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TO ERNEST NAGEL AND ALFRED TARSKI 



PREFACE 

The twenty-three papers collected in tbis volume represent an important 
part of my published work up to the date of this volume. I have not 
arranged the paper chronologically, but under four main headings. 

Part I contains five papers on methodology concerned with models and 
measurement in the sciences. This part also contains the first paper 
I published, 'A Set of Independent Axioms for Extensive Quantities', in 
Portugaliae Mathematica in 1951. 

Part 11 also is concerned with methodology and ineludes six papers 
on probability and utility. It is not always easy to separate papers on 
probability and utility from papers on measurement, because of the elose 
connection between the two subjects, but Artieles 6 and 8, even though 
they have elose relations to measurement, seem more properly to belong 
in Part 11, because they are concerned with substantive questions about 
probability and utility. 

The last two parts are concerned with the foundations of physics and 
the foundations of psychology. I have used the term foundations rather 
than philosophy, because the papers are mainly concerned with specific 
axiomatic formulations for particular parts of physics or of psychology, 
and it seems to me that the termfoundations more appropriately describes 
such constructive axiomatic ventures. Part 111 contains four papers on 
the foundations of physics. The first paper deals with foundations of 
special relativity and the last three with the role ofprobability in quantum 
mechanics. I regret not ineluding some of the earlier work with 
J. C. C. McKinsey on the foundations of elassical mechanics, but I 
already have given an account in general terms of that work in the last 
chapter of my Introduction to Logic. 

The largest number of papers is in the final part on the foundations 
of psychology. The greater concentration of papers here correct1y refiects 
my interests over the past decade. In fact, the bulk of my papers that I 
think are of some conceptual importance and that are not ineluded in tbis 
volume are papers that lie strict1y within mathematical psychology as a 
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scientific discipline, and are consequently not really appropriate for 
inc1usion in the present volume. Because so many of the papers in Part IV 
are concerned with the psychological foundations of mathematics in one 
form or another, it would almost have been appropriate to have so labeled 
Part IV. But I have inc1uded several papers that have nothing directly to 
do with his subject, and so I have kept the more general title. 

Two of the papers in this collection were written with co-authors. 
The fourth paper, 'Foundational Aspects of Theories of Measurement', 
was writtenjointly with Dana Scott. The eighth paper, 'An Axiomatization 
of Utility Based on the Notion of Utility Differences', was written jointly 
with Murie1 Winet. The appearance of these two papers here has been 
generously agreed to by them. 

Two of the papers have not previously been published. These are the 
papers, 'Behaviorism' and 'On the Theory of Cognitive Processes' . The 
first of these two papers was written between 1963 and 1965, and was 
given in various revised forms at Swarthmore College and at the University 
of Illinois. The second of the two papers was written in 1967 and was 
given as an Arnold Isenberg Memorial Lecture at Michigan State 
University. 

Acknowledgments for permission to publish the various papers are 
given at the bottom of the first page of each artic1e, but thanks are 
extended here to the many editors and publishers who generously granted 
this permission. No substantive or real stylistic changes have been made 
in any of the artic1es; only the manner of referring to published artic1es 
and books has been standardized, as has the formatting of seetion 
headings. Footnotes in the original articles are numbered, beginning 
anew with each artic1e; the bibliographie footnotes that originate with 
this publication are indicated by a dagger following the number. Same 
introduetory remarks about eaeh article and subsequent pertinent lit
erature are to be found at the beginning of each part. 

The publication of aseries of papers spanning more than 18 years of 
work seems an appropriate occasion to acknowledge some of the intel
lectual debts I have ineurred during those years. For my initial intro
duction to the philosophy of science and for continual intellectual counsel 
and advice, I owe a great deal to Ernest Nagel. Shortly after my arrival at 
Stanford University in 1950, J. C. C. McKinsey joined the faculty of the 
Department of Philosophy, and I learned from hirn the set-theoretical 
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tools that have been one of my main stocks in trade over the years. 
Various collaborative work that we planned beyond the several articles 
we originaHy published was abruptly halted by his untimely death in 1953. 
McKinsey acknowledged that the greatest influence on his scientific career 
had been Alfred Tarski. Both through McKinsey and also through direct 
acquaintance with Tarski, inc1uding attendance at his seminars at Berkeley 
during the years when I was first at Stanford and through his published 
works as well, I learned much of what I know ab out intellectual c1arity and 
precision. And so, I take this occasion to acknowledge how much I owe 
to Tarski. I am indebted to William K. Estes for my first introduction to 
the conceptual and foundational problems of psychology, especially 
mathematical learning theory. We worked together intensively during 
1955-56 when we were both Fellows at the Center for Advanced Study in 
the Behavioral Sciences at Stanford. In more recent years I have also 
learned much from Duncan Luce about both mathematical psychology 
and the theory of measurement. 

It is important to record that I owe a very considerable debt to my 
younger colleagues as well. I mention especiaHy Dana Scott and Richard 
C. Atkinson. 

The idea of putting this volume together originated with Donald 
Davidson and Jaakko Hintikka. To both ofthem I owe a further debt for 
enlightening and penetrating conversations about philosophical matters. 
This is especially true of Davidson, who was my colleague at Stanford for 
many years. Finally, I want to acknowledge the dedicated and able editorial 
assistance of Miss Diana Axelson and Mrs. Lillian O'Toole, as weH as 
the excellent help of Miss Anne Fagot in preparing the indexes and that 
of Mrs. Maria Jedd in preparing the illustrations. 

PATRICK SUPPES 

Stanford, California, January 1969 



CONTENTS 

PREFACE VII 

PAR TI: METHODOLOGY: MODELS AND MEASUREMENT 

1. A Comparison of the Meaning and Uses of Models in 
Mathematics and the Empirical Sciences (1960) 10 

2. Models of Data (1962) 24 
3. A Set of Independent Axioms for Extensive Quantities (1951) 36 
4. Foundational Aspects of Theories of Measurement (1958) 

(with Dana Scott) 46 
5. Measurement, Empirical Meaningfulness, and Three-Valued 

Logic (1959) 65 

PART Il: METHODOLOGY: PROB ABILITY AND UTILITY 81 

6. The Role of Subjective Probability and Utility in Decision-
Making (1956) 87 

7. The Philosophical Relevance of Decision Theory (1961) 105 
8. An Axiomatization of Utility Based on the Notion of Utility 

Differences (1955) (with Muriel Winet) 115 
9. Behavioristic Foundations of Utility (1961) 130 

10. Some Formal Models of Grading Principles (1966) 148 
11. Probabilistic Inference and the Concept of Total Evidence 

(1966) 170 

PART In: FOUNDATIONS OF PHYSICS 189 

12. Axioms for Relativistic Kinematics with or without Parity 
(1959) 194 

13. Probability Concepts in Quantum Mechanics (1961) 212 
14. The Role of Probability in Quantum Mechanics (1963) 227 



XII CONTENTS 

15. The Probabilistic Argument for a Nonc1assical Logic of 
Quantum Mechanics (1966) 243 

PART IV: FOUNDATIONS OF PSYCHOLOGY 253 

16. Stimulus-Sampling Theory for a Continuum ofResponses (1960) 261 
17. On an Example of Unpredictability in Human Behavior (1964) 285 
18. Behaviorism (1965) 294 
19. On the Behavioral Foundations of Mathematical Concepts 

(1965) 312 
20. Towards a Behavioral Foundation of Mathematical Proofs 

(1965) 355 
21. The Psychological Foundations of Mathematics (1967) 371 
22. On the Theory of Cognitive Processes (1966) 394 
23. Stimulus-Response Theory of Finite Automata (1969) 411 

REFERENCES 445 

INDEX OF NAMES 454 

INDEX OF SUBJECTS 457 



PART I 

METHODOLOGY: 

MODELS AND MEASUREMENT 



The five papers in this part examine some of the many issues surrounding 
the general use of models in empirical science, and also the conceptual 
foundations of the theory of measurement. In discussing both the general 
use of models and the particular case of measurement, I have tried to 
show in these papers how set-theoretical tools standard in modern 
mathematics can also be used to good advantage in discussing methodolog
ical matters in the empirical sciences. 

Because of restrictions on re-publication, I have not been able to 
inc1ude later papers that carry further some of the themes begun in these 
five papers. In connection with the theory of measurement, I would 
mention particularly the joint article with Joseph L. Zinnes, 'Basic 
Measurement Theory', which is Chapter 1 of the Handbook of Mathe
matical Psychology, published in 1963.1 In that article, Zinnes and I give 
a more leisurely and general approach to the theory than is to be found 
in any one of the articles in Part I of the present volume, although most 
of the ideas worked out by Zinnes and me are anticipated in the fourth 
article in this volume, which I wrote jointly with Dana Scott. I mention 
the joint article with Zinnes especially for those who are interested in 
general questions about the theory of measurement, but find the fourth 
article somewhat heavy going. At the end of the artic1e with Scott, there 
is a conjecture about finite axiomatizability. Tait (1959) has given a 
counterexample to this conjecture, and the subject remains as intractable 
as ever. On the other hand, some important, positive results giving 
necessary and sufficient conditions for various qualitative measurement 
structures to have a numerical representation are given in Scott (1964). 

The ideas on empirical meaningfulness begun in the fifth artic1e are also 
extended in the artic1e with Zinnes. The development of a three-valued 
logic is extended further in Suppes (1965b). 

The second artic1e, the one on models of data, moves in a promising 
direction that I have not yet had the opportunity to explore in greater 
depth. More explicit and more extended analysis of the relation between 
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theories and data, once the data are expressed in canonical form, is much 
needed. From a general philosophical standpoint, the analysis of this 
relation brings back many aspects of atomism and earlier, simplistic 
versions of logical positivism. The difference in the present case, how
ever, is that the selection of the canonical form of the data, that is, how 
the data of experiments are to be recorded, is not something fixed in 
nature or in the perceiving apparatus of men, but is something subject to 
modification in light of experience and according to demands of current 
theory. I continue to stand by what I say in this article, but I do recognize 
it as only a bare beginning. 

The third article on extensive measurement is part of a continuing 
stream of articles on this subject since its publication in 1951; perhaps 
the best and latest treatment is to be found in an article by Luce and 
Marley (1969). At the end of the 1951 article, I mentioned two problems 
that remain unsolved by the analysis given there. The first is that the set 
of objects must contain an infinite number of elements because of the 
closure condition on the basic operation of combination introduced. 
The second problem concerns the absence of any theory of error as part 
of the basic conceptual framework introduced. The problem of error is 
still, I think, in an unsatisfactory state, although some significant prog
ress is made in Krantz (1967). On the other hand, the problem of 
finiteness can be handled rather directly. What I consider to be the 
simplest and, in many ways, most attractive axioms for the finite case can 
be sketched in a few pages, and I think it may be of interest to do that 
here, especially because none of the developments in this set ofaxioms 
is at all technical in character. The axioms themselves are, in a strict 
logical sense, elementary in that the theory can be stated as a theory with 
standard formalization, that is, as a formalized theory within first-order 
predicate logic with identity. 

We may develop the axioms of extensive measurement with at least 
three specific interpretations in mind. One is for the measurement of mass 
by means of an equal-arm balance, one is for the measurement of length 
of rigid rods, and one is for the measurement of subjective probability. 
Other interpretations are certainly possible, but I shall restrict detailed 
remarks to these three. 

From a formal standpoint the basic structures are triples (X, #', ;::::), 
where X is a nonempty set, #' is a family of subsets of X, and the 
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relation ~ is a binary relation on F. By using subsets of X as objects, the 
need for a separate primitive concept of concatenation is avoided, 
contrary to the requirement in Article 3. As a general structural con
dition, it shall be required that F be an algebra 0/ sets on X, which is just 
to require that F be nonempty and be closed under union and com
plementation of sets, i.e., if A and B are in F then A u Band '" Aare 
also in F. 

In addition to their finiteness, the distinguishing characteristic of the 
structures considered is that the objects are equally spaced in an ap
propriate sense along the continuum, so to speak, of the property being 
measured. The restrictions of finiteness and equal spacing enormously 
simplify the mathematics of measurement, but it is fortunately not the 
case that the simplification is accompanied by a total separation from 
realistic empirical applications. Finiteness and equal spacing are char
acteristic properties of many standard scales, for example, the ordinary 
ruler, the set of standard weights used with an equal-arm balance in the 
laboratory or shop, or alm ost any of the familiar gauges for measuring 
pressure, temperature, or volume. 

The intended interpretations of the primitive concepts for the three 
cases mentioned is fairly obvious. In the case of mass, X is a set of 
physical objects, and for two subsets A and B, A ~ B if and only if the set 
A of objects is judged at least as heavy as the set B. It is probably worth 
emphasizing that several different uses of the equal-arm balance are 
appropriate for reaching a judgment of comparison. For example, if 
A = {x, y} and B= {x, z}, it will not be possible literally to put A on one 
pan of the balance and simultaneously B on the other, because the object 
x is a member of both sets, but the comparison can be made in at least 
two different ways. One is just to compare the nonoverlapping parts of 
the two subsets, which in the present case just comes down to the com
paris on of {y} and {z}. A rather different empirical procedure that even 
eliminates the need for the balance to be equal arm is to first just balance 
A with sand on the other pan (or possibly water, but in either case, sand 
or water in small containers), and then to compare B with this fixed 
amount of sand. No additional interpretations of these operations are 
required, even of union of sets, which serves as the operation of con
catenation, when the standard meaning of the set-theoretical operations 
of intersection, union, and complementation is given. 
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In the case of the rigid rods, the set Xis just the collection of rods, and 
A ~ B if and only if the set A of rods, when laid end to end in a straight 
line is judged longer than the set B of rods also so laid out. Variations on 
exactly how this qualitative comparison of length is to be made can 
easily be supplied by the reader. 

In the case of subjective probability, the set X is the set of possible 
outcomes of the experiment or empirical situation being considered. The 
subsets of X in .fF are just events in the ordinary sense of probability 
concepts, and A ~ B if and only if A is judged at least as probable as B. 

Axioms for extensive measurement, subject to the two restrietions of 
finitude and equal spacing, are given in the following definition. In 
Axiom 5, ~ is the equivalence relation defined in the standard fashion in 
terms of ~; namely, A~B if and only if A~B and B~A. 

DEFINITION: A structure X = (X,.fF, ~ > is a finite, equally spaced 
extensive structure if and only if Xis a finite set, .fF is an algebra of sets on 
X, and the following axioms are satisfied for every A, B, and C in .fF: 

1. The relation ~ is a weak ordering of .fF; 
2. 1f AnC=0 and BnC=0, then-A~B ifand only if AuC~BuC; 
3. A~0; 
4. Not0~X; 
5. 1f A ~ B then there is a C in .fF such that A ~ B u C. 
From the standpoint of the standard ideas about the measurement of 

mass or length, it would be natural to strengthen Axiom 3 to assert that 
if A :F 0, then A > 0, but because this is not required for the representation 
theorem and is unduly restrictive in the case of subjective probability, the 
weaker axiom seems more appropriate. 

In stating the representation and uniqueness theorem, we use the 
notion of an additive measure Il from .fF to the real numbers, i.e., a 
function Il such that for any A and B in .fF 

(i) 1l(0) = 0, 
(ii) Il(A) ~ 0, 

(iii) ifAnB=0 then Il(AuB)=Il(A)+Il(B), 

where 0 is the empty set, and it is also required for the applications 
intended here that Il(X) >0. A surprisingly strong representation theorem 
can be proved to the effect that there are only two nonequivalent sorts of 
atoms. 
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THEOREM: Let X=<X, F, ~> be a finite, equally spaced extensive 
structure. Then there exists an additive measure J.l such that for every A 
andBinF 

J.l(A) ~ fl(B) if and only if A ~ B, 

and the measure J.l is unique up to a positive similarity transformation. 
M oreover, there are at most two equivalence classes of atomic events in F; 
and ifthere are two rather than one, one ofthese contains the empty event. 2 

Proof: It will suffice to restrict ourselves to the atomic events, for by 
Axiom 2, the results can then easily be extended to any event. From the 
finiteness of X, it follows at once that there are a finite number of atomic 
events, which by Axiom 1 may be arranged in an ordered set of equiv
alence classes, where ~ is the equivalence relation. Let d 0, d 1> ••• , d" 
be these classes with d m<d" if m<n, and if Ao is in d o, set J.l(Ao) =0. 
If Al is in d l , 

Now consider an atomic event A2 in d 2. B~ virtue ofAxiom 5, there 
must exist an event C such that if Al is any atomic event in d l 

but clearly C can have as members only atoms belonging to d l • Thus 
if k is the cardinality of Al u C, we assign J.l(A2)=k, and again this same 
measure to every atomic event in d 2. 

To prove that every d" is an integer multiple of d l in the sense just 
indicated, suppose there is some equivalence class that is not. Let d" be 
the first such in the ordering. Then there must exist a C such that for any 

A" in d" 

Clearly, C must contain only atoms that precede d" in the ordering, 
whence by hypothesis A"-l u C must be an integer multiple of A1> and 
consequently so must A", contrary to hypothesis. 

We now want to show that each d; is empty for i> 1. Let 

Let us suppose, by way of contradiction, that some d; is nonempty for 
i> 1, and, in fact, let i be the least such i. So there is a B in d;, and we 



8 PART I. METHODOLOGY: MODELS AND MEASUREMENT 

know at once that 

A,<B, 

because A, is in d l • Now let 

C = Al U ... U A'-l . 

Then by virtue ofAxiom 2 

A,uC<BuC, 

and thus by Axiom 5 there exists a D in §' such that 

A,uCuDRiBuC. 

Without loss of generality, we may assume that 

(A,uC)IlD=0, 

because we may always take 

D* = D - (A, u C)e§' 
and so 

A,uDRiB. 

Now if A is any atomic event and A s;;, D then A must be in d 0 ud 1 by 
virtue of our supposition ab out d j • Moreover, D must contain at least 
one such atomic event, and so for some j, 1 ~j ~ r, 

A=Aj , 

butthen 
(A,uC)IlD=l0, 

since A, u C is equal to u d l' and this last inequality contradicts an 
earlier equation. 

Finally, it is easy to check that J1. is an additive measure when we set 
J1.(0)=O, and that from the construction for any A and Bin §' 

J1.(A) ;:: J1.(B) if and only if A;:: B. 

For the interpretation of subjective probability, we obtain a standard 
probability measure P by the normalization: 

P(A) = J1.(A). 
J1.(X) 
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NOTES 

1 A consolidated list of references referred to in these introductory remarks or in the 
articles themselves is to be found at the end of the book. 
S This last observation I owe to Robert Titiev. 



1. A COMPARISON OF THE MEANING AND USES 

OF MODELS IN MATHEMATICS 

AND THE EMPIRICAL SCIENCES· 

I. MEANING 

Consider the following quotations: 

A possible realization in which all valid sentences of a theory T are satisfied is called a 
model of T [Tarski, 1953, p. 11]. 

In the fields of spectroscopy and atomic structure, similar departures from classical 
physics took place. There bad been accumulated an overwhelming mass of evidence 
showing the atom to consist of a heavy, positively charged nucleus surrounded by 
negative, particle-like electrons. According to Coulomb's law of attraction between 
electric charges, such a system will collapse at once unless the electrons revolve about 
the nucleus. But a revolving charge will, by virtue of its acceleration, emit radiation. 
A mechanism for the emission of light is thereby at once provided. 

However, this mechanism is completely at odds with experimental data. The two 
major difficulties are easily seen. First, the atom in which the electrons revolve con
tinually should emit light all the time. Experimentally, however, the atom radiates only 
when it is in a special, 'excited' condition. Second, it is impossible by means of tbis 
model to account for the occurrence of spectral lines of a single frequency (more 
correctIy, of a narrow range of frequencies). The radiating electron of our model would 
lose energy; as a result it would no longer be able to maintain itself at the initial 
distance from the nucleus, but fall in toward the attracting center, changing its fre
quency of revolution as it falls. Its orbit would be a spiral ending in the nucleus. By 
electrodynamic theory, the frequency of the radiation emitted by a revolving charge is 
the same as the frequency of revolution, and since the latter changes, the former should 
also change. Thus our model is incapable of explaining the sharpness of spectrallines 
[Lindsayand Margenau, 1936, pp. 390-91]. 

The author (Gibbs) considers his task not as one of establisbing physical theories 
directIy, but as one of constructing statistic-mechanical models which have some 
analogies in thermodynamics and some other parts of physics; hence he does not 
hesitate to introduce some very special hypotheses of a statistical character [Khinchin, 
1949, p. 4]. 

Thus, the model of rational choice as buHt up from pair-wise comparisons does not 
seem to suit weIl the case of rational behavior in the described game situation [Arrow, 
1951, p. 21]. 

In constructing the model we shall assume that each variable is some kind of average or 
aggregate for members of the group. For example, D might be measured by locating the 

* Reprinted from Synthese 12 (1960), 287-301. 
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opinions of group members on a scale, attaching numbers to scale positions and 
calculating the standard deviation of the members' opinions in terms of these numbers. 
Even the intervening variables, aIthough not directly measured, can be thought of as 
averages of the values for individual members [Simon, 1957, p. 116]. 

This work on mathematical models for leaming has not attempted to formalize any 
particular theoretical system of behavior; yet the influences of Guthrie and Hull are 
most noticeable. Compared with the older attempts at mathematical theorizing, the 
recent work has been more concemed with detailed analyses of data relevant to the 
models and with the design of experiments for directly testing quantitative predictions 
of the models [Bush and Estes, 1959, p. 3]. 

I shall describe ... various criteria used in adopting a mathematical model of an 
observed stochastic process ... For example, consider the number of cars that have 
passed a given point by time t. The first hypothesis is a typical mathematical hypothesis, 
suggested by the facts and serving to simplify the mathematics. The hypothesis is that 
the stochastic process of the model has independent increments ... The next hypothesis, 
that of stationary increments, states that, if s< t, the distribution of x(t) - x(s) depends 
only on the time interval length t - s. This hypothesis means that we cannot let time 
run through both slack and rush hours. Trafik intensity must be constant. 

The next hypothesis is that events occur one at a time. This hypothesis is at least 
natural to a mathematician. Because of limited precision in measurements it means 
nothing to an observer ... The next hypothesis is of a more quantitative kind, which 
also is natural to anyone who has seen Taylor's theorem. It is that the probability that 
at least one car should pass in a time interval of length h should be eh + o(h) [Doob, 
1960, p. 27]. 

The first of these quotations is taken from a book on mathematicallogic, 
the next two from books on physics, the following three from works on 
the social sciences, and the last one from an article on mathematical 
statistics. Additional uses of the word 'model' could easily be collected 
in another batch of quotations. One of the more prominent senses of the 
word missing in the above quotations is the very common use in physics 
and engineering of 'model' to mean an actual physical model as, for 
example, in the phrases 'model airplane' and 'model ship'. 

It may well be thought that it is impossible to put under one concept the 
several uses of the word 'model' exhibited by these quotations. It would, 
I think, be too much to claim that the word 'model' is being used in 
exactly the same sense in all of them. The quotation from Doob exhibits 
one very common tendency, namely, to confuse or to amalgamate what 
logicians would call the model and the theory of the model. It is very 
widespread practice in mathematical statistics and in the behavioral 
sciences to use the word 'model' to mean the set of quantitative assump
tions of the theory, that is, the set of sentences which in apreeise treatment 
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would be taken as axioms, or, if they are themselves not adequately 
exact, would constitute the intuitive basis for formulating a set ofaxioms. 
In this usage a model is a linguistic entity and is to be contrasted with the 
usage characterized by the definition from Tarski, according to which a 
model is a non-linguistic entity in which a theory is satisfied. 

There is also a certain technical usage in econometrics of the word 
'model' that needs to be noted. In the sense of the econometricians a 
model is a class of models in the sense of logicians, and what logicians 
call a model is called by econometricians a structure. 

It does not seem to me that these are serious difficulties. I claim that the 
concept of model in the sense of Tarski may be used without distortion 
and as a fundamental concept in all of the disciplines from which the 
above quotations are drawn. In this sense I would assert that the meaning 
of the concept of model is the same in mathematics and the empirical 
sciences. The difference to be found in these disciplines is to be found in 
their use of the concept. In drawing this comparison between constancy 
of meaning and difference of use, the sometimes difficult semantical 
question of how one is to explain the meaning of a concept without 
referring to its use does not actually arise. When I speak of the meaning 
of the concept of a model I shall always be speaking in well-defined 
technical contexts and what I shall be claiming is that, given this technical 
meaning of the concept of model, mathematicians ask a certain kind of 
question about models and empirical scientists tend to ask another kind 
of question. 

Perhaps it will be useful to defend this thesis about the concept of model 
by analyzing uses of the word in the above quotations. As already in
dicated, the quotation from Tarski represents a standard definition of 
'model' in mathematical logic. Our references to models in pure math
ematics will, in fact, be taken to refer to mathematicallogic, that branch 
of pure mathematics explicitly concerned with the theory of models. The 
technical notion of possible realization used in Tarski's definition need not 
be expounded here. Roughly speaking, a possible realization of a theory 
is a set-theoretical entity of the appropriate logical type. For example, a 
possible realization of the theory of groups is any ordered couple whose 
first member is a set and whose second member is a binary operation on 
this set. The intuitive idea of a model as a possible realization in which a 
theory is satisfied is too familiar in the literature of mathematical logic to 



MEANING AND USES OF MODELS 13 

need recasting. The important distinction that we shall need is that a 
theory is a linguistic entity consisting of a set of sentences and models are 
non-linguistic entities in which the theory is satisfied (an exact definition 
of theories is also not necessary for our uses here). 

I would take it that the use of the notion of models in the quotation from 
Lindsay and Margenau could be recast in these terms in the following 
manner. The orbital theory of the atom is formulated as a theory. The 
question then arises, does a possible realization of this theory in terms of 
entities defined in elose connection with experiments actually constitute a 
model of the theory, or, put another way which is perhaps simpler, do 
models of an orbital theory correspond well to data obtained from physi
cal experiments with atomic phenomena? It is true that many physicists 
want to think of a model of the orbital theory ofthe atom as being more 
than a certain kind of set-theoretical entity. They envisage it as a very 
concrete physical thing built on the analogy of the solar system. I think it 
is important to point out that there is no real incompatibility in these two 
viewpoints. To define formally a model as a set-theoretical entity which 
is a certain kind of ordered tuple consisting of a set of objects and rela
tions and operations on these objects is not to rule out the physical 
model of the kind which is appealing to physicists, for the physical model 
may be simply taken to define the set of objects in the set-theoretical 
model. Because ofthe importance ofthis point it may be weH to illustrate 
it in somewhat greater detail. We may axiomatize elassical partiele 
mechanics in terms of the five primitive notions of a set P of partieles, an 
interval T of real numbers corresponding to elapsed times, a position 
function s defined on the Cartesian product of the set of partieles and the 
time interval, a mass function m defined on the set of partieles, and a 
force function f defined on the Cartesian product of the set of partieles, 
the time interval and the set of positive integers (the set of positive 
integers enters into the definition of the force function simply in order to 
provide a method of naming the forces). A possible realization of the 
axioms of elassical partiele mechanics, that is, of the theory of elassical 
partiele mechanics, is then an ordered quintuple f?IJ= <P, T, s, m,f). 

A model of elassical partiele mechanics is such an ordered quintuple. 
It is simple enough to see how an actual physical model in the physicist's 
sense of classical partiele mechanics is related to this set-theoretical sense 
of models. We simply can take the set of particles to be in the case of the 
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solar system the set of planetary bodies. Another slightly more abstract 
possibility is to take the set of particles to be the set of centers of mass 
of the planetary bodies. This generally exemplifies the situation. The 
abstract set-theoretical model of a theory will have among its parts a 
basic set which will consist of the objects ordinari1y thought to constitute 
the physical model (for a discussion of the axiomatic foundations of 
classical particle mechanics in greater detail along the lines just suggested 
see Suppes, 1957, Chap. 12). 

In the preceding paragraph we have used the phrases, 'set-theoretical 
model' and 'physical model'. There would seem to be no use in arguing 
about which use of the word 'model' is primary or more appropriate in 
the empirical sciences. My own contention in this paper is that the set
theoretical usage is the more fundamental. The highly physically minded 
or empirically minded scientists who may disagree with this thesis and 
believe that the notion of a physical model is the more important thing in 
a given branch of empirical science may still agree with the systematic 
remarks I am making. 

An historica1 illustration of this point is Ke1vin's and Maxwell's efforts 
to find a mechanical model of e1ectromagnetic phenomena. Without 
doubt they both thought of possible models in a literal physical sense, 
but it is not difficult to reeast their published memoirs on this topic into a 
search for set-theoretical models of the theory of continuum mechanics 
which will account for observed electromagnetic phenomena. Moreover, 
it is really the formal part of their memoirs which has had permanent 
value. Ultimately it is the mathematical theory of Maxwell which has 
proved important, not the physical image of an ether behaving like an 
elastic solid. 

The third quotation is from Khinchin's book on statistical mechanics, 
and the phrase, 'the author', refers to Gibbs whom Khinchin is discussing 
at this point. The use of the word 'model' in the quotation of Khinchin is 
particularly sympathetic to the set-theoretical viewpoint, for Khinchin is 
cIaiming that in his work on the foundations of statistical mechanics 
Gibbs was not concerned to appeal directly to physical reality or to 
establish true physical theories, but rather, to construct models or theories 
having partial analogies to the complicated empirical facts of thermo
dynamics and other branches of physics. Again in this quotation we have 
as in the case ofDoob, perhaps even more directly, the tendency toward a 
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confusion of the logical type of theories and models, but again this does 
not create a difficulty. Anyone who has examined Gibb's work or Khin
chin's will readily admit the ease and directness of formulating their 
work in such a fashion as to admit explicitly and exactly the distinction 
between theories and models made in mathematicallogic. The abstract
ness of Gibb's work in statistical mechanics furnishes a particularly good 
example for applying the exact notion of model used by logicians, for 
there is not a direct and immediate tendency to think of Gibbs' statistical 
mechanical theories as being the theories of the one physical universe. 

I think the foHowing observation is empiricaHy sound concerning the 
use of the word 'model' in physics. In old and established branches of 
physics which correspond weH with the empirical phenomena they attempt 
to explain, there is only a slight tendency ever to use the word 'model'. The 
language of theory, experiment and common sense is blended into one 
realistic whole. Sentences of the theory are asserted as if they are the 
one way of describing the universe. Experimental results are described 
as if there were but one obvious language for describing them. Notions 
of common sense refined perhaps here and there are taken to be appro
priately homogeneous with the physical theory. On the other hand, in 
those branches of physics which give as yet an inadequate account of the 
detailed physical phenomena with which they are concerned there is a 
much more frequent use of the word 'model'. Connotation of the use of 
the word is that the model is like a model of an airplane or ship. It 
simplifies drastically the true physical phenomena and only gives account 
of certain major or important aspects of it. Again, in such uses of the word 
'model', it is to be emphasized that there is a constant interplay between 
the model as a physical or non-linguistic object and the model as a theory. 

The quotation from Arrow which follows the one from Khinchin exem
plifies in the social sciences this latter tendency in physics. Arrow, I 
would say, refers to the model of rational choice because the theory he 
has in mind does not give a very adequate description of the phenomena 
with which it is concerned but only provides a highly simplified schema. 
The same remarks apply fairly weH to the quotation from Simon. In 
Simon we have an additional phenomenon exemplified which is very 
common in the social and behavioral sciences. A certain theory is stated 
in broad and general terms. Some qualitative experiments to test this 
theory are performed. Because of the success of these experiments scien-
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tists interested in more quantitative and exact theories then turn to what 
is called 'the construction of a model' for the original theory. In the lan
guage of logicians, it would be more appropriate to say that rather than 
constructing a model they are interested in constructing a quantitative 
theory to match the intuitive ideas of the original theory. 

In the quotation from Bush and Estes and the one from Doob, there is 
introduced an important line of thought which is, in fact, very closely 
connected with the concept of model as used by logicians. I am thinking 
here of the notion of model in mathematical statistics, the extensive 
literature on estimating parameters in models and testing hypotheses 
about them. In a statistical discussion of the estimation of the parameters 
of a model it is usually a trivial task to convert the discussion into one 
where the usage of terms is in complete agreement with that of logicians. 
The detailed consideration of statistical questions alm ost requires the 
consideration of models as mathematical or set-theoretical rather than 
simple physical entities. The question, "How weIl does the model fit the 
data 1" is a natural one for statisticians and behavioral scientists. Only 
recently has it begun to be so for physicists, and it is still true that much 
of the experimental literature in physics is reported in terms of a rather 
medieval brand of statistics. 

It may be feIt by some readers that the main difliculty with the thesis 
being advanced in this paper is the lack of substantive examples in the 
empirical sciences. Such areader would willingly admit that there are 
numerous examples of exactly formulated theories in pure mathematics, 
and thereby an exact basis is laid for precisely defining the models in 
which these theories are satisfied. But it might be held the situation is far 
different in any branch of empirical sciences. The formulation of theory 
goes hand in hand with the development of new experiments and new 
experimental techniques. It is the practice of empirical scientists, so it 
might be claimed, not to formulate theories in exact fashion but only to 
give them suflicient conceptual definiteness to make their connections 
with current experiments sufliciently clear to other specialists in the field. 

