the parameter u, we can change these equations into

$$\frac{dx^i}{du} = g^{ij}y_j, \quad (185)$$

$$\frac{dy_i}{du} = -\frac{1}{2}g^{jk}_{,l}y_jy_k.$$

Eliminating the y's we get by an easy calculation

$$\frac{\delta}{\delta u} \frac{dx^i}{du} = 0. \quad (186)$$

Further, the first of (185) gives

$$g^{ij} \frac{dx^i}{du} \frac{dx^j}{du} = g^{ij}y_iy_j \begin{cases} = 0 & \text{for } \omega_1 = 0, \\ = -1 & \text{for } \omega_2 = 0, \\ = 1 & \text{for } \omega_3 = 0. \end{cases} \quad (187)$$

Thus the parameter u in (185) and (186) is such that $du = ds$ for the last two cases.

We see at once from (186) that the Hamiltonian extremals are geodesics; those corresponding to $\omega_1 = 0$ are null geodesics, those corresponding to $\omega_2 = 0$ are timelike geodesics, and those corresponding to $\omega_3 = 0$ are spacelike geodesics.
As for Hamilton’s principal function, we have by (185) and (187)
\[S(A, B) = \int_A^B y_t dx^i = \int_A^B \xi^B \gamma^i du = \xi^B \int_A^B du \text{ or } 0, \quad (188) \]
according as the extremal is a timelike geodesic ($\xi = -1$), a spacelike geodesic ($\xi = 1$) or a null geodesic.

In a coherent system, the rays are orthogonal to the waves. ¹ This is easy to show. By (175)
\[y_t \delta x^i = 0 \quad (189) \]
for every displacement δx^i in the wave. By (185)
\[y_t = \xi_{ij} \frac{dx^j}{du}. \quad (190) \]
Therefore
\[\xi_{ij} \delta x^i \frac{dx^j}{du} = 0, \quad (191) \]
which proves the statement.

Systems of null rays are of particular interest. For a null ray we have by (190)
\[y_t \frac{dx^i}{du} = \xi_{ij} \frac{dx^i}{du} \frac{dx^j}{du} = 0, \quad (192) \]
and so, by (189), null rays are not only orthogonal to waves — they lie in them.

A 3-space $f(x) = \text{const.}$ in space-time is called a null surface if f satisfies the partial differential equation
\[\xi_{ij} f_{,ij} = 0, \quad (193) \]
which says essentially that the surface contains its own normal.²

Let f satisfy (193). Then the equations
\[\frac{dx^i}{du} = \xi_{ij} f_{,j} \quad (194) \]

¹ In general Hamiltonian theory, (175) tells us that the covariant vector y_t is orthogonal to the wave, but until we introduce ξ_{ij} there can be no question of the orthogonality of the ray (dx^i/du, a contravariant vector) with the wave.

² The 3-space $x^4 = \text{const.}$ is a null surface if, and only if,
\[\xi^{44} = 0. \quad (193a) \]
define a set of null curves. Along such a curve we have
\[
\frac{df}{du} = f_{,i} \frac{dx^i}{du} = f_{,i} g^{ij} f_{,j} = 0,
\] (195)
and therefore those curves (194) which start in \(f(x) = 0 \) remain in \(f(x) = 0 \). Further
\[
\frac{\delta}{\delta u} \frac{dx^i}{du} = g^{ij} f_{,j} \frac{dx^k}{du} = g^{ij} f_{,j k} g^{km} f_{,m}.
\] (196)
Now differentiation of (193) gives
\[
g^{ij} f_{,k} f_{,j k} = 0,
\] (197)
or, since \(f_{,jk} = f_{,kj} \),
\[
g^{ij} f_{,j} f_{,k j} = 0.
\] (198)
Thus (196) gives
\[
\frac{\delta}{\delta u} \frac{dx^i}{du} = 0,
\] (199)
and therefore the curves (194) are null geodesics. We may state then, as a theorem in the geometry of null surfaces, that all the null geodesics drawn tangent to a null surface lie in that null surface, and, when their equations are written in the form (194), \(u \) is a special parameter \(^1\).

Let us apply this geometrical result to Hamiltonian theory, regarding the null geodesics (194) in \(f(x) = 0 \) as a system. Comparing (185) with (194), we have \(y_i = f_{,i} \), and so
\[
\oint_C y_i dx^i = \oint_C df = 0
\] (200)
for every closed circuit in \(f(x) = 0 \). We have therefore a coherent system in which the rays are the null geodesics. Since
\[
\int_A^B y_i dx^i = \int_A^B df = 0
\] (201)
for every open curve in \(f(x) = 0 \), it follows that \(f(x) = 0 \) is a wave

\(^1\) At each point on a null surface, the elementary null cone has one direction in common with the null surface and touches the null surface along that direction. The null geodesics (194) are formed out of the elementary vectors of tangency.
(in fact the only wave) associated with this system of null rays; we call it a \textit{null wave}. It is clear that the equation $f(x) = \text{const.}$, with $f(x)$ satisfying (193), defines a set of null waves, as illustrated in Fig. 9 — this picture is only suggestive, for it should show ∞^2 null rays in each null wave.

Let us now briefly consider, as at (180), the construction of a coherent system, stating from a subspace W on which a function U' is assigned.

Consider first the case where W is a single point in space-time. Then U' is a mere constant, and the second condition in (179) disappears. We have only to satisfy $\omega(x', y') = 0$, and this we do by taking the vector y_ν, with its extremity on one of the surfaces $\omega_1 = 0$, $\omega_2 = 0$, $\omega_3 = 0$ of Fig. 8; the corresponding extremals are null geodesics, timelike geodesics and spacelike geodesics, respectively. For the null geodesics we have $y_\nu dx^\nu = 0$ along the rays, and so (180) gives simply $U(x) = U'$, a constant. Since the waves are given by $U(x) = \text{const.}$, we see that the totality of null geodesics from the fixed point W form a single wave, the null cone (a particular case of a null surface, as considered above). In the cases of timelike and spacelike rays, we get the waves by taking constant measure along the rays, thus obtaining pseudospheres (rather like hyperboloids in ordinary space). The whole pattern of rays and waves for the case where W is a single point is illustrated in Fig. 10.

Let us close this discussion of rays and waves in space-time by taking the case where W is a timelike curve with equation $x' = x'(v)$. We are to select some function $U'(v)$, and then choose y_ν to satisfy

$$\omega(x', y') = 0, \quad y_\nu \frac{dx^\nu}{dv} = \frac{dU'}{dv}. \quad (202)$$

Viewed in the y-space of Fig. 8, the second equation represents a 3-flat, and this 3-flat will cut one or more sheets of the ω-surfaces, yielding the required y-vectors. Let us, for definiteness, consider only intersections of the 3-flat with $\omega_1 = 0$, which intersections correspond to null rays. In general we shall get such intersections, and hence a system of null rays and waves as illustrated in Fig. 11, in which the null
waves are shown as if they were 2-dimensional (they are actually 3-dimensional). There is one exceptional case, namely, the case where we choose U' to be a constant. Then the second of (202) cannot be satisfied by any γ-vector with its extremity on $\omega_1 = 0$ (this is essentially due to the fact that no null vector can be orthogonal to a timelike vector).

§ 8. GAUSSIAN COORDINATES

Let x^i be admissible coordinates (§ 1) in space-time, and let Σ be a smooth 3-space defined by equations $x^i = f^i(\xi)$, where ξ stands for the three parameters ξ^p (Greek suffixes run 1, 2, 3). Let $U^i(\xi)$ be a vector field defined smoothly over Σ. Through the points of Σ we draw, in both directions, geodesics tangent to U^i; let u be that unique special parameter on each geodesic such that $u = 0$, $dx^i/du = U^i$ on Σ. Let B be any point in the neighbourhood of Σ. Let A be the point where the geodesic through B meets Σ (Fig. 12). Then to B we attach the four Gaussian coordinates (u, ξ^p) where u is evaluated at B and ξ^p are evaluated at A. Where necessary, we distinguish between normal Gaussian coordinates (U^i orthogonal
to Σ) and skew Gaussian coordinates (U^i not orthogonal to Σ). We may also write \bar{x}^i for the Gaussian coordinates, putting

$$\bar{x}^\rho = \xi^\rho, \quad \bar{x}^4 = u.$$

(203)

Gaussian coordinates have two important features. First, they are (as we shall show) admissible coordinates, and so, since they are given by a simple geometrical construction, they lend concreteness to what might otherwise seem a purely formal definition of admissibility. Secondly, their use sometimes simplifies calculations.

To prove the admissibility of Gaussian coordinates, we note that on any one of the geodesics we have, in the original postulated admissible coordinates,

$$\frac{\delta}{\delta u} \frac{dx^i}{du} = \frac{d^2x^i}{du^2} + \Gamma^i_{jk} \frac{dx^j}{du} \frac{dx^k}{du} = 0,$$

(204)

and so

$$x^i = (f^i)_A + u(U^i)_A - \frac{1}{2} u^2 (\Gamma^n_{jk} U^n U^k)_A + \ldots,$$

(205)

the subscript A indicating evaluation at that point. Since x^i are admissible, the Γ^n's are continuous across Σ, and so the terms written explicitly in (205) do not depend on the side of Σ which we approach in the limit $u \to 0$. That may not be true of the higher terms in the series, because admissibility of x^i does not imply continuity of the derivatives of the Γ^n's, since these involve the second derivatives of the g_{ij}. But the terms shown explicitly in (205) are all we need. From them we calculate the following values for $u = 0$:

$$\frac{\partial x^i}{\partial \bar{x}^\rho} = \frac{\partial f^i}{\partial \bar{x}^\rho}, \quad \frac{\partial x^i}{\partial \bar{x}^4} = U^i,$$

(206)

$$\frac{\partial^2 x^i}{\partial \bar{x}^\rho \partial \bar{x}^\sigma} = \frac{\partial^2 f^i}{\partial \bar{x}^\rho \partial \bar{x}^\sigma}, \quad \frac{\partial^2 x^i}{\partial \bar{x}^\rho \partial \bar{x}^4} = \frac{\partial U^i}{\partial \bar{x}^\rho}, \quad \frac{\partial^2 x^i}{(\partial \bar{x}^4)^2} = - \Gamma^i_{jk} U^j U^k.$$

All these quantities are continuous across Σ; in other words, the transformation $x \to \bar{x}$ is C^2. Hence, from the formulae of transformation

$$\tilde{g}_{ij} = g_{ab} \frac{\partial x^a}{\partial \bar{x}^i} \frac{\partial x^b}{\partial \bar{x}^j},$$

(207)

$$\tilde{\Gamma}^i_{jk} = \Gamma^a_{bc} \frac{\partial \bar{x}^a}{\partial x^i} \frac{\partial x^b}{\partial \bar{x}^j} \frac{\partial x^c}{\partial \bar{x}^k} - \frac{\partial^2 \bar{x}^i}{\partial x^a \partial x^b} \frac{\partial x^a}{\partial \bar{x}^j} \frac{\partial x^b}{\partial \bar{x}^k}.$$
it follows that \(\bar{g}_{ij} \) and \(\bar{R}^i_{jk} \) are continuous across \(\Sigma \). Therefore, by (8), \(\bar{g}_{ij} \) are \(C^1 \), which means that \(\bar{x}^i \) are admissible coordinates, and so the result is proved: Gaussian coordinates are admissible.

Passing now to the second feature of Gaussian coordinates, let us write the differential equations (204) of a geodesic in terms of the Gaussian coordinates \(\bar{x}^i \). Since \(\bar{x}^r = \text{const.}, \bar{x}^4 = u \), the equations reduce to

\[
\bar{R}^i_{44} = 0,
\]

or equivalently

\[
2 \frac{\partial \bar{g}_{44}}{\partial \bar{x}^4} = \frac{\partial \bar{g}_{44}}{\partial \bar{x}^i}.
\]

(209)

Two cases arise. First, suppose that the vectors \(U^i \) are null. Then the geodesics used in the Gaussian construction are null, and we have \(\bar{g}_{44} = 0 \), so that, by (209),

\[
\frac{\partial \bar{g}_{44}}{\partial \bar{x}^4} = 0, \quad \bar{g}_{44} = 0.
\]

(210)

Secondly, suppose that the vectors \(U^i \) are all timelike or all spacelike. Let us normalise them by

\[
g_{ij} U^i U^j = \varepsilon = \pm 1.
\]

(211)

Then we have \(du = ds \) on the geodesics, and \(\bar{g}_{44} = \varepsilon \), so that, by (209'),

\[
\frac{\partial \bar{g}_{44}}{\partial \bar{x}^4} = 0, \quad \bar{g}_{44} = \varepsilon.
\]

(212)

In the particular case of normal Gaussian coordinates, we have

\[
\bar{g}_{44} = 0, \quad \bar{g}_{44} = \varepsilon.
\]

(213)

It is possible to base Gaussian coordinates on a point, a curve, or a 2-space, instead of on a 3-space \(\Sigma \) as above. But we shall not fill in the details of this.

The formulae for the Riemann tensor, the Ricci tensor and the Einstein tensor are somewhat simplified by the use of normal Gaussian coordinates. Dropping the bars on the Gaussian coordinates, and not bothering about the geometrical construction for them, we may state the results briefly as follows.

Let there be a system of coordinates \(x^i \) for which the metric
form reads
\[\Phi = g_{\mu\nu} dx^\mu dx^\nu + \epsilon(dx^4)^2, \quad \epsilon = \pm 1. \] (214)

Then we have
\[g_{\rho 4} = 0, \quad g_{44} = \epsilon, \]
\[g^{\rho 4} = 0, \quad g^{44} = \epsilon, \]
\[g^{\rho \alpha} g_{\rho \beta} = \delta^\alpha_\beta. \] (215)

Then from the formulae of § 5 we obtain the following expressions:
\[R_{\mu \nu \rho \sigma} = \bar{R}_{\mu \nu \rho \sigma} + \frac{1}{4} \epsilon (g_{\rho \sigma}, 4g_{\mu \nu}, 4 - g_{\rho \nu}, 4g_{\mu \sigma}, 4), \]
\[R_{\mu \rho \nu \sigma} = \frac{1}{2} (D_\mu g_{\rho \sigma}, 4 - D_\rho g_{\mu \sigma}, 4), \]
\[R_{\rho \mu \nu \sigma} = R_{4 \rho \nu \sigma} = \frac{1}{2} g_{\rho \sigma}, 44 - \frac{1}{4} g^{\alpha \beta} g_{\rho \alpha}, 4g_{\sigma \beta}, 4; \] (216)
\[R_{\mu \nu} = \bar{R}_{\mu \nu} + \frac{1}{2} \epsilon g_{\mu \nu}, 44 + \frac{1}{4} \epsilon A_\mu g_{\nu \sigma}, 4 - \frac{1}{2} \epsilon g^{\alpha \beta} g_{\mu \alpha}, 4g_{\nu \beta}, 4, \]
\[R_{\mu 4} = \frac{1}{2} g^{\rho \sigma} (D_\mu g_{\rho \sigma}, 4 - D_\rho g_{\mu \sigma}, 4) = \frac{1}{2} A_{\mu}, \mu - \frac{1}{2} D^\sigma g_{\mu \sigma}, 4, \]
\[R_{44} = \frac{1}{4} C - \frac{1}{4} B; \]
\[R = \bar{R} + \epsilon \left(\frac{1}{2} A^2 - \frac{3}{4} B + C \right); \] (217)
\[G_{\mu \nu} = \bar{G}_{\mu \nu} + \frac{1}{2} \epsilon g_{\mu \nu}, 44 + \frac{1}{4} \epsilon A_\mu g_{\nu \sigma}, 4 - \frac{1}{2} \epsilon g^{\alpha \beta} g_{\mu \alpha}, 4g_{\nu \beta}, 4, \]
\[- \epsilon g_{\nu \mu}(\frac{1}{8} A^2 - \frac{3}{4} B + \frac{1}{2} C), \]
\[G_{\mu 4} = R_{\mu 4} = \frac{1}{2} A_{\mu}, \mu - \frac{1}{2} D^\sigma g_{\mu \sigma}, 4, \]
\[G_{44} = - \frac{1}{2} \epsilon \bar{R} - \frac{1}{2} A^2 + \frac{1}{8} B. \] (218)

The explanation of the symbols is as follows:
\[\bar{R}_{\mu \nu \rho \sigma} = \text{Riemann subtensor} \, 1 \, \text{of} \, x^4 = \text{const.}, \]
\[\bar{R}_{\mu \nu} = \text{Ricci subtensor of} \, x^4 = \text{const.}, \]
\[\bar{R} = \text{curvature subinvariant of} \, x^4 = \text{const.}, \]
\[\bar{G}_{\mu \nu} = \text{Einstein subtensor of} \, x^4 = \text{const.}, \]
\[D_\mu = \text{operator of covariant differentiation in} \, x^4 = \text{const.} \]
\[\text{with respect to subtensor} \, g_{\alpha \beta}; \]
\[A = g^{\mu \nu} g_{\mu \nu}, \quad B = g^{\mu \nu} g^{\rho \sigma} g_{\rho \mu}, 4 g_{\sigma \nu}, 4, \quad C = g^{\mu \nu} g_{\mu \nu}, 44. \] (220)

1 Each 3-space \, x^4 = \text{const.} \, is Riemannian with fundamental tensor \, \bar{g}_{\alpha \beta} = g_{\alpha \beta} \, and conjugate \, g^{\alpha \beta} = g^{\alpha \beta}; \, \text{cf.} \, (215). \, \text{The barred quantities are calculated in each such 3-space in the usual way, using these tensors; they are called sub-}
\text{tensors because they are not tensors for general transformations of} \, x^i, \, \text{but only for transformations of} \, x^4, \, \text{with} \, x^4 \, \text{untransformed. \, Cf.} \, \text{SYNGE and SCHILD} \, [1956], \, \text{p.} \, 67.
§ 9. JUNCTION CONDITIONS ACROSS A 3-SPACE OF DISCONTINUITY

We recall from § 1 the assumed existence of admissible coordinates in space-time, for which coordinates we have continuity of g_{ij} and $g_{ij,k}$ across any 3-space Σ. If Σ is in some sense a 3-space of discontinuity, the discontinuity can occur only in the second or higher derivatives of g_{ij}, provided the coordinates are admissible. We proceed to examine the situation.

Given Σ (it might be a null surface), let us transform from the original admissible coordinates to new admissible coordinates ¹ such that the equation of Σ becomes $x^4 = 0$. Then the following quantities are continuous across Σ:

$$g_{ij}, \ g^{ij}, \ g_{ij,k}, \ [ij, k], \ \Gamma^i_{jk}, \ g_{ij,k},$$

(222)

since these involve at most one differentiation with respect to x^4 (as usual, Latin suffixes run 1, 2, 3, 4 and Greek 1, 2, 3). Also $g_{ij,k\alpha}$ are continuous, but we may expect discontinuities in $g_{ij,44}$.

Let us use the symbol $[C]$ to indicate any quantity which is continuous across Σ. Then by (85) and (222) we have

$$R_{\alpha\beta\gamma\delta} = [C], \quad R_{\alpha\beta\delta\delta} = [C],$$

$$R_{\alpha44\beta} = R_{4\alpha\beta4} = \frac{1}{2}g_{\alpha\beta,44} + [C].$$

(223)

Hence

$$R_{\alpha\beta} = g^{ij}R_{i\alpha\beta j} = g^{44}R_{4\alpha\beta 4} + [C] = \frac{1}{2}g^{44}g_{\alpha\beta,44} + [C],$$

$$R_{\alpha4} = g^{ij}R_{i\alpha4 j} = g^{4\beta}R_{4\alpha\beta 4} + [C] = -\frac{1}{2}g^{4\beta}g_{\alpha\beta,44} + [C],$$

$$R_{44} = g^{ij}R_{i44 j} = g^{\alpha\beta}R_{\alpha44\beta} = \frac{1}{2}g^{\alpha\beta}g_{\alpha\beta,44} + [C],$$

(224)

and

$$R = g^{\alpha\beta}R_{\alpha\beta} + 2g^{\alpha4}R_{\alpha4} + g^{44}R_{44}$$

$$= (g^{\alpha\beta}g^{44} - g^{\alpha4}g^{4\beta})g_{\alpha\beta,44} + [C].$$

(225)

Then

$$R^4_{\alpha} = g^{4i}R_{\alpha i} = g^{4\beta}R_{\alpha\beta} + g^{44}R_{\alpha4} = [C],$$

$$R^4_{4} = g^{4i}R_{4 i} = g^{4\alpha}R_{4\alpha} + g^{44}R_{44}$$

$$= \frac{1}{2}(g^{4\alpha}g^{4\beta} - g^{4\alpha}g^{4\beta})g_{\alpha\beta,44} + [C],$$

(226)

and so

$$G^4_{\alpha} = R^4_{\alpha} = [C], \quad G^4_{4} = R^4_{4} - \frac{1}{2}R = [C],$$

(227)

or

$$G^4_{i} = [C].$$

(228)

¹ Possibly, but not necessarily, Gaussian coordinates (skew-Gaussian if Σ is null).
This is a set of four junction conditions: the mixed components G^4_i of the Einstein tensor are continuous across $x^4 = 0$, provided the coordinates are admissible. This is equivalent to saying that, as a mere matter of direct calculation, the components G^4_i do not contain second derivatives with respect to x^4.

We now wish to pass to other systems of admissible coordinates, and it is convenient to write \tilde{x}^i for the admissible coordinates used above, for which the equation of Σ is $\tilde{x}^4 = 0$. For any other admissible coordinates x^t, let the equation of Σ be $f(x) = 0$. Then f_t is a covariant normal to Σ, and G^t_{ij} is a vector which in the \tilde{x}-coordinates has the value \tilde{G}^t_{ij}, and is, as we have seen, continuous across Σ. Since the transformation $x \to \tilde{x}$ is C^2, the junction conditions now read as follows: for any admissible coordinates,

$$G^t_{ij} = [C],$$

i.e. is continuous across Σ.

We have released ourselves from those special admissible coordinates for which the equation of Σ is $\tilde{x}^4 = 0$. We now go a step further in emancipating the coordinate system. Let \tilde{x}^i be any admissible coordinates and let x^t be new coordinates (no longer admissible) obtained from \tilde{x}^i by a transformation that is only C^1. The components g_{ij} are still continuous across Σ (since their transformation law involves only the first derivatives $\partial x^t / \partial \tilde{x}^j$), but the first derivatives $g_{ij,k}$ may now be discontinuous. However G^t_{ij} is a vector and its transformation involves only the first derivatives $\partial x^t / \partial \tilde{x}^j$. Therefore we have this result: For coordinates obtained from admissible coordinates by C^1 transformation, the junction condition (229) holds.

Finally, by working with an invariant, we effect a complete divorce of the coordinate systems on the two sides of Σ. Let \tilde{x}^i be any admissible coordinates and ϕ^i a contravariant vector field which undergoes parallel transport along any assigned set of curves which cross Σ. We pass to new coordinates x^t by piecewise smooth transformations on the two sides of Σ, but without demanding even continuity of the transformation across Σ (the x's may be discontinuous functions of the \tilde{x}'s across Σ). Now

$$I = G^t_{ij}x^i \phi^j$$

1 Cf. Israel [1958]. Much of the work done on junction conditions prior to the introduction of admissible coordinates by Lichnerowicz [1955a] is mathematically obscure.
is an invariant, and it is certainly continuous across Σ when we use the admissible coordinates. Therefore it is continuous when we use the coordinates x^i. The junction condition now reads: *I is continuous across Σ for the independent coordinate systems just described, ϕ^i undergoing parallel transport across Σ. On account of the arbitrariness in the choice of ϕ^i, we have actually four conditions here, as in (228) or (229). The equation of Σ is $f(x) = 0$, but now the form of the function f may be quite different on the two sides of Σ.*

If we prefer, we can use a covariant vector ϕ_i, so that the continuous invariant reads

$$I = G^{ij} f_i \phi_j.$$ \hspace{1cm} (231)

§ 10. THEOREMS OF STOKES AND GREEN

In Euclidean 3-space the theorem of Stokes expresses an integral taken round a closed curve C as an integral taken over a surface S which spans C, and is usually written

$$\oint_C (u dx + v dy + w dz) =$$

$$\iint_S \left[\left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) l + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) m + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) n \right] dS,$$ \hspace{1cm} (232)

(u, v, w) being a vector field and (l, m, n) the direction cosines of the normal to S, so directed that the sense of integration on C bears to this direction the same relation that a rotation of the x-axis into the y-axis bears to the z-axis. Green's theorem (also called Gauss' theorem) expresses an integral taken over a closed surface S as an integral taken over the volume bounded by S, and is usually written

$$\iint_S (lu + mv + nw) dS = \iiint_V \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) dV,$$ \hspace{1cm} (233)

where (l, m, n) are the direction cosines of the outward normal to S.

The above formulae can be generalized. It is remarkable that actually Stokes' theorem does not essentially involve a metric tensor g_{ij}, and that, when a metric is introduced, Green's theorem appears as a particular case of Stokes' theorem. It makes for clarity to present first the generalized formulae in an N-space V_N without a metric, then take $N = 4$ for space-time (still without a metric), and finally
introduce \(g_{ij} \). The formulae will be stated and explained, but their proofs will not be given here \(^1\).

Consider an \(N \)-space \(V_N \) with coordinates \(x^i \), but without (for the present) a metric \(g_{ij} \). In \(V_N \) take a subspace \(V_M \) where \(M = 1, 2, \ldots \) up to \(N - 1 \), or even \(N \), in which last case \(V_M \) is \(V_N \) itself. Using Latin suffixes for the range 1, 2, \ldots \(N \) and Greek suffixes for 1, 2, \ldots \(M \), we write \(x^i = x^i(y) \) as the equations of \(V_M \), where \(y \) stands for \(M \) parameters \(y^\rho \).

Consider a cell in \(V_M \) with \(M \) ordered edges \(d\rho y^\sigma \), where \(\rho (= 1, 2, \ldots M) \) are labels enumerating the several edges. Write

\[
\det(d\rho y^\sigma) = \Lambda. \tag{234}
\]

The \(M \)-cell is positively or negatively oriented relative to the coordinate system \(y \) according as \(\Lambda \) is positive or negative. The tensor extension of the cell is defined as

\[
d\tau_{i_1i_2\ldots i_M} = \varepsilon_{a_1a_2\ldots a_M} \frac{\partial x^{i_1}}{\partial y^{a_1}} \frac{\partial x^{i_2}}{\partial y^{a_2}} \cdots \frac{\partial x^{i_M}}{\partial y^{a_M}} \Lambda, \tag{235}
\]

where the \(\varepsilon \)-symbol is the \(M \)-dimensional numerical permutation symbol \(^2\). Obviously this expression (235) is a contravariant tensor with respect to \(x \)-transformations, and it is skew symmetric in each pair of indices. It is an invariant with respect to \(y \)-transformations.

In two special cases, (235) is very simple. First take \(M = 1 \); the cell is 1-dimensional, and the extension degenerates into

\[
d\tau^i = dx^i. \tag{236}
\]

Now take \(M = N \) and \(y^i = x^i \); we get

\[
d\tau_{i_1i_2\ldots i_N} = \varepsilon_{i_1i_2\ldots i_N} \Lambda, \quad \Lambda = \det(dx^i), \tag{237}
\]

and if we take the cell with edges along the parametric lines of the coordinates, we get

\[
\Lambda = dx^1dx^2\ldots dx^N. \tag{238}
\]

We now consider an open \(V_M \) immersed in \(V_N \); let \(V_{M-1} \) be the closed \((M - 1)\)-space which bounds \(V_M \). Let \(T_{i_1\ldots i_{M-1}} \) be a covariant tensor field defined over \(V_M \) and its neighbourhood. Then the generalized

\(^1\) Cf. Pauli [1958], p. 52, Schouten [1954], p. 97; and, for a more detailed treatment, Synge and Schild [1956], p. 274.

\(^2\) Cf. § 5 for \(M = 4 \); the generalization is obvious.
Stokes' theorem reads (we merely state it here without proof)
\[\oint_{V_{M-1}} T_{i_1...i_{M-1}} \, d\tau^{i_1...i_{M-1}} = \int_{V_M} T_{i_1...i_{M-1},i_M} \, d\tau^{i_1...i_M}, \] (239)
the comma indicating a partial derivative. The left hand side is obviously an invariant. The right hand side is also an invariant, as is easily verified when the skew symmetry of the element of extension is taken into account.

It must be noted however that (239) is true only when the orientations of the cells are properly chosen — otherwise a minus sign will appear. To enlarge on this point, it must be understood that \(V_{M-1} \) and \(V_M \) are orientable spaces. This means (to explain it for \(V_M \)) that if we carry an \(M \)-cell round any closed circuit in \(V_M \), without letting \(\Delta \) vanish, then, on completion of the circuit, the new set of ordered edges can be changed continuously into the old set, without letting \(\Delta \) vanish. (\(\Delta = 0 \) means that the \(M \)-cell degenerates into an \((M - 1)\)-cell.) To illustrate by surfaces \((M = 2) \) in ordinary Euclidean space, the surface of a sphere is orientable, and so is the surface of a torus, whereas a Möbius band is not. Given, then, that \(V_{M-1} \) and \(V_M \) are orientable spaces, in order that (239) may hold (and not the same equation with a minus sign inserted before one of the integrals), it is necessary that we should be able to reconcile the set of ordered edges of an \(M \)-cell of \(V_M \) with the set of ordered edges of an \((M - 1)\)-cell of \(V_{M-1} \) plus (as a last edge) an element pointing out from \(V_M \) across \(V_{M-1} \). This is illustrated in Fig. 13. This rule of orientation

![Diagram](image_url)

Fig. 13 – Direction of the last edge to be added to \((M - 1)\)-cell to make \(M \)-cell

is involved in the elementary formula (232), but obscured somewhat by the fact that one integral is taken along a curve.

We return to the general Stokes' formula (239) and put \(N = 4 \), so that \(V_N = V_4 = \text{space-time} \), but still without a metric tensor. Setting in turn \(M = 2, 3 \) and 4, we obtain the three following forms of
Stokes’ theorem:

\[\oint_{V_1} T_i d\mathbf{x}^i = \int_{V_2} T_i j d\tau^{ij}, \quad (240) \]
\[\oint_{V_2} T_{ij} d\tau^{ij} = \int_{V_3} T_{ijk} d\tau^{ijk}, \quad (241) \]
\[\oint_{V_3} T_{ijk} d\tau^{ijk} = \int_{V_4} T_{ijk,m} d\tau^{ijk,m}. \quad (242) \]

where, in the last integral, \(V_4 \) represents the portion of space-time enclosed by \(V_3 \).

It is not assumed in the above formulae that \(T_{ij} \) and \(T_{ijk} \) have any special symmetries; however, on account of the skew-symmetry of the tensor extensions, only the skew-symmetric parts of the \(T \)'s actually remain in the formulae.

Finally, we introduce the tensor \(g_{ij} \) of space-time. It is now permissible to replace the partial derivatives by covariant derivatives, because the additional terms drop out. For example,

\[T_{ijk|k} d\tau^{ijk} = (T_{ijk,k} - \Gamma^a_{ik} T_{aj} - \Gamma^a_{jk} T_{ia}) d\tau^{ijk} = T_{ijk,k} d\tau^{ijk}. \quad (243) \]

Accordingly we can display the Stokes’ formulae in completely invariant form as follows:

\[\oint_{V_1} T_i d\mathbf{x}^i = \int_{V_2} T_{ij} d\tau^{ij}, \quad (244) \]
\[\oint_{V_2} T_{ij} d\tau^{ij} = \int_{V_3} T_{ijk|k} d\tau^{ijk}, \quad (245) \]
\[\oint_{V_3} T_{ijk|k} d\tau^{ijk} = \int_{V_4} T_{ijk|m} d\tau^{ijk,m}. \quad (246) \]

We shall now display these formulae in a different way, introducing the invariant element of volume (2-, 3- or 4-dimensional), defined as the product of the measures of (ds) of the edges of a rectangular cell.

Consider \(V_2 \). Let \(M^i \) and \(N^i \) be unit vectors, orthogonal to \(V_2 \) and to one another (Fig. 14). Then the tensor extension of a 2-cell may be written

\[d\tau^{ij} = \varepsilon(M)\varepsilon(N)\eta^{ijk,m} M_k N_m d_2v, \quad (247) \]

where the \(\varepsilon \)'s are the indicators of the vectors, the \(\eta \)-symbol is the permutation tensor as in (114), and \(d_2v \) is the invariant 2-volume of the cell; the 2-cell is such that its ordered edges, together with \(M^i \) and \(N^i \) in order, form a tetrad with the same orientation as the parametric
lines of the coordinates x^i. We have to prove (247), and this we do by recognizing that it is a tensor formula, and so may be verified by using a special coordinate system. It suffices to consider a rectangular cell, since an oblique cell may be broken up into a great number of small rectangular cells. Let us then use coordinates for which at the point in question g_{ij} is the diagonal matrix with elements $(1, 1, 1, -1)$ in some order, and for which the parametric lines of x^1 and x^2 run along the edges of the cell, while those of x^3 and x^4 lie along M^i and N^i respectively. We take $y^1 = x^1$, $y^2 = x^2$. Then by (234) we have $\Delta = dx^1 dx^2$, and by (235)

$$d\tau^{12} = -d\tau^{21} = dx^1 dx^2,$$ \hspace{1cm} (248)

while the other components of $d\tau^{ij}$ vanish. On the other hand, we have $M_3 = \varepsilon(M)$, $N_4 = \varepsilon(N)$, and the other covariant components vanish. Thus the right hand side of (247) survives only if $i = 1, j = 2$ or $i = 2, j = 1$, and for the former values it is equal to $d_2 v$. But $d_2 v = dx^1 dx^2$, and so, on comparing this with (248), we verify (247).

Likewise for V_3 we have

$$d\tau^{ijk} = \varepsilon(N)\eta^{ijkm}N_m d_3 v,$$ \hspace{1cm} (249)

where N^i is a unit vector normal to V_3, such that when it is associated as a fourth direction with the ordered edges of the 3-cell, we get a 4-cell with the same orientation as the parametric lines of the coordinates; $d_3 v$ is the invariant 3-volume of the cell. For V_4 we have

$$d\tau^{ijkm} = \eta^{ijkm} d_4 v,$$ \hspace{1cm} (250)

where $d_4 v$ is the invariant 4-volume, provided the 4-cell has the same orientation as the parametric lines of the coordinates — otherwise a minus sign must be inserted.

Since the covariant derivative of the permutation tensor vanishes,
we may now write the Stokes formulae (244)–(246) as follows:
\[\oint_{\mathcal{V}_1} T_{ij} d\tau^{ij} = \int (T_{ij} \eta^{ijkm})_{j} \varepsilon(M) \varepsilon(N) M_k N_m d_2 v, \]
(251)
\[\oint_{\mathcal{V}_2} T_{ij} d\tau^{ij} = \int (T_{ij} \eta^{ijkm})_{k} \varepsilon(N) N_m d_3 v, \]
(252)
\[\oint_{\mathcal{V}_3} T_{ijk} d\tau^{ijk} = \int (T_{ijk} \eta^{ijkm})_{m} d_4 v. \]
(253)

The left hand sides of (252) and (253) might also be written in forms involving invariant elements of volume. If we use (249) in (253), we get
\[\oint_{\mathcal{V}_4} T_{ijk} \eta^{ijkm} \varepsilon(N) N_m d_3 v = \int (T_{ijk} \eta^{ijkm})_{m} d_4 v. \]
(254)

Now, given any vector \(U^i \), we define its dual by
\[U^*_i = \eta^{ijk} U^m, \]
(255)
and this gives
\[U^m = \eta^{ijk} U^*_{ijk}. \]
(256)

Therefore, for any vector field \(U^i \), (254) gives
\[\oint_{\mathcal{V}_3} U^i \varepsilon(N) N_i d_3 v = \int U^i_{i} d_4 v. \]
(257)

This is the generalization of the theorem of Green (or Gauss). Note that \(N^i \) points out of the domain \(\mathcal{V}_4 \) across \(\mathcal{V}_3 \); note also the presence of the indicator \(\varepsilon(N) \).

If we contract \(\mathcal{V}_1 \) to a point in (240) or (244) or (251), the integral on the left hand side vanishes, and so we get a vanishing integral over a closed \(\mathcal{V}_2 \). Likewise, we may contract \(\mathcal{V}_2 \) to a point in (241) or (245) or (252). But unless space-time were multiply connected, it would be futile to contract \(\mathcal{V}_3 \) to a point in (242) or (246) or (253), because this would make the domain \(\mathcal{V}_4 \) contract to a point at the same time. By the above process of contraction to a point, we obtain the following identities for closed subspaces in space-time:

without metric:
\[\begin{cases} \oint_{\mathcal{V}_2} T_{ij} d\tau^{ij} = 0, \\ \oint_{\mathcal{V}_3} T_{ij} d\tau^{ijk} = 0; \end{cases} \]
(258)

with metric:
\[\begin{cases} \oint_{\mathcal{V}_2} T_{ij} d\tau^{ij} = 0, \\ \oint_{\mathcal{V}_3} (T_{ij} \eta^{ijkm})_{j} \varepsilon(M) \varepsilon(N) M_k N_m d_2 v = 0, \\ \oint_{\mathcal{V}_3} T_{ij} d\tau^{ijk} = 0, \\ \oint_{\mathcal{V}_4} (T_{ij} \eta^{ijkm})_{k} \varepsilon(N) N_m d_3 v = 0. \end{cases} \]
(259)
CHAPTER II
THE WORLD-FUNCTION Ω

§ 1. THE WORLD-FUNCTION Ω AND ITS COVARIANT DERIVATIVES AS A TWO-POINT INVARIANT AND TWO-POINT TENSORS

Let $P'(x')$ and $P(x)$ be two points of space-time, joined by a geodesic Γ with equations $x^i = \xi^i(u)$ where u is a special parameter [cf. 1–§ 2]. Then the integral [cf. 1–(27)]

$$\Omega(P'P) = \Omega(x', x) = \frac{1}{2}(u_1 - u_0) \int_{u_0}^{u_1} g_{ij} U^i U^j du,$$

(1)

taken along Γ with $U^i = d\xi^i/du$, has a value independent of the particular special parameter chosen. If, as we shall suppose, the points P', P determine a unique geodesic passing through them, then Ω is a function of these two points; it is a function of the eight variables $x^{i'}, x^i$, and we shall call it the world-function 1 of space-time.

Since $\delta U^i/\delta u = 0$, we have $g_{ij} U^i U^j = \text{const.}$ along Γ, and we can write (1) in the form

$$\Omega(P'P) = \Omega(x', x) = \frac{1}{2}(u_1 - u_0)^2 g_{ij} U^i U^j,$$

(2)

with the last part evaluated anywhere on Γ. Further, we can choose u so that the end-values are $u_0 = 0$, $u_1 = 1$, and then we have

$$\Omega(P'P) = \Omega(x', x) = \frac{1}{2} g_{ij} U^i U^j,$$

(3)

evaluated anywhere on Γ. Also, as in 1–(36), we may write

$$\Omega(P'P) = \Omega(x', x) = \frac{1}{2} \varepsilon L^2, \quad L = \int_{P'}^P ds.$$

(4)

Thus, to within the factor ε ($= \pm 1$), the world-function is half the square of the measure of the geodesic joining P' and P.

As stated above, we assume that P' and P have a unique geodesic

1 This function was introduced into tensor calculus by Ruse [1931a, b]. Cf. also Synge [1931], Yano and Muto [1936], Schouten [1954, p. 382]. It has been called the distance function and the characteristic function, but world-function seems the most appropriate title for it when it is used in relativity, because it determines the curved world of space-time.
passing through them. This will certainly be the case if the points are close enough to one another, but there are physical instances where it does not hold. Then the world-function is no longer single-valued, and the existence of partial derivatives must not be rashly assumed. A global theory of the world-function, covering such singular cases, would be very complicated, and we shall throughout assume that the geodesic $P'P$ is unique and the partial derivatives exist. With this understanding, the world-function Ω is a powerful tool for the execution of systematic approximations without abandoning the techniques of tensor calculus, as will be evident later in the book.

It is obvious from (4) that in flat space-time there exists a coordinate system such that

$$\Omega(x', x) = \frac{1}{2} g_{ij}(x'^i - x^i)(x'^j - x^j),$$

$$g_{ij} = \eta_{ij} = \text{diag}(1, 1, 1, -1).$$

(5)

This is a useful formula to remember, because it suggests properties of Ω and its derivatives in the general case of curved space-time.

To understand the transformation properties of the world-function and its derivatives, it is best to think of two coordinate systems, say C' and C, in domains D' and D of space-time. These domains overlap, and in the overlap there is a smooth transformation $C \leftrightarrow C'$ (Fig. 1). (D' and D might very well both cover the whole of space-time, in which case the overlap is the whole of space-time.) The point P' lies in D' and has coordinates x'^i in the system C', while P lies in D and has coordinates x^i in the system C. The integral (1) is still meaningful if properly interpreted — we have to break the integral at some point in the overlap, and use for the two parts the coordinates C' and C respectively. The world-function $\Omega(x', x)$ is a 2-point invariant in the sense that its value is unchanged if we transform independently the coordinate systems in D' and D. Briefly, we may refer to such transformations as transformations at P' and at P.

Consider now the covariant derivatives of a 2-point invariant $I(x', x)$. All that follows holds in particular for $\Omega(x', x)$, but, since the
specific properties of \(\Omega \) are not involved, it is clearer to speak of an arbitrary 2-point invariant \(I \).

Covariant differentiation may be carried out with respect to the coordinates of \(P' \) or with respect to those of \(P \). To avoid cumbersome notation, we shall denote these covariant derivatives by simple subscripts without the usual vertical stroke. The operations are applied in the order of the subscripts.

We have then before us such quantities as

\[
I_{i'} = \frac{\partial I}{\partial x^i}, \quad I_{i'j'} = \frac{\partial}{\partial x^{i'}} I_{i'} - \Gamma_{i'j'}^a I_a',
\]

where the \(\Gamma \)'s are evaluated at \(P' \), and

\[
I_i = \frac{\partial I}{\partial x^i}, \quad I_{ij} = \frac{\partial}{\partial x^i} I_j - \Gamma_{ij}^a I_a,
\]

where the \(\Gamma \)'s are evaluated at \(P \). These quantities are of course functions of the coordinates of \(P' \) and \(P \), and they are 2-point tensors. It is clear that the quantities (6) are respectively a covariant vector and a covariant tensor of the second rank with respect to transformations at \(P' \), but they are invariants with respect to transformations at \(P \). There is no single simple term to describe these transformation properties, but they are at once evident from the notation. Similar remarks apply to the quantities (7) mutatis mutandis.

We have also such quantities as

\[
I_{i'j'} = \frac{\partial}{\partial x^j} I_{i'}, \quad I_{ij'} = \frac{\partial}{\partial x^{i'}} I_i,
\]

\[
I_{i'j'k} = \frac{\partial}{\partial x^k} I_{i'j'} - \Gamma_{ij'}^a I_{i'a}.
\]

Here the tensor properties are precisely as suggested by the notation. Each of (8) is a covariant vector under either transformation, while (9) is a covariant vector for transformations at \(P' \) and a covariant tensor of the second rank for transformations at \(P \). The above illustrative examples should enable the reader to handle any covariant derivative.

We may raise subscripts by \(g^{i'j'} \) at \(P' \) and by \(g^{ij} \) at \(P \). Thus

\[
I^{i'} = g^{i'j'} I_j, \quad I^i = g^{ij} I_j.
\]

It is obvious from (8) that

\[
I_{ij'} = I_{j'i}.
\]
This is a particular case covered by the following general rule of interchange: the value of any covariant derivative is unaltered by interchange of primed and unprimed subscripts, provided the order of the primed subscripts and the order of the unprimed subscripts are separately preserved. To prove this rule, let us write tentatively

\[I_{...\nu'} = I_{...j'\iota}, \]

(12)

where the dots on the two sides stand for the same set of subscripts, primed or unprimed or both. This is certainly a tensor equation with respect to both transformations. We test its truth by using coordinate systems such that the \(I' \)'s vanish at chosen positions of \(P' \) and \(P \). Then, for the chosen \(P \) and any \(P' \), we have

\[I_{...\iota} = \frac{\partial}{\partial x^\iota} I_{...}, \]

(13)

and hence, for \(P' \) and \(P \) both at their chosen positions,

\[I_{...\nu'} = \frac{\partial}{\partial x'^\nu} \frac{\partial}{\partial x^\iota} I_{...}, \]

(14)

But likewise

\[I_{...j'\iota} = \frac{\partial}{\partial x'^\iota} \frac{\partial}{\partial x^\iota'} I_{...}, \]

(15)

and since the expressions (14) and (15) are equal, (12) is verified for special coordinate systems. Therefore (12) is true in general, and it implies

\[I_{...\nu'...} = I_{...j'\iota...}, \]

(16)

where the dots in corresponding positions stand for the same subscript, primed or unprimed. This means that, in any covariant derivative, it is permissible to interchange adjacent subscripts, provided one is primed and the other unprimed. From this the truth of the above rule of interchange is obvious.

Note that of course we cannot in general interchange two subscripts if both are primed or both unprimed [cf. the commutation rules of 1–§ 5].

All the above formulae hold in particular for the world-function. By 1–(41) we have

\[\Omega_{\nu'} = -(u_1 - u_0) U_{\nu'}, \quad \Omega_\iota = (u_1 - u_0) U_\iota, \]

(17)
where U^i is the tangent vector $dx^i/d\lambda$, and by \ref{eq:42}, if Γ is not null,

$$
\Omega_{i'} = -L\lambda_{i'}, \quad \Omega_i = L\lambda_i, \quad (18)
$$

where λ^i is the unit tangent vector to Γ. We recall that in \ref{eq:17} u is any special parameter, and in \ref{eq:18} we choose $d\lambda = ds$. These formulae are illustrated in Fig. 2.

By \ref{eq:17} we have

$$
g^{ij}\Omega_i\Omega_j = (u_1 - u_0)^2g^{ij}U_iU_j, \quad (19)
$$

and so, by \ref{eq:2},

$$
g^{ij}\Omega_i\Omega_j = 2\Omega. \quad (20)
$$

Likewise

$$
g^{i'j'}\Omega_{i'}\Omega_{j'} = 2\Omega. \quad (21)
$$

In \ref{eq:20} and \ref{eq:21} we have the two partial differential equations satisfied by the world-function.

We note for reference the following obvious results:

$$
\Omega_{i'j'} = \Omega_{j'i'}, \quad \Omega_{ij} = \Omega_{ji}, \quad (22)
$$

$$
\Omega_{i'j'...} = \Omega_{j'i'...}, \quad \Omega_{ij...} = \Omega_{ji...}, \quad (23)
$$

where as usual dots in corresponding positions indicate the same subscript, primed or unprimed. This commutation holds only when the two subscripts are adjacent to the letter Ω.

§ 2. COINCIDENCE LIMITS

This section is devoted to the discussion of the limits of the co-variant derivatives of the world-function when the two points P, P' tend to coincidence. We shall use a single coordinate system, so that $P \rightarrow P'$ implies $x^i \rightarrow x'^i$, with the following notation for these limits which we call coincidence limits:

$$
\lim_{P \rightarrow P'} \Omega_{i...} = [\Omega_{i...}]. \quad (24)
$$

These coincidence limits are useful only if they are independent of the path by which P tends to P'. To what extent they are in fact independent of path depends on the smoothness of the function g_{ij}, and a complete discussion of this difficult question is beyond the
scope of this book. We shall however give a formal argument, assuming analyticity and the legitimacy of manipulations with infinite series.

The geodesic equation

$$\frac{\delta U^i}{\delta u} = \frac{dU^i}{du} + \Gamma^i_{jk} U^j U^k = 0, \quad U^i = \frac{dx^i}{du}, \quad (25)$$
yields the power series

$$x^i = x'^i + u_1 U^{i'} - \frac{1}{2} u_1^2 \Gamma^i_{jk} U^{j'} U^{k'} + \ldots, \quad (26)$$

where $u = 0$ at P' and $u = u_1$ at P. Inversion gives

$$u_1 U^{i'} = \xi^i + \frac{1}{2} \Gamma^i_{jk} \xi^j \xi^k + \ldots, \quad \xi^i = x^i - x'^i. \quad (27)$$

Hence, by (2),

$$2\Omega(x', x) = u_1^2 g_{i'j'} U^{i'} U^{j'}$$

$$= g_{i'j'} \xi^i \xi^j + A_{i'j'k'} \xi^i \xi^j \xi^k + \ldots, \quad (28)$$

the coefficients in this series being functions of $g_{i'j'}$ and its derivatives. Thus $\Omega(x', x)$ appears as an analytic function of its eight arguments, and the coincidence limits are consequently independent of path. Crude as this argument is mathematically, it shows that we are on the right track in selecting as world-function the function $\Omega(x', x)$ instead of, say, the geodesic measure of $P'P$. With that latter choice we would have encountered those indeterminacies and infinities which occur when, in Euclidean space, we differentiate the distance between two points with respect to their coordinates and proceed to coincidence limits.

To put the matter on an honest footing, let it be said that the following calculations depend on the assumptions that (a) the world-function $\Omega(x', x)$ is differentiable as often as required, and (b) the coincidence limits exist and are independent of the path by which P tends to P'.

The coincidence limits are of course functions of a single point, and it is a matter of indifference whether we call it P' or P. Notationally it is simpler to use P, and so, when a coincidence limit is evaluated as a tensor, the suffixes on that tensor will be written without primes. But it is essential to keep the primes inside the brackets $[\cdot]$, unless sufficient reason is given for their deletion.

It is obvious from (1) and (17) that

$$[\Omega] = 0, \quad [\Omega_{i'}] = 0, \quad [\Omega_i] = 0, \quad (29)$$
and hence

\[[\mathcal{O}^i] = 0, \quad [\mathcal{O}^i'] = 0. \]

(30)

Differentiation of (20), which may be written

\[2\mathcal{O} = \dot{\mathcal{O}} t \mathcal{O}^i, \]

(31)
gives

\[\mathcal{O}_j = \mathcal{O}_t \mathcal{O}^i_j. \]

(32)

Let \(u = 0 \) at \(P' \) and \(u = u_1 \) at \(P \). Multiply (32) by \(u_1 \) and use (17); this gives

\[U_j = U_t \mathcal{O}^i_j. \]

(33)

Since the coincidence limit is to be independent of path, i.e. independent of the limit of \(U^i \), we get

\[[\mathcal{O}^i_j] = \delta^i_j, \quad [\mathcal{O}_t] = g_{ij}. \]

(34)

To deal with the covariant derivatives of higher orders, we differentiate (32) again and again, obtaining

\[\mathcal{O}_{jk} = \mathcal{O}_{tk} \mathcal{O}^i_j + \mathcal{O}_t \mathcal{O}^i_{jk}, \]

(35)

\[\mathcal{O}_{jkm} = \mathcal{O}_{tkm} \mathcal{O}^i_j + \mathcal{O}_{tk} \mathcal{O}^i_{jm} + \mathcal{O}_{tm} \mathcal{O}^i_{jk} + \mathcal{O}_t \mathcal{O}^i_{jkm}, \]

(36)

\[\mathcal{O}_{jkm} = \mathcal{O}_{tkm} \mathcal{O}^i_j + \mathcal{O}_{tk} \mathcal{O}^i_{jm} + \mathcal{O}_{tk} \mathcal{O}^i_{jp} + \mathcal{O}_{kp} \mathcal{O}^i_{jm} + \mathcal{O}_{k} \mathcal{O}^i_{jkm} \]

\[+ \mathcal{O}_{mp} \mathcal{O}^i_{jk} + \mathcal{O}_{mp} \mathcal{O}^i_{jkp} + \mathcal{O}_{ip} \mathcal{O}^i_{jkm} + \mathcal{O}_t \mathcal{O}^i_{jkm}, \]

(37)

and so on. We now go to the limit \(P \to P' \), using the coincidence limits already evaluated. From (35) we get nothing, but (36) gives

\[[\mathcal{O}_{jkm}] + [\mathcal{O}_{mjk}] = 0. \]

(38)

But by (23) there is symmetry with respect to the first two subscripts, and this symmetry combined with the skew-symmetry in (38) leads easily to

\[[\mathcal{O}_{ijk}] = 0. \]

(39)

In view of the results already established, (37) gives in the limit

\[[\mathcal{O}_{jkm}] + [\mathcal{O}_{mjk}] + [\mathcal{O}_{pkj}] = 0, \]

(40)
or, by (23),

\[[\mathcal{O}_{jkm}] + [\mathcal{O}_{mjk}] + [\mathcal{O}_{jpk}] = 0. \]

(41)
By (96)
\[\Omega_{ijkm} - \Omega_{ijmk} = R^a_{ikm} \Omega_{aj} + R^a_{jkm} \Omega_{ia}, \] (42)
and therefore
\[[\Omega_{ijkm}] = [\Omega_{ijmk}], \] (43)
so that these coincidence limits are symmetric in the last pair of subscripts as well as in the first pair; this may also be seen from (41).
By (94)
\[\Omega_{ijk} - \Omega_{ikj} = R^a_{ijk} \Omega_a. \] (44)
Differentiating and going to the limit, we get
\[[\Omega_{ijkm}] - [\Omega_{ikjm}] = R_{mijk} = - R_{imjk}. \] (45)
Interchange \(k \) and \(m \), add, and use (43) twice:
\[2[\Omega_{ijkm}] - [\Omega_{ikjm}] - [\Omega_{imkj}] = - R_{imjk} - R_{ikjm}. \] (46)
Hence by (41) and (43)
\[[\Omega_{ijkm}] = S_{ijkm}, \] (47)
where \(S_{ijkm} \) is the symmetrized Riemann tensor, defined by
\[S_{ijkm} = - \frac{1}{3}(R_{ikjm} + R_{imjk}). \] (48)
This tensor satisfies the symmetry equations
\[S_{ijkm} = S_{jikm} = S_{ijmk} = S_{kmij}, \]
\[S_{labc} + S_{ibca} + S_{icab} = 0. \] (49)
It is as competent as the Riemann tensor to describe the curvature properties of space-time, having 20 independent components; there are 6 of the type \(^1 S_{1122}, 12 \) of the type \(S_{1123} \) and 3 of the type \(S_{1234} \), but these last satisfy the relation
\[S_{1234} + S_{1324} + S_{1423} = 0. \] (50)
The \(R \)-tensor is given in terms of the \(S \)-tensor by
\[R_{ijkm} = -(S_{ikjm} - S_{imjk}) = - S_{ikmj} + S_{imkj}. \] (51)
The coincidence limit \([\Omega_{ijkm}]\) satisfies, of course, the same symmetry equations as \(S_{ijkm} \).
By extending the sequence of equations (35)–(37) by further differ-

\(^1 \) Note that \(S_{1122} = -2S_{1212}, S_{1123} = -2S_{1213}. \)
entiation, we can evaluate the coincidence limits for the derivatives of higher orders. Expressed in an umbral notation in which each numerical subscript stands for a letter, we have

$$[\Omega_{12345}] = -\frac{1}{4}(R_{13245} + R_{13254} + R_{14235} + R_{14253} + R_{15234} + R_{15243}),$$ \hspace{1cm} (52)

the final subscripts on the R's standing for covariant derivatives. The expression for $[\Omega_{123456}]$ is considerably more complicated \(^1\).

Since coincidence may be attained equivalently by letting $P \rightarrow P'$ or by letting $P' \rightarrow P$, it is clear that, in each of the above coincidence limits, we may put primes on all the subscripts, e.g.

$$[\Omega_{i'j'}] = g_{ij}, \quad [\Omega_{i'j'k'm'}] = S_{ijkm}. \hspace{1cm} (53)$$

The case where we have some subscripts primed and some unprimed must now be considered. For this we need the following lemma:

$$[\Omega_{\ldots}]_k = [\Omega_{\ldots k}] + [\Omega_{\ldots k'}], \hspace{1cm} (54)$$

the dots standing for any set of subscripts, primed or unprimed, the same in each symbol.

To prove this lemma, we take a geodesic Γ and points P', P on it, the corresponding values of some special parameter of Γ being u', u, respectively. Consider the mixed covariant derivative

$$\Omega_{i_1\ldots i_pj_1\ldots j_q'}. \hspace{1cm} (55)$$

Take a set of $(p + q)$ vectors, arbitrarily selected at any point of Γ and then subjected to parallel transport along Γ. Write $A^{i_1\ldots i_p}$ for the product of the first p vectors at P and $B^{i_1'\ldots i_q'}$ for the product of the remaining q vectors at P', and form the 2-point invariant

$$H(u', u) = \Omega_{i_1\ldots i_pj_1'\ldots j_q'} A^{i_1\ldots i_p} B^{i_1'\ldots i_q'}. \hspace{1cm} (56)$$

Taking $(u - u')$ small, so that P and P' are close together, and omitting terms of the second order, we have

$$H(u', u) = H(u', u') + (u - u') \left(\frac{\partial H}{\partial u} \right)_{u = u'}$$

$$= H(u', u') + (u - u')[\Omega_{\ldots k}]_{P'} U^k (A \ldots B \ldots)_{P'}, \hspace{1cm} (57)$$

\(^1\) Cf. Synge [1931]. The 4-index coincidence limits represent the so-called 'second extension' of the fundamental tensor, cf. Veblen [1927], p. 97.
where the coincidence limit is evaluated, as indicated, at \(P' \), and \(U^k \) is the tangent vector \((dx^k/du)\) at \(P' \). For simplicity of writing, the suffixes of (56) have been replaced by dots in an obvious way. Likewise

\[
H(u', u) = H(u, u) + (u' - u) \left(\frac{\partial H}{\partial u'} \right)_{u'=u}
= H(u, u) + (u' - u)[\Omega_{...k'}]_P U^k(A...B...)_P. \tag{58}
\]

Subtract (58) from (57), divide by \((u' - u)\), and go to the limit \(u' \rightarrow u \), thus bringing \(P' \) and \(P \) into coincidence. This gives

\[
\frac{dH(u, u)}{du} = \{[\Omega_{...k}] + [\Omega_{...k'}]\} U^k A...B..., \tag{59}
\]
everything being now evaluated at \(P \). But

\[
H(u, u) = [\Omega_{...}] A...B..., \tag{60}
\]
and so

\[
\frac{dH(u, u)}{du} = [\Omega_{...}]_k U^k A...B..._. \tag{61}
\]

The truth of (54) is now obvious if we compare (59) and (61) and remember that, at a given point \(P \) in space-time, we can select arbitrarily the direction of the geodesic \(\Gamma \) and the \(A \)- and \(B \)-vectors also.

It is convenient to rewrite (54) in the form

\[
[\Omega_{...k'}] = [\Omega_{...}]_k - [\Omega_{...k}]. \tag{62}
\]

When so written it becomes a machine for the manufacture of coincidence limits with primed subscripts, once those with unprimed subscripts are known. For example, if we take

\[
\Omega_{...} = \Omega_i, \tag{63}
\]
we get

\[
[\Omega_{ik'}] = [\Omega_i]_k - [\Omega_{ik}]. \tag{64}
\]
We already know that \([\Omega_i] = 0 \) and hence \([\Omega_i]_k = 0 \); also \([\Omega_{ik}] = g_{ik} \). Therefore

\[
[\Omega_{ik'}] = - g_{ik}. \tag{65}
\]
As a second example, take

\[
\Omega_{...} = \Omega_{ij}. \tag{66}
\]
Then (62) gives

\[
[\Omega_{ijk'}] = [\Omega_{ij}]_k - [\Omega_{ijk}] \tag{67}
\]
But \([\Omega_{ij}] = g_{ij}\) and so its covariant derivative vanishes; the 3-index symbol also vanishes, and we get
\[
[\Omega_{ijk}'] = 0. \tag{68}
\]

If we confine our attention to coincidence limits of order not greater than four (and these are the most important in the applications), we may use the following rules, which are easily verified:

(i) Carry all primed subscripts to the right (by the general rule of interchange given in § 1).

(ii) Delete the last prime and change sign.

(iii) Carry this last subscript forward to join the other unprimed subscripts.

(iv) Repeat the process until all the primes have disappeared.

For convenient reference, there follows a list of formulae of coincidence limits and of the symmetrized Riemann tensor:

\[
[\Omega] = 0, \quad [\Omega_i] = 0, \quad [\Omega_r] = 0,
\]
\[
[\Omega_{ij}] = g_{ij}, \quad [\Omega_{ij}'] = [\Omega_{i'j}] = -g_{ij}, \quad [\Omega_{i'j'}] = g_{ij},
\]
\[
[\Omega_{ijk}] = 0 \text{ (all expressions with three subscripts vanish)},
\]
\[
[\Omega_{ijkm}] = S_{ijkm}, \quad [\Omega_{ijkm}'] = -S_{ijkm}, \quad [\Omega_{ijk'm'}] = S_{ijkm},
\]
\[
[\Omega_{i'j'k'm'}] = -S_{imkj} = -S_{imjk}, \quad [\Omega_{i'j'k'm'}] = S_{ijkm}, \quad \tag{69}
\]
\[
S_{ijkm} = -\frac{1}{3}(R_{ikjm} + R_{imjk}),
\]
\[
R_{ijkm} = -S_{ikjm} + S_{imjk} = -S_{ikmj} + S_{imkj},
\]
\[
S_{ijkm} = S_{jikm} = S_{kmij},
\]
\[
S_{iabc} + S_{ibca} + S_{icab} = 0,
\]
\[
(S_{iajbc} - S_{iacjb}) + (S_{ibca} - S_{ibajc}) + (S_{icab} - S_{icbja}) = 0.
\]

In the last formula, which is a consequence of the Bianchi identity \(\text{I}-(98)\), the fifth subscript indicates the covariant derivative.

§ 3. EVALUATION OF THE SECOND DERIVATIVES OF THE WORLD-FUNCTION BY USE OF THE PARALLEL PROPAGATOR

Approximations based on the neglect of small terms are very frequent in mathematical physics, and there is seldom any reason to object to them. One feels that if there is anything wrong, it will show up in some anomaly, and then one can revise the theory. Thus, in classical hydrodynamics, an approximation in which a fluid of small
viscosity is treated as having no viscosity leads to the paradox of d’Alembert (a body experiences no resistance when moving through water), and one turns to a more refined approximation in the theory of the boundary layer.

Once a theory has been given a clear mathematical formulation, one would like to develop it with mathematical precision. But usually that is neither possible (the physicist does not know enough mathematics) nor wise (details of mathematical precision obscure the general line of thought). This book aims at a middle course. Approximations are sometimes made naively — here is a small quantity, neglect its square and the square of its derivatives! At other times, the procedure is more critical. In particular, we must remember that smallness is a term which can be validly applied only to a dimensionless quantity, and even then it is only a matter of comparison. The force of attraction between the sun and the earth (to use Newtonian terminology) is dimensionless and its value ¹ is about 3×10^{-22}. Is that small? It all depends on what we are comparing it with.

The work which follows is exact in the sense that uncalculated residues are collected under a symbol O_1 or O_2, indicating orders of magnitude. The motivation lies in the fact that these terms are, in general, ‘small’; it seems best to leave it to the reader to explore exceptional cases for himself. The theme of smallness will recur from time to time throughout the book, and may be diagnosed as the rumbling of a troubled mathematical conscience.

In the preceding section we evaluated the coincidence limits of the covariant derivatives of the world-function $\mathcal{O}(P'P)$. We now seek to evaluate those derivatives when P' and P are distinct points of space-time. The method permits of iteration, leading as close as we like to the true values, but we shall be most interested in approximate calculations for space-time in which the Riemann tensor is small (O_1), and we shall throw into a residue (O_2) terms quadratic in the Riemann tensor ².

In this work we assume the existence of the derivatives of \mathcal{O}, which means that conjugate points are not considered. Such points correspond to foci in the optics of rays emanating from a point-source, and it is easy to see that they exist in the physical applications of the theory (to planetary orbits, for example). Their existence, however, does not

¹ Cf. Appendix B.
² For an alternative procedure, see vii–§ 9.
invalidate the theory, provided we understand that P' and P are not conjugate. The whole question of conjugate points in Riemannian space-time is interesting, both mathematically and physically, but we shall not attempt to discuss it \(^1\).

As a preliminary step, we consider the equation of parallel transport, which reads, for any curve and any parametrization on it,

$$\frac{\delta \lambda^i}{\delta u} = 0.$$ \hfill (70)

Let the curve be a geodesic joining points P' and P. Then, given these points, the vector λ^i' at P' determines by parallel transport the vector λ^i at P. From the linear homogeneous character of the differential equations (70), we know that λ^i are linear homogeneous functions of λ^i', so that we may write

$$\lambda_i = g_{ij} \lambda^j'.$$ \hfill (71)

Here the coefficient g_{ij} is independent of the vector chosen. It is determined \(^2\) by the points P', P, and is a 2-point tensor; in fact it is a covariant vector with respect to each point. We call g_{ij} the parallel propagator. The notation may seem confusing, since g_{ij} and g_{ij}' are already in use for the metric tensor at P and P'. However, there need be no confusion, and, as we shall see later, the notation fits in nicely. If we let P' tend to P, we get the coincidence limit

$$[g_{ij'}] = g_{ij}.$$ \hfill (72)

There is no difficulty in raising subscripts:

$$g_{ij'}^i = g_{ikk'}^k, \quad g_{ij'}^j = g_{ikk'}^k, \quad g_{ij'}^{ij'} = g_{ikk'}^km'g^m.$$ \hfill (73)

If $\lambda^i_{(a)}$ is an orthonormal tetrad (OT) carried by parallel transport along the geodesic $P'P$, we have, by (71),

$$\lambda_{(a)i} = g_{ij'}\lambda_{(a)j'},$$ \hfill (74)

and so, by r-(50) and r-(48),

$$g_{ij'} = \lambda_{(a)i}\lambda_{(a)j'} = \eta_{(ba)\lambda_{(a)i}}\lambda_{(b)j'} = g_{ij'}.\quad (75)

Thus the parallel propagator is symmetric.

We might have defined the parallel propagator by (75), but then it

\(^1\) For some remarks on conjugate points, see Synge [1926a]. See also § 9.
\(^2\) We assume that there is a unique geodesic joining P' to P.
might not have been obvious that \(g_{ij'} \) is really a 2-point tensor independent of the OT. However, this independence is easily verified by submitting the OT to a Lorentz transformation \(\mathbf{r} \rightarrow (52) \).

We note in passing that Fermi-Walker transport (\(\mathbf{r} \rightarrow \mathbf{§ 4} \)) also has a propagator, say \(W_{ij'} \), such that we have for F-W transport along any curve (other than a null curve)

\[
\lambda_i = W_{ij'} \lambda^{j'},
\]
with \(W_{ij'} \) given by

\[
W_{ij'} = \lambda_{(a)i} \lambda_{(a)}^{j'} = W_{ji'}.
\]

However, this is not a true 2-point tensor, since it depends on the curve joining \(P' \) and \(P \). In the case of \(g_{ij'} \) we effectively eliminated the curve by making it a geodesic, and if we do that for F-W transport we get \(W_{ij'} = g_{ij'} \).

In order to evaluate the covariant derivatives of the world-function \(\Omega \), we return to the equation of geodesic deviation \(\mathbf{r} \rightarrow (130) \):

\[
\frac{\delta^2 V_i}{\delta u^2} + K^i_m V_m = 0, \quad K_{im} = R_{ipmq} U^p U^q.
\]

In \(\mathbf{r} \rightarrow \mathbf{§ 6} \), we discussed the solution in terms of invariants; now we shall use the parallel propagator.

Fig. 3 – Calculation of the covariant derivatives of the world-function \(\Omega \)

Fig. 3 shows a family of geodesics emanating from a point \(P_1 \) and intersecting a curve \(C_2 \) with equations \(x^i = x^i(v) \), on which \(P_2 \) is any point. Choosing a special parameter \(u \) on these geodesics, with fixed end values \(u = u_1 \) at \(P_1 \) and \(u = u_2 \) on \(C_2 \), we have a 2-space
\[x^i = x^i(u, v). \] Writing, as in I-§ 6,
\[U^i = \partial x^i / \partial u, \quad V^i = \partial x^i / \partial v, \quad (79) \]
we have, all over the 2-space
\[\frac{\delta U^i}{\delta v} = \frac{\delta V^i}{\delta u}, \quad \frac{\delta U^i}{\delta u} = 0, \quad (80) \]
and, since \(P_1 \) is fixed,
\[V^i = 0, \quad (81) \]
the secondary (numerical) suffix indicating that the vector is to be taken at \(P_1 \).

The situation is precisely as considered in I-§ 6 except that, in order to keep the complexity of the calculations under control, we have fixed \(P_1 \). We have the deviation equation (78). Let \(\lambda^i \) be a vector chosen arbitrarily at \(P_1 \) and carried by parallel transport along the geodesics, so that
\[\delta \lambda^i / \delta u = 0. \quad (82) \]
Multiply (78) by \(G(u, u') \lambda^i du \), where \(G(u, u') \) is the symmetric Green's function I-(144), and integrate from \(P_1 \) to \(P_2 \). This gives
\[\int_{u_1}^{u_2} GD^2(\lambda^i V^i) du + \int_{u_1}^{u_2} GK_{km} \lambda^i V^m du = 0, \quad (83) \]
where \(D = d/du \), and hence, as in I-(147),
\[\int_{u_1}^{u_2} DGD(\lambda^i V^i) du = \int_{u_1}^{u_2} GK_{km} \lambda^k V^m du. \quad (84) \]
Further, as in I-(149) but remembering (81), we get
\[\lambda^i V'^i = k(u' - u_1) \lambda^i V^i + \int_{u_1}^{u_2} GK_{km} \lambda^k V^m du, \quad (85) \]
where \(k^{-1} = u_2 - u_1 \). Differentiation with respect to \(u' \) gives
\[\lambda^i \frac{\delta V'^i}{\delta u'} = k \lambda^i V^i - k \int_{u_1}^{u'} (u' - u_1) K_{km} \lambda^k V^m du \]
\[+ k \int_{u_1}^{u_2} (u_2 - u) K_{km} \lambda^k V^m du. \quad (86) \]
Since the vector \(\lambda^i \) may be chosen arbitrarily at any point of \(P_1 P_2 \), say at \(u = u' \), we get from (85) and (86), on introducing the parallel
propagator,

\[V_{i'} = k(u' - u_1)g_{i'j}V_{j'} + \int_{u_1}^{u_2} G K^{km}g_{i'k}V_m du, \quad (87) \]

\[
\frac{\delta U_{i'}}{\delta u'} = \frac{\delta V_{i'}}{\delta u'} = k g_{i'j}V_{j'} - k \int_{u_1}^{u'} (u - u_1)K^{km}g_{i'k}V_m du + k \int_{u_2}^{u'} (u_2 - u)K^{km}g_{i'k}V_m du. \quad (88)
\]

These formulae are accurate. By iteration, we can obtain \(^1\) from (87) the deviation vector to any desired degree of accuracy, and its absolute derivative is then given by (88). In this iteration process, the successive terms proceed in powers of the Riemann tensor. If this tensor is small \((O_1)\), we have (delete the primes)

\[V_i = k(u - u_1)g_{ij}V_{j} + O_1, \quad (89) \]

\[\frac{\delta U_i}{\delta u} = \frac{\delta V_i}{\delta u} = k g_{ij}V_{j} + O_1. \quad (90) \]

These crude approximations are essential in later work. But we have also, more accurately \(^2\), by (88) evaluated at \(P_1\) and \(P_2\),

\[
\frac{\delta U_{i_1}}{\delta u} = k g_{i_1j}V_{j} + k^2 \int_{u_1}^{u_2} (u_2 - u)(u - u_1)K^{km}g_{ik}g_{jm}V_{jm}du + O_2, \quad (91) \]

\[
\frac{\delta U_{i_2}}{\delta u} = k g_{i_2j}V_{j} - k^2 \int_{u_1}^{u_2} (u - u_1)^2K^{km}g_{ik}g_{jm}V_{jm}du + O_2. \quad (92) \]

\(^1\) If the geodesics from \(P_1\) meet again at \(P_2\), then \(V_{j} = 0\). The integral equation (87) becomes homogeneous and the method breaks down completely. This is the excluded case of conjugate points.

\(^2\) In (91) and subsequent formulae the symbol \(O_2\) stand for an integral with an integrand quadratic in the Riemann tensor. For example, in (91) \(O_2\) stands for

\[k \int_{u_1}^{u_2} \int_{u_1}^{u_2} (u_2 - u)G(u, u')K^{km}K^{ab'}g_{ik}g_{jm}V_{b'}du'du'. \quad (91a) \]

In regard to smallness, we think primarily of the Riemann tensor as small and the range \((u_2 - u_1)\) as finite, and then the symbol \(O_2\) indicates second-order smallness, as it should; but if the range is large, the question of smallness needs careful examination. Perhaps it is well to emphasize that we are not basing smallness on smallness of the range.
The preceding calculations do not involve the world-function. We now write, as in (17),
\[\Omega_{i_1} = -(u_2 - u_1)U_{i_1}, \quad \Omega_{i_2} = (u_2 - u_1)U_{i_2}. \]
(93)
Carrying P_2 along C_2, and differentiating with respect to v, we get (since P_1 does not move)
\[\Omega_{i_1j_2}V_{j_2} = -k^{-1}\frac{\delta U_{i_1}}{\delta v}, \quad \Omega_{i_2j_2}V_{j_2} = k^{-1}\frac{\delta U_{i_2}}{\delta v}. \]
(94)
For the terms on the right, we have expressions as in (91) and (92). Now, given P_1 and P_2, the curve C_2 may be drawn arbitrarily through P_2, so that V_{j_2} is arbitrary and we can cancel it out. Thus we get expressions for $\Omega_{i_1j_2}$ and $\Omega_{i_2j_2}$. Then we can interchange the numbers 1 and 2 throughout, remembering to change the sign of k. Further, we have (if we want to use it) the general rule of interchange (§ 1). Finally, introducing the S-tensor from § 2, we get the following expressions for the second-order covariant derivatives of the world-function:
\[\Omega_{i_1j_1} = g_{i_1j_1} + \frac{3}{2}k\int_{u_1}^{u_2}(u_2 - u)g_{i_1a}g_{j_1b}S_{abpq}U_pU_qdu + O_2, \]
\[\Omega_{i_2j_2} = \Omega_{j_2i_2} = -g_{i_2j_2} \]
\[+ \frac{3}{2}k\int_{u_1}^{u_2}(u_2 - u)(u - u_1)g_{i_1a}g_{j_2b}S_{abpq}U_pU_qdu + O_2, \]
(95)
\[\Omega_{i_2j_2} = g_{i_2j_2} + \frac{3}{2}k\int_{u_1}^{u_2}(u - u_1)g_{i_2a}g_{j_2b}S_{abpq}U_pU_qdu + O_2, \]
\[k^{-1} = u_2 - u_1, \quad S_{abpq} = -\frac{1}{3}(R_{apqb} + R_{aqbp}). \]
These formulae may be written a little more neatly in terms of invariant components, as in 1–(54), on an OT $\lambda^i_{(a)}$ which is carried by parallel transport along the geodesic P_1P_2. If we multiply the first of (95) by $\lambda^{i_1}_{(m)}\lambda^{i_1}_{(n)}$, this product passes under the sign of integration, and we get
\[g_{i_1a}\lambda^{i_1}_{(m)} = \lambda_{(m)}a, \quad g_{i_1b}\lambda^{i_1}_{(n)} = \lambda_{(n)}b, \]
\[\lambda_{(m)}a\lambda_{(n)}bS_{abpq}U_pU_q = S_{(mnr}s}U^{(r)}U^{(s)}. \]
(96)
Treating the other equations similarly, and noting that $U^{(r)}$ is constant along the geodesic, we get the following expressions for the invariant
components, with \(\eta_{(mn)} = \text{diag}(1, 1, 1, -1) \):
\[
\Omega_{(m_n n_1)} = \eta_{(mn)} + \frac{3}{2} k U^{(r)} U^{(s)} \int_{u_1}^{u_2} (u_2 - u)^2 S_{(mrns)} du + O_2,
\]
\[
\Omega_{(m_n n_2)} = -\eta_{(mn)} + \frac{3}{2} k U^{(r)} U^{(s)} \int_{u_1}^{u_2} (u - u_1) S_{(mrns)} du + O_2,
\]
\[
\Omega_{(m_2 n_2)} = \eta_{(mn)} + \frac{3}{2} k U^{(r)} U^{(s)} \int_{u_1}^{u_2} (u - u_1)^2 S_{(mrns)} du + O_2.
\]

§ 4. EVALUATION OF THE COVARIANT DERIVATIVES OF THE PARALLEL PROPAGATOR

In later work, we need to use the fact that the covariant derivatives of the parallel propagator \(g_{ij} \) are small in a space-time of small curvature. That fact is really obvious intuitively, for, in a flat space-time, it is easy to see that these covariant derivatives vanish. However, the parallel propagator is an essential element of space-time, and we shall devote this section to an evaluation of its covariant derivatives.

We work with Fig. 3. Let \(\lambda^i \) and \(\mu^i \) be vectors chosen arbitrarily at \(P_1 \) and carried by parallel transport along the geodesics. Over the 2-space of geodesics, we have then
\[
\frac{\delta \lambda^i}{\delta u} = 0, \quad \frac{\delta \mu^i}{\delta u} = 0,
\]
and also, since \(P_1 \) is fixed,
\[
\frac{\delta \lambda^i}{\delta v} = 0, \quad \frac{\delta \mu^i}{\delta v} = 0.
\]

We have
\[
\lambda_s = g_{i_s j} \lambda^j,
\]
and hence, on differentiation with respect to \(v \),
\[
\frac{\delta \lambda_s}{\delta v} = g_{i_s j} k_s \lambda^j V k_s,
\]
where the third subscript on the \(g \)-term indicates a covariant derivative (in this case with respect to \(P_2 \)). But, by the commutation rule \(i - (95) \) combined with \((98) \), we have
\[
\frac{\delta}{\delta u} \frac{\delta \lambda^i}{\delta v} = R_{ijn} \lambda^j U^m V^n,
\]

\(^1\) To make the notation clear, note that, in the first or second line, \(m_1 \) on the left takes the same numerical value as \(m \) on the right; the secondary (numerical) suffix indicates the point \(P_1. \)
and hence
\[\frac{d}{du} \left(\mu^i \frac{\delta \lambda_i}{\delta v} \right) = R_{abmn} \mu^a \lambda^b U^m V^n. \tag{103} \]

Integrating and using (99), we get
\[\mu^i \frac{\delta \lambda_i}{\delta v} = \int_{u_1}^{u_2} R_{abmn} \mu_a \lambda_b U^m V^n \, du \]
\[= \mu^i \lambda^j \int_{u_1}^{u_2} g_{i_a} a_{j_b} R_{abmn} U^m V^n \, du. \tag{104} \]

Since \(\mu^i \) may be regarded as arbitrary, we simply cross it out. Further, we may substitute from (101) and treat \(\lambda^i \) as arbitrary, so that it too may be crossed out. This gives
\[g_{i_a} j_{k_2} V^{k_2} = - \int_{u_1}^{u_2} g_{i_a} a_{j_b} R_{abmn} V^m U^n \, du. \tag{105} \]

So far the work is exact. But now we substitute for the deviation vector \(V_m \) in the integral from (89), and get (treating \(V^{k_2} \) as arbitrary)
\[g_{i_j} k_{k_2} = - k \int_{u_1}^{u_2} (u - u_1) g_{i_a} a_{j_b} g_{k_2 c} R^{abcq} U_q \, du + O_2. \tag{106} \]

This formula contains all the first-order covariant derivatives of the parallel propagator, in view of its symmetry and the possibility of interchanging the numbers 1 and 2. Thus we have
\[g_{i_j} k_{k_1} = k \int_{u_1}^{u_2} (u_2 - u) g_{i_a} a_{j_b} g_{k_1 c} R^{abcq} U_q \, du + O_2, \tag{107} \]
\[g_{i_j} k_{k_2} = k \int_{u_1}^{u_2} (u - u_1) g_{i_a} a_{j_b} g_{k_2 c} R^{abcq} U_q \, du + O_2, \]
\[k^{-1} = u_2 - u_1. \]

If we introduce an OT \(\lambda^i_{(a)} \) with parallel transport along the geodesic

\[^1 \text{First, interchange 1 and 2 in (106), remembering to interchange } u_1 \text{ and } u_2 \text{ and hence to change } k \text{ into } -k. \text{ Secondly, interchange } i \text{ and } j \text{ in (106) and use the symmetry of the propagator and the skew-symmetry of the Riemann tensor.} \]

Syngel
P_1P_2 and multiply the first of (107) by $\gamma^{i_1}_{(r)}\gamma^{j_1}_{(s)}\gamma^{k_1}_{(t)}$, the equation takes a simpler form. Treating the second of (107) similarly, we get, in terms of components on the OT,

$$g(a, b_2c_1) = kU^q\int_{u_1}^{u_2}(u_2 - u)R_{(abcq)}du + O_2,$$

$$g(a, b_2c_2) = kU^q\int_{u_1}^{u_2}(u - u_1)R_{(abcq)}du + O_2.$$

(108)

It is now easy to compute, to this order of approximation, the covariant derivatives of higher orders. To get those of the fourth order, we work with Fig. 3 and differentiate (107) with respect to v. Since the expressions in (107) are O_1, it is unnecessary to touch the propagators under the sign of integration, since their derivatives would give O_2 terms. But we have to differentiate the Riemann tensor and U_q. In this procedure, (89) and (90) are the key formulae. Thus

$$\frac{\delta}{\delta v} R_{abcq} = R_{abcq}dV_d = R_{abcq}k(u - u_1)g_{dm}V_{m_2} + O_2,$$

$$\frac{\delta}{\delta v} U_q = kg_{m_2}V_{m_2} + O_1.$$

(109)

In this way we obtain the following formulae in terms of components on a parallel-transported OT:

$$g(a, b_2c_1d_1) = -k^2\int_{u_1}^{u_2}(u_2 - u)R_{(abcq)}du$$

$$+ k^2U^q\int_{u_1}^{u_2}(u_2 - u)^2R_{(abcq)}du + O_2,$$

$$g(a, b_2c_1d_2) = k^2\int_{u_1}^{u_2}(u_2 - u)R_{(abcq)}du$$

$$+ k^2U^q\int_{u_1}^{u_2}(u - u_1)R_{(abcq)}du + O_2,$$

$$g(a, b_2c_2d_2) = k^2\int_{u_1}^{u_2}(u - u_1)R_{(abcq)}du + k^2U^q\int_{u_1}^{u_2}(u - u_1)^2R_{(abcq)}du + O_2.$$

(110)

Changing the notation slightly, so that the two points are P' and P instead of P_1 and P_2, we get the following coincidence limits when P'

1 The fifth suffix on R indicates the covariant derivative, with the subscript raised in the usual manner.
tends to P:
\begin{align*}
\left[g_{ij'} \right] &= g_{ij}, \quad \left[g_{ij'k} \right] = 0, \quad \left[g_{ij'k'} \right] = 0, \\
\left[g_{ij'km} \right] &= -\frac{1}{2} R_{ijkm}, \quad \left[g_{ij'km'} \right] = \frac{1}{2} R_{ijkm}.
\end{align*}
(111)

These last formulae have a close connection with the parallel transport of a vector round a small circuit.

§ 5. EVALUATION OF THE HIGHER DERIVATIVES OF THE WORLD-FUNCTION

To evaluate the higher covariant derivatives of the world-function Ω, we start from the first and third of (95):
\begin{align*}
\Omega_{i_1j_1} &= g_{i_1j_1} + \frac{3}{2} k \int_{u_1}^{u_2} (u - u_1)^2 g_{i_1a} g_{j_1b} S_{abpq} U_p U_q \, du + O_2, \\
\Omega_{i_2j_2} &= g_{i_2j_2} + \frac{3}{2} k \int_{u_1}^{u_2} (u - u_1)^2 g_{i_2a} g_{j_2b} S_{abpq} U_p U_q \, du + O_2.
\end{align*}
(112)

Our plan is to use the scheme shown in Fig. 3 and differentiate with respect to v. In view of (107), we can (to the order of approximation required) leave the propagators in the integrals untouched. As for the other terms, we get zero from the leading terms on the right hand sides of (112); for $g_{i_1j_1}$ is independent of P_2 and the covariant derivative of $g_{i_2j_2}$ vanishes. Further, we have, as in (109),
\begin{align*}
\frac{\delta}{\delta v} U_p &= k g_{pk_2} V_{k_2} + O_1, \\
\frac{\delta}{\delta v} S_{abpq} &= S_{abpqck_1}(u - u_1) g_{ck_2} V_{k_2} + O_2,
\end{align*}
(113)

where the fifth suffix on S indicates covariant differentiation.

By straightforward calculation, interchange of the numbers 1 and 2, interchange of suffixes, and the general rule of interchange (§ 1), we easily find all the third-order derivatives of the world-function. Thus, from the first of (112) we get
\begin{align*}
\Omega_{i_1j_1k_2} &= 3 k^2 \int_{u_1}^{u_2} (u_2 - u)^2 g_{i_1a} g_{j_1b} g_{k_2c} S_{abcq} U_q \, du \\
&\quad + \frac{3}{2} k^2 \int_{u_1}^{u_2} (u_2 - u)(u - u_1) g_{i_1a} g_{j_1b} g_{k_2c} S_{abcq} U_p U_q \, du + O_2.
\end{align*}
(114)
This, and other similar formulae, are best expressed in terms of components on an OT parallel-transported along \(P_1P_2 \). We find the following values for the invariant components of the third-order covariant derivatives of the world-function \(\Omega(P_1P_2) \):

\[
\Omega_{(a_1b_1c_1)} = -3k^2U(a) \int_{u_1}^{u_2} (u_2 - u)^2 S_{(abcq)} du \\
+ \frac{3}{2} k^2 U(a) U(q) \int_{u_1}^{u_2} (u_2 - u)^3 S_{(abpqo)} du + O_2,
\]

\[
\Omega_{(a_1b_2c_2)} = 3k^2U(a) \int_{u_1}^{u_2} (u_2 - u)^2 S_{(abcq)} du \\
+ \frac{3}{2} k^2 U(a) U(q) \int_{u_1}^{u_2} (u_2 - u)^3 (u - u_1) S_{(abpqo)} du + O_2,
\]

\[
\Omega_{(a_2b_2c_2)} = -3k^2U(a) \int_{u_1}^{u_2} (u - u_1)^2 S_{(bcqa)} du \\
+ \frac{3}{2} k^2 U(a) U(q) \int_{u_1}^{u_2} (u_2 - u)(u - u_1)^2 S_{(bcpqao)} du + O_2,
\]

\[
\Omega_{(a_2b_2c_2)} = 3k^2U(a) \int_{u_1}^{u_2} (u - u_1)^2 S_{(abcq)} du \\
+ \frac{3}{2} k^2 U(a) U(q) \int_{u_1}^{u_2} (u - u_1)^3 S_{(abpqo)} du + O_2.
\]

Note that in all these formulae except the third the suffixes \(abc \) on the \(S \)-term occur in their alphabetical order. In view of the general rule of interchange (§ 1), all the third-order derivatives are contained in the above list. To pass from invariant to tensor form, we may put the \(U \)-terms into the integrals and substitute as follows:

\[
U(a) = U^i \lambda_i^a, \quad S_{(abcq)} = S_{ijkm} \lambda_i^a \lambda_j^b \lambda_k^c \lambda_m^q, \\
\lambda_i^a = g_{ij} \lambda_i^b, \quad \Omega_{(a,b_2c_2)} = \Omega_{i,b_1} = g_{ij} \lambda_i^a \lambda_j^b \lambda_k^c \lambda_m^q,
\]

and similar expressions.

We used in (112) only the first and third of (95); it is an interesting exercise to obtain \(\Omega_{(a,b_2c_2)} \) from the second of (95) and verify that the result is the same as that written in (115).

To get the covariant derivatives of the fourth order, we have merely to repeat the above process. We get the following formulae for the invariant components of the fourth-order covariant derivatives of the
world-function $\Omega(P_1P_2)$:

$$\Omega(a_1b_1c_1d_1) = 3k^3 \int_{u_1}^{u_2} (u_2 - u)^2 S_{(abcd)} du$$

$$- 3k^3 U(q) \int_{u_1}^{u_2} (u_2 - u)^3 (S_{(abcd)} + S_{(abcq)}) du$$

$$+ \frac{3}{2} k^3 U(p) U(q) \int_{u_1}^{u_2} (u_2 - u)^4 S_{(abpqcd)} du + O_2,$$

$$\Omega(a_1b_1c_1d_2) = - 3k^3 \int_{u_1}^{u_2} (u_2 - u)^2 S_{(abcd)} du$$

$$- 3k^3 U(q) \int_{u_1}^{u_2} (u_2 - u)^2 (u - u_1) S_{(abcd)} du$$

$$+ 3k^3 U(q) \int_{u_1}^{u_2} (u_2 - u)^3 S_{(abqc)} du$$

$$+ \frac{3}{2} k^3 U(p) U(q) \int_{u_1}^{u_2} (u_2 - u)^3 (u - u_1) S_{(abpqcd)} du + O_2,$$ \hspace{1cm} (117)

$$\Omega(a_1b_1c_2d_2) = 3k^3 \int_{u_1}^{u_2} (u_2 - u)^2 S_{(abcd)} du$$

$$+ 3k^3 U(q) \int_{u_1}^{u_2} (u_2 - u)^2 (u - u_1) (S_{(abcd)} + S_{(abcq)}) du$$

$$+ \frac{3}{2} k^3 U(p) U(q) \int_{u_1}^{u_2} (u_2 - u)^2 (u - u_1)^2 S_{(abpqcd)} du + O_2.$$

That is enough to write down, because the others can be obtained by interchanges. The above expressions can be altered in form by integrations by parts, but without any great advantage. It is of interest to note that by the general rule of interchange (\S 1), we know that

$$\Omega(a_1b_1c_2d_2) = \Omega(c_2d_2a_1b_1).$$ \hspace{1cm} (118)

This means that the last expression in (117) must be invariant in form under the interchanges

$$1 \leftrightarrow 2, \quad a \leftrightarrow c, \quad b \leftrightarrow d.$$ \hspace{1cm} (119)

It is by no means obvious from inspection that this is so; the symmetries of the S-tensor are involved.
§ 6. SOLUTION OF FINITE GEODESIC TRIANGLES IN SPACE-TIME OF SMALL CURVATURE

Just as the survey of Euclidean space is based on three-dimensional triangulation and the solution of triangles with straight sides, so the astronomical survey of space-time calls for four-dimensional triangulation and the solution of geodesic triangles. Some of the sides of these triangles may be null geodesics; the following argument covers them, the word ‘geodesic’ being understood to include ‘null geodesic’. Indeed, when we use the method of the world-function, it is seldom necessary to treat null geodesics separately.

In the solution of geodesic triangles, there are two cases for which significant results can be obtained without too much labour. These are (i) the case where the Riemann tensor is small, and (ii) the case where the triangle is small. We shall now proceed with the solution of a finite geodesic triangle, assuming the Riemann tensor small, an assumption made in the preceding calculations.

Consider the geodesic triangle $P_0P_1P_2$ (Fig. 4). Let v be a special parameter on P_0P_1 and P_0P_2, running between the same terminal values on both geodesics, $v = 0$ at P_0 and $v = \bar{v}$ at P_1 and P_2. Let Q_1 and Q_2 be current points on the two geodesics having the same value of v, and let the geodesic Q_1Q_2 be drawn. All such geodesics (the family of course includes P_1P_2) form a 2-space. Let u be a special parameter.

1 See remarks on smallness in § 3.
on each of these cross-geodesics, running from \(u = u_1 \) on \(P_0P_1 \) and \(u = u_2 \) on \(P_0P_2 \). We have then a 2-space \(x^i = x^i(u, v) \), all the parametric lines of \(u \) being geodesics, and two of the parametric lines of \(v \) being geodesics, viz. \(u = u_1 \) and \(u = u_2 \). Writing as usual \(U^i = \partial x^i/\partial u \), \(V^i = \partial x^i/\partial v \), we have
\[
\frac{\delta U^i}{\delta v} = \frac{\delta V^i}{\delta u}, \quad \frac{\delta U^i}{\delta u} = 0,
\]
\[U^i = 0 \text{ for } v = 0, \quad \frac{\delta V^i}{\delta v} = 0 \text{ for } u = u_1 \text{ and } u = u_2. \tag{120}\]

The world-function of \(Q_1 \) and \(Q_2 \) is a function of \(v \) only, and we write \(\Omega(Q_1Q_2) = \Omega(v) \). Then
\[
D_v\Omega = \Omega_{i_1}V^i_1 + \Omega_{i_2}V^i_2, \tag{121}\]
where \(D_v = d/dv \) and the secondary (numerical) subscripts refer to \(Q_1 \) and \(Q_2 \). Further, by (120),
\[
D^2_v\Omega = \Omega_{i_1j_1}V^i_1V^j_1 + 2\Omega_{i_1j_2}V^i_1V^j_2 + \Omega_{i_2j_1}V^i_2V^j_1,
\]
\[
D^3_v\Omega = \Omega_{i_1j_1k_1}V^i_1V^j_1V^k_1 + 3\Omega_{i_1j_2k_2}V^i_1V^j_2V^k_2
\]
\[\quad + 3\Omega_{i_2j_1k_2}V^i_2V^j_1V^k_2 + \Omega_{i_2j_2k_2}V^i_2V^j_2V^k_2. \tag{123}\]
\[
D^4_v\Omega = \Omega_{i_1j_1k_1m_1}V^i_1V^j_1V^k_1V^m_1 + 4\Omega_{i_1j_2k_2m_2}V^i_1V^j_2V^k_2V^m_2
\]
\[\quad + 6\Omega_{i_1j_3k_3m_3}V^i_1V^j_3V^k_3V^m_3 + 4\Omega_{i_2j_2k_2m_2}V^i_2V^j_2V^k_2V^m_2
\]
\[\quad + \Omega_{i_2j_3k_3m_3}V^i_2V^j_3V^k_3V^m_3. \tag{124}\]

We now expand \(\Omega(\vec{v}) \) as a Taylor series with remainder:
\[
\Omega(\vec{v}) = \Omega_0 + v^i(D_v\Omega)_i + \frac{1}{2}v^iD^2_v\Omega^i + \frac{1}{6}v^iD^3_v\Omega^i
\]
\[\quad + \frac{1}{6}\int_0^v (\vec{v} - v)^3D^4_v\Omega dv, \tag{125}\]
where the subscript 0 indicates evaluation at \(v = 0 \). From the coincidence limits (69) and (121)–(123), we have
\[
\Omega_0 = 0, \quad (D_v\Omega)_i = 0, \quad (D^3_v\Omega)_i = 0, \tag{126}\]
and, with the aid of (17),
\[
\vec{v}^2(D^2_v\Omega)_i = \overrightarrow{P_0P_1}^2 + \overrightarrow{P_0P_2}^2 - 2\overrightarrow{P_0P_1} \cdot \overrightarrow{P_0P_2}, \tag{127}\]
where these symbols are defined as follows:

\[
\vec{P}_0P^2_1 = 2\Omega(P_0P_1), \quad \vec{P}_0P^2_2 = 2\Omega(P_0P_2),
\]

\[
\vec{P}_0P_1 \cdot \vec{P}_0P_2 = \Omega_t(P_0P_1)\Omega_t(P_0P_2).
\] (128)

This is a suggestive notation, but it must be used with some caution because \(\Omega\) may be negative. If we were dealing with a space of positive-definite metric, then \(\vec{P}_0P^2_1\) would be the square of the geodesic distance \(P_0P_1\), and \(\vec{P}_0P_1 \cdot \vec{P}_0P_2\) would be the product of the distances \(P_0P_1\), \(P_0P_2\) and the cosine of the angle between the two directions.

In the above notation, (125) may be written

\[
\vec{P}_1P^2_2 = \vec{P}_0P^2_1 + \vec{P}_0P^2_2 - 2\vec{P}_0P_1 \cdot \vec{P}_0P_2 + \phi, \quad (129)
\]

where

\[
\phi = \frac{1}{3} \int_0^v (\ddot{v} - v)^3 D_v^3 \Omega dv. \quad (130)
\]

This term \(\phi\) is a 3-point invariant. It is the very essence of gravitational theory because it represents the deviation of space-time from flatness; if \(\phi = 0\), then (129) becomes the Minkowskian form of the elementary trigonometrical formula

\[
c^2 = a^2 + b^2 - 2ab \cos C. \quad (131)
\]

In order to evaluate \(\phi\), we introduce an OT \(\lambda^i_{(a)}\) which is chosen arbitrarily at \(P_0\) and carried throughout space-time by parallel transport along all geodesics drawn out from \(P_0\). Taking components along this OT, (124) may be written

\[
\begin{align*}
D_v^4 \Omega &= \Omega_{(a_1b_1c_1d_1)} V^{(a_1)} V^{(b_1)} V^{(c_1)} V^{(d_1)} \\
&\quad + 4\Omega_{(a_1b_1c_1d_2)} V^{(a_1)} V^{(b_1)} V^{(c_1)} V^{(d_2)} + \ldots, \quad (133)
\end{align*}
\]

in which the \(V\)'s are constants and \(\Omega = \Omega(Q_1, Q_2)\). Are we entitled to substitute for the \(\Omega\)-terms the values obtained in (117)? Not accurately, for to apply (117) we should use an OT with parallel transport along \(Q_1Q_2\) in Fig. 4, and not along the geodesics drawn from \(P_0\). But it is easy to see that, to the order of approximation under consideration, we can substitute in (133) from (117), the error being absorbed into the \(O_2\) residue. When we make this substitution, a number of terms disappear on account of the skew-symmetry of the
Riemann tensor hidden in the S-terms; in fact, no S-term survives if contracted, with respect to any three of its four leading indices, with the components of any single vector \(V(a_i) \) or \(V(a_2) \): thus, for example,

\[
S_{(abcq)d} V^{(a_i)} V^{(b_i)} V^{(c_i)} V^{(e_i)} = 0. \tag{134}
\]

To present the final result in simple form, we shall use a notation of which the following examples will be a sufficient explanation \(^1\):

\[
[1122] = S_{(abcd)} V^{(a_i)} V^{(b_i)} V^{(c_i)} V^{(d_i)} = [2211],
\]

\[
[112U2] = S_{(abcq)d} V^{(a_i)} V^{(b_i)} V^{(c_i)} U^{(q)} V^{(d_i)}. \tag{135}
\]

Here is the result: For a geodesic triangle (as in Fig. 4) in space-time of small curvature \((O_1)\), we have the formula (129) with \(\phi \) given by

\[
\phi = \phi_0 + \phi_1 + \phi_2 + O_2,
\]

\[
\phi_0 = 3k^3 \int_0^1 \int_0^1 \left[(v - u) \left\{ (u_2 - u)^2 + (u - u_1)^2 \right\} [1122] \right] \, dudv
\]

\[
\phi_1 = 2k^3 \int_0^1 \int_0^1 \left[(v - u)^3 \left(2(u_2 - u)^3 [112U1] + 3(u_2 - u)^2 (u - u_1) [112U2] - 3(u_2 - u)(u - u_1)^2 [221U1] - 2(u - u_1)^3 [221U2] \right) \right] \, dudv, \tag{136}
\]

\[
\phi_2 = \frac{1}{2} k^3 \int_0^1 \int_0^1 \left[(v - u) \left\{ (u_2 - u)^4 [11UU11] + 4(u_2 - u)^3 (u - u_1) [11UU12] + 3(u_2 - u)^2 (u - u_1)^2 ([11UU22] + [22UU11]) + 4(u_2 - u)(u - u_1)^3 [22UU21] + (u - u_1)^4 [22UU22] \right\} \right] \, dudv,
\]

\[
k^{-1} = u_2 - u_1.
\]

The three parts into which \(\phi \) is split involve respectively the Riemann tensor itself, its first-order covariant derivatives, and its second-order covariant derivatives.

We shall return to the above formula after introducing quasi-Cartesian coordinates in § 8.

§ 7. SOLUTION OF SMALL GEODESIC TRIANGLES

In the preceding section we dealt with a finite geodesic triangle in space-time of small curvature; now we consider a small geodesic

\(^1\) These quantities are evaluated at a general point \(Q(u, v) \) on \(Q_1 Q_2 \), with \(S \) and \(U \) calculated at \(Q \) and the \(V \)’s at \(Q_1 \) and \(Q_2 \).
triangle, and make no assumption about the curvature of space-time — it may be finite.

Let P_0 (Fig. 5) be any point in space-time, and let Γ_1 and Γ_2 be any two geodesics drawn out from P_0. Let v be a special parameter on Γ_1 and on Γ_2, with $v = 0$ at P_0, and let P_1 and P_2 be points on Γ_1 and Γ_2, respectively, corresponding to the same value of v. Then the world-function $\Omega(P_1P_2)$ is a function of v. We expand it in a series

$$\Omega(P_1P_2) = \Omega(v) = \Omega_0 + v(D_v\Omega)_0 + \frac{1}{3}v^2(D_v^2\Omega)_0 + \frac{1}{6}v^3(D_v^3\Omega)_0 + \frac{1}{24}v^4(D_v^4\Omega)_0 + O_5, \quad (137)$$

where the subscript 0 indicates evaluation for $v = 0$, and O_5 indicates a term of the order of v^5. The derivatives of Ω are precisely as written out in (121)–(124), V^i_1 and V^i_2 being the tangent vectors dx^i/dv on Γ_1 and Γ_2, respectively. It is convenient to write

$$\lambda^i = v(V^i_1)_0, \quad \mu^i = v(V^i_2)_0. \quad (138)$$

When $v = 0$, P_1 and P_2 coincide at P_0, and we can use the coincidence limits (69). Thus, with everything evaluated at P_0, we find

$$\Omega(P_1P_2) = \Omega(v) = \frac{1}{2}(\lambda^i - \mu^i)(\lambda^i - \mu^i) + \frac{1}{4}S_{ijkl}^{\lambda^i\lambda^j\lambda^k\mu^m} + O_5. \quad (139)$$

Applying (2) and (17) and the notation (128), we have

$$\lambda_i\lambda^i = 2\Omega(P_0P_1) = \overrightarrow{P_0P_1}^2,$$

$$\mu_i\mu^i = 2\Omega(P_0P_2) = \overrightarrow{P_0P_2}^2,$$

$$\lambda_i\mu^i = \Omega_{i_0}(P_0P_1)\Omega^{i_0}(P_0P_2) = \overrightarrow{P_0P_1} \cdot \overrightarrow{P_0P_2}. \quad (140)$$

1 If we wanted to be more precise mathematically, we would substitute for the residue O_5 an integral remainder as in (125). But we are here pursuing a different method of approximation, based on the smallness of v rather than on the smallness of the Riemann tensor.

2 When we take the coincidence limit of (124), all terms except the middle one disappear on account of the skew-symmetry of the Riemann tensor.
and so (139) may be written

\[\overrightarrow{P_1P^2_2} = \overrightarrow{P_0P^2_1} + \overrightarrow{P_0P^2_2} - 2\overrightarrow{P_0P_1} \cdot \overrightarrow{P_0P_2} + \psi + O_5, \]

(141)

where, by (48) and 1–(99),

\[\psi = \frac{1}{3}S_{ijklm}^{\lambda \mu \mu'^k} \mu'^m = -\frac{1}{3}R_{ijklm}^{\lambda \mu \mu'^k} \mu'^m = -\frac{1}{3}K(\lambda^{ij}\mu^j\mu_j - (\lambda^i\mu_i)^2) = -\frac{1}{3}K(\overrightarrow{P_0P^2_1P_0P^2_2} - (\overrightarrow{P_0P_1} \cdot \overrightarrow{P_0P_2})^2), \]

(142)

\(K \) being the Riemannian curvature of space-time associated with any 2-element of the small triangle \(P_0P_1P_2 \).

Since \(\psi \) is \(O_4 \), we can afford to treat the triangle as if space-time were flat, the error so caused being absorbed into the \(O_5 \) residue. Since three null lines cannot form a triangle in flat space-time, at least one side of \(P_0P_1P_2 \) is not null. Let \(\varepsilon \) denote the indicator of that side and \(\varepsilon' \) the indicator of the perpendicular dropped on that side from the opposite vertex. Then it is easy to show that, for any geodesic triangle in flat space-time,

\[\overrightarrow{P_0P^2_1P_0P^2_2} - (\overrightarrow{P_0P_1} \cdot \overrightarrow{P_0P_2})^2 = 4\varepsilon\varepsilon' \Delta^2, \]

(143)

where \(\Delta \) is the 2-area of the triangle. Thus for a small geodesic triangle we have the formula

\[\overrightarrow{P_1P^2_2} = \overrightarrow{P_0P^2_1} + \overrightarrow{P_0P^2_2} - 2\overrightarrow{P_0P_1} \cdot \overrightarrow{P_0P_2} - \frac{4}{3}K\varepsilon\varepsilon' \Delta^2 + O_5 \]

(144)

or, equivalently,

\[\Omega(P_1P_2) = \Omega(P_0P_1) + \Omega(P_0P_2) - \Omega_{\varepsilon_0}(P_0P_1)\Omega_{\varepsilon_0}(P_0P_2) - \frac{4}{3}K\varepsilon\varepsilon' \Delta^2 + O_5. \]

(145)

It is interesting to compare (129) (finite triangle, small curvature) with (141) (small triangle, finite curvature). The leading terms agree, and we have \(\phi \) in (129) where we have \(\psi \) in (141). To reconcile the two formulae, let the triangle in (129) become small. That means letting \(\nu_2 \rightarrow \nu_1 \) in (136): then \(\phi_1 \) and \(\phi_2 \) disappear, while we find immediately that \(\phi_0 \) reduces to \(\psi \) as written in (142) in terms of the S-tensor.
§ 8. QUASI-CARTESIAN COORDINATES

In flat space-time there exist coordinates such that, throughout space-time, the metric tensor is

\[g_{ij} = \eta_{ij} = \text{diag}(1, 1, 1, -1), \]

(146)

and the world-function reads

\[\Omega(x', x) = \frac{1}{2} \eta_{ij} (x^i - x^i) (x'^j - x'^j). \]

(147)

If space-time is nearly flat (small Riemann tensor), it is natural to assume the existence of coordinates such that

\[g_{ij} = \eta_{ij} + \gamma_{ij}, \]

(148)

where the \(\gamma \)'s and their derivatives are small. This procedure has been widely used in relativity, but some obscurity exists regarding the class of coordinates for which the approximation is valid \(^1\), and we shall approach the matter in a different and more definite way.

Let \(P_0 \) (Fig. 6) be any point in space-time and \(\lambda^i_{(a)} \) an orthonormal tetrad (OT) at \(P_0 \). We call \(P_0 \) the origin and the tetrad the vector base. Let \(P \) be any other point such that there exists a unique geodesic \(P_0 P \), and let \(v \) be a special parameter on this geodesic, taking the values \(v = 0 \) at \(P_0 \) and \(v = \hat{v} \) at \(P \). Then there exists a vector \(\hat{v} (\text{d}x^i / \text{d}v) \) tangent to the geodesic at \(P_0 \), and we denote its contravariant components [cf. 1–(54)] on the vector base as follows:

\[X^{(a)} = \hat{v} \left(\frac{\text{d}x^i}{\text{d}v} \right)_{P_0} \lambda^i_{(a)}. \]

(149)

In view of (17), the components may also be expressed in terms of the derivatives of the world-function \(\Omega(P_0 P) \), in both covariant and

\(^1\) In Euclidean geometry, the curvature of a sphere of large radius is small. But there exists no coordinate system covering the whole sphere for which a formula like (148) holds with small \(\gamma \)'s; we would have to use a great number of overlapping coordinate systems.
contravariant forms as follows:

\[
X_{(a)} = - \Omega_{t_a}(P_0P)\lambda^t_{(a)}, \\
X^{(a)} = - \Omega^t_{a}(P_0P)\lambda^t_{(a)}.
\] (150)

These are 2-point invariants with respect to general coordinate transformations. We call them the quasi-Cartesian coordinates\(^1\) (briefly QC) of \(P\) relative to the origin \(P_0\) and the vector base \(\lambda^t_{(a)}\).

It is easy to see that

\[
X^{(a)}X_{(a)} = 2\Omega(P_0P) = \varepsilon L^2,
\] (151)

where \(\varepsilon\) is the indicator of \(P_0P\) and \(L\) its measure. For a pair of points \(P_1, P_2\), we find\(^2\)

\[
X^{(a)}_{(a)}X_{(a)} = \Omega_t(P_0P_1)\Omega^t(P_0P_2).
\] (152)

In ordinary geometry, a change of the origin of rectangular Cartesian coordinates is trivial, but the effect of rotating the axes is, by contrast, rather sophisticated; it involves orthogonal matrices, Eulerian angles, etc. In curved space-time, on the other hand, a change of vector base is comparatively trivial (a mere Lorentz transformation), but a change of origin is a much more delicate affair. Postponing the change of origin to § 9, we may describe the effect of changing the vector base from \(\lambda^t_{(a)}\) to \(\mu^t_{(a)}\) briefly as follows. Let \(X\) and \(Y\) refer to the corresponding QC of some point \(P\). Then, by 1–(52) we obtain

\[
Y_{(b)} = L_{(b)}^{(a)}X_{(a)}, \quad Y^{(b)} = \eta^{(bc)}L^{(a)}_{(c)}\eta^{ad}X^{(d)},
\] (153)

where

\[
L_{(b)}^{(a)} = \lambda^t_{(a)}\mu^t_{(b)}
\] (154)

the Lorentz matrix as in 1–(51).

In Newtonian physics, the power of the usual vector notation lies in the suppression of the axes on which the components of the vector are to be taken. We think of \(\overrightarrow{PQ}\) as a geometric object, a thing-in-itself. If we exercise some caution, we may likewise think of the dis-

\(^1\) They are also known as normal coordinates, but their importance warrants a more striking name.

\(^2\) This compact notation should not cause confusion. \(X^{(a)}\) and \(X_{(a)}\) are given by (150) on substituting \(P_1\) and \(P_2\) respectively for \(P\), and there is summation with respect to the Lorentz index \(a\). If we chose to write \(X^{(a)}\) for the QC of \(P_1\) and \(Y_{(a)}\) for those of \(P_2\), then the left hand side of (152) would read \(X^{(a)}Y_{(a)}\).
placement from P_0 to P_1 in space-time as a thing-in-itself, without bothering about the vector base which is used in (150). Thus we boldly write $\overrightarrow{P_0P}$ as a symbol to stand for $X^{(a)}$ or $X_{(a)}$, and this fits in admirably with the notation already introduced in (128), for in that notation we have

$$\overrightarrow{P_0P^2} = X^{(a)}X_{(a)}, \quad \overrightarrow{P_0P^1} \cdot \overrightarrow{P_0P^2} = X^{(a_1)}X_{(a_2)}, \quad (155)$$

as we see from (151) and (152). These quantities are obviously independent of the vector base, since the vector base does not appear in (151) and (152).

Fig. 7 – Finite geodesic triangle and quasi-Cartesian coordinates

Let us now return to the finite geodesic triangle discussed in § 6, and examine the solution with the aid of QC. Taking P_0 (Fig. 7) as the origin of QC, the formula (129) may be written

$$\overrightarrow{P_1P^2} = \xi^{(a)}\xi_{(a)} + \phi, \quad (156)$$

where

$$\xi^{(a)} = X^{(a_2)} - X^{(a_1)}. \quad (157)$$

For ϕ we have the expression (136), with the notation (135). We are now to put

$$\xi V^{(a_1)} = X^{(a_1)}, \quad \xi V^{(a_2)} = X^{(a_2)}. \quad (158)$$

Further, it is easy to see that in the approximation for ϕ we may

1 We must not write P_1P_2 for $\xi^{(a)}$; that would be a fatal mistake.
think of the triangle as lying in flat space-time, and put
\[U(a) = (v/\sigma)\xi(a). \]
(159)

We modify the notation (135), writing
\[\{1122\} = S_{(abcd)}X^{(a)}X^{(b)}X^{(c)}X^{(d)} = \{2211\}, \]
\[\{11222\} = S_{(abced)}X^{(a)}X^{(b)}X^{(c)}X^{(d)}X^{(e)} = \{22112\}, \]
(160)
and so on. Then, if we write \(v/\sigma = w \), we find that the solution of a finite geodesic triangle in space-time of small curvature is
\[\overrightarrow{P_1P_2} = \xi(a)\xi(a) + \phi, \]
\[\phi = \phi_0 + \phi_1 + \phi_2 + O_2, \]
\[\phi_0 = 3k^3 \int_0^1 (1 - w)^3 dw \int_{u_1}^{u_2} [(u_2 - u)^2 + (u - u_1)^2] \{1122\} du, \]
\[\phi_1 = 2k^3 \int_0^1 w(1 - w)^3 dw \int_{u_1}^{u_2} [2(u_2 - u)^3 \{11221\} + 3(u_2 - u)^2(u - u_1)\{11222\} + 3(u_2 - u)(u - u_1)^2\{22111\} + 2(u - u_1)^3\{22112\}] du, \]
\[\phi_2 = \frac{1}{2}k^3 \int_0^1 w^2(1 - w)^3 dw \int_{u_1}^{u_2} [(u_2 - u)^4 \{112211\} + 4(u_2 - u)^3(u - u_1)\{112212\} + 3(u_2 - u)^2(u - u_1)^2(\{112222\} + \{221111\}) + 4(u_2 - u)(u - u_1)^3\{221112\} + (u - u_1)^4\{221122\}] du, \]
\[k^{-1} = u_2 - u_1. \]
(161)

There are other equivalent forms. On account of the symmetry of the S-tensor, we can change a leading 1122 into 2211. Further, since we are at the limit of explicit approximation, we can treat covariant differentiation in \(\phi \) as if it were partial differentiation, and so we can interchange the last two numbers in a 6-index symbol. For example,
\[\{1122\} = \{2211\}, \quad \{11221\} = \{22111\}, \quad \{112212\} = \{112221\} + O_2. \]
(162)

1 Any one of these symbols vanishes if it has three or four like numbers in the first four places. This is due to the skew-symmetry of the Riemann tensor.
We shall now find an approximate expression for the metric tensor for QC in a space-time of small curvature. The result could be obtained from (161) by letting \(u_2 \) tend to \(u_1 \), so that the triangle \(P_0P_1P_2 \) becomes very thin, in Fig. 8.

But it is better to go back to the deviation equation and (91), changing the notation to suit Fig. 4 (interchange \(u \) and \(v \)). If \(\tilde{u} \) denotes the infinitesimal increment in \(u \) in passing from \(P_0P_1 \) to \(P_1P_2 \), the QC of \(P_1, P_2 \) may be written \(X_{(a)} \), \(X_{(a)} + dX_{(a)} \) respectively, where

\[
X_{(a)} = \tilde{\sigma}V_{(a)}, \quad dX_{(a)} = \tilde{\sigma}\tilde{u} \frac{\partial}{\partial \tilde{u}} V_{(a)}. \tag{163}
\]

When applied to the geodesics \(P_0P_1, P_0P_2 \) of Fig. 4, brought close together as in Fig. 8, (91) gives

\[
\frac{\partial}{\partial \tilde{u}} V_{(a)} = \tilde{\sigma}^{-1}U_{(a_2)} + \tilde{\sigma}^{-2}V^{(b)} U^{(e_2)} V^{(d)} \int_0^\infty v(\tilde{\sigma} - v)R_{(abcd)} dv + O_2. \tag{164}
\]

When multiplied by \(\tilde{u}\tilde{\sigma} \), this may be written

\[
\tilde{u}U_{(a_2)} = dX_{(a)} - X^{(b)} dX^{(c)} X^{(d)} \int_0^1 w(1 - w) R_{(abcd)} dw + O_2, \tag{165}
\]

changing to the parameter \(w = v/\tilde{\sigma} \). Hence we have for the metric form of space-time for the quasi-Cartesian coordinates

\[
\Phi = \tilde{u}^2 U_{(a_2)} U^{(a_2)} = g_{(ab)} dX_{(a)} dX_{(b)},
\]

\[
g_{(ab)} = \eta_{(ab)} + \gamma_{(ab)},
\]

\[
\gamma_{(ab)} = -2X^{(c)} X^{(d)} \int_0^1 w(1 - w) R_{(abcd)} dw + O_2. \tag{166}
\]

In the particular case of a space-time with small constant curvature \(K \), we have

\[
R_{(abcd)} = K(\eta_{(ab)} \eta_{(cd)} - \eta_{(ad)} \eta_{(cb)}), \tag{167}
\]

and hence

\[
\gamma_{(ab)} = \frac{1}{3} K(X_{(a)} X_{(b)} - \eta_{(ab)} X^{(c)} X_{(c)}) + O_2. \tag{167a}
\]
At the origin P_0 of the QC we have, by (166),

$$g(ab) = \eta(ab), \quad \frac{\partial g(ab)}{\partial X(c)} = 0,$$

$$\frac{\partial^2 g(ab)}{\partial X(c) \partial X(d)} = -2(R_{acba} + R_{adbc}) \int_0^1 w(1 - w) dw = S_{abcd}.$$ \hspace{1cm} (168)

§ 9. Changing the Origin of Quasi-Cartesian Coordinates

The construction of quasi-Cartesian coordinates (QC), as in § 8, requires that there should be a unique geodesic joining the origin P_0 to the current point P. If there are two or more joining geodesics, the construction fails, and indeed the whole approximate treatment of geodesic deviation, as we have used it, breaks down. Now it may be possible to cover the whole of space-time with a QC system (it certainly is possible if space-time is flat), but to cope with physical situations which actually arise it is desirable to suppose that geodesics drawn from the origin P_0 may intersect. There will however be some domain D containing P_0 without intersections, and in D the

1 This means that we here face up to the existence of conjugate points: cf. II–§ 3.

Synge
QC may be set up (Fig. 9). To extend the QC, we then choose another point in \(D \), say \(P_0' \), and use it as origin of new QC with domain \(D' \). In this way we can carry on the QC indefinitely.

Accordingly we seek formulae for the transformation of QC corresponding to change of origin. As remarked earlier, this is a trivial transformation in flat space-time, but a much more complicated matter when space-time is curved.

Let \(P_0 \) and \(P_1 \) be two origins of QC (Fig. 10) and \(P_2 \) a current point lying in the domains of validity of both QC. To avoid any possible ambiguity, we write very explicitly

\[
\text{QC of } P_0 \text{ relative to } P_1 = X_{\langle a \rangle}(P_1 P_0) = -\Omega_{\langle i \rangle}(P_1 P_0)\lambda_{\langle i \rangle},
\]

\[
\text{QC of } P_2 \text{ relative to } P_0 = X_{\langle a \rangle}(P_2 P_0) = -\Omega_{\langle i \rangle}(P_0 P_2)\lambda_{\langle i \rangle},
\]

\[
\text{QC of } P_2 \text{ relative to } P_1 = X_{\langle a \rangle}(P_2 P_1) = -\Omega_{\langle i \rangle}(P_1 P_2)\lambda_{\langle i \rangle}.
\]

(169)

Since the effect of changing the vector base is trivial (a mere Lorentz transformation), we shall suppose for simplicity that \(\lambda_{\langle i \rangle} \) is parallel (along \(P_2 P_1 \)) to \(\lambda_{\langle i \rangle} \), so that, in terms of the parallel propagator,

\[
\lambda_{\langle i \rangle} = g_{\langle i j \rangle}\lambda_{\langle i \rangle}.
\]

(170)

We have then from (169)

\[
X_{\langle a \rangle}(P_2 P_1) - X_{\langle a \rangle}(P_1 P_0) - X_{\langle a \rangle}(P_0 P_2) = \theta_{\langle a \rangle},
\]

(171)

where

\[
\theta_{\langle a \rangle} = \lambda_{\langle i \rangle}[-\Omega_{\langle j \rangle}(P_1 P_2) + \Omega_{\langle i \rangle}(P_0 P_2)g_{\langle i j \rangle} + \Omega_{\langle i \rangle}(P_1 P_0)].
\]

(172)

Define the 2-point tensor \(h_{\langle i j \rangle} \) by

\[
h_{\langle i j \rangle} = g_{\langle i j \rangle} + \Omega_{\langle i j \rangle}(P_0 P_1),
\]

(173)

and define the 3-point invariant \(\chi \) by

\[
\chi = \Omega(P_1 P_2) - \Omega(P_0 P_1) - \Omega(P_0 P_2) + \Omega_{\langle i \rangle}(P_0 P_1)\Omega_{\langle i \rangle}(P_0 P_2),
\]

(174)

so that, on differentiation with respect to \(P_1 \),

\[
\chi_{\langle i \rangle} = \Omega_{\langle i \rangle}(P_1 P_2) - \Omega_{\langle i \rangle}(P_0 P_1) + \Omega_{\langle i j \rangle}(P_0 P_1)\Omega_{\langle i \rangle}(P_0 P_2).
\]

(175)

Then (172) may be written

\[
\theta_{\langle a \rangle} = \lambda_{\langle i \rangle}[-\chi_{\langle i \rangle} + h_{\langle i j \rangle}\Omega_{\langle i \rangle}(P_0 P_2)].
\]

(176)
This value is to be inserted in (171), which may be written as follows to show the law of transformation of quasi-Cartesian coordinates when the origin is changed from \(P_0 \) to \(P_1 \):

\[
\mathbf{X}_{(a)}(\mathbf{P}_1\mathbf{P}_2) = \mathbf{X}_{(a)}(\mathbf{P}_1\mathbf{P}_0) + \mathbf{X}_{(a)}(\mathbf{P}_0\mathbf{P}_2) + \theta_{(a)}. \tag{177}
\]

The significance of this formula lies in the fact that we have actually computed \(\theta_{(a)} \) approximately for space-time of small curvature. Thus (95) gives, with appropriate changes in notation,

\[
\lambda_{i(j)} = \frac{3}{2} X^{(a)}(\mathbf{P}_0\mathbf{P}_1) X^{(a)}(\mathbf{P}_0\mathbf{P}_1) \int_0^1 v(1 - v) S_{(ijcd)} \, dv + O_2, \tag{178}
\]

where the integration is taken along \(\mathbf{P}_0\mathbf{P}_1 \) with respect to a special parameter \(v \) which takes the values zero and unity at \(\mathbf{P}_0 \) and \(\mathbf{P}_1 \) respectively. As for \(\gamma \), on comparing (174) with (161), we see that,

\[
\gamma = \frac{1}{2} \phi + O_2, \tag{179}
\]

where \(\phi \) is given in (161) by a complicated formula, to be interpreted with the aid of Fig. 7.

§ 10. FERMI COORDINATES AND OPTICAL COORDINATES

Quasi-Cartesian coordinates, as discussed in the preceding sections, involve a choice of origin and vector base, and it is not easy in physical problems to pick out a suitable origin. We have seen, moreover, that although a change of vector base is a trivial matter, a change of origin is complicated. From a physical standpoint it is usually better to use coordinates based on a timelike curve instead of on a single point.

Let \(C \) be a timelike curve and \(P_0 \) some point chosen on it (Fig. 11). Let \(\lambda_{(a)}^i \) be an orthonormal tetrad carried along \(C \) by Fermi-Walker transport, with \(\lambda_{(a)}^i \) tangent to \(C \). Let \(A^i, B^i \) and \(b \) be respectively the unit tangent to \(C \), its first unit normal, and its first curvature, so that,

1 In physical language, the timelike curve is the history, or world-line, of an observer. As we shall see in later chapters, the mathematics of the present section lies close to physical experience.
as in I–(84),
\[
\frac{\delta}{\delta s} \lambda^i_{(x)} = b A^i \lambda^j_{(x)} B_{ij}, \quad \lambda^i_{(4)} = A^i,
\] (180)

Greek suffixes taking the values 1, 2, 3, as usual; here s is the measure of C from \(P_0 \) to the current point.

Let \(P' \) be any point in space-time such that a unique geodesic may be drawn from \(P' \) to cut \(C \) orthogonally (say at \(P \)). Let s and \(\sigma \) be the measures of \(P_0 P \) and \(P P' \), respectively, and let \(\mu^i \) be the unit tangent vector to \(P P' \) at \(P \). (\(P P' \) is of course spacelike, since it is orthogonal to the timelike \(C \).) We then define the contravariant Fermi coordinates \(^1\) (briefly FC) of \(P' \) relative to the base line \(C \) by
\[
X^{(\alpha)} = \sigma \mu^i \lambda^i_{(x)}, \quad X^{(4)} = s,
\] (181)

and the covariant FC by
\[
X_{(\omega)} = \eta_{(2b)} X^{(b)} = X^{(\alpha)}, \quad X_{(4)} = \eta_{(4b)} X^{(b)} = -X^{(4)}.
\] (182)

We note that, for the first three coordinates, the contravariant and covariant forms are the same; for the fourth coordinate, there is a change of sign.

The FC are 2-point-curve invariants in the sense that they are invariants determined (in a given space-time) by the points \(P' \) and \(P_0 \) and the curve \(C \), which may be a geodesic, but in general is not.