He who seeks an exact characterization of the theory and thus of models 
in such branches of science as non-vertebrate anatomy, organic chemistry 
or nuclear physics is indeed barking up the wrong tree. In various papers 
and books I have attempted to provide some evidence against this view. 
In the final chapter of my Introduction to Logic I have formulated axio-
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maticaIly a theory of measurement and aversion of classical particle 
mechanics which satisfy, I believe, the standards of exactness and clarity 
customary in the axiomatic formulation of theories in pure mathematics. 

In Estes and Suppes (1959a) such a formulation is attempted for a branch 
of mathematicallearning theory. In Rubin and Suppes (1954) an exact 
formulation of relativistic mechanics is considered andin Suppes (1959a) 1 t 

such a formulation of relativistic kinematics is given. These references are 
admittedly egocentric; it is also pertinent to refer to the work of W oodger 
(1957), Hermes (1938), Adams (1959), Debreu (1959), NoIl (1959) and 
many others. Although it is not possible to pinpoint a reference to every 
branch of empirical science which will provide an exact formulation of 
the fundamental theory of the discipline, sufficient examples do now 
exist to make the point that there is no systematic difference between the 
axiomatic formulation of theories in weIl-developed branches of empirical 
science and in branches of pure mathematics. 

By remarks made from a number of different directions, I have tried to 
argue that the concept of model used by mathematical logicians is the 
basic and fundamental concept of model needed for an exact statement 
of any branch of empirical science. To agree with this thesis it is not 
necessary to rule out or to deplore variant uses or variant concepts of 
model now abroad in the empirical sciences. As has been indicated, I am 
myself prepared to admit the significance and practical importance of the 
notion of physical model current in much discussion in physics and 
engineering. What I have tried to claim is that in the exact statement of 
the theory or in the exact analysis of data the notion of model in the 
sense of logicians provides the appropriate inteIlectual tool for making 
the analysis both precise and clear. 

11. USES 

The uses of models in pure mathematics are too weIl known to caIl for 
review here. The search in every branch of mathematics for representation 
theorems is most happily characterized in terms of models. To establish a 
representation theorem for a theory is to prove that there is a class of models 
of the theory such that every model of the theory is isomorphie to some 
member of this class. Examples now classical of such representation 
theorems are Cayley's theorem that every group is isomorphie to a group 
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of transformations and Stone's theorem that every Boolean algebra is 
isomorphie to a field of sets. Many important problems in mathematical 
logic are formulated in terms of classes of models. For a statement of 
many interesting results and problems readers are referred to Tarski (1954). 

When a branch of empirical science is stated in exact form, that is, when 
the theory is axiomatized within a standard set-theoretical framework, 
the familiar questions raised ab out models of the theory in pure mathe
matics mayaiso be raised for models ofthe precisely formulated empirical 
theory. On occasion such applications have philosophical significance. 
Many of the discussions of reductionism in the philosophy of science may 
best be formulated as aseries of problems using the notion of a representa
tion theorem. For example, the thesis that biology may be reduced to 
physics would be in many people's minds appropriately established if one 
could show that for any model of a biological theory it was possible to 
construct an isomorphie model within physical theory. The diffuse 
character of much biological theory makes any present attempt to 
realize such a pro gram rather hopeless. An exact result of this character 
can be established for one branch of-physics in relation to another. An 
instance of this is Adams' (1959) result that for a suitable characterization 
of rigid body mechanics every model of rigid body mechanies is isomorphie 
to a model defined within simple particle mechanics. But I do not want to 
give the impression that the application of models in the empirical 
sciences is mainly restricted to problems which interest philosophers of 
science. The attempt to characterize exactly models of an empirical 
theory almost inevitably yields a more precise and clearer understanding 
of the exact character of the theory. The emptiness and shallowness of 
many classical theories in the social sciences is weIl brought out by the 
attempt to formulate in any exact fashion what constitutes a model of the 
theory. The kind of theory which mainly consists of insightful remarks and 
heuristic slogans will not be amenable to this treatment. The effort to 
make it exact will at the same time reveal the weakness of the theory. 

An important use of models in the empirical sciences is in the construction 
of Gedanken experiments. A Gedanken experiment is given precision and 
clarity by characterizing a model of the theory which realizes it. A stan
dard and important method for arguing against the general plausibility of 
a theory consists of extending it to a new domain by constructing a model 
of the theory in that domain. This aspect of the use of models need not 
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however be restricted to Gedanken experiments. A large number of 
experiments in psychology are designed with precisely this purpose in 
mind, that is, with the extension of some theory to a new domain, and the 
experimenter's expectation is that the results in this domain will not be 
those predicted by the theory. 

It is my own opinion that a more exact use of the theory of models in 
the discussion of Gedanken experiments would often be of value in 
various branches of empirical science. A typical example would be the 
many discussions centering around Mach's proposed definition of the 
mass of bodies in terms of their mutually induced accelerations. Because 
of its presumed simplicity and beauty this definition is frequently cited. 
Yet from a mathematical standpoint and any exact theory of models of 
the theory of mechanics, it is not a proper definition at all. F or a very wide 
class ofaxiomatizations of classical particle mechanics, it may be proved 
by Padoa's principle that a proper definition of mass is not possible. 
Moreover, if the number of interacting bodies is greater than seven, a 
knowledge of the mutually induced acceleration of the particles is not 
sufficient for unique determination of the ratios of the masses of the 
particles. The fundamental weakness of Mach's proposal is that he did 
not seem to realize a definition in the theory cannot be given for a single 
model, but must be appropriate for every model of the theory in order to 
be acceptable in the standard sense. 

Another significant use of models, perhaps peculiar to the empirical 
sciences, is in the analysis ofthe relation between theory and experimental 
data. The importance of models in mathematical statistics has already 
been mentioned. The homogeneity of the concept of model used in that 
discipline with that adopted by logicians has been remarked upon. The 
striking thing about the statistical analysis of data is that it is shot through 
and through with the kind of comparison ofmodels that does not ordinarily 
arise in pure mathematics. Generally speaking, in some particular branch 
of pure mathematics, the comparison of models involves comparison of 
two models of the same logical type. The representation theorems 
mentioned earlier provide good examples. Even in the case of embedding 
theorems, which establish that models of one sort may be extended in a 
definite manner to models of another sort, the logical type of the two 
models is very similar. The situation is often radically different in the 
comparison of theory and experiment. On the one hand, we may have a 
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rather elaborate set-theoretical model of the theory which contains con
tinuous functions or infinite sequences, and, on the other hand, we have 
highly finitistic set-theoretical models of the data. It is perhaps necessary 
to explain what 1 mean by 'models of the data'. The maddeningly diverse 
and complex experience which constitutes an experiment is not the entity 
which is direct1y compared with a model of a theory. Drastic assumptions 
of all sorts are made in reducing the experimental experience, as 1 shaH 
term it, to a simple entity ready for comparison with a model of the 
theory. 

Perhaps it would be weH to condude with an example illustrating these 
general remarks about models of the data. 1 shaH consider the theory of 
linear response models set forth in Estes and Suppes (1959a). For simplic
ity, let us assume that on every trial the organism can make exactly one 
of two responses, Al or A2 , and after each response it receives a reinforce
ment, Ei or E2 , of one of the two possible responses. A learning parameter 
e, which is areal number such that 0< e ~ 1, describes the rate of 
learning in a manner to be made definite in amoment. A possible 
realization of the theory is an ordered tripie !!C = (X, P, e> of the 
following sort. Xis the set of al1 sequences of ordered pairs such that the 
first member of each pair is an element of some set A and the second 
member an element of some set B, where A and B each have two elements. 
Intuitively, the set A represents the two possible responses and the set B 
the two possible reinforcements. P is a probability measure on the Borel 
field of cylinder sets of X, and e is areal number as already described. 
(Actually there is a certain arbitrariness in the characterization of possible 
realizations of theories whose models have a rather complicated set
theoretical structure, but this is a technical matter into which we shall 
not enter here.) To define the models of the theory, we need a certain 
amount of notation. Let Ai,n be the event of response Ai on trial n, EJ,n 
the event of reinforcement EJ on trial n, where i,j= 1,2, and for x in X 
let Xn be the equivalence dass of aH sequences in X which are identical 
with x through trial n. A possible realization of the linear response 
theory is then a model of the theory if the following two axioms are 
satisfied in the realization: 

Axiom 1: If P(Ei,nAi',nxn-l»O then 

P(Ai,n+l I Ei, nAi', nXn-l) = (1 - e) P(Ai,n I Xn+l) + e. 
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Axiom 2: lf P(Ej,nAi',nXn-l»O and i:/:j then 

P(Ai,n+l I Ej,nAi',nXn-l) = (1 - 8) P(Ai,n I Xn-l). 

As is c1ear from the two axioms, this linear response theory is intuitively 
very simple. The first axiom just says that when a response is reinforced 
the probability of making that response on the next trial is increased by a 
simple linear transformation. And the second axiom says that if some 
other response is reinforced, the probability of making the response is 
decreased by a second linear transformation. In spite of the simplicity 
of this theory, it gives a reasonably good account of a number of ex
periments, and from a mathematical standpoint, it is by no means trivial 
to characterize asymptotic properties of its models. 

The point of concern here, however, is to relate models of this theory to 
models of the data. Again for simplicity, let us consider the case of simple 
noncontingent reinforcement. On every trial, the probability of an EI 
reinforcement, independent of any preceding events, is 1t. The experi
menter decides on an experiment of, say, 400 trials for each subject, 
and he uses a table of random numbers to construct for each subject a 
finite reinforcement sequence of 400 trials. The experimental apparatus 
might be described as folIows. 

The subject sat at a table of standard height. Mounted vertically on the 
table top was a 125 cm wide by 75 cm high black panel placed 50 cm 
from the end of the table. The experimenter sat behind the panel, out of 
view of the subject. The apparatus, as viewed by the subject, consisted 
of two silent operating keys mounted 20 cm apart on the table top and 
30 cm from the end of the table; upon the panel, three milk-glass panel 
lights were mounted. One of these lights, which served as the signal for 
the subject to respond, was centered between the keys at a height of 42 
cm from the table top. Each of the two remaining lights, the reinforcing 
signals, was at a height of 28 cm directly above one of the keys. On all 
trials the signal light was lighted for 3.5 sec; the time between successive 
signal exposures was 10 sec. The reinforcing light followed the cessation 
of the signal light by 1.5 sec and remained on for 2 sec. 

The model of the data incorporates very little of this description. On each 
trial the experimenter records the response made and the reinforcement 
given. Expressions on the subject's face, the movement of his limbs, and 
in the present experiment even how long he takes to make the choice of 
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which key to punch, are ignored and not recorded. Even though it is clear 
exactly what the experimenter records, the notion of a possible realization 
of the data is not unambiguously c1ear. As part of the realization it is 
c1ear we must have a finite set D consisting of all possible finite sequences 
oflength 400 where, as previously, the terms ofthe sequences are ordered 
couples, the first member of each couple being drawn from some pair set 
A and the second member from some pair set B. If a possible realization 
consisted of just such a set D, then any realization would also be a model 
of the data. But it seems natural to inc1ude in the realization a probability 
measure P on the set of all subsets of D, for by this means we may impose 
upon models of the data the experimental schedule of reinforcement. 

In these terms, a possible realization of the data is an ordered couple 
p) = (D, P) and, for the case of noncontingent reinforcement, a 
realization is a model if and only if the probability measure P has the 
property of being a Bernouilli distribution with parameter 11: on the second 
members of the terms of the finite sequences in D, i.e., if and only if for 
every n from 1 to 400, P(El ,,, I X"-l) =11: when P(x,,»O. 

Unfortunately, there are several respects in which this characterization 
of models of the data may be regarded as unsatisfactory. The main point is 
that the models are still too far removed even from a highly schematized 
version of the experiment. No account has been taken of the standard 
practice of randomization of response Al as the left key for one subject 
and the right key for another. Secondly, a model of the data, as defined 
above, contains 2400 possible response sequences. An experiment that 
uses 30 or 40 subjects yields but a small sampie of these possibilities. A 
formal description of this sampie is easily given, and it is easily argued 
that the 'true' model of the data is this actual sampie, not the much larger 
model just defined. Involved here is the formal relation between the three 
entities labeled by statisticians the 'sampie' , the 'population', and the 
'sampie space' . A third difficulty is connected with the probability measure 
that I have included as part of the model of the data. It is certainly 
correct to point out that a model of the data is hardly appropriately 
experimental if there is no indication given of how the probability 
distribution on reinforcements is produced. 

It is not possible in this paper to enter into a discussion ofthese criticisms 
or the possible formal modifications in models of the data which might 
be made to meet them. My own conviction is that the set-theoretical 
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concept of model is a useful tool for bringing formal order into the 
theory of experimental design and analysis of data. The central point for 
me is the much greater possibility than is ordinarily realized of developing 
an adequately detailed formal theory of these matters. 

NOTE 

lt Article 12 in this volume. 



2. MODELS OF DATA* 

I. INTRODUCTION 

To nearly all the members of this Congress, the logical notion of a model 
of a theory is too familiar to need detailed review here. Roughly speaking, 
a model of a theory may be defined as a possible realization in which al1 
valid sentences of the theory are satisfied, and a possible realization of the 
theory is an entity of the appropriate set-theoretical structure. For in
stance, we may characterize a possible realization of the mathematical 
theory of groups as an ordered couple whose first member is a nonempty 
set and whose second member is a binary operation on this set. A possible 
realization of the theory of groups is a model of the theory if the axioms of 
thetheoryare satisfiedin the realizatio.n, for in this case (as weIl as in many 
others), the valid sentences of the theory are defined as those sentences 
which are logical consequences oftheaxioms. To provide complete mathe
matical flexibility I shall speak of theories axiomatized within general set 
theory by defining an appropriate set-theoretical predicate (e.g., 'is a 
group') rather than of theories axiomatized direcdy within first-order 
logic as a formallanguage. For the purposes of this paper, this difference 
is not critical. In the set-theoretical case, it is convenient sometimes to 
speak of the appropriate predicate's being satisfied by a possible real
ization. But whichever sense of formalization is used, essentially the same 
logical notion of model applies.1 

It is my opinion that this notion of model is the fundamental one for 
the empirical sciences as weIl as mathematics. To assert this is not to deny 
a place for variant uses ofthe word 'model' by empirical scientists, as, for 
example, when a physicist talks about a physical model, or a psychologist 
refers to a quantitative theory of behavior as a mathematical model. On 
this occasion I do not want to argue for this fundamental character ofthe 
logical notion of model, for I tried to make out a detailed case at a coIlo-

... Reprinted from Logic, Methodology and Philosophy 0/ Science: Proceedings 0/ the 
1960 International Congress (ed. by E. Nagel, P. Suppes, and A. Tarski), Stanford 
University Press, Stanford, Calif., 1962, pp. 252-261. 
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quium in Utrecht last January, also sponsored by the International Union 
of History and Philosophy of Science (Suppes, 1960b). 2t Perhaps the most 
persuasive argument which might be singled out for mention here is that 
the notion of model used in any serious statistical treatment of a theory 
and its relation to experiment does not differ in any essential way from 
the logical notion of model. 

The focus of the present paper is c10sely connected to the statistical 
analysis of the empirical adequacies of theories. What I want to try to 
show is that exact analysis of the relation between empirical theories and 
relevant data calls for a hierarchy of models of different logical type. 
Generally speaking, in pure mathematics the comparison of models 
involves comparison of two models of the same logical type, as in the 
assertion of representation theorems. A radically different situation often 
obtains in the comparison of theory and experiment. Theoretical notions 
are used in the theory which have no direct observable analogue in the 
experimental data. In addition, it is common for models of a theory to 
contain continuous functions or infinite sequences although the con
firming data are highly discrete and finitistic in character. 

Perhaps I may adequately describe the kind of ideas in which I am in
terested in the following way. Corresponding to possible realizations of 
the theory, I introduce possible realizations of the data. Models of the 
data of an experiment are then defined in the customary manner in terms of 
possible realizations of the data. As should be apparent, from a logical 
standpoint possible realizations of data are defined injust the same way as 
possible realizations of the theory being tested by the experiment from 
which the data come. The precise definition of models of the data for any 
given experiment requires that there be a theory of the data in the sense 
of the experimental procedure, as weIl as in the ordinary sense of the 
empirical theory of the phenomena being studied. 

Before analyzing some of the consequences and problems of this view
point, it may be useful to give the ideas more definiteness by considering 
an example. 

11. EXAMPLE FROM LEARNING THEORY 

I have deliberately chosen an example from learning theory because it is 
conceptually simple, mathematically non-trivial and thoroughly pro ba
bilistic. More particularly, I consider linear response theory as developed 
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by Estes and myself(1959a). To simplify the presentation ofthe theory in 
an inessential way, let us assume that on every trial the organism in the 
experimental situation can make exact1y one of two responses, Al or A2 , 

and after each response it receives a reinforcement, El or E2 , of one ofthe 
two possible responses. A possible experimental outcome in the sense of 
the theory is an infinite sequence of ordered pairs, where the nth term of 
the sequence represents the observed response - the first member of the 
pair - and the actual reinforcement - the second member of the pair - on 
trial n of the experiment. 

A possible realization of the theory is an ordered tripie fl" = <X, P, 9) 
of the following sort. The set Xis the set of all sequences of ordered pairs 
such that the first member of each pair is an element of some set A, and 
the second member an element of some set B, where A and B each have 
two elements. The set A represents the two possible responses and the set 
B the two possible reinforcements. The function P is a probability 
measure on the smallest Borel field containing the field of cylinder sets of 
X; and 9, areal numberin the interval 0< 9 ~ 1, is the learningparameter. 
(Admittedly, for theories whose models have a rather complicated set
theoretical structure, the definition of possible realization is at points 
arbitrary, but this is not an issue which affects in any way the development 
of ideas central to this paper.) 

There are two obvious respects in which a possible realization of the 
theory cannot be a possible realization of experimental data. The first is 
that no actual experiment can include an infinite number of discrete trials. 
The second is that the parameter 9 is not direct1y observable and is not 
part of the recorded data. 

To pursue further relations between theory and experiment, it is nec
essary to state the axioms of the theory, i.e., to define models of the 
theory. For this purpose a certain amount of notation is needed. Let 
Ai,lI be the event ofresponse Ai on trial n, Ej ,lI the event ofreinforcement 
Ej on trial n, where i,j= 1,2, and for x in Xlet XII be the equivalence class 
of all sequences in X which are identical with X through trial n. A possible 
realization of the linear response theory is then a model of the theory if 
the following two axioms are satisfied in the realization: 

Axiom 1: If P(Ei,IIAI',IIXII_l»O, then 

P(Ai,lI+l I Ei,/IAi',IIX/I-l) = (1 - 9) P(Ai ,1I I XII-l) + 9. 
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Axiom 2: lf P(Ej,nAi',nXn-l»O and i=lj, then 

P(Aj,n+l I Ej,nAi',nxn-l) = (1 - 0) P(Ai,n I xn - l )· 

The first axiom asserts that when a response is reinforced, the prob
ability of making that response on the next trial is increased by a simple 
linear transformation. The second axiom asserts that when a different 
response is reinforced, the probability of making the response is decreased 
by a second linear transformation. To those who are concerned about the 
psychological basis of this theory, it may be remarked that it is derivable 
from a much more complicated theory that assumes processes of stimulus 
sampling and conditioning. The linear response theory is the limiting case 
of the stimulus sampling theory as the number of stimuli approaches 
infinity. 

For still greater definiteness, it will be expedient to consider a particular 
class of experiments to which the linear response theory has been applied, 
namely, those experiments with simple contingent reinforcement sched
ules. On every trial, if an Al response is made, the probability of an Ei 
reinforcement is 11:1' independent of the trial number and other preceding 
events. If an A2 response is made, the probability of an E2 reinforcement 
is 11:2' Thus, in summary for every n, 

P(E1,n I A 1,n) = 11: 1 = 1 - P(E2 • n I A 1,n)' 

P(E2 ,n I A2 ,n) = 11:2 = 1 - P(E1,n I A2,n)' 

This characterization of simple contingent reinforcement schedules has 
been made in the language of the theory, as is necessary in order to 
compute theoretical predictions. This is not possible for the finer details 
of the experiment. Let us suppose the experimenter decides on 600 trials 
for each subject. Abrief description (cf. Suppes and Atkinson, 1960, pp. 
81-83) of the experimental apparatus might run as folIows. 

The subject sits at a table of standard height. Mounted vertically in front of the subject 
is a large opaque panel. Two silent operating keys (Al and A2 responses) are mounted at 
the base of the panel 20 cm apart. Three milk-glass panel Iights are mounted on the 
panel. One of these lights, which serves as the signal for the subject to respond, is 
centered between the keys at the subjecrs eye level. Each of the other two lights, the 
reinforcing events EI and E2, is mounted directly above one of the keys. On all trials 
the signal light is on for 3.5 sec; the time between successive signal exposures is 10 sec. 
A reinforcing light comes on 1.5 sec after the cessation of the signal light and remains 
on for 2 sec. 



28 PART I. METHODOLOGY: MODELS AND MEASUREMENT 

It is not surprising that this description of the apparatus is not incorpo
rated in any direct way at all into the theory. The important point is to take 
the linear response theory and this description as two extremes between 
which a hierarchy of theories and their models is to be fitted in a detailed 
analysis. 

In the class of experiments we are considering, the experimenter 
records only the response made and reinforcement given on each trial. 
This suggests the definition of the possible realizations of the theory that 
is the first step down from the abstract level of the linear response theory 
itself. This theory I shall call the theory 0/ the experiment, which term 
must not be taken to refer to what statisticians call the theory of ex
perimental design - a topic to be mentioned later. A possible realization 
of the theory of the experiment is an ordered couple Iljj = < Y, P), where (i) 
Y is a finite set consisting of all possible finite sequences of length 600 
with, as previously, the terms of the sequences being ordered pairs, the 
first member of each pair being drawn from some pair set A and corres
pondingly for the second members, and (ü) the function P is a probability 
measure on the set of all subsets of Y. 

A possible realization Iljj = < Y, P) of the theory of the experiment is a 
model of the theory if the probability measure P satisfies the defining 
condition for a simple contingent reinforcement schedule. Models of the 
experiment thus defined are entities still far removed from the actual data. 
The finite sequences that are elements of Y may indeed be used to rep
resent any possible experimental outcome, but in an experiment with, 
say, 40 subjects, the observed 40 sequences are an insignificant part ofthe 
4600 sequences in Y. Consequently, a model closer to the actual situation 
is needed to represent the actual conditional relative frequencies of 
reinforcement used. 

The appropriate realization for this purpose seems to be an N-tuple Z 
of elements from Y, where N is the number of subjects in the experiment. 
An N-tuple rather than a subset of Y is selected for two reasons. The first 
is that if a subset is selected there is no direct way of indicating that two 
distinct subjects had exactly the same sequence of responses and reinforce
ments - admittedly a highly improbable event. The second and more 
important reason is that the N-tuple may be used to represent the time se
quence in which subjects were run, a point of some concern in considering 
certain detailed questions of experimental design. It may be noted that in 
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using an N-tuple as a realization of the data rather than a more com
plicated entity that could be used to express the actual times at which 
subjects were run in the experiment, we have taken yet another step of 
abstraction and simplification away from the bewilderingly complex 
complete experimental phenomena.3 

The next question is, When is a possible realization of the data a model 
of the data? The complete answer, as I see it, requires a detailed statistical 
theory of goodness of fit. Roughly speaking, an N-tuple realization is a 
model ofthe data ifthe conditional relative frequencies of E1 and E2 rein
forcements fit c10sely enough the probability measure P of the model of 
the experiment. To examine in detail statistical tests for this goodness of 
fit would be inappropriate here, but it will be instructive of the com
plexities ofthe issues involved to outline some ofthe main considerations. 
The first thing to note is that no single simple goodness-of-fit test will 
guarantee that a possible realization Z of the data is an adequate model 
ofthe data. The kinds ofproblems that arise are these: (i) (Homogeneity) 
Are the conditional relative frequencies (C.R.F.) of reinforcements 
approximately n; or I-n;, as the case may- be, for each subject? To 
answer this we must compare members ofthe N-tuple Z. (ii) (Stationarity) 
Are the C.R.F. of reinforcements constant over trials? To answer this 
practically we sum over subjects, i.e., over members of Z, to obtain 
sufficient data for a test. (iii) (Order) Are the C.R.F. of reinforcements 
independent of preceding reinforcements and responses? To answer this 
we need to show that the C.R.F. define a zero order process - that serial 
correlations of all order are zero. Note, of course, that the zero order is 
with respect to the conditional events Ei given Ai' for i, j= 1, 2. These 
three questions are by no means exhaustive; they do refiect central 
considerations. To indicate their essentially formal character, it may be 
helpful to sketch their formulation in a relatively c1assical statistical 
framework. Roughly speaking, the approach is as follows. For each 
possible realization Z of the data, we define a statistic T(Z) for each 
question. This statistic is a random variable with a probability distribution 
- preferably a distribution that is (asymptotically) independent of the 
actual C.R.F. under the null hypothesis that Z is a model of the data. In 
statistical terminology, we "accept" the null hypothesis if the obtained 
value ofthe statistic T(Z) has a probability equal to or greater than some 
significance level \t on the assumption thatindeed the null hypothesis is true. 
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For the questions ofhomogeneity, stationarity, and order stated above, 
maximum likelihood or chi-square statistics would be appropriate. There 
is not adequate space to discuss details, but these statistics are standard in 
the literature. For the purposes ofthis paper, it is not important that some 
subjectivists like L. J. Savage might be critical of the unfettered use of 
such classical tests. A more pertinent caveat is that joint satisfaction of 
three statistical tests (by 'satisfaction' I mean acceptance of the null hy
pothesis with a level of significance ~ 0.05) corresponding to the three 
questions does not intuitively seem completely sufficient for a possible 
realization Z to be a model of the data.4 No claim for completeness was 
made in listing these three, but it might also be queried as to what realistic 
possibility there is of drawing up a finite list of statistical tests which may 
be regarded as jointly sufficient for Z to be a model of the data. A skepti
cal non-formalistic experimenter might claim that given any usable set of 
tests he could produce a conditional reinforcement schedule that would 
satisfy the tests and yet be intuitively unsatisfactory. For example, 
suppose the statistical tests for order were constructed to look at no more 
than fourth-order effects, the skeptical:experimenter could then construct 
a possible realization Z with a non-random fifth-order pattern. Actually 
the procedure used in well-constructed experiments makes such a dodge 
rather difficult. The practice is to obtain the C.R.F. from some published 
table of random numbers whose properties have been thoroughly 
investigated by a wide battery of statistical tests. From the systematic 
methodological standpoint, it is not important that the experimenter 
himself perform the tests on Z. 

On the other hand, in the experimental literature relevant to this 
example, it is actually the case that greater care needs to be taken to 
guarantee that a possible realization Z of the data is indeed a model of 
the data for the experiment at hand. A typical instance is the practice of 
restricted randomization. To illustrate, if P(El , .. I Al , .. )=0.6, then some 
experimenters would arrange that in every block of 10 Al responses, 
exact1y 6 are followed by Ei reinforcements, a result that should have a 
probability of approximately zero for a large number of trials.5 

The most important objection of the skeptical experimenter to the im
portance of models of the data has not yet been examined. The objection 
is that the precise analysis of these models includes only a small portion 
of the many problems of experimental design. For example, by most 
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eanons of experimental design, the assignment of Al to the left (or to the 
right) for every subjeet would be amistake. More generally, the use of an 
experimental room in whieh there was eonsiderably more light on the left 
side of subjeets than on the right would be eonsidered mistaken. There 
is a differenee, however, in these two examples. The assignment of Al to 
the left or right for eaeh subjeet is information that ean easily be in
eorporated into models of the data - and requirements of randomization 
ean be stated. Detailed information about the distribution of physieal 
parameters eharaeterizing the experimental environment is not a simple 
matter to ineorporate in models of data and is usually not reported in the 
literature ; roughly speaking, some general ceteris paribus eonditions are 
assumed to hold. 

The eharaeterization of models of data is not really determined, how
ever, by relevant information about experimental design whieh ean easily 
be formalized. In one sense there is seareely any limit to information of 
this kind; it ean range from phases ofthe moon to I.Q. data on subjeets. 

The eentral idea, eorresponding weH, I think, to a rough but generaHy 
c1ear distinetion made by experimenters and statistieians, is to restriet 
models of the data to those aspeets of the experiment whieh have a para
metrie analogue in the theory. A model of the data is designed to in
eorporate all the information about the experiment whieh ean be used in 
statistieal tests of the adequaey of the theory. The point I want to make is 
not as simple or as easily made precise as I eould wish. Table I is meant to 

TABLE I 

Hierarchy of theories, models, and problems 

Theory of 

Linear response models 

Models of experiment 

Models of data 

Experimental design 

Ceteris paribus conditions 

Typical problems 

Estimation of (), goodness of fit to models of data 

Number of trials, choice of experimental 
parameters 

Homogeneity, stationarity, fit of experimental 
parameters 

Left-right randomization, assignment of subjects 

Noises, lighting, odors, phases of the moon 
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indicate a possible hierarchy of theories, models, and problems that arise 
at each level to harass the scientist. At the lowest level I have placed 
ceteris paribus conditions. Here is placed every intuitive consideration of 
experimental design that involves no formal statistics. Control of loud 
noises, bad odors, wrong times of day or season go here. At the next level 
formal problems of experimental design enter, but of the sort that far 
exceed the limits of the particular theory being tested. RandomiZation of 
Al as the left or right response is a problem for this level, as is random 
assignment of subjects to different experimental groups. All the con
siderations that enter at this level can be formalized, and their relation 
to models of the data, which are at the next level, can be made explicit -
in contrast to the seemingly endless number of unstated ceteris paribus 
conditions. 

At the next level, models ofthe experiment enter. They bear the relation 
to models ofthe data already outlined. FinaHy, at the top ofthe hierarchy 
are the linear response models, relatively rar removed from the concrete 
experimental experience. It is to be noted that linear response models are 
related directly to models of the data; without explicit consideration of 
models of the experiment. Also worth emphasizing once again is that the 
criteria for deciding if a possible realization of the data is a model of the 
data in no way depend upon its relation to a linear response model. These 
criteria are to determine if the experiment was weH run, not to decide if 
the linear response theory has merit. 

The dependence is actually the other way round. Given a model of the 
. data, we ask if there is a linear response model to which it bears a satis
factory goodness-of-fit relation. The rationale of a maximum likelihood 
estimate of () is easily stated in this context: given the experimental 
parameters 1tl and 1t2 we seek that linear response model, i.e., the linear 
response model with learning parameter {J, which will maximize the 
probability of the observed data, as given in the model of the data. 

It is necessary at this point to break off rather sharply discussion of this 
example from learning theory, but there is one central point that has not 
been sufficiently mentioned. The analysis of the relation between theory 
and experiment must proceed at every level of the hierarchy shown in 
Table I. Difficulties encountered at all but the top level re:tlect weaknesses 
in the experiment, not in the fundamentallearning theory. It is unfortunate 
that it is not possible to give here citations from the experimentalliterature 
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of badly conceived or poody executed experiments that are taken to 
invalidate the theory they presume to test, but in fact do not. 

111. THE THEOR Y OF MODELS IN THE EMPIRICAL SCIENCES 

I began by saying that Iwanted to try to show that exact analysis of the 
relation between empirical theories and relevant data calls for a hierarchy 
of models of different logical type. The examination of the example from 
learning theory was meant to exhibit some aspects of this hierarchy. I 
would like to conclude with some more general remarks that are partially 
suggested by this example. 

One point of concern on my part has been to show that in moving from 
the level of theory to the level of experiment we do not need to abandon 
formal methods of analysis. From a conceptual standpoint, the distinction 
between pure and applied mathematics is spurious - both deal with set
theoretical entities, and the same is true of theory and experiment. 

It is a fundamental contribution of modern mathematical statistics to 
have recognized the explicit need of a model il1 analyzing the significance 
of experimental data. It is a paradox of scientific method that the branches 
of empirical science that have the least substantial theoretical developments 
often have the most sophisticated methods of evaluating evidence. In such 
highly empirical branches of science, a large hierarchy of models is not 
necessary, for the theory being tested is not a theory with a genuine logical 
structure, but a collection of heuristic ideas. The only models needed are 
something like the models of the experiment and models of the data dis
cussed in connection with the example from learning theory. 

Present statistical methodology is less adequate when a genuine theory 
is at stake. The hierarchy of models outlined in our example corresponds 
in a very rough way to statisticians' concepts of a sampie space, a pop
ulation, and a sampie. It is my own opinion that the explicit and exact 
use of the logical concept of model will turn out to be a highly useful 
device in clarifying the theory of experimental design, which many 
statisticians still think of as an "art" rather than a "science" . Limitations 
of space have prevented working out the formal relations between the 
theory of experimental design and the theory of models of the data, as I 
conceive it. 

However, my ambitions for the theory of models in the empirical 
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sciences are not entirely such practical ones. One of the besetting sins of 
philosophers of science is to overly simplify the structure of science. 
Philosophers who write about the representation of scientific theories as 
logical calculi then go on to say that a theory is given empirical meaning 
by providing interpretations or coordinating definitions for some of the 
primitive or defined terms of the calculus. What 1 have attempted to 
argue is that a whole hierarchy of models stands between the model of the 
basic theory and the complete experimental experience. Moreover, for 
each level of the hierarchy, there is a theory in its own right. Theory at one 
level is given empirical meaning by making formal connections with 
theory at a lower level. Statisticalor logical investigation of the relations 
between theories at these different levels can proceed in a purely formal, 
set-theoretical manner. The more explicit the analysis, the less place there 
is for non-formal considerations. Once the empirical data are put in 
canonical form (at the level of models of data in Table 1), every question 
of systematic evaluation that arises is a formal one. It is important to 
notice that the questions to be answered are formal, but not mathematical 
- not mathematical in the sense that their answers do not in general 
follow from the axioms of set theory (or some other standard framework 
for mathematics). It is precisely the fundamental problem of scientific 
method to state the principles of scientific methodology that are to be 
used to answer these questions - questions of measurement, of goodness 
of fit, of parameter estimation, of identifiability, and the like. The 
principles needed are entirely formal in character in the sense that they 
have as their subject matter set-theoretical models and their comparison. 
Indeed, the line of argument 1 have tried to follow in this paper leads to 
the conclusion that the only systematic results possible in the theory of 
scientific methodology are purely formal, but a general defense of this 
conclusion cannot be made here. 

NOTES 

1 For a detailed discussion ofaxiomatization of theories within set theory, see Suppes 
(1957, Chap. 12). 
2t Article 1 in this volume. 
3 The exact character of a model d,!/ of the experiment and a model Z of the data is not 
determined uniquely by the experiment. It would be possible, for instance, to defined,!/ 
in terms of N-tuples. 
4 For use at this point, a more explicit definition of models of the data would run as 
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folIows. Z is an N-fold model of the data for experiment qlj if and only if there is a set 
Yand a probability measure P on subsets of Y such that qlj = < Y, P) is a model of the 
theory of the experiment, Z is an N-tuple of elements of Y, and Z satisfies the statistical 
tests of homogeneity, stationarity, and order. A fully formal definition would speIl 
out the statistical tests in exact mathematical detail. For example, a chi-square test 
of homogeneity for EI reinforcements following Al responses wouId be formulated as 
folIows. Let Ni be the number of Al responses (excluding the last trial) for subject j, 
Le., as recorded in Zi - thejth member of the N-tuple Z, and let Vi be the number of EI 
reinforcements following Al responses for subject j. Then 

N 
X2 (Z) = L (Vi - Npr.I)2 + ~Ni - Vi - N,(1 - m))2 

H j= 1 Nj'fH Ni(1 - TC}) 

N (Vi - N}1t1)2 

=j~lN}1t1(l - 1t1)' 

and this X2 has N degrees of freedom. If the value XH2 (Z) has probability greater than 
0.05 the null hypothesis is accepted, Le., with respect to homogeneity Zis satisfactory. 
5 To emphasize that conceptually there is nothing special about this particular example 
chosen from learning theory, it is pertinent to remark that much more elaborate 
analyses of sources of experimental eITor are customary in complicated physical 
experiments. In the literature of leaming theory it is as yet uncommon to report the 
kind of statistical tests described above which playa role analogous to the physicists' 
summary of experimental errors. 



3. A SET OF INDEPENDENT AXIOMS FOR 

EXTENSIVE QUANTITIES*l 

I. INTRODUCTION 

The modern viewpoint on quantities goes back at least to Newton's 
Universal Arithmetick. Newton asserts that the relation between any two 
quantities of the same kind can be expressed by a real, positive number.2 

In 1901, O. Hoelder gave a set of 'Axiome der Quantitaet', which are 
sufficient to establish an isomorphism between any realization of his 
axioms and the additive semigroup of all positive real numbers. Related 
work of Hilbert, Veronese and others is indicative of a general interest 
in the subject of quantities in the abstract on the part of mathematicians 
of this period. During the last thirty years, from another direction, 
philosophers of science have become Jnterested in the logical analysis of 
empirical procedures of measurement. 3 The interests of these two groups 
overlap insofar as the philosophers have been concerned to state the 
formal conditions which must be satisfied by empirical operations 
measuring some characteristic of physical objects (or other entities). 
Philosophers have divided quantities (that is, entities or objects con
sidered relatively to a given characteristic, such as mass, length or 
hardness) into two kinds. Intensive quantities are those which can 
merely be arranged in a serial order; extensive quantities are those for 
which a "natural" operation of addition or combination can also be 
specified. Another, more exact, way of making a distinction of this order 
is to say that intensive quantities are quantities to which numbers can be 
assigned uniquely up to a monotone transformation, and extensive 
quantities are quantities to which numbers can be assigned uniquely up 
to a similarity transformation (that is, multiplication by a positive 
constant).4 This last condition may be said to be the criterion of formal 
adequacy for a system of extensive quantities. 

Hoelder's system satisfies this criterion of adequacy for extensive 
quantities, and his system has in fact been used by some philosophers 

• Reprinted from Portugaliae Mathematica 10 (1951), 163-172. 
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(see, for instanee, Nagel, 1931) in methodologieal studies ofmeasurement. 
But from the methodologieal standpoint, there are at least two serious 
defeets in Hoelder's system. The first is that he does not axiomatize the 
relation designated by '=' but instead, treats it as the logieal relation of 
identity. However, it is ordinarily admitted that two distinet line segments 
may have the same numerieallength or two distinet physieal objeets the 
same mass; and eonsequently, '=' should designate an equivalenee 
relation whieh is not the logical one of identity.5 The seeond defeet of 
Hoelder's system is that it is too strong for a general eharacterization of 
extensive quantities. His system is eategorieal in the sense that any two 
realizations of it are isomorphie, and, in addition, isomorphie to the 
additive semigroup of all positive real numbers. But these requirements 
are eertainly too demanding, for it is intuitively obvious that a set of 
extensive quantities need not even have the density property of the 
rational numbers. The masses of objects in a given set eould, for instanee, 
surely be determined, even if relatively to some unit, the mass of every 
objeet in the set were a positive integer. 

The purpose of the present paper is to present a formally adequate 
system ofaxioms for extensive quantities, from whieh these two defeets 
are eliminated. In addition, proofs of the independence of the axioms 
and the primitives of the system are given. 

II. AXIOMS 

We consider a system consisting of a nonempty set K of arbitrary elements 
x, y, z ... , a binary relation Q defined over K, and a binary function * defined 
over K. Sueh a system may be regarded as the ordered tripIe <K, Q, *). 
Variables 'm', 'n', ete., take as values the natural numbers; the notation 'nx' 
is defined in the usual reeursive way: lx=x, and nx=(n-l)x*x. 

DEFINITION: A system <K, Q, *) will be said to be a system of extensive 
quantities if it satisfies the following seven axioms: 

AI. If x, y and z are in K, and if x Q y and y Q z, then x Q z. 
All. If x and y are in K, then x * y is in K. 
AlU. If x, y and z are in K, then (x*y)*z Q x*(y*z). 
AIV. If x, y and z are in K and x Q y, then x*z Q z*y. 
AV. If x and y are in K and not x Q y, then there is a z in K such that 

xQy*zandy*zQx. 
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AVI. 1f X and y are in K, then not x * y Q x. 
AVII. 1f x and y are in K and x Q y, then there is a number n such that 

yQnx. 
If * is interpreted as + and Q as ~, it may easily be seen that these 

axioms are satisfied by any additive semigroup of positive numbers 
closed under subtraction of smaller numbers from larger ones. The 
formal adequacy of these axioms, in the sense defined in Section I, is 
established in Section V; that they are mutually independent is established 
in Section VI. 

111. ELEMENT AR Y THEOREMS 

In the statement and proof of theorems which follow from the seven 
axioms just given, the statement of the condition that elements be in K is 
omitted for brevity. The proofs are all elementary in character and are 
therefore considerably abbreviated. 

THEOREM 1: x Q x. 
Proo!· Assume: not x Q x. Then, by A.V, there is a Z such that 

x *Z Q x, but this contradicts A. VI. -
THEOREM 2: x*y Q y*x. 
Proo/" Use Th. 1 and A.IV. 
THEOREM 3: 1f x Q y and u Q v, then x*u Q y* v. 
Proo!· x * u Q u * y and u * y Q y * v, by A.IV and hypothesis. Then 

use A.I. 
THEOREM 4: x*(Y*Z) Q(x*y)*z. 
Proo/" Using Th. 2, we get: x*(y*z) Q (y*z)*x. Then using Th. 3, 

Th. 2, A.I and A.lII on this, we get: x*(y*z) Q Z* (y *X). Using Th. 2, 
Th. 3, and A.I, we get theorem. 

THEOREM 5: x Q y or y Q x. 
Proo!· Assume: not x Q y and not y Q x. Then y*Zl Q x and X*Z2 

Q y, by A.V. From this by Th. 1 and Th. 3, we get: (y*Zd*Z2 Q X*Z2, 
and then, by A.I, (y*Zl)*Z2 Q y. From this, using Th. 4 and A.I, we get: 
Y*(Zl *Z2) Q Y, which contradicts A.VI. 

THEOREM 6: 1f x*u Q y*u, then x Q y. 
Proo!; Assume: not x Q y. Then by A.V, there is a Z such thaty*Z Q x. 

Using Th. 3, hypothesis, Th. 4 and A.I, we get: y*(z*u) Q y*u. From 
this, by Th. 3, A.III and A.I, we obtain: (y*u)*z Q y*u, which con
tradicts A.VI. 
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THEOREM 7: Ify*Z Q u and x Q y, then x*z Q u. 
Proof: x*z Q y*z, by Th. 1, hypothesis, and Th. 3. Then, x*z Q u, 

by hypothesis and AI. 
THEOREM 8: Ifu Q x*z and x Q y, then u Q y*z. 
Proof: Similar to Th. 7. 
THEOREM 9: mx*nx Q (m+n)x. 
Proof' We use mathematical induction on n. For n= 1, the proof is 

immediate. For n+ 1, we begin with: mx*(n+ 1) x Q mx*(nx*x). Using 
principally Th. 1, Th. 3, and Th. 6 and the hypothesis that theorem holds 
for n, we obtain: mx*(n+ l)x Q (m+n+ l)x. 

THEOREM 10: (m+n)x Q mx*nx. 
Proof' Similar to Th. 9. 
THEOREM 11: n(mx) Q(nm)x. 
Proof' We use mathematical induction on n. For n= 1, the proof is 

immediate. For n+ 1, we begin with: (n+ l)(mx) Q n(mx) * mx. Using 
principally Th. 10, the hypothesis that theorem holds for n, and Th. 9, 
we get: (n+ 1) (mx) Q «n+ 1) m) x. 

THEOREM 12: (nm) x Q n(mx). 
Proof' Similar to Th. 11. 
THEOREM 13: n(x*y) Q nx*ny. 
Proof' Again we use mathematical induction on n. The proof is 

obvious for n= 1. For n+ 1, we begin with: (n+ 1)(x*y)Q n(x*y)*(x*y), 
which follows from Th. 10. Using hypothesis that theorem holds for n, 
Th. 1, Th. 3, A.IU, and A.I, we get then: (n+ 1)(x*y)Q nx*(ny*(x*y». 
Starting now from Th. 6, then using Th. 2, Th. 1, Th. 3, AlU, AI, Th. 1, 
and Th. 3 again, we get: nx*(ny*(x*y»Q nx*(x*(ny*y». Combining 
this with previous result, using AI and Th. 4, and definition of 'nx', we 
get the theorem. 

THEOREM 14: nx*ny Q n(x*y). 
Proof' Similar to Th. 13. 
THEOREM 15: If x Q y, then nx Q ny. 
Proof' We use mathematical induction on n. For n= 1 the proof is 

immediate. From hypothesis that theorem holds for n we get immediately: 
nx Q ny. And, then, by use of Th. 3 and x Q y, we get: nx*x Q ny*y, 
from which we get the theorem immediately. 

THEOREM 16: Ifnx Q ny, then x Q y. 
Proof' Assume: not x Q y. Then by AV, there is a z such y*z Q x; 
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and from this by Th. 15, Th. 14, andA.I, we obtain: ny*nz Q nx. By use 
of hypothesis and A.I, this yields: ny*nz Q ny, which contradicts A.VI. 

THEOREM 17: Ifm::;;,n, then mx Q nx. 
Proof: If m=n, then the theorem immediately by Th. 1. This leaves 

the case of m<n. Thus, n=m+k. Now assume: not mx Q nx. Then by 
Th. 5, nx Q mx, that is, (m+k) x Q mx. From this, by Th. 9 and A.I, we 
get: mx*kx Q mx, which contradicts A.VI. _ 

THEOREM 18: There is a number n such that x Q ny. 
Proof: By Th. 5, x Q y or y Q x. Case 1. x Q y. Let n= 1. Case 2. 

y Q x. Theorem follows immediately from A. VII. 

IV. SYSTEM OF MAGNITUDES 

If magnitudes are defined as certain equivalence c1asses of quantities, a 
system of extensive magnitudes may be developed, which is useful for 
proving the formal adequacy of our axioms for extensive quantities. 
Conceived this way, there would seem to be a proper place for magnitudes 
as weIl as quantities, and there need be no interminable debate about the 
relative merit of each.6 

The relation defined by the logical product of Q and its converse is 
obviously reflexive, symmetrical and transitive, that is, it is an equiv
alence relation, which we may designate by 'C': 

xCy = dixQy andyQx). 

Thus, C defines a partition of K, that is, a set of pair-wise disjoint, 
nonempty subsets of K whose union equals K. We designate the C
equivalence c1ass of which x is a member (that is, the coset x/Cl by 
'[x]', and the partition of K by 'K/C'. The relation Chas the substitution 
property relatively to Q and *, that is, (i) if x C y and y Q z, then x Q z, 
and if x C y and z Q y, then z Q x, and (ii) if x C y and u C v, then 
x*u C y*V. (i) is trivial and (ii) follows immediately from Th. 3 and the 
definition of 'C'. Thus we may define a relation::;;, and an operation + in 
K/C: 

(i) [x]::;;, [y] if and only if x Q y; 
(ii) [x] + [y] is the C-equivalence c1ass in K/ C which consists of the 

elements in K standing in relation C to the element x*y. Also, 'n [x]' is 
defined recursively, just as 'nx' was previously: l[x]=[x] and n[x] = 
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(n-l)[x]+[x]. In fine, where 9R=(K, Q, *) is a system of extensive 
quantities, 9R/C=(K/C,:::;;;, +) is the equivalence-c1ass (or co set) 
system of 9R under relation C, and we shall call 9R/ Ca system of extensive 
magnitudes. 

On the basis of the axioms and theorems already given, it is easy to 
prove the following theorems for extensive magnitudes, which we shall 
begin numbering with 21. The theorems are arranged in an order to bring 
out c1early the algebraic structure of a system of extensive magnitudes. 
For brevity we write '[x] <[y]' for 'not([y]:::;;;[x])'. 

Th. 21: ..lf[x] and [y] are in K/C, then [x] + [y] is in K/C. 
Th.22: If [x], [y] and [z] are in K/C, then ([x] + [y]) + [z] = [x] + 

([y] + [z]). 
Th. 23: .lf [x] and [y] are in K/C, then [x] +[y] =[y] + [x]. 
Th. 24: .lf [x], [y] and [z] are in K/C and [x] + [z] = [y] + [z], then 

[x]=[y]. 
Th. 25: .lf [x] and [y] are in K/C, [x]:::;;;[y] and [y]:::;;;[x], then 

[x] = [y]. 
Th. 26: If [x], [y] and [z] are in K/C, [x):::;;;[y] and [y]:::;;;[z], then 

[x]:::;;; [z]. 
Th. 27: If [x] and [y] are in K/C, then [x] :::;;;[y] or [y] :::;;;[x]. 
Th. 28: .lf[x] and [y] are in K/C, and [y]<[x], then there is a [z] in 

K/C such that [x] = [y] + [z]. 
Th. 29: ..lf[x] and [y] are in K/C, then [x] <[x] + [y]. 
Th. 30: ..lf [x] and [y] are in K/ C and [x] :::;;; [y], then there is a number 

n such that [y]:::;;;n[x]. 
It is apparent that obvious analogues of all the theorems in Section III 

may be easily proved. From the theorems stated here, we see that the 
algebraic structure of a system of extensive magnitudes is that of a simply 
ordered, 'Archimedean', Abelian semigroup which does not have a zero 
element and which is closed under subtraction of 'smaller' elements from 
'larger' ones. 

V. ADEQUACY OFAXIOMS 

The formal adequacy of our axioms is proved by making essential use of 
the theorems on extensive magnitudes. The reason for this is that a 
system of extensive quantities is in general merely homomorphic to an 
additive semigroup of positive real numbers, which is to be expected, 
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since in measurement of objects relative to a certain characteristic the 
same number is often assigned to distinct objects. In particular, a given 
number is assigned to a C-equivalence c1ass of objects, which leads to the 
following metatheorem. 

METATHEOREM A: /frol= (K, Q, * > is a system of extensive quantities, 
then the system of extensive magnitudes rollC is isomorphie to an additive 
semigroup of positive real numbers, closed under subtraetion of smaller 
numbers from larger ones.7t 

Proof: The proof of this metatheorem follows along standard lines, as 
given, for instance, in Hoelder (1901) or Birkhoff (1948, p. 226). (Birkhoff's 
proof for simply-ordered, Archimedean groups need be only slightly 
modified; Birkhoff also gives detailed references to the literature.) It will 
therefore suffice briefly to describe the construction of a mappingfwith 
the desired properties. We define the set S[x][e] where [x] and Ce] are in 
KI C, as the set of all rational fractions mln such that n [x] ~ m [e J. It is 
easy to show that Sex] Ce] has a greatest lower bound, which we define as 
the number assigned to [x], that is, the mappingfis defined as folIows: 

fee] ([x]) is the greatest lower bound of Sex] Ce] • 

Since it may be shown that .f[e]([ e]) = 1, the choice of [e] corresponds to 
the choice of a unit. And, using the theorems of Section IV, it may be 
shown in a straightforward manner that .f[e] has the desired properties: If 
[x] ~ [y], then .f[e]([ x]) ~.f[e]([Y ]); .f[e]([ x] + [y]) = .f[e]([ x]) + .f[e]([Y ]); 
and if [x] # [y], then.f[e]([x])#.f[ei[y]).8 

The following metatheorem establishes the desired uniqueness property 
of our axioms. It is equivalent to saying that in the measurement of 
extensive quantities, only the choice of a unit is arbitrary. 

METATHEOREM B: /frol= <K, Q,*> is a system of extensive quantities, 
then any two additive semigroups of positive real numbers, whieh are 
isomorphie to rollC, are related by a similarity transformation. 

Proof: Consider any additive semigroup of positive real numbers 
isomorphie to roll C under the mapping g. Then it will be sufficient to show 
that there exists a positive constant e such that for every [x] in KIC, 
g([ x]) = e.f[e]([ x]), where .f[e] is the mapping defined above. Let g([ e]) = e. 
Then, assurne that there exists an [x] in KIC such that g([x]) < e.f[e]([x]). 
On this assumption, we may find an mln such that 

(1) g([x])le< mln < f[e]([x]). 



INDEPENDENT AXIOMS FOR EXTENSIVE QUANTITIES 43 

It is c1ear from definition of f[e] that then m [ e ] < n [x], and theref ore, on 
hypothesis for g, mg([e])<ng([x]), that is, m/n < g([x])/c, but this 
eontradiets (1). Similarly, on the assumption that there exists an [x] in 
K/C sueh that cf[e]([x])<g([x]), we also get a eontradietion. Q.E.D. 

It may be remarked that a system of extensive magnitudes ffR/C is also 
isomorphie to (nonadditive) semigroups in the number domain whieh 
are not related by a similarity transformation. The last realization of our 
axioms given in Seetion VII below is an example of this kind. 

VI. INDEPENDENCE OFAXIOMS 

The fonowing seven examples establish the mutual independence of our 
axioms for extensive quantities. The first example provides an inter
pretation of K, Q and * that is satisfied by an but the first axiom, ete. 
Sinee the examples are an of an elementary eharaeter, an proofs are 
omitted. 

I. Let K be the set of all positive integers; let x Q y if and only if 
x:S:;;y+l; and define x*y as x+y+2. 

11. Let K be simply the set eonsisting of the number one; let x Q y if 
and only if x:S:;;y; and define * as ordinary addition. 

111. Let K be the set of an positive rational numbers; let x Q y if and 
only if x:S:;;y; and define x*y as Max (x, Y)+l Min (x, y). 

IV. Let K be the set of an positive rational numbers; let x Q y if and 
only if x:S:;;y; and define x*y as x+ IOy. 

V. Let K be the set of an positive integers with the exception of the 
number one; let x Q y if and only if x:S:;;y; and define * as ordinary 
addition. 

VI. Let K be the set eonsisting of the number one; let x Q y if and only 
if x:S:;;y; and define * as ordinary multiplieation. 

VII. Let K be the set eonsisting of (i) an ordered pairs whose first 
members are positive integers and whose seeond members are integers, 
together with (ii) an ordered pairs whose first members are zero and 
whose seeond members are positive integers; where x=(a, b) and 
y=(c, d), let x Q y if and only if a <c, or a=c and b:S:;;d; define (a, b)* 
(c, d) as (a+c, b+d). 
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VII. INDEPENDENCE OF PRIMITIVES 

Using Padoa's principle 9, we may establish the mutual independence of 
the three primitives K, Q and * of our axioms for extensive quantities. 
The application of Padoa's principle requires that we find for each 
primitive two different realizations of our axioms such that the other two 
primitives are given the same interpretation for both realizations. 

I. Independence of K. For the first realization, let K' be the set of 
positive integers; let x Q' y if and only if x~y; and define *' as ordinary 
addition. And, for the second realization, let K" be the set of even positive 
integers; Q" = Q' ; *" = *'. 

11. Independence of Q. For the first realization, let K' be the set of all 
ordered pairs of positive integers; where x = (a, b) and y=(c, d), let 
x Q' y if and only if a~c; and (a, b)*'(c, d)=(a+c, b+d). For the 
second realization, K"=K'; *" = *'; where x=(a, b) and y=(c, d), 
let x Q"y if and only if b~d. Thus, we have, for instance, (I, 2)Q'(2, I), 
and not (I, 2)Q"(2, I). 

IH. Independence of *. For the first realization, let K' be the set of 
positive real numbers; let x Q'y if and only if x~y; and define *' as 
ordinary addition. For the second realization, K"=K'; Q"=Q'; x*"y= 
JX2+y2. Thus, we have, for instance, h'2=3, and h"2:;of3. 

VIII. EMPIRICAL REALIZATIONS 

Our system ofaxioms for extensive quantities was designed to eliminate 
the two defects of Hoelder's system, which were mentioned in Section I. 
In this conc1uding section, I would like to point out, from the standpoint 
of the methodological analysis of measurement, two more fundamental 
defects common to both systems. 

Given any realization of our axioms, it is apparent, in the first place, 
that the set K must contain an infinite number of elements. This fiagrantly 
violates obvious finitistic requirements of empirical measurement. And 
it is apparent, in the second place, that the realization of Q must be a 
perfect1y transitive relation, which entails that the measuring instrument 
used to determine whether or not two objects stand in the relation Q must 
possess perfect sensitivity. However, a lack of such perfect sensitivity 
seems characteristic of nearly all measuring instruments. An equal-arm 
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balance, for instance, can only differentiate between objects having a 
mass-difference greater than some finite amount. 

The standard axiomatic theory of quantities must be altered rather 
profoundly in order to take account of these two problems. At least from 
a methodological standpoint, such an altered formal system, mirroring 
more accurately the facts of actual, imperfect measurement, would be of 
interest. 

NOTES 

1 I am grateful to J. C. C. MeKinsey for a number of helpful suggestions in eonnection 
with the present paper. 
s Newton (1769, p. 2). 
3 The work of Norman R. Campbell (1920) and (1928) has been outstanding in this 
direction. 
4 It may be remarked that this traditional cIassification is not very satisfaetory, since 
there are also quantities whieh are assigned numbers uniquely up to a variety of other 
groups of transformations. However, this issue is irrelevant here, since we are solely 
concemed with extensive quantities in the sense just defined, and the problem of 
precisely how many formally different kinds of quantities it is useful to distinguish need 
not eoncem uso 
5 This eriticism would also seem to apply to the axioms for the measurement of utility 
given by J. von Neumann and O. Morgenstern (1947): '=' should designate the 
relation of indifference rather than that of identity. 
6 For some aspects of this debate, see Russell (1903, Chaps. 19, 20) and Nagel (1931). 
7t I would now call Metatheorem A the 'Representation theorem' for extensive quanti
ties, and Metatheorem B the 'Uniqueness theorem'. 
8 Another method of proof of this metatheorem is to show that IJJlI C can be uniquely 
embedded in an Arehimedean, simply ordered group. And it is weIl known (see 
Birkhoff, 1948) that any such group is isomorphie to a subgroup of the additive group 
of an real numbers. 
9 Padoa (1901); a cIear statement of this principle is also to be found in MeKinsey 
(1935). 



4. FOUNDATIONAL ASPECTS OF THEORIES 

OF MEASUREMENT*1 

I. DEFINITION OF MEASUREMENT 

It is a scientific platitude that there can be neither precise control nor 
prediction of phenomena without measurement. Disciplines as diverse as 
cosmology and social psychology provide evidence that it is nearly 
useless to have an exact1y formulated quantitative theory, if empirically 
feasible methods of measurement cannot be developed for a substantial 
portion of the quantitative concepts of the theory. Given a physical 
concept like that of mass or a psychological concept like that of habit 
strength, the point of a theory of measurement is to lay bare the structure 
of a collection of empirical relations which may be used to measure the 
characteristic of empirical phenomena-corresponding to the concept. Why 
a collection of relations? From an abstract standpoint, a set of empirical 
data consists of a collection of relations between specified objects. For 
example, data on the relative weights ofa set ofphysical objects are easily 
represented by an ordering relation on the set; additional data, and a 
fortiori an additional relation, are needed to yield a satisfactory quanti
tative measurement of the masses of the objects. 

The major source of difficulty in providing an adequate theory of 
measurement is to construct relations which have an exact and reasonable 
numerical interpretation, and, yet also, have a technically practical 
empirical interpretation. The classical analyses of the measurement of 
mass, for instance, have the embarrassing consequence that the basic set 
of objects measured must be infinite. Here the relations postulated have 
acceptable numerical interpretations, but are utterly unsuitable empiri
cally. Conversely, as we shall see in the last seetion of this paper, the 
structure of relations which have asound empirical meaning often cannot 
be succinct1y characterized so as to guarantee a desired numerical inter
pretation. 

* Reprinted from The Journal 01 Symholic Logic 23 (1958),113-128. Written jointly 
with Dana Scott. 
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Nevertheless, this major source of difficulty will not here be carefully 
scrutinized in a variety of empirical contexts. The main point of the 
present paper is to show how foundational analyses of measurement may 
be grounded in the general theory of models, and to indicate the kind of 
problems relevant to measurement which may then be stated (and 
perhaps answered) in a precise manner. 

Before turning to problems connected with construction of theories of 
measurement, we want to give a precise set-theoretical meaning to the 
notions involved. To begin with, we treat sets of empirical data as being 
(finitary) relational systems, that is to say, finite sequences of the form 
m=(A, Rt, ... , Rn>' where A is a nonempty set of elements called the 
domain of the relational system m, and Rt, ... , Rn are finitary relations 
on A. The relation al system m is calledfinite if the set A is finite; other
wise, infinite. It should be obvious from this definition that we are mainly 
considering qualitative empirical data. Intuitively we may think of each 
particular relation Ri (an mi-ary relation, say) as representing a complete 
set of 'yes' or 'no' answers to a question asked of every metermed se
quence of objects in A. The point of this paper is not to consider that 
aspect of measurement connected with the actual collection of data, but 
rather the analysis of relational systems and their numerical interpre
tations. 

If s= (mt, ... , mn> is an n-termed sequence of positive integers, then 
a relational system 21=(A, R t , ... , Rn> is of type s if for each i= 1, ... , n 
the relation Ri is an mi-ary relation. Two relational systems are similar 
if there is a sequence s of positive integers such that they are both of type s. 
Notice that the type of a relational system is uniquely determined only if 
all the relations are nonempty; the avoiding of this ambiguity is not 
worthwhile. Suppose that two relational systems m= (A, Rt, ... , Rn> and 
58=(B, St, ... , Sn> are of type s=(mt , ... , mn>. Then m is a homo
morphie image 0121 if there is a function I from A onto B such that, for 
each i= 1, ... , n and for each sequence (at, ... , am ) of elements of A, 
Ri(at , ... , am;) if and only if Si (J(at ), ... ,J(am;». If the functionl is one
one, then 58 is an isomorphie image 01 m, or simply 21 and 58 are isomorphie. 
m is a subsystem of m if A sB and, for each i= 1, ... , n, the relation Ri 
is the restriction of the relation Si to A. m is imbeddable in 58 if some sub
system of m is a homomorphic image of 21.2 A numerieal relational system 
is simply a relational system whose domain of elements is the set Re of all 
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real numbers. A numerical assignment for a relational system ~ with 
respect to a numerical relational system 91 is a function which imbeds ~ 
in 91. A numerical assignment is not required to be one-one. 

Within the framework of the preceding formal definitions, it is now 
possible to give an exact characterization of a theory of measurement. 
First of all, the general outlines of a theory are determined by fixing a 
finite sequence s of positive integers and only considering relational 
systems of type s. Next, a numerical relational system 91 of type s is 
selected which corresponds to the intended numerical interpretation of 
the theory, and only relational systems imbeddable in 91 are permitted. 
Moreover, the theory need not concern all relational systems of type s 
imbeddable in 91, but only a distinguished subclass. Since it is reasonable 
that no special set of objects be preferred, we require that the distinguished 
subclass be closed under isomorphism. We thus arrive at the following 
characterization of theories of measurement as definite entities: a theory 
of measurement is a class K of relational systems closed under isomor
phism for which there exists a finite sequence s of positive integers and a 
numerical relational system 91 of type s such that all relational systems 
in Kare of type sand imbeddable in 91.3 

Some readers may object that the definition of theories of measurement 
should be linguistic rather than set-theoretical in character, since a theory 
is ordinarily thought of as a linguistic entity. To be sure, many theories 
of measurement have a natural formaIization in first-order predicate logic 
with identity. Notice, however, that first-order axioms by themselves are 
not adequate, for if they admit one infinite relational system as a model 
then they have models of every infinite cardinaIity, and it is difficult to see 
how any natural connection can be established between numerical models 
and models of arbitrary cardinaIity. Even neglecting this criticism, first
order axioms are not adequate to express properties involving arbitrary 
natural numbers, for example, that a relational system is finite or that as 
an ordering it has Archimedean properties. Any linguistic definition of 
theories which will permit expression of these more general properties 
would require extensive machinery and be immediately involved in some 
of the deepest problems of modern metamathematics. On the other hand, 
we do not wish to give the impression that we reject any linguistic 
questions. In fact, we use our set-theoretical definition as a point of 
departure for asking just such questions. 
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On the basis of the definition of theories of measurement adopted, two 
questions naturally arise, to each of which we devote a section. In the 
first place, is a given c1ass of relational systems a theory of measurement? 
And in the second place, given a theory of measurement, in what sense 
can it be axiomatized? 

11. EX1STENCE OF MEASUREMENT 

A simple counterexample shows that not every c1ass of relational systems 
of a given type closed under isomorphism is a theory of measurement. 
Let 0 be the c1ass of all relational systems of type <2) that are simple 
orderings. Let <A, R) be a system in 0 where R weIl-orders A and A has 
a power not equal to or less than that of the continuum. Such a relational 
system can be proved to exist even without the help of the axiom of 
choice, but of course with aid of this axiom, the existence is obvious. By 
way of contradiction, suppose that 0 is a theory of measurement relative 
to a numerical relational system <Re, S). From the definition, it follows 
that <A, R) is imbeddable in <Re, S) and that there is a numerical 
assignmentfmapping A onto a subset of Re such that xRy if and only if 
f(x) S f(y) for all elements x, YEA. Let a, b be elements of A such that 
f(a)=f(b). From the hypothesis that R is a simple ordering, we can 
assume without loss of generality that aRb. Hence, we havef(a) Sf(b), 
and thenf(b) Sf(a), and finaIly, bRa. R is antisymmetric, and so a=b. 
This argument shows that the functionfis one-one. Hence A has the same 
power as a sub set of Re, which is impossible. This proof shows that every 
theory of measurement inc1uded in the c1ass 0 contains only relational 
systems ofpower at most that ofthe continuum.1t is an unsolved problem 
of set-theory c10sely connected with the continuum hypothesis whether 
the c1ass 0 restricted to systems of power at most that of the continuum is 
actually a theory of measurement.4 At least it can be very easily shown 
that 0 so restricted is not a theory of measurement relative to the system 
<Re, ~), where the relation ~ is the usual ordering ofthe real numbers.5 

Indeed, the exact condition that a relational system in 0 must satisfy to 
be imbeddable in <Re, ~) is not really elementary, and the proof of the 
necessity involves the axiom of choice.6 

Let 0' be 0 restricted to countable relational systems.7 It was proved 
by Cantor that 0' is a theory of measurement relative to <Re, ~). to 
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formulate somewhat irreverently his classical result in the terminology of 
this paper. This restriction to countable relational systems is always 
sufficient, for it can be shown that the class of all countable relational 
systems of a given type is a theory of measurement; however, the 
numerical relational system required is so bizarre as to be of no practical 
value. 