Under change of base line, the FC transform in a very complicated way which we shall not attempt to discuss here. But if we retain the base line and merely shift \(P_0 \) along it, then the change is trivial (add a constant to \(X^{(4)} \)). Further, the change is very simple if we alter the triad \(\lambda^i_{(x)} \); for it can be subjected only to a rotation with constant coefficients, say
\[
\bar{\lambda}^i_{(x)} = H^{(\beta)}_{(x)} \lambda^i_{(\beta)}, \quad H^{(\beta)}_{(x)} H^{(\gamma)}_{(\beta)} = \delta_{x\gamma},
\] (183)

and the corresponding transformation is
\[
\bar{X}_{(x)} = H^{(\beta)}_{(x)} X_{(\beta)},
\] (184)

with \(X^{(4)} \) unchanged.

On comparing (18) and (181), we see that the first three covariant

\(^1\) The term ‘Fermi coordinates’ is sometimes used in a different sense, viz. to describe coordinates such that the Christoffel symbols vanish on some curve or other subspace: cf. Fermi [1922], O’Raifeartaigh [1958b].
FC can be expressed neatly in terms of the world-function \(\Omega(PP') \) as follows:

\[
X_{(\alpha)} = - \Omega_i(PP') \lambda^i_{(\alpha)}.
\]

(185)

We have

\[
X_{(\alpha)}X^{(\alpha)} = 2\Omega(PP') = \sigma^2.
\]

(186)

If we indicate by a bar the value of a quantity when the contravariant FC are used as a coordinate system \((X^{(\alpha)} = \bar{x}^\alpha)\), we have

\[
\bar{\lambda}^i_{(\alpha)} = \delta^i_\alpha, \quad \bar{A}^\alpha = 0, \quad \bar{A}^4 = 1.
\]

(187)

It is easy to prove, using the geodesic character of \(PP'\), (180) and r–(55a), that the following equations hold on \(C\) (in the notation of r–(45)):

\[
\bar{g}_{ij} = \eta_{ij}, \quad \bar{\Gamma}^i_{\alpha\beta} = 0, \quad \bar{\Gamma}^4_{\alpha\beta} = 0, \quad \bar{\Gamma}^4_{\alpha4} = \bar{\Gamma}^\alpha_{44}, \quad \bar{\Gamma}^4_{44} = 0.
\]

(188)

If in particular \(C\) happens to be a geodesic, then on \(C\) (comma means partial derivative)

\[
\bar{g}_{ij} = \eta_{ij}, \quad \bar{g}_{ij,k} = 0, \quad \bar{\Gamma}^i_{jk} = 0.
\]

(188a)

From a geometrical standpoint, the Fermi coordinates considered above are the simplest coordinates we can define in terms of a timelike base line \(C\). But from a physical standpoint, a spacelike geodesic \(PP'\) is somewhat artificial, and it is advantageous to use a different plan, replacing the spacelike geodesic by a null geodesic.

Fig. 12 shows a timelike curve \(C\) with a point \(P_0\) on it from which \(s\) is measured. Let \(\lambda^i_{(a)}\) be an OT with Fermi-Walker transport along \(C\) and with \(\lambda^i_{(4)} = A^i\), the unit tangent vector to \(C\), precisely as in Fig. 11. Let \(P'\) be any point in space-time. From \(P'\) draw the future sheet of the null cone cutting \(C\) at \(P\), say.
We define the contravariant and covariant optical coordinates 1 (briefly OC) of P' relative to the base line C by

$$X^{(\alpha)} = X^{(\omega)} = - \Omega_i (PP') \lambda^{i}_{(\omega)}, \quad X^{(4)} = - X^{(4)} = s,$$ \hspace{1cm} (189)

where s is the measure of P_0P. Note that, if we use (185) as the definition of the first three FC, the equations defining FC and OC are formally identical. The difference consists in the fact that in FC the geodesic PP' is orthogonal to the base line C, whereas in OC this geodesic is null. These facts may be expressed as follows:

$$\Omega_i (PP') A^i = 0 \text{ for FC},$$ \hspace{1cm} (190a)

$$\Omega (PP') = 0 \text{ for OC}.$$ \hspace{1cm} (190b)

Thus the world-function plays an important role in unifying and simplifying the treatment of these coordinates 2.

To complete the comparison of FC and OC, we note that (181) does not hold for OC because the measure of PP' is zero. But if we introduce a special parameter u on the null geodesic PP', running from $u = 0$ at P to $u = \sigma$ at P' (σ being any number), then (189) may be written

$$X^{(\omega)} = \sigma \lambda^{(\alpha)}_i \left(\frac{dx^i}{du} \right)_P.$$ \hspace{1cm} (191)

The equation (186) is false for OC. To find the corresponding equation, we observe that

$$\lambda^{(\alpha)}_i \lambda^{(\alpha)}_i = \delta_i - \lambda^{(4)}_i \lambda^{(4)}_i = \delta_i + A_i A^j,$$ \hspace{1cm} (192)

and hence

$$X^{(\omega)} X^{(\omega)} = \Omega_j \lambda^{(\alpha)}_i \Omega^i \lambda^{(\alpha)}_i = \Omega_j \Omega^i (\delta_i + A_i A^j) = (\Omega_i A^i)^2,$$ \hspace{1cm} (193)

since [cf. (20)] $\Omega_i \Omega^i = 2 \Omega = 0$.

In flat space-time, for both FC and OC, $X^{(\omega)}$ are very simple; they are the spatial Cartesian coordinates of P' for moving axes for which the origin is at P and the x^4-axis is tangent to C.

1 These optical coordinates differ from those defined by Temple [1938]; his definition involved parallel transport of null vectors and not Fermi transport of a reference triad.

2 Although we use the word coordinačés for FC and OC, we should remember that they are really invariants, and that a general coordinate system is lurking always in the background; by its use we avoid ugly unsymmetric expressions such as (188).
§ 11. METRICS FOR FERMI COORDINATES AND OPTICAL COORDINATES

In order to investigate the metrics for Fermi coordinates (FC) and optical coordinates (OC), we start with the general situation shown in Fig. 13. We have a timelike curve C_1 and a second curve C_2 (not necessarily timelike), and these two curves are joined by a single infinity of geodesics, each of which has a special parameter u running from $u = u_1$ on C_1 to $u = u_2$ on C_2. We label these geodesics with a parameter v which is equal to the measure s of C_1 from some chosen point P_0 on it. We have then a 2-space $x^i = x^i(u, v)$, and as usual we write $U^i = \partial x^i/\partial u$, $V^i = \partial x^i/\partial v$.

For the partial derivative of the world-function $\Omega(P_1P_2)$ with respect to P_1 we have

$$\Omega_{t_1} = -k^{-1}U_{t_1},$$

$$k^{-1} = u_2 - u_1,$$ \hspace{1cm} (194)

and differentiation with respect to v gives

$$\Omega_{t_1j_1}V^{j_1} + \Omega_{t_2j_2}V^{j_2} = -W_{t_1}, \quad W_{t_1} = k^{-1}\delta U_{t_1}/\delta v.$$ \hspace{1cm} (195)

Now for a space-time of small curvature (O_1), we have

$$\Omega_{t_1j_1} = g_{t_1j_1} + h_{t_1j_1}, \quad \Omega_{t_2j_2} = -g_{t_2j_2} + h_{t_2j_2},$$ \hspace{1cm} (196)

where $g_{t_1j_2}$ is the parallel propagator and the h-terms are small integrals given in (95). Hence

$$g_{t_1j_2}V^{j_2} = W_{t_1} + V_{t_1} + h_{t_1j_1}V^{j_1} + h_{t_2j_2}V^{j_2}.$$ \hspace{1cm} (197)

The left hand side is the result of taking V^{j_2} from P_2 to P_1 by parallel transport, and this does not change the magnitude of the vector. Therefore if we write for brevity

$$W^t + V^t = Z^t,$$ \hspace{1cm} (198)
we have (since the \(h \)-terms are \(O_1 \))
\[
V_{t_2}V^{t_2} = Z_{t_1}Z^{t_1} + 2Z_{t_1}(h_{t_1,j_1}V^{j_1} + h_{t_1,j_2}V^{j_2}) + O_2. \tag{199}
\]
By (197)
\[
V^{j_2} = g^{j_2k_1}Z_{k_1} + O_1, \tag{200}
\]
and so (199) may be written
\[
V_{t_2}V^{t_2} = Z_{t_1}Z^{t_1} + 2Z_{t_1}h_{t_1,j_1}V^{j_1} + 2Z_{t_1}h_{t_1,j_2}g^{j_2k_1}Z_{k_1} + O_2. \tag{201}
\]
All the vectors on the right hand side are now evaluated at \(P_1 \).

If the geodesics \(P_1P_2 \) and \(Q_1Q_2 \) (Fig. 13) correspond to values \(v \) and \(v + dv \) (i.e. \(s \) and \(s + ds \)), then
\[
V_{t_2}V^{t_2}ds^2 = P_2Q_2^2 = 2\Omega(P_2Q_2) = \varepsilon ds_2^2, \tag{202}
\]
where \(ds_2 \) is the measure of \(P_2Q_2 \) and \(\varepsilon \) is its indicator. Thus we have only to multiply (201) by \(ds^2 \) in order to obtain the metric form at \(P_2 \), assuming that \(Z^t \) and \(V^t \) are known on \(C_1 \). Actually we know that on \(C_1 \), \(V^t = A^t \), the unit tangent vector to \(C_1 \); the vector \(Z^t \) on the other hand depends on the choice of the curve \(C_2 \).

In both FC and OC we have an OT \(\lambda^i_{(a)} \) which undergoes F-W transport along the base line, which is \(C_1 \) in Fig. 13. We have also \(\lambda^i_{(a)} = A^i \). Let us define an OT over the 2-space of geodesics in Fig. 13 by parallel transport along the geodesics, and let us express (201) in terms of invariant components on this OT. We can, without confusion, drop the secondary numerical suffix on the right hand side in the case of the vectors (they are evaluated at \(P_1 \), but we must retain them for the \(h \)-terms because they involve both \(P_1 \) and \(P_2 \). We have
\[
V^{(a)} = 0, \quad V^{(4)} = 1, \quad V_{(4)} = -1, \tag{203}
\]
and so we get
\[
2\Omega(P_2Q_2) = ds^2[Z_{(a)}Z^{(a)} + 2Z^{(a)}h_{(a_1a_2)} + 2Z^{(a)}h_{(a_1b_3)}Z^{(b)}] + O_2. \tag{204}
\]

Taking \(C_1 \) for base line, and understanding all vectors to be evaluated on it (so that the secondary suffix 1 is not required), we have for both FC and OC
\[
X_{(a)} = k^{-1}U_{(a)}\lambda_{(x)}^i = k^{-1}U_{(a)}X_{(a)}, \quad X^{(4)} = s, \tag{205}
\]
and hence, with \(D = d/ds = d/dv \),
\[
DX_{(a)} = W_{(a)} + k^{-1}U_{(a)}A^{(a)}bB_{(a)}. \tag{206}
\]

Let us now pursue FC alone, leaving OC till later. By the ortho-
gonality shown in Fig. 11, we have for FC
\[U_t A^t = 0, \tag{207} \]
and differentiation gives
\[k W_t A^t + b U_t B^t = 0, \quad W_{(4)} = - b X_{(\omega)} B^{(\alpha)}. \tag{208} \]
Hence, by (203), (206) and (208),
\[Z^{(\alpha)} = D X^{(\alpha)}, \quad Z^{(4)} = 1 + \zeta = - Z_{(4)}, \tag{209} \]
where
\[\zeta = b X_{(\omega)} B^{(\alpha)}. \tag{210} \]
(We recall that \(b \) is the curvature of the base line and \(B^t \) its unit first normal vector.)
Substitution from (203) and (209) in (204) gives the following expression for the metric form for Fermi coordinates in space-time of small curvature:
\[
2 \Omega(P_2 Q_2) = \Phi = g_{(r\sigma)} dX^{(r)} dX^{(\sigma)}, \\
g_{(\alpha\beta)} = \delta_{\alpha\beta} + 2 h_{(\alpha\beta)} + O_2, \\
g_{(\alpha\lambda)} = h_{(\alpha\lambda)} + 2 h_{(\alpha\lambda)} (1 + \zeta) + O_2, \\
g_{(44)} = -(1 + \zeta)^2 + 2 (1 + \zeta) h_{(44)} + 2 (1 + \zeta)^2 h_{(44)} + O_2. \tag{211}
\]
As regards the small \(h \)-terms, they occur in (97) as integrals of the symmetrized Riemann S-tensor. To express them in terms of the FC, we have to alter the notation, taking the special parameter \(u \) in (97) to be the measure on the geodesic, so that \(u_1 = 0 \) and \(u_2 = \sigma \). Further, let us write for brevity
\[\frac{3}{2} \sigma^{-3} X^{(\mu)} X^{(\nu)} = Y^{(\mu\nu)}. \tag{212} \]
Then we have
\[
h_{(\alpha\beta)} = Y^{(\mu\nu)} \int_0^\sigma (\sigma - u) u S_{(\alpha\beta\mu\nu)} du + O_2, \\
h_{(\alpha\lambda)} = Y^{(\mu\nu)} \int_0^\sigma (\sigma - u)^2 S_{(\alpha\lambda\mu\nu)} du + O_2, \\
h_{(\alpha\lambda)} = h_{(\alpha\lambda)} = Y^{(\mu\nu)} \int_0^\sigma (\sigma - u) u S_{(\alpha\lambda\mu\nu)} du + O_2, \tag{213} \\
h_{(44)} = Y^{(\mu\nu)} \int_0^\sigma (\sigma - u)^2 S_{(44\mu\nu)} du + O_2, \\
h_{(44)} = h_{(44)} = Y^{(\mu\nu)} \int_0^\sigma (\sigma - u) u S_{(44\mu\nu)} du + O_2.
\]
If the curvature b of the base line is small (as it is in physical applications), then, by (210), ζ is small, provided the FC $X_{(\omega)}$ are not large. We can then simplify (211) a little by dropping ζ^2 and the product of ζ with an h-term.

Having thus found, to the approximation indicated, the metric for FC, let us turn to OC for which we still have (205) and (206), but for which we have, instead of (207),

$$k^{-1}U_{(i)}A^{i} = r > 0, \quad r^2 = X_{(\omega)}X^{(\omega)}, \quad (214)$$

by (193). The positive sign for r is due to the fact that we take the tangent vector A^{i} pointing into the future and the vector U^{i} pointing into the past (Fig. 12). Now (206) gives

$$W_{(\omega)} = DX_{(\omega)} - rbB_{(\omega)}. \quad (215)$$

In OC, U^{i} is a null vector, and so

$$U_{(i)}U^{i} = 0, \quad U_{(i)}W^{i} = 0,$$

$$U_{(4)}W^{(4)} = - U_{(\omega)}W^{(\omega)} = - kX_{(\omega)}W^{(\omega)} = - kX_{(\omega)}DX^{(\omega)} + kr\zeta, \quad (216)$$

where ζ is as in (210). But

$$U_{(4)} = - U^{(4)} = (U_{(\omega)}U^{(\omega)})^{i} = kr, \quad (217)$$

and so

$$W^{(4)} = - r^{-1}X_{(\omega)}DX^{(\omega)} + \zeta = \zeta - Dr. \quad (218)$$

Hence by (198) and (203)

$$Z_{(\omega)} = Z^{(\omega)} = DX^{(\omega)} - rbB^{(\omega)}, \quad Z^{(4)} = - Z_{(4)} = 1 + \zeta - Dr. \quad (219)$$

We are now in a position to write out the metric form for optical coordinates. But, as the explicit formula is somewhat involved, we shall not complete the substitutions. It is enough to say that this form is, by (204),

$$\Phi = g_{(rs)}dX^{(r)}dX^{(s)} = 2\Omega(P_{2}Q_{2})$$

$$= ds^2[Z_{(a)}Z^{(a)} + 2Z^{(a)}h_{(a_{1}a_{2})} + 2Z^{(a)}h_{(a_{1}b_{2})}Z^{(b)}], \quad (220)$$

wherein we are to substitute

$$Z^{(\omega)}ds = Z_{(\omega)}ds = dX^{(\omega)} - rbB^{(\omega)}dX^{(4)}, \quad (221)$$

$$Z^{(4)}ds = - Z_{(4)}ds = (1 + \zeta)dX^{(4)} - dr.$$
As for the \(h \)-terms in (220), we are to substitute for them, as in (97),

\[
\begin{align*}
 h_{(m_1 n_1)} &= \frac{3}{2} \sigma^{-1} U^{(r)} U^{(s)} \int_0^\sigma (\sigma - u)^2 S_{(m n r s)} \, du + O_2, \\
 h_{(m_2 n_2)} &= \frac{3}{2} \sigma^{-1} U^{(r)} U^{(s)} \int_0^\sigma (\sigma - u) u S_{(m n r s)} \, du + O_2,
\end{align*}
\]

\[U^{(a)} = \sigma^{-1} X^{(a)}, \quad U^{(d)} = -r \sigma^{-1}, \quad r = (X^{(\omega)} X^{(a)})^{\frac{1}{2}}.\]

(222)

As in the case of FC, we can simplify the metric if the curvature \(b \) of the base line is small, provided that \(X^{(a)} \) are not large.

§ 12. GEODESICS IN TERMS OF FERMI COORDINATES AND OPTICAL COORDINATES

We shall now discuss the equations of geodesics in terms of Fermi coordinates (FC) and optical coordinates (OC). This work has a direct physical interpretation, as will be made clear later: the base line \(C \) of the coordinates is the world-line of an observer (perhaps a terrestrial astronomer) and the geodesic \(I' \) of which we are to find the equations is the world-line of some free particle — perhaps a planet.

![Fig. 14 – The geodesic problem for Fermi coordinates and optical coordinates](image)

In the preceding section we found approximate expressions for the metric tensor in FC and in OC, and from that we could undoubtedly worry out the equations of a geodesic by 1–(31). However this would involve differentiating the metric tensor and it is better to start afresh. Fig. 14 shows the timelike base line \(C \) and a timelike geodesic
I', with the correspondences (P, P') appropriate to FC and OC respectively. P_0 and P'_0 are corresponding base points on C and I', and we write $P_0P = s$, $P'_0P' = s'$. Then $s = X^{(4)}$, the fourth coordinate in FC or in OC.

With $\Omega = \Omega(PP')$ throughout, we have
\[X^{(\omega)} = X_{(\omega)} = - \Omega_i \lambda^i_{(\alpha)}, \quad X^{(4)} = - X_{(4)} = s, \]
and, by (207) and (214),
\[\Omega_i A^i = - \theta r, \]
\[\theta = 0 \text{ for FC}, \quad \theta = 1 \text{ for OC}. \]

By introducing this factor θ, we are able to discuss FC and OC in a single argument.

Since a geodesic is determined by a point on it and a direction, the differential equations of I' are necessarily of the form
\[D^2 X_{(\omega)} = f_{(\omega)}(X_{(\beta)}, DX_{(\gamma)}, s), \quad D = d/ds; \]
our object is to find the functions $f_{(\omega)}$.

Let us first dispose of some preliminaries. By (180) we have 1, with $D = \delta/ds$,
\[D\lambda^i_{(\alpha)} = bA^iB_{(\omega)}, \quad \lambda^i_{(4)} = A^i, \]
where b is the first curvature of C. If A^i' is the unit tangent to I' at P', we have, since the unit tangent to a geodesic undergoes parallel transport,
\[DA^i' = 0, \quad A^i'A_i' = - 1. \]
It is convenient to define
\[H^i' = A^i'Ds', \]
so that
\[(Ds')^2 = - H^i'H_i'. \]
and
\[DH^i' = A^i'D^2s' = \chi H^i', \quad \chi = D^2s'/Ds'. \]
Further, we define
\[L_{(a)} = \Omega_i \lambda^i_{(a)} H^i', \]
1 This notation is consistent with that of (225), for $\delta/ds = d/ds$ when it operates on an invariant.
so that
\[DL_\omega = bL_\omega B_\omega + \chi L_\omega + \Omega_{ij'k'}^i H' A^k + \Omega_{ij'k'}^i H' H' \]
(232)
\[DL_\omega = bL_\omega B_\omega + \chi L_\omega + \Omega_{ij'k'}^i A^i H' A^k + \Omega_{ij'k'}^i A^i H' H' \]
(233)

Differentiation of (223) gives, by (224) and (226),
\[DX_\omega = \theta r B_\omega - \Omega_{ij}^i A^j - L_\omega, \]
(234)
and a second differentiation gives
\[D^2 X_\omega = \theta D(r B_\omega) - \Omega_{ij}^i A^i A^j b B_\omega - \Omega_{ij}^i b B^j - \Omega_{ijk}^i A^j A^k - \Omega_{ijk}^i A^j H H' - DL_\omega. \]
(235)

We recognize the geodesic equation (225); we have now to evaluate the right hand side.

We have also the equation (224), and differentiation of it gives
\[\theta Dr - \zeta + \Omega_{ij}^i A^j + L_\omega = 0, \quad \zeta = b X_\omega B_\omega, \]
(236)
and
\[\theta D^2 r - D\zeta + 2\Omega_{ij}^i A^i b B^j + \Omega_{ijk}^i A^i A^j A^k + \Omega_{ijk}^i A^i A^j H H' + DL_\omega = 0. \]
(237)

So far all equations are exact, and without approximations the calculations become unmanageable. However, the general plan would be to use (237) to evaluate DL_\omega; then \chi can be found from (233); then DL_\omega is given by (232); finally we would substitute in (235) to get the geodesic equations.

The situation is very much simplified by introducing the following approximations, all valid in physical situations:

i) Space-time is nearly flat, and in consequence [cf. (95)]

\[\Omega_{ij} = g_{ij} + h_{ij}, \quad \Omega_{ij'} = - g_{ij'} + h_{ij'}, \]
(238)

where \(g_{ij'} \) is the parallel propagator and the \(h \)-terms are small. Further, any \(\Omega \) with three subscripts is small.

ii) The first curvature \(b \) of \(C \) is small and its rate of change \((Db) \) is very small; also the second curvature \(c \) is small.

iii) \(\Gamma' \) is nearly parallel \(^1\) to \(C \).

If \(C \) were a geodesic and space-time flat, we would of course have

\(^1\) In physical terms this means that the relative velocity is small, compared with the velocity of light.
\(D^2 X(\omega) = 0\). It is easily seen from (235) that, under the above approximations, \(D^2 X(\omega)\) is small, and so we need only retain principal parts in the right hand side of (235). Then the second and third terms cancel, and since \(Ds' = 1\) approx., we have \(H' = A'\) approx., and so (235) may be written

\[
D^2 X(\omega) = \theta D(rbB(\omega)) - DL(\omega) - \Omega_{ij} i^i_{(\lambda)} A^j A^k - \Omega_{ij} k^i_{(\lambda)} A^j A^{k'}. \tag{239}
\]

From (231), \(L(\omega)\) is small and \(L(4) = 1\), approx. Also \(\chi\) is small, and so (232) gives

\[
DL(\omega) = bB(\omega) + \Omega_{ij} k^i_{(\lambda)} A^j A^k + \Omega_{ij} k^i_{(\lambda)} A^j A^{k'}. \tag{240}
\]

It is convenient to take components on the tetrad \(\lambda^i_{(\lambda)}\), carried by parallel transport along \(PP'\). Then (239) and (240) give

\[
D^2 X(\omega) = \theta D(rbB(\omega)) - bB(\omega) - M(\omega) \tag{241}
\]

where

\[
M(\omega) = \Omega_{(\omega 44)} + 2\Omega_{(\omega 44')} + \Omega_{(\omega 4' 4')}. \tag{242}
\]

It is easy to see that we may omit the \(\theta\)-term in (241). For \(b\) is small, \(Db\) is negligible, \(Dr\) is small, and, by the Frenet-Serret formulae 1–(55),

\[
B(\omega) = B_i \lambda^i_{(\lambda)}, \quad DB(\omega) = (cC_i + bA_i) \lambda^i_{(\lambda)} + B_i A^i bB(\omega). \tag{243}
\]

Thus, for both FC and OC, we have the following approximate equation for the geodesic \(I''\):

\[
D^2 X(\omega) = - bB(\omega) - M(\omega). \tag{244}
\]

We see here two departures from the zero value. The first is due to the curvature of the base line \(^1\), and the second is due to the curvature of space-time.

It remains to evaluate \(M(\omega)\) and this we do by (115), making the following changes in notation:

\[
u_1 = 0, \quad u_2 = \sigma, \quad k = \sigma^{-1}. \tag{245}\]

As for the \(U\)-terms in (115), we are to take \(U^i = dx^i/du\) along the geodesic \(PP'\). Thus

\[
\Omega_i = - \sigma U_i, \quad U(\omega) = U(\omega) = - \sigma^{-1} \Omega_i \lambda^i_{(\omega)} = \sigma^{-1} X(\omega),
\]

\[
U(4) = - U(4) = \sigma^{-1} \Omega_i \lambda^i_{(4)} = \sigma^{-1} \Omega_i A^i = - \theta r \sigma^{-1}, \tag{246}
\]

\(^1\) This is the reason why bodies fall to the ground! This will be treated in detail later. See III–§ 9.
by (224). Note that we include here both FC \((\theta = 0)\) and OC \((\theta = 1)\). The value of \(M(\omega)\) in (244) is then given by (242), with the following values:

\[
\begin{align*}
\Omega_{(\alpha4)} &= -3\sigma^{-2}U(\varphi) \int_0^\sigma (\sigma - u)^2 S_{(\alpha4\varphi)} du \\
&+ \frac{3}{2} \sigma^{-2} U(\varphi) U(\varphi) \int_0^\sigma (\sigma - u)^3 S_{(\alpha4\varphi4)} du, \\
\Omega_{(\alpha4')} &= 3\sigma^{-2} U(\varphi) \int_0^\sigma (\sigma - u)^2 S_{(\alpha4\varphi)} du \\
&+ \frac{3}{2} \sigma^{-2} U(\varphi) U(\varphi) \int_0^\sigma (\sigma - u)^3 u S_{(\alpha4\varphi4)} du,
\end{align*}
\]

(247)

\[
\Omega_{(\alpha4')} = -3\sigma^{-2} U(\varphi) \int_0^\sigma u^2 S_{(44\alpha\varphi)} du \\
+ \frac{3}{2} \sigma^{-2} U(\varphi) U(\varphi) \int_0^\sigma (\sigma - u)^3 u S_{(44\alpha\varphi4)} du.
\]

Note the change in order of the subscripts in the last formula.

As a check on these rather complicated formulae, consider the case where \(C\) is a geodesic (so that \(b = 0\)) and \(I'\) is close to \(C\). Then the principal parts in (247) are given by the first integrals, and we have, with the \(S\)-terms calculated at \(P\),

\[
\begin{align*}
\Omega_{(\alpha4)} &= -3\sigma^{-2} \sigma^{-1} X(\beta) S_{(\alpha4\beta)} \int_0^\sigma (\sigma - u)^2 du = -S_{(\alpha4\beta)} X(\beta), \\
\Omega_{(\alpha4')} &= S_{(\alpha4\beta)} X(\beta), \\
\Omega_{(\alpha4')} &= -S_{(44\alpha\beta)} X(\beta).
\end{align*}
\]

Then

\[
M(\omega) = (S_{(\alpha4\beta)} - S_{(44\alpha\beta)}) X(\beta) = R_{(\alpha4\beta4)} X(\beta),
\]

(249)

and the geodesic equation (244) reads

\[
D^2 X(\omega) = -R_{(\alpha4\beta4)} X(\beta).
\]

(250)

This agrees, as it should, with the equation of geodesic deviation (1–(140)).

§ 13. THE WORLD-FUNCTION AND ITS DERIVATIVES FOR TWO POINTS ON A TIMELIKE CURVE

Let \(C\) be a timelike curve \(^1\) in space-time (Fig. 15). This curve may be defined by assigning the principal tetrad (tangent and normals) at a

\(^1\) Although as a matter of policy we keep the argument purely geometrical, this curve \(C\) might be the world-line of you or me — terrestrial observers carried on the rotating earth. As we shall see later, the results of the present calculations have simple and rather fundamental physical interpretations. See III—§ 10.
point \(Q_0(s = 0) \) on it, and giving the three curvatures as functions of \(s \). Or it may be defined in the neighbourhood of the point \(Q_0 \) by assigning the unit tangent \(A^i \) and the absolute derivatives \(DA^i, D^2A^i \), \(\ldots \) at \(Q_0 \) (\(D = \partial/\partial s \)). We shall adopt the latter specification.

Let \(Q_1(s = s_1) \) and \(Q_2(s = s_2) \) be two points of \(C \) near \(Q_0 \), so that \(s_1 \) and \(s_2 \) are small (\(O_1 \)). The world-function \(\Omega(Q_1Q_2) \) is a function of \(s_1, s_2 \), and may be expanded in a double power series of the form

\[
\Omega(Q_1Q_2) = [\Omega] + s_1[D_1\Omega] + s_2[D_2\Omega] + \frac{1}{2} s_1^2[D_1^2\Omega] + 2s_1s_2[D_1D_2\Omega] + s_2^2[D_2^2\Omega] + \ldots, \quad (251)
\]

where \(D_1 = \partial/\partial s_1 \), \(D_2 = \partial/\partial s_2 \), and \([\] \) indicates evaluation at \(Q_0 \) where \(s_1 = s_2 = 0 \); these are in fact coincidence limits in the sense of Sect. 2, and may be evaluated by (69) after a little manipulation.

We have

\[
\begin{align*}
D_1\Omega &= \Omega_{i;A^i}, \\
D_1^2\Omega &= \Omega_{i,j;A^i,A^j} + \Omega_{i,k;A^i,A^k}, \\
D_1D_2\Omega &= \Omega_{i,j,k;A^i,A^j,A^k}, \\
D_1^3\Omega &= \Omega_{i,j,k,l;A^i,A^j,A^k,A^l} + 3\Omega_{i,j,k;A^i,A^j,A^k} + 3\Omega_{i,j,k,l;A^i,A^j,A^k,A^l}, \\
D_2^3\Omega &= \Omega_{i,j,k,l;A^i,A^j,A^k,A^l} + 3\Omega_{i,j,k,l;A^i,A^j,A^k,A^l} + \Omega_{i,j,k,l,m;A^i,A^j,A^k,A^l,A^m}.
\end{align*}
\]

(252)

with similar equations obtained by interchange of the numbers 1 and 2. Hence, by (69),

\[
\begin{align*}
[\Omega] &= 0, \\
[D_1\Omega] &= [D_2\Omega] = 0, \\
[D_1^2\Omega] &= -1, \\
[D_1D_2\Omega] &= 1, \\
[D_2^2\Omega] &= -1, \\
[D_1^3\Omega] &= [D_1D_2^2\Omega] = [D_1D_2^3\Omega] = [D_2^3\Omega] = 0.
\end{align*}
\]

The last two lines in (252) give, if we use (69) after differentiating,

\[
\begin{align*}
[D_1^4\Omega] &= [4\Omega_{i,j,k,l;A^i,A^j,A^k,A^l} + 3\Omega_{i,j,k,l;A^i,A^j,A^k,A^l} + \Omega_{i,j,k,l,m;A^i,A^j,A^k,A^l,A^m}], \\
[D_1^3D_2\Omega] &= [\Omega_{i,j,k,l;A^i,A^j,A^k,A^l} + \Omega_{i,j,k,l,m;A^i,A^j,A^k,A^l,A^m}], \\
[D_1^2D_2^2\Omega] &= [\Omega_{i,j,k,l;A^i,A^j,A^k,A^l} + \Omega_{i,j,k,l,m;A^i,A^j,A^k,A^l,A^m}].
\end{align*}
\]

(254)
Completing the substitution from (69) we drop the numerical signs on the A’s, and then, by the skew-symmetry of the Riemann tensor, the Ω’s with four subscripts give zero. Also

$$A_4 A^4 = -1, \quad A_4 D A^4 = 0, \quad A_4 D^2 A^4 = -DA_4 D A^4 = -b^2, \quad (255)$$

where b is the first curvature of C. Hence we get

$$[D_4^1 \Omega] = -b^2, \quad [D_3^1 D_2 \Omega] = b^2, \quad [D_2^1 D_3 \Omega] = -b^2, \quad (256)$$

with similar equations obtained by interchange of 1 and 2. Substituting in (251) from (253) and (256), we get the following approximate expression for the world-function for two points on C:

$$\Omega(Q_1 Q_2) = -\frac{1}{2}(s_2 - s_1)^2 - \frac{1}{24} b^2 (s_2 - s_1)^4 + O_5. \quad (257)$$

Note that, in this approximation, the curvature of C appears but the curvature of space-time does not.

If τ is the measure of the geodesic $Q_1 Q_2$ (shown in Fig. 15 as a straight line), we have

$$\Omega(Q_1 Q_2) = -\frac{1}{2} \tau^2, \quad (258)$$

and hence

$$\tau^2 = (s_2 - s_1)^2 + \frac{1}{12} b^2 (s_2 - s_1)^4 + O_5,$$

$$\tau = (s_2 - s_1) + \frac{1}{24} b^2 (s_2 - s_1)^3 + O_4, \quad (259)$$

if $s_2 > s_1$. This is the same as the Euclidean formula for the chord (τ) of a circle of radius b^{-1} in terms of the arc $(s_2 - s_1)$, except for an important change in sign, as the result of which we have $\tau > (s_2 - s_1)$.

We proceed to evaluate the covariant derivatives of $\Omega(Q_1 Q_2)$, but we shall take only the invariant components on a Fermi triad $l^i_{(x)}$. These components are as follows, with others formed from these by interchange of the numbers 1 and 2:

$$\Omega_{(\alpha)} = \Omega_{i} l^{i}_{(\alpha)},$$

$$\Omega_{(\alpha \beta)} = \Omega_{ij} l^{i}_{(\alpha)} l^{j}_{(\beta)}, \quad \Omega_{(\alpha \beta \gamma)} = \Omega_{ij \delta} l^{i}_{(\alpha)} l^{j}_{(\beta)} l^{\delta}_{(\gamma)},$$

$$\Omega_{(\alpha \beta \gamma \delta)} = \Omega_{ijk \epsilon} l^{i}_{(\alpha)} l^{j}_{(\beta)} l^{k}_{(\gamma)} l^{\epsilon}_{(\delta)}, \quad \Omega_{(\alpha \beta \gamma \delta \epsilon)} = \Omega_{ijk \epsilon \xi} l^{i}_{(\alpha)} l^{j}_{(\beta)} l^{k}_{(\gamma)} l^{\epsilon}_{(\delta)} l^{\xi}_{(\xi)},$$

$$\Omega_{(\alpha \beta \gamma \delta \epsilon \xi)} = \Omega_{ijk \epsilon \xi \zeta} l^{i}_{(\alpha)} l^{j}_{(\beta)} l^{k}_{(\gamma)} l^{\epsilon}_{(\delta)} l^{\xi}_{(\xi)} l^{\zeta}_{(\zeta)}, \quad (260)$$
We proceed to calculate these expressions of the first, second, third and fourth orders with errors O_4, O_3, O_2, O_1, respectively, these orders of accuracy being those required in the next Section.

By the Fermi transport law I–(84) we have

\[
D\lambda^i_{(\alpha)} = A^i\lambda^i_{(\alpha)}DA_j,
\]

\[
D^2\lambda^i_{(\alpha)} = DA^i\lambda^i_{(\alpha)}DA_j + A^i\lambda^i_{(\alpha)}D^2A_j,
\]

and hence, in an obvious notation,

\[
D\lambda^i_{(\alpha)}A_i = -\lambda^i_{(\alpha)}DA_j = -(DA)_{(\alpha)},
\]

\[
D\lambda^i_{(\alpha)}DA_i = 0,
\]

\[
D^2\lambda^i_{(\alpha)}A_i = -\lambda^i_{(\alpha)}D^2A_j = -(D^2A)_{(\alpha)},
\]

\[
D^2\lambda^i_{(\alpha)}DA_i = DA_iDA^i\lambda^i_{(\alpha)}DA_j = b^2(DA)_{(\alpha)}.
\]

Expanding in a double power series, we have

\[
\Omega_{(\alpha)} = [\Omega_{(\alpha)}] + s_1[D_1\Omega_{(\alpha)}] + s_2[D_2\Omega_{(\alpha)}]
\]

\[
+ \frac{1}{2}[s_1^2[D_1^2\Omega_{(\alpha)}] + 2s_1s_2[D_1D_2\Omega_{(\alpha)}]] + s_2^2[D_2^2\Omega_{(\alpha)}]] + \ldots
\]

Now

\[
D_1\Omega_{(\alpha)} = \Omega_{i1}D_1\lambda^i_{(\alpha)} + \Omega_{i1j}\lambda^i_{(\alpha)}A_j,
\]

\[
D_2\Omega_{(\alpha)} = \Omega_{i1j}s\lambda^i_{(\alpha)}A_j,
\]

\[
D_1^2\Omega_{(\alpha)} = \Omega_{i1}D_1\lambda^i_{(\alpha)} + 2\Omega_{i1j}D_1\lambda^i_{(\alpha)}A_j + \Omega_{i1j}\lambda^i_{(\alpha)}D_1A_j
\]

\[
+ \Omega_{i1j,k}\lambda^i_{(\alpha)}A_jA_k,
\]

\[
D_1D_2\Omega_{(\alpha)} = \Omega_{i1j}s\lambda^i_{(\alpha)}A_j + \Omega_{i1j,k}\lambda^i_{(\alpha)}A_jA_k,
\]

\[
D_2^2\Omega_{(\alpha)} = \Omega_{i1j}s\lambda^i_{(\alpha)}D_2A_j + \Omega_{i1j,k}\lambda^i_{(\alpha)}A_jA_k.
\]

The coincidence limits at Q_0 are as follows:

\[
[\Omega_{(\alpha)}] = [D_1\Omega_{(\alpha)}] = [D_2\Omega_{(\alpha)}] = 0,
\]

\[
[D_1^2\Omega_{(\alpha)}] = -[D_1D_2\Omega_{(\alpha)}] = [D_2^2\Omega_{(\alpha)}] = -(DA)_{(\alpha)}.
\]

Since our approximation is to exclude O_4 terms, we do not have to write out completely the next derivatives obtained from (264). We can proceed to the required coincidence limits partly in our heads:
thus, by (69) and (262),

\[[D^2_1 \Omega_{(\alpha)}] = [3 \Omega_{i,j} D^2 D^2 \Omega_{(\alpha)} A^i_A + 3 \Omega_{i,j} D^1 \lambda_{(\alpha)} D^1 A^i_A + \Omega_{i,j} \lambda_{(\alpha)}] D^2 A^i_A \]

\[= -3(D^2 A)_{(\alpha)} + 0 + (D^2 A)_{(\alpha)} = -2(D^2 A)_{(\alpha)}, \]

\[[D^2_2 D^2 \Omega_{(\alpha)}] = [\Omega_{i,j} D^2 D^2 \Omega_{(\alpha)} A^i_A] = (D^2 A)_{(\alpha)}, \]

\[[D^1 D^2_2 \Omega_{(\alpha)}] = [\Omega_{i,j} D_1 \lambda_{(\alpha)} D_2 A^i_A] = 0, \]

\[[D^2_2 \Omega_{(\alpha)}] = [\Omega_{i,j} \lambda_{(\alpha)} D^2_2 A^i_A] = -2(D^2 A)_{(\alpha)}. \]

Substitution from (265) and (266) in the series (263) gives

\[\Omega_{(\alpha)} = -\frac{1}{2}(s_2 - s_1)^2 ((DA)_{(\alpha)} + \frac{1}{3}(2s_1 + s_2)(D^2 A)_{(\alpha)}) + O_4. \]

\[(267) \]

We have still to calculate the derivatives of the second, third, and fourth orders in (260). The calculations follow the same plan as above, but are simpler because, with increase of order, we are more tolerant in the order of approximation. The reader should find no difficulty in verifying the following formulae, which include for ease of reference (257) and (267):

\[\Omega(Q_1 Q_2) = -\frac{1}{2}(s_2 - s_1)^2 - \frac{1}{24} b^2 (s_2 - s_1)^4 + O_5, \]

\[(268) \]

\[\Omega_{(\alpha)} = -\frac{1}{2}(s_2 - s_1)^2 ((DA)_{(\alpha)} + \frac{1}{3}(2s_1 + s_2)(D^2 A)_{(\alpha)}) + O_4, \]

\[\Omega_{(\alpha_2)} = -\frac{1}{2}(s_2 - s_1)^2 ((DA)_{(\alpha)} + \frac{1}{3}(s_1 + 2s_2)(D^2 A)_{(\alpha)}) + O_4, \]

\[(269) \]

\[\Omega_{(\alpha_3)} = \Omega_{(\alpha_3 \beta_3)} = \delta_{\alpha \beta} + \frac{1}{2}(s_2 - s_1)^2 S_{(\alpha 3 4)} + O_3, \]

\[\Omega_{(\alpha_4)} = -\delta_{\alpha \beta} - \frac{1}{2}(s_2 - s_1)^2 ((DA)_{(\alpha)} (DA)_{(\beta)} + S_{(\alpha 4 4)}) + O_3, \]

\[(270) \]

\[\Omega_{(\alpha_1 \beta_1 \gamma_1)} = -(s_2 - s_1) S_{(\alpha 1 3)} + O_2, \]

\[\Omega_{(\alpha_1 \beta_1 \gamma_2)} = \Omega_{(\alpha_3 \beta_2 \gamma_3)} = (s_2 - s_1) S_{(\alpha 3 4)} + O_2, \]

\[\Omega_{(\alpha_1 \beta_2 \gamma_3)} = -(s_2 - s_1) S_{(\beta 3 4)} + O_2, \]

\[(271) \]

\[\Omega_{(\alpha_1 \beta_1 \gamma_1 \delta_1)} = \Omega_{(\alpha_3 \beta_1 \gamma_1 \delta_1)} = \Omega_{(\alpha_3 \beta_2 \gamma_2 \delta_2)} = S_{(\alpha 3 4 \delta)} + O_1, \]

\[\Omega_{(\alpha_1 \beta_1 \gamma_1 \delta_1)} = S_{(\alpha 3 4 \delta)} + O_1, \]

\[\Omega_{(\alpha_1 \beta_2 \gamma_2 \delta_2)} = S_{(\alpha 3 4 \delta)} + O_1. \]

\[(272) \]

Note that, to this order of approximation, the first and second curvatures of C appear, but the third curvature does not. Once we get to
the derivatives of the second order in (270), the curvature of space-time appears in the form of symmetrized Riemann tensor [cf. (69)], but the derivatives of this tensor do not appear.

§ 14. THE WORLD-FUNCTION IN TERMS OF FERMI COORDINATES FOR TWO POINTS ON ADJACENT TIMELIKE CURVES

In Fig. 16 we see a timelike world-line C_0, which we take as base line of Fermi coordinates (FC). C_1 and C_2 are two other timelike world-lines adjacent to C_0, and P_1, P_2 are points on them. Let s be the measure on C_0, with $s = 0$ at Q_0. Making the appropriate construction for FC, we draw the geodesics P_1Q_1 and P_2Q_2 orthogonal to C_0. Let $s = s_1$ at Q_1 and $s = s_2$ at Q_2; then s_1 and s_2 are the fourth FC ($X^{(4)}$) of P_1 and P_2 respectively.

Let E_1, E_2 be the points on C_1, C_2 corresponding to $s = 0$. We regard the three-line structure C_0, C_1, C_2 as determined by the three points Q_0, E_1, E_2 and Cauchy data at these points. Our object is to calculate $\Omega(P_1P_2)$ in terms of the FC of P_1, P_2 and the Cauchy data.

Let $\lambda^i_((\alpha))$ be a Fermi triad on C_0. Put $Q_1P_1 = \sigma_1$, $Q_2P_2 = \sigma_2$; let μ^t and μ^s be the unit tangents to these lines at Q_1 and Q_2. Then the FC of P_1 and P_2 are as follows:

\[
P_1: \ X^{(\alpha_1)} = X^{(\alpha_1)} = \sigma_1 \mu^t \lambda^t_((\alpha)), \quad X^{(4)} = -X^{(4)} = s_1, \\
P_2: \ X^{(\alpha_s)} = X^{(\alpha_s)} = \sigma_2 \mu^s \lambda^s_((\alpha)), \quad X^{(4)} = -X^{(4)} = s_2. \quad (273)
\]

If we keep the geodesics Q_1P_1, Q_2P_2 fixed, but vary σ_1, σ_2, thus sliding P_1, P_2 in or out, $\Omega(P_1P_2)$ is a function of σ_1, σ_2, and we can develop it in a double power series of the form

\[
\Omega(P_1P_2) = \Omega(Q_1Q_2) + L_1 + \frac{1}{2} L_2 + \frac{1}{6} L_3 + \frac{1}{24} L_4 + O_5. \quad (274)
\]

Here O_5 means of the fifth order in σ_1, σ_2, s_1, s_2, each of which is supposed to be O_1. As for the L-terms, they are

\[
L_1 = \sigma_1(D_1\Omega) + \sigma_2(D_2\Omega), \\
L_2 = \sigma_1^2(D_1^2\Omega) + 2\sigma_1\sigma_2(D_1D_2\Omega) + \sigma_2^2(D_2^2\Omega), \quad (275)
\]
and so on, where $D_1 = \partial/\partial \sigma_1$, $D_2 = \partial/\partial \sigma_2$ and () means evaluation for $\sigma_1 = \sigma_2 = 0$, i.e. at Q_1, Q_2 (these are not coincidence limits).

Let us now give a slightly different meaning to μ^i_t and μ^i_s, taking them to be the unit tangents at P_1 and P_2, regarded as current points on Q_1P_1 and Q_2P_2. Then, the arguments of Ω being P_1, P_2, we have

$$D_1 \Omega = \Omega_t \mu^i_t, \quad D_2 \Omega = \Omega_s \mu^i_s,$$
$$D_1^2 \Omega = \Omega_{t,tt} \mu^i_t \mu^j_t, \quad D_1 D_2 \Omega = \Omega_{t,s} \mu^i_t \mu^j_s,$$ (276)

and so on. We proceed now to the limits () and substitute in (275). The invariants then occurring can be expressed in terms of invariant components on the Fermi triad, and we get the following expressions:

$$L_1 = \Omega_{(\alpha_1)} X^{(\alpha_1)} + \Omega_{(\alpha_2)} X^{(\alpha_2)},$$
$$L_2 = \Omega_{(\alpha_1,\beta_1)} X^{(\alpha_1)} X^{(\beta_1)} + 2\Omega_{(\alpha_1,\beta_2)} X^{(\alpha_1)} X^{(\beta_2)} + \Omega_{(\alpha_2,\beta_2)} X^{(\alpha_2)} X^{(\beta_2)},$$
$$L_3 = \Omega_{(\alpha_1,\beta_1,\gamma_1)} X^{(\alpha_1)} X^{(\beta_1)} X^{(\gamma_1)} + 3\Omega_{(\alpha_1,\beta_1,\gamma_2)} X^{(\alpha_1)} X^{(\beta_1)} X^{(\gamma_2)}$$
$$+ 3\Omega_{(\alpha_1,\beta_2,\gamma_2)} X^{(\alpha_1)} X^{(\beta_2)} X^{(\gamma_2)},$$
$$L_4 = \Omega_{(\alpha_1,\beta_1,\gamma_1,\delta_1)} X^{(\alpha_1)} X^{(\beta_1)} X^{(\gamma_1)} X^{(\delta_1)} + 4\Omega_{(\alpha_1,\beta_1,\gamma_1,\delta_2)} X^{(\alpha_1)} X^{(\beta_1)} X^{(\gamma_1)} X^{(\delta_2)}$$
$$+ 6\Omega_{(\alpha_1,\beta_1,\gamma_2,\delta_2)} X^{(\alpha_1)} X^{(\beta_1)} X^{(\gamma_2)} X^{(\delta_2)}$$
$$+ 4\Omega_{(\alpha_1,\beta_2,\gamma_2,\delta_2)} X^{(\alpha_1)} X^{(\beta_2)} X^{(\gamma_2)} X^{(\delta_2)} + 2\Omega_{(\alpha_2,\beta_2,\gamma_2,\delta_2)} X^{(\alpha_2)} X^{(\beta_2)} X^{(\gamma_2)} X^{(\delta_2)}.$$ (277)

The arguments of the Ω-terms are now Q_1, Q_2, and in fact these terms are precisely those already evaluated in (269)–(272). When we substitute from those equations, we are near our goal; however the FC occurring in (277) are those of P_1, P_2, and we wish to use the Cauchy data at E_1, E_2. Using a bar to indicate evaluation at E_1, E_2, we make the expansions

$$X^{(\alpha_1)} = \bar{X}^{(\alpha_1)} + s_1 \bar{D} \bar{X}^{(\alpha_1)} + \frac{1}{2} s_1^2 \bar{D}^2 \bar{X}^{(\alpha_1)} + O_3,$$
$$X^{(\alpha_2)} = \bar{X}^{(\alpha_2)} + s_2 \bar{D} \bar{X}^{(\alpha_2)} + \frac{1}{2} s_2^2 \bar{D}^2 \bar{X}^{(\alpha_2)} + O_3,$$ (278)

where $D = d/ds$ (note that the differentiation is with respect to the measure of C_0, i.e. the fourth Fermi coordinate, and not with respect to the measures of C_1 and C_2). We then substitute these expansions in (277) and use (269)–(272). To avoid burdening the notation, we shall delete the bars, but evaluation of the Fermi coordinates and their
derivatives at E_1, E_2 is understood. The derivatives of A are curvature properties of C_0 at Q_0, and the components of the symmetrized Riemann tensor (S-terms) are taken at Q_0. The result is as follows:

$$\Omega(P_1P_2) = M_2 + M_3 + N_3 + M_4 + N_4 + O_5,$$ \hfill (279)

where

$$M_2 = -\frac{1}{2}(s_2 - s_1)^2 + \frac{1}{2}r_{12}^2, \quad r_{12} = (X_{(\alpha_1)} - X_{(\alpha_2)})(X^{(\alpha_1)} - X^{(\alpha_2)}),$$ \hfill (280)

$$M_3 = -\frac{1}{2}(s_2 - s_1)^2(X^{(\alpha_i)} + X^{(\alpha_2)})(DA)_{(\alpha)},$$ \hfill (281)

$$N_3 = (X_{(\alpha_1)} - X_{(\alpha_2)})(s_1DX^{(\alpha_i)} - s_2DX^{(\alpha_2)}),$$ \hfill (282)

$$M_4 = -\frac{1}{2}(s_2 - s_1)^2S_{(\alpha\beta\gamma\delta)}(X^{(\alpha_i)}X^{(\beta_i)} + X^{(\alpha_2)}X^{(\beta_2)} + X^{(\alpha_i)}X^{(\beta_2)} + X^{(\alpha_2)}X^{(\beta_1)})$$
$$+ \frac{1}{2}(s_2 - s_1)S_{(\alpha\beta\gamma\delta)}(X^{(\alpha_i)}X^{(\beta_i)}X^{(\gamma_2)} - X^{(\alpha_2)}X^{(\beta_2)}X^{(\gamma_1)})$$
$$+ \frac{1}{4}S_{(\alpha\beta\gamma\delta)}X^{(\alpha_i)}X^{(\beta_i)}X^{(\gamma_2)}X^{(\delta_2)},$$ \hfill (283)

$$N_4 = -\frac{1}{2}b^2(s_2 - s_1)^4 - \frac{1}{2}(s_2 - s_1)^2(s_1DX^{(\alpha_i)} + s_2DX^{(\alpha_2)})(DA)_{(\alpha)}$$
$$- \frac{1}{2}(s_2 - s_1)^2(DA)_{(\alpha)}(DA)_{(\beta)}X^{(\alpha_i)}X^{(\beta_2)},$$
$$- \frac{1}{6}(s_2 - s_1)^2[(2s_1 + s_2)X^{(\alpha_i)} + (s_1 + 2s_2)X^{(\alpha_2)}](D^2A)_{(\alpha)}$$
$$+ \frac{1}{2}(X_{(\alpha_1)} - X_{(\alpha_2)})(s_1D^2X^{(\alpha_2)} - s_2D^2X^{(\alpha_2)})$$
$$+ \frac{1}{2}(s_1D^2X^{(\alpha_1)}D^2X^{(\alpha_2)} - 2s_1s_2D^2X^{(\alpha_1)}D^2X^{(\alpha_2)} + s_2D^2X^{(\alpha_2)}DX^{(\alpha_2)}),$$ \hfill (284)

In the above calculation, use was made of the identity

$$S_{(\alpha\beta\gamma\delta)} = -2S_{(\alpha\beta\gamma\delta)}. $$ \hfill (285)

As a check on (279), we note that it should be, and is, invariant under interchange of the numbers 1 and 2.

This work represents a formal calculation in which $\sigma_1, \sigma_2, s_1, s_2$ are treated as small quantities of the first order, the subscripts on M and N in (279) indicating orders of magnitude. We have not made any assumption of smallness regarding the curvature of space-time or the curvatures of the three world-lines, nor have we assumed these world-lines to be nearly parallel. The general effect of such additional assumptions is to reduce the dimensionless ratios $M_3/M_2, N_3/M_2$, etc. The curvature of space-time appears only in M_4, and flatness implies $M_4 = 0$. On the other hand, if C_0 is a geodesic and the Fermi coordinates are constants, then $M_3 = N_3 = N_4 = 0$. In applying (279) to a physical situation in xi–§ 7, we shall drop N_4 but keep M_4 in order to explore the effect of the gravitational field.
CHAPTER III

CHRONOMETRY IN RIEMANNIAN SPACE-TIME

§ 1. NATURAL OBSERVATIONS (NO) AND MATHEMATICAL OBSERVATIONS (MO)

Except for occasional hints as to possible physical applications, the two preceding chapters consisted of pure mathematics (Riemannian geometry). The mathematical argument may have lacked complete logical rigour, but it is safe to say that those chapters contained no material for controversy; mathematics is not a controversial subject because all mathematicians attach the same meanings to the terms used in it.

Neither is experimental physics a controversial subject. But theoretical physics is, and always will be. This is inevitable, since the aim of theoretical physics is to force the vast complexity of nature into a narrow mathematical mould, using idealizations and simplifications which are absolutely necessary and (to the unsympathetic mind) absolutely nonsensical.

Since physics is based on observations, it is useful to list four types of observation ¹ as follows:

(i) Uncontrolled natural observations (UNO)
(ii) Controlled natural observations (CNO)
(iii) Imagined natural observations (INO)
(iv) Mathematical observations (MO).

The meanings here attached to these terms are best explained by examples. UNO are performed by astronomers observing stars or photographing the heavens, and by meteorologists weighing raindrops. CNO are performed by physicists timing a simple pendulum or observing the scatter of a beam of protons issuing from an accelerator. INO are performed by physicists planning experiments in advance, and by

¹ Neither observation nor experiment is a wholly satisfactory word. For simplicity and uniformity, the word observation alone is used, although in some contexts experiment would be better.
astronomers discussing the rotundity of the moon's backside or the position of Jupiter a century hence. However, the divisions between UNO, CNO and INO are not sharp. UNO today may be CNO tomorrow, and vice versa. Every observation is INO before it is performed, UNO or CNO afterwards. It may be better to forget the differences and lump UNO, CNO and INO together under the sign NO.

Between NO and MO there is a sharp and decisive break. Only the simplest MO (counting) can be regarded as being NO also (e.g. the observation that 23 is a prime number). Generally MO involve infinity (irrational numbers, differential calculus, and so on), and so lie outside physics and outside nature (except in so far as the mind of man is natural). As examples of MO we have the concurrence of the angular bisectors in Euclidean geometry, or the ellipticity of planetary orbits in Newtonian astronomy. This concurrence and this ellipticity are meaningless in terms of NO, for in nature there are neither straight lines nor ellipses.

The peculiar fascination of theoretical physics lies in the art of forcing meaningful truth out of the meaningless equation NO = MO, which is a symbolic form of the assertion that natural phenomena obey exact mathematical laws. The true inequality NO ≠ MO should not be spoken above a whisper, because it is extremely dangerous. If believed, it would sever mathematics from physics, and reduce both to sterility through lack of mutual fecundation. It is whispered here only as an apology to those readers who expect to see the mathematics of relativity tied to the physics of relativity by a strong chain of clear thought. It cannot be done. We have to muddle through. And if this book is dishonest in confusing MO with NO, it is no more dishonest than all similar books are, and necessarily must be. This sad state of affairs is not peculiar to relativity; every branch of mathematical physics has in its cupboard the skeleton MO ≠ NO.

The preceding remarks are no more than the briefest introduction to a subject on which whole books might be written and in which the confusion is necessarily so great that any author might well be satisfied if he succeeded in reducing the confusion by ever so little — there is no hope of abolishing it. Let us, however, realize the presence of this difficulty, this confusion, because only through this realization may we hope to be restrained from controversies full of sound and fury, signifying nothing. Some the difficulties of the situation are treated

1 Since this was written, INO became UNO.
admirably by Bridgman [1949] in an article discussing the value and the limitations of the so-called operational method, in which the meaning of a term is to be sought in the operations employed in making application of the term. It was by use of this method that Einstein gave a convincing argument against the absolute time of Newton, and Bridgman accuses Einstein of failing to carry the method over into general relativity. The present book is an attempt to make general relativity more operational than it has been hitherto, but I have no false confidence in the complete clarity of the method, and as the argument progresses it will become increasingly obscure to the author and to the reader whether the 'experiments' considered (sometimes called ideal experiments or thought experiments) belong to the class MO or to the class NO. This matter will be referred to again briefly in § 3, and after that we shall forget it.

§ 2. CHRONOMETRY AND THE RIEMANNIAN HYPOTHESIS

The key-word in relativity is event \(^1\). The totality of all possible events form a 4-dimensional continuum, called space-time, in which coordinates \(x^t\) may be taken in a great variety of ways.

We accept the concept of a material particle. Its history is a sequence of events — a curve in space-time; we call it a world-line.

We accept the concept of time-order on the world-line of any material particle, so that any event on that world-line separates all the other events on it into two classes — the past and the future.

Any monotonic parameter, increasing from the past into the future, might be used to measure time on the world-line of a material particle. However, on account of its arbitrariness, such a measure of time could have little physical significance. We make this concept of time more concrete by assuming the existence of standard clocks, which may be carried by material particles, and the ticking of which provides a measure of proper time. Since this is the only time of basic importance in relativity, we shall drop the adjective proper and refer to it simply as time \(^2\).

In thus setting up, as a basic concept, the measurement of time along the world-line of any material particle, we have established a chrono-

\(^1\) The word event and other concepts discussed here have been treated in much the same way, but in greater detail, in Synge [1956a], Chap. 1.

\(^2\) Later we may have occasion to refer to coordinate time; there should be no confusion.
The observation of this time is a mathematical observation (MO) — it would be foolish to inquire the colour of the eyes of the observer, because mathematical observations are made by eyeless headless mannikins. But it is by no means foolish to inquire by what apparatus a natural observation (NO) of time may be made. To deal with such questions, it is wise to be methodical and set out the replies in dictionary form. In the present case we may make the following dictionary entries, the first column showing the mathematical words and the second the appropriate corresponding physical words:

<table>
<thead>
<tr>
<th>MO</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>time</td>
</tr>
<tr>
<td>standard clock</td>
<td>atom</td>
</tr>
<tr>
<td>ticking of standard clock</td>
<td>emission of wave crests of radiation</td>
</tr>
</tbody>
</table>

To enlarge on the meaning of the NO column, we take a simple view of the radiation from an excited atom, and think of electromagnetic radiation emitted in clear-cut waves. But what atom, and what energy levels are involved in the radiation? The answer is that it does not matter, provided we use consistently the same type of atom (all atoms of the same type are regarded as identical) and the same pair of energy levels. For definiteness, we may decide to use an atom of cadmium, and the radiation which gives the red line.

It is necessary to expose here a certain physical assumption inherent in the structure of relativity. Let \(C \) (Fig. 1) be the world-line of a material particle, and \(B, A \) two events on it, with \(B \) before \(A \). The particle carries two standard clocks consisting of atoms of different types, or two atoms of the same type but with the use of different energy levels. Each clocks registers a definite number of ticks between \(B \) and \(A \); let these numbers be denoted by \(n_1 \) and \(n_2 \). The physical assumption just referred to is the following hypothesis of consistency: For two standard clocks, the ratio \(n_1 : n_2 \) is a natural constant, independent of the world-line on which the observations are made and of the events on that world-line.

The modern mental picture of an atom and the radiation from it is so unclear
that it would be idle to ask for a straight definite answer to the
question whether the hypothesis of consistency is true or false.
The most we can do is to state that there is no evidence against it as a
sharpened concept (MO) from spectroscopy (NO), with neglect of line-
breadth, and we shall accept it in setting up the physics of general
relativity. If we did not, we would either have to abandon general
relativity in its present form, or else substitute a strange assumption
that, out of all possible atomic clocks, there was one (or perhaps a
privileged class) by which alone we could measure a time which was of
physical importance. On the other hand, armed with the hypothesis of
consistency, we can reiterate what was written above — the particular
standard clock used does not matter, because the only effect of
changing from one clock to another is to change the unit of time, the
ratio of two units being a universal constant. It is important to note,
however, that nature does not here prescribe a natural unit of time,
and in setting up the equations of relativity this should be borne in
mind. Apart from this caution, we shall for simplicity suppose that
some definite standard clock has been selected once for all — it might
well be a cadmium atom emitting the red line. Since all clocks hence-
forth considered are standard clocks, we shall drop the adjective and
call them simply clocks.

We come now to the essence of general relativity — the chronometric
assumption which makes space-time Riemannian. Let x^t and $x^t + dx^t$
be the coordinates of two adjacent events in the history of a material
particle. Let ds be the corresponding time registered by a clock
carried by the particle. Then ds is a function of x^t and dx^t, necessarily
homogeneous of the first degree in the differentials. We make the
Riemannian hypothesis:

$$ds^2 = -g_{ij}dx^i dx^j,$$

where $g_{ij} (= g_{ji})$ are functions of x^t. The tensorial character of g_{ij}
follows from the invariance of ds (it has been defined without reference
to any particular coordinate system). We further assume that the
quadratic form

$$\Phi = g_{ij}dx^i dx^j$$

is of signature $+2$, as in I-§ 1. To complete the mathematical tie-up
with Chap. I, we assume the existence of admissible coordinates in
space-time, for which, it will be recalled, g_{ij} and their first derivatives
are continuous.
We have now invested the quadratic form Φ with physical meaning, for $ds = (\Phi)^\dagger$ and this can be measured by the clock carried by the particle. But this works only if Φ is negative; if Φ is positive, (1) makes ds imaginary.

There has been a good deal of confusion in relativity theory concerning the physical meaning of Φ, a confusion which reflects the confused and semi-mystical attitude of mathematicians to geometry prior to the time of Hilbert. It seems to have been thought that Φ has two physical interpretations of entirely different kinds according as Φ is negative or positive. If Φ is negative, we have the chronometric interpretation precisely as set out above. But if Φ is positive, it has been customary to regard it as a measure of length. That is not the procedure used in this book. For us time is the only basic measure. Length (or distance), in so far as it is necessary or desirable to introduce it, is strictly a derived concept, and will be dealt with later in that spirit.

![Diagram of a null cone with timelike, null, and spacelike vectors]

Fig. 2 – Elementary null cone, with timelike, null, and spacelike vectors

We are now launched on the task of giving physical meaning to the Riemannian geometry of Chaps. I and II. It is indeed a Riemannian chronometry rather than geometry, and the word geometry, with its dangerous suggestion that we should go about measuring lengths with
yardsticks, might well be abandoned altogether in the present connection were it not for the fact that the crude literal meaning of the word geometry has been transmuted into the abstract mathematical concept of a ‘space’ with a ‘metric’ in it.

Fig. 2 shows the elementary null cone at an event. Timelike vectors lie inside the null cone; they are physically identified as tangents to possible histories of material particles. Null vectors lie on the null cone; we identify them physically as tangents to possible histories of photons (particles of light), provided that, in a continuous medium, the photons are of very high energy. (Prior to Chap. xi, the word photon will be understood in that sense.) A spacelike vector lies outside the null cone; a curve to which it is tangent cannot be the history of a particle or photon.

But these interpretations are in the small and are common to both the special and general theories of relativity. The essence of Einstein’s general theory lies in the assumption that gravitation manifests itself in the curvature of Riemannian space-time. If the Riemann tensor R_{ijkl} of the metric (1) were to vanish, we would be back in the flat space-time of gravitationless special relativity. In fact, we may write symbolically

$$R_{ijkl} = \text{gravitational field.}$$

In Chap. iv we shall discuss the field equations which connect the curvature of space-time with the matter in it, but meanwhile we shall merely assume that space-time is curved without assigning specific causes for the curvature.

§ 3. THE GEODESIC HYPOTHESIS

In Newtonian physics, a particle is said to be free if no force acts on it, not even the force of gravity. In relativity there is no such thing as the force of gravity, for gravity is built into the structure of space-time, and exhibits itself in the curvature of space-time, i.e. in the non-vanishing of the Riemann tensor R_{ijkl}. We recognize as forces only the effects of mechanical stresses or electromagnetic fields; with that understanding, we can say with Newton that a particle is free when no force acts on it.

We assume that a particle possesses an invariant proper mass m, which is constant. Since mass for us will always mean proper mass, we shall drop the useless adjective. A particle has also a world-line,
and its 4-velocity V^i is the unit tangent to its world-line, so that

$$V^i = dx^i/ds, \quad V_iV^i = -1.$$ \hspace{1cm} (3)

The 4-momentum of the particle is

$$\rho^i = mV^i.$$ \hspace{1cm} (4)

As a natural generalization of Newton’s first law, we make the \textit{geodesic hypothesis} to the effect that the world-line of a free particle is a geodesic in space-time; in symbols,

$$DV^i = 0 \quad (D = \delta/\delta u) \hspace{1cm} (5)$$

where u is any monotonic parameter on the world-line (perhaps the time s). From the assumed constancy of m, we deduce from (4) and (5) the equation

$$D\rho^i = 0,$$ \hspace{1cm} (6)

so that the 4-momentum of a free particle undergoes parallel transport.

The particle just considered is a material particle. A photon has zero mass ($m = 0$), but it possesses a 4-momentum ρ^i. We extend the geodesic hypothesis to cover photons by assuming that the world-line of a photon is a null geodesic. We add the further assumptions that ρ^i is tangent to the world line, and that it undergoes parallel transport along it, so that the formula (6) holds for a photon as well as for a material particle.

We saw in Chap. 1 that any geodesic (null or not) possesses a class of special parameters u, subject only to linear transformations, such that the equations of the geodesic read

$$D \frac{dx^i}{du} = 0 \quad (D = \delta/\delta u).$$ \hspace{1cm} (7)

If we use one of these special parameters on the world-line of a material particle or of a photon, we have

$$\rho_i = \theta \frac{dx^i}{du},$$ \hspace{1cm} (8)

where θ is some scalar. Applying the operator D and using (6) and (7), we get

$$D\theta \cdot \frac{dx^i}{du} = 0, \quad D\theta = 0,$$ \hspace{1cm} (9)

so that θ is constant along the world-line. In the case of a material
particle, one member of the class of special parameters is distinguished above the others, viz. \(u = s \), the time. But in the case of a photon, we have \(s = 0 \), and the distinguished special parameter must be sought otherwise. The simplest demand is \(\theta = 1 \). This yields a distinguished special parameter \(u \) such that

\[
\dot{p}^t = \frac{dx^t}{du}.
\] (10)

If we apply this idea to the material particle, we get a distinguished special parameter \(u \) such that

\[
du = \frac{ds}{m}.
\] (11)

Simple as all this may sound, and satisfactory as it may seem as MO (in the sense of § 1), we are treading on the brink of controversy. A physicist may well ask to be given samples of material particles or photons, visible to his eyes or tangible to his hands through the medium of suitable apparatus. Is the material particle perhaps the sun, the moon, a rocket, or a hydrogen atom? Is the photon a parcel of \(\gamma \)-rays or radio waves? If our interest were solely to construct a rational mathematical scheme labelled ‘relativity’, the demand for a sample might be brushed aside with as much contempt as the demand for the production of a rod of length \(\sqrt{2} \) cm, for everyone knows that irrational numbers belong to MO, not NO, and our particles and photons have that artificiality too.

Later on, we shall deal with the motion of finite portions of matter and with electromagnetic waves, and it might be thought that then the difficulty of passing between MO and NO might be overcome by means of a limiting process in which the finite body shrinks to a mere point, and likewise for a concentration of an electromagnetic field. Such considerations do indeed throw light on a difficult situation, but they do not resolve the difficulty.

At this point, the best thing to say is that we are engaged in constructing a logically consistent mathematical scheme (MO) with certain physical labels attached (guides to NO), and that the practising physicist must use his judgment in the interpretation of the legends on those labels. That is, indeed, the usual procedure in all branches of theoretical physics.
§ 4. SPATIAL MEASURE, ORTHOGONALITY, AND SCALAR PRODUCTS

Two adjacent events define an infinitesimal vector in space-time. If that vector is timelike, its measure or magnitude has a simple physical, or chronometric, meaning; it is the time recorded by a clock carried by a particle which includes those two events in its history. But if the vector is spacelike, this interpretation of the measure fails, because the two events cannot be included in the history of a single clock. Nevertheless an infinitesimal spacelike vector can be measured chronometrically, as we shall now show.

Fig. 3 shows an infinitesimal spacelike vector AB. Through A draw any timelike curve, and let C, D be the events where this curve intersects the null cone having B for vertex. This is a physical construction, since CAD may be taken to be the history of a particle and the null lines CB, BD to be the histories of photons. Working in the infinitesimal domain, and using an obvious notation for the infinitesimal vectors, we have

$$BD^i = AD^i - AB^i, \quad CB^i = CA^i + AB^i. \quad (12)$$

From the null, timelike and spacelike characters of the vectors involved, we have

$$BD_iBD^i = 0, \quad CB_iCB^i = 0, \quad AD_iAD^i = -AD^2,$$

$$CA_iCA^i = -CA^2. \quad AB_iAB^i = AB^2, \quad (13)$$

where AD, CA, AB are Riemannian measures, AD and CA being times measured by a clock carried on CAD. Also, in our infinitesimal domain,

$$CA^i = \theta AD^i, \quad CA = \theta AD, \quad (14)$$

where θ is a positive scalar. From (12) and (13) we have

$$-AD^2 - 2AD_iAB^i + AB^2 = 0,$$

$$-CA^2 + 2CA_iAB^i + AB^2 = 0. \quad (15)$$

1 The curvature of space-time is not involved here, and the interpretations are common to the special and general theories; cf. SYNGE [1956a], where Chap. III in particular may help the reader who finds space-time diagrams difficult.
Eliminating the middle terms by means of (14), we get

\[AB^2 = \theta AD^2 = CA \cdot AD, \]

which expresses the spacelike measure \(AB \) in terms of the chronometric measures \(CA, AD \). We call this measure the \textit{length} of the infinitesimal spacelike vector.

If it happens that \(CA = AD \), then \(\theta = 1 \), and we get

\[AB = CA = AD, \]

and from (15)

\[AD^t AB^t = 0, \]

which is the condition for the \textit{orthogonality} of \(AB^t \) and \(AD^t \). Thus we have a chronometric interpretation of the orthogonality of two vectors, one spacelike and the other timelike.

Another important orthogonality is that of two spacelike vectors. There exist \(\infty \) timelike directions (as \(V^t \) in Fig. 4) orthogonal \(^1 \) to any given orthogonal spacelike pair (shown as \(AB, AC \) in Fig. 4). The condition of orthogonality of the spacelike pair is

\[AB^t AC^t = 0, \]

and it is easy to see (by introducing special local coordinates) that this is equivalent to the formula of Pythagoras

\[BC^2 = AB^2 + AC^2. \]

Since \(AB, BC, AC \) have already been given chronometric meanings, this is a chronometric equation.

The scalar product of a pair of vectors is a very important thing in physics, and we might like to have a direct physical (i.e. chronometric) interpretation of each scalar product which occurs. As part of such a programme, we see in (15) a chronometric interpretation of the scalar product of two infinitesimal vectors, one timelike and the other

\footnote{The 2-element defined by a pair of \textit{non-orthogonal} spacelike directions may cut the null cone; in that case there is no timelike direction orthogonal to them both.}
spacelike. But it would be tedious to develop such interpretations systematically, and it seems best to go ahead without them, noting, however, the following mathematical facts about scalar products:

(i) If U^i and V^i are two unit vectors, both timelike and pointing into the future, then

$$U_i V_i \leq -1.$$ \(21\)

(ii) If V^i is a fixed timelike vector, and U^i a spacelike unit vector with arbitrary direction, then $U_i V^i$ can take all real values.

(iii) If V^i is a timelike vector and N^i a null vector, both pointing into the future, then

$$N_i V^i < 0.$$ \(22\)

In § 3 we met the 4-momentum p^i of a material particle or photon. We might refer to the first three components of p^i as 3-momentum and to the fourth component p^4 as energy, but it is wiser to reserve these important physical names for invariants, because the values of the vector components depend, of course, on the choice of coordinate system. Accordingly, we defer the definition of 3-momentum to the next Section, and here define only the energy relative to an observer with 4-velocity V^i by the formula

$$E = - p_i V^i.$$ \(23\)

Naturally this definition applies only if the observer and the material particle or photon have a common event in their histories, E being evaluated at that common event. The sign in (23) is chosen so that [cf. (21) and (22)] E is positive if V^i and p^i both point into the future. This is the normal situation, but we might hesitate in the case of p^i, because there are hints in modern physics that p^i might point into the past; this would mean negative energy.

§ 5. BORN RIGIDITY AND FRAMES OF REFERENCE

Consider a single infinity of timelike curves, not geodesics in general. They form a 2-space W_2, and in W_2 we may draw the orthogonal trajectories of the given system of curves, so that we have a net, as shown in Fig. 5. Let us parametrize W_2 so that it has the equations $x^i = x^i(u, v)$, with $v = \text{const.}$ on each of the timelike curves and $u = \text{const.}$ on each of the orthogonal trajectories. As in 1–(125), we write

$$\frac{\partial x^i}{\partial u} = U^i, \quad \frac{\partial x^i}{\partial v} = V^i,$$ \(24\)
and as in 1–(127) we have, for the deviation vector drawn from the timelike curve \(v \) to the timelike curve \(v + \delta v \),

\[
\eta^i = V^i \delta v.
\]

(25)

On account of the orthogonality in the construction, we have

\[
U^i V^i = 0;
\]

(26)

the deviation vector \(\eta^i \) is orthogonal to \(U^i \) everywhere on \(W_2 \).

In general, the magnitude \(\eta \) of the deviation vector will vary as we pass along any one of the timelike curves. Following the definition given by Born in special relativity, we shall say that two adjacent timelike curve are **rigidly connected** if \(\eta = \text{const.} \) as we pass along the curves.

Since, as shown in the preceding Section, \(\eta \) has a chronometric measure, rigidity may be tested by sending photons from one timelike curve to the other, and receiving back the scattered or reflected photons. The criterion for rigidity is that the elapsed time from emission to return (the *trip-time*) should be constant. This test is shown in Fig. 6, the trip-times being the chronometric measures \(A_1 B_1, A_2 B_2, \ldots \). There is nothing very novel about these ideas, for this test of rigidity by measuring trip-times is really the same as the testing of length by means of an interferometer, which instrument is essentially a device for comparing trip-times.

Although the Born criterion of rigidity involves no difficulty when applied to a one-dimensional body (a rod), difficulties accumulate with increase of dimensionality, and it must be stated emphatically that the three-dimensional concept of rigidity does not pass from Newtonian physics into relativity. We should look very sceptically at any relativistic argument which uses or implies the concept of rigidity as if the meaning of that word were clear and obvious. Thus the concept of a frame of reference (a rigid body in Newtonian physics) must be examined and redefined.
The difficulties inherent in relativistic rigidity are, however, connected with non-integrability, and are avoided if we work in an infinitesimal domain. We start with a timelike curve C_0 (Fig. 7), which we regard as given; it might be the world-line of an observer on the earth, or of his eye, or of a portion of a photographic plate, or of the corner of a room. We consider also three timelike curves, C_1, C_2, C_3, which can be controlled; actually two curves would do, but three are better for the sake of symmetry. These curves are to be thought of as the world lines of particles, adjustable by means of screws or other devices. The four world-lines might be four adjacent corners of a block of stone, but, if so, we must be prepared to strain that stone if necessary in order to satisfy the conditions which we shall now proceed to impose.

Each of the three adjustable world-lines has three degrees of freedom, and so we have at our disposal nine degrees of freedom in all. Let us so control them that the Born condition of rigidity is satisfied by each pair. Since there are six pairs, in this way we use up six degrees of freedom, leaving three over. Note that the controlling operations are physical (chronometric).

Without using up more degrees of freedom, we can make the control a little more definite by demanding that the three deviation vectors, drawn from C_0, are equal in magnitude and mutually orthogonal. Then in the 3-element orthogonal to C_0 we have a little rigid tetra-
hedron $C_0C_1C_2C_3$ as in Fig. 8, which shows also the unit vectors $\mu^i_{(\alpha)}$ drawn in the directions of the deviation vectors $\eta_{(\alpha)}$. This orthonormal tetrad $\mu^i_{(\alpha)}$ forms a frame of reference.

In fact, any orthonormal triad, orthogonal to the 4-velocity of the observer's world-line C_0, may be taken as a frame of reference. All we have been doing above is merely the conversion of this mathematical concept into physical (chronometric) terms, so that any astronomer anxious to set up a frame of reference will know how to go about it. Of all frames of reference, the simplest mathematically is given by a Fermi triad [cf. I–§4, II–§10], which, in the notation of II–(180), satisfies the equation

$$\frac{\delta}{ds} \lambda^i_{(\alpha)} = bA^i\lambda^j_{(\alpha)}B_j. \quad (27)$$

If $\mu^i_{(\alpha)}$ is any other orthonormal triad orthogonal to C_0, there exists an orthogonal matrix $M_{(\alpha\beta)}$ (consisting of the nine mutual direction cosines) such that

$$\mu^i_{(\alpha)} = M_{(\alpha\beta)} \lambda^i_{(\beta)}, \quad M_{(\alpha\beta)}M_{(\alpha\gamma)} = \delta_{\beta\gamma}. \quad (28)$$

The elements $M_{(\alpha\beta)}$ are functions of s (time on C_0), and, since the derivative of an orthogonal matrix is skew-symmetric, we may write

$$\frac{d}{ds} M_{(\alpha\beta)} = \omega_{(\alpha\beta)} = -\omega_{(\beta\alpha)}, \quad (29)$$

the three independent components of $\omega_{(\alpha\beta)}$ being in fact the components of the angular velocity of $\mu^i_{(\alpha)}$ relative to $\lambda^i_{(\alpha)}$.

We have still at our disposal three degrees of freedom in the control of the world-lines C_1, C_2, C_3 which define $\mu^i_{(\alpha)}$, and we may use them to make $\omega_{(\alpha\beta)} = 0$. The frame then becomes a Fermi frame, and, as we shall see later, a Fermi frame is very useful physically.

What we have done above is partly physical and partly mathematical. The orthonormality of the frame $\mu^i_{(\alpha)}$ is physical (chronometric), but the Fermi law (27) is still merely mathematical. It is only
after we have given a physical test of Fermi transport (as we shall later) that we can complete the physical specification. Meanwhile we shall use Fermi transport as if it were a physically understood thing.

Once we are equipped with a frame of reference \(\mu^i_{(\alpha)} \) (Fermi or not), it is easy to write down a suitable definition of 3-momentum of a material particle or photon relative to that frame:

\[
\hat{\rho}_{(\alpha)} = \hat{\rho} \mu^i_{(\alpha)},
\]

(30)

If we denote the 4-velocity of \(C_0 \) by \(u^i_{(4)} \), we can combine 3-momentum and energy [cf. (23)] in the formulae

\[
\rho_{(\alpha)} = \rho u^i_{(\alpha)} \quad \text{and} \quad E = -\rho_{(4)} = \rho^{(4)},
\]

(31)

the rules of \(\mathbf{r} \)–(54) being understood.

§ 6. THE MEASUREMENT OF DIRECTION

The related concepts of direction and angle are so basic in Newtonian physics that it takes an effort to realize that they must be examined critically before they are admitted into relativity. It is a question of defining the direction of some object with world-line \(C \) relative to an observer with world-line \(C_0 \), and we have to remember that \(C_0 \) can know nothing of \(C \) except through messages or signals of some sort which emanate from \(C \) and reach \(C_0 \). These messages might be free particles or photons in vacuo, but we shall be more general and merely suppose that a message travels along some timelike or null world-line. In order that \(C_0 \) may be able to report the direction from which the message has come, he must set a trap for it by arranging to have another world-line \(C' \) adjacent to \(C_0 \), adjusting \(C' \) so that the world-line of the message intersects \(C' \). This is what an astronomer does in observing a star, \(C_0 \) being the world-line of his eye and \(C' \) that of the middle point of the object glass of his telescope.

If the distance between \(C_0 \) and \(C' \) is finite, various complications arise with which we do not wish to deal, because the observing apparatus is in practice very small compared with the phenomena observed; it will suffice to suppose the distance between \(C_0 \) and \(C' \) to be infinitesimal. Fig. 9 shows the message leaving the object \(C \) at the event \(P \), cutting the world-line \(C' \) at the event \(P' \), and finally reaching the observer \(C_0 \) at \(P_0 \). It is the infinitesimal vector \(\xi^t \), drawn from \(P_0 \) to \(P' \), which we must use to define the direction of \(C \) relative to \(C_0 \).

Let \(\mu^i_{(\alpha)} \) be a frame of reference on \(C_0 \), as in the preceding section.
Since ξ^t is not orthogonal to C_0, it cannot be drawn in Fig. 8. However, if we proceed along C' to its intersection Q' with the 3-element orthogonal to C_0 at P_0, we get a vector $\eta^i (= P_0Q')$ which can be drawn in Fig. 8, and which has direction ratios $\eta^i \mu_{(\alpha)}^i$ relative to the triad $\mu_{(\alpha)}^i$, taken at P_0. We define the direction of C relative to C_0 by these direction ratios, which are obviously equal to the components $\xi^i \mu_{(\alpha)}^i$. Naturally, these direction ratios depend not only on the frame used, but also on the type of message employed. If, in astronomical observation, we neglect the refraction of the atmosphere, then PP_0 will be a null geodesic.

Since we are working with infinitesimals, it is a matter of indifference whether we take $\mu_{(\alpha)}^i$ at P_0 and η^i as shown, or $\mu_{(\alpha)}^i$ at the foot of the perpendicular from P' on C_0 and η^i drawn along this perpendicular. Such distinctions would become of importance only if we had to consider the length of the telescope or other observing apparatus as finite, i.e. if the time taken by the message from P' to P_0 were not negligible.

Direction might also be measured mechanically by using 3-momentum with the formula (30).

§ 7. RELATIVE VELOCITY AND THE DOPPLER EFFECT

It is a good thing to attach physical (chronometric) meanings to the mathematical formulae of Riemannian space-time. But it would be tedious to do this consistently, and it is more rewarding to go ahead with mathematical constructions (e.g. parallel transport) with a general confidence that they can be physically interpreted later if need be.

The 4-velocity of a particle is well defined; it is the unit tangent vector $V^i (= \text{d}x^i/\text{d}s)$ to the world-line of the particle. We now seek a useful definition of the velocity of one particle relative to another. Let C (Fig. 10) be the world-line of an observer and C' the world-line of
some luminous object, such as a star or planet. We connect them with null geodesics such as $P'P$. We cannot immediately compare the 4-velocity V^i of C at P with the 4-velocity V'^i of C' at P', because they are vectors at different events. The obvious plan is to bring them to a common event by subjecting V'^i to parallel transport along $P'P$; this gives us at P the vector

$$v_i = g_{ij}V'^j,$$

where g_{ij} is the parallel propagator \[11-(71)\]. Let $\lambda^i_{(\alpha)}$ be a frame of reference on C with $\lambda^i_{(4)} = V^i$. This might be a Fermi frame, but the question does not arise at the moment, because we are concerned only with the event P.

We now define the 3-velocity of C' relative to C by the three invariant components

$$v_{(\alpha)} = v_i\lambda^i_{(\alpha)}.$$

Since v^i and V^i are unit vectors, the fourth component

$$v_{(4)} = v_i\lambda^i_{(4)} = v_iV^i$$

is expressible in terms of the other three:

$$v^{(4)} = -v_{(4)} = (1 + v^2)^{1/2}, \quad v^2 = v_{(\alpha)}v^{(\alpha)}.$$

We may call v the relative speed. Note that $v^{(4)} = 1$ if, and only if, all the three components $v_{(\alpha)}$ vanish; in that case V'^i and V^i are parallel for transport along the null geodesic $P'P$, and we may say that C' is at rest relative to C.

Let r^i be a unit vector at P, as shown in Fig. 10, orthogonal to C ($r_iV^i = 0$) and lying in the 2-element which contains the tangent at P to C and $P'P$. We define the speed of recession of C' to be

$$v_R = v_\alpha r^\alpha = v_{(\alpha)}r^{(\alpha)},$$

where $r^{(\alpha)}$ are the components of r^i on the frame of reference.

We shall now discuss the Doppler effect in two ways: mechanically, and in terms of frequency.

In the mechanical treatment, we consider a photon having $P'P$ for
world-line, being emitted from C' at P' with 4-momentum $\dot{p}^{i'}$, so that the energy of emission is, by (23),

$$E' = - \dot{p}_i V^i'. \tag{37}$$

The 4-momentum undergoes parallel transport along $P'P$ (cf. § 3), and so on arrival at P we have

$$\dot{p}_i V^i = \dot{p}_{i'} V^{i'}', \tag{38}$$

since a scalar product is constant under parallel transport of both the vectors in it. Thus, by (37),

$$\dot{p}_{(\omega)} V^{(\alpha)} + \dot{p}_{(4)} V^{(4)} = - E'. \tag{39}$$

The energy of the photon relative to C is

$$E = - \dot{p}_i V^i = - \dot{p}_{(4)} = \dot{p}_{(4)}, \tag{40}$$

and so (39) gives

$$E V^{(4)} - \dot{p}_{(\omega)} V^{(\alpha)} = E'. \tag{41}$$

From the definition of \dot{r} and the fact \dot{p} is null, we have

$$\dot{p}_i = \theta (V^i - \dot{r}^i), \tag{42}$$

where θ is some scalar, and, on multiplying by V_i we find

$$\theta = - \dot{p}_i V^i = E. \tag{43}$$

Hence

$$\dot{p}_{(\omega)} V^{(\alpha)} = \dot{p}_i \lambda^{i}_{(\alpha)} V^{(\alpha)} = - E r_{(\omega)} V^{(\alpha)} = - E v_R, \tag{44}$$

and when we substitute this in (41) and use (35), we get the following relation between the energy of reception (E) and the energy of emission (E'):

$$E[(1 + v^2)^{\frac{1}{2}} + v_R] = E'. \tag{45}$$

This is the Doppler effect in terms of energy. The red-shift is given by

$$\frac{E' - E}{E'} = 1 - \frac{1}{(1 + v^2)^{\frac{1}{2}} + v_R}, \tag{46}$$

a negative red-shift being a violet-shift. If the relative speed is small, we get

$$\frac{E' - E}{E'} = v_R - v_R^2 + \frac{1}{2} v^2 + \ldots, \tag{47}$$
in which the radial speed v_R is of course the dominant term.

To discuss the Doppler effect in terms of frequency, we consider (Fig. 11) a set of null geodesics joining C' to C, each representing the history of a wave crest. If there are n such crests, and ds', ds are the clock-measures of $P'Q'$, PQ, respectively, we have

$$n = v'ds' = vds,$$ \hspace{1cm} (48)

where v', v are the frequencies of emission and reception respectively. Thus the Doppler effect in terms of frequency is given by

$$\frac{v}{v'} = \frac{ds'}{ds},$$ \hspace{1cm} (49)

so that it involves only a comparison of the measures of corresponding elements when C' is mapped on C by null geodesics. This mapping was considered in \(1-\S \, 6\), but with a different notation since V^i is now 4-velocity. If η^i is the deviation vector from $P'P$ to $Q'Q$, the second equation in \(1-(133)\) gives

$$\eta^i p_i = \eta^i p_i',$$ \hspace{1cm} (50)

where p^i is the 4-momentum as earlier. But

$$\eta_i = V_i ds, \quad \eta_i' = V_i' ds',$$

$$\eta^i p_i = -Eds, \quad \eta^i p_i' = -E'ds',$$ \hspace{1cm} (51)

where E and E' are the energies as earlier. Combining this with (49) and (50), we get $v/v' = ds'/ds = E/E'$, and so by (46) we have for the red-shift in terms of frequency

$$\frac{v' - v}{v'} = 1 - \frac{1}{(1 + v^2)^{\frac{1}{2}} + v_R} = v_R - \frac{v_R^2}{2} + \frac{1}{2} v^2 + \ldots$$ \hspace{1cm} (52)

The quantum equation $E = \hbar \nu$ ($\hbar =$ Planck's constant) has not been used in the above work; it is of course consistent with it.

It is clear that in general the observer of a luminous source will see a spectral shift — radiation emitted with frequency ν' relative to the source will be received with a different frequency ν relative to the
observer. In attributing a *cause* to this spectral shift, one would say, on inspecting (52), that the spectral shift was caused by the relative velocity of source and observer; it is in fact a Doppler effect in the original sense of the term. It is not a gravitational effect, because the Riemann tensor appears nowhere in our formulae ¹.

This statement contradicts a statement frequently made in general relativity to the effect that a gravitational field causes a red-shift. Arguments about this are completely futile because they are merely windy warfare conducted without any attempt to analyze the meanings of the terms employed. We have committed ourselves in (33) to a certain definition of relative velocity; if that definition is not accepted, then the statement attributing spectral shifts to relative velocity cannot be accepted either. Any confusion which may exist here is due to the excessive attention paid to statical gravitational fields, in which there is available a definition of velocity which has no meaning in non-static cases.

For later reference (cf. vii–§ 9, viii–§ 3, xi–§ 9) we note that, by (37) and (40), the red-shift may be expressed in terms of the derivatives of the world-function $\Omega(P'P)$ as follows:

$$\frac{v' - v}{v'} = \frac{\Omega_{i} V'^{i} + \Omega^{i} V'_{i}}{\Omega_{j} V'^{j}}.$$

(53)

§ 8. FERMI TRANSPORT AND THE BOUNCING PHOTON

We shall now describe an experiment by means of which an observer can find out whether some given frame of reference undergoes Fermi transport or not. The experiment is very simple, and we can describe it in ordinary physical terms. The observer might be a man on the earth’s surface. His apparatus is a photon-gun, which in the present connection means a tube through which a photon can be shot out in the direction in which the gun is pointed and through which a photon can be received, as in a telescope. The observer launches some sort of small balloon into the air, and, taking careful aim, shoots from his gun a burst of photons to strike the balloon. These photons are scattered, and one comes back to the observer. If he is careless, he will not catch it, because his gun will probably be pointing in the wrong direction. But let us suppose that he catches it in the gun. Relative to

¹ This was pointed out by C. Lanczos [1923c], who used a different mathematical argument.
any frame of reference which the observer may employ, there are then
two directions of interest: the direction in which the photons are
emitted from the gun, and the direction of the gun when the returning
photon is received.

Now if the distance of the balloon is small of the first order, the
trip-time of the photon is small of that same order, for, from the way
in which we have defined length or distance, the 'velocity of light' is
unity. If there are two frames of reference which have, relative to one
another, a finite angular velocity, then in this small time one will turn
relative to the other through a small angle of the first order. If the two
directions of the gun (for emission and reception) happen to be the same
relative to one frame, then they will differ by the first order when
measured in the second frame.

If observations are made on a number of balloons and if, for some
law of transport of the frame of reference, the directions of the gun for
emission and reception are the same for each balloon, it is clear that
this test picks out some particular law of transport. This is in fact
Fermi transport, as we shall see when we have made the calculations.
But since we may hope to extract more information from this problem
of the *bouncing photon*, we shall carry out the calculations to a higher
degree of accuracy than is actually required in order to establish this
important property of Fermi transport.

The above explanation has been given in quasi-Newtonian form in
order to convince a reader who is suspicious of space-time diagrams
that the test proposed is a real physical test, allowance being made
for certain idealizations which would be made in any theoretical discussion. But
indeed the matter is really much simpler when viewed in space-time, the whole story
being told by Fig. 12, which shows the observer's world-line C, the event P' at
which the photons strike the balloon and are scattered, the event of emission Q_1
and the event of reception Q_2, Q_1P' and
$P'Q_2$ being the null geodesics representing
the histories of photons. To avoid en-
cumbering the picture, the orthonormal
triads representing the frame of reference
at Q_1 and Q_2 are omitted.
As a mathematical construction, we draw the spacelike geodesic \(NP' \) orthogonal to \(C \), and we mark at \(P \) a current event in the arc \(Q_1 Q_2 \). We denote by \(s \) the observer’s time at \(P \), with \(s = 0 \) at \(N \). We write \(NP' = \sigma \) and denote by \(\mu^i \) the unit tangent to \(NP' \) at \(N \). The approximations are controlled by the smallness of \(\sigma \) (\(\sigma = O_1 \)).

Before starting the calculations, we note that the geometry of Fig.12 is determined in a given space-time by the curve \(C \) and the event \(P' \). The curve \(C \) is defined by the event \(N \) and Cauchy data at \(N \), viz. the 4-velocity \(A^i \) and its derivatives \(DA^i, D^2A^i \ldots \), where \(D = \delta/\delta s \), the absolute derivative operator. Then \(P' \) is determined by \(\sigma \) and \(\mu^i \). Thus, if \(s = s_1 \) at \(Q_1 \) and \(s = s_2 \) at \(Q_2 \), \(s_1 \) and \(s_2 \) are determined by the quantities enumerated above. The first step in our calculations is to find \(s_1 \) and \(s_2 \).

As we let \(P \) range along \(C \), the world-function \(\Omega(PP') \) is a function of \(s \), and we may expand it in the following power series:

\[
\Omega(PP') = \Omega + s\Omega_tA^t + \frac{1}{2}s^2(\Omega_tDA^t + \Omega_{tj}A^tA^j) + \frac{1}{6}s^3(\Omega_tD^2A^t + 3\Omega_{tj}DA^t \cdot A^j + \Omega_{tjk}A^tA^jA^k) + \frac{1}{24}s^4(\Omega_tD^3A^t + 4\Omega_{tjk}D^2A^t \cdot A^j + 3\Omega_{tjk}DA^tDA^j) + 5\Omega_{tjk}DA^t \cdot A^jA^k + \Omega_{tjk}A^tA^jDA^k + \Omega_{tjk}A^tA^jA^kA^m) + O_5 \tag{54}
\]

On the right \(\Omega = \Omega(NP') \), and the differentiations are with respect to \(N \). In working out the coefficients, we have used the fact that \(\Omega_{ij} = \Omega_{ji} \) quite generally. Now

\[
\Omega(NP') = \frac{1}{2}\sigma^2, \quad \Omega_t(NP') = -\sigma\mu_t, \tag{55}
\]

accurately, and, expanding along \(NP' \),

\[
\begin{align*}
\Omega_{ij}(NP') &= [\Omega_{ij}] + \sigma\mu^k[\Omega_{ijk'}] + \frac{1}{2}\sigma^2\mu^k\mu^m[\Omega_{ijk'm'}] + O_3, \\
\Omega_{ijk}(NP') &= [\Omega_{ijk}] + \sigma\mu^m[\Omega_{ijkm'}] + O_2, \\
\Omega_{ijkm}(NP') &= [\Omega_{ijkm}] + O_1,
\end{align*}
\tag{56}
\]

where \([\] \) indicates a coincidence limit as \(P' \to N \). Applying \(\Pi - (69) \), we have

\[
\begin{align*}
\Omega_{ij}(NP') &= g_{ij} + \frac{1}{2}\sigma^2S_{ijkm}\mu^k\mu^m + O_3, \\
\Omega_{ijk}(NP') &= -\sigma S_{ijkm}\mu^m + O_2, \\
\Omega_{ijkm}(NP') &= S_{ijkm} + O_1,
\end{align*}
\tag{57}
\]

where \(g_{ij} \) and the symmetrized Riemann tensor \(S_{ijkm} \) are evaluated
at \(N \). We now substitute from (55) and (57) in (54) and use the following equations

\[
A_{\mu} = 0, \quad A_{\mu}A_{\nu} = -\frac{1}{2}, \quad A_{\mu}D_{\nu}^2A_{\nu} = 0, \quad A_{\mu}D_{\nu}^2A_{\nu} + DA_{\mu}D_{\nu}^2A_{\nu} = 0.
\]

(58)

We get

\[
\Omega(PP') = \frac{1}{2}\sigma^2 - \frac{1}{2}s^2(\sigma\mu_iD_{\nu}^2A_{\nu} + 1 - \frac{1}{2}\sigma^2S_{ijklm}A_{\nu}^iA_{\nu}^j\mu_k\mu_m)
- \frac{3}{3}\sigma\mu_iD_{\nu}^2A_{\nu} - \frac{1}{3}s^4DA_{\mu}D^2A_{\nu} + O_5.
\]

(59)

Now by \(\Pi - (69) \) and \(1 - (99) \) we have

\[
S_{ijklm}A_{\nu}^iA_{\nu}^j\mu_k\mu_m = -\frac{2}{3}R_{ijklm}A_{\nu}^i\mu_kA_{\nu}^j\mu_m = -\frac{3}{3}K,
\]

(60)

where \(K \) is the Riemannian curvature of the 2-element defined at \(N \) by \(A^i \) and \(\mu^i \). We have also

\[
DA_{\mu}D_{\nu}^2A_{\nu} = b^2,
\]

(61)

where \(b \) is the first curvature of \(C \) at \(N \). Thus we may rewrite (59) in the form

\[
2\Omega(PP') = \sigma^2 - s^2(1 + \sigma\mu_iD_{\nu}^2A_{\nu} - \frac{1}{3}\sigma^2K)
- \frac{3}{3}s^3\sigma\mu_iD_{\nu}^2A_{\nu} - \frac{1}{3}s^4b^2 + O_5.
\]

(62)

To find \(s_1 \) and \(s_2 \), we are to put \(\Omega(PP') = 0 \). It is clear that

\[
s_1, s_2 = \eta\sigma + O_2,
\]

(63)

where \(\eta = -1 \) for \(s_1 \) and \(\eta = 1 \) for \(s_2 \). Then (62) gives for \(s_1, s_2 \) the simple quadratic equation

\[
s^2(1 + \sigma\mu_iD_{\nu}^2A_{\nu} - \frac{1}{3}\sigma^2K) = M(\sigma, \eta) + O_5
\]

where

\[
M(\sigma, \eta) = \sigma^2 - \frac{3}{3}\eta\sigma^4\mu_iD_{\nu}^2A_{\nu} - \frac{1}{12}\sigma^4b^2.
\]

(64)

(65)

Hence we find

\[
s_1 = -\frac{1}{2}\tau + \frac{1}{2}f + O_4, \quad s_2 = \frac{1}{2}\tau + \frac{1}{2}f + O_4,
\]

(66)

where

\[
\tau = 2\sigma - \sigma^2\mu_iD_{\nu}^2A_{\nu} + \sigma^3(\frac{1}{3}K - \frac{1}{12}b^2 + \frac{3}{4}(\mu_iDA_{\nu}^2)\cdot),
\]

\[
f = -\frac{1}{3}\sigma^3\mu_iD_{\nu}^2A_{\nu}.
\]

(67)

Thus the trip-time from emission at \(Q_1 \) to return at \(Q_2 \) is

\[
s_2 - s_1 = \tau + O_4.
\]

(68)

We note that if \(C \) is a geodesic, then

\[
\tau = 2\sigma + \frac{1}{3}K\sigma^3.
\]

(69)
So far the directions of the emitted photon and the returning photon have not appeared. To discuss these directions, we introduce a Fermi tetrad $\lambda^i_{(a)}$ on C; each of the four vectors satisfies the equation of F-W transport $\tau-(72)$

$$D\lambda^i = \lambda^j(A^iDA^j - A^iDA^j), \quad (70)$$

and $\lambda^{(4)}_{(a)} = A^t$, the current 4-velocity of C. Now $-\Omega^i(Q_1P'), -\Omega^i(Q_2P')$ are null vectors at Q_1, Q_2 tangent to the null geodesics Q_1P', Q_2P', pointing from the observer towards the balloon as indicated in Fig. 12. The direction of emission is of course that of the emitted photon, and the direction of reception is that of the returning photon reversed. Thus the direction cosines of the directions of emission and reception are of the form

$$\theta_{(a)} = -\chi\Omega^i\lambda^i_{(a)} = -\chi\Omega_{(a)}, \quad (71)$$

where χ is a positive scalar such that

$$\chi^{-2} = \Omega_{(a)}\Omega^{(a)} = -\Omega^{(4)}\Omega^{(4)} = (\Omega^{(4)})^2, \quad (72)$$

from the null character of Ω^i. Now

$$\Omega^{(4)} < 0, \quad \Omega_{(4)} > 0 \text{ at } Q_1,$$

$$\Omega^{(4)} > 0, \quad \Omega_{(4)} < 0 \text{ at } Q_2,$$

and so, with η as after (63), we include the values at χ at the two events in the formula

$$\chi = -\frac{\eta}{\Omega_{(4)}}. \quad (73)$$

Thus the direction cosines for emission and reception are given by

$$\theta_{(a)} = \eta \frac{\Omega_{(a)}}{\Omega^{(4)}} = \eta \frac{\Omega^i\lambda^i_{(a)}}{\Omega^{(4)}\lambda^i_{(4)}} = \eta \frac{\Omega^i\lambda^i_{(a)}}{\Omega^i\lambda^i_{(4)}}. \quad (74)$$

Our object is to calculate the changes in these direction cosines in passing from Q_1 to Q_2.

The calculations are best effected by first dropping the labels on the vectors of the Fermi tetrad and indeed forgetting about (70), so that we have an arbitrary vector field λ^i on C. Then the quantity

$$\phi(PP') = \Omega^i(PP')\lambda^i(P) \quad (75)$$
is a function of s on C, and we may expand it as follows:
\[
\phi(PP') = \Omega (\dot{\lambda}^i + s(\Omega_i \dot{D} \dot{\lambda}^i + \Omega_i \dot{\lambda}^i A^j) \\
+ \frac{1}{2}s^2(\Omega_i \dot{D}^2 \dot{\lambda}^i + 2\Omega_i j_k \dot{\lambda}^i A^j + \Omega_i \dot{\lambda}^i DA^j + \Omega_i \dot{\lambda}^k A^j \dot{A}^k) \\
+ \frac{1}{4}s^3(\Omega_i \dot{D}^3 \dot{\lambda}^i + 3\Omega_i \dot{j}_{jk} \dot{\lambda}^i A^j + 3\Omega_i \dot{D} \dot{\lambda}^i DA^j + \Omega_i \dot{\lambda}^i \dot{D}^2 A^j \\
+ 2\Omega_i \dot{j}_{jk} \dot{D} \dot{A}^j A^k + 3\Omega_i \dot{j}_{jk} \dot{\lambda}^i A^j A^k + \Omega_i \dot{\lambda}^i \dot{D} \dot{A}^k A^m) + O_4.
\] (76)

On the right hand side $\Omega = \Omega(NP')$, with derivatives with respect to N, and $\dot{\lambda}^i = \dot{\lambda}^i(N)$. We now substitute from (55) and (57); this gives
\[
\phi(PP') = -\sigma \mu_t \dot{\lambda}^i + s(\lambda_i \dot{A}^i - \sigma \mu_t \dot{D} \dot{\lambda}^i + \frac{1}{2}\sigma^2 S_t \dot{i}_{jk} \dot{\lambda}^i A^j \mu_k \mu^m) \\
+ \frac{1}{4}s^2(2\dot{A}_i \dot{D} \dot{\lambda}^i + \dot{\lambda}_i \dot{D} \dot{A}^i - \sigma \mu_t \dot{D}^2 \dot{\lambda}^i + S_{t} \dot{i}_{jk} \dot{\lambda}^i A^j \mu_k \mu^m) \\
+ \frac{1}{4}s^3(3\dot{A}_i \dot{D}^2 \dot{\lambda}^i + 3\dot{D} \dot{A}_i \dot{\lambda}^i + \dot{\lambda}_i \dot{D}^2 \dot{A}^i) + O_4.
\] (77)

We may simplify this slightly by using an implication of the F-W law (70); we have
\[
A_i \dot{\lambda}^i = \text{const.}, \\
A_i \dot{D} \dot{\lambda}^i + \dot{D} A_i \dot{\lambda}^i = 0, \\
A_i \dot{D}^2 \dot{\lambda}^i + 2\dot{D} A_i \dot{D} \dot{\lambda}^i + \dot{D}^2 A_i \dot{\lambda}^i = 0, \\
2A_i \dot{D} \dot{\lambda}^i + \dot{D} A_i \dot{\lambda}^i = -\dot{D} A_i \dot{\lambda}^i, \\
3A_i \dot{D}^2 \dot{\lambda}^i + 3\dot{D} A_i \dot{D} \dot{\lambda}^i + \dot{\lambda}_i \dot{D}^2 \dot{A}^i = -2\dot{D}^2 A_i \dot{\lambda}^i - 3\dot{D} A_i \dot{D} \dot{\lambda}^i.
\] (78)

The last two lines may be substituted in (77).

The coefficients of the powers of s and σ in (77) are evaluated at N. To find $\phi(Q_1 P')$ and $\phi(Q_2 P')$, we are to substitute, as in (66),
\[
s = \frac{1}{2}\eta \tau + \frac{1}{2}f + O_4, \\
f = O_3, \\
s^2 = \frac{1}{4}\tau^2 + O_4, \\
s^3 = \frac{1}{8}\eta \tau^3 + O_4,
\] (79)

with $\eta = -1$ at Q_1 and $\eta = 1$ at Q_2. Hence, with Q standing for Q_1 or Q_2,
\[
\phi(Q P') = -\sigma \mu_t \dot{\lambda}^i + \frac{1}{2}\eta \tau (A_i \dot{\lambda}^i - \sigma \mu_t \dot{D} \dot{\lambda}^i + \frac{1}{2}\sigma^2 S_t \dot{i}_{jk} \dot{\lambda}^i A^j \mu_k \mu^m) \\
\quad + \frac{1}{4}f A_i \dot{\lambda}^i - \frac{1}{2}\tau^2 (\dot{D} A_i \dot{\lambda}^i + \sigma \mu_t \dot{D}^2 \dot{\lambda}^i + S_{t} \dot{i}_{jk} \dot{\lambda}^i A^j \mu_k \mu^m) \\
\quad - \frac{1}{4}\eta \tau^3 (2\dot{D}^2 A_i \dot{\lambda}^i + 3\dot{D} A_i \dot{D} \dot{\lambda}^i) + O_4.
\] (80)

We have now to substitute from (67)
\[
\frac{1}{2}\tau = \sigma - \frac{1}{2}\sigma^2 \mu_t \dot{D} A_i^i + \sigma^3 E, \\
E = \frac{1}{6}K - \frac{1}{24}b^2 + \frac{5}{8}(\mu_t \dot{D} A_i^i)^2, \\
\frac{1}{2}f = -\frac{1}{6}\sigma^3 \mu_t \dot{D}^2 A_i^i.
\] (81)
We obtain
\[\phi(QP') = (W + \eta W^*)\sigma + (Y + \eta Y^*)\sigma^2 + (Z + \eta Z^*)\sigma^3 + O_4, \]
where the coefficients have the following values:
\[
\begin{align*}
W &= -\mu_i\lambda^i, \\
W^* &= A_i\lambda^i, \\
Y &= -\frac{1}{2}DA_i\lambda^i, \\
Y^* &= -\mu_iDA^iA_j\lambda^j, \\
Z &= \frac{1}{2}\mu_iDA^iDA_j\lambda^j - \frac{1}{2}\mu_iD^2\lambda^i - \frac{1}{2}\mu_iD^2A^iA_j\lambda^j - \frac{1}{2}S_{ijklm}\lambda^iA^jA^k\mu^m, \\
Z^* &= EA_i\lambda^i + \frac{1}{2}\mu_iDA^i\mu_j\lambda^j - \frac{1}{2}D^2A_i\lambda^i - \frac{1}{2}DA_iD\lambda^i \\
&\quad + \frac{1}{2}S_{ijklm}\lambda^iA^jA^k\mu^m.
\end{align*}
\]

We now restore to \(\lambda^i\) the labels indicating a Fermi tetrad. If we write \(\lambda^i(\alpha)\) for \(\lambda^i\), \(\phi(QP')\) becomes \(\Omega_{(\omega)}(QP')\), and if we write \(A^i(=\lambda^i_{(\alpha)})\) for \(\lambda^i\), \(\phi(QP')\) becomes \(\Omega_{(\gamma)}(QP')\). These are the quantities we need in (74) for the calculation of the direction cosines, and we proceed to evaluate them.

By the Frenet-Serret formulae 1–(55) we have
\[
\begin{align*}
DA^i &= bB^i, \\
DB^i &= cC^i + bA^i, \\
D^2A^i &= b^2A^i + DbB^i + bcC^i.
\end{align*}
\]
Denoting components on the Fermi tetrad \(\lambda^i_{(\alpha)}\) in the usual way, we have
\[
\begin{align*}
D\lambda^i_{(\alpha)} &= A^i\lambda^i_{(\alpha)}DA_j = bA^i\lambda^i_{(\alpha)}B_j = bA^iB_{(\omega)}, \\
D^2\lambda^i_{(\alpha)} &= A^i(DB_{(\omega)} + bcC_{(\omega)}) + B^ib^2B_{(\omega)}.
\end{align*}
\]
Then
\[
\begin{align*}
\mu_iA^i &= 0, \\
\mu_i\lambda^i_{(\alpha)} &= \mu_{(\omega)}, \\
\mu_iDA^i &= bB_{(\omega)}\mu_{(\alpha)}, \\
\mu_iD\lambda^i_{(\alpha)} &= 0, \\
\mu_iD^2A^i &= DbB_{(\omega)}\mu_{(\omega)} + bcC_{(\omega)}\mu_{(\alpha)}, \\
\mu_iD^2\lambda^i_{(\alpha)} &= b^2B_{(\omega)}B_{(\beta)}\mu_{(\beta)},
\end{align*}
\]
and
\[
\begin{align*}
A_i\lambda^i_{(\alpha)} &= 0, \\
DA_i\lambda^i_{(\alpha)} &= bB_{(\omega)}, \\
DA_iD\lambda^i_{(\alpha)} &= 0, \\
D^2A_i\lambda^i_{(\alpha)} &= DbB_{(\omega)} + bcC_{(\omega)},
\end{align*}
\]
and also
\[
\begin{align*}
S_{ijklm}\lambda^i_{(\alpha)}A^j\mu^k\mu^m &= S_{(\alpha\beta\gamma)}\mu(\beta)\mu(\gamma), \\
S_{ijklm}\lambda^i_{(\alpha)}A^jA^k\mu^m &= S_{(\alpha\beta\gamma)}\mu(\beta).
\end{align*}
\]

Synge
Note that $\mu_{(\omega)} (= \mu^{(\alpha)})$ are the direction cosines of NP' relative to the Fermi triad.

Inserting the label (α) in (83) and using the above results, we find

\[
W_{(\alpha)} = -\mu_{(\alpha)}, \quad W^*_{(\alpha)} = 0, \\
Y_{(\omega)} = -\frac{1}{2} b B_{(\omega)}, \quad Y^*_{(\alpha)} = 0, \\
Z_{(\omega)} = -\frac{1}{2} S_{(\alpha 4 \beta)} \mu^{(\beta)}, \\
Z^*_{(\alpha)} = -\frac{1}{3} (DbB_{(\omega)} + bcC_{(\omega)}) + \frac{1}{2} S_{(\alpha 4 \beta \gamma)} \mu^{(\beta)} \mu^{(\gamma)}. \tag{89}
\]

Thus (82) gives

\[
\Omega_{(\omega)}(QP') = W_{(\omega)} \sigma + Y_{(\omega)} \sigma^2 + (Z_{(\omega)} + \eta Z^*_{(\alpha)}) \sigma^3 + O_4, \tag{90}
\]

with the above values for the coefficients.

We now write $A^i (= \lambda^i_{(4)})$ for λ^i in (83) and obtain

\[
W_{(4)} = 0, \quad W^*_{(4)} = -1, \\
Y_{(4)} = 0, \quad Y^*_{(4)} = -\frac{1}{2} b B_{(\omega)} \mu^{(\alpha)}, \\
Z_{(4)} = -\frac{1}{3} \mu_i D^2 A^i = -\frac{1}{3} (DbB_{(\omega)} \mu^{(\alpha)} + bcC_{(\omega)} \mu^{(\alpha)}), \\
Z^*_{(4)} = -E + \frac{1}{2} b^2 (B_{(\omega)} \mu^{(\alpha)})^2 - \frac{1}{6} b^2 + \frac{1}{2} S_{(44 \beta \gamma)} \mu^{(\beta)} \mu^{(\gamma)}. \tag{91}
\]

We can reduce this last expression, for, by (60) and (81),

\[
K = \frac{3}{2} S_{ijklm} A^i A^j \mu^k \mu^m = \frac{3}{2} S_{(44 \beta \gamma)} \mu^{(\beta)} \mu^{(\gamma)}, \\
E = \frac{1}{6} K - \frac{1}{24} b^2 + \frac{1}{8} b^2 (B_{(\omega)} \mu^{(\alpha)})^2, \tag{92}
\]

and so

\[
Z^*_{(4)} = \frac{1}{6} K - \frac{1}{6} b^2 + \frac{1}{8} b^2 (B_{(\omega)} \mu^{(\alpha)})^2 = \frac{1}{6} K - \frac{1}{3} b^2 \sin^2(B\mu), \tag{93}
\]

where $(B\mu)$ indicates the angle between the first normal B^i and the vector μ^i. We have then from (82)

\[
\Omega_{(4)}(QP') = -\eta \sigma + \eta Y^*_{(4)} \sigma^2 + (Z_{(4)} + \eta Z^*_{(4)}) \sigma^3 + O_4. \tag{94}
\]

Accordingly, by (74), (90) and (94), the direction cosines for emission $(\eta = -1)$ and reception $(\eta = 1)$ have the values

\[
\theta_{(\omega)} = \eta \frac{\Omega_{(\omega)}}{\Omega_{(4)}} = \frac{W_{(\omega)} + Y_{(\omega)} \sigma + (Z_{(\omega)} + \eta Z^*_{(\alpha)}) \sigma^2 + O_3}{-1 + Y^*_{(4)} \sigma + (Z^*_{(4)} + \eta Z_{(4)}) \sigma^2 + O_3}. \tag{95}
\]
By binomial expansion of the denominator, this becomes
\[\theta_{(\omega)} = \psi_{(\omega)} + \eta \psi^*_{(\omega)} + O_3 \]
where
\[\psi_{(\omega)} = - W_{(\omega)} - (Y_{(\omega)} + W_{(\omega)} Y^*_{(4)}) \sigma \]
\[- \{ Y_{(\omega)} Y^*_{(4)} + Z_{(\omega)} + W_{(\omega)} (Z^*_{(4)} + Y^*_{(4)}) \} \sigma^2, \]
\[\psi^*_{(\omega)} = - \sigma^2 (Z^*_{(\omega)} + W_{(\omega)} Z_{(4)}). \]

The increments in the direction cosines are therefore
\[\Delta \theta_{(\omega)} = 2 \psi^*_{(\omega)} + O_3. \]
This equation tells how the photon gun must be turned, relative to the Fermi frame, in order that it may catch the returning photon. The rotation is of the second order in \(\sigma \). \textit{This fact serves to identify Fermi transport physically.} For if we use a frame which rotates relative to the Fermi frame, then in the time of the experiment (approximately \(2\sigma \)), there will be a rotation of order \(\sigma \) relative to the Fermi frame; an observer who uses the rotating frame will have to turn his photon-gun through an angle of order \(\sigma \) in order to catch the returning photon. \textit{Thus Fermi transport is distinguished by the fact that for Fermi frames, and for them alone, the angle of rotation of the photon-gun is zero if quantities of order \(\sigma^2 \) are neglected.} Or we may put it this way: if \(\tau \) is the trip-time and \(\theta \) the angle through which the photon gun must be turned, then the limit of \(\theta/\tau \), as \(\tau \) tends to zero, is zero for Fermi frames and for them alone.

Substitution in (97) from (89) and (91) gives
\[\psi_{(\omega)} = \mu_{(\omega)} \left\{ 1 - \frac{1}{3} b \sigma \cos(B\mu) + \frac{1}{6} K \sigma^2 - \frac{1}{12} b^2 \sigma^2 (1 - 3 \cos^2(B\mu)) \right\}
+ B_{(\omega)} \left(\frac{1}{2} b \sigma - \frac{1}{4} b^2 \sigma^2 \cos(B\mu) \right) + \frac{1}{2} \sigma^2 S_{(\omega)(4)\mu(\nu)}, \]
\[\psi^*_{(\omega)} = \sigma^2 (F_{(\omega)} - \mu_{(\omega)} F_{(\beta)} \mu(\beta)) - \frac{1}{2} S_{(\omega)(4)\mu(\nu)}, \]
where
\[F_{(\omega)} = \frac{1}{3} (Db B_{(\omega)} + bc C_{(\omega)}). \]
This displays these 3-vectors in terms of components along \(\mu_{(\omega)} \) (the Fermi direction of the balloon), \(B_{(\omega)} \) and \(C_{(\omega)} \) (the first and second normals to the observer’s world-line), and two other 3-vectors involving the symmetrized Riemann tensor \(\Pi - (48) \).

As a check on these rather involved calculations, it is easy to verify
that $\theta_0^{(\omega)} = 1 + O_3$, and that θ_0 and $\Delta \theta_0$ are orthogonal to the order considered.

Since in a first approximation we have $\theta_0 = \mu_0$ and $\tau = 2\sigma$ (τ being the trip-time), we can write (98) in the form

$$2\tau^{-1} \Delta \theta_0 = F_0 - \theta_0 F_{(\beta)} \theta^{(\beta)} - \frac{1}{2} S_{(zA\beta\gamma)} \theta^{(\beta)} \theta^{(\gamma)}.$$ \hspace{1cm} (101)$$

In this equation all the quantities are observable except the F-terms and the S-terms. Thus, with sufficiently refined apparatus, observation of the bouncing photon would yield information about the curvatures of the observer’s world-line and about the Riemann tensor.

We must however bear in mind that the above approximations are based on power series expansions, with σ small. This may be adequate for the discussion of a photon bouncing off an artificial satellite, but it certainly would not do for a photon bouncing off the moon.

Actually a process of approximation based solely on the smallness of σ is not admissible at all, since σ is a dimensional quantity (time or, equivalently, distance). Only dimensionless invariants can be called small in any absolute sense, and what really matters in the approximation is the ratio of a rejected term to those which are retained. However, the correct procedure (with precise statement of the assumptions made) would be somewhat tedious, and the interested reader should find little difficulty in filling in the necessary details in the above argument and in other similar arguments involving similar approximations ¹.

§ 9. THE FALLING APPLE

According to the famous legend, Newton was inspired to create his theory of gravitation by witnessing the fall of an apple from the branch of a tree, and students of Newtonian physics even today would say that the acceleration (980 cm sec⁻²) of a falling apple is due to gravity. According to the theory of relativity, that view is quite wrong. We shall make a careful study of the problem, and we shall find that the gravitational field (i.e. the Riemann tensor) plays a very small part indeed in the phenomenon of free fall, the acceleration of 980 cm sec⁻² being in fact due to the curvature of the world-line of the branch of the tree. Indeed, we would witness an acceleration of 980 cm sec⁻² in an apple if we released it from a rocket travelling

¹ Cf. remarks on smallness in 11–§ 3.
with that acceleration in remote space, far from any significant gravitational field. But it would only be confusing to pursue the matter further in Newtonian terms, or to refer to Einstein's principle of equivalence \(^1\), because the problem is a problem in Riemannian geometry, simple in principle although a little complicated in detail. Merely for purposes of comparison and physical interpretation, we shall link the final results with some Newtonian ideas.

In Fig. 13, \(C\) is the world-line of an observer (the branch of the tree) and \(I'\) that of a freely falling body (the apple); \(I'\) is a geodesic, but \(C\) is not. \(C\) and \(I'\) touch at \(O\), the event of release, the tangency corresponding to gentle release, without initial relative velocity. To follow the fall in a completely physical manner, we should consider signals passing from \(I'\) to \(C\), but we shall be contented here with a more mathematical treatment \(^2\).

Let \(P'\) be any event on \(I'\) and \(P'P\) the (spacelike) geodesic drawn orthogonal to \(C\). Let \(\sigma = PP'\) and let \(\mu^t\) be the unit vector tangent to \(PP'\) at \(P\). We shall study the vector \(\sigma\mu^t\) by taking its component on a vector \(\lambda^t\) which is transported along \(C\) in any manner (we shall specialize the law of transport later).

Let \(s = OP, s' = OP'\), these being times registered by clocks on the branch and on the apple respectively. The construction sets up a correspondence between \(s\) and \(s'\), and we shall write

\[
S = \frac{ds'}{ds}.
\]

(102)

The invariant \(\sigma\mu^t\lambda^t\) is a function of \(s\). In terms of the world-function we have

\[
\sigma\mu^t\lambda^t = - \Omega_t(PP')\lambda^t(P).
\]

(103)

We shall expand this as a power series in \(s\), but to avoid writing a lot

\(^1\) Cf. Møller [1952, p. 220].

\(^2\) For various reasons the calculations are carried out to a high order of approximation and that makes them look formidable. To get a quick rough view of the falling apple, the series may be cut off with rejection of the terms in \(s^3\); then the right hand side of (125) will reduce to its first term, giving the relativistic analogue of the elementary problem of free fall.
of minus signs, we shall define

$$\phi(s) = \Omega_t(PP')\lambda^t(P),$$ \hspace{1cm} (104)

and expand this in the series

$$\phi(s) = [\phi] + s[D\phi] + \frac{1}{2}s^2[D^2\phi] + \frac{1}{6}s^3[D^3\phi] + \frac{1}{24}s^4[D^4\phi] + O_5,$$ \hspace{1cm} (105)

where $D = \delta/\delta s$ and $[\]$ means evaluation at O, i.e. a coincidence limit, since P' coincides with P when $s = 0$.

Let $A^i (= dx^i/ds)$ be the 4-velocity of C at P, and let $A^{i'}$ be the 4-velocity of I' at P'; since I' is a geodesic, we have

$$DA^{i'} = 0.$$ \hspace{1cm} (106)

We note that

$$\Omega_t A^t = 0,$$ \hspace{1cm} (107)

on account of the orthogonality at P.

The formulae which follow resemble (76), but are more complicated since P' is not fixed. We have

$$D\phi = \Omega_t D\lambda^t + \Omega_{ij} \lambda^i A^j + \Omega_{ij'} \lambda^i A^{j'} S,$$ \hspace{1cm} (108)

$$D^2\phi = \Omega_t D^2\lambda^t + \Omega_{ij} (2D\lambda^i A^j + \lambda^i DA^j) + \Omega_{ij'} (2D\lambda^i A^{j'} S + \lambda^i A^{j'} DS)$$

$$+ \Omega_{ijk} \lambda^i A^j A^k + 2\Omega_{ij'k} \lambda^i A^{j'} A^k S + \Omega_{ij'k'} \lambda^i A^{j'} A^k' S^2,$$ \hspace{1cm} (109)

$$D^3\phi = \Omega_t D^3\lambda^t + \Omega_{ij} (3D^2\lambda^i A^j + 3D\lambda^i DA^j + \lambda^i D^2 A^j)$$

$$+ \Omega_{ij'} (3D^2\lambda^i A^{j'} S + 2D\lambda^i A^{j'} DS + \lambda^i A^{j'} D^2 S)$$

$$+ \Omega_{ijk} (3D\lambda^i A^j A^k + 2\lambda^i DA^j A^k + \lambda^i A^j DA^k)$$

$$+ \Omega_{ij'k} (6D\lambda^i A^j A^k' S + 3\lambda^i DA^j A^k' S + 3\lambda^i A^j A^k' DS)$$

$$+ \Omega_{ij'k'} (3D\lambda^i A^{j'} A^k' S + 3\lambda^i A^{j'} A^k' S^2 + 3\lambda^i A^j A^{k'} SD S)$$

$$+ \Omega_{ijk'm} \lambda^i A^j A^{k'} A^{m'} S + 3\Omega_{ij'k'm} \lambda^i A^{j'} A^k A^{m'} S$$

$$+ 3\Omega_{ijk'm'} \lambda^i A^j A^{k'} A^{m'} S^2 + \Omega_{ij'k'm'} \lambda^i A^{j'} A^k A^{m'} S^3.$$ \hspace{1cm} (110)

Now take $\lambda^t = A^t$. Then, by (107), $\phi = 0$; hence $D\phi$, $D^2\phi$, $D^3\phi$ all vanish, and so do their coincidence limits. Referring to the list of coincidence limits in \(\Pi-(69)\), we obtain from (108)

$$[S] = 1,$$ \hspace{1cm} (111)

as is indeed obvious otherwise. From (109) we get

$$[DS] = 0,$$ \hspace{1cm} (112)
and from (110) we get

\[[D^2 S] = -2b^2, \quad b^2 = DA_i DA^i, \]

(113)

\(b \) being the first curvature of \(C \) at \(O \). In making the above calculations, we use the fact that \([A^{i'\prime}] = [A^i]\) and the fact that \([\Omega_{ijkl}]\) vanishes when contracted with the same vector three times.