A primary aim of measurement is to provide a means of convenient 
computation. Practical control or prediction of empirical phenomena 
requires that unified, widely applicable methods of analyzing the im
portant relationships between the phenomena be developed. Imbedding 
the discovered relations in various numerical relational systems is the 
most important such unifying method that has yet been found. But 
among the morass of all possible numerical relational systems only a very 
few are of any computational value, indeed only those definable in terms 
of the ordinary arithmetical notions. From an empirical standpoint, most 
sets of qualitative data can find numerical interpretation by relations 
defined in terms of addition and ordering alone. By way of example, we 
may cite the measurement of masses, distances, sensation intensities, and 
subjective probabilities. Frequently the consideration ofweighted averages 
requires also the use of the multiplication of numbers. However, in the 
examples given in this paper, we shall restrict ourselves to the notions of 
addition and ordering. 

No natural scientific situation would seem strictly to require the con
sideration of sets of infinite data. This state of affairs suggests that theories 
of measurement containing only finite relational systems would suffice for 
empirical purposes. The problem is delicate, however, for the measure
ment of a meteorological quantity such as temperature by an automatic 
recording device is usually treated as continuous, both in its own scale 
and in time. Yet the important problem of measurement does not really 
lie in the correct use of such recording devices, but rather in their initial 
calibration, a process proceeding from a finite number of qualitative 
decisions. Because ofthe awkwardness ofthe uniform application offinite 
relational systems, we shall not generally make this restriction. 

Further remarks about establishing the existence of measurement are 
best motivated by reference to a concrete example. In arecent paper 
(1956), Luce has introduced a generalization of simple orderings which 
he calls semiorders. A semiorder is a relational system (A, P) of type (2) 
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which satisfies the following axioms for all x, y, z, weA: 
S1. Not xPx. 
S2. If xPy and zPw, then either xPw or zPy. 
S3. IfxPy and zPx, then either wPy or zPw.8 

Such relations are most likely to occur in situations where objects are to 
be arranged in order, and where it is difficult to say exact1y when two 
objects are indifferent. For example, to say that xPy might be interpreted 
as meaning that the pitch of the sound x is definitely higher than the pitch 
of y, or that the hue of color xis definitely brighter than the hue of color y, 
or that the weigbt of the object xis noticeably greater than that of y, etc. 
IndifJerence between two objects x and y (in symbols: xly) is defined as 
not xPy, and not yPx. The point of Luce's axioms is that the relation Iof 
indifference is not always transitive, a fact easily appreciated for each of 
the intuitive interpretations given above. 

In his paper, Luce gives a certain numerical interpretation for certain 
kinds of semiorders, but he does not show that any particular class of 
semiorders is a theory of measurement in the sense used here, because his 
interpretations are not relative to a fixed numerical relation. However, in 
the finite case, the situation becomes relatively simple. Let ~ be that 
relation between real numbers defined by the condition: x~y if and 
only ifx>y+1. Clearly, if x andy are real numbers such that x~y, then 
it is fair to say that x is definitely greater than y, or better, xis noticeably 
greater than y. It is in fact a simple exercise to prove that the relational 
system (Re, ~ > is a semiorder. Further, we shall give the proof of the 
following result: 

The class oJ finite semiorders is a theory oJ measurement relative to the 
numerical relational system (Re, ~ >. 

Before presenting the proof of the above, it would be weIl to outline a 
general method in proofs of the existence of measurement which we shall 
call the method oJ cosets. Let m = (A, RI , ••• , Rn> be a relational system 
of type (mI' ... ' mn>. A uniquely determined equivalence relation E is 
introduced into m by the condition: xEy if and only if Jor each i = 1, ... , n 
and eachpair (ZI' ... , zml>' (WI' ... , w...,> ofmi-termedsequencesoJelements 
oJ A, ifzj=Fwj implies {zJ' Wj}={x,y} forj=I, ... , mjo then Rj(z!> ... , zmJ 
if and only if Rj(WI' ... , Wm,). 

Even though the above definition is complicated to state in general, the 
meaning of the relation xEy is simple: elements x and y stand in the 
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relation E just when they are perfeet substitutes for eaeh other with 
respeet to all the relations R i •9 

The notion of a weak ordering ean serve as an exam pIe. Let m: = <A, R) 
where the binary relation R is eonneeted and transitive. Then xEy is 
equivalent to the eondition: For all zEA, xRz if and only ifyRz, and zRx 
if and only if zRy. However, this simplifies finally to: xRy and yRx. 

Returning now to the general ease, define, for eaeh xEA, [x] to be the 
class of all y sueh that xEy. [x] is ealled the coset of x. Let A * be the class 
of all [x] for XE A. Directly from the definition of E we ean deduee that it 
is permissible to define m;-ary relations Ri over A* sueh that, for all 
Xl' ... , Xm,EA, Ri([Xl]' ... , [Xm.J) if and only if Ri(Xl , ... , XmJ The 
relational system m:*=<Ai, Ri, ... , R:) is ealled the reduction oJm: by 
cosets. 

It is at onee obvious that m:* is a homomorphie image of m: and that 
m:** is isomorphie with m:*. What is not quite obvious is the following: 
/f Q3 is a homomorphic image oJ m:, then m: * is a homomorphic image oJ 
Q3. 

By way of proof, letJbe a homomorphism of m: onto Q3. We wish to 
show that if J( x) = J(Y), then [x] = [y J. Instead of the general ease, 
assurne for simplieity that m: and Q3 are of type <2) and m:=<A, R), 
Q3=<B, S>. We must show that if J(x)=J(y), then xEy, or in other 
words, for all zEA, xRz if and only if yRz, and zRx if and only if zRy. 
Assurne xRz. It folIo ws that J(x) S J(z), and henee J(y) S J(z), whieh 
implies that yRz. The argument is clearly symmetrie. We have therefore 
shown that there is a funetion g from B onto A * sueh that g (J (x)) = [x] 
for xEA. It is trivial to verify that gis a homomorphism of Q3 onto m:*. 

Notiee the following relation between the eoneepts of homomorphie 
image and subsystem: if 58 is a homomorphie image of m:, then 58 is 
isomorphie to a subsystem ofm:. For letJbe a homomorphism of m: onto 
Q3. Let g be any funetion from B into A sueh thatJ(g(y))=y for allYEB. 
The restrietion of m: to the range of g yields the subsystem of m: isomorphie 
with Q3. 

Using the above remarks, we ean establish at onee the equivalenee: 
m: is imbeddable in Q3 if and only if m: * is imbeddable in Q3. 

Further, it follows that any funetion imbedding m:* in Q3 is always an 
isomorphism of m:* onto a subsystem of 58, and of all homomorphie 
images ofm: this property is eharaeteristic ofm:*. 
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Let K now be any c1ass of relational systems c10sed under isomorphism. 
Let K* be the c1ass of all systems isomorphie to some ~* for ~eK. In 
effect we have shown above: 

(i) K is a theory of measurement relative to a numerical relational 
system 91 if and only if K* is also. 

(ii) If K in addition is closed under the formation of subsystems, then 
K* is the c1ass of an systems in K possessing only one-one numerical 
assignments. 

To use our example again, if K is the c1ass of weak orders, then K* is 
the c1ass of simple orders. Notice that the proof in the first paragraph of 
this seetion is a special case of (ii). 

It should be remarked that for a relational system ~, ~ and ~ * always 
satisfy exactly the same formulas of first-order logic not involving the 
notion of identity. Hence, if K is the c1ass of all relational systems satis
fying first-order axioms without identity, then K* is the c1ass of an 
systems satisfying the axioms for K and in addition satisfying the axiom: 

(*) If xEy, then x=y. 
The application of tbis remark to weak orderings and simple orderings 

is left to the reader. 
Consider again the case of semiorders. Let S be the class of all finite 

semiorders. For any (A, P)eS, consider the relation I of indifference 
defined above. In terms of I one can establish a simplified characterization 
of E: xEy if and only ifJor all zeA, xlz if and only ifylz. 

Introduce (*) as a new axiom 84. The c1ass of an ~eS satisfying 84 
is just the c1ass S*. Notice that unlike the pleasant situation with weak 
orderings and simple orderings, the c1ass S* is not c10sed under the 
formation of subsystems even though S iso 

For any semiorder (A, P) introduce a further relation R as folIows: 
xRy if and only if Jor all z, if zPx then zPy, and if ypz then XPZ. 

We leave to the reader the elementary verification of the fact that R 
is a weak ordering of A, and that xEy if and only if xRy and yRx. Thus, 
if (A, P)eS*, then R is a simple ordering of A. The connection between 
P and R is clearer if one notices that xPy implies xRy, and that, if xRx1, 

XIPY1' and y1Ry, then xPy. 
Now let ~=(A, P) be a fixed member of S*. We wish to show that ~ 

has an assignment in (Re, ~ ). Under the relation R, A is simply ordered. 
Let A={xo, ... , xn} where xjRxi - 1 and X(:FXI_l' Define by a course of 
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values recursion a sequence ao, ... , an of rational numbers determined 
uniquely by the following two conditions: 

(1) If xlxo, then aj=i/(H 1) 
(2) If xlxj and Xj PXj_1 where j>O, then aj=i/(i+ l)aj + 

1/(H l)aj_1 + 1. 
Notice that in (2) the hypothesis implies that j~i, while in the case 

j=i the formula for a/ simplifies to aj=aj_1 +H1. Notice further that 
every element Xj comes either under (1) or (2); for letting Xj be the first 
element such that xix;, there are two cases:j=O,j>O. Clearly we always 
have aj~O. 

We show first that aj >aj _ 1 by induction on i. For case (1), this is 
obvious. Passing to (2), assume that x/Xj and X/PXj_1' If Xj-1IxO, then 
aj-1< 1 while aj> 1. Hence we can assume not Xj-1[XO, or in other words 
Xj-1PXO' Let Xk be the first element such that Xj-1[Xk and Xj-1PXk-1' By 
definition aj- 1 =(i-l)/i ak+ I/i ak- 1 + 1. If j=i, there is no problem. 
Assume then thatj<i. Now Xi-1Rxj, xjRxj_l> and xixl> hence X/Xi-i> 
and so by our choice of k we have k ~ j. By the induction hypothesis on i, 
it follows that aj >aj - 1 and ak>ak-{. If k=j, the required inequality is 
obvious. If k~j-l, then aj >aj_1 + 1. Similarly a/-1 <ak+ 1, but again, 
by the induction hypothesis, ak~aj-i> and hence aj>aj_1. 

The next step is to prove that, if XjPXk, then aj>ak+ 1. Let Xj be 
the first element such that x/Xj and XjPXj_1' We havej-l ~k, and, in 
view of the preceding argument, aJ-1 ~ak' But aj-1 + 1 <aj, whence 
aj>ak+1. 

Conversely we must show that, if aj > ak + 1, then XjPXk' The hypothesis 
of course implies i>k. Assume by way of contradiction that not XjPXk' 
It follows that X/Xk' Let Xj be the first element such that x/Xj; then k~j 
and ak ~ a j' Ifj = 0, then x/xo and X~Xo, because xjRxk. But then 0 ~ a/ < 1 
and O~ak< 1, which contradicts the inequality a/>ak+ 1. We can con
clude that j>O. Now al<aj+ 1, but ak~aJ' and thus al<ak+ 1, which 
again is a contradiction. All cases have been covered, and the argument 
is complete. 

Finally, define a functionj on A such thatj(x/)=aj. We have actually 
shown thatjimbeds m: in (Re, ~). Thus it has been proved that S* is a 
theory of measurement relative to (Re, ~), and, by the general remarks 
on the method of cosets, we conclude that S is also a theory of measure
ment relative to (Re, ~). 
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Notice that the above proofwould also work in the infinite case as long 
as the ordering R is a well-ordering of type w. 

Let us now summarize the steps in establishing the existence of measure
ment using as examples simple orderings and semiorders. First, after one 
is given a class, K say, of relational systems, the numerical relational 
system should be decided upon. The numerical relational system should be 
suggested naturally by the structure of the systems in K, and as was re
marked, it is most practical to consider numerical systems where all the 
relations can be simply defined in terms of addition and ordering of real 
numbers. Second, if the proof that K is a theory of measurement is not at 
once obvious, the cardinality of systems in K should be taken into con
sideration. The restriction to countable systems would always seem 
empirically justified, and adequate results are possible with a restriction 
to finite systems. Third, the proof of the existence of measurement can 
often be simplified by the reduction of each relational system in K by the 
method of cosets. Then, instead of trying to find numerical assignments 
for each member of K, one concentrates only on the reduced systems. 
This plan was helpful in the case of semiordets. Instead of cosets, it is 
sometimes feasible to consider imbedding by subsystems. That is to say, 
one considers some convenient subclass K' r;;.K such that every element 
of K is a subsystem of some system in K'. If K' is a theory of measure
ment, then so is K. In the case of semiorders we could have used either 
plan: cosets or subsystems. 

After the existence of measurement has been established, there is one 
question which is often of interest: For a given relational system, what 
is the class of all its numerical assignments? We present an example. 

Consider relational systems m:=(A, D) oftype (4). For such systems 
we introduce the following definitions: xRy if and only if xyDyy. xyM1zw 
ifand only ifxyDzw, zwDxy, yRz and zRy. xyM"+1ZW ifand only ifthere 
exist u, veA such that xyM"uv and uvM1zw. 

Let H be the class of all such relational systems which satisfy the 
following axioms for every x, y, z, u, v, weA: 

Al. If xyDzw and zwDuv, then xyDuv. 
A2. xyDzw or zwDxy. 
A3. If xyDzw, then xzDyw. 
A4. If xyDzw, then wzDyx. 
AS. If xRy and yzDuv, then xzDuv. 
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A6. There is a zeA such that xzDzy and zyDxy. 
A7. If not xyDzw and not xRy, then there is a ueA such that zwDxu, 

not xRu, and not uRy. 
AS. If xyDzw and not xRy, then there are u, veA and an n such that 

zuMRvw and zuDxy. 
These axioms imply that for a system ~ in H, the relation R is a weak 

ordering of A, and the intuitive interpretation of xyDzw in case yRx and 
wRz is that the interval between x and y is not greater than the interval 
between z and w. Making heavy use of the last three existence axioms, it 
can be shown that His a theory of measurement relative to the numerical 
relational system (Re, ..1) where ..1 is the quaternary relation defined by 
the condition xyL1zw if and only if x-y7/i:z-w for all x, y, z, weRe. It 
must be sfressed that the Archimedean property of the ordering embodied 
in AS cannot be formulated in first-order logic, because it implies that all 
systems in H* have cardinality not more than the power of the continuum. 
In addition, it can be shown that, if m: is in H, andf and gare two numerical 
assignments ofm: relative to (Re, ..1), thenfand gare related by a positive 
linear transformation; lot that is, there exist oe, ß e Re with oe> 0 such that, 
f or all xe Re,!( x) = oeg (x) + ß. This gives in a certain sense the answer to the 
question above: if we know one numerical assignment for m:, we know 
them all. Except for very special systems in H, nothing more specific can 
really be expected. 

Notice that all relational systems in H are necessarily infinite. In the 
next section we shall consider in detail the theory of measurement F 
consisting of all finite relational systems imbeddable in (Re, ..1). Here the 
situation is quite hopeless. There simply is no apparent general statement 
that can be made about the relation between assignments. Inasmuch as 
any function qJ which imbeds (Re, ..1) in itself is necessarily a linear trans
formation and conversely, it follows that, if~ is a system in Fandfis an 
assignment for~, thenfcomposed with a linear transformation is also an 
assignment. The main difticulty with F is that two assignments for the 
same system in F need not be related by a linear transformation. 

III. AXIOMA TIZABILITY 

Given a theory of measurement, it is natural to ask various questions 
about its axiomatizability, for the axiomatic analysis of any mathematical 
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theory usually throws considerable light on the structure of the theory. 
In particular, given an extrinsic characterization of a theory of measure
ment via a particular numerical relational system, it is quite desirable to 
have an intrinsic axiomatic characterization of the theory to be able 
better to recognize when a relational system actually belongs to the 
theory. In view ofthe paucity ofmetamathematical results concerning the 
axiomatics of higher-order theories, we shall restrict ourselves to the 
problem ofaxiomatizing theories of measurement in first-order logic. 

It is a well-known result that if a set of first-order axioms has one 
infinite model, then it has models of unbounded cardinalities. Since for 
the most part we are interested in one-one assignments with values in the 
set ofreal numbers, unbounded cardinalities are hardly an asset. That is to 
say, the class of all relational systems that are models of a given set of 
first-order axioms is usually not a theory ofmeasurement. To remove such 
difficulties without having to understand them, we simply restrict the 
cardinalities under consideration. Even a restriction to finite cardinalities 
is not too strong and leads to some rather difficult questions. Thus for the 
remainder of this section we shall consider- only finitary theories 0/ 
measurement, i.e., theories containing only finite relational systems. Such 
a theory is called axiomatizable, if there exists a set of sentences of first
order logic (the axioms of the theory) such that a finite relational system 
is in the theory if and only if the system satisfies all the sentences in the 
set. A theory is finitely axiomatizable if it has a finite set ofaxioms. A 
theory is universally axiomatizable if it has a set ofaxioms each of which 
is a universal sentence (i.e., a sentence in prenex normal form with only 
universal quantifiers). 

It should be observed, first, that any finitary theory of measurement is 
axiomatizable. This is no deeper than saying that in first-order logic we 
can write down a sentence completely describing the isomorphism type of 
each finite relational system not in the given theory, and clearly the nega
tions of these sentences can serve as the required set ofaxioms. It is of 
course quite obvious that we cannot in each instance give an effective 
method for writing down the axioms, since there are clearly a continuum 
number of distinct finitary theories of measurement. N otice also that if the 
theory is closed under subsystems then the axioms may be taken as universal 
sentences, and conversely. In case one considers theories consisting of all 
finite relational systems imbeddable in a given numerical relational 
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system, then the problem of a recursive or effective axiomatization is 
simply the problem ofwhether the class ofuniversal sentences true in the 
given numerical relational system is recursively enumerable or not. It is 
not difficuIt to establish that this last problem is equivalent to the problem 
of giving a recursive enumeration of all the relation types of finite 
relational systems not imbeddable in the given numerical relational 
system. For numerical relational systems whose relations are definable in 
first-order logic in terms of + and ~, these problems do not arise since 
the first-order theory of t and ~ is decidable, and it is to these relational 
systems that we shall primarily restriet our further attention. 

In the second place, in all domains of mathematics a finite axi
omatization of a theory is usually feIt to be the most satisfactory result. 
No doubt the psychological basis for such a feeling rests on the fact that 
only a finite characterization can in one step explicitly lay bare the full 
structure of a theory. Of course an extremely complicated axiomatization 
may be of little practical value, and as regards theories of measurement, 
there is a further complication. Namely, if an axiomatization in first
order logic, no matter how elegant it-may be, involves a combination of 
several universal and existential quantifiers, then the confirmation of this 
axiom may be highly contingent on the relatively arbitrary selection of the 
particular domain of objects. From the empirical standpoint, aside from 
the possible requirement of a fixed minimal number of objects, results 
ought to be independent of an exact specification of the extent of the 
domain. 

We are thus brought to our third observation: A finite universal axi
omatization of a theory of measurement always yields a characterization 
independent of accidental object selection. To be precise, consider a fixed 
universal sentence. This formula will obviously contain just a finite num
ber of variables. Hence, to verify the truth of the sentence in a particular 
relational system, we need consider only subsets of the domain of a 
uniformly bounded cardinality. Furthermore, verification for each subset 
is completely independent of any relationships with the complementary 
set. 

Simple orderings and semiorders are examples of this last point. To 
determine whether a finite relational system of type (2) is a simple 
ordering, one has only to consider tripies of objects; for semiorders, 
quadrupies. In constructing an experiment, say, on the simple ranking of 



FOUNDA TIONAL ASPECTS OF THEORIES OF MEASUREMENT 59 

objects with respect to a certain property, the design is ordinarily such that 
connectivity and antisymmetry of the relation are satisfied, because for 
each pair of objects the subject is required to decide the ranking one way 
or the other, but not in both directions. Analysis of the data then reduces 
to searching for intransitive triads. 

Vaught (1954) has provided a useful criterion for certain c1asses of 
relational systems to be axiomatizable by means of a universal sentence. 
A straightforward analysis of his proof yields immediately the following 
criterion for finitary theories of measurement. 

A finitary theory 01 measurement K is axiomatizable by a universal 
sentence, if and only if K is closed under subsystems and there is an integer 
n such that, if any finite relational system m: has the property that every 
subsystem olm: with no more than n elements is in K, then m: is in K. 

Though classes of finite simple orderings and finite semiorders are two 
examples offinitary theories ofmeasurement axiomatizable by a universal 
sentence, there are interesting examples of finitary theories of measure
ment closed under subsystems which are not axiomatizable by a universal 
sentence. We now turn to the proof for one such case. 

Let F be the c1ass of all finitary relational systems of type (4) im
beddable in the numerical relational system (Re, LI). A wide variety of 
sets of empirical data are in F. In fact, all sets of psychological data based 
upon judgments of differences of sensation intensities or of differences in 
utility qualify as candidates for membership in F. For example, in an 
experiment concerned with the subjective measurement of loudness of n 
sounds, the appropriate empirical data would be obtained by asking 
subjects to compare each of the n sounds with every other and then to 
compare the difference of loudness in every pair of sounds with every 
other. More elaborate interpretations are required to obtain appropriate 
data on utility differences for individuals or social groups (cf. Davidson 
et al., 1957; Suppes and Winet, 1955).nt It may be of some interest to 
mention one probabilistic interpretation c10sely related to the c1assical 
scaling method of paired comparisons. Subjects are asked to choose only 
between objects, but they are asked to make this choice a number of 
times. There are many situations in which they vacillate in their choice, 
and the probability Pxy that x will be chosen over y may be estimated 
from the relative frequency with which x is so chosen. From inequalities 
of the form PXy;;;;'Pzw we may obtain a set of empirical data, that is, a 
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finite relational system oftype (4), which is a candidate for membership 
in F. The intended interpretation is that, if PXJ'~t and Pzw~t, then 
PXJ'~P%w if and only ifthe difference in sensation intensity or difference in 
utility between x and y is equal to or less than that between z and w, the 
idea being, of course, that if x and y are closer together than z and W in 
the subjective scale, then the relative frequency of choice of x over y is 
closer to one-half than that of z over w. 

Before formally proving that the theory of measurement F is not axi
omatizable by a universal sentence, we intuitively indicate for a relational 
system of ten elements the kind of difficulty which arises in any attempt 
to axiomatize F. Let the ten elements be ab ... , alO ordered as shown on 
the following diagram with atomic intervals given the designations 
indicated. 

Let 0( be the interval (ab as), let P be the interval (a6 , alO), and let y be 
larger than 0( or p. We suppose further-that 0(1' 0(2,0(3,0(4 is equal in size to 
P2' P4' Pb P3' respectively, but 0( is less than p.12 

The size relationships among the remaining intervals may be so chosen 
that any subsystem of nine elements is imbeddable in (Re, LI), whereas 
the full system of ten elements is clearly not. 

Generalizing this example and using the criterion derived from Vaught's 
theorem we now prove: 

THEOREM: The theory 0/ measurement Fis not axiomatizable by a uni
versal sentence. 

Proof: In order to apply the criterion ofaxiomatizability by a universal 
sentence, we need to show that for every n there is a finite relational 
system m: oftype (4) such that every subsystem of m: with n elements in 
its domain is in F but m: is not. 

To this end, for every even integer n=2m~ 10 we construct a finite 
relational system m: of type (4) such that every subsystem of 2m -1 eIe
mentsisin F. (A fortiori every subsystem of 2m-k elements for k<2m 
is in F.) To make the construction both definite and compact, we take 
numbers as elements of the domain and disrupt exactly one numerical 
relationship. Let now m be an even integer equal to or greater than 10. 
The selection of numbers ab"" a2m may be most easily described by 
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specifying the numerical size of the atomic intervals. We define lX i = 

ai+l -ai for i= 1, ... , rn-I and ßi=am+i+l -am+i for i= 1, ... , rn-i. 
We then set al = 1, lXi=i for i= 1, ... , rn-I, and am+l =22m. In fixing the 
size of ßi> we have two cases to consider depending on the parity of rn. 

Case 1: m is even. Then rn-I is odd, and we set ßi=rxi/2 for i=2, 
4, ... , rn-2 and ßi=rx(m+i-l)/2 for i= 1,3, ... , rn-i. 

Case 2: rn is odd. Then rn-I is even, and we set ßi=rxi/2 for i=2, 
4, ... , rn-I and ßi=rx(m+i)/2 for i=l, 3, ... , rn-2. Thus if n=2rn=I2, 
we have rxl =ß2' rx2=ß4' rx3=ßl' 1X4=ß3' rxs=ßs. With the set A= 
{al' ... , a2m} defined, we now define the relation D as the expected nu
merical relation except for permutations of al , am, am+l and a2m. If 
x, y, Z, WEA and (x, y, z, w) is not some permutation of (al' am, am+l> 
a2m), then (x, y, z, w)ED if and only if 

(1) x - y ~ Z - w. 

Moreover, let a=al , b=am, c=am+1> d=a2m' Then we put the following 
nine permutations of (a, b, c, d) in D: 

(b,a,d,c) 
(b, d, a, c) 
(b, d, c, a) 

(a, b, d, c) 
(a, c, d, b) 
(a, d, c, b) 

(C, b, d, a) 
(c, d, a, b) 
(c, d, b, a). 

(These nine permutations correspond exactly to the strict inequalities 
following from b-a<d-c. All nine are needed to make the subsystems 
of (A, D) have the appropriate properties.) 

From the choice ofthe numbers in A and the definition of D, itis obvious 
that (A, D) is not imbeddable in (Re, LI), that is, that (A, D) is not in F; 
for the atomic intervals between al and am must add up to a length equal 
to the sum of the atomic intervals between am + 1 and a2m' but by hypothesis 
the interval (al' am) is less than the interval (am + l' a2m). It remains to show 
that every subsystem of 2rn - 1 elements is in F. Two cases naturally arise. 

Case 1: The element omitted in the subsystem is al' am, am+l or a2m' 
Then the nine permutations of (2) are not in D restricted to the subsystem, 
and the subsystem is not merely imbeddable in (Re, LI), but by virtue of 
(1) is a subsystem of it. 

Case 2: The element omitted is neither al> am, am+l nor a2m' Let al 

be the element not in the subsystem. There are two cases to consider. 
Case 2a: ai <am' For this situation we may use for our numerical 
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assignment the functionfdefined by f(ai-j)=ai_j+l for j=I, ... , i-I, 
f(ai+j)=ai+j for j= 1, ... , n-i. It is straightforward but tedious to verify 
thatfis a numerical assignment, that is, that it preserves the relation D as 
defined by (1) and (2). Only two observations are crucial to this verifi
cation. First, regarding atomic intervals (in the full system), if ai-j+1-
ai-j=ak+l -ak for k>i, then f(ai-j+l)-f(ai-j)=(ai-j+1 -1)
(ai_j-l)=ak+l-ak=f(ak+l)-f(ak)' Second, the numbers in A were so 
chosen that, if x, y, z, wEA, and (z, w) is not an atomic interval, and 
(x, y)#(z, w) and x-y~z-w, then x-y+2~z-w. Then it is clear 
from the definition offthatf(x)-f(y)~f(z)-f(w). (Note that the above 
implies the weaker result that no two distinct nonatomic intervals have 
the same size.) 

Case 2b: ai>am + 1. Here we may use a numerical assignment f 
defined, as would be expected from the previous case, by f(ai-)=ai-j 
for j= 1, ... , i-I, f(a i+ j)=ai+ j+ 1 for j= 1, ... , n-i. This completes the 
proof of the theorem. 

It would be pleasant to report that we could prove a stronger result 
about the theory of measurement F, namely, that it is not finitely axiom
atizable. Unfortunately, there seems to be a paucity oftools available for 
studying such questions for classes of relational systems. However, we 
would like to state a conjecture which if true would provide one useful 
tool for studying the finite axiomatizability of finitary theories of measure
ment like Fwhich are closed under submodels. We say that two sentences 
are finitely equivalent if and only if they are satisfied by the same finite 
relational systems, and we conjecture: If 5 is a senten ce such that if it is 
satisfied by a finite model it is satisfied by every submodel of the finite 
model, then there is a universal sentence finitely equivalent to 5. If this 
conjecture is true, it follows that any finitary theory of measurement closed 
under submodels is finitely axiomatizable if and only if it is axiomatizable 
by a universal sentence. 

The proof (or disproof) of this conjecture appears difficult. It easily 
follows from Tarski's results (1954) on universal (arithmetical) classes in 
the wider sense that, if the finitistic restrictions are removed throughout in 
the conjecture, the thus modified conjecture is true; for the class of 
relational systems satisfying 5, being closed under submodels, is a 
universal class in the wider sense and is axiomatizable by a denumerable 
set of universal sentences. Since 5 is logically equivalent to this set of 
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universal sentences, it is a logical consequence of some finite subset of 
them; but because it implies the fuH set, it also implies the finite subset 
and is thus equivalent to it. 

Our conjecture is one concerning the general theory of models and 
its pertinence is not restricted to theories of measurement. In conclusion 
we should like to mention an unsolved problem typical of those which 
arise in the special area of measurement. Let R be any binary numerical 
relation dejinable in an elementary manner in terms 01 plus and less than. 
fs the jinitary theory 01 measurement 01 all systems imbeddable in R 
jinitely axiomatizable? (If our conjecture about finite models is true, then 
the theory of measurement Fis not finitely axiomatizable and shows that 
the answer to this problem is negative for quaternary relations definable 
in terms of plus and less than.) 

NOTES 

1 We would like to record here our indebtedness to AIfred Tarski, whose elear and 
precise formulation of the mathematical theory of models has greatly influenced our 
presentation (Tarski, 1954, 1955). AIthough our theories of measurement do not 
eonstitute special cases of the arithmetical c1asses of Tarski, the notions are elosely 
related, and we have made use of results and methods from the theory of models. 
2 AIthough in most mathematical eontexts imbeddability is defined in terms of 
isomorphism rather than homomorphism, for theories of measurement this is too 
restrietive. However, the notion of homomorphism used here is aetually elosely 
eonnected with isomorphie imbeddability and the facts are explained in detail in 
Section ll. 
3 In some eontexts we shall say that the c1ass K is a theory 0/ measurement 0/ type s 
relative 10 j}l. Notice that a consequence of tbis definition is that if K is a theory of 
measurement, then so is every subc1ass of K c10sed under isomorpbism. Moreover, the 
c1ass of all systems imbeddable in members of K is also a theory of measurement. 
4 In tbis connection see Sierpinski (1934, Section 7, pp. 141ff.) in partieular Proposition 
C76, where of course different terminology is used. 
5 It is suffieient here to consider a relational system isomorphie to the ordering of the 
ordinals of the second number c1ass or to the lexicographieal ordering of all pairs of 
real numbers. 
6 A simple ordering is imbeddable in (Re, .;;; > if and only if it contains a eountable 
dense subset. For the exaet formulation and a sketch of a proof, see Birkhoff (1948, 
pp. 31-32, Theorem 2). 
7 The word 'countable' means at most denumerable, and it refers to the cardinality of 
the domains of the relational systems. 
8 See Luce (1956, Section 2, p. 181). The axioms given here are aetually a simplifieation 
of those given by Luce. 
9 The authors are indebted to the referee for pointing out the work by Hailperin (1954), 
whieh suggested tbis general definition. 
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lotThe proofs of both these facts about H are very similar to the corresponding proofs 
in Suppes and Winet (1955; Artiele 8 in this volume). 
llt Artiele 8 in this volume. 
12 Essentia11y this example was first given in another context by Herman Rubin to 
show that a partieular set ofaxioms is defective. 



5. MEASUREMENT, EMPIRICAL MEANINGFULNESS, 

AND THREE-VALUED LOGIC*l 

I. INTRODUCTION 

The predominant current opinion appears to be that it is scarcely possible 
to set up criteria of empirical meaningfulness for individual statements. 
What is required, it is said, is an analysis of theories taken as a whole. 
There is even some skepticism regarding this, and it has been romantically 
suggested that the entire fabric of experience and language must be 
considered and taken into account in any construction of general cate
gories of meaning or analyticity. What I have to say makes no con
tribution to the attempt to find a general criterion of meaning applicable 
to arbitrary statements. Rather I am concemed to exemplify a general 
method that will yield specific positive criteria for specific branches of 
science. 

A brief analysis of two simple examples will indicate the sort of thing 
I have in mind. Consider the statement: 

(i) The mass of the sun is greater than 106 • 

If a physicist were asked if (i) is true or false, he would most likely 
reply that it depends on what unit of mass is implicitly understood in 
uttering (i). On the other hand, if we were to ask him about the truth 
of the sentence: 

(ii) The mass of the sun is at least ten times greater than that of 
the earth, 

he would, without any reservation about units of measurement, state 
that (ii) is true, and perhaps even add that its truth is known to every 
schoolboy. Now my main point is that we may insist that our systematic 
language of physics (or of any other empirical science) has no hidden 
references to units of measurement. The numerals occurring in the 

* Reprinted from Measurement: Definitions and Theories (ed. by C. West Churchman 
and P. Ratoosh), Wiley, New York, 1959, pp. 129-143. 
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language are understood to be designating "pure" numbers. An excel
lent example of a physical treatise written without reference to units is 
provided by the first two books of Newton's Principia. (Units are in
troduced in the consideration of data in Book III, and occasionally in 
examples in the earlier books.) Newton avoids any commitment to units 
of measurement by speaking of one quantity being proportional to 
another or standing in a certain ratio to it. Thus he formulates his fa
mous second law of motion: 

The change of motion is proportional to the motive force impressed; and is made in the 
direction of the right line in which that force is impressed [Cajori edition, p. 13]. 

Systematic reasons for adopting Newton's viewpoint as the funda
mental one are given in later sections. My only concem at the moment 
is to establish that adoption of this viewpoint does not represent a gross 
violation of the use of physical concepts and language by physicists. It 
seems obvious that, in using a unitless language, we would not find occa
sion to use (i), for there would be no conceivable way of establishing its 
truth or falsity, either by empirical observation or logical argument. In 
contrast, (ii) would be acceptable. Yet it is difficult to see how to de
velop a simple and natural syntactical or semantical criterion within, 
say, a formal language for expressing the results of measurements of 
mass, which would rule out sentences like (i) and admit sentences like 
(ii). The central purpose of this paper is to explore some of the possi
bilities for classifying as meaningless well-formed sentences like (i), or, 
more exactly, the analogues of (i) in a formaHzed language. Formaliza
tion of a certain portion of the unitless language of physicists is not 
absolutely necessary for expressing the ideas I want to put forth, but 
it is essential to a clear working out of details. Moreover, the exact 
formal construction seems to pose some interesting problems which could 
scarcely be stated for a naturallanguage. In the final section, the pos
sibility is explored of interpreting this formalized language in terms of a 
three-valued logic of truth, falsity, and meaninglessness. 

11. INVARIANCE AND MEANINGFULNESS 

In connection with any measured property of an object, or set of objects, 
it may be asked how unique is the number assigned to measure the 
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property. For example, the mass of a pebble may be measured in grams 
or pounds. The number assigned to measure mass is unique once a unit 
has been chosen. A more technical way of putting this is that the measure
ment of mass is unique up to a similarity transformation.2 The measure
ment of temperature in oe or °F has different characteristics. Here an 
origin as weIl as a unit is arbitrarily chosen: technicaIly speaking, the 
measurement of temperature is unique up to a linear transformation.3 
Other formaIly different kinds of measurement are exemplified by (1) the 
measurement of probability, which is absolutely unique (unique up to the 
identity transformation), and (2) the ordinal measurement of such 
physical properties as hardness of minerals, or such psychological 
properties as intelligence and racial prejudice. Ordinal measurements are 
commonly said to be unique up to a monotone-increasing transfor
mation.4 

Use of these different kinds of transformations is basic to the main 
idea of this paper. An empirical hypothesis, or any statement in fact, 
which uses numerical quantities is empiricaIly meaningful only if its truth 
value is invariant under the appropriate transformations of the numerical 
quantities involved. As an example, suppose a psychologist has an 
ordinal measure of I.Q., and he thinks that scores S(a) on a certain new 
test Thave ordinal significance in ranking the intellectual ability ofpeople. 
Suppose further that he is able to obtain the ages A (a) of his subjects. The 
question then is: Should he regard the following hypothesis as empirically 
meaningful? 

HYPOTHESIS 1: For any subjects a and b if S(a)jA(a)<S(b)jA(b), 
then I.Q. (a)<I.Q. (b). 

From the standpoint of the invariallce characterization of empirical 
meaning, the answer is negative. To see this, let I.Q. (a);::=I.Q. (b), let 
A(a)=7, A(b)= 12, S(a)=3, S(b)=7. Make no transformations on the 
I.Q. data, and make no transformations on the age data. But let cp be a 
monotone-increasing transformation which carries 3 into 6 and 7 into 
itself. Then we have 

but 

and the truth value of Hypothesis 1 is not invariant under cp. 
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The empirically significant thing about the transformation character
istic of a quantity is that it expresses in precise form how unique is the 
structural isomorphism between the empirical operations used to obtain 
a given measurement and the corresponding arithmetical operations or 
relations. If, for example, the empirical operation is simply that of or
dering a set of objects according to some characteristic, then the corre
sponding arithmetical relation is that of less than (or greater than), and 
any two functions which map the objects into numbers in a manner pre
serving the empirical ordering are adequate. More exact1y, a function 1 
is adequate if, and only if, for any two objects a and b in the set, astands 
in the given empirical relation to b if and only if 

f(a) <f(b).5 

It is then easy to show that if 11 and/2 are adequate in this sense, then 
they are related by a monotone-increasing transformation. Only those 
arithmetical operations and relations which are invariant under monotone
increasing transformations have any empirical significance in this situation. 

The key notion referred to in the last sentence is that of invariance. In 
order to make the notion of invariance or the related notion of mean
ingfulness completely precise, we can do one of two things: set up an 
exact set-theoretical framework for our discussion (e.g., for cIassical 
mechanics, see McKinsey and Suppes, 1955), or formalize a language 
adequate to express empirical hypotheses and facts involving numerical 
quantities. Here we shall formalize a simple language for expressing the. 
results of mass measurements. It should be cIear that the method of 
approach is applicable to any other kind of measurement, or combi
nations thereof. 

III. EMPIRICAL MEANINGFULNESS IN THE LANGUAGE L M 

To avoid many familiar details, we shall use as a basis the formallanguage 
of Tarski's monograph (1951) enriched by individual variables 'a', 'b', 
'c', ... , 'at', 'bt', 'Cl" .•. , the individual constants: 01' ..• ,010' which 
designate ten, not necessarily distinct, physical objects, and the mass term 
'm', where 'm(a)' designates areal number, the mass of a. The values of 
the individual variables are physical objects. The numerical variables are 
'x', 'y', 'z', ... , 'Xl" 'Yl', 'Zl" ...• Tarski'snumericalconstantsare: 1,0,-1. 
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We shall include, for purposes of examples, numerical constants for the 
positive and negative integers less than 100 in absolute value. The operation 
signs are those for addition and multiplication. We also include the 
standard sign for exponentiation with the fixed base 2. A term is any 
arithmetically meaningful expression built up from this notation in the 
usual manner. (We omit an exact definition.) Thus the following are 
terms: m(a), S·m(a)+3, 2+ 1, x+3, 2x• Our two relation symbols are the 
usual sign of equality and the greater than sign. An atomic formula is then 
an expression of the form 

(IX = ß), (IX > ß), 

where IX and ß are terms with the restriction in the case of (IX> ß) that 
IX and ß are both numerical terms, that is, neither IX nor ß is an individual 
variable or constant. When no confusion will result, parentheses are 
omitted. Formulas are constructed from atomic formulas by means of 
sentential connectives and quantifiers. The symbol '-' is used for 
negation; the ampersand '&' for conjunction; the symbol' v' for dis
junction (to be read 'or'); the arrow '-+' fot implication (to be read 
'if ... then .. .'); the double arrow '~' for equivalence (to be read 'if and 
only if'); the reverse '3' is the existential quantifier; and the upside down 
'V' the universal quantifier. Thus the following are formulas: (3x)(m(a)= 
x), (3x)(3y)(x>y), O>x-+m(b»x. We also use the standard symbol ':/:' 
for negating an equality. A formula is a sentence if it contains no free 
variables, that is, every occurrence of a variable is bound by some 
quantifier. 

Sentences are true or false, but unlike the situation in the language of 
Tarski's monograph (19S1), the truth or falsity of many sentences in the 
language L M constructed here depends on empirical observation and 
contingent fact. For example, the truth of the sentence: 

(1) (3a) (Vb) (b :/: a -+ m(a) > S·m(b») 

is a matter of physics, not arithmetic. 
Pursuing now in more detail the remarks in the first section, the in

tuitive basis for our classification of certain formulas of LM as empirical1y 
meaningless may be brought out by considering the simple sentence: 
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It must first be emphasized that in the language LM , the numeral '4' 
occurring in Sentence 2 designates a "pure" number. There is no con
vention, explicit or implicit, that '4' stands for '4 g', '4Ib', or the like. It is 
to be clearly understood that no unit of mass is assumed in the primitive 
notation of L M • With this understanding in mind, it is obvious that no 
experiment with apparatus for determining the masses of physical objects 
could determine the truth or falsity of Sentence 2. It is equally obvious 
that no mathematical argument can settle this question. On the other 
hand, it is clear that sentences like: 

(3) m(ol) > m(02) 

or 

(4) m(03) = 5'm(04)' 

which are concerned with numerical relations between the masses of 
certain objects can be determined as true or false on the basis of experi
ment without prior determination of a unit of mass. 

It seems to me that the use of 'pure' numerals in LM is more funda
mental than the use of what we may term 'unitized numerals'. The 
justification of this view is that the determination of units and an appre
ciation of their empirical significance comes after, not before, the inves
tigation of questions of invariance and meaningfulness. The distinction 
between Sentence 2 and the other three Sentences 1,3, and 4 is that the 
latter sentences remain true (or false) under any specification of units. 
In other words, the truth value of these sentences is independent of the 
arbitrary choice of a unit. Paraphrasing Weyl, we may say6: only the 
numerical masses 0/ bodies relative to oneanother have an objective meaning. 

My claim regarding fundamentals may be supported by an axiomatic, 
operational analysis of any actual experimental procedure for measuring 
mass. Most such procedures may be analyzed in terms of three formal 
notions : the set A of physical objects, a binary operation Q of compari
son, and a binary operation • of combination. The formal task is to show 
that under the intended empirical interpretation the tripie m: = (A, Q, • > 
has such properties that it may be proved that there exists a real-valued 
function m defined on A such that for any a and b in A 

(i) aQb ifandonlyif m(a)~m(b), 
(ii) m(a.b)=m(a)+m(b). 
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The empirically arbitrary character of the choice of a unit is established 
by showing that the functional composition of any similarity trans
formation if> with the function m yields a function if>om which also 
satisfies (i) and (ii), where 0 is the operation of functional composition.?t 

We may think of such an operational analysis as supporting the choice 
of LM , where the term 'm' of LM designates a numerical representing 
function satisfying (i) and (ii). Roughly speaking, because this repre
senting function is only unique up to a similarity transformation, we 
then expect any sentence to be empirically meaningful in LM if and only 
if its truth value is the same when 'm' is replaced by any expression which 
designates multiplication of the representing function by a positive 
number. However, there are certain difficulties with deciding exact1y 
how to make this intuitive definition of empirical meaningfulness precise. 
For example, if the definition applies to any sentences, then we have the 
somewhat paradoxical result that Sentence 2 and its negation are both 
empirically meaningless, but their disjunction: 

is meaningful, since it is always true. 
To facilitate our attempts to meet this problem, we first need to intro

duce the semantical notion of a model of LM • For simplicity in defining 
the notion of model, and without any loss of generality, we shall from 
this point on consider LM as not having any individual constants that 
designate physical objects. 

On this basis, a model9R of LM is an ordered tripie <6, A, m) where 
(i) 6 is the usual system of real numbers under the operations of addi

tion, multiplication, and exponentiation with the base 2, and the relation 
less than with the appropriate numbers corresponding to their numerical 
designations in LM 8; 

(ii) Ais a finite, nonempty set; 
(iii) m is a function on A which takes positive real numbers as values. 

The intended interpretation of A is as a set of physical objects whose 
masses are being determined; the function m is meant to be a possible 
numerical function used to represent experimental results. We assume 
the semantical notion of satis/action and suppose it to be understood 
under what conditions a sentence of LM is said to be satisfied in a model 
9R. Roughly speaking, a sentence S of LM is satisfied in 9R=<6, A, m) 
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if S is true when the purely arithmetical symbols of S are given the usual 
interpretation in terms of 6, when the individual variables occurring in 
S range over the set A, and when the symbol 'm', if it occurs in S, is taken 
to designate the function m. 

We say that a sentence of LM is arithmetically true if it is satisfied in 
every model of LM • And we deal with the arithmetical truth of formulas 
with free variables by considering the truth of their closures. By the 
closure of a formula we mean the sentence resulting from the formula 
by adding sufficient universal quantifiers to bind all free variables in the 
formula. Thus '(Va)(m(a»O)' is the closure of 'm(a»O', and is also the 
closure of itself. 

Using these notions, we may define meaningfulness by means of the 
following pair of definitions. 

DEFINITION 1: An atomic formula S of LM is empirically meaningful 
if and only if the closure of the formula 

IX > 0--+ (S-S(IX») 

is arithmetically true for every numerical term IX, where S (IX) results from S 
by replacing any occurrence of 'm' in S by the term IX, followed by the 
multiplication sign, followed by 'm'. 9 

If, for example, 

then 

S = 'm(a) > m(b)' 

IX = '(2 + 1)' , 

S(IX) = '(2 + l)·m(a) > (2 + l)·m(b)'. 

DEFINITION 2: A formula S of LM is empirically meaningful in sense A 
if and only if each atomic formula occurring in S is itselj empirically mean
ingful in the sense of Definition 1. 

It is clear on the basis of Definitions 1 and 2 that Sentence 5 is not 
empirically meaningful in sense A. 

On the other hand, there is a certain logical difficulty, within ordinary 
two-valued logic, be setting the set of true formulas which are meaning
ful in sense A. Following Tarski (1930), a set of formulas is a deductive 
system if and only if the set is closed under the relation of logical conse
quence, that is, a formula which is a logical consequence of any subset 
of formulas in the given set must also be in the set. Clearly it is most 
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desirable to have the set of meaningful true formulas about any phe
nomenon be a deductive system, but we have for the present case the 
following negative result. 

THEOREM 1: The set of formulas of LM which are meaningful in sense 
A and whose closures are true is not a deductive system. 

Proof' The true sentence: 

(V'x)(x > 2 -4X > 1) 

is meaningful in sense A, but the following logical consequence of it is 
not: 

for the two atomic sentences 'm(01»2' and 'm(01» l' are both mean
ingless in the sense of Definition 1. 

To be sure, there are some grounds for maintaining that formulas that 
are empirically meaningless may play an essential deductive role in em
pirical science, but prima facie it is certainly desirable to eliminate them 
if possible. 

A second objection to Definition 1 is that, by considering numerical 
terms oe rather than similarity transformations, we have in effect re
stricted ourselves to a denumerable number of similarity transformations 
because the number of such terms in LM is denumerable. The intuitive 
idea of invariance with respect to all similarity transformations may be 
caught by adefinition of meaningfulness which uses the concept of two 
models of LM being related by a similarity transformation. (The opera
tion 0 referred to in the definition is that of functional composition.) 

DEFINITION 3: Let W11 =<6, Al' ml) and W12<6, A 2 , m2 ) be two 
models of LM • Then W11 and W12 are related by a similarity transformation 
if and only if: 

(i) Al =A2• 

(ii) There is a similarity transformation ifJ such that 

ifJoml = m2 • 

Using these notions, we may replace Definitions 1 and 2 by the follow
ing: 

DEFINITION 4: A formula S of LM is empirically meaningful in sense 
B if and only if S is satisfied in a model W1 of LM when and only when it is 
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satisfied in every model of LM related to ill1 by a similarity transformation. 
Unfortunately, we have for meaningfulness in sense B a result analo

gous to Theorem 1. 
THEOREM 2: Let ill1 be a model of LM • Then the set of all formulas 

which are meaningful in sense Band which are satisfied in ill1 is not a deduc
tive system. 

Proof; Consider the two sentences : 

(1) (Va)(Vb)(a = b -+ (m(a) = 2 -+ m(b) = 2») 
(2) (Va)(Vb)(a = b). 

It is easy to verify that Sentences 1 and 2 are satisfied in any model whose 
set A has exactly one element, and are meaningful in sense B, yet they 
have as a logical consequence the sentence: 

(3) (Va) (Vb) (m(a) = 2 -+ m(b) = 2), 

which is not meaningful in sense B. That this is so may be seen by con
sidering a model with at least two objects with different masses. Let 
A = {01' 02}, and let ill11 = (<;, A, m1) be such that ml (01) = 2 and 
m2 (02) = 3, and let ill12 = (<;, A, m2) be related to ill11 by the similarity 
transformation cp (x) = 2x. Thus m2 (01) = 4 and m2 (02) = 6. It is then 
easily checked that Sentence 3 is satisfied in ill12 but not in ill11• 

The negative result of these two theorems indicates the difficulties of 
eliminating the appearance of empirically meaningless statements in 
valid arguments with meaningful premises. We return to this point in 
the next section in connection with consideration of a three-valued logic. 

On the other hand, we do have the positive result for both senses of 
meaningfulness that the set ofmeaningful formulas is a Boolean algebra; 
more exactly, the set of such formulas under the appropriate equivalence 
relation is such an algebra. Here we carry out the construction only for 
sense B. We consider the theory of Boolean algebras as based on six 
primitive notions : the nonempty set B of elements; the operation + of 
addition which corresponds to the sentential connective 'or'; the opera
tion . of multiplication which corresponds to the connective 'and'; the 
operation x of complementation which corresponds to negation; the zero 
element 0, which corresponds to the set of logically invalid formulas; 
and the unit element I, whiC;h corresponds to the set of logically valid 
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formulas. We omit stating familiar postulates on these notions which a 
Boolean algebra must satisfy. 

Let E be the set of formulas which are empirically meaningful in 
sense B. We define the equivalence class of a formula S in E as folIows: 
[S] is the set 0/ all/ormulas S' in E which are satisfied in exactly the same 
models 9J1 0/ LM os S iso Let E be the set of all such equivalence classes; 
obviously E is a partition of E. The zero element 0 is the set of formulas 
in E which are satisfied in no model of LM ; the unit element 1 is the set 
of formulas in E which are satisfied in all models of LM • If Sand T are 
in E, then [S] + [T] is the set of all formulas in E which are satisfied in 
the models of LM in which either S or T is satisfied. If Sand T are in E, 
then [S]· [T] is the set of all formulas in E which are satisfied in those 
models in which both Sand T are satisfied. Finally if S is in E, then [.5'] is 
the set of formulas which are satisfied in a model if and only if S is not 
satisfied in the model. On the basis of these definitions, it is straight
forward but tedious to prove the following: 

THEOREM 3: The system (E, +, ., -, 0, 1) is a Boolean algebra. 
(The proof is omitted.) 

I interpret this theorem as showing that the set of meaningful 
formulas in sense B of LM has a logical structure identical with that 
of classical logic. In connection with other systems of measurement 
for which the set of transformations referred to in the analogue of 
Definition 3 is not a group, this classical Boolean structure does not 
necessarily result. 

Exponentiation was introduced into LM deliberately to illustrate the 
sensitivity of the decidability of meaningfulness to the strength of LM • 

The problem of decidability for the arithmetical language of Tarski's 
monograph mentioned earlier is open when his language is augmented 
by notation for exponentiation to a fixed base. It seems unlikely that the 
decidability of meaningfulness in LM can be solved without solving this 
more general problem. If LM is weakened by deleting exponentiation to 
the base 2, then it easily follows from Tarski's well-known result that 
meaningfulness is decidable. On the other hand, if L M is strengthened 
to include sufficient elementary number theory to yield undecidability of 
whether, for instance, a given term designates zero, then meaningfulness 
is not decidable, for the meaningfulness offormulas ofthe form m(a)=t, 
where t is a numerical term, would not be decidable. 
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IV. A THREE-VALUED LOGIC FOR Lu 

Since sentences like '(Va)(m(a»2)' of Lu cannot be determined as true 
or false on the basis either oflogical argument or of empirical observation, 
it is natural to ask what are the eonsequenees of assigning them the truth 
value meaningless, whieh we designate by 'p,', and reserving the values 
truth andfalsity for meaningful sentences, whieh we designate by 'T' and 
'P', respeetively. The first thing to be noticed is that meaningfulness in 
sense B does not lead to a truth-funetionallogie in these three values. 
This may be seen by eonsidering two examples. The eomponent sentenees 
of the sentenee: 

(3a) (m(a) = 1) v - (3a) (m(a) = 1) 

have the value fL but the whole sentenee is meaningful in sense Band has 
the value T. On the other hand, the eomponent sentenees of: 

(3a) (m(a) = 1) v (3b) (m(b) = 2) 

have the value fL and so does the whole sentenee. Thus these two examples 
taken together show that disjunetion is not truth-functional for a three
value logic of meaningfulness in sense B. 

The state of affairs for meaningfulness in sense A is mueh better; it 
does lead to a truth-funetional logic in the three values, T, F, and fL. 
The appropriate truth tables are easily found by using the simple obser
vation that a formula has the value fL if any well-formed part of it has 
that value. Thus as the tables for negation and eonjunction we have: 

8[-8 
T F 
F T 

fL fL 

&ITFfL 

T T F fL 
F F F fL 

fL fL fL fL· 

Tables for the sentential eonnectives of disjunetion, implieation, and 
equivalenee follow at onee from the standard definitions of these eon
neetives in terms of negation and eonjunetion. On the other hand, it is 
obvious that this three-valued logie is not functionally complete with 
respect to negation and conjunction. For example, we cannot define in 
terms of these two conneetives a unary connective which assigns the 
value fL to formulas having the value T. 
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Besetting meaningfulness in sense A is the negative result of Theorem 1. 
This difficulty we shall meet head on by proposing arevision of the 
definition of the semantical notion of logical consequence. However, 
before turning to this definition, it will be advantageous to give a model
theoretic definition of meaningfulness which combines the virtues of 
sense A and sense B. 

DEFINITION 5: A formula S of LM is empirically meaningful in sense C 
if and only if every atomic formula occurring in S is meaningful in sense B. 

It is easily verified that the truth tables just given are satisfied when 
the value Jl signifies meaninglessness in sense C. Moreover, the exact 
analogue of the Boolean structure theorem for sense B (Theorem 3) can 
be proved for sense C. 

To meet the difficulty of having formulas which are meaningless in 
sense C be logical consequences of formulas which are meaningful in 
sense C, arevision of the standard definition of logical consequence is 
proposed. For this purpose we need to widen the notion of a model to that 
of a possible realization of LM • A model of LM requires that the arithmetical 
symbols be interpreted in terms of the usual system of real numbers, but 
no such restriction is imposed on a possible realization. For example, any 
domain of individuals and any two binary operations on this domain 
provide a possible realization of the operation symbols of addition and 
multiplication. Details of the exact definition of a possible realization are 
familiar from the literature and will not be given here. This notion is used 
to define that of logical consequence, namely, a formula S of LM is a 
logical consequence of a set A of formulas of LM if S is satisfied in every 
possible realization in which all formulas in Aare satisfied. We may then 
define: 

DEFINITION 6: Let S be a formula and Aaset of formulas of LM • Then S 
is a meaningful logical consequence of A if and only if S is a logical con
sequence of A and S is meaningful in sense C whenever every formula in A 
is meaningful in sense C. 

The central problem in connection with this definition is to give rules 
of inference for which it may be established that if A is a set of formulas 
meaningful in sense C, then S is a meaningful logical consequence of A 
if and only if S is derivable from A by use of the rules of inference.10 For 
this purpose, we may consider any one of several systems of natural 
deduction. The eight essential rules are: rule for introducing premises; 
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rule for tautological implications; role of conditional proof (the deduction 
theorem); rule of universal specification (or instantiation); rule of 
universal generalization; rule of existential specification; rule of existen
tial generalization; and rule governing identities.ll To these eight roles 
we add the general restrietion that every line of a derivation must be a 
formula meaningful in sense C. This means, for instance, that in deriving 
a formula by universal specification from another formula we must check 
that the result of the specification is meaningful. This restriction entails 
that the modified roles of inference are finitary in character only if there is 
adecision procedure for meaningfulness in sense C. Remarks on this 
problem were made at the end of the previous section. Because we have 
modified the rules of inference only by restricting them to meaningful 
formulas, it follows easily from results in the literature on the soundness 
of standard roles of inference that: 

THEOREM 4: Let A be a set of formulas meaningful in sense C. Jf a 
formula S is derivable from A by use of the ru/es of inference subject to the 
general restrietion just stated, then S is a meaningful logical consequence 
ofA. 

Of considerable more difficulty is the converse question of complete
ness, namely, does being a meaningful logical consequence of a set of 
meaningful formulas imply derivability by the restricted roles? The 
following considerations suggest that the answer may be affirmative to 
this question. Let LM * be a second language which differs from LM in the 
following single respect: the one-place function symbol 'm' is replaced by 
the two-place function symbol 'r', where both argument places are filled 
by individual variables or constants. The intuitive interpretation of the 
formula 'r(a, b)=x' is that the numerical ratio of the mass of a to the 
mass of b is the real number x, that is, 

r(a, b) = m(a)jm(b). 

Clearly every formula in LM * is meaningful with respect to our intui
tive criterion of invariance. (The practical objection to LM * is that such a 
ratio language is tedious to work with and does not conform to ordinary 
practice in theoretical physics.) No restrictions on the roles of inference 
are required for LM * and, consequently, the usual compieteness resuit 
holds. The suggestion is to use translatability of meaningful formulas of 
LM into LM * to prove compieteness of inferences from meaningful 
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formulas of LM • The possible pitfall of this line of reasoning is that trans
latability requires certain arithmetical operations which are preserved 
in every model but not necessarily in every possible realization of LM • 

Certain aspects of this construction of a three-valued logic for LM seem 
worthy of remark. In the first place, the construction has assumed 
throughout use of a two-valued logic in the informal metalanguage of 
LM • In particular, ordinary two-valued logic is used in deciding if a given 
sentence of LM is satisfied in a given model of LM • On the other hand, the 
relation between sets of empirical data on mass measurements and models 
of L M is one-many. The empirical content of the data is expressed not by a 
particular model but by an appropriate equivalence class of models. 
Consequently, sentences of LM which are not invariant in truth value (in 
the two-valued sense) over these equivalence classes do not have any 
clear empirical meaning even though they have a perfectly definite 
meaning relative to any one model. Thus it seems to me that to call a 
formula like 'm(a)=5' empirically meaningless is no abu se of ordinary 
ideas of meaningfulness, and in this particular situation accords well with 
our physical intuitions. If this is granted, the important conclusion to be 
drawn is that, for the language LM , the three-valued logic constructed is 
intuitively more natural than the ordinary two-valued one. 

NOTES 

1 I am indebted to Georg Kreisel for several helpful comments on an earlier draft of 
this articIe. 
2 A reaI-valued function </> is a similarity transformation if there is a positive number 
a such that for every real number X 

</>(x) = ax. 

In transforming from pounds to grams, for instance, the muItipIicative factor a is 
453.6. 
3 A real-valued function </> is a linear transformation if there are numbers a and ß with 
a> 0 such that for every number x 

</>(x) = ax + ß. 
In transforming from Centrigrade to Fahrenheit degrees of temperature, for instance, 
a = ~ and ß = 32. 
4 A real-valued function </> is a monotone increasing transformation if, for any two 
numbers x and y, if x< y, then </>(x) <</>(y). Such transformations are also caIIed order
preserving. 
5 For simplicity we shaIl consider here only the arithmetical relation<. There is no 
other reason for excIuding >. 
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6 Weyl's original statement is with respect to Galileo's principle of relativity, "Only 
the motions of bodies (point-masses) relative to one another have an objective meaning" 
[1922, p. 152]. 
7t An axiomatic analysis in terms of these ideas may be found in Suppes (1951; 
Article 3 in this volume). However, the analysis given there may be criticized on several 
empirical counts; for example, the set A must be infinite. 
8 Technical details about 6 are omitted. Characterization of models of the purely 
arithmetical part of LM are familiar from the literature. 
9 In this definition and subsequently we follow, without explicit discussion, certain 
use-mention conventions. It would be diversionary to go into these conventions, and 
it seems unlikely any serious confusion will result from not being completely explicit 
on this rather minor point. 
10 Although two kinds of variables are used in LM, we may easily modify LM to 
become a theory with standard formalization in first-order predicate logic and thus 
consider only modification of standard rules of inference for first-order predicate logic. 
11 By various devices this list can be reduced, but that is not important for our present 
purposes. Exposition of systems of natural deduction which essentially use these eight 
rules is to be found in Copi (1954), Quine (1950), and Suppes (1957). 



PART II 

METHODOLOGY: 

PROBABILITY AND UTILITY 



The six articles in this part represent over a decade of work on subjective 
probability and utility, primarily in the context of investigations that fall 
within the general area of decision theory. Articles 6 and 8 are closely 
related to the theory of measurement. Because of doubts about the 
possibility of measuring either subjective probability or utility, much of 
the theory of these subjects has been devoted to an explicit working out 
of the theory of measurement. Article 9 on the behavioristic foundations 
of utility is related closely to the articles in Part IV on the foundations of 
psychology. The discussion in this article of learning theory overlaps the 
more detailed analyses given in Articles 16 and 23. To those readers who 
want a quick survey of decision theory without confronting the technical 
problems, I would recommend Article 7 on the philosophical relevance of 
decision theory. Duncan Luce and I (1965) have attempted a much more 
substantial and technical survey in an article not reprinted here. 

The last article in this part, Article 11 on probabilistic inference, makes 
the closest connection of any of the articles with much of the recent 
philosophicalliterature on induction. I think the line of attack begun in 
this article can be considerably extended, particularly in areas of ex
perience and those parts of science not yet weIl organized from a theoreti
cal standpoint. Above all, however, the problems raised about rational 
behavior at the end of this article seem to me the most important open 
problems that I have raised in any of the six articles in this part, and in 
this respect, the article is closely related to the tradition of analysis in 
decision theory exemplified by the first article of this part, Article 6. 

From a general philosophical standpoint, the central theme of these six 
articles is the problem of characterizing and analyzing the elusive con
cept of rationality. I suppose it is clear to everyone who thinks about the 
matter very much that we are still only in the beginning stages of a 
satisfactory analysis, and there are many people who are skeptical of ever 
giving a systematic characterization that is intuitively satisfactory. I do 
not think we should yet aim or hope for anything that is complete, but, 
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as in the case of work in the foundations of mathematics over the past 
century, there is now some ground at least for believing that progress of 
adefinite and objectively agreed upon sort is possible. The work that 
originates with the theory of games is turning out to be one of the most 
useful general lines of approach, even though the classical article by 
Milnor (1954) shows how treacherous and difficuIt it is to give an in
tuitively complete, but consistent list of attributes of a rational strategy in 
an uncertain situation, even when that situation is highly restricted. In 
many respects, the great classical tradition in economics, going back to 
Adam Smith, can be viewed as an attempt to work out a normative 
theory of rational behavior in economic contexts. The recent literature in 
normative economics has generalized the relatively narrow economic 
context to a wider context of decision or action, as exemplified, for 
example, in Arrow's classical book (1951). 

I turn now to a more detailed consideration of the last two articles in 
this part. In an as yet unpublished book on welfare economics, Dr. 
Amartya K. Sen of the Delhi School of Economics, University of Delhi, 
India has made a number of acute comments on the grading principle of 
justice introduced in Article 10. The fundamental point he makes is that 
some possible relations Ji of more just than can violate Pareto optimality. 
The relation Ji is person i's preference ordering of the possible con
sequences accruing to him and the possible consequences accruing to the 
other person as weIl (in Article 10 I restricted the number of persons to 
two, but the generalization to n is straightforward and has been carried 
out by Dr. Sen). Here is a simple instance of Sen's demonstration of 
incompatibility with Pareto optimality. Consider two vectors of con
sequences X=(Xl' X2) and Y=(Yl' Y2)' Let person 1 order these four 
consequences 

X2 PI Yl' Yl P Xl and Xl P Y2' 

and let person 2 order them thus 

Xl P2 Y2' Y2 P X2 , and X2 P Yl . 

Then according to Definition 5 (p. 159), we have X Jl Y and X J2 y, but on 
the other hand, for person 1, Y! PI Xl and for person 2, Yz P X2' whence 
by Pareta optimality, the appropriate social choice is Y over x. This 
undesirable result follows whenever each man presumes to know his 
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neighbor's preferences better than the neighbor does hirnself. Thus in 
Sen's example, person 1 thinks that for 2, X2 is better than J2, even though 
2 thinks the opposite. Person 2 judges similarly the ranking of x, and Yl 
for 1. 