We now take \(\lambda^i \) orthogonal to \(C \), so that

\[\lambda^i A_i = 0, \]

(114)

but without any other restriction for the present. Using (111)–(113), we get from (104) and (108)–(110) the following coincidence limits:

\[[\phi] = 0, \quad [D\phi] = 0, \]

(115)

\[[D^2 \phi] = \lambda^i DA_i, \]

(116)

\[[D^3 \phi] = 3D\lambda^i DA_i + \lambda^i D^2 A_i, \]

(117)

the right hand sides being evaluated at \(O \). We need \([D^4 \phi]\) also. It is unnecessary to write out \(D^4 \phi \), for we can carry out the differentiation of (110) mentally and get the coincidence limit in one step, because many terms vanish. Thus we get

\[[D^4 \phi] = 6D^2 \lambda^i DA_i + 4D\lambda^i D^2 A_i + \lambda^i D^3 A_i + 6b^2 D\lambda^i A_i \]

\[+ R_{ijkm} \lambda^i A^j A^k DA^m; \]

(118)

we have used \(S_{ijk} = S_{ijkm} = R_{ikjm} \) [cf. II–(69)]. Therefore, for any \(\lambda^i \) satisfying (114), the series (105) reads

\[\phi(s) = \frac{1}{2}s^2[D^2 \phi] + \frac{1}{6}s^3[D^3 \phi] + \frac{1}{24}s^4[D^4 \phi] + O_5, \]

(119)

the coefficients being as in (116)–(118).

There are two particularly interesting choices of \(\lambda^i \), consistent with (114). First, we may take it to be a member of a Fermi triad; secondly, we may take it to be one of the principal normals of \(C \).

Taking \(\lambda^i \) to be a Fermi vector, we have the following equations:

\[D\lambda^i = A^i \lambda^j DA_j, \]

\[D\lambda^i A_i = -\lambda^i DA_i, \quad D\lambda^i DA_i = 0, \quad D\lambda^i D^2 A_i = -b^2 \lambda^i DA_i, \]

(120)

\[D^2 \lambda^i = DA_i \lambda^j DA_j + A^i D\lambda^j DA_j + A^i \lambda^j D^2 A_j, \]

\[D^2 \lambda^i DA_i = b^2 \lambda^i DA_i. \]
Hence

\[\phi(s) = \frac{1}{2}s^2\dot{\lambda}^iDA_i + \frac{1}{6}s^3\dot{\lambda}^iD^2A_i + \frac{1}{24}s^4(\dot{\lambda}^iD^3A_i - 4b^2\dot{\lambda}^iDA_i
+ R_{ijklm}^i\Lambda_A^jA^kDA^m) + O_5. \] (121)

We shall now insert the label \((\alpha), \Lambda^i_\alpha\) being a Fermi triad. Then, by \(\Pi-(185), \) the first three Fermi coordinates of \(P'\) are

\[X^{(\alpha)} = -\Omega^i_\alpha\Lambda^i_\alpha, \] (122)

i.e. \(\phi\) with sign reversed. Thus, in terms of Fermi coordinates, the fall of the apple is given by

\[X^{(\omega)} = -\frac{1}{2}s^2(DA)^{(\omega)} - \frac{1}{6}s^3(D^2A)^{(\omega)}
+ \frac{1}{24}s^4(4b^2(DA)^{(\omega)} - (D^3A)^{(\omega)} - R_{(\omega)445}(DA)^{(\beta)}) + O_5. \] (123)

Here \(s\) is the time registered by a clock on the branch of the tree (it is in fact the fourth Fermi coordinate), and the labels indicate components on the Fermi triad, evaluated at \(O\), the event of release.

We can write this formula in a different form by expressing the derivatives of the 4-velocity \(A^i\) in terms of the principal normals and curvatures of \(C\). By the Frenet-Serret formulae \(I-(55), \) we have

\[DA^i = bB^i, \]
\[D^2A^i = b^2A^i + Db^i + bcC^i, \]
\[D^3A^i = 3bDB^i + (D^2b + b^3 - bc^2)B^i
+ (bDc + 2c Db)C^i + bcdD^i, \] (124)

where \(B^i, C^i, D^i\) are the first, second and third unit normals, and \(b, c, d\) the first, second and third curvatures of \(C\). Then (123) may be written

\[X^{(\omega)} = -\frac{1}{2}s^2bB^{(\omega)} - \frac{1}{6}s^3(DbB^{(\omega)} + bcC^{(\omega)})
+ \frac{1}{24}s^4(3b^3 - D^2b + bc^2)B^{(\omega)} - (bDc + 2c Db)C^{(\omega)}
- bcdD^{(\omega)} - bR_{(\omega)445}(B^{(\beta)}) + O_5. \] (125)

To avoid confusion with the formulae which follow, we note that, although the principal normals have been introduced, the coordinates \(X^{(\omega)}\) are tied to a Fermi triad.

We shall now use the principal vectors of \(C\) as a frame of reference,
taking in turn
\[\lambda^i = B^i, \quad \lambda^i = C^i, \quad \lambda^i = D^i. \] \hspace{1cm} (126)

In this frame of reference, the coordinates of \(P' \) are
\[Y_{(1)} = -\omega_i B^i, \quad Y_{(2)} = -\omega_i C^i, \quad Y_{(3)} = -\omega_i D^i. \] \hspace{1cm} (127)

To calculate these coordinates for the falling apple, we have to go back to the equations (115)–(118) and substitute for \(\lambda^i \) from (126). Thus, using labels as in (127), we get

\[
\begin{align*}
[D^2\phi]_{(1)} &= B^t DA_t = b, \\
[D^3\phi]_{(1)} &= 3DB^t DA_t + B^tD^2A_t = Db, \\
[D^4\phi]_{(1)} &= D^2b + 9b^3 - 3bc^2 + bR_{(1441)}; \\
[D^2\phi]_{(2)} &= 0, \\
[D^3\phi]_{(2)} &= -2bc, \\
[D^4\phi]_{(2)} &= -5bDc - 2cDb + bR_{(2441)}; \\
[D^2\phi]_{(3)} &= 0, \\
[D^3\phi]_{(3)} &= 0, \\
[D^4\phi]_{(3)} &= 3bcd + bR_{(3441)}.
\end{align*}
\] \hspace{1cm} (128)

In the \(R \)-terms, the components of the Riemann tensor are taken on the tetrad \((B^i, C^i, D^i, A^i) \) in order. We have then, remembering the minus signs in (127),

\[
\begin{align*}
Y_{(1)} &= -\frac{1}{2}bs^2 - \frac{1}{6}s^3Db + \frac{1}{24}s^4(3bc^2 - 9b^3 - D^2b - bR_{(1441)}) + O_5, \\
Y_{(2)} &= \frac{1}{2}s^2bc + \frac{1}{24}s^4(5bDc + 2cDb - bR_{(2441)}) + O_5, \\
Y_{(3)} &= -\frac{1}{24}s^4(3bcd + bR_{(3441)}) + O_5.
\end{align*}
\] \hspace{1cm} (131)

These formulae express the fall of the apple in terms of coordinates based on the principal normals of the world-line of the branch of the tree.

The interpretation of (131) is simpler than that of (123) or (125) because the three \(Y \)'s are of different orders of magnitude. If we neglect \(O_4 \), we see a motion primarily in the sense of the vector \(-B^i\) with a small deviation \(O_3 \) in the direction of \(C^i \). In the representative 3-
space in which B^i, C^i, D^i are taken as axes of coordinates the trajectory is as illustrated in Fig. 14; its equation is

$$Y_{(2)}^2 = -\frac{8}{9} \frac{c^2}{b} Y_{(1)}^3.$$ \hspace{1cm} (132)

We note that the initial acceleration is b in the direction $-B^i$.

These results throw light on the world-line of a terrestrial observer. If he drops an apple, its initial acceleration is vertically down (the direction of a plumb line) and its magnitude is g. Comparing experiment with relativistic theory, we see that the first normal to the world-line of a terrestrial observer points vertically up (against the plumb line) and the first curvature of his world-line is g; on the equator

$$b = g = 978.05 \text{ cm sec}^{-2} = 3.263 \times 10^{-8} \text{ sec}^{-1}. \hspace{1cm} (133)$$

In writing down this last numerical value, we are to remember that throughout this book the fundamental measurement is the measurement of time, and for that we conveniently use the second, which we take to be a conventional multiple of the period of (say) the cadmium red line, the multiple being that which agrees with the best experimental value available. From the experimental value of the speed of light we can then assign a value to the centimetre; we have

$$1 \text{ sec} = 2.998 \times 10^{10} \text{ cm},$$

$$1 \text{ cm} = 3.336 \times 10^{-11} \text{ sec}. \hspace{1cm} (134)$$

Using this last value, we obtain the final number in (133). For the radius of curvature of the terrestrial observer's world-line we have

$$b^{-1} = 3.065 \times 10^7 \text{ sec}, \hspace{1cm} (135)$$

which is roughly 1 year \footnote{A list of numerical values will be found in Appendix B.}.

When the rotation of the earth is taken into account in Newtonian mechanics, we find that the trajectory of a falling body deviates towards the east, and if we depict that trajectory in Fig. 14, with B^i pointing
vertically upward and \(C^i \) pointing east, then its equation agrees with (132) if we write

\[
\frac{c^2}{b} = \frac{\omega^2 \cos^2 \lambda}{g},
\]

where \(\omega \) is the angular velocity of the earth and \(\lambda \) the latitude of the place. Thus we see that the second normal to the world-line of a terrestrial observer points to the east and the second curvature of his world-line is

\[
c = \omega \cos \lambda.
\]

For an observer on the equator, the numerical values of this second curvature and the corresponding radius of curvature are

\[
c = 7.292 \times 10^{-5} \text{ sec}^{-1}, \quad c^{-1} = 1.371 \times 10^4 \text{ sec}.
\]

This radius is about 4 hours.

It is interesting that, although the acceleration due to gravity is much more important in ordinary mechanics than the effects of the earth's rotation, the first curvature \(b \) is actually much smaller than the second curvature \(c \); in fact, we have

\[
b/c = 4.475 \times 10^{-4}.
\]

We have seen that, by observation of the acceleration and deflection of a falling body, it is possible to identify physically the normals \(B^i, C^i \) (and hence, by orthogonality, \(D^i \)) of the observer's world-line, and also the first two curvatures \(b, c \). It does not appear from (131) that the third curvature \(d \) is readily accessible to dynamical observation. However, there is another approach. In § 8 we were able to identify Fermi transport physically by means of the bouncing photon, and we shall now see that the value of \(d \) follows from the connection between the triad \((B^i, C^i, D^i) \) and the Fermi triad \(\lambda^i_{(\alpha)} \). The following work down to (145) inclusive is pure geometry in the manner of i–§§ 3,4.

Let us resolve the unit normals on the Fermi triad:

\[
B^i = B_{(\omega)} \lambda^i_{(\alpha)}, \quad C^i = C_{(\omega)} \lambda^i_{(\alpha)}, \quad D^i = D_{(\omega)} \lambda^i_{(\alpha)}.
\]

To guide our thoughts, we think of \(\lambda^i_{(\alpha)} \) as rectangular Cartesian axes;

\footnote{Cf. J. L. Synge and B. A. Griffith, Principles of Mechanics (3rd Edn., McGraw-Hill, New York, 1959), p. 364. We here assume that the actual deviation agrees with the Newtonian formula. N. A. Kozyrev has recently claimed that it does not agree.}
then we see three mutually orthogonal unit Cartesian vectors \(B_\omega, C_\omega, D_\omega \) — that is how the normals appear to a Fermi observer. We substitute (140) into the Frenet-Serret formulae r–(55), and use the equation of Fermi transport,

\[
\frac{\delta \lambda^i}{\delta s} = bA^i \lambda^j B_j = bA^i B_\omega. \tag{141}
\]

We get, with a prime for \(d/ds \),

\[
B'_\omega = cC_\omega, \quad C'_\omega = dD_\omega - cB_\omega, \quad D'_\omega = -dC_\omega. \tag{142}
\]

Now if, in Euclidean kinematics, an orthonormal triad \((i, j, k) \) rotates with angular velocity \(\omega \), we have

\[
i' = \omega \times i = \omega \times (j \times k) = \omega_3 j - \omega_2 k, \tag{143}
\]

and two similar equations, where \(\omega_1, \omega_2, \omega_3 \) are the components of \(\omega \) on the triad. Hence, if \(\omega_1, \omega_2, \omega_3 \) are the components of angular velocity of the triad of normals relative to the Fermi triad, with these components taken along the normals, we have

\[
B'_\omega = \omega_3 C_\omega - \omega_2 D_\omega,
C'_\omega = \omega_1 D_\omega - \omega_3 B_\omega,
D'_\omega = \omega_2 B_\omega - \omega_1 C_\omega. \tag{144}
\]

On comparing these equations with (142), we obtain the following simple expressions in terms of the second and third curvatures of the timelike world-line on which the triads are given:

\[
\omega_1 = d, \quad \omega_2 = 0, \quad \omega_3 = c. \tag{145}
\]

These components of angular velocity are indicated in Fig. 14.

To interpret this angular velocity in the case of a terrestrial observer, we have reason to regard a Fermi triad as a triad without rotation in the ordinary sense. Then the angular velocity of (145) is to be identified with the angular velocity of the earth (marked \(\omega \) in Fig. 14). Then, \(\lambda \) being the latitude of the observer, we have

\[
c = \omega \cos \lambda, \quad d = \omega \sin \lambda. \tag{146}
\]

The first of these is the same as (137), obtained dynamically. The second is new: it gives us the third curvature of the world-line of an observer on the earth. It is interesting that \(c \) and \(d \) are in general of
the same order of magnitude; however, c dominates at the equator and d at the poles.

This physical identification of the curvatures of the world-line of a terrestrial observer is, of course, somewhat crude, because the earth’s orbital motion has not been considered. Anyone who wishes to examine the question more carefully should remember that (145) is an exact mathematical formula, independent of any physical interpretation.

§ 10. THE BALLISTIC SUICIDE PROBLEM

The usual problem of ballistics is to aim a projectile so that it hits someone else. Here we consider the ballistic suicide problem: the projectile is to hit the projector himself!

However perverse such a problem may be sociologically, it is a neat problem in relativity, because there are only two observations and both are made by the same observer. Moreover it forces us to realize that although the trajectory of a projectile fired straight upwards seems sharply curved at the top, from a space-time standpoint it is as straight as possible (geodesic).

Fig. 15 shows the world line C of the suicidal observer: Q_1 is the event of the projectile’s departure, Q_2 the event of its return, and the geodesic Γ joining Q_1 and Q_2 is the history of the projectile. We apply the argument of II–§ 13, taking the point Q_0 of Fig. II–15 halfway between Q_1 and Q_2, so that we may write

$$s_1 = -\frac{1}{2}\sigma, \quad s_2 = \frac{1}{2}\sigma, \quad s_2 - s_1 = \sigma. \quad (147)$$

Then σ is the time-interval between Q_1 and Q_2 (the projectile’s time of flight) as recorded by a clock carried by the observer. In accordance with II–(258), we denote by τ the other measure of the time of flight, viz. that recorded by a clock carried on the projectile. As in II–(259), we have then

$$\tau = \sigma + \frac{1}{24}b^2\sigma^3 + O_4, \quad (148)$$
where \(b \) is the first curvature of \(C \) at \(Q_0 \) and \(\sigma \) is small \((O_1)\).

We note that \(\tau > \sigma \), i.e. the projectile's clock runs fast when compared with the observer's.

It is interesting to see how high a projectile must go above the earth's surface to give a time-difference within the limits of modern chronometry. To make

\[
\tau - \sigma \geq 10^{-10} \text{ sec},
\]

we need to take \(\sigma \) at least as great as the value given by

\[
b^2\sigma^3 = 24 \times 10^{-10} \text{ sec.}
\]

For a terrestrial observer, we take \(b \) as in (133); then we get

\[
\sigma^3 = 2.254 \times 10^6 \text{ sec}^3, \quad \sigma = 131 \text{ sec},
\]

which is a time of flight of somewhat over 2 minutes. This corresponds to a trajectory rising to a height of \(\frac{1}{3}g\sigma^2 = 21 \) km roughly. It is hardly necessary to point out that in seeking conceptual simplicity we have wandered rather far from reality in eliminating the resistance of the air; its inclusion would, however, involve some rather ugly complications.

Let us now consider the projectile's initial and final velocities, measured on a Fermi triad \(\lambda^i(\omega) \) carried on the observer's world-line \(C \). If the projectile's 4-velocity is \(V^i \) and its components on the Fermi triad are \(V_{(\omega)} \), then this 4-velocity is connected accurately with the first derivatives of the world-function \(\Omega(Q_1Q_2) \) by [cf. II–(17)]

\[
\begin{align*}
\Omega_{i_1} &= -\tau V_{i_1}, \\
\Omega_{i_2} &= \tau V_{i_2}, \\
\Omega_{(\omega_1)} &= -\tau V_{(\omega_1)}, \\
\Omega_{(\omega_2)} &= \tau V_{(\omega_2)}.
\end{align*}
\]

But by II–(269) we have

\[
\begin{align*}
\Omega_{(\omega_1)} &= -\frac{1}{2}\sigma^2((DA)_{(\omega)} - \frac{1}{6}\sigma(D^2A)_{(\omega)}) + O_4, \\
\Omega_{(\omega_2)} &= -\frac{1}{2}\sigma^2((DA)_{(\omega)} + \frac{1}{6}\sigma(D^2A)_{(\omega)}) + O_4,
\end{align*}
\]

1 This is an example of that basic fact of relativity which is often absurdly called the clock paradox.

2 For the somewhat similar problem of red-shift for an artificial satellite, see S. F. Singer [1956], B. Hoffmann [1957], A. Das [1957b].
where the A-terms are evaluated at Q_0. Hence, by (148) and (152),
\[V_{(\alpha_1)} = \frac{1}{2} \sigma (D A)_{(\alpha)} - \frac{1}{4} \sigma^2 (D^2 A)_{(\alpha)} + O_3, \]
\[V_{(\alpha_2)} = - \frac{1}{2} \sigma (D A)_{(\alpha)} - \frac{1}{4} \sigma^2 (D^2 A)_{(\alpha)} + O_3, \]
(154)
these being respectively the initial and final velocities.

In first approximation, we have
\[V_{(\alpha_1)} = \frac{1}{2} \sigma b B_{(\alpha)} + O_2, \quad V_{(\alpha_2)} = - \frac{1}{2} \sigma b B_{(\alpha)} + O_2, \]
(155)
so that the projectile is thrown along the first normal to C, and
returns along the first normal. Now for a quick terrestrial suicide, we
know that the projectile should be thrown straight upwards with a
speed $\frac{1}{2} g \sigma$, where σ is the time of flight, and so we verify what we
found in § 9 — the first normal to the terrestrial observer’s world-line
points vertically up and its first curvature is $b = g$, as in (133).

But the final velocity is not precisely the reverse of the initial
velocity, for by (154) and (124) we have
\[V_{(\alpha_1)} + V_{(\alpha_2)} = - \frac{1}{6} \sigma^2 (D^2 A)_{(\alpha)} + O_3 \]
\[= - \frac{1}{6} \sigma^2 (D b B_{(\alpha)} + b c C_{(\alpha)}) + O_3, \]
(156)
where $D b = d b / d s$ at Q_0. Referring to Fig. 14, we see that in the
terrestrial case this 3-vector has a component $\frac{1}{6} \sigma^2 D b$ down (direction
of $- B^t$) and a component $\frac{1}{6} \sigma^2 b c$ westward (direction of $- C^t$).

Thus we see that ballistic suicide observations provide in principle
the first and second normals (B^t, C^t) of the observer’s world-line, and
also b, c, $d b / d s$, the observed quantities being the flight-time σ and the
3-vectors in (155) and (156). As regards numerical values in the
terrestrial case, we have b and c (equatorial) as in (133) and (138), and
if we take σ as in (151), we find
\[\frac{1}{2} \sigma b = 2.137 \times 10^{-6}, \quad \frac{1}{4} \sigma^2 b c = 6.805 \times 10^{-9}. \]
(157)
These terms in (155), (156) are dimensionless, and are in fact fractions
of the speed of light. In more usual units, we have
\[\frac{1}{2} \sigma b = 6.41 \times 10^4 \text{ cm sec}^{-1}, \quad \frac{1}{4} \sigma^2 b c = 204 \text{ cm sec}^{-1}. \]
(158)
These figures give an idea of the magnitudes involved. We must of
course remember that we are here committed to the method of II—§ 13
which uses power series, and the method is applicable only to a fairly
restricted domain of space-time. Suicide by means of a projectile
which travelled to the vicinity of the moon, for example, and then
returned to the earth would be quite beyond the scope of this method.
§11. STATICAL MEASUREMENT OF GRAVITATIONAL FIELDS

As was shown in §9, the observation of a falling body gives information about the world-line of the observer, but it seems to throw little light on the strength of the gravitational field, i.e. the components of the Riemann tensor R_{ijklm}. True, these components occur in (131), but they are masked by other terms.

We now consider the possibility of measuring a gravitational field by experiments which we may call statical by analogy with the familiar statical experiment in which two bodies each of mass m are weighed against one another, with one body in the attic and the other in the basement. In Newtonian physics, the difference between the two weights, divided by the difference in height, and by m, gives the rate of change of the intensity of the gravitational field. We shall investigate what such a quotient represents in relativity.

In Fig. 16, C_0 is the world-line of an observer. If he drops an object, its geodesic world-line departs from C_0, but as long as he holds the object, its world-line coincides with C_0. If $A^t (= \frac{dx^t}{ds})$ is the 4-velocity of a particle of mass m carried on C_0, the 4-force acting on it is

$$F^t = m \frac{\delta A^t}{\delta s} = mbB^t,$$

where b is the first curvature of C_0 and B^t its first unit normal. In view of the considerable differences of opinion among Newtonian physicists as to the logical status of the concept of force, it would be foolish to insist pedantically here either (i) that (159) is the definition of force, or (ii) that (159) is a law of motion involving an already accepted concept of 4-force.

However we look at it, we may regard F^t as statically measurable (with a spring-balance for example), and so the observer can obtain statically the vector B^t and the curvature b. Alternatively, the observer may rely on dynamical experiments, observing a falling body, and indeed this method is more powerful, for (as seen in §9) it gives not only B^t and b but also the other normals C^t, D^t and the other
The curvatures c, d. We shall proceed on this dynamical basis because it is richer in results, but we can always go back to the more restricted statical results by putting $\gamma = \delta = 0$ in the formulae which follow.

At each event on C_0 we have the orthogonal triad of normals (B^i, C^i, D^i). Let β, γ, δ be any constants satisfying

$$\beta^2 + \gamma^2 + \delta^2 = 1,$$ \hspace{1cm} (160)

and let dv be an infinitesimal constant. Then the vector

$$(\beta B^i + \gamma C^i + \delta D^i)dv$$ \hspace{1cm} (161)

can be constructed at each event on C_0, and the extremities of these infinitesimal vectors give an adjacent world-line C_1, which may be used for observations by a second observer. Stepping off from C_1 along the vector (161), with $\beta, \gamma, \delta, dv$ the same constants as before, we get a third adjacent curve C_2. Repeating indefinitely, we obtain a single infinity of world-lines, which form a 2-space, and on this 2-space we take parameters (u, v) as follows. Let $u = s$ on C_0 and $u = \text{const.}$ on each of the curves tangent to the vectors (161) (Fig. 16). Let $v = \text{const.}$ on each of the world-lines C_0, C_1, C_2, \ldots with $v = 0$ on C_0. Writing

$$U^i = \frac{\partial x^i}{\partial u}, \quad V^i = \frac{\partial x^i}{\partial v},$$ \hspace{1cm} (162)

we have then the following formulae:

$$\frac{\delta U^i}{\delta v} = \frac{\delta V^i}{\delta u},$$

$$V^i = \beta B^i + \gamma C^i + \delta D^i, \quad V_i V^i = 1,$$ \hspace{1cm} (163)

$$U_i V^i = 0, \quad A^i = U^i / U, \quad U^2 = -U_i U^i, \quad U > 0,$$

$$(U)_{v=0} = 1.$$

In these formulae A^i, B^i, C^i, D^i are the unit tangent and unit normals to any one of the curves $v = \text{const.}$

Each of the world-lines $v = \text{const.}$ has a first curvature $b(u, v)$. Our object is to calculate $(\partial b/\partial v)_{v=0}$, an observable relativistic invariant which corresponds to the rate of change with height of the Newtonian gravitational field, as described above.

Synge
At any point of the 2-space of world-lines, we have
\[bB^i = \frac{\delta A^i}{\delta s} = \frac{1}{U} \frac{\delta}{\delta u} \left(\frac{U^i}{U} \right), \]
(164)

since $\text{d}s/\text{d}u = U$. Hence
\[bB^i = \frac{1}{U^2} \frac{\delta U^i}{\delta u} - \frac{U^i}{U^3} \frac{\partial U}{\partial u}, \]
(165)
\[b^2U^4 = \frac{\delta U^i}{\delta u} \frac{\delta U_i}{\delta u} + \left(\frac{\partial U}{\partial u} \right)^2, \]

since $U\partial U/\partial u = -U_i\delta U^i/\partial u$. Differentiating with respect to v, we get
\[U^4b \frac{\partial b}{\partial v} + 2b^2U^3 \frac{\partial U}{\partial v} = \frac{\delta U^i}{\delta u} \frac{\delta^2 U_i}{\delta v \delta u} + \frac{\partial U}{\partial u} \frac{\partial^2 U}{\partial v \partial u}. \]
(166)

Now, by (163) and r–(95),
\[\frac{U}{\partial v} = -U_i \frac{\delta U^i}{\delta v} = -U_i \frac{\delta V^i}{\delta u}, \]
(167)
\[\frac{\delta^2 U_i}{\delta v \delta u} = \frac{\delta^2 V^i}{\delta u^2} + R_{ijkm}U^jV^kU^m, \]

and so, putting $v = 0$ in (166) and noting that then $u = s$, $U = 1$, $\partial U/\partial u = 0$, we obtain
\[b \frac{\partial b}{\partial v} - 2b^2A^i \frac{\delta V_i}{\delta s} = \frac{\delta A^i}{\delta s} \left(\frac{\delta^2 V^i}{\delta s^2} + R_{ijkm}A^jV^kA^m \right) \]
(168)
or
\[\frac{\partial b}{\partial v} = 2bA^i \frac{\delta V_i}{\delta s} + B^i \left(\frac{\delta^2 V_i}{\delta s^2} + R_{ijkm}A^jV^kA^m \right). \]
(169)

By (163) and r–(55) we have
\[\frac{\delta V_i}{\delta s} = \beta(cC_i + bA_i) + \gamma(dD_i - cB_i) - \delta dC_i, \]
\[\frac{\delta^2 V_i}{\delta s^2} = \beta\{c'C_i + c(dD_i - cB_i) + b'A_i + b^2B_i\} \]
(170)
\[+ \gamma\{d'D_i - d^2C_i - c'B_i - c(cC_i + bA_i)\} \]
\[- \delta\{d'C_i + d(dD_i - cB_i)\}, \]
where the prime means \(\frac{d}{ds} \); hence

\[
A^i \frac{\delta V_i}{\delta s} = -\beta b, \tag{171}
\]

\[
B^i \frac{\delta^2 V_i}{\delta s^2} = \beta (b^2 - c^2) - \gamma c' + \delta cd.
\]

We substitute these values in (169), and use (1, 2, 3, 4) as labels for components on the orthonormal tetrad \((B^i, C^i, D^i, A^i)\), in this order. Thus we obtain (for \(v = 0 \), i.e. on \(C_0 \))

\[
\frac{\partial b}{\partial v} = \beta (R_{1414} - b^2 - c^2) + \gamma (R_{1424} - c') + \delta (R_{1434} + cd). \tag{172}
\]

If we now put in turn each of constants \(\beta, \gamma, \delta \) equal to unity and the other two zero, we get the following formulae for the rates of change of \(b \) in the directions of the normals \(B^i, C^i, D^i \) in order:

\[
\left(\frac{\partial b}{\partial v} \right)_{(1)} = R_{1414} - b^2 - c^2,
\]

\[
\left(\frac{\partial b}{\partial v} \right)_{(2)} = R_{1424} - c', \tag{173}
\]

\[
\left(\frac{\partial b}{\partial v} \right)_{(3)} = R_{1434} + cd.
\]

Since \(dv \) is in fact an element of distance, we see that these formulae give the rates of change with distance in the tension in a plumb line of unit mass for displacements in the directions of the three normals of the observer’s world-line.

In the terrestrial model (Fig. 14) these three directions are respectively (i) vertically up (as indicated by a plumb line), (ii) to the east, and (iii) to the north. By comparison with a Newtonian model, we shall evaluate, at any point on the surface of a rotating body, the components of the Riemann tensor which occur in (173).

Fig. 17 shows a quadrant of the axial section of a body rotating with angular velocity \(\omega \). The observer is at \(O \), at latitude \(\lambda \). The unit vectors, which we now indicate by \(\mathbf{B}, \mathbf{C}, \mathbf{D} \), point as shown, and we take them as axes \(Oxyz \). \(ON \) is dropped perpendicularly on the axis of
rotation, the direction of which is indicated by the unit vector \mathbf{K}; let $NO = \rho_0$.

Let \mathbf{g} be the vector representing the tension (from support to bob) in a short plumb line of unit mass attached to a point P with coordinates (x, y, z). Let $V(x, y, z)$ be the Newtonian gravitational potential, chosen with that sign which makes gravitational intensity equal to ∇V. Then

$$\mathbf{g} = \nabla V + \rho \omega^2,$$

(174)

where $\rho = \overrightarrow{MP}$, perpendicular to \mathbf{K}. Now

$$\rho = \rho_0 + \mathbf{r} - \mathbf{K}(\mathbf{r} \cdot \mathbf{K}),$$

(175)

where

$$\mathbf{r} = \overrightarrow{OP} = x\mathbf{B} + y\mathbf{C} + z\mathbf{D}.$$

(176)

Therefore

$$\frac{\partial \rho}{\partial x} = \mathbf{B} - \mathbf{K}(\mathbf{B} \cdot \mathbf{K}) = \mathbf{B} - \mathbf{K} \sin \lambda = \mathbf{B} \cos^2 \lambda - \mathbf{D} \sin \lambda \cos \lambda,$$

$$\frac{\partial \rho}{\partial y} = \mathbf{C},$$

$$\frac{\partial \rho}{\partial z} = \mathbf{D} - \mathbf{K}(\mathbf{D} \cdot \mathbf{K}) = \mathbf{D} - \mathbf{K} \cos \lambda = -\mathbf{B} \sin \lambda \cos \lambda + \mathbf{D} \sin^2 \lambda.$$

The magnitude g of the vector \mathbf{g} is the quantity b which occurs in
(173), and we seek to evaluate $\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}$ at O. Now
\[g \frac{\partial g}{\partial x} = \mathbf{g} \cdot \frac{\partial \mathbf{g}}{\partial x}, \text{ etc.}, \] (178)
and at O we have
\[(\mathbf{g})_0 = -g_0 \mathbf{B}, \] (179)
since \mathbf{B} is vertical by plumb line; here g_0 is the tension in a plumb line at O. Hence, by (174) and (178),
\[
\left(\frac{\partial g}{\partial x} \right)_0 = - \mathbf{B} \cdot \left(\frac{\partial \mathbf{g}}{\partial x} \right)_0 = - V_{xx} - \omega^2 \cos^2 \lambda,
\]
\[
\left(\frac{\partial g}{\partial y} \right)_0 = - \mathbf{B} \cdot \left(\frac{\partial \mathbf{g}}{\partial y} \right)_0 = - V_{xy} = 0,
\] (180)
\[
\left(\frac{\partial g}{\partial z} \right)_0 = - \mathbf{B} \cdot \left(\frac{\partial \mathbf{g}}{\partial z} \right)_0 = - V_{xz} + \omega^2 \sin \lambda \cos \lambda,
\]
the partial derivatives on the right being evaluated at O. The zero value in the second equation arises from the fact that $V_y = 0$ all over the plane $y = 0$. Comparing (173) and (180), we get
\[
R_{(1414)} - b^2 - c^2 = - V_{xx} - \omega^2 \cos^2 \lambda,
\]
\[
R_{(1424)} - c' = 0,
\]
\[
R_{(1434)} + cd = - V_{xz} + \omega^2 \sin \lambda \cos \lambda.
\] (181)
Recalling the values found for c and d in (146), certain terms cancel, and (since $c' = 0$) we get
\[
R_{(1414)} = - V_{xx} + g_0^2, \quad R_{(1424)} = 0, \quad R_{(1434)} = - V_{xz}. \] (182)
Thus we have evaluated certain components of the Riemann tensor in terms of second derivatives of the Newtonian potential, on the assumption (a pretty sound one) that Newtonian mechanics gives a very good approximation to physical reality; or, more cautiously, we might say that the evaluation (182) is valid if the body and its rotation are such that Newtonian mechanics is valid. Note that $R_{(1414)}$ is the negative of the Riemannian curvature for the 2-element defined by the observer's world-line and its first normal.
To estimate the components (182) at a point on the surface of the earth, let us take the earth to be a homogeneous sphere of radius a; then, by Newtonian theory,

$$V_{xx} = 2\tilde{g}/a, \quad V_{xz} = 0,$$

(183)

where \tilde{g} is the acceleration due to gravity alone. The difference between g_0 and \tilde{g} is due to the earth's rotation, but it is small and we may take

$$\tilde{g} = g_0 = 980 \text{ cm sec}^{-2} = 3.27 \times 10^{-8} \text{ sec}^{-1},$$

$$a = 6.37 \times 10^8 \text{ cm} = 2.12 \times 10^{-2} \text{ sec}.$$

(184)

Since

$$g_0^2/V_{xx} = \frac{1}{2} \tilde{g}a = 3.47 \times 10^{-10},$$

(185)

the term g_0^2 in (182) may be neglected, and, of the components listed there, the only survivor is

$$R_{(1414)} = -2\tilde{g}/a = -3.08 \times 10^{-6} \text{ sec}^{-2}.$$

(186)

This corresponds to a 'radius of curvature' of 570 sec, which is of the same order as the radius of the earth's orbit (see Appendix B).

§ 12. FERMI-WALKER TRANSPORT ALONG A SPACELIKE CURVE AND ITS PHYSICAL MEANING

Fermi-Walker (F-W) transport along a timelike curve in space-time was defined in § 7(2), and Fermi transport in § 8(4). A physical interpretation of this type of transport was given in § 8 in terms of the bouncing photon: the criterion for the Fermi transport of a frame of reference is that, relative to the frame, the directions of emission and return of the bouncing photon are the same to the first order in the distance of the object from which the photon bounces.

A spacelike curve in space-time is physically much less familiar than a timelike curve; the latter is the history of a moving particle, but the former can only be described negatively as a set of events between which causal relationships are impossible, or as a set of events which cannot represent the history of a photon or a material particle. However, as far as the mathematics of F-W and Fermi transport is concerned, there is not much difference. We simply change the sign in the formulae of § 4 and adopt the following definitions for a spacelike curve C:

Fermi-Walker transport:

$$DF^i = - F_j(A^i DA^j - A^j DA^i),$$

(187)

Fermi transport:

$$DF^i = - A^i F_j DA^j,$$

(188)
where \(D = \delta / \delta s \) (absolute differentiation with respect to the spatial measure of \(C \)) and \(A^i = dx^i / ds \), the unit tangent to \(C \), satisfying

\[
A^i A^i = 1.
\]

(189)

It is easy to verify that \(A^i \) itself satisfies (187) and that scalar products are conserved.

To discuss the physical meaning of F-W transport along a spacelike curve, we may use the same type of argument as that of § 8 (bouncing photon), making the necessary changes in sign. However, it would be tedious to go through the details, and it will suffice to explain the essential changes in the physical situation and mention the most important results.

Fig. 18 – Physical meaning of F-W transport along a spacelike curve

Fig. 18 is Fig. 12 turned on its side. \(C \) is a spacelike curve and on it \(s \) is spatial measure as given by the Riemannian metric (\(ds \) has a chronometric meaning, cf. § 4). On \(C \) we take an orthonormal tetrad \(\lambda_{(a)}^i \), with \(\lambda_{(1)}^i \) tangent to \(C \) and \(\lambda_{(4)}^i \) timelike. Let \(Q_1 \) and \(Q_2 \) be two adjacent events on \(C \). We seek a physical test to determine whether the tetrads \(\lambda_{(a)}^i \) at \(Q_1 \) and \(Q_2 \) are in fact consistent with the condition of F-W transport.

To make such a test, we think of some event \(P' \) which is such that, if an explosion occurs at \(P' \), a photon from the explosion passes through \(Q_1 \) and another through \(Q_2 \). In fact, two observers whose world lines (not shown) pass respectively through \(Q_1 \) and \(Q_2 \) see the explosion at those events. The null geodesic \(P'Q_1 \) defines a direction at \(Q_1 \) relative to the triad \(\lambda_{(a)}^i \) there, with direction cosines \(\theta_{(\omega)}(Q_1) \), say, and likewise \(P'Q_2 \) has direction cosines \(\theta_{(\omega)}(Q_2) \) at \(Q_2 \).

\(^1\) Throughout this book space-time diagrams show future-pointing timelike vectors pointing up the page, making with the vertical an angle less than 45°.
It is clear that, although there is now no bouncing photon, an investigation of these direction cosines will be very similar to the investigation of direction cosines in § 8. We draw $P'N$, a geodesic orthogonal to C, and put $\sigma = P'N$, $s = 0$ at N, $s = s_1$ at Q_1, and $s = s_2$ at Q_2, just as we did in § 8. Then, assuming σ small (O_1) we find, using the world-function Ω and pursuing the same course as in § 8,

$$s_2 - s_1 = 2\sigma + O_2,$$

and, provided the reference tetrad undergoes F-W transport with $\lambda_{(1)}^i = A_i$,

$$\theta_{(1)}(Q_1) + \theta_{(1)}(Q_2) = O_2,$$

$$\theta_{(2)}(Q_1) - \theta_{(2)}(Q_2) = O_2,$$

$$\theta_{(3)}(Q_1) - \theta_{(3)}(Q_2) = O_2.$$ \hspace{1cm} (191)

(Note the $+$ sign in the first equation.) If the tetrad does not undergo F-W transport, then the right hand sides in (191) are O_1. This gives us a physical test for F-W transport: the criterion is that, if σ is so small that O_2 is negligible, then the direction cosine relative to the tangent is reversed in sign, and the other two are unchanged.

Since F-W transport appears to be a most fundamental physical operation (it may be said to represent the absence of rotation), we would like to get some intuitive insight into the above test. This is not easy because Newtonian ideas are so deeply ingrained in us that even the idea of a spacelike curve in space-time does not come easily to us. When we seek to understand difficult ideas, fantastic illustrations are best, and the following may be of assistance.

![Fig. 19 – The birds on the lamp-posts](image)

Imagine (Fig. 19) a row of equidistant lamp-posts, numbered 1, 2, 3, \ldots. On each lamp-post there sits a bird. The lamps are out, but each bird is capable of lighting the lamp on which he sits.

Suppose first that Bird No. 1 lights his lamp, that Bird No. 2 lights his lamp when he sees the light from No. 1, that Bird No. 3 lights his
when he sees the light of No. 2, and so on. Then the lighting of the lamps forms a set of events which may be regarded as a curve C in space-time, and C is a null curve.

Now suppose that the birds follow the same plan, but that they are a little slow in their reactions, so that there is a delay between seeing and acting. Now C becomes timelike, and Bird No. 1 could take off and keep pace with the lightings, i.e. make C his world-line.

Lastly, suppose that the birds light their lamps without any causal chain connecting them. This might happen in various ways. They might light their lamps when they saw the sun set, for example, with the sun away behind the picture. Then, it might be impossible for any bird to leave his lamp immediately after lighting it and reach the next lamp before it was lit. In that case C would be spacelike, and that is the case we have to consider.

Having constructed thus a spacelike curve C, the next step is to fit it with an orthonormal tetrad $\lambda^i_{(a)}$ — we do not bother about F-W transport yet. The tangent vector $\lambda^i_{(1)}$ is easy, for it is defined by the lightings of two adjacent lamps. But what of the timelike vector $\lambda^i_{(4)}$ orthogonal to C? A timelike vector represents the 4-velocity of a particle, and the best plan is to let each bird take off into the air at the instant when he lights his lamp. But in what direction and how fast? Consider, for example, Bird No. 4. As he flies off he is to see simultaneously the lightings of Lamps Nos. 3 and 5. (Since C is spacelike, he does not see these lightings until after he lights his own lamp and takes off.) This plan does not, of course, fix $\lambda^i_{(4)}$ — it only restricts it. Any choice subject to the restriction having been made, it is an easy matter for each bird to define two vectors, $\lambda^i_{(2)}$ and $\lambda^i_{(3)}$, in his instantaneous space and orthogonal to $\lambda^i_{(1)}$.

We have now an orthonormal tetrad defined along the spacelike C, with $\lambda^i_{(1)}$ tangent to C and $\lambda^i_{(4)}$ timelike and orthogonal to C. It remains to apply the test for F-W transport. Let us concentrate on Birds Nos. 3 and 4. We must arrange an explosion somewhere at some time such that the light-flash from it reaches these two birds at the instants when they light their lamps and take off. Each bird is then required to report the direction (relative to his triad $\lambda^i_{(a)}$) in which he sees the flash of the explosion. The criterion for F-W transport is that the direction cosines relative to the tangent $\lambda^i_{(1)}$ should be equal in magnitude but opposite in sign, whereas the other direction cosines should be equal.
The reader is strongly advised to construct for himself other (perhaps simpler) illustrations. But he must avoid two traps. First, he must not allow the two Newtonian fallacies — absolute simultaneity and the rigid body. Secondly, since we are concerned with the general theory of relativity, the idea of a straight world-line with an infinite 3-flat orthogonal to it is not permitted; however, since we are working in the small and the Riemann tensor does not appear in our crude approximation, this is a more venial error.

In working with spacelike curves one is in danger at first of making colossal and lamentable errors such as identifying the spacelike curve with a stretched string. This is nonsense, because the curve is a 1-space and the history of the string is a 2-space. It is true that this 2-space is split up naturally into timelike curves (the histories of the particles which form the string), but it is not split up into spacelike curves; if we like, we can draw in the 2-space the orthogonal trajectories of the world-lines of the particles, and so obtain a set of spacelike curves each of which might be called a form of the string, but that is a somewhat arbitrary procedure. Steeped as we are in Newtonian ideas, it is necessary to emphasize, even ad nauseam, that space-time cannot, in general, be split into space and time in any invariant way. In a statical universe (see Chaps. VII and VIII) such a splitting does in fact occur, but that is a very special case. To understand space-time, it is best to leave statical universes out of account for the present.

In the argument which follows we shall obtain a physical interpretation of spacelike geodesics, but we shall do more than this: we shall attach physical meanings to the first normal B^t and the first curvature b of any spacelike curve.

In Fig. 20, C is a spacelike curve and U^t a timelike unit vector, orthogonal to C and carried along C by Fermi transport. In the directions U^t we draw timelike geodesics, thus forming a 2-space on which we put parameters (u, v) where u is geodesic distance from C and v is constant on each geodesic with $v = s$ on C, ds being the spatial element on C. Then, in the notation used frequently before,

$$
U^t = \frac{\partial x^i}{\partial u}, \quad V^i = \frac{\partial x^i}{\partial v}, \quad \frac{\delta U^i}{\delta v} = \frac{\delta V^i}{\delta u}, \quad U_i V^i = 0, \quad \frac{\delta U^i}{\delta u} = 0, \quad U_i U^i = -1,
$$

(192)
and, since U^i undergoes Fermi transport on C, we have by (188)

$$\frac{\delta U^i}{\delta v} = - V^i U_j \frac{\delta V^j}{\delta v} \quad \text{for } u = 0,$$

for on C we have $V^i = A^i = dx^i/ds$, the unit tangent to C.

The general idea now is this: the more C is curved, the more will the geodesics $v = \text{const.}$ tend to close in on the convex side of C, and

![Diagram showing physical meaning of first normal and curvature of spacelike curve C.](image)

Fig. 20 – Physical meaning of first normal and curvature of spacelike curve C. (The diagram is not carelessly drawn; for C convex on top, the geodesics normal to it have a tendency to converge.)

the rate of decrease of the separation between neighbouring geodesics gives a measure of the curvature of C. We have

$$\frac{1}{2} \frac{\partial}{\partial u} (V_i V^i) = V_i \frac{\delta V^i}{\delta u} = V_i \frac{\delta U^i}{\delta v},$$

and, by (193), this gives, for $u = 0$,

$$\frac{1}{2} \frac{\partial}{\partial u} (V_i V^i) = - U_i \frac{\delta V^i}{\delta v}.$$

The normals and curvatures of a curve are defined mathematically by the Frenet-Serret formulae, which have the form 1–(55) for a timelike curve. For a spacelike curve, certain changes in sign have to be made, but we shall keep 1–(55a) unaltered:

$$\frac{\delta A^i}{\delta s} = b B^i, \quad b \geq 0,$$

where b is the first curvature and B^i the unit first normal. Then (195)

1 For simplicity we shall suppose that $\delta A^i/\delta s$ is spacelike or timelike. It might be null, in which case we would say that the curve has zero first curvature but a well-defined null first normal, the components of which could be measured chronometrically.
may be written

\[\frac{1}{2} \frac{\partial}{\partial u} (V_i V^i) = - b U_i B^i. \] \hspace{1cm} (197)

Let us consider two adjacent geodesics with parameters \(v \) and \(v + \eta_0 \), so that \(\eta_0 \) is their normal separation at \(C \). Let \(\eta \) be their normal separation for any value of \(u \); then

\[V_i V^i = \eta^2 / \eta_0^2, \] \hspace{1cm} (198)

and (197) gives (on \(C \))

\[\frac{1}{\eta_0} \frac{d\eta}{du} = - b U_i B^i. \] \hspace{1cm} (199)

If we now take a Fermi tetrad on \(C \) and resolve vectors on it, we get

\[\frac{1}{\eta_0} \frac{d\eta}{du} = - b B_{(a)} U^{(a)}. \] \hspace{1cm} (200)

Here all quantities have been given physical meanings except \(b \) and \(B_{(a)} \), and the quantities \(U^{(a)} \) are arbitrary except for

\[U_{(a)} U^{(a)} = - 1. \] \hspace{1cm} (201)

Hence we have a physical meaning for the vector \(b B_{(a)} \), and since

\[B_{(a)} B^{(a)} = \pm 1, \] \hspace{1cm} (202)

we can get \(b \) and \(B_{(a)} \).

We have thus attached physical meanings to the first curvature and normal of a spacelike curve, and by ‘physical meaning’ we understand that these quantities can be measured chronometrically.

It is now easy to test a spacelike curve to see if it is a geodesic. All we have to do is to measure the left hand side of (199): if it is zero for all timelike vectors \(U^i \), then \(C \) is a geodesic. It is very a simple idea really: in the case of a geodesic \(C \), the orthogonal geodesics, starting from \(C \) with Fermi-transported (i.e. parallel transported) directions, do not open out or close in.

§ 13. THE PHYSICAL MEANING OF ABSOLUTE DIFFERENTIATION AND THE SYSTEMATIC MEASUREMENT OF GRAVITATIONAL FIELDS

Let \(C \) be any timelike or spacelike curve and \(\lambda^i_{(a)} \) an orthonormal tetrad which undergoes Fermi-Walker transport along \(C \), so that, by
I–(72) and (187),

$$\frac{\delta \lambda^i_{(a)}}{\delta s} = - \varepsilon \lambda^j_{(a)} \left(A^i \frac{\delta A_j}{\delta s} - A_j \frac{\delta A^i}{\delta s} \right),$$

(203)

where A^i is the unit tangent and ε is the indicator of C. Then any vector V^i defined along C may be resolved into invariant components,

$$V^i = V^{(a)} \lambda^i_{(a)},$$

(204)

and the absolute derivative is

$$\frac{\delta V^i}{\delta s} = \frac{d V^{(a)}}{ds} \lambda^i_{(a)} - \varepsilon V^{(a)} \lambda^j_{(a)} \left(A^i \frac{\delta A_j}{\delta s} - A_j \frac{\delta A^i}{\delta s} \right).$$

(205)

The quantities on the right are physically measurable, and so the absolute derivative $\delta V^i/\delta s$ is physically measurable. The same holds of course for the absolute derivative with respect to any other parameter (it need not be s).

As has been remarked earlier, the ordinary measurements of 'gravitational fields' by means of a pendulum or, equivalently, the tension in a plumb line, are not in fact measurements of the gravitational field at all — they are measurements of the absolute acceleration of the observer. In § 11, where we put into relativistic form the experiment of weighing a body in the cellar against a similar body in the attic, we got nearer to the heart of the matter, i.e. the Riemann tensor, but the method was rather special and yielded only some of the components. Now that we have given a physical meaning to absolute derivatives, we are in a position to give a formula from which all the components can be obtained. No attempt is made here to describe the sort of apparatus which would be suitable for this type of relativistically valid geodetic survey.

The method is very general. We take a congruence of curves, preferably timelike, so that the curves may be regarded as the histories of a cloud of particles. There is no necessity that they should be free. We take four parameters $\gamma_{(a)}$, with the first three $\gamma_{(\omega)}$ constant along each of the curves; $\gamma_{(t)}$ is a parameter along each curve — it might be time, but need not be. The congruence is then described by equations of the form

$$x^i = x^i(y),$$

(206)
and we write

$$X^i_{(a)} = \frac{\partial x^i}{\partial y^{(a)}}. \quad (207)$$

for the partial derivatives, these being four contravariant vector fields. By \(1-\(95\)) we have

$$R_{abcd} = R_{ijkl} X^i_{(a)} X^j_{(b)} X^k_{(c)} X^m_{(d)}$$

$$= g_{ij} X^i_{(a)} \left(\frac{\delta^2 X^j_{(b)}}{\delta y^{(c)} \delta y^{(d)}} - \frac{\delta^2 X^j_{(b)}}{\delta y^{(d)} \delta y^{(c)}} \right). \quad (208)$$

This is the required formulae yielding the invariant components of the Riemann tensor in terms of absolute derivatives. One would for convenience choose the parameters \(\gamma^{(a)}\) so that, at the event under consideration, the vectors (207) form an orthonormal tetrad.
CHAPTER IV

THE MATERIAL CONTINUUM

§ 1. A STATISTICAL MODEL

Although we must never confound a mathematical model of nature with nature itself (cf. the philosophical remarks of III—§ 1), it certainly appears that the modern physicist finds a more realistic representation of matter in an assembly of particles than in a continuum. Accordingly this Chapter begins with a brief study of the statistics of an assembly of particles. But, since the general theory of relativity is essentially a field theory, we shall abandon the discrete model of matter as soon as it has served as a background against which the theory of a continuous medium may be constructed.

In Riemannian space-time we picture an assembly of particles, this term including

(i) material particles,
(ii) photons,
(iii) internal impulses.

A material particle has a timelike world-line with 4-velocity \(v^i (v_i v^i = -1) \) and 4-momentum \(p^i (= mv^i) \), so that the square of the mass is \(m^2 = -p_\tau p^\tau \). A photon has a null world-line with \(p^i \) tangent to it, but \(v^i \) does not exist and \(m = 0 \). A photon may be regarded as the limit of a material particle, with \(m \) tending to zero and \(v^i \) to infinity in such a way that \(mv^i \) tends to the finite limit \(p^i \). An internal impulse is either repulsive or attractive. A repulsive impulse is mechanically the same as a photon, but an attractive impulse has its 4-momentum pointing into the past instead of into the future. It has in fact a negative energy, whereas all the other particles have positive energies. These internal impulses are of course highly hypothetical. They are introduced in order make the model applicable to a solid body which resists pressure and tension.\(^1\)

\(^1\) Cf. Synge [1956a, p. 210].
The various particles may collide with one another, i.e. their world-lines may intersect. At a collision there are abrupt changes in 4-momentum. In the present section it is unnecessary to assume (as we shall in § 2) that the world-lines are geodesics between collisions, nor is it necessary to assume any laws of conservation at a collision. Certain statistical quantities can be defined without such assumptions.

To discuss the statistics of an assembly consisting of a great number of particles, at any event \(O \) under consideration we introduce an orthonormal tetrad \(\lambda^i_{(a)} \) with \(\lambda^i_{(4)} \) timelike, and we resolve the 4-momentum \(p^i \) of any particle at \(O \) into invariant components \[p^i_{(a)} = p^i \lambda^i_{(a)}. \] (1)

Raising the Lorentz index, we may regard \(p^{(a)} \) as rectangular coordinates in a flat Minkowskian 4-momentum space. In that space we have pseudospheres with equations

\[p_{(a)} p^{(a)} = \text{const.}, \] (2)

and a null cone with equation

\[p_{(a)} p^{(a)} = 0. \] (3)

There is an invariant element of 4-volume

\[dp = d\varphi^{(1)} d\varphi^{(2)} d\varphi^{(3)} d\varphi^{(4)}. \] (4)

On a pseudosphere there is an invariant element of 3-volume and on the null cone there is an invariant element of 2-content \(^1\).

To deal competently with the statistics of photons and internal impulses we need to integrate over the null cone, and, if the material particles are quantized so that their masses take only certain discrete values, we need to integrate over pseudospheres \(^2\). However these 3-fold integrations introduce certain formal complexities which tend to hide what is important for our present purposes, and so we shall blur the picture a little. We shall give the photons and internal impulses timelike world-lines and very small masses, and we shall suppose the material particles unquantized. Further, to get a rapid view of essentials, we shall omit attractive internal impulses. What we have before us then is in fact an assembly of material particles with masses

\(^1\) Cf. Synge [1956a, p. 430].

\(^2\) Cf. Synge [1957c].
which can have any positive values, so that the representative points in 4-momentum space form a cloud inside the future sheet of the null cone (3). Should we wish to get back to the original picture, we would reinstate the attractive impulses and proceed to certain limits, pushing certain 4-momenta on to the null cone and perhaps others on to quantized pseudospheres. But with such processes we shall not be concerned.

With a chosen event O we associate some 4-momentum \mathbf{p}^t, so that we have two points, the point O in space-time and a point in 4-momentum space. At O we take a polarized target\(^1\) dS; this is a 3-element with unit normal n^i, the sense of n^i polarizing dS. At the point \mathbf{p}^t we take a 4-cell $d\mathbf{p}$, and we are interested in the number of particles with world-lines cutting dS and with 4-momenta in $d\mathbf{p}$. However, it is better to consider the polarized number of particles, this being the number prefixed with a $+$ or $-$ sign according as the particles make a positive or negative transit across dS, i.e. pass through in the sense of n^i or the opposite sense. The sense of transit is that of the 4-velocity $v^i \ (= \mathbf{p}^i/m)$, and it is easy to see that we get a positive or negative transit according as

$$\frac{\varepsilon(n)v_in^i}{|v_in^i|} = +1 \text{ or } -1. \quad (5)$$

Thus, to obtain the polarized number from the number itself, we have merely to multiply by this polarization factor.

We have now before us a thin tube of world-lines (Fig. 1), dS being an oblique section. If dS_0 is the normal section, we have the projection formula

$$dS_0 = dS|v_in^i|. \quad (6)$$

\(^1\) The argument covers both spacelike and timelike targets, i.e. targets for which the normal n^i is timelike and spacelike, respectively. To polarization a spacelike target we may choose n^i pointing either into the future or into the past; to polarize a timelike target, we may choose either of the two opposed spacelike normals. It is useful to note that all vectors lying in a spacelike target are spacelike, whereas in the case of a timelike target some of the vectors lying in it are timelike and some are spacelike. We recall that all vectors orthogonal to a timelike vector are spacelike, but that a spacelike vector has spacelike, null and timelike vectors orthogonal to it.
The number of particles involved may be written

\[\nu(x, \phi) dS_0 d\phi, \]

(7)

where \(\nu(x, \phi) \) is a distribution function, obviously invariant from the construction. Substituting for \(dS_0 \) from (6) and introducing the polarization factor (5), we see that the polarized number of particles in the class \((x, dS; \phi, d\phi) \) is

\[\nu(x, \phi) \epsilon(n) n_i n^i dS d\phi. \]

(8)

So far we have considered only one thin tube. Now, keeping the polarized target fixed, we take all particles into consideration, and study certain fluxes across the polarized target, such as the flux of number and the flux of 4-momentum. Since the same general argument applies to them all, we shall speak of a \(q \)-flux, where \(q \) is some quantity associated with a particle. It may be a scalar, vector, or tensor, but we suppress the indices for the present. The \(q \)-flux across the polarized target \(dS \) is defined as

\[q\text{-flux} = \sum_+ q - \sum_- q, \]

(9)

where \(\sum_+ \) is the sum of all the \(q \)-values for particles making positive transits and \(\sum_- \) the sum of all the \(q \)-values for particles making negative transits. Understanding that \(q \) has the same value for all particles in a class \((x, dS; \phi, d\phi) \) (as of course it will if \(q \) is a function of 4-momentum only), we evaluate the \(q \)-flux from (9) by multiplying \(q \) by the polarized number (8) and integrating over 4-momentum space. The minus sign in (9) is automatically taken care of by the polarization of the number, and we get

\[q\text{-flux} = \epsilon(n) Q_i n^i dS, \]

(10)

where

\[Q_i = \int \nu(x, \phi) q v_i d\phi = \int \nu(x, \phi) m^{-1} q p_i d\phi. \]

(11)

The point of writing the \(q \)-flux in this form is that the target is separated from the statistical quantity \(Q_i \) which is independent of the target’s size and orientation, although of course it depends on its position. Note that \(Q_i \) is a vector only if \(q \) is a scalar. If we indicate the tensor character of \(q \) by writing \(q_{\ldots i} \), then the tensor character of \(Q_i \) is indicated by \(Q_{\ldots i} \).
If we give to \(q \) in turn the values
\[
q = 1, \quad p, \quad p \cdot p_k, \quad p \cdot p_k \cdot p_m, \quad \ldots
\] (12)
we get the following moments of the distribution function \(\nu(x, p) \):
\[
q = 1; \quad Q_i = \int \nu(x, p)m^{-1}p_i d\phi,
\] (13)
\[
q = p; \quad Q_{ij} = \int \nu(x, p)m^{-1}p_i p_j d\phi,
\] (14)
\[
q = p \cdot p_k; \quad Q_{ijk} = \int \nu(x, p)m^{-1}p_i p_j p_k d\phi,
\] (15)
\[
q = p \cdot p_k \cdot p_m; \quad Q_{ijkm} = \int \nu(x, p)m^{-1}p_i p_j p_k p_m d\phi.
\] (16)
and so on. The corresponding fluxes across a polarized target \(dS \) are
\[
q = 1; \quad q\text{-flux} = \epsilon(n)Q_i n^i dS,
\] (17)
\[
q = p; \quad q\text{-flux} = \epsilon(n)Q_{ij} n^j dS,
\] (18)
\[
q = p \cdot p_k; \quad q\text{-flux} = \epsilon(n)Q_{ijk} n^k dS,
\] (19)
\[
q = p \cdot p_k \cdot p_m; \quad q\text{-flux} = \epsilon(n)Q_{ijkm} n^m dS.
\] (20)
To complete the mathematical list of moments, we should add
\[
Q = \int \nu(x, p) d\phi,
\] (21)
but this appears to have no physical meaning in our model.

We might of course have multiplied the \(q \)'s in (12) by any powers of the mass \(m \). But this is inadvisable, since we would like to have moments which remain finite in the limit \(m \to 0 \), i.e. when we pass from material particles to photons or internal impulses.

Of the moments listed above, two are of particular interest. These are (13) and (14), and to them we give special names and use a different notation. Writing
\[
N_i = \int \nu(x, p)m^{-1}p_i d\phi = \int \nu(x, p)v_i d\phi,
\] (22)
we call this the numerical vector, and (putting \(q = 1 \) in (9)) we see that
\[\epsilon(n)N_i n^i dS\] (23)
is the numerical flux across the polarized target \(dS \), i.e. the number of particles with positive transits less the number with negative transits. Turning to (14), we write
\[
T_{ij} = \int \nu(x, p)m^{-1}p_i p_j d\phi = \int \nu(x, p)v_i v_j d\phi,
\] (24)
and call this the energy tensor; we note its symmetry,

$$T_{ij} = T_{ji},$$ \hspace{1cm} (25)$$

which is very important. Then, by (18), the flux of covariant 4-momentum \(q_i \) across a polarized target \(dS \) is

$$\epsilon(n)T_{ij}n^j dS;$$ \hspace{1cm} (26)$$

putting \(q = q_i \) in (9), we see that this represents the total covariant 4-momentum of particles making positive transits across \(dS \) less the total covariant 4-momentum of those making negative transits.

Since we have worked entirely in the small, general relativity has played no part — we might have been in flat space-time. If we use the members \(\lambda^i_{(\alpha)} \) of the orthonormal tetrad as space-axes and \(\lambda^i_{(4)} \) as time-axis, we can give useful verbal descriptions of the invariant components of \(N_i \) and \(T_{ij} \) by taking the vector \(n^i \) along each of the vectors of the tetrad in turn. Thus

$$N^{(\alpha)} = N_{(\alpha)} = \text{polarized number of particles crossing}$$

unit area per unit time,

$$N^{(4)} = - N_{(4)} = \text{number of particles per unit volume.}$$ \hspace{1cm} (27)$$

Making use of the symmetry of \(T_{ij} \) and defining stress by flux of 3-momentum with the usual convention which makes tension positive and pressure negative, we have

$$- T^{(\alpha\beta)} = - T_{(\alpha\beta)} = \text{stress matrix},$$

$$T^{(\alpha\delta)} = T^{(4\alpha)} = - T_{(\alpha\delta)} = - T_{(4\delta)}$$

= polarized flux of energy per unit area per unit time

= density of 3-momentum,

$$T^{(44)} = T_{(44)} = \text{density of energy.}$$ \hspace{1cm} (28)$$

We raise and lower Lorentz indices as in 1–(54); values are not altered by raising or lowering 1, 2, 3, but there is a change of sign each time we raise or lower 4.
§ 2. CONSERVATION LAWS IN THE STATISTICAL MODEL

So far our statistical model has been developed without the geodesic hypothesis and without any law of conservation at collisions. We now introduce the geodesic hypothesis: the world-line of each particle is a geodesic between collisions, with \(\dot{p}^i \) undergoing parallel transport. As regards conservation, the conservation of 4-momentum seems to be one of the most fundamental laws of physics, and we shall assume that at each collision the total 4-momentum is conserved. Since each collision is a single event, this does not involve adding vectors attached to different events.

The question of the conservation of number is more dubious. In the kinetic theory of gases we would assume conservation of number, if we were prepared to leave all photons out of account. But in view of the annihilation and creation of particles and in view of the presence of radiation in the form of photons (not to speak of the hypothetical internal impulses), we hesitate to place conservation of number on a parity with conservation of 4-momentum.

We proceed then with the geodesic hypothesis and the law of conservation of 4-momentum. Let \(S \) be a closed 3-space in space-time (Fig. 2). We polarize it by the outward unit normal \(n^t \). Then, as in (26), the flux of 4-momentum across an element \(dS \) is

\[
\text{flux of 4-momentum} = \varepsilon(n) T_{ij} n^j dS. \tag{29}
\]

We cannot find the total flux of 4-momentum across \(S \) by integrating this, because we are in curved space-time and we must not add vectors at different points. So we introduce a vector field \(W^t \), chosen arbitrarily at an event \(O \) inside \(S \), and defined throughout \(R \) (the interior of \(S \)) by parallel transport along the geodesic emanating from \(O \). It follows from this construction that

\[
W_{ij} = 0 \text{ at } O. \tag{30}
\]

We take components on \(W^t \), and in view of (29) and (9) we have the following two equal expressions:

\[
\text{total flux of the } W\text{-component of 4-momentum across } S = \int \varepsilon(n) T_{ij} W_{in} n_j dS = \sum_+ W_i p^i - \sum_- W_i \dot{p}^i, \tag{31}
\]

where \(\sum_\pm \) refers to particles leaving \(R \) (positive transit) and \(\sum_- \) to particles entering \(R \) (negative transit).
We take S small, with linear dimensions of order σ, and follow the usual convenient but confusing practice of regarding the number of particles involved as very great in spite of the smallness of σ. We have to estimate the order of magnitude of the expression

$$F = \sum_+ W_i p^i - \sum_- W_i p^i,$$

which occurs in (31). We do this in two steps. First, we allow all particles entering R to pursue their geodesic world-lines without collisions, passing unbroken through the actual event of collision, as at C in Fig. 2a. Secondly, we study the effects of the collisions, one by one.

![Fig. 2a – No collisions](image1)

![Fig. 2b – Collision](image2)

As we follow a particle, we have

$$\frac{d}{ds} (W_i p^i) = W_{ij} \frac{dx^j}{ds},$$

By (30) W_{ij} is of the order σ in R and the range of s is also of this order. Therefore, in the absence of collisions, this single particle gives to F a contribution of order σ^2. Now the number of particles is proportional to σ^3, and so, in the absence of collisions,

$$F = O(\sigma^5).$$

Consider the effect on F of the collision at C in Fig. 2b. In (32) \sum_{-} refers to particles entering R, and the collision does not affect them. What the collision does is to change the contributions from the full lines in Figs. 2a and b into the contributions from the broken lines in Fig. 2b, these being the world-lines after the collision. If we denote the
former contribution by Σ and the latter by Σ', we have to evaluate
\[\Sigma W_i \phi^i - \Sigma' W_i \phi^i, \] \hspace{1cm} (35)
this being the change in F produced by the collision. The expression (35) has to be evaluated at the events where the world-lines leave R, but the several elements are functions of position on the world-lines drawn from C to the events of departure from R. Now by the conservation of 4-momentum at C, (35) vanishes at C, and if we follow the quantities to the events of departure from R, using (33), we find in fact that (35) is of the order σ^2. The total number of collision will be proportional to the 4-volume of R, i.e. proportional to σ^4, and so we conclude that the effect of collisions is to change F only by the order σ^6, which is insignificant in view of (34). Thus the effect of collisions is negligible, but this is due to conservation of 4-momentum, not to the paucity of collisions.

By (31), (32) and (34), we have
\[\int \epsilon(n) T_{ij} W_i n_j dS = O(\sigma^5). \] \hspace{1cm} (36)
By Green’s theorem as in 1-(257), this may be written
\[\int T_{ij}^i W_i d\tau + \int T_{ij}^i W_{ij} d\tau = O(\sigma^5), \] \hspace{1cm} (37)
where the integrals are taken through R, $d\tau$ being an element of 4-volume. By (30) the second integral is of order σ^6, and so, dividing by σ^4, and going to the limit $\sigma \to 0$ with R collapsing on O, we get
\[T_{ij}^i W_i = 0. \] \hspace{1cm} (38)
But W_i was chosen arbitrarily at O. We have then the following differential equations of conservation of 4-momentum:
\[T_{ij}^i = 0. \] \hspace{1cm} (39)
It is most important to note that these are differential equations; we do not get an integrated law of conservation, and the absence of a simple integrated law has been one of the banes of general relativity, at least for those who expect to see Newtonian facts1 reproduced in curved space-time.

As for the conservation of number, the argument is very simple. If we assume the conservation of number at each collision (we do not have to assume geodesic world-lines or conservation of 4-momentum), then the number of particles entering a domain R is equal to the num-

1 Or those of special relativity. Cf. SYNGE [1956a, p. 311].
ber leaving R. Hence, if S bounds R as in Fig. 2, (23) gives
\[\int \varepsilon(n)N^t n_t dS = 0. \] (40)

By Green’s theorem this may be written
\[\int N^t_{i|t} d\tau = 0, \] (41)
and, shrinking R to a single event, we obtain the **differential equation of conservation of number**:
\[N^t_{i|t} = 0. \] (42)

But, as indicated earlier, this equation is to regarded as less universally valid then (39).

Apart from conservation equations, we have in N^t [cf. (22)] and T_{ij} [cf. (24)] a vector and a tensor defined by our statistical model, and the question arises: How should we define the **mean velocity** of the assembly of particles? This question is of considerable importance in setting up the mechanics of a continuum if we are to base the structure of that theory on consideration of the statistical model, for the mean velocity V^i of a continuum is a fundamental concept.

Since velocity is a kinematical concept, we naturally seek a kinematical definition, and N^t is the only vector available. Thus we are led to define the **kinematical mean velocity** V^i_k as the unit vector having the direction of the numerical vector N^t. For a gas consisting of equal molecules this definition is reasonable, but if there are also present a considerable number of particles with masses very small compared with those of the molecules, it seems hardly right to define mean velocity on the basis of a mere counting. If we abandon the idea that mean velocity must be defined kinematically, we may define the **dynamical mean velocity** V^i_D as the unit vector in the timelike eigen-direction of the tensor T_{ij}, assuming such a timelike eigen-direction to exist, as it does under certain reasonable conditions.\footnote{Cf. Synge [1956a, p. 292].}

This means that V^i_D satisfies the equations
\[T_{ij}V^i_D = -\mu_D V^i_D; \] (43)
where $-\mu_D$ is an eigenvalue of T_{ij}.

Since a medium at rest is easier to think about than one in motion, it is natural to seek a **rest-frame** at each event in the history of the medium, this rest frame being an orthonormal tetrad with its fourth
vector pointing in the direction of the mean velocity. Having got a rest-frame, we can proceed to talk about rest-energy and other rest-quantities. Great confusion of thought results from a tacit assumption that the mean velocity (and hence the rest-frame) is well defined when in fact it is not; it might be V^i_K or it might be V^i_D. In the former case the rest-energy is

$$\mu_K = T_{ij} V^i_K V^j_K,$$ \hspace{1cm} (44)

and in the latter case it is

$$\mu_D = T_{ij} V^i_D V^j_D.$$ \hspace{1cm} (45)

The question of the distinction between these two rival definitions of mean velocity would disappear if we could assert that the two mean velocities were the same, as indeed they seem to be for a gas in statistical (adiabatic) equilibrium. But there does not seem to be any justification for such an assumption in general, although it might be hard to find a physical example where the two vectors differed by any significant amount. For the sake of simplicity and clarity it is necessary to make a choice, and in this book the dynamical mean velocity V^i_D (an eigenvector of the energy tensor) will be accepted as the definition of mean velocity; if on any occasion it is desirable to deviate from this definition, the fact will be explicitly noted (cf. x–§ 1).

§ 3. KINEMATICS OF A CONTINUUM

Leaving the statistical model behind, we consider a continuum of identifiable particles, if we like to continue to use the word ‘particle’ — it now means something quite different from what it meant in the two preceding sections. In the present section the inertial properties of the continuum do not interest us. We study only its kinematics and that involves nothing but a field of 4-velocity V^i (it might be either of the mean velocities discussed in § 2). Our kinematics is merely the geometry of the stream-lines, these being world-lines having V^i for unit tangents. There are two methods — the Lagrangian and the Eulerian.

In the Lagrangian method, we introduce four parameters $y_{(a)}$, the first three parameters $y_{(a)}$ being constant along each stream-line. The equations of the congruence of stream-lines then appear in the form

$$x^i = x^i(y),$$ \hspace{1cm} (46)
\(\gamma_{(4)} \) being a parameter (possibly the time) which varies along each stream-line, and the 4-velocity is

\[
V^i = \theta \frac{\partial x^i}{\partial \gamma_{(4)}},
\]

the scalar factor \(\theta \) being chosen so that

\[
V_i V^i = -1.
\]

We shall not pursue the Lagrangian method further, because the Eulerian method is more convenient for tensorial treatment. In this method, we define the congruence of stream-lines by writing

\[
V^i = V^i(x),
\]

thus describing the 4-velocity as a function of position in space-time, the condition (48) being of course satisfied by these functions.

The kinematics of the continuum deals with the relative behaviour of adjacent stream-lines, and may be discussed in various ways. We shall here use Fermi coordinates as in II–§ 10, taking a Fermi tetrad \(\lambda^i_{(a)} \) on one of the stream-lines \(C \), with \(\lambda^i_{(4)} = V^i \). Although we are interested only in the immediate neighbourhood of \(C \), this method has the advantage that we could go further if desired.

Fig. 3 shows the stream-line \(C \) and an adjacent stream-line \(C' \), with the events \(P \) and \(P' \) in correspondence through the condition that the geodesic \(PP' \) is orthogonal to \(C \) at \(P \). Then, in terms of the world-function, the Fermi coordinates of \(P' \) are

\[
X^i_{(a)} = -\Omega_i(PP')\lambda^i_{(a)},
\]

and their rates of change with respect to time \(s \) on \(C \) are (with \(D=d/ds \))

\[
DX^i_{(a)} = -\Omega_{ij}\lambda^i_{(a)} V^j - \Omega_{ij}\lambda^i_{(a)} V^j Ds',
\]

where \(V'^j \) is 4-velocity on \(C' \) and \(s' \) is time on \(C' \); in view of the orthogonality at \(P \), no term arises from the differentiation of the Fermi vector. The calculation is very simple since we wish to retain only terms of the first order \((O_1) \) in the Fermi coordinates. Remembering
the coincidence limits in \(\Pi \sim (69) \), we find

\[
\begin{align*}
\Omega_{ij} \lambda^i_{(\alpha)} V^j &= O_2, \\
\Omega_{ij} \lambda^i_{(\alpha)} V^j &= [\Omega_{ij} \lambda^i_{(\alpha)}] \lambda^j_{(\beta)} \eta^k + O_2 \\
&= \lambda^i_{(\alpha)} V_{ik} \eta^j + O_2, \\
Ds' &= 1 + O_1,
\end{align*}
\]

(52)

where \(\eta^j \) is the infinitesimal vector \(PP' \) and the second subscript on \(V \) indicates a covariant derivative. Hence, to the first order,

\[
DX_{(\alpha)} = V_{(\alpha\beta)} X^{(\beta)},
\]

(53)

where

\[
V_{(\alpha\beta)} = V_{ij} \lambda^i_{(\alpha)} \lambda^j_{(\beta)},
\]

(54)

these being the components of the covariant derivative \(V_{ij} \) on the Fermi triad.

Regarding the Fermi coordinates \(X_{(\omega)} \) as Cartesian, we recognize in (53) the equations of motion of a continuum undergoing linear deformation. Accordingly we shall speak of a symmetric rate-of-deformation matrix given by

\[
\sigma_{(\alpha\beta)} = \frac{1}{2} (V_{(\alpha\beta)} + V_{(\beta\alpha)}),
\]

(55)

and a skew-symmetric spin (or rotation) matrix given by

\[
\omega_{(\alpha\beta)} = \frac{1}{2} (V_{(\alpha\beta)} - V_{(\beta\alpha)}).
\]

(56)

However, it is desirable to work with tensors rather than with invariants, and so we seek a symmetric tensor \(\sigma_{ij} \) and a skew-symmetric tensor \(\omega_{ij} \) which have respectively the components (55) and (56) on the Fermi triad. But, since these components do not serve to define the tensors completely, we are at liberty to add other conditions, and for these conditions we shall make the choice which seems simplest, namely,

\[
\sigma_{(a4)} = 0, \quad \omega_{(a4)} = 0;
\]

(57)

these are equivalent to the tensor conditions

\[
\sigma_{ij} V^j = 0, \quad \omega_{ij} V^j = 0.
\]

(58)

To determine \(\sigma_{ij} \) from this condition and (55), which is the same as

\[
\sigma_{km} \lambda^m_{(\alpha)} \lambda^k_{(\beta)} = \frac{1}{2} V_{km} (\lambda^k_{(\alpha)} \lambda^m_{(\beta)} + \lambda^k_{(\beta)} \lambda^m_{(\alpha)}),
\]

(59)
we multiply (59) by $\lambda^{(\alpha)}_i \lambda^{(\beta)}_j$ and introduce the projection operator defined as

$$P^i_j = \lambda^{(\alpha)}_i \lambda^{(\alpha)}_j = \delta^i_j + V^i V_j.$$

(60)

To reduce the resulting expression, we use (58) and also, by (48),

$$V^i V_{ij} = 0.$$

(61)

In this way we obtain the following rate-of-strain tensor:

$$\sigma_{ij} = \frac{1}{2} V_{km} (P^k_i P^m_j + P^k_j P^m_i) = \frac{1}{2} (V_{ij} + V_{ji} + V_{ik} V^k V_j + V_{jk} V^k V_i).$$

(62)

This tensor has of course, not 10 independent components as might appear, but only 6 in view of (58), or, better, in view of the fact that σ_{ij} is uniquely determined by the six components (55) with (57).

The same type of argument, based on (56) and (58), leads to the following spin tensor:

$$\omega_{ij} = \frac{1}{2} V_{km} (P^k_i P^m_j - P^k_j P^m_i) = \frac{1}{2} (V_{ij} - V_{ji} + V_{ik} V^k V_j - V_{jk} V^k V_i).$$

(63)

This tensor has actually only three independent components, for when we resolve it on the Fermi tetrad we get only the independent components $\omega_{(23)}$, $\omega_{(31)}$, $\omega_{(12)}$.

The spin tensor is closely connected with the spin vector defined by

$$\omega^i = \frac{1}{2} \eta^{ijk} V_j V_{km},$$

(64)

the η-term being the permutation tensor as in 1–(114). The components of this vector on the Fermi tetrad are

$$\omega^{(a)} = \frac{1}{2} \xi^{abc} V_{(b)} V_{(c)}, \quad \zeta^{-1} = (-g)^{\frac{1}{4}} \det \lambda^{(a)}_i = \pm 1.$$

(65)

Now $V_{(b)} = 0$, $V_{(d)} = -1$, and so

$$\omega^{(a)} = \frac{1}{2} \xi^{\gamma\delta} V_{(\gamma)} V_{(\delta)} = \frac{1}{2} \xi^{\gamma\delta} \omega_{(\gamma\delta)}, \quad \omega^{(4)} = 0,$$

(66)

so that

$$\omega^{(1)} = \zeta \omega_{(23)}, \quad \omega^{(2)} = \zeta \omega_{(31)}, \quad \omega^{(3)} = \zeta \omega_{(12)};$$

(67)

the spin tensor and the spin vector are essentially the same thing in different forms.

Let v be the 3-volume of the normal section of a thin tube of streamlines. Then, as may be shown, the expansion of the tube is

$$\frac{1}{v} \frac{dv}{ds} = g^{ij} \sigma_{ij} = V^i_v,$$

(68)
and so the condition for a motion without expansion (incompressible) is
\[g^{ij} \sigma_{ij} = 0 \text{ or } V^i_{j, i} = 0. \quad (69) \]

A motion is rigid (in the sense of Born, cf. III–§ 5) if, for all streamlines adjacent to \(C \), the vector \(PP' \) of Fig. 3 retains a constant magnitude or equivalently if \(X_\omega X^{(\omega)} = \text{const} \). It is clear from (53) that necessary and sufficient conditions for a rigid motion are
\[\sigma_{(\omega \beta)} = 0 \text{ or } \sigma_{ij} = 0, \quad (70) \]
these conditions being equivalent to one another. \(^1\)

A motion may be called irrotational if
\[\omega_{(\omega \beta)} = 0 \text{ or } \omega_{ij} = 0, \quad (71) \]
these conditions being equivalent to one another. By (67) these conditions are also equivalent to \(\omega^i = 0 \). But in writing out these last conditions, we may replace the permutation tensor in (64) by the numerical permutation symbol, and we may also replace the covariant derivative by a partial derivative. We then recognize the well known integrability conditions for the total differential equation
\[V_t dx^i = 0. \quad (72) \]

We conclude that, in an irrotational motion, the stream-lines form a normal congruence; in other words, there exists a family of 3-spaces to which the stream-lines are orthogonal. There has been so much vague thought about rotation in relativity that it is well to emphasize how simple the matter is: in irrotational motion the element does not rotate relative to axes carried by Fermi transport along a world-line of the continuous medium.

§ 4. THE ENERGY TENSOR OF A CONTINUUM

Following the suggestion of the statistical model (§§ 1, 2), we assign to a material continuum a symmetric energy tensor, for which we can use the covariant form \(T_{ij} \), the contravariant form \(T^{ij} \), or the mixed form \(T^i_j \); in view of the symmetry it is unnecessary to distinguish between \(T^i_{ij} \) and \(T^j_i \) and we write them both \(T^i_j \).

The energy tensor plays two important roles. First, it embodies the

\(^1\) Cf. Rosen [1947], Salzman and Taub [1954]. For other work on rigid motions, see Rayner [1959]. The problem of rigid motions in general relativity is more difficult than was indicated in Synge [1956a, p. 36] on account of the parabolic nature of the system of equations.
mechanical properties of the matter, such as stress and density. Secondly, it is the definitive quantity in the determination of gravitational fields, in much the same way as density is the definitive quantity in Newtonian gravitation. The fact that the energy tensor plays this dual role, inertial and gravitational, is sometimes referred to as the equivalence of inertial and gravitational mass. Deferring to the next section the gravitational field equations, we proceed with the inertial aspects of the energy tensor.

We borrow from the statistical model the interpretation of the energy tensor in terms of fluxes, and as in (26) we make the following statement:

\[
\text{flux of 4-momentum across a 3-target dS polarized by a}
\]
\[
\text{unit normal vector } n^i = e(n) T_{ij} n_j dS. \tag{73}
\]

For the meanings of the components on an orthonormal tetrad, see (28); but whether the words used there convey precise physical meanings depends to no little extent on the experience of the reader and his imagination.

We also take from the statistical model the conservation equation

\[
T_{ij}^{;}_{|j} = 0. \tag{74}
\]

It is important to note that if the metric tensor \(g_{ij} \) is given, then we have here four partial differential equations satisfied by the ten components of \(T^{ij} \); but if \(g_{ij} \) is not given, then these are differential equations for \(g_{ij} \) as well as \(T^{ij} \), since the first derivatives of the former occur.

As indicated at the end of § 2, we define the 4-velocity \(V^i \) of the continuum as the timelike eigenvector of \(T_{ij} \), so that

\[
T_{ij} V^j = - \mu V^i, \tag{75}
\]

the invariant \(\mu \) being called the proper density of energy or of mass \(^1\); but for brevity we shall omit the word proper unless there is risk of confusion with the density of (28), which becomes the proper density if we take the reference vector \(\lambda^i_{(4)} \) to be \(V^i \). We have

\[
V_i V^i = -1, \quad V_i V^i_{|j} = 0, \tag{76}
\]

\(^1\) In the chronometric approach used in this book, the speed of light is automatically unity. Thus mass and proper energy are the same thing and Einstein's famous equation \(E = mc^2 \) reads simply \(E = m \).
and

\[\mu = T_{ij} V^i V^j. \]

(77)

The minus sign occurs in (75) because, in the statistical model, the 4-momenta of material particles and photons point into the future.

The symmetric tensor \(S_{ij} \) defined by

\[T_{ij} = \mu V^i V^j - S_{ij} \]

(78)

is called the stress tensor, this being in agreement with (28); by (75) we have

\[S_{ij} V^j = 0, \]

(79)

so that \(S_{ij} \) has only six independent components.

In (78) we have the general expression for the energy tensor in terms of density, 4-velocity and stress. The simplest of all continua is the incoherent fluid or dust cloud, defined by the condition \(S_{ij} = 0 \), so that

\[T_{ij} = \mu V^i V^j. \]

(80)

To investigate the stream-lines of an incoherent fluid, we substitute (80) in (74) and obtain

\[(\mu V^j)_{,j} V^i + \mu V^i_{,j} V^j = 0. \]

(81)

Multiply by \(V^i \) and use (76): this gives

\[(\mu V^j)_{,j} = 0, \]

(82)

and so by (81)

\[D V^i = V^i_{,j} V^j = 0, \]

(83)

where \(D = \partial / \partial s \), the operator of absolute differentiation along the stream-line. Therefore in an incoherent fluid, the stream-lines are geodesics, a rather remarkable result.

Next in order of simplicity comes the perfect fluid, defined by the condition that \(T_{ij} \) has three equal eigenvalues corresponding to spacelike eigenvectors. Denoting the common eigenvalue by \(\rho \) (pressure), we have

\[T_{ij} = \mu V^i V^j + \rho (V^i V^j + g_{ij}) = (\mu + \rho) V^i V^j + \rho g_{ij}. \]

(84)

To investigate the motion of a perfect fluid, we substitute from (84) in (74) and obtain

\[[(\mu + \rho) V^j]_{,j} V^i + (\mu + \rho) V^i_{,j} V^j + \rho_{,i} = 0. \]

(85)

On multiplying by \(V^i \) and using (76), we get an equation which can be
written in either of the following forms:

\[
[(\mu + \rho)V^i]_j = \rho V^i_j, \quad (86)
\]

\[
\rho V^i_j = -(\mu V^j)_i. \quad (87)
\]

Substitution of (86) in (85) gives

\[
(\mu + \rho)DV^i = -\rho g^i_j (V^i V^j + g^{ij}), \quad (88)
\]

which expresses the absolute acceleration of a stream-line in terms of the pressure-gradient. If we introduce an orthonormal tetrad \(\lambda^i_\alpha \) with \(\lambda^i_\alpha = V^i \) and denote in an obvious way the invariant components of \(\rho V^i_\alpha \) and \(DV^i \) on this tetrad, we have

\[
[(\mu + \rho)V^\alpha]_\beta = \rho(\alpha), \quad (89)
\]

\[
(\mu + \rho)(DV)_\omega = -\rho(\omega). \quad (90)
\]

We recognize in this last equation a modification of the Newtonian equation of hydrodynamics: density \(\times \) acceleration = - pressure-gradient. In nature, \(\rho/\mu \) is very small [cf. (98)].

A gas composed of identical molecules of mass \(m \), in statistical adiabatic equilibrium, is a particular case of a perfect fluid. For it the kinematical and dynamical velocities (cf. § 2) coincide, and the energy tensor is \(^1\)

\[
T_{ij} = mNG(m\xi)V_i V_j + g_{ij}N/\xi, \quad (91)
\]

where \(\xi \) is the reciprocal temperature, \(G = K_3/K_2 \) (a ratio of Bessel functions), and \(N \) is the magnitude of the numerical vector, so that

\[
N^i = N V^i. \quad (92)
\]

We have not only the equation of conservation (74), but also the conservation of number, so that, as in (42),

\[
N_{i|\alpha} = 0. \quad (93)
\]

Comparison of (80) and (84) shows that a perfect fluid degenerates into an incoherent fluid when \(\rho \) tends to zero, and this suggests that it may be legitimate to treat a perfect fluid at low pressure as if it

\(^1\) Cf. Synge [1957c, p. 36].
were incoherent. But what does ‘low pressure’ mean? In ordinary units, energy-density and pressure both have the dimensions \([ML^{-1}T^{-2}]\); by making a chronometric definition of distance, we have set up the dimensional equation \([L] = [T]\), and so we may write

\[
\mu = \phi = [MT^{-3}].
\] (94)

In the next section we shall see that \([M] = [T]\) by virtue of the field equations, so that \(\mu\) and \(\phi\) are expressible in \(\text{sec}^{-2}\). Since they are dimensional, there is no sense in talking about \(\mu\) or \(\phi\) being large or small. But we can speak with meaning of the magnitude of the dimensionless ratio \(\phi/\mu\), and it is of interest to investigate this magnitude in the case of the earth, considered as a perfect fluid with \(\mu\) constant, and without rotation.

The first curvature of the world-line of any particle fixed in the earth is the local ‘acceleration due to gravity’ \(g\) [cf. \(\Pi-(133)\)], and (90) may be written

\[
\frac{1}{\mu + \phi} \frac{d\phi}{dr} = -g,
\] (95)

with \(g\) evaluated at a distance \(r\) from the centre of the earth. Let us accept from Newtonian theory

\[
g = g_1 r/r_1, \quad \phi_1 = 0,
\] (96)

the subscript \(1\) referring to the earth’s surface. Then

\[
\log(1 + \phi_0/\mu) = \frac{1}{2} g_1 r_1
\] (97)

where \(\phi_0\) is the pressure at the earth’s centre. The quantity \(g_1 r_1\) is (chronometrically) dimensionless, and we have

\[
g_1 = 3.263 \times 10^{-8} \text{ sec}^{-1},
\]
\[
r_1 = 2.125 \times 10^{-2} \text{ sec},
\] (98)
\[
\phi_0/\mu = \frac{1}{2} g_1 r_1 = 3.464 \times 10^{-10}.
\]

This ratio is so fantastically small that one’s first reaction is to drop \(\phi\) from (84) in the case of any reasonable fluid and treat it as an incoherent fluid. But this would be disastrous. In the absence of all pressure, a ship launched on the ocean would pursue a geodesic, i.e. it would sink to the bottom, and indeed the ocean would collapse [cf. (83)]. The explanation of this is as follows. If \(q\) is a very small
dimensionless quantity, we may properly neglect it in \((1 + q)\). But the gradient of \(q\) is not dimensionless, and it may be neglected only in comparison with quantities of the same dimensions. It would be ridiculous to neglect the left hand side of (95) in comparison with the right! \(^1\)

We now turn to the general energy tensor (78) and substitute it in the conservation equation (74), obtaining

\[
(\mu V^i)_{|i} V^j + \mu V^i_{|j} V^j = S^{ij}_{|j}. \tag{99}
\]

Multiplication by \(V^i\) gives

\[
(\mu V^i)_{|j} = - V^i S^{ij}_{|j}, \tag{100}
\]

and so we get from (99)

\[
\mu D V_i = (g_{ij} + V_i V_j) S^{ik}_{|k}. \tag{101}
\]

Eq. (100) may also be written in the form

\[
D \mu = - \mu V^i_{|j} - V_i S^{ij}_{|j}. \tag{102}
\]

By (79) we have

\[
S^{ik}_{|j} V_j = 0, \quad S^{ik}_{|k} V_j + S^{jk}_{|k} V_j V^{i} = 0, \tag{103}
\]

and so, in terms of the rate-of-strain tensor \(\sigma_{ij}\) of § 3,

\[
V_i S^{ik}_{|k} = - S^{jk} \sigma_{jk}. \tag{104}
\]

We can now write (101) and (102) in the form

\[
\mu D V^i = S^{ij}_{|j} - V^i S^{ik} \sigma_{jk}, \tag{105}
\]

\[
D \mu = - \mu a^k_k + S^{ik} \sigma_{jk}, \tag{106}
\]

the first equation giving the absolute acceleration (or first curvature) of a stream-line, and second giving the rate of change of density along it. These may be regarded as the equations of motion of a general continuous medium, although of course the number of unknowns exceeds the number of equations.

The point of writing the equations in this last form is to bring the rate-of-strain tensor \(\sigma_{ij}\) into play. Since all actual substances are imperfectly elastic or viscous, as long as \(\sigma_{ij}\) does not vanish heat will be generated and radiated off from the surface of any finite body. This

\(^1\) Cf. remarks on smallness in \(\pi-\S 3\).
suggests that the planets tend to states in which σ_{ij} vanishes (i.e. to rigid motions) and for such states we have

$$\mu DV^i = S^i_{ij}, \quad \sigma_{ij} = 0,$$

with μ constant along each stream-line.

§ 5. THE FIELD EQUATIONS AND THE NEWTONIAN COMPARISON

So far we have assumed that space-time is a Riemannian 4-space and have, in general terms, attributed its curvature to gravitation. But we have set up no equations by which the curvature of space-time is made to depend on the distribution of matter. This gap is now filled by writing down Einstein's field equations, which read

$$G_{ij} - \Lambda g_{ij} = -\kappa T_{ij}.$$ \hspace{1cm} (108)

In these equations G_{ij} is the Einstein tensor, g_{ij} the metric tensor, T_{ij} the energy tensor, and Λ and κ are two universal constants. The field equations can of course be written also in contravariant and mixed forms.

Since we have already committed ourselves to the conservation equation (74), we must assure ourselves that it is consistent with (108). This consistency is at once established if we recall the identity 1-(111) satisfied by the Einstein tensor, for we get from (108)

$$\kappa T^i_{ij} = \Lambda g^i_{ij} - G^i_{ij} = 0.$$ \hspace{1cm} (109)

Let us now consider (108) from the standpoint of physical dimensions. In general relativity only invariants have definite physical dimensions. The physical dimensions of the components of a tensor depend on those of the coordinates employed, but it is clear that in each component of a tensor equation all the terms must have the same dimensions. This relieves us of the trouble of constructing invariants. It is a useful plan to think of coordinates which are times (seconds). Then, since the element ds is itself a time, g_{ij} is dimensionless and G_{ij} has the dimensions of sec$^{-2}$, since it involves two differentiations with respect to the coordinates. We recognize then that Λ has the dimensions sec$^{-2}$. But we cannot assign dimensions in seconds to κ because T_{ij} involves mass, and so far that is a separate quantity dimensionally. We now force a dimensionality on mass (or equivalently energy) by insisting that κ shall be a pure number. It would seem
simplest to choose κ equal to unity, but if we do this an awkward factor will appear later. To forestall this, we choose

$$\kappa = 8\pi;$$

but as κ is easier to write, we shall continue to use that symbol for this pure number.

It is clear from (108) that now density has the same dimensions as Λ, that is, sec$^{-2}$. Hence mass or energy is a time, to be measured in seconds. But we shall not be able to express grammes in seconds until we have compared the relativistic gravitational field with physical reality.

The constant Λ is called the cosmological constant, and, as this name implies, it was introduced by Einstein for the discussion of extremely large-scale phenomena in astronomy. It is generally regarded as being so small (relative to other significant quantities of the same dimensions) that its effects are completely negligible in ordinary celestial mechanics, and even in cosmology its physical significance is doubtful. On the whole, as far as most of our work is concerned, the increased generality due to the inclusion of Λ seems outweighed by the increased complexity of the formulae, and so we shall drop it\(^1\) with the understanding that it may be reinstated when required in cosmological studies. Accordingly, until further notice the field equations read

$$G_{ij} = -\kappa T_{ij}, \quad \kappa = 8\pi. \quad (111)$$

In vacuo we delete the energy tensor, so that we have

$$G_{ij} = 0; \quad (112)$$

these equations are easily seen to be equivalent to

$$R_{ij} = 0. \quad (113)$$

These relativistic field equations bear no obvious resemblance to any equations of Newtonian theory. But we shall now establish a close connection by considering, in Newtonian theory and in relativity, the motion of a fluid without pressure, i.e. the incoherent fluid or dust cloud of § 4. In both cases times and lengths will be measured in seconds [$1 \text{ sec} = 2.998 \times 10^{10} \text{ cm}$, as in III–(134)]; Newtonian mass will be measured in grams and relativistic mass in seconds.

We start with the Newtonian equations, writing ρ for density, u_α for

velocity, ϕ for gravitational potential, and γ for the gravitational constant. We have then the dynamical equations

$$\rho \left(\frac{\partial u_\alpha}{\partial t} + u_\alpha, \gamma u_\gamma \right) = \rho \phi, \alpha \quad (114)$$

the equation of mass-conservation

$$\left(\rho u_\alpha \right)_\cdot = 0, \quad (115)$$

and Poisson’s equation

$$\phi, \alpha \alpha = -4\pi \gamma \rho. \quad (116)$$

In order to make comparison with relativity, we must deal with quantities which are physically observable without comparison with a hypothetical non-accelerated frame. In this sense $u_{\alpha,\beta}$ is physically observable, whereas $\partial u_\alpha/\partial t$ is not. Accordingly let us calculate the rate of change of $u_{\alpha,\beta}$ following the fluid: the value is

$$\frac{d}{dt} u_{\alpha,\beta} = \frac{\partial}{\partial t} u_{\alpha,\beta} + u_{\alpha,\gamma} u_{\gamma,\beta}. \quad (117)$$

If we divide (114) by ρ and take the partial derivative with respect to x_β, we get

$$\frac{\partial}{\partial t} u_{\alpha,\beta} + u_{\alpha,\gamma} u_{\gamma,\beta} = \phi, \alpha \beta, \quad (118)$$

and so

$$\frac{d}{dt} u_{\alpha,\beta} = -u_{\alpha,\gamma} u_{\gamma,\beta} + \phi, \alpha \beta. \quad (119)$$

We turn now to Einstein’s field equations (111), which read, for an incoherent fluid,

$$G_{ij} = -\kappa \mu V_i V_j, \quad V_i V^i = -1, \quad (120)$$

where μ is the density and V^i the 4-velocity. The analogue of $u_{\alpha,\beta}$ is $V_{\alpha j}$, and we shall calculate its rate of change along a stream-line. We have already seen in §4 that the stream-lines for an incoherent fluid are geodesics, so that we have

$$V_{\alpha k} V^k = 0, \quad V_{\alpha k} V^k + V_{\alpha k} V^k = 0. \quad (121)$$

Thus, following a stream-line and using i–(94), we have

$$\delta (V_{\alpha j}) = V_{\alpha j k} V^k = V_{\alpha j k} V^k + R_{mijk} V^m V^k \quad (122)$$
or
\[
\frac{\delta}{\delta s} (V_{i|j}) = - V_{i|k} V^k_{|j} + R_{m|ijk} V^m V^k.
\] (123)

Although (119) is set in three dimensions and (123) in four, we detect a strong formal resemblance, the term in (119) which involves the Newtonian potential being replaced by the curvature term in (123). We can bring the two equations closer together by using the rate-of-strain and the spin of the fluid, for the definitions of these quantities in § 3 are essentially the same as their definitions in Newtonian hydrodynamics. Thus for the Newtonian rate-of-strain and spin (or vorticity) we write
\[
\sigma_{\alpha\beta}' = \frac{1}{2} (u_{\alpha,\beta} + u_{\beta,\alpha}), \quad \omega_{\alpha\beta}' = \frac{1}{2} (u_{\alpha,\beta} - u_{\beta,\alpha}),
\] (124)

and (119) gives
\[
\frac{d}{dt} \sigma_{\alpha\beta}' = - \sigma_{\alpha\gamma}' \sigma_{\gamma\beta}' - \omega_{\alpha\gamma}' \omega_{\gamma\beta}' + \phi_{,\alpha\beta}',
\]
(125)
\[
\frac{d}{dt} \omega_{\alpha\beta}' = - \sigma_{\alpha\gamma}' \omega_{\gamma,\beta}' + \sigma_{\beta,\gamma}' \omega_{\gamma\alpha}'.
\]

Since the absolute acceleration vanishes in the relativistic fluid, (62) and (63) give (we restore the sign for covariant differentiation)
\[
\sigma_{ij} = \frac{1}{2} (V_{i|j} + V_{j|i}), \quad \omega_{ij} = \frac{1}{2} (V_{i|j} - V_{j|i}),
\] (126)
and (123) gives
\[
\frac{\delta}{\delta s} \sigma_{ij} = - \sigma_{ik} \sigma^k_{,j} - \omega_{ik} \omega^k_{,j} + R_{m|ijk} V^m V^k,
\] (127)
\[
\frac{\delta}{\delta s} \omega_{ij} = - \sigma_{ik} \omega^k_{,j} + \sigma_{jk} \omega^k_{,i}.
\]

Introducing a reference tetrad \(\lambda^i_{(a)} \) with parallel transport along the stream-line and with \(\lambda^i_{(4)} = V^i \), we write these equations in the form
\[
\frac{d}{ds} \sigma_{(\alpha\beta)} = - \sigma_{(\alpha\gamma)} \sigma_{(\gamma\beta)} - \omega_{(\alpha\gamma)} \omega_{(\gamma\beta)} + R_{(4\alpha\beta4)},
\]
(128)
\[
\frac{d}{ds} \omega_{(\alpha\beta)} = - \sigma_{(\alpha\gamma)} \omega_{(\gamma\beta)} + \sigma_{(\beta\gamma)} \omega_{(\gamma\alpha)}.
\]
Since the distinction between \(t \) and \(s \) is rather trivial in the present connection, we must regard the agreement between the Newtonian equations (125) and the relativistic equations (128) as very close indeed; to make them agree, all we need is to connect the Newtonian potential and the Riemann tensor by the equations

\[
\phi_{,\alpha\beta} = R_{(4\alpha\beta)}^i. \tag{129}
\]

Thus if we have confidence in the practical validity of Newtonian theory as a guide to the interpretation of relativity, we are in a position to evaluate certain components of the Riemann tensor in terms of the derivatives of the Newtonian potential. Indeed we already took this step in \(\Pi - (182) \).

But there is something more to be said. Inspection of the above calculations will show that we have used neither Poisson’s equation (116) nor the Einstein equations (120) — all we need to establish (121) is the conservation equation \(T^i_{\mid j} = 0 \), which is a consequence of (120) but not by any means equivalent to it. Applying (116) to (129), by putting \(\beta = \alpha \), we get

\[
-4\pi\gamma\rho = R_{(44)} = R_{ij}V^iV^j. \tag{130}
\]

Now (120) gives

\[
G = g^{ij}G_{ij} = \kappa\mu, \tag{131}
\]

and we have

\[
R_{ij} = G_{ij} - \frac{1}{2}g_{ij}G = -\kappa\mu V_iV_j - \frac{1}{2}g_{ij}\kappa\mu,
R_{ij}V^iV^j = -\kappa\mu + \frac{1}{2}\kappa\mu = -\frac{1}{2}\kappa\mu = -4\pi\mu. \tag{132}
\]

Thus (130) establishes the following connection between the densities in the two theories:

\[
\mu = \gamma\rho. \tag{133}
\]

We are now in a position to find the number of seconds in a gramme. We know the value of the gravitational constant:

\[
\gamma = 6.670 \times 10^{-8} \text{ g}^{-1}\text{cm}^3\text{sec}^{-2}. \tag{134}
\]

Since, as in \(\Pi - (134) \), \(1 \text{ cm} = 3.336 \times 10^{-11} \text{ sec} \), we have

\[
\gamma = 2.476 \times 10^{-39} \text{ g}^{-1}\text{sec}. \tag{135}
\]

Remembering that all lengths are measured in sec, we have density \(\mu = \gamma \rho \) g sec\(^{-3} \). Let \(1 \text{ g} = x \text{ sec} \). Then \(\mu = x\rho \), and by (133)
\(x = \gamma \), the numerical value (135). Therefore
\[
1 \text{ g} = 2.476 \times 10^{-39} \text{ sec}, \\
1 \text{ sec} = 4.039 \times 10^{38} \text{ g}.
\] (136)

The following masses may be noted:
\[
\begin{align*}
\text{mass of electron} &= 2.255 \times 10^{-66} \text{ sec}, \\
\text{mass of moon} &= 1.813 \times 10^{-13} \text{ sec}, \\
\text{mass of earth} &= 1.479 \times 10^{-11} \text{ sec}, \\
\text{mass of sun} &= 4.920 \times 10^{-6} \text{ sec} \\
\text{mass of average galaxy}^1 &= 10^{44} \text{ g} = 2 \times 10^5 \text{ sec}.
\end{align*}
\] (137)

With mass and distance expressed in sec, force is dimensionless. The Newtonian attraction between masses \(m, m' \) at distance \(r \) is \(mm'/r^2 \); we have in fact made the gravitational constant unity.

§ 6. SURVEY OF FIELD EQUATIONS AND COORDINATE CONDITIONS

Enough has been said in the preceding section to indicate that, different though they look, the relativistic field equations and the equations of Newtonian hydrodynamics-cum-attractions say very nearly the same thing, at least in the case of a fluid without pressure. Since the basic concepts of Newtonian theory are so unsatisfactory we would pollute relativity by making it rest in any way on Newtonian ideas, and the preceding comparison was undertaken only to give confidence that we may expect to extract physically valid results from Einstein’s field equations. These equations are very complicated mathematically, and our next step should be to survey them in general terms without at present becoming involved in technical complications. We recall from (111)–(113) that the field equations read
\[
G_{ij} = - \kappa T_{ij}, \quad \kappa = 8\pi,
\] (138)

reducing in vacuo to
\[
G_{ij} = 0 \text{ or equivalently } R_{ij} = 0.
\] (139)

We may approach these equations in three different spirits, realistic,
agonistic and creative. The realist wants to connect the field equations with his already extensive knowledge of the physical universe. The agonist\(^1\) wants to wrestle with difficult mathematical problems arising out of the field equations. The creator’s pleasure lies in the construction of universes, fantastic or realistic, satisfying the field equations. In practice, these three ambitions are merged in the common quest for understanding, but the analysis is useful.

Of the solar system the realist knows that there is a dominating fluid body (the sun) with a number of planets (solid or fluid or both) circulating about it. These planets have satellites, and all the bodies spin. Except for very minor bodies, the intermediate space is empty of matter and any radiation there may be is not very significant dynamically. Thus inside the sun and the planets we are to apply the equations (138) and in the intermediate region the equations (139), with provision for junction conditions [cf. i–§ 9] at the surfaces of the sun and the planets. But the realist may prefer to consider, for simplicity, a universe in which there are only two bodies. In the spacetime picture, these bodies appear as two timelike world-tubes (Fig. 4). Inside the tubes we have (138) and outside them (139). But what is \(T_{ij} \) inside the tubes? Let us for clarity recall what has been said about the energy tensor. We assume that it possesses four eigenvalues \(\theta \) and four corresponding unit eigenvectors \(\lambda^i \) satisfying

\[
T_{ij} \lambda^j = \theta \lambda_i. \tag{140}
\]

We denote the timelike unit eigenvector by \(V^i \) and the corresponding eigenvalue by \(-\mu \), so that we have

\[
T_{ij} V^j = -\mu V_i. \tag{141}
\]

\(^1\) Used with the meaning of the Greek \(\gammaονιστής \) = a combatant in the games, a contender for prizes.
If the other three eigenvalues are \(\theta_{(\alpha)} \) and the corresponding unit (spacelike) eigenvectors are \(\lambda_{(\alpha)} \), we can write \(T_{ij} \) in the form [cf. (78)]

\[
T_{ij} = \mu V_i V_j - S_{ij},
\]

(142)

where \(S_{ij} \) is the stress tensor

\[
S_{ij} = - \sum_{\alpha=1}^{3} \theta_{(\alpha)} \lambda_{(\alpha)i} \lambda_{(\alpha)j},
\]

(143)

satisfying

\[
S_{ij} V^j = 0.
\]

(144)

We certainly expect the density \(\mu \) to be positive. As regards stress, the preference for pressure over tension is less obvious, but on the astronomical scale we do not expect to find bodies under tension, because they would be pulled apart. Now \(- \theta_{(\alpha)} \) are the three principal stresses; we want these negative, i.e. \(\theta_{(\alpha)} \) positive, and so we may say that, for physical reasons, we want the eigenvalues of \(T_{ij} \) to have the signs

\[
\text{eigenvalues of } T_{ij}: (+ + + -).
\]

(145)

Note that, on account of the minus sign in (138), this implies \(^1\)

\[
\text{eigenvalues of } G_{ij}: (- - - +).
\]

(146)

We see then that inside the world-tubes we have the field equations

\[
G_{ij} = - \kappa \mu V_i V_j + \kappa S_{ij},
\]

(147)

and if the body is a perfect fluid, this reads

\[
G_{ij} = - \kappa (\mu + \rho) V_i V_j - \kappa \rho g_{ij};
\]

(148)

we have also

\[
V_i V^i = - 1.
\]

(149)

If \(n^i \) is the unit normal to the 3-space bounding a world-tube, the junction condition reads

\[
T_{ij} n^j = 0,
\]

(150)

\(^1\) In view of the negative sign in the field equations (138) and the negative sign in the matrix \(\eta_{ij} = \text{diag}(1, 1, 1, -1) \), it is easy to get confused in the matter of signs. Since the positive sign of the density \(\mu \) is of considerable physical importance, we note that, if we take the coordinates in the usual way, with the parametric lines of \(x^2 \) spacelike and that of \(x^4 \) timelike, then \(\mu > 0 \) requires

\[
G_{44} < 0, \quad G_{4}^4 > 0, \quad T_{44} > 0, \quad T_{4}^4 < 0.
\]

(146a)

These signs are easily checked from (147) and (138).
which means that \(n^i \) is an eigenvector with zero eigenvalue. Thus one of the principal stresses vanishes, \(n^i \) being the corresponding principal direction. Since \(V^i \) must be orthogonal to this direction, we have, as junction conditions,

\[
V_i n^i = 0, \quad S_{ij} n^i = 0.
\]

(151)

In the case of a perfect fluid, these read

\[
V_i n^i = 0, \quad \rho = 0.
\]

(152)

So much for the realist. The agonist starts in a primitive way by counting the differential equations and the unknowns which are to satisfy them. But here we must introduce the important idea of coordinate conditions. Within the condition of admissibility \([1-\S \, 1]\), we have liberty in the choice of coordinates. We might use normal Gaussian coordinates, so that, as in \(1-(213),
\[
g_{\alpha \beta} = 0, \quad g_{44} = -1,
\]

(153)

if we make the fourth coordinate timelike. These are coordinate conditions of a special type. They may be of a more general nature, but their essential feature is that they are four in number; the number four arises from the fact that a coordinate transformation involves four functions, expressing the new coordinates in terms of the old. Although normal Gaussian coordinates are probably the simplest special coordinates in space-time, there are also null coordinates for which \(^1\)

\[
g^{11} = g^{22} = g^{33} = g^{44} = 0;
\]

(154)

if we start from any coordinates \(\bar{x}^i \) and contravariant metric tensor \(\bar{g}^{ij} \), we obtain coordinates \(x^a \) for which (154) hold by solving the four partial differential equations of the type

\[
\bar{g}^{ij} \frac{\partial x^1}{\partial \bar{x}^i} \frac{\partial x^1}{\partial \bar{x}^j} = 0.
\]

(155)

A number of coordinate conditions occur in the literature of relativity, designed for special purposes. To put the matter in general form, we shall denote the coordinate conditions by

\[
C_i = 0;
\]

(156)

these are equations (perhaps differential equations) satisfied by the

\(^1\) Cf. Synge \([1960a]\).
metric tensor g_{ij}. They are of course not tensor equations, since they are satisfied only when the coordinates are specially chosen.

We are now prepared to make a count. Taking the case of a perfect fluid, inside the world tubes we have, in (148), (149) and (156), $10 + 1 + 4 = 15$ equations to be satisfied by the following 16 unknowns: g_{ij}, V_i, μ, p. The system is indeterminate. To make it determinate, we need some additional hypothesis, such as is made in Newtonian hydrodynamics: we might assume μ constant, or we might set up some rather ad hoc equation connecting μ and p. As for the field in vacuo, we have in (139) apparently 10 equations; but on account of the identity

$$G^i_{ij} = 0$$

(157)

there are actually only 6 independent equations in (139). With the 4 equations in (156), we see 10 equations for the 10 unknowns g_{ij}. Thus, as far as the mere counting of equations goes, we have a determinate problem (e.g. in the case of two bodies) if we add some pressure-density equation.

But it is far cry from counting partial differential equations to solving them. Faced with such a complicated situation, we pause to ask ourselves what we are seeking. The readiest answer is that we are trying to do in relativity what has been done in Newtonian dynamics. Now Newtonian dynamics has been remarkably successful in celestial mechanics, and we may ask whether that success has been due to some subsidiary assumptions validated by common sense. In the case of the two-body problem, an exact treatment of two fluid masses is too complicated, and it is usual to think only of two rigid bodies. Further, the bodies may be taken to be spherical, and indeed they may be reduced to two massive particles — then the two-body problem becomes an elementary exercise. But the essence of the Newtonian success lies in the reduction of partial differential equations to ordinary differential equations by the assumption of rigidity.

When we try to apply the Newtonian simplifications to the relativistic two-body problem we find that they will not work. The concept of rigidity, so fundamental in Newtonian theory, does not lend itself to relativity, and the reduction of the bodies to point-particles would take us outside relativity, which is essentially a field theory. These facts do not of course rule out judicious use of approximations based on reasonable assumptions that the rate-of-strain is very small or that the
size of each body is very small. There are also two other bases of approximation: (i) all known gravitational fields are weak (small curvature of space-time), and (ii) relative velocities are small.

Having dealt with the realist and the agonist, we shall now describe a creator’s plan for building universes consistent with the field equations. Some of these may turn out to be very queer indeed, but, if we have confidence in the physical validity of Einstein’s theory, we know that the whole class of universes created in this way contains one of particular interest to us — the universe which we actually inhabit.

Any set of ten functions $g_{ij}(x)$, sufficiently smooth (let us for simplicity suppose them of class C^2), define a Riemannian space-time if $g_{ij}dx^idx^j$ has the correct signature, i.e. if g_{ij} is locally reducible to diag(1, 1, 1, −1). If then we choose such functions arbitrarily, we have, by (138), a universe in which the energy tensor is

$$T_{ij} = -\kappa^{-1}G_{ij},$$

the Einstein tensor having been calculated from g_{ij} — this involves no more than finding g^{ij} algebraically and carrying out the required differentiations. There are no partial differential equations to solve. Since the procedure is based on chosen values of g_{ij}, we shall call it the g-method. The crude Newtonian analogue would be to explore gravitation by assuming the potential ϕ and calculating the density ρ by means of Poisson’s equation, written in the form

$$\rho = -(4\pi\gamma)^{-1}\Delta \phi.$$

The plan looks suspiciously simple, and it is subject to two criticisms. First, the universes obtained blindly in this way are not likely to bear any resemblance at all to the universe as we know it. Secondly, until we have carried out the calculations, we do not know the signs of the eigenvalues of T_{ij}, and unless these turn out to be $(+ + + -)$ as in (145), it is an unnatural universe. Of these signs the last is the most important. If the fourth eigenvalue of T_{ij} is positive (i.e. the last eigenvalue of G_{ij} negative), we have negative density, and while in modern physics negative density may not seem as outrageous as it did once, it is not realistic as far as celestial mechanics is concerned.

But however slight the practical value of such created universes may be, one learns much from baffled attempts to construct in this way models resembling, even remotely, the universe as we know it. Since,
in the matter of density, only one sign is involved, we might expect, with a random choice of g_{ij} (subject only to the signature condition), a probability $\frac{1}{2}$ of getting a positive density, and a probability $\frac{1}{16}$ of getting all four eigenvalues with the required signs. But it is not as simple as that, for we need the correct signs, not at a single event, but throughout space-time. Anyone who carries out experimental calculations finds that the scales are weighted against him — the density shows a perverse tendency to become negative in parts of space-time.

In view of the connection established in § 5 between Newtonian theory and relativity, light is thrown on this question of the fluctuating sign of density by studying Poisson's equation in the form (159). By virtue of the theorem of Gauss, the flux across any closed surface of the normal gradient of ϕ is proportional to the total mass inside the surface. If we make ϕ tend to zero at infinity more rapidly than $1/r$, the total mass of the system is zero, and so the sign of ρ must fluctuate between positive and negative; if ϕ does not tend to zero at least as rapidly as $1/r$, we are likely to get an infinite total mass. It is clear that the behaviour of ϕ at infinity is critical, and that (to put the matter in a rough but dramatic form) the probability that density will fluctuate in sign is much greater than $\frac{1}{2}$.

As we shall see later, there is a relativistic analogue of the theorem of Gauss (unfortunately much more complicated) and it likewise indicates that a fluctuating sign in density is to be expected from an arbitrary choice of g_{ij}. For that reason, however amusing it may be to construct in this way fantastic universes, some rather severe guidance is needed if anything like the natural universe is to emerge, and it is by no means easy to prescribe the rules.

Having now viewed the field equations as realist, as agonist, and as creator, the reader may conclude that, when compared with Newtonian theory, relativity offers us a view of the universe which is obscure and confused. He would not be far wrong. We have not really mastered Einstein's theory yet, and this should make us appreciate all the more those exact solutions of the field equations which have been found.

But let us push the general study of the field equations a little further. In the g-method, g_{ij} are given and (138) simply defines T_{ij}. Reversing the roles, we now regard T_{ij} as given (T-method), so that

$$G_{ij} = - \kappa T_{ij}$$

(160)
is a set of ten non-linear second-order partial differential equations to be satisfied by g_{ij}. No coordinate conditions may be added. The four conservation equations

$$g^{jk}T_{ij; k} = 0 \quad (161)$$

are consequences of (160) and imply no restriction on the chosen T_{ij}, since they contain the unknown g_{ij}, not only in the coefficients but also in the covariant derivatives.

Just as the g-method has a Newtonian analogue as indicated in (159), the analogue in the T-method is the problem of finding the potential ϕ of a given distribution of mass. The solution is an integral which, in the case of concentrated masses, yields the familiar expression

$$\phi = \sum \frac{\gamma m}{r} \quad (162)$$

To this solution may be added any harmonic function, but it is usually ruled out by the demand that the potential should vanish at infinity.

To the realist, the T-method is more pleasing than the g-method, because negative density may be avoided by choosing T_{ij} properly. But the method fails in realism through disregard of the physical constitution of matter, as we see on reference to the realistic equation (148) for a perfect fluid. To the agonist, the T-method offers a problem of stimulating difficulty in the domain of non-linear partial differential equations, and three major lines of attack have been developed:

(i) Conditions of symmetry are imposed, reducing drastically the numbers of independent variables and unknowns (see Chaps. VII–IX).

(ii) Attention is directed to the Cauchy (initial-value) problem (see Chap. v).

(iii) A method of successive approximations is used.

To start a method of successive approximations, we note that, if T_{ij} were zero, we would have a solution

$$g_{ij} = \eta_{ij} = \text{diag}(1, 1, 1, -1), \quad (163)$$

the metric tensor of flat space-time. Regarding T_{ij} as small, we then write

$$g_{ij} = \eta_{ij} + g_{ij}^{(1)} + g_{ij}^{(2)} + \ldots \quad (164)$$

the numerical labels referring to order of magnitude in terms of T_{ij}. Substituting in (160) and separating the terms of different orders, we
get partial differential equations for the several terms in (164). The \(g_{ij}^{(1)} \) is called the linear approximation because the corresponding partial differential equations are linear. Subject to a certain restriction on the choice of \(T_{ij} \), the linear approximation will be worked out in the next chapter; it corresponds to the Newtonian formula (162). On going beyond the linear approximation, complications accumulate to such an extent that it is very hard to assess the mathematical or physical meaning of the results so far obtained by the exercise of much ingenuity and perseverance.\(^1\) We shall now describe a less ambitious two-step plan, suggested by the linear approximation just mentioned and the following two thoughts:

(i) In a complicated situation such as we have before us, an exact solution of the field equations is to be esteemed far above any approximation, even though the exact mathematical solution is admittedly only an approximation to physical reality (no mathematical formula is ever more than this anyway).

(ii) We should not regard (160) as a set of equations to be solved for \(g_{ij} \) but as a set of equations to be satisfied by the 20 quantities \(g_{ij}, T_{ij} \); any solution is precious, but particularly those which come near to physical reality.

The plan is a mixture of the \(T \)-method and the \(g \)-method, and it involves the following steps:

a) Choose any set of symmetric functions \(A_{ij}(x) \), satisfying the four conditions

\[
\eta^{jk} A_{ij,k} = 0. \tag{165}
\]

(Note that these are partial derivatives!)

b) Substitute

\[
g_{ij} = \eta_{ij} + \gamma_{ij} \tag{166}
\]
in I–(108) and carry out a formal calculation of \(G_{ij} \) as if \(\gamma_{ij} \) were infinitesimal, retaining only the principal part; the result, denoted by

\(^1\) Einstein, Infeld and Hoffmann [1938], Einstein and Infeld [1940], [1949], Infeld [1953], [1954a, b], [1955d], [1957a, b], [1959], Infeld and Plebanski [1956a, b], Infeld and Scheidegger [1951], Bergmann [1942], Bonnor [1959a], B. Finzi [1959]. These references deal with the so-called 'problem of motion'; the method is not quite the \(T \)-method as described above, because only the vacuum equations (139) are used and matter appears as singularities. See also Fock [1939a, b], [1941], [1950], [1955b], [1959], and papers by Clark listed in bibliography.
\[H_{ij} = -\kappa A_{ij}, \quad \text{(168)} \]

and regard these as partial differential equations for \(\gamma_{ij} \) \((T\text{-method})\). These equations are consistent by virtue of (165), and they possess a particular solution of great interest and simplicity, commonly called that of the retarded (or advanced) potential. This will be discussed in detail in the next chapter. Here it suffices to say that this particular solution \(\gamma_{ij} \) vanishes if we put \(A_{ij} = 0 \).

d) The particular solution is now put into (166), so that we get \(g_{ij} \), and the corresponding \(G_{ij} \) is calculated. Then the energy tensor is obtained by \((g\text{-method})\)

\[T_{ij} = -\kappa^{-1}G_{ij}, \quad \text{(169)} \]

and we have a set \(g_{ij} \), \(T_{ij} \) satisfying the field equations (160).

In order that the above procedure may work it is necessary to impose on \(A_{ij} \), in addition to the equations (165), only conditions of smoothness and of vanishing sufficiently rapidly at infinity, and we can of course choose \(A_{ij} \) suitably. But we have to examine two things: (i) the signature of \(g_{ij} \), and (ii) the signs of the eigenvalues of \(T_{ij} \). These are both taken care of by making \(A_{ij} \) small enough. There is no question here of making \(A_{ij} \) infinitesimal, for the conditions of signature and signs are in the nature of inequalities. By making \(A_{ij} \) small enough, we can make \(\gamma_{ij} \) small enough to give \(g_{ij} \), as in (166), the proper signature. The question of the eigenvalues is a little more delicate. Let us suppose that \(A_{ij} \) is chosen so that its eigenvalues relative to \(\eta_{ij} \) have the natural signs, i.e. so that the roots of the determinantal equation

\[\det |A_{ij} - \theta \eta_{ij}| = 0 \quad \text{(170)} \]

are \((+ + + -)\) [cf. (145)]. The eigenvalues of \(T_{ij} \) are the values of \(\theta' \) satisfying

\[\det |T_{ij} - \theta' g_{ij}| = 0. \quad \text{(171)} \]

Now \(A_{ij} \) are chosen small, say \(O_1 \). Then \(\gamma_{ij} = O_1 \), so that \(g_{ij} \) differs
from \(\eta_{ij} \) by \(O_1 \). When we evaluate \(G_{ij} \), we get

\[
G_{ij} = H_{ij} + O_2,
\]

and so, by (169),

\[
T_{ij} = A_{ij} + O_2.
\]

It follows then that, in passing from (170) to (171), we do not (provided \(A_{ij} \) is small enough) disturb the signs of the eigenvalues; nor will we disturb much the directions of the eigenvectors.

But it must be emphasized that we are not making any approximation. No small quantities are rejected. All we need is to make \(A_{ij} \) small enough, but still definitely finite. Such a method may be called a feed-back method, because pilot-values obtained from a linear approximation are fed back into the exact equations. The method will be used in the next chapter.

§ 7. NOTE ON THE MOTION OF AN ISOLATED BODY

Let us study realistically the motion of a material body which is isolated in the sense that it is moving in vacuo. Other material bodies may be present, but we are not concerned with them. Inside the world-tube of the body we have the field equations

\[
G_{ij} = -\kappa T_{ij}, \quad \kappa = 8\pi,
\]

and outside that tube we have

\[
G_{ij} = 0.
\]

Let \(\Sigma \) be the boundary of the world-tube. Then \(G_{ij} \) is discontinuous across \(\Sigma \), the discontinuity being however subject to the junction condition 1–(229), which imposes on \(G_{ij} \) inside the tube the condition

\[
G_{ij} N^j = 0 \text{ on } \Sigma,
\]

where \(N^i \) is the unit outward normal to \(\Sigma \). This condition implies that on \(\Sigma \) the Einstein tensor has one zero eigenvalue, \(N^i \) being the corresponding eigenvector. Since eigenvectors are mutually orthogonal, the timelike eigenvector of \(G_{ij} \) (i.e. the 4-velocity \(V^i \)) is orthogonal to \(N^i \), so that, as in (151),

\[
V_i N^i = 0 \text{ on } \Sigma.
\]

This equation says in fact that \(\Sigma \) is composed of stream-lines, a statement which we might well be prepared to accept on its own merits.
However, it should be realized that the isolation imposed by (176) is very strict; physically, it implies that there is no radiation from the body, i.e. no flux of energy across its surface.