I accept Dr. Sen's criticism and believe that it calls for a change. 
Fortunately, one is already implicit in his analysis. This is to require that 
in ordering the set C2 of consequences for person 2, person 1, with 
ordering relation Rl , agree on C2 with R2 , i.e., with person 2's own 
ordering on C2 ; a similar constraint is placed on R 2 with respect to R l 

on Cl' Formally, we need to add to Definition 4 (p. 158) the condition that 
on the subsets Cl and C2 of Cl u C2 the ordering relations R l and R 2 

agree. 
Dr. Sen's criticism leads to an emendation in the right direction, 

because it forces more structure on the concept of justice being set forth. 
I am, however, still far from satisfied with matters as they now stand. 
Far stronger structural principles are required to rule out other counter
intuitive examples, such as the one given at the end of the article. 

The issues concerning probabilistic inference, its nature and its 
justification, have received extensive discussion in recent philosophical 
literature. I originally intended to relate what I had to say about these 
matters in Article 11 to what other people have said in the past couple of 
years. A wide-ranging and informative discussion of many of the central 
issues in inductive logic is to be found in the volume edited by Lakatos 
(1968), and the 1968 volume of Philosophy 01 Science contains useful 
papers by Hempel and others. When I attempted a preliminary review of 
the rapidly increasing literature, however, it soon became apparent that 
it would not be possible to deal with it briefly and in a way that was 
Iimited to trying to extend my own work to meet it. For example, a good 
part of the Lakatos volume is taken up by discussions by Salmon and 
others of rules of acceptance. In my judgment, the issues raised need to 
be analyzed in the context of modern statistical decision theory, not in 
terms of extending the theory of inference and the theory of explanation. 
In other words, to take the idea of acceptance seriously, we must proceed 
to an analysis of behavior and a theory of decisions. 

The lottery paradox, which has been so much discussed in relation to 
rules of acceptance, seems to me an example of the sort of artificial puzzle 
generated by considering rules of acceptance apart from a theory of 



86 PART 11. METHODOLOGY: PROBABILITY AND UTILITY 

decisions. In a way, perhaps, the St. Petersburg paradox of utility theory 
is similar in spirit to the lottery paradox, but in terms of the concepts of 
acceptance and certainty, there is a total lack of similarity. From still 
another standpoint, the law of large numbers, the centrallimit theorem, 
and other asymptotic results in probability theory are related both to 
probabilistic inference and rules of acceptance, because they describe 
what, under rather general assumptions, may be predicted to happen with 
near certainty in the long run. But to examine these relations is not 
possible here. 

lan Hacking's criticisms of Salmon and Reichenbach in the Lakatos 
volume are also pertinent. Hacking presses his remarks from the stand
point of de Finetti's ideas on the foundations of probability and in
duction. Hacking argues weH for the Bayesian conception of learning by 
experience, especially in criticizing relative-frequency theories of in
duction. I share his skepticism of the ability of Bayesian ideas to deal with 
large parts of our cognitive experience. In another article (Suppes, 1966) 
published at the same time as Article 11, I tried to show in some detail 
why Bayesian ideas are not adequate to that part of learning by ex
perience which requires the learning of a new concept. Some brief remarks 
about these matters are made at the end of Article 11. The learning
theoretic account of finite automata in the very last article of the present 
volume says as much as I can sharply formulate at the present time about 
the manner in which a learning mechanism might operate in learning a 
new concept. 

In a detailed critique of Article 11 given in Levi's review (1967), I am 
accused, probably rightly, of adopting a radical psychologism toward the 
problems of induction. I am increasingly prepared to defend this general 
way of looking at both deductive and inductive logic. I suppose I feel the 
real test of a theory of concept formation or a theory of induction is its 
ability to generate the drawings for a machine, or more specifically, a 
computer that can form concepts and make inductions. Theories of this 
kind will not answer many sorts of Humean puzzles about predicting the 
future from knowledge of the past. Nevertheless, the contribution of such 
theories, once developed, to the philosophy of induction should be as 
substantial as have been the contributions of explicitly formulated set 
theories to the philosophy of mathematics. 



6. THE ROLE OF SUBJECTIVE PROBABILITY 

AND UTILITY IN DECISION-MAKING*l 

I. INTRODUCTION 

Although many philosophers and statisticians believe that only an 
objectivistic theory of probability can have serious application in the 
sciences, there is a growing number of physicists and statisticians, if not 
pbilosophers, who advocate a subjective theory of probability. The 
increasing advocacy of subjective probability is surely due to the in
creasing awareness that the foundations of statistics are most properly 
constructed on the basis of a general theory of decision-making. In a 
given decision situation subjective elements seem to enter in three ways: 
(i) in the determination of a utility function (or its negative, a loss 
function) on the set of possible consequences, the actual consequence 
being determined by the true state of nature and the decision taken; (ii) in 
the determination of an a prior; probability distribution on the states of 
nature; (iii) in the determination of other probability distributions in the 
decision situation. 

These subjective factors may be illustrated by a simple example. A field 
general knows he is faced with opposing forces which consist of either (81) 

three infantry divisions and one armored division, or (82) two infantry 
divisions and two armored divisions. Thus the possible states of nature 
are 81 and 82' The possible consequences are a tactical victory (v), a 
stalemate (t), and a defeat (d). He subjectively estimates utilities as 
follows: u(v)=3, u(t)=2, u(d)= -1. On the basis of bis intelligence he 
subjectively estimates the probability of 81 as 1, and of 82 as i. Also in his 
view there are two major possible dispositions of his forces (/1 and 12)' 
U sing military experience and knowledge he now estimates the probability 
of victory, stalemate or defeat if he decides for dispositionJi and 81 is the 
true state of nature. Corresponding estimates are made for the pairs 
(fi, 82)' ([2' 81) and ([2' 82)' He then presumably decides on 11 or 12 
* Reprinted from The Proceedings 0/ the Third Berkeley Symposium on Mathematical 
Statistics and Probability, 1954-555 (1956),61-73. 
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depending on which yields the greater expected utility with respect to his 
estimated apriori distribution on Si and S2. 

In connection with this example, it may properly be asked why prob
abilities and utilities play such a prominent role in the analysis of the 
general's problem. The most appropriate initial answer, it seems to me, 
is that we expect the general's decision to be rational in some definite 
sense. The probabilities are measures of degree of belief, and the utilities 
measures of value. To be rational he should try to maximize expected value 
or utility with respect to his beliefs concerning the facts of the situation. 
The crucial problem is: what basis is there for introducing numerical prob
abilities and utilities? Clearly methods of measurement and a theory 
which will properly sustain the methods are needed. Our intuitive ex
perience is that at least in certain limited situations, like games of chance, 
such measurement is possible. The task for the decision theorist is to find 
unobjectionable postulates which will yield similar results in broader 
situations. It would be most unusual if any set of postulates which 
guaranteed formally satisfactory measures of probability and utility also 
was unequivocally intuitively rational. As we shall see in Section IU, 
compromises of some sort must be reached. 

Because ofthe many controversies concerning the nature of probability 
and its measurement, those most concerned with the general foundations 
of decision theory have abstained from using any unanalyzed numerical 
probabilities, and have insisted that quantitative probabilities be inferred 
from a pattern of qualitative decisions. A most elaborate and careful 
analysis of these problems is to be found in L. J. Savage's recent book, 
Foundations 0/ Statistics (1954). The present paper gives an axiomatization 
of decision theory which is similar to Savage's. The summary result 
concerning the role of subjective prob ability and utility is the same: one 
decision is preferred to a second if and only if the expected value of the 
first is greater than that of the second. 

The theory presented here differs from Savage's in two important 
respects: (i) the number of states of nature is arbitrary rather than in
finite; (ii) a fifty-fifty randomization of two pure decisions is permitted; 
this does not presuppose a quantitative theory of probability. More 
detailed differences are discussed in Section IU. Since the present scheme 
is offered as an alternative to Savage's it is perhaps worth emphasizing 
that the intuitive ideas at its basis were developed in collaboration with 
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Professor Donald Davidson in the process of designing experiments to 
measure subjective probability and utility (1955, 1956). I suspect that 
experimental application of Savage's approach may be more difficult. It 
should also be mentioned that the approach developed here goes back 
to the early important, unduly neglected work of Ramsey (1931). 

The proof of adequacy of the axioms in Section IV depends on previous 
work by Mrs. Muriel Winet and me (1955)2t , and unpublishedresults by 
Professor Herman Rubin (1954); it is unfortunate that Rubin's important 
results are still unpublished. His work differs from the present in that he 
assurnes a quantitative theory of probability. 

Finally it should be remarked that the theory developed in the present 
paper is presumed susceptible of either prescriptive or descriptive use. 

11. PRIMITIVE AND DEFINED NOTIONS 

The four primitive notions on which our axiomatic analysis of decision
making is based are very similar to the four used by Savage (1954). Our 
first primitive is a set S of states of nature; the second, a set C of con
sequences; and the third, a set D of decision functions mapping Sinto 
C. Savage's first three primitive notions are identical. His fourth primitive 
is a binary relation of preference on D. In contradistinction, our fourth 
primitive ~ is a binary relation of preference on the Cartesian product 
D x D. (D x Dis the set of all ordered couples (f, g) such thatfand gare 
in D.) This apparently slight technical difference reflects the introduction 
of a restricted notion of randomization which does not require a quanti
tative concept ofprobability. Thus iff, g,f' and g' are in D, the intended 
interpretation of (f g)~(f', g') is that the decision-maker (weakly) 
prefers a half chance on fand a half chance on g to the mixed decision 
consisting of a half chance onf' and a half chance on g'. For application 
of the apparatus developed here it must be possible to find a chance event 
which is independent of the state of nature and which has a subjective 
probability of 1- for the decision-maker.3 In most applications of decision 
theory it should be relatively easy to find such a chance event, since we are 
usually dealing with what Savage calls small-world situations, and not the 
fate of the whole universe. 

To illustrate the intended interpretation of our primitive notions we 
may consider the following example. A certain independent distributor 
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of bread must place his order for a given day by ten o'clock of the 
preceding evening. His sales to independent grocers are affected by 
whether or not it is raining at the time of delivery, for if it is raining, the 
grocers tend to buy less on the reasonably well-documented evidence that 
they have fewer customers. On a rainy day the maximum the distributor 
can seIl is 700 loaves; on such a day he makes less money if he has 
ordered more than 700 loaves. On the other hand, when the weather is 
fair, he can seIl 900 loaves. If the simplifying assumption is made that the 
consequences to him of a given decision with a given state of nature 
(rainy or not) may be summarized simply in terms of his net profits, the 
situation facing him is represented in Table I. 

TABLE I 

dl-buy ds-buy ds-buy 
700 loaves 800 loaves 900 loaves 

sl-rain $21.00 $19.00 $17.00 
ss-no rain 21.00 24.00 26.50 

The distributor's problem is to make adecision. Decision d2 is a kind of 
hedge. We also permit him the hedge of randomizing fifty-fifty between 
two pure decisions. He may own a coin which he believes is fair, and he 
does not believe that flipping this coin has an effect on the weather. Thus 
he may choose the mixture (dl> d3 ) over d2 • On a particular morning he 
might prefer the possible course of action open to him as folIows: 

(1) dl > (dl> d2 ) > (d l , d3 ) > d2 > (d2 , d3 ) > d3 • 

The use of the relation > in this example is made precise by two 
definitions. Since the mixture (J,f) in the intended interpretation just 
means decision (or action)J, it is natural to extend the field of ;;::: to D. 

DEFINITION 1: (J, g);;:::h if and only if (J, g);;::: (h, h); h;;::: (J, g) if and 
only if(h, h);;:::(J, g); and h;;:::g if and only if(h, h);;:::(g, g). 

For oe and ß either mixtures or pure decisions we now define the 
relation > of strong preference. 

DEFINITION 2: oe> ß if and only if ct;;::: ß and not ß;;::: ct. 

For later work we also need the definition of equivalence in preference 
(that is, indifference). 



S UBJECTIVE PROBABILITY AND UTILITY 91 

DEFINITION 3: IX"'" ß if and only if IX ~ ß and ß ~ IX. 

For the statement of our axioms on decision-making two further 
definitions are needed. The first is the definition of a notion we need for 
the statement of the Archimedean axiom (A. 7). 

DEFINITION 4: (f, g) L (I', g') if and only iff,...,f' and (f, g),...,g'. 
The Archimedean axiom makes use of powers of L. We have that 

(f, g) L2 (I', g') if and only if there exist decisions f" and g" such that 
(f, g) L (I", g") and (I", g") L (I', g'), which situation is represented 
in Figure 1. (Note thatf,f' andf" all occupy the same position.) 

f, f', fll 9' 9 11 

Fig.1. 

The nth power of L is defined recursively: 
(1) (f, g) Li (I', g') if and only if (f, g) L (I', g'); 

9 

(2) (f, g) Ln (I', g') if and only if there ar-e elementsf" and g" in D 
such that (f, g) V-i (I", g") and (I", g") L (I', g'). The numerical 
interpretation ofthe relationship (f, g) V (f', g') is thatf=f' and 

2n - 1 1 
~f +2ng =g'· 

Finally, we need the notion of a constant decision function, that is, a 
function which yields the same consequence independent of the state of 
nature. 

DEFINITION 5: IfXEC then x* is theJunction mapping Sinto C such that 
Jor every SES, x*(s)=x. 

As we shall see, the constant decisions play an all too important role in 
the theory developed in this paper. 

III. AXIOMS 

Using the primitive and defined notions just considered we now state our 
axioms for what we shall call rational subjective choice structures. 

A system (S, C, D ~ > is a RATIONAL SUBJECTIVE CHOICE STRUCTURE if 
and only if the Jollowing axioms 1-11 are satisfied Jor every f, g, h, J', g' , 
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h',f" and g" in D: 
Al. (f, g)~(I', g') or (I', g')~(f, g); 
A2. If(l, g)~(I', g') and (I', g')~(I", g") then (f, g)~(I", g"); 
A3. (I, g)-(g,f); 
A4. f~g if and only if(l, h)~(g, h); 
AS. If(f, g)~(f', g') and (h, g')~(h', g) then (f, h)~(I', h'); 
A6. If(f, g»(I', g') and g>g' then there is an hin D such that g>h 

and h>g' and (I, g)~(f', h); 
A7. Iff>g andf' >g', then there is an hin D and a natural number n 

such that (I, g) L" (f, h) and (f', h)~(f, g'); 
A8. For every x in C, x* eD; 
A9. Iffor every s in S, (I(s)*, g(s)*)~(I'(s)*, g'(s)*), then (f, g)~ 

(I', g'); 
A10. There is an h in D such that for every s in S, h(s)*~f(s)* and 

h(s)*~g(s)*; 
All. There is an hin D such thatfor every s in S, (I(s)*, 9 (s)*)-h(s)*. 
The interpretation of the first two axioms is c1ear: they require a simple 

ordering of decisions. The third axiom-guarantees that our special chance 
event independent of the state of nature has subjective probability t. To 
see this, let f> g, and let E* be our special chance event. The inter
pretation of (f, g) is that decision f is taken if E* occurs and 9 if 2* 
occurs (that is, if E* does not occur). If the subjective probability of E* 
(in symbols: s(E*)) is greater than that of 2*, (f, g) will be preferred to 
(g,f). On the other hand, if s(E*)<s(2*), then (g,f) will be preferred to 
(f, g). Hence, A.3 corresponds to saying that s(E*)=s(.E*)=-!. (For 
further discussion of this, see Davidson and Suppes, 1956.) 

Axiom A.4 states an obvious substitution property. It is a special case 
(cx=-!) of an axiom introduced by Friedman and Savage (1952, p. 468, 
axiom P3). It also is essentially a special case of Samuelson's strong 
independence axiom (1952). A kind of domination property is expressed 
by A.5. Ifthe mixture (f, g) is at least as desirable as the mixture (f', g'), 
and h is sufficiently preferred over h' to reverse this preference in the sense 
that (h, g') is weakly preferred to (h', g), then it is reasonable to expect 
that (f, h) is weakly preferred to (I', h'). The content of this axiom is made 
c1earer by considering particular cases among the possible orderings of 
the decisions. An example which brings out the implications of the axiom 
is given by the supposition that we have the following ordering: 
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f'~f~g~g'. Now we must then have h~h' since (h, g')~(h', g); 
furthermore, the latter implies that the difference between hand h' is 
greater than between f' and f, since when h is coupled with the least 
desirable decision g', the mixture (h, g') is preferred to (h', g), but in the 
case off', the mixing with g' leads to (f, g) being preferred. Hence, we 
expect to find that (f, h) is weakly preferred to (J', h'), which is what the 
axiom requires. 

Axiom A.6 I regard as a blemish which should be eliminated or changed 
in form. It says nothing essentially new about the structure of any model 
of our axioms; just that if (f, g) is preferred to (J', g'), then we may find 
adecision h slightly better than g' such that we will have (f, g) preferred 
to the new mixture (f, h). Axiom A.7 is an Archimedean axiom of the 
sort necessary to get measurability. Its existence requirements are not 
unreasonable in view of the plenitude of decisions guaranteed by A.1O 
and A.1l. The meaning of A.7 is very simple. No matter how great the 
interval between fand g, the interval may be subdivided sufficiently to 
find an h c10ser to f than g' is to f'. The axiom could be weakened by 
adding to the hypothesis the condition that (f, g')';;:; (J" g). 

Axiom A.8 requires that all constant decisions, that is, decisions whose 
consequences are independent of the state of nature, be in D. The in
c1usion of such constant decisions, or of something essentially as strong, 
is necessary to obtain the summary result we want: fis preferred to g 

if and only if the expected value off with respect to a utility function on 
consequences and an apriori distribution on states of nature is greater 
than the corresponding expected value of g. The inc1usion of these con
stant decisions is not peculiar to the theory of decision-making developed 
here, but is also essential to Rubin's (1954) and Savage's (1954) theories. 4 

The difficulties surrounding the inc1usion of these decisions may be 
illustrated by considering one of Savage's colorful examples (see Savage, 
1954, p. 14). We have before us an egg. One of two states of nature 
obtains: the egg is good (Si) or the egg is rotten (S2)' We are making an 
omelet and five good eggs have already been broken into the bowl. We 
may take one of three actions: break the egg in the bowl (J)' break the 
egg in a saucer and inspect it (g), simply throw the egg away (h). The 
various consequences are easy to describe: f (Si) = six-egg omelet, 
g (Si) = six-egg omelet and saucer to wash, etc. But now suppose we add 
the constant decisions. How are we to think about the decision which 
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guarantees us a six-egg omelet? If the true state of nature is 82' it is not 
clear that we are considering an action which makes any kind of sense. 
Certainly we are in no position to push the ultrabehavioristic interpreta
tion of decision-making favored by Savage when we consider the constant 
decisions. I can, for instance, imagine no behavioristic evidence which 
would persuade me that an individual in the situation just described had 
chosen the constant decision guaranteeing a six-egg omelet. As far as I 
can see, about the most reasonable way to analyze a preference involving 
a constant decision such as the above one is to regard it as a non
behavioristic subjective evaluation of consequences. Axioms A.8-A.l1 
have the effect intuitively of requiring such direct evaluations of con
sequences. 

Axiom A.9 corresponds closely to Savage's seventh postulate and to 
Rubin's sixth axiom (1954). If for every state of nature the consequences 
of the mixture of decisions J and g are preferred to the consequences of 
the mixture off' and g', then the mixture of J and g should be preferred 
to that off' and g'. As Savage remarks, the kind of sure-thing principle 
expressed by this axiom is one of the most acceptable postulates of ra
tional behavior. Axiom A.IO asserts that given any two decisions there is 
a third at least as good as either of the two with respect to every state of 
nature. This axiom is weaker than the assumption that the set of con
sequences of any decision J has an upper bound, that is, there is an x 
in C such that for every 8 in S, x*~J(s)*. It is possible that the main 
theorem of Section IV can be proved without this axiom, but I have not 
succeeded in finding such a proof. 

Axiom A.II should probably be regarded as the strongest axiom of the 
group. Given any two decisions J and g, A.ll asserts there is another 
decision h with the property that for each state of nature the consequence 
of h is halfway between the consequence of J and the consequence of g. 
This axiom may be regarded as a very strong form of Marschak's 
continuity axiom (1950). His axiom is that ifJ> g and g > h then there is a 
numerical probability ex such that the mixture ofJand h with probability 
ex and I-ex respectively is equivalent to g. The significance of A.ll is 
discussed in more detail below. 

Now that the analysis of individual axioms is complete, some general 
remarks are pertinent. Compared to Savage's axiomatization (1954), we 
may say of the present theory that there are more axioms but perhaps less 
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complicated definitions. A more important kind of comparison between 
Savage's and the present analysis is the rather radical difference in what 
I like to call the structure axioms (as opposed to the rationality axioms). 
By and large, a structure axiom is an existential assertion.5 Axiom A.II is 
the main structure axiom in the present axiomatization. If we consider 
the situation facing the independent distributor of bread, which was 
discussed in the last section, it is clear that A.II is not satisfied. In fact, 
it is easy to show that if there are two decisions, one of which is strictly 
preferred to the other, then A.ll and certain of the other axioms imply 
that there is an infinity of decisions. However, I for one am reluctant to 
call the distributor irrational because an insufficient number of decisions 
is available to him. I prefer to say that the situation the distributor is in 
does not permit the structure axioms to be satisfied, and hence the present 
theory is inapplicable; we cannot use it to decide if the distributor is 
regularly choosing an action or decision solely in terms of its expected 
value. In a given axiomatic analysis of decision-making it is not always 
easy or even possible c1early to separate the axioms into the two categories 
of rationality axioms and structure axioms. Of the eleven axioms used in 
this paper, I would say that A.I-A.5 and A.9 are "pure" rationality 
axioms which should be satisfied by any rational, reßective man in a 
decision-making situation. On the other hand, A.8, A.1O and A.ll are 
"pure" structure axioms which have little directly to do with the intuitive 
notion of rationality. They are to be considered as axioms which impose 
limitations on the kind of situations to which our analysis may be applied. 
Axiom A.6 is a technical structure axiom which tells us little intuitively 
about restrictions on applicability ofthetheory. WithoutA.ll, the Archi
medean axiom, A.7, would need to be considered a structure axiom, but 
in the presence of A.ll, I regard it as a rationality axiom. 

Of Savage's seven postulates, two are structure axioms (P5 and P6), and 
the rest are rationality axioms. His P5 excludes the trivial case where all 
consequences are equivalent in utility and thus every decision is equivalent 
to every other. Postulate P6 is his powerful structure axiom corresponding 
to my A.II. Essentially his P6 says that if event B is less probable than 
event C (B and C are subsets of S, the set of states of nature), then there 
is a partition of S such that the union of each element of the partition 
with B is less probable than C. As Savage remarks, this postulate is 
slightly stronger than the axiom of de Finetti and Koopman which 
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requires the existence of a partition of Sinto arbitrarily many events 
which are equivalent in probability. Thus the consequence of his P6 is 
that there must be an infinity of states of nature, and as a consequence, an 
infinity of decisions; whereas the consequence of A.ll is that there must 
be an infinity of decisions, with the number of states of nature wholly 
arbitrary. Such infinite sets, either of decisions or states of nature, can be 
eliminated by various kinds of special structure axioms. Davidson and I 
(1956) eliminated them by requiring that all consequences be equally 
spaced in utility - an assumption which has proved manageable in some 
controlled experiments on decision-making at Stanford (Davidson et al., 
1955), but is not realistic in general. 

Savage defends his P6 by holding it is workable if there is a coin which 
the decision-maker believes is fair for any finite sequence of flips (1954, 
p. 33). However, if the decision-maker does not believe the flipping of the 
coin affects what is ordinarily thought of as the state of nature, such as 
raining or not raining in the case ofthe bread distributor, then it seems to 
me that it is misleading to construct the states of nature around the fair 
coin. Once repeated flips of a fair coin are admitted, we can extend the 
single act of randomization admitted in the interpretation of the axi
omatization given here, and directly introduce all numerical probabilities 
of the form kl2n• With this apparatus available we can give an axi
omatization very similar to Rubin's (1954) and drop any strong structure 
axioms on the number of states of nature or the number of decisions. 

To illustrate further the nature ofthe structure axiom A.ll, and at the 
same time to argue by way of example that it does not make our theory 
impossible of application, I would like to modify one of Savage's finite 
examples (1954, pp. 107-108) which does not, even as modified, satisfy 
his P6. A man is considering buying some grapes in a grocery store. The 
grapes are in one of three conditions (the three states of nature): green, 
ripe, or rotten. The man may decide to buy any rational number of 
pounds between 0 and 3. If, for example, the state of nature is that the 
grapes are rotten and he makes the decision to buy two pounds, then the 
immediate consequence is possession of two pounds of rotten grapes and 
the 10ss of a certain small amount of capital. Ifthe man is at all intuitively 
rational in his preferences concerning the amount of grapes to buy, it will 
not be hard for hirn to satisfy A.I-A.l1 - provided, of course, that he has 
at hand some simple random mechanism, such as a coin he believes to be 
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fair for single tosses (he need not believe that any finite sequence of 
outcomes is as likely as any other). This example is discussed further in 
Section V. 

By way of summary my own feeling is that Savage's postulates are 
perhaps esthetically more appealing than mine, but this fact is balanced 
by two other considerations: my axioms do not require an infinite 
number of states of nature, and their intuitive basis derives from ideas 
which have proved experimentally workable. 

IV. ADEQUACY OFAXIOMS 

We now turn to the proof that our axioms for decision-making are 
adequate in the sense that decisionfis weakly preferred to decision g if 
and only if the expected value of f is at least as great as the expected 
value of g. The actual result is not quite this strong. As might be expected, 
the theorem holds only for bounded decisions (precisely what is meant by 
a bounded decision is made clear in the statement of the theorem). On 
the basis of A.I-A.II uniqueness of the apriori distribution on the states 
of nature cannot be proved, since the constant decisions alone constitute 
a realization of the axioms. If S is assumed finite, various conditions 
which guarantee uniqueness are easy to give. 111 stating the theorem, we 
use the notation: U of for the composition of the functions U and f. 

THEOREM: If (S, C, D, ;;?; > is a rational subjective choice structure, then 
there exists a real-value function ljJ on D such that 

(i) for everyf, g,J' and g' in D (f, g);;?;(J', g') ifand only ifljJ(J)+ 
ljJ(g);;?; ljJ(J')+ljJ(g'), 

(ii) ljJ is unique up to a linear transformation, and 
(iii) if U is the function defined on C such that for every x in C 

(1) U(x) = ljJ(x*), 

then there exists a finitely additive probability measure P on S such that for 
every f in D if U of is bounded, then 

(2) ljJ(J) = f (U o/)(s) dP(s). 
s 

Proof.· The proof of (i) and (ii) follows rather easily from some previous 
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results obtained by Mrs. Muriel Winet and me. Using a notion R of 
utility differences and a notion Q of preference, we established (1955) 6t 

that, on the basis ofaxioms similar to A.I-A.7 and A.ll of this paper, 
there exists a real-valued function I/J unique up to a linear transformation 
such that 

(3) j Q g if and only if I/J (f) ~ I/J (g) , 
j,gRj',g' ifandonlyif 1I/J(f)-I/J(g)1 ~ 1I/J(f')-I/J(g')I. 

If we introduce the two defining equivalences 7 

(4) j Q g if and only if (f, f) ~ (g, g); 
(5) j, gRj', g' if and only if either (i) j ~ g, I' ~ g' 

and (f, g') ~ (f', g), or (ii) g ~ j, I' ~ g' 
and(g,g')~(f,j'), or (iii)j~g,g'~j' 

and (f, 1') ~ (g, g'), or (iv) g ~ j, g' ~ I' 
and (g, 1') ~ (f, g'), 

then on the basis of A.I-A.7, A.9 an4 A.ll we may prove the axioms of 
Suppes and Winet (1955)8 on Q and R as theorems, as weIl as the equiv
alence 

(6) (f, g') ~ (f', g) ifand only ifeither (i)j ~ g, I' ~ g' 
andj,gRj',g', or (ii)j~g andg'~j', or 
(iii) g ~ j, g' ~ I' and 1', g' R j, g. 

Parts (i) and (ii) of our theorem then follow immediately from the main 
theorem in Suppes and Winet (1955). 

The proof of (iii), concerning the existence of an apriori distribution on 
S, essentially uses Rubin's results (1954). However, certain extensions of 
D are required in order to apply his main theorem. 

By means of the utility function U on the set of consequences C, as 
defined in the hypothesis of (iii), we define the set F of all numerical 
income functions 

(7) F = {p: there exists j in D such that p = U 0 J} , 

and we define the functional '1 on F 
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We observe first that if p, UEF, then 

(9) !p+!uEF, 

for let P= U ofand u= Uog, then by (i) and (ii) of our theorem, A.9, and 
A.ll, there exists an h in D such that for every s in S 

(10) HU of)(s) + HU og)(s) = (U oh)(s). 

Hence, 

(11) !p + !u = U 0 h, 

and U oh is in F. Also, since 

(12) IJ(U oh) = 4>(h) = !4>(j) + !4>(g) = !IJ(U of) + tIJ(U og), 

we have 

(13) IJGp + !u) = !IJ(p) + tIJ(U). 

From (9) and (13) it easily follows that if p, uEF and k and n are positive 
integers such that k~2n, then 

(14) 

and 

We now extend Fby the following definition: pEPif and only ifthere is 
a finite sequence <al' ... , an> of real numbers and a finite sequence 
<PI' ... , Pn> of elements of F such that 

(16) P = LaiPi. 
n 

(H is clear from (16) that Fis a linear space.) 
In order to extend IJ in a well-defined manner to P, we need to prove 

that if 

(17) L aiPi = L bPi 
n m 
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then 

(18) I ait7(Pi) = I b j t7(aJ. 
n m 

Clearly without loss of generality we may assume 

We shall first establish (18) under the restriction that 

(20) I ai = I b j . 
n m 

If ai and b j are rational numbers of the form kl2n with k~2n, then (18) 
follows from (15) by a straightforward inductive argument (which we 
omit), provided 

(21) Iai=Ibj=1. 
n m 

But the requirement of (21) is easily weakened to 

(22) I ai = I b j < 1 , 
n m 

for we may add cp with c= 1-In ai to both sides of (17), and then (21) 
will be satisfied. Furthermore, (22) is readily extended to arbitrary positive 
rationals, since two finite sequences of positive rationals can be reduced 
to (22) by multiplying through and dividing by a sufficiently high power 
of2. 

We are now ready to consider the case where the a;'s and b/s are 
arbitrary positive real numbers. There are rational numbers r i and Sj 

such that 

(23) ri < ai and Sj> bj • 

n is an immediate consequence of A.1O that there is a T in F such that 

From (23) and (24) we have, by a regrouping of coefficients 

n n m m 
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Since the coefficient of't is rational, we obtain by our previous results 

(26) ~>i17 (Pi) + A17 ('t) ~ L S j17 (0" j) , 
n m 

where 

(27) A=L(ai-ri)+L(Sj-ßJ. 
n m 

By suitable choice of the r;'s and s/s, we may make A arbitrarily small, 
and we thus infer from (23) and (26) 

(28) L ai17 (Pi) ~ L b j17 (0" j) . 
n m 

By an exactly similar argument, we get 

(29) L bj17{O"j) ~ L ai17{Pi). 
m n 

To establish (18) in fuH generality it remains only to consider the case 
where 

(30) Lai =F L bj . 
n m 

Suppose, for definiteness, that 

(31) Lai>Lbj. 
n m 

There are elements x and y in C such that U{x) > U(y) (if there are no 
two such elements, the proof of the whole theorem is trivial). Further
more, in view of A.ll, we may choose x and y such that U(x»O and 
U(y»O, or U(x)<O and U(y)<O. Let fl= Uox* and v= Uoy*. Then 
fl and v are in F, and there are nonnegative numbers ao and bo such that 

(32) ao + L ai = bo + L b j 
n m 

and 

(33) aofl= bov. 

Then by our previous result under the restriction (20), we have 

(34) ao17{fl) + L ai17(Pi) = bo17{v) + L bj17{O"j), 
n m 
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but from (33), (8) and the definition of U 

(35) ao17(p,) = bo17(V) , 

and thus 

n m 

which establishes (18) in full generality. 
On the basis of (18) we extend 17 to F. The argument from (30) on has 

closely followed Rubin's proof (1954). His proof may now be used to 
complete the proof of (iii). We sketch the main steps. Clearly 17 is a linear 
functional on F, and it is easily shown that 17 is nonnegative, and hence, 
that 17(P) is between inf .eSP(s) and sup seSP(s). Let G be the space of 
all functions on S bounded by elements of F. Then by the Hahn-Banach 
theorem (Banach, 1932, pp. 27-28) 17 can be extended to G. Finally, it can 
be shown (Rubin, 1949a, b) that, such a linear functional on Gis, for 
bounded functions in F, their expected value with respect to an apriori 
distribution on S which is in general finitely additive. (A result closely 
related to the existence of such a distribution is established in Theorem 
2.3, Yosida and Hewitt, 1952.) 

V. CRITICAL REMARKS 

The theory of decision developed in the previous sections is no doubt 
defective in a number of ways, some of which I am well aware of. In this 
final section I briefly examine what I consider to be its gravest weakness, 
at least for normative applications. It is laudable to wish to base a theory 
of decision on behaviorally observable choices, but the decision-maker is 
interested in something more. He wants advice on how to choose among 
alternative courses of action. He wants to have at hand a theory which 
tells him how to use initial information. The result of the analysis in this 
paper and in Savage's book is that if certain structure axioms are satisfied, 
any rational man acts as if he had an apriori distribution on the states of 
nature. But what the rational man wants is a method for selecting that a 
priori distribution which best uses his apriori information. The present 
theory or Savage's offers little help on this point. The importance of this 
problem is testified to by the over-all situation in statistical decision 
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theory: we have c1ear ideas of optimality only when given an apriori 
distribution on the states of nature. Bayesian principles of choice seem 
naturally to dominate the scene. (For some penetrating reasons, see 
Blackwell and Girshick, 1954, Chap. 4.) 

In recent years a serious attempt has been made by philosophical 
logicians to develop a theory of confirmation which is c10sely related to 
the problem under discussion. The theory of confirmation is concerned 
with precisely characterizing the degree to wbich a given hypothesis is 
supported by given evidence. The confirmation function which is usually 
introduced is very similar in its formal properties to the standard notion of 
conditional probability. Perhaps because the theory of confirmation has 
usually been stated in logical or linguistic terms, its connections with 
decision theory have not been made as clear as they could. Thus viewed, 
the purpose of confirmation theory is to develop methods for codifying 
prior information to yield an apriori distribution on the states of nature. 
The available evidence is our prior information, and a hypothesis cor
responds to asserting that a given state of nature is the true one. 

For concreteness we may consider the grape-example of Section IH. In 
Savage's discussion of tbis example (1954, p. 108) he assigns subjective 
probabilities to the three states of nature, and then goes on to consider 
what action the decision-maker should take after observing a sampie of 
one grape. But the point at issue here is: given certain prior information 
is one apriori distribution as reasonable as any other? As far as I can see, 
there is nothing in my or Savage's axioms which prevents an affirmative 
answer to this question. Yet if a man had bought grapes at this store on 
fifteen previous occasions and had always got green or ripe, but never 
rotten grapes, and if he had no other information prior to sampling the 
grapes, I for one would regard as unreasonable an apriori distribution 
which assigned a probability of t to the rotten state. Unfortunately, 
though I am prepared to reject this one distribution as unreasonable, I 
am not prepared to say what I tbink is optimal. 

The most thoroughgoing analysis of confirmation theory has been made 
by Carnap (1950), but bis chosen confirmation function c* is beset with 
many technical difficulties wbich give rise to counterintuitive examples 
(see, for example, Kemeny, 1951, 1953; Rubin and Suppes, 1955). Here I 
am not concerned to scrutinize the current problems of confirmation 
theory, but merely to argue for the relevance of thetheory to decision 
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theory.9 An adequate confirmation theory would not discredit the kind 
ofaxiomatization of decision-making given in this paper; it would not 
disturb the central role of subjective probability and utility.10 It would 
stand to the theory of this paper more as statistical mechanics stands to 
macroscopic thermodynamics: adecision theory which included a 
confirmation function would have the axioms of the present paper (or 
of a similar theory such as Savage's) forthcoming as theorems. Such an 
enlarged decision theory would remain subjective, but an important 
element of counterintuitive arbitrariness would have been eliminated. 

In conclusion, I should like to acknowledge my indebtedness to 
Herman Rubin for a number of helpful suggestions, as weIl as to Donald 
Davidson, Robert McNaughton and Jean Rubin for their useful com
ments. 

NOTES 

1 I arn indebted to Herman Rubin for a number of helpful suggestions. 
2t Article 8 in this volume. 
3 The term 'mixed decision' is used here in the very restricted sense of referring to 
garnbles involving just this special chance event independent of the state of nature; 
formally such gambles are the elements of D x D. 
4 An analogue of our A8 is not included among Savage's seven axioms unless his set 
F of acts (corresponding to our set D of decisions) is meant to be the set of all functions 
mapping Sinto C, which is of course a stronger assumption than A8. In any case it is 
essential to his formal developments to have such decisions at hand (see Savage, 1954, 
from p. 25 on). 
5 This is certainly not always the case. The strong structure axiom in Davidson and 
Suppes (1956), which asserts that consequences are equally spared in utility, is not 
existential in character. 
6t Article 8 in this volume. 
7 In Suppes and Winet (1955; Article 8 in this volume) the inequalities of (3) are 
actually reversed, but trivial changes in the axioms given there yield (3) as a consequence. 
8t Article 8 in this volume. 
9 A central problem in confirmation theory is what apriori distribution to choose when 
there is no information whatsoever. Chemoff (1954) has shown that if certain reason
able postulates are accepted and if the number of states of nature is finite, then the 
distribution to choose is that one which makes each state equally probable. 
10 This remark is controversial. In the opinion of many competent investigators an 
adequate confirmation theory would dispense with any need for subjective probability. 
I cannot here state my reasons for disagreeing with this view. 



7. THE PHILOSOPHICAL RELEVANCE OF 

DECISION THEORY* 

I. INTRODUCTION 

There is, I am sure, a sense in which any developed scientific theory has 
philosophical significance. It is equally clear that some scientific theories 
are of considerably more philosophical importance than others. For 
philosophy, quantum mechanics is more important than hydrodynamics, 
learning theory than social psychology, the theory of sets than topology, 
and so on. It is the primary point of the present paper to discuss the 
philosophical relevance or importance of decision theory, a theory I 
classify as a new branch of mathematical statistics and economics, with 
certain ramifications in psychology. I hope to be able to show that in its 
own way decision theory has the kind of primary relevance for philosophy 
that we associate with quantum mechanics or the theory of sets. 

To begin with, we may characterize the fundamental problem of 
decision theory in the following way. Aperson, or group of persons, is 
faced with several alternative courses of action. In most cases the decision
maker will have only incomplete information about the true state of 
affairs and the consequences of each possible act. The problem is to 
choose an act that is optimal relative to the information available and 
according to some definite criteria of optimality. 

In a very natural way, the most important branches of decision theory 
may be characterized by a 2 x 2 table as illustrated in Table I. The left 
column is for the category of individual decisions and the right column 
for the category of group decisions. The first row is for the category of 
normative theory and the second for the category of descriptive theory. 

Rather than comment on the philosophical relevance of decision 
theory in general, I shall attempt to indicate what I think are the most 
interesting ramifications for philosophy of each of the quadrants shown. 
The emphasis will be on normative theory. 

• Reprinted from The Journal 01 Philosophy 58 (1961) 605-614. 
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Normative theory 

Descriptive 
theory 

TABLE I 

Individual decisions 

Classica1 economics 
Statistica1 decision theory 
Moral philosophy 

Experimental decision studies 
Learning theory 
Survey studies of voting 

behavior 

Group decisions 

Game theory 
Welf are economics 
Political theory 

Social psychology 
Political science 

11. INDIVIDUAL NORMATIVE THEORY 

A common problem besetting both the theory of induction and moral 
philosophy is that of giving an adequate account of the concept of 
rationality. The normative theory of individual decision making has been 
concerned to explicate the notion of rationality in what is, in some re
spects, a very thorough fashion. It would be rather absurd in this general 
paper to attempt to survey even a small fraction of the many substantial 
results, primarily of a technical nature, that have been achieved in the 
last two decades. There is, however, a central kind of difficulty that has 
arisen and that I think is of great philosophical importance. 

Let me begin in an indirect fashion by a comparison with the situation 
in the foundations of mathematics. As work on the arithmetization of 
analysis and the development of the theory of sets progressed in the 19th 
century, it seemed possible, at least for a short period, that the whole of 
mathematics could be derived from three simple postulates: the principle 
of abstraction, that is, that for any property there exists a set of elements 
having this property; the principle of extensionality, that is, that two:sets 
are identical just when they~have the same members; and the axiom of 
choice. Mathematical:work in the 19th century indicated that the theory 
of sets was a natural framework within which to construct the rest of 
mathematics.1 The intuitive and simple reasonableness of these three 
principles (with the possible exception of the axiom of choice) seemed 
overwhelming. 

The discovery of paradoxes derivable from the first two assumptions 
by Burali-Porti, RusselI, and others shook the foundations of mathematics 
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to such an extent that a fuH recovery has not yet been made. But the 
discovery of the paradoxes has had an effect that has not been entirely 
negative. The many attempts, ranging from intuitionism to formalism, 
to put the foundations of mathematics on a secure basis have brought our 
understanding of the nature of mathematics to a new level of sophistica
tion. Related negative results like the incompleteness theorems of Gödel 
have shown that what seemed to be immediate and obvious intuitions 
about even so restricted a branch of mathematics as elementary number 
theory are unreliable. 

Recent work in decision theory has shown in similar fashion that there 
is no simple coherent set of principles capable of precise statement that 
corresponds to naive ideas of rationality. Just as research in this century 
in the foundations of mathematics has shown that we do not yet know 
exacdy what mathematics is, so the work in decision theory shows that 
we do not yet understand what we mean by rationality. I mean by this not 
merely that we have no adequate general definition of rationality, but 
that, even for highly restricted circumstances, it turns out to be extremely 
difficult to characterize what we intuitively would want to mean by a 
rational choice among alternative courses of action. To focus on a 
collection of special situations and to attempt to characterize a rational 
strategy of choice for them is very similar and, in fact, closely related to 
an attempt to solve particular problems of induction without necessarily 
resolving "the" problem of induction. 

The formidable problems besetting the rational decision-maker may be 
illustrated by considering the difficulty of formulating an adequate 
principle of choice for finite games against "nature". Such games are 
special cases of the description given above of the general decision 
situation, although a wide variety of decision situations may be mathe
matically represented as such finite games. The game may be represented 
by a matrix in which a player must choose a row and a column is chosen 
by nature. The entries in the matrix represent the payoff to the decision
maker, when he chooses a row and nature chooses a column, but the 
metaphorical talk about nature should not mislead anyone. This is 
merely a way of referring to a situation in which a course of action must be 
taken against an opponent or in an objective situation about which there 
is no information. The restriction to no information is not so severe as it 
may seem, for a situation in which partial information is incorporated 
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may be redefined to yield agame with no information - a familiar 
practice in the mathematical theory of decisions. The happy situation 
when the entries in some one row are for every column better than those 
for any other row presents no difficulties. We simply apply the sure-thing 
principle; i.e., we choose that clearly preferred row. Unfortunately this 
is the unusual situation, and this principle in itself is seldom selective of a 
unique course of action. 

The classical principle of indifference of Laplace states that when we 
have no information about the different possible states of nature (the 
columns ofthe game) we should assurne that the probabilities of each are 
equal and then choose that row whose expectation is maximal. The much 
more conservative minimax principle states that we should choose 
according to the hypothesis that we may expect the worst and thereby 
minimize our maximum loss. The minimax principle was first proposed 
by von Neumann as asound principle of strategy in games against an 
intelligent opponent. Its extension to games against nature as a funda
mental principle of statistical decision theory was first made by Wald. A 
variety of other principles have been proposed. 

In view of the numerous suggestions that have been made, particular 
interest may be attached to John Milnor's analysis (1954) of what would 
seem to be the desirable characteristics of any rational principle of 
selection. His results, like those of Russell's paradox for the foundations 
of set theory, yield an impossibility theorem. Briefly, Milnor proposes the 
following nine axioms for any fully acceptable principle of choice. First, 
the principle must order the alternative courses of action. Second, this 
ordering must be independent of the arbitrary ordering of the rows and 
columns of the matrix. Third, the principle must be compatible with the 
sure-thing principle mentioned earlier; that is, if one row dominates 
another row in every column, that first row must be preferred. Fourth, 
the principle must satisfy an obvious condition of continuity. Fifth, the 
preference ordering of the courses of action must be unaffected by a 
linear change in all entries in the matrix. (This principle reflects the 
general result that the utility of consequences is measured only on an 
interval scale.) Sixth, the principle of choice must satisfy the condition of 
independence from irrelevant alternatives, namely that the ordering 
between old rows must not be changed by the addition to the game of a 
new row. The seventh axiom asserts that the principle must be invariant 
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under a linear change of any column; in other words, tM ordering among 
courses of action must not change if a constant is added to some column. 
Eighth, the ordering generated by the principle of choice must be in
different to a column duplication; that is, the ordering must not change if 
a new column identical with some old column is added to the game. The 
ninth axiom asserts the requirement of convexity, which means simply 
that, if a row is equal to the average of two other rows judged equivalent 
in the preference ordering, then the first row must not be judged worse 
than the two equivalent rows of which it is an average. This axiom is 
sometimes described as asserting that the decision-maker should not be 
prejudiced against randomization. 

None of the familiar criteria of rationality for the decision-maker is 
compatible with all nine ofthese axioms. These nine axioms are obtained 
by extracting desirable properties of various criteria of rationality that 
have been proposed. Milnor shows, for example, that the Laplacean 
criterion is characterized by axioms 1, 2, 3, 6, and 7 and the Wald minimax 
criterion by axioms 1, 2, 3, 4, 6, 8, and 9. The undesirable negative result 
is that no criterion satisfies all nine together. -

Closely related paradoxical results in confirmation theory suggest that 
the naive theory of rationality, like the naive theory of sets, cannot easily 
be systematically reconstructed in any simple and consistent fashion. 

Certain moral philosophers will undoubtedly be inclined to dismiss 
the kind of results I have been discussing as applicable only to the 
technical problems that arise in the theory of induction. In their minds, 
the concept of rationality I have been discussing has little if any relevance 
to the concept of rationality that arises in moral theory. This I think is 
clearly amistake, as the discussion in the next section is meant to show. 

EIsewhere (Suppes, 1960a) I have discussed the difficulties of character
izing the pure theory of rationality even when we accept a principle of 
choice, in this case the Bayesian principle that enjoins the decision-maker 
to maximize his expected utility (the expectation being relative to a 
subjective probability distribution on the possible states or strategies of 
nature). Roughly speaking, the pure theory permits no structural assump
tions about the environment, but is intended rather to hold always and 
everywhere. An example of an axiom of the pure theory is the postulate 
that the preference relation on the set of acts is transitive. A typical 
structural axiom is the assumption that the decision-maker can partition 
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the set of states of nature as fine as he pleases in terms of probability, an 
assumption which seems to me irrelevant to the pure concept of making a 
rational decision. I shall not try to summarize the technical results 
obtained, but only remark that they are all essentially negative and 
indicate the difficulties ofaxiomatizing even the simplest part of the pure 
theory of rationality. 

By concentrating on the difficulties facing the development of any 
adequate concept of rationality, I do not mean to imply that the philo
sophical significance of decision theory under the heading of individual 
normative theory is restricted entirely to negative results. The revival of 
subjective probability, for instance, within the framework of decision 
theory by L. J. Savage and others has already had and will undoubtedly 
have further repercussions in the foundations ofthe theory ofprobability. 
The simple relative-frequency theories of von Mises and Reichenbach are 
already beginning to seem old-fashioned. 

The development of utility theory within the general framework of 
decision theory has brought the kind of calculus envisioned long ago by 
Bentham to a high degree of technical perfection. It is unfortunate that 
the word 'utility' is connected in most philosophers' minds with hedonism. 
The formal calculus of utility developed in recent decades is no more 
committed to a calculus of pleasure than to one of duty. The important 
intellectual contribution of the hedonistic tradition has been the re
cognition that some principle of calculation is required for rational action 
in the face of partial or incomplete information. Some years ago Davidson, 
McKinsey, and I (1955) attempted to show the elose relations that exist 
between the measurement of utility and a formal theory of value. I shall 
not attempt here to restate the arguments we gave, but only to reiterate 
my conviction that the recent formal theories of utility are as important 
for moral philosophy as are recent theories of subjective probability for 
the philosophical problems of induction. 

111. GROUP NORMATIVE THEORY 

In the table shown above three disciplines are listed in tbis quadrant: 
game theory, welf are economics, and political theory. The relations of 
game theory to the concept of rationality as discussed in the preceding 
seetion are apparent and will not be considered in any detail here. Suffice 
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it to say that one of the most satisfactory analyses of the concept of 
rationality exists for competitive games. This is the classical minimax 
theory of von Neumann already mentioned. 

In this section I should like to turn from the concept of rationality to 
the more specifically moral concept of justice. 

I have the impression that for many years the consideration of political 
theory by either philosophers or political scientists has been nearly 
identical with consideration of the history of political theory. It is my 
feeling that the newer welfare economics has broken out of its specific 
economic context and has already laid the foundations of a new approach 
to political theory. The central problem ofwelfare economics has been the 
Benthamite one of devising and analyzing a variety of schemes for the 
distribution of economic goods in the society. It has gradually come to be 
realized that the restriction to economic goods can be dropped and that 
the problem may be regarded as the more general one of setting social 
and political policy. It is assumed in this theoretical work that in some 
sense decisions reached reflect in an equitable and just manner the values 
and tastes of the members of the society. In-fact, the preferences of the 
individuals making up the society are usually and somewhat unrealisti
cally taken as given data. 

To indicate the kind of results that may be obtained by the methods of 
welfare economics, I should like to sketch another impossibility theorem. 
This is due to Kenneth J. Arrow (1951) and is concerned with the 
existence of a just or equitable method of social decision. We suppose 
that there are a number of possible social states and that each member of 
the society has a preference ordering for these states. The problem is to 
construct an intuitively reasonable social preference ordering from the 
given individual orderings. One simple proposal is, of course, the method 
of majority decision. Social state A is preferred to social state B by the 
group as a whole if a majority of the members of the group prefer A to B, 
otherwise not. Just as in the case ofthe Laplacean principle ofindifference 
or the minimax principle for choosing a strategy in games against nature, 
there are intuitively desirable axioms that are violated by the method of 
majority decision. Perhaps the easiest way to illustrate the difficulties is 
to describe the so-called paradox of voting. Suppose there are three 
issues A, B, C and three people voting on these issues. Let us assurne that 
the first person prefers A to B to C, the second person prefers B to C to A, 
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and the third person prefers C to A to B. The issues are voted on in pairs. 
It is easily checked that if the first choice is between A and B the selected 
issue will be C. If it is between A and C the outcome will be B, and if it is 
between Band C the outcome will be A. In other words, the outcome 
chosen is completely dependent in this symmetrical situation on the 
arbitrary choice of which issues are to be voted first. 

What Arrow has done is to proceed as Milnor did, namely, to write 
down reasonable axioms that any social decision method should satisfy 
and then to ask if indeed there exist any methods satisfying the axioms. 
In essence his four axioms are the following. The first axiom postulates 
a positive association of social and individual values. In particular, if one 
alternative social state rises in the ordering of every individual without 
any other change in the orderings, it is natural to postulate that it rises 
or at least does not fall in the social ordering. The second axiom states 
the independence of irrelevant alternatives. The meaning of this postulate 
is that if, for instance, a set of candidates is being considered for an office 
and the preferences of voters for these candidates are known, then the 
deletion of one candidate from the list will not affect the relative pref
erences for the other candidates. In thinking about this postulate it is 
important to emphasize that strategic considerations are not being 
considered. We are concerned with the actual preferences of the group 
members and not with their behavioral use of a strategy in those situations 
where they feel their first choice could not possibly be elected. For instance, 
in the 1948 presidential election a strong states' rights advocate might 
have preferred J. Strom Thurmond to Thomas B. Dewey, but, because he 
feIt that Thurmond did not have a chance, he may have voted for Dewey. 
It is this kind of strategie consideration that is being ignored in this 
postulate. The meaning of the postulate is that, if the states' rights 
conservative preferred Thurmond to Dewey to Truman to Wallace, then 
if Dewey were no longer a candidate he would retain the same ordering 
ofpreferring Thurmond to Truman to Wallace, and similarly the deletion 
of any one of the four candidates would not disturb the preference 
ordering for the remaining three, even though the deletion of one of the 
four might affect his voting behavior. The third axiom asserts that the 
social decision method is not to be imposed. Adecision method is said 
to be imposed when there is some pair of alternative social states X and 
Y such that the community can never express its preference for Y over X 
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no matter what the preferences of all the individuals concerned may be. 
The existence of outmoded taboos furnishes examples violating this 
condition. The fourth axiom asserts that the social decision method shall 
not be dictatorial; that is, the preferences shall not simply correspond to 
those of some one individual in the social group. Unfortunately, Arrow 
is able to prove that, if there is any degree of variety in the individual 
preference orderings, then there exists no social decision method satisfying 
the four axioms stated. 

The point I have been concerned to make here is that the Milnor and 
Arrow impossibility theorems are as philosophically relevant to the 
foundations of the concepts of rationality and justice as are the paradoxes 
of set theory for the foundations of mathematics. These impossibility 
theorems demonstrate that our naive intuitions about rationality and 
justice cannot be counted upon to yield a coherent and consistent theory. 

IV. DESCRIPTIVE THEOR Y 

Perforce the descriptive or behavioristic theory has less direct relevance 
to philosophical problems than the normative theory, but there is one 
particularly important point I should like to describe in the brief space 
remaining. There are a rapidly increasing number of experimental studies 
of the actual decision behavior of human beings. Studies have been made 
of value choices, of actual inductive behavior, and of behavior in com
petitive or co operative game contexts. The literature is too large to 
review here, but an important general conc1usion seems to be that actual 
behavior deviates rather sharply from the normative models, even in the 
case of strictly competitive games. On the other hand, the behavior of 
experimental subjects in many cases corresponds well with quantitative 
predictions derived from learning theory formulated in terms of stimulus 
sampling and conditioning (Suppes and Atkinson, 1960). 

Stimulus-sampling learning theory was first given a quantitative 
formulation in 1950 by the psychologist W. K. Estes. It has since been 
developed by a number of investigators. In a highly simplified form, the 
basic ideas run as folIows. The organism is presented with a sequence of 
trials, on each of which he makes a response that is one of several 
possible choices. In any particular setup it is assumed that there is a set 
of stimuli from which the organism draws a sampie at the beginning of 



114 PAR T 11. METHODOLOGY: PROBABILITY AND UTILITY 

each trial. It is assumed that on each trial each stimulus is conditioned 
to at most one response. The probability of making a given response on 
any trial is postulated to be simply the proportion of sampled stimuli 
conditioned to that response, unless there are no conditioned stimuli in 
the sampie, in which case there is a "guessing" probability for each 
response. Learning takes place by the following mechanism. At the end 
of a trial a reinforcing event occurs which identifies that one of the possible 
responses which was correct. With some fixed probability the sampled 
stimuli become conditioned to this response if they are not already, and 
the organism begins another trial in a new state of conditioning. 

Independent of the question of empirical adequacy in predicting 
actual choice behavior, behavioral scientists have more general reasons 
for preferring a learning theory (like the stimulus-sampling variety just 
sketched) to decision theory. To the experimental psychologist, the 
static character of the concepts of subjective probability and utility is 
suspect, and these two concepts are the central concepts of decision 
theory. The psychologist resists accepting them as basic or primitive 
concepts of behavior. Ideally, what he- desires is a dynamic theory of the 
inherent or environmental factors determining the acquisition of a 
particular set of beliefs or values. If these factors can be identified and 
their theory developed, the concepts of probability and utility become 
otiose in one sense. I have recently tried to show how stimulus-sampling 
learning theory provides the beginnings of such a development (Suppes, 
1961a).2t The philosophical interest of the behavioristic approach lies in 
the possibility of constructing a more realistic framework than the 
static one of decision theory for discussing the normative theory of 
choice. This is not to say that the distinction between normative and 
descriptive questions is to be abolished. It is rather that the more detailed 
and fundamental behavioral theory opens up the possibility of analyzing 
normative questions at a deeper conceptuallevel, but this is a matter that 
cannot be explored here. 

NOTES 

1 This sketch is not meant to be historically exact. 
2t Article 9 in this volume. 



8. AN AXIOMATIZATION OF UTILITY BASED ON 

THE NOTION OF UTILITY DIFFERENCES* 

I. INTRODUCTION 

In the literature of economics (e.g. Allais, 1952; Frisch, 1937; Lange-
1934) the notion of utility differences has been much discussed in con, 
nection with the theory of measurement of utility.l However, to the best 
of our knowledge, no adequate axiomatization for this difference notion 
has yet been given at a level of generality and precision comparable to the 
von Neumann and Morgenstern construction of a probabilistic scheme 
for measuring utility. (The early study of Wiener, 1919-1920, is not 
axiomatically oriented.) The purpose of this paper is to present an 
axiomatization ofthis notion and to establish the expected representation 
theorem guaranteeing measurement unique upio a linear transformation. 

Recent experimental work by economists and psychologists (see the 
bibliography in Edwards, 1954) suggests there are cogent reasons for 
reviving the notion of utility differences in order c1early to separate 
utility and subjective probability. The interaction between probability 
and utility makes it difficult to make unequivocal measurements of either 
one or the other. The recent Mosteller and Nogee experiments (1951) 
may be interpreted as measuring utility if objective probabilities are 
assumed or as measuring subjective probabilities if utility is assumed 
linear in money. 

In Davidson et al. (1955) and Davidson and Suppes (1955) a detailed 
description is given of how utility may be experimentally measured by 
use of utility differences and a single chance event with subjective prob
ability t. 

The scheme may be briefly described as follows. 2 Let E* be a chance 
event with subjective probability t, and suppose that the individual we 
are testing prefers outcome x to y, and outcome z to w. We present him 
with two alternative gambles, one of which he must choose. Gamble 1 

• Reprinted from Management Science 1 (1955), 259-270. Writtenjointly with Muriel 
Winet. 
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is that if E* occurs he gets X, and if E* does not occur he gets w; Gamble 
2 is that if E* occurs he gets z, and if E* does not occur he gets y. It seems 
intuitively reasonable to say that the individual should prefer Gamble 2 
if and only if the utility difference between x and y is less than that between 
z and w. Once utility is measured by a procedure of this kind, we may 
measure subjective probabilities. (To some extent, this approach was 
anticipated in Ramsey, 1931.) 

Since the chance event E* is fixed throughout the discussion, it does 
not play any formal role in our axiomatization and enters only via one 
particular empirical interpretation of the notion of utility differences. 
Consequently, interpretations of our primitive notions, completely 
divorced from any probability questions, are available for analyzing 
other approaches to utility theory. A justification for considering alter
native schemes is the limited applicability of the probabilistic approach 
just described. It can and has been used in some laboratory experiments 
at Stanford (Davidson et al., 1955), but it is far from clear that it can be 
seriously applied to market behavior. An interpretation of utility differ
ences in terms of amounts of money is an obvious alternative. We present 
such a scheme in the form of a reduction sentence (the general character 
of reduction sentences is discussed in Carnap, 1936, 1937). For simplicity 
we consider a fixed individual, say, Jones, and we assume that a prior 
satisfactory analysis of preference (as opposed to preference differences) 
has already been given. 

(1) IF: (i) Jones prefers commodity x to commodity y, and commodity u 
to commodity v, (ii) Jones has in his possession commodities y and v, and 
(iii) Jones is presented with the opportunity of paying money to replace y 
by x and v by u, THEN: the utility difference between x and y is at least as 
great as that between u and v if and only if Jones will pay at least as much 
money to replace y by x as to replace v by u. 

An obvious objection to (1) is that it has the effect, so often argued 
against, of measuring utility in terms of money. However, the only 
assumption needed for (1) is that the relation between amounts of money 
and utility differences is monotonically increasing. A linear relation is not 
required. In our opinion such a monotonicity assumption is very reason
able for a wide variety of persons and situations. 

An alternative reduction may easily be stated in terms of work. It 
should be clear that the choice of money or work is not meant to entail 
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any special status for these two commodities. What is needed as a basis 
for constructing other reductions is simply the existence of a commodity 
flexible enough to serve in different situations and such that its marginal 
utility is either always positive or always negative in the situations under 
consideration. 

In view of the many complex issues involved in assessing the work
ability, even in principle, of such reductions, it may be more useful to 
describe a particular experimental set-up which could be used to measure 
utility differences. For reasons which will become obvious, this scheme 
would not be direct1y applicable to market behavior, but on the other 
hand, it does not presuppose any fixed relations between money and 
other commodities. 

For definiteness, we consider six household appliances of approximately 
the same monetary value, for instance, a mixer, a deluxe toaster, an 
electric broiler, ablender, a wafHe iron and a waxer. A housewife who 
does not own any of the six is chosen as subject. Two of the appliances 
are selected at random and presented to the housewife, say, the toaster 
and the waxer. She is then confronted with- the choice of trading the 
toaster for the wafHe iron, or the waxer for the blender. Presumably she 
will exchange the toaster for the wafHe iron if and only if the utility 
difference between the wafHe iron and the toaster is at least as great as the 
difference between the blender and the waxer (due account being taken of 
the algebraic sign of the difference). A sequence of such exchanges 
(repetitions permitted) can easily be devised such that every utility 
difference is compared to every other. Our axioms specify for the set of 
choices sufficient ideal properties to guarantee the existence of a cardinal 
utility function. 3 

From another conceptual standpoint (as pointed out to us by our 
colleague, Professor Davidson), we may think of the housewife as 
expressing a simple preference between pairs of appliances. Thus if she 
trades the toaster for the wafHe iron she has decided that she would 
rather have the pair (wafHe iron, waxer) than the pair (toaster, blender). 
Put in these terms we are asking for a utility function cp of the Frisch 
(1932) and Fisher (1927) type such that one pair (x, y) is preferred to 
another (u, v) if and only if 

cp(x) + cp(y) > cp(u) + cp(v). 
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The existence of such a function is taken to mean that 'utilities are 
independent', that is, the commodities involved are neither comple
mentary nor competitive with respect to each other. Viewed in this light, 
our axioms analyze the special conditions required for the existence of a 
cardinal utility function on a set of independent commodities. Whatever 
one's apriori feelings about the plausibility ofthe independence hypothesis 
there can be little doubt that the experiment just described would provide 
a means of empirically testing the hypothesis 4, and thus would satisfy 
Samuelson's methodological demand (1947, p. 183): 

It may be argued that regarded purely as a working hypothesis the facts do not sharply 
contradict the independence assumption. A little investigation reveals that such a hy
pothesis has not been tested from this po int of view. On the contrary, it is implicitly as
sumed from the beginning in the manipulation of the statistical data. Hence, one would 
have to go back to examine the original empirical data. 

It is interesting to note that the problem of complementarity occupies a 
position in this interpretation analogous to the position occupied by the 
problem of a specific utility of gambling in a probabilistic interpretation. 

It is also our opinion that many- areas of economic and modern 
statistical theory do not warrant a behavioristic analysis of utility. In 
these domains, there seems litde reason to be ashamed of direct appeals 
to introspection. For example, in welfare economics there are sound 
arguments for adopting a subjective view which would justify the deter
mination of utility differences by introspective methods. Some psycholog
ical experiments on utility differences which essentially use introspective 
methods are reported in Coombs and Beardslee (1954). 

It is to be emphasized that the formal resuIts presented in the remainder 
of this paper do not depend on any of the particular interpretations here 
proposed. 

11. PRIMITIVE AND DEFINED NOTIONS 

Our axiomatization is based on three primitive notions. The primitive K 
is a nonempty set, to be interpreted as a set of alternatives (objects, 
experiences, events, or decisions) available to a given individual at a 
given time. The primitive Q is a binary relation whose field is K; the 
interpretation of Q is that x Q y if and only if the individual does not 
prefer y to x. The third primitive is a quaternary relation R whose field 
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is also K. In the intended interpretation x, y R z, w if and only if the 
difference in preference between x and y is not greater than the difference 
in preference between z and w. 

Our axiomatization assurnes a rather complicated form if it is given 
only in terms of our three primitives. It is intuitively desirable to use some 
defined notions whose interpretation folIo ws direct1y from that of the 
primitives. 

DEFINITION Dl: xl y if and only ifx Q y and y Q x. Obviously, I is the 
relation of indifference. 

DEFINITION D2: x P y if and only if not y Q x. The relation P is the 
relation of strict preference. 

DEFINITION D3: x, y E z, w if and only if x, y R z, wand z, w R x, y. 
The interpretation of the quaternary relation Eis that if x, y, z and ware 
alternatives, then x, y E z, w if and only if the difference in preference 
between x and y is equivalent to the difference in preference between z and 
w. 

DEFINITION D4: x, y S z, w if and only if not z, w R x, y. Clearly, 
x, y S z, w if and only if the difference in preference between x and y is 
strictly less than the difference between z and w. 

DEFINITION D5: B (y, x, z) if and only if either x P y and y P z, or 
z P Y and y P x. The intuitive idea of betweenness is expressed by the 
relation B. 

The above notions suffice for the statement of all but the last axiom, 
the Archimedean axiom. For the latter, one further quaternary relation 
is needed. 

DEFINITION D6: x, y M z, w if and only if y I z and B(y, x, w) and 
x, y E z, w. The quaternary relation Mappears to be a trivial speciali
zation of the relation E. To clarify this situation, we introduce the notion 
of powers of M. The second power of M, for example, is the relation M 2 

such that x, y M 2 Z, w if and only ifthere exist elements u and v such that 
x, y M u, v and u, v M z, w. The nth power of M is defined recursively: 

x, y Mi Z, w if and only if, x, y M z, w; 
x, y Mn z, w if and only if there exist elements u and v 
such that x, y M n - i u, v and u, v M z, w. 