In view of (174), it is obviously a matter of indifference whether we work with G_{ij} (geometry) or T_{ij} (physics). Let us work with T_{ij}, recalling that

$$ T_{ij} = \mu V_i V_j - S_{ij}, \quad (178) $$

where μ is density, V_i 4-velocity and S_{ij} stress, satisfying

$$ S_{ij} V^j = 0. \quad (179) $$

The basic equation for present purposes is (105):

$$ \mu D V^i = S_{ij}^{ij} - V^i S_{jk}^{jk}; \quad (180) $$

here $D = \delta/\delta s$ (the absolute derivative along a stream-line) and σ_{jk} the rate-of-strain tensor (62), satisfying

$$ \sigma_{jk} V^k = 0. \quad (181) $$

We note that (180) expresses the absolute acceleration of a stream-line (equivalently, its first curvature vector) in terms of other quantities, and the condition that a stream-line should be geodesic is

$$ D V^i = 0. \quad (182) $$

Now the argument which is being given here is motivated by the desire to throw light on the geodesic hypothesis (III-§ 3), and we are tempted to try to force (182) out of (180) by some limiting process. We can in fact do so very easily by assuming that there is no stress in the body. But this would amount merely to what has been done already in § 4, where it was shown that in an incoherent fluid (or dust cloud) the stream-lines are geodesic. The case of vanishing stress is not interesting physically, however, and an approximate argument for the case of small stress is likely to become confused, since stress is a dimensional quantity and can be called small only in comparison with other quantities of the same dimensions. We shall therefore abandon the idea of approximation and see what can be deduced accurately from (180).

It is convenient to define, at each event on the boundary Σ of the world-tube, a quantity

$$ Q = N_i S_{ij}^{ij}. \quad (183) $$
Then, by virtue of (177), (180) gives on Σ

$$\mu N_iDV^i = Q. \quad (184)$$

In general the motion of the body is rotational in the sense of § 3; in other words, the body has spin. However the irrotational case (no spin) is much easier to discuss and we shall treat it first.

In irrotational motion the stream-lines form a normal congruence, and we can draw a normal 3-dimensional section S of the world-tube (Fig. 5). Let σ be the 2-dimensional intersection of S and Σ. Then N^i, the outward unit normal to Σ, is at the same time the outward unit normal to σ in the 3-space S. Since DV^i is orthogonal to V^i, DV^i lies in S, and so the invariant N_iDV^i is the outward component of DV^i taken on the normal to σ in S. Taking, as is natural, the density to be positive, we see from (184) that the sign of this outward normal component is the sign of Q. In fact, if

$$Q > 0 \text{ over } \Sigma, \quad (185)$$

then DV^i points out of σ everywhere on σ. But the fixed-point theorem tells us that if we have a spacelike 3-space with a vector field pointing out all over the boundary of that 3-space, then the vector vanishes somewhere in the 3-space. We conclude then that, if (185) holds, there exists some point of S at which (182) holds. Since the world-tube has a single infinity of normal sections, we have then inside the tube a single infinity of points at each of which (182) holds. These points form a curve C inside the tube (Fig. 5). Note that C is a locus of no-acceleration. It is not in general itself a stream-line — indeed there is no reason to suppose C timelike. We shall return to the condition (185) below, interpreting it in the case of a fluid.

We pass to the more complicated case of a spinning body. Now the world-tube does not possess normal sections, and we are at a loss what sections to take in order to apply the type of argument used above. If we take any spacelike section S, with unit future-pointing normal n^i, then on S we have

$$-K \leq n_iV^i \leq -1, \quad (186)$$
where K is the maximum value of $|n_i V^i|$ on S. In the case of irrotational motion, we can make $K = 1$ (by making S a normal section), and in general we would like to choose S so as to make K as small as possible on Σ. We shall not attempt to discuss that interesting geometrical problem; we shall be satisfied to accept the existence of some K such that on Σ

$$1 \leq |n_i V^i| \leq K. \quad (187)$$

In a vague way, we may regard the excess of K over unity as a measure of the spin of the body.

Fig. 6 shows Σ, the boundary of the world tube, with unit outward normal N^i; S, the spacelike section, with unit normal n^i; σ, the intersection of S and Σ; ν^i, the unit outward normal to σ in S; and V^i, the 4-velocity. The bound K in (187) puts a bound on $|n_i N^i|$, and this may be investigated by using, at any point on σ, coordinates such that

$$g_{ij} = \text{diag}(1, 1, 1, -1),$$

$$V^4 = 1, \quad N^1 = 1, \quad (188)$$

the other components of V^i and N^i vanishing. Then, by (187),

$$|n_4| \leq K. \quad (189)$$

Hence

$$n_1^2 = n_4^2 - 1 - n_2^2 - n_3^2 \leq K^2 - 1, \quad (190)$$

and so we have the required bound,

$$|n_i N^i| \leq (K^2 - 1)^{\frac{1}{2}}. \quad (191)$$

Similarly, using the fact that

$$V_i D V^i = 0, \quad (192)$$

we can show that

$$|n_i D V^i| \leq b(K^2 - 1)^{\frac{1}{2}}, \quad (193)$$

where b is the first curvature of a stream-line (the absolute acceleration), given by

$$b^2 = g_{ij} V^i D V^j. \quad (194)$$
Since \(v^i \) points outwards and \(n_i dx^i = 0 \) for every displacement satisfying \(n_i dx^i = 0 \) and \(N_i dx^i = 0 \), we have
\[
v^i = \alpha N^i + \beta n^i, \quad \alpha > 0.
\] (195)

Hence, since \(n_i v^i = 0 \) and \(n_i n^i = -1 \),
\[
v^i = \alpha (N^i + n_i n_j N^j), \quad \alpha > 0.
\] (196)

Let \(W^i \) be the orthogonal projection of \(DV^i \) on \(S \). The outward component of \(W^i \) on the normal \(v^i \) of \(\sigma \) is
\[
W_{iv} = v_i DV^i = \alpha (N_i DV^i + n_i DV^i n_j N^j).
\] (197)

In order to be able to apply the fixed-point theorem, we now impose (in addition to (187)) an inequality which ensures that the expression (197) is positive all over \(\sigma \). Let us assume that
\[
Q > \mu b(K^2 - 1)
\] (198)
all over \(\sigma \). Then, by (184), (191) and (193), \(W_{iv} \) is positive all over \(\sigma \), and so \(W^i \) must vanish somewhere in \(S \). Now \(W^i = 0 \) implies that \(DV^i \) is either orthogonal to \(S \) or vanishes. But \(DV^i \), being spacelike, cannot be orthogonal to \(S \). Therefore, if (187) and (198) hold all over \(\sigma \), there exists a point in \(S \) at which \(DV^i = 0 \). Hence we get, as in the irrotational case, a locus \(C \) of no-acceleration.

Let us examine the condition (198) which ensures the existence of a locus of no-acceleration. By (180) we have
\[
b^2 \mu^2 = S^i_{jk} S^{jc} - 2 V_i S^i_{j} S^{mn} n^m n_n - (S^{mn} n^m n_n)^2.
\] (199)

But
\[
V_i S^i_{j} = (V_i S^i_{j})_{j} - V_i S^i_{j} = - \sigma_{ij} S^{ij},
\] (200)

and so
\[
b^2 \mu^2 = S^i_{jk} S^{jc} + (S^{ij} \sigma_{ij})^2.
\] (201)

Hence the condition (198) is equivalent to
\[
N_i S^i_{j} > (K^2 - 1)[S^i_{jk} S^{jc} + (S^{ij} \sigma_{ij})^2]^{1/2}.
\] (202)

This condition as it stands is rather too complicated to be interesting. But in the case of a perfect fluid we have
\[
S_{ij} = - \rho (V_i V_j + g_{ij}),
\] (203)

and the pressure \(\rho \) vanishes on \(\Sigma \). Hence on \(\Sigma \) we have
\[
S_{ij} = 0,
\]
\[
S^i_{ij} = - \rho (V_i V_j + g_{ij}) = - g^{ij} \rho_{,j},
\] (204)
and (202) simplifies to

\[- \phi_{,i} N^i > (K^2 - 1) (g^{ij} \phi_{,i} \phi_{,j})^{1/2}. \tag{205}\]

But it is really simpler still. For, since \(\phi = 0 \) on \(\Sigma \), we have

\[(g^{ij} \phi_{,i} \phi_{,j})^{1/2} = |\phi_{,i} N^i|, \tag{206}\]

and so (205) is equivalent to the pair of conditions

\[\phi_{,i} N^i < 0, \quad K^2 < 2. \tag{207}\]

If we agree that pressure is necessarily positive, \(\phi \) must increase as we pass in through \(\Sigma \), and so the first of (207) is necessarily satisfied in any physical situation. The second inequality in (207) is satisfied if the body is not spinning too rapidly (to put it rather vaguely). Under these conditions the world-tube of a fluid body contains a curve of no-acceleration.

A mathematical method which involves extraneous things is imperfect. The concept of no-acceleration has nothing to do with taking a section of the world-tube, and in fact this section is extraneous to the problem. It may be that there is a better and more direct way of investigating events of no-acceleration.

To come down to earth, literally, we may ask whether the world-tube of the earth contains a curve of no-acceleration. Probably it does. For the stress in the earth is largely hydrostatic pressure and its spin is small (or is it?). In any case if the geophysicist is satisfied that (207) are applicable to the earth and true for it, then certainly there is a curve of no-acceleration. But it must be understood that there is nothing in the argument indicating that the line of no-acceleration is the world-line of a particle of the earth.

We shall return to the isolated body in vi–§ 6.
CHAPTER V

SOME PROPERTIES OF EINSTEIN FIELDS

§ 1. THE BASIC FORMULA FOR RETARDED OR ADVANCED POTENTIAL

There is a theorem about retarded or advanced potential which is so important that it deserves a simple direct proof.

We recall, for a general space-time with metric tensor g_{ij}, the well known definition of the d’Alembertian operator applied to an invariant F:

$$\Box F = g^{ij} F_{ij} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^i} \left(\sqrt{-g} g^{ij} \frac{\partial F}{\partial x^j} \right).$$

(1)

In flat space-time with $g_{ij} = \eta_{ij} = \text{diag}(1, 1, 1, -1)$, we have

$$\Box F = \eta_{ij} \frac{\partial^2 F}{\partial x^i \partial x^j},$$

(2)

and this formula may be applied when F is a Cartesian component of a tensor; it yields a tensor of the same type. If we use curvilinear coordinates in flat space-time, the operator \Box, applied to a Cartesian component, is as in (1); we transform the operator without changing F.

For polar coordinates in flat space-time the metric form is

$$dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\phi^2 - dt^2,$$

(3)

and if we pass to coordinates $(u, v, \theta, \phi) = (x^1, x^2, x^3, x^4)$ by putting

$$r = \frac{1}{\sqrt{2}} (u - v), \quad t = \frac{1}{\sqrt{2}} (u + v),$$

(4)

so that

$$u = \frac{1}{2\sqrt{2}} (t + r), \quad v = \frac{1}{2\sqrt{2}} (t - r),$$

(5)

we get

$$g_{12} = -1, \quad g_{33} = r^2, \quad g_{44} = r^2 \sin^2 \theta,$$

$$g^{12} = -1, \quad g^{33} = r^{-2}, \quad g^{44} = r^{-2} \cosec^2 \theta,$$

$$\sqrt{-g} = r^2 \sin \theta, \quad r^2 = \frac{1}{2} (u^2 - 2uv + v^2),$$

(6)
the other components of g_{ij} and g^{ij} vanishing. Then (1) gives

$$
\Box F = -2 \frac{\partial^2 F}{\partial u \partial v} + \frac{2}{u - v} \left(\frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right)
+ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial F}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 F}{\partial \phi^2}.
$$

(7)

We shall now calculate the integral

$$
\int \Box F \, d\omega
$$

(8)

taken over a sheet of the null cone which has its vertex at $r = 0$, $t = 0$, $d\omega$ being the invariant element of 2-content\(^1\). The past and future sheets of the null cone have the equations $u = 0$ and $v = 0$, respectively (Fig. 1), and it is clear from the symmetry of (7) in u and v that the formal calculations are the same for both. Let us integrate over $v = 0$, so that we have $r = u/\sqrt{2}$ and the element of 2-content is

$$
d\omega = \frac{1}{r} \cdot r^2 \sin \theta \, dr \, d\theta \, d\phi = \frac{1}{2} u \sin \theta \, du \, d\theta \, d\phi.
$$

(9)

It is clear from (7) that the integral is improper, so we cut out a small piece of the null cone at the vertex O and integrate as in (8) for the ranges

$$
ev \leq u < \infty, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \phi < 2\pi.
$$

(10)

Now the integrations with respect to θ and ϕ, applied to the last two terms in (7), give zero, and so, for the limits (10), we have

$$
\int_\varepsilon^\infty \Box F \, d\omega = \int_\varepsilon^\infty \sin \theta \, d\theta \, d\phi \int_\varepsilon^\infty \left\{ - \frac{\partial^2 F}{\partial u \partial v} + \frac{1}{u} \left(\frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) \right\} u \, du.
$$

(11)

The last integral is

$$
\int_\varepsilon^\infty \left(-u \frac{\partial^2 F}{\partial u \partial v} + \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) \, du = \int_\varepsilon^\infty \frac{\partial}{\partial u} \left(F - u \frac{\partial F}{\partial v} \right) \, du
= \left[F - u \frac{\partial F}{\partial v} \right]_{u=\varepsilon}^{u=\infty},
$$

(12)

\(^1\) Cf. Synge [1956a, p. 430].
provided these limits exist. Thus, if F tends to zero at infinity in such a way that, along the null cone,

$$F - u \frac{\partial F}{\partial v} \to 0 \text{ as } u \to \infty,$$

we have

$$\int \Box F d\omega = -4\pi F_0,$$

(14)

where F_0 is the value of F at the vertex of the null cone. This is the required result. It holds for integration over either sheet of the null cone.

If, in flat space-time, we seek a solution of the partial differential equation

$$\Box H = F,$$

(15)

we may examine, as a tentative solution,

$$H(P') = -\frac{1}{4\pi} \int F(P) d\omega,$$

(16)

where P is a current point on either sheet of the null cone having P' for vertex. To differentiate with respect to P', we move the null cone and find the increments in the contributions from corresponding equal elements $d\omega$. This is equivalent to differentiating under the sign of integration with respect to P. Hence, using (14), we obtain

$$\Box' H(P') = -\frac{1}{4\pi} \int \Box F(P) d\omega = F(P'),$$

(17)

which shows that (16) is in fact a solution of (15). But we are not to think that it is a unique solution, because we can add to H any wave function, unless this addition should be ruled out by a subsidiary condition \footnote{Cf. Synge [1956a, pp. 361, 367] for a simple wave function which vanishes like $1/r^2$ at infinity and has no singularity. Cf. Bonnor [1957a].}

\section*{§ 2. The Linear Approximation}

We shall now take the first step in generating Einstein fields according to the feed-back plan of iv–§ 6. The essential point of the argument is lost if we blunt the edge of the mathematics and speak vaguely of approximations, and yet the motivation springs from a rather natural
approximation. Let us compromise by setting out the problem rather intuitively first, and then make a fresh start on a better mathematical basis.

Imagine some distribution of matter with small energy tensor \(T_{ij} \) producing a weak field. Then there exist coordinates \(x^i \) such that

\[
g_{ij} = \eta_{ij} + \gamma_{ij},
\]

(18)

where \(\gamma_{ij} \) and its derivatives are small. We seek to solve the field equations

\[
G_{ij} = - \kappa T_{ij},
\]

(19)

but we shall be satisfied by a linear approximation in which terms of the second degree in \(\gamma_{ij} \) are neglected. Thus we throw away these higher-order terms and reduce \(G_{ij} \) to \(H_{ij} \) as in iv–(167). It is then a question of solving a set of linear partial differential equations. We shall state the result below, but it is best at this point to turn to precise mathematics, since we need a precise result for later use and from it the intuitive answer can be extracted without difficulty.

Let there be a 4-space with coordinates \(x^i \), ranging from \(-\infty\) to \(+\infty\). To be able to speak geometrically, we impose the Minkowskian metric tensor \(\eta_{ij} = \text{diag}(1, 1, 1, -1) \), so that our space can be regarded as flat space-time and we can speak of null cones in it. We introduce symmetric functions \(A_{ij}(x) \) satisfying

\[
\eta^{jk}A_{ij,k} = 0,
\]

(20)

and also satisfying conditions of smoothness and of vanishing at infinity (i.e. for \(r \to \infty \) where \(r^2 = x^ax^a \)), these conditions (which we shall not trouble to specify in detail) being such that the operations described below can be carried out as required. We seek \(\gamma_{ij} \) to satisfy the equations

\[
H_{ij} = - \kappa A_{ij},
\]

(21)

where \(H_{ij} \) is as in iv–(167). It is convenient to define the linear operator \(L_{ij}^{\cdot ab} \) by

\[
L_{ij}^{\cdot ab}X_{ab} = \eta^{ab}(X_{ab,ij} + X_{ij,ab} - X_{ai,bj} - X_{aj,bi})
\]

\[
- \eta_{ij}\eta^{cd}(X_{ab,cd} - X_{ac,bd}).
\]

(22)

Then (21) may be written

\[
L_{ij}^{\cdot ab}\gamma_{ab} = - 2\kappa A_{ij};
\]

(23)
these are the equations we seek to solve. Now comes the essential and curious part of the argument; if we write for brevity
\[\eta^{ab} A_{ab} = A, \]
then, by (20), we have (as is easy to verify by direct calculation)
\[L_{ij}^{ab} (A_{ab} - \frac{1}{2} \eta_{ab} A) = \eta^{ab} A_{ij,ab} = \Box A_{ij}, \]
where \(\Box \) is the d’Alembertian operator. This is the key to the situation; as a tentative solution of (23) we try
\[\gamma_{ij}(P') = C \int (A_{ij} - \frac{1}{2} \eta_{ij} A) d\omega, \]
where \(C \) is a constant and the integration is taken over either sheet of the null cone having \(P' \) for vertex, \(d\omega \) being the element of 2-content (remember that we are working in a flat space-time). We now apply the operator \(L \), and differentiate under the integral sign, because that is equivalent to shifting the null cone. By (25) and (14) we get
\[L_{ij}^{ab} \gamma_{ab}(P') = C \int L_{ij}^{ab} (A_{ab} - \frac{1}{2} \eta_{ab} A) d\omega = C \int \Box A_{ij} d\omega = - 4\pi C A_{ij}(P'). \]
Thus (26) satisfies (23) provided
\[4\pi C = 2\kappa, \quad C = \kappa/2\pi. \]
We have then the following particular solution of (21):
\[\gamma_{ij}(P') = \frac{\kappa}{2\pi} \int (A_{ij} - \frac{1}{2} \eta_{ij} A) d\omega. \]
This holds for any \(\kappa \); if we put \(\kappa = 8\pi \) as in iv–(110), we have
\[\gamma_{ij}(P') = 4 \int (A_{ij} - \frac{1}{2} \eta_{ij} A) d\omega. \]
This is the exact mathematical result we need in later work. But to go back to intuitive approximation, we may write down the formula
\[g_{ij}(P') = \eta_{ij} + \frac{\kappa}{2\pi} \int (T_{ij} - \frac{1}{2} \eta_{ij} T)_{ret} r^{-1} dx^1 dx^2 dx^3, \]
as an approximation to the metric tensor due to the energy tensor \(T_{ij} \); the integration is over all space and ‘ret’ means the retarded value — mathematically we could equally well use the advanced value, but physicists who read a causal meaning into the formula would naturally prefer the retarded value.

1 Cf. Einstein [1916b], Pauli [1958, p. 173].
§ 3. A statical einstein field with embedded bodies

The Newtonian astronomer surveys the universe with a powerful intuition gained more by the exercise of playful fantasy than by the consideration of technical problems. To appreciate the gravitational pull exerted by the sun on the earth he may imagine both bodies at rest, held apart by an enormous strut. To appreciate the magnitudes involved, let us make some calculations.

Using the masses stated in IV–(137) and taking the distance of sun from earth to be 1.494×10^{13} cm $= 4.986 \times 10^2$ sec, we find

$$\text{gravitational force between sun and earth} = 2.927 \times 10^{-22}. \quad (32)$$

If this thrust were maintained by a column with section equal to the cross-section of the earth, i.e. with radius 2.125×10^{-2} sec, the pressure in this column would be

$$p = 2.063 \times 10^{-19} \text{ sec}^{-2}. \quad (33)$$

This is about three thousand atmospheres, for the pressure of the atmosphere is approximately a bar, where

$$1 \text{ bar} = 10^6 \text{ dynes cm}^{-2} = 7.423 \times 10^{-23} \text{ sec}^{-2}. \quad (34)$$

Note that the smallness of the force in (32) is physically significant, since the quantity is dimensionless. It would be foolish to say that the pressure in (33) is large or small — it all depends on what we compare it with.

Passing to relativity, it is interesting to construct a model in which bodies are held at rest relative to one another by means of a material medium which fills the space between them. We have the machinery to construct such a model without any approximation, and we shall do so. By making exact calculations\(^1\), we remove the argument from the realm of possible controversy and obtain formulae which may be useful in connection with problems of more direct physical appeal.

For purposes of geometrical description, we regard the coordinates x^t as rectangular coordinates in flat space-time with metric η_{ij}. We choose a function $f(x^1, x^2, x^3)$ which is arbitrary except for conditions of smoothness and of vanishing at infinity. Actually, as regards smoothness, it would suffice to take f piecewise continuous, but it is

\(^1\) The work may be regarded as a precise treatment (without the use of isothermal coordinates) of the approximation given by Chazy [1930, p. 153].
simpler to assume first a higher degree of smoothness and treat the case of discontinuities by a limit at the end of the argument.

Define \(A_{ij} \) by

\[
A_{44} = f,
\]

all other components vanishing. Obviously (20) is satisfied. We have

\[
A = \eta_{ij} A_{ij} = - A_{44} = - f,
\]

and the formula (30) gives

\[
\gamma_{\alpha\beta}(P') = \delta_{\alpha\beta} \phi, \quad \gamma_{\alpha 4}(P') = 0, \quad \gamma_{44}(P') = \phi,
\]

where

\[
\phi = 2 \int f \, d\omega,
\]

with integration over the past sheet of the null cone with vertex \(P' \).

We may write equivalently

\[
\phi = 2 \int r^{-1} f \, dv,
\]

where \(dv = dx^1 dx^2 dx^3 \), the integration is taken over \(x^4 = x^4(P') \), and \(r \) is spatial distance from \(P' \), as shown in Fig. 2.

Pursuing the feed-back method described in I\(\nu \)-§ 6, we now write

\[
g_{ij} = \eta_{ij} + \gamma_{ij} = \eta_{ij} + \delta_{ij} \phi,
\]

Fig. 2 – The potential integral and investigate the properties of a universe with this metric, calculating in particular the energy tensor from the formula

\[
T_{ij} = - \kappa^{-1} G_{ij}, \quad \kappa = 8\pi.
\]

For the following calculations, we may forget that \(\phi \) is of the form (38) or (39). In fact, we are concerned with a metric form which may be written

\[
\Phi = (1 + \phi)(dx^2 + dy^2 + dz^2) - (1 - \phi)df^2,
\]

where \(\phi \) is any function of \((x, y, z) \); but, to have the correct signature, we understand that

\[
-1 < \phi < 1.
\]

It is not at present assumed that \(\phi \) is small; that assumption will be made only at (53).
Denoting partial derivatives of ϕ by subscripts, we have
\[
\begin{align*}
\varepsilon_{\alpha\beta} &= \delta_{\alpha\beta}(1 + \phi), \quad \varepsilon_{\alpha4} = 0, \quad \varepsilon_{44} = -(1 - \phi), \\
\varepsilon^{\alpha\beta} &= \frac{\delta_{\alpha\beta}}{1 + \phi}, \quad \varepsilon^{\alpha4} = 0, \quad \varepsilon^{44} = -\frac{1}{1 - \phi}, \\
\Gamma^{\gamma\beta}_{\alpha\beta} &= \frac{1}{2(1 + \phi)}(\delta_{\alpha\gamma}\phi_{\beta} + \delta_{\beta\gamma}\phi_{\alpha} - \delta_{\alpha\beta}\phi_{\gamma}), \\
\Gamma^{\alpha}_{\alpha\beta} &= -\frac{\phi_{\alpha}}{2(1 - \phi)}, \quad \Gamma^{\alpha}_{4\beta} = -\frac{\phi_{\alpha}}{2(1 + \phi)},
\end{align*}
\]
\[\tag{44}\]
the other Γ's vanishing (in all these calculations, the presence of a single 4 destroys a quantity).

The Riemann tensor is important because it is the gravitational field; from 1–(88) we find
\[
\begin{align*}
R_{\alpha\beta\gamma\delta} &= -\frac{1}{2}(\delta_{\beta\delta}\phi_{\alpha\gamma} + \delta_{\alpha\gamma}\phi_{\beta\delta} - \delta_{\alpha\delta}\phi_{\beta\gamma} - \delta_{\beta\gamma}\phi_{\alpha\delta}) \\
&\quad + \frac{3}{4(1 + \phi)}(\delta_{\beta\delta}\phi_{\alpha\gamma} + \delta_{\alpha\gamma}\phi_{\beta\delta} - \delta_{\alpha\delta}\phi_{\beta\gamma} - \delta_{\beta\gamma}\phi_{\alpha\delta}) \\
&\quad - \frac{1}{4(1 + \phi)}\phi_{\rho\phi_{\rho}}(\delta_{\alpha\gamma}\delta_{\beta\delta} - \delta_{\alpha\delta}\delta_{\beta\gamma}), \\
R_{4\beta\gamma\delta} &= \frac{1}{2}\phi_{\beta\gamma} - \frac{1 - 3\phi}{4(1 - \phi^2)}\phi_{\beta\phi_{\gamma}} + \frac{1}{4(1 + \phi)}\delta_{\beta\gamma}\phi_{\rho\phi_{\rho}}.
\end{align*}
\[\tag{45}\]
For the Ricci tensor and curvature invariant we get, writing $\phi_{\rho\rho} = \Delta \phi$,
\[
\begin{align*}
R_{\alpha\beta} &= \frac{1}{2(1 + \phi)}\delta_{\alpha\beta}\Delta \phi - \frac{\phi}{1 - \phi^2}\phi_{\alpha\beta} \\
&\quad - \frac{1 - 2\phi + 3\phi^2}{2(1 - \phi^2)^2}\phi_{\alpha}\phi_{\beta} - \frac{1}{2(1 + \phi)(1 - \phi^2)}\delta_{\alpha\beta}\phi_{\rho\phi_{\rho}}, \\
R_{\alpha4} &= 0, \\
R_{44} &= \frac{\Delta \phi}{2(1 + \phi)} + \frac{\phi_{\rho}\phi_{\rho}}{2(1 + \phi)(1 - \phi^2)}, \\
R &= \frac{1 - 3\phi}{(1 + \phi)(1 - \phi^2)}\Delta \phi - \frac{5 - 4\phi + 3\phi^2}{2(1 + \phi)(1 - \phi^2)^2}\phi_{\rho}\phi_{\rho}.
\end{align*}
\[\tag{46}\]
Hence the Einstein tensor is

\[
G_{\alpha\beta} = \frac{\phi}{1 - \phi^2} (\delta_{\alpha\beta} \Delta \phi - \phi_{\alpha\beta})
- \frac{1 - 2\phi + 3\phi^2}{2(1 - \phi^2)^2} \phi_{\alpha\beta} \phi_{\beta\gamma} + \frac{3 - 2\phi + 3\phi^2}{4(1 - \phi^2)^2} \delta_{\alpha\beta} \phi_{\rho\gamma} \phi_{\rho\gamma},
\]

(47)

\[
G_{\alpha4} = 0,
\]

\[
G_{44} = \frac{1 - \phi}{(1 + \phi)^2} \Delta \phi - \frac{3}{4} \frac{1 - \phi}{(1 + \phi)^3} \phi_{\rho\gamma} \phi_{\rho\gamma}.
\]

The energy tensor is then given by (41), and the principal directions and eigenvalues by

\[
T_{ij} \lambda^j = \theta g_{ij} \lambda^j,
\]

(48)
as in IV–(140). It is evident that for three of these principal vectors we have \(\lambda^4 = 0\) (since \(G_{\alpha4} = 0\)), the principal pressures being given by the corresponding values of \(\theta\). As for the density \(\mu\), we have

\[
\mu = -T_{44}/g_{44} = \kappa^{-1} g_{44} G_{44}
\]

\[
= -\frac{1}{8\pi} \frac{1}{(1 + \phi)^2} \left(\Delta \phi - \frac{3}{4} \frac{\phi_{\rho\gamma} \phi_{\rho\gamma}}{1 + \phi} \right).
\]

(49)

This completes our calculations based on the metric (42).

We now turn to (39) by which

\[
\phi = 2 \int r^{-1} f dv, \quad \Delta \phi = -8\pi f.
\]

(50)

Note that \(\frac{1}{2} \phi\) is the Newtonian potential for ‘density’ \(f\); this ‘density’ \(f\) is not to be confused with the true density \(\mu\) of the constructed universe, which is connected with \(f\) by

\[
\mu = \frac{f}{(1 + \phi)^2} + \frac{3}{32\pi} \frac{\phi_{\rho\gamma} \phi_{\rho\gamma}}{(1 + \phi)^3}.
\]

(51)

The above formulae hold in the case where \(f\) has surfaces of discontinuity, for the junction condition is the continuity of \(G_{\alpha\beta} n^\beta\) and this is satisfied because, if we integrate over any closed surface in Euclidean 3-space, we have

\[
\int (\delta_{\alpha\beta} \Delta \phi - \phi_{\alpha\beta}) n^\beta dS = 0.
\]

(52)
We are now in a position to study a relativistic model in which bodies are held at rest in an embedding medium. We put $f = 0$ throughout the exterior region. But, as the formulae are somewhat complicated, we shall now approximate, treating ϕ and its derivatives as small and retaining only terms of the second order. Then (47) and (51) simplify to

$$\begin{align*}
'G_{\alpha\beta} &= \phi(\delta_{\alpha\beta} \Delta \phi - \phi_{\alpha\beta}) - \frac{1}{2} \phi_{\alpha} \phi_{\beta} + \frac{3}{3} \delta_{\alpha\beta} \phi_{\rho} \phi_{\rho}, \\
G_{\alpha4} &= 0, \\
G_{44} &= (1 - 3\phi) \Delta \phi - \frac{3}{3} \phi_{\rho} \phi_{\rho}, \\
\mu &= f(1 + \phi)^{-2} + \frac{3}{32\pi} \phi_{\rho} \phi_{\rho},
\end{align*}$$

so that the ratio μ/f is nearly equal to unity. There are discontinuities at the boundaries of the bodies, since $\Delta \phi = 0$ outside.

To investigate the density (μ_e) of the embedding medium just outside a body of density μ_i, we have approximately

$$\frac{\mu_e}{\mu_1} = \frac{3}{32\pi} \frac{\phi_{\rho} \phi_{\rho}'}{\mu_i}. \quad (54)$$

Defining the mass of a body by

$$m = \int \mu d\nu \sim \int f d\nu, \quad (55)$$

the value of ϕ at an exterior point for two spheres of masses m, m' is

$$\phi = \frac{2m}{r} + \frac{2m'}{r'} = 2V, \quad (56)$$

where r, r' are the distances from the centres and V is the Newtonian potential. (Note the factor 2; in relativity the ‘magic number’ associated with a body is $2m/r$, not m/r as in Newtonian gravitation.) To evaluate the ratio (54) in such a case as that presented by the sun and the earth, we note that, at the surface of either body, the value of $\phi_{\rho} \phi_{\rho}$ is very nearly that due to that body alone. Thus

$$\frac{\mu_e}{\mu_1} = \frac{3}{32\pi} \left(\frac{2m}{r} \right)^2 \frac{4\pi r^3}{3m} = \frac{1}{2} \frac{m}{r}, \quad (57)$$

where m is the mass of the body and r its radius. Inserting the appropriate numerical values, we obtain the following ratios of exterior
density (that of the embedding medium) to interior density:

for the sun: 1.061×10^{-6},

for the earth: 3.480×10^{-10},

for the moon: 1.563×10^{-11}.

Thus the density of the fictitious embedding medium is very small compared with ordinary densities.

For the stress $S_{\alpha\beta}$, inside or outside bodies of any shape, we have by (53)

$$8\pi S_{\alpha\beta} = G_{\alpha\beta} = \phi(\delta_{\alpha\beta}\Delta\phi - \phi_{\alpha\beta}) - \frac{1}{2}\phi_{\alpha\beta} + \frac{3}{4}\delta_{\alpha\beta}\phi_\rho\phi_\rho.$$ \hfill (59)

Hence

$$8\pi S_{\alpha\beta,\beta} = \frac{1}{2}\phi_{\alpha\beta}. \hfill (60)$$

This simple result leads to a striking connection between our relativistic model and the Newtonian one. For we may compute the resultant 'force' on a body by integrating the traction over its surface due to stress, and for this 'force' we get

$$\int S_{\alpha\beta}n^\beta d\sigma = \int S_{\alpha\beta,\beta} dv = \frac{1}{16\pi} \int \phi_{\alpha\beta} \phi dv$$

$$= - \frac{1}{2} \int \phi_{\alpha\beta} dv = - \int \mu V_{\alpha} dv, \hfill (61)$$

where V is the Newtonian potential. In Newtonian theory this is precisely the force which must be exerted on the body in order to hold it at rest against the pull of gravity due to other bodies.

We note that the stress falls to zero at infinity like r^{-4}. For the sun-earth combination, held apart by the embedding medium, we can calculate from (59) the mean normal pressure over the surface of the earth; it comes out to be

$$\bar{\rho} = 5.103 \times 10^{-15} \text{ sec}^{-2}. \hfill (62)$$

This is much greater than the pressure (33), as is to be expected, since the force (32) arises from the variation of the stress over the surface of the earth.

Since we have, in this section, wandered rather far from the stern tasks imposed by physical reality, it will be well to sum up and point some morals:

(i) The general theory of relativity is bedevilled by the complexity
of its formulae. It is therefore useful to have available the formulae for \(R_{ijklm} \) and \(G_{ij} \) for the metric form (42) \(^1\).

(ii) Simple exact Einstein fields are rare and it is good to have before us an example, even if its physical counterpart is not to be found in nature.

(iii) There is no uniqueness about the universe which we have discussed, except the uniqueness of simplicity. It is the simplest universe obtainable from the combination of the \(g \)-method and the \(T \)-method described in \(\text{iv--§ 6} \).

(iv) The retarded-potential formula, or linear approximation, shown in (31) is so attractively simple that there is a temptation to use it uncritically; by making it the first step in an exact calculation, we are able better to appreciate its value and its limitations. Rejection of quadratic terms is dangerous. If we threw them away, we would have \(S_{\alpha\beta} = 0 \) in (59), and would see bodies in a state of mutual rest without any stress in the intervening medium; that would be a denial of the most elementary facts of gravitational attraction.

\(\text{§ 4. TWO LEMMAS} \)

As a preliminary to the discussion of the Cauchy problem in the next section, we shall establish two lemmas \(^2\).

Let \(W_{ij} \) be any symmetric tensor field in space-time with metric tensor \(g_{ij} \). We define the conjugate tensor field by \(^3\)

\[
W^*_{ij} = W_{ij} - \frac{1}{2} g_{ij} W, \quad W = g^{ab} W_{ab}.
\]

(63)

Since \(g_{ij} g^{ij} = 4 \), we have then

\[
W^* = - W,
\]

(64)

and hence

\[
W_{ij} = W^*_{ij} - \frac{1}{2} g_{ij} W^*,
\]

(65)

so that the operator \(\text{star} \) is a square root of unity in the sense that

\[
W^{**}_{ij} = W_{ij}.
\]

(66)

\(^1\) Later in the book, these tensors are evaluated for various metrics. Explicit formulae for \(G^i_j \) for a general orthogonal metric (\(g_{ij} \) diagonal) will be found in Tolman [1934b, p. 253] and McVittie [1956, p. 68], but the gain in generality must be balanced against a loss in interpretability.

\(^2\) Cf. Lichnerowicz [1955a, p. 31].

\(^3\) The star is used in \(\text{vi}-(35) \) and \(\text{x}-(7) \) for the \(\text{dual} \), but there should be no risk of confusion.
Lemma I: Provided $g^{44} \neq 0$, the mixed components W^i_j may be expressed in terms of $W^*_{\alpha\beta}$ and W^4_k in the linear form

$$W^i_j = A^i_{j\alpha\beta} W^*_{\alpha\beta} + B^i_{j4} W^4_k,$$

the coefficients being linear and quadratic functions of g^{ab}, divided by g^{44}. (Greek suffixes take the values 1, 2, 3.)

The proof is as follows. Our plan is to use the mixed form of (65), viz.

$$W^i_j = W^*_i - \frac{1}{2} \delta^i_j W^*.$$

This gives

$$W^i_j = (g^{4a} \delta^i_j - \frac{1}{2} \delta^i_j g^{ab}) W^*_{ab}.$$ \hspace{1cm} (69)

For $i = 4$,

$$W^4_j = (g^{4a} \delta^4_j - \frac{1}{2} \delta^4_j g^{ab}) W^*_{ab}.$$ \hspace{1cm} (70)

For $j = \gamma$,

$$W^4_{\gamma} = g^{4a} W^*_{a\gamma} = g^{4\alpha} W^*_{\alpha\gamma} + g^{44} W^*_{4\gamma},$$

so that

$$W^*_{4\gamma} = -(g^{44})^{-1} (g^{4\alpha} W^*_{\alpha\gamma} - W^4_\gamma).$$ \hspace{1cm} (72)

Putting $j = 4$ in (70), we get

$$W^4_4 = g^{4a} W^*_{a4} - \frac{1}{2} g^{ab} W^*_{ab};$$

an important cancellation takes place here, so that

$$W^4_4 = -\frac{1}{2} g^{\alpha\beta} W^*_{\alpha\beta} + \frac{1}{2} g^{44} W^*_{44},$$

and hence

$$W^*_{44} = (g^{44})^{-1} (g^{\alpha\beta} W^*_{\alpha\beta} + 2W^4_4).$$ \hspace{1cm} (75)

Now (69) may be written in the form

$$W^i_j = C^i_{j\alpha\beta} W^*_{\alpha\beta} + C^i_{j4} W^*_{4\alpha} + C^i_{j44},$$

and when we substitute in this from (72) and (75), we get an expression of the form (67), and so establish the lemma. The condition $g^{44} \neq 0$ is obviously required in (72) and (75).

Lemma II: Let S_4 be a domain of space-time with $g^{44} \neq 0$, and let S_3 be the 3-space with equation $x^4 = 0$. Then the three following statements are mathematically equivalent:

(A) $W^i_in_S_4 = 0$.

(B) $W^*_{\alpha\beta} = 0$ and $W^4_j = 0$ in S_4.

(C) $W^*_{\alpha\beta} = 0$ and $W^i_{jij} = 0$ in S_4, with $W^4_j = 0$ in S_3.

To prove this lemma, we note first that obviously (A) ⇒ (B). By Lemma 1, (B) ⇒ (A). Therefore (A) and (B) are equivalent. Obviously (B) ⇒ (C). It remains only to prove that (C) ⇒ (B).

We assume (C). Then, by Lemma 1, and the first condition in (C),

$$W_i^j = B_i^k W_k^j.$$

(77)

By the second condition in (C) we have

$$W_i^j = W_i^j + W_{j,\alpha} + R_i^j W_a^\alpha - R_i^j W_a^\alpha = 0.$$

(78)

By (77) this may be written in the form

$$W_i^j = E_i^k W_k^j + F_i^k W_k^j,$$

(79)

the coefficients being functions of the metric tensor and its derivatives.

In view of the last condition in (C), a fundamental theorem in partial differential equations tells us that $W_i^j = 0$, not only in S_3, but in S_4. Thus (C) ⇒ (B), and the lemma is proved.

§ 5. THE CAUCHY PROBLEM IN NORMAL GAUSSIAN COORDINATES

Only in very rare circumstances can we hope to obtain solutions of the field equations which are explicit, exact, and physically significant. Therefore we have recourse to solutions in series in powers of one of the coordinates x^4, a procedure intimately connected with existence theorems for solutions in terms of data on a 3-space $x^4 = 0$. Here we have the Cauchy problem 1.

In the field equations

$$G_{ij} = -\kappa T_{ij}, \quad \kappa = 8\pi,$$

(80)

we have 10 equations connecting the 20 quantities g_{ij}, T_{ij}. The conservation equations

$$T_{ij} = 0$$

(81)

are consequences of (80), not independent equations. To get a determinate mathematical problem, 10 of the 20 quantities should be assigned throughout space-time, and the other 10 quantities sought to satisfy (80). In iv–§ 6, we discussed the g-method and the T-method. In the former, g_{ij} are assigned and T_{ij} calculated by mere differentiations, but we are very likely in this way to get negative densities,

1 Cf. Lichnerowicz [1955a], Pham Mau Quan [1953b], [1955b], Fourès-Bruhat [1948b], [1950], [1952], [1955], [1956].
and also tensions where, physically, we would prefer pressures. The T-method is more promising, but from the standpoint of the Cauchy problem, it seems best to mix the two methods. In fact, what we shall do in the following treatment of the Cauchy problem is to employ normal Gaussian coordinates, so that, as in (213), we have

$$g_{\alpha\beta} = 0, \quad g_{44} = -1,$$

(82)

taking the parametric lines of x^4 to be timelike, and assign $T_{\alpha\beta}$ throughout space-time. Thus 10 quantities are assigned, and for the other 10 ($g_{\alpha\beta}$, T_{i4}) we have to solve the 10 equations (80). This choice is indicated by the structure of the differential system relative to the Cauchy problem, the initial data being taken on $x^4 = 0$.

Let us, for clarity, list the quantities as follows:

assigned in space-time: g_{i4}, $T_{\alpha\beta}$

unknowns: $g_{\alpha\beta}$, T_{i4}.

(83)

(84)

Let us define W_{ij} by 1

$$W_{ij} = G_{ij} + \kappa T_{ij}.$$

(85)

Then the conjugate, as in (65), is

$$W_{ij}^* = R_{ij} + \kappa T_{ij}^*,$$

(86)

where

$$T_{ij}^* = T_{ij} - \frac{1}{2} g_{ij} T, \quad T = g^{ab} T_{ab},$$

(87)

because

$$G_{ij}^* = R_{ij}, \quad R_{ij}^* = G_{ij}.$$

(88)

The field equations (80) now read

$$W_{ij} = 0.$$

(89)

Noting that (82) implies

$$g^{\alpha 4} = 0, \quad g^{44} = -1,$$

(90)

we now appeal to Lemma II of § 4. It tells us that the equations (89) are equivalent to

$$W_{\alpha\beta}^* = 0, \quad W_{ij}^* = 0,$$

(91)

1 The following general argument might be carried through with inclusion of the cosmological constant Λ of iv–(108); we would then write

$$W_{ij} = G_{ij} - \Lambda g_{ij} + \kappa T_{ij}.$$

(85a)
with the condition
\[W_i^4 = 0 \text{ for } x^4 = 0. \] (92)
These are the same as
\[R_{\alpha\beta} + \kappa T^*_{\alpha\beta} = 0, \quad T^i_{ji} = 0, \] (93)
with the consistency conditions
\[G_{4t} + \kappa T_{4t} = 0 \text{ for } x^4 = 0. \] (94)

To attack the Cauchy problem for the system (93), we note that by \(1-(217)\) with \(\varepsilon = -1\) we may write the first of (93) in the form
\[g_{\alpha\beta,44} = 2\overline{R}_{\alpha\beta} - \frac{1}{2} A g_{\alpha\beta,4} + g^{\mu\nu} g_{\alpha\mu,4} g_{\beta\nu,4} + 2\kappa T^*_{\alpha\beta}, \] (95)
where \(\overline{R}_{\alpha\beta}\) is the intrinsic Ricci tensor of \(x^4 = 0\) and
\[A = g^{\mu\nu} g_{\mu\nu,4}, \] (96)
while the second of (93) gives
\[T_{4j,4} = - T^4_{i,4} = T^\alpha_{i,\alpha} + \Gamma^i_{ai} T^a_j - \Gamma^a_{ij} T^i_a. \] (97)

We now assign as Cauchy data on \(x^4 = 0\) the values of the 16 quantities
\[g_{\alpha\beta}, \quad g_{\alpha\beta,4}, \quad T_{i4}, \] (98)
remembering however that they must be chosen to satisfy the four conditions (94), which by \(1-(219)\) may be written
\[A_{,\alpha} - D^\sigma g_{\alpha\sigma,4} + 2\kappa T_{\alpha4} = 0, \]
\[\overline{R} - \frac{1}{4} A^2 + \frac{1}{4} B + 2\kappa T_{44} = 0, \] (99)
for \(x^4 = 0\), where \(\overline{R}\) is the intrinsic curvature invariant of \(x^4 = 0\) and
\[B = g^{\mu\nu} g^{\sigma\rho} g_{\mu\rho,4} g_{\sigma\nu,4}. \] (100)

Since (95) and (97) give explicitly the values of
\[g_{\alpha\beta,44}, \quad T_{i4,4}, \] (101)
the derivatives of the Cauchy data, in terms of the Cauchy data themselves, we know that a solution exists in the neighbourhood of \(x^4 = 0\), provided the Cauchy data are chosen to satisfy (99) — this is most important physically, for it is in (99) that we come up against
the physical condition of positive density \(iv-(146a) \), viz.

\[
T_{44} > 0. \tag{102}
\]

If we have satisfied \((99)\), the solution reads

\[
g_{\alpha\beta} = (g_{\alpha\beta})_0 + x^4(g_{\alpha\beta,4})_0 + \frac{1}{2}(x^4)^2(g_{\alpha\beta,44})_0 + \ldots, \tag{103}
\]

\[
T_{4j} = (T_{4j})_0 + x^4(T_{4j,4})_0 + \ldots
\]

where the coefficients are either Cauchy data or are expressible in terms of Cauchy data by \((95)\) and \((97)\). Should we desire higher terms in the expansions, we would get them in terms of the Cauchy data by differentiating \((95)\) and \((97)\) and substituting in the results the values given by the equations themselves.

It should be clearly understood that the way in which we split the problem in \((83)\) and \((84)\) was merely a mathematical device, without physical motivation. The argument applies to any Einstein field, i.e. to any set of 20 quantities \(g_{ij}, T_{ij}\) satisfying the field equations \((80)\), subject of course to conditions of smoothness which we have not complicated the discussion by mentioning, since they are best discussed in those special cases where lack of smoothness intrudes itself.

The preceding treatment of the Cauchy problem applies in particular to fields in vacuo, for which the field equations read

\[
G_{ij} = 0; \tag{104}
\]

we have merely to delete the terms in \(T_{ij}\) from the work. Thus, in normal Gaussian coordinates, the equations \((95)\) become

\[
g_{\alpha\beta,44} = 2\bar{R}_{\alpha\beta} - \frac{1}{2}A_{\alpha\beta,4} + g^{\mu\nu}g_{\alpha\mu,4}g_{\beta\nu,4}. \tag{105}
\]

The Cauchy data are now \(g_{\alpha\beta}, g_{\alpha\beta,4}\) on \(x^4 = 0\), and they must be chosen to satisfy \((99)\) with \(T_{ij} = 0\). If we write

\[
\psi_{\alpha\beta} = g_{\alpha\beta,4} \text{ for } x^4 = 0, \tag{106}
\]

then the consistency conditions \((99)\) may be written

\[
\psi_{\beta\alpha\beta\alpha} = \psi_{\alpha\beta\beta\alpha}, \quad (\psi_{\beta\beta\alpha})^2 - \psi_{\beta\alpha\beta\alpha}^2 = 4\bar{R}. \tag{107}
\]

These are equations in the 3-space \(x^4 = 0\), so that there are only three independent variables \(x^\alpha\); the metric tensor is \(g_{\alpha\beta}\) and subscripts
are raised by \(g^{\alpha \beta} \); the double stroke indicates covariant differentiation, using the Christoffel symbols
\[
\Gamma^\alpha_{\beta \gamma} = g^{\alpha \rho} [\beta \gamma, \rho].
\] (108)

The equations (107) must be regarded as of great importance because they contain, as it were, the general theory of gravitational waves\(^1\). Once they have been solved for the 12 quantities \((g_{\alpha \beta}, \psi_{\alpha \beta})\), the field can be developed from (105) in the neighbourhood of \(x^4 = 0\). But we should hardly speak of solving (107), because they are highly redundant — only 4 equations for 12 unknowns. It looks as if it would be easy to satisfy them but in fact it is not.

There are two ways of simplifying drastically the consistency conditions (107). The first plan\(^2\) is to put \(\psi_{\alpha \beta} = 0\), so that we have only to satisfy \(\bar{R} = 0\). If \(g'_{\alpha \beta}\) is a subsidiary metric in \(x^4 = 0\), related conformally to \(g_{\alpha \beta}\) by \(g_{\alpha \beta} = \phi^4 g'_{\alpha \beta}\), the consistency condition becomes\(^3\)
\[
\Delta' \phi + \frac{1}{8} \bar{R}' \phi = 0,
\] (109)

where \(\Delta'\) is the tensorial Laplace operator, and \(\bar{R}'\) the curvature invariant, both calculated for the metric tensor \(g'_{\alpha \beta}\).

The second plan is to assume that \(x^4 = 0\) is intrinsically flat, so that \(\bar{R} = 0\) and we may use rectangular Cartesian coordinates \(x^\alpha\). The consistency conditions (107) now read
\[
\psi_{\beta \alpha, \gamma} = \psi_{\alpha, \beta, \gamma}, \quad (\psi_{\beta \beta})^2 = \psi_{\alpha \beta} \psi_{\alpha \beta}.
\] (110)

There is still redundancy — only 4 equations for 6 unknowns. But if we now take \(\psi_{\alpha \beta}\) to be of the form \(\psi_{\alpha \beta} = u_\alpha u_\beta\), where \(u_\alpha\) is some vector field, the redundancy disappears since the last of (110) is identically satisfied and we are left with the following three equations for \(u_\alpha\):
\[
(u_{\beta} u_{\beta})_{, \alpha} = u_\alpha u_{\beta, \beta} + u_{\alpha, \beta} u_{\beta}.
\] (111)

Since we are now in a Euclidean 3-space, it is useful to think of these equations hydrodynamically, regarding \(u_\alpha\) as the velocity of a fluid in steady motion, \(u_{\beta} u_{\beta}\) being the square of the speed and \(u_{\alpha, \beta} u_{\beta}\) the acceleration. We can satisfy (111) by giving the fluid a velocity in the

\(^1\) See Chap. IX.

\(^2\) This plan gives time-symmetric solutions in the sense that the series (103) for \(g_{\alpha \beta}\) contains only even powers of \(x^4\); cf. FOURÈS-BRUHAT [1956], WEBER and WHEELER [1957], BRILL [1959a, b], ARAKI [1959].

\(^3\) Note the fourth power of \(\phi\). The calculations are similar to those following VIII–(36), but in three dimensions, not four.
direction of the \(x^3\)-axis, combined with a whirling about that axis. We put
\[
 u_1 = -\omega(r)x^2, \quad u_2 = \omega(r)x^1, \quad u_3 = u_3(r), \quad r^2 = (x^1)^2 + (x^2)^2,
\]
where \(\omega\) is any smooth function which vanishes sufficiently rapidly at infinity. Then from (111) we get the single equation
\[
 \frac{d}{dr}(\omega^2 r^2 + u_3^2) = -\omega^2 r,
\]
and this is satisfied by taking
\[
 u_3^2 = C - \omega^2 r^2 - \int_0^r \omega^2 r dr,
\]
the constant \(C\) being chosen to make \(u_3^2\) positive for all values of \(r\). Having thus obtained \(u_\alpha\) to satisfy (111) and hence \(\psi_{\alpha\beta}\) to satisfy (109), we have the requisite initial values for use with the field equations (105). We must not of course attempt to simplify these equations by inserting values appropriate only to \(x^4 = 0\); but we note that the initial value is
\[
 (g_{\alpha\beta},_{44})_0 = -\frac{1}{2} \psi_{\mu\mu} \psi_{\alpha\beta} + \psi_{\alpha\mu} \psi_{\beta\mu} = \frac{1}{2} u_\alpha u_\beta u_\mu u_\mu.
\]
From the form of (112), the gravitational waves discussed above may be described as cylindrical. These waves are of a very special type; a close study of the general consistency conditions (107) might lead to other more interesting types of wave.

§ 6. THE CAUCHY PROBLEM IN NORMAL GAUSSIAN COORDINATES FOR A PERFECT FLUID

In the preceding section we dealt with the Cauchy problem for a medium with energy tensor \(T_{ij}\), and it might be thought that the argument there given would apply in particular to the case of a perfect fluid, for which, as in iv–(84),
\[
 T_{ij} = (\mu + \rho)V_i V_j + \rho g_{ij}.
\]
But it does not apply. The essential feature of (116) is that \(T_{ij}\) is degenerate, with three equal eigenvalues. In the preceding procedure, we assigned \(T_{\alpha\beta}\) arbitrarily in space-time and then found \(T_{4i}\) through the field equations. There is no reason to suppose that, in such a procedure, the degeneracy of \(T_{ij}\) is preserved. In fact, the preceding

\[1\] Cf. Chap. ix–§ 3.
method is no good at all for the case of a perfect fluid, and we have to make a fresh attack, taking from the preceding work only those parts that are applicable to the case of the perfect fluid. It is well worth doing this, because the problem is indeed the basic problem of celestial mechanics. In Newtonian mechanics we think of the elements of the solar system given with respect to position and velocity at \(t = 0 \), and the motion of the system unfolds by the solution of certain differential equations, ordinary if the bodies are rigid, partial if the bodies are fluid. As already mentioned, the concept of rigidity does not pass over into relativity, and we have little option but to treat the bodies as fluid. It is best not to trouble at first about concentrations of matter, but rather to work with a general fluid field.

As before, we shall use normal Gaussian coordinates, so that as in (82) and (90)

\[
g_{\alpha 4} = 0, \quad g_{44} = -1, \quad g^{\alpha 4} = 0, \quad g^{44} = -1. \tag{117}
\]

The field equations are

\[
G_{ij} + \kappa T_{ij} = 0, \quad \kappa = 8\pi,
\]

with \(T_{ij} \) as in (116), and we have also the equation

\[
V_i V^i = -1. \tag{119}
\]

We see here 11 equations for the 12 quantities

\[
g_{\alpha \beta}, \quad V_i, \quad \mu, \quad \rho,
\]

and so we are one equation short.

There are four fairly reasonable ways of supplying an additional equation. First, we might put

\[
\rho = 0, \tag{121}
\]

so that the matter becomes incoherent (a dust cloud); we have already considered this in IV–§ 4, and seen that then the stream-lines are geodesics, but that is far from telling the whole story. Secondly, we might assume a density-pressure relationship

\[
f(\mu, \rho) = 0, \tag{122}
\]

which of course contains (121) as a very special case. Thirdly, we might assume

\[
(\mu V^i)_i = 0, \tag{123}
\]

an equation which might be described as conservation of mass. By IV–(87) this implies \(V^i_{\mid i} = 0 \), so that the motion is without expansion.
Fourthly, we might modify (123) to read
\[(\rho V^t)_i = 0, \]
where \(\rho \) is defined by
\[\rho = \mu + \dot{\rho}. \]
By iv–(86) this implies that \(\dot{\rho} \) is constant along each stream-line.

The smallness of \(\dot{\rho}/\mu \) in physical situations suggests that the difference between (123) and (124) is trivial, but the remarks following iv–(98) warn us against such rash conclusions. If our interest lies in incompressible fluids, then (123) is the natural equation to adopt. However, (124) is more convenient mathematically, and we shall adopt it here, admitting arbitrariness in the choice.

We now have before us the 12 equations (118), (119) and (124) for the 12 quantities (120). However, it is best to regard (119) as giving \(V^4 \):
\[V^4 = (1 + V_\alpha V^\alpha)^{\frac{1}{2}}. \]

So now we have the 11 unknowns
\[g_{\alpha\beta}, \quad V_\alpha, \quad \rho, \quad \dot{\rho}, \]
and they are to satisfy the 11 equations (118) and (124). As in (93) and (94), (118) is equivalent to
\[R_{\alpha\beta} + \kappa T^*_{\alpha\beta} = 0, \quad T^i_{ij} = 0, \]
with the consistency conditions
\[G_{4t} + \kappa T_{4t} = 0. \]

Noting that
\[T = 3\dot{\rho} - \mu = 4\dot{\rho} - \rho, \]
\[T^*_{ij} = \rho V_i V_j + (\frac{1}{2}\rho - \dot{\rho})g_{ij}, \]
the first of (128) becomes, as in (95),
\[g_{\alpha\beta,44} = 2\ddot{R}_{\alpha\beta} - \frac{1}{2}A_{\alpha\beta,4} + g^{\mu\nu}g_{\alpha\mu,4}g_{\beta\nu,4} + 2\kappa\rho V_\alpha V_\beta + \kappa(\rho - 2\dot{\rho})g_{\alpha\beta}, \]
and the second of (128) gives
\[\rho V^i V_{ji} + \dot{\rho}_{,j} = 0, \]
while the consistency conditions (129) read, as in (99),
\[A_{,\alpha} - Dg_{\alpha\sigma,4} + 2\kappa\rho V_\alpha V_4 = 0, \]
\[\ddot{R} - \frac{1}{4}A^2 + \frac{1}{4}B + 2\kappa\rho V_4^2 - 2\kappa\dot{\rho} = 0. \]
As Cauchy data on \(x^4 = 0 \) we assign the values of
\[
g_{\alpha\beta}, \quad g_{\alpha\beta,4}, \quad V_\alpha, \quad \rho, \quad \rho',
\] (134)
chosen subject to (133), and we seek to solve for the quantities
\[
g_{\alpha\beta,44}, \quad V_{\alpha,4}, \quad \rho_{,4}, \quad \rho'_{,4}.
\] (135)
Now \(g_{\alpha\beta,44} \) are given by (131), and for the other five quantities in (135) we have the five equations contained in (124) and (132). Putting \(j = 4 \) in (132), we get
\[
\rho_{,4} = -\rho V^i V_{4,i},
\] (136)
which gives \(\rho_{,4} \) once \(V_{\alpha,4} \) have been found. Putting \(j = \alpha \) in (132), we get
\[
V^4 V_{\alpha,4} + V^\beta V_{\alpha,\beta} - \Gamma^k_{i\alpha} V^i V_k + \rho^{-1} \rho_{,\alpha} = 0,
\] (137)
and this gives \(V_{\alpha,4} \). Finally we turn to (124) and get
\[
\rho_{,i} V^i + \rho V^i_{,i} = 0,
\] (138)
or
\[
\rho_{,4} V^4 + \rho_{,\alpha} V^\alpha + \rho V^i_{,i} = 0,
\] (139)
and this gives \(\rho_{,4} \). The quantities (135) are thus given in terms of the Cauchy data (134) by (131), (137), (139) and (136).

But we have still to consider the consistency conditions (133). In the vacuum case, we had in (107) 4 consistency conditions to be satisfied by 12 quantities; now in (133) we have 4 consistency conditions to be satisfied by the 17 quantities (134). Let us exhibit these conditions in a better form by writing, as in (106),
\[
\psi_{\alpha\beta} = g_{\alpha\beta,4};
\] (140)
they then read
\[
\psi_{\beta,\alpha}^{\beta} - \psi_{\alpha\beta}^{\beta} + 2\kappa \rho V_\alpha V_4 = 0,
\]
\[
\bar{R} - \frac{1}{4}(\psi_{\beta}^{\beta})^2 + \frac{1}{4} \psi_{\beta}^{\beta} \psi_{\alpha}^{\beta} + 2\kappa \rho V^2_4 - 2\kappa \rho' = 0.
\] (141)

Obviously with so many redundant quantities there can be no unique procedure for solving these equations. In seeking a plan of attack, we may try to get a solution corresponding to a linear approximation. Accordingly in a tentative spirit we put
\[
g_{\alpha\beta} = \delta_{\alpha\beta} + \gamma_{\alpha\beta},
\] (142)
and treat $\gamma_{\alpha\beta}$ as small; further, we treat $\psi_{\alpha\beta}$ and V_α as small, so that we write $V_4 = -1$. Then (141) reduce to

$$\psi_{\beta,\alpha} - \psi_{\alpha,\beta} - 2\kappa \rho V_\alpha = 0, \quad (143)$$

$$\Delta \gamma_{\alpha\alpha} - \gamma_{\alpha\beta,\alpha\beta} + 2\kappa \mu = 0, \quad (144)$$

where Δ is the Euclidean Laplace operator. We have separated $\psi_{\alpha\beta}$ and $\gamma_{\alpha\beta}$. Putting

$$\psi_{\alpha\beta} = 2(\nu_{\alpha,\beta} + \nu_{\beta,\alpha}) - \delta_{\alpha\beta} \nu_{\gamma,\gamma}, \quad (145)$$

we satisfy (143) by taking (remember $\kappa = 8\pi$)

$$\nu_\alpha = \int \frac{\rho V_\alpha}{r} \, dv, \quad (146)$$

and putting

$$\gamma_{\alpha\beta} = 2\delta_{\alpha\beta} \chi, \quad (147)$$

we satisfy (144) by taking

$$\chi = \int \frac{\mu dv}{r}. \quad (148)$$

In (146) and (148), r is distance (in Euclidean metric) between the volume element dv and the point at which ν_α or χ is computed. In this way we obtain solutions of the linearized consistency conditions (143), (144), with V_α, ρ, ϕ chosen arbitrarily.

It would not be wise to attach much importance to this result in itself. We should use it only as a basis for obtaining exact solutions of the exact consistency conditions (141), and that we shall now do. But since, as already mentioned, we are attacking the central problem of celestial mechanics, it will be well to restate the case.

We have four coordinates x^i with x^4 timelike. In terms of the Cauchy data (134), the equations (131), (137), (139), (136), with their derivatives with respect to x^4, yield the coefficients in the power series

$$g_{\alpha\beta} = (g_{\alpha\beta})_0 + x^4 (g_{\alpha\beta,4})_0 + \frac{1}{2} (x^4)^2 (g_{\alpha\beta,44})_0 + \ldots,$$

$$V_\alpha = (V_\alpha)_0 + x^4 (V_{\alpha,4})_0 + \frac{1}{2} (x^4)^2 (V_{\alpha,44})_0 + \ldots, \quad (149)$$

$$\rho = (\rho)_0 + x^4 (\rho,4)_0 + \frac{1}{2} (x^4)^2 (\rho,44)_0 + \ldots,$$

$$\phi = (\phi)_0 + x^4 (\phi,4)_0 + \frac{1}{2} (x^4)^2 (\phi,44)_0 + \ldots,$$

But we cannot use these power series until we have solved (141). To the creator of universes (cf. iv–§ 6) this presents no problem: he can
choose $\psi_{\alpha\beta}$, $g_{\alpha\beta}$ and p arbitrarily and solve for ρ and V_{α}, remembering (126). But he has no assurance that ρ will come out positive, and universes created in this way without guidance are likely to be quite unnatural. The realist starts with a Newtonian picture of the solar system (if that is what he is interested in) and chooses reasonable pilot-values of V_{α}, ρ and p. Using these pilot-values, he calculates $\psi_{\alpha\beta}$ and $g_{\alpha\beta}$ from (142) and (145)–(148). Then, using the feed-back method of IV–§ 6, he substitutes these values of $\psi_{\alpha\beta}$ and $g_{\alpha\beta}$ in (141), and also the pilot-value of p. He obtains an exact solution of (141) by solving for V_{α} and ρ. Since p is always under control, it can be made zero outside the sun and the planets, and the Cauchy data can fail to be realistic only through the existence of a density outside the sun and the planets, which density might come out negative. A rough numerical calculation shows that this artificial density has its greatest absolute value near the sun, where it is about 10^{-14} sec$^{-2}$ or 10^{-7} g cm$^{-3}$.

For what range of x^4 can we expect the power series (149) to be valid? We are using normal Gaussian coordinates, constructed by drawing geodesics normal to $x^4 = 0$. These coordinates fail and render (149) invalid as soon as two adjacent geodesics intersect. The question of intersection can be treated by geodesic deviation, but we arrive more quickly at an estimate by using Newtonian ideas, treating the geodesics as the histories of particles which start from rest at time $x^4 = 0$ and fall freely through matter, without resistance. In a homogeneous sphere of density ρ, a particle, starting from rest in any position, falls in to the centre in time

$$x^4 = \sqrt{\frac{3\pi}{16\rho}}. \quad (150)$$

If we accept 100 g cm$^{-3}$ as the density at the centre of the sun, this is certainly the greatest density in the solar system, and if we insert this value in (150) we get a rough upper bound for the valid range of x^4 in the power series (149), when applied to the solar system. The range comes out about 300 sec. Before this time has elapsed, one must select a new 3-space to act as basis for new Gaussian coordinates.

§ 7. CHARACTERISTICS AND SHOCK WAVES

The word characteristic is so overworked in mathematics that it is liable to cause confusion of thought, even in the domain with which
we are here concerned, viz. partial differential equations in space-
time.

Let us first deal briefly with characteristic curves. Consider a partial
differential equation of the first order,

$$ F(x, y) = 0, \quad (151) $$

to be satisfied by a function $S(x)$; here y stands for the partial deri-

$$ y_t = S_{,t}. \quad (152) $$

The characteristic curves of (151) are those curves which satisfy the
differential equations

$$ \frac{dx^t}{du} = \frac{\partial F}{\partial y_t}, \quad \frac{dy_t}{du} = - \frac{\partial F}{\partial x^t}. \quad (153) $$

The importance of these equations lies in the fact that, by solving a set
of ordinary differential equations, we can obtain all solutions of the partial
differential equation (151). This is done as follows. We seek the solution S of
(151) such that $S = 0$ on some 3-space Σ (Fig. 3). At each point of Σ we choose
quantities y_t such that (151) is satisfied, and we draw the congruence of charac-
teristic curves out from Σ, treating y_t as a set of four quantities, without
regard to (152). Taking any point $P(x)$, we draw through it a characteristic curve of this congruence; let it
meet Σ at P'. Then the equation

$$ S(x) = \int_{P'}^{P} y_t dx^t, \quad (154) $$

with integration along the characteristic curve, defines $S(x)$ as a
function of position. It is easy to see that $S(x)$ satisfies the partial
differential equation (151) and the condition $S = 0$ on Σ. The argu-
ment is that already given at 1–(180) and need not be repeated here.
Also, as in 1–§ 7, we can generalize the condition on Σ, giving arbitrary
values to S instead of the value zero.
In particular, if the partial differential equation is
\[F(x, y) = \frac{1}{2}g^{ij}y_i y_j = 0, \] (155)
the equations for the characteristic curves are
\[\frac{dx^i}{du} = g^{ij}y_j, \quad \frac{dy_i}{du} = -\frac{1}{2}g^{jk}y_j y_k, \] (156)
and from them we obtain
\[\delta \frac{dx^i}{du} = 0, \quad g^{ij} \frac{dx^i}{du} \frac{dx^j}{du} = 0. \] (157)

These are the equations of a null geodesic and (155) is the equation of a null surface (cf. I–§ 7). In fact, the characteristic curves associated with null surfaces are null geodesics. In stating this, we are really repeating what has been said in I–§ 7.

To sum up, characteristic curves are curves associated with a partial differential equation of the \textit{first} order, and, once we have found those curves, we have all solutions of the partial differential equation.

We pass now to a different use of the word \textit{characteristic}, and to avoid confusion we shall introduce it by reference to shock waves. We sometimes have occasion to think of quantities which are continuous but which have discontinuous derivatives. For example, in Newtonian attractions, the potential and its first derivatives are continuous across the surface of a sphere of matter, but there are discontinuities in the second derivatives (Poisson's equation inside, Laplace's outside). In space-time we may likewise have continuous quantities with derivatives discontinuous across a 3-space Σ. Following the terminology of hydrodynamics, we say then that Σ is a \textit{shock wave}; the equivalent mathematical term is \textit{characteristic}, but we shall not use it.

We shall discuss shock waves in space-time relative to scalar partial differential equations of the second order and also relative to the vacuum field equations. Electromagnetic shock waves will be treated in x–§ 2. It may be remarked that the type of argument used below is a modern equivalent of an old dodge in optics, viz, the passage from 'physical optics' to 'geometrical optics' by considering periodic waves of high frequency.

Consider a partial differential equation of the second order,
\[F = 0, \] (158)
where F is an invariant involving an invariant S and its partial derivatives $S_{,i}$, $S_{,ij}$. A shock wave Σ is a 3-space across which S and $S_{,i}$ are continuous, but there are some discontinuities in the second derivatives $S_{,ij}$. To investigate shock waves, we change to new coordinates \tilde{x}^i such that Σ has the equation $\tilde{x}^4 = 0$. Then the following quantities are continuous across Σ:

$$\tilde{S}, \quad \tilde{S}_{,\alpha}, \quad \tilde{S}_{,i}, \quad \tilde{S}_{,\alpha\beta}, \quad \tilde{S}_{,\alpha\beta\gamma}. \tag{159}$$

Thus the only second derivative which can be discontinuous is $\tilde{S}_{,44}$.

We now look on the equation (158) as an algebraic equation for $\tilde{S}_{,44}$. If it possesses a unique solution, then $\tilde{S}_{,44}$ is continuous across Σ. Thus a shock wave has a negative definition: Σ is a shock wave if $F = 0$ does not give a unique value for $\tilde{S}_{,44}$.

As an example, consider, in a given space-time, the generalized wave equation

$$g^{ij}S_{,ij} = 0. \tag{160}$$

Since the argument actually involves only the second derivatives, it applies equally to a more general equation of the form

$$g^{ij}S_{,ij} + B = 0, \tag{161}$$

where B involves S and $S_{,i}$. But let us for simplicity think of (160). In coordinates \tilde{x}^i for which Σ is $\tilde{x}^4 = 0$, it reads

$$\tilde{g}^{44}\tilde{S}_{,44} + \ldots = 0, \tag{162}$$

the dots standing for terms involving the quantities (159). Obviously the condition for a shock wave is

$$\tilde{g}^{44} = 0, \tag{163}$$

since, if this does not hold, we get $\tilde{S}_{,44}$ uniquely from (162). We now pass back to general coordinates x^i, writing

$$\tilde{x}^4 = f(x), \tag{164}$$

so that Σ is $f(x) = 0$. We have

$$\tilde{g}^{44} = g^{ij,\ell,\ell,}, \tag{165}$$

and so we see that the shock waves for the wave equation (160), or more generally for (161), are the 3-spaces $f(x) = \text{const.}$ where f satisfies

$$g^{ij,\ell,\ell,} = 0. \tag{166}$$
These are null surfaces and the associated characteristic curves are null geodesics. Since the null surfaces are themselves (in mathematical language) the characteristic surfaces of the wave equation, one says that the \textit{bicharacteristics} of the wave equation are null geodesics.

Let us now consider \textit{gravitational shock waves} associated with the vacuum field equations

$$G_{ij} = 0,$$

which are equivalent to

$$R_{ij} = 0.$$ \hspace{1cm} (167)

By \textit{shock wave} here we understand a 3-space Σ across which g_{ij} and $g_{ij,k}$ are continuous (as indeed is demanded by the condition for admissible coordinates), but there are essential discontinuities in some of the second derivatives $g_{ij,km}$; by \textit{essential} we mean that they cannot be transformed away by the use of other admissible coordinates.

We attack the problem of gravitational shock waves in the same manner as before, taking coordinates \bar{x}^t for which the equation of Σ is $\bar{x}^4 = 0$. We have then continuity of the quantities

$$\bar{g}_{ij}, \quad \bar{g}_{ij,k}, \quad \bar{g}_{ij,\alpha\beta}, \quad \bar{g}_{ij,4\alpha},$$

and the only quantities in which discontinuities can occur are

$$\bar{g}_{ij,44}.$$ \hspace{1cm} (169)

By i–(86) and i–(104), we find

$$\bar{R}_{\alpha\beta} = \frac{1}{28} \bar{g}_{44} \bar{g}_{\alpha\beta,44} + \bar{F}_{\alpha\beta},$$

$$\bar{R}_{44} = -\frac{1}{28} \bar{g}_{4\alpha\beta} \bar{g}_{\alpha\beta,44} + \bar{F}_{44},$$

$$\bar{R}_{\alpha4} = \frac{1}{28} \bar{g}_{4\alpha\beta} \bar{g}_{\alpha\beta,44} + \bar{F}_{\alpha4}.$$ \hspace{1cm} (171)

where the F's involve the quantities (169).

We see at once that the field equations

$$\bar{R}_{ij} = 0$$

do not determine all the second derivatives (170) uniquely, because four of them ($\bar{g}_{i4,44}$) do not occur in (171) at all. Thus discontinuities in second derivatives may occur across any 3-space. However, we must remember the word \textit{essential} in the definition of shock waves. It is possible, without going outside the class of admissible coordinates,
to eliminate certain discontinuities in second derivatives, and the best plan is to use Gaussian coordinates \tilde{x}^t (in general, skew) such that, as above, Σ has the equation $\tilde{x}^4 = 0$ and we have, as in 1-(212),

$$\tilde{g}_{x_4.x_4} = 0, \quad \tilde{g}_{x_4} = \epsilon = \pm 1. \quad (173)$$

Then $\tilde{g}_{x_4.x_4} = 0$, and out of the ten second derivatives (170) we have only to consider the six $\tilde{g}_{x_\beta.x_4}$. Then it is clear that, unless

$$\tilde{g}^{x_4} = 0, \quad (174)$$

the field equations (172) determine these six derivatives uniquely, whereas, if (174) holds, they do not. Hence (174) is the equation which defines gravitational shock waves. But (174) is the same as (163), and we conclude that gravitational shock waves are null surfaces \(^1\) with the equation (166).

In ordinary parlance, we may say that 'gravitational shock waves travel with the speed of light', and we may think of the bicharacteristics (null geodesics) as 'gravitational rays'. But of course such statements must be taken cum grano salis. However, there is little doubt that if, at some time, we should think seriously of quantized elements of gravity (gravitons) as we now think of quantized elements of light (photons), then it would be natural to ascribe to the gravitons null geodesics for world-lines.

\(^1\) Cf. Levi-Civita [1930], Pastori [1939b], B. Finzi [1949], Lichnerowicz [1955a, p. 33].
CHAPTER VI

INTEGRAL CONSERVATION LAWS AND
EQUATIONS OF MOTION

§ 1. THE CONCEPT OF INTEGRAL CONSERVATION LAWS

Consider, in Newtonian mechanics, a closed system; by this we mean a system which is not subject to any external forces. Then, if ρ is the density and \(u_\alpha \) the velocity, we have the law of conservation of linear momentum in the form

\[
\int \rho u_\alpha \, dv = \text{const.},
\]

and the law of conservation of angular momentum in the form

\[
\int \rho (x_\alpha u_\beta - x_\beta u_\alpha) \, dv = \text{const.},
\]

where 'const.' means 'independent of time'. There is also a conservation law for energy, simple in the case of a conservative system, but passing outside mechanics proper if mechanical energy is dissipated into heat.

In attempting to construct the relativistic analogue of these integral conservation laws of Newtonian mechanics, the first and most obvious difficulty lies in the fact that there is no unique invariant way of slicing up space-time into a single infinity of spacelike sections. It is advisable to take at once a wider view, better suited to relativity, and regard an integral conservation law as a statement of the vanishing of an integral taken over a closed 3-space in space-time. To state this more precisely, let \(V_3 \) be a closed 3-space (Fig. 1), with an enclosed 4-dimensional region \(V_4 \). Let \(N^i \) be the unit normal to \(V_3 \), drawn

Fig. 1 – General scheme for a conservation law
outwards. Then if there exists a vector field \(F_i \) such that

\[
\oint_{V_3} \varepsilon(N) F_i N^i d\mathbf{3}v = 0
\]

for every closed \(V_3 \), we call (3) an integral conservation law.

The meaning of the word *conservation* is made clear if we split the closed \(V_3 \) into two open parts \((V_3 = V_3' + V_3'')\), both spanning the same closed \(V_2 \) (Fig. 2). If we continue to denote by \(N^i \) the outward normal on \(V_3'' \), but change the meaning of \(N^i \) on \(V_3' \) so that it becomes the inward normal, then (3) may be written

\[
\oint_{V_3'} \varepsilon(N) F_i N^i d\mathbf{3}v = \oint_{V_3''} \varepsilon(N) F_i N^i d\mathbf{3}v.
\]

Either of these integrals may be called a flux, and the fact that the flux for \(V_3' \) is the same as that for \(V_3'' \) is rightly referred to by the word *conservation*. Obviously the flux is the same for all open 3-spaces spanning the same closed \(V_2 \), but in general it depends on the choice of \(V_2 \). With due caution, we may let \(V_2 \) recede to infinity.

In the discussion of integral conservation laws we may also appeal to the generalized Stokes' theorems of 1–§10, taking a somewhat wider view than above.

Let \(V_1 \) be a closed curve in space-time and \(V_2 \) an open 2-space spanning it. Let \(F_i \) be an arbitrary vector field. By 1–(244)

\[
\oint_{V_1} F_i dx^i = \oint_{V_2} F_{ij} d\tau^{ij}.
\]

Then the integral on the right has the same value for all 2-spaces spanning \(V_1 \), and this may be said to give an integral conservation law. Since this is a double integral, not a triple integral as in (4), this law resembles the classical law of Gauss in electrostatics.

Let us now increase the dimensionality, taking a closed 2-space \(V_2 \) spanned by an open \(V_3 \). Let \(F_{ij} \) be an arbitrary tensor field. Then by 1–(245)

\[
\oint_{V_2} F_{ij} d\tau^{ij} = \oint_{V_3} F_{ijkl} d\tau^{ijkl}.
\]

1 The symbols \(d\mathbf{3}v \) and \(d\mathbf{4}v \) denote invariant elements of 3-volume and 4-volume, and the integrands occurring in §§ 1–4 are invariant under transformation of coordinates in the domain of integration. In §§ 5–7 the integrands are not invariant.
It is not necessary that F_{ij} should have any particular symmetry, but only its skew-symmetric part contributes in (6). Clearly the integral on the right has the same value for all 3-spaces spanning a given closed V_2, and so we have a conservation law rather like (4). But there is an important difference: in (4) the vector F_i was not arbitrary — it had to satisfy (3) —, but in (6) the tensor F_{ij} is arbitrary. In fact, (6) may be regarded as a factory for making integral conservation laws: our task is to select an F_{ij} to yield a law of physical interest.

It is sometimes necessary or desirable to confine our operations to a portion of space-time, say V_4. Under this restriction, the use of (5) or (6) requires care, because the spanning of V_1 in the former case, and of V_2 in the latter, might possibly carry us out of V_4. As an illustration, Fig. 3 shows a tube T in space-time which it is forbidden to enter. The

![Diagram](image)

Fig. 3 — Conservation outside a forbidden region T

closed 2-space V'_2 cannot be spanned without entering T, and so we cannot apply (6) to V'_2. But the closed V_2 formed of V'_2 and V''_2 can be spanned by an open V_3 without entering T, and a conservation law of the type (6) exists.

It should be remarked that our spatial intuitions extend only to three dimensions, and a diagram like Fig. 3 which portrays space-time as if it were only of three dimensions, although useful, must be handled with some care. In all dubious cases, resort to formulae. Let (x, y, z, t) be coordinates ranging from $-\infty$ to $+\infty$ in space-time. Then

$$x^2 + y^2 + z^2 \leq a^2$$

represents a domain T of space-time, and closed 2-spaces V'_2, V''_2 are
defined by
\[V'_2: \quad x^2 + y^2 + z^2 = b^2, \quad t = 0, \]
\[V''_2: \quad x^2 + y^2 + z^2 = c^2, \quad t = 0. \]
Here \(a, b, c \) are constants, and if \(a < b < c \) we have a situation as in Fig. 3. The formula
\[x^2 + y^2 + z^2 \leq b^2, \quad t = 0 \]
deﬁnes an open \(V_3 \) which spans \(V'_2 \) but cuts \(T \). The formula
\[b^2 \leq x^2 + y^2 + z^2 \leq c^2, \quad t = 0 \]
deﬁnes an open \(V_3 \) which spans the \(V_2 \) formed out of \(V'_2 \) and \(V''_2 \)
without cutting \(T \). Another \(V_3 \) which does this is given by
\[t = (x^2 + y^2 + z^2 - b^2)(c^2 - x^2 - y^2 - z^2), \quad t \geq 0. \]

§ 2. INTEGRAL CONSERVATION LAWS BASED ON THE EINSTEIN TENSOR

As in IV–(111), we have the ﬁeld equations
\[G_{ij} = -\kappa T_{ij}, \quad \kappa = 8\pi. \quad (7) \]
The left hand side is geometrical, the right hand side mechanical. Since the two sides are equal, it makes no mathematical difference which we work with. But it does make a considerable psychological difference, because geometry is a domain from which semantic controversies are happily absent, and as long as we stick to geometry we do not become involved in such metaphysical questions as the meaning of the word energy, for example. We shall therefore, in the interests of peace of mind, work with \(G_{ij} \) and develop results which are geometrically true — the physical meanings will then follow from the connection (7) between \(G_{ij} \) and \(T_{ij} \).

In the present section we are concerned primarily with only one property of \(G_{ij} \), the identity
\[G^i_j = 0, \quad (8) \]
which is in fact the differential conservation law. To pass to integral form, we introduce an arbitrary vector ﬁeld \(\lambda_i \) and integrate over any portion \(V_4 \) of space-time, obtaining
\[\int_{V_4} G^i_j \lambda_i d_4v = 0. \quad (9) \]
To turn this into an integral conservation law of the form (3), we integrate by parts and use Green's theorem 1–(257), obtaining
\[\oint_{V_3} \epsilon(N) G^{ij} \lambda_i N_j d_3v = \int_{V_4} G^{ij} \lambda_i N_j d_4v, \] (10)
where \(V_3 \) is the closed 3-space bounding \(V_4 \) and \(N^i \) is its unit outward normal.

If only the right hand side of (10) were to vanish, we would have an integral conservation law in the form
\[\oint_{V_3} \epsilon(N) G^{ij} \lambda_i N_j d_3v = 0. \] (11)
To obtain this result, we may choose \(\lambda_i \) to satisfy the equation
\[G^{ij} \lambda_i N_j = 0, \] (12)
and this can be done in a variety of ways, since we have only one equation for four unknowns. We may in fact choose an arbitrary vector field \(v_i \) and put
\[\lambda_i = \nabla v_i, \] (13)
where \(\nabla \) is some scalar. Then (12) is satisfied if \(\nabla \) satisfies the partial differential equation
\[G^{ij} v_i \nabla v_j + G^{ij} v_i \nabla v_j = 0. \] (14)
The corresponding integral conservation law reads
\[\oint_{V_3} \epsilon(N) \nabla v_i N_j d_3v = 0. \] (15)
This plan may be made more systematic by choosing \(v_i \) to be any one of the four unit eigenvectors of \(G_{ij} \), so that
\[G^{ij} v_i = \phi v^i, \] (16)
where \(\phi \) is the corresponding eigenvalue. Then the partial differential equation (14) for \(\nabla \) becomes
\[\phi v^i \nabla v_j + (\phi v^i + \phi v^i v_j) \nabla v = 0. \] (17)
This equation can be interpreted in terms of the geometry of the congruence of curves having \(v^i \) for unit tangent. Measuring \(s \) from some 3-space which cuts the \(v \)-lines, and denoting by \(\Delta \sigma \) the 3-volume of the normal section of a thin tube of \(v \)-lines, we have
\[v^i \nabla v_j = \frac{d\psi}{ds}, \quad v^i \nabla \phi_j = \frac{d\phi}{ds}, \quad v^i v_j = \frac{1}{\Delta \sigma} \frac{d\Delta \sigma}{ds}, \] (18)
and (17) becomes

\[\phi \frac{d\psi}{ds} + \left(\frac{d\phi}{ds} + \phi \frac{1}{\Delta \sigma} \frac{d\Delta \sigma}{ds} \right) \psi = 0, \tag{19} \]

which gives

\[\psi \phi \Delta \sigma = \Delta \kappa, \tag{20} \]

where \(\Delta \kappa \) is constant along each \(\nu \)-line. The conservation law (15) then reads

\[\oint_{V} \epsilon(N) \frac{\Delta \kappa}{\Delta \sigma} \nu^j N_j d3v = 0. \tag{21} \]

Let us now take for \(V_4 \) a tube in space-time formed from the eigen \(\nu \)-lines and terminated by 3-dimensional caps \(V'_3 \), \(V''_3 \) (Fig. 4). Then \(\nu^j N_j = 0 \) on the sides of the tube, and (21) may be written

\[\int_{V'_3} \epsilon(N) \frac{\Delta \kappa}{\Delta \sigma} \nu^j N_j d3v = \int_{V''_3} \epsilon(N) \frac{\Delta \kappa}{\Delta \sigma} \nu^j N_j d3v, \tag{22} \]

the normal \(N^i \) having the sense shown in Fig. 4. Now \(\epsilon(N) \nu^j N_j \) has one sign over \(V'_3 \) and \(V''_3 \), and by the projection formula we have

\[|\epsilon(N) \nu^j N_j| d3v = \Delta \sigma. \tag{23} \]

Hence the conservation law (21) may be exhibited in the very simple form

\[\oint_{V'_3} \psi \phi \Delta \sigma = \oint_{V''_3} \psi \phi \Delta \sigma. \tag{24} \]

§ 3. SPACE-TIME ADMITTING A GROUP OF MOTIONS

We have seen how the vector field \(\lambda_i \) may be chosen so as to make the right hand side of (10) vanish, the integral conservation law (11) resulting. This may be done much more directly if space-time admits a group of motions.
The concept of a group of motions may be described as follows. Consider in space-time (Fig. 5) a congruence of curves \((C)\), each curve having on it an assigned parameter \(u\) and hence a definite tangent vector

\[\xi^t = \frac{dx^t}{du}. \] (25)

Take any two events, \(P_1\) and \(P_1'\), and let the values of the parameter at these events be \(u_1\) and \(u_1'\). Now displace these two events along \(C\) to positions \(P_2, P_2'\) with parameters \(u_2, u_2'\), where

\[u_2 = u_1 + \Delta u, \quad u_2' = u_1' + \Delta u. \] (26)

In terms of the world-function, space-time is said to admit a group of motions if

\[\Omega(P_2P'_2) = \Omega(P_1P'_1), \] (27)

provided this holds for every pair of selected events \(P_1, P_1'\) and for every value of the increment \(\Delta u\).

It is obvious that (27) is equivalent to

\[\Omega_i \xi^t + \Omega_{t'} \xi^{t'} = 0, \] (28)

where the left hand side is a 2-point invariant for an arbitrary pair of events \(P, P'\). If \(v\) is a special parameter on the geodesic \(P'P\) and \(V^t = dx^t/dv\) (so that \(\delta V^i/\delta v = 0\)), then, by \(\Pi-(17), (28)\) is equivalent to

\[V^i \xi_i - V^{t'} \xi_{t'} = 0. \] (29)

Let us define \(\Psi\) by

\[\Psi = V^i \xi_i - V^{t'} \xi_{t'}, \] (30)

where \(\xi_i\) stands for any vector field. Differentiating along the geodesic \(P'P\), we get

\[\frac{d\Psi}{dv} = V^i \xi_{i|j} V^j. \] (31)

1 See Eisenhart [1926] for a more complete treatment.

2 The definition of a group of motions may also be presented in infinitesimal form, the events \(P_1, P_1'\) being adjacent and the increment \(\Delta u\) being infinitesimal.
Since, obviously, $\Psi = 0$ when $P' = P$, it follows that the condition, necessary and sufficient, that ξ_i should define a group of motions is

$$\xi_{i|j} + \xi_{j|i} = 0.$$ \hfill (32)

These ten equations are called the \textit{equations of Killing}. We shall call ξ_i the \textit{Killing vector} and $\xi_{i|j}$ the \textit{Killing tensor}; note that this tensor is skew-symmetric.

Here follow some properties of the Killing vector and tensor. By 1–(94),

$$\xi_{i|jk} - \xi_{i|kj} = R_{aijk} \xi^a,$$ \hfill (33)

and, applying two cyclic permutations to ijk, adding, and using (32) and 1–(90), we get

$$\xi_{i|jk} + \xi_{j|ki} + \xi_{k|i} = 0;$$ \hfill (34)

we say that the Killing tensor has a \textit{vanishing cyclic divergence}. If we introduce the dual by

$$\xi^{*ij} = \frac{1}{2} \eta^{ijkm} \xi_{k|m},$$ \hfill (35)

we have

$$\xi^{*ij}_{|j} = 0.$$ \hfill (36)

If we apply (32) to the first term in (34), we get

$$-\xi_{j|ik} + \xi_{j|ki} + \xi_{k|i} = 0;$$ \hfill (37)

the first two terms may be combined as in (33), and hence the second-order covariant derivative of the Killing vector can be expressed in terms of the Riemann tensor and the Killing vector itself as follows:

$$\xi_{k|ij} = R_{aijk} \xi^a = R_{ktja} \xi^a.$$ \hfill (38)

If we multiply this by g^{ij}, we have (in terms of the generalized d’Alembertian)

$$\Box \xi_k = g^{ij} \xi_{k|ij} = R_{ka} \xi^a.$$

Since the 3-dimensional element of extension $d\tau^{ijk}$ is skew-symmetric in each pair of indices, it follows from (34) that

$$\xi_{i|j} d\tau^{ijk} = 0;$$ \hfill (40)

hence, by (6), for any closed V_2 we have

$$\oint_{V_2} \xi_{i|j} d\tau^{ij} = 0.$$ \hfill (41)
If we insert ξ_i for λ_i in (10), the right hand side vanishes by (32), and so, for space-time admitting a group of motions with Killing vector ξ_i, we have the integral conservation law

$$\oint_{V_3} e(N)G^{ij}\xi_iN_jd\Omega = 0. \tag{42}$$

§ 4. INTEGRAL CONSERVATION LAWS BASED ON THE RIEMANN TENSOR

The conserved integrals in (11) and (42) receive no contributions from those parts of V_3 which lie in empty space-time, since there $G_{ij} = 0$. We would expect, however, that the gravitational field even in empty space-time should make its contribution, and so we turn to integral conservation laws based, not on G_{ij}, but on R_{ijkm}.

If F^{ij} is any skew-symmetric tensor, then, as in (6),

$$\oint_{V_3} F^{ij}R_{ijkmd\tau^{km}} = \int_{V_3} F^{ij}_n R_{ijkmd\tau^{kmn}}, \tag{43}$$

the term arising from differentiating the Riemann tensor has disappeared, since, by the Bianchi identity 1–(98),

$$R_{ijkm|n}d\tau^{kmn} = 0. \tag{44}$$

Hence, no matter what F^{ij} may be, we have the integral conservation law

$$\oint_{V_3} F^{ij}_n R_{ijkmd\tau^{kmn}} = 0. \tag{45}$$

Our task is to pick out some F^{ij} which is defined by the geometry of space-time and which yields a law which has some resemblance to Newtonian laws of conservation.

We might, for example, take for F^{ij} an eigentensor of the Riemann tensor, by which we mean one which satisfies equations of the form

$$F^{ij}R_{ijkm} = \phi F_{km}. \tag{46}$$

However, such a choice does not appear interesting in the present connection, and we shall not pursue it further.

Instead, we shall make use of the world-function $\Omega(PP')$, where P is the current event of integration and P' some base event, held fixed during the argument. We define

$$F^{ij}_a = -\frac{1}{\kappa} \kappa^{-1}\eta^{ij}pq\Omega p\Omega q', \quad \kappa = 8\pi. \tag{47}$$

This is a skew-symmetric tensor relative to transformations of co-
ordinates at P and a covariant vector with respect to transformations at P'. Taking any closed V_2, let us define $M_{a'}$ by

$$M_{a'} = \oint_{V_2} F_{a' \tau}^{ij} R_{ij km} d\tau^{km}. \quad (48)$$

This is a covariant vector for transformations at P'. The presence of the primed subscript does not interfere with (43) and so

$$M_{a'} = \int_{V_3} F_{a' \tau}^{ij} R_{ij km} d\tau^{kmn}. \quad (49)$$

where V_3 is any open 3-space spanning V_2. This is a well defined geometrical quantity, and we need to give it a name. But that is a dangerous procedure, because the adoption of a suggestive name is likely to involve confusion with other uses of that name. For reasons to be discussed later, we shall call $M_{a'}$ the flux of total 4-momentum across the open 3-space V_3, relative to the base event P'.

Likewise we define

$$F_{a' \tau}^{ij} = \frac{1}{4} \kappa^{-1} \eta^{ijpq}(\Omega_{a' \tau} \Omega_{b'} \Omega_{q} - \Omega_{b'} \Omega_{a' \tau} \Omega_{pq} - \Omega \Omega_{a' \tau} \Omega_{b' \tau}). \quad (50)$$

For transformations at P' this is a skew-symmetric tensor. We define

$$H_{a' b'} = \oint_{V_3} F_{a' b'}^{ij} R_{ij km} d\tau^{km}, \quad (51)$$

and so we have

$$H_{a' b'} = \int_{V_3} F_{a' b'}^{ij} R_{ij km} d\tau^{kmn}. \quad (52)$$

We call $H_{a' b'}$ the flux of total angular momentum across the open 3-space V_3, relative to the base event P'.

Whatever names we give to them, the fact is that $M_{a'}$ and $H_{a' b'}$ have values independent of the particular open V_3 which spans any given closed V_2. Equivalently, we may state that, for any closed V_3, we have

$$M_{a'} = 0, \quad H_{a' b'} = 0. \quad (53)$$

As regards the presence of the base event P', we certainly expect (by Newtonian analogy) that a base event should appear in a definition of angular momentum. It may seem out of place in the case of 4-momentum, but we must remember that the existence of the Newtonian law of conservation of linear momentum is closely connected with the fact that Euclidean space admits translations, and this is not so for Riemannian space-time.
The presence of the closed V_2 in the above work may seem to add an extraneous feature. But this is merely a frank acknowledgment of a possible non-convergence present in conservation theories. We might let V_2 move out to spatial infinity, and then, if the Riemann tensor tends to zero at a suitable rate, the integrals (48) and (51) may tend to finite limits, and then (49) and (52) will be finite conserved integrals over the whole of "space".

There is a possibility of using the above definitions to obtain an invariant definition of the history of the mass-centre of all the matter in the universe. This will become more realistic after we have made the approximations given below. But for the moment we remark that, given any closed V_2, the equations

$$H_{a'b'M}^{b'} = 0,$$

(54)

although apparently four in number, are related by an identity on account of the skew-symmetry of H. They therefore form a set of three equations for the event P', and so define a history of the mass-centre, a world-line 1. This history will in general depend on the choice of V_2, but, under the conditions of convergence stated above, it may be given absolute significance.

We shall now put (49) and (52) into a different form, which indeed might have adopted originally had we preferred to use Green's theorem rather than that of Stokes; but then the conservation would have been less evident. We make use of 1–(249), which gives

$$d\tau^{knn} = \varepsilon(N)\eta^{knnr}N_r d_3v,$$

(55)

where N_r is the unit normal to V_3 and d_3v an invariant element of volume. Then (49) reads

$$M_{a'} = -\frac{1}{4}\kappa^{-1} \int_{V_3} \eta^{ljpq} (\Omega_p \Omega_{a'q})|_n R_{ljkm} \varepsilon(N) \eta^{knnr} N_r d_3v$$

$$= -\kappa^{-1} \int_{V_3} (\Omega_p \Omega_{a'q})|_n \tilde{R}_{pqnr} \varepsilon(N) N_r d_3v,$$

(56)

where \tilde{R} is the double dual as in 1–(115). Likewise

$$H_{a'b'} = \kappa^{-1} \int_{V_3} (\Omega_{a'p} \Omega_{b'q} - \Omega_{b'p} \Omega_{a'q})$$

$$- \Omega \Omega_{a'p} \Omega_{b'q})|_n \tilde{R}_{pqnr} \varepsilon(N) N_r d_3v.$$

(57)

Let us now give some justification for the names assigned to $M_{a'}$.

1 Cf. Synge [1956a, p. 219] for the definition in flat space-time.
and $H_{a'b'}$ by making an approximate calculation for a weak field, i.e. one for which the Riemann tensor is small. For such a field we know by II–(95) that

$$
\Omega_{ij} = g_{ij} + O_1, \quad \Omega_{ij'} = -g_{ij'} + O_1,
$$

(58)

where $g_{ij'}$ is the parallel propagator and O_1 means a small quantity of the order of the Riemann tensor. All the third derivatives of Ω are O_1 [cf. II–§ 5]. In (56) $M_{a'}$ is already O_1, and we have

$$
M_{a'} = \kappa^{-1} \int \frac{g_{pq}g_{ar}e(N)N_r d^3v}{V_3} + O_2,
$$

(59)

and so, by I–(124),

$$
M_{a'} = -\kappa^{-1} \int \frac{g_{a'q}G_{ar}e(N)N_r d^3v}{V_3} + O_2.
$$

(60)

Let λ^a be an arbitrary unit vector at P' and let λ^a be the result of parallel transport along the geodesic $P'P$, so that

$$
\lambda^{a'}g_{a'q} = \lambda^q.
$$

(61)

Multiplying (60) by $\lambda^{a'}$ we get

$$
M_{a'}\lambda^{a'} = -\kappa^{-1} \int \frac{\lambda^qG_{ar}e(N)N_r d^3v}{V_3} + O_2,
$$

(62)

or in terms of the energy tensor ($G_{ij} = -\kappa T_{ij}$)

$$
M_{a'}\lambda^{a'} = \int \frac{e(N)T_{ar}\lambda^qN_r d^3v}{V_3} + O_2.
$$

(63)

We are concentrating here on the principal part, displayed as an integral; but we have in Chap. II the machinery to make the calculations explicit to O_2 inclusive.

Now, turning back to IV–(26), we recognize the integral in (63): it is the flux of 4-momentum, resolved in the direction of λ^a, across the finite target V_3. This integral does not satisfy a conservation law, whereas $M_{a'}$ does, and so the residue O_2 is important. To avoid confusion, we must distinguish between the accurate component of $M_{a'}$ and the integral in (63). If we call the former the flux of total 4-momentum, we may fitly call the latter the flux of mechanical 4-momentum. The difference (O_2) may be described as the flux of gravitational 4-momentum — it exists in vacuo.

Let us now carry out a similar approximation for angular momentum.
The integrand in (57) is

\[
\begin{align*}
(g_a'p g_b'n \Omega_q - g_a'p \Omega_b'g_qn - g_b'p g_a'n \Omega_q + g_b'p\Omega_a'g_qn \\
- \Omega_n g_a'p g_b'q) \bar{R} p q n r e(N) &N_r + O_2 \\
= g_a'p g_b'n \Omega_q (\bar{R} p q n r + \bar{R} p q r n + \bar{R} p q n r e(N) &N_r \\
+ (\Omega_a'g_b'p - \Omega_b'g_a'p) g_qn \bar{R} p q n r e(N) &N_r + O_2.
\end{align*}
\]

(64)

The first part vanishes by 1–(120) and so, by 1–(124), (57) gives

\[
H_{a'b'} = \kappa^{-1} \int \frac{1}{\nu_s} (\Omega_a'g_b'p - \Omega_b'g_a'p) G^{pr} e(N) N_r d^3v + O_2.
\]

(65)

Let \(\lambda_{(c)}^a \) be an orthonormal tetrad at \(P' \) and \(\lambda_{(c)}^a \) the result of parallel transport along the geodesic \(P'P \), so that

\[
\lambda_{(c)}^a g_{a'b'} = \lambda_{(c)p}.
\]

(66)

and, as in II–(150), the quasi-Cartesian coordinates of \(P \) relative to \(P' \) are

\[
X_{(c)} = -\Omega_{a'} \lambda_{(c)}^{a'}.
\]

(67)

Then (65) gives the following values for the invariant components of \(H_{a'b'} \) on the tetrad:

\[
H_{(cd)} = H_{a'b'} \lambda_{(c)}^{a'} \lambda_{(d)}^{b'}
\]

\[
= -\kappa^{-1} \int \frac{1}{\nu_s} (X_{(c)} \lambda_{(d)}^p - X_{(d)} \lambda_{(c)}^p) G^{pr} e(N) N_r d^3v + O_2
\]

\[
= \int \frac{e(N)}{\nu_s} (X_{(c)} \lambda_{(d)}^p - X_{(d)} \lambda_{(c)}^p) T_{pr} N_r d^3v + O_2.
\]

(68)

Comparison with IV–(26) and (2) shows this integral to be an appropriate expression for the flux of mechanical angular momentum, and we may repeat the same sort of remarks as those made above in the case of 4-momentum, emphasizing that \(H_{a'b'} \) is the flux of total angular momentum and that the difference \((O_2) \) may be regarded as a flux of gravitational angular momentum.

So much for approximations. Let us return to the exact equations (56) and (57). In each we see an integral spread over an open \(\nu_3 \) with an integrand depending on a base event \(P' \). We may write

\[
M_{a'} = \int \frac{M_r}{\nu_3} e(N) N_r d^3v,
\]

\[
H_{a'b'} = \int \frac{H_r}{\nu_3} e(N) N_r d^3v,
\]

(69)

Synge
where
\[M^{-}_{a} = -\kappa^{-1}(\Omega_{p}Q_{a}q)|n\tilde{R}pqnr, \]
\[H_{a}^{*b}_{c} = \kappa^{-1}(\Omega_{a}Q_{b}Q_{q} - \Omega_{b}Q_{a}Q_{q} - \Omega_{a}Q_{p}Q_{q})|n\tilde{R}pqnr. \] (70)

These quantities are 2-point tensors with the indicated character with respect to transformations at \(P \) and \(P' \). In (70) all reference to \(V_3 \) has disappeared, and these quantities may be regarded as localized densities of 4-momentum and angular momentum, which however depend on the base event \(P' \). We note in passing the following coincidence limits as \(P' \) tends to \(P \):
\[[M^{-}_{a}] = -\kappa^{-1}G^{-}_{a}, \quad [H^{*b}_{a}^{c}] = 0. \] (71)

For a weak field we have
\[M^{-}_{a} = -\kappa^{-1}g_{a}qG^{qr} + O_2, \]
\[H^{*b}_{a}^{c} = \kappa^{-1}(\Omega_{a}g_{b}p - \Omega_{b}g_{a}p)G^{qr} + O_2. \] (72)

The essential conservation property consists in the vanishing of integrals over a closed \(V_3 \), as in (53), and this property is preserved if we take, not one base event \(P' \), but a set of them and add together the separate \(M_{a} \) and the separate \(H_{a}^{b} \). This suggests that we might be able to get rid of dependence on a base event statistically by integrating with respect to \(P' \) over space-time. But we cannot integrate a vector or a tensor, and the best we can do (without introducing extraneous elements) is to write down the integrals
\[\int_{V_4} M_{a}^{*}M_{a}^{*}d^4v', \quad \int_{V_4} H_{a}^{b}H_{a}^{b}d^4v', \quad \int_{V_4} H_{a}^{b}H^{*a}d^4v', \] (73)
where the star indicates the dual,
\[H^{*a}^{b} = \frac{1}{2}\eta^{a}c^{d}H_{c}^{d}. \] (74)

and the integration is in each case over a domain \(V_4 \) of space-time. These integrals depend on nothing but the closed \(V_2 \) which occurs in (48) and (51) and on the domain \(V_4 \). As remarked earlier, we may be able to get rid of \(V_2 \) by letting it recede to spatial infinity. Then we might obtain three absolute invariants by dividing the integrals in (73) by the 4-volume of \(V_4 \), or a power of that 4-volume, and proceeding to a limit in which \(V_4 \) embraces the whole of space-time. But the issue is dubious, without investigation of convergence in special cases, and we shall leave the matter there.
§ 5. SPACE-TIME VIEWED FROM THE EUCLIDEAN STANDPOINT

The formulae of analysis have a universal validity. They express for the most part relations between numbers. But every mathematician turns to geometry from time to time, because our powerful intuitions about the space we seem to live in throw light on complicated analytical situations. Even in elementary algebra, we appreciate the classification of the roots of a quadratic equation best by drawing a parabolic graph.

In making graphs (to use the word in a general sense) we intuitively use Euclidean space, usually of two or three dimensions. Aided by analogy, our intuition extends, perhaps a little hazily, to Euclidean space of higher dimensionality. Thus, whatever the physical properties of the universe — whether physical space exist or not —, the concept of Euclidean space is one of those things we would hate to do without.

In relativity we are concerned with *events* and each event is a number-tetrad x^t. It would be possible to develop relativity without the language of geometry, for we might regard g_{ij} from a purely analytical standpoint, and work entirely in formulae. That is not the method of this book. We have laboured to depict nature in terms of pictures in a 4-dimensional curved space-time, and there is no reason to apologize for the use of such a powerful way of looking at things. But some people do not like it. They would prefer to illuminate formulae where they require illumination by reference, not to Riemannian geometry, but to that Euclidean geometry customarily employed, as indicated above, to aid the mind when formulae become oppressive.

Let us then look at relativity from the Euclidean standpoint. In doing this, we are not implying in any remote sense that space-time is Euclidean; the Euclidean scaffolding which we put in is of our own making, and we put it in for our intellectual comfort and for that alone.

Let V_4 be a domain of space-time, or possibly the whole of space-time. Let x^t be any system of coordinates in V_4, with a $1 : 1$ correspondence between events and number-tetrads x^t. Let g_{ij} be a set of (ten) symmetric functions of the coordinates with continuous first derivatives. These functions are however subject to certain algebraic conditions. We take the first three coordinates x^a spacelike and x^4 timelike; this means that we impose on g_{ij} the conditions

$$g_{11} > 0, \quad g_{22} > 0, \quad g_{33} > 0, \quad g_{44} < 0. \quad (75)$$
To view V_4 in the Euclidean manner, we set up a 4-dimensional Euclidean space with rectangular Cartesian coordinates x^i, a domain of this space corresponding point by point with V_4.

Let us see, in Euclidean terms, what conditions must be satisfied by g_{ij} in order that the form $g_{ij}dx^idx^j$ may have the correct signature. Take any point A with $x^i = a^i$, and write the coordinates x^i of a current point P in the form

$$x^i = a^i + X^i,$$ \hspace{1cm} (76)

so that are X^i the coordinates of P relative to A. The null cone at A is tangent to the cone with equation

$$g_{ij}X^iX^j = 0,$$ \hspace{1cm} (77)

with g_{ij} evaluated at A (Fig. 6). The section of this cone by the plane $X^4 = 1$ is the quadric surface

$$g_{\alpha\beta}X^\alpha X^\beta + 2g_{\alpha 4}X^\alpha + g_{44} = 0.$$ \hspace{1cm} (78)

The basic requirement about the form $g_{ij}dx^idx^j$ is essentially that (78) should represent a real ellipsoid. If (78) is an ellipsoid, it has a unique centre $X^\alpha = Y^\alpha$, say, where

$$g_{\alpha\beta}Y^\beta + g_{\alpha 4} = 0.$$ \hspace{1cm} (79)

Hence

$$\det g_{\alpha\beta} \neq 0;$$ \hspace{1cm} (80)

we may then define $\gamma^{\alpha\beta}$ by

$$\gamma^{\alpha\beta}g_{\gamma\nu} = \delta^\beta_\nu,$$ \hspace{1cm} (81)

and write the solution of (79) in the form

$$Y^\alpha = -\gamma^{\alpha\beta}g_{\beta 4}.$$ \hspace{1cm} (82)

We now transform to the centre, writing

$$Z^\alpha = X^\alpha - Y^\alpha,$$ \hspace{1cm} (83)

and (78) becomes

$$g_{\alpha\beta}Z^\alpha Z^\beta = \gamma^{\alpha\beta}g_{\alpha 4}g_{\beta 4} - g_{44}.$$ \hspace{1cm} (84)
If this is an ellipsoid, the quadratic form on the left must be definite, and by (75) it must be positive-definite. To sum up, given \(g_{44} < 0 \), the condition (necessary, and also sufficient) that (78) should be a real ellipsoid is simply

\[
g_{\alpha\beta} Z^\alpha Z^\beta \text{ positive-definite,} \quad (85)
\]
or, equivalently, the three roots of

\[
\det(g_{\alpha\beta} - \theta \delta_{\alpha\beta}) = 0 \quad (86)
\]
are all positive; note that (85), with \(g_{44} < 0 \), implies

\[
g^{\alpha\beta} g_{\alpha4} g_{\beta4} - g_{44} > 0. \quad (87)
\]
The condition imposed on \(g_{ij} \) by signature is (85) with \(g_{44} < 0 \).

This elementary argument has been given at length as an illustration of the interplay of algebra with Euclidean intuitions. We have been talking about Riemannian space-time, but the invariance of the metric form under general coordinate transformation has been completely suppressed.

When we think about space-time in this Euclidean way, we are inclined to attach some importance to ‘straight lines’ with equations

\[
x^i = u a^i + b^i, \quad (88)
\]
where \(u \) is a parameter and the \(a \)'s and \(b \)'s constants. But these lines must be carefully distinguished from the geodesics, which satisfy

\[
\frac{d^2 x^i}{du^2} + \Gamma^i_{jk} \frac{dx^j}{du} \frac{dx^k}{du} = 0, \quad (89)
\]
where \(u \) is a special parameter.

Let us now take a look at Green’s theorem from the Euclidean standpoint. The formula \(\mathbf{1}-(257) \) is pleasing to the tensorialist, for he sees in it invariant integrands and invariant elements of volume. It applies however only to the integration of the divergence of a vector field. We might do better to go back to the elementary formula \(\mathbf{1}-(233) \) and extend it to space-time, regarded as Euclidean in the sense explained above. Indeed, the usual method extended to Euclidean 4-space leads at once to

\[
\int_{\mathcal{V}_4} U_{,t} dx^1 dx^2 dx^3 dx^4 = \oint_{\mathcal{V}_3} U n_t dS; \quad (90)
\]
here \(V_4 \) is a domain of space-time bounded by the closed \(V_3 \), and \(n_i \) and \(dS \) are respectively the outward unit normal and the 3-element of \(V_3 \), both calculated for the assumed Euclidean metric. There is no reason to think of only one function \(U \); we have likewise

\[
\int_{V_4} U^{jk}_{,i} dx^1 dx^2 dx^3 dx^4 = \oint_{V_3} U^{jk} n_i dS. \quad (91)
\]

Let the equation of \(V_3 \) be

\[
f(x) = 0, \quad (92)
\]

with \(f \) increasing outwards. Then

\[
n_i = f_{,i} (f_{,j} f_{,j})^{-\frac{1}{2}}, \quad (93)
\]

and, by orthogonal projection,

\[
n_4 dS = v dx^1 dx^2 dx^3, \quad (94)
\]

where \(v = +1 \) or \(-1\) according as \(n_4 \) is positive or negative. Thus (91) may be written

\[
\int_{V_4} U^{jk}_{,i} dx^1 dx^2 dx^3 dx^4 = \oint_{V_3} U^{jk} v (f_{,i} f_{,j}) dx^1 dx^2 dx^3. \quad (95)
\]

If \(U^{jk} n_k \) vanishes on \(V_3 \), then \(U^{jk} f_{,k} = 0 \), and (95) with \(i = k \) gives

\[
\int_{V_4} U^{jk}_{,k} dx^1 dx^2 dx^3 dx^4 = 0. \quad (96)
\]

§ 6. EQUATIONS OF MOTION FOR AN ISOLATED BODY

We return to the case of an isolated body, as considered in IV–§ 7. Its history is a world-tube with

\[
T^{ij} N_j = 0 \quad (97)
\]

on the wall \(\Sigma \) of the tube, and

\[
T^{ij}_{,j} = 0 \quad (98)
\]

inside the tube. In view of the field equations, it is obviously a matter of indifference whether we work with the Einstein tensor \(G_{ij} \) (geometry) or with the energy tensor \(T_{ij} \) (physics). We shall use \(T_{ij} \).

Proceeding in the Euclidean manner of the preceding section, we
write out explicitly the tensorial equation (98):

\[T^{ij},j + \Gamma^j_{\alpha i} T^{i a} + \Gamma^i_{\alpha j} T_{a j} = 0. \]

(99)

Since

\[\Gamma^i_{\alpha j} = \frac{1}{\sqrt{g}} \left(\sqrt{-g} \right)_{,\alpha} \]

(100)

(99) may be written

\[\mathcal{T}^{ij},j = \Gamma^i, \]

(101)

where

\[\mathcal{T}^{ij} = \sqrt{-g} \ T^{ij}, \]

(102)

and

\[\Gamma^i = - \Gamma^i_{ab} \mathcal{T}^{ab}. \]

(103)

Although we are deliberately abandoning tensorial ideas, we remark in passing that \(\mathcal{T}^{ij} \) is a tensor density or relative tensor of weight unity (cf. Synge and Schild [1956, pp. 198, 241]).

We now slice the world-tube across by two planes, \(x^4 = a \) and \(x^4 = b \) (Fig. 7), and denote by \(V_4 \) the domain of space-time enclosed by them and \(\Sigma \). By Green’s theorem in the form (95), we have

\[\int_{V_4} \mathcal{T}^{ij}, j d^4x = \int_{V_3} \mathcal{T}^{ij} f(j, j, 4) d^3x, \]

(104)

where we have written for brevity

\[d^4x = dx^1 dx^2 dx^3 dx^4, \quad d^3x = dx^1 dx^2 dx^3; \]

(105)

\(f(x) = 0 \) is the equation of the closed \(V_3 \), made up of \(\Sigma \) and the two plane sections. Now, in view of (97), we have

\[\mathcal{T}^{ij}, j = 0 \text{ on } \Sigma, \]

\[f(j, j, 4) = \delta^i_4 \text{ on } x^4 = a \text{ and } x^4 = b, \]

(106)

\[v = 1 \text{ on } x^4 = b, \quad v = -1 \text{ on } x^4 = a. \]

Therefore (104) gives

\[\int_{V_4} \mathcal{T}^{ij}, j d^4x = \int_{x^4 = b} \mathcal{T}^{i 4} d^3x - \int_{x^4 = a} \mathcal{T}^{i 4} d^3x, \]

(107)
or, by (101),
\[\int_{x^4=b}^{x^4=a} \mathcal{F}^i \, d^3 x - \int_{x^4=a}^{x^4=b} \mathcal{F}^i \, d^3 x = \int_{V^i} \Gamma^i \, d^4 x. \] (108)
Dividing by \((b - a)\) and proceeding to the limit \(b \to a\), we get
\[\frac{d}{dx^4} \int \mathcal{F}^i \, d^3 x = \int \Gamma^i \, d^3 x, \] (109)
the integrals being taken on any section \(x^4 = \text{const}\).

In like manner we shall derive another formula. We have
\[(x^k \mathcal{F}^{i l})_{, j} = \mathcal{F}^{i k} + x^k \mathcal{F}^{i l}_{, j} = \mathcal{F}^{i k} + x^k \Gamma^l, \] (110)
and hence
\[\int_{x^4=b}^{x^4=a} x^k \mathcal{F}^i \, d^3 x = \int_{V^i} (\mathcal{F}^{i k} + x^k \Gamma^l) \, d^4 x. \] (111)

Giving \(k\) a value in the range 1, 2, 3 (indicated by Greek suffixes) and proceeding to a limit as above, we get
\[\frac{d}{dx^4} \int x^\alpha \mathcal{F}^i \, d^3 x = \int (\mathcal{F}^{i \alpha} + x^\alpha \Gamma^\iota) \, d^3 x. \] (112)

With \(i = 4\) this gives
\[\frac{d}{dx^4} \int x^\alpha \mathcal{F}^4 \, d^3 x = \int (\mathcal{F}^{4 \alpha} + x^\alpha \Gamma^4) \, d^3 x. \] (113)

On the other hand, if we put \(\beta\) for \(i\) in (112), interchange \(\alpha\) and \(\beta\), and subtract, remembering the symmetry of \(\mathcal{F}^{ij}\), we get
\[\frac{d}{dx^4} \int (x^\alpha \mathcal{F}^{\beta 4} - x^\beta \mathcal{F}^{\alpha 4}) \, d^3 x = \int (x^\alpha \Gamma^\beta - x^\beta \Gamma^\alpha) \, d^3 x. \] (114)

In order to write the equations so far obtained more compactly we shall introduce new notation, and to enhance the physical interest we shall insert some names. Thus we define \(^1\)

4-momentum of body = \(M^i = \int \mathcal{F}^i \, d^3 x\),

angular momentum of body = \(H^{\alpha \beta} = \int (x^\alpha \mathcal{F}^{\beta 4} - x^\beta \mathcal{F}^{\alpha 4}) \, d^3 x\),

mass-centre of body = \(\vec{x}^\alpha\), \(M^4 \vec{x}^\alpha = \int x^\alpha \mathcal{F}^{44} \, d^3 x\).

\(^1\) We are following in the main, but not in all subsequent details, the method of Lanczos [1941b]. The verbal definitions of (115) are for present purposes only; it is contrary to the spirit of this book to attach physical names to quantities which are not invariantly defined.
We note that
\[\int (x^\alpha - \bar{x}^\alpha) \mathcal{T}^{44} d^3x = 0. \] (116)
This expression transforms like a 3-vector under rotation of axes, and if we make the natural assumption [cf. IV-(146a)]
\[\mathcal{T}^{44} > 0, \] (117)
it follows that every plane through the mass-centre cuts the body; hence, if the body is convex, its mass-centre lies in it.
If we now write \(x^4 = t \), the equations (109) and (114) give
\[\frac{dM^i}{dt} = \int \Gamma^i d^3x, \]
\[\frac{dH^{\alpha\beta}}{dt} = \int (x^\alpha \Gamma^\beta - x^\beta \Gamma^\alpha) d^3x. \] (118)
Also, by (113),
\[\frac{d}{dt} (M^4 \bar{x}^\alpha) = M^\alpha + \int x^\alpha \Gamma^4 d^3x, \] (119)
and this gives the following expression for the 3-velocity of the mass-centre:
\[\frac{d\bar{x}^\alpha}{dt} = \frac{M^\alpha}{M^4} + \frac{1}{M^4} \int (x^\alpha - \bar{x}^\alpha) \Gamma^4 d^3x. \] (120)
The remarkable feature of the above work is that, by breaking away from the restriction of tensorial invariance, we are led to some very simple equations which are physically suggestive. For in (118) the rates of change of 4-momentum and angular momentum are expressed in terms of quantities which may be regarded as the gravitational 4-force and torque acting on the body, in the sense that, if there is no gravitational field and coordinates are chosen to make \(\Gamma_{jk}^i \) vanish, then this 4-force and torque vanish also. Further, if we neglect the last term in (120), this equation tells us that the 4-momentum \(M^i \) points along the 4-velocity \(\bar{\nu}^i \) of the mass-centre.
But where do we stand in regard to invariance? We started with geometric objects — a world-tube, a metric tensor, and a symmetric tensor \(T^{ij} \) satisfying (97) and (98). But when we sliced the world-tube
across, we made all subsequent results dependent on the mode of slicing, and, further, we tied the coordinates into the work in a non-invariant manner. Since, subject only to certain general restrictions, all systems of coordinates are available, we must recognize that we have before us, not one world-line C for the mass-centre, but a multiplicity of such world-lines. Likewise we have not one 4-momentum M^i and one angular momentum $H^\alpha\beta$, but a multiplicity of these. There opens up, then, an interesting prospect — to restore uniqueness and invariance to the results by some statistical process in which all possible coordinate-choices are taken into consideration. But that is an ambitious programme, not to be attempted here.

Instead we shall play with the exact equations as given above, seeking approximations by which we can force out a ‘proof’ of the geodesic hypothesis by showing that the mass-centre of a very small body pursues a geodesic.

In making approximations, it is well to examine the dimensionalities of the quantities involved \footnote{Cf. remarks about smallness in II–§ 3.}. Mass, length and time all have the same dimensions, say $[t]$. Let us use coordinates with dimensions $[t]$. Then

$$
[g_{ij}] = [t^0], \quad [\Gamma^i_{jk}] = [t^{-1}], \quad [T^{ij}] = [\mathcal{I}^{ij}] = [t^{-2}],
$$

$$
[I^t] = [t^{-3}], \quad [\int I^t d^3x] = [t^0], \quad [M^i] = [t], \quad (121)
$$

$$
[\int (x^\alpha - \bar{x}^\alpha) I^t d^3x] = [t].
$$

The last term in (120) is dimensionless, and tends to zero as the size of the body tends to zero, other things being equal. Further, for a weak field, we may suppose Γ^i_{jk} to be small, in a loose manner of speaking. It is therefore reasonable, in the case of a very small body, to neglect this term, so that (120) reads

$$
\frac{d \bar{x}^\alpha}{dt} = \frac{M^\alpha}{M^4}. \quad (122)
$$

The next step is a little more dubious. We want to treat Γ^i_{jk} as constant over the section $t = \text{const.}$ To justify this, we say that if \mathcal{I}^{ij} is small (relative to what?) the body has very little effect on the field, thought of as primarily due to other unspecified bodies, and so Γ^i_{jk} will change little across a small section. Hence we write (note that this is a
dimensionless quantity)
\[\int \Gamma^i \, d^3x = - \int \Gamma^i_{mn} \mathcal{T}^{mn} \, d^3x = - \bar{\Gamma}^i_{mn} \phi^{mn}, \]
where
\[\phi^{mn} = \int \mathcal{T}^{mn} \, d^3x, \quad \phi^4 = M^4, \]
with \(\bar{\Gamma}^i_{mn} \) evaluated at the mass-centre. Thus (118) gives
\[\frac{dM^i}{dt} = - \bar{\Gamma}^i_{mn} \phi^{mn}, \]
and, by differentiation of (122),
\[\frac{d^2 \bar{x}^\alpha}{dt^2} = (M^4)^{-2} \left(\bar{\Gamma}^4_{mn} M^\alpha - \bar{\Gamma}^\alpha_{mn} M^4 \right) \phi^{mn} \]
\[= (M^4)^{-1} \left(\bar{\Gamma}^4_{mn} \frac{d \bar{x}^\alpha}{dt} - \bar{\Gamma}^\alpha_{mn} \right) \phi^{mn}, \]
\[= M^4 \frac{d^2 \bar{x}^\alpha}{dt^2} + \bar{\Gamma}^\alpha_{mn} \phi^{mn} = \bar{\Gamma}^4_{mn} \phi^{mn} \frac{d \bar{x}^\alpha}{dt}. \]
These are in a sense equations of motion of the mass-centre.

In terms of density, 4-velocity and stress, we have
\[\mathcal{T}^{ij} = \sqrt{-g} \left(\mu V^i V^j - S^{ij} \right). \]

Let us suppose that the following equations are so nearly satisfied that it is permissible to use them in (127):
\[\int \mu V^i V^j \sqrt{-g} \, d^3x = \bar{V}^i \bar{V}^j \int \mu \sqrt{-g} \, d^3x, \]
\[\int S^{ij} \sqrt{-g} \, d^3x = 0; \]
here \(\bar{V}^i \) denotes the 4-velocity of the mass-centre, so that
\[\frac{d \bar{x}^i}{dt} = \frac{\bar{V}^i}{\bar{V}^4}. \]
Then by (124)
\[\phi^{mn} = \bar{V}^m \bar{V}^n \int \mu \sqrt{-g} \, d^3x, \quad M^4 = \phi^{44}. \]
If we define \(\bar{x}^4 = t \), and write 4 instead of \(\alpha \) in (127), we get an identity.
It is permissible then to change α to i in (127); with (131), this gives
\[
(\overline{V}^4)^2 \frac{\mathrm{d}}{\mathrm{d}t} \frac{\overline{V}^i}{\overline{V}^4} + \overline{F}^i_{mn} \overline{V}^m \overline{V}^n = \overline{F}^i_{mn} \overline{V}^m \overline{V}^n \frac{\overline{V}^i}{\overline{V}^4}.
\]
(133)

This means that, in terms of the absolute derivative,
\[
\overline{V}_4 \frac{\delta \overline{V}^i}{\delta t} = \overline{V}^i \frac{\delta \overline{V}^4}{\delta t}.
\]
(134)

Multiplying by \overline{V}_i, we get $\delta \overline{V}^4/\delta t = 0$, and hence we have
\[
\frac{\delta \overline{V}^i}{\delta t} = 0,
\]
(135)

which tells us that, under the assumptions made, the world-line of the mass-centre is a geodesic.

It is hard to see whether anything significant has been established here. We know that if we put $S_{ij} = 0$ we have incoherent matter, and for incoherent matter the world-lines are geodesics (cf. IV–§ 4). The condition (130) is somewhat weaker, but this assumption and (129) are too empirical for us to regard this argument as a proof that the world-line of a small isolated body is a geodesic.

§ 7. THE PSEUDO-TENSOR

In space-time, viewed from the Euclidean standpoint as in § 5, let there be a symmetric array of quantities $W^{ik} (= W^{ki})$ which satisfy the partial differential equations
\[
W^{ik, k} = 0.
\]
(136)

With regard to coordinate transformations, we can, if we like, disregard them entirely, accepting (136) as true for some given coordinates x^i and working entirely in those coordinates. But in the theory of the pseudo-tensor to be developed below, the transformation law for W^{ik} is such that the equation (136) holds for all coordinates, although W^{ik} is not a tensor, nor is $W^{ik, k}$ a vector in the tensorial sense.

1 I find it difficult to enter into the spirit of the work of INFELD and SCHILD [1949], PAPAPETROU [1951b], CORINALDESI and PAPAPETROU [1951].

2 The pseudo-tensor was introduced by EINSTEIN [1916a]; cf. BERGMANN [1942], MOLLER [1952]. We follow here a different approach presented by LANDAU and LIFSHITZ [1951, p. 316]. As its name implies, the pseudo-tensor is not a tensor and the conservation laws based on it are not tensorial.
Integrated over the infinite 3-space \(x^4 = \text{const.} \), (136) gives
\[
\int W^{ik} \kappa d^3x = 0, \quad d^3x = dx^1 dx^2 dx^3.
\] (137)

Supposing \(W^{ik} \) to vanish sufficiently rapidly at spatial infinity, the contributions from \(k = 1, 2, 3 \) vanish, and (137) gives
\[
\frac{d}{dx^4} \int W^{i4} d^3x = 0,
\] (138)
so that, considering all the slices \(x^4 = \text{const.} \), we have
\[
\int W^{i4} d^3x = \kappa M^i,
\] (139)
where \(M^i \) are four constants, independent of \(x^4 \). The constant \(\kappa (= 8\pi) \) is inserted merely to simplify later formulae.

So far we have not used the symmetry of \(W^{ik} \). By virtue of it, we have
\[
(x^i W^{jk} - x^j W^{ik})_k = 0,
\] (140)
and an argument similar to the above leads to
\[
\int (x^i W^{j4} - x^j W^{i4}) d^3x = \kappa H^{ij},
\] (141)
where \(H^{ij} (= - H^{ji}) \) are six constants, independent of \(x^4 \).

We have now to choose \(W^{ik} \) so that (139) and (141) may qualify for the title ‘conservation laws’ — (139) for 4-momentum and (141) for angular momentum. To make this choice, we use the following mathematical identity \(^1\):
\[
g G^{ik} = - \frac{1}{2} U^{ijkl}_{,jm} + V^{ik}.
\] (142)
Here \(G^{ik} \) is the contravariant form of the Einstein tensor and
\[
U^{ijkl}_{,jm} = g(g^{ik} g^{jm} - g^{im} g^{jk}).
\] (143)
As for \(V^{ik} \), it is a complicated expression which however depends only on the metric tensor and its first derivatives. We shall calculate it later, but first let us see how (142) is to be used.

We observe that \(U^{ijkl}_{,jm} \) has the same symmetry properties as the Riemann tensor \(R^{ijkl} \); from this it is easy to see that \(V^{ik} \) is symmetric, and, further, that
\[
U^{ijkl}_{,jm,ik} = 0.
\] (144)
This is an essential point. By virtue of it, \(W^{ik} \) defined by
\[
W^{ik} = - g G^{ik} + V^{ik} = \frac{1}{2} U^{ijkl}_{,jm}
\] (145)
\(^1\) This may be regarded as the definition of \(V^{ik} \).
is not only symmetric but satisfies (136), and hence (139) and (141) also (provided the required conditions at infinity are satisfied, as we shall suppose they are). Noting the field equations

\[G^{ik} = - \kappa T^{ik}, \quad \kappa = 8\pi, \quad (146) \]

we define the *pseudo-tensor of energy* \(t^{ik} \) by

\[t^{ik} = \kappa^{-1} g^{-1} V^{ik}, \quad (147) \]

so that (145) reads

\[W^{ik} = \kappa g (T^{ik} + t^{ik}). \quad (148) \]

Now (139) and (141) give

\[\int g (T^{i4} + t^{i4}) d^{3}x = M^{i}, \quad (149) \]

\[\int g [\chi^{i}(T^{j4} + t^{j4}) - \chi^{i}(T^{i4} + t^{i4})] d^{3}x = H^{ij}, \quad (150) \]

\(M^{i} \) and \(H^{ij} \) being constants independent of \(x^{4} \). The form of these equations suggests that they should be regarded as equations of conservation of 4-momentum \((M^{i}) \) and angular momentum \((H^{ij}) \). Under certain conditions at infinity which we have not troubled to specify in detail, they are mathematically correct. But it is a little difficult to accept the physical interpretation, since, although true for any chosen coordinate system, the constants \(M^{i} \) and \(H^{ij} \) change with change of coordinates in no simple way. The sections \(x^{4} = \text{const.} \) used in the integrations depend of course on the choice of coordinates.

It remains to calculate \(V^{ik} \) in (142). For this we use the following identities [cf. i–(88) and i–(105)]:

\[\Gamma^{i}_{ab,c} - \Gamma^{i}_{ac,b} = R^{i}_{acb} - \Gamma^{p}_{ab} \Gamma^{i}_{pc} + \Gamma^{p}_{ac} \Gamma^{i}_{pb}, \]

\[\Gamma^{p}_{pb,a} - \Gamma^{p}_{ab,p} = R_{ab} - \Gamma^{q}_{aq} \Gamma^{p}_{bp} + \Gamma^{q}_{ab} \Gamma^{p}_{pq}. \quad (151) \]

From (143) we have

\[(g^{-1}U^{ijkm})_{,p} = 0, \quad (152) \]

and hence, using i–(8),

\[U^{ijkm, p} = 2 \Gamma^{a}_{ap} U^{ijkm} - \Gamma^{i}_{ap} U^{ajkm} - \Gamma^{j}_{ap} U^{iakm} - \Gamma^{k}_{ap} U^{ijam} - \Gamma^{m}_{ap} U^{ijka}. \quad (153) \]

Putting \(p = j \) and using the symmetry of \(U^{ijkm} \), we get

\[U^{ijkm, j} = \Gamma^{a}_{aj} U^{ijkm} - \Gamma^{k}_{aj} U^{ijam} - \Gamma^{m}_{aj} U^{ijka}, \quad (154) \]
and differentiation of this gives

\[U^{ikm}_{jm} = A^{ik} + B^{ik}, \]

(155)

where

\[A^{ik} = \Gamma^a_{aj,m} U^{ikm} - \Gamma^k_{aj,m} U^{jiam} - \Gamma^m_{aj,m} U^{ijk}, \]

\[B^{ik} = \Gamma^a_{aj} U^{ikm}_{,m} - \Gamma^k_{aj} U^{jiam}_{,m} - \Gamma^m_{aj} U^{ijk}_{,m}. \]

(156)

Note that second derivatives of \(g_{ij} \) are contained in \(A^{ik} \) but not in \(B^{ik} \). We may write

\[A^{ik} = U^{ikm}(\Gamma^p_{mj,m} - \Gamma^p_{mj,p}) + \frac{1}{2} U^{jiam}(\Gamma^k_{jm,a} - \Gamma^k_{ja,m}), \]

(157)

and so, by (151),

\[A^{ik} = U^{ikm}R_{jm} + \frac{1}{2} U^{jiam}R^k_{jam} \]

\[+ U^{ikm}(\Gamma^p_{mj} \Gamma^q_{pq} - \Gamma^p_{mq} \Gamma^q_{jp}) + \frac{1}{2} U^{jiam}(\Gamma^p_{ja} \Gamma^k_{pm} - \Gamma^p_{jm} \Gamma^k_{pa}). \]

(158)

But

\[U^{ikm}R_{jm} = g(g^{ik}g^{jm} - g^{im}g^{jk})R_{jm} = g(g^{ik}R - R^{ik}), \]

\[U^{jiam}R^k_{jam} = g(g^{ia}g^{jm} - g^{im}g^{ja})R^k_{jam} = -2gR^{ik}, \]

(159)

and so (155) may be written

\[U^{ikm}_{jm} = -2gG^{ik} + 2V^{ik}, \]

(160)

where

\[2V^{ik} = U^{ikm}(\Gamma^p_{mj} \Gamma^q_{pq} - \Gamma^p_{mq} \Gamma^q_{jp}) + U^{jiam}\Gamma^p_{ja} \Gamma^k_{pm} + B^{ik}. \]

(161)

It is clear that \(V^{ik} \) does not involve the second derivatives of \(g_{ij} \). To complete the calculation, we evaluate the derivatives in \(B^{ik} \) by means of (153) and (154), obtaining

\[2V^{ik} = U^{iakb}D_{ab} + U^{iabc}E^k_{abc} + U^{kabc}E^i_{abc} + U^{abc}\Gamma^i_{ad} \Gamma^k_{bc}, \]

\[D_{ab} = \Gamma^p_{pa} \Gamma^q_{qb} + \Gamma^p_{qa} \Gamma^q_{pb} - 2\Gamma^p_{ab} \Gamma^q_{pq}, \]

\[E^k_{abc} = -\Gamma^k_{ab} \Gamma^p_{pc} - \Gamma^p_{ab} \Gamma^k_{pc}. \]

(162)
CHAPTER VII

FIELDS WITH SPHERICAL SYMMETRY

§ 1. SPACE-TIME OF CONSTANT CURVATURE (DE SITTER UNIVERSE)

Of all Riemann space-times, the simplest is the flat space-time of Minkowski. It corresponds physically to the complete absence of gravitation, and is the domain in which the special theory of relativity is set. In the general theory of relativity we have little interest in flat space-time except in connection with conditions at infinity (we may suppose that a gravitational field tends to zero at infinity) and in connection with plane gravitational waves which will be discussed in Chapter IX (space-time is flat outside the wave).

Next in order of simplicity comes space-time of constant curvature. If K denotes the constant curvature, we have by \(r-(101) \)

\[
R_{ijkl} = K(g_{ik}g_{jm} - g_{im}g_{jk}),
\]

\[
R_{ij} = -3Kg_{ij},
\]

\[
R = -12K,
\]

\[
G_{ij} = 3Kg_{ij}.
\]

By the field equations \(r-(108) \) with the cosmological constant included, we have

\[
G_{ij} - \Lambda g_{ij} = -\kappa T_{ij}, \quad \kappa = 8\pi,
\]

and so the energy tensor in space-time of constant curvature K is

\[
T_{ij} = \kappa^{-1}(\Lambda - 3K)g_{ij}.
\]

This tensor has all four eigenvalues equal and completely indeterminate eigenvectors. It corresponds to no reasonable type of matter, and we escape from this awkward situation only by assuming that the cosmological constant Λ and the constant curvature K are related by the
equation 1

\[\Lambda = 3K. \]

(4)

This makes \(T_{ij} = 0 \) and we have the empty universe of de Sitter [1917a], satisfying the field equations

\[G_{ij} - \Lambda g_{ij} = 0. \]

(5)

It is hard to decide on the degree of seriousness with which we should contemplate, as physicists, the empty universe of de Sitter. Since we have thrown out matter, we are back in what is essentially a universe without gravitation, with Minkowskian space-time replaced by space-time of constant curvature. The success of the special theory of relativity (flat space-time) in dealing with those phenomena which do not involve gravitation suggests that, if we are to work instead with a de Sitter universe, the curvature must be very small indeed in comparison with significant physical quantities of like dimensions (\(K \) has the dimensions of \(\text{sec}^{-2} \)). Without good reason one does not feel inclined to complicate the simplicity of Minkowskian space-time by introducing curvature.

Nevertheless the de Sitter universe is interesting in itself. It opens up new vistas, introducing us to the idea that space (a slice of space-time) may be finite, and this seems to satisfy some mental need in us, for infinity is one of those things which we find difficulty in comprehending.

To explore the de Sitter universe, we choose some event \(P' \) and draw through \(P' \) all geodesics, timelike, spacelike and null (Fig. 1). On each geodesic we choose a special parameter \(u \) with \(u = 0 \) at \(P' \) so that we

1 It is customary to regard the cosmological constant as positive, and hence \(K \) as positive also. However, the idea of a space-time of constant curvature of either sign is stimulating and worth exploring, and for simplicity we shall speak of a de Sitter universe no matter which sign \(K \) has. We shall see later that a negative \(K \) has a consequence so strange that we can hardly accept a universe of that type as a model of physical reality.
have

\[
\frac{\delta U^i}{\delta u} = 0, \quad U^i = \frac{dx^i}{du},
\]

and we set into correspondence the events on two neighbouring geodesics \(\Gamma, \Gamma' \) by choosing them at equal values of \(u \). Then the deviation vector \(\eta^i \) satisfies the equation 1–(131):

\[
\frac{\delta^2 \eta^i}{\delta u^2} + R^i_{\ jkm} U^j \eta^k U^m = 0,
\]

with

\[
\eta^i = 0 \text{ for } u = 0.
\]

Substituting from (1), we get

\[
\frac{\delta^2 \eta^i}{\delta u^2} + \eta^i K U_j U^j - U^i K U_j \eta^j = 0.
\]

To study the deviation of spacelike or timelike geodesics, we choose \(u = s \), and then by 1–(133) and (8) we have

\[
U_j U^j = \varepsilon, \quad U_j \eta^j = 0,
\]

where \(\varepsilon \) is the indicator of \(\Gamma \); (9) reduces to

\[
\frac{\delta^2 \eta^i}{\delta s^2} + \varepsilon K \eta^i = 0.
\]

Introducing any vector \(\lambda^i \) undergoing parallel transport on \(\Gamma \), we get

\[
\frac{d^2}{ds^2} (\eta^i \lambda_i) + \varepsilon K \eta^i \lambda_i = 0,
\]

and the solution of this elementary equation can be written down at once. For example, if \(K > 0 \) and \(\varepsilon = 1 \), we have

\[
\eta^i \lambda_i = A \sin(sK^i),
\]

where \(A \) is a constant. If we define \(\zeta^i \) by

\[
\zeta^i = \frac{\delta \eta^i}{\delta u},
\]

and use primes to refer to \(P' \), then, in terms of the parallel propagator,
(13) may be written
\[\eta^t = K^{-\frac{1}{2}}g^{ij'}\zeta_{j'} \sin(sK^t). \quad (15) \]

Thus, taking all cases into consideration, the deviations of spacelike and timelike geodesics are as follows:

Space-time of positive curvature \((K > 0)\):

- Spacelike geodesics \((\epsilon = 1)\): \[\eta^t = K^{-\frac{1}{2}}g^{ij'}\zeta_{j'} \sin(sK^t). \quad (16) \]
- Timelike geodesics \((\epsilon = -1)\): \[\eta^t = K^{-\frac{1}{2}}g^{ij'}\zeta_{j'} \sinh(sK^t). \quad (17) \]

Space-time of negative curvature \((K < 0)\):

- Spacelike geodesics \((\epsilon = 1)\): \[\eta^t = (\epsilon - K)^{-\frac{1}{2}}g^{ij'}\zeta_{j'} \sinh[s(\epsilon - K)^t]. \quad (18) \]
- Timelike geodesics \((\epsilon = -1)\): \[\eta^t = (\epsilon - K)^{-\frac{1}{2}}g^{ij'}\zeta_{j'} \sin[s(\epsilon - K)^t]. \quad (19) \]

It remains to consider deviation when one (or both) of the curves \(\Gamma, \Gamma'\) is (or are) null. Taking first the case where both are null, we have, instead of (10),
\[U_jU^j = 0, \quad U_j\eta^j = 0, \quad (20) \]
so that (9) becomes simply
\[\frac{\delta^2 \eta^i}{\delta u^2} = 0, \quad (21) \]
and the deviation is given by
\[\eta^i = u g^{ij'}\zeta_{j'}. \quad (22) \]

Now suppose \(\Gamma\) to be null but \(\Gamma'\) spacelike or timelike. We have the first of (20) but not the second. Multiplying (9) by \(U_i\), we get
\[\frac{d^2}{du^2}(\eta^iU_i) = 0, \quad (23) \]
and so
\[\eta^iU_i = au, \quad a = \zeta^iU_i. \quad (24) \]
Thus (9) reads
\[\frac{\delta^2 \eta^i}{\delta u^2} - uU^iKa = 0, \quad (25) \]
and so, with a parallel vector \(\lambda^i\),
\[\frac{d^2}{du^2}(\eta^i\lambda_i) = uKaU^i\lambda_i. \quad (26) \]
The right hand side is constant, and we get for the deviation

\[\eta^i = u^g t^j z_j^i + \frac{1}{6} u^3 K U^{i}z^{k'}U_{k'}. \]

(27)

The preceding calculations are based on one assumption only — space-time is of constant curvature \(K \). This assumption does not determine space-time completely, since it does not include a topological specification. To illustrate by a simple analogy, the fact that a 2-space with positive-definite metric is flat does not imply that it is a plane: a cylinder is flat, and there exists a flat 2-space (the product of two circles) which has the topology of the torus. Nevertheless we can extract some interesting information from the formulae (16)–(19).

Suppose \(K > 0 \). Then (16) tells us that two adjacent spacelike geodesics drawn from any event \(P' \) meet again \((\eta^i = 0) \) at an event \(P \) where

\[s = \pi K^{-\frac{1}{2}}. \]

(28)

Indeed, passing from neighbour to neighbour, we see that all the spacelike geodesics drawn from \(P' \) meet at the single event \(P \) (Fig. 2), the lengths of them all being the same, as in (28). If, having arrived at

![Fig. 2 – Geodesics in de Sitter universe with \(K > 0 \)](image)

\(P \) by one of these geodesics, we carry on through \(P \), we shall get back to \(P' \) after a further distance (28). Thus all spacelike geodesics are closed curves. However, two cases arise. In the first case \(P \) is distinct from \(P' \) (think of the poles of the earth), and the length of a closed geodesic is \(2\pi K^{\frac{1}{2}} \); this is called the antipodal or spherical case. In the second case, \(P \) is \(P' \), so that \(P'P \) is itself a closed geodesic of length \(\pi K^{-\frac{1}{2}} \); this is called the polar or elliptic case. As for two adjacent timelike geodesics, (17) tells us that they open out exponentially and never intersect again, unless possibly by virtue of some topological condition which might be imposed.
If $K < 0$, the roles of the spacelike and timelike geodesics are interchanged (Fig. 3). The spacelike geodesics open out exponentially, whereas the timelike geodesics from an event P' meet again at an event P after a time

$$s = \pi(-K)^{-\frac{1}{2}};$$

(29)

these results follow from (18) and (19). This meeting of the timelike geodesics is a strange matter, and it is best to say no more about it just at present because the deviation method is really not adequate to deal with it properly.

There are various ways of discussing the de Sitter universe 1, each with its own particular interest, but, in order to clarify questions of topology, it is best to construct a de Sitter universe as a 4-space V_4 embedded in a flat 5-space V_5 which has Euclidean topology. Let capital suffixes take the values 1, 2, 3, 4, 5. Consider a flat V_5 with coordinates x^A, each of which runs from $-\infty$ to $+\infty$ and a metric form

$$\Psi = \eta_{AB} dx^A dx^B,$$

(30)

where η_{AB} is a diagonal 5×5 matrix with elements ± 1 — we do not specify them further yet. When we say that V_5 has Euclidean topology we mean simply that there is a 1 : 1 correspondence between the points of V_5 and the pentads x^A (in fact, a point is a pentad). We define V_4 by the equation

$$\eta_{AB}x^A x^B = C,$$

(31)

1 Cf. Schrödinger [1956].
where \(C \) is a constant. This may also be written
\[
(x^5)^2 = \eta_{55}(C - \eta_{ij}x^i x^j),
\]
and so, for any displacement in \(V_4 \), we have
\[
x^5 dx^5 = - \eta_{55} \eta_{ij} x^i dx^j.
\]

The next step is to calculate the curvature of \(V_4 \). This is a local matter, and we shall use \(x^i \) as coordinates without being troubled by the fact that (32) gives two values to \(x^5 \). The metric induced in \(V_4 \) by the metric (30) is
\[
\Phi = \eta_{ij} dx^i dx^j + (C - S)^{-1} (\eta_{ij} x^i dx^j)^2 = g_{ij} dx^i dx^j,
\]
where
\[
g_{ij} = \eta_{ij} + y_i y_j (C - S)^{-1},
y_i = \eta_{ik} x^k, \quad S = \eta_{ij} x^i x^j = y_i x^i = \eta_{ij} y_i y_j.
\]

In \(g_{ij} \) we have the metric tensor of \(V_4 \), and it is easy to prove by matrices (or to verify directly) that the conjugate tensor is
\[
g^{ij} = \eta_{ij} - x^i x^j C^{-1}.
\]

The 4-space \(V_4 \) may, or may not, contain a point of \(V_3 \) for which \(x^i = 0 \). If it does, we see from (35) that we should choose
\[
\eta_{ij} = \text{diag}(1, 1, 1, -1)
\]
in order that the metric of \(V_4 \) may have the correct signature for spacetime.

It is now easy to calculate the Christoffel symbols and hence, by 1–(88), the Riemann tensor for \(V_4 \). We obtain
\[
\Gamma^a_{ij} = C^{-1} x^a [\eta_{ij} + (C - S)^{-1} y_i y_j],
\]
\[
R_{ijkm} = C^{-1} (g_{ik} g_{jm} - g_{im} g_{jk}).
\]

Hence, by 1–(101), \(V_4 \) is a de Sitter universe in the sense that it is 4-space of constant curvature
\[
K = C^{-1}.
\]

Having settled, as above, the question of topology, we can explore
this embedded de Sitter universe without confusion. We shall here accept, without giving a formal proof, that the geodesics of \(V_4 \) are (like the great circles on an ordinary sphere) the intersections of \(V_4 \) with 2-flats passing through the origin of \(V_5 \). This makes their discussion very simple if we use a vector notation, writing \(P^A = P \), \(x^A = x \), and using the scalar product

\[
P \cdot Q = \eta_{AB} P^A Q^B. \tag{40}\]

By (31) and (39), the equation of \(V_4 \) is

\[
x \cdot x = K^{-1}. \tag{41}\]

Then, for an infinitesimal displacement in \(V_4 \) we have

\[
x \cdot dx = 0. \tag{42}\]

Let \(x = P \) be any point on \(V_4 \) and \(\Gamma \) a geodesic of \(V_4 \) drawn in the direction of a vector \(Q \). We have then

\[
P \cdot P = K^{-1}, \quad P \cdot Q = 0. \tag{43}\]

The 2-flat through \(P \) and \(Q \) has the parametric equation

\[
x = \phi P + qQ, \tag{44}\]

with \(\phi \) and \(q \) running through all values. Now \(\Gamma \) is the intersection of (41) and (44). In fact, (44) is the parametric equation of \(\Gamma \) with \(\phi \) and \(q \) satisfying

\[
(\phi P + qQ) \cdot (\phi P + qQ) = K^{-1}, \tag{45}\]

with \(\phi = 1, q = 0 \) at \(P \). We have

\[
\phi^2 + KQ \cdot Q q^2 = 1. \tag{46}\]

Suppose that \(\Gamma \) is a null geodesic (null, that is, in \(V_5 \) and hence in \(V_4 \) too in terms of the induced metric). Then

\[
Q \cdot Q = 0, \quad \phi = 1, \tag{47}\]

and the parametric equation of \(\Gamma \) reads

\[
x = P + qQ \quad (-\infty < q < \infty). \tag{48}\]

\(^1\) In order not to burden the argument, we restrict the discussion to antipodal cases; to get a polar case, we would identify diametrically opposed points on \(V_4 \), i.e. points lying on a straight line of \(V_5 \) passing through the origin of \(V_5 \).
The null geodesics of V_4 are in fact straight lines in V_5 (analogous to the generators on an ordinary hyperboloid of one sheet).

Now suppose that Γ is not null. We can normalize Q so that

$$KQ \cdot Q = \omega = \pm 1,$$

and (46) reads

$$\rho^2 + \omega q^2 = 1.$$ \hspace{1cm} (50)

The sign of ω is most important. If $\omega = 1$, then we can define u by

$$\cos u = \rho, \quad \sin u = q,$$

and (44) gives as parametric equation of Γ

$$x = P \cos u + Q \sin u.$$ \hspace{1cm} (52)

This is in fact a circle in V_5. When $u = \pi$, we get $x = -P$; when $u = 2\pi$, we get $x = P$. These geodesics are closed curves. All geodesics of this type which start from P meet at the antipode $-P$ and again at P itself. On the other hand, if $\omega = -1$, we can define u by

$$\cosh u = \rho, \quad \sinh u = q,$$

and the equation of Γ reads

$$x = P \cosh u + Q \sinh u.$$ \hspace{1cm} (54)

This is a hyperbola in V_5. It is not a closed curve, and two geodesics of this type starting from P never meet again.

We note that

$$\omega = 1 \text{ for } \begin{cases} K > 0 \text{ and } \Gamma \text{ spacelike,} \\ K < 0 \text{ and } \Gamma \text{ timelike;} \end{cases}$$

$$\omega = -1 \text{ for } \begin{cases} K > 0 \text{ and } \Gamma \text{ timelike,} \\ K < 0 \text{ and } \Gamma \text{ spacelike.} \end{cases}$$

Comparing the results just obtained with those obtained from (16)–(19), we find agreement with regard to the meeting of geodesics. But our new results are stronger. For $K < 0$, the timelike geodesics not only meet as shown in Fig. 3, but they are closed curves, and we are compelled to redraw Fig. 3 as in Fig. 4. This depicts what can only be described as a fantastic situation. We see a test particle repeating its history over and over again! This is at variance with our basic ideas
of causality, and we conclude that a de Sitter universe with \(K \) negative involves ideas of altogether too revolutionary a character for physics as it exists today.

\[\text{§ 2. METRIC FORMS FOR SPHERICAL SYMMETRY} \]

To quote Weyl [1952]: ‘Symmetry, as wide or as narrow as you may define its meaning, is one idea by which man through the ages has tried to comprehend and create order, beauty, and perfection.’

The concept of symmetry is built into us so deeply that it is hard to explain what it means in words which convey more than the word itself does. One appreciates immediately, for example, the symmetries possessed by the equilateral triangle, the square, or the circle. But intuition has its limitations, and any serious discussion of symmetry leads to the theory of groups. However there is a danger that, in the pursuit of a mathematical formalism, valuable intuitive perceptions may be obscured, and so, in accordance with the geometric spirit of this book, we shall try to preserve in discussing symmetric space-times some of the intuitive spirit of elementary geometry.

It will be convenient to use the word equivalent in a sense which is best conveyed by a fantastic example. Suppose a man wishes to bury a box of treasure and leave instructions so that it may be recovered later. The instructions are to involve nothing but geodetic measurements without reference to recognized landmarks. If he lives on a perfect sphere, it is impossible for him to give satisfactory instructions, because every point on a perfect sphere is equivalent to every other point. If he lives on an ellipsoid of revolution, his best plan is to bury the box at one of the two poles; true, the two poles are equivalent and so his instructions cannot identify the place precisely, but the poles are better than elsewhere, since all points on a parallel of latitude are equivalent. If he lives on a pear-shaped planet, the two poles are individually identifiable by geodetic measurements carried out in their
neighbourhoods, and he might bury his treasure at the pole which has
the smaller (or greater) Gaussian curvature.

We now proceed to symmetric space-times, armed with the words
equivalent and *identifiable*, to be used in the sense indicated above by
analogy; it is of course understood that the 'geodetic' measurements
to be made in space-time refer to the Riemannian metric.

In the flat Minkowskian space-time of special relativity, all events
are equivalent, all future-pointing timelike unit vectors are equivalent,
all spacelike unit vectors are equivalent, all future-pointing null
vectors are equivalent. No one of the elements just mentioned is
identifiable. These statements are true also for the de Sitter universe
discussed in the preceding section. In fact, the flat space-time of Minkowski and the de Sitter universe are as symmetric as space-time can be; there remain always the distinctions between past and future, and
between timelike, null, and spacelike.

When, in Newtonian physics, we create a simple model for the
discussion of the gravitational field of the sun or a pulsating star,
we impose spherical symmetry in a sense well understood. Our present
task is to transport this concept of spherical symmetry into general
relativity in order to discuss the gravitational field of the sun or a
pulsating star, the latter including the former as a special case.

The specification of spherical symmetry is simple. We suppose that
the world-line C of some particle of the star is an axis of symmetry in
the sense that, at each event on C, all unit vectors orthogonal to C are
equivalent. But we do not at present assume that all events on C are
equivalent.

It is evident that C must be a
geodesic, since otherwise its first normal
would be an identifiable vector ortho-
gonal to C.

Our task is now to calculate the
metric tensor g_{ij} in the case of spherical
symmetry, but this problem becomes
meaningful only after we have specified
the coordinates to be used.

There are a number of different co-
ordinate systems, each with its special
virtue. We shall start with what we shall
call *polar Gaussian coordinates*, defined
as follows. In Fig. 5 we see the central geodesic C with some event O chosen on it. Let $\lambda^i_{(\alpha)}$ be an orthonormal triad chosen orthogonal to C at O, and then carried by parallel transport along C. Let E be any event and EN the geodesic drawn from E to cut C orthogonally. The tangent to NE at N lies in the 3-element of $\lambda^i_{(\alpha)}$ and its direction may be described by the usual polar angles (θ, ϕ). We write $NE = \rho$, $ON = \tau$. Then $(\rho, \theta, \phi, \tau)$ are our polar Gaussian coordinates. They differ from the Gaussian coordinates of $1-\S 8$ only in that they are based on the geodesic C instead of on a 3-space. But this difference is rather trivial, and they possess an important property of Gaussian coordinates — they are admissible (except on C). The metric form of space-time is

$$\Phi = d\rho^2 + \Phi_1,$$

(57)

where Φ_1 is a quadratic form in $d\theta, d\phi, d\tau$.

By the assumed equivalence of all unit vectors orthogonal to C, Φ must not change if we change the triad $\lambda^i_{(\alpha)}$. A change of this triad is precisely a rotation of axes in Euclidean 3-space, and under such rotation the only invariant differential form in $d\theta, d\phi$ is

$$d\sigma^2 = d\theta^2 + \sin^2 \theta d\phi^2.$$

(58)

Accordingly we have, as a general expression for the metric in space-time with spherical symmetry, in terms of polar Gaussian coordinates,

$$\Phi = d\rho^2 + \rho^2 f(\rho, \tau) d\sigma^2 - h(\rho, \tau) d\tau^2,$$

(59)

where f and h possess continuous first derivatives. The factor ρ^2 is pulled out of the coefficient of $d\sigma^2$ for purely notational reasons. From the elementary flatness of space-time (the ratio of the circumference of a small circle to its radius is 2π), and from the definition of τ, we have on C

$$f(0, \tau) = 1, \quad h(0, \tau) = 1.$$

(60)

We can pass from polar Gaussian coordinates to the Fermi coordinates of $\Pi-\S 10$ (here denoted by x^α) by writing

$$x^1 = \rho \sin \theta \cos \phi, \quad x^2 = \rho \sin \theta \sin \phi, \quad x^3 = \rho \cos \theta, \quad x^4 = \tau.$$

(61)

Then (remember that Greek suffixes take the values 1, 2, 3) we have

$$x^\alpha x^\alpha = \rho^2, \quad x^\alpha dx^\alpha = d\rho, \quad dx^\alpha dx^\alpha = d\rho^2 + \rho^2 d\sigma^2,$$

(62)
and (59) gives

\[
\Phi = g_{ij} dx^i dx^j,
\]

\[
\begin{align*}
 g_{\alpha\beta} &= f \delta_{\alpha\beta} + \rho^{-2}(1-f)x^\alpha x^\beta, \\
 g_{\alpha 4} &= 0, \\
 g_{44} &= -h,
\end{align*}
\]

(63)

\(f\) and \(h\) being functions of \(\rho\) and \(x^4\).

For some curious reason, neither of the above systems of coordinates gives maximum simplicity in the field equations, and we now construct a third system which we call curvature coordinates. Consider the 2-space for which \((\rho, \tau)\) have fixed values and \((\theta, \phi)\) are current coordinates. By virtue of the assumed spherical symmetry, all points of this 2-space are equivalent. It is therefore a 2-space of constant intrinsic Gaussian curvature, say \(1/r^2\), \(r\) being a function of \((\rho, \tau)\). This 2-space is in fact intrinsically indistinguishable from an ordinary sphere of radius \(r\): it has an invariant area \(4\pi r^2\) (this is perhaps the easiest way of remembering what \(r\) is), and the metric on it is

\[
ds^2 = r^2 d\sigma^2.
\]

(64)

Comparison with (59) gives

\[
r^2 = \rho^2 f.
\]

(65)

It is evident that \(r = 0\) on \(C\).

We now consider the other type of 2-space, on which \((\theta, \phi)\) have fixed values and \((\rho, \tau)\) are current coordinates. In it we draw the curves \(r = \text{const}\.\) (Fig. 6), and their orthogonal trajectories, such as \(EM\). Then any event \(E\) defines an event \(M\) on \(C\), and, if we write \(OM = t\), then we have in \((r, t)\) a system of orthogonal coordinates in the 2-space in question. Thus, in terms of these curvature coordinates, we have

\[
\Phi = A(r, t)dr^2 + r^2 d\sigma^2 - B(r, t)dt^2,
\]

(66)

with

\[
A(0, t) = 1, \quad B(0, t) = 1.
\]

(67)

We use the word curvature on account of the way in which \(r\) is defined.

But, although these curvature coordinates simplify the field equations as we shall see later, they have a certain disadvantage. The Gaussian coordinates \((\rho, \theta, \phi, \tau)\) are admissible, but, in the process of
obtaining the orthogonal trajectories of the lines \(r = \text{const.} \) a degree of smoothness is lost, and we must be prepared for discontinuities in the first derivatives of \(A \) and \(B \), although these functions themselves are continuous. This question of smoothness, which has caused considerable confusion, has been carefully examined by Israel [1958]; we shall not discuss it further here.

We pass now to a fourth system of coordinates, \(\text{null coordinates} \). Taking \((\theta, \phi)\) as before, we define coordinates \(x^1, x^4 \) of an event \(E \) (Fig. 7) by drawing through \(E \) the complete null cone, cutting \(C \) at \(P \) and \(Q \), say. We write \(OP = x^1, OQ = x^4 \). Then the null coordinates of \(E \) are \((x^1, \theta, \phi, x^4)\) and the metric form is (as is easy to see from the null character of \(PE \) and \(EQ \)).

\[
\Phi = -2F(x^1, x^4)dx^1dx^4 + H(x^1, x^4)d\sigma^2. \quad (68)
\]

Here \(F \) and \(H \) are arbitrary functions \(^1\), \(H \) being the same as \(r^2 \).

We have now obtained in (59), (63), (66) and (68) four different (but of course equivalent) ways of writing the metric form in space-time with spherical symmetry. In each case there are \(\text{two} \) unknown functions of \(\text{two} \) independent variables. Thus the imposition of spherical symmetry gives a great simplification; in a general field, with Gaussian coordinates, there are \(\text{six} \) unknown functions of \(\text{four} \) independent variables. It is because of this simplification that we can really get something done in the case of spherical symmetry.

There are of course other ways of writing the metric form for spherical symmetry. There are \(\text{isothermal coordinates} \) for which

\[
\Phi = C(x^1, x^4)[(dx^1)^2 - (dx^4)^2] + H(x^1, x^4)d\sigma^2, \quad (69)
\]

and \(\text{isotropic coordinates} \) for which

\[
\Phi = M(x^\beta x^\beta, x^4)dx^\alpha dx^\alpha - N(x^\beta x^\beta, x^4)(dx^4)^2. \quad (69a)
\]

However there is always a danger in losing sight of the geometrical meaning of the coordinates employed.

\(^1\) For conditions on the axis \(C \), see Synge [1957b].
§ 3. VARIOUS FORMULAE FOR SPHERICAL SYMMETRY

Spherical symmetry is so interesting by virtue of its comparative simplicity, and the physical problems associated with it are so far from being exhausted, that it seems wise to develop in some detail a variety of formulae. If we make our calculations for the form 1

\[\Phi = e^\alpha (dx^1)^2 + e^\beta [(dx^2)^2 + \sin^2 x^2 (dx^3)^2] - e^\gamma (dx^4)^2, \]

(70)

where \(\alpha, \beta, \gamma \) are three functions of \((x^1, x^4)\), we can specialize our results by the following special demands:

Polar Gaussian coordinates: \(\alpha = 0 \).

Curvature coordinates: \(\beta = 2 \log x^1 \quad (x^1 = r). \)

(71)

Isothermal coordinates: \(\alpha = \gamma \).

Isotropic coordinates: \(\alpha = \beta \).

This will not cover Fermi coordinates or null coordinates; they must be dealt with separately, if we are to avoid the tedium of transforming from one coordinate system to another.

In working with (70), we shall use the following notation:

\[\sin x^2 = s, \quad \cos x^2 = c. \]

(72)

We shall indicate the partial derivatives of \(\alpha, \beta, \gamma \) with respect to \((x^1, x^4)\) by subscripts without commas, so that, for example,

\[\alpha_1 = \frac{\partial \alpha}{\partial x^1}, \quad \gamma_{14} = \frac{\partial^2 \gamma}{\partial x^1 \partial x^4}. \]

(73)

For the form (70) we have

\[g_{11} = e^\alpha, \quad g_{22} = e^\beta, \quad g_{33} = e^\beta s^2, \quad g_{44} = -e^\gamma, \quad g_{ij} = 0 \quad (i \neq j), \]

\[g^{11} = e^{-\alpha}, \quad g^{22} = e^{-\beta}, \quad g^{33} = e^{-\beta}s^{-2}, \quad g^{44} = -e^{-\gamma}, \quad g^{ij} = 0 \quad (i \neq j), \]

(74)

\[g = \det g_{ij} = -s^2 \exp(\alpha + 2\beta + \gamma), \]

\[\log \sqrt{-g} = \frac{1}{2} \alpha + \beta + \frac{1}{2} \gamma + \log s. \]

1 For a general orthogonal metric, the Christoffel symbols and the Einstein tensor were calculated explicitly by Dingle [1933a] and will be found in Tolman [1934b, p. 254] and McVittie [1956, p. 69], but they are naturally rather formidable.
The surviving components of the Christoffel symbol Γ^i_{jk} are as follows:

\[
\begin{align*}
\Gamma_{11}^1 &= \frac{1}{2}\alpha_1, & \Gamma_{11}^4 &= \frac{1}{2}\alpha_4 e^{\alpha - \gamma}, \\
\Gamma_{12}^2 &= \Gamma_{13}^3 = \frac{1}{2}\beta_1, & \Gamma_{14}^4 &= \frac{1}{2}\gamma_1, \\
\Gamma_{22}^1 &= -\frac{1}{2}\beta_1 e^{\beta - \alpha}, & \Gamma_{22}^4 &= \frac{1}{2}\beta_4 e^{\beta - \gamma}, \\
\Gamma_{23}^3 &= cs^{-1}, & \Gamma_{24}^4 &= \Gamma_{34}^3 = \frac{1}{2}\beta_4, \\
\Gamma_{33}^1 &= -\frac{1}{2}\beta_1 e^{\beta - \alpha} s^2, & \Gamma_{33}^2 = -sc, & \Gamma_{33}^4 &= \frac{1}{2}\beta_4 e^{\beta - \gamma} s^2, \\
\Gamma_{44}^1 &= \frac{1}{2}\gamma_1 e^{\gamma - \alpha}, & \Gamma_{44}^4 &= \frac{1}{4}\gamma_4.
\end{align*}
\]

Hence, by direct calculation from 1–(88), the surviving components of the Riemann tensor are found to be as follows:

\[
\begin{align*}
R_{2323} &= s^2 e^\beta (1 - \frac{1}{4}\beta_1^2 e^{\beta - \alpha} + \frac{1}{4}\beta_4^2 e^{\beta - \gamma}), \\
R_{1212} &= e^\beta (-\frac{1}{2}\beta_1 - \frac{1}{4}\beta_1^2 + \frac{1}{2}\alpha_1 \beta_1) + \frac{1}{4}\alpha_4 \beta_4 e^{\alpha + \beta - \gamma}, \\
R_{3131} &= s^2 R_{1212}, \\
R_{1224} &= e^\beta (\frac{1}{2}\beta_4 + \frac{1}{4}\beta_1 \beta_4 - \frac{1}{2}\alpha_4 \beta_1 - \frac{1}{4}\beta_4 \gamma_1), \\
R_{3134} &= -s^2 R_{1224}, \\
R_{1414} &= e^\alpha (-\frac{1}{2}\alpha_4 - \frac{1}{4}\alpha_4^2 + \frac{1}{2}\alpha_4 \gamma_1) + e^\gamma (\frac{1}{2}\gamma_1 + \frac{1}{4}\gamma_1^2 - \frac{1}{4}\gamma_1 \alpha_1). \\
R_{2424} &= e^\beta (-\frac{1}{2}\beta_4 - \frac{1}{4}\beta_4^2 + \frac{1}{2}\beta_4 \gamma_4) + \frac{1}{4}\beta_1 \gamma_1 e^{\beta - \alpha + \gamma}. \\
R_{3434} &= s^2 R_{2424}.
\end{align*}
\]

We note that those components vanish in which there is just one subscript 2 or just one subscript 3, a fact which is easy to verify without calculation on the basis of the symmetry alone. Likewise for the Ricci tensor, a component vanishes if it has just one subscript 2 or one subscript 3, and calculation gives for the surviving components the following values:

\[
\begin{align*}
R_{11} &= \beta_{11} + \frac{1}{2}\beta_1^2 + \frac{1}{2}\gamma_{11} + \frac{1}{4}\gamma_1^2 - \frac{1}{2}\alpha_1 \beta_1 - \frac{1}{4}\alpha_1 \gamma_1 \\
&\quad + e^{\alpha - \gamma} (-\frac{1}{2}\alpha_4 - \frac{1}{4}\alpha_4^2 - \frac{1}{2}\alpha_4 \beta_4 + \frac{1}{4}\alpha_4 \gamma_1), \\
R_{22} &= -1 + e^{\beta - \alpha} (\frac{1}{2}\beta_{11} + \frac{1}{2}\beta_1^2 + \frac{1}{4}\beta_1 \gamma_1 - \frac{1}{4}\alpha_1 \beta_1) \\
&\quad + e^{\beta - \gamma} (-\frac{1}{2}\beta_4 - \frac{1}{4}\beta_4^2 - \frac{1}{2}\alpha_4 \beta_4 + \frac{1}{4}\alpha_4 \gamma_4), \\
R_{33} &= s^2 R_{22}, \\
R_{44} &= \beta_{44} + \frac{1}{2}\beta_4^2 + \frac{1}{2}\alpha_{44} + \frac{1}{4}\alpha_4^2 - \frac{1}{4}\alpha_4 \gamma_4 - \frac{1}{2}\beta_4 \gamma_4 \\
&\quad + e^{\gamma - \alpha} (-\frac{1}{2}\gamma_{11} - \frac{1}{4}\gamma_1^2 + \frac{1}{2}\alpha_1 \gamma_1 - \frac{1}{2}\beta_1 \gamma_1), \\
R_{14} &= R_{41} = \beta_{14} + \frac{1}{2}\beta_1 \beta_4 - \frac{1}{2}\alpha_4 \beta_1 - \frac{1}{2}\beta_4 \gamma_1.
\end{align*}
\]
Hence, as the culmination of this calculation, we obtain the following expressions for the surviving components of the mixed Einstein tensor for the form (70):

\[
G_1^1 = e^{-\alpha}(-\frac{1}{4}\beta_1^2 - \frac{1}{2}\beta_1\gamma_1) + e^{-\beta} + e^{-\gamma}(\beta_{44} + \frac{3}{4}\beta_4^2 - \frac{1}{2}\beta_4\gamma_4),
\]

\[
G_2^2 = G_3^3 = e^{-\alpha}(-\frac{1}{4}\beta_{11} - \frac{1}{2}\beta_1^2 - \frac{1}{4}\gamma_1^2 - \frac{1}{2}\beta_1\gamma_1 + \frac{1}{4}\alpha_1\beta_1 + \frac{1}{4}\alpha_1\gamma_1)
+ e^{-\gamma}(\frac{1}{2}\beta_{44} + \frac{1}{2}\beta_4^2 + \frac{1}{4}\alpha_{44} + \frac{1}{4}\alpha_4^2 + \frac{1}{4}\alpha_4\beta_4 - \frac{1}{4}\beta_4\gamma_4 - \frac{1}{4}\alpha_4\gamma_4),
\]

\[
G_4^4 = e^{-\alpha}(-\beta_{11} - \frac{3}{2}\beta_1^2 + \frac{1}{2}\alpha_1\beta_1) + e^{-\beta} + e^{-\gamma}(\frac{1}{4}\beta_4^2 + \frac{1}{2}\alpha_4\beta_4),
\]

\[
e^{\alpha}G_4^4 = - e^{-\gamma}G_4^4 = \beta_{14} + \frac{1}{2}\beta_1\beta_4 - \frac{1}{2}\alpha_4\beta_1 - \frac{1}{2}\beta_4\gamma_1.
\]

For polar Gaussian coordinates we are to put \(\alpha = 0\) in the above formulae, for isothermal coordinates \(\alpha = \gamma\), and for isotropic coordinates \(\alpha = \beta\). These substitutions produce some simplifications, but we shall not trouble to write out the resulting formulae. For curvature coordinates, however, the simplifications are greater. We have

\[
r = x^1, \quad \theta = x^2, \quad \phi = x^3, \quad t = x^4
\]

\[
\Phi = e^{\alpha}dr^2 + r^2d\sigma^2 - e^{\gamma}dt^2,
\]

\[
d\sigma^2 = d\theta^2 + \sin^2 \theta d\phi^2,
\]

\[
e^{\beta} = r^2, \quad \beta = 2\log r, \quad \beta_{11} = 2\nu^{-1}, \quad \beta_1 = -2\nu^{-2}, \quad \beta_{11} + \frac{1}{2}\beta_1^2 = 0, \quad \beta_4 = 0.
\]

Then (76) gives (\(s = \sin \theta\))

\[
R_{2323} = s^2r^{-2}(1 - e^{-\alpha}), \quad R_{1212} = \frac{1}{2}r\alpha_1, \quad R_{3131} = s^2R_{1212},
\]

\[
R_{1224} = -\frac{1}{2}r\alpha_4, \quad R_{3134} = -s^2R_{1224},
\]

\[
R_{1414} = e^{\alpha}(-\frac{1}{2}\alpha_{44} - \frac{1}{4}\alpha_4^2 + \frac{1}{4}\alpha_4\gamma_4) + e^{\gamma}(\frac{1}{4}\gamma_{11} + \frac{1}{4}\gamma_1^2 - \frac{1}{4}\alpha_1\gamma_1),
\]

\[
R_{2424} = \frac{1}{2}r\gamma_1e^{\gamma-\alpha}, \quad R_{3434} = s^2R_{2424},
\]

and (78) gives

\[
G_1^1 = r^{-2} - r^{-2}e^{-\alpha}(1 + r\gamma_1),
\]

\[
G_2^2 = G_3^3 = e^{-\alpha}(-\frac{1}{2}\gamma_{11} - \frac{1}{4}\gamma_1^2 - \frac{1}{2}r^{-1}\alpha_1 + \frac{1}{2}r^{-1}\alpha_1 + \frac{1}{4}x_1\gamma_1)
+ e^{-\gamma}(\frac{1}{2}\alpha_{44} + \frac{1}{4}\alpha_4^2 - \frac{1}{4}\alpha_4\gamma_4),
\]

\[
G_4^4 = r^{-2} - r^{-2}e^{-\alpha}(1 - r\alpha_1),
\]

\[
e^{\alpha}G_4^4 = - e^{-\gamma}G_4^4 = -r^{-1}\alpha_4.
\]
Note that no mention has been made here of field equations. The formulae result from the imposition of spherical symmetry on Riemannian space-time, and nothing else. Let us push the work a little further in this purely geometrical spirit.

Except for the conditions (67) for elementary flatness, which now read
\[
\alpha = \gamma = 0 \text{ for } r = 0,
\]
(82)
\[\alpha\] and \[\gamma\] are arbitrary functions of \((r, t)\) or \((x^1, x^4)\), and (81) gives the corresponding Einstein tensor by differentiation. However these formulae have a remarkable property — we can solve for \((\alpha, \gamma)\) in terms of \(G_1^4\) and \(G_4^4\) quite simply. From the third equation, with (82), we get
\[
e^{-\alpha} = 1 - \frac{1}{r} \int_0^r r^2 G_4^4 dr.
\]
(83)
With \[\alpha\] thus obtained, the first of (81) with (82) gives
\[
\gamma = \int_0^r \left(\frac{e^{\alpha} - 1}{r} - re^{\alpha} G_1^1 \right) dr.
\]
(84)
We can then use the other equations of (81) to express the other components of \(G_j^i\) in terms of \(G_1^1\) and \(G_4^4\). By the last of (81) we have
\[
G_4^1 = - e^{\gamma-\alpha} G_1^4 = - \frac{1}{\gamma^2} \int_0^r r^2 G_4^4_{,4} dr.
\]
(85)
But to evaluate \(G_2^2\) we can use, instead of (81), the identity
\[
G_{4,4}^i = 0
\]
(86)
with \(i = 1\); this gives
\[
G_2^2 = G_3^3 = \frac{1}{2} r G_{1,1}^1 + \frac{1}{2} r G_{1,4}^4 + (1 + \frac{1}{4} r \gamma_1) G_1^1 + \frac{1}{4} r (\alpha_4 + \gamma_4) G_4^4 - \frac{1}{4} r \gamma_1 G_4^4.
\]
(87)
The significance of all this is that we have essentially \textit{two} arbitrary functions, \((\alpha, \gamma)\) or \((G_1^1, G_4^4)\), and in terms of these the other \(G_j^i\) are determined by differentiation or integration.

As indicated earlier, curvature coordinates are not admissible in the
technical sense. Thus across a 3-space of discontinuity with equation

\[f(r, t) = 0 \] \hspace{1cm} (88)

we are to assume the continuity of \(\alpha \) and \(\gamma \), but not necessarily the continuity of their first derivatives. The junction conditions are in fact, as in \(i-(229) \),

\[G_1^{1f,1} + G_1^{4f,4} = [C], \quad G_4^{1f,1} + G_4^{4f,4} = [C], \] \hspace{1cm} (89)

where \([C]\) means continuous. In the particular case where the discontinuity is \(r = \text{const.} \), these conditions reduce to

\[G_1^1 = [C], \quad G_4^1 = [C]. \] \hspace{1cm} (90)

§ 4. THE EXTERIOR SCHWARZSCHILD FIELD

Consider a star or other spherically symmetric distribution of matter. At present we are not interested in its interior, but only in a domain \(r > a \) (we use curvature coordinates) in which there is no matter. In that domain we have \(T_{ij} = 0 \), and so the field equations read

\[G_i^j - \Lambda \delta_i^j = 0; \] \hspace{1cm} (91)

we include the cosmological constant for the sake of generality. But in view of the spherical symmetry we have to consider only the equations

\[G_1^1 = \Lambda, \]
\[G_1^4 = \Lambda, \] \hspace{1cm} (92)
\[G_4^1 = 0. \]

The other equations

\[G_2^2 = \Lambda, \quad G_3^3 = \Lambda, \] \hspace{1cm} (93)

will then be satisfied by virtue of the identity (87).

Substituting in (92) from (81), we have the three equations

\[e^{-\alpha(1 + r\gamma_1)} = 1 - \Lambda r^2, \]
\[e^{-\alpha(1 - r\alpha_1)} = 1 - \Lambda r^2, \] \hspace{1cm} (94)
\[\alpha_4 = 0. \]
From the last of these we have
\[\alpha = \alpha(r), \]
and then from the second
\[e^{-\alpha} = 1 - \frac{A}{r} - \frac{1}{3} \Lambda r^2, \]
where \(A \) is an arbitrary constant. (We must not apply (82) here, because the domain \(r > a \) under discussion does not include the axis of symmetry \(r = 0 \). Subtracting the second of (94) from the first, we get
\[\alpha_1 + \gamma_1 = 0, \]
and so
\[\gamma = -\alpha + F(t), \]
where \(F \) is an arbitrary function. Hence the metric for the domain \(r > a \) is
\[\Phi = \frac{dr^2}{1 - \frac{A}{r} - \frac{1}{3} \Lambda r^2} + r^2 d\sigma^2 - \left(1 - \frac{A}{r} - \frac{1}{3} \Lambda r^2 \right) e^{F(t)} dt^2. \]
If we change from \(t \) to \(t' \) by the transformation
\[t' = \int \exp[\frac{1}{2} F(t)] dt, \]
we get
\[\Phi = \frac{dr^2}{1 - \frac{A}{r} - \frac{1}{3} \Lambda r^2} + r^2 d\sigma^2 - \left(1 - \frac{A}{r} - \frac{1}{3} \Lambda r^2 \right) dt'^2. \]
This may be referred to as the Schwarzschild exterior field [Schwarzschild, 1916a], although the term is properly used only if we put \(\Lambda = 0 \).

A space-time is called stationary if coordinates exist so that
\[g_{tt,4} = 0. \]
A stationary space-time admits a group of motions (cf. vi–§ 3). If in addition to (102) we have
\[g_{\alpha 4} = 0, \]
so that the metric form is
\[\Phi = g_{\alpha\beta}dx^\alpha dx^\beta + g_{44}(dx^4)^2, \]
(104)
the space-time is said to be static.

It is clear that space-time with the metric form (101) is static. In fact, any spherically symmetric field in vacuo is static. This remarkable result is often referred to as ‘Birkhoff’s theorem’.

Some critical remarks may be made about the formula (101).

First, in § 2 the coordinate \(t \) was given a precise definition as proper time on the axis \(r = 0 \). In passing to \(t' \) by (100) this meaning is lost. However, if we drop the embarrassing constant \(A \) (see below), so that (101) becomes
\[\Phi = \frac{dr^2}{1 - \frac{A}{r}} + r^2d\sigma^2 - \left(1 - \frac{A}{r}\right)dt'^2, \]
(105)
and let \(r \) tend to infinity, we see that \(dt' \) is the element of proper time for a particle which is fixed in the sense that \((r, \theta, \phi) \) are constant.

Secondly, to preserve the signature of \(\Phi \) in (101), we must have
\[1 - \frac{A}{r} - \frac{1}{3}Ar^2 > 0. \]
(106)
If we assume \(A \) positive, as is usually done, it is clear that this inequality will be broken for sufficiently large values of \(r \). However, this disaster is forestalled by another. As will be shown below, \(r \) attains a maximum as we go out along the geodesics \(NE \) of Fig. 5, and then decreases. This means that, beyond the maximum, the curvature coordinates cannot be used because there is not a 1 : 1 correspondence between events and coordinate tetrads \((r, \theta, \phi, t) \).

To examine the behaviour of \(r \), we use polar Gaussian coordinates, so that the metric form reads
\[\Phi = d\rho^2 + r^2d\sigma^2 - e^\rho d\tau^2. \]
(107)
To agree with the notation of § 3, we write
\[\rho = x^1, \quad \tau = x^4, \quad r^2 = e^\rho, \]
(108)
and remember that now \(r \) is not an independent variable but a function

1 Cf. Jebsen [1921], Alexandrow [1923], Birkhoff [1923].

2 It is assumed that there is no intersection for \(\rho > 0 \) of neighbouring geodesics \(NE \) of Fig. 5; equivalently, \(r > 0, e^\rho > 0 \) for \(\rho > 0 \).
of \((x^1, x^4)\). Of the field equations in vacuo, we shall use only
\[
G^4_4 = \Lambda, \quad G^1_4 = 0. \tag{109}
\]
Since we are using polar Gaussian coordinates, we put \(\alpha = 0\) in (78), and the equations (109) read
\[
- \beta_{11} - \frac{3}{4} \beta_1^2 + e^{-\beta} + \frac{1}{4} e^{-\gamma} \beta_4^2 = \Lambda, \\
\beta_{14} + \frac{1}{2} \beta_1 \beta_4 - \frac{1}{2} \beta_4 \gamma_1 = 0. \tag{110}
\]
Now
\[
\beta = 2 \log r, \quad \beta_1 = \frac{2r_1}{r}, \quad \beta_4 = \frac{2r_4}{r}, \\
\beta_{11} = \frac{2r_{11}}{r} - \frac{2r_1^2}{r^2}, \quad \beta_{14} = \frac{2r_{14}}{r} - \frac{2r_1 r_4}{r^2}, \tag{111}
\]
and so (110) become
\[
1 - 2r r_{11} - r_1^2 + e^{-\gamma} r_4^2 = \Lambda r^2, \\
2r_{14} - r_4 \gamma_1 = 0. \tag{112}
\]
The second of these gives
\[
r_4 e^{-\gamma} = B(x^4), \tag{113}
\]
where the function \(B\) is arbitrary. The first of (112) then gives
\[
1 - 2r r_{11} - r_1^2 + B^2 = \Lambda r^2, \tag{114}
\]
which may be written
\[
(r_1^2)_{11} = (1 - \Lambda r^2 + B^2) r_1, \tag{115}
\]
and hence
\[
r_1^2 = 1 - \frac{1}{3} \Lambda r^2 + B^2 - \frac{C}{r}, \tag{116}
\]
where \(C\) is another arbitrary function of \(x^4\). This last equation may, for fixed \(x^4\), be integrated by a quadrature, and inversion will then give the function \(r(x^1, x^4)\). However it is evident from (116) that, if \(\Lambda\) is positive, \(r\) cannot increase indefinitely as \(x^1\) increases; it will have a maximum, and then decrease, as indicated above \(^1\).

\(^1\) Questions of this nature have been studied in some detail by O’Raifear-Taigh [1958a].
§ 5. THE COMPLETE FIELD OF A SPHERICALLY SYMMETRIC DISTRIBUTION
OF MATTER

In the preceding section we considered the exterior field of a spherically symmetric distribution of matter; it seemed desirable to deal separately with the exterior field in order to bring out the fact that Birkhoff's theorem is independent of the structure of the matter, provided of course that it is spherically symmetric. Now we turn to the general problem of the total field, exterior and interior.

To fix our ideas, we think of a star, which may pulsate radially \(^1\). For the sake of formal simplicity, we shall use curvature coordinates, so that the metric form is

\[
\Phi = e^{\alpha} dr^2 + r^2 d\sigma^2 - e^{\gamma} d\Omega^2,
\]

\[
d\sigma^2 = d\theta^2 + \sin^2 \theta d\phi^2,
\]

\[
x^1 = r, \quad x^2 = \theta, \quad x^3 = \phi, \quad x^4 = t. \tag{117}
\]

For generality we shall include the cosmological constant \(\Lambda\), so that the field equations read

\[
G^i_j - \Lambda \delta^i_j = - \kappa T^i_j, \quad \kappa = 8\pi. \tag{118}
\]

But, in view of the embarrassments indicated in the preceding section, we shall put \(\Lambda = 0\) on occasion.

It is really a matter of indifference whether we suppose the star terminated by a sharp boundary, or extending diffusely to infinity. We can regard the former as a limiting case of the latter. If we prefer the sharp boundary, we represent it by an equation

\[
f(r, t) = 0, \tag{119}
\]

and show it diagrammatically as in Fig. 8. Across the sharp boundary we have to satisfy the junction conditions (89).

\(^1\) A superficial interpretation of Birkhoff's theorem might suggest that, since the exterior field is static, a star cannot pulsate! That would be quite a false conclusion. A star can indeed pulsate with spherical symmetry, but in relativity, as in Newtonian theory, these pulsations do not affect the exterior gravitational field. There is, in fact, no gravitational 'monopole radiation'.
Spherical symmetry imposes restrictions on the energy tensor. Its eigenvectors λ^i and eigenvalues k are such that, at any event, two eigenvectors lie in the 2-element for which $dx^2 = dx^3 = 0$ and the other two in the 2-element for which $dx^1 = dx^4 = 0$. In the latter case the two eigenvalues are equal and the two eigenvectors indeterminate. The equations for the eigenvectors and eigenvalues are

$$T_{ij}\lambda^j = kg_{ij}\lambda^j. \quad (120)$$

Remembering that g_{ij} is diagonal, we see that the equations pertaining to $dx^1 = dx^4 = 0$ read

$$T_{12}\lambda^2 + T_{13}\lambda^3 = 0,$$

$$T_{22}\lambda^2 + T_{23}\lambda^3 = k g_{22}\lambda^2,$$

$$T_{32}\lambda^2 + T_{33}\lambda^3 = k g_{33}\lambda^3,$$

$$T_{42}\lambda^2 + T_{43}\lambda^3 = 0. \quad (121)$$

These are to be satisfied by some k with the ratio $\lambda^2 : \lambda^3$ arbitrary. Hence

$$T_{12} = T_{13} = T_{42} = T_{43} = T_{23} = 0,$$

$$T_{22}/g_{22} = T_{33}/g_{33}, \quad (122)$$

and so the only surviving components of T^i_j are

$$T_1^1, \quad T_2^2 = T_3^3, \quad T_4^4, \quad T_1^4, \quad T_4^1, \quad (123)$$

with

$$e^\alpha T_4^1 = - e^\gamma T_1^4. \quad (124)$$

Of the field equations (118) there are just four to satisfy:

$$G_1^1 = \Lambda - \kappa T_1^1,$$

$$G_2^2 = \Lambda - \kappa T_2^2,$$

$$G_4^4 = \Lambda - \kappa T_4^4,$$

$$G_4^1 = - \kappa T_1^4. \quad (125)$$

When we substitute for the left hand sides from (81), we have before us four equations connecting the six quantities

$$\alpha, \quad \gamma, \quad T_1^1, \quad T_2^2, \quad T_4^4, \quad T_1^4. \quad (126)$$
Our plan of campaign is to regard T_1^1 and T_4^4 as assigned functions of (r, t). Instead of solving (125) afresh, we turn to results established in § 3. Substitution from (125) in (83) and (84) gives

$$e^{-\alpha} = 1 - \frac{1}{3}Ar^2 + \frac{\kappa}{\gamma} \int_0^r r^2 T_4^4 \, dr,$$

$$\gamma = - \Lambda \int_0^r re^\alpha \, dr + \int_0^r \left(\frac{e^\alpha - 1}{\gamma} + \kappa r e^\alpha T_1^1 \right) \, dr. \quad (127)$$

From the first and third of (81) we have

$$G_1^1 - G_4^4 = - r^{-1} e^{-\alpha} (\alpha_1 + \gamma_1), \quad (128)$$

and hence by (125)

$$\alpha_1 + \gamma_1 = \kappa r e^\alpha (T_1^1 - T_4^4). \quad (129)$$

Thus we can write the second of (127) in the alternative form

$$\gamma = - \alpha + \kappa \int_0^r re^\alpha (T_1^1 - T_4^4) \, dr. \quad (130)$$

Having thus expressed α and γ in terms of T_1^1 and T_4^4, we get the following expressions for the other members of (126) by substituting from (125) in (85) and (87):

$$T_4^1 = - r^{-2} \int_0^r r^2 T_{4,4}^4 \, dr,$$

$$T_2^2 = \frac{1}{2} r T_{1,1}^1 + \frac{1}{2} r T_{1,4}^4 + (1 + \frac{1}{4} r \gamma_1) T_1^1 + \frac{1}{4} r e^{\alpha - \gamma} (\alpha_4 + \gamma_4) T_1^1 - \frac{1}{4} r \gamma_1 T_4^4. \quad (131)$$

If we put

$$T_1^1 = 0, \quad T_4^4 = 0, \quad (132)$$

we destroy all the components T_j^i and, in fact, annihilate the star. Then (127) and (130) give

$$e^{-\alpha} = e^\gamma = 1 - \frac{1}{3} Ar^2, \quad (133)$$
and the metric form becomes

\[\Phi = \frac{dr^2}{1 - \frac{1}{3} \Lambda r^2} + r^2 d\sigma^2 - (1 - \frac{1}{3} \Lambda r^2) dt^2. \]

(134)

If \(\Lambda = 0 \), this is the metric of flat space-time. If \(\Lambda \neq 0 \), it is the metric of space-time of constant curvature, \(K = \frac{1}{3} \Lambda \). We have in fact rediscovered the de Sitter universe of § 1!

Leaving this very special case, let us put \(\Lambda = 0 \) and summarize the situation as follows: Given \(T^1_1 \) and \(T^4_4 \) arbitrarily as functions of \((r, t) \), the metric form (117) is consistent with the field equations provided \(\alpha \) and \(\gamma \) are given by

\[e^{-\alpha} = 1 + \frac{\kappa}{r} \int_0^r r^2 T^4_4 dr, \]

\[\gamma = \int_0^r \left(\frac{e^\alpha - 1}{r} + \kappa r e^{\alpha} T^1_1 \right) dr \]

(135)

\[= - \alpha + \kappa \int_0^r r e^{\alpha} (T^1_1 - T^4_4) dr, \]

the remaining components of \(T^i_i \) being given by (131).

§ 6. THE MASS OF A BOUNDED STAR AND THE THEOREM OF GAUSS

Let us now consider the case where the star has a sharp boundary as in Fig. 8, with vacuum outside. All that has been said above holds good, but we have to take into account the junction conditions (89), which are equivalent to

\[T^1_1 f,1 + T^4_4 f,4 = 0, \quad T^1_1 f,1 + T^4_4 f,4 = 0 \text{ for } f = 0. \]

(136)

These imply

\[T^1_1 T^4_4 - T^1_1 T^1_1 = 0 \text{ for } f = 0, \]

(137)

or, by (124) and (131),

\[T^1_1 T^4_4 + e^{\alpha - \gamma r^{-4}} \left(\int_0^r r^2 T^4_4 dr \right)^2 = 0 \text{ for } f = 0. \]

(138)
In attempting to construct a model of a star with a sharp boundary, we cannot simply assign T_1^1 and T_4^4 smoothly and then wipe them out beyond some chosen curve $f(r, t) = 0$. The only possible curve is that given by (138), and there is a condition which restricts the original choice of T_1^1 and T_4^4: if the expression in (138) is denoted by f, then f must satisfy one of (136) on $f = 0$.

Pursuing the case of a bounded spherical star, in general pulsating, and taking $A = 0$, outside the star we have as in (96)

$$e^{-\alpha} = 1 - \frac{A}{r},$$ \hspace{1cm} (139)

where A is a constant. On the other hand, if the equation of the boundary of the star is $r = \chi(t)$, (135) gives at any event outside the star

$$e^{-\alpha} = 1 + \frac{\kappa}{r} \int_0^{\chi(t)} r^2 T_4^4 dr.$$ \hspace{1cm} (140)

It follows that

$$A = - \frac{\kappa}{\chi(t)} \int_0^{\chi(t)} r^2 T_4^4 dr.$$ \hspace{1cm} (141)

Thus the right hand side, which we might expect to be a function of t, is actually a constant. This rather surprising fact may be verified as follows. With the aid of (131) we have

$$\frac{d}{dt} \int_0^{\chi(t)} r^2 T_4^4 dr = \int_0^{\chi(t)} r^2 T_{4,4}^4 dr + r^2 T_4^4 \chi'(t) = -r^2(T_4^1 - T_4^4 \chi'(t)),$$ \hspace{1cm} (142)

where T_4^1 and T_4^4 in this last expression are evaluated on the boundary. This vanishes on account of the second junction condition (136), and so the result is verified.

Introducing a numerical factor in order to obtain later an approximate agreement with Newtonian theory [cf. (154) and § 8], we define the mass m of a bounded star by

$$m = \frac{1}{2} A = -\frac{1}{2\kappa} \int_0^{\chi(t)} r^2 T_4^4 dr, \hspace{1cm} \kappa = 8\pi.$$ \hspace{1cm} (143)
Then for the exterior field we have

\[
e^{-\alpha} = 1 - \frac{2m}{r},
\]

\[
e^{\gamma} = \left(1 - \frac{2m}{r}\right) \exp \left[\kappa \int_{0}^{x(t)} \frac{T_{1}^{4} - T_{4}^{4}}{r - 2m} r^2 dr \right],
\]

\[
\Phi = \frac{dr^2}{1 - \frac{2m}{r}} + r^2 d\sigma - e^{\gamma} dt^2.
\]

(144)

In this work \(t \) is a well-defined coordinate — it is proper time measured at the star’s centre. We already know it is always possible to make the exterior form static. Now we see what the ‘time’ \(t' \) of (105) means. For we get

\[
\Phi = \frac{dr^2}{1 - \frac{2m}{r}} + r^2 d\sigma - \left(1 - \frac{2m}{r}\right) dt'^2
\]

(145)

by putting

\[
t' = \int \exp \left(\frac{1}{2} \kappa \int_{0}^{x(t)} \frac{T_{1}^{4} - T_{4}^{4}}{r - 2m} r^2 dr \right) dt.
\]

(146)

In the history of relativity, the exterior form (145) has been given priority over the internal form, being regarded as in some way more fundamental. Now it is clear that something goes wrong if \(r = 2m \). This is the so-called ‘Schwarzschild singularity’, and a good deal of consideration has been given to it. However, if we escape from mere formalism and inquire into what we are really doing, we shall find that our work has actually involved some tacit assumptions in the nature of inequalities. It is in fact assumed that the magnitude of \(T_{4}^{4} \) is such that \(\exp(-\alpha) \) as in (135) is positive everywhere, and this means that events where \(r = 2m \) occur inside the star. Now (145) applies only outside the star, and there is no singularity of (145) in the domain of its validity.

We now pass to the theorem of Gauss for a bounded star with spherical symmetry. We recall that, in Newtonian theory, this theorem reads

\[
\int N dS = 4\pi m,
\]

(147)
where N is the inward normal component of gravitational intensity on a surface S enclosing a total mass m.

To carry this over into relativity, we have to find a suitable analogue for Newtonian gravitational intensity. Now if an observer pursuing a t-line (with r, θ, ϕ constant) lets fall a test particle, its geodesic path will deviate from the t-line, and this deviation may be regarded as a measure of gravitational intensity. According to the investigation of the falling apple in III–§ 9 it would seem that we should measure the gravitational intensity by the magnitude b of the first curvature of the t-line, but, as we shall see, the theorem of Gauss comes out best if we use, not the magnitude b, but the first component b^1 of the first curvature vector.\(^1\) Since the coordinate system is well-defined geometrically, there is no objection to using the component of a vector, because this component is really an invariant.

The first curvature vector of any curve is

$$b^i = \frac{d^2 x^i}{ds^2} + \Gamma^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds}, \quad \text{(148)}$$

and for a t-line we have

$$b^1 = \Gamma^1_{44} \left(\frac{dt}{ds} \right)^2 = e^{-\gamma} \Gamma^1_{44}, \quad \text{(149)}$$

or by (75)

$$b^1 = \frac{1}{2} \gamma_1 e^{-\alpha}. \quad \text{(150)}$$

At an event outside the star, (135) gives

$$\gamma = \int_0^r \frac{e^\alpha - 1}{r} dr + \kappa \int_0^{\chi(t)} r e^\alpha T_1^1 dr, \quad \text{(151)}$$

$$\gamma_1 = \frac{e^\alpha - 1}{r}, \quad e^{-\alpha} \gamma_1 = \frac{1}{r} (1 - e^{-\alpha}) = \frac{2m}{r^2},$$

and so the gravitational intensity is

$$b^1 = \frac{m}{r^2}; \quad \text{(152)}$$

we recognize the inverse square law.

\(^1\) This is the r-component of b^i. We recall the invariant definition of r given in § 2.
Now integrate this intensity over the 2-sphere for which \(r = \text{const.}, \ t = \text{const.} \). The element of area is
\[
dS = r^2 \sin^2 \theta d\theta d\phi, \tag{153}
\]
and so we get
\[
\int b^1 dS = 4\pi m, \tag{154}
\]
which, on comparison with (147), we recognize as the theorem of Gauss.

§ 7. THE FIELD OF A FLUID WITH SPHERICAL SYMMETRY AND THE COMPLETE SCHWARZSCHILD FIELD

In the preceding work we have regarded \(T_1^1 \) and \(T_4^4 \) as basic functions, arbitrarily assigned except for the condition stated after (138). But this is hardly realistic physically, for matter has some structure, solid or fluid. We shall now find the field of a spherically symmetric distribution of perfect fluid, and in particular the field of a sphere composed of perfect fluid. We shall take \(\Lambda = 0 \) and consider only the static problem.

As in iv–(84) the energy tensor for a perfect fluid is
\[
T_{ij} = (\mu + \rho)V_i V_j + \rho g_{ij}, \tag{155}
\]
where \(\mu \) is density, \(\rho \) is pressure, and \(V^i \) is 4-velocity, satisfying
\[
g_{ij}V^i V^j = -1. \tag{156}
\]
In the static problem we take \(V^i \) pointing in the \(t \)-direction, so that with the metric (117)
\[
V^\alpha = 0, \quad V_\alpha = 0, \quad V^4 = e^{-\phi}, \quad V_4 = -e^{\phi}. \tag{157}
\]
Thus
\[
T_1^1 = T_2^2 = T_3^3 = \rho, \quad T_4^1 = T_4^4 = 0, \quad T_4^4 = -\mu, \tag{158}
\]
\(\mu \) and \(\rho \) being functions of \(r \) only.

The field equations are equivalent to (135) with (131). Instead of the second of (135) it is convenient to use (129). Thus, since the first of (131) is identically satisfied, we have to satisfy the following three equations:
\[
e^{-\alpha} = 1 - \frac{\kappa}{r} \int_0^r r^2 \mu dr, \tag{159}
\]
\[
\alpha_1 + \gamma_1 = \kappa r e^\alpha (\rho + \mu),
\]
\[
\dot{\rho}_1 + \frac{1}{2}\gamma_1 (\dot{\rho} + \mu) = 0.
\]
We recall that the subscript 1 means \(d/dr \).
The density \(\mu \) may be discontinuous, but \(\alpha, \gamma, \dot{\rho} \) are continuous, the continuity of \(\dot{\rho} \) being required by the junction conditions (90). If the fluid occupies a sphere of radius \(r = a \), with vacuum outside, then

\[
\mu = 0, \quad \dot{\rho} = 0 \quad \text{for} \quad r > a, \tag{160}
\]

and, as we approach \(r = a \) from inside, \(\dot{\rho} \to 0 \).

Since we have only the three equations (159) for the four quantities \(\alpha, \gamma, \mu, \dot{\rho} \), it is clear that we have before us no determinate problem. Determinacy is sometimes introduced in fluid problems by assuming a density-pressure relationship, but we shall not do that here. Instead we shall regard the function \(\mu(r) \) as assigned. This is of course only a psychological dodge to motivate the work, which consists of statements which are true on the basis of the equations (159) alone.

We shall assume the function \(\mu(r) \) smooth to start with, and deal with the case of a sharp boundary later.

The function \(\mu(r) \) being given, the first of (159) gives \(\alpha(r) \). Eliminating \(\gamma \) from the other two equations, we get the following differential equation for \((\dot{\rho} + \mu) \):

\[
(\dot{\rho} + \mu)_1 + \frac{1}{2}(\dot{\rho} + \mu)[\kappa r e^\alpha(\dot{\rho} + \mu) - \alpha_1] - \mu_1 = 0. \tag{161}
\]

If we define \(\sigma \) by

\[
\sigma^{-1} = \dot{\rho} + \mu, \tag{162}
\]

this equation becomes

\[
\sigma_1 + \mu_1 \sigma^2 + \frac{1}{2} \alpha_1 \sigma - \frac{1}{2} \kappa r e^\alpha = 0. \tag{163}
\]

We need not trouble to seek an explicit solution. For present purposes it is enough to note that, if the value of \(\dot{\rho} \) is assigned for some value of \(r \), this equation determines the function \(\sigma(r) \) and hence \(\dot{\rho}(r) \). Then the second of (159) gives \(\gamma \) in the form

\[
\gamma = -\alpha + \kappa \int_0^r r e^\alpha \sigma^{-1} dr. \tag{164}
\]

The problem of the spherically symmetric fluid is thus solved, at least in principle, with the function \(\mu(r) \) arbitrarily assigned.

The equation (163) may be written

\[
(\sigma e^{1\alpha})_1 = \frac{1}{2} \kappa r e^{3\alpha/2} - \mu_1 \sigma^2 e^{1\alpha}, \tag{165}
\]

and hence

\[
\sigma e^{1\alpha} = \sigma_0 + \frac{1}{2} \kappa \int_0^r r e^{3\alpha/2} dr - \int_0^r \mu_1 \sigma^2 e^{1\alpha} dr, \tag{166}
\]
where σ_0 is the value of σ for $r = 0$. This formula is not, of course, the solution of (163), for the unknown σ is present in the last integral, but it may be useful for iterative processes.

We now pass to the case of a homogeneous sphere of fluid, writing

$$\mu = \mu_0 \text{ for } r < a, \quad \mu = 0 \text{ for } r > a,$$

(167)

μ_0 being the constant density of the sphere. Taking $\rho = 0$ for $r > a$ as in (160), we have here a determinate problem, as we shall see.

We deal first with the interior $(r < a)$. By the first of (159),

$$e^{-\alpha} = 1 - qr^2, \quad q = \frac{1}{3} \kappa \mu_0 = \frac{8}{3} \pi \mu_0.$$

(168)

By (166)

$$\sigma e^{i\alpha} = \sigma_0 + \frac{1}{2} \kappa \int_0^r \rho e^{3\alpha/2} dr;$$

(169)

this integral is easy to evaluate, since by (168)

$$e^{-\alpha}dr = 2qrdv,$$

(170)

and so we get

$$\sigma = (\rho + \mu_0)^{-1} = \sigma_0 e^{-i\alpha} + \frac{1}{2} \kappa q^{-1} (1 - e^{-i\alpha}).$$

(171)

The constant σ_0 is evaluated by going to the surface of the sphere, where $r = a, \rho = 0$. When this value is substituted in (171), we get

$$\sigma_0 \mu_0 = \frac{3}{2} - \frac{1}{2} \left(\frac{1 - qr^2}{1 - qa^2} \right)^{\frac{1}{2}},$$

(172)

and so the pressure in the sphere is

$$\rho = \mu_0 \frac{(1 - qr^2)^{\frac{1}{2}} - (1 - qa^2)^{\frac{1}{2}}}{3(1 - qa^2)^{\frac{1}{2}} - (1 - qr^2)^{\frac{1}{2}}}. $$

(173)

The interior solution is completed by finding γ from (164). This gives

$$e^{\gamma} = \left(\frac{3 \sqrt{1 - qa^2} - \sqrt{1 - qr^2}}{3 \sqrt{1 - qa^2} - 1} \right)^2,$$

(174)

and the metric form inside the sphere is

$$\Phi = \frac{dr^2}{1 - qr^2} + r^2 d\sigma^2 - e^{\gamma} dt^2, \quad q = \frac{8}{3} \pi \mu_0.$$

(175)
We recall that \(t \) is proper time at the centre of the sphere, and we check that \(\gamma = 0 \) for \(r = 0 \), as should be the case.

In accordance with the general definition (143) of the mass of any bounded spherically symmetric distribution of matter, the mass of the fluid sphere is

\[
m = \frac{1}{2} \kappa \int_0^a \mu r^2 dr = \frac{1}{6} \kappa \mu_0 a^3 = \frac{4}{3} \pi \mu_0 a^3. \tag{176}
\]

Thus, passing to the exterior domain \((r > a) \), (159) gives

\[
e^{-\alpha} = 1 - \frac{2m}{r}, \quad \gamma = -\alpha + \log C, \tag{177}
\]

where \(C \) is a constant. By continuity at \(r = a \), we have

\[
C = (e^{\gamma+\alpha})_{r=a}, \tag{178}
\]

with the interior values (168) and (174) inserted, and so

\[
C = 4(3\sqrt{1 - qa^2} - 1)^{-2}. \tag{179}
\]

Thus the metric form outside the sphere is

\[
\Phi = \frac{dr^2}{1 - \frac{2m}{r}} + r^2 d\sigma^2 - \frac{4 \left(1 - \frac{2m}{r}\right) dt^2}{(3\sqrt{1 - qa^2} - 1)^2}, \quad q = \frac{1}{3} \kappa \mu_0. \tag{180}
\]

We check this for continuity with (175) by noting that

\[
\frac{2m}{a} = \frac{1}{3} \kappa \mu_0 a^2 = qa^2. \tag{181}
\]

There is a great advantage in using coordinates which are simply defined, physically or geometrically, and \(t \) has been used consistently to denote the proper time at the centre of spherical symmetry. However the formulae for a fluid sphere become a little simpler if we change to the time-coordinate

\[
t' = 2t(3\sqrt{1 - qa^2} - 1)^{-1}. \tag{182}
\]

Then we get from (175) and (180) the complete Schwarzschild field \(^1\) for

\[^1\text{Schwarzschild} [1916a, b].\text{To transform the exterior form to Gaussian polars, put } d\rho = dr(1 - 2m/r)^{-1}. \text{See VIII-(179) for the exterior form in isotropic coordinates.}\]
a fluid sphere of constant density:

Interior \((r < a)\):
\[
\Phi_1 = \frac{dr^2}{1 - qr^2} + r^2d\sigma^2 - \left(\frac{3}{2}\sqrt{1 - qa^2} - \frac{1}{2}\sqrt{1 - qr^2}\right)^2dt'^2;
\]

Exterior \((r > a)\): \(\Phi_e = \frac{dr^2}{2m} + r^2d\sigma^2 - \left(1 - \frac{2m}{r}\right)dt'^2.
\tag{183}

It is clear that \(t'\) is in fact the proper time for a particle fixed at \(r = \infty\).

§ 8. ORBITS AND RAYS IN THE SOLAR FIELD

The basic concepts of Einstein’s general theory of relativity are so different from those of Newton that one might well be surprised that the physical predictions of the two theories should agree closely \(^1\). But they do, at least under the conditions encountered in nature, for we have to deal only with weak gravitational fields and small relative velocities (the terms ‘weak’ and ‘small’ are of course used in a technical sense). This agreement, although it has been indicated earlier in the book, will be demonstrated in the work which follows. It represents a great triumph to have constructed, without using the obnoxious idea of absolute time, a theory of gravitation as successful as Newton’s theory has proved from the standpoint of astronomical prediction.

However the two theories do not quite agree in their predictions. Great interest has attached to the small differences between them and doubt has been expressed as to whether observation does in fact completely confirm the predictions of Einstein’s theory. A sound judgment in these matters demands experience in observational techniques, and it would be foreign to the spirit of this book to include any dogmatic pronouncement as to whether the said predictions are verified or not \(^2\). But one thing should be made clear. The issue is not between Newton and Einstein. The concept of absolute time is quite

\(^1\) In this book we are concerned solely with Einstein’s theory, but it is necessary to bring in Newtonian theory because astronomers report their observations in Newtonian terms. We are not concerned with certain other gravitational theories set in flat space-time, notably those of Nordström [1913], [1914], Mie [1915], Whitehead [1922] and Birkhoff [1943], [1950]. For remarks on the first two of these, see Pauli [1958, p. 144].

\(^2\) The reader will find a critical survey in McVittie [1956].
untenable in physics, as the many successes of the special theory of relativity make clear, and if Einstein’s theory of gravitation is actually at fault, then what we need is a modification of that theory, not a return to Newton. If modification be needed, the first desideratum is a clear and critical understanding of what precisely are the predictions of general relativity.

We speak here of the solar field, but the mathematics applies to any spherically symmetric field in vacuo. We take the metric form to be, as in (145),

$$
\Phi = \frac{dr^2}{2m} + r^2d\sigma^2 - \left(1 - \frac{2m}{r}\right)dt^2,
$$

(184)

$$
d\sigma^2 = d\theta^2 + \sin^2 \theta d\phi^2.
$$

The coordinates are very nearly, but not quite, the curvature coordinates of § 2. For simplicity of notation we have dropped the prime from the t' of (145), so that the t of (184) is not proper time at the sun’s centre but for an observer in a fixed position at $r = \infty$. The coordinate r is not, of course, ‘spatial distance’ — it is, as earlier, defined by the statement that r^{-2} is the intrinsic Gaussian curvature of the 2-space $r = \text{const.}, \ t = \text{const}$. As for m, it is the mass of the sun as given by (143) or, if the sun is regarded as a homogeneous fluid, by (176); but for present purposes, it is best to regard it merely as some constant.

We are about to study the orbits of planets and photons on the basis of the geodesic hypothesis. The agonist (cf. IV—§ 6) needs no encouragement to work out, as a mathematical problem, the geodesics of space-time with the metric (184). The realist, on the other hand, may have doubts. Though convinced of the validity of the geodesic hypothesis for very small bodies, he may wonder just what ‘very small’ means — are the Earth and Jupiter very small? This question cannot be answered until a rational theory of the 2-body problem has been developed, and the only thing to do is to go ahead with the geodesic hypothesis and see what it does predict with regard to planetary motion and light rays.

The neatest way of treating geodesics is to use Lagrangian equations. If, for a general metric, we write as Lagrangian function

$$
F(x, x') = \frac{1}{2}g_{ij}x'^ix^j',
$$

(185)

1 Cf. remarks on smallness in II—§ 3.
the prime denoting \(\frac{d}{dw} \), where \(w \) is a special parameter, the equations of geodesics read

\[
\frac{d}{dw} \frac{\partial F}{\partial x'_{\nu}} - \frac{\partial F}{\partial x^\nu} = 0. \tag{186}
\]

For null geodesics these equations possess the first integral

\[
F = 0, \tag{187}
\]

and for timelike geodesics (with \(w = s \)) the first integral

\[
2F = -1. \tag{188}
\]

The Lagrangian for (184) is given by

\[
2F = \frac{r''^2}{1 - \frac{2m}{r}} + r^2(\theta''^2 + \sin^2 \theta \phi''^2) - \left(1 - \frac{2m}{r}\right)t''^2. \tag{189}
\]

Since \(\phi \) and \(t \) are ignorable coordinates, there are two first integrals,

\[
\frac{\partial F}{\partial \phi'} = r^2 \sin^2 \theta \phi' = \alpha^{-1},
\]

\[
\frac{\partial F}{\partial t'} = -\left(1 - \frac{2m}{r}\right)t' = -\beta, \tag{190}
\]

where \(\alpha \) and \(\beta \) are constants depending on the initial conditions. The \(\theta \)-equation reads

\[
\frac{d}{dw} \frac{\partial F}{\partial \theta'} - \frac{\partial F}{\partial \theta} = \frac{d}{dw} (r^2 \theta') - r^2 \sin \theta \cos \theta \phi'^2 = 0. \tag{191}
\]

We have also the first integral (187) or (188), according to the case.

It is clear from (191) that if we have initially

\[
\theta = \frac{1}{2} \pi, \quad \theta' = 0, \tag{192}
\]

then these equations remain true. But for any particular geodesic we can rotate the axes of reference (cf. Fig. 5, p. 266) so that (192) hold, and so there is no loss of generality, if we are discussing a single geodesic or indeed a set of ‘coplanar’ geodesics, in accepting (192). Then (190)
and the other first integral read
\[r^2 \phi' = \alpha^{-1}, \quad \left(1 - \frac{2m}{r}\right) t' = \beta, \]
\[\frac{r'^2}{1 - \frac{2m}{r}} + r^2 \phi'^2 - \left(1 - \frac{2m}{r}\right) t'^2 = -\eta, \quad (193) \]

where \(\eta = 1 \) for a timelike geodesic and \(\eta = 0 \) for a null geodesic.

The plan is to obtain an orbital equation connecting \(r \) and \(\phi \), \(t \) and \(w \) having been eliminated. We have
\[dw = \alpha r^2 d\phi, \quad \left(1 - \frac{2m}{r}\right) dt = \beta dw = \alpha \beta r^2 d\phi, \quad (194) \]
and the last of \((193) \) gives, as an equation connecting \(r \) and \(\phi \),
\[dr^2 + \left[r^2 \left(1 - \frac{2m}{r}\right) - \alpha^2 \beta^2 r^4 + \eta \alpha^2 r^4 \left(1 - \frac{2m}{r}\right) \right] d\phi^2 = 0. \quad (195) \]

We now put
\[u = \frac{1}{r}, \quad (196) \]
and, on dividing \((195) \) by \(r^4 d\phi^2 \), obtain
\[\left(\frac{du}{d\phi} \right)^2 = f(u), \quad (197) \]
where
\[f(u) = \alpha^2 \beta^2 - (u^2 + \eta \alpha^2)(1 - 2mu) = 2mu^3 - u^2 + 2\eta \alpha^2 mu + \alpha^2 (\beta^2 - \eta) \quad (198) \]
\[= 2m(u - u_1)(u - u_2)(u - u_3), \]
u_1, u_2, u_3 being the zeros of \(f(u) \), with \(u_1 < u_2 < u_3 \) if they are all real; we have
\[u_1 + u_2 + u_3 = \frac{1}{2m}, \quad (199) \]
\[u_2 u_3 + u_3 u_1 + u_1 u_2 = \eta \alpha^2. \quad (200) \]
The whole tale of planets and photons (according to the geodesic hypothesis) is contained in the orbital equation \((197) \), which requires for its solution only a quadrature and an inversion; for, once \((197) \) has been solved, \(w \) and \(t \) are given as functions of \(\phi \) by integrating \((194) \).
An exhaustive study of these orbits was made by HagiHara [1931]. We shall make a slight restriction here, considering only orbits which possess perihelia (points of closest approach to the sun). At perihelion we have

\[\frac{du}{d\phi} = 0, \quad f(u) = 0, \]

and for the rest of the orbit \(u \) is less than its perihelion value. By (197) \(f(u) \geq 0 \) throughout the orbit, and by (198) \(f(u) \) is positive for large positive values of \(u \). It follows that the three zeros of \(f(u) \) are all real, with \(u_2 \) and \(u_3 \) positive, \(u_2 \) corresponding to perihelion. The graph of \(f(u) \) is then of one of the two types shown in Fig. 9, with \(u_1 > 0 \) in Fig. 9a and \(u_1 < 0 \) in Fig. 9b. In the former case we get an orbit of elliptic type, with \(u \) oscillating in the range \(u_1 < u < u_2 \) (\(u_1 \) corresponds to aphelion). In the latter case we get an orbit of hyperbolic type. There are of course other special cases: if \(u_1 = 0 \) we get an orbit of parabolic type, and if \(u_1 = u_2 \) we get a circular orbit.

The general solution of (197) in terms of Jacobian elliptic functions is obtained by putting

\[x = \frac{1}{2} \phi \sqrt{2m(u_3 - u_1)}, \quad y = \sqrt{\frac{u - u_1}{u_2 - u_1}}, \quad k = \sqrt{\frac{u_2 - u_1}{u_3 - u_1}}. \]

Then (197) becomes

\[\left(\frac{dy}{dx} \right)^2 = (1 - y^2)(1 - k^2y^2), \]

and the general solution of this is

\[y = \text{sn}(x + \delta), \]

where \(\delta \) is an arbitrary constant. Thus all geodesic orbits having perihelia satisfy

\[u - u_1 = (u_2 - u_1)\text{sn}^2\left(\frac{1}{2} \phi \sqrt{2m(u_3 - u_1)} + \delta \right), \]
where \(u = 1/r \) and the modulus of the elliptic function is \(k \) as in (202).

Let us compare this result with Newtonian astronomy in the case of a planetary orbit. In making numerical estimates, we identify \(r \) with the distance from the sun’s centre in the Newtonian model. Thus, using for the mass of the sun the value quoted in IV–(137) and for its radius \(6.953 \times 10^{10} \text{ cm} = 2.319 \text{ sec} \), we find that at the sun’s surface

\[
m u = \frac{m}{r} = 2.122 \times 10^{-6}, \tag{206}
\]

a very small dimensionless quantity. For more distant points, \(mu \) is still smaller — in particular at perihelion and aphelion — so that (199) gives approximately

\[
2mu_3 = 1. \tag{207}
\]

Thus the ratios \(u_1/u_3 \) and \(u_2/u_3 \) are small, so that, by (202), \(k = 0 \) approximately. But, when its modulus approaches zero, the elliptic function \(sn \) degenerates into the sine function, and so the orbital equation (205) becomes

\[
u - u_1 = (u_2 - u_1)\sin^2(\frac{1}{2}\phi + \delta). \tag{208}\]

This is a focal conic of eccentricity \(e = (u_2 - u_1)/(u_2 + u_1) \), and so an ellipse or hyperbola according as \(u_1 > 0 \) or \(u_1 < 0 \). Thus, on the basis of the geodesic hypothesis and reasonable approximations, we obtain to a high degree of approximation the outstanding fact of astronomy — the elliptical character of planetary orbits. From (194) we obtain the constancy of areal velocity.

To examine the small difference between relativistic orbit and Newtonian ellipse, we return to the exact equation (205) for the relativistic orbit. The elliptic function \(sn \) has a period \(4K \), and its square \(sn^2 \) a period \(2K \), where

\[
K = \int_0^1 \frac{dy}{\sqrt{(1 - y^2)(1 - k^2y^2)}}. \tag{209}
\]

Therefore the increase in \(\phi \) between successive perihelia is accurately

\[
\Delta \phi = \frac{4K}{\sqrt{2m(u_3 - u_1)}}. \tag{210}
\]
We have seen above that \(k \) is small. Neglecting \(k^4 \), (209) gives
\[
K = \int_0^1 \frac{dy}{\sqrt{1 - y^2}} (1 + \frac{1}{2}k^2y^2) = \frac{1}{2\pi}(1 + \frac{1}{4}k^2). \tag{211}
\]

By (199)
\[
2m(u_3 - u_1) = 1 - 2m(2u_1 + u_2), \tag{212}
\]
and, since the ratios \(u_1/u_3 \) and \(u_2/u_3 \) are small, (202) gives approximately
\[
k^2 = 2m(u_2 - u_1). \tag{213}
\]
Thus, by (211),
\[
K = \frac{1}{2\pi}[1 + \frac{1}{2}m(u_2 - u_1)], \tag{214}
\]
and (210) becomes
\[
\Delta \phi = 2\pi[1 + \frac{1}{2}m(u_2 - u_1)][1 + m(2u_1 + u_2)]
= 2\pi[1 + \frac{3}{2}m(u_1 + u_2)]. \tag{215}
\]
Since this exceeds \(2\pi \) slightly, the orbit is to be regarded as an ellipse which rotates slowly in the sense in which it is described, the \textit{advance of perihelion} per revolution of the planet around the sun being
\[
\epsilon = \Delta \phi - 2\pi = 3\pi m(u_1 + u_2) = 3\pi m\left(\frac{1}{r_1} + \frac{1}{r_2}\right), \tag{216}
\]
where \(r_1 \) and \(r_2 \) correspond to the apsides (aphelion and perihelion). Since \(\epsilon \) is very small, it is permissible to change its form in accordance with classical mechanics. Thus, if
\[
a = \text{semi-axis major of orbit},
\]
\[
e = \text{eccentricity of orbit},
\]
\[
T = \text{period (the planet's year)},
\]
we have
\[
r_1 = a(1 + e), \quad r_2 = a(1 - e), \quad m = \frac{4\pi^2a^3}{T^2}, \tag{217}
\]
and (216) becomes
\[
\epsilon = \frac{24\pi^2a^2}{T^2(1 - \epsilon^2)}. \tag{218}
\]
Here, as throughout the book, \(a \) and \(T \) are measured in the same units; otherwise we should substitute \(cT \) for \(T \), \(c \) being the speed of light.

EINSTEIN'S [1915c] formula (218) for the advance of perihelion per
revolution is one of the most famous formulae of general relativity. As stated earlier, it is not within the scope of this book to make a pronouncement on its physical truth. The great difficulty is that the sun has not one planet, but many, and their mutual attractions are significant. The planet Mercury is the most suitable for testing purposes; for it, the formula (218) gives an advance of $43''.03 \pm 0.03$ per terrestrial century. Newtonian perturbation theory and observation both give an advance more than a hundred times that, but if the relativistic advance (218) is added to the calculated advance, there is good agreement with observation.

This mixture of the theories of Newton and Einstein is intellectually

1 The same formula is obtained also in the theories of Whitehead [1922] and Birkhoff [1943], [1950]. Such is its prestige that no new gravitational theory is likely to prove acceptable if it does not yield this formula, or one practically indistinguishable from it. The traditional form (218) for ε rather obscures its true connection with the metric (184). It is clear from (199) and (216) that ε depends (in our approximation) only on the value of u_3, which is a root of the cubic equation $f(u) = 0$, with $f(u)$ as in (198). If we write $2mu_3 = x$, $\eta = 1$, this equation reads

$$x^3 - x^2 + 4m^2x^2 + 4m^2x^2(\beta^2 - 1) = 0.$$

From (207) we know that $x = 1 - \xi$, where ξ is small; we find at once $\xi = 4m^2x^2\beta^2$, and (216) gives

$$\varepsilon = 3\pi m(u_1 + u_2) = 3\pi m \left(\frac{1}{2m} - u_3 \right) = \frac{3}{8}\pi(1 - x) = \frac{3}{8}\pi\xi = 6\pi \frac{m^2}{h^2},$$

where $h = (x\beta)^{-1} = r^2d\phi/dt$, approximately. Thus advance of perihelion is to be described as an m^2-effect, rather than an m-effect. This explains a well known fact that if we approximate the Schwarzschild form (184) with neglect of m^2, we get the wrong advance of perihelion. I owe this elucidation to Mr. A. Das.

2 Gilvarry [1953], [1959] has suggested the use of the asteroid Icarus, discovered in 1949, or an artificial satellite.

3 Clemence [1947]; McVittie [1956] has 43'' .15.

4 Calculated advance $= 5557'' .18 \pm 0.85$; observed advance $= 5599'' .74 \pm 0.41$; difference $= 42'' .56 \pm 0.94$; cf. Clemence [1947], McVittie [1956].

The complexity of the matter, and the difficulty of expressing everything in relativistic terms, is brought out by this quotation from Clemence [1947]: 'The observations cannot be made in a Newtonian frame of reference. They are referred to the moving equinox, that is, they are affected by the precession of the equinoxes, and the determination of the precessional motion is one of the most difficult problems of positional astronomy, if not the most difficult. In the light of all these hazards it is not surprising that a difference of opinion could exist regarding the closeness of agreement between the observed and theoretical motions.'
repellent, since the two theories are based on such different fundamental concepts. The situation will be made clear only when the many-body problem has been handled relativistically in a rational and mathematically satisfactory way. Moreover it must be explained relative to what the perihelion is rotating. In the above theory the rotation is relative to a triad of axes which undergo parallel transport along the world-line of the sun's centre, but that is something which demands clarification from the observational standpoint.

We turn to the study of light rays, understanding by light ray the \((r, \phi)\) orbit of a null geodesic. Now \(\eta = 0\) in (200) and elimination of \(u_3\) from (199) and (200) gives

\[
4mu_1 = 1 - 2mu_2 \pm \left[(1 + 2mu_2)^2 - 16m^2u_2^2\right]^{1/4}. \tag{219}
\]

Since \(u_2\) and \(u_3\) are positive, (200) tells us that \(u_1\) is negative, and so, taking the minus sign in (219), we get approximately

\[
2mu_1 = -2mu_2 + 4m^2u_2^2, \tag{220}
\]

and then (200) gives

\[
2mu_3 = 1 - 4m^2u_2^2. \tag{221}
\]

If a light ray comes in from \(r = \infty\) (\(u = 0\)), passes the sun, and goes out again to infinity, by (197) the total increment in azimuth is

\[
\Delta \phi = 2 \int_0^{u_2} \frac{du}{\sqrt{j(u)}} = 2 \int_0^{z_2} \frac{dz}{\sqrt{(z - z_1)(z - z_2)(z - z_3)}}, \tag{222}
\]

where

\[
z_1 = 2mu_1, \quad z_2 = 2mu_2, \quad z_3 = 2mu_3. \tag{223}
\]

Inserting the approximations (220), (221), expanding, and integrating, we get, to the first order in \(z_2\),

\[
\Delta \phi = 2 \int_0^{z_2} \frac{dz}{\sqrt{(z_2 - z)(z + z_2 - z_2^2)(1 - z - z_2^2)}}
= 2 \int_0^{z_2} \frac{dz}{\sqrt{z_2^2 - z^2}} \left(1 + \frac{1}{2} \frac{z_2^2}{z + z_2} + \frac{1}{2}z\right)
= 2\left(\frac{1}{2}z + \frac{1}{2}z_2 + \frac{1}{2}z_2\right) = \pi + 4mu_2. \tag{224}
\]
Here we have Einstein's [1916a] formula for the deflection of a light ray: it bends towards the sun through an angle

$$\Delta \phi - \pi = \frac{4m}{r_2},$$

(225)

where \(r_2 \) is the minimum value of \(r \) as the ray passes the sun. With independent units of mass, length and time, this formula becomes

$$\Delta \phi - \pi = \frac{4\gamma m}{c^2 r_2},$$

(226)

where \(\gamma \) is the gravitational constant and \(c \) the speed of light.

For light grazing the sun, (225) gives [cf. (206)] a deflection of

$$8.488 \times 10^{-6} \text{ radians} = 1''.75.$$

(227)

The effect of such a deflection would be to deform the apparent pattern of a group of stars when the sun passes in front of them, the stars appearing to be pushed out through a small angle inversely proportional to the angular distance from the sun's centre. The brightness of the sun prevents the observation of this effect, and it can be tested only at total eclipses of the sun. There seems to be no doubt that such an apparent deformation of the star-pattern is observed, agreeing fairly closely with (225). The reader is referred to McVittie [1956, p. 93] for the results of eclipse observation from 1919 to 1952, and a discussion of them.

There are three critical phenomena in the solar field:

(i) advance of perihelion,
(ii) deflection of light ray,
(iii) spectral red-shift.

We have discussed the first two above; the third will be treated in the next section.

§ 9. SPECTRAL SHIFTS AND THE WORLD-FUNCTION

In III–§ 7 the relativistic theory of spectral shifts was given, and it was shown that these should, in all cases, be regarded as Doppler effects, due to relative motion of source and observer. That is, however, only a manner of speaking, and in some cases a spectral shift may usefully be split into a part due to relative motion and a part due to gravitation.
As shown in III–§ 7, there are two formulae for spectral shifts, which are of course equivalent mathematically but very different in form. Let us recall them. Fig. 10 shows the world-line C' of a source and the world-line C of an observer, with adjacent null geodesics $P'P$, $Q'Q$ joining them. Then, if $P'Q' = ds'$, $PQ = ds$, the shift is given by III–(49) as

$$\frac{v' - v}{v'} = 1 - \frac{ds'}{ds}, \quad (228)$$

a shift towards the red (red-shift) being positive. On the other hand, by consideration of the energy of a photon as in III–(37), we have

$$\frac{v' - v}{v'} = \frac{p_i'V^{i'} - p_iV^i}{\dot{p}_iV^{i'}}, \quad (229)$$

where p_i', p_i are its 4-momenta, and $V^{i'}$, V^i the 4-velocities of source and observer, at P' and P respectively. By II–(17) and the hypothesis (already used in (229)) that p^i is tangent to $P'P$ and undergoes parallel transport along it, we can express (229) in terms of the world-function $\Omega(P'P)$ as in III–(53),

$$\frac{v' - v}{v'} = \frac{\Omega_iV^{i'} + \Omega_i'V^i}{\Omega_i'V^{i'}}. \quad (230)$$

The formulae (228) and (230) are the formulae for spectral shift which we shall use in what follows.

The case where source and observer are both at rest in a stationary universe is very easily dealt with by means of (228). In a stationary universe the metric tensor g_{ij} does not involve the time-coordinate (x^4 or t), and space-time admits a group of motions along the t-lines. The null cone with vertex Q' is obtained from the null cone with vertex P' by simply pushing all its events up through the same increment in t. When we say that source and observer are 'at rest', we mean here that C' and C are t-lines, and so, if dt' refers to $P'Q'$ and dt to PQ, we have

$$dt' = dt. \quad (231)$$

1 For geometrical optics in a statical universe filled with a transparent medium, see xi–§ 4.
This is the key-formula. We have
\[ds'^2 = - \tilde{g}'_{44} dt'^2, \quad ds^2 = - \tilde{g}_{44} dt^2, \] (232)
and so the spectral shift is
\[\frac{v' - v}{v'} = 1 - \sqrt{\frac{\tilde{g}'_{44}}{\tilde{g}_{44}}}. \] (233)

Let us apply this to the solar field, for which
\[\Phi = \frac{\mathrm{d}r^2}{1 - \frac{2m}{r}} + r^2 \mathrm{d}\sigma^2 - \left(1 - \frac{2m}{r}
ight) \mathrm{d}t^2. \] (234)

With \(r' \) at source and \(r \) at observer (both fixed), (233) gives accurately
\[\frac{v' - v}{v'} = 1 - \sqrt{1 - \frac{2m}{r'}}, \] (235)

Since \(m/r \) is small for all points outside the sun, we replace this by the approximation
\[\frac{v' - v}{v'} = \frac{m}{r'} - \frac{m}{r}. \] (236)

If the source is an atom on the sun’s surface, and the observer is on the earth (supposed fixed), we write \(r' = a \) (sun’s radius) and neglect the last term in (236). Thus we get EINSTEIN’S [1916a] red-shift,
\[\frac{v' - v}{v'} = \frac{m}{a}, \] (237)
or, if we prefer to use independent units of mass, length, and time,
\[\frac{v' - v}{v'} = \frac{\gamma m}{c^2 a}. \] (238)

This dimensionless quantity is precisely one quarter of the deflection (225) for light grazing the sun, and its numerical value is \(2.122 \times 10^{-6} \).

Spectral shifts are sometimes expressed in km sec\(^{-1} \), and since
\[1 = 2.998 \times 10^5 \text{km sec}^{-1}, \] (239)
the red-shift (237) due to the sun’s field is \(0.636 \text{ km sec}^{-1} \).

McVITIE [1956, p. 97] gives a table of red-shifts observed in the solar spectrum. There is some disagreement between theory and
observation, the theoretical value (237) being approached only near the limb of the sun, and the observed shift decreasing towards the centre of the disc; according to the theory given above, the position of the source on the sun's surface should make no difference at all. For the very dense companion of Sirius, the red-shift should be about thirty times as great as for the sun; it has been widely stated that there is general agreement between observation and theory in that case ¹.

The simple formula (233) applies only to a stationary universe with source and observer fixed in it. Allowance for the motions of source and observer may be made crudely by adding the Doppler effect due to relative radial motion in flat space-time, but for a satisfactory treatment of red-shift it is better to start all over again without the stationary hypothesis, using (230) instead of (228). If only the world-function Ω were known, (230) would give the spectral shift accurately for any velocities of source and observer.

We shall proceed on the assumption that the gravitational field is weak (space-time of small curvature), and start by calculating the world-function correct to the first order. This has nothing to do with the velocities of source and observer, and is of interest apart from problems of spectral shift. At a later stage we shall make a further approximation based on smallness of velocities.

Let us use coordinates xᵢ for which

\[g_{ij} = \eta_{ij} + \gamma_{ij}, \]
\[\eta_{ij} = \text{diag}(1, 1, 1, -1), \] (240)

the γ's being small (O₁). To fix the ideas, we shall regard xᵢ as rectangular Cartesians in Euclidean 4-space (Fig. 11), so that we must distinguish between a geodesic with equations

\[\frac{d^2x^i}{dw^2} + \Gamma^i_{jk} \frac{dx^j}{dw} \frac{dx^k}{dw} = 0, \] (241)

and a straight line with linear

¹ Tolman [1934b, p. 212], Bergmann [1942, p. 222], Møller [1952, p. 348]. But McVittie [1956, p. 98] finds the theoretical value more than twice too large. See also Finlay-Freundlich [1953] [1954a, b].
equations. Let \(P_1 \) and \(P_2 \) be two events, joined by a geodesic \(\Gamma \) (perhaps null) and a straight line \(C \). For \(\Gamma \) we have the equations (241), with \(w \) a special parameter, running from 0 at \(P_1 \) to 1 at \(P_2 \), and for \(C \)

\[
x^t = (1 - w)x^{t_1} + wx^{t_2},
\]

(242)

with \(w \) again running from 0 to 1; \(x^{t_1} \) and \(x^{t_2} \) are the coordinates of \(P_1 \) and \(P_2 \) respectively. We set up a correspondence between the events on \(\Gamma \) and \(C \) by associating events with the same values of \(w \).

On account of the near-flatness, \(\Gamma \) lies close to \(C \), and in fact \(C \) may be regarded as a variation of \(\Gamma \). From the definition of a geodesic as in 1–§ 2 it follows that

\[
\int_{\Gamma} g_{ij} \frac{dx^i}{dw} \frac{dx^j}{dw} dw = \int_{C} g_{ij} \frac{dx^i}{dw} \frac{dx^j}{dw} dw + O_2.
\]

(243)

Then by II–(1) the world-function is

\[
\Omega(P_1P_2) = \frac{1}{2} \int_{\Gamma} g_{ij} \frac{dx^i}{dw} \frac{dx^j}{dw} dw
\]

\[
= \frac{1}{2} \int_{C} g_{ij} \frac{dx^i}{dw} \frac{dx^j}{dw} dw + O_2
\]

\[
= \frac{1}{2} \Delta x^i \Delta x^j \int_{C} g_{ij} dw + O_2,
\]

(244)

where

\[
\Delta x^i = x^{t_2} - x^{t_1}.
\]

(245)

We have in fact

\[
\Omega(P_1P_2) = \frac{1}{2} \eta_{ij} \Delta x^i \Delta x^j + \frac{1}{2} \Delta x^i \Delta x^j \int_{C} \gamma_{ij} dw + O_2,
\]

(246)

the first part being the world-function for flat space-time and the second part being \(O_1 \).

We assume that \(\gamma_{ij} \) are assigned functions of the \(x \)'s. In evaluating the integral in (246) we are to substitute from (242), so that we may write

\[
\gamma_{ij}(x) = \hat{f}_{ij}(P_1, P_2, w),
\]

(246)

and the world-function reads (we drop the second-order error)

\[
\Omega(P_1P_2) = \frac{1}{2} \eta_{ij} \Delta x^i \Delta x^j + \frac{1}{2} \Delta x^i \Delta x^j \int_{0}^{1} \hat{f}_{ij}(P_1, P_2, w) dw.
\]

(247)
All we have to do is to evaluate the integral along the straight line \(C \).

To calculate a spectral shift we need, not the world-function itself, but its partial derivatives. To differentiate (247), we note that

\[
(\Delta x^i)_{\gamma} = - \delta_{ij}, \quad (\Delta x^i)_{\epsilon} = \delta_{ij},
\]
and, by (242) and (246), for fixed value of \(w \),

\[
\phi_{ij,k} = (1 - w)\gamma_{ij,k}, \quad \phi_{ij,k} = w\gamma_{ij,k}.
\]

Hence

\[
\begin{align*}
\Omega_{k_1} &= - \eta_{jk}\Delta x^j - \Delta x^j \int_0^1 \frac{1}{\gamma_{jk} dw} + \Delta x^j \int_0^1 \frac{1}{\gamma_{ij,k}(1 - w) dw}, \\
\Omega_{k_2} &= \eta_{jk}\Delta x^j + \Delta x^j \int_0^1 \frac{1}{\gamma_{jk} dw} + \Delta x^j \int_0^1 \frac{1}{\gamma_{ij,k} w dw}.
\end{align*}
\]

Although we do not need them for spectral shifts, we might as well proceed to get the covariant second-order derivatives of \(\Omega \), which (following the notation of Chap. II) will be denoted by subscripts without strokes. We have

\[
\begin{align*}
\Omega_{k_1,m_1} &= \Omega_{k_1,m_1} - \Gamma_{k_1,m_1}^{a_1} \Omega_{a_1}, \\
\Omega_{k_2,m_2} &= \Omega_{m_2,k_1} = \Omega_{k_1,m_2} = \Omega_{m_2,k_1}, \\
\Omega_{k_3,m_3} &= \Omega_{k_3,m_3} - \Gamma_{k_3,m_3}^{a_2} \Omega_{a_2},
\end{align*}
\]

where the secondary (numerical) suffixes on the \(\Gamma \)'s indicate evaluation at \(P_1 \) or \(P_2 \), as the case may be, and so

\[
\begin{align*}
\Omega_{k_1,m_1} &= \eta_{km} + \int_0^1 \frac{1}{\gamma_{km} dw} - \Delta x^j \int_0^1 \frac{1}{\gamma_{jk,m} + \gamma_{jm,k}(1 - w) dw} \\
&\quad + \frac{1}{2} \Delta x^j \int_0^1 \gamma_{ij,k,m}(1 - w)^2 dw + \Gamma_{k_1,m_1}^{a_1} \eta_{aj}\Delta x^j, \\
\Omega_{k_1,m_2} &= \Omega_{m_2,k_1} = - \eta_{km} + \int_0^1 \frac{1}{\gamma_{km} dw} - \Delta x^j \int_0^1 \frac{1}{\gamma_{jk,m} w dw} \\
&\quad + \Delta x^j \int_0^1 \frac{1}{\gamma_{jm,k}(1 - w) dw} + \frac{1}{2} \Delta x^j \int_0^1 \gamma_{ij,k,m} w(1 - w) dw, \\
\Omega_{k_2,m_3} &= \eta_{km} + \int_0^1 \frac{1}{\gamma_{km} dw} + \Delta x^j \int_0^1 \frac{1}{\gamma_{jk,m} + \gamma_{jm,k} w dw} \\
&\quad + \frac{1}{2} \Delta x^j \int_0^1 \gamma_{ij,k,m} w^2 dw - \Gamma_{k_2,m_3}^{a_2} \eta_{aj}\Delta x^j.
\end{align*}
\]
In these formulae there is an O_2 error. We may compare (252) with \(\Pi - (95) \), which were based on the same approximation (small curvature), but in which the coordinate system was general.

For a weak static field, the γ's are independent of x^4 (or t) and $\gamma_{\alpha 4} = 0$. This makes no great simplification if the expression (246) for Ω, but it is worth while to write out the partial derivatives (250):

\[
\Omega_{\gamma_1} = - \Delta x^\gamma - \Delta x^\beta \int_0^1 \gamma_{\beta \gamma} dw + \frac{1}{2} \Delta x^\alpha \Delta x^\beta \int_0^1 \gamma_{\alpha \beta, \gamma} (1 - w) dw \\
+ \frac{1}{2} (\Delta t)^2 \int_0^1 \gamma_{44, \gamma} (1 - w) dw,
\]

\[
\Omega_{\gamma_4} = \Delta t (1 - \int_0^1 \gamma_{44} dw) = - \Delta t \int_0^1 g_{44} dw,
\]

\[
\Omega_{\gamma_2} = \Delta x^\gamma + \Delta x^\beta \int_0^1 \gamma_{\beta \gamma} dw + \frac{1}{2} \Delta x^\alpha \Delta x^\beta \int_0^1 \gamma_{\alpha \beta, \gamma} dw \\
+ \frac{1}{2} (\Delta t)^2 \int_0^1 \gamma_{44, \gamma} dw,
\]

\[
\Omega_{\gamma_4} = - \Omega_{\gamma_2}.
\]

The last equation tells us that the t-derivatives of Ω at P_1 and P_2 differ only in sign; on account of the existence of a group of motions this holds not only in the static case but also in the stationary case, and we might have used this fact to deduce (233) from (230).

For the solar field the metric (234) may be written

\[
\Phi = dx^\alpha dx^\alpha + \frac{2m}{r^3} (x^\alpha dx^\alpha)^2 - \left(1 - \frac{2m}{r} \right) dv^2, \quad r^2 = x^\alpha x^\alpha,
\]

so that, dropping an O_2 term, we have

\[
\gamma_{ij} = \eta_{ij} + \gamma_{ij},
\]

\[
\gamma_{\alpha \beta} = \frac{2mx^\alpha x^\beta}{r^3} = 2m(r^{-1} \delta_{\alpha \beta} - r_{\alpha \beta}),
\]

\[
\gamma_{\alpha 4} = 0, \quad \gamma_{44} = \frac{2m}{r}.
\]
By (246) the world-function for the solar field is
\[
\Omega(P_1P_2) = \frac{1}{2} (\Delta x^\alpha \Delta x^\alpha - (\Delta t)^2)
\]
\[
+ m \Delta x^\alpha \Delta x^\beta \int_0^1 \frac{x^\alpha x^\beta}{r^3} \, dw + m(\Delta t)^2 \int_0^1 \frac{dw}{r} + O_2. \tag{256}
\]

The values of these integrals are given on p. 308. The first derivatives of \(\Omega \) are given by (253), in which we are to substitute from (255). In making calculations it is well to have before one a diagram (Fig. 12) showing a Euclidean 3-space in which \(x^\alpha \) are rectangular Cartesians.

![Fig. 12 - Space-diagram for use with world-function](image)

So much for the calculation of \(\Omega \) and its derivatives in a weak field, in particular a static one, and more particularly the solar field. When the derivatives have been found, the spectral shift is given by (230). But a complication arises. In any particular problem, the event of emission \(P_1 \) and the event of reception \(P_2 \) (shown as \(P', P \) in Fig. 10) cannot both be chosen arbitrarily, since \(P_1P_2 \) is a null geodesic. We start by specifying \(P_2 \), i.e. assigning the coordinates \(x^{t_2} \). With vertex \(P_2 \), we draw the null cone into the past, cutting the world-line of the source at \(P_1 \). It is clear that the independent quantities are
\[
x^{t_2}, \quad \Delta x^\alpha, \tag{257}
\]
and that \(\Delta x^4 \) (\(= \Delta t \)) is determined by them in a given space-time. To find it, we remark that \(\Omega(P_1P_2) = 0 \) since \(P_1P_2 \) is a null geodesic,
and so the basic partial differential equation \(II-(20) \) gives

\[
g^{k_2m_2} \Omega_{k_2} \Omega_{m_2} = 0. \tag{258}\]

Since (240) gives, to the first order,

\[
g^{ij} = \eta_{ij} - \eta_{ia} \gamma_{ab} \eta_{bj}, \tag{259}\]

(258) may be written, by (250),

\[
\eta_{km} \Omega_{k_2} \Omega_{m_2} - \gamma_{k_2m_2} \Delta x^k \Delta x^m = 0. \tag{260}\]

Using (250) again, we get

\[
\eta_{km} \Delta x^k \Delta x^m = Q, \tag{261}\]

where

\[
Q = \gamma_{k_2m_2} \Delta x^k \Delta x^m - 2 \Delta x^i \Delta x^k \int_0^1 \gamma_{jk} dw - \Delta x^i \Delta x^j \Delta x^k \int_0^1 \gamma_{ij,k} dw. \tag{262}\]

Hence

\[
(\Delta t)^2 = \Delta x^\alpha \Delta x^\alpha - Q, \quad \Delta t = (\Delta x^\alpha \Delta x^\alpha)^{1/2} - \frac{1}{2} Q(\Delta x^\alpha \Delta x^\alpha)^{-1/2}. \tag{263}\]

The last term here is small, and in \(Q \) we may substitute

\[
\Delta t = (\Delta x^\alpha \Delta x^\alpha)^{1/2}. \tag{264}\]

We omit throughout \(O_2 \) error terms.

All this is complicated, but one feels justified in pursuing the detail in view of the astronomical importance of spectral shifts. To clarify the procedure, let us sum it up, and then apply it to the case of small velocities of source and observer.

The steps are as follows:

1. Assign the field, i.e. the small functions \(\gamma_{ij}(x) \).
2. Choose an event of reception \(P_2(x^i) \).
3. Assign \(\Delta x^\alpha \), thus fixing the position of the emission, but not its time.
4. Calculate \(\Delta t \) from (263), thus getting the event \(P_1 \) of emission.
5. Calculate \(\Omega_{k_1} \) and \(\Omega_{k_2} \) from (250) as functions of the seven quantities (257).

\(^1\) In these calculations, the integrals are evaluated on the straight line of Fig. 12, with due allowance for the linear change in \(t \) in the case of non-stationary fields.
(vi) Assign two unit 4-vectors to represent the 4-velocities V^{i_1}, V^{i_2} of source and observer.

(vii) Calculate the spectral shift from (230).

Suppose that V^{α_1} and V^{α_2} are small (we neglect products) \(^1\). Then for either

$$g_{44}(V^4)^2 = -1, \quad (265)$$

so that

$$V^4 = (1 - \gamma_{44})^{-\frac{1}{2}} = 1 + \frac{1}{2}\gamma_{44}. \quad (266)$$

Accordingly

$$\Omega_k V^k = \Omega_\alpha V^\alpha + \Omega_4 (1 + \frac{1}{2}\gamma_{44}), \quad (267)$$

and so, by (250),

$$\begin{align*}
\Omega_1 V^1 &= \Omega_4 + \frac{1}{2}\gamma_{44,44} \Delta t - V^{\alpha_1} \Delta x^\alpha, \\
\Omega_2 V^2 &= \Omega_4 - \frac{1}{2}\gamma_{44,44} \Delta t + V^{\alpha_2} \Delta x^\alpha, \quad (268)
\end{align*}$$

the first terms on the right being finite and the others small. Adding, and using (250),

$$\begin{align*}
\Omega_1 V^1 + \Omega_2 V^2 &= (V^{\alpha_2} - V^{\alpha_1}) \Delta x^\alpha + \frac{1}{2}(\gamma_{41,41} - \gamma_{44,44}) \Delta t \\
&\quad + \frac{1}{2} \Delta x^i \Delta x^j \int_0^1 \gamma_{ij,44} dw, \quad (269)
\end{align*}$$

$$\Omega_1 V^1 = \Delta t + O_1.$$

Then (230) gives for the small spectral shift (red-shift positive)

$$\begin{align*}
\frac{v_1 - v_2}{v_1} &= (V^{\alpha_2} - V^{\alpha_1}) \frac{\Delta x^\alpha}{\Delta t} + \frac{1}{2}(\gamma_{41,41} - \gamma_{44,44}) \\
&\quad + \frac{1}{2} \frac{\Delta x^\alpha \Delta x^\beta}{\Delta t} \int_0^1 \gamma_{\alpha\beta,44} dw + \Delta x^\alpha \int_0^1 \gamma_{\alpha4,44} dw + \frac{1}{2} \Delta t \int_0^1 \gamma_{44,44} dw, \quad (270)
\end{align*}$$

\(^1\) In fact, we treat the velocity components as small of the first order (O_1), like the γ's, and omit O_2 terms. However, in the solar system, the speeds of the planets are of order $(m/r)^{\frac{1}{2}}$ while the γ's are of order m/r (m = mass of sun, r = distance from its centre; $m/r = 2 \times 10^{-6}$ at sun's surface). This suggests an approximation in which V^{α_1} and V^{α_2} are $O_{\frac{1}{2}}$ and the γ's are O_1. Such an approximation can be worked out without much additional labour. The result is to augment the right hand side of (270) with the following term:

$$\frac{\Delta x^\alpha \Delta x^\beta}{\Delta t^2} (V^{\alpha_2} - V^{\alpha_1}) V^{\beta_1} + \frac{1}{2} (V^{\alpha_1} V^{\alpha_1} - V^{\alpha_2} V^{\alpha_2}). \quad (270a)$$
where \(\Delta t \) is as in (264), the approximate 'distance' between source and observer.

In (270) the first term on the right represents a Doppler effect due to relative radial motion, the second is a gravitational effect (as in the case of the solar spectrum), while the other terms are due to change of the field with time. These last terms disappear if we add a further assumption to the effect that the field changes very slowly with time. However, some care is needed here, on account of the factors which become large if \(\Delta t \) is large. In our approximation we have simply regarded \(\Delta t \) as a finite quantity, but it will be large in the case of a distant star, and then we might not feel justified in dropping the last terms in (270). But indeed the whole question of approximations for weak fields in large domains is too complicated to discuss here\(^1\). The present chapter is devoted to space-times with spherical symmetry, and we have allowed ourselves to wander away from the solar field only in order to display the problem of spectral shifts in that field against a more general background.

Returning to the formula (256) for the solar field, we note that

\[
\Delta x^\alpha \Delta x^\beta \int_0^1 \frac{x^\alpha x^\beta}{r^3} \, dw = P_1 P_2 \left(\log \frac{\tan \frac{1}{2} \theta_1}{\tan \frac{1}{2} \theta_2} + \cos \theta_1 - \cos \theta_2 \right),
\]

\[
\int_0^1 \frac{dw}{r} = P_1 P_2 \log \frac{\tan \frac{1}{2} \theta_1}{\tan \frac{1}{2} \theta_2},
\]

where \(P_1 P_2 \) is the Euclidean distance in Fig. 12 and \(\theta_1, \theta_2 \) are the angles which \(OP_1, OP_2 \) make with \(P_1 P_2 \).

\(^1\) See xi-§§ 5, 6 for astronomical observations and stellar aberration. In xi-§ 9 spectral shift is discussed with an approximation based on the closeness of source and observer, and not on smallness of curvature of space-time.
CHAPTER VIII

SOME SPECIAL UNIVERSES

§ 1. AXIAL SYMMETRY

In Newtonian physics the axial symmetry of a gravitational field is easy to define: if we use cylindrical coordinates \((r, \phi, z)\) with \(r = 0\) on the axis of symmetry, then the gravitational potential is independent of the azimuthal angle \(\phi\).

In attempting to carry this idea over into relativity, we are led to consider a universe in which the metric tensor \(g_{ij}\) is independent of one of the coordinates, that coordinate \((\phi)\) being cyclic in the sense that we regain the same event if we increase it by \(2\pi\), the other three coordinates being held fixed. In fact, space-time admits a group of motions along the \(\phi\)-lines.

It is impossible to obtain any results of interest in such a general situation, in which we have ten functions of three coordinates. If we introduce a stationary condition, we make \(g_{ij}\) independent of both \(\phi\) and \(t\), but that is not enough, for we still have ten functions to deal with.

We therefore go a step further and suppose \(\phi\) and \(t\) to be reversible in the sense that the metric is unchanged if we replace \(\phi\) by \(-\phi\) or \(t\) by \(-t\). In physical terms, this means that we are dealing with matter which is not rotating.\(^1\) Mathematically it means that the metric form contains \(d\phi\) and \(dt\) only as squares, so that the form reads

\[
\Phi = \Psi + g_{33}(dx^3)^2 + g_{44}(dx^4)^2, \quad (1)
\]

\[
\Psi = g_{11}(dx^1)^2 + 2g_{12}dx^1dx^2 + g_{22}(dx^2)^2,
\]

where the \(g\)'s are functions of \((x^1, x^2)\); we have written \(x^3\) for \(\phi\) and \(x^4\) for \(t\). We count now only five unknown functions. But we can at

\(^1\) The field of a rotating body, in the linear approximation, was studied by Lense and Thirring [1918] and Thirring [1918], [1921]. See also Stockum [1937], [1938], Clark [1947a], [1948], [1949e], [1950a], [1950b], Das [1957a].
once reduce them to three. In the ingenious argument which follows, an essential step is to use coordinates \((x^1, x^2)\) for which \(\Psi\) has the isothermal form:

\[
\Psi = \alpha^2[(dx^1)^2 + (dx^2)^2],
\]

\((2)\)

\(\alpha\) being a function of \((x^1, x^2)\). Thus, with a slight change in notation, \((1)\) becomes

\[
\Phi = \alpha^2[(dx^1)^2 + (dx^2)^2] + \beta^2(dx^3)^2 - \gamma^2(dx^4)^2,
\]

\((3)\)

where \((\alpha, \beta, \gamma)\) are functions of \((x^1, x^2)\).

By straightforward but tedious calculation using \(1-\)\((106)\), we find the surviving components of the Ricci tensor to have the following values:

\[
R_{11} = \left(\frac{\alpha_1}{\alpha}\right)_1 + \left(\frac{\alpha_2}{\alpha}\right)_2 + \frac{\beta_{11}}{\beta} + \frac{\gamma_{11}}{\gamma}
\]

\[
+ \frac{\alpha_2}{\alpha} \left(\frac{\beta_2}{\beta} + \frac{\gamma_2}{\gamma}\right) - \frac{\alpha_1}{\alpha} \left(\frac{\beta_1}{\beta} + \frac{\gamma_1}{\gamma}\right),
\]

\((4)\)

\[
R_{22} = \left(\frac{\alpha_1}{\alpha}\right)_1 + \left(\frac{\alpha_2}{\alpha}\right)_2 + \frac{\beta_{22}}{\beta} + \frac{\gamma_{22}}{\gamma}
\]

\[
+ \frac{\alpha_1}{\alpha} \left(\frac{\beta_1}{\beta} + \frac{\gamma_1}{\gamma}\right) - \frac{\alpha_2}{\alpha} \left(\frac{\beta_2}{\beta} + \frac{\gamma_2}{\gamma}\right),
\]

\[
R_{12} = \frac{\beta_{12}}{\beta} + \frac{\gamma_{12}}{\gamma} - \frac{\alpha_2}{\alpha} \left(\frac{\beta_1}{\beta} + \frac{\gamma_1}{\gamma}\right) - \frac{\alpha_1}{\alpha} \left(\frac{\beta_2}{\beta} + \frac{\gamma_2}{\gamma}\right),
\]

\[
R_{33} = \frac{\beta}{\alpha^2} \left\{\Delta \beta + \frac{1}{\gamma} (\beta_1 \gamma_1 + \beta_2 \gamma_2)\right\},
\]

\[
R_{44} = -\frac{\gamma}{\alpha^2} \left\{\Delta \gamma + \frac{1}{\beta} (\beta_1 \gamma_1 + \beta_2 \gamma_2)\right\},
\]

where the subscripts on the right indicate partial derivatives with respect to \(x^1\) and \(x^2\), and

\[
\Delta \beta = \beta_{11} + \beta_{22}, \quad \Delta \gamma = \gamma_{11} + \gamma_{22}.
\]

\((5)\)

1 Bergmann [1942], p. 206 states that, on the basis of symmetry alone, it is possible to obtain a form with only two unknown functions, but that is not correct; the reduction to two involves the use of some of the field equations in vacuo.

2 Weyl [1917], [1919c], Levi-Civita [1917a]–[1919], Bach [1922], Chazy [1923], [1924], Darmois [1927].
We note that
\[R_3^3 + R_4^4 = \beta^{-2}R_{33} - \gamma^{-2}R_{44} = \frac{1}{\alpha^2\beta\gamma} \Lambda(\beta\gamma). \tag{6} \]

All this is true whether matter be present or not. We now examine a domain in which there is no matter, so that the field equations are
\[R_{ij} = 0, \tag{7} \]
and we obtain from (6) the remarkable result
\[\Lambda(\beta\gamma) = 0. \tag{8} \]

This means that $\beta\gamma$ is a harmonic function of (x^1, x^2). Write
\[\beta\gamma = r(x^1, x^2); \tag{9} \]
then there exists a conjugate harmonic function $z(x^1, x^2)$, such that
\[r + iz = f(x^1 + ix^2), \tag{10} \]
where f is an analytic function. We now make a transformation
\[(x^1, x^2) \rightarrow (r, z). \tag{11} \]

Since this transformation is conformal, it preserves the isothermal character of a quadratic form, and so
\[\alpha^2[(dx^1)^2 + (dx^2)^2] = A(dr^2 + dz^2), \tag{12} \]
where A is a function of (r, z). Further, by (9) we have
\[\beta = r/\gamma, \tag{13} \]
and so the Φ of (3) becomes a form with only two arbitrary functions in it.

To state the result compactly, let us forget the old meanings of (x^1, x^2) and write
\[x^1 = r, \quad x^2 = z, \quad x^3 = \phi, \quad x^4 = t. \tag{14} \]
Let us also forget the old meanings of (α, β, γ). Then we assert that, in any domain in which the conditions of axial symmetry (as here understood) are satisfied, and in which 1
\[R_3^3 + R_4^4 = 0, \tag{15} \]

1 Although we wrote down the whole set of vacuum equations in (7), we used only the combination (15).
the metric form is reducible to
\[\Phi = \alpha^2 (dr^2 + dz^2) + r^2 \gamma^{-2} d\phi^2 - \gamma^2 dt^2, \]
(16)
where \((\alpha, \gamma)\) are functions of \((r, z)\).

Now (16) is really the same form as (3) except for the relation (13). We can therefore use (4) to evaluate the Ricci tensor, inserting (13) to eliminate \(\beta\). However, the formalism is important, and it is wise to change from the notation \((\alpha, \gamma)\) to \((\lambda, \nu)\), putting
\[\alpha = e^{\nu - \lambda}, \quad \beta = re^{-\lambda}, \quad \gamma = e^{\lambda}, \]
(17)
so that the metric form reads
\[\Phi = e^{2(\nu - \lambda)} (dr^2 + dz^2) + r^2 e^{-2\lambda} d\phi^2 - e^{2\lambda} dt^2. \]
(18)

From (4) we find
\[\frac{1}{2} (R_{11} + R_{22}) = \Delta \nu - \left(\Delta \lambda + \frac{\lambda_1}{r} \right) + \lambda_1^2 + \lambda_2^2, \]
\[\frac{1}{2} (R_{11} - R_{22}) = \lambda_1^2 - \lambda_2^2 - \frac{\nu_1}{r}, \]
\[R_{12} = 2 \lambda_1 \lambda_2 - \frac{\nu_2}{r}, \]
\[R_3^3 - R_4^4 = -\frac{2}{\alpha^2} \left(\Delta \lambda + \frac{\lambda_1}{r} \right), \]
\[R_3^3 + R_4^4 = 0, \]
(19)
the last being of course known already.

Imposing the complete set of vacuum equations (7), we get
\[\Delta \lambda + \frac{\lambda_1}{r} = 0, \]
(20)
\[\nu_1 = r(\lambda_1^2 - \lambda_2^2), \quad \nu_2 = 2r \lambda_1 \lambda_2, \]
(21)
\[\Delta \nu + \lambda_1^2 + \lambda_2^2 = 0. \]
(22)
If (20) is satisfied, then (21) are integrable, and (22) is implied by the other equations. Thus, in any domain \(E\) in which the vacuum equations are satisfied we obtain fields by the following prescription: For \(\lambda\) choose any solution of (20) and define \(\nu\) by
\[\nu = \int r[(\lambda_1^2 - \lambda_2^2) dr + 2\lambda_1 \lambda_2 dz], \]
(23)
the path of integration lying in \(E\).
We now come to the most amazing fact in this work: written out explicitly in the form

$$\frac{\partial^2 \lambda}{\partial r^2} + \frac{1}{r} \frac{\partial \lambda}{\partial r} + \frac{\partial^2 \lambda}{\partial z^2} = 0,$$

(24)

the equation (20) is recognized as Laplace’s equation in cylindrical coordinates \((r, \phi, z)\) in Euclidean 3-space for a function which is independent of \(\phi\). This gives an easy way of finding solutions of (20).

The physical purpose of all this work is to study the gravitational field of a non-rotating body with axial symmetry. Taking \((r, \phi, z)\) as cylindrical coordinates in Euclidean 3-space, we sketch in Fig. 1 a body with interior domain \(I\) and exterior domain \(E\). We expect the metric form in \(E\) to be as in (18) with \(\lambda(r, z)\) some harmonic function and \(v(r, z)\) defined by (23). The metric in \(I\) is another matter altogether.

But before thinking about \(I\) we must examine the question of elementary flatness in \(E\). This demands that, for any infinitesimal spacelike circle, the ratio of circumference to radius shall be \(2\pi\). The dangerous place is the \(z\)-axis; if we take a small circle on which \((r, z, t)\)
are constant, with \(r \) infinitesimal, it is easy to see from (18) that the requirement is

\[
\nu = 0 \text{ for } r = 0.
\] (25)

Now (23) defines \(\nu \) only to within an additive constant — let us choose \(\nu = 0 \) at \(A \). Then \(\nu = 0 \) on \(AA' \), but at \(B \)

\[
\nu = \int_{ADB} \left\{ \left[\left(\frac{\partial \lambda}{\partial r} \right)^2 - \left(\frac{\partial \lambda}{\partial z} \right)^2 \right] dr + 2 \frac{\partial \lambda}{\partial r} \frac{\partial \lambda}{\partial z} dz \right\},
\] (26)

the integral (which is independent of path in \(E \)) being taken on the boundary \(ADB \), or any curve deformable into it. Since \(\nu \) receives no increment on \(BB' \), the path \(ADB \) may be changed into an infinite semicircle. It is clear that the condition of elementary flatness is satisfied if \(\lambda \) vanishes at infinity at least as fast as \((r^2 + z^2)^{-1} \).

Let us now turn to Fig. 2, which shows two bodies. If \(\lambda \) behaves as stated and \(\nu = 0 \) at \(A \), then \(\nu = 0 \) at \(C \). But there is no reason to suppose that \(\nu = 0 \) on \(BB' \), and so the proposed solution of the two-body problem fails. It is well for the theory of relativity that it does fail, for if it succeeded we would see two massive bodies permanently at rest in spite of their mutual gravitational attraction!

In Newtonian theory it is not possible for a system of free particles to be in equilibrium under their mutual attractions. But configurations of equilibrium are possible if we admit both positive and negative masses \(^1\), with the inverse square law, like masses attracting and unlike masses repelling. This suggests the investigation of axially symmetric relativistic fields corresponding to ‘particles’ with constant ‘masses’ \(m_1, m_2, \ldots \) (not necessarily positive) situated on the \(z \)-axis at \(z_1, z_2, \ldots \). Accordingly we take

\[
\lambda = - \frac{m_1}{\rho_1} - \frac{m_2}{\rho_2} - \ldots,
\] (27)

\[
\rho_1^2 = r^2 + (z - z_1)^2, \quad \rho_2^2 = r^2 + (z - z_2)^2, \ldots
\]

Then \(\nu \) can be calculated from (26). For two particles, we get (cf. CURZON [1924a, b])

\[
\nu = - \frac{m_1^2 r^2}{2\rho_1^4} - \frac{m_2^2 r^2}{2\rho_2^4} + \frac{2m_1 m_2}{(z_1 - z_2)^2} \left[\frac{r^2 + (z - z_1)(z - z_2)}{\rho_1 \rho_2} - 1 \right].
\] (28)

\(^1\) Cf. BONDI [1957b].
For an arbitrary number of particles, v is given by a similar but more complicated formula. It is easy to see that (28) makes $v = 0$ for $r = 0$ provided z lies outside the range (z_1, z_2), but not if it lies in that range. Consequently we have what may be called 'two particles connected by a strut'. In the general case, we may likewise speak of a strut holding the particles in position, but we may avoid this dubious expression by saying that (27) gives an axially symmetric vacuum field in a domain E which excludes the segment of the z-axis joining the two extreme particles. We are not concerned with the interior domain I in which this segment lies. But let us reduce I to a set of small spheres of radius a with centres at the particles, and work with the unattained limit in which a is very small. The domain E now includes the portions of the z-axis between these spheres, and we have a regular field in E provided $v = 0$ on those portions. The criterion for this is that the integral (26) should vanish when taken over each of the small semi-circles of radius a and centres at z_1, z_2, \ldots. To investigate this integral for the semi-circle at z_1, say, we write (27) in the form $\lambda = -m_1/\rho_1 + \lambda'_1$, where λ'_1 is finite for $r = 0$, $z = z_1$. Then the integral (26) breaks into three parts. The first part appears to be large of order a^{-2}, but actually vanishes; the second part in general is finite; and the third part vanishes with a. All we need then is the vanishing of the second part, and we find that the condition for this is

$$\frac{\partial \lambda'_1}{\partial z} = 0 \text{ for } z = z_1.$$ (29)

Thus $v = 0$ on the axis, and we have a regular field in E (i.e. elementary flatness everywhere in E) provided conditions of the type (29) are satisfied, one for each particle. The remarkable thing is that, since λ is formally the sum of the Newtonian potentials of the particles, these conditions are identical with the Newtonian conditions of equilibrium — the resultant force on each particle must vanish. We may say that, when the constants representing masses (positive and negative) and positions satisfy the stated conditions, the struts referred to above are not required for the maintenance of equilibrium 1.

However, although the above work is interesting and suggestive, 1 Spherical symmetry is a particular case of axial symmetry. To derive the Schwarzschild form, one takes for λ the potential of a rod; cf. Erez and Rosen [1959], where the field of a quadrupole particle is also discussed.
it has two defects. First, in a field theory we do not like to deal with concentrated particles (the unattained limit \(a \to 0 \)), and secondly negative masses appear to be unphysical. What we would like to obtain is a set of models, each representing a body of reasonable nature surrounded by empty space. The simplest model is that in which we take for the interior domain \(I \) a sphere \(r^2 + z^2 \leq a^2 \) filled with matter of constant ‘density’ \(\sigma \), and define \(\lambda \) as the Newtonian potential \(\lambda = -\int \rho^{-1} \sigma \, dI \), where \(\rho \) is Euclidean distance in the \((r, z, \phi)\)-space and \(dI = r \, dr \, dz \, d\phi \). Then \(\lambda = -m/\rho \), where \(m = \int \sigma \, dI \) and \(\rho \) is now distance from the origin. By (18), this gives in \(E \) the metric

\[
\Phi = \exp \left(\frac{2m}{\rho} - \frac{m^2 r^2}{\rho^4} \right) (dr^2 + dz^2) + r^2 \exp \left(\frac{2m}{\rho} \right) d\phi^2 - \exp \left(-\frac{2m}{\rho} \right) dt^2,
\]

\(\rho^2 = r^2 + z^2. \)

But what is the metric in the interior \(I \)? This raises a broad question, for there is no well-stated problem as far as \(I \) is concerned. In \(\text{vii} - \text{§} \, 7 \) the spherically symmetric fluid sphere was completely investigated, and one might think that fluid bodies should claim prior attention here. But we know from Newtonian physics that the statical condition limits the equilibrium-forms of fluids to spherical symmetry, and we are not to expect to find in relativity a statical fluid body which is axially symmetric without being spherically symmetric.

In fact, we must abandon fluids, and indeed abandon the idea that the structure of the matter is given a priori. We should be satisfied with any energy tensor which shows pressure rather than tension and (even more important) positive density. This means that we demand satisfaction in \(I \) of the conditions [cf. iv–(146a)]

\[
T^1_1 \geq 0, \quad T^2_2 \geq 0, \quad T^3_3 \geq 0, \quad T^4_4 < 0,
\]

or equivalently

\[
G^1_1 \leq 0, \quad G^2_2 \leq 0, \quad G^3_3 \leq 0, \quad G^4_4 > 0.
\]

We see before us a body bounded by a surface \(S \) with equation

\[
f(r, z) = 0,
\]

separating an exterior region \(E \) from an interior region \(I \). On \(S \) the
Einstein tensor of \(I \) must satisfy the two junction conditions \(^1\)

\[
G^1_{1f,1} + G^2_{1f,2} = 0,
G^1_{2f,1} + G^2_{2f,2} = 0.
\] (34)

To construct an axially symmetric field in \(E \) and \(I \), we have to assign a metric (3) involving \textit{three} functions \(\alpha, \beta, \gamma \) of \(x^1, x^2 \) (equivalently, of \(r, z \)). In \(E \) they are to reduce to \textit{two}, by the relation \(\beta \gamma = r \) as in (13), but this reduction is not to occur in \(I \), because it implies (15) and hence

\[
G^1_1 + G^2_2 = 0;
\] (35)

this violates (32) unless \(G^1_1 \) and \(G^2_2 \) both vanish, which we do not desire. In both \(E \) and \(I \), elementary flatness demands that \(r \alpha / \beta \rightarrow 1 \) as \(r \rightarrow 0 \). Since the problem in \(E \) is so well under control, and the requirements in \(I \) consist only in the boundary conditions (34) and the inequalities (32), it seems natural to start with \(E \) and work inwards. But the way is not easy. One can resolve the steps as follows:

(i) Choose in \(E \) a harmonic function \(\lambda(r, z) \) which vanishes at infinity like \((r^2 + z^2)^{-1}\).
(ii) Calculate \(\nu(r, z) \) in \(E \) by (23).
(iii) Calculate \((\alpha, \beta, \gamma) \) in \(E \) by (17).
(iv) Choose in \(I \) functions \((\alpha, \beta, \gamma) \), continuous across \(S \) with \((\alpha, \beta, \gamma) \) in \(E \).
(v) Calculate by (4) \(R_{ij} \) in \(I \), and hence \(G^i_j \) in \(I \).
(vi) Test by (34) and revise choices (i) and (iv) so that (34) is satisfied.
(vii) Test by (32) throughout \(I \).

If (32) is satisfied, then (3) is a suitable metric for a complete axially-symmetric universe, with matter in \(I \) and vacuum in \(E \).

§ 2. SPACE-TIMES CONFORMALLY RELATED AND CONFORMALLY FLAT

The general theory of relativity is bedevilled by the large number of unknown functions — the ten components \(g_{ij} \). There is little hope of getting physically interesting results without making a drastic reduction in their number. In Chap. VII the hypothesis of spherical

\(^1\) Cf. 1–(229) et seq. We are \textit{not} assuming \((r, \phi, z)\) to be admissible coordinates, for that would be rash. The conditions (34) express the vanishing of stress across \(S \).
symmetry reduced the number to two, and in § 1 a rather strengthened hypothesis of axial symmetry reduced it to three (two in vacuo). We shall now go further and reduce the number to one by dealing with conformally flat space-time.

But before proceeding to this, it is well to develop some results for two space-times which are conformally related. This means that their metric tensors, \(g_{ij} \) and \(g'_{ij} \), satisfy a relation

\[
g_{ij} = e^{\psi(x)} g'_{ij}. \tag{36}\]

We have obviously

\[
g_{ij} = e^{-\psi} g'_{ij}, \tag{37}\]

and we find, for the Christoffel symbols,

\[
\Gamma^i_{jk} = \Gamma'^i_{jk} + A^i_{jk} \tag{38}\]

where

\[
A^i_{jk} = \frac{1}{2} (\delta^i_j \psi, k + \delta^i_k \psi, j - g'_{jk} g'^{ia} \psi_a). \tag{39}\]

Substituting in \(i - (88) \), we find that the two Riemann tensors are related to one another as follows:

\[
R^i_{jkm} = R'^i_{jkm} + A^i_{jm,k} - A^i_{jk,m} + A^a_{jm} A^i_{ak} - A^a_{jk} A^i_{am}, \tag{40}\]

where the stroke indicates covariant differentiation with respect to \(g'_{ij} \), not \(g_{ij} \). (Obviously \(\psi \) is an invariant, and \(A^i_{jk} \) a tensor.)

Contraction of (40) gives

\[
R_{jk} = R'_{jk} + A^a_{aj,k} - A^a_{jk,a} + A^a_{ab} A^b_{ak} - A^a_{jk} A^b_{ab}. \tag{41}\]

Now by (39)

\[
A^a_{aj} = 2 \psi, j, \quad A^a_{aj,k} = 2 \psi, jk, \quad A^a_{jk,a} = \psi, jk - \frac{1}{2} g'_{jk} \psi, \quad A^a_{jk} A^b_{ka} = \frac{3}{2} \psi, j \psi, k - \frac{1}{2} g'_{jk} \chi, \quad A^a_{jk} A^b_{ab} = 2 \psi, j \psi, k - g'_{jk} \chi, \tag{42}\]

where

\[
\chi = g'^{ab} \psi_a \psi_b, \quad \Box' \psi = g'^{ab} \psi_{ab}. \tag{43}\]

Thus the relation between the Ricci tensors is

\[
R_{jk} = R'_{jk} + \psi, jk - \frac{1}{2} \psi, j \psi, k + \frac{1}{2} g'_{jk}(\Box' \psi + \chi). \tag{44}\]

For the curvature invariants we have

\[
R = g^{jk} R_{jk} = e^{-\psi} g'^{jk} R'_{jk} = e^{-\psi} (R' + 3 \Box' \psi + \frac{3}{2} \chi). \tag{45}\]
Finally for the Einstein tensors we get
\[G_{jk} = R_{jk} - \frac{1}{2}g_{jk}R = R_{jk} - \frac{1}{2}e^{\psi}g'_{jk}R = \psi_{,jk} - \frac{1}{2}\psi_{,j}\psi_{,k} - g'_{jk}(\Box'\psi + \frac{1}{2}\chi). \] (46)

This formula enables us to transform one gravitational problem into another. Suppose we have a field \(g_{ij}' \) with matter represented by \(G_{ij}' \). Then, choosing any function \(\psi \), we get a new field with \(g_{ij} \) as in (36) and \(G_{ij} \) as in (47). Such a transformation is of course something quite different from a mere transformation of coordinates, for the latter is nothing but a formal change in the way a certain field is expressed mathematically.

If \(g_{ij}' \) is the metric of flat space-time, the space-time with metric \(g_{ij} \) as in (36) is said to be *conformally flat*. We can then delete \(R^i_{\ jkm}, R'_{jk}, G'_{jk} \) in the above equations; in particular we have
\[G_{jk} = \psi_{,jk} - \frac{1}{2}\psi_{,j}\psi_{,k} - g'_{jk}(\Box'\psi + \frac{1}{2}\chi). \] (47)

If we like, we can use coordinates such that
\[g_{ij}' = \eta_{ij} = \text{diag}(1, 1, 1, -1); \] (48)
then
\[g_{ij} = e^{\psi}\eta_{ij}, \]
\[\Phi = e^{\psi}[(dx^1)^2 + (dx^2)^2 + (dx^3)^2 - (dx^4)^2]. \] (49)

The covariant derivatives in (47) may be replaced by partial derivatives, so that we have
\[G_{ij} = \psi_{,ij} - \frac{1}{2}\psi_{,i}\psi_{,j} - \eta_{ij}(\Box\psi + \frac{1}{2}\chi), \]
\[\Box\psi = \eta^{ab}\psi_{,ab}, \quad \chi = \eta^{ab}\psi_{,a}\psi_{,b}. \] (50)

The metric \(g_{ij} \) depends solely on the function \(\psi \), and, by making suitable choice of this function, we can generate a multiplicity of universes in which the energy tensor \(T_{ij} \) is given by
\[\kappa T_{ij} = -G_{ij}, \quad \kappa = 8\pi, \] (51)
with \(G_{ij} \) as in (50). The physical interest of such universes will, however, depend on whether they exhibit pressure (rather than tension) and positive energy density — in fact we desire to satisfy the inequalities (32).
Let us examine the case where ψ is a function of x^4 only. Denoting its derivatives by primes, we have

$$\psi_{,\alpha} = 0, \quad \psi_4 = \psi', \quad \psi_{44} = \psi'',$$

$$\Box \psi = -\psi', \quad \chi = -\psi'^2. \tag{52}$$

Then (50) gives for the Einstein tensor 1

$$G_{\alpha\beta} = \delta_{\alpha\beta}(\psi'' + \frac{1}{4}\psi'^2),$$
$$G_{\alpha4} = 0,$$
$$G_{44} = -\frac{3}{4}\psi'^2. \tag{53}$$

The inequalities (32) are satisfied provided

$$\psi'' + \frac{1}{4}\psi'^2 \leq 0. \tag{54}$$

In fact, (53) gives a positive energy-density, but tension rather than pressure unless (54) holds.

It is impossible to satisfy (54) in the whole range of x^4. But if (writing $x^4 = t$) we are content to deal only with $t > 0$ or $t < 0$, we get an interesting universe on putting

$$e^\psi = \left(\frac{t}{a}\right)^4 \tag{55}$$

where a is any constant; the metric form may now be written

$$\Phi = \left(\frac{t}{a}\right)^4 (dx^2 + dy^2 + dz^2 - dt^2). \tag{56}$$

We have

$$\psi' = \frac{4}{t}, \quad \psi'' = -\frac{4}{t^2}, \quad \psi'' + \frac{1}{4}\psi'^2 = 0,$$

$$G_{\alpha\beta} = 0, \quad G_{44} = -\frac{12}{t^2}. \tag{57}$$

1 When ψ is a function of x^4 only, we have a universe with spherical symmetry in the sense of vii–§ 3, and the formulae of that section might also be used; we may check the values of G_{ij} in (53) by putting in vii–(78) $\alpha = \gamma = \psi$, $\beta = \psi + 2\log r$, and taking ψ to be a function of x^4 only.
In this universe there is no stress, no flux of energy, and a positive energy-density

$$\mu = -T^4_4 = \kappa^{-1}G^4_4 = \frac{12a^4}{\kappa t^6}, \quad (58)$$

which tends to infinity as $t \to 0$. It is the universe of Einstein and de Sitter [1932].

Another interesting choice is

$$e^\psi = \left(\frac{a}{t}\right)^2, \quad \Phi = \left(\frac{a}{t}\right)^2 (dx^2 + dy^2 + dz^2 - dt^2), \quad (59)$$

for which

$$\psi' = -\frac{2}{t}, \quad \psi'' = \frac{2}{t^2}, \quad \psi'' + \frac{1}{4}\psi'^2 = \frac{3}{t^2}, \quad (60)$$

$$G_{\alpha\beta} = \delta_{\alpha\beta} \frac{3}{t^2}, \quad G_{\alpha4} = 0, \quad G_{44} = -\frac{3}{t^2},$$

and so

$$G_{ij} = \Lambda g_{ij}, \quad \Lambda = 3a^{-2}. \quad (61)$$

The inequality (54) is violated, but here we do not care, because (32) (and hence (54)) assumed that the cosmological constant Λ is zero. Reinstating it, and turning back to vii–(4), we see that in (59) we have recreated the de Sitter universe with constant curvature a^{-2}. The moral of this is that the same universe may appear in many different guises according to the coordinates used, and that one should concentrate on invariant properties. Putting

$$\tau/a = \log(t/a), \quad (62)$$

we can change the metric form of the de Sitter universe to

$$\Phi = e^{-2\tau/a}(dx^2 + dy^2 + dz^2) - d\tau^2. \quad (63)$$

It may be noted that any form

$$\Phi = e^{h(\tau)}(dx^2 + dy^2 + dz^2) - d\tau^2 \quad (64)$$

can be put into conformally flat form; for by the transformation

$$t = \int e^{-\frac{1}{2}h(\tau)}d\tau, \quad (65)$$

we have

$$d\tau^2 = e^{h(\tau)}dt^2. \quad (66)$$

1 Cf. Robertson [1933] for the history of this and other forms.
and (64) becomes
\[\Phi = e^{\psi(t)}(dx^2 + dy^2 + dz^2 - dt^2). \] (67)
where
\[\psi(t) = \bar{h}(\tau). \] (68)

§ 3. THE COSMOLOGICAL RED-SHIFT

It is observed that the spectra of nebulae are shifted towards the red, the shift being roughly proportional to distance. The endurance of Newtonian concepts is such that many astronomers seem to accept absolute space and time, and attribute the red-shift of the spectra of nebulae to a velocity of recession in the Newtonian sense.

A relativist cannot, of course, look at the phenomenon of red-shift in that way. If he feels that the matter in the universe is too thinly spread to produce a significant curvature of space-time, he may use the special theory (flat space-time) \(^1\). But if the gravity of matter is significant, then allowance must be made for it. Without seeking the maximum generality, even under the assumptions of symmetry usually made \(^2\), we shall here assume the metric form of space-time to be conformally flat as in (49) and we shall write it
\[\Phi = [\omega(t)]^2(dx^2 + dy^2 + dz^2 - dt^2); \] (69)
we shall make no specific assumption regarding the function \(\omega(t)\) except that it increases with \(t\), although we shall later put \(\omega = t^2/a^2\) as in (56), since that corresponds to an absence of stress. As is always done in such arguments, we shall assume (in spite of the presence of matter due to \(G_{ij} \neq 0\)) that the world-line of a photon is a null geodesic with the 4-momentum tangent to it and carried by parallel transport, so that the methods of \(\text{III} - \S\ 7\) and \(\text{VII} - \S\ 9\) can be used.

Since \(G_{\alpha\delta} = 0\) in (53), the timelike eigenvector of \(G_{ij}\) points along the \(t\)-lines, which are therefore the world-lines of the matter. When we take a source (nebula) and observer, we shall assume both their world-lines to be \(t\)-lines (we shall see below that they are geodesics).

Before proceeding to the red-shift, we note that (69) represents an expanding universe in a real sense. For, as in \(\text{III} - \S\ 5\), we can measure optically the 'distance' between two adjacent \(t\)-lines, and it increases

\(^1\) Kermack and McCrea [1933], Milne [1935], Synge [1956a].
\(^2\) For relativistic cosmology, see Robertson [1933], Tolman [1934b], Bondi [1952], McVittie [1956], Heckmann and Schücking [1959].
with \(t \), the value being
\[
D = \omega(t)(dx^2 + dy^2 + dz^2)^{\frac{1}{2}}. \quad (70)
\]
The ‘distance’ between two \(t \)-lines which are not adjacent is a matter to be discussed later.

The geodesics for (69) are simple to deal with. Writing the Lagrangian
\[
F = \frac{1}{2}[\omega(t)]^2(x'^2 + y'^2 + z'^2 - t'^2), \quad (71)
\]
the prime indicating \(d/dw \) with \(w \) a special parameter, the first three Lagrangian equations give
\[
\omega^2x' = A, \quad \omega^2y' = B, \quad \omega^2z' = C, \quad (72)
\]
where \(A, B, C \) are constants. Therefore the geodesics are straight lines in an auxiliary Euclidean space \(E_3 \) in which \((x, y, z)\) are rectangular Cartesian. We also see that the \(t \)-lines are timelike geodesics, the proper time on them being given by
\[
ds = \omega dt. \quad (73)
\]

On account of the simplicity of the form (69) in \((x, y, z)\), we can adequately explore all timelike and null geodesics by attending to those which pass inwards through the origin of \((x, y, z)\). We write
\[
r = (x^2 + y^2 + z^2)^{\frac{1}{2}}, \quad (74)
\]
and call \(r \) the pseudo-distance of \((x, y, z)\) from the origin; it is to be regarded as a purely mathematical construct, unconnected so far with any physical measurements. For such a radial geodesic, (72) gives
\[
\omega^2dr = -kdw, \quad (75)
\]
where \(k \) is a positive constant depending on the particular geodesic; further we have
\[
\omega^2(dr^2 - dt^2) = -\eta dw^2, \quad (76)
\]
where, for a timelike geodesic we put \(\eta = 1, dw = ds \), and for a null geodesic, \(\eta = 0 \). Hence
\[
\frac{dw}{\omega^2} = \frac{\omega^2 dt}{\sqrt{\eta \omega^2 + k^2}}, \quad (77)
\]
\[
dr = -k \frac{dw}{\omega^2} = - \frac{k dt}{\sqrt{\eta \omega^2 + k^2}},
\]
and in particular for a null geodesic
\[dw = -\kappa \omega^2 dt, \quad dr = -dt. \] (78)

To discuss the question of red-shift, it is well to picture events in \(E_4 \), a Euclidean 4-space with \((x, y, z, t)\) rectangular Cartesians (Fig. 3). We see two world-lines, \(C \) and \(C' \), representing respectively the histories of an observer and a source; \(C \) is the \(t \)-axis, and \(C' \) a \(t \)-line at pseudo-distance \(r \). In the physical interpretation we put the observer on the sun \(^1\) and the source on a distant nebula. Fig. \(\text{vii–10} \) (p. 299) was much the same as Fig. 3, but whereas the former with its curved lines was only a guide to thought, the latter is a scale drawing with null lines inclined at an angle of 45°.

In Fig. 3 \(P'P \) and \(Q'Q \) are the adjacent histories of two photons. If \(t, t' \) are values at \(P, P' \), respectively, we have by (78)
\[r = t - t', \] (79)
and, passing to \(Q'Q \),
\[dt = dt', \] (80)
where \(dt \) refers to \(PQ \) and \(dt' \) to \(P'Q' \). By (73) the corresponding increments in proper time are
\[ds = \omega(t)dt, \quad ds' = \omega(t')dt', \] (81)
and \(\text{vi–(52)} \) gives a spectral shift
\[\frac{v' - v}{v'} = \frac{ds - ds'}{ds} = 1 - \frac{\omega(t')}{\omega(t)}. \] (82)
Thus the metric form (69) gives a red-shift on the assumption that \(\omega(t) \) is an increasing function.

We have now to inquire how the red-shift depends on the distance of the source, and for that the concept of 'distance' must be defined, for we can hardly attach physical meaning to the pseudo-distance \(r \).

\(^1\) The gravitational field of the sun is not considered. In accepting (69), we smeared matter out into a thin uniform distribution, in accordance with the common practice in treating such cosmological problems.
Fig. 4, drawn in E_3, shows at C' a source which emits radiation uniformly in all directions with intensity I', by which we mean that the total energy emitted in proper time ds' is $I'ds'$. There is a receiver or observer at C. The points C, C' in Fig. 4 are the projections on E_3 of the lines C, C' of Fig. 3. The energy $I'ds'$ is of course computed relative to the world-line C'.

The energy, relative to a world-line with 4-velocity V^t, of a photon with 4-momentum p^i is $E = -p^tV_i$. We are concerned only with t-lines, so that V^4 is the only surviving component of V^t, and

$$V^4 = \omega^{-1}, \quad V_4 = -\omega. \quad (83)$$

The 4-momentum of the photon may be written in general

$$p^i = \alpha \frac{dx^i}{dw}, \quad (84)$$

where w is a special parameter on its world-line and α a constant depending on the choice of w and the particular photon involved. In our problem we have, by (78),

$$p^4 = \alpha \frac{dt}{dw} = \frac{\alpha k}{\omega^2}, \quad (85)$$

and so the energy of the photon is

$$E = \frac{\alpha k}{\omega}. \quad (86)$$

Since $\omega(t)$ is an increasing function, by assumption, the photon continually loses energy, relative to the local t-line. As a photon passes from emission at C' to reception at C, the energy is decreased according to the formula

$$\frac{E}{E'} = \frac{\omega(t')}{\omega(t)}. \quad (87)$$
This confirms, by a different method, the red-shift already found in (82).

When the burst of energy $I'ds'$, emitted at t' from C', reaches C at t, it occupies in Fig. 4 a thin spherical shell, and the total energy in this shell is, by (87),

$$I'ds' \frac{\omega(t')}{\omega(t)}$$

(88)

the local energies over the sphere being added together.

At C the observer sets up a target (actually the object glass of a telescope) to catch the radiation. If dS is the (invariant) area of the target and ds the increment in the observer's proper time from the beginning to the end of the burst, then the total energy received by him may be written

$$JdSds,$$

(89)

J being the intensity of the received radiation.

Now the pseudo-radius of the sphere and its invariant area are

$$r = t - t', \quad dS = 4\pi r^2 \omega(t)^2,$$

(90)

and so C receives on his target a fraction

$$\frac{dS}{4\pi r^2 \omega(t)^2}$$

(91)

of all the energy in the shell. Thus

$$JdSds = I'ds' \frac{dS}{4\pi r^2} \frac{\omega(t')}{[\omega(t)]^3}.$$

(92)

But as in (82)

$$ds' = ds \frac{\omega(t')}{\omega(t)},$$

(93)

and so the received intensity is

$$J = \frac{I'}{4\pi r^2} \frac{[\omega(t')]}{[\omega(t)]^4},$$

(94)

$$r = t - t'.$$

The ratio J/I' is therefore the same for all sources of different brightness at the same pseudo-distance r, and we may define the astro-
nomical 1 distance r_0 by the formula

$$J = \frac{I'}{4\pi r_0^2},$$

(95)

which makes $r_0 = r$ in flat space-time. If we assume, as astronomers do, the existence throughout the universe of stars which all have the same intrinsic luminosity I', the measurement of the intensity J received from such a star gives the astronomical distance r_0 of that star and of any others known to be near to it. In terms of r_0, (94) reads

$$r_0 = (t - t') \frac{[\omega'(t)]^2}{\omega'(t')}.$$

(96)

Denoting the red-shift as in (82) by ρ, we have

$$\rho = \frac{v' - v}{v'} = 1 - \frac{\omega(t')}{\omega(t)}.$$

(97)

This equation and (96) are basic. The left hand sides are observational, and the right hand sides are theoretical constructs. If observation gives a relationship between ρ and r_0, these equations lead to a functional equation for the function ω. On the other hand, if we assume a function ω, elimination of t' will give a relationship between ρ and r_0.

If, to explore the situation, we assume $(t - t')$ small, we may write approximately

$$\omega(t') = \omega(t) - (t - t')\omega'(t);$$

(98)

then we get

$$r_0 = (t - t')\omega(t), \quad \rho = (t - t')\omega'(t),$$

$$\rho = r_0 \frac{\omega'(t)}{\omega(t)},$$

(99)

so that red-shift is proportional to optical distance for all observations made at t.

If, scorning approximations, we take the Einstein-de Sitter form (56),

$$\Phi = \left(\frac{t}{a}\right)^4 (dx^2 + dy^2 + dz^2 - dt^2),$$

(100)

1 Or luminosity distance. This is a particular application of the definition of spatial distance given by Whittaker [1931].
so that
\[\omega(t) = \left(\frac{t}{a} \right)^2, \]
and the density is, as in (58),
\[\mu = \frac{12a^4}{\kappa t^6}, \]
then (96) and (97) give
\[r_0 = (t - t') \frac{t^4}{a^2 t'^2}, \quad \rho = 1 - \frac{t'^2}{t^2}. \]
Eliminating t', we get the following shift-distance law for observations made at t:
\[r_0 = \frac{t^3}{a^2} \cdot \frac{1 - \sqrt{1 - \rho}}{1 - \rho}. \]
So far, no approximation. But now expand in powers of ρ,
\[r_0 = \frac{1}{2} \frac{t^3}{a^2} \left(\rho + \frac{5}{4} \rho^2 + \ldots \right), \]
and cut this off at the first term, obtaining the linear law
\[\frac{\rho}{r_0} = \frac{2a^2}{t^3}. \]
The observational quantity
\[\sigma = \frac{\rho}{r_0} \]
is called Hubble's constant (or parameter), and its value is roughly \(^1\)
\[\sigma = 4 \times 10^{-18} \text{ sec}^{-1}. \]
Then (106) gives
\[\frac{t^3}{a^2} = 5 \times 10^{17} \text{ sec}. \]

\(^1\) Cf. McVittie [1956, p. 167], where this parameter is denoted by h_1. There is a considerable range of uncertainty in the value on account of the difficulty in estimating r_0. The value quoted in Synge [1956a] was about twice the figure given in (108).
If we put $t = 0$ in (100), the metric collapses to zero, and this may be interpreted as the beginning of the universe. Thus the age of the universe, up to t, is

$$\int_{t=0}^{t} ds = \int_{t=0}^{t} \omega(t) dt = \int_{t=0}^{t} \frac{t^2}{a^2} dt = \frac{1}{3} \frac{t^3}{a^2}. \quad (110)$$

Inserting the value (109), and noting that 1 year $= 3.1558 \times 10^7$ sec, we get, for the age of the universe 1

$$1.7 \times 10^{17} \text{ sec} = 5.3 \times 10^9 \text{ years}, \quad (111)$$

measured in proper time.

We turn now to (102) for an estimation of density, which becomes infinite for $t = 0$ and is, for a general t,

$$\mu = \frac{3}{2\pi} \frac{a^4}{t^6} = \frac{3\sigma^2}{8\pi}. \quad (112)$$

With the value (108) for σ this gives 2

$$\mu = 1.910 \times 10^{-36} \text{ sec}^{-2}. \quad (113)$$

Using the conversion formulae

$$1 \text{ g} = 2.476 \times 10^{-39} \text{ sec},$$

$$1 \text{ cm}^{-1} = 2.998 \times 10^{10} \text{ sec}^{-1},$$

$$1 \text{ g cm}^{-3} = 6.668 \times 10^{-8} \text{ sec}^{-2},$$

$$1 \text{ sec}^{-2} = 1.500 \times 10^7 \text{ g cm}^{-3}, \quad (114)$$

we get a density 3

$$\mu = 2.865 \times 10^{-29} \text{ g cm}^{-3}. \quad (115)$$

Of all branches of modern science, cosmological theory is the least

1 Note that in this work the age of the universe is not the reciprocal of Hubble's constant, but $^{2/3}$ of the reciprocal.

2 For purposes of arithmetical calculation, it is unwise to round off numbers, even if there values are physically uncertain.

3 This value is about six times the upper bound given by McVittie [1956, p. 176], who allows in his range a factor of 100. Bondi [1952, pp. 46, 48] gave a much larger value of $10^{-27} \text{ g cm}^{-3}$.
disciplined by observation. Optical observations made at any instant on the world-line C (Fig. 5) have their sources in events lying on the null cone drawn into the past, and all man's observations over a period of, say, a thousand years come from a null shell, which, on the cosmical time-scale, must be regarded as wafer-thin. From this small sample of the universe and from geological history on the world-line C itself, man attempts to construct the whole by daring extrapolation. Since we cannot dispute about the unknowable, any theory is successful if it succeeds in the thin shell of the known. But unfortunately the interpretation of observations of this shell is difficult, and

![Diagram of the thin null shell formed by observed events](image)

Fig. 5 – The thin null shell formed by observed events

much must be left to the inspired guesses of astronomers who change their verdicts from year to year. All this should not deter us from the creation of cosmological models, but it does suggest that the rival merits of different models should not be supported with polemical heat.

Simplicity is a grand thing, and we may well prefer the simplest model of the universe. As an exercise on conformally flat universes, we selected first one in which the conformal factor was a function of t only, and then specialized to the form (100) which gives zero pressure without the intervention of the cosmological constant. This model universe, invented by Einstein and de Sitter [1932]¹, seems to be the simplest there can be, and deserves attention; it is not suggested that it necessarily represents physical reality as well as, or better than, more complicated models.

¹ Cf. Tolman [1934b, p. 415], who gives an account of many model universes, in most of which the cosmological constant is involved.
§ 4. UNIVERSES OF THE GÖDEL TYPE

In building a model universe we choose a metric form \(g_{ij}dx^i dx^j \) and apply certain tests to it. First, it must be of signature \(1 + 2 \). Secondly, stress and density must be explored, for we wish stress to be pressure rather than tension, and density to be positive. Since the decision here rests merely on signs and it is easy to get confused, let us restate in a slightly different way the test already described in iv–§6.

To get pressure rather than tension and a positive density \(\mu \), we require that the determinantal equation

\[
\det(G_{ij} - \theta g_{ij}) = 0
\]

(116)

should have three negative roots and one positive root. This positive root is \(\kappa \mu (= 8\pi \mu) \). It is further required that the unit vector \(V^i \) (4-velocity) satisfying

\[
G_{ij} V^j = \kappa \mu g_{ij} V^j
\]

(117)

should be timelike \((V_i V^i = -1) \). As a simple check on this, we write down formulae for a perfect fluid, \(W^i \) being any vector orthogonal to the 4-velocity \(V^i \):

\[
T_{ij} = (\mu + \rho) V_i V_j + \rho g_{ij},
\]

\[
G_{ij} = - \kappa (\mu + \rho) V_i V_j - \kappa \rho g_{ij},
\]

\[
G_{ij} W^j = - \kappa \rho g_{ij} W^j,
\]

\[
G_{ij} V^j = \kappa \mu g_{ij} V^j.
\]

(118)

A strange and interesting model universe was invented by Gödel [1949], [1950]. We shall now explore a type of metric which includes his as a particular case.

1 The signature of the quadratic form is the number of positive terms less the number of negative terms which occur when, by local transformation of coordinates, the matrix \(g_{ij} \) is made diagonal. In this book the signature \(1 + 2 \) is used, but many writers prefer \(-2 \). In any particular case, one can pass from the one to the other by reversing the signs of all the components \(g_{ij} \); this makes no physical difference whatever in the universe under consideration, but it does lead to confusing changes of sign in certain formulae (see Appendix A). A further source of confusion in the comparison of formulae arises from the fact that while most writers define \(R_{ij} \) as in 1–(105), others define it as the negative of this.

2 The cosmological constant affects both stress and density; in this work we shall put \(\Lambda = 0 \).

3 We may conveniently speak of this as positive pressure, without implying that the pressure is isotropic.
Throughout this section, Greek suffixes take the values 1, 2, and capital suffixes the values 3, 4.

Consider a metric form

$$\Phi = g_{\alpha\beta}dx^\alpha dx^\beta + g_{AB}dx^A dx^B,$$

where $g_{\alpha\beta}$ are functions of (x^3, x^4) and g_{AB} are constants. Although much more general than the form proposed by him, we may refer to this as of Gödel type. The correct signature for space-time is assured if, for the two quadratic forms in (119), we take one of signature 0 and the other signature $+2$, in either order.

For (119) we have

$$g_{\alpha\beta} = 0, \quad g^{\alpha\beta} = 0, \quad g_{\alpha\beta}g^{\beta\gamma} = \delta^\gamma_\alpha, \quad g_{AB}g^{BC} = \delta^C_A.$$

(120)

To survive, a Christoffel symbol must have precisely two Greek letters; thus the survivors are

$$[\alpha\beta, C] = -\frac{1}{2}g_{\alpha\beta,C}, \quad [\alpha C, \beta] = \frac{1}{2}g_{\alpha\beta,C},$$

(121)

and 1–(85) gives, as surviving components of the Riemann tensor,

$$R_{\alpha\beta\gamma\delta} = \frac{1}{6}g_{EF}(g_{\alpha\delta,E}g^{\beta\gamma,F} - g_{\alpha\gamma,E}g^{\beta\delta,F}),$$

$$R_{\alpha\beta\gamma\delta} = \frac{1}{6}g_{\alpha\gamma,B}g^{\beta\delta,C} - g_{\alpha\gamma,C}g^{\beta\delta,B},$$

$$R_{\alpha\beta\gamma\delta} = -\frac{1}{2}g_{\alpha\gamma,BD} + \frac{1}{6}g_{\alpha\rho}g_{\beta\delta,C} - g_{\alpha\rho,C}g_{\beta\delta,B}.$$

(122)

At this point we specialize by assuming $g_{\alpha\beta}$ to be functions of x^4 only. Then $R_{\alpha\beta\gamma\delta}$ vanishes, and the surviving independent components in (122) may be written out as follows:

$$R_{1212} = \frac{1}{4}g^{44}[(g_{12,4})^2 - g_{11,4}g_{22,4}],$$

$$R_{1414} = -\frac{1}{2}g_{11,44} + \frac{1}{6}g_{\rho\sigma}g_{\rho1,4}g_{\sigma1,4},$$

$$R_{1424} = -\frac{1}{2}g_{12,44} + \frac{1}{6}g_{\rho\sigma}g_{\rho1,4}g_{\sigma2,4},$$

$$R_{2424} = -\frac{1}{2}g_{22,44} + \frac{1}{6}g_{\rho\sigma}g_{\rho2,4}g_{\sigma2,4}.$$

(123)

As a further drastic specialization suggested by the work of Gödel we choose

$$g_{\alpha\beta} = \begin{pmatrix} a & b e^\psi \\ b e^\psi & c e^{2\psi} \end{pmatrix},$$

(124)
where \(a, b, c \) are constants and \(\psi \) any function of \(x^4 \) (we shall indicate its derivatives by primes), while for \(g_{AB} \) we choose any one of the following three matrices:

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}, \quad
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}.
\]

(125)

The particular choice must be related to the choice of \(a, b, c \), in order to secure the correct signature.

Write

\[
\sigma = b^2 - ac, \quad \epsilon = \det g_{AB} = \pm 1.
\]

(126)

Then

\[
g = -\epsilon \sigma e^{2\psi},
\]

\[
g^{\alpha\beta} = \sigma^{-1} \begin{pmatrix}
-c & be^{-\psi} \\
be^{-\psi} & -ae^{-2\psi}
\end{pmatrix},
\]

(127)

\[
g^{AB} = g_{AB}.
\]

The signature requirement is either

\[
\sigma > 0, \quad \epsilon = 1,
\]

(128)

or

\[
\sigma < 0, \quad \epsilon = -1, \quad a > 0.
\]

(129)

The former makes \(g_{\alpha\beta}dx^\alpha dx^\beta \) indefinite and \(g_{AB}dx^A dx^B \) positive-definite, and the latter reverses this.

From (123) we obtain the following simple formulae:

\[
R_{1212} = \frac{1}{4}g^{44}b^2\psi'\psi^2 e^{2\psi},
\]

\[
R_{1414} = -\frac{1}{4} \frac{ab^2}{\sigma} \psi'^2,
\]

(130)

\[
R_{1424} = -\frac{1}{b} \left[\psi'' + \frac{b^2}{2\sigma} \psi'^2 \right] e^\psi,
\]

\[
R_{2424} = -c \left[\psi'' + \left(1 + \frac{b^2}{4\sigma} \right) \psi'^2 \right] e^{2\psi}.
\]

Hence for the surviving components of the Ricci tensor and for the
curvature invariant we have

\[R_{11} = g^{x\beta}R_{x11\beta} + g^{44}R_{4114} = \frac{ab^2}{\sigma} \psi' \]

\[R_{12} = g^{x\beta}R_{x12\beta} + g^{44}R_{4124} = \frac{1}{2}g^{44b} \left(\psi'' + \frac{b^2}{\sigma} \psi'^2 \right) e^\psi, \]

\[R_{22} = g^{x\beta}R_{x22\beta} + g^{44}R_{4224} = g^{44c} \left[\psi'' + \left(1 + \frac{b^2}{2\sigma} \right) \psi'^2 \right] e^{2\psi}, \] \hspace{1cm} (131)

\[R_{44} = g^{x\beta}R_{x44\beta} = \psi'' + \left(1 - \frac{b^2}{2\sigma} \right) \psi'^2, \]

\[R = 2g^{44} \left[\psi'' + \left(1 - \frac{b^2}{4\sigma} \right) \psi'^2 \right]. \]

Calculating the Einstein tensor by

\[G_{ij} = R_{ij} - \frac{1}{2}g_{ij}R, \] \hspace{1cm} (132)

we obtain the following surviving components:

\[G_{11} = -ag^{44} \left[\psi'' + \left(1 - \frac{3b^2}{4\sigma} \right) \psi'^2 \right], \]

\[G_{12} = -bg^{44} \left[\frac{1}{2} \psi'' + \left(1 - \frac{3b^2}{4\sigma} \right) \psi'^2 \right] e^\psi, \]

\[G_{22} = cg^{44} \frac{3b^2}{4\sigma} \psi'^2 e^{2\psi}, \] \hspace{1cm} (133)

\[G_{33} = -g_{33s}g^{44} \left[\psi'' + \left(1 - \frac{b^2}{4\sigma} \right) \psi'^2 \right], \]

\[G_{44} = -\frac{b^2}{4\sigma} \psi'^2. \]

This is the Einstein tensor for the form

\[\Phi = a(dx^1)^2 + 2be^{\psi}dx^1dx^2 + ce^{2\psi}(dx^2)^2 + g_{33}(dx^3)^2 + g_{44}(dx^4)^2, \] \hspace{1cm} (134)

so far without restriction on the function \(\psi(x^4) \) or on the constants \(a, b, c, g_{33}, g_{44} \) except for (125); the calculations did not actually involve (128) or (129).

Since \(G_{\alpha\lambda} = 0, g_{\alpha\lambda} = 0 \), two of the eigenvectors \(\lambda^i \) of \(G_{ij} \) and the
corresponding eigenvalues θ satisfy

\[
(G_{11} - \theta g_{11}) \lambda^1 + (G_{12} - \theta g_{12}) \lambda^2 = 0,
\]
\[
(G_{21} - \theta g_{21}) \lambda^1 + (G_{22} - \theta g_{22}) \lambda^2 = 0,
\]
\[
\lambda^3 = \lambda^4 = 0;
\]

these eigenvectors lie in the 2-element containing the parametric lines of x^1 and x^2. The third eigenvector is in the x^3-direction, and the eigenvalue is

\[
\theta_3 = -g^{44} \left[\psi'' + \left(1 - \frac{b^2}{4\sigma} \right) \psi' \right];
\]

the fourth eigenvector is in the x^4-direction with eigenvalue

\[
\theta_4 = -g^{44} \frac{b^2}{4\sigma} \psi'.
\]

If we choose at random the function $\psi(x^4)$ and the various constants, we shall probably violate the signature condition and the conditions attached to (116) for positive pressure and density. The situation is really too complicated to explore systematically, and it is necessary to choose some special form for $\psi(x^4)$. One feasible choice is

\[
e^\psi = \left(\frac{x^4}{k} \right)^n \quad (k, n = \text{const.}),
\]

but we shall follow Gödel in making a still simpler choice:

\[
\psi = kx^4 \quad (k = \text{const.}).
\]

Then $\psi' = k$, $\psi'' = 0$, and (133) simplify somewhat to

\[
G_{11} = -k^2 g^{44} \left(1 - \frac{3b^2}{4\sigma} \right),
\]
\[
G_{12} = -k^2 b g^{44} \left(1 - \frac{3b^2}{4\sigma} \right) e^\psi,
\]
\[
G_{22} = k^2 c g^{44} \frac{3b^2}{4\sigma} e^{2\psi},
\]
\[
G_{33} = -k^2 g_{33} g^{44} \left(1 - \frac{b^2}{4\sigma} \right),
\]
\[
G_{44} = -k^2 \frac{b^2}{4\sigma}.
\]
Now we have
\[
\frac{G_{11}}{g_{11}} = \frac{G_{12}}{g_{12}},
\]
and so by (135) the first eigenvector is in the \(x^1 \)-direction and the eigenvalue is
\[
\theta_1 = -k^2 g^{44} \left(1 - \frac{3b^2}{4\sigma}\right).
\]

The second eigenvector does not point in the \(x^2 \)-direction, but nevertheless we shall denote its eigenvalue by \(\theta_2 \). By (135) it satisfies the determinantal equation
\[
\begin{vmatrix}
 a & b \\
 b \left[-k^2 g^{44} \left(1 - \frac{3b^2}{4\sigma}\right) - \theta_2\right] & c \left(k^2 g^{44} \frac{3b^2}{4\sigma} - \theta_2\right)
\end{vmatrix} = 0,
\]
and this gives
\[
\theta_2 = -k^2 g^{44} \frac{b^2}{4\sigma}.
\]

By (136) and (137) the other eigenvalues are
\[
\theta_3 = -k^2 g^{44} \left(1 - \frac{b^2}{4\sigma}\right),
\]
\[
\theta_4 = -k^2 g^{44} \frac{b^2}{4\sigma}.
\]

To obtain positive pressure and density, we are to have three eigenvalues negative (with spacelike eigenvectors) and one eigenvalue positive (with timelike eigenvector). Since \(\theta_2 = \theta_4 \), their common value must be negative and their eigenvectors spacelike. Thus the \(x^4 \)-direction must be spacelike, and hence
\[
g^{44} = g_{44} = 1, \quad \sigma > 0.
\]

By the signature condition (128) then it follows that \(\varepsilon = 1 \) and so
\[
g_{AB} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};
\]
only the first choice in (125) is possible. Now \(g_{33} = 1 \) and this implies that the \(x^3 \)-direction is spacelike; its eigenvalue is therefore a stress,
and application of the positive-pressure condition to (145) give

$$1 - \frac{b^2}{4\sigma} > 0.$$ (149)

We have now three spacelike eigenvectors corresponding to \((\theta_2, \theta_3, \theta_4)\), and the other eigenvector must be timelike, being orthogonal to these. But it points in the \(x^1\)-direction, and so

$$a < 0.$$ (150)

Further applying to (142) the condition of positive density, we get

$$1 - \frac{3b^2}{4\sigma} < 0.$$ (151)

Since \(\sigma = b^2 - ac\), the above inequalities are equivalent to

$$a < 0, \quad c < 0, \quad \frac{4}{3}ac < b^2 < 4ac.$$ (152)

To sum up at this point, for \(\psi = kx^4\), the only admissible form of the type (134) is

$$\Phi = a(dx^1)^2 + 2bek^x dx^1 dx^2 + c e^{2kx^4}(dx^2)^2 + (dx^3)^2 + (dx^4)^2,$$ (153)

with \(a, b, c\) arbitrary constants subject to the inequalities (152); the principal stresses and density are

$$S_2 = S_4 = -k^2 \frac{b^2}{4\sigma}, \quad S_3 = -k^2 \left(1 - \frac{b^2}{4\sigma}\right),$$

$$\mu = k^2 \left(\frac{3b^2}{4\sigma} - 1\right),$$ (154)

the stresses being negative (positive pressure) and the density positive.

The metric form (153) admits a 4-parameter group of motions \(^1\); for it is unchanged by the transformation

$$x^1 = \tilde{x}^1 + A_1, \quad x^2 = \tilde{x}^2 e^{-kB} + A_2,$$

$$x^3 = \tilde{x}^3 + A_3, \quad x^4 = \tilde{x}^4 + B,$$ (155)

where the \(A\)’s and \(B\) are arbitrary constants.

\(^1\) Universes admitting a 3-parameter group of motions have been investigated by Taub [1951] (cf. McVittie [1956, p. 75]); he has constructed some remarkable universes which are empty \((R_{ij} = 0)\), but for which the Riemann tensor \(R_{ijklm}\) does not vanish.

Synge
To get isotropic pressure \((S_2 = S_3 = S_4 = -\rho)\), we must restrict the constants in (153) by the equation
\[
b^2 = 2ac, \tag{156}
\]
and this gives
\[
\rho = \mu = \frac{1}{2}h^2, \tag{157}
\]
a rather disappointing result physically, since we would like to see \(\rho/\mu\) small.

Without the restriction (156), there appear to be four disposable constants in (153), but there are essentially only two. For if we apply the transformation
\[
\sqrt{-ax^1} = k^{-1}\tilde{x}^1, \quad \sqrt{-cx^2} = \frac{1}{\sqrt{2}}k^{-1}\tilde{x}^2, \tag{158}
\]
\[x^3 = k^{-1}\tilde{x}^3, \quad x^4 = k^{-1}\tilde{x}^4,
\]
we get
\[
\Phi = k^{-2}[-(dx^1)^2 - 2\lambda e^{-\tilde{x}^4}d\tilde{x}^1d\tilde{x}^2 - \frac{1}{2}e^{2\tilde{x}^4}(d\tilde{x}^2)^2 + (d\tilde{x}^3)^2 + (d\tilde{x}^4)^2], \tag{159}
\]
where
\[
\frac{2}{3} < \lambda^2 = \frac{b^2}{2ac} < 2. \tag{160}
\]
If we now impose (156), we get \(\lambda^2 = 1\), and (159) becomes (except for trivial differences in notation) the metric of Gödel [1949]; a number of interesting properties are listed and proved in his paper.

It has seemed worth while to make a systematic descent from the form (119) (which admits a 2-parameter group of motions) to Gödel’s form, because in the course of this descent there emerge such formulae as (133) which are not too complicated to be of possible use in the construction of model universes.

§ 5. STATICAL UNIVERSES

A statical space-time has, by definition, a metric form
\[
\Phi = g_{\alpha\beta}dx^\alpha dx^\beta + g_{44}(dx^4)^2, \tag{161}
\]
\((g_{44} < 0)\)

Our standard practice has been to use the formula \(\kappa T_{ij} = -G_{ij}\) to find the energy tensor corresponding to any given metric. But if we choose to use a cosmological constant \(\Lambda\), then we write \(\kappa T_{ij} = \Lambda g_{ij} - G_{ij}\), and so get a different energy tensor. If in the above model we choose \(\Lambda = \frac{1}{2}h^2\), we get from (157) a fluid with density \(\mu = h^2\) and pressure \(\rho = 0\).
with coefficients independent of x^4. The geometry of space-time then involves only the geometry of a three-dimensional space with metric tensor $\tilde{g}_{\alpha\beta} = g_{\alpha\beta}$ and a function g_{44} of the space-coordinates x^α. We shall indicate by a bar subtensors and other quantities pertaining to space. Thus, introducing a function V for convenience, we have

\begin{align}
 g_{\alpha\beta} &= \tilde{g}_{\alpha\beta}, \quad g_{\alpha4} = 0, \quad g_{44} = -V^2, \\
 \tilde{g}^{\alpha\beta} &= \bar{g}^{\alpha\beta}, \quad \bar{g}^{\alpha4} = 0, \quad \bar{g}^{44} = -V^{-2}, \\
 [\alpha\beta, \gamma] &= [\bar{\alpha}\bar{\beta}, \bar{\gamma}], \quad [4\alpha, 4] = -[44, \alpha] = -VV_{,\alpha}, \\
 \Gamma^\gamma_{\alpha\beta} &= \bar{\Gamma}^\gamma_{\alpha\beta}, \quad \Gamma^4_{\alpha4} = V^{-1}V_{,\alpha}, \quad \Gamma^\alpha_{44} = \tilde{g}^{\alpha\beta}VV_{,\beta}
\end{align}

(162)

Throughout these calculations we find that the presence of one suffix 4, or of three of them, destroys a term. By 1–(85) we find the Riemann tensor to be

\begin{align}
 R_{\alpha\beta\gamma\delta} &= \bar{R}_{\alpha\beta\gamma\delta}, \quad R_{\alpha\beta4} = 0, \\
 R_{\alpha44\delta} &= \frac{1}{2}g_{44\|\alpha\delta} - \frac{1}{6}g_{44,\alpha\beta}g_{44,\delta} = -VV_{\parallel\alpha\delta},
\end{align}

(163)

where the double vertical stroke indicates covariant differentiation in space with respect to $\tilde{g}_{\alpha\beta}$. It follows that the Ricci tensor is

\begin{align}
 R_{\alpha\beta} &= \bar{R}_{\alpha\beta} + \frac{1}{6}g^{44}(g_{44\|\alpha\beta} - \frac{1}{2}g_{44,\alpha\beta}g_{44,\beta}) = \bar{R}_{\alpha\beta} + V^{-1}V_{\parallel\alpha\beta}, \\
 R_{\alpha4} &= 0, \\
 R_{44} &= \frac{1}{2}\Delta_2g_{44} - \frac{1}{6}g^{44}\Delta_1g_{44} = -V\Delta_2V,
\end{align}

(164)

where the operators Δ_1 and Δ_2 are defined by

\begin{align}
 \Delta_1\phi &= \tilde{g}^{\alpha\beta}\phi_{,\alpha\beta}, \quad \Delta_2\phi = \tilde{g}^{\alpha\beta}\phi_{\parallel\alpha\beta}.
\end{align}

(165)

Thus Δ_2 is the Laplace operator in curved space. We have then

\begin{align}
 R^\alpha_{\alpha} &= \bar{R} + V^{-1}\Delta_2V, \quad R^4_{\alpha} = V^{-1}\Delta_2V, \\
 R &= \bar{R} + 2V^{-1}\Delta_2V.
\end{align}

(166)

For the Einstein tensor we have the following formulae:

\begin{align}
 G_{\alpha\beta} &= R_{\alpha\beta} - \frac{1}{2}\tilde{g}_{\alpha\beta}R, \quad G_{\alpha4} = 0, \quad G_{44} = \frac{1}{2}V^2\bar{R}, \\
 G^\alpha_{\alpha} &= R^\alpha_{\alpha} - \frac{3}{2}R = -\frac{1}{2}\bar{R} - 2V^{-1}\Delta_2V, \\
 G^4_{\alpha} &= R^4_{\alpha} - \frac{1}{2}R = -\frac{1}{2}\bar{R}, \\
 G^4_{4} - G^\alpha_{\alpha} &= 2V^{-1}\Delta_2V.
\end{align}

(167)
The most interesting thing here is the operator Δ_2, for it enables us to connect a surface integral and a volume integral. Let v_3 be any portion of space, bounded by a closed surface v_2, and let dV_3 and dV_2 denote their invariant elements of volume and area respectively. Then, by Green's theorem,

$$\oint_{v_2} V_{\alpha} n^\alpha dV_2 = \int_{v_3} \Delta_2 V dV_3 = \frac{1}{2} \int_{v_3} (G^4_4 - G^\alpha_\alpha) V dV_3,$$

(168)

where n^α is the outward unit normal to v_2.

So far we have done nothing but make calculations for the metric form (161). No field equations have been used. Let us now introduce them, writing $G_{ij} = -\kappa T_{ij}$, $\kappa = 8\pi$. It is at once evident from (168) that, if v_2 lies entirely in vacuo and can be reduced to a point without meeting matter, then

$$\oint_{v_2} V_{\alpha} n^\alpha dV_2 = 0.$$

(169)

Hence this integral has the same value for any two surfaces which can be deformed into one another without meeting matter. In a statical universe we do not expect to find more than one body (cf. § 1), and for that one body there will be an exterior domain E and an interior domain I. Then (168) gives the **theorem of Gauss for a statical universe** 1:

$$\oint_{v_2} V_{\alpha} n^\alpha dV_2 = 4\pi m,$$

(170)

where v_2 is any surface enclosing the body and m a constant defined by the body, viz.

$$m = -\int_{v_3} (T^4_4 - T^\alpha_\alpha) V dV_3,$$

(171)

the integral being taken through the body.

In the vacuum part of a static field, the field equations read

$$\bar{R}_{\alpha\beta} + V^{-1} V_{\parallel\alpha\beta} = 0, \quad \Delta_2 V = 0.$$

(172)

We note that space has a vanishing curvature invariant \bar{R}.

We have already seen in § 1 how to handle a statical vacuum field with axial symmetry, a particular case of (161). Let us now make a

1 Cf. Whittaker [1935]. In vii–§ 6 we already met the theorem of Gauss in the special case of spherical symmetry. The constant m occurring in the Schwarzschild metric vii–(145) is identical with the value given by (170); this is most easily seen from (179) below.
different simplification of the metric (161), taking
\[\Phi = U^2dx^\alpha dx^\alpha - V^2dt, \]
where \(U \) and \(V \) are independent of \(t \) (= \(x^4 \)). Since the spatial metric is conformally flat, we may call this a \textit{conformastat} metric. By direct calculation we obtain (for simplicity we denote partial derivatives by subscripts without commas)

\[
R_{\alpha\beta\gamma\delta} = \bar{R}_{\alpha\beta\gamma\delta} = U(\delta_{\alpha\delta} U_{\beta\gamma} + \delta_{\beta\gamma} U_{\alpha\delta} - \delta_{\alpha\gamma} U_{\beta\delta} - \delta_{\beta\delta} U_{\alpha\gamma})
- 2(\delta_{\alpha\delta} U_{\beta\gamma} + \delta_{\beta\gamma} U_{\alpha\delta} - \delta_{\alpha\gamma} U_{\beta\delta} - \delta_{\beta\delta} U_{\alpha\gamma})
+ (\delta_{\alpha\delta} \delta_{\beta\gamma} - \delta_{\beta\delta} \delta_{\alpha\gamma}) U_\sigma U_\sigma,
\]

\[R_{\alpha\beta\gamma4} = 0, \]
\[R_{\delta\alpha\beta4} = R_{\alpha44\beta} = -VV_{\alpha\beta} + VU^{-1}(U_{\alpha}V_{\beta} + U_{\beta}V_{\alpha}) - VU^{-1}\delta_{\alpha\beta} U_\sigma V_\sigma, \]

and

\[
R_{\alpha\beta} = U^{-1}(U_{\alpha\beta} + \delta_{\alpha\delta} U_{\sigma\alpha}) - 2U^{-2}U_\alpha U_\beta
+ V^{-1}V_{\alpha\beta} - (UV)^{-1}(U_{\alpha}V_{\beta} + U_{\beta}V_{\alpha}) + (UV)^{-1}\delta_{\alpha\beta} U_\sigma V_\sigma
\]

\[R_4 = 0, \]

\[R_{44} = -U^{-2}V(V_{\sigma\alpha} + U^{-1}U_\sigma V_\sigma), \]
\[R = 4U^{-3}(U_{\sigma\sigma} - \frac{1}{2} U^{-1}U_\sigma U_\sigma) + 2U^{-2}V^{-1}(V_{\sigma\sigma} + U^{-1}U_\sigma V_\sigma). \]

The above calculations hold for any conformastat metric. Let us try to satisfy the vacuum field equations \(R_{\alpha\beta} = 0 \). The equations \(R_{44} = 0, R = 0 \) require that \(U \) and \(V \) satisfy the two equations

\[V_{\sigma\sigma} + U^{-1}U_\sigma V_\sigma = 0, \quad U_{\sigma\sigma} - \frac{1}{2} U^{-1}U_\sigma U_\sigma = 0, \]

the second of which is equivalent to

\[(\sqrt{U})_{\sigma\sigma} = 0, \]

so that \(\sqrt{U} \) must be a harmonic function with respect to the flat metric \(dx^\alpha dx^\alpha \). Having chosen a harmonic function, the first of (176) gives \(V \), but the determination of a vacuum conformastat field looks rather hopeless, since there are five more field equations to be satisfied.

However, at least one solution does exist, namely the exterior
Schwarzschild field as in vii–(145), for by the transformation

\[
r = \rho \left(1 + \frac{m}{2\rho}\right)^2
\]

that metric form can be changed into the so-called *isotropic* form

\[
\Phi = U^2dx^\alpha dx^\alpha - V^2dt^2,
\]

\[
U = (1 + \xi)^2, \quad V = \frac{1 - \xi}{1 + \xi}, \quad \xi = \frac{m}{2\rho}, \quad \rho^2 = x^\alpha x^\alpha.
\]

We check that \(\sqrt{U}\) is harmonic as in (177), and note that \((V - 1)/(V + 1)\) is also harmonic.

Returning to (175) and putting \(UV = 1\), we note for future reference that for the form

\[
\Phi = U^2dx^\alpha dx^\alpha - U^{-2}dt^2
\]

we have

\[
R_{\alpha\beta} = \delta_{\alpha\beta}U^{-1}(U_{\sigma\sigma} - U^{-1}U_{\sigma}U_{\sigma}) + 2U^{-2}U_{\alpha}U_{\beta},
\]

\[
R_{\alpha4} = 0,
\]

\[
R_{44} = U^{-5}(U_{\sigma\sigma} - U^{-1}U_{\sigma}U_{\sigma}),
\]

\[
R = 2U^{-3}U_{\sigma\sigma}.
\]

We recall that in v–§ 3 the Riemann, Ricci and Einstein tensors were calculated for another special conformastat metric, namely

\[
\Phi = (1 + \phi)dx^\alpha dx^\alpha - (1 - \phi)dt^2.
\]

For geometrical optics in a statical universe filled with a transparent medium, see xi–§ 4.
CHAPTER IX

GRAVITATIONAL WAVES

§ 1. PLANE GRAVITATIONAL WAVES

Before entering into a technical discussion, it is desirable to clarify the meaning of the term gravitational wave, and this is best done, not by formal definition, but by consideration of a fanciful experiment.

Suppose that a man, standing on the earth, holds in his hand a heavy club. At first the club hangs down towards the ground, but at a certain moment the man raises it quickly over his head. Any theory of gravitation recognizes that the club produces a gravitational field, however minute it may be, and that the action of the man changes that field, not only in his neighbourhood, but throughout the whole universe. According to Newtonian theory, the effect is instantaneously felt on the moon, on the sun and in every remote nebula. Since we are not concerned with Newtonian theory, we do not have to discuss the absurdity of this. As relativists, familiar with the idea that no causal effect can travel faster than light, and having learned, as in v-§ 7, that the locus of discontinuities of $g_{ij,km}$ is a null surface, we would guess that the change in the gravitational field of the moving club travels out into space with the speed of light. And we would call this moving disturbance a gravitational wave. Thus, on a very general basis, we must regard the physical existence of gravitational waves, so understood, as self-evident.

Confusion enters, however, through the fact that the word wave1 sometimes implies repetition and sometimes does not. In physics, this confusion is increased by the use of Fourier transforms, by which a disturbance which appears to be without repetition (a solitary wave) is resolved into periodic wave-trains with all frequencies2.

1 The Oxford English Dictionary devotes nearly two pages to the noun wave and about as much to the verb.

2 Since the technique of Fourier transforms is essentially a technique for dealing with linear differential equations, we are hardly likely to use it in connection with the non-linear equations of general relativity.
In speaking of waves, we shall not here demand that they should be repetitious. In \(v-\S\ 7 \) we have dealt with gravitational shock waves. We might call these shock waves thin to distinguish them from the thick gravitational waves \(^1\) which we shall now discuss.

Fig. 1 shows a thick gravitational wave in space-time. Two 3-spaces, \(\Sigma_1 \) and \(\Sigma_2 \), divide space-time into three domains, I, II and III. There is no matter present anywhere in the universe (the man with the swinging club has been abstracted!), and everywhere we have

\[
R_{ij} = 0. \tag{1}
\]

In I and III there is no gravitational field, and so in those domains

\[
R_{ijkm} = 0. \tag{2}
\]

The domain II is the thick gravitational wave. In it, at least one of the components of the Riemann tensor is non-zero, and this we indicate by writing

\[
R_{ijkm} \neq 0. \tag{3}
\]

We recall that for admissible coordinates \(g_{ij} \) and \(g_{ij,k} \) are continuous, but that there may be discontinuities in \(g_{ij,km} \). The argument used below requires three systems of admissible coordinates \(^2\). One system covers II and the adjacent parts of I and III. Another covers I, not necessarily including the boundary \(\Sigma_1 \). The third covers III, not necessarily including \(\Sigma_2 \). In the overlaps, which are in I and in III, the transformations are \(C^3 \), as required in 1-\(v-\S \ 1 \).

On \(\Sigma_1 \) and \(\Sigma_2 \) we may have thin gravitational waves (shock waves) with discontinuities in \(g_{ij,km} \), but this is not required. For the essential feature of the thick gravitational wave is the existence of a domain which is not flat, sandwiched between two flat domains. There is a

\(^1\) Cf. Bondi [1957a], Bondi, Pirani and Robinson [1959]; the second of these papers contains references of historical interest.

\(^2\) If this offends formalists who would like to see one single metric form for all space-time, they should reflect on the ordinary spherical surface which cannot be adequately covered by a single coordinate system.
gravitational field in the inner domain, and none outside it.

Our point of departure for the discussion of thick gravitational waves is the metric form \(\text{viii} -(119) \):

\[
\Phi = g_{\alpha\beta} dx^\alpha dx^\beta + g_{AB} dx^A dx^B.
\] (4)

As in \(\text{viii} - \S 4 \), Greek suffixes take the values 1, 2 and capital suffixes the values 3, 4. The coefficients \(g_{\alpha\beta} \) are functions of \((x^3, x^4) \) and \(g_{AB} \) are constants. However, we shall at once specialize this form by taking \(g_{\alpha\beta} \) to be functions of \(x^4 \) only and setting

\[
g_{AB} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = g^{AB}, \]

(5)

so that (4) becomes

\[
\Phi = g_{\alpha\beta} dx^\alpha dx^\beta + 2 dx^3 dx^4.
\] (6)

Since

\[
2 dx^3 dx^4 = d\zeta^2 - d\tau^2,
\]

\[
\zeta = \frac{1}{\sqrt{2}} (x^3 + x^4), \quad \tau = \frac{1}{\sqrt{2}} (x^3 - x^4),
\] (7)

the form (6) has the required signature + 2 provided \(g_{\alpha\beta} dx^\alpha dx^\beta \) is positive-definite.

The formulae \(\text{viii} - (123) \) are applicable, and, since \(g^{44} = 0 \), the surviving components of the Riemann tensor are

\[
R_{1414} = - \frac{1}{2} g_{11,44} + \frac{1}{4} g^{\rho\sigma} g_{\rho1,44} g_{\sigma1,4},
\]

\[
R_{1424} = - \frac{1}{2} g_{12,44} + \frac{1}{4} g^{\rho\sigma} g_{\rho1,44} g_{\sigma2,4},
\]

\[
R_{2424} = - \frac{1}{2} g_{22,44} + \frac{1}{4} g^{\rho\sigma} g_{\rho2,44} g_{\sigma2,4}.
\] (8)

On calculating the Ricci tensor, we find (and this is most important) only one surviving component,

\[
R_{44} = - g^{11} R_{1414} - 2 g^{12} R_{1424} - g^{22} R_{2424}.
\] (9)

We now consider the construction of a thick plane gravitational wave with \(x^4 \) constant \(^1\) on \(\Sigma_1 \) and \(\Sigma_2 \) (Fig. 1). The problem is to ob-

\(^1\) Since \(g^{44} = 0 \), \(\Sigma_1 \) and \(\Sigma_2 \) are null 3-spaces; in physical language, the gravitational wave is a plane wave, travelling in the \(\zeta \)-direction [cf. (7)] with the speed of light \((d\zeta/d\tau = 1) \).
tain \(g_{11}, g_{12}, g_{22} \) as functions of \(x^4 \), of class \(C^1 \) in \(\Pi \) and the adjacent parts of I and III, satisfying

\[
R_{1414} = 0, \quad R_{1424} = 0, \quad R_{2424} = 0 \tag{10}
\]
in those parts of I and III, and satisfying

\[
R_{44} = 0 \tag{11}
\]
in \(\Pi \), with violation of at least one of (10) \(^1\).

Before constructing a particular example of a thick gravitational wave (§ 3), let us survey the situation. In \(\Pi \), three functions are subject to only one equation, and it should be possible to select a wide variety of functions \(g_{\alpha\beta} \) which violate at least one of (10). Having selected such functions, we have definite values of \(g_{\alpha\beta} \) and \(g_{\alpha\beta,4} \) on \(\Sigma_1 \) and \(\Sigma_2 \). With these Cauchy data, (10) determine \(g_{\alpha\beta} \) in the parts of I and III adjacent to \(\Sigma_1 \) and \(\Sigma_2 \). Those parts will be flat, and we complete the construction by coordinate transformations in I and III to avoid formal singularities occurring in the Cauchy solutions. Apart from accidents, such as might arise from positive-definite character, this argument indicates the existence of a wide variety of thick gravitational waves.

Let us now simplify the metric (6) by taking

\[
g_{11} = e^{2P}, \quad g_{12} = 0, \quad g_{22} = e^{2Q}, \tag{12}
\]

\(P \) and \(Q \) being for the present arbitrary functions of \(x^4 \). Then, denoting derivatives by primes, (8) gives only two survivors,

\[
R_{1414} = -(P'' + P''')e^{2P}, \quad R_{2424} = -(Q'' + Q''')e^{2Q}, \tag{13}
\]

and (9) gives

\[
R_{44} = P'' + P''' + Q'' + Q'''. \tag{14}
\]

Thus to construct a gravitational wave with the metric form

\[
\Phi = e^{2P}(dx^1)^2 + e^{2Q}(dx^2)^2 + 2dx^3dx^4, \tag{15}
\]
in I and III we have to satisfy

\[
P'' + P''' = 0, \quad Q'' + Q''' = 0, \tag{16}
\]

so that

\[
P = \log m(x^4 + \alpha), \quad Q = \log n(x^4 + \beta), \tag{17}
\]

\(^1\) If we did not violate at least one of (10), we would have completely flat spacetime, and no wave at all.
where α, β, m, n are constants (different in I and III), and in II we have to satisfy

$$P'' + P'^2 + Q'' + Q'^2 = 0, \quad (18)$$

taking care not to satisfy both of (16). Since this last equation may be written

$$P'' + Q'' = -P'^2 - Q'^2 < 0, \quad (19)$$

an interesting fact emerges. If we plot (P', Q') as a point in a plane (Fig. 2), and draw the lines $P' + Q' = \text{const.}$, the representative point moves across these lines in the sense indicated. Thus no solution of (18) can form a closed curve in the plane; this means that a periodic field is impossible.

A particular gravitational wave will be given in § 3.

§ 2. THE WORLD-FUNCTION FOR A PLANE GRAVITATIONAL WAVE AND QUASI-CARTESIAN COORDINATES

The following work is useful in transforming to regular form the metrics in the flat domains I and III of a plane gravitational wave. But it has a wider scope. We shall evaluate the world-function Ω for the metric form (15), without at first imposing any restrictions of the functions $P(x^4)$ and $Q(x^4)$.

To find the geodesics of (15), we write the Lagrangian

$$F = \frac{1}{2}[e^{2P}(Dx^1)^2 + e^{2Q}(Dx^2)^2 + 2Dx^3Dx^4], \quad (20)$$

where $D = d/ds$, and, since all coordinates are ignorable except x^4, we get the three first integrals

$$e^{2P}dx^1 = \alpha_1ds, \quad e^{2Q}dx^2 = \alpha_2ds, \quad dx^4 = \beta^{-1}ds, \quad (21)$$

where α_1, α_2 and β are constants. We have also

$$e^{2P}(dx^1)^2 + e^{2Q}(dx^2)^2 + 2dx^3dx^4 = \varepsilon ds^2, \quad (22)$$

where $\varepsilon (= \pm 1)$ is the indicator of the geodesic, supposed timelike or
spacelike. Hence, in terms of x^4, we get

$$
\begin{align*}
\frac{dx^1}{\beta \alpha_1 e^{-2\rho}} &= dx^2 = \beta \alpha_2 e^{-2\varrho} dx^4, & ds &= \beta dx^4, \\
\frac{dx^3}{\frac{1}{2} \beta^2} &= (e - \alpha_1^2 e^{-2\rho} - \alpha_2^2 e^{-2\varrho}).
\end{align*}
$$

Consider the geodesic joining the points $A(x^4)$ and $A'(x'^4)$. Writing

$$
\xi^4 = x^4 - x'^4, \quad I_1 = \int e^{-2\rho} dx^4, \quad I_2 = \int e^{-2\varrho} dx^4,
$$

we get

$$
\begin{align*}
\xi^1 &= \beta \alpha_1 I_1, \\
\xi^2 &= \beta \alpha_2 I_2, \\
\xi^3 &= \frac{1}{2} \beta^2 \xi^4 - \frac{1}{2} \beta^2 \alpha_1^2 I_1 - \frac{1}{2} \beta^2 \alpha_2^2 I_2, \\
s &= \beta \xi^4.
\end{align*}
$$

Hence

$$
\xi^3 = \frac{1}{2} \beta^2 \xi^4 - \frac{1}{2} \frac{(\xi^1)^2}{I_1} - \frac{1}{2} \frac{(\xi^2)^2}{I_2},
$$

and so

$$
\frac{1}{2} \beta^2 = \frac{1}{\xi^4} \left[\xi^3 + \frac{1}{2} \frac{(\xi^1)^2}{I_1} + \frac{1}{2} \frac{(\xi^2)^2}{I_2} \right].
$$

Thus the world-function is

$$
\Omega(AA') = \frac{1}{2} \epsilon s^2 = \frac{1}{2} \beta^2 (\xi^4)^2 = \xi^4 \left[\xi^3 + \frac{1}{2} \frac{(\xi^1)^2}{I_1} + \frac{1}{2} \frac{(\xi^2)^2}{I_2} \right].
$$

We shall now pass from the coordinates x^i to quasi-Cartesian (QC) coordinates $X_{(a)}$ as in II–(150). At A (Fig. 3) choose an orthonormal tetrad $\lambda^i_{(a)}$ with $\lambda^i_{(4)}$ timelike. Then the QC of A' relative to A with this

![Fig. 3 – Construction for quasi-Cartesian coordinates of A' relative to a vector base at A](image-url)
vector base are

\[X_{(a)} = - \Omega_i(AA')\lambda^i_{(a)} \tag{29} \]

where \(\Omega_i \) is the partial derivative with respect to \(x^i \) at \(A \). By (28) we have \(^1\)

\[\Omega_1 = \frac{\xi^1\xi^4}{I_1}, \quad \Omega_2 = \frac{\xi^2\xi^4}{I_2}, \quad \Omega_3 = \xi^4, \]

\[\Omega_4 = \xi^3 + \frac{1}{2} \frac{(\xi^1)^2}{I_1} + \frac{1}{2} \frac{(\xi^2)^2}{I_2} - \frac{1}{2} \frac{\xi^4(\xi^1)^2e^{-2P}}{I_1} \]

\[- \frac{1}{2} \frac{\xi^4(\xi^2)^2e^{-2Q}}{I_2}, \tag{30} \]

with \(P \) and \(Q \) evaluated at \(A \). For the orthonormal tetrad, let us take

\[\lambda^i_{(1)}: (e^{-P}, 0, 0, 0), \]
\[\lambda^i_{(2)}: (0, e^{-Q}, 0, 0), \]
\[\lambda^i_{(3)}: \left(0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \]
\[\lambda^i_{(4)}: \left(0, 0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right). \tag{31} \]

Then (29) gives as QC for \(A' \) (the coordinates \(x'^i \) of \(A' \) are concealed in \(\xi^i \) and in \(I_1, I_2 \))

\[X_{(1)} = - e^{-P} \frac{\xi^1\xi^4}{I_1}, \quad X_{(2)} = - e^{-Q} \frac{\xi^2\xi^4}{I_2}, \]

\[X_{(3)} = \frac{1}{\sqrt{2}} \left[- \xi^4 - \xi^3 - \frac{1}{2} \frac{(\xi^1)^2}{I_1} - \frac{1}{2} \frac{(\xi^2)^2}{I_2} \right. \]
\[+ \frac{1}{2} \frac{\xi^4(\xi^1)^2e^{-2P}}{I_1} + \frac{1}{2} \frac{\xi^4(\xi^2)^2e^{-2Q}}{I_2} \left], \tag{32} \]

\[X_{(4)} = \frac{1}{\sqrt{2}} \left[\xi^4 - \xi^3 - \frac{1}{2} \frac{(\xi^1)^2}{I_1} - \frac{1}{2} \frac{(\xi^2)^2}{I_2} \right. \]
\[+ \frac{1}{2} \frac{\xi^4(\xi^1)^2e^{-2P}}{I_1} + \frac{1}{2} \frac{\xi^4(\xi^2)^2e^{-2Q}}{I_2} \left]. \]

\(^1\) Remembering that \(\xi^{34} = 1 \), we easily check that the basic equation
\[2Q = g^{ij}\Omega_i\Omega_j \] is satisfied; cf. II-(20).
As a check on these formulae, we easily verify that
\[\begin{align*}
X_{(1)}^2 + X_{(2)}^2 + X_{(3)}^2 - X_{(4)}^2 &= 2Q(AA').
\end{align*}\]
(33)

We recall that all the preceding formulae in this section apply to the metric form
\[\Phi = e^{2P}(dx^1)^2 + e^{2Q}(dx^2)^2 + 2dx^3dx^4,\]
(34)
without restriction on the functions \(P(x^4), Q(x^4)\). For gravitational waves, \(P\) and \(Q\) are finite in the domain II (Fig. 1) and in the neighbouring parts of I and III, but they have formal singularities elsewhere in I and III. However, I and III are flat, and we can transform their metrics separately to Minkowskian form by substituting from (17) in (32). This gives
\[\begin{align*}
X_{(1)} &= -m\xi^1(x^4' + \alpha), \quad X_{(2)} = -n\xi^2(x^4' + \beta), \\
X_{(3)} - X_{(4)} &= -\sqrt{2}\xi^4, \\
X_{(3)} + X_{(4)} &= -\sqrt{2}[\xi^3 + \frac{1}{2}m^2(\xi^1)^2(x^4' + \alpha) + \frac{1}{2}n^2(\xi^2)^2(x^4' + \beta)].
\end{align*}\]
(35)

In these formulae \(\xi^i\) is as in (24). The point \(x^i\) is any point in the domain of regularity of (17), and (35) is a transformation \((x^i') \rightarrow (X_{(a)})\). It is easy to verify that
\[\begin{align*}
dX_{(1)}^2 + dX_{(2)}^2 + dX_{(3)}^2 - dX_{(4)}^2 = e^{2P'}(dx^1')^2 + e^{2Q'}(dx^2')^2 + 2dx^3'dx^4',
\end{align*}\]
(36)
the primes on \(P'\) and \(Q'\) indicating evaluation at \(x^i'\).

§ 3. A PARTICULAR PLANE GRAVITATIONAL WAVE AND REMARKS ON CYLINDRICAL AND SPHERICAL WAVES

We shall now construct a particular thick plane gravitational wave, in order to show that the plan described in § 1 can actually be carried out. No special merit, except simplicity, attaches to this example.

Take \(\Sigma_1\) and \(\Sigma_2\) to be \(x = -a\) and \(x = a\), respectively (we write \(x\) for \(x^4\)). Then the domain II is \(-a < x < a\), and in it we shall satisfy (18) by making \(P\) and \(Q\) satisfy
\[\begin{align*}
P'' + P'^2 &= -k^{-2}, \\
Q'' + Q'^2 &= k^{-2}, \\
k &= \frac{4a}{\pi}.
\end{align*}\]
(37)
As particular solutions we select
\[\begin{align*}
P &= \log \cos (x/k), \\
Q &= x/k,
\end{align*}\]
(38)
so that

\[
\begin{align*}
P' &= -k^{-1} \tan \left(\frac{x}{k} \right), \quad Q' = k^{-1}, \\
P'' &= -k^{-2} \sec^2 \left(\frac{x}{k} \right), \quad Q'' = 0.
\end{align*}
\] (39)

This gives the end-values

\[
\Sigma_1 \ (x = -a): \quad P = \log \frac{1}{\sqrt{2}}, \quad Q = -\frac{a}{k},
\]

\[
P' = k^{-1}, \quad Q' = k^{-1}, \quad P'' = -2k^{-2}, \quad Q'' = 0; \quad (40)
\]

\[
\Sigma_2 \ (x = a): \quad P = \log \frac{1}{\sqrt{2}}, \quad Q = \frac{a}{k},
\]

\[
P' = -k^{-1}, \quad Q' = k^{-1}, \quad P'' = -2k^{-2}, \quad Q'' = 0. \quad (41)
\]

We have now to assign to the domains I and III functions \(P\) and \(Q\) of the form (17), with continuity of these functions and their first derivatives across \(\Sigma_1\) and \(\Sigma_2\). We get

In I: \(e^P = \frac{1}{k\sqrt{2}} (x + a + k), \quad e^Q = e^{-4\pi \cdot k^{-1}}(x + a + k), \quad (42)\)

In III: \(e^P = \frac{1}{k\sqrt{2}} (a + k - x), \quad e^Q = e^{4\pi \cdot k^{-1}}(x - a + k).\)

We note that formal singularities occur at

\[x = -a - k\text{ in I, } x = a + k\text{ in III.} \quad (43)\]

Thus, restoring the symbol \(x^4\), we have a gravitational wave with the following metrics:

In part of I \((-a - k < x^4 \leq -a)\):

\[
= k^{-2}(x^4 + a + k)^2[k^2(dx^4)^2 + e^{-4\pi}(dx^2)^2] + 2dx^3dx^4,
\]

In part of II \((-a \leq x^4 \leq a)\):

\[
= \cos^2(x^4/k)(dx^4)^2 + e^{2x^4/k}(dx^2)^2 + 2dx^3dx^4, \quad (44)
\]

In part of III \((a \leq x^4 < a + k)\):

\[
\frac{1}{2}k^{-2}(x^4 - a - k)^2(dx^4)^2 + e^{4\pi \cdot k^{-2}}(x^4 - a + k)^2(dx^2)^2 + 2dx^3dx^4.
\]
As for the remaining infinite parts of the flat domains I and III, we can obtain as in (35) new coordinates for which the metric takes the Minkowskian form; in applying (35) we are to take a point \(x^t \) in the domains of I and III indicated in (44).

Although mathematically impeccable, the gravitational waves which we have been considering are not physically realistic. In electromagnetism, a travelling layer of disturbance sandwiched between two undisturbed regions is a reasonable idealization of reality, because we can project a pulse into undisturbed space, with no disturbance after it has passed. But while a man can swing a massive club, he cannot create the matter in it. He can change gravitational fields, but he cannot create them out of nothing. We should prefer to see, in our model, a wave of disturbance passing through a field already existent.

This difficulty is overcome in the case of cylindrical waves\(^1\). For the metric form

\[
\Phi = e^{2\gamma - 2\psi}(dr^2 - dt^2) + r^2e^{-2\psi}d\phi^2 + e^{2\psi}dz^2,
\]

(45)

with \(\gamma \) and \(\psi \) functions of \(r \) and \(t \), the equations \(R_{ij} = 0 \) reduce to

\[
\psi_{rr} + \frac{1}{r} \psi_r - \psi_{tt} = 0,
\]

(46)

\[
\gamma_r = r(\psi_r^2 + \psi_t^2), \quad \gamma_t = 2r\psi_r\psi_t.
\]

(47)

Here (46) is the ordinary wave equation in a plane, and it is the condition of integrability of (47). On account of its linearity, we can superimpose solutions of (46) (a statitical basic field and a time-dependent disturbance) and then get \(\gamma \) from (47) by quadrature.

But a cylindrical wave is not quite realistic enough. Our intuition tells us that the field of the swinging club must, at great distances, display spherical symmetry. But some lack of symmetry, some polarization, must be present, since a field with perfect spherical symmetry must, by Birkhoff's theorem (vii-§ 4), be static, in the sense that it admits a group of motions along timelike lines.

In seeking a general understanding of gravitational waves, due to a swinging club or to a vast catastrophe of astronomical scale, it is well to recognize that we are not concerned with the solution of well-

\(^1\) Einstein and Rosen [1937], Rosen [1954], Marder [1958a, b], [1959], Bonnor [1957b]. There is a close formal connection between statitical fields with axial symmetry and cylindrical waves. The formulae viii-(18) and viii-(24) become (45) and (46) if we make the substitution \((z, t) \to (it, iz)\) in the form \(\Phi \).
formulated mathematical problems, but rather with classes of fields satisfying certain conditions. To fix our ideas, let us think of space-time as a Euclidean 4-space with coordinates \((r, \theta, \phi, t)\) and a metric tensor \(g_{ij}\) imposed on that background. We divide space-time into an interior \(I\) \((r < a)\) and an exterior \(E\) \((r > a)\). In \(I\) there are some moving masses and \(E\) is empty, so that the equations \(R_{ij} = 0\) are to be satisfied, and we should add the condition of flatness at infinity, which means that \(R_{ijklm} \to 0\) as \(r \to \infty\).

The study of gravitational waves does not involve essentially an investigation of \(I\). On account of the prevalence of linear theories in physics, one is tempted to regard the field in \(E\) as 'due to' 'sources' in \(I\), but this idea is deceptive in a non-linear theory. It is better to concentrate attention on \(E\). Any solution of \(R_{ij} = 0\) in \(E\) would be worthy of respect if it reflected our intuitive idea of what gravitational waves should be. But no mere guess is likely to succeed in such a complicated situation.

In default of exact solutions in \(E\), we may fall back on approximations. Here we must be cautious. Mathematically, we have no assurance that any suitable solutions exist; but, physically, we do. So we set up some definite system of approximation, based probably on powers of a small parameter. Cutting off the approximation at some step, we may claim that we have a good approximation to some exact solution, which (physically, but not mathematically) we have reason to believe exists.

But such a claim is too vague to argue about, one way or the other. One fact is certain: the approximate \(g_{ij}\) do not satisfy \(R_{ij} = 0\) in \(E\). We may then fall back on the fact that any \(g_{ij}\) corresponds to some distribution of matter, perhaps pathological, and we may explore that distribution by examining, as in VIII–(116), the eigenvalues of \(G_{ij}\). It may then be asserted that the approximate \(g_{ij}\) give some universe, and the practical physicist will accept as vacuum a space-time in which stress and density are small enough in comparison with standard quantities of the same dimensions. We may call this the stress-density test.

No linear approximation is likely to satisfy this test. Approximations pushed to higher orders are more hopeful, such as those of Bonnor [1959b], based on retarded potential formulae for a pair of oscillating masses. But in such work the formulae become so complicated that it is difficult to apply the stress-density test.
CHAPTER X

ELECTROMAGNETISM

§ 1. MAXWELL'S EQUATIONS AND THE ELECTROMAGNETIC ENERGY TENSOR

It is well known that, on the atomic scale, electromagnetic attractions and repulsions far exceed gravitational attractions, whereas, on the astronomical scale, it is the other way round, because celestial bodies are electrically neutral, or nearly so, so that the electrical effects cancel out. There is then some reason for keeping theories of gravitation and electromagnetism apart.

But we cannot do that. All electromagnetic phenomena are not small-scale, and we need a theory to enable us to follow radiation passing from a star to the earth through curved space-time. This suggests that we set electromagnetism in a space-time whose properties are determined by the masses in it, which amounts to neglecting the gravitational fields (if any) arising from electromagnetic energy. On the other hand, some have felt that gravitation and electromagnetism should be tied together in a very deep way in a single unified theory competent to deal with all physics from the atomic to the cosmic scale.

These hopes have not been fulfilled, and it seems reasonable to treat electromagnetism within the framework of general relativity as already developed in this book. But, even though the gravitational fields arising from electromagnetism are in fact very small, we shall make a unification of electromagnetism and gravitation at least to the extent of allowing the electromagnetic field to influence the geometry of space-time.

We shall consider only electromagnetic fields in vacuo or in an

1 Cf. Whittaker [1927b], [1928a, b, c].
2 Cf. Weyl [1918a], [1920], [1923a], Einstein [1925b], [1955], Schrödinger [1947], [1948], [1950], and other references in Bibliography, particularly Tonnellat [1955] and Hlavatý [1957].
incoherent fluid composed of particles all charged with electricity of the same sign \(^1\). Then there are the following functions of the space-time coordinates \(x^t\):

\[
\begin{align*}
g_{ij} &= \text{symmetric metric tensor}, \\
F_{ij} &= \text{skew-symmetric electromagnetic tensor} \quad (F_{ij} = - F_{ji}), \\
J^i &= \text{4-current}, \\
u^i &= \text{4-velocity of charge, a unit vector} \quad (u_i u^i = -1), \\
\rho &= \text{electrical proper density}, \\
\mu &= \text{mass-density}.
\end{align*}
\]

These quantities are not independent, for we have

\[
J^i = \rho u^i. \tag{1}
\]

Other differential relations will be introduced below. We can pass from a charged fluid to an uncharged fluid by putting \(J^i = 0, \rho = 0\), and finally to a vacuum by putting \(\mu = 0\).

Let \(\lambda^i_{(a)}\) be an orthonormal tetrad with \(\lambda^i_{(4)}\) timelike and future-pointing. From \(F_{ij}\) we can form the invariants

\[
F_{(ab)} = F_{ij} \lambda^i_{(a)} \lambda^j_{(b)} = - F_{(ba)}. \tag{2}
\]

Writing

\[
\begin{align*}
F_{(14)} &= E_1, & F_{(24)} &= E_2, & F_{(34)} &= E_3, \\
F_{(23)} &= H_1, & F_{(31)} &= H_2, & F_{(12)} &= H_3,
\end{align*} \tag{3}
\]

we introduce the familiar language of physics by calling \(^2\) \(E_\alpha\) the electric 3-vector and \(H_\alpha\) the magnetic 3-vector. Likewise we form the invariants

\[
J_{(a)} = J_i \lambda^i_{(a)}; \tag{4}
\]

we call \(J_{(a)}\) the 3-current and \(J_{(4)}\) the electrical relative density (not to be confused with the proper density \(\rho\), which is also an invariant but more basic, since it does not depend on the choice of tetrad).

The permutation tensor \(1-(14)\) is useful in electromagnetism. Writing

\[
q = \sqrt{-g}, \tag{5}
\]

\(^1\) For more general situations, see Pham Mau Quan [1955a, b], [1956a, b], [1957a, b], [1958a, b].

\(^2\) We revert to the usual convention of this book: Greek suffixes have the range 1, 2, 3.
we have the following formulae (note the minus signs!):

\[\eta^{ijkm} = q^{-1} \varepsilon_{ijkm}, \quad \eta_{ijkm} = -q \varepsilon_{ijkm}, \]

\[\eta^{ijkm} \eta_{iabc} = - \varepsilon_{ijkm} \varepsilon_{iabc} = - \delta_{abc}^{jkm}, \]

\[\eta^{ijkm} \eta_{ijbc} = -2(\delta_{b}^{k} \delta_{c}^{m} - \delta_{c}^{k} \delta_{b}^{m}) = -2 \delta_{bc}^{km}, \]

\[\eta^{ijkm} \eta_{ijkc} = -6 \delta_{c}^{m}. \]

(6)

We already met the six-index generalized Kronecker delta in \(r \)-(122); the four-index delta is similarly defined. It is important to remember that the covariant derivative of the permutation tensor vanishes.

The dual electromagnetic tensor is defined by either of the following equivalent formulae \(^1\):

\[F^{*ij} = \frac{1}{2} \eta^{ijkm} F_{km}, \quad F_{ij}^{*} = \frac{1}{2} \eta_{ijkm} F^{km}. \]

(7)

Multiplying by \(\eta_{ijab} \), \(\eta^{ijab} \) respectively, using (6), and changing the suffixes, we get

\[F^{ij} = -\frac{1}{2} \eta^{ijkm} F_{km}^{*}, \quad F_{ij} = -\frac{1}{2} \eta_{ijkm} F^{*km}. \]

(8)

We now accept Maxwell's equations in the form \(^2\)

\[F_{ij}^{*} = J^{i}, \quad F_{ij,k} + F_{jk,i} + F_{ki,j} = 0. \]

(9)

It is of interest that the second of these equations is tensorial although the derivatives are partial. They may be replaced by covariant derivatives, however, and it is easy to see that Maxwell’s equations may also be exhibited in the form \(^3\)

\[F_{ij}^{*} = J^{i}, \quad F_{ij}^{*},j = 0. \]

(10)

For any skew-symmetric tensor \(X_{ij}^{\tau} \) and for any vector \(Y_{i}^{\tau} \) we have, by \(r \)-(8), \(r \)-(10), \(r \)-(12),

\[X_{ij}^{\tau} = q^{-1}(qX_{ij}^{\tau}),j, \quad Y_{i}^{\tau} = q^{-1}(qY_{i}^{\tau}),i, \]

\[X_{ij}^{*} = (X_{ij}^{\tau}),\tau = q^{-1}(qX_{ij}^{\tau}),\tau = q^{-1}(qX_{ij}^{\tau}),ij = 0. \]

(11)

Hence Maxwell’s equations may be exhibited in yet a third form,

\[(qF_{ij}^{\tau}),j = qJ^{i}, \quad (qF_{ij}^{*}),j = 0, \]

(12)

and the 4-current satisfies an equation of conservation which may be

\(^1\) The star is used in a different sense in \(v \)-(63), but there should be no risk of confusion.

\(^2\) No factor \(4\pi \) appears in front of \(J^{i} \) if we use rational units of charge.

\(^3\) For details of the transformation, see \(\S \ 3 \) below.
written in either of the following forms:\(^1\)

\[
J^i_i = 0, \quad (qF^i)_i = 0. \tag{13}
\]

By virtue of the second equation in (9), there exists a vector called the 4-potential \(\phi_i\) such that

\[
F_{ij} = \phi_{j;i} - \phi_{i;j} = \phi_{j;i} - \phi_{i;j}. \tag{14}
\]

Substitution in the first of (9) gives

\[
\Box \phi_i - g^{ab} \phi_{a;ib} + J_i = 0, \tag{15}
\]

where \(\Box\) is the generalized d’Alembertian,

\[
\Box \phi_i = g^{ab} \phi_{i;ab}. \tag{16}
\]

By (9)-(94) we have the identities

\[
\phi_{a;ib} - \phi_{a;bi} = R^j_{a;ib} \phi_j, \quad g^{ab} \phi_{a;ib} - (g^{ab} \phi_{a;ib})_i = -R_{ij} \phi^j. \tag{17}
\]

If we impose on \(\phi_i\) the normalizing condition\(^2\)

\[
g^{ab} \phi_{a;ib} = 0, \tag{18}
\]

(17) gives

\[
g^{ab} \phi_{a;ib} = -R_{ij} \phi^j, \tag{19}
\]

and (15) becomes

\[
\Box \phi_i + R_{ij} \phi^j + J_i = 0. \tag{20}
\]

We thus reduce Maxwell’s equations to the five equations contained in (18) and (20), but of these only four are independent.

In vacuo we have \(J_i = 0\) and, if we neglect the gravitational effect of the electromagnetic field, \(R_{ij} = 0\). Then (20) reduces to the generalized wave equation,

\[
\Box \phi_i = 0. \tag{21}
\]

To link electromagnetism with gravitation, we now assign to the charged fluid an energy tensor\(^3\)

\[
T^{ij} = \mu u^i u^j + E^{ij}, \tag{22}
\]

\(^1\) \(qF^{ij}\), \(qF^{*ij}\) and \(qF^i\) are tensor densities or relative tensors of weight 1; cf. Synge and Schild [1956, p. 240].

\(^2\) Combining (14) and (18), the determination of \(\phi_i\) may be treated as a Cauchy problem.

\(^3\) The 4-velocity \(V^i\), defined [cf. IV-(75)] as the unit timelike eigenvector of the energy tensor, would represent in the present case a synthesis of charge and field, and must not be confused with \(u^i\), which refers to charge alone, and is not an eigenvector of the energy tensor (22).
where

\[E^{ij} = g_{ab} F^{ai} F^{bj} - \frac{1}{4} g^{ij} F_{ab} F^{ab}. \tag{23} \]

This energy tensor consists of two parts, one due to the matter which carries the charge and the other to the field alone. With regard to the latter, we note that

\[g_{ij} E^{ij} = g_{ij} g_{ab} F^{ai} F_{bj} - F_{ab} F^{ab} \]
\[= g_{ij} g_{ab} F^{ai} F_{bj} - g_{ia} g_{jb} F^{ij} F^{ab}. \tag{24} \]

Interchanging the dummies \(a, j \) in the last term, we see that it cancels with the first term. Thus

\[E^i_i = 0; \tag{25} \]

the mixed energy tensor of the electromagnetic field has zero trace.

We now write down the usual field equations

\[G_{ij} = - \kappa T_{ij}, \quad \kappa = 8\pi, \tag{26} \]

and (except for coordinate conditions) this completes the system of equations for a charged fluid. We shall presently examine the Cauchy problem for this system, but let us find the equations of motion arising from the application to (26) of the identity

\[G^{ij}_{\mid j} = 0. \tag{27} \]

From (23) we have

\[E^{ij}_{\mid j} = g_{ab} F^{ai}_{\mid j} F^{bj} + g_{ab} F^{ai} F^{bj}_{\mid j} - \frac{1}{2} g^{ij} F_{ab_{\mid j}} F^{ab}, \tag{28} \]

or, by the first of (9) and some play with indices,

\[E^{ij}_{\mid j} + F^{ij} J_j = g_{ab} F^{ai}_{\mid j} F^{bj} - \frac{1}{2} g^{ij} F_{ab_{\mid j}} F^{ab} \]
\[= g^{ij} F_{b_{\mid j}} a F^{ba} - \frac{1}{2} g^{ij} F_{ab_{\mid j}} F^{ab} \]
\[= \frac{1}{2} g^{ij} F^{ab} (F_{a_{\mid j} b} - F_{b_{\mid j} a} - F_{ab_{\mid j}}) \]
\[= \frac{1}{2} g^{ij} F^{ab} (F_{a_{\mid j} b} + F_{j_{\mid a} b} + F_{ba_{\mid j}}). \tag{29} \]

By the second of (9) this vanishes, and so, having used all Maxwell’s equations, we have

\[E^{ij}_{\mid j} = - F^{ij} J_j. \tag{30} \]

This is the reason why (23) is a suitable expression for the energy tensor of the field: in vacuo its divergence vanishes.
From (27) we now obtain
\[(\mu u^i u^j)_{;i} = F^{ij} J_j,\] (31)
or
\[u^i (\mu u^j)_{;j} + \mu u^i u^j = F^{ij} J_j.\] (32)
Multiply by \(u_i\). The second term vanishes since \(u_i u^i = -1\), and the right hand side vanishes from the skew-symmetry of \(F^{ij}\) and the fact that by (1) \(u^i\) has the direction of \(J^i\). Thus
\[(\mu u^i)_{;i} = 0,\] (33)
which is an equation of conservation of mass. Then (32) reduces to
\[\mu u^i_{;j} u^j = F^{ij} J_j,\] (34)
or, with absolute differentiation along the \(u\)-line,
\[\mu \frac{\delta u^i}{\delta s} = F^{ij} J_j,\] (35)
or
\[\mu \frac{\delta u^i}{\delta s} = \rho F^{ij} u_j.\] (36)

Now (13) may be written
\[(\rho u^i)_{;i} = 0,\] (37)
an equation of conservation of charge. Combined with (33), this tells us that if we take a thin tube of \(u\)-lines with normal section \(\sigma\), then the total mass \(m = \mu \sigma\) and the total charge \(e = \rho \sigma\) are conserved as we go along the tube. Thus, with \(m\) and \(e\) constants for the tube, we may write (36) in the form
\[m \frac{\delta u^i}{\delta s} = e F^{ij} u_j.\] (38)

We are dealing with continuous field theory in which a charged point-particle has no meaning. But, just as we accepted the geodesic hypothesis for an uncharged test-particle, we may accept (38) as the equation of motion of a charged test-particle of mass \(m\), charge \(e\) and 4-velocity \(u^i\), moving in a given field of gravitation \((g_{ij})\) and electromagnetism \((F_{ij})\), which field the particle itself does not influence. We have here in fact the natural generalization to curved space-time of the Heaviside-Lorentz law of ponderomotive force\(^1\).

\(^1\) Cf. Synge [1956a, p. 394].
§ 2. THE CAUCHY PROBLEM FOR AN INCOHERENT CHARGED FLUID

Let us introduce the notation

\[Z_{ij} = G_{ij} + \kappa T_{ij}, \quad \nu = \mu/\rho^2, \]

with

\[T_{ij} = \nu J_i J_j + E_{ij}, \]
\[E_{ij} = g^{ab} F_{ai} F_{bj} - \frac{1}{4} g_{ij} F_{ab} F^{ab}. \]

This is the energy tensor (22), written a little differently. Then the set of field equations for an incoherent charged fluid read

\[Z_{ij} = 0, \quad F^{ij} J_j = J^i, \quad F^{*ij} J_j = 0, \quad C_i(g) = 0, \]

the last being four coordinate conditions.

We see 21 unknowns,

\[g_{ij}, \quad F_{ij}, \quad J_i, \quad \nu; \]

there appear to be 10 + 4 + 4 + 4 = 22 equations in (41), but only 21 are independent on account of the identity [cf. (11)]

\[F^{*ij} J_j = 0. \]

Thus, on the mere basis of counting, we appear to have in (41) a determinate system; when the quantities (42) have been found, the other quantities are given by

\[\rho = (-\int J^i) \frac{1}{\nu}, \quad u_i = \rho^{-1} J_i, \quad \mu = \nu \rho^2. \]

We shall now examine the Cauchy problem \(^1\) for the system (41). Taking skew-Gaussian coordinates \(x^i\) relative to a 3-space \(x^4 = 0\), we have the coordinate conditions

\[g_{\alpha 4, 4} = 0, \quad g_{44} = \pm 1. \]

On \(x^4 = 0\) we assign as Cauchy data (CD) the values of

\[g_{\alpha \beta}, \quad g_{\alpha 4}, \quad g_{44}, \quad F_{ij}, \quad J_i, \quad \nu, \]

subject to certain conditions to be given later, and we investigate the

\(^1\) Cf. Lichnerowicz [1955a, p. 55]. For other work on the Cauchy problem, see Fourès-Bruhat [1948b], [1950], [1952], [1955], [1956], Pham Mau Quan [1953b], [1955b].
algebraic problem of solving the equations (41) for
\[g_{\alpha\beta,44}, \quad F_{ij,4}, \quad J_{i,4}, \quad v,4. \]

(47)

The equations \(Z_{ij} = 0 \) are equivalent to
\[R_{ij} = -\kappa(T_{ij} - \frac{1}{2}g_{ij}T^k_k), \]

(48)

where the right hand side is CD. Now the quantities \(g_{\alpha\beta,44} \) occur only in these equations, and, as at v–(171), the solution is not unique if \(g^{44} = 0 \). Thus null surfaces are shock waves (characteristics). This holds in vacuo \((J_i = 0) \), and therefore \textit{electromagnetic shock waves in vacuo are null surfaces}. In particular, in so far as they may be regarded as shock waves, waves of light are null surfaces. Further, the bicharacteristics are null geodesics [cf. v–§ 7], and this gives us confidence in the geodesic hypothesis for photons (photons, like point-particles, lie outside field theory).

Assuming then that \(x^4 = 0 \) is not a null surface \((g^{44} \neq 0) \), Lemma II of v–§ 4 tells us that the equations \(Z_{ij} = 0 \) are equivalent to
\[Z_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}Z^k_k = 0, \]

(49)
\[Z^i_{ji} = 0, \]

(50)

with the initial condition
\[Z^i_i = 0 \text{ on } x^4 = 0. \]

(51)

Now (49) is the same as
\[R_{\alpha\beta} = -\kappa(T_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}T^k_k), \]

(52)
and (50) is the same as
\[T^{ij}_{ij} = 0. \]

(53)

When we substitute (40) in this last and use the Maxwell equations as in (41), we get by (30)
\[(vJ^i)_{ij}J^j - F^{ij}J_j = 0. \]

(54)

The initial condition (51) is (by r–§ 9 we know that \(G^4_i \) is CD)
\[G^4_i + \kappa v J^4 J_i + \kappa E^4_i = 0 \text{ on } x^4 = 0. \]

(55)

We have now before us this initial condition, the equations (52) and (54), and the Maxwell equations
\[F^{ij}_{ij} = J^i, \quad F^{*ij}_{ij} = 0. \]

(56)
It is an interesting fact, even apart from its place in the present argument, that (56) is equivalent to

\[F^{\alpha j}_i j = J^\alpha, \quad J^i_t = 0, \quad F^{*\alpha j}_i j = 0, \]

with the initial condition

\[F^{4j}_i j = J^4, \quad F^{*4j}_i j = 0 \text{ on } x^4 = 0. \]

(It is easy to see that this condition involves only CD.) Obviously (56) implies (57) and (58). To prove the converse, we have only to show that (58) holds, not merely initially, but permanently. Now in view of the identity

\[F^{ij}_i j = 0, \]

(57) implies

\[(F^{ij}_i j - J^i)_t = 0, \]

and so

\[
(F^{4j}_i j - J^4)_4 = -(F^{\alpha j}_i j - J^\alpha)_\alpha - \Gamma^i_{kt}(F^{kj}_i j - J^k) \\
= - \Gamma^i_{4t}(F^{4j}_i j - J^4).
\]

Under the initial condition (58), the only solution is

\[F^{4j}_i j - J^4 = 0. \]

This establishes the permanence of the first of (58). The permanence of the second is shown in the same way, and thus (56) is equivalent to (57) with (58).

We choose the CD to satisfy (55) and (58) on \(x^4 = 0 \), and try to solve for the quantities (47) the equations (52), (54) and (57). Now (52) gives \(g_{\alpha \beta,44} \) uniquely in terms of CD, and (57) gives

\[F^{\alpha 4}_{,4}, \quad J^{4,4}, \quad F^{*\alpha 4}_{,4}. \]

Since \(F_{\alpha 4} \) and \(F^{*\alpha 4} \) comprise all of \(F_{ij} \), it remains only to solve (54) for \(v_{,4} \) and \(J^{\alpha,4} \). We obtain

\[v_{,4}(J^4)^2 = \text{CD}, \quad vJ^\alpha_{,4}J^4 = -v_{,4}J^\alpha J^4 + \text{CD}. \]

If \(J^4 = 0 \), the solution for \(v_{,4} \) is not unique, and so we recognize as a shock wave (characteristic) any 3-space built up of world-lines of current. But if the 3-space \(x^4 = 0 \) is not such, then \(J^4 \neq 0 \) and \(^1(64)\) gives unique solutions for \(v_{,4} \) and \(J^{\alpha,4} \), so that the Cauchy problem

\(^1\) We assume \(\nu \neq 0 \).
is regular, and the chosen CD (subject to the conditions stated) yield
a unique solution in the neighbourhood of \(x^4 = 0 \).

For a vacuum (\(J_i = 0 \)), the above argument is modified and sim-
plicated, but we shall not go into it; the Cauchy problem is regular
unless \(x^4 = 0 \) is a null surface.

The case of a vacuum is in some ways more interesting than that
of a charged fluid, and we note that the field equations are

\[
G_{ij} = - \kappa E_{ij}, \quad F^{ij}_{j} = 0, \quad F^{*ij}_{j} = 0, \quad C_i(g) = 0,
\]

with \(E_{ij} \) as in (40). Since now

\[
E^{ij}_{j} = 0,
\]

the count of independent equations in (65) reads \(6 + 3 + 3 + 4 = 16 \),
which agrees with the number of unknowns (\(g_{ij}, F_{ij} \)).

Since \(E^i_i = 0 \), the first of (65) may also be written

\[
R_{ij} = - \kappa E_{ij},
\]

and hence

\[
R = 0,
\]

so that for an electromagnetic field in vacuo the curvature invariant
is zero.

\section*{§ 3. INTEGRAL ELECTROMAGNETIC THEOREMS}

Let \(X_{ij} \) be any skew-symmetric tensor and \(X^*_{ij} \) its dual, so that,
as in (7) and (8),

\[
X^{*ij} = \frac{1}{2} \eta^{ijkm} X_{km}, \quad X^*_{ij} = \frac{1}{2} \eta^{ijkm} X^m, \\
X_{ij} = - \frac{1}{2} \eta^{ijkm} X^*_{km}, \quad X_{ij} = - \frac{1}{2} \eta^{ijkm} X^{*km}.
\]

We are to remember that the covariant \(\eta_{ijkm} \) is obtained from
the contravariant \(\eta^{ijkm} \) by lowering the superscripts in the usual way
by means of \(g_{ij} \). Note that the dual of the dual is the negative
of the original tensor:

\[
X^{**}_{ij} = \frac{1}{2} \eta^{ijkm} X^*_{km} = \frac{1}{4} \eta^{ijkm} \eta_{kma} X^{ab} = - X_{ij}.
\]

The general rule covering changes of sign is that there is a change of
sign when star and no-star are interchanged.
From the first of (69),

\[X^{*ij} |_{j} = \frac{1}{2} \eta^{ijkm} X_{km|j}. \quad (71) \]

Multiply by \(\eta_{abc} \) and use (6):

\[\eta_{abc} X^{*ij} |_{j} = - \frac{1}{2} \delta^{jkm} X_{km|j} = - (X_{ab|c} + X_{bc|a} + X_{ca|b}). \quad (72) \]

Introducing the symbol \([\]\) of cyclic permutation, defined in general by

\[Y_{[abc]} = Y_{abc} + Y_{bca} + Y_{cab}, \]

(72) reads

\[\eta_{abc} X^{*ij} |_{j} = - X_{[ab|c]} = - X_{[ab,c]}. \quad (74) \]

By the rule stated above, we have also the dual formula

\[\eta_{abc} X^{ij} |_{j} = X^{*}_{[ab|c]} = X^{*}_{[ab,c]}. \quad (75) \]

By virtue of these identities it is clear that the first of the Maxwell equations (9) may be written in the equivalent forms

\[F^{ij} |_{j} = J^{i}, \quad F^{*}_{[ab,c]} = \eta_{abc} J^{i}, \quad (76) \]

and the second in the equivalent forms

\[F_{[ij,k]} = 0, \quad F^{*}_{ij} |_{j} = 0. \quad (77) \]

The form (10) is thus verified.

Let \(V_2 \) be a closed 2-space in space-time, spanned by an open \(V_3 \) (Fig. 1). By the theorem of Stokes \([1-(241)]\),

\[\oint_{V_2} F_{ij} d\tau^{ij} = \int_{V_3} F_{ij,k} d\tau^{ijk}, \]

\[\oint_{V_2} F^{*}_{ij} d\tau^{ij} = \int_{V_3} F^{*}_{ij,k} d\tau^{ijk}. \quad (78) \]

On account of the skew-symmetry of \(F_{ij}, F^{*}_{ij} \) and \(d\tau^{ijk} \), these may be written

\[\oint_{V_2} F_{ij} d\tau^{ij} = \frac{1}{3} \int_{V_3} (F_{ij,k} + F_{jk,i} + F_{ki,j}) d\tau^{ijk}, \]

\[\oint_{V_2} F^{*}_{ij} d\tau^{ij} = \frac{1}{3} \int_{V_3} (F^{*}_{ij,k} + F^{*}_{jk,i} + F^{*}_{ki,j}) d\tau^{ijk}. \quad (79) \]

In these integrals \(F_{ij} \) is arbitrary. If we now impose Maxwell’s
equations, we get two integral electromagnetic theorems as follows:

\[\oint_{\Sigma} F_{ij} \, d\tau_{ij} = 0, \quad (80) \]

\[\oint_{\Sigma} F_{ij}^* \, d\tau_{ij} = \frac{1}{3} \int_{\Sigma} \eta_{aijk} J^a \, d\tau_{ijk}. \quad (81) \]

This is probably the neatest form in which to express these results. But, to bring them closer to familiar ideas, we may write, as in \(\text{I}-(247) \) and \(\text{I}-(249) \),

\[d\tau_{ij} = \epsilon(M) \epsilon(N) \eta^{ijkm} M_k N_m d_2 v, \]
\[d\tau_{ijk} = \epsilon(L) \eta^{ijkm} L_m d_3 v; \quad (82) \]

here \(M^i \) and \(N^i \) are unit vectors, orthogonal to \(V_2 \) and to one another, and \(L^i \) is a unit vector orthogonal to \(V_3 \); \(d_2 v \) and \(d_3 v \) are invariant elements of area and 3-volume respectively. Then

\[F_{ij} d\tau_{ij} = 2 \epsilon(M) \epsilon(N) F_{*km} M_k N_m d_2 v, \]
\[F_{ij}^* d\tau_{ij} = -2 \epsilon(M) \epsilon(N) F_{km} M_k N_m d_2 v. \quad (83) \]

Noting that by (6)

\[\eta_{aijk} \eta^{ijkm} = 6 \delta^m_a, \quad (84) \]

we have

\[\frac{1}{3} \eta_{aijk} J^a \, d\tau_{ijk} = 2 \epsilon(L) L_i J^i d_3 v. \quad (85) \]

Thus the formulae (80) and (81) may be written

\[\oint_{\Sigma} \epsilon(M) \epsilon(N) F_{*km} M_k N_m d_2 v = 0, \quad (86) \]
\[\oint_{\Sigma} \epsilon(M) \epsilon(N) F_{km} M_k N_m d_2 v = -\int_{\Sigma} \epsilon(L) L_i J^i d_3 v. \quad (87) \]

Note the interchange of \(F \) and \(F^* \) in passing from the earlier forms. It is of course understood that proper attention is paid to the orientation of the vectors \(L^i, M^i, N^i \) [cf. \(\text{I} \- \S \ 10 \)].

Just as we defined invariant components in (2) we can define starred invariant components,

\[F^*_{(ab)} = F^*_{ij}(\alpha)(\alpha)_{(b)} = - F^*_{(ba)}. \quad (88) \]

To evaluate these in terms of the invariants \(E_\alpha, H_\alpha \) of (3), we note
that (69) gives \(q = \sqrt{-g} \)
\[
F^{*23} = q^{-1}F_{14}, \quad F^{*14} = q^{-1}F_{23}, \quad F^{*}_{23} = -qF^{14}, \quad F^{*}_{14} = -qF^{23}, \quad (89)
\]
and eight other equations obtained from these by cyclic permutation of 1, 2, 3. If we take special coordinates making locally
\[
g_{\alpha\beta} = \delta_{\alpha\beta}, \quad g_{44} = -1, \quad \lambda^{i}_{(a)} = \delta^{i}_{a},
\]
then
\[
F^{*}_{(23)} = F^{*}_{23} = -F^{14} = F_{14} = F_{(14)} = E_{1},
F^{*}_{(14)} = F^{*}_{14} = -F^{23} = -F_{23} = -F_{(23)} = -H_{1}.
\]
(90)

Thus, in general coordinates, the invariant components are
\[
F^{*}_{(14)} = -H_{1}, \quad F^{*}_{(24)} = -H_{2}, \quad F^{*}_{(34)} = -H_{3},
F^{*}_{(23)} = E_{1}, \quad F^{*}_{(31)} = E_{2}, \quad F^{*}_{(12)} = E_{3}.
\]
(91)

The formulae (80), (81), (86), (87) are very general — there is no restriction to timelike or spacelike \(V_{3} \). As a simple illustration let \(V_{3} \) be spacelike, so that \(L^{i} \) is timelike, and let us choose over \(V_{3} \) a system of orthonormal tetrads with \(\lambda^{i}_{(4)} = L^{i} \), making \(\lambda^{i}_{(4)} = M^{i} \), \(\lambda^{i}_{(1)} = N^{i} \) on the boundary \(V_{2} \), so that \(\lambda^{i}_{(1)} \) is the unit normal to \(V_{2} \) in \(V_{3} \). Then (86) and (87) give
\[
\oint_{V_{2}} H_{1} d\nu = 0, \quad (92)
\]
\[
\oint_{V_{2}} E_{1} d\nu = \int_{V_{1}} J_{(4)} d\lambda v. \quad (93)
\]
Here \(E_{1} \) and \(H_{1} \) are normal components of the electric and magnetic vectors. We recognise the theorem of Gauss: (92) says that the normal flux of the magnetic vector vanishes for a closed surface, and (93) equates the normal flux of the electric vector to the total contained charge (a factor \(4\pi \) does not appear on account of the rational units used).

To illustrate the concept of ‘closed 2-space’ in familiar terms, the simplest example one can think of is the instantaneous existence of a spherical surface. A harder one is the 2-space generated by the history of a closed loop of wire, at rest during a finite time. A closed \(V_{2} \) is formed by the history of the wire (this part is timelike) and the instantaneous existence of a fictitious membrane stretched across the wire at the first instant and the last (this part is spacelike).
In addition to the above integral electromagnetic theorems, there is a much simpler one, viz.

$$\oint \varepsilon(N) J^i N^t d\mathbf{s}_v = 0,$$

(94)

with the integral taken over any closed 3-space, N^t being its unit normal. This may be said to express the conservation of electric charge. It is an immediate consequence of $J^i_{t,t} = 0$.

§ 4. ELECTROVAC UNIVERSES

Consider a universe consisting of an interior domain I (which may consist of several world-tubes) and an exterior domain E. There is no matter in E, but there is an electromagnetic field, and to emphasize this we may speak of an electrovac universe. In E we have a symmetric metric tensor g_{ij} and a skew-symmetric electromagnetic tensor F_{ij}, nothing more, satisfying the field equations

$$G_{ij} = -\kappa E_{ij}, \quad \kappa = 8\pi,$$

(95)

and Maxwell's equations

$$F_{ij} = 0, \quad F^*_{ij} = 0,$$

(96)

where

$$E_{ij} = g^{ab} F_{ai} F_{bj} - \frac{1}{4} g_{ij} F_{ab} F^{ab}.$$

(97)

Since $E^i_{i} = 0$, the field equations (95) are equivalent to

$$R_{ij} = -\kappa E_{ij}.$$

(98)

With regard to I, we keep an open mind.

Let us now specialize to a statical universe by taking the metric form to be, as in VIII–(161),

$$\Phi = g_{\alpha\beta} dx^\alpha dx^\beta - V^2 (dx^4)^2,$$

(99)

with coefficients independent of x^4. We satisfy the second of (96) by writing

$$F_{ij} = \phi_{j,i} - \phi_{i,j}.$$

(100)

Let us choose $\phi_\alpha = 0$ and take ϕ_4 to be independent of x^4. Then, putting $\phi_4 = \phi$ for simplicity of writing, we have

$$F_{\alpha\delta} = \phi_{,\alpha}, \quad F_{\alpha\beta} = 0.$$

(101)

The physical interpretation of this situation is realistic. We may think of a single massive body carrying an electric charge, or (somewhat less realistically) of several such bodies, their gravitational
attraction being balanced by electrostatic repulsions. By interchanging
the roles of \(F_{ij} \) and \(F_{ij}^* \), we get the case of a magnetized massive body.

To explore \(E \), we may use the calculations of VIII–§5, a bar indicating quantities pertaining to space. By (101) we have
\[
F^{\alpha 4} = - V^{-2} \tilde{g}_{\alpha \beta} \phi,_{\beta}, \quad F^{\alpha \beta} = 0,
\]
(102)
and by (97)
\[
E_{\alpha \beta} = V^{-2} \left(\frac{1}{2} \tilde{g}_{\alpha \beta} A_1 \phi - \phi,_{\alpha} \phi,_{\beta} \right),
E_{\alpha 4} = 0, \quad E_{44} = \frac{1}{2} A_1 \phi.
\]
(103)

Then, by VIII–(164), the field equations read
\[
R_{\alpha \beta} = \tilde{R}_{\alpha \beta} + V^{-1} V_{\| \alpha \beta} = \kappa V^{-2} (\phi,_{\alpha} \phi,_{\beta} - \frac{1}{2} \tilde{g}_{\alpha \beta} A_1 \phi),
\]
(104)
\[
- R_{44} = V \Delta_2 V = \frac{1}{2} \kappa A_1 \phi,
\]
(105)
the double vertical stroke indicating covariant differentiation with respect to \(\tilde{g}_{\alpha \beta} = g_{\alpha \beta} \). We have by (11)
\[
F_{ij} = \frac{1}{\sqrt{- g}} \frac{\partial}{\partial x^j} (\sqrt{- g} F_{ij}) = \frac{1}{V \sqrt{\tilde{g}}} \frac{\partial}{\partial x^\beta} (V \sqrt{\tilde{g}} F_{i \beta}),
\]
(106)
and so all the Maxwell equations (96) are satisfied identically except one which reads
\[
V \Delta_2 \phi - \tilde{g}^{\alpha \beta} V,_{\alpha} \phi,_{\beta} = 0.
\]
(107)

Our general problem is then to find the eight quantities \(\tilde{g}_{\alpha \beta}, V, \phi \) to satisfy the eight equations in (104), (105) and (107).

At this point we confine our attention to those solutions in which \(V \) is a function of \(\phi \), i.e. the level surfaces of \(V \) and \(\phi \) coincide \(^1\). Then writing \(dV/d\phi = V' \), \(d^2V/d\phi^2 = V'' \), we have
\[
V,_{\alpha} = V' \phi,_{\alpha}, \quad V_{\| \alpha \beta} = V' \phi,_{\| \alpha \beta} + V'' \phi,_{\alpha} \phi,_{\beta},
\]
(108)
\[
\Delta_1 V = V'^2 \Delta_1 \phi, \quad \Delta_2 V = V' \Delta_2 \phi + V'' \Delta_1 \phi,
\]
and (105) and (107) become
\[
VV' \Delta_2 \phi + (V V'' - \frac{1}{2} \kappa) \Delta_1 \phi = 0,
\]
(109)
\[
V \Delta_2 \phi - V' \Delta_1 \phi = 0.
\]
(110)

\(^1\) Cf. Weyl [1917], Majumdar [1946], [1947], Papapetrou [1947], Bonnor [1953], [1954a]. I am much indebted to Mr. A. Das for information and discussions of this work.
Eliminating the first terms from these two equations, and noting that \(\Delta_1 \phi \neq 0 \) (otherwise the electromagnetic field would vanish), we obtain for \(V(\phi) \) the differential equation

\[
VV'' + V'^2 = \frac{1}{2} \kappa. \tag{111}
\]

The general solution is

\[
V^2 = A + B\phi + \frac{1}{2} \kappa \phi^2, \tag{112}
\]

where \(A \) and \(B \) are arbitrary constants. With this choice of \(V(\phi) \), we have in (104) and (110) seven equations for the seven quantities \(\bar{g}_{\alpha\beta}, \phi \).

The theory becomes more interesting if we specialize the general statical form (99) to the particular conformastat form

\[
\Phi = U^2 dx^\alpha dx^\alpha - U^{-2}(dx^4)^2, \tag{113}
\]

so that

\[
\bar{g}_{\alpha\beta} = U^2 \delta_{\alpha\beta}, \quad V = U^{-1}, \quad \bar{g} = U^6. \tag{114}
\]

Instead of assuming at once that \(U \) is a function of \(\phi \), it is more illuminating to apply directly to (113) the field equations (104), (105) and the Maxwell equation (107). But before doing that, we recall that the field equations (98) imply \(R = 0 \). Referring to VIII–(181), we see that this implies

\[
U_{\alpha\alpha} = 0. \tag{115}
\]

(We now denote partial derivatives by subscripts without commas.) This formula is the key to the situation — \(U \) is harmonic with respect to the flat metric \(dx^\alpha dx^\alpha \). (Contrast this electrovac result with the vacuum case for which, not \(U \), but \(\sqrt{U} \) is harmonic, as in VIII–(177).)

Remembering that the operators \(\Delta_1 \) and \(\Delta_2 \) are taken with respect to \(\bar{g}_{\alpha\beta} \), we have

\[
\Delta_1 \phi = U^{-2} \phi_{\alpha} \phi_{\alpha}, \quad \bar{g}_{\alpha\beta} \Delta_1 \phi = \delta_{\alpha\beta} \phi_{\alpha} \phi_{\alpha}, \tag{116}
\]

and, since \(\sqrt{\bar{g}} = U^3 \),

\[
\Delta_2 \phi = U^{-3} (U^2 \bar{g}^{-1} \delta_{\alpha\beta} \phi_{\beta})_{\alpha} = U^{-3} (U_{\alpha} \phi_{\alpha})_{\alpha} = U^{-2} \phi_{\alpha\alpha} + U^{-3} U_{\alpha} \phi_{\alpha},
\]

\[
\bar{g}^{\alpha\beta} V_{\alpha} \phi_{\beta} = - U^{-4} U_{\alpha} \phi_{\alpha}, \quad V \Delta_2 V = U^{-6} U_{\alpha} U_{\alpha} - U^{-5} U_{\alpha\alpha}. \tag{117}
\]

Thus, with the aid of VIII–(181), the field equations (104), (105) read

\[
U_{\alpha} U_{\beta} - \frac{1}{2} \delta_{\alpha\beta} U_{\alpha} U_{\alpha} = \frac{1}{2} \kappa U^4 (\phi_{\alpha} \phi_{\alpha} - \frac{1}{2} \delta_{\alpha\beta} \phi_{\alpha} \phi_{\beta}), \tag{118}
\]

\[
U_{\alpha} U_{\alpha} - U U_{\alpha\alpha} = \frac{1}{2} \kappa U^4 \phi_{\alpha} \phi_{\alpha}. \tag{119}
\]
and Maxwell’s equation (107) reads
\[U\phi_{\sigma\alpha} + 2U_\sigma\phi_\alpha = 0. \] (120)

Now the remarkable fact emerges that all eight equations contained in (118), (119) and (120) are satisfied if we put \(^1\)
\[\phi = \sqrt{\frac{2}{\kappa}} \frac{1}{U} = \frac{1}{\sqrt{4\pi}} \frac{1}{U}, \quad U_{\sigma\sigma} = 0. \] (121)

Thus we have a very simple way of constructing an electrovac field: \textit{Choose any harmonic function} \(U\text{ which has no zero in } E\text{ and define } \phi \text{ by (121).} \)
To get the standard flat metric at infinity, we should choose \(U\) so that \(U^2\) tends to unity at infinity.

Suppose now that the interior domain \(I\) consists of a number of separate parts, \(I_1, I_2, \ldots\). Round any one of these, say \(I_1\), draw a closed surface \(S_1\). Since \(J^t = 0\) in \(E\), we know from (93) that there is a certain integral taken over \(S_1\) which does not change when we deform \(S_1\) in \(E\). Without troubling about the internal structure of \(I_1\), we naturally define the \textit{total charge} \(e_1\) in or on it by
\[e_1 = \int_{S_1} E_1 d_2v, \] (122)
in the notation of (93). In dealing with this integral, we must be careful to distinguish between physical metric
\[d\sigma^2 = U^2 dx^\alpha dx^\alpha \] (123)
and the flat metric
\[d\sigma_0^2 = dx^\alpha dx^\alpha. \] (124)

The integral (122) is set up in the former. By (3)
\[E_1 = F_{(14)} = F_{ij} \lambda^i_{(1)} \lambda^j_{(4)} \] (125)
where \(\lambda^i_{(1)}\) is the outward unit normal to \(S_1\) and \(\lambda^j_{(4)}\) a unit vector in the time-direction, and by (101) this reduces to
\[E_1 = \phi_\alpha \lambda^\alpha_{(1)} \lambda^4_{(4)}. \] (126)

The unit vectors here are of course unit with respect to \(d\sigma\). Thus if \(n^\alpha\) is the outward normal to \(S_1\) which is unit with respect to \(d\sigma_0\), we have
\[\lambda^\alpha_{(1)} = \frac{dx^\alpha}{d\sigma} = \frac{dx^\alpha}{d\sigma_0} \frac{d\sigma_0}{d\sigma} = n^\alpha U^{-1}, \quad \lambda^4_{(4)} = U. \] (127)

If \(dS\) is an element of area with respect to \(d\sigma_0\), we have \(d_2v = U^2dS\),

\(^1\) Note that, since \(UV = 1\), this is the same as (112) with \(A = B = 0\).
and (122) gives for the charge associated with \(I_1 \) the value
\[
e_1 = \int_{S_1} U^2 \phi \alpha n^\alpha dS = - \frac{1}{\sqrt{4\pi}} \int_{S_1} U \alpha n^\alpha dS. \tag{128}
\]

Since \(U \) is harmonic with respect to \(d\sigma_0 \), this last integral is obviously unchanged by deformation of \(S_1 \); that we could have stated at once, but we needed to connect the integral with the charge.

To complete the electrovac model we need to fill in a metric in \(I \), but that will not be discussed here.

Let us take a set of points \(P_1, P_2, \ldots \) and define \(I \) to consist of the interiors of spheres of radii \(a_1, a_2, \ldots \) centred at these points. Let \(\rho_1, \rho_2, \ldots \) be the distances (measured by \(d\sigma_0 \)) of a general point \(P \) from the centres. Write
\[
U(P) = \epsilon + \frac{1}{\sqrt{4\pi}} \left(\frac{e_1}{\rho_1} + \frac{e_2}{\rho_2} + \ldots \right), \quad \epsilon = \pm 1. \tag{129}
\]

Provided the ratios \(e_1/a_1, e_2/a_2, \ldots \) are small enough, \(U \) is a harmonic function which does not vanish in \(E \); the potential is
\[
\phi = \frac{1}{\epsilon \sqrt{4\pi} + e_1/\rho_1 + e_2/\rho_2 + \ldots} \tag{130}
\]

and the charges associated with the spheres are \(e_1, e_2, \ldots \). Provided the metric can be filled in suitably in \(I \), we have before us a set of charged bodies, in equilibrium under their mutual interactions. It is interesting to note that, on account of the ambiguity in \(\epsilon \), there seem to be two fields corresponding to given charges. If we reverse the signs of \(\epsilon \) and of all charges, we leave the metric unchanged but reverse the electric field. As remarked earlier, there is no difficulty in changing from electricity to magnetism, and we might replace (129) by a formula corresponding to a set of magnetic dipoles. The theory rests on the fact that, for the special conformastat metric (113), \(R = 0 \) implies that \(U \) is harmonic with respect to the flat metric \(d\sigma_0 \).
CHAPTER XI

GEOMETRICAL OPTICS

§ 1. WAVE-KINEMATICS IN SPACE-TIME

Consider a single infinity of 3-spaces in space-time (Fig. 1); they may be spacelike, null or timelike, by which we mean that their normals are timelike, null or spacelike, respectively. We call these 3-spaces 3-waves, or briefly waves. We associate with each wave a phase-angle \(\phi \), increasing monotonically as we run from wave to wave, so that we may refer to the waves as phase-waves. Those waves for which \(\phi = 2n\pi \) will be called crests; we may regard the waves drawn in Fig. 1 as crests.

Since \(\phi \) is a function of position in space-time, we may write

\[
f(x) = -\frac{\hbar}{2\pi} \phi,
\]

so that the equations of the waves are \(f(x) = \text{const.} \); \(\hbar \) is a small universal constant, regarded as infinitesimal for mathematical purposes. Any small constant would do, but for certain reasons it is desirable to take \(\hbar \) to be Planck's constant. In passing from crest to crest, \(f(x) \) changes by

\[
df = -\hbar.
\]

Let \(C \) be the timelike world-line of an observer with 4-velocity \(V^i \). We seek expressions for (i) the frequency of the waves, and (ii) their speed, both relative to \(C \).

Let us write

\[
\rho_i = f_{,i}.
\]

In passing from a crest to the next crest along \(C \), with a displacement
\(d\xi^i\) and time-element \(ds\) on \(C\), we have by (2)

\[
\dot{p}_i dx^i = \dot{p}_i V^i ds = -h,
\]

and so the period \(\tau\) (\(= ds\)) and the frequency \(\nu\) (\(= 1/\tau\)) are

\[
\tau = -\frac{h}{p_i V^i}, \quad \nu = -\frac{\dot{p}_i V^i}{h}.
\]

These are invariants, but their values depend on \(C\). We note that

\[
h\nu = -\dot{p}_i V^i,
\]

and, if we introduce an orthonormal tetrad \(\lambda^i_{(a)}\) with \(\lambda^i_{(4)}\) along \(V^i\), then

\[
h\nu = -\dot{p}_{(4)} = \dot{p}^{(4)}.
\]

We call \(\dot{p}^i\) the frequency 4-vector of the waves. The minus sign was used in (1) in order to get \(+\dot{p}^{(4)}\) in (7).

In (5) the expression for \(\nu\) is ugly — a finite quantity divided by an infinitesimal. But we are in fact concerned with waves of high frequency, this being the usual condition under which geometrical optics is physically valid. It may be remarked, however, that there is nothing essentially optical about the kinematics of the present section — it applies equally to elastic or other waves of high frequency.

We have dealt with frequency first because it is so simple. But the question of speed is really more general, because only a single wave is involved, and we do not have to think about phase. Let \(A\) (Fig. 2) be the intersection of \(C\) with a wave \(W\). We think of a fictitious particle which rides on the wave, so that its world-line lies in \(W\), and for \(W\) we take the equation \(f(x) = \text{const.}\) as above. Let \(AB\) (\(dx^i\)) be an infinitesimal displacement on this particle's world-line; let \(NB\) (\(d\xi^i\)) be orthogonal to \(C\); and let \(AN = ds\). Then the speed \(u'\) of the fictitious particle relative to \(C\) is naturally defined by

\[
u' = \frac{NB}{AN}, \quad u'^2 = \frac{d\xi^i d\xi_i}{ds^2}.
\]

(We write \(dx_i = g_{ij} dx^j\), \(d\xi_i = g_{ij} d\xi^j\).)
From the construction in Fig. 2 we have (with \(p_i = f_i, t \) as earlier)

\[
\dot{p}_t dx^t = 0, \tag{9}
\]

\[
V^i d\xi^i = 0, \tag{10}
\]

\[
d\xi^i = dx^i - V^i ds. \tag{11}
\]

From (10) and (11), since \(V^i V^i = -1 \),

\[
ds = - V^i dx^i, \tag{12}
\]

and so (11) becomes

\[
d\xi^i = dx^i + V^i V_j dx^j. \tag{13}
\]

Thus

\[
d\xi^i d\xi^j = dx_i dx^j + (V^i dx^j)^2, \tag{14}
\]

which is the theorem of Pythagoras with attention paid to the indefinite character of the metric. From (8), (12) and (14), the speed of the fictitious particle is given by

\[
\gamma'^2 = 1 + \frac{dx_i dx^i}{(V_j dx^j)^2}. \tag{15}
\]

An examination of what we mean in ordinary physics by the speed of a wave suggests that we should define the speed \((\alpha) \) of the wave as the minimum value of \(\gamma' \) for all fictitious particles riding on it. Thus we are to minimize (15) with (9) as a side condition, and this gives

\[
dx^i = \alpha V^i + \dot{p}^i, \tag{16}
\]

where \(\alpha \) is a Lagrange multiplier (we omit a multiplier in front of \(\dot{p}^i \) since only the ratios of \(dx^i \) are involved in (15)). By (9) we get

\[
\alpha = - \frac{\dot{p}_i \dot{p}^i}{\dot{p}_j V_j}, \tag{17}
\]

and (16) gives

\[
dx_i dx^i = \alpha (p_i V^i - \alpha), \quad V_i dx^i = \dot{p}_i V^i - \alpha. \tag{18}
\]

From (15) we then obtain for the square of the speed of the wave relative to \(C \) the formula

\[
\gamma^2 = \frac{p_j V_j}{\dot{p}_i V^i - \alpha}. \tag{19}
\]
In dealing with waves, the *slowness* \((u^{-1})\) is more fundamental than the speed \((u)\). For the square of the slowness we have

\[
\frac{1}{u^2} = 1 + \frac{p_i p^i}{(p_j V^j)^2}.
\]

(20)

This invariant formula contains only the 4-velocity of the observer and the frequency 4-vector. But, as remarked above, the idea of *frequency* is not really involved — we may replace \(p^i\) by any vector normal to the wave.

![Fig. 3 - Waves W and frequency vectors \(p^i\), with the null cone](image)

By (20) the slowness is less or greater than unity according as \(p^i\) is timelike or spacelike. Accordingly we have the following classification of waves, illustrated in Fig. 3:

<table>
<thead>
<tr>
<th>wave</th>
<th>frequency vector</th>
<th>speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>spacelike</td>
<td>timelike ((p_i p^i < 0))</td>
<td>(u > 1)</td>
</tr>
<tr>
<td>null</td>
<td>null ((p_i p^i = 0))</td>
<td>(u = 1)</td>
</tr>
<tr>
<td>timelike</td>
<td>spacelike ((p_i p^i > 0))</td>
<td>(u < 1)</td>
</tr>
</tbody>
</table>

In ordinary parlance, \(u > 1\) means 'faster than light', and \(u < 1\) 'slower than light', but these expressions must be used here with great caution, because the waves in question may themselves be light waves. The true comparison is with the null cone, which represents a fundamental type of shock wave.

§ 2. WAVES, RAYS AND PHOTONS IN A DISPERSIVE MEDIUM

Although the following theory has wider physical applications, we shall use the language of optics. It is essentially a physical transcript, with interpretations, of the Hamiltonian theory discussed in 1–§ 7 and the theory of characteristics of v–§ 7, which is really part of Hamiltonian theory.
Consider a transparent medium specified by its 4-velocity V^i and certain physical properties, such as density, which we shall include in a symbol ρ. We regard space-time as given, so that g_{ij}, V^i and ρ are given functions of the coordinates. Our object is to set up a theory of geometrical optics in the medium on the basis of reasonable hypotheses suggested by classical theory.

In classical optics, we describe a medium \(^1\) by giving the refractive index n as a function of frequency and other local properties, included in the symbol ρ above. Now the refractive index is the reciprocal of the phase-speed, and so we are led by (20) to base relativistic geometrical optics on a medium-equation

$$n^2 = 1 + \frac{\dot{p}_i \dot{p}^i}{(\dot{p}_j V^j)^2}, \quad (21)$$

where n is the refractive index ($n = u^{-1}$), a given function of the coordinates x^i and of $\dot{p}_k V^k$ ($- \hbar \nu$, where ν is the frequency). Note that, whereas in § 1 V^i was the 4-velocity of an arbitrary observer, it is now that of the medium, so that phase-speed and frequency are measured in the instantaneous rest frame of the medium.

To apply Hamiltonian methods, it is necessary to use \dot{p}_i rather than \dot{p}^i in writing the medium-equation, and we shall express this equation in the form

$$\omega(x, \dot{p}) = 0, \quad (22)$$

where

$$\omega(x, \dot{p}) = \frac{1}{2}[g^{ij} \dot{p}_i \dot{p}_j - (n^2 - 1)(\dot{p}_i V^i)^2]. \quad (23)$$

This may also be written

$$\omega(x, \dot{p}) = \frac{1}{2} \bar{g}^{ij} \dot{p}_i \dot{p}_j, \quad (24)$$

where

$$\bar{g}^{ij} = g^{ij} - (n^2 - 1)V^i V^j. \quad (25)$$

It is easy to see that the conjugate covariant tensor \bar{g}_{ij}, defined by

$$\bar{g}_{ij} \bar{g}^{jk} = \delta^k_j, \quad (26)$$

is

$$\bar{g}_{ij} = g_{ij} + \left(1 - \frac{1}{n^2}\right)V_i V_j. \quad (27)$$

\(^1\) We consider only isotropic media. A relativistic treatment of anisotropic media would be very complicated.
It might appear that this provides space-time with a new metric tensor, but that is not the case since \(n \) depends on \(p_i \). But for a non-dispersive medium \(n \) is a function of position only, and then indeed \(\tilde{g}_{ij} \) can be regarded as a second metric tensor; this idea will be used later.

Since \(p_i = f_i \) as in (3), we have in (22) a partial differential equation of the first order for the phase-function \(f(x) \). As in \(v-(153) \), the characteristic curves of this equation satisfy

\[
\frac{dx^i}{dw} = \frac{\partial \omega}{\partial p_i}, \quad \frac{dp_i}{dw} = - \frac{\partial \omega}{\partial x^i},
\]

where \(w \) is a parameter; these characteristic curves are optical rays, and the totality of all possible rays consists of the solutions of these ordinary differential equations, a solution being determined by an arbitrary initial event \((x) \) and an initial frequency vector \((p) \) which is arbitrary save for (22). Note that (28) gives, not only a ray, but also a frequency vector at each point on it.

By (23)

\[
\frac{\partial \omega}{\partial p_i} = p^i - (n^2 - 1)(p_j V^j) V^i - n(2p_i V^i) V^i,
\]

where \(n' \) is the partial derivative of \(n \) with respect to \(p_k V^k \). Thus by (28) the direction of the ray lies in the 2-element defined by the frequency vector and the 4-velocity of the medium, as indeed we would expect for isotropy. In general the ray does not point along the frequency vector, but it does so in vacuo, for then \(n = 1 \).

If we start with any small piece of a phase-wave, the construction given in \(v-\S 7 \) carries this piece along the rays, with changing phase in general, there being an ‘action element’ \(p_i dx^i = -h \) between successive crests. We recognize this advancing element as a signal (transmission of information or energy), and so it appears essential that the rays should be timelike (or null), since otherwise we would violate concepts of causality. Mathematically, this requirement reads

\[
g_{ij} \frac{\partial \omega}{\partial p_i} \frac{\partial \omega}{\partial p_j} \leq 0.
\]

Whether a ray be timelike, null or spacelike, we may define the ray-speed \(v \) (relative to the medium) by following an event along the ray as in Fig. 2, understanding \(W \) to indicate the ray. A simple
calculation based on (10), (11) and (28) gives
\[v^2 = 1 + g_{ij} \frac{\partial \omega}{\partial p_i} \frac{\partial \omega}{\partial p_j} \left(V_k \frac{\partial \omega}{\partial p_k} \right)^{-2}, \]
so that the inequality (30) is equivalent to \(v \leq 1 \). On substitution for \(\omega \) from (23), direct calculation gives
\[g_{ij} \frac{\partial \omega}{\partial p_i} \frac{\partial \omega}{\partial p_j} = n^2 (p_i V^i)^2 (1 - q^{-2}), \quad V_i \frac{\partial \omega}{\partial p_i} = n (p_i V^i) q^{-1}, \]
where \(q \) is defined by
\[q = n + n' p_i V^i = n + v \frac{\partial n}{\partial v} = \frac{\partial}{\partial v} (nv). \]
When we substitute from (32) in (31), we obtain simply \(v = q \). The point of all this is that (33) is the ordinary definition of group-speed, and we have established its identity with the ray-speed, defined in terms of the characteristic curves of the Hamilton-Jacobi equation obtained by putting \(f, i \) for \(p_i \) in \(\omega(x, p) = 0 \). Thus (30) merely reasserts a demand commonly made in physics — the group-speed cannot exceed the fundamental speed (that of light in vacuo).

If equality holds in (30), the ray is null. If inequality, the ray is timelike and its unit 4-vector defines the ray 4-velocity.

A system of rays associated with phase-waves form a coherent system in the sense of 1–§ 7, so that
\[\oint p_i dx^i = 0 \]
for every reducible closed circuit in space-time. For such a system, we have before us a mental space-time picture of phase-waves, frequency vectors (normal to the waves), and rays (timelike or null for causal reasons, but not in general normal to the waves).

Where does the photon fit into this picture? In view of (6), it seems appropriate to take the frequency vector \(\mathbf{p} \) to be the 4-momentum of a photon associated with a system of waves, and the history of a photon to be a ray. For the photon in vacuo, we have earlier made some natural assumptions: (i) its world-line is a null geodesic, and

1 Cf. Synge [1954a], [1956b], and § 4 of the present chapter. For a discussion of phase-speed, group-speed and signal-speed, see L. Brillouin [1960].

2 In order to attach physical meaning to null geodesics, even inside matter, in III–§ 3 the word ‘photon’ was restricted to mean one of very high energy. That restriction is of course now withdrawn.
(ii) its 4-momentum is tangent to the world-line and undergoes parallel transport along it. For a photon in a transparent medium, as just described, none of these things is true. For a non-dispersive medium, the 4-momentum is spacelike, and this will be true for small dispersion also. Nevertheless, this photon-in-a-medium reduces to the photon-in-vacuo, for in that case (22) and (23) become

$$\omega(x, \phi) = \frac{1}{2} g^{ij} \phi_i \phi_j = 0,$$

and the ray-equations (28) become

$$\frac{dx^i}{dw} = \phi^i, \quad \frac{d\phi_i}{dw} = -\frac{1}{2} g^{jk} \phi_j \phi_k;$$

as in (156), these lead to the properties of the photon-in-vacuo described above.

To illustrate the theory of waves and rays, let us consider radiation from a particle which moves through a transparent medium.

Let Γ (Fig. 4) be the world-line of the particle, with 4-velocity Y^i. Let v_0 be the frequency of the radiation relative to the particle itself (it need not be constant). Then at any event A on Γ we have, by (6) and (22),

$$\phi_i Y^i = -\hbar v_0, \quad \omega(x, \phi) = 0;$$

the second equation here involves V^i, the 4-velocity of the medium.

Constrained by these two equations, ϕ_i at A has still two degrees of freedom, and for each choice of ϕ_i there is a ray and a set of vectors ϕ_i along it, obtained by solving (28). The doubly infinite set of rays from
A form a cone\(^1\) (represented in Fig. 4 by a single ray). As we move \(\Gamma\) along \(\Gamma\), we get a single infinity of such cones, and thus we fill space-time with rays and a field \(\phi_i(x)\). Using the method of \(\Gamma\)–§7, it is now easy to get the phase-waves. If there is a crest at \(A\) (\(\phi = 0\)), we get the complete crest (wave of zero phase) by finding all events \(B\) which satisfy

\[
\int_{A}^{B} \phi_i dx^i = 0. \tag{38}
\]

On account of (34), it does not matter what path is used (paths of integration are shown by broken lines in Fig. 4, and phase-waves by heavy lines). The \(n\)th crest after this one has the equation

\[
\int_{A}^{B} \phi_i dx^i = - nh. \tag{39}
\]

§ 3. VARIATIONAL PRINCIPLES IN GEOMETRICAL OPTICS

In classical geometrical optics and in classical dynamics, one sets down certain basic equations and develops other equations from these. When a whole coherent body of theory has been created, one realizes that the point of departure for its logical development is largely a matter of taste, for the same structure might have been set on many different bases. But to avoid mental confusion, one must select some base and not change it in the course of the argument.

Hamilton based his geometrical optics on Fermat’s principle and his dynamics on Newton’s equations of motions, and these were the best bases from the standpoint of physical plausibility. In modern times there has been a strong tendency to give pride of place to variational principles. This suggests that we should base relativistic geometrical optics on Fermat’s principle. However in a theory which is to include dispersion, a suitable simple form of Fermat’s principle is not available, and it has seemed best to start, as in the preceding sections, from the concept of waves rather than rays. We saw that the phase-function satisfies a certain partial differential equation, written \(\omega(x, \phi) = 0\), and we defined the rays as its characteristics. We shall continue to use that basis for the theory, but develop equivalent variational principles which might, if one so desired, be used as bases for geometrical optics.

\(^1\) In the case of Čerenkov radiation, \(\Gamma\) lies outside the cone formed by the rays.
Consider the following variational principle:

\[\delta \int p_i \, dx^i = 0, \quad \omega(x, p) = 0. \]

(40)

Here the curves considered join a pair of fixed events and \(p_i \) is arbitrary along each of them except for the side-condition shown. As in \(\text{I-§ 7} \), Principle \(A \) is equivalent to the differential equations

\[\frac{dx^i}{dw} = \frac{\partial \omega}{\partial p_i}, \quad \frac{dp_i}{dw} = -\frac{\partial \omega}{\partial x^i}, \]

(41)

\(w \) being a special parameter. Since these are precisely the ray-equations (28), we recognize that optical rays satisfy \(A \), and might have been defined by \(A \). Had we adopted this course, the associated waves would have been defined by the method of \(\text{I-§ 7} \).

Before proceeding to a second variational principle, let us carry out some formal work, in which \(\omega(x, p) \) is any function for which

\[\det \frac{\partial^2 \omega}{\partial p_i \partial p_j} \neq 0. \]

(42)

It must be clearly understood that here we are dealing with a function \(\omega \) and not with an equation \(\omega = 0 \).

Define

\[z^i = \frac{\partial \omega}{\partial p_i} \]

(43)

and

\[L = p_j \frac{\partial \omega}{\partial p_j} - \omega. \]

(44)

In view of (42), we can solve (43) for the \(p \)'s, obtaining \(p_i = p_i(x, z) \), and, when we substitute these in (44), we get \(L = L(x, z) \). We seek the partial derivatives \(^1\) of \(L \).

The quantities \((x, p) \) may be varied arbitrarily, the variations in the \(z \)'s then following from (43). Thus

\[\frac{\partial L}{\partial x^i} \delta x^i + \frac{\partial L}{\partial z^i} \delta z^i = p_j \frac{\partial^2 \omega}{\partial p_j \partial x^i} \delta x^i + p_j \frac{\partial^2 \omega}{\partial p_j \partial p_i} \delta p_i - \frac{\partial \omega}{\partial x^i} \delta x^i \]

(45)

\(^1\) We are going through the same type of argument as that by which, in classical dynamics, one passes from a Hamiltonian to a Lagrangian. It is desirable to give it in detail, because in the classical argument there is an absolute parameter \(t \), not present here.
becomes an identity in the differentials \((\delta x, \delta \phi)\) when we substitute

\[\delta z^i = \frac{\partial^2 \omega}{\partial \phi_i \partial x^k} \delta x^k + \frac{\partial^2 \omega}{\partial \phi_i \partial \phi_k} \delta \phi_k. \] (46)

Hence

\[\frac{\partial L}{\partial x^i} + \frac{\partial L}{\partial z^j} \frac{\partial^2 \omega}{\partial \phi_j \partial x^i} = \phi_j \frac{\partial^2 \omega}{\partial \phi_j \partial x^i} - \frac{\partial \omega}{\partial x^i}, \] (47)

\[\left(\frac{\partial L}{\partial z^j} - \phi_j \right) \frac{\partial^2 \omega}{\partial \phi_j \partial \phi_i} = 0. \] (48)

From (48) and (42) we get

\[\frac{\partial L}{\partial z^j} = \phi_i, \] (49)

and (47) then gives

\[\frac{\partial L}{\partial x^i} = -\frac{\partial \omega}{\partial x^i}. \] (50)

The above is a formal procedure by which, starting from any function \(\omega(x, \phi)\) satisfying (42), we generate a function \(L(x, z)\) and its partial derivatives.

We now pass to optics. In Fig. 5, \(C\) is a ray joining events \(P, Q\), so that the equations (41) are satisfied, the parameter \(w\) running from \(w_1\) to \(w_2\), say. The ray \(C\) belongs to a family of curves joining \(P\) and \(Q\), represented by \(D\) in Fig. 5.

The first step is to put a parameter \(w\) on \(D\), arbitrarily except that it is to have the end-values \(w_1, w_2\). Writing \(x'^i = dx^i/dw\), we now have a vector field \(x'^i\) defined on \(C\) and on \(D\). On \(C\) we have, by (41),

\[x'^i = \frac{\partial \omega}{\partial \phi_i}. \] (51)

The trick is to use this equation to define a vector field \(\phi_i\) on \(D\) also. But this is precisely the equation (43), with \(x'^i\) instead of \(z^i\), and so we generate on \(C\) and on \(D\) a function \(L(x, x')\) with the partial derivatives

\[\frac{\partial L}{\partial x'^i} = \phi_i, \quad \frac{\partial L}{\partial x^i} = -\frac{\partial \omega}{\partial x^i}. \] (52)
The integral $\int L(x, x') \, dw$ is then meaningful on C and on D. On C we have

$$\frac{d}{dw} \frac{\partial L}{\partial x'^i} - \frac{\partial L}{\partial x^i} = \frac{dp_i}{dw} + \frac{\partial \omega}{\partial x^i} = 0,$$

by (41). But these are the well known Euler-Lagrange equations for the variational principle

Principle B: \hspace{1cm} $\delta \int L(x, x') \, dw = 0,$

for fixed end-events and a fixed range for w. Accordingly the optical rays satisfy Principle B as well as Principle A.

Traditionally, a principle of the form B has been preferred to one of form A. It has the advantage that there is no side-condition. But in the geometrical optics of a dispersive medium, the preference must be given to A, because the function $\omega(x, \dot{p})$ is to be regarded as given, whereas, to get L, we have to solve (43) for the p's, and that may prove very difficult in practice.

Let us examine (43) with ω as in (23), so that [cf. (25) and (29)] we are required to solve for the p's the four equations

$$z^i = \frac{\partial \omega}{\partial p_i} = \tilde{g}^{ij} p_j - nn'(p_k V^k)^2 V^i.$$

From this we get, in the notation (27),

$$p_i = \tilde{g}_{ij}[z^j + nn'(p_k V^k)^2 V^j],$$

and hence

$$\dot{p}_i z^i = \tilde{g}_{ij} z^i z^j + nn'(p_k V^k)^2 \tilde{g}_{ij} z^i V^j,$$

$$\omega = \frac{1}{2} \tilde{g}^{ij} p_i \dot{p}_j = \frac{1}{2} \tilde{g}_{ij} z^i z^j + nn'(p_k V^k)^2 \tilde{g}_{ij} z^i V^j - \frac{1}{2} n''(p_k V^k)^4.$$

In this last formula we have reduced the last term by noting that

$$\tilde{g}_{ij} = g_{ij} + (1 - n^{-2}) V_i V_j,$$

so that

$$\tilde{g}_{ij} V^i V^j = - n^{-2}.$$

By (57) we have

$$L(x, z) = \dot{p}_i z^i - \omega = \frac{1}{2} \tilde{g}_{ij} z^i z^j + \frac{1}{2} n''(p_k V^k)^4.$$

1 Do not confuse the meanings of the prime on n' and the prime on x'^i!
But we have not yet expressed \(L \), as required, in terms of \((x, z)\), because the \(p \)'s are present, both explicitly and hidden in \(\bar{g}_{ij} \) and \(n' \). To remove them, we note that

\[
\bar{g}_{ij}V^i z^j = n^{-2}V_i z^i, \tag{61}
\]

so that multiplication of (56) by \(V^i \) leads to the equation

\[
n n'(p_i V^i)^2 + n^2 p_i V^i = V_i z^i. \tag{62}
\]

Since \(n \) is supposed given as a function of frequency, or equivalently of \(p_i V^i \), (62) may be regarded as an equation to determine \(p_i V^i \) as a function of \(V_i z^i \), so that we may write

\[
p_i V^i = \psi(V_i z^i). \tag{63}
\]

On substituting this in (60), including substitution in \(\bar{g}_{ij} \) and \(n' \), we get \(L(x, z) \) expressed as a function of \((x, z)\) \(^1\).

Since dispersion is usually small in practice, it is natural to seek an approximation based on the smallness of \(n' \). However this approximation is a delicate matter, and will not be pursued here; to find the rays in any actual case, one should not bother about a variational principle, but use the equations (41) for the rays. But although we cannot approximate for small \(n' \), we can set \(n' = 0 \) (so that \(n \) becomes a function of position in space-time). This is the case of a non-dispersive medium, and for it the theory simplifies in a pleasant way.

For a non-dispersive medium, (60) gives

\[
L(x, z) = \frac{1}{2} \bar{g}_{ij} x^i x^j, \tag{64}
\]

with \(\bar{g}_{ij} \) as in (58). This is in the required form. By (57) we see that \(\omega = L \), and so we must have \(L = 0 \) on a ray. Writing \(x' \) for \(z \), Principle B now reads

\[
d \int \bar{g}_{ij} x'^i x'^j \, dw = 0, \tag{65}
\]

but of these extremals we are to take only those for which

\[
\bar{g}_{ij} x'^i x'^j = 0. \tag{66}
\]

Thus we have the remarkable result \(^2\): In a non-dispersive medium the rays are null geodesics with respect to the modified metric tensor

\[
\bar{g}_{ij} = g_{ij} + \left(1 - \frac{1}{n^2} \right) V_i V_j, \tag{67}
\]

\(^1\) We may check that (49) is satisfied by the function \(L(x, z) \) so obtained.

\(^2\) Cf. BALAZS [1955], PHAM MAU QUAN [1957a].
where \(n \) is the refractive index and \(V^i \) the 4-velocity of the medium.

We now pass to the third variational principle, which is not applicable when \(\omega(x, p) \) is homogeneous in the \(p^i \)'s, as it is for a non-dispersive medium; accordingly we suppose the medium dispersive. We start with a formal calculation which leads from a given medium-equation

\[
\omega(x, p) = 0
\]
(68)

to a function \(F(x, z) \) of the \(x^i \)'s and four other variables \(z^i \). Write down the equations

\[
z^i = \theta \frac{\partial \omega}{\partial p_i}. \tag{69}
\]

Solving for the \(p^i \)'s, we get

\[
p_i = \phi_i \left(x, \frac{z}{\theta} \right). \tag{70}
\]

Substitute this in (68) and solve for \(\theta \), obtaining

\[
\theta = \theta(x, z); \tag{71}
\]

\(\theta \) is necessarily homogeneous of degree unity in the \(z^i \)'s. Substitute for \(\theta \) in (70) and get \(\theta \) as a function of the \(x^i \)'s and the \(z^i \)'s, homogeneous of degree zero in the latter. Finally define the function \(F(x, z) \) by

\[
F(x, z) = \phi_i z^i; \tag{72}
\]

it is homogeneous of degree unity in the \(z^i \)'s. Observe (and this is important) that if we give any values to the \(x^i \)'s and the \(z^i \)'s, the values of the \(p^i \)'s given by (69) and (71) necessarily satisfy (68).

Now take any curve \(x^i = x^i(w) \) and write \(dx^i/dw = x'^i \). If we define the \(\phi_i \)'s by

\[
\frac{\partial \omega}{\partial \phi_i} = \frac{x'^i}{\theta(x, x')}, \tag{73}
\]

we know that (68) is satisfied, and by (72)

\[
\int F(x, x') dw = \int \phi_i dx^i. \tag{74}
\]

\(^1\) It is here that the method breaks down if \(\omega \) is homogeneous in the \(p^i \)'s, since then \(\omega = 0 \) implies \(F = 0 \). Although the variational principle \(C \), as in (75), is not available for a non-dispersive medium in general, it is available in modified form for any medium in the statical case; cf. (102). For some more detailed calculations for a dispersive medium, see Synge [1956b], p. 47.

Synge
Accordingly Principle A, as in (40), leads to

Principle C:

\[
\delta \int F(x, x')dw = 0, \tag{75}
\]

for variation with fixed end events, without any side condition.

Note the difference between Principles B and C: (i) B applies to non-dispersive media, whereas C does not, and (ii) in B the parameter has fixed end values, whereas in C it is free on account of the homogeneity of F.

The classical principle of Fermat reads

\[
\delta \int nd\sigma = 0, \tag{76}
\]

where $d\sigma$ is an element in Euclidean 3-space. If we choose, as we may, $w = s$ in (75), we get

\[
\delta \int Fds = 0, \tag{77}
\]

which resembles (76) formally. But the analogy is not good, because $d\sigma$ and ds mean quite different things, and F is not the refractive index. The true analogue of Fermat's principle is given in the next section.

§ 4. GEOMETRICAL OPTICS IN A STATIC UNIVERSE

Consider a static universe with metric form

\[
\Phi = g_{\alpha\beta}dx^\alpha dx^\beta + g_{44}(dx^4)^2, \tag{78}
\]

where the g's are independent of x^4. In this universe we have a transparent medium 1 with world-lines along the x^4-lines; consequently its 4-velocity V^i satisfies

\[
V^\alpha = 0, \quad g_{44}(V^4)^2 = -1, \quad V^4 = \sqrt{-g^{44}}. \tag{79}
\]

The refractive index n is a function of frequency ν and position x^α, but is independent of x^4.

From the preceding general theory we quote the medium-equation

\[
\omega(x, \varphi) = 0, \tag{80}
\]

where

\[
\omega(x, \varphi) = \frac{1}{2} \left[g^{ij} \varphi_i \varphi_j - (n^2 - 1)(\varphi_i V^i)^2 \right], \tag{81}
\]

and the ray-equations

\[
\frac{dx^i}{dw} = \frac{\partial \omega}{\partial \varphi_i}, \quad \frac{d\varphi_i}{dw} = -\frac{\partial \omega}{\partial x^i}. \tag{82}
\]

1 In VII-§ 9 we were concerned with a vacuum.
The outstanding feature of the static case is that \(\omega\) is independent of \(x^4\), and the ray-equations give, along each ray,

\[
\rho_4 = \text{const.} \tag{83}
\]

Now

\[
\hbar v = - \rho_i V^i = - \rho_4 V^4 = - \rho_4 \sqrt{- g^{44}}, \tag{84}
\]

so that, as we go along a ray, we know how the frequency changes; it is proportional to \(V^4\), or \((- g^{44})\)\(^\dagger\), or \((- g_{44})^{-\dagger}\). Thus we recover the spectral-shift formula VII–(233).

By (79) we reduce (81) to

\[
\omega(x, \rho) = \frac{1}{2}(g^{\alpha\beta} \rho_\alpha \rho_\beta - n^2 \chi^2), \tag{85}
\]

where we have written

\[
\chi = \rho_4 V^4 = - \hbar v; \tag{86}
\]

the prescription of the medium gives \(n\) as a function of \(\chi\) and \(x^\alpha\), and so the term \(n^2 \chi^2\) in (85) is a given function of these quantities. We have

\[
\frac{\partial \chi}{\partial \rho_\alpha} = 0, \quad \frac{\partial \chi}{\partial \rho_4} = V^4 = \sqrt{- g^{44}}, \quad \frac{\partial \chi}{\partial x^\alpha} = \rho_4 (\sqrt{- g^{44}}),^\alpha. \tag{87}
\]

The ray-equations (82) now read explicitly

\[
\frac{dx^\alpha}{dw} = g^{\alpha\beta} \rho_\beta, \quad \frac{dx^4}{dw} = - n \chi \frac{\partial}{\partial \chi} (n \chi) \cdot \sqrt{- g^{44}}, \tag{88}
\]

\[
\frac{d\rho_\alpha}{dw} = - \frac{1}{2} g^{\beta\gamma} \rho_\gamma \rho_\beta + n \chi \frac{\partial}{\partial \chi} (n \chi) \cdot \rho_4 (\sqrt{- g^{44}}),^\alpha,
\]

together with \(\rho_4 = \text{const.}\) The speed \(v\) of a ray relative to the medium is given by

\[
v^2 = \frac{g_{\alpha\beta} dx^\alpha dx^\beta}{- g_{44}(dx^4)^2}, \tag{89}
\]

where \(dx^i\) is a displacement along the ray. By (88), with use of (80) and (85),

\[
g^{\alpha\beta} \frac{dx^\alpha}{dw} \frac{dx^\beta}{dw} = g^{\alpha\beta} \rho_\alpha \rho_\beta = n^2 \chi^2, \tag{90}
\]

and hence

\[
\frac{1}{v^2} = \left[\frac{\partial}{\partial \chi} (n \chi) \right]^2. \tag{91}
\]
Thus we have

$$\frac{1}{v} = \left| \frac{\partial}{\partial \chi} (n \chi) \right| = \left| \frac{\partial}{\partial v} (nv) \right| = \left| \frac{\partial}{\partial v} \left(\frac{v}{u} \right) \right|, \quad (92)$$

where $u \ (= n^{-1})$ is the wave-speed. This is recognized as precisely the classical formula for the reciprocal of group-speed.\(^1\)

If the medium is non-dispersive, the ray-equations simplify a little because $\partial n / \partial \chi = 0$. Also, as at (65), the rays may be treated as null geodesics for the modified metric tensor

$$\tilde{g}_{ij} = g_{ij} + \left(1 - \frac{1}{n^2} \right) V_i V_j, \quad (93)$$

which now reduces to

$$\tilde{g}_{\alpha \beta} = g_{\alpha \beta}, \quad \tilde{g}_{\alpha 4} = 0, \quad \tilde{g}_{44} = n^{-2} g_{44}. \quad (94)$$

As regards variational principles in the static case, for a medium which is in general dispersive, the simplest is Principle A of (40), which can be modified so that the time-coordinate x^4 does not appear. Fig. 6 shows two x^4-lines, C' and C, and a ray $P'P$ joining them. We compare this ray with an adjacent curve $Q'Q$ joining C' and C, but in general with new end-events. We have already seen that ρ_4 is constant along $P'P$. We now assign on $Q'Q$ that same value of ρ_4, and give to the remaining components ρ_α any values consistent with $\omega(x, \rho) = 0$, which relation, we recall, does not contain x^4. Passing from $P'P$ to $Q'Q$, we have

$$\delta \int \rho_\alpha dx^\alpha = \int (\delta \rho_\alpha dx^\alpha + \rho_\alpha \delta dx^\alpha)$$

$$= \int (\delta \rho_\alpha dx^\alpha - \delta x^\alpha d\rho_\alpha)$$

$$= \int \left(\frac{\partial \omega}{\partial \rho_\alpha} \delta \rho_\alpha + \frac{\partial \omega}{\partial x^\alpha} \delta x^\alpha \right) dw$$

$$= \int \left(\delta \omega - \frac{\partial \omega}{\partial \rho_4} \delta \rho_4 - \frac{\partial \omega}{\partial x^4} \delta x^4 \right) dw. \quad (95)$$

\(^1\) The identity of ray-speed and group-speed was already established more generally in § 2.
But $\delta \omega = 0, \delta \mathcal{P}_4 = 0, \delta \omega / \delta x^4 = 0,$ and so we get the variational principle

$$\delta \int \mathcal{P}_\alpha dx^\alpha = 0, \quad \omega(x, \mathcal{P}) = 0,$$

(96)

with \mathcal{P}_4 unvaried, as stated above, and with the end-events free to slide along the x^4-lines. This is a truly static principle.

We may regard (96) as a Principle A, involving x^α and \mathcal{P}_α; x^4 is absent and \mathcal{P}_4 is to be regarded merely as a fixed quantity. Then, by the same mathematical technique as before, but in a lower dimensionality, we can derive static Principles B and C.

Let us derive the static Principle C. As in (69), we have to solve, with ω as in (85),

$$z^\alpha = \theta \frac{\partial \omega}{\partial \mathcal{P}_\alpha} = \theta g^{\alpha\beta} \mathcal{P}_\beta.$$

(97)

Hence

$$\mathcal{P}_\alpha = g^{\alpha\beta} \frac{z^\beta}{\theta},$$

(98)

and when we substitute this in $\omega = 0$, we get

$$\theta^2 = \frac{g^{\alpha\beta} z^\alpha z^\beta}{n^2 \chi^2}.$$

(99)

Then (72) gives

$$F(x, z) = \mathcal{P}_\alpha z^\alpha = \frac{g^{\alpha\beta} z^\alpha z^\beta}{\theta} = n \chi \sqrt{g^{\alpha\beta} z^\alpha z^\beta}.$$

(100)

We are to use this function in Principle C as in (75). Now

$$\chi = \mathcal{P}_4 V^4 = \mathcal{P}_4 \sqrt{-g^{44}},$$

(101)

and since \mathcal{P}_4 is fixed, we can drop it. Thus we get the variational principle (Fermat type)\(^1\)

$$\delta \int n \sqrt{-g^{44} g^{\alpha\beta} x^\alpha x^\beta} dw = 0,$$

(102)

the end-points being fixed and w being an arbitrary parameter.

If we choose $w = \sigma =$ spatial distance, so that

$$d\sigma^2 = g^{\alpha\beta} dx^\alpha dx^\beta,$$

(103)

(102) becomes

$$\delta \int n \sqrt{-g^{44}} d\sigma = 0,$$

(104)

\(^1\) For simplicity we have confined ourselves to the statical case, but the general plan can be applied to the stationary case in which $g_{\alpha4} \neq 0$ and all quantities are independent of x^4. For Fermat's principle in the stationary case, see Levi-Civita [1918c], [1927], Synge [1925].
which comes very close to Fermat’s principle in the classical form (76), the index n being modified by the factor shown.

In the above theory, it does not matter whether the medium is dispersive or not, because the assignment of φ_4 has confined the systems under consideration to one frequency only. But if we desire to obtain a principle of stationary time, we are forced to take the medium non-dispersive. Then (92) tells us that the ray-speed v equals the wave-speed u, which equals n^{-1}, so that

$$v = \frac{d\sigma}{\sqrt{-g^{44}dx^4}} = n^{-1}, \quad n\sqrt{-g^{44}}d\sigma = dx^4,$$

(105)

and (104) becomes the principle of stationary time,

$$\delta f dx^4 = 0.$$

(106)

§ 5. ASTRONOMICAL OBSERVATIONS

Newtonian theory continues to be used with great success in celestial mechanics, but there are two skeletons in the cupboard. First, although celestial mechanics involves no optical ideas, astronomical observation is optical and it is impossible to fit optics into the Newtonian scheme. When the astronomer ask himself, not what the phenomena are, but how they should be seen by him, he is compelled to use different ‘ethers’ for different problems. Secondly, the instantaneous propagation of gravity is an idea contrary to the spirit of modern physics, but it is impossible to fit a finite speed of propagation into Newtonian gravitation. However, it is doubtful whether any modern astronomer would wish to defend the Newtonian theory as a correct representation of nature; he is more likely to regard it as a very successful compromise, saved from open conflict with reality by thesteadiness of the major gravitational fields, the weakness of the variable ones, and the smallness of the relative velocities of celestial bodies, the planets in particular.\(^1\)

In comparison with Newtonian theory, relativity is clumsy and does not offer a clear picture of the problems of celestial mechanics. But for all its clumsiness it is honest. The relativistic cupboard is untidy, but there are no skeletons in it — at least we hope not. We are not able

\(^1\) The need for closer connection between practical astronomy and relativity was stressed, and some of the formulae which follow were presented, in lectures in Milan in 1959; cf. SYNGE [1960e].
to calculate the Riemann tensor throughout the solar system, but, assuming it known, we can discuss celestial mechanics on the basis of the geodesic hypothesis. Moreover, there is no embarrassment about ‘ethers’; the problem of astronomical observation is a problem in the geometry of null geodesics.

To illustrate by a particular example, if the orbits of Mars and the earth are given, the problem of astronomical observation is that of predicting how the terrestrial observer should direct his telescope in order to keep Mars on the cross-wires, and how spectral lines emitted by Mars are shifted by its motion. But we can at once pass on to the general problem of astronomical observation, involving a source and an observer, with world-lines not necessarily geodesic. Then the whole matter is contained in the geometry of a two-dimensional strip in space-time (Fig. 7), built up of null geodesics \(\Gamma \) and terminated by two timelike world-lines, \(C_1 \) for the observer and \(C_2 \) for the source.

This appears simple, but the calculations are necessarily somewhat complicated, and it is essential to control them by some central idea. For this we shall use the world-function \(\Omega \) of Chap. II, although the equation of geodesic deviation I–(130) might be employed instead. One should remember that \(\Omega \) is conceptually very simple, being (to within a factor \(\pm \frac{1}{2} \)) the square of the geodesic ‘distance’ between two events, regarded as a function of their eight coordinates.

To be realistic, we should place the observer, and perhaps the source also, in a refracting medium. But this would make the problem too complicated, and we shall assume vacuum conditions throughout, so that the fundamental properties of a photon passing from source to observer are (i) its world-line is a null geodesic, and (ii) its 4-momentum \(p^i \) is tangent to the world-line and undergoes parallel transport along it.

The astronomer measures direction with a telescope and frequency with a spectrometer. These observations are equivalent to measuring \(p^i \) for a photon. To explain this, we refer to III–§ 6 where the measurement of direction was discussed. If \(\lambda^i_{(a)} \) is an orthonormal tetrad on \(C_1 \) with \(\lambda^i_{(4)} \) tangent to it, then the components of the photon’s momentum

![Fig. 7 – The problem of astronomical observation](image)
are
\[\mathbf{p}^{(\alpha)} = \mathbf{p}_{(\omega)} = \mathbf{p}_{i(\alpha)}^i, \]
and their ratios are the direction ratios of the telescope which catches the photon. Further, the energy of the photon is
\[h\nu = \mathbf{p}^{(4)} = -\mathbf{p}_{(4)} = -\mathbf{p}_{i(4)}^i, \]
so that the measurement of the frequency \(\nu\) gives \(\mathbf{p}^{(4)}\). Since \(\mathbf{p}^i\) is null, we have
\[\mathbf{p}^{(\alpha)}\mathbf{p}^{(\alpha)} = (\mathbf{p}^{(4)})^2. \]
Thus, although the astronomer measures only three quantities (two angles and the frequency), he determines all four quantities \(\mathbf{p}^{(\alpha)}\), and hence \(\mathbf{p}^i\) (in any chosen coordinate system) since \(^1\)
\[\mathbf{p}^i = \mathbf{p}_{(\alpha)}^i. \]

Noting then that \(\mathbf{p}^i\) are observable quantities, we consider the observer with world-line \(C_1\) (Fig. 7). All optical information reaching him at the event \(P_1\) comes from events on the null cone with vertex \(P_1\), drawn into the past \(^2\). Let \(C_2\) be the world-line of a source emitting photons of frequency \(v_0\) relative to \(C_2\). We shall suppose \(v_0\) constant, i.e. it corresponds to the emission of some definite spectral line.

The histories of all photons passing from source to observer form a 2-space composed of null geodesics. Let \(v\) be a parameter which is constant on each of these, with \(v = s = \) observer’s time on \(C_1\). We write
\[V_{t_1} = \left(\frac{dx^i}{dv} \right)_{P_1}, \quad V_{t_2} = \left(\frac{dx^i}{dv} \right)_{P_2}, \]
and denote the corresponding 4-velocities by \(A^{t_1}\) and \(A^{t_2}\); then
\[A^{t_1} = V_{t_1}, \quad A^{t_2} = \frac{V_{t_2}}{\sqrt{-V_{j_2}V_{j_2}}}. \]

Let \(\mathbf{p}^i\) be the 4-momentum of a photon passing from \(P_2\) to \(P_1\). We have \(^3\)
\[h\nu_0 = -\mathbf{p}_{t_2}^iA^{t_2}. \]

\(^1\) We recall that the labels are raised and lowered by means of \(\eta^{(ab)} = \eta_{(ab)} = \text{diag}(1, 1, 1, -1)\).

\(^2\) For a terrestrial observer, about half this null cone is blocked by the solid earth; naturally we are interested only in the part of the cone which is not thus blocked.

\(^3\) Throughout this work the secondary numerical suffixes refer to \(P_1\) and \(P_2\). As in Chap II, we denote partial and covariant derivatives of \(\Omega\) by subscripts without any other sign.
But in terms of the partial derivatives of the world-function \(\Omega(P_1P_2) \), the 4-momenta of the photon at \(P_1 \) and \(P_2 \) are given by

\[
p_{t_1} = \chi \Omega_{t_1}, \quad p_{t_2} = -\chi \Omega_{t_2}, \tag{114}\]

where \(\chi \) is constant along \(P_1P_2 \); by (113) its value is

\[
\chi = \frac{h \nu_0}{\Omega_{t_2} A_{t_2}}, \tag{115}\]

and so, by (114),

\[
p_{t_1} = \frac{h \nu_0 \Omega_{t_1}}{\Omega_{j_2} A_{j_2}}. \tag{116}\]

This formula contains the whole story of optical observations of the type considered. If the world-function is known, together with the events of emission and reception and the 4-velocity of the source at emission, then (116) gives the 4-momentum of the photon when received by the observer.

If, for a weak gravitational field, we use coordinates such that, as in \(\text{vii}-(240) \),

\[
\xi_{ij} = \eta_{ij} + \gamma_{ij}, \tag{117}\]

with \(\gamma_{ij} \) small, we have in \(\text{vii}-(250) \) formulae for the partial derivatives of \(\Omega \). These may be substituted in (116) to solve the problem of astronomical observation as presented here. For a static field, in particular, we have \(\text{vii}-(253) \), while for the solar field we can calculate the required derivatives from \(\text{vii}-(256) \). Indeed, the question of spectral shift was already dealt with in \(\text{vii}-(270) \). We shall not attempt here to fill in details with regard to observed direction.

The use of (117) seems adequate in dealing with phenomena in the solar system, but this coordinate system becomes unreliable at great distances, and we shall not use it in the discussion of stellar aberration in the next section.

\[\text{§ 6. STELLAR ABBERRATION}\]

The pattern formed by the stars is observed to undergo a systematic change, with period one year, which is described by saying that each star describes a small ellipse on the celestial sphere, the ellipse becoming a circle at the pole of the ecliptic and a straight line on the ecliptic. The radius of the circle at the pole is \(v/c \) radians, where \(v \) is the
orbital speed of the earth about the sun and \(c \) the speed of light; this angle is \(20.\!'5 \), and it is called the constant of aberration. The length of the straight line on the ecliptic is twice this constant. It is further reported that there is a diurnal aberration, depending on the observer's latitude and ranging from \(0.\!'31 \) at the equator to zero at the pole. To explain these facts, the astronomer uses an ether in which the sun is fixed. We seek an explanation in terms of curved space-time \(^1\).

Fig. 8 is an elaboration of Fig. 7. We start with a star at finite distance with world-line \(C_2 \), and on the null geodesics running back from \(C_1 \) to \(C_2 \) we assign a special parameter \(u \), running between fixed end values, \(u_1 \) on \(C_1 \) and \(u_2 \) on \(C_2 \), with \(u_1 < u_2 \) (the photon passes in the sense of \(u \) decreasing). We write

\[
U^i = \frac{dx^i}{du}, \quad k^{-1} = u_2 - u_1. \tag{118}
\]

Then we have by \(\Pi-(17) \)

\[
k\Omega_{t_1} = -U_{t_1}, \quad k\Omega_{t_2} = U_{t_2}, \tag{119}
\]

and as we go along \(C_1 \) (here \(D = \delta / \delta s \))

\[
DU_{t_1} = -k(\Omega_{t_1}A^i + \Omega_{i;j_2}V^{j_2}). \tag{120}
\]

We shall now remove the star to infinity along the null geodesic \(P_1P_2 \), keeping the same parameter \(u \). This means that \(u_2 - u_1 \) tends to infinity, or, equivalently, \(k \) tends to zero. We assume the field weak everywhere and neglect terms quadratic in the Riemann tensor, so that the second derivatives of \(\Omega \) are as given in \(\Pi-(95) \), with the \(O_2 \) term omitted. Noting that in the Schwarzschild field the Riemann tensor falls off as \(1/r^3 \), we recognize that for the greater part of its history the photon passes through space-time that is

\(^1\) Cf. Mast and Strathdee [1959]; the method used here differs in some respects from theirs.
very nearly flat. For mathematical convenience, we idealize this by introducing the cut-off shown in Fig. 6 of i–§ 6. In fact, we assume \(R_{ijklm} = 0 \) except for

\[
u_1 \leq u \leq \tilde{u}_1, \quad \tilde{u}_2 \leq u \leq u_2. \tag{121}\]

As we mentally remove the star to infinity, we keep \((\tilde{u}_1 - u_1)\) and \((u_2 - \tilde{u}_2)\) finite. It is easy to see then that \(\Pi-(95)\) gives

\[
\lim_{k \to 0} k\Omega_{ij} = -W_{ij}, \quad \lim_{k \to 0} k\Omega_{ij} = 0, \tag{122}\]

where, by \(\Pi-(69)\),

\[
W_{ij} = -\frac{3}{2} \int_{u_1}^{\tilde{u}_1} g_{ij} \frac{\bar{a}}{u} S_{abpq} U_p U_q du
\]

\[
= \int_{u_1}^{a_1} g_{ij} \frac{\bar{a}}{u} R_{abpq} U_p U_q du. \tag{123}\]

We are to substitute from (122) in (120), but the time has come to simplify the notation by dropping the secondary subscript \(1\). For an infinitely distant star, we have then \(^1\)

\[
DU_i = W_{ij} A^j, \tag{124}\]

where \(A^j\) is the 4-velocity of the observer and

\[
W_{ij} = W_{ij} = \int_{u_1}^{a_1} g_{ij} R_{abpq} U_p U_q du. \tag{125}\]

This tensor \(W_{ij}\) may be called the \textit{aberration tensor} since it controls stellar aberration. Its value depends on the event \(P\) on the observer’s world-line and on the direction of the star, but not on the 4-velocity of the observer, nor on his 4-acceleration. We note that, since \(U^i\) undergoes parallel transport on the null geodesic,

\[
W_{ij} U^j = 0. \tag{126}\]

There is a rather subtle point about the special parameter \(u\) on the null geodesics joining \(C_1\) and \(C_2\). Before we went to the limit of infinite distance, we might have chosen \(u\) on one of the null geodesics as any one of the linearly related special parameters, but, having so chosen it, it would have been fixed on the other null geodesics by the requirement that it should take constant values on \(C_1\) and \(C_2\). This

\(^1\) This formula may be checked against i–(157), noting the different meanings of \(D\). The primes in (125) refer to a current event on the null geodesic; \(g_{ta'}\) is the parallel propagator of \(\Pi-(71)\).
restriction is not removed by taking the star to a very great distance, and we are entitled to make an arbitrary choice of \(u \) on only one of the null geodesics. However, in applying (124) at any one event \(P \), we are entitled to normalize \(u \), and we shall do this by the following equivalent demands:

\[
U_{i} A^{i} = 1, \quad U_{(4)} = 1, \quad U^{(4)} = -1, \quad (127)
\]

\(\lambda^{i}_{(a)} \) being an orthonormal tetrad on \(C_{1} \) with \(\lambda^{i}_{(4)} \) tangent to it. We must be careful to use (127) only after differentiating.

Now

\[
U_{(a)} = U_{i} \lambda^{i}_{(a)} \quad (128)
\]

are the direction ratios, looking outward, of the telescope relative to the triad \(\lambda^{i}_{(a)} \), and so the direction cosines of the telescope are

\[
l_{(a)} = \frac{U_{(a)}}{U_{(4)}} = \frac{U_{i} \lambda^{i}_{(a)}}{U_{j} A^{j}}. \quad (129)
\]

For the rates of change of these direction cosines, we have, with the aid of (127),

\[
Dl_{(a)} = DU_{(a)} - U_{(a)} D(U_{j} A^{j}). \quad (130)
\]

So far the triad \(\lambda^{i}_{(a)} \) is arbitrary. We now make it a Fermi triad, so that, as in \(1-(84) \),

\[
D \lambda^{i}_{(a)} = A^{i}_{j} \kappa_{j} \lambda^{i}_{(a)}, \quad (131)
\]

where \(\kappa_{j} \) is the first curvature vector of \(C_{1} \) (\(\kappa_{j} = DA_{j} \)). Then

\[
DU_{(a)} = D(U_{i} \lambda^{i}_{(a)}) = \kappa_{i} \lambda^{i}_{(a)} + W_{ij} \lambda^{i}_{(a)} A^{j} = \kappa^{(a)} + W_{(a4)}, \quad (132)
\]

\[
D(U_{j} A^{j}) = U_{j} \kappa^{j} + W_{jk} A^{j} A^{k} = U_{(a)} \kappa^{(a)} + W_{(44)},
\]

the subscripts in parentheses indicating components on the tetrad \(\lambda^{i}_{(a)} \) (\(\lambda^{i}_{(4)} = A^{i} \)). Then (130) gives

\[
Dl_{(a)} = \kappa_{(a)} + W_{(a4)} - U_{(a)} U_{(b)} \kappa_{(b)} - U_{(a)} W_{(44)}. \quad (133)
\]

By (126) and (127),

\[
W_{(a\beta)} U_{(\beta)} - W_{(a4)} = 0, \quad W_{(4\beta)} U_{(\beta)} - W_{(44)} = 0, \quad (134)
\]

so that

\[
W_{(a4)} = W_{(a\beta)} U_{(\beta)}, \quad W_{(44)} = W_{(a\beta)} U_{(a)} U_{(\beta)}. \quad (135)
\]
Since we have
\[U_\omega = l_\omega, \quad (136) \]
(133) may be written
\[Dl_\omega = P_{\alpha\beta}(\kappa_\beta + W_{\beta\gamma}l_\gamma), \quad (137) \]
where \(P_{\alpha\beta} \) is the three-dimensional projection operator
\[P_{\alpha\beta} = \delta_{\alpha\beta} - l_\alpha l_\beta. \quad (138) \]

Let us see what (137) means for the astronomer observing a star. He takes the triad \(\lambda_\omega^i \) as coordinate axes and draws a celestial sphere of unit radius (Fig. 9). The star appears as a point with coordinates \(l_\omega \).

![Fig. 9 - The celestial sphere](image)

As time passes, the point moves: that is the phenomenon of stellar aberration. By (137) we see that, in a small time \(ds \), the point \(l_\omega \) receives a displacement which can be divided into two parts. First, the point is moved off the sphere by a displacement
\[(\kappa_\omega + W_{\omega\gamma}l_\gamma)ds. \quad (139) \]
Secondly, it is brought back on to the sphere by a radial displacement. The displacement (139) consists of a part \((\kappa_\omega ds) \), the same for all

1 It is of course understood that the parameter \(u \) is normalized as in (127). It is easy to see that
\[W_{\beta\gamma}l_\gamma = l_\gamma \int R_{(\beta\gamma\rho\sigma)}du - l_\gamma l_\rho \int R_{(\beta\rho\gamma\sigma)}du, \quad (137a) \]
where the range of integration is as in (125) and the \(R \)-terms are components of the Riemann tensor on an orthonormal tetrad obtained from \(\lambda_\omega^i \) by parallel transport on \(P_1P_2 \) (the primes on the subscripts are omitted for simplicity).
stars, and a second part which depends on the particular star under observation.

Does (137) tell us that stellar aberration is small? For a terrestrial observer, $\kappa(\omega)$ has a very simple meaning. It is a vector directed upwards with a magnitude equal to the usual g (the so-called acceleration due to gravity; cf. the falling apple of III-§ 9); the numerical value is 3.3×10^{-8} sec$^{-1}$, and this indeed seems small. But if we integrate over a year ($= 3.2 \times 10^7$ sec), it seems that the κ-term in (137) may make a contribution of the order of unity! The physical fact that stellar aberration is small tells us that the two terms in (137) must largely cancel one another.

Given an event P, a 4-velocity A^i, and the direction $l(\omega)$ of a star, we can choose the acceleration of the observer so as to make aberration vanish. We have merely to give to his world-line a first curvature

$$\ddot{\kappa}(\omega) = - W(\gamma\gamma)l(\gamma).$$ \hspace{1cm} (140)

In fact, for a given star, this equation defines throughout space-time a complex of curves of no aberration, one passing through each event in each direction. With $\ddot{\kappa}(\omega)$ so defined, we may write (137) as

$$Dl(\omega) = P(\omega\beta)(\kappa(\beta) - \ddot{\kappa}(\beta)).$$ \hspace{1cm} (141)

That may appear to be an empty notational gesture, but it is not entirely so. It would certainly not be empty if we knew the curves of no aberration, and in the case of a stationary universe we know, not the whole complex, but at least a congruence belonging to the complex. For in a stationary universe we have $g_{ij,4} = 0$, and space-time admits a group of motions along the x^4-lines. It is evident that for an observer who has an x^4-line for world-line there can be no stellar aberration, and so the congruence of x^4-lines are curves of no aberration.

In the case of an actual terrestrial observer, the field is not stationary, and we must abandon the attempt to make a complete discussion of stellar aberration for him. Let us idealize by putting the observer on a massless particle in a stationary field, possibly the field of the sun. It is not necessary to make his world-line a geodesic, but we shall do so for simplicity, putting $\kappa(\omega) = 0$; in the idealization of the terrestrial observer, this geodesic assumption is reasonable. Then (141) gives

$$Dl(\omega) = - P(\omega\beta)\ddot{\kappa}(\beta).$$ \hspace{1cm} (142)

Here $\ddot{\kappa}(\omega)$ are the components on the observer's triad of the first curvature vector (say $\ddot{\kappa}_i$) of the curve of no aberration A tangent to
the observer’s world-line C; in fact,

$$\tilde{\kappa}_i = \tilde{\kappa}_i \lambda^i_{(\alpha)}. \tag{143}$$

Fig. 10 shows the curves C and A and also the x^4-line T.

We do not know the value of $\tilde{\kappa}^i$, but we can easily calculate the first curvature vector of T (say $\tilde{\kappa}'^i$) from the general formula

$$\kappa^i = \frac{d^2 x^i}{ds^2} + \Gamma^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds}; \tag{144}$$

it gives

$$\tilde{\kappa}'^i = -\frac{\Gamma^i_{44}}{g_{44}}, \quad \tilde{\kappa}_i' = (\log \sqrt{-g_{44}}),_i. \tag{145}$$

To make use of this knowledge, we must at this point make an approximation. The weakness of the field has already been assumed, and its stationary character; we now add the assumption that the observer is moving slowly, by which we mean that the direction of C is nearly the same as that of T. It is natural to suppose that, for two curves of no aberration which are nearly in the same direction, the first curvature vectors are nearly the same. Thus

$$\tilde{\kappa}_i = \tilde{\kappa}_i \lambda^i_{(\alpha)} \approx \tilde{\kappa}_i' \lambda^i_{(\alpha)} = (\log \sqrt{-g_{44}}),_i \lambda^\beta_{(\alpha)}. \tag{146}$$

Accepting this as a valid approximation, we are to substitute in (142), replacing $\tilde{\kappa}_i(\beta)$ (which depends on the direction of the star) by an expression which does not so depend. Understanding that $\tilde{\kappa}_i(\beta)$ now has the star-free value, we re-examine the displacement in the present case. We see that in time ds the point l_ω is pulled off the sphere by a displacement $-\tilde{\kappa}_i(\omega) ds$, the same for all very distant stars, and then pushed back again radially. But why bother to push it back? The aberrational motion of the star is described more simply by abandoning the unit vector l_ω and using instead a vector S_ω which starts with the direction of l_ω and satisfies

$$DS_\omega = -\tilde{\kappa}_\omega. \tag{147}$$

It will of course keep the same direction as l_ω.

We have before us now the aberrational equation

$$DS_\omega = -(\log \sqrt{-g_{44}}),_\beta \lambda^\beta_{(\alpha)}. \tag{148}$$
We recall that we are dealing only with the aberration of very (infinitely) distant stars, that the field around the observer is weak and stationary, that $S_{(\omega)}$ points in the apparent direction of the star as viewed through a telescope, and that D indicates rate of change with respect to the observer's time. The field being weak, we understand that $g_{ij,k}$ are small. Since C is a geodesic, the Fermi transport of $\lambda^i_{(x)}$ becomes parallel transport, and we may treat the λ's in (148) as constants.

We might leave (148) as our final approximate result, but it is interesting to connect it with the classical explanation of aberration in terms of the velocity of the observer. Writing, as a more suggestive notation, $v^i = \mathcal{A}^i = dx^i/ds$, $v_i = g_{ij}v^j$ for the observer's geodesic world-line C, we have the equations

$$\frac{dv_i}{ds} - \frac{1}{2}g_{ik,l}v^jv^k = 0,$$ \hspace{1cm} (149)

and these give approximately

$$\frac{dv_\beta}{ds} + (\log \sqrt{-g_{44}})_{,\beta} = 0.$$ \hspace{1cm} (150)

Hence the aberrational equation (148) may be written

$$\frac{dS_{(\omega)}}{ds} = \frac{dv_\beta}{ds} \lambda^\beta_{(x)}.$$ \hspace{1cm} (151)

Denoting by Δ increments corresponding to any finite time, we have

$$\Delta S_{(\omega)} = \Delta v_\beta \cdot \lambda^\beta_{(x)},$$ \hspace{1cm} (152)

which is essentially the classical statement that the aberrational displacement is equal to the velocity of the observer.

Let us leave these rather unpleasant approximations and go back to (137), in which the only assumptions are that (i) the star is infinitely distant, and (ii) the field is weak, with a cut-off (but this last is really only a device for mathematical treatment). According to the classical explanation of stellar aberration in the case of very distant stars, an observer could eliminate it by remaining 'at rest'. We might invert the argument, and say that an observer is 'at rest' if he sees no aberration. What does relativity say to this? Can an observer so choose his world-line that he sees no aberration? Apparently not. If he is interested in
only one particular star, he can get rid of its aberration by following a
curve of no aberration as in (140), but unless the right hand side of
(140) happens to be independent of direction, other stars will be abber-
rated. There is an interesting question here: can we define rest-curves
in space-time statistically by a criterion of minimizing a suitably
defined mean aberration?

In dealing with aberration, we have used throughout a Fermi-
transported reference triad, and it seems mathematically appropriate.
The change to another triad is really rather trivial — the whole
instantaneous pattern of stars is given a rigid rotation.

§ 7. DIFFERENTIAL CHRONOMETRY

In an interferometer, light from a source is offered two alternative
paths, and interference patterns are produced by the two returning
beams. Although there is no obvious time-measurement here, it is
recognized that what matters in such a case is the difference between
two times taken by the light following the two permitted paths, and
therefore one is entitled to call an interferometer a differential chrono-
meter (briefly, DC). The interferometer of Michelson and Morley was
a DC, and what is to be discussed below might be regarded a general-
ization of their apparatus. But in view of modern developments in
the accurate measurement of time (down to 10^{-10} sec) one should not
regard the interference of light as an essential feature of a DC; there
may be better techniques.

We shall be concerned with light signals (or other electromagnetic
signals) which go round circuits, the time taken to complete the circuit
(the trip-time) being measured on a clock carried by a source which
forms the beginning and end of the circuit. Except for instantaneous
reflection at mirrors, the light travels in vacuo, so that we are con-
cerned with a geometrical problem involving null geodesics and the
world-lines of the source and the mirrors. We assume that the geometry
of space-time is assigned, i.e. it is not affected by the experiments
performed. The purpose behind such experiments would be to deter-
mine the first curvature (4-acceleration) of the world-line of the source,
its other two curvatures, and the curvature of space-time (i.e. the
gravitational field).

We shall be careful not to spoil the argument by admitting the
concept of rigid bodies, as is often done in discussions of the Michelson-
Morley experiment.
Fig. 11 is a space-time picture of a tetrahedral DC; C_0 is the world-line of the source, carrying a clock, and C_1, C_2, C_3 are the world-lines of three mirrors, idealized to mere points. To be realistic, we may think of C_0 as pertaining to a point fixed on the earth’s surface, or moving about on the earth’s surface in some specified way. In any case, we regard C_0 as assigned, while the other three world-lines are to be controlled according to our desires.

We see in Fig. 11 the history of a photon (signal) which goes from C_0 at P_0 to C_1, then to C_2, finally returning to C_0 at \bar{P}_0. The symbol $[0120]$ will denote this circuit or the trip-time $P_0\bar{P}_0$. Symbols such as $[010], [0230]$ have similar meanings.

Each world-line has three degrees of freedom, and so we have altogether nine degrees of freedom at our disposal. We shall use up six of these by controlling the mirrors so that

$$[010] = [020] = [030] = 2T$$

and

$$[0230320] = [0310130] = [0120210] = (4 + 2\sqrt{2})T,$$

where T is some arbitrary constant.

To understand these strange-looking conditions, we introduce an orthonormal tetrad $\lambda^{i(a)}$ on C_0, with $\lambda^{i(4)} = A^i$ (the 4-velocity of C_0) and $\lambda^{i(a)}$ carried along by Fermi transport. Let $X^{(\omega)}$ (= X_ω) be Fermi coordinates 1 relative to C_0, as defined in II–§ 10. We can now draw pictures in the Fermi 3-space in which we use X_ω as rectangular Cartesian coordinates, with the fourth Fermi coordinate $X^{(4)}(= s$ on C_0) considered as a sort of Newtonian time. The history of each mirror is given by equations of the form $X_\omega = X_\omega(X^{(4)}) = X_\omega(s)$. We must be a little careful in speaking of the ‘distance’ between two mirrors,

1 Since in the DC light goes both ways, these are more convenient than the optical coordinates of II–§ 10.
because the term can be defined in different ways. But it is usually most convenient to use the Fermi distance, such that the square of the distance between C_1 and C_2 is, for fixed s on C_0,

$$r_{12}^2 = (X_{(\alpha_1)} - X_{(\alpha_2)})(X_{(\alpha_1)} - X_{(\alpha_2)}).$$ (155)

There is no danger in using the same names for the world-lines and for the corresponding points in the Fermi 3-space. The picture of the DC for any given value of s shows a tetrahedron as in Fig. 12. As s

![Fig. 12 – Tetrahedral DC in Fermi 3-space](image)

changes, the points move, but C_0 remains permanently at the origin.

If space-time were flat, C_0 a geodesic, and the tetrahedron not rotating, then the conditions (153) and (154) would ensure that the tetrahedron would have the form shown in Fig. 13, with three mutually perpendicular edges of length T. Since the above conditions will be nearly satisfied in all cases of physical interest, the instantaneous picture of the tetrahedron in Fermi space will not differ much from this, but we must be prepared for small distortions.

In order to find out about the behaviour of the DC, we must face some heavy calculations, based on those of II–§ 14 and Fig. 16 of that section. The fundamental assumption for approximation is the smallness of the distances between the several world-lines. We add also the assumption that the curvature of C_0 is small and the Fermi
coordinates nearly constant. We shall in fact drop the term N_4 in \(\Pi-(279)\) and treat M_3 and N_3 as O_4, but we shall keep M_4 in order to explore the effect of gravitation, even though we know that the curvature of space-time is small. Thus we write for the world-function

![Diagram](image)

\text{Fig. 13 - The standard tetrahedron}

of any two events P_1, P_2 on C_1, C_2 respectively,

\[
\Omega(P_1P_2) = M_2 + M_3 + N_3 + M_4 + O_5,
\]

where the terms are as in $\Pi-(280)$ to $\Pi-(283)$. Now the circuit [0120] shown in Fig. 11 is composed of three null geodesics, and so

\[
\Omega(P_0P_1) = 0, \quad \Omega(P_1P_2) = 0, \quad \Omega(P_2P_0) = 0.
\]

Our object is to calculate the trip-time [0120] and others, such as [010], but this can all be done by concentrating on the second equation in (157), using it to find \((s_2 - s_1)\), and then deriving the other needed quantities by playing with the numerical subscripts.

Using $\Pi-(280)$, we get from (156) and the second of (157)

\[
(s_2 - s_1)^2 = r_{12}^2 + 2M_3 + 2N_3 + 2M_4 + O_5.
\]

Hence, with an unwritten error term O_4 and with $D = d/ds$,

\[
s_2 - s_1 = r_{12} + s_1Dr_{12} - (X_{(a)} - X_{(a)})DX_{(a)} + \phi_{12} + \psi_{12},
\]
where

\[
\phi_{12} = - \frac{1}{2} r_{12} (X_{(\alpha_1)} + X_{(\alpha_2)}) \kappa_{(\alpha)}
- \frac{1}{2} r_{12} S_{(\alpha_4\beta_3)} (X_{(\alpha_1)} X_{(\beta_1)} + X_{(\alpha_2)} X_{(\beta_2)} + X_{(\alpha_1)} X_{(\beta_2)} + X_{(\alpha_2)} X_{(\beta_1)})
\]
\[+ \frac{1}{4} r_{12}^{-1} S_{(\alpha_\beta_\gamma_\delta)} X_{(\alpha_1)} X_{(\beta_1)} X_{(\gamma_2)} X_{(\delta_3)},
\]
\[
\psi_{12} = \frac{1}{2} S_{(\alpha_3\beta_2)} (X_{(\alpha_1)} X_{(\beta_1)} X_{(\gamma_2)} - X_{(\alpha_2)} X_{(\beta_2)} X_{(\gamma_1)}).
\]

Here \(\kappa_{(\alpha)}\) are the components on the Fermi triad of the first curvature vector of \(C_0\), and the \(S\)'s are the components of the symmetrized Riemann tensor of \(\Pi^{(69)}\). We note the important facts that

\[
\phi_{12} = \phi_{21}, \quad \psi_{12} = - \psi_{21}.
\]

By changing the numerical suffixes, we can apply (159) to the parts of a circuit \([010]\). If this circuit starts at \(s = 0\), reflects at \(s = s_1\), and returns at \(s = \tilde{s}_0\), we get

\[
s_1 = r_{01} + X_{(\alpha_1)} DX_{(\alpha_1)} + \phi_{01},
\]
\[\tilde{s}_0 - s_1 = r_{10} + s_1 Dr_{10} + \phi_{10}.
\]

Addition gives the trip-time \(\tilde{s}_0 = [010]\). Collecting similar results, we have

\[
\frac{1}{2} [010] = r_{01} + r_{01} Dr_{01} + \phi_{01},
\]
\[
\frac{1}{2} [020] = r_{02} + r_{02} Dr_{02} + \phi_{02},
\]
\[
\frac{1}{2} [030] = r_{03} + r_{03} Dr_{03} + \phi_{03}.
\]

We shall return to these later.

Likewise for the circuit \([0120]\) shown in Fig. 11 we get

\[
s_1 = r_{01} + X_{(\alpha_1)} DX_{(\alpha_1)} + \phi_{01},
\]
\[
s_2 - s_1 = r_{12} + s_1 Dr_{12} - (X_{(\alpha_1)} - X_{(\alpha_2)}) DX_{(\alpha_3)} + \phi_{12} + \psi_{12},
\]
\[
\tilde{s}_0 - s_2 = r_{20} + s_2 Dr_{20} + \phi_{20}.
\]

In the first approximation,

\[
s_1 = r_{01}, \quad s_2 = r_{01} + r_{12},
\]
and so we get, on adding (164) together,
\[
[0120] = \tilde{s}_0 = (r_{01} + r_{12} + r_{20}) + r_{01}Dr_{01} + (r_{01} + r_{12} + r_{20})Dr_{02} \\
+ r_{01}Dr_{12} - X_{(\alpha_1)}DX_{(\alpha_2)} + (\phi_{01} + \phi_{12} + \phi_{20}) + \psi_{12}. \quad (166)
\]

To get the trip-time for the same circuit described in the opposite sense we have merely to interchange the numbers 1 and 2:
\[
[0210] = (r_{02} + r_{21} + r_{10}) + r_{02}Dr_{02} + (r_{02} + r_{21} + r_{10})Dr_{01} \\
+ r_{02}Dr_{21} - X_{(\alpha_2)}DX_{(\alpha_1)} + (\phi_{02} + \phi_{21} + \phi_{10}) + \psi_{21}. \quad (167)
\]

Noting the symmetries in (161) and that of course \(r_{01} = r_{10} \), etc., we obtain, by addition and subtraction of the above equations,
\[
\frac{1}{2}[0120210] = (r_{01} + r_{12} + r_{20})(1 + \frac{1}{2}Dr_{01} + \frac{1}{2}Dr_{20}) + \phi_{01} + \phi_{12} + \phi_{20} \\
+ \frac{1}{2}r_{01}Dr_{01} + \frac{1}{2}r_{20}Dr_{20} + \frac{1}{2}(r_{01} + r_{20})Dr_{12} \quad (168)
\]

and
\[
[0120] - [0210] = -(r_{02} + r_{21})Dr_{01} + (r_{01} + r_{12})Dr_{20} \\
+ (r_{01} - r_{02})Dr_{12} - (X_{(\alpha_1)}DX_{(\alpha_2)} - X_{(\alpha_2)}DX_{(\alpha_1)}) + 2\psi_{12}. \quad (169)
\]

There are similar expressions for \([0230320]\) and \([0310130]\), and for the differences as in (169). Note that the \(\phi \)'s have been separated from the \(\psi \)'s.

Subject to the approximations indicated (close world-lines, only slightly curved), the above expressions are general. The control conditions (153) and (154) have not been used. We now impose them. By (153) and (163),
\[
T = r_{01} + r_{01}Dr_{01} + \phi_{01}. \quad (170)
\]

Since \(T \) is constant, \(Dr_{01} \) is small and we can neglect the second term on the right. Thus, with the other equations of (163), we have
\[
r_{01} = T - \phi_{01}, \quad r_{02} = T - \phi_{02}, \quad r_{03} = T - \phi_{03}. \quad (171)
\]

Likewise from (154) and (168) and its fellows, and also (171), we find
\[
r_{23} = T' - \phi_{23}, \quad r_{31} = T' - \phi_{31}, \quad r_{12} = T' - \phi_{12}, \quad T' = T\sqrt{2}. \quad (172)
\]

Here we have the Fermi lengths of the six edges of the tetrahedron. They differ only slightly from the standard tetrahedron of Fig. 13 with calculable differences.

Under the controls (153) and (154) we have before us a 'nearly rigid' tetrahedron with one vertex fixed, but it is still free to rotate. Let us investigate the effects of this rotation, choosing at any assigned
instant the Fermi triad along the nearly-perpendicular edges of the
tetrahedron, so that, to the first order,
\[X_{(\alpha_1)} = (T, 0, 0), \quad X_{(\alpha_2)} = (0, T, 0), \quad X_{(\alpha_3)} = (0, 0, T). \] (173)
Then if \(\omega_1, \omega_2, \omega_3 \) are the components of the angular velocity of
the tetrahedron relative to the Fermi triad, we have for the velocities of
its vertices
\[DX_{(\alpha_1)} = (0, \omega_3 T, -\omega_2 T), \quad DX_{(\alpha_2)} = (-\omega_3 T, 0, \omega_1 T), \]
\[DX_{(\alpha_3)} = (\omega_2 T, -\omega_1 T, 0). \] (174)
Hence
\[X_{(\alpha_2)} DX_{(\alpha_3)} - X_{(\alpha_3)} DX_{(\alpha_2)} = -2\omega_1 T^2, \] (175)
and two similar expressions.

Leaving this for a moment, we turn to (160) and use (173) to evaluate the \(\phi \)'s. Inserting the results in (171) and (172), we get the following
more explicit expressions for the deformation of the tetrahedron:

\[r_{01} = T(1 + \frac{1}{2}T\kappa_{(1)} + \frac{1}{2}T^2S_{(1441)}), \]
\[r_{23} = T'[1 + \frac{1}{2}T(\kappa_{(2)} + \kappa_{(3)}) + \frac{1}{2}T^2(S_{(2442)} + S_{(3443)} + S_{(2434)} - \frac{1}{4}S_{(2233)})], \] (176)
with of course similar formulae obtained by the substitutions
\[1 \rightarrow 2 \rightarrow 3 \rightarrow 1. \]
Note that these expressions do not involve the angular velocity.

We have now to evaluate (169) and its fellows. We turn back to
(160) for the \(\psi \)'s and use (173) and (175). Thus we get
\[\frac{1}{2}([0230] - [0320]) = T[\omega_1 T + \frac{1}{2}T^2(S_{(2234)} - S_{(3324)})], \] (177)
and two similar expressions.

Here we have the Sagnac effect: the trip-time depends on the sense
in which the circuit is described. If we attach the tetrahedron to the
Fermi triad so as to make \(\omega = 0 \), the Sagnac effect disappears almost
entirely. Once more we recognize that Fermi transport corresponds
to absence of rotation, although to get rid of the Sagnac effect com-
pletely we would have to give the tetrahedron the very small angular

\[^1 \] The term \(\omega_1 T^2 \) represents the Sagnac effect of special relativity; cf. Pauli
[1958, pp. 19, 207] and references given there. The \(S \)-terms represent the
contribution of the gravitational field.
velocity (relative to the Fermi triad) indicated by

\[\omega_1 = -\frac{1}{3} T(S_{2234} - S_{3324}), \]

(178)

and two similar expressions. This is a rotation in a definite sense, determined by the curvature of space-time.

§ 8. A FIVE-POINT CURVATURE DETECTOR

Near the beginning of the preceding section, a goal was set — to design experiments to measure the curvature of the observer’s world-line (\(\kappa_\omega \)) and the curvature of space-time (\(R_{ijkm} \)). It might be thought that we had reached that goal in (176) and (177), but that is not the case. It is true that (176) contains the curvatures we seek, together with the measurable quantity \(T \), but the Fermi distances \(r_{01}, r_{23}, \) etc. also appear. These are mere mathematical constructs — they are not measurable. Likewise in (177), the angular velocity is not measurable, because Fermi transport is only a mathematical construct.

The fact is that, although the calculations which have been made form an essential basis, we cannot measure the curvatures with an apparatus consisting of only four points — we need at least five. In describing a five-point curvature detector (Fig. 14), it is well to omit the mathematical details (which can be supplied by the methods of the preceding section), and state the case clearly in physical terms. It need hardly be said that the apparatus considered is a mathematical idealization, with a point source and point mirrors; it bears the same relation to any practical realization of it as the usual textbook description of the principle of the Michelson-Morley experiment bears to the interferometer which they actually employed.

To avoid all possible confusion, one should start, not with a space-picture as in Fig. 14, but with a space-time diagram showing five world-lines. However, that can be supplied by adding one extra world-line to Fig. 11. In passing from such a space-time diagram to a space-picture, we ask: In what space is it drawn? Fig. 12 was drawn
in Fermi space, but that we now reject, because we seek to avoid entanglement with mere mathematical constructs. The only safe plan is to say that Fig. 14 is not drawn in any space at all; it is merely a guide for our thoughts in the discussion of light signals passing between a source 0 and mirrors 1, 2, 3, 4.

Trip-times such as [010], [0120] are measurable. In terms of such measurable trip-times, we define the optical distances between the source and the mirrors, and between the mirrors, by formulae of the type

\[
[01] = \frac{1}{3}[010],
\]
\[
[12] = \frac{1}{3}[012010] - [01] - [02].
\]

(179)

Although in practice we might impose controls as in (153) and (154), the principles are better understood if we do not. Then all the optical distances vary with time, and in comparing them we shall deal with the values given for signals leaving 0 at the same time \(s \) (measured on the clock at 0 — there is only one clock involved).

It might be thought that, having measured all the ten optical distances at time \(s \), we could make a model in ordinary space out of rods with lengths equal to these optical distances. The essence of the matter is that such a model could not be made, except under quite particular circumstances. We could build in all the rods but one, and that last one would not fit. This failure to fit is due to the curvature of the source's world-line and to the curvature of space-time. The fit would be perfect for an apparatus in uniform motion in flat space-time, but for an apparatus on the earth’s surface there would be a very minute failure.

To discuss this failure systematically, we recall that in Euclidean 3-space the mutual distances of five points satisfy a certain equation \(^1\). If the five points are labelled as in Fig. 14, and if we use the symbols as in (179) to denote for the moment Euclidean distances, this equation reads \(D = 0 \) where \(D \) is the \(6 \times 6 \) determinant

\[
D = \begin{vmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & [01]^2 & [02]^2 & [03]^2 & [04]^2 \\
1 & [40]^2 & [41]^2 & [42]^2 & [43]^2 & 0
\end{vmatrix}.
\]

(180)

\(^1\) Cf. G. Salmon, Modern Higher Algebra, Dublin, 1885, p. 27.
If we insert in this determinant measured optical distances, it will not vanish, and its magnitude is a measure of the curvatures we are seeking. By varying the apparatus in shape and orientation, the information will be increased.

Without going into detailed calculations, we can estimate orders of magnitude. Suppose an experiment is performed and the ten optical lengths recorded. Denote the mean value by T. Let $\delta[04]$ be the difference between the experimental value of [04] and the value found by solving $D = 0$ with the other experimental values inserted. Then it appears from (176) that, as far as orders of magnitude are concerned, we can write the symbolic equation

$$\delta[04] = T^2\kappa + T^3R,$$

where κ is a typical component of the curvature of the source’s world-line and R a typical component of the Riemann tensor. On the earth’s surface we have roughly

$$\kappa = 3 \times 10^{-8} \text{ sec}^{-1}, \quad R = 3 \times 10^{-6} \text{ sec}^{-2}.$$

If we take

$$T = 1000 \text{ cm} = 3 \times 10^{-8} \text{ sec},$$

then

$$T^2\kappa = 3 \times 10^{-23} \text{ sec}, \quad T^3R = 8 \times 10^{-29} \text{ sec}. $$

By enlarging the apparatus (increasing T) we might increase these numbers, but it appears that $\delta[04]$ lies far below the level of present accuracy in time-measurement.

However, since conditions on the earth are steady, we might allow the oscillations to be repeated over and over again, so that we would not be dealing with a circuit [010], for example, but with [010101...10]. This would enlarge the effect by a factor equal to the number of repetitions. In a week, the number of repetitions would be of the order 10^{18}; this would bring $T^2\kappa$ up to the level of present accuracy of time-measurement, but T^3R would be too low by a factor 10^{-6}. This is disappointing, but there is a grim satisfaction in pushing the theory of the famous Michelson-Morley experiment to the bitter end.
§ 9. SPECTRAL SHIFT IN A CONTINUUM

A new technique has been reported \(^1\) for the detection and measurement of spectral shifts for \(\gamma\)-rays with source and receiver both fixed relative to the earth and in other situations too. It is timely to develop the theory of such shifts in order to see what in fact is being measured by the observations.

Mathematically, the continuous is easier to treat than the discrete, and we shall here abandon the method of the preceding Sections in favour of a method in which, in a given space-time, the world-lines of source and receiver are regarded as two world-lines of a congruence specified by 4-velocity \(V^i(x)\) \((V_iV^i = -1)\). The rays of the radiation are taken to be null geodesics.

Fig. 15 shows two world-lines, \(C\) for receiver and \(C'\) for source, with a null geodesic \(PP'\) passing from source to receiver; \(O\) is the foot of the (spacelike) geodesic \(P'O\) drawn orthogonal to \(C\). By vii–(230) the spectral shift (red-shift positive) is

\[
\frac{\nu' - \nu}{\nu'} = \frac{\Omega_{i'}V^i' + \Omega_iV^i}{\Omega_{j'}V^j'},
\]

where \(\Omega_i, \Omega_{i'}\) are the partial derivatives the world-function \(\Omega(PP')\) with respect to \(P, P'\), and \(V^i, V^i'\) are the 4-velocities at those events. We write \(OP = s, OP' = \tau\) and \(\mu^i, \mu'^i\) for the unit tangents to \(OP\) at \(O, P'\). The problem is defined by the geometry of space-time, the congruence \(V^i(x)\), the unit vector \(\mu^i\) and the scalar \(\tau\); the plan is to expand in powers of \(\tau\).

We note that the situation shown in Fig. 15 was already depicted in Fig. 12 of iii–§ 8, and when we make the necessary changes in notation, iii–(66) gives

\[
s = \tau - \frac{1}{2}\tau^2\mu_iDV^i + O_3,
\]

where \(D = \delta/\delta s\); here \(\mu_iDV^i\) is evaluated at \(O\).

The quantities \(\Omega_{i'}V^i'\) and \(\Omega_iV^i\) are 2-point invariants, defined for any pair of events \(P, P'\). If we think of sliding \(P\) and \(P'\) along

\(^1\) Mössbauer [1958], [1959], Pound and Rebka [1959], Schiffer and Marshall [1959], Moon [1960]. For a general account, see Margerison [1960].
C and OP' independently, these 2-point invariants are functions of s, τ, and we may expand them in power series. Later, we shall substitute for s from (186). Let us write $D = \delta/\delta s$ as already in (186), or $\partial/\partial s$ when applied to an invariant, and $T = \partial/\partial \tau$. Then

$$
\Omega_i V^i = [\Omega_i V^i] + s[D(\Omega_i V^i)] + \tau[T(\Omega_i V^i)]
+ \frac{1}{2} s^2[D^2(\Omega_i V^i)] + 2s\tau[DT(\Omega_i V^i)] + \tau^2[T^2(\Omega_i V^i)]
+ \frac{1}{6} s^3[D^3(\Omega_i V^i)] + 3s^2\tau[D^2T(\Omega_i V^i)]
+ 3s\tau^2[DT^2(\Omega_i V^i)] + \tau^3[T^3(\Omega_i V^i)] + O_4,
$$

(187)

where $[\cdot]$ indicates in each case a coincidence limit at the event O. Using $\pi-(69)$ to evaluate these limits, we obtain

$$
[\Omega_i V^i] = 0,
[D(\Omega_i V^i)] = [\Omega_{ij} V^i V^j + \Omega_i D V^i] = -1,
[T(\Omega_i V^i)] = [\Omega_{ij} V V^i \mu^j] = 0,
[D^2(\Omega_i V^i)] = [\Omega_{ijk} V^i V^j V^k + 3\Omega_{ij} V^i D V^j + \Omega_i D^2 V^i] = 0,
[DT(\Omega_i V^i)] = [\Omega_{ijk'} V^i V^j \mu^k' + \Omega_{ij} D V^i \mu^j] = -\mu_i D V^i,
[T^2(\Omega_i V^i)] = [\Omega_{ij} V V^i \mu^j \mu^k] = 0,
[D^3(\Omega_i V^i)] = [3\Omega_{ij} D V^i D V^j + 3\Omega_{ij} V^i D^2 V^j + \Omega_{ij} D^2 V^i V^j]
= -D V_i D V^i,
[D^2T(\Omega_i V^i)] = [\Omega_{ij} D^2 V^i \mu^j] = -\mu_i D^2 V^i,
[DT^2(\Omega_i V^i)] = [\Omega_{ijk'} V^i V^j \mu^k' \mu^m'] = \frac{2}{3} \Lambda,
[T^3(\Omega_i V^i)] = 0.
$$

(188)

Here

$$
K = -R_{ijkm} V^i \mu^j V^k \mu^m,
$$

(189)

the Riemannian curvature of space-time for the 2-element defined by V^i and μ^i at O; all the quantities on the right hand sides in (188) are evaluated at O. By (187) we have then

$$
\Omega_i V^i = -s - s\tau \mu_i D V^i - \frac{1}{6} s^2 D V_i D V^i + 3s^2\tau \mu_i D^2 V^i - 2K s \tau^2.
$$

(190)

Changing i into i', (187) gives the power series for $\Omega_i V^{i'}$, and the
coefficients are as follows:
\[
[\Omega_{i'}V''] = 0,
\]
\[
[D(\Omega_{i'}V'')] = [\Omega_{i'j}V'i'j] = 1,
\]
\[
[T(\Omega_{i'}V'')] = [\Omega_{i'j}V'i'j\mu' + \Omega_{i'j}V'i'j\mu'j'] = 0,
\]
\[
[D^2(\Omega_{i'}V'')] = [\Omega_{i'jk}V'i'jV'k + \Omega_{i'j}V'i'DVj] = 0,
\]
\[
[DT(\Omega_{i'}V'')] = [\Omega_{i'jk}V'i'jV'k\mu' + \Omega_{i'j}V'i'j\mu'k'Vj] = 0,
\]
\[
[T^2(\Omega_{i'}V'')] = [\Omega_{i'j'}V'i'j'\mu'\mu'\mu'k'Vj\mu'\mu'k'] + 2\Omega_{i'j'}V'i'j'\mu'k'\mu'k'
\]
\[
+ \Omega_{i'j'k'}V'i'j'k'\mu'k'/2V_i'j'k'\mu'k',
\]
\[
[D^3(\Omega_{i'}V'')] = [\Omega_{i'j}V'i'D^2Vj] = -V_iD^2V_i = DV_iDV_i,
\]
\[
[D^2T(\Omega_{i'}V'')] = [\Omega_{i'j}V'i'k'\mu'k'DVj] = -V_i\mu'DV_i,
\]
\[
[DT^2(\Omega_{i'}V'')] = [\Omega_{i'jk}V'i'jV'k\mu'k'\mu'k'\mu'k'] + \Omega_{i'j}V'i'k'\mu'k'\mu'k'\mu'k'
\]
\[
= -K + V_i\mu'V_i'k'\mu'k',
\]
\[
[T^3(\Omega_{i'}V'')] = [2\Omega_{i'j'}V'i'j'k'\mu'k'\mu'k'\mu'k'] + \Omega_{i'j'}V'i'j'k'\mu'k'\mu'k'\mu'k'
\]
\[
= 3V_i'j'k'\mu'i'j'k'\mu'k'.
\]

Thus
\[
\Omega_{i'}V'' = s + \tau^2V_i\mu'i'j'
\]
\[
+ \frac{1}{6}\{s^3DV_iDV_i - 3s^2\tau V_i\mu'DV_i + s\tau^2(K + 3V_i\mu'DV_i'k'\mu')
\]
\[
+ 3\tau^3V_i\mu'i'j'k'\mu'k') + O_4.
\]

Adding together (190) and (192), and then substituting for s from (186), we get
\[
\Omega_{i'}V'i' + \Omega_{i'}V'i = A\tau^2 + B\tau^3 + O_4,
\]
\[
A = V_i\mu'i'j' - \mu_iDV_i,
\]
\[
B = -\frac{3}{2}\mu_iDV_i' - \frac{1}{2}V_i\mu'i'j'k'\mu'k' + \frac{1}{2}K + \frac{1}{2}(\mu_iDV_i'k'\mu')^2
\]
\[
+ \frac{1}{2}V_i\mu'i'j'k'\mu'k' + \frac{1}{2}V_i\mu'i'j'k'\mu'k'.
\]

By (186) and (192) we have
\[
\Omega_{i'}V'i' = \tau - C\tau^2 + O_3,
\]
\[
C = \frac{1}{2}\mu_iDV_i' - V_i\mu'i'j'.
\]
Substituting these expressions in (185), the formula for spectral shift becomes

$$\frac{v' - v}{v'} = \tau \frac{A + B\tau + O_2}{1 - C\tau + O_2} = A\tau + E\tau^2 + O_3$$

(195)

$$E = B + AC = -\frac{1}{2} \mu_i D^2 V^i - \frac{1}{2} V_{i|j}\mu^jDV^i + \frac{1}{2}K$$

$$+ \frac{1}{2} V_{i|j}\mu^jV^i_{|k}\mu^k$$

$$+ \frac{1}{2} (V_{i|j} + 3DV_i V_{j|k})\mu^i\mu^j\mu^k$$

$$- (V_{i|j}\mu^i\mu^j)^2.$$}

The approximation has been carried out to this order to show the effect of the gravitational field; it appears in E. It does not appear in the principal part of the shift, which is

$$\frac{v' - v}{v'} = \tau (V_{i|j}\mu^i\mu^j - \mu_iDV^i).$$

(196)

This is easy to interpret. We have

$$V_{i|j}\mu^i\mu^j = \sigma_{ij}\mu^i\mu^j,$$

(197)

where σ_{ij} is the rate-of-strain tensor (iv-62). The term μ_iDV^i is the component of the first curvature vector of the observer's world-line in the direction OP'. If the motion of the continuum is rigid in the Born sense, then $\sigma_{ij} = 0$, and we are left with

$$\frac{v' - v}{v'} = -\tau\mu_iDV^i.$$

(198)

If we think of source and receiver carried along with the earth, with the source vertically above the receiver, then μ^i and DV^i both point vertically upwards and $\mu_iDV^i = g$, the usual acceleration due to gravity. Then, assuming rigidity, we have

$$\frac{v' - v}{v'} = -g\tau,$$

(199)

a violet shift since negative. In c.g.s. units, this reads $-gh/c^2$ with the height h in cm, c the speed of light in cm sec$^{-1}$, and $g = 980$ cm sec$^{-2}$. For a height of 100 cm, the shift is roughly 10^{-16}.
APPENDIX A

NOTATION

It is well known in human society that the less well-founded on reason a convention is, the harder it is to change and the bitterer the feelings for and against. I have therefore little hope that this reasonable protest against some unreasonable conventions will make any significant changes in them.

EINSTEIN’s [1916a] summation convention for repeated suffixes has saved mathematicians and printers from wasting an enormous amount of time in writing and printing useless Σ’s. Against this convention there is nothing to be said (although Levi-Civita was apparently unable to trust it!). But Einstein bequeathed to posterity a more dubious gift — the use of Greek suffixes for the range 1, 2, 3, 4. In this he did not follow RICCI and LEVI-CIVITA [1901] in their fundamental paper on the absolute differential calculus, nor was he followed by PAULI [1921], [1958] in his masterly summary of relativity; these writers used Latin suffixes.

At the present time it is an almost universal convention to use Greek letters for the range (1, 2, 3, 4), or the range (0, 1, 2, 3) which indeed is more generally preferred. It would be cowardly to accept and perpetuate such an unreasonable convention, trivial though the issue may seem. For most of the probable readers of this book, the Latin alphabet is the natural alphabet. The letters are standardized and clear, our typewriters are equipped with them, and they need no special marking for the printer. Why should we use Greek letters, except for special purposes? In this book, Latin suffixes take the values (1, 2, 3, 4) throughout, and Greek suffixes nearly always the subsidiary range (1, 2, 3). Other usage are noted as they occur. The summation convention always operates on the appropriate range, unless deliberately revoked for a special occasion.

In some respects it is unimportant that the metric form of spacetime is indefinite. The fact does not obtrude itself in calculating the Riemann tensor, for example. But in other respects it is fundamental,
and it is most unwise to mislead students of relativity by writing down, as a definition of the metric of flat space-time, an equation of the form
\[ds^2 = dx^2 + dy^2 + dz^2 - dt^2 \]
(A−1)
or of the form
\[ds^2 = -dx^2 - dy^2 - dz^2 + dt^2. \]
(A−2)
This is an undigested heritage from positive-definite days. Whichever of these two expressions we adopt, it implies that \(ds \) is real for some displacements and imaginary for others. No serious worker in relativity will be confused by this, for he recognizes (A−1) or (A−2) (whichever he happens to prefer) as a sort of physicists’ slang. But why perpetuate such nonsense? What we are concerned with is a quadratic form,
\[\Phi = dx^2 + dy^2 + dz^2 - dt^2, \]
(A−3)or
\[\Phi = -dx^2 - dy^2 - dz^2 + dt^2, \]
(A−4)
and \(ds = \sqrt{\Phi} \), always real. Geometers have been treating the matter thus for over thirty years, and relativity is not such a simple theory to understand that one can afford to muddy the source. Consequently in this book one does not see the curved analogue of (A−1) or (A−2).
But of the curved analogues of (A−3) and (A−4), which is one to choose? Physically, it makes no difference whatever. A mere change in sign of the metric form does not alter the universe it describes. But it does change the signs in certain formulae. It is hard to make a choice on rational grounds, for each of the two forms has its merits. One would prefer that form which is most usually positive, but one cannot go far in relativity without having to deal with both spacelike and timelike displacements. It is true that (A−4) is positive for a displacement which belongs to the world-line of a particle, but it becomes negative if our interest turns to the relationship between the histories of two particles, studying perhaps a possible rigid connection between them.
I have chosen the type (A−3) (signature + 2, not − 2) in this book primarily because I am used to it, having studied Pauli’s article long ago and never having found any reason to change except the increasing isolation of anyone who fails to conform to a growing convention. But there is a slight impersonal reason for preferring (A−3). Although
imaginary coordinates have been avoided in this book, there are private occasions on which we simplify complicated formulae by reducing the metric form to a sum of squares, and it is much easier to carry out this mental exercise with one imaginary instead of three.

There follows a table of conversion from signature $+2$ to signature -2, but the reader is warned of a further source of confusion! There are two ways of defining the Riemann and Ricci tensors and they differ in sign. The definitions used in this book are stated in $1-\S$ 1.

CONVERSION FROM SIGNATURE ($+2$) TO SIGNATURE (-2)

<table>
<thead>
<tr>
<th>Signature ($+2$)</th>
<th>Signature (-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{diag}(1, 1, 1, -1)$</td>
<td>$\text{diag}(-1, -1, -1, 1)$</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
g_{ij} & = - g'_{ij} \\
[ij, k] & = - [ij, k]' \\
g & = g' \\
g^{ij} & = - g'^{ij} \\
\Gamma^i_{jk} = \{^i_{jk}\} = \{^i_{jk}\}' = \Gamma'^i_{jk} \\
R_{ijkm} & = - R'^{ijkm} \\
R^i_{jkm} & = R'^{i, jkm} \\
R_{im} & = R'_{im} \\
R & = - R' \\
G_{ij} & = G'_{ij} \\
G^i_{j} & = - G'^i_{j} \\
\end{align*}
\]

DIFFERENTIATION

Partial derivatives are indicated by a comma as in $f_{,i}$, $f_{,ij}$, $f_{ij,km}$.

Covariant derivatives are indicated by a stroke as in $f_{;i}$, $f_{;ij}$, $f_{ij;km}$ and occasionally by a double stroke as in $f_{\alpha||\beta}$.

To simplify the notation, commas and strokes are omitted in situations where confusion is unlikely.

Absolute derivatives are indicated by δ as in $\delta V^i/\delta s$, $\delta V^i/\delta u$, and sometimes by D as in DV^i.

LIST OF PRINCIPAL SYMBOLS

with leading references

$A^t =$ unit tangent vector ($1-\S$ 3) or 4-velocity ($\text{III}-\S$ 8).

$b =$ first curvature ($1-\S$ 3).

$B^t =$ unit first normal vector ($1-\S$ 3).
\(c = \) second curvature (I–§3).
\(C^i = \) unit second normal vector (I–§3).
\(C_i = 0: \) coordinate conditions (IV–§6).
\(d = \) third curvature (I–§3).
\(D^i = \) unit third normal (I–§3).
\(E = \) energy (III–§4).
\(E_{ij} = \) electromagnetic energy tensor (x–§1).
\(f(x) = \) frequency function (XI–§1).
\(FC = \) Fermi coordinates (II–§10).
\(F_{ij}, F_{ij}^* = \) electromagnetic tensor and its dual (x–§1).
\(F(x, x') = \) integrand in Fermat’s principle (XI–§3).
\(g = \det(g_{ij}) (I–§1). \)
\(g = \) ‘acceleration due to gravity’ (III–§9).
\(g_{ij}, g^{ij} = \) metric tensor and its conjugate (I–§1).
\(g_{ij}, g_{i_1 j_1}, g_{i_1 j_2 k_1}, \ldots = \) parallel propagator and its covariant derivatives (II–§§3, 4).
\(g_{abcd} = g_{ac}g_{bd} = g_{ad}g_{bc} (I–§5). \)
\(\bar{g}_{ij} = \) modified (optical) metric tensor (XI–§2).
\(G = \) Green’s function (I–§6).
\(G_{ij}, G^i_j = \) Einstein tensor (I–§5).
\(h = \) Planck’s constant (III–§7).
\(h_{i_1 j_1}, h_{i_1 j_2}, h_{i_1 j_3} = \) deviations of second covariant derivatives of the world-function from the flat values (II–§11).
\(H_{a'b'} = \) flux of angular momentum (VI–§4).
\(J^i = \) 4-current (X–§1).
\(K = \) Riemannian curvature (I–§5).
\(K = \) matrix in geodesic deviation (I–§6).
\(l_\omega = \) apparent direction cosines of star (XI–§6).
\(L = \) finite measure of curve (I–§1) and Lagrangian (XI–§3).
\(L = \) Lorentz matrix (I–§3).
\(m = \) (proper) mass (III–§3) and mass of star (VII–§6).
\(M_{a'} = \) flux of 4-momentum (VI–§4).
\(MO = \) mathematical observations (III–§1).
\(n = \) refractive index (XI–§2).
\(n^i = \) unit normal (IV–§1).
\(N^i = \) numerical vector (IV–§1) and unit normal (I–§10).
\(NO = \) natural observations (III–§1).
\(OC = \) optical coordinates (II–§10).
\(\rho \) = pressure (IV–§ 4).
\(\rho^i \) = 4-momentum (III–§ 3).
\(P^i_j, P_{(ab)} \) = projection operators (IV–§ 3, XI–§ 6).
\(q = \sqrt{-g} \) (X–§ 1).
\(Q_{(ab)} \) = matrix in Fermi-Walker transport (I–§ 4).
\(Q_i, Q_{ij}, \ldots \) = moments of distribution (IV–§ 1).
\(QC \) = quasi-Cartesian coordinates (II–§ 8).
\(r \) = a curvature coordinate for spherical symmetry (VII–§ 2).
\(R \) = curvature invariant (I–§ 5).
\(R^i_{(i}, R^i_j \) = Ricci tensor (I–§ 5).
\(R_{ijkl}, R^i_{ijkl}, \bar{R}_{12}, \ldots \) = Riemann tensor (I–§ 5).
\(R_{(abcd)} \) = components on orthonormal tetrad (I–§ 3).
\(\bar{R}^i_{ijkl} \) = double dual (I–§ 5).
\(\bar{R}_{\mu\nu\sigma} \) = Riemann subtensor (I–§ 8).
\(ds \) = metric element of space-time (I–§ 1).
\(dS \) = element of 3-volume (IV–§ 1) and element of area (VII–§ 6).
\(S_{ij} \) = stress tensor (IV–§ 4).
\(S_{ijkm} \) = symmetrized Riemann tensor (II–§ 2).
\(S_{(a)} \) = 3-vector pointing to star (XI–§ 6).
\(S(x', x) \) = Hamilton’s principal or characteristic function (I–§ 7).
\(t \) = a curvature coordinate (‘time’) for spherical symmetry (VII–§ 2).
\(t^{ik} \) = pseudo-tensor of energy (VI–§ 7).
\(T_{ij}, T^i_j \) = energy tensor (IV–§ 1).
\(\mathcal{F}^{ij} = \sqrt{-g} T^{ij} \) (VI–§ 6).
\(u \) = speed of waves or phase-speed (XI–§ 1).
\(u^i \) = 4-velocity of charge (X–§ 1).
\(U(x) \) = one-point principal function (I–§ 7).
\(v \) = ray-speed or group-speed (XI–§ 2).
\(v, v_{(a)} \) = relative speed and velocity (III–§ 7).
\(v_R \) = radial speed (III–§ 7).
\(v^i, V^i \) = 4-velocity (III–§ 3 and IV–§ 1).
\(d_2 v, d_3 v, d_4 v \) = elements of 2-, 3- and 4-volume (I–§ 10).
\(V \) = Newtonian potential (III–§ 11).
\(W_{ij} \) = aberration tensor (XI–§ 6).
\(x^i \) = general coordinates (I–§ 1).
\(\tilde{x}^i \) = Gaussian coordinates (I–§ 8).
\(X^{(a)}, X_{(a)} \) = quasi-Cartesian coordinates (II–§ 8), Fermi coordinates and optical coordinates (II–§ 10).
\(\gamma \) = gravitational constant (IV–§ 5).
\(\gamma_{ij} \) = deviation of \(g_{ij} \) from \(\text{diag}(1, 1, 1, -1) \) (II–§ 8).

\(\Gamma_{jk}^i \) = Christoffel symbols (I–§ 1).

\(\delta^i_i = \delta^a_{ia}, \delta^{iab}_{jcd} \) = Kronecker deltas (I–§ 1, I–§ 5, x–§ 1).

\(\delta / \delta u \) = absolute differentiation (I–§ 2).

\(\varepsilon \) = indicator of curve (I–§ 1).

\(\varepsilon_{ijk} \) = numerical permutation symbol (I–§ 5).

\(\eta_{ab} = \eta^{(ab)} \) = diagonal matrix with elements \((1, 1, 1, -1) \) (I–§ 3).

\(\eta_{ijk}, \eta^{ijkl} \) = permutation tensor (I–§ 5).

\(\kappa \) = circulation (I–§ 7) and constant (8\(\pi \)) in field equations (IV–§ 5).

\(\kappa^t \) = first curvature vector (XI–§ 6).

\(\lambda^i_{(a)} \) = orthonormal tetrad (I–§ 3).

\(\lambda^i_{(a)} \) = frame of reference, usually Fermi-transported (III–§ 5).

\(\Lambda \) = cosmological constant (IV–§ 5).

\(\mu \) = (proper) density (IV–§ 4).

\(\nu \) = frequency (III–§ 7).

\(\nu = \mu / \rho^2 \) (x–§ 2).

\(\nu(x, \phi) \) = distribution function (IV–§ 1).

\(\xi_i, \xi_{ij} \) = Killing vector and tensor (VI–§ 3).

\(\rho = \mu + \phi \) (V–§ 6).

\(\rho \) = Gaussian polar coordinate (VII–§ 2) and electrical proper density (x–§ 1).

\(\sigma \) = distance of point from curve (II–§ 10).

\(\sigma_{(ab)}, \sigma_{ij} \) = rate-of-strain matrix and tensor (IV–§ 3).

\(ds^2 = d\theta^2 + \sin^2 \theta d\phi^2 \) (VII–§ 2).

\(\tau \) = trip-time (III–§ 8).

\(d\tau^i, d\tau^{ijk} \ldots \) = tensor extension of cell (I–§ 10).

\(\theta \) = polar angle (VII–§ 2).

\(\theta_{(a)} \) = direction cosines (III–§ 8).

\(\phi \) = azimuthal angle (VII–§ 2) and phase angle (XI–§ 1).

\(\phi_i \) = 4-potential (x–§ 1).

\(\Phi \) = fundamental or metric form (I–§ 1).

\(\omega \) = angular velocity of earth (III–§ 9).

\(\omega_{(ab)}, \omega_{ij}, \omega_i \) = matrix, tensor and vector of spin or rotation (IV–§ 3).

\(\omega(x, y) = 0 \): Hamiltonian surface (I–§ 7).

\(\omega(x, \phi) = 0 \): medium-equation in optics (XI–§ 2).

\(\Omega(P^P), \Omega(P_1 P_2), \Omega(x', x) \) = world-function (II–§ 1).

\(\Omega_i, \Omega^i, \Omega_{ij}, \Omega_{ij}, \ldots \) = partial and covariant derivatives of world-function (II–§ 1).

\([\Omega_{ij}], [\Omega_{ij}], \ldots \) = coincidence limits (II–§ 2).
APPENDIX B

NUMERICAL VALUES OF SOME PHYSICAL QUANTITIES EXPRESSED IN SECONDS

In the logical structure of relativity, as developed in this book, the fundamental measurement is the measurement of time. Length, mass, etc. are derived concepts, and every physical quantity is of dimensions $[T^q]$ where T stand for time and q is some integer or fraction. If $q = 1$, the quantity can be expressed in seconds or any other appropriate unit of time. If the ‘atomic clock’ is accepted as the basic time-measurer, it would be most reasonable to define the unit of time as the period of some standard spectral line, and then define the second as some conventional multiple of that period. However it matters little what unit we use, because the important things in physics are the dimensionless ratios of quantities with the same dimensions. Any chosen unit is bound to be inconveniently large for some purposes, inconveniently small for others. We note that for some aspects of celestial mechanics the second is not a bad unit — the radius of the earth’s orbit is about 500 sec.

It is very convenient to have all physical quantities expressed in terms of a single unit or powers of it (sec, sec2, sec$^{-1}$, etc.), but such expressions as 3×10^{10} sec or 5.342×10^{-3} sec$^{-1}$ are clumsy to write, clumsy to print, very clumsy to say in words, and psychologically unsatisfactory, because we like to think in numbers in the range 1 to 100 or thereabouts. To standardize terminology for submultiplies and multiplies of any unit, the International Committee on Weights and Measures at its Paris meeting in 1958 recommended the following prefixes and symbols 1:

1 The National Bureau of Standards, U.S.A., has decided to follow these recommendations; cf. Notices Amer. Math. Soc. 7 (1960) 34.
<table>
<thead>
<tr>
<th>Submultiple or multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-12}</td>
<td>pico (pī’cō)</td>
<td>p</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano (nā’nō)</td>
<td>n</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>u</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>deci</td>
<td>d</td>
</tr>
<tr>
<td>10</td>
<td>deka</td>
<td>dK</td>
</tr>
<tr>
<td>10^2</td>
<td>hecto</td>
<td>h</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^9</td>
<td>giga (jī’gā)</td>
<td>G</td>
</tr>
<tr>
<td>10^{12}</td>
<td>tera (tēr’ā)</td>
<td>T</td>
</tr>
</tbody>
</table>

Thus one writes

$$5 \times 10^9 \text{ sec} = 5 \text{ Gsec}, \ 3 \times 10^{-9} \text{ sec} = 3 \text{ nsec}.$$

For verbal use, some of the pronunciations are indicated.

However, when one looks at the above table, one sees that the achievement consists in setting up names (the traditional Greek and Latin words with some additions) for the twelve numbers

$$- 12, \ - 9, \ - 6, \ - 3, \ - 2, \ - 1, \ 1, \ 2, \ 3, \ 6, \ 9, \ 12,$$

and letters of the alphabet corresponding to them. Since the arabic figures are already international, why should one have to find literal synonyms for them?

It is very difficult to secure international acceptance of a novel proposal, but there is no harm in making one. This proposal takes into consideration international linguistic difficulties, time wasted by writers and printers through the use of a clumsy notation for powers of ten, and the fact that Greek and Latin words are foreign to most scientists and easily forgotten (ἔκκατ.pdf is indeed one hundred, but ἕκτος is the sixth!).

To understand the proposed notation when written, all one has to remember is the technical meaning of two letters, u and d. To understand it when spoken, the foreigner must learn thirteen words of

1 The proposal is the result of discussion with colleagues; the up-and-down notation is due to Professor R. J. Duffin.
English, viz.

up, down, point,

one, two, ... nine, zero.

(He can forget the twelve words shown in the list of the International Committee.)

One writes

\[5 \times 10^9 \text{ sec} = 5 \ u \ 9 \text{ sec}, \]

and one says 'five up nine seconds'; one writes

\[3 \times 10^{-9} \text{ sec} = 3 \ d \ 9 \text{ sec}, \]

and one says 'three down nine seconds'. The up-nine-second is in fact the gigasecond, and the down-nine-second the nanosecond, but their meanings are obvious and one does not have to remember the Greek words for giant and dwarf respectively.

For powers of the unit, the usual sec², sec³, sec⁻¹ are satisfactory for writing and printing, but it would be easier for foreigners (familiar with the thirteen words mentioned above) if we said 'sec-up-two', 'sec-up-three' instead of 'sec-squared', 'sec-cubed'. As for sec⁻¹, we might say 'sec-down-one' or, better, \textit{inversec}.

All this is submitted as a modest proposal directed towards ease and clarity in scientific communication. There is only one way to find out whether it is a good proposal: try it, and see how it works. The up-and-down notation has not been used in the book; the reduction of all physical quantities to seconds is in itself a sufficiently shocking departure from convention.

The following table shows the values in seconds of a number of physical quantities. The original c.g.s. values have been taken for the most part from the Smithsonian Physical Tables, Ninth Edition, Washington, 1954. Of these original values, the most basic are

velocity of light \(= c = 2.99776 \times 10^{10} \text{ cm sec}^{-1} \)

gravitational constant \(= \gamma = 6.670 \times 10^{-8} \text{ g}^{-1} \text{ cm}^3 \text{ sec}^{-2} \).

The conversion of cm to sec is given by

\[1 \text{ cm} = c^{-1} \text{ sec} = 3.336 \times 10^{-11} \text{ sec}. \]

The conversion of g to sec is given by the relativistic result (cf. IV–§ 5) that

\[1 \text{ g} = \gamma/c^3 \text{ sec} = 2.476 \times 10^{-39} \text{ sec}. \]
Although the interest of these numerical values lies most in orders of magnitude, they are shown to four significant figures to obviate rounding-off errors in calculations. The ‘radii of Riemannian curvature’ are intended only as a guide to the magnitudes of certain gravitational fields. They are calculated from the formula

\[
\text{radius of Riemannian curvature} = (\frac{2m}{r^3})^{-\frac{1}{2}} \text{ sec},
\]

where \(m \) is the mass of the body producing the gravitational field and \(r \) the distance from its centre, both measured in sec. The curvature of the world-line of a terrestrial observer is what is usually called ‘acceleration due to gravity’ (\(g \)). The radius of curvature is \(g^{-1} \).

The units employed may be described as follows: time is measured in sec, and the units of length and mass so chosen that both the speed of light and the gravitational constant are unity.
<table>
<thead>
<tr>
<th>Description</th>
<th>Value in seconds</th>
<th>Reciprocal in sec(^{-1}) (inversesec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>one degree centigrade ¹</td>
<td>(3.804 \times 10^{-76})</td>
<td>(2.629 \times 10^{75})</td>
</tr>
<tr>
<td>electron volt</td>
<td>(4.415 \times 10^{-72})</td>
<td>(2.265 \times 10^{71})</td>
</tr>
<tr>
<td>mass of electron</td>
<td>(2.255 \times 10^{-66})</td>
<td>(4.435 \times 10^{65})</td>
</tr>
<tr>
<td>erg</td>
<td>(2.756 \times 10^{-60})</td>
<td>(3.629 \times 10^{59})</td>
</tr>
<tr>
<td>electronic charge</td>
<td>(4.605 \times 10^{-45})</td>
<td>(2.172 \times 10^{44})</td>
</tr>
<tr>
<td>[Planck's constant] ²</td>
<td>(1.351 \times 10^{-43})</td>
<td>(7.402 \times 10^{42})</td>
</tr>
<tr>
<td>gram</td>
<td>(2.476 \times 10^{-39})</td>
<td>(4.039 \times 10^{38})</td>
</tr>
<tr>
<td>electrostatic unit</td>
<td>(9.588 \times 10^{-36})</td>
<td>(1.043 \times 10^{35})</td>
</tr>
<tr>
<td>Ångstrom unit</td>
<td>(3.336 \times 10^{-19})</td>
<td>(2.998 \times 10^{18})</td>
</tr>
<tr>
<td>period of cadmium red line</td>
<td>(2.148 \times 10^{-15})</td>
<td>(4.655 \times 10^{14})</td>
</tr>
<tr>
<td>mass of moon</td>
<td>(1.813 \times 10^{-13})</td>
<td>(5.516 \times 10^{12})</td>
</tr>
<tr>
<td>mass of earth</td>
<td>(1.479 \times 10^{-11})</td>
<td>(6.761 \times 10^{10})</td>
</tr>
<tr>
<td>centimetre</td>
<td>(3.336 \times 10^{-11})</td>
<td>(2.998 \times 10^{10})</td>
</tr>
<tr>
<td>kilometre</td>
<td>(3.336 \times 10^{-6})</td>
<td>(2.998 \times 10^{5})</td>
</tr>
<tr>
<td>mass of sun</td>
<td>(4.920 \times 10^{-6})</td>
<td>(2.033 \times 10^{5})</td>
</tr>
<tr>
<td>radius of moon</td>
<td>(5.798 \times 10^{-3})</td>
<td>(1.725 \times 10^{2})</td>
</tr>
<tr>
<td>mean radius of earth</td>
<td>(2.125 \times 10^{-2})</td>
<td>(4.706 \times 10)</td>
</tr>
<tr>
<td>second</td>
<td>(1.000)</td>
<td>(1.000)</td>
</tr>
<tr>
<td>distance of moon from earth</td>
<td>(1.282)</td>
<td>(7.800 \times 10^{-1})</td>
</tr>
<tr>
<td>radius of sun</td>
<td>(2.319)</td>
<td>(4.312 \times 10^{-1})</td>
</tr>
<tr>
<td>mean radius of earth’s orbit</td>
<td>(4.986 \times 10^{2})</td>
<td>(2.006 \times 10^{-3})</td>
</tr>
<tr>
<td>radius of Riemannian curvature for earth’s field at earth’s surface</td>
<td>(5.697 \times 10^{2})</td>
<td>(1.755 \times 10^{-3})</td>
</tr>
<tr>
<td>radius of Riemannian curvature for sun’s field at sun’s surface</td>
<td>(1.126 \times 10^{3})</td>
<td>(8.881 \times 10^{-4})</td>
</tr>
<tr>
<td>hour</td>
<td>(3.600 \times 10^{3})</td>
<td>(2.778 \times 10^{-4})</td>
</tr>
<tr>
<td>[standard density of water]⁻¹</td>
<td>(3.873 \times 10^{3})</td>
<td>(2.582 \times 10^{-4})</td>
</tr>
<tr>
<td>reciprocal of angular velocity of the earth</td>
<td>(1.371 \times 10^{4})</td>
<td>(7.292 \times 10^{-5})</td>
</tr>
<tr>
<td>sidereal day</td>
<td>(8.616 \times 10^{4})</td>
<td>(1.161 \times 10^{-5})</td>
</tr>
<tr>
<td>radius of Riemannian curvature for sun’s field at earth’s surface</td>
<td>(3.549 \times 10^{6})</td>
<td>(2.818 \times 10^{-7})</td>
</tr>
</tbody>
</table>

¹ Cf. Synge [1957c], p. 44.
<table>
<thead>
<tr>
<th></th>
<th>Value in seconds</th>
<th>Reciprocal in sec(^{-1}) (inversec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius of curvature of world-line</td>
<td>3.065 × 10(^7)</td>
<td>3.263 × 10(^{-8})</td>
</tr>
<tr>
<td>of terrestrial observer at equator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(=g(^{-1}), g = 978.05 cgs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sidereal year = light year</td>
<td>3.156 × 10(^7)</td>
<td>3.169 × 10(^{-8})</td>
</tr>
<tr>
<td>parsec</td>
<td>1.030 × 10(^8)</td>
<td>9.709 × 10(^{-9})</td>
</tr>
<tr>
<td>estimated age of universe</td>
<td>1.7 × 10(^{17})</td>
<td>5.9 × 10(^{-18})</td>
</tr>
</tbody>
</table>

DIMENSIONLESS QUANTITIES

- Weight of one gram: 8.079 × 10\(^{-47}\)
- Force of attraction between earth and moon: 1.631 × 10\(^{-24}\)
- Force of attraction between sun and earth: 2.927 × 10\(^{-22}\)
- Ratio of moon’s mass to its radius: 3.127 × 10\(^{-11}\)
- Ratio of earth’s mass to its radius: 6.960 × 10\(^{-10}\)
- Ratio of sun’s mass to its radius: 2.122 × 10\(^{-6}\)
- Relative velocity of moon and earth: 3.397 × 10\(^{-6}\)
- Velocity of escape from earth: 3.770 × 10\(^{-5}\)
- Relative velocity of earth and sun: 9.928 × 10\(^{-5}\)
- Velocity of light: 1
- Gravitational constant: 1

MISCELLANEOUS

- Pressure of one bar = 10\(^6\) dynes cm\(^{-2}\)
- (approx. one atmosphere): 7.423 × 10\(^{-23}\) sec\(^{-2}\)
- Density of water (1 g cm\(^{-3}\)): 6.668 × 10\(^{-8}\) sec\(^{-2}\)
BIBLIOGRAPHY

This Bibliography is intended to be a useful list of references to work on the general theory of relativity and mathematical work closely connected with that theory. It makes no claim to completeness, and could not without making up a substantial volume, for the bibliography of Lecat [1924] ran to close on 200 pages and much work has been done in the thirty-five years since its publication. The decision as to what should be included has inevitably been somewhat arbitrary, but the intention has been to concentrate on what may be called the classical theory, and include only a few leading references to the variants from that theory.

In the case of books, the date follows the author’s name. For a journal article, volume, date and page number are shown. Letters inserted after dates are for purposes of reference, distinguishing from one another publications by the same author in the same year. In most cases references to reviews are given, with the following notation:

JF = Jahrbuch über die Fortschritte der Mathematik.
MR = Mathematical Reviews.
Z = Zentralblatt für Mathematik.
The volume and page are indicated.

Akeley, E. S., The axially symmetric stationary gravitational field. Phil. Mag. 11 (1931a) 322. [Z 1, 244].
— The rotating fluid in the relativity theory. Phil. Mag. 11 (1931b) 330. [Z 1, 244].
— Über die allgemein koordinatenvarianten Gleichungen der Wellenmechanik (Materie und Gravitation). Z. Physik 68 (1931) 813. [Z 1, 426]

Arzeliès, H., 1955, La cinématique relativiste (Gauthier-Villars, Paris). [MR 17, 1014]

Bauer, H., Kugelsymmetrische Lösungssysteme der Einsteinschen Feldgleichungen der Gravitation für eine ruhende, gravitierende Flüssigkeit mit linearer Zustandsgleichung. Wien. Ber. 127 (1918a) 2141. [JF 46, 1311]

Bauer, H., Über die Energiekomponenten des Gravitationsfeldes. Physik. Zs. 19 (1918b) 163. [JF 46, 1315]

Bauer, H., Strenge Lösung der Einsteinschen Feldgleichungen für ein beliebiges kugelsymmetrisches, statisches Schwerfeld. Physik. Zs. 29 (1928) 954. [JF 54, 941]

Beauregard, O. C. De, Sur le problème relativiste de la dynamique des systèmes de points en interaction. J. Math. Pures Appl. 28 (1949) 63. [MR 11, 215]

Bechert, K., Nichtlineare Feldtheorie. Z. Naturf. 11a (1956) 177. [MR 17, 1145]

Beck, G., Zur Theorie binärer Gravitationsfelder. Z. Physik 33 (1925) 713. [JF 51, 712]

Becker, J., 1922, La princip de la relativité et la théorie de la gravitation (Gauthier-Villars, Paris). [JF 48, 1062]

Becker, J., 1923, Champ de gravitation d'une sphère matérielle et signification physique de la formule de Schwarzschild (Hermann, Paris). [JF 49, 621]

Becker, M., Der freie Fall und die Planetenbewegung in Nordströms Gravitationstheorie. Physik. Zs. 14 (1913) 989. [JF 44, 891]

BIBLIOGRAPHY

Belinfante, F. J., Use of the flat-space metric in Einstein’s curved universe, and the “Swiss-cheese” model of space. Phys. Rev. 98 (1955a) 793. [MR 16, 1058]
--- Attempts at quantization of the gravitational field. Rev. Mexicana Fis. 4 (1955b) 192. [MR 18, 543]

--- Fifty years of relativity. Science 123 (1956a) 487. [MR 17, 697]
--- On Einstein’s λ transformations. Phys. Rev. 103 (1956b) 780. [MR 18, 363]
--- Conservation laws in general relativity as the generators of coordinate transformations. Phys. Rev. 112 (1957) 287. [MR 20, 938]

On certain hydrodynamical considerations of an imperfect fluid in a

Birkhoff, G. D., 1923, Relativity and modern physics. With the cooperation

— 1925, The origin, nature and influence of relativity (Macmillan, New
York). [JF 52, 917]

— 1927a, Relativity and modern physics (Cambridge Univ. Press).

160. (Coll. Math. Papers 2, 737)

324. (Coll. Math. Papers 2, 973) [MR 6, 72]

— The mathematical concept of time and gravitation. Bol. Soc. Mat. Mex-
icana, 1 no. 4 and 5 (1944b). (Spanish) [MR 6, 240]

— 1950, Collected mathematical papers, vol. 2 (American Mathematical
Society, New York) (pp. 737, 920, 929, 967, 973).

Soc. Edinburgh 52 (1932) 327. [Z 4, 424]

U.S.A. 41 (1955) 485. [MR 17, 1015]

Bogolyubsky, A. Th., Doppler effect in a static gravitation field. Acad. Sci.
USSR Pulkovo Observatory Circular no. 28 (1939) 52. (English, Russian
summary) [MR 6, 242]

Bokowski, A., Über die Energiekomponenten in Hilberts Theorie der Materie.
Z. Physik 21 (1924) 211. [JF 50, 595]

Ast. Soc. 107 (1947) 410. [MR 10, 214]

— 1952, Cosmology (Cambridge Univ. Press). [MR 14, 912]

— Negative mass in general relativity. Rev. Mod. Phys. 29 (1957b) 423. [MR
19, 814]

Bondi, H., Pirani, F. A. E., and Robinson, I., Gravitational waves in general
519.

Bonnor, W. B., Certain exact solutions of the equations of general relativity

225. [MR 15, 995]

— The stability of cosmological models. Z. Astrophysik 35 (1954b) 10. [MR
17, 202]

(1955) 310. [MR 18, 261]

[MR 19, 228]

— A class of exact solutions of the combined gravitational and electro-magnetic field equations of general relativity. Nuovo Cimento 6 (1957) 1502. [MR 19, 1140]

Brekhovskich, L. M., Radiation of gravitational waves by electromagnetic waves. C. R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1945) 482. [MR 8, 302]

Bronstein, M., Quantization of gravitational waves. Ž. Eksper. Teoret. Fis. 6 (1936) 195. (Russian with English summary) [Z 14, 87]
— On Eddington’s higher order equations of the gravitational field. Proc. Edinburgh Math. Soc. 8 (1948b) 89. [MR 10, 408]

— 1926, Formules stokiennes (Gauthier-Villars, Paris). [JF 52, 779]

Cartan, É., Sur les équations de la gravitation d’Einstein. J. Math. Pures Appl. 1 (1922a) 141. (Oeuvres III 1, 549) [JF 48, 993]
— Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Ec. Norm. 40 (1923) 325; 41 (1924a) 1; 42 (1925a) 17. (Oeuvres III 1, 959, 799; III 2, 921) [JF 49, 542; 50, 685; 51, 581]
— 1925b, La géométrie des espaces de Riemann (Gauthier-Villars, Paris). [JF 51, 566]
— Sur les espaces de Finsler. C. R. Acad. Sci. Paris 196 (1933) 582. (Oeuvres III 2, 1245) [Z 6, 225]

Castroldi, L., Sulla struttura formale della relatività e su una classe notevole di connessioni matrici di interesse relativistico. Atti Accad. Ligure 9 (1952) 5. [MR 15, 169]

— Proiezioni naturali e derivazione trasversa in una varietà riemanniana a metrica iperbolica normale. Annali di Mat. 48 (1959c) 361.

Chatterjee, N. K., Note on the type of expanding universe recently proposed by Einstein and de Sitter. Bull. Calcutta Math. Soc. 24 (1932) 95. [Z 6, 85]

— 1928, La théorie de la relativité et la mécanique céleste, t. 1 (Gauthier-Villars, Paris). [JF 54, 939]
— 1930, same title, t. 2. [JF 56, 1283]

— Isotropic static solutions of the field equations in Einstein’s theory of gravitation. Amer. J. Math. 59 (1937) 754. [Z 17, 384]
— Note on spherical symmetry of space and the foundations of Friedmann universe. Chin. J. Phys. 3 (1939b) 313. [Z 22, 282]
— On the method of finding isotropic static solutions of Einstein's field equations of gravitation. Amer. J. Math. 62 (1940) 43. [Z 22, 419; MR 1, 125]

— The gravitational field of a rotating cohesive system. Proc. Cambridge Philos. Soc. 43 (1947a) 164. [MR 8, 496]
— The gravitational field of a rotating nearly spherical body. Phil. Mag. 39 (1948) 747. [MR 10, 579]

BIBLIOGRAPHY

COMBRIDGE, J. T., The gravitational field of a particle on Einstein’s theory. Phil. Mag. 45 (1923) 726. [JF 49, 655]

—— The field of a thick spherical shell on Einstein’s theory of relativity. Phil. Mag. 1 (1926) 276. [JF 52, 928]

—— Some applications of Whittaker’s extension of Gauss’s theorem in general relativity. Phil. Mag. 20 (1935) 971. [Z 13, 40]

CRAIG, H. V., and HORTON, C. W., On extensors and the Hamiltonian equations. Tensor N.S. 1 (1951) 47. [MR 13, 384]

—— The field of an electron on Einstein’s theory. Phil. Mag. 45 (1923) 276.

—— On the phenomenological thermodynamics of moving media. Physica 6 (1939a) 673. [Z 22, 95; MR 1, 96]

— Sur le problème intérieur dans le cas d’un espace-temps courbe à symétrie sphérique. C. R. Acad. Sci. Paris 177 (1923b) 1276. [JF 49, 647]

Datta, B., Eine Verallgemeinerung des Schwarzschildscben Problem. Z. Physik 103 (1936) 546. [Z 15, 278]

— Über eine Klasse von Lösungen der Gravitationsgleichungen der Relativität. Z. Physik 108 (1938) 314. [Z 18, 186]

Datta Majumdar, S., see Majumdar, S. D.

Delsarte, J., Sur un ds² à symétrie axiale non statique et sur quelques problèmes connexes. C. R. Acad. Sci. Paris 196 (1933) 888. [Z 6, 376]

— 1934b, Sur les ds² d’Einstein à symétrie axiale (Hermann, Paris). [Z 10, 223]

Dingle, H., Values of T^μ_ν and the Christoffel symbols for a line element of considerable generality. Proc. Nat. Acad. Sci. U.S.A. 19 (1933a) 559. [Z 6, 421]

— Wave equations in conformal space. Ann. of Math. 37 (1936) 429. [Z 14, 80]

DONDER, T. DE, 1920, Théorie du champ électromagnétique de Maxwell et du champ gravifique d’Einstein (Gauthier-Villars, Paris) [JF 47, 827]

— 1921, La gravifique einsteinienne (Gauthier-Villars, Paris). [JF 48, 1061]

— 1924b, La gravifique de Weyl-Eddington-Einstein (Gauthier-Villars, Paris). [JF 50, 577]

— 1925a, Introduction à la gravifique einsteinienne (Gauthier-Villars, Paris). [JF 51, 700]

— De l’intégration des équations du mouvement dans un champ gravifique massique et électromagnétique. Association Française Grenoble (1925b) 52. [JF 52, 932]

— 1926, Théorie des champs gravifiques (Gauthier-Villars, Paris). [JF 52, 917]

— Extension de la gravifique einsteinienne à la thermodynamique. C. R. Acad. Sci. Paris 186 (1928a) 1599. [JF 54, 948]

— 1930, Applications de la gravifique einsteinienne (Gauthier-Villars, Paris). [JF 56, 1283]

1921b, Space, time and gravitation. An outline of the general relativity theory. (Cambridge Univ. Press). [JF 48, 1063]

On the relativity of field and matter. Phil. Mag. 42 (1921c) 800. [JF 48, 1325]

On the significance of Einstein's gravitational equations in terms of the curvature of the world. Phil. Mag. 43 (1922a) 174. [JF 48, 1325]

On the spontaneous loss of energy of a spinning rod according to the relativity theory. Phil. Mag. 46 (1923a) 1112. [JF 49, 640, 655; SA 27, 374]

1933, The expanding universe (Cambridge Univ. Press). [Z 6, 234]

1936a, The relativity theory of protons and electrons (Cambridge Univ. Press.) [Z 15, 422]

The cosmical constant and the recession of the nebulae. Amer. J. Math. 59 (1936b) 1.

Eiesland, J., The group of motions of an Einstein space. Trans. Amer. Math. Soc. 27 (1925) 213. [JF 51, 706]

— Prinzipielles zur verallgemeinerten Relativitätstheorie und Gravitations-
theorie. Physik. Zs. 15 (1914b) 176. [JF 45, 1117]

Wiss. Sitz. (1914c, pt. 2) 1030. [JF 45, 1118]

— Über die Grundgedanken der Relativitätstheorie und Anwendung dieser
Theorie in der Astronomie. Preuss. Akad. Wiss. Sitz. (1915a) 315. [JF 45,
1119]

2) 778, 799. [JF 45, 1119]

— Erklärung der Perihelbewegung des Mercur aus der allgemeinen Relati-

2) 844. [JF 45, 1120]

(1916a) 769. [JF 46, 1293] (Also published separately by Barth, Leipzig)

Akad. Wiss. Sitz. (1916b) 688. [JF 46, 1293]

Wiss. Sitz. (1916c) 1111. [JF 46, 1294]

— Eine neue Deutung der Maxwellsschen Feldgleichungen der Elektro-

— Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Preuss.
Akad. Wiss. Sitz. (1917) 142. [JF 46, 1295; ROBERTSON [1933]]

241. [JF 46, 1292]

— Notiz zu Schrödingers Arbeit: Energiekomponenten des Gravitations-
feldes. Physik. Zs. 19 (1918b) 115. [JF 46, 1315]

— Notiz zu Schrödingers Notiz: Lösungssystem der allgemein kovarianten
Gravitationsgleichungen. Physik. Zs. 19 (1918c) 165. [JF 46, 1316]

1295]

— Kritisches zu einer von de Sitter gegebenen Lösung der Gravitationsglei-
chungen. Preuss. Akad. Wiss. Sitz. (1918e) 270. [JF 46, 1342]

Wiss. Sitz. (1918f) 448. [JF 46, 1296]

— Bemerkungen über periodische Schwankungen der Mondlänge, welche
bisher nach der Newtonschen Mechanik nicht erklärbar schienen. Preuss.

— Eine naheliegende Ergänzung des Fundamentes der allgemeinen Relati-

— Bemerkung zur Seletyschis Arbeit: Beiträge zum kosmologischen Pro-

— Bemerkung zu der Abhandlung von E. Trefftz: Statische Gravitationsfeld

— Bemerkung zu der Arbeit von A. Friedman "Über die Krümmung des Raumes". Z. Physik 11 (1922c) 326; 16 (1923a) 228. [JF 48, 1031; 49, 652]
— Elektron und allgemeine Relativitätstheorie. Physica 5 (1925a) 330. [JF 51, 703]
— Lens-like action of a star by the deviation of light in the gravitational field. Science 84 (1936) 506. [Z 15, 278]
— On a stationary system with spherical symmetry consisting of many gravitating masses. Ann. of Math. 40 (1939) 922. [MR 1, 61]
— Demonstration of the non-existence of gravitational fields with a non-vanishing total mass free of singularities. Univ. Nac. Tucumán, Revista A 2 (1941) 5. [MR 4, 55]
— See also Lorentz.

EINSTEIN COMMEMORATIVE ISSUE of Reviews of Modern Physics 21 (1949), no. 3.
— same title, Zs. f. Math. u. Phys. 62 (1914a) 225. [JF 45, 1114]
EINSTEIN, A., and INFELD, L., The gravitational equations and the problem of motion. II. Ann. of Math. 41 (1940) 455. [MR 1, 283]
—— On gravitational waves. J. Franklin Inst. 223 (1937) 43. [Z 17, 96]
—— Space-time continua of perfect fluids in general relativity. Trans. Amer. Math. Soc. 26 (1924) 205. [JF 50, 596]
—— 1926, Riemannian geometry (Princeton Univ. Press). [JF 52, 721]

ETHERINGTON, I. M. H., On the definition of distance in general relativity. Phil. Mag. 15 (1933) 761. [Z 6, 375]

FABRY, C., La théorie de la relativité et le déplacement des raies spectrales produit par le champ de gravitation. Scientia 34 (1923) 149.

— see also Freundlich, E. F.

— Sur les systèmes d'équations aux dérivées partielles, qui, comme les sys-

FINZI, B., and PASTORI, M., 1949, Calcolo tensoriale e applicazioni (Zanichelli, Bologna). [MR 10, 480]

—— The problem of motion of masses in Einstein’s theory of gravitation. Sbornik posvyascennyi semidesyatletiyu akademika A. F. Ioffe (Collection in honor of the seventieth birthday of academician A. F. Ioffe) (1950) 31. [MR 16, 1058]

—— Sur le mouvement des corps en rotation d’après la théorie de gravitation d’Einstein. See JUBILEE OF RELATIVITY THEORY (1955b) 204.

—— Remarks on the article by F. I. Frankl’ “On the correct setting of Cauchy’s problem and the properties of harmonic coordinates in the general theory of relativity”. Uspehi Mat. Nauk (N.S.) 11 (1956) no. 3 (69) 197. (Russian) [MR 19, 509]

—— Homogenität, Kovarianz und Relativität. Czechoslovak J. Phys. 7 (1957a) 255. [MR 19, 714]

—— Three lectures on relativity theory. Rev. Mod. Phys. 29 (1957b) 325. [MR 19, 1020]

Fokker, A. D., The virtual displacement of the electromagnetic and of the

--- 1929, Relativiteitstheorie (Noordhoff, Groningen). [JF 55, 1163]

--- Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non-lineaires. Acta Math. 88 (1952) 141. [MR 14, 756]

--- Le problème de Cauchy dans la théorie relativiste de l'électromagnétisme et dans la théorie unitaire de Jordan-Thiry. See Jubilee of Relativity Theory (1955) 76.

Frank, P., Relativitätstheorie. Handbuch der physikalischen und technischen Mechanik 6 (1928) 45. [JF 54, 939]

--- Some remarks on principles in the general theory of relativity. Uspehi Matem. Nauk (N.S.) 8 no. 3 (55) (1953b) 160. [MR 15, 656]

--- On the correct setting of Cauchy's problem and properties of harmonic coordinates in the general theory of relativity. Uspehi Mat. Nauk (N.S.) 11 (1956) no. 3 (69) 189. (Russian) [MR 19, 509]

Friedmann, A., Über die Krümmung des Raumes. Z. Physik 10 (1922) 377. [JF 48, 1031; Robertson [1933]]

--- Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Physik 21 (1924) 326. [JF 50, 577; Robertson [1933]]

García, G., On the restricted problem of three bodies in the general theory of relativity. Actas Acad. Ci. Lima 9 (1946a) 153. (Spanish) [MR 8, 177]

--- Reduction of the equations of motion of three bodies of finite masses to
the case in which one of the bodies has infinitely small mass. Actas Acad. Ci. Lima 9 (1946b) 163. (Spanish) [MR 8, 177]

— The problem of three bodies in the cases of Lagrange and Euler, treated in the general theory of relativity. Summa Brasil. Math. 1 no. 9 (1946c) 197. (Spanish) [MR 10, 333]

— The new theory of general relativity. Symposium sobre algunos problemas matemáticos que se están estudiando en Latino América (1951) 139. (Spanish) [MR 14, 1023]

— New investigations and results “On the expanding universe and the origin of nebulae”. Actas Acad. Ci. Lima 16 (1953) 3. (Spanish) [MR 15, 657]

Gardner, G. H. F., Canonical coordinates at a point for two skew-symmetric tensors. Proc. Amer. Math. Soc. 2 (1951) 328. [MR 13, 76]

— Les quatorze invariants de courbure de l’espace riemannien à quatre dimensions. See JUBILEE OF RELATIVITY THEORY (1955) 101. [MR 19, 506]

— Das Gravitationsfeld des Elektron. Z. Physik 85 (1933) 511. [Z 7, 330]

Giau, A., Le problème cosmologique généralisé et la mécanique ondulatoire relativiste. Portugaliae Phys. 2 (1946) 1. [MR 8, 121]

GIUSSANI, R., Sulle variazioni isoriemanniane del cronotopo einsteiniano. Rend. Ist. Lombardo Sci. 64 (1931) 309. [Z 2, 301]
GÖDEL, K., An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21 (1949) 447. [MR 11, 216]
GRAEF FERNANDEZ, C., Birkhoff’s theory of gravitation. Symposium sobre algunos problemas matemáticos que se están estudiando en Latino América 121 (1951). (Spanish) [MR 14, 807]
—— The gravitational forces of Birkhoff in physical space. Univ. Nac. Autonoma Mexico. An. Inst. Fis. 1 (1955) 35. (Spanish) [MR 18, 263]
GROSSMANN, E., Die Bewegung des Merkurperihels. Z. Physik 5 (1921a) 280. [JF 48, 1015]
—— Einstein's and other theories of gravitation. Rev. Mod. Phys. 29 (1957) 334. [MR 19, 1022]

HAAG, J., Sur le problème intérieur de Schwarzschild dans le cas d'une sphère hétérogène. C. R. Acad. Sci. Paris 176 (1923a) 658. [JF 49, 642]
—— 1931, Le problème de Schwarzschild (Gauthier-Villars, Paris). [Z 1, 244]

HALPERN, O., A theorem connecting the energy momentum tensor with the velocity of propagation of waves. Phys. Rev. 48 (1935) 431. [Z 12, 180]

HANDEK, H., Über die Differentialgleichungen in der allgemeinen Relativitätstheorie. Z. Physik 50 (1928) 397. [JF 54, 941]

—— Relativity in connexion with axial symmetry. Proc. Cambridge Philos. Soc. 23 (1926b) 198. [JF 52, 929]

HASKEY, H. W., A geometric derivation of the second order wave equation. Phil. Mag. 27 (1939) 221. [Z 20, 286]

Hill, F. W., and Jeffery, G. B., The gravitational field of a particle on Einstein’s theory. Phil. Mag. 41 (1921) 823. [JF 48, 1329]

—— 1957, Geometry of Einstein’s unified field theory (Noordhoff, Groningen).

Hoffmann, B., On general relativity. Rev. Mod. Phys. 4 (1932a) 173. [Z 4, 87]

—— The vector meson field and projective relativity. Phys. Rev. 72 (1947) 458. [MR 9, 107]

—— The gravitational, electromagnetic and vector meson fields and the similarity geometry. Phys. Rev. 73 (1948) 30. [MR 9, 387]

Ikeda, M., Note on some special spherically symmetric space-times. Tensor (N.S.) 2 (1952) 102. [MR 14, 505]
—— On a five-dimensional representation of the electromagnetic and electron field equations in a curved space-time. Prog. Theor. Phys. 10 (1953) 483. [MR 15, 751]
Infeld, L., Über eine Interpretation der neuen Einsteinschen Weltgeometrie auf dem Boden der klassischen Mechanik. Physik. Zs. 32 (1931) 110. [Z 1, 34]
—— Dirac’s equation in the general relativity theory. Acta Phys. Polon. 3 (1934) 1. [Z 10, 281]
—— The coordinate conditions and the equations of motion. Canad. J. Math. 5 (1953) 17. [MR 14, 806]
—— The history of relativity theory. Rend. Mat. e Appl. 13 (1955b) 270. [MR 17, 813]
—— On equations of motion in general relativity. See JUBILEE OF RELATIVITY THEORY (1955d) 206.
—— The equations of motion in general relativity theory and the action principle. Rev. Mod. Phys. 29 (1957b) 398; Acta Phys. Polon. 16 (1957c) 177. [MR 19, 815]
—— See also Einstein.

ITIMARU, K., Cosmology in terms of wave geometry. IV. VI. Physical interpretations. X. Observers on the nebulae. J. Sci. Hiroshima Univ. A 8 (1938) 239; 10 (1940) 151; 11 (1942) 245. [Z 21, 86; MR 2, 208; 9, 627]

——— On the null geodesics and null cones in some gravitational fields. Ganita 2 (1951a) 23. [MR 14, 592]

—— On the one-body problem in the expanding universe. C. R. Dixième Congrès Math. Scandinaves (1946) 160. [MR 8, 496]

JEHLE, H., Zur allgemeinen relativistischen Quantenmechanik. I. Geodätische Linie und Quantenmechanik. II. Kosmologische Quantenerscheinungen. Z. Physik 87 (1934) 370; 94 (1935) 692. [Z 8, 228; 11, 375]

JUST, K., Neue Feldgleichungen zur Jordanschen Gravitations-Theorie. Z. Physik 140 (1955a) 485. [MR 17, 200]

—— Zur Planetenbewegung bei veränderlicher Gravitationszahl. Z. Physik 140 (1955b) 524; 144 (1956) 411. [MR 17, 200, 908]

—— Zur Kosmologie mit veränderlicher Gravitationszahl. Z. Physik 140 (1955c) 648. [MR 17, 305]

KANTOR, W., and SZERÉMY, G., Cosmic time and the field equations of general relativity. Phys. Rev. 104 (1956) 831. [MR 19, 103]

KASKAROV, V. P., On the equations of motion of a system of finite masses in Einstein’s theory of gravitation. Z. Eksper. Teoret. Fiz. 27 (1954) 563. (Russian) [MR 16, 1058]

KASNER, E., The impossibility of Einstein fields immersed in flat space of five dimensions. Amer. J. Math. 43 (1921a) 126. [JF 48, 1039]

— Finite representation of the solar gravitational field in flat space of six dimensions. Amer. J. Math. 43 (1921b) 130. [JF 48, 1040]

— Geometrical theorems on Einstein’s cosmological equations. Amer. J. Math. 43 (1921c) 217. [JF 48, 1040]

— An algebraic solution of the Einstein equations. Trans. Amer. Math. Soc. 27 (1925b) 101. [JF 51, 707]

— Solutions of the Einstein equations involving functions of only one variable. Trans. Amer. Math. Soc. 27 (1925c) 155. [JF 51, 708]

— Field equations in general relativity. Nuovo Cimento 11 (1955) 361. [MR 16, 1058] (See also STEPHENSON, G.)

—— On the thermodynamical equilibrium of fluids in gravitational fields. Rev. Mod. Phys. 21 (1949) 531. [MR 11, 468]

—— On a class of spherically symmetric solutions of Einstein’s gravitational equations. Arkiv för Fysik 7 (1954) 487. [MR 15, 995]

KÖHLER, M., Beiträge zum kosmologischen Problem und zur Lichtausbreitung in Schwerfeldern. Ann. Physik 16 (1933) 129. [Z 6, 231]

—— Die Formulierung der Erhaltungssätze der Energie und des Impulses in der allgemeinen Relativitätstheorie. Z. Physik 131 (1952) 571; 134 (1953) 286. [MR 14, 416, 913]

—— Invariante Flächen der Elektrodynamik. Z. Physik 148 (1957a) 443; 150 (1957b) 118. [MR 19, 495; 20, 735]

KOPFF, A., 1921a, Grundzüge der Einsteinschen Relativitätstheorie (Hirzel, Leipzig). [JF 48, 979]

—— Bemerkung zur Rotationsbewegung im Gravitationsfeld der Sterne. Physik. Zs. 22 (1921b) 24, 179. [JF 48, 1021]

KOTTLER, F., Maxwellsche Gleichungen und Metrik. Wien. Ber. 131 (1922a) 119. [JF 48, 1034]

—— Gravitation und Relativitätstheorie. Encycl. d. Math. Wiss. VIa 22a (1922b) 159. [JF 48, 1322]

KRATZER, A., 1956, Relativitätstheorie (Aschendorffsche Verlag, Münster). [MR 18, 363]

Il problema degli n corpi nella relatività generale. Pont. Acad. Sci. Comment. 6 (1942) 813. [MR 10, 156]

Lanczos, C., Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen. Physik. Zs. 23 (1922a) 537. [JF 48, 1023]

Bemerkung zur de Sittersehen Welt. Physik. Zs. 23 (1922b) 539. [JF 48, 1028; Robertson [1933]]

Zur Theorie der Einsteinschen Gravitationsgleichungen. Z. Physik 13 (1923a) 7. [JF 49, 650]

Zum Rotationsproblem der allgemeinen Relativitätstheorie. Z. Physik 14 (1923b) 204. [JF 49, 651]

Über die Rotverschiebung in der de Sittersehen Welt. Z. Physik 17 (1923c) 168. [JF 49, 652; Robertson [1933]]

Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitations-theorie. Z. Physik 21 (1924b) 73. [JF 50, 594]

Über eine zeitlich periodische Welt und eine neue Behandlung des Problems der Ätherstrahlung. Z. Physik 32 (1925a) 56. [JF 51, 706]

Zum Problem der Ätherstrahlung in einer räumlich geschlossenen Welt. Z. Physik 32 (1925b) 135. [JF 51, 707]

Zum Problem der endlich schwachen Felder in der Einsteinschen Gravitationstheorie. Z. Physik 31 (1925c) 112. [JF 51, 710]

Zum Wirkungsprinzip der allgemeinen Relativitätstheorie. Z. Physik 32 (1925d) 163. [JF 51, 710]

BIBLIOGRAPHY

— Stationäre Elektronenbahnen und die Methode der Eigenfunktionen. Z. Physik 33 (1925f) 128. [JF 51, 738]
— Über tensorielle Integralgleichungen. Math. Ann. 95 (1925g) 143. [JF 51, 305]
— Zur Dynamik der allgemeinen Relativitätstheorie. Z. Physik 44 (1927a) 773. [JF 53, 819]
— Zum Bewegungsprinzip der allgemeinen Relativitätstheorie. Physik. Zs. 28 (1927b) 723. [JF 53, 819]
— Über eine invariante Formulierung der Erhaltungssätze in der allgemeinen Relativitätstheorie. Z. Physik 59 (1930) 514. [JF 56, 733]
— Die neue Feldtheorie Einsteins. Ergebnisse d. exakten Naturwiss. 10 (1931a) 97. [Z 2, 423]
— Elektromagnetismus als natürliche Eigenschaft der Riemannschen Geometrie. Z. Physik. 73 (1931b) 147. [Z 3, 177]
— Electricity as a natural property of Riemannian geometry. Phys. Rev. 39 (1932a) 188, 716. [Z 4, 87]
— Zum Auftreten des Vektorpotentials in der Riemannschen Geometrie. Z. Physik 75 (1932b) 63. [Z 4, 88]
— Ein neue Aufbau der Weltgeometrie. Z. Physik 96 (1935) 76. [Z 12, 134]
— The total mass of a particle in general relativity. Phys. Rev. 59 (1941a) 708. [SA 44, 215]
— The dynamics of a particle in general relativity. Phys. Rev. 59 (1941b) 813. [MR 2, 326]
— Matter waves and electricity. Phys. Rev. 61 (1942) 713. [MR 4, 56]
— Electricity and general relativity. Rev. Mod. Phys. 29 (1957) 337. [MR 19, 926]

— Die Lichtfortpflanzung in Räumen mit zeitlich veränderlicher Krüm-

—— Theoretisches über die Helligkeit ferner Nebel. Z. Astrophys. 12 (1936) 208. [Z 17, 144]

LECAT, M., 1924, Bibliographie de la relativité (Lamertin, Brussels). [JF 50, 576]

LEES, A., The electron in general relativity theory. Phil. Mag. 28 (1939) 385. [MR 1, 183]

LEMAÎTRE, G., Note on de Sitter’s universe. J. Math. Phys. 4 (1925) 188. [ROBERTSON [1933]]

—— Cosmological application of relativity. Rev. Mod. Phys. 21 (1949) 357. [MR 11, 216]

LEVI-CIVITA, T., Sulla espressione analitica spettante al tensore gravitazionale nella teoria di Einstein. Rend. Acc. Lincei 261 (1917a) 381. [JF 46, 1318]

—— Statica einsteiniana. Rend. Acc. Lincei 261 (1917b) 458. [JF 46, 1319]

—— Realtà fisica di alcuni spazi normali di Bianchi. Rend. Acc. Lincei 261 (1917c) 519. [JF 46, 1320]

—— ds² einsteiniani in campi newtoniani. Rend. Acc. Lincei 262 (1917e) 307;
27a (1918a) 3; 27b (1918b) 183, 220, 240, 283, 343; 28a (1919) 3, 101. [JF 46, 1321–1327; 47, 798]

La teoria di Einstein e il principio di Fermat. Nuovo Cimento 16 (1918c) 105. [JF 46, 1328]

1928, Fondamenti di meccanica relativistica (Zanichelli, Bologna). [JF 54, 939]

Le problème des deux corps en relativité générale. Enseignement Math. 34 (1938) 149. [Z 13, 233]

The relativistic problem of several bodies. Amer. J. Math. 59 (1937a) 9. [Z 16, 185]

Espaces-temps extérieurs réguliers partout. C. R. Acad. Sci. Paris 206 (1938b) 313. [Z 18, 186]

1939, Problèmes globaux en mécanique relativiste (Hermann, Paris). [MR 1, 282]

--- L’intégration des équations de la gravitation relativiste et le problème des n corps. J. Math. Pures Appl. 23 (1944b) 37. [MR 7, 266]

--- Problèmes généraux d’intégration des équations de la relativité. See JUBILEE OF RELATIVITY THEORY (1955b) 176.

--- Ondes électromagnétiques et ondes gravitationnelles en relativité générale. Cahiers de Physique 12 (1958b) 287. [MR 21, 356]

— Influence of the earth's rotation on optical phenomena. Nature 112 (1923) 103. [SA 26, 851]
Ludwig, G., 1951, Fortschritte der projektiven Relativitätstheorie (Vicweg, Braunschweig). [MR 14, 213]
Majumdar, S. D., A note on a class of solutions of Einstein's electro-static field equations. Science and Culture 12 (1946a) 295. [MR 8, 536]
— Note on a class of solutions of Einstein's field-equations in an electrostatic field. Science and Culture 12 (1947a) 344. [MR 8, 537]
— A class of exact solutions of Einstein’s field equations. Phys. Rev. 72 (1947b) 390. [MR 9, 213]
Maravall Casesoves, D., The structure of media with axial symmetry in general relativity. Application to galaxies. Revista Mat. Hisp.-Amer. 11 (1951) 277. (Spanish) [MR 14, 98]
— Relativistic theory of the attraction of a sphere, pulsating or with spin. Application to the cepheids. Revista Mat. Hisp.-Amer. 13 (1953) 175. (Spanish) [MR 15, 657]
Marcologno, R., 1921, Relatività (Principato, Messina). [JF 48, 981]
Mariani, J., Électromagnétisme et relativité. Le magnétisme terrestre comme

Mathisson, M., Die Mechanik des Materieelementches in der allgemeinen Relativitätstheorie. Z. Physik 67 (1931a) 826. [Z 1, 246]

—— Bewegungsproblem der Feldphysik und Elektronenkonstanten. Z. Physik 69 (1931b) 389. [Z 2, 90]

—— Das zitternde Elektron und seine Dynamik. Acta Phys. Polon. 6 (1937b) 218. [Z 17, 430]

Mau Quan Pham see Pham Mau Quan.

—— Stabilità in un campo statico gravitazionale. Rend. Circ. Mat. Palermo 52 (1928b) 425. [JF 54, 940]

—— Strain and torsion in Riemannian space. Annali di Mat. 6 (1929) 207. [JF 55, 1032]

—— On the interpretation of Einstein’s unified field theory. Phil. Mag. 16 (1933) 707. [Z 7, 426]

—— Observable relations in relativistic cosmology. Z. Astrophys. 9 (1935) 290; 18 (1939) 98. [Z 11, 41; 20, 424]

—— Cosmology. The Physical Society, Reports on progress in physics 16 (1953) 321. [SA 56, 1050]

— Solution with axial symmetry of Einstein’s equations of teleparallelism. Proc. Edinburgh Math. Soc. 2 (1931b) 140. [Z 1, 244]

— Gravitation in cosmology theory. Z. Astrophys. 10 (1935b) 382. [Z 12, 377]

— Die Bewegungsgleichungen in der Theorie des Gravitationsfeldes mit einer Feldfunktion. Z. Physik 147 (1957) 531. [MR 18, 977]

— Die Einsteinsche Gravitationstheorie und das Problem der Materie. Physik. Zs. 18 (1917) 551, 574, 596. [JF 46, 1289]

MILNER, S. R., Tubes of electromagnetic force. Phil. Mag. 44 (1922) 705. [SA 26, 30]

MIMURA, Y., Microscopic field theory. J. Sci. Hiroshima Univ. A 6 (1936) 203. [Z 13, 368]

MIMURA, Y., and HOSOKAWA, T., Physics and geometry. J. Sci. Hiroshima Univ. A 7 (1937) 249. [Z 17, 238]

—— 1933, L'univers en expansion (Hermann, Paris). [Z 6, 376]

—— see also LORENTZ, H. A.

MITTER, O. K., On a solution of Einstein's gravitational equations $G_{\mu\nu} = 0$, symmetrical about an axis. Tôhoku Math. J. 34 (1931) 110. [Z 2, 302]

—Wave geometry including Schwarzschild’s and de Sitter’s solution. J. Sci. Hiroshima Univ. A 7 (1937a) 49. [Z 17, 237]

—On the general parallel displacement which makes $ds^2 = 0$ invariant. J. Sci. Hiroshima Univ. A 7 (1937b) 169. [Z 17, 238]

—Geometrical interpretations of wave geometry. J. Sci. Hiroshima Univ. A 7 (1937c) 173. [Z 17, 238]

—The hydrogen atom in terms of wave geometry. J. Sci. Hiroshima Univ. A 7 (1937d) 263. [Z 17, 238]

Morinaga, K. and Takeno, H., On some solutions of $\frac{1}{2} \sqrt{-g} \epsilon_{stpq} k_{tm} \cdot pq = K_{lmst}$. J. Sci. Hiroshima Univ. A 6 (1936) 191. [Z 13, 368]

Morley, F., Note on Einstein’s equation of an orbit. Amer. J. Math. 43 (1921) 29. [JF 48, 1040]

Morton, W. B., The forms of planetary orbits on the theory of relativity. Phil. Mag. 42 (1921) 511. [JF 48, 1329]

—Kernresonanzabsorption von Gammastrahlung in Ir191. Naturwiss. 45 (1958b) 538. [SA 62, 469]

—Kernresonanzabsorption von γ-strahlung in Ir191. Z. Naturforsch. 14a (1959) 211.

Mukerji, B. C., Über elektromagnetische Wellen im Friedmannschienen Raum. Z. Physik 101 (1936) 270. [Z. 14, 283]

—Two cases of exact gravitational fields with axial symmetry. Bull. Calcutta Math. Soc. 30 (1938a) 95. [Z 20, 284]

—On the possibility of expansion of a slowly rotating mass of incoherent particles under gravitational forces. Z. Astrophysik 15 (1938b) 1.

—On gravitational waves in linearized fields. Phil. Mag. 26 (1938c) 1068. [Z 20, 92]

Murnaghan, F. D., 1922a, Vector analysis and the theory of relativity (Johns Hopkins Press, Baltimore). [JF 48, 1064]

—The deflexion of a ray of light in the solar gravitational field. Phil. Mag. 43 (1922b) 580. [JF 48, 1330]

— A generalization of Schwarzschild’s interior solution. Phil. Mag. 22 (1936b) 767. [Z 15, 278]
— The consistency of Einstein’s new relativity with the geodesic postulate. Current Sci. 10 (1941c) 164. [MR 8, 536]

— On a curious solution of relativistic field equations. Current Sci. 15 (1946b) 69. [MR 8, 536]

— Some new solutions of the differential equations for isotropy. Phil. Mag. 20 (1935b) 1104. [Z 13, 40]

Narlikar, V. V., and Singh, J., The geodesic postulate in general relativity. Phil. Mag. 23 (1937) 628. [Z 16, 185]

— A spherically symmetric non-static electromagnetic field. Nature 159 (1947) 642. [MR 8, 608]

Neumann, E. R., 1922, Vorlesungen zur Einführung in die Relativitätstheorie (Fischer, Jena). [JF 48, 980]

BIBLIOGRAPHY

— On the mass of a material system according to the gravitation theory of Einstein. Proc. K. Akad. Wet. Amsterdam 20 (1918a) 1076. [JF 46, 1345]

— On the energy of the gravitation field in Einstein’s theory. Proc. K. Akad. Wet. Amsterdam 20 (1918b) 1238. [JF 46, 1346]

NOVOBATZKY, K., Erweiterung der Feldgleichungen. Z. Physik 72 (1931) 683. [Z 3, 178]

— Universelle Feldtheorie. Z. Physik 89 (1934) 373, 750. [Z 10, 89, 90]

— Étude synthétique des champs massiques à symétrie sphérique. Association Française Grenoble (1925a) 57. [JF 52, 928]

Synge

—— Sulle equazioni della statica einsteiniana in seconda approssimazione. Lomb. Ist. Rend. 54 (1921a) 463. [JF 48, 1045]

—— L’analogo einsteiniano dei potenziali cilindrici in seconda approssimazione. Lomb. Ist. Rend. 54 (1921b) 570. [JF 48, 1045]

—— Sopra i potenziali simmetrici che conducono alle soluzioni longitudinali delle equazioni gravitazionali di Einstein. Rend. Acc. Lincei 32 (1923) 263. [JF 49, 634]

—— La loi des moments dans un système quelconque de coordonnées. Prakt. Akad. Athênon 18 (1943b) 317. [MR 14, 806]

Eine Theorie des Gravitationsfeldes mit einer Feldfunktion. Z. Physik 139 (1954b) 518. [MR 16, 870]

see also Geissler, Meister.

Parsons, J. D., Solution with axial symmetry of Einstein’s equations of teleparallelism. Proc. Edinburgh Math. Soc. 3 (1932) 37. [Z 4, 88]

Pastori, M., I principali invarianti del campo elettromagnetico in teoria della relatività. Ist. Lombardo Rend. 72 (1939a) 179. [Z 21, 180]

— Propagazione delle azioni gravitazionali ed elettromagnetiche. Ist. Lombardo Rend. 72 (1939b) 409. [Z 22, 176; MR 1, 182]

— Sur une théorie relativiste des fluides thermodynamiques. Ann. Mat. Pura Appl. 38 (1955c) 121. [MR 17, 1143]

— Projections des géodésiques de longueur nulle et rayons électromagnétiques

Sur le principe de Fermat. Enseignement Math. 4 (1958c) 41. [MR 20, 841]

On the definition of inertial systems in general relativity. See JUBILEE OF RELATIVITY THEORY (1955b) 198. [MR 19, 506]

Invariant formulation of gravitational radiation theory. Phys. Rev. 105 (1957b) 1089. [MR 20, 498]

PIRANI, F. A. E., SCHILD, A., and SKINNER, R., Quantization of Einstein's gravitational field equations. II. Phys. Rev. 87 (1952) 452. [MR 14, 418]

—— Resonant absorption of the 14.4-kev γ ray from 0.10-μ sec Fe⁵⁷. Phys. Rev. Letters 3 (1959b) 554.

QUAN PHAM MAU see PHAM MAU QUAN.

RABE, E., Zur Singularität der Schwarzschildchen Lösung für \(r = 2m \). Astr. Nachr. 275 (1947) 251. [MR 10, 745]

—— Eine regularisierende Zeittransformation in der metrischen Kosmologie. Z. Astrophys. 25 (1948) 255. [MR 11, 217]

—— On the most general static field in the relativity theory. J. Indian Math. Soc. (N.S.) 2 (1936) 76. [Z 15, 87]

—— Contribution to the relativistic problem of \(n \) bodies. J. Indian Math. Soc. (N.S.) 5 (1941) 156, 165. [MR 4, 56] (This review gives a brief history of the problem.)

—— Electrodynamics in general relativity. Trans. Amer. Math. Soc. 27 (1925) 106. [JF 51, 713]

RANDERS, G., On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59 (1941) 195. [MR 2, 208]

RAYCHAUDHURI, A., Condensations in expanding cosmological models. Phys. Rev. 86 (1952a) 90. [MR 14, 416]

—— Reine Strahlungsfelder mit Zentralsymmetrie in der allgemeinen Relativitätstheorie. Z. Physik 135 (1953a) 225. [MR 15, 168]

—— Arbitrary concentrations of matter and the Schwarzschild singularity. Phys. Rev. 89 (1953b) 417. [MR 14, 914]

—— Relativistic cosmology I. Phys. Rev. 98 (1955a) 1123. [MR 16, 1059]

—— Perturbed cosmological models. Z. Astrophys. 37 (1955b) 103. [MR 17, 420]

—— Effects of rotation of the central body on its planetary orbits, after the

Reichenbächer, E., Die Gestalt der Spiralarme. Z. Astrophys. 7 (1933a) 309. [Z 7, 427]

— Die Symmetrie der Spiralen. Z. Astrophys. 7 (1933b) 364. [Z 8, 135]

— Der Doppler-Effekt im allgemeinen Feld. Z. Astrophys. 22 (1943) 230. [MR 6, 242]

Robb, A. A., 1914, A theory of time and space (Cambridge Univ. Press).

— 1921, The absolute relations of space and time (Cambridge Univ. Press). [JF 48, 1064]

— 1936, Geometry of space and time (Cambridge Univ. Press). [Z 13, 233]
——— Dynamical space-times which contain a conformal euclidean 3-space. Trans. Amer. Math. Soc. 29 (1927) 481. [JF 53, 820]
——— On relativistic cosmology. Phil. Mag. 5 (1928) 835. [JF 54, 949]
——— Relativistic cosmology. Rev. Mod. Phys. 5 (1933) 62. [Z 6, 231] (This paper contains a bibliography with brief descriptive notes on a number of papers; these papers are marked ROBERTSON [1933] in the present bibliography.)
——— Test corpuscles in general relativity. Proc. Edinburgh Math. Soc. 5 (1937b) 63. [Z 17, 96]
——— The apparent luminosity of a receding nebula. Z. Astrophys. 15 (1938a) 69. [Z 18, 191]
——— Note on the preceding paper: The two body problem in general relativity. Ann. of Math. 39 (1938b) 101. [Z 18, 282] (The ‘preceding paper’ is EINSTEIN, INFELD, HOFFMANN [1938].)
——— Cosmological theory. See JUBILEE OF RELATIVITY THEORY (1955) 128.
ROSEN, N., General relativity and flat space. Phys. Rev. 57 (1940a) 147, 150. [MR 1, 183]
——— Note on ether-drift experiments. Phys. Rev. 57 (1940b) 154. [MR 1, 183]
——— Gravitational waves. See JUBILEE OF RELATIVITY THEORY (1955) 171.
——— See also EINSTEIN, EREZ, PERES.
— Space, time and action. Uspehi Mat. Nauk (N.S.) 10 nr 1 (1955) 210. (Russian) [MR 17, 95]
Ruse, H. S., Some theorems in the tensor calculus. Proc. London Math. Soc. 31 (1930) 225. [JF 56, 663]
— Taylor’s theorem in the tensor calculus. Proc. London Math. Soc. 32 (1931a) 87. [Z 1, 169]
— On the ‘elementary’ solution of Laplace’s equation. Proc. Edinburgh Math. Soc. 2 (1931c) 135. [Z 1, 63]
— Solutions of Laplace’s equation in an n-dimensional space of constant curvature. Proc. Edinburgh Math. Soc. 6 (1939–41) 24. [Z 21, 158]
— Sets of vectors in a V_4 defined by the Riemann tensor. J. London Math. Soc. 19 (1944b) 168. [MR 7, 80]
— On simply harmonic spaces. J. London Math. Soc. 31 (1946c) 243. [MR 9, 102]
— Multivectors and catalytic tensors. Phil. Mag. 38 (1947) 408. [MR 9, 249]

SCHIFFER, J. P., and MARSHALL, W., Recoilless resonance absorption of gamma rays in Fe57. Phys. Rev. Letters 3 (1959) 556.

SCHMUTZER, E., Bemerkungen zum einheitlichen Variationsprinzip für die mechanischen, elektrodynamischen und Gravitations-Grundgesetze. Z. Physik 143 (1955) 479. [MR 17, 1015]

—— Zur generellen Feldtheorie; Ableitung des Impulsenergiestromprojektors aus einem Variationsprinzip. Z. Physik 81 (1933a) 129. [Z 6, 230]

—— Zur generellen Feldtheorie. Raumzeit und Spinraum. (G.F.V.) Z. Physik 81 (1933b) 405. [Z 6, 376]

—— Generelle Feldtheorie. Z. Physik 78 (1932c) 639. [Z 6, 230]

SCHRÖDINGER, E., Die Energiekomponenten des Gravitationsfeldes. Physik. Zs. 19 (1918a) 4. [JF 46, 1314]

—— Über ein Lösungssystem der allgemein kovarianten Gravitationsgleichungen. Physik. Zs. 19 (1918b) 20. [JF 46, 1316]

—— The proper vibrations of the expanding universe. Physica 6 (1939) 899. [Z 22, 43; MR 1, 125]

1950, Space-time structure (Cambridge Univ. Press). [MR 12, 546]

1956, Expanding universes (Cambridge Univ. Press). [MR 17, 1015]

On the stability of cosmological models. Z. Astrophys. 9 (1934b) 215. [Z 10, 283]

On a minimum property of the Friedmann universe. Z. Astrophys. 9 (1935a) 315. [Z 10, 323]

On the stability of cosmological models with non-vanishing pressure. Z. Astrophys. 10 (1935b) 291. [Z 12, 135]

On the size of a very dense sphere. Z. Astrophys. 14 (1937) 157. [Z 17, 240]

Sen, N. R., and Chatterjee, N. K., On Schwarzschild’s problem of the gaseous sphere. Z. Astrophys. 7 (1933) 188. [Z 7, 265]

Sen, N. R., and Roy, T. C., On a steady gravitational field of a star cluster free from singularities. Z. Astrophys. 34 (1954) 84. [MR 17, 305]

— On the centre of inertia in the general theory of relativity. Ž. Eksper. Teoret. Fiz. 27 (1954) 251. (Russian) [MR 16, 1058]

SIBATA, T., A first approximate solution of the Morinaga's equation

\[\sqrt{\Lambda_{stpq}} K_{t}^{pq} = K_{\text{inst.}} \]

— Cosmology in terms of wave geometry. II. De Sitter type universe and Einstein type universe. J. Sci. Hiroshima Univ. A 8 (1938b) 199. [Z 21, 86]

— On space which has the homogeneous property for observation systems. J. Sci. Hiroshima Univ. A 11 (1942) 231. [MR 9, 627]

SIBATA, T., and SAKUMA, K., Cosmology in terms of wave geometry. XI. The solar system as a local irregularity in the universe. J. Sci. Hiroshima Univ. A 11 (1942) 255. [MR 9, 627]

SILBERSTEIN, L., Boundary difficulties of Einstein's gravitation theory. Phil. Mag. 37 (1919) 230. [JF 47, 813]

— 1922, The theory of general relativity and gravitation (Univ. of Toronto Press). [JF 48, 1063]

— 1930, The size of the universe (Oxford Univ. Press).

— On Einstein’s gravitational field equations. Phil. Mag. 24 (1937) 814. [Z 17, 333]

SINGER, S. F., Application of an artificial satellite to the measurement of the general relativistic "red shift". Phys. Rev. 104 (1956) 11. [MR 18, 782]

ŠIRIKOV see ŠIRIKOV.

—— On the distances and radial velocities of extragalactic nebulae, and the explanation of the latter by the relativity theory of inertia. Proc. Nat. Acad. Sci. U.S.A. 16 (1930c) 474. [JF 56, 789; Robertson [1933]]

— Einheitliche Feldtheorie der Gravitation und Elektrizität. Z. Physik 77 (1932b) 829. [Z 5, 271]

Sulaiman, S., The astronomical consequences of relativistic two-body problem. Phil. Mag. 28 (1939) 227. [MR 1, 184]
— Reply to the preceding paper. Proc. Nat. Acad. India A 10 (1940) 14. [MR 8, 176] (For 'preceding paper', see Roy [1940].)

— An alternative treatment of Fermat's principle for a stationary gravitational field. Phil. Mag. 1 (1925) 913. [JF 51, 713]
— First and second variations of the length integral in Riemannian space. Proc. London Math. Soc. 25 (1926a) 247. [JF 52, 738]
— On the geometry of dynamics. Phil. Trans. Roy. Soc. A 226 (1926b) 33. [JF 52, 798]
— On the deviation of geodesics and null-geodesics, particularly in relation to the properties of spaces of constant curvature and indefinite line-element. Ann. of Math. 35 (1934b) 705. [Z 10, 131]
— On the expansion or contraction of a symmetrical cloud under the influence of gravity. Proc. Nat. Acad. Sci. U.S.A. 20 (1934c) 635. [Z 10, 323]
— The proportionality of energy and frequency for a photon in general relativity. Quart. J. Math. Oxford Ser. 6 (1935b) 199. [Z 12, 181]
--- Relativistic hydrodynamics. Proc. London Math. Soc. 43 (1937c) 376. [Z 18, 185]
--- 1954a, Geometrical mechanics and de Broglie waves (Cambridge Univ. Press.) [MR 15, 566]
--- 1956a, Relativity: the special theory (North-Holland, Amsterdam). [MR 17, 1013]
--- 1957c, The relativistic gas (North-Holland, Amsterdam).
--- How stands the theory of gravitation today? Advancement of Science 55 (1957d) 207.

SYNGE, J. L. and SCHILD, A., 1956, Tensor calculus (Univ. of Toronto Press). [MR 11, 400]

--- Ether drift and gravitational motion. Phys. Rev. 104 (1956) 1791. [MR 18, 703]

TAKASU, T., A necessary unitary field theory as a non-holonomic Lie geometry realized in the three-dimensional Cartesian space. Proc. Japan. Acad. 29 (1953a) 533; 30 (1954a) 702. [MR 16, 184, 1058]

--- A necessary unitary field theory as a non-holonomic Lie geometry realized in the three-dimensional Cartesian space and its quantum mechanics. Yokohama Math. J. 1 (1953b) 263. [MR 16, 184]

--- Cosmology and conformally flat space. J. Sci. Hiroshima Univ. A 10 (1940) 173; 11 (1942a) 201. [MR 2, 208; 9, 539]

— On solutions of electromagnetic equation in non-static spherically symmetric space-times. Tensor (N.S.) **4** (1954b) 9. [MR 16, 635]

— On groups of conformal transformations in spherically symmetric space-times. Tensor (N.S.) **5** (1955a) 23. [MR 17, 545]

— On solutions of the field equations in general relativity with an electromagnetic field. Tensor (N.S.) **5** (1955b) 71. [MR 17, 908]

— On the theory of gravitational waves. Tensor (N.S.) **6** (1956) 15. [MR 18, 704]

— On plane wave solutions of field equations in general relativity. Tensor (N.S.) **7** (1957) 97, **8** (1958) 59. [MR 21, 475]

— Empty space-times admitting a three parameter group of motions. Ann. of Math. **53** (1951) 472. [MR 12, 865]

THIRRING, H., Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physik. Zs. 19 (1918) 33; 22 (1921) 29. [JF 46, 1316; 48, 1018] (See also LENSE)

THIRRING, W., Lorentz-invariante Gravitationstheorien. Fortschritte der Physik 7 (1959) 79.

— Relativistic invariance. Rev. Mod. Phys. 17 (1945) 182. [MR 7, 397]

— Über die Bewegung eines kleinen starren Probekörpers in beliebig vorgegeben Gravitationsfeldern. Math. Z. 29 (1928) 96. [JF 54, 941] (Berichtigung in Math. Z. 30 (1929) 939 [JF 55, 505])
TIETZE, H., Über parallelverschiebung in Riemannschen Räumen. Math. Z. 16 (1923a) 308; 18 (1923b) 324. [JF 49, 546]

——— On the use of the energy-momentum principle in general relativity. Phys. Rev. 35 (1930a) 875. [JF 56, 743]
——— On the use of the entropy principle in general relativity. Phys. Rev. 35 (1930b) 896. [JF 56, 744]
——— On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 35 (1930c) 904. [JF 56, 744]
——— Discussion of various treatments which have been given to the non-static line element for the universe. Proc. Nat. Acad. Sci. U.S.A. 16 (1930g) 582. [JF 56, 1365]
——— On the problem of the entropy of the universe as a whole. Phys. Rev. 37 (1931b) 1639. [Z 2, 437; ROBERTSON [1933]]
——— Non-static model of universe with reversible annihilation of matter. Phys. Rev. 38 (1931c) 797. [Z 3, 39; ROBERTSON [1933]]
——— On the theoretical requirements for a periodic behaviour of the universe. Phys. Rev. 38 (1931d) 1758. [Z 3, 180; ROBERTSON [1933]]
——— Models of the physical universe. Science (1932a) 367. [Z 4, 232; ROBERTSON [1933]]
——— Possibilities in relativistic thermodynamics for irreversible processes without exhaustion of free energy. Phys. Rev. 39 (1932b) 320. [ROBERTSON [1933]]
——— 1934b, Relativity, thermodynamics, and cosmology (Clarendon Press, Oxford). [Z 9, 413]
— Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55 (1939) 364. [Z 20, 284]
Tolman, R. C., and Robertson, H. P., On the interpretation of heat in relativistic thermodynamics. Phys. Rev. 43 (1933) 564. [Z 6, 376]
Tolman, R. C., and Ward, M., On the behavior of non-static models of the universe when the cosmological constant is omitted. Phys. Rev. 39 (1932) 835. [Z 4, 89; Robertson [1933]]
— Equazioni gravitazionali di Einstein per gli universi dotati di completa simmetria attorno ad un centro. Atti Accad. Naz. Lincei Rend. 21 (1935b) 488. [Z 12, 41]
— Caso tipico di universi dinamici dotati di completa simmetria attorno ad un centro. Atti Accad. Naz. Lincei Rend. 21 (1935c) 572. [Z 12, 41]
— La particule de spin 2 et la loi de gravitation d’Einstein dans le cas de présence de matière. C. R. Acad. Sci. Paris 218 (1944) 305. [MR 7, 102]
— 1958b, Lectures on general relativity, King’s College, London (mimeographed).

Trumpler, R. J., Observational results on the light deflection and on the red-shift in star spectra. See JUBILEE OF RELATIVITY THEORY (1955) 106.

—— Spherically symmetric line-elements used in general relativity. J. Univ. Bombay (N.S.) 14 pt 3 (1945) 4. [MR 7, 397]

—— The boundary conditions in gravitational fields of spherical symmetry. J. Univ. Bombay A (N.S.) 21 nr 32 (1952) 1. [MR 14, 914]

—— 1927, Invariants of quadratic differential forms (Cambridge Univ. Press). [JF 53, 681]

—— 1933, Projective Relativitätstheorie (Springer, Berlin). [Z 6, 419] (Bibliography)

--- Distance in an expanding universe. Mon. Not. Roy. Astr. Soc. 94 (1933b) 159. [Z 10, 89]
--- A particular harmonic Riemannian space. J. London Math. Soc. 20 (1945a) 93. [MR 7, 529]
--- Symmetric harmonic spaces. J. London Math. Soc. 21 (1946b) 47. [MR 8, 351]

Wallace, P. R., Relativistic equations of motion in electromagnetic theory. Amer. J. Math. **63** (1941) 729. [MR 3, 212]

Reine Infinitesimalgeometrie. Math. Z. **2** (1918b) 384. [JF 46, 1301]

Über die statischen kugelsymmetrischen Lösungen von Einsteins 'kosmologischen' Gravitationsgleichungen. Phys. Z. **20** (1919a) 31. [JF 47, 782]

Über die physikalischen Grundlagen der erweiterten Relativitätstheorie. Phys. Z. **22** (1921a) 473. [JF 48, 1027]

Feld und Materie. Ann. Physik **65** (1921b) 541. [JF 48, 1027]

1922a, Space, time, matter. Translated by H. L. Brose (Methuen, London). [JF 48, 1059]

Neue Lösungen der Einsteinschen Gravitationsgleichungen. Math. Z. **13** (1922b) 142.

Zur allgemeinen Relativitätstheorie. Physik. Zs. **24** (1923b) 230. [JF 49, 654; Robertson [1933]]

Was ist Materie? Naturwissenschaften **12** (1924) 561, 585, 604. [JF 50, 600]

Elektron und Gravitation. I. Z. Physik 56 (1929c) 330. [JF 55, 513]

Redshift and relativistic cosmology. Phil. Mag. 9 (1930) 936. [JF 56, 1286]

Geometrie und Physik. Naturwissenschaften 19 (1931) 49. [Z 1, 33]

How far can one get with a linear field theory of gravitation in flat space-time? Amer. J. Math. 66 (1944b) 591. [MR 6, 240]

50 Jahre Relativitätstheorie. Naturwissenschaften 38 (1951) 73. [MR 12, 577]

1952, Symmetry (Princeton Univ. Press.) [MR 14, 16]

see also Lorentz.

see also Power, Weber.

Whitehead, A. N., 1922, The principle of relativity, with applications to physical science (Cambridge Univ. Press). [JF 48, 1063]

1959, The structure and evolution of the universe (Hutchinson, London). (Revised edn of ‘The structure of the universe’ 1949)

Note on the law that light-rays are null geodesics in a gravitational field. Proc. Cambridge Philos. Soc. 24 (1928a) 32. [JF 54, 942]

The influence of gravitation on electromagnetic phenomena. J. London Math. Soc. 3 (1928b) 137. [JF 54, 945]

— Relativistic invariance and quantum phenomena. Rev. Mod. Phys. 29 (1957) 255. [MR 19, 925]

Wilker, P., Zur homogenisierung des kanonischen Formalismus. Z. Physik 130 (1951) 245. [MR 13, 394.]

— Schwarzschild interior solution in an isotropic coordinate system. Phys. Rev. 70 (1946) 74. [MR 7, 531]

Zaycoff, R., Über die Einsteinsche Theorie des Fernparallelismus. II. Z. Physik 67 (1931a) 135; 69 (1931b) 428. [Z 1, 34, 427]

— Zur relativistischen Kosmogonie. II. Z. Astrophys. 6 (1933a) 193. [Z 6, 376]

— Integrale Theorie von Feld und Materie. Z. Physik 85 (1933b) 788. [Z 7, 426]

INDEX

Authors listed in Bibliography (pp. 427–490) are not included in this Index unless referred to in the text.

aberration 393ff
-- constant of 394
-- curve of no 398
-- tensor 395, 419
absolute acceleration 176, 178, 195, 197
-- derivative 4, 12, 417, 418, 420
-- -- physical meaning of 156
-- time 105
acceleration, absolute 176, 178, 195, 197
-- of astronomical observer 398
-- in continuum 176, 177, 195, 197
-- of gravity 132, 138, 150, 177, 398, 418, 424, 426
-- locus of no 196ff
adiabatic equilibrium 169, 176
admissible coordinates 1, 36, 39, 40, 107, 187, 267, 317, 344
advance of perihelion 293ff
advanced potential 193, 200ff
age of universe 329, 426
agonistic spirit 185, 189, 290
Alexandrow, W. 276
angle, azimuthal 267, 420
-- measurement of 118
-- phase 372, 420
-- polar 267, 420
Ångstrom unit 425
angular momentum of body 248, 250
-- -- conservation of 229, 232ff, 237ff, 253ff
-- -- density of 242
-- -- dual of 242
-- -- flux of 238, 241, 418
-- -- gravitational 241
-- -- mechanical 241
-- -- Newtonian 229
-- -- total 238, 241
angular velocity 117, 140, 407
-- -- of earth 138ff, 420, 425
-- -- see also rotation, spin
anisotropic transparent medium 376
antipodal space 260, 263
apple falling 132ff, 144, 284
approximation, linear 192, 194, 202ff, 211, 221, 309
-- successive 191

Araki, H. 217
area, element of 44, 419
areal velocity 294
artificial satellite 132, 142
astronomy, distance in 327
-- Newtonian 294, 390
-- observation in 118, 289, 330, 390ff
atmosphere 205, 426
atomic clock 106, 421, 425
attractions of earth, moon, sun 205, 426
axial symmetry 309ff, 352
azimuthal angle 267, 420

Bach, R. 310
Balazs, N. L. X, 384
ballistic suicide 141ff
bar 205, 426
base event 237, 242
base vector 76, 82
Bass, L. X
bending of light ray 297
Bergmann, P. G. IX, 192, 252, 301, 310
Bertotti, B. X
Bianchi identity 17, 57
bibliography 427
bicharacteristic 227, 361
birds on lampposts 152
Birkhoff, G. D. 276, 289, 296
Birkhoff's theorem 276, 278, 352
body, charged 367ff
-- mass of 209, 282
-- motion of 194ff, 246ff
-- rigid 188, 401
-- rotating 147ff, 196ff, 309
-- small 250, 290
Bondi, H. 184, 314, 322, 329, 344
Bonnor, W. B. X, 192, 202, 352, 353, 368
Born, M. 114, 173
bouncing photon 123ff
boundary of star 278, 281
Bridgman, P. W. 105
Brill, D. R. 217
Brillouin, L. 378
cadmium red line 106, 107, 138, 425
canonical equations 27
capital suffixes 261, 332, 345
Cauchy data 125, 215, 221, 360
- problem 191, 211, 213ff
- - for incoherent charged fluid 360ff
- - for perfect fluid 218ff
causality 265, 377
celestial sphere 393, 397
cell, oriented 42
- tensor extension of 42, 420
centi 422
centimetre and second 138, 423, 425
centre of mass see mass-centre
Čerenkov radiation 380
characteristic 223ff, 361, 362
- curve 224, 225, 375
- function 28, 47, 419
charge, electric 355, 359, 366, 367, 370, 419
- of electron 425
charged body 367ff
- fluid 355ff, 360ff
Chazy, J. 205, 310
Christoffel symbols 3, 420
- - and change of signature 417
- - in spherical symmetry 271
chronometry 103ff, 105ff, 112ff
- differential 401ff
circle, timelike 12
circular orbit 293
circulation 28, 420
Clark, G. L. 192, 309
Clemence, G. M. 296
clock, atomic or standard 105ff, 421
clock paradox 142
closed geodesic 260ff
- 2-space 41ff, 190, 230, 283, 340, 364ff, 370
- 3-space 43ff, 229ff
cloud of dust 175, 180ff, 195, 219
coherent system (Hamiltonian) 29, 33, 378
coincidence limits 51ff, 57, 420
collisions 160, 165
comma notation 3, 417
commutation notation 3, 317
components, invariant 10, 419
- - of electromagnetic tensor 355, 365
conditions of consistency (Cauchy problem) 215ff, 220ff
- coordinate 187, 191, 418
- of integrability 173
- junction 39ff, 186, 187, 194, 208, 274, 278, 281, 286
cone, null 21, 33, 109, 160, 201, 244, 330, 375
conformally flat space-time 319ff, 322ff
- related space-times 317ff
conformastat metric 341, 342, 369
congruence, normal 173, 196
- of stream-lines 169ff
conjugate metric tensor 3, 418
- points on geodesic 48, 58, 62, 81, 223
- tensor 211
conservation of angular momentum 232ff, 237ff, 253ff
- of charge 359, 367
- of 4-current 356
- of energy 229
- equation (differential) 18, 167, 174, 191, 213, 356
- laws, integral 229ff, 232ff, 237ff, 246ff, 253ff
- - in statistical model 165ff
- of mass 219, 359
- of momentum 229
- of 4-momentum 165, 157, 232ff, 237ff, 253ff
- of number 165, 167, 168, 176
consistency conditions (Cauchy problem) 215ff, 220ff
- hypothesis of 106
constant of aberration 394
- cosmological 180, 214, 256, 257, 274, 276, 278, 321, 330, 331, 338, 420
- curvature 17, 80, 256ff, 281
- gravitational 181, 183, 184, 298, 419, 423, 424, 426
- Hubble’s 328
- Planck’s 122, 372, 418, 425
2-content, element of 160, 201
continuum, material 159ff
- - energy tensor of 173ff
- - equations of motion of 178
- - kinematics of 169ff
- - mechanics of 169ff, 173ff
continuum, spectral shift in 411ff
controlled observation 103
conversion formulae (g, cm, sec) 138, 184, 329, 423, 425
coordinate conditions 187, 191, 418
- cyclic 309
- ignorable 291
- time 105, 283, 288, 290, 419
coordinates 1, 419
- admissible 1, 36, 39, 40, 107, 267, 317, 344
- curvature 268, 270, 272, 274, 276, 290, 419
- dimensions of 179
- Fermi 84ff, 87ff, 91ff, 100ff, 136ff, 170, 267, 270, 402ff, 418, 419
- Gaussian, normal and skew 35ff, 39, 187, 213ff, 218ff, 360, 419
- - polar 266ff, 270ff, 276, 288, 420
- - imaginary 417
- isothermal 269ff, 305, 310, 311
- isotropic 269ff, 342
- normal 77
- null 187, 269, 270
- optical 86, 87ff, 91ff, 418, 419
- overlapping 1, 48, 76, 81, 344
- quasi-Cartesian 76ff, 81ff, 347ff, 419
- on sphere 76, 344
- transformation of 2, 48, 81, 348ff
Corinaldesi, E. 252

cosmological constant 180, 214, 256, 257, 274, 276, 278, 321, 330, 331, 338, 420
- red-shift 322ff
- theory 329, 330
covariant derivative 3, 417
- of parallel propagator 64ff
- of world-function 48ff, 51ff, 57ff, 67ff, 95ff, 303, 304, 420
creative spirit 185, 189, 222
crest of wave 106, 372
3-current, electric 355
4-current, electric 355ff, 364ff
curvature, constant 17, 80, 256ff, 281
- coordinates 268, 270, 272, 274, 276, 290, 419
- detector (five-point) 408ff
- first 12, 126, 136, 142, 145, 155, 197, 284, 396, 401, 417, 420
- Gaussian 268, 290
curvature invariant 17, 39, 419
- in Cauchy problem 215, 220
- and change of signature 417
- for conformally related space-times 318
- in electromagnetic field 363
- in Gaussian coordinates 38
- in G"odel-type space-time 334
- in statical space-time 207
curvature, measurement of 401, 408
- radius of 138, 424, 425, 426
- Riemannian 17, 75, 126, 149, 412, 418, 424, 425
- second 12, 131, 136ff, 146ff, 401, 418
- small 24, 58, 70, 74, 76, 79, 83, 87, 89, 93, 189, 209, 240, 301, 394, 403
- of stream-line 176, 178, 195, 197
tensor see Riemann tensor
- of terrestrial world-line 132, 136, 138ff, 143, 147, 149, 177, 396, 414
- third 12, 136ff, 146ff, 401, 418
- vector 396, 420
curve, measure of 3, 108, 418
- of no aberration 398
- normals and curvatures of 12, 417, 418; see also curvature, first, second, third
- spacelike 150ff
- world-function for two points on 95ff
curves, world-function for adjacent 100ff
Curzon, H. E. J. 314
cut-off of gravitational field 25, 395
cyclic coordinate 309
- permutation 364
cylindrical gravitational wave 218, 352
d'Alembertian operator 200, 236, 357
Darmois, G. 310
Das, A. X, XI, 142, 296, 309, 368
day 425
DC 401
de Sitter see Sitter, W. de
deci 422
deflection of light 297
defformation of continuum 171
degree centigrade 425
deka 422
delta, Kronecker 3, 19, 356, 420
density of angular momentum 242
- dimensions of 180
- electric 355, 420
- of energy 164, 177
- in expanding universe 329
- of mass 174, 180, 355, 420
- of 3-momentum 164
- of 4-momentum 242
- positive and negative 186, 189, 196, 213, 216, 223, 319, 331, 336, 337
- and pressure 188, 219, 286
- proper 174, 355, 420
- of sun 210, 223
tensor 247, 357
- of water 425, 426
densities, Newtonian and relativistic 183, 208
derivative, absolute 4, 12, 156, 417, 418, 420
- covariant and partial 3, 417, 420
- of parallel propagator 64ff
- of world-function 48ff, 51ff, 57ff, 67ff, 95ff, 303, 304, 420
deformation of falling body 138
- from flatness 76, 87, 418, 420
- of geodesics 19ff, 60ff, 258, 391
- vector 20
differential chronometry 401ff
differentiation, absolute and covariant see derivative
dimensions 177, 179, 180, 184, 250, 421
Dingle, H. 270
direction cosines 127, 396, 418, 420
- measurement of 118
discontinuity 2, 39, 186, 187, 194, 208, 225ff, 274, 278, 281, 286, 344
- essential 227
- see also junction conditions, shock wave
dispersive medium 375ff, 385, 388
distance 108
astronomical 327
Fermi 403
function 47
luminosity 327
optical 409
pseudo 323
spatial 3, 108, 113, 290, 327, 420
distribution function 162, 420
moments of 166, 419
Doppler effect 121ff, 298, 301, 307, 308
see also spectral shift
dual of angular momentum 242
double 18, 19, 239, 240, 419
of electromagnetic tensor 356, 366, 418
of Killing tensor 236
of skew-symmetric tensor 363
of vector 46
Duffin, R. J. 422
dust cloud 175, 180ff, 195, 219
charged 355
dynamical mean velocity 168, 169, 176
dynamics of continuum 169ff, 173ff
of particle see collisions, geodesic hypothesis, ponderomotive force
earth, angular velocity of 138ff, 420, 425
attraction of 205, 426
mass of 184, 425, 426
orbit and velocity of 421, 425, 426
pressure in 177
radius of 425, 426
see also acceleration of gravity, Riemann tensor, observer
Eddington, A. S. IX
eigentensor of Riemann tensor 237
eigenvalues and eigenvectors of energy (or Einstein) tensor 168, 169, 174, 185, 186, 189, 193, 194, 208, 233, 256, 279, 331, 334ff, 357
Einstein-de Sitter universe 321, 327, 330
Einstein equation \(E = mc^2 \) 174
Einstein field 200ff, 205ff
Einstein tensor 17ff, 418
and change of signature 417
for conformal metrics 319, 320
for conformastat metric 342
and conservation laws 232ff
at discontinuity 39ff
= eigenvalues and eigenvectors of 186, 189, 193, 194, 208, 233, 256, 279, 331, 334ff, 357
= and field equations 179
for Gaussian coordinates 38
for Gödel-type universe 334
for spherical symmetry 272
— for statical universe 208, 339
Eisenhart, L. P. 235
electric charge 355, 359, 366, 367, 370, 419
current 355ff, 364ff
density 355, 420
3-vector 355, 366
electromagnetic energy tensor 357ff, 418
equations of motion 358
field 354ff
shock wave 361, 362
tensor 355ff, 364ff, 418
theorems, integral 363ff
electromagnetism 354ff
electron, charge of 425
mass of 184, 425
volt 425
electrostatic unit 425
electrovac universe 367ff
element of area 44, 419
of 2-content 160, 201
metric 2, 416, 419
time 107
volume 45, 160, 419
elementary flatness 273, 313
equilibrium function 293
orbit 293
space 260
embedded bodies 205
de Sitter universe 261
emission, energy of 121, 325
frequency of 122
empty space-time see vacuum, gravitational wave
energy, conservation of 229
density of 164, 174, 177
dimensions of 179
Doppler effect in terms of 121
of emission 121, 325
flux of 164
high 109, 225, 373, 378
meaning of 232
measured in sec 180
of particle or photon 114, 118, 122, 325, 392, 418
positive and negative 114, 159, 186, 189, 196, 213, 216, 223, 319, 331, 336, 337
pseudo-tensor of 252ff, 419
of reception 121, 325
relative 114, 118, 122, 418
rest 169
ergy tensor of continuum 173ff, 419
— of dust cloud 175
— eigenvalues and eigenvectors of 168, 169, 174, 185, 186, 189, 193, 194, 208, 233, 256, 279, 331, 334ff, 357
— electromagnetic 357ff, 418
— in field equations 179
— of gas 176
INDEX

Fermi coordinates 84ff, 418, 419
 -- in differential chronometry 402ff
 -- for falling apple 136ff
 -- for adjacent curves 100ff
 -- geodesics for 91ff
 -- in kinematics of continuum 170ff
 -- metric for 87ff
 -- in spherical symmetry 267, 270
 -- world-function for 100ff
Fermi distance 403
 -- frame 117
 -- 3-space 402
 -- tetrad and triad 15, 83, 117, 127, 129, 135, 139, 170, 396, 401, 402
 -- transport X, 15, 420
 -- and bouncing photon 123ff
 -- and falling apple 135
 -- and rotation 14, 131, 173, 407
 -- on spacelike curve 150ff
Fermi-Walker transport 13, 83, 150ff, 156, 419
 field, electromagnetic 354ff
 -- equations 179ff, 184ff, 194, 256, 274, 278, 358, 367
 -- of embedded bodies 205ff
 -- of fluid mass 285ff, 316
 -- with positive and negative masses 314, 315
 -- statistical 169, 176
 -- equinox, precession of 296
 -- equivalence of gravitational and inertial mass 174
 -- principle of IX, 133
 -- in symmetry 265
 -- Erez, G. 315
 -- erg 425
 -- escape velocity 426
 -- essential discontinuity 227
 -- ether VII, 390, 391, 394
 -- Euclidean standpoint in space-time 243ff
 -- Euler-Lagrange equations 383
 -- Eulerian method in continuum mechanics 169
event 105
 -- base 242
 -- expansion of universe 322ff
 -- of world-tube 172, 219
 -- experiment 103
 -- ideal or thought 105
 -- extension of cell 42, 420
 -- second, of metric tensor 55
 -- exterior Schwarzschild field 274ff, 296, 315, 342
falling apple 132ff, 144, 284
 -- FC 84, 418
 -- feed-back method 194, 202, 206, 223
 -- Fermat’s principle 380, 386, 369, 418
 -- Fermi, E. X, 3, 13, 15, 84

- of perfect fluid 175
- in statistical model 164
- symmetry of 164, 173
- energy, transmission of 377
- equation, canonical or Hamiltonian 27
- conservation 18, 167, 174, 191, 213, 356
- Euler-Lagrange 383
- field 179ff, 184ff, 194, 256, 274, 278, 358, 367
- geodesic deviation 19ff, 60ff, 258, 391
- Hamilton-Jacobi 28
- Killing 236
- Lagrange 290, 323
- Laplace 311, 313, 341, 369ff
- Maxwell 356ff, 361, 364, 367
- equation of motion of charged particle 359
- -- of continuum 178, 358
- -- of isolated body 194ff, 246ff
- equation, Poisson 181, 189, 225
- -- of transparent medium 376, 386, 420
- -- wave 226, 352, 357
- equilibrium in electrovac universe 367ff
- -- of embedded bodies 205ff
- -- of fluid mass 285ff, 316
- -- with positive and negative masses 314, 315
- -- statistical 169, 176
- -- equinox, precession of 296
- -- equivalence of gravitational and inertial mass 174
- -- principle of IX, 133
- -- in symmetry 265
 -- Erez, G. 315
 -- erg 425
 -- escape velocity 426
 -- essential discontinuity 227
 -- ether VII, 390, 391, 394
 -- Euclidean standpoint in space-time 243ff
 -- Euler-Lagrange equations 383
 -- Eulerian method in continuum mechanics 169

 -- event 105
 -- base 242
 -- expansion of universe 322ff
 -- of world-tube 172, 219
 -- experiment 103
 -- ideal or thought 105
 -- extension of cell 42, 420
 -- second, of metric tensor 55
 -- exterior Schwarzschild field 274ff, 296, 315, 342
falling apple 132ff, 144, 284
 -- FC 84, 418
 -- feed-back method 194, 202, 206, 223
 -- Fermat’s principle 380, 386, 369, 418
 -- Fermi, E. X, 3, 13, 15, 84

 -- of perfect fluid 175
 -- in statistical model 164
 -- symmetry of 164, 173
 -- energy, transmission of 377
 -- equation, canonical or Hamiltonian 27
 -- conservation 18, 167, 174, 191, 213, 356
 -- Euler-Lagrange 383
 -- field 179ff, 184ff, 194, 256, 274, 278, 358, 367
 -- geodesic deviation 19ff, 60ff, 258, 391
 -- Hamilton-Jacobi 28
 -- Killing 236
 -- Lagrange 290, 323
 -- Laplace 311, 313, 341, 369ff
 -- Maxwell 356ff, 361, 364, 367
 -- equation of motion of charged particle 359
 -- -- of continuum 178, 358
 -- -- of isolated body 194ff, 246ff
 -- equation, Poisson 181, 189, 225
 -- -- of transparent medium 376, 386, 420
 -- -- wave 226, 352, 357
 -- equilibrium in electrovac universe 367ff
 -- -- of embedded bodies 205ff
 -- -- of fluid mass 285ff, 316
 -- -- with positive and negative masses 314, 315
 -- -- statistical 169, 176
 -- -- equinox, precession of 296
 -- -- equivalence of gravitational and inertial mass 174
 -- -- principle of IX, 133
 -- -- in symmetry 265
 -- Erez, G. 315
 -- erg 425
 -- escape velocity 426
 -- essential discontinuity 227
 -- ether VII, 390, 391, 394
 -- Euclidean standpoint in space-time 243ff
 -- Euler-Lagrange equations 383
 -- Eulerian method in continuum mechanics 169

 event 105
 -- base 242
 -- expansion of universe 322ff
 -- of world-tube 172, 219
 -- experiment 103
 -- ideal or thought 105
 -- extension of cell 42, 420
 -- second, of metric tensor 55
 -- exterior Schwarzschild field 274ff, 296, 315, 342
falling apple 132ff, 144, 284
 -- FC 84, 418
 -- feed-back method 194, 202, 206, 223
 -- Fermat’s principle 380, 386, 369, 418
 -- Fermi, E. X, 3, 13, 15, 84
– ponderomotive 359
form, fundamental or metric 1, 107, 420; see also metric
Fourés-Bruhat, Y. 213, 217, 360
Fourier transform 343
frame of reference 14, 114ff, 420
– at rest 168, 376
– rotation of 14, 117, 131, 138ff, 147ff, 173, 407
free fall 132ff, 144, 284
– particle 109; see also geodesic hypothesis
Frenet-Serret formulae 11, 129, 136, 140, 155
frequency 122, 372, 373, 375, 391, 420
– Doppler effect in terms of 122
– function 372, 418
– high 109, 225, 373, 378
– 4-vector 373ff, 378
function, elliptic 293
– frequency or phase 372, 418
– harmonic 311, 313, 341, 369ff
– Lagrangian 290, 323, 347, 381, 418
– principal or characteristic 28, 29, 419
– wave 202
– see also world-function
fundamental form and tensor 1, 107, 420; see also metric
– speed 378; see also speed of light
future 21, 105

g see acceleration of gravity
galaxy, mass of 184
gamma-rays 111, 411
gas 169, 176
Gauss, theorem of 41, 46, 190, 230, 281ff, 340, 366, 370
Gaussian coordinates 35ff, 187, 213, 218, 223, 360, 419
– polar 266, 270, 272, 276, 288, 420
Gaussian curvature 268, 290
generalized Kronecker delta 19, 356, 420
– wave equation 226
geodesic 6
– closed 260ff
– deviation 19ff, 60ff, 258, 391
– for Fermi coordinates 91ff
– in Hamiltonian theory 31ff
– hypothesis 110, 165, 195, 250ff, 290, 361, 391
– null see null geodesic
– for optical coordinates 91ff
– in solar field 290ff
– spacelike 154, 156
– special parameter on 7, 47, 110, 394ff
– stream-lines 175
– timelike 110
– triangle 70ff, 73ff, 78, 79

– in weak field 301
geodesics, intersection of see conjugate points
geometric object 249
geometrical optics 30, 225, 372ff
– in static universe 386ff, 393
– variational principles in 380ff
geometry 108
– and intuition VIII, 243
giga 422
Gilvarry, J. J. 296
g-method 189, 193, 211, 213
Gödel, K. 331, 335, 338
Gödel-type universe 331ff
gram measured in sec 184, 329, 423, 425
– weight of 426
gravitational angular momentum 241
– constant 181, 183, 184, 298, 419, 423, 424, 426
gravitational field 109, 132
– with axial symmetry 309ff, 352
– cut-off 25, 395
– of earth and sun 289ff, 304, 393, 425, 426
– measurement of VIII, IX, X, 144ff, 156ff, 408ff
– and Riemann tensor VIII, IX, X, 109, 132, 137, 144ff, 156ff, 183, 408ff
– with spherical symmetry 256ff, 274ff, 278ff, 285ff, 290, 419
– statical 205ff, 276, 304, 338ff, 367ff, 386ff, 393
– stationary 275, 299, 389, 398
– of sun see solar field
– in vacuo 180, 184, 216ff, 227, 274ff, 288, 290, 311ff, 340, 369
– weak 189, 203, 240, 242, 289, 301, 308, 393, 399
gravitational force 109, 184, 205, 210, 249, 426
– intensity 144, 284
– mass 174
– 4-momentum 240
– ray 228
– spectral shift 123, 298ff, 305ff, 387, 414
– torque 249
– wave 217, 218, 227, 228, 343ff, 350ff
graviton 228
gravity, acceleration of see acceleration of gravity
Greek suffixes 15, 117, 127, 136, 151, 170, 181, 212, 248, 267, 332, 345, 355, 415
Green, function of 23, 418
– theorem of 41, 46, 233, 239, 245
Griffith, B. A. 139
– group of motions 234ff, 275, 299, 309, 337, 352
group-speed 378, 388, 419
INDEX

Hagihara, Y. 293
Hamilton, W. R. 380
Hamiltonian theory 25ff, 375ff, 381, 419, 420
Hamilton-Jacobi equation 28
harmonic function 311, 313, 341, 369ff
heat, generation of 178, 229
Heaviside-Lorentz law 359
Heckmann, O. 322
hecto 422
helix 12
high energy or frequency 109, 225, 373, 378
Hilbert, D. 108
Hlavaty, V. 354
Hoffmann, B. 142, 192
homogeneous sphere 287ff
hour 425
Hubble's constant 328
hydrodynamics 176, 184, 186; see also fluid
hyperbola of constant curvature 12
hyperbolic orbit 293
hypothesis of consistency 106
– geodesic 110, 165, 195, 250ff, 290, 361, 391
– Riemannian 107
Icarus 296
ideal experiment 105
identifiable particles 169
– points and symmetry 265
ignorable coordinate 291
imaginary coordinate 417
impulse, internal 159, 160
incoherent fluid 175, 180ff, 195, 219, 355ff, 360ff
incompressible motion 173, 220
indefinite metric 1, 415
index, refractive 376, 386, 418
– Lorentz 10, 164
indicator 2, 420
inertial mass 174; see also mass
Infeld, L. 192, 252
information, transmission of 377
integrability conditions 173
integral conservation laws 229ff
– with Einstein tensor 232ff
– from Euclidean standpoint 246ff
– with Killing vector 237
– with pseudo-tensor 253ff
– with Riemann tensor 237ff
integral electromagnetic theorems 363ff
integral, potential 206
interchange, rule of 50
interferometer 115, 401
interior Schwarzschild field 287ff
internal impulse 159, 160

intersection of geodesics see conjugate points
intrinsic luminosity 327
intuition and geometry 243
invariant components 10, 419
– of electromagnetic tensor 355, 365
invariant of curvature see curvature invariant
– 2-point 48, 77, 411
– 3-point 72, 82
– 2-point-curve 84
inverse square law 284
inversec 423, 425, 426
irrotational motion 173, 196
isolated body, motion of 194ff, 246ff
isothermal coordinates 205, 269ff, 310, 311
isotropic coordinates 269ff, 342
– pressure 331, 338
– transparent medium 376
Israel, W. X, 40, 269
Jebesen, J. T. 276
junction conditions 39ff, 186, 187, 194, 208, 274, 278, 281, 286
Kermack, W. O. 322
Killing equation, tensor, vector 236, 420
kilo 422
kilometre 425
kinematically mean velocity 168, 176
kinematics of continuum 169ff
– of waves 372ff
Kozyrev, N. A. 139
Kronecker delta 3, 19, 356, 420
Lagrangian equation and function 290, 323, 347, 381, 418
– method 169
Lanczos, C. X, 19, 123, 248
Landau, L. 252
Laplace equation and operator 207, 217, 311, 313, 339ff
Latin suffixes 1, 415
latitude and world-line curvatures 139, 140, 148, 149
Lecat, M. 427
lemmas for Cauchy problem 211ff
length 3, 108, 113, 290, 421
Lense, J. 309
Levi-Civita, T. 12, 228, 310, 389, 415
Lichnerowicz, A. IX, 1, 40, 211, 213, 228, 360
Lifshitz, E. 252
light, deflection of 297
– particle of see photon
– speed or velocity in vacuo 124, 174, 228, 295, 298, 343, 345, 375, 378, 423, 424, 426
INDEX

- wave 361
- see also geometrical optics, null geodesic
 limit, coincidence 51ff, 57, 420
 line, straight 245, 301
 linear approximation 192, 194, 202ff, 211, 221, 309
 - momentum 229
 Lorentz indices 10, 164
 - matrix 9, 77, 418
 - transformation 9, 77, 82
 Lorentz-Heaviside law 359
 luminosity distance 327
 - intrinsic 327

magnetic 3-vector 355, 366
magnitude of vector 2
Majumdar, S. D. 368
mapping by null geodesics 21
Marder, L. 352
Margerison, T. A. 411
Marshall, W. 411
mass of body 209, 282
 - centre 239, 245ff
 - conservation of 219, 359
 - density 174, 180, 355, 420
 - dimensions of 177, 179, 180, 250, 421
 - of earth 184, 425, 426
 - of electron 184, 425
 - of fluid sphere 288
 - of galaxy 184
 - gravitational and inertial 174
 - measured in sec 180, 421
 - of moon 184, 425, 426
 - of particle 109, 159
 - positive and negative 314, 315; see also density
 - proper 109, 418
 - of star 282, 418
 - in statical universe 340
 - of sun 184, 294, 425, 426
masses, oscillating 353
Mast, C. B. X, XI, 394
material continuum 159ff
 - particle 105, 109, 159
 - mathematical observation 103, 418
 matrix, Lorentz 9, 77, 418
 - rate-of-strain 171, 420
 - spin or rotation 171, 420
 - stress 164
matter, spherically symmetric distribution of 278ff
 - tensor see Einstein tensor
 - see also continuum, density, energy
tensor, mass, particle
Maxwell's equations 356ff, 361, 364, 367
McCrea, W. H. 322
McVittie, G. C. 211, 270, 289, 296, 298,
 300, 301, 322, 328, 329, 337
mean velocity 168, 169, 176
measure of curve 3, 108, 418
 - spatial 112ff
 - of vector 2
measurement of direction 118ff
 - of gravitational field (Riemann tensor)
 VIII, IX, X, 144ff, 156ff, 408ff
 - of time 105ff, 138, 401, 421
mechanical angular momentum 241
 - 4-momentum 240
mechanics of continuum 169ff, 173ff
 - in statistical model 165ff
 - see also fluid, force, geodesic, orbit,
 particle, pressure, stress
medium, dispersive 375ff, 385, 388
 - equation 376, 386, 420
 - non-dispersive 377, 384, 385, 386, 388
 - static 386ff
 - transparent 372ff
mega 422
Mercury 296
metric for axial symmetry 309ff, 352
 - conformastat 341, 342, 369
 - for electrovac universe 367ff
 - for Fermi coordinates 87ff
 - for fluid sphere 287ff
 - form 1, 107, 420
 - isotropic 269ff, 342
 - modified optical 376, 384, 418
 - for optical coordinates 87ff
 - orthogonal 211, 270
 - for quasi-Cartesian coordinates 80
 - Schwarzschild 275, 289, 290, 304
 - for solar field 290, 304, 342
 - for spherical symmetry 265ff
 - statical 205ff, 276, 304, 338ff, 367ff,
 386ff, 393
 - stationary 275, 299, 398
 - tensor 1, 107, 179, 243, 418
 - and change of signature 417
 - second extension of 55
Michelsen-Morley experiment 401, 408, 410
micro 422
Mie, G. 289
milli 422
Milne, E. A. 322
Minkowski, H. IX, X
MO 103, 418
model universes 330
molecule 176
Møller, C. IX, 5, 18, 133, 252, 301
moments of distribution 163, 419
momentum, angular see angular momentum
 - linear 229
3-momentum 114, 118, 229
INDEX

- density of 164
- 4-momentum 418, 419
 - of body 248, 250
 - conservation of 165, 167, 232ff, 237ff, 253ff
- density of 242
- flux of 164ff, 174, 238, 240, 418
- gravitational 240
- mechanical 240
- of particle or photon 110, 114, 122, 159, 325, 378, 391, 419
- space 160
- total 238, 240
- monopole 278
- Moon, P. B. 411
- moon 104, 132, 210
- attraction of 426
- distance from earth 425
- mass of 184, 425, 426
- radius of 425, 426
- velocity of 426
- Mössbauer, R. L. 411
- motion of continuum 169ff, 173ff
 - in electromagnetic field 358, 359
 - incompressible 173, 220
 - irrotational 173, 196
 - of isolated body 194ff, 246ff
 - of perfect fluid 175ff, 188, 218ff
 - rigid 114ff, 173, 179, 188, 219, 414
- motions, group of 234ff, 275, 299, 309, 337, 352
- Muto, Y. 47

- nano 422
- National Bureau of Standards 421
- natural observation 103, 418
- nebula 322
- negative energy and mass see density, energy, mass
- Newtonian absolute time 105
 - astronomy 289, 294, 390
 - comparisons 179ff, 184, 284, 289ff, 390
 - fallacies 154
 - hydrodynamics 176, 184, 188
 - potential 2, 148, 149, 181, 183, 191, 208, 209, 419
- NO 103, 418
- non-dispersive medium 377, 384, 385, 386, 388
- Nordström, G. 289
- norm of vector 2
- normal congruence 173, 196
 - coordinates 77
 - unit 418
- normals of curve 12, 417, 418; see also curvature, first, second, third
 - of terrestrial world-line 135ff, 143, 147ff; see also Fermi tetrad and triad, observer notation 415ff
- null cone 21, 33, 109, 201, 244, 330, 375
 - in momentum space 160
- null coordinates 187, 269, 270
- null geodesic 7
 - and aberration 391ff
 - as bicharacteristic 227, 361
 - in charged fluid 361
 - in coherent system 33
 - in de Sitter universe 259, 263
 - deviation 21, 259
 - in differential chronometry 401ff
 - in expanding universe 322ff
 - as gravitational ray 228
 - in Hamiltonian theory 31
 - mapping by 21
 - in matter 110, 378
 - with modified metric in optics 384, 388
 - and null surface 33, 225
 - in solar field 290ff, 297
 - special parameter on 7, 47, 110, 394ff
 - and spectral shift 120, 299, 322ff, 411ff
 - as world-line of photon 110
- null rays, system of 33
 - shell 330
 - surface 32, 33, 225, 227, 228, 345, 361
 - vector 2, 109
 - wave 34, 375
- number, conservation of 165, 167, 168, 176
 - of particles per unit volume 164
 - polarized 161, 162, 164
- numerical flux 163
 - values 421ff
 - vector 163, 176, 418

- O'Brien, S. X
- observation, astronomical 118, 289, 330, 390ff
 - mathematical and natural 103, 418
 - optical 21, 86, 91, 123ff, 401ff
- observer, world-line of 21
 - first curvature and normal 126ff, 131, 136ff, 142ff, 144ff, 177, 396, 401, 414, 417, 424, 426
 - second curvature and normal 131, 136ff, 146ff, 401, 418
 - third curvature and normal 136ff, 146ff, 401, 418
- OC 86, 418
- one-point principal function 29, 419
- operational method 105
- operator, d'Alambertian 200, 236, 357
 - projection 172, 397, 419
optical coordinates 86, 87ff, 91ff, 418, 419
 – distance 409
 – modified metric 376, 384, 418
 – observation 21, 86, 91, 123ff, 401ff
 – ray 30, 377; see also null geodesic
optics, geometrical see geometrical optics
 – physical 225
O’Raifeartaigh, L. X, 3, 84, 277
orbit of earth 421, 425
 – in solar field 289ff
orientable space 43
oriented cell 42
 – tensor 18
origin of quasi-Cartesian coordinates 76, 81ff
orthogonal metric 211, 270
orthogonality, chronometric 112ff
 – of ray and wave 32
orthonormal tetrad and triad 8ff, 14, 419, 420; see also Fermi tetrad and triad
oscillating masses 353
OT 8
overlapping coordinates 1, 48, 76, 81, 344

Papapetrou, A. 252, 368
parabolic orbit 293
parallel propagator 59, 67, 82, 120, 258, 418
 – – covariant derivates of 64ff
parallel transport 12
parameter, special, on geodesic 7, 47, 110, 394ff
parsec 426
particle, free 109, 110
 – identifiable in continuum 169
 – of light see photon
 – mass of 109, 159
 – material 105, 109, 159
 – 4-momentum of 110, 114, 159, 419
 – radiation from 379
 – in statistical model 159
 – test 359; see also geodesic hypothesis
past 21, 105
Pastori, M. 228
Pauli, W. IX, 42, 180, 204, 289, 407, 415, 416
perfect fluid, Cauchy problem for 218ff
 – – energy tensor for 175
 – – field equations for 186
 – – motion of 175ff, 188, 198, 199, 218ff
 – – with spherical symmetry 285ff, 316
 – – see also fluid
perihelion, advance of 293ff
period of atomic clock 106, 421, 425
 – of waves 343, 347, 373
permutation symbol 18, 42, 364, 420
 – tensor 18, 44, 172, 355, 363, 420
Pham Mau Quan 213, 355, 360, 384
phase-angle and function 372, 420
 – speed and wave 372ff, 375ff, 419
photon 21, 109ff
 – in astronomy 118, 290ff, 324ff, 391ff
 – bouncing 123ff
 – in conformally flat universe 322ff
 – energy of 114, 118, 122, 325, 392, 418
 – and field theory 228, 361
 – gun 123, 131
 – of high energy or frequency 109, 225, 373, 378
 – mass of 110, 159
 – 4-momentum of 110, 114, 122, 159, 325, 378, 391, 419
 – in solar field 290, 297ff
 – in statistical model 159
 – in transparent medium 109, 375ff
 – see also geometrical optics, light, null geodesic, spectral shift
physical optics 225
 – quantities, numerical values of 421ff
pico 422
pilot-values 194, 223
Pirani, F. A. E. X, XI, 344
Planck’s constant 122, 372, 418, 425
plane gravitational wave 345ff, 350ff
planetary orbit 290ff
Plebanski, J. 192
plumb line 147, 149
2-point invariant 48, 77, 411
3-point invariant 72, 82
2-point tensor 49, 59, 82, 242
2-point-curve invariant 84
Poisson’s equation 181, 189, 225
polar angle 267, 420
 – Gaussian coordinates 266, 270, 272, 276, 288, 420
 – space 260, 263
polarization factor 161
polarized number of particles 161, 162, 164
 – target 161
ponderomotive force 359
positive energy and mass see density, energy, mass
 – pressure 186, 319, 331, 336, 337
potential integral 206
 – Newtonian 2, 148, 149, 181, 183, 191, 208, 209, 419
 – retarded and advanced 193, 200ff, 211, 353
4-potential 357, 420
Pound, R. V. 411
precession of equinox 296
pressure 164, 419
 – of atmosphere 205, 426
 – constant on stream-line 220
 – and density 188, 219, 286
INDEX

- in earth 177
- as eigenvalue 175
- and gravitational pull 205ff
- isotropic 338
- positive 186, 319, 331, 336, 337
principal direction see eigenvector
- function 28, 29, 419
principle of equivalence IX, 133
- of Fermat 380, 386, 389, 418
- variational 6, 7, 26, 27, 380ff, 388ff
product, scalar 112ff
projectile 141
projection formula 161
- operator 172, 397, 419
propagation of vector see transport
propagator, parallel 59, 67, 82, 120, 258, 418
- - covariant derivatives of 64ff
proper density 174, 355, 420
- mass 109, 418
- time 105, 283, 288, 289, 290
pseudo-distance 323
- sphere 34, 160
- tensor of energy 252ff, 419
pulsating star 278ff

quadratic form see metric
quadrupole 315
quasi-Cartesian coordinates 76ff, 81ff, 347ff, 419
QC 77, 419

radial speed 120, 419
radiation from atom or particle 106, 379
- Čerenkov 380
- see also geometrical optics, null geo-
desic, photon, spectral shift
radio waves 111
radius of curvature 138, 424, 425, 426; see also curvature
- of earth and its orbit 425, 426
- of moon 425, 426
- of Riemannian curvature 424, 425
- of sun 294, 425, 426
rate-of-strain 171, 172, 178, 182, 195, 414, 420
rational unit 356, 366
ray, deflection of 297
- in geometrical optics 377ff, 386ff
- gravitational 228
- in Hamiltonian theory 29ff
- in solar field 289ff, 393
- speed of 377, 378, 387, 388, 419
- 4-velocity 378
- see also null geodesic, photon
Rayner, C. B. X, 173
realistic spirit 184, 189, 223, 290
Rebka, G. A. 411
reception, energy and frequency of 121, 122, 325
recession, speed of 120, 300, 322
red-shift 121; see also spectral shift
reference, frame of see frame of reference
refractive index 376, 386, 418
relative electrical density 355
- speed and velocity 120, 189, 289, 306, 307, 419, 426
- tensor 247, 357
repeated suffixes 1, 415
rest and aberration 400, 401
- energy 169
- frame 168, 376
- relative 120
retarded potential 193, 200ff, 211, 353
Ricci, G. 415
Ricci tensor 17, 419
- - for axial symmetry 310ff
- - and change of signature 417
- - for conformal space-times 318
- - for conformastat metric 341, 342
- - at discontinuity 39
- - for Gaussian coordinates 38
- - for Gödel-type universe 333
- - for gravitational wave 345, 346
- - for spherical symmetry 271
- - for statical field 207, 339
Riemann subtensor 38, 419
Riemann tensor 15, 16, 419
- - and change of signature 417
- - for conformal space-times 318
- - for conformastat metric 341, 342
- - and conservation laws 237ff
- - for curvature coordinates 272
- - at discontinuity 39
- - double dual of 18, 19, 239, 240, 419
- - eigentensor of 237
- - in empty space-time 337
- - for Gaussian coordinates 38
- - for Gödel-type universe 332, 333
- - for gravitational wave 345, 346
- - and measurement of gravitational
 field VIII, IX, X, 109, 132, 137, 144ff, 156ff, 183, 408ff
- - small 24, 58, 70, 74, 76, 79, 83, 87, 89, 93, 189, 209, 240, 301, 394, 403
- - for spherical symmetry 271, 272
- - for statical field 207, 339
- - symmetrized 54, 57, 125, 405, 419
Riemannian curvature 17, 75, 126, 149, 412, 418, 424, 425
- space-time 1ff, 30ff, 103ff
rigidity 114ff, 173, 179, 188, 219, 401, 414
Robertson, H. P. 321, 322
Robinson, I. 344
Rosen, N. 173, 315, 352
rotation of body 147ff, 196ff, 309
INDEX

- of continuum 171 ff
- of earth 138 ff, 425, 426
- and Fermi transport 14, 131, 173, 407
- of frame of reference 14, 117, 131, 138 ff, 147 ff, 173, 407
- matrix, tensor, vector 171, 172, 182, 420
- of perihelion 293 ff
- and Sagnac effect 407
rotational symmetry see axial symmetry
Ruse, H. S. VIII. 47

Sagnac effect 407
Salmon, G. 409
Salzman, G. 173
satellite, artificial 132, 142
scalar product 112 ff
Scheidegger, A. E. 192
Schiffer, J. P. 411
Schild, A. 1, 18, 38, 42, 247, 252, 357
Schouten, J. A. 42, 47
Schrödinger, E. X. 261, 354
Schücking, E. 322
Schwarzschild, K. 275, 288
Schwarzschild field, complete 285 ff
- exterior 274 ff, 296, 315, 342
Schwarzschild singularity 283
second and centimetre 138, 423, 425
- and mass or energy 180, 184, 329, 423, 425
- physical quantities expressed in 421 ff
- as unit of time 138, 421, 425, 426
shift, red or spectral see spectral shift
shock wave 225 ff, 344
- electromagnetic 361, 362
- see also discontinuity
sign of G_{44} or T_{44} 186, 316, 331
signal 377, 401
signature 1, 107, 189, 193, 244, 276, 331, 345, 416, 417
effect of changing 417
Singer, S. F. 142
singularity of Schwarzschild 283
Sirius, companion of 301
Sitter, W. de 257, 321, 330
- universe of 256 ff, 281, 321
slowness of wave 375
small body 250, 290
- curvature 24, 58, 70, 74, 76, 79, 83, 87, 89, 93, 189, 209, 240, 301, 394, 403
- geodesic triangle 73 ff
- relative velocity 121, 189, 289, 306, 307
smallness 58, 62, 70, 74, 132, 177, 250, 290
Smithsonian Physical Tables 423
solar field, metric for 290, 304, 342
- orbits and rays in 289 ff, 393
- spectral shift in 289 ff, 393
- world-function for 305
solar system 185, 223, 393
space, antipodal, elliptic, polar, spherical 260, 263
- finite 257
- of 4-momentum 160
- orientable 43
- Riemannian 1, 109
spacelike curve 150 ff
- geodesic 154, 156
- target 161
- vector 2, 108, 109
- wave 375
space-time VIII, IX, 105
- conformal 317 ff, 322 ff
- of constant curvature 17, 80, 256 ff, 281
- diagram VIII, IX, 112
- from Euclidean standpoint 243 ff
- flat 17, 48, 76, 256, 257, 281, 289
- Gödel type 331 ff
- with group of motions 234 ff, 275, 299, 309, 337, 352
- Hamiltonian rays and waves in 30 ff
- Riemannian 1 ff, 30 ff, 103 ff
- of small curvature see small curvature
- statical 205 ff, 276, 304, 338 ff, 367 ff, 386 ff, 393
- stationary 275, 299, 398
- see also metric, universe
- spatial measure, distance or length 3, 108, 112 ff, 290, 327, 418, 421
- see also distance
- special parameter on geodesic 7, 47, 110, 394 ff
- universes 309 ff
- spectral shift for companion of Sirius 301
- in continuum 411 ff
- cosmological 322 ff
- and Doppler effect 121 ff, 298, 301, 307, 308
- and energy 121
- and frequency 122
- in solar or statical field 298 ff, 387
- and world-function 123, 298 ff, 306 ff, 393, 411 ff
spectrometer 391
speed, fundamental 378
- of group 378, 388, 419
- of light in vacuo 124, 174, 228, 295, 298, 343, 345, 375, 378, 423, 424, 426
- of phase 372 ff, 419
- radial or of recession 120, 300, 322, 419
- of ray 377, 378, 387, 388, 419
- relative 120, 289, 306, 307, 419, 426
- of wave 372 ff, 388, 419
sphere, celestial 393, 397
- coordinates on 76, 344
INDEX

- fluid 285ff, 316
 - spherical gravitational wave 352, 353
- space 260
- spherical symmetry 256ff, 265ff, 419.
 - - and axial symmetry 315
 - - complete field with 278ff, 285ff
 - - exterior field with 274ff, 290ff
 - - formulae for 270ff
 - - metric for 265ff
- spin matrix, tensor, vector 171, 172, 182, 420
- spinning body 147ff, 196ff, 309
- spring-balance 144
- standard clock 105ff, 421
- star, aberration of 393ff
 - apparent direction of 396ff, 418, 419
 - gravitational field of 278ff
 - mass of 282, 418
 - operator 211; see also conjugate tensor, dual
- pulsating 278
- statical field, conformastat 341, 342, 369
 - - electrovac 367ff
 - - with embedded bodies 205ff
 - - metric and tensors for 338ff
 - - optics in 386ff, 393
 - - and spherical symmetry 276
 - - world-function for 304
 - - see also metric, solar field
- statical measurement of gravitational field 144ff
- stationary field 275, 299, 389, 398
 - principle see variational principle
 - time 390
- statistical equilibrium 169, 176
 - model 159ff, 165ff
- stellar aberration see aberration
- Stockum, W. J. van 309
- Stokes, theorem of 411ff, 230, 239, 364
- straight line 245, 301
- strain, rate of 171, 172, 178, 182, 195, 414
- Strathdee, J. X., 394
- stream-line 169
 - curvature of 176, 178, 195, 197
 - geodesic 175
- stream-lines and rotation 173
 - tube of 172, 185
- stress and gravitational pull 205, 210
 - in statistical model 164
- stress tensor 175, 419
 - - and eigenvalues of energy tensor 186
 - - and junction conditions 187
 - - see also energy tensor, pressure
- stress-density test 353
- subtensor 38, 419
- successive approximation 191
- suffixes, capital, Greek, Latin 1, 15, 261, 332, 345, 415; see also Greek suffixes
- repeated 1, 415
- suicide, ballistic 141ff
- summation convention 1, 415
- sun, attraction of 205, 426
 - density of 210, 223
 - mass of 184, 294, 425, 426
 - radius of 294, 425, 426
 - see also solar field
- surface, Hamiltonian 26
 - null 32, 33, 225, 227, 228, 345, 361
- symbols, list of 417ff
- symmetrized Riemann tensor 54, 57, 125, 405, 419
- symmetry, axial 309ff, 352
 - of energy tensor and pseudo-tensor 164, 173, 253
 - simplifications due to 191
 - spherical see spherical symmetry
 - in time 217
- tangent vector 417
- target 161ff, 174
- Taub, A. H. 173, 337
- telescope 118, 326, 391, 396
- temperature 176, 425
- Temple, G. 86
- tension 164, 186
 - in plumb line 147, 149
- tensor of aberration 395, 419
 - conjugate 211
 - density 247, 357
 - dual see dual
 - Einstein see Einstein tensor
 - electromagnetic 355ff, 364ff, 418
 - energy see energy tensor
 - extension of cell 42, 420
 - formulae 1ff
 - Killing 236, 420
 - metric or fundamental see metric
 - oriented 18
 - permutation 18, 44, 172, 355, 363, 420
 - 2-point 49, 59, 82, 242
 - pseudo- 252ff, 419
 - rate-of-strain 171, 172, 178, 182, 195, 414, 420
 - relative 247, 357
 - Ricci see Ricci tensor
 - Riemann or curvature see Riemann tensor
 - of rotation or spin 171, 172, 182, 420
 - stress see stress tensor
- tera 422
- test-particle 359; see also geodesic hypothesis
- tetrad see Fermi tetrad, orthonormal tetrad
- thick wave 344
- thin wave 344
Thirring, H. 309
thought experiment 105
time, concept of 105, 299
- coordinate 105, 283, 288, 290, 419
- element of 107
- measurement of 105ff, 138, 401, 421
- order 105
- proper 105, 283, 288, 289, 290
- stationary 390
- symmetry in 217
- of trip see trip-time
timelike curve and world-function 95ff, 100ff
- geodesic, closed 264
- target 161
- vector 2, 109
- wave 375
T-method 190, 193, 211, 213
Tolman, R. C. IX, 211, 270, 301, 322, 330
Tonnellat, M. A. 354
topology 260ff
torque, gravitational 249
total angular momentum 238, 241
- 4-momentum 238, 240
transformation of coordinates 2, 48, 81, 348ff
- Lorentz 9, 77, 82
transmission of information 377
transparent medium see medium
transport, Fermi see Fermi transport
- Fermi-Walker 13, 83, 150ff, 156, 419
- parallel 12
triad, Fermi see Fermi tetrad and triad
- orthonormal 14, 420; see also Fermi
- tetrad and triad, frame of reference
triangle, finite geodesic 70ff, 78, 79
- small geodesic 73ff
trip-time 115, 420
- for bouncing photon 126
- in differential chronometry 401ff
- and rigidity 115, 401
tube of stream-lines 172, 185
two-body problem 185, 188, 314
two-point invariant and tensor 49, 59, 72, 82, 242

uncontrolled observation 103
unified theory 354
unit, Ångstrom 425
- electrostatic 425
- normal 418
- rational 356, 366
- second as fundamental 138, 184, 421ff
universe, age of 329, 426
- conformstat 341, 342, 369
- of de Sitter 256ff, 281, 321
- of Einstein and de Sitter 321, 327, 330
- electrovac 367ff

- expanding 322ff
- of Gödel type 331ff
- model 330
- statical see statical field
- stationary 275, 299, 389, 398
universes, special 309ff
vacuum 180, 184, 216ff, 227, 274ff, 288, 290, 311ff, 340, 378, 391
- with electromagnetic field 355, 357, 361, 363, 367ff
van Stockum see Stockum, W. J. van
variational principles 6, 7, 26, 27, 380ff, 388ff
Veblen, O. 55
vector base, quasi-Cartesian 76, 82
- deviation 20
- dual of 46
- electric 355, 366
- first curvature 396, 420
- frequency 373ff, 378
- Killing 236, 420
- magnetic 355, 366
- magnitude, norm or measure of 2
- normal to curve 417, 418; see also
- normals, Fermi tetrad and triad
- numerical 163, 176, 418
- of rotation or spin 172, 420
- tangent 417
- timelike, spacelike, null 2, 109
velocity, angular see angular velocity
- areal 294
- of escape 426
- group 378, 388, 419
- of light in vacuo see light
- mean 168, 169, 176
- radial or of recession 120, 300, 322, 419
- relative 120, 289, 306, 307, 419, 426
- small 121, 189, 289, 306, 307
- 4-velocity 110, 119, 159, 185, 417, 419
- of charge 355, 419
- of continuum 169, 174, 357
- of optical ray 378
volt, electron 425
volume, element of 45, 160, 419
vorticity 182
Walker, A. G. 13
water, density of 425, 426
wave 343
- crest of 106, 372
- in dispersive medium 375ff
- electromagnetic 361, 362
- equation 226, 352, 357
- frequency of 372, 373
- function 202
- in geometrical optics 371ff
- gravitational 217, 218, 227, 228, 343ff, 350ff
– in Hamiltonian theory 29ff
– kinematics of 372ff
– of light 361
– null 34, 375
– phase 372ff, 375ff, 419
– shock see shock wave
– slowness of 375
– spacelike, null, timelike 375
– speed of 372ff, 388, 419
3-wave 372
weak gravitational field see gravitational field
Weber, J. 217
weight of gram 426
– of relative tensor 247, 357
weights and measures 421
Weyl, H. X, 265, 310, 354, 368
Wheeler, J. A. 217
Whitehead, A. N. 289, 296
Whittaker, E. T. 327, 340, 354
world-function VIII, 47ff, 420
– and astronomical observation 391ff
– and ballistic suicide 142
– and bouncing photon 125ff
– coincidence limits for 51ff, 57, 420
– covariant derivatives of 48ff, 51ff, 57ff, 67ff, 95ff, 303, 304, 420
– and differential chronometry 404
– in Fermi coordinates 100ff
– in flat space-time 48
– for gravitational wave 347ff
– and group of motions 235
– and Hamilton's principal function 28
– and integral conservation laws 237ff
– partial differential equation of 51
– for solar field 305
– and spectral shift 123, 298ff, 306ff, 393, 411ff
– and timelike curves 95ff, 100ff
– for weak field 301ff
world-line 105
– of free particle or photon 110
– of mass-centre 252
– of terrestrial observer see observer
– see also stream-line
world-tube 172, 185, 194, 246

Yano, K. 47
yardstick 109
year 138, 426