The difference between powers of E and of M may be brought out by 
interpreting x, y, z, and w as points on a line. The interpretation of x, 
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Y M 3 Z, w, for instance, is that the intervals (X, y) and (z, w) are of the 
same length, and there are two intervals of tbis length between y and z. 
Of special significance is the fact that the interval (x, w) is four times the 
length of (x, y). On the other hand, in the case of the relation E 3 no 
specific length relation may be inferred for intervals (x, w) and (x, y). 

As we shall see in Section V, the proof of our representation theorem 
essentially depends on exploiting the properties of the powers of M. 

III. AXIOMS 

Using our primitive and defined notions, we now state our axioms for 
difference structures. 

A system .Yt = (K, Q, R) will be said to be a DIFFERENCE STRUCTURE if 
thefollowing eleven axioms are satisfiedfor every x, y, z, w, u, and v, in K: 

Axiom Al: xQyoryQx; 
Axiom A2: lf x Q y and y Q z then x Q z; 
Axiom A3: x, y R z, w or z, w R x, y; 
Axiom A4: lf x, y R z, wand z, w-R u, v then x, y R u, v; 
AxiomA5: x,yRy,x; 
Axiom A6: There is a t in K such that x, tE t, y; 
Axiom A7: Ifx ly and x, z R u, v, then y, zR u, v; 
Axiom A8: lf B(y, x, z) then x, y S x, z; 
Axiom A9: lf B(y, x, z) and B(w, u, v) and x, y R u, w and y, zR w, 

v, then x, z R u, v; 
Axiom AlO: lf x, y S u, v then there is at in K such that B(t, u, v) and 

x,y R u, t; 
Axiom All: lf x, y R u, v and not x I y, then there are elements sand I 

in K and a positive integer n such thaI u, s Mn I, v and u, s R x, y. 
The interpretation ofAxioms Al-A4 is obvious. Axiom A5 expresses 

a commutativity property of Rand means essentially that for pairs of 
elements to stand in the relation R only their differences matter and not 
their relative order. 

Axiom A6 means intuitively that between any two elements of K, there 
is amidpoint. This axiom represents a more reasonable assumption than, 
for instance, a formulation requiring that between any two elements there 
exist an element some arbitrary part, say 11, th, of the distance between 
them. Indeed, the axiom as here stated, receives empirical corroboration 
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in the field of psychology from the practice of 'fractionation' and 'bi
section' experiments requiring the subject to select the tones in just the 
way described, and from the existence of laboratory equipment designed 
for such experimental use. (See, e.g., Stevens, 1936, and Stevens and 
Volkmann, 1940.) Also, the probabilistic experiments (Davidson et al., 
1955) described in the first section have demonstrated the practicality of 
finding such midpoints. 

Axiom AIO means that if the difference between x and y is less than 
that between u and v, then there is an element t of K between u and v and 
the difference between x and y is not greater than the difference between 
u and t. 

Axiom All, the Archimedean axiom, means that if the difference 
between x and y is not greater than that between u and v, and if x is not 
indifferent to y, then there are n elements of K equally spaced in utility 
between u and v such that the difference between any consecutive two of 
these elements is not greater than the difference between x and y. 

-
IV. ELEMENTARY THEOREMS 

A rather large number of elementary theorems is required for the complete 
proof of our representation theorem for difference structures. In the 
present paper, however, we are concerned merely to sketch the main 
outlines of such a proof; and, for this purpose, it will be sufficient in this 
section to present definitions of certain relations, not needed for stating 
the axioms, but used in a key way to develop the required proof; and to 
state without proof several elementary theorems which describe typical 
properties of the relations defined, or which figure centrally in the 
sketched proof of the representation theorem. In particular, we omit 
completely a large group of theorems which develops the expected 
properties of Q and Rand of the other simple 'qualitative' relations 
(I, P, E, S, B) described in Section H. 

We first introduce the notion of the quaternary relation N (a). 
DEFINITION D7: N (a) is the quaternary relation defined as folio ws 
(i) if a= 1, then x, y N (a) u, vif and only if x I u and y I v 

(ii) if a #= 1, then x, y N (a) u, v if and only if x Iu and there exists a z 
such that x, y M a - 1 z, v. 

The interpretation of N(I), of course, is obvious. To say for a#= 1, that 



122 PART 11. METHODOLOGY: PROBABILITY AND UTILITY 

x, y N (a) u, V means that X and u coincide, and that there are a - 1 equally 
spaced elements of K between u and v such that the difference between 
any two of them equaIs the difference between x and y. If x, y, u and v 
are interpreted as points on a line, this notion obviously corresponds to 
the intuitive notion of 'laying off' an interval on another interval ; that is, 
we interpret x, y N(a) u, v intuitively as meaning that if we start from u, 
and 'lay off' an interval of the length (x, y) a times in the appropriate 
direction, we obtain the interval (u, v). By means of the N(a) relation, 
therefore, we are able to express the quantitative fact that the length of 
an interval (u, v) is a times the length of a subinterval (x, y). 

The sort of 'multiplication' of intervals characterized by the N(a) 
relation possesses the expected properties; for example, we have the 
following theorem concerning ratios of intervals. 

THEOREM 1: Ifx, z N(a) x, y and x, z N(ab) x, w then x, y N(b) x, w. 
Another theorem involving the N(a) relation generalizes A6 and may be 

justified aIong similar lines. Characteristic of our system, it asserts that 
appropriate elements exist for dividing any interval into powers of 2. 

THEOREM 2: Ifnot x I y then there is a z such that x, z N(2m) x, y. 
Further N(a)-theorems state properties of'N-multiplication' for powers 

of 2. We have, for example, the usual law for addition of exponents: 
THEOREM 3: lf x, w N(2m) x, z and x, z N(2") x, y then x, w N(2m+,,) 

x,y. 
A crucial, but less obvious property is stated in the following theorem. 
THEOREM 4: lf B(y, x, z) and x, t N(2m) x, y and y, s N(2m) y, z and 

x, r N(2m) x, z then t, rE y, s. 
We now define a relation in terms of which most of the proof of the 

representation theorem is carried through. 
DEFINITION D9: H(m, a; n, b) is the quaternary relation such that 

x, y H(m, a; n, b) u, v if and only if there are elements Zl, Z2' Wl and W2 

such that x, Zl N(2m) x, y and u, Wl N(2") U, v and x, Zl N(a) x, Z2 and u, 
Wl N(b) U, W2 and x, Z2 Ru, W2' 

To say that x, y H(m, a; n, b) u, v means intuitively that an (af2m)th 
part ofthe interval (x, y) is not greater than a (bf2")th part ofthe interval 
(u, v). 

We may view our first theorem on this notion as enabling us to specify 
a partial bound for the vaIues of arguments satisfying the H-relation 
between two intervals. 
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THEOREMS: I/ not xly and x,yH(m,a;n,b)u,v, then not u,v 
H(n, b; m+ 1, a) x, y. 

Since the H-relation can be thought of intuitively as a special sort of 
inequality, we would expect to be able to prove many ofthe laws govern
ing inequalities. Thus Theorem 6 expresses a kind oftransitivity property 
and Theorem 7 an intuitively simple conservation property. Theorems 
8,9, 10 and 11 assert cancellation and multiplication laws. 

THEOREM 6: I/ x, y H(m, a; n, b) u, v and u, v H(n, b;p, c) r, s then 
x, y H(m, a;p, c) r, s. 

THEOREM 7: Ifnot x, y H(m, a; n, b) u, v and w, z H(p, c; n, b) u, vand 
a~2m and not x Iy, then not x, y H(m, a;p, c) w, Z. 

THEOREM 8: If x, y H(m, a; n, b) u, v and ac~2m and bc~2", then x, 
y H(m, ac; n, bc) u, v. 

THEOREM 9: Ifx, y H(m, ac; n, bc) u, v, then x, y H(m, a; n, b) u, v. 
THEOREM 10: If x,yH(m,a;n,b)u, v and either m=#=O or not xly, 

then x, y H(m+c, a; n+c, b) u, v. 
THEOREM 11: Ifx, y H(m+c, a; n+c, b) u, v and a~2m and b~2" then 

x, y H(m, a; n, b) u, v. 
Theorem 12 states an addition property for the arguments of the 

H-relation in the case of adjacent intervals. 
THEOREM 12: If B(y, x, z) and a+b~2" and x, y H(m, 1; n, a) u, vand 

y, z H(m, 1; n, b) u, v then x, z H(m, 1; n, a+b) u, v.5 

Finally, we state two existence theorems for arguments ofthe H-relation. 
These theorems are the form in which we make use of our purely quali
tative continuity axiom (A10) and our Archimedean axiom (All) re
spectively. 

THEOREM 13: I/ x, y S u, v, then there are integers band n such that 
b<2"andx,yH(O, l;n,b)u, v. 

THEOREM 14: Ifnot u 1 v, then there is an integer m such that x, y H(m, 
1;0, l)u, v. 

V. REPRESENTATION THEOREM 

Our desired representation theorem is an immediate consequence of the 
following lemma. (As a matter of fact, it is rather customary in the 
theory of measurement to label a lemma of this sort the "theorem of 
adequacy" and not to state explicitly a representation theorem. Cf., e.g., 
von Neumann and Morgenstern 1947, pp. 24-29.) 
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Fundamental Lemma: Let :Yt" = <K, Q, R) be a difference structure. Then: 
(A) There exists a real-valued function <fJ defined on K such that for 

every x, y, Z, w in K, 
(i) x Q y if and only if <fJ(x)~<fJ(y), and 
(ü) x, y R z, w if and only if 1<fJ(x)-<fJ(Y)1 ~ 1<fJ(z)-<fJ(w)l. 
(B) if <fJ1 and <fJ2 are any two functions satisfying (A), then there exist 

real numbers 01: and ß with 01:>0 such thatfor every x in K, <fJ1 (X)=0I:<fJ2 (x) 
+ß· 

Proof of Part A: We begin by choosing two elements u and v in K such 
that u P v (if no such two elements exist, the proof is trivial). We next 
define for x and y in K the set of numbers 9"(x, y; u, v). A rational 
number r is in 9" (x, y; u, v) if and only if there are non-negative integers 
m and n and a positive integer b such that b~2n and r=(b2m)/2" and 
x,yH(m, l;n,b)u, v. 

Let r and r' be positive rational numbers. Using Theorems 8,10,6,9 
and 11, in that order, we may easily prove that 

(1) Ifr 8 9"(x, y; u, v) and r< r' then r' 8 9"(x, y; u, v). 

Using now principally Theorem 14 and Theorem 5 we may show that if 
not x I y then the set 9" (x, y; u, v) has a positive number as a 10wer 
bound. Since by Theorem 14 9"(x, y; u, v) is not empty, we conclude 
that it has a greatest lower bound. We use this fact to define the function 

1(u, v): 
!(u, v) (x, y) is the greatest lower bound of 9"(x, y; u, v). 

Obvious arguments prove that 

f(u, v) (x, y) = 0 ifand only if x I Y 
and 

!(u, v) (u, v) = 1, 

the choice of (u, v) thus corresponding to choice of a unit of length. 
We obtain by an indirect argument from (1) that for any rational 

number r 

(2) If !(u, v) (x, y) < r then r 8 9"(x, y; u, v), 

and we are in a position to establish: 

(3) If x, y R z, w then !(u, v) (x, y) ~f(u,v)(z, w). 
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(The proof is trivial in case x I y; hence we assurne : not x I y.) Suppose, 
if possible, that f(u,V)(z, w)<f(u,v)(x, y). Then there are integers m, n, b 
such that 

f(u,v)(Z, w) < b2m/2ft < f(u, v) (x, y). 

From (2) we then obtain: 

z,wH(m,l;n,b)u,v andnot x,yH(m,l;n,b)u,v. 

Hence by Theorem 7, not x, y H(m, 1; m, 1) z, w, and thus by Theorem 10 
and D9, not x, y R z, w, which contradicts the hypothesis of (3). 

We next prove: 

(4) If f(u,v)(x,Y)~f(u,v)(z,w) then x,yRz,w. 

Let 

and let 
q = b22m2/2ft2 b' ro( ) eIn J Z, w; x, Z • 

Then we have: b1 ~2ftl, b2~2ft., x, y H(ml> 1; nl> b1) u, v, and z, w H(m2' 
1; n2' b2) x, y. Hence by Theorem 10, Theorem 8, and Theorem 6, z, 
w H(ml +m2' 1; n1 +n2' b1b2) u, v. We conclude that 

(5) rq isin .9"(Z,w;U, v). 

Now for the moment let 

a = f(u, v) (x, y) 
ß = f(x, y) (z, w) 
y = f(u,v)(z, w). 

Suppose, if possible, that aß <y. Then there is a positive e such that 
(a+e)·(ß+e)=y. Clearly we may choose a number r in the open interval 
(a, a+e) and a number q in the open interval (ß, ß+e) such that r is in 
.9"(x, y; u, v) and q is in .9"(z, w; x, y). Since rq<y, rq is not in .9"(z, w; 
u, v), but this contradicts (5), and we conclude that 

(6) f(u, v) (x, y)·f(x, y) (z, w) ~ f(u,v)(z, w). 

Suppose now that not x, y R z, w. By Theorem 13 it follows that there is 
an n and a b with b/2ft < 1 such that z, w H(O, 1; n, b) x, y, and we con-



126 PART 11. METHODOLOGY: PROBABILITY AND UTILITY 

clude that.f(x,y)(Z, W)<l. Combined with (6), this result gives us: .f(u,V) 
(x,Y».f(u,V)(z, w), which contradicts our hypothesis, completing the 
proof of (4). 

We now define the function cp(U,V) as folIows. For every x in K, 

,/,. () = { f(u,v)(u, x), if uQx. 
'P(u v) x I' ( ) 'f Q , - J (u, v) u, x, 1 X U • 

We see at on ce that cp(U, v) (u) =0, and thus our choice of u corresponds to 
the choice of an origin. (3) and (4) provide the basis for an obvious proof 
that 

(7) xQy ifandonlyif cp(u,v)(x)~CP(u,v)(Y). 

To complete the proof of Part A we need to show that 

(8) x, y R z, W ifand only if Icp(u, v) (x) - cp(u,v)(y)1 
~ Icp(u,v)(z) - cp(u,v)(w)l. 

From (3) and (4) we see at once that it will be sufficient to prove 

(9) f(u, v) (x, y) = Icp(u, v) (x) - cp(u, v) (Y)I. 

Of the five possible cases that need to be considered for (9) we consider 
only the typical one where x P y and y Pu. For this case we must prove: 

(10) f(u, v) (x, y) + f(u,v)(u, y) = f(u,v)(u, x). 

Suppose, if possible, that 

f(u, v) (x, y) + f(u,v)(u, y) < f(u,v)(u, x). 

Then clearly there are integers m, n, b, b1 , b2 such that 

f(u, v) (x, y) + f(u,v)(u, y) < b2m/2" < f(u,v)(u, x), 
(11) f(u,v)(x, y) < b12m/2" 

f(u,v)(u, y) < b2 2m/2" , 
and 

b = b1 + b2 ~ 2" . 

By (2) we have: x, y H(m, 1; n, b1) u, v and y, U H(m, 1; n, b2 ) u, v. 
Hence by Theorem 12, x, u H(m, 1; n, b1 +b2 ) U, v, but from (11), we 
infer: not x, U H(m, 1; n, b1 +b2) U, v. On the basis ofthis contradiction, 
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we conclude that 

(12) f(u, v) (x, y) + f(u,v)(u, y) ~ f(u,v)(u, x), 

and by an argument similar to the above we may show that equality 
holds in (12), thus establishing (9) for a typical case, and completing the 
proof of Part A. 

Proo/ 0/ Part B: Using elements u and v in K as in the proof of (A), we 
define functions h1 and hz for every x in K by the equations: 

where cPl and cPz are functions satisfying (A). Since u P v, we see at once 
that 

h1 (u) = hz (u) = 0 

h1 (v) = hz (v) = 1, 

and that h1 and hz satisfy (A). Thus in order to establish (B) it will be 
sufficient to prove that 

We give the proof for the case where u P x and x P v. Suppose, if 
possible, that h1 (x)"# hz (x). F or definiteness, let h1 (x) < hz (x). Then there 
is a positive e such that 

(2) hz (x) = h1 (x) + 8. 

We now consider the smallest integer, say, n*, such that t n* <8. (Since 
h1 (x) and hz (x) are both between 0 and 1, n*"# 0.) By Theorem 2 there 
exists an element, say, z*, such that u, z* N(2n*) u, v. A simple argument 
shows that we must have: z* P x. 

Suppose now that there is an integer a such that u, z* N(a) u, x. It is 
easy to prove by induction that we must then be able to infer: 

(3) h1 (x) = hz (x) = a/2n* , 

which contradicts (2). 
Since on the supposition of (2) there is no such integer a, there must be 
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an integer band elements Zl and Z2 such that 

(4) !
u, z* N(b) U, Zl 
u,z*N(b+l)u,z2 
Zl P X 

X P Z2' 

Using the induction which yielded (3), we have from (4), 

h2 (Z2) - h1 (Zl) = (b + 1)/2"* - b/2n* < 8, 

and we also obtain from (4): 

h1 (Zl) < h1 (x) < h1 (Z2) 
h2(Zl) < h2(x) < h2(Z2)' 

Combining inequalities we conclude: 

h2(x) - h1 (x) < h2(Z2) - h1 (Zl) < 8, 

which contradicts (2). _ 
The proof of (I) is completed by a consideration of the four other 

possible cases for the position of x with respect to u and v. (Two of the 
cases are trivial: u I x and v Ix.) Since (I) establishes (B), the proof of our 
lemma is finished. 

We would not expect to have a strict isomorphism between an arbitrary 
difference structure f = (K, Q, R) and some numerical structure, since 
distinct elements which stand in the relation I are assigned the same 
number. However, by considering the coset algebra fjI=(K/I, Q/I, 
R/I) of funder I, we may easily establish such an isomorphism. (Since 
I is obviously a congruence relation on K with respect to Q and R, it 
should be clear that K/I is the set of all I-equivalence classes and that 
Q/I and R/I are the relations between equivalence classes corresponding 
to Q and R.) 

We define the quaternary relation Tfor real numbers as folIows: 

if et, p, y, and b are real numbers, then et, P T y, b 

if and only if let - PI ~ Iy - bl. 

Let Nbe a set ofreal numbers. Then we call an ordered tripie (N, ~, T) 
a numerical difference structure if N is closed under the formation of 
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midpoints, i.e., if IX, ß, are in N, then (IX + ßJ2) is in N. We then obtain the 
following representation theorem as an immediate consequence of our 
lemma. 

REPRESENTATION THEOREM: If:ff = <K, Q, R) is a differenee strueture, 
then :ffJI=<KJI, QJI, RJI) is isomorphie to a numerieal differenee 
strueture. Moreover any two numerieal differenee struetures isomorphie to 
:ff J I are related by a linear transformation. 

NOTES 

1 The formally similar notion of sensation differences is important in the literature of 
psychology (e.g., Coombs, 1950; Guilford, 1936; Hanes, 1949; Stevens, 1936; Stevens 
and Volkmann, 1940). 
2 The intuitive idea of this approach was primarily due to Donald Davidson. It was 
suggested in Davidson et al. (1954) and has been the basis for the experiments reported 
in Davidson et al. (1955). 
3 By considering just six items, we cannot get a realization of the axioms given in 
Section III. However, by increasing the number of items, we would presumably be 
able to get a successively closer approximation. 
4 Some experiments are planned in collaboration with Professor Davidson. 
5 We are indebted to Herman Rubin for the proof of ihis theorem. 



9. BEHAVIORISTIC FOUNDATIONS OF UTILITY*l 

In the past two decades there has been an intensive development of the 
subject of decision making. A variety of objectives and viewpoints has 
dominated the constructive as well as the critical work on the subject. 
Nonetheless a pervasive goal of nearly all contributors has been the 
elucidation of a theory of rationality for purposive behavior in situations 
of risk and uncertainty. Intuitively we expect every considered judgment 
or decision of a serious person to be rational in some definite sense. 
Certain authorities would maintain even that every considered decision 
of any mammalian organism is rational in the sense of representing the 
attempt to maximize some significant quantity. The most prominent 
"maximization" analysis of rationality is the thesis that the decision
maker should maximize expected utility or value with respect to his 
beliefs concerning the facts of the situation. To perform this maximization, 
he needs to have, or to act as if he had, a subjective probability function 
measuring his degrees of belief and a utility function measuring the 
relative value to him of the various possible outcomes of his actions or 
decisions. 

It is not my purpose here to expound the expected utility theory of 
behavior. An excellent detailed and leisurely analysis is Savage (1954). 
Rather, my concern is to explore the extent to which behavioristic 
foundations can be supplied for utility. And I am using the term 'be
havioristic' in the rather narrow sense of the experimental psychologist. 
The static character ofthe concepts of subjective probability and utility is 
suspect to the psychologist and he resists accepting them as basic concepts 
ofbehavior. Ideally, what is desired is a dynamic theory ofthe inherent or 
environmental factors determining the acquisition of a particular set of 
beliefs or values. Moreover, in the notions of stimulus, response, and 
reinforcement the experimental psychologist has a triad of concepts which 
have proved adequate to explain much simple choice behavior. It is, 

... Reprinted from Econometrica 29 (1961), 186-202. 
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therefore, a scientific problem of some interest to try to use just these 
behavioristic notions to derive a theory of subjective probability and 
utility. 

In the first section I set forth the fundamental assumptions of stimulus
sampling learning theory, which is the most formally sophisticated 
theory yet stated in terms of the concepts of stimulus, response, and 
reinforcement. In the second section I attempt to show how this theory 
may be used to derive a utility function for various simple choice sit
uations. This derived utility function is for stochastic choice behavior of 
the kind studied by Davidson and Marschak (1959), Luce (1959), 
Papandreou (1957), and others. In the third and final section, the earlier 
results are related to Shannon's concept of entropy and Luce's choice 
axiom. 

I. STIMULUS-SAMPLING LEARNING THEORY 

The theory to be used in this paper is a modification of stimulus sampling 
theory as first formulated by Estes (1950), Estes and Burke (1953), and 
Burke and Estes (1957). It is most closely connected with a formulation 
given by Suppes and Atkinson (1960), but it also differs, in ways indicated 
below, from the latter. The concepts of stimulus, response, and reinforce
ment and the processes of stimulus sampling and conditioning are the 
basic notions of the theory. In an economic situation a typical stimulus 
might be the price set by a competitor for a given product during the past 
quarter; the response, the firm's own price decision for the current quarter; 
and the reinforcement or reward, the quarterly gross profits. In a simple 
two-choice experiment the single stimulus might be the light signaling onset 
of the trial; the response, the pressing of one of two keys used to predict 
which one of two lights will flash; and the reinforcement, the actual 
flashing of one of these two lights. 

The axioms are formulated verbally here, and although there is no 
attempt in this paper to give a mathematically exact statement of the 
theory, it is hoped that the relation between the fundamental axioms and 
the results derived later will be reasonably clear, even to the reader 
without prior familiarity with the literature. The first group ofaxioms 
deals with the conditioning of sampled stimuli, the second with the 
sampling of stimuli, and the third with responses. 
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Conditioning Axioms 
Cl. On every trial each stimulus element is conditioned to exactly one 

response. 
C2. lf a stimulus element is sampled on a trial it becomes conditioned 

with probability () to the response (if any) which is reinforced on that trial. 
C3. If no reinforcement occurs on a trial there is a probability that the 

sampled stimulus becomes conditioned to some other response. 
C4. Stimulus elements which are not sampled on a given trial do not 

change their conditioning on that trial. 
C5. The probability of a sampled stimulus element being conditioned is 

independent of the trial number and the outcome of preceding trials. 
Sampling Axioms 

SI. Exactly one stimulus element is sampled on each trial. 
S2. If on a given trial it is known what stimuli are available for sampling, 

then no further knowledge of the subject's past behavior or of the past 
pattern of reinforcement will change the probability of sampling a given 
element. 
Response Axiom 

Rl. On any trial that response is made to which the sampled stimulus 
element is conditioned. 

Detailed remarks about these axioms are to be found in Suppes and 
Atkinson (1960). The major change from the version in Suppes and 
Atkinson (1960) is to be found in Axiom C3. There this axiom reads: 
"If no reinforcement occurs on a trial there is no change in conditioning 
on that trial." For the kind of experimental situation to be considered 
below it is natural to adopt the modified axiom given above as C3. A 
slight change in Axiom C5 has been made to accommodate the major 
change in C3; otherwise the axioms given here are those of Suppes and 
Atkinson (1960). 

Many readers may be particularly critical of the first sampling axiom, 
SI. There are at least two different kinds of remarks to be made in 
defense of the assumption that exactly one stimulus element is sampled 
on each trial. In the first place, this assumption is mathematically 
extremely convenient and it is scarcely possible to distinguish, for the 
kind of experiments to be described here, between it and more "liberal" 
sampling axioms, as for example the assumption that all stimulus elements 
in the basic stimulus set are sampled with independent probabilities. 
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Secondly, SI may be made more intuitively plausible by interpreting 
'stimulus element' to mean pattern 0/ stimuli, for it may be maintained 
that in any given situation an organism, at any given moment, is sampling 
exactly one pattern of stimuli. (For a more detailed discussion of the 
pattern concept, see Estes, 1957.) 

We may consider two simple applications, which will be integrated into 
our discussion of utility in the next section. These two examples should 
serve adequately to illustrate how the basic axioms of stimulus-sampling 
theory are related to particular experimental situations in order to make 
predictions about response behavior. 

Suppose the task presented a subject is to predict on each trial exactly 
which one of two lights will come on. Thus on each trial exact1y one of 
two reinforcing events, EI or E2 , occurs. The subject indicates his 
prediction at the beginning of each trial by pressing one of two keys, 
response Al or A2 , where Ai is the key under light Ei' The sequence of 
events on a given trial may be described thus: 

trial begins with stimulus response reinforcement possible change 
stimuli conditioned -->- sampled -->- Al or Aa -->- El or Ea -->- in conditioning of 
to Al or A2 sampled stimulus. 

U sing the "independence of path" assumptions represented by Axioms 
e5 and S2, it may be shown that if we assume that the stimulus set S 
consists of exacdy one element then the sequence of response random 
variables (Al' A2 , ... , An> ... ) is a Markov chain for many schedules of 
reinforcement satisfying the experimental conditions just described. (Here 
the value for each n of the random variable An is 1 or 2, according to 
whether the Al or A2 response is made on trial n.) Using this result about 
Markov chains and the description of events on a trial, we may, upon 
imposition of a particular schedule of reinforcement, derive the transition 
matrix of the Markov chain. For consideration at this point we introduce 
the simple contingent case of reinforcement, namely, the probability of 
an EI or E2 reinforcement on trial n depends only on the response made 
on trial n. Thus, using notation common in the literature : 

P(E I I Al) = TCI' 

P(E I I A2 ) = TC2' 

The states ofthe Markov process are Al and A2 • Being in state Al' for in-



134 PAR T 11. METHODOLOGY: PROBABILITY AND UTILITY 

stance, means that the single stimulus element is conditioned to Al. The 
trees of the process are as shown in Figure 1. 

The probabilities (J and 1- (J occurring in the final branches of the 
trees are derived from Axiom C2, which is concerned with the con-

Fig.1. 

ditioning of stimulus elements. For example, in the lower half of the 
first tree, an E2 reinforcement occurs with probability 1 -1tl after the 
initial response Al. This initial response means that the single stimulus 
element is connected (or conditioned) to Al. However, an E2 reinforce
ment occurs. With probability (J this reinforcement is effective in changing 
the connection or conditioning of the single stimulus element to the A2 

response. 
We immediately derive from the two trees the following transition 

matrix for the Markov chain: 

Al 11 - (J(1 - 1tl) 

A 2 (J1t2 

The asymptotic probability Poo of an Al response is easily computed 
from this matrix. The probability Pn+ 1 of being in state Al is just 

Pn+l = PUPn + P21(1- Pn), 

where Pi) is the transition probability of going from Ai to A) in one trial. 



BEHAVIORISTIC FOUNDATIONS OF UTILITY 135 

(Thus Pi) is just the entry for the ith row and jth column of the transition 
matrix.) Now at asymptote 

Pn+l = Pn = Pen' 
whence 

and this simple linear equation has as its solution 

1tz 
Pen= • 

1 - 1tl + 1tz 
(1) 

It is worth noting that the asymptotic probability Pen is independent of 
the conditioning parameter (J. Experimental evidence supporting Equation 
(1) is to be found in Estes (1954). 

Rather than derive further predictions for the simple contingent case of 
reinforcement, I now turn to the second example, which I shall call the 
two-arm bandit case of reinforcement. The name stems from the resem
blance of the experimental situation to that of playing a slot machine 
with two arms or levers rather than one; on each trial a choice between 
the levers is made. (Mathematical statisticians have, during the past few 
years, considered in detail what is the optimal way to play a two-arm 
bandit for a finite number of trials when the probabilities of pay-off of 
the two arms are unknown.) 

The experimental situation, then, consists of choosing on each trial 
between two levers. In the experiment to be described in somewhat more 
detail in the next section, lever 1 is given a probability 1tl of paying, and 
lever 2 a probability 1tz • Unlike the simple contingent case there is no 
"correction" procedure, i.e., the subject is not told, or led to believe, 
that on each trial exactly one of the arms of the "bandit" will pay off. If 
he chooses lever 1, say, then either it pays off or it does not, without 
reference to the possible choice of lever 2. Such an analysis of reinforce
ment leads to an application ofAxiom C3: if lever i is chosen (i.e., 
response Ai occurs) and no reward or reinforcement follows (event Eo 
occurs), then there is a probability Bi that the sampled stimulus will 
become conditioned to the other response, i.e., choosing the other lever. 
Application of C3 to the present situation seems natural and intuitively 
sound, but it is to be emphasized that any uniform method, applicable to 
many other experiments, for handling nonreinforcement trials would be 
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premature in view of the highly conflicting experimental evidence 
obtained by various investigators, particularly in connection with the 
extinction of learning. The trees for the one-element model may be 
drawn as in Figure 2 (we have eliminated the () and 1 - () branches in case 
of reward, for they lead to the same result, namely, retention in the same 
state with which the trial began). 

Pig.2. 

(Note that we use Eo to designate the event of no reinforcement.) 
The trees yield as the transition matrix of the Markov chain: 

Al 11 - 81 (1 - 1tl) 
A2 82 (1 - 1t2) 

8 1 (1 - 1t1) 

1 - 82(1- 1t2)' 

And by the same line of argument which led to Equation (1) we obtain as 
the asymptotic probability Poo ofthe Al response for the two-arm bandit: 

(2) 
82(1- 1t2) 

P 00 = ,---:- . 
81 (1 - 1tl) + 82 (1 - 1t2) 

If 81 = 82' Equation (2) simplifies to: 

(3) 
1- 1t2 

In connection with these two applications of stimulus-sampling theory, 
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it is important to emphasize that the asymptotic probabilities (1) and (2) 
do not in any way depend on the assumption that there is exactly one 
stimulus element. In fact, the results (1) and (2) hold on the assumption 
of any finite number of stimulus elements. To illustrate the methods of 
working with more than one stimulus element, we may write down some 

{sd 

Fig.3. 

{sd 

{sd 
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of the trees and the transition matrix for the two-element model as 
applied to the case of the two-arm bandit (see Figure 3). The states of the 
Markov chain are no longer the responses Al and A2 , but the possible 
partitions representing the conditioning of the two stimulus elements. 
Let SI and S2 be the two elements. We may indicate any partition of the 
set {SI' S2} between the two responses Al and A2 simply by indicating 
which elements are conditioned to Al' Thus the four states ofthe process 
may be denoted by {Sb S2}, {SI}' {S2}, and 0, where 0 is the empty set 
(meaning here that neither SI nor S2 is conditioned to Al if the subject is 
in state 0). We give the trees when the subject begins in either state {Sb S2} 
or {SI}; the other two trees are similar to these. The one assumption 
needed, and not given in our fundamental axioms, is the probability of 
sampling SI as against that of sampling S2' Here we assume there is an 
equal chance of sampling either, although this is not very crucial to any 
of our results. 

Note that in the first tree either EI or EQ must occur since both stimulus 
elements are conditioned to Al' and thus only the Al response occurs 
regardless of which element is sampled. This is not the case for the second 
tree; if SI is sampled Al occurs and then either EI or EQ, but if S2 is sampled 
A2 occurs and then either E2 or EQ • The transition matrix to be derived 
from these two trees and the other two not shown here is the following: 

{S1, SS} {sI} {S2} 0 

{S1, S2} 1- 81(1-11:1) t81(1-1I:1) t81(1-m) 0 
{S1} t82(1-1I:2) I-t81(1-m)-t82(1-1I:S) 0 t81(1-1I:1) 
{Ss} t82(1 -11:2) 0 1- t81(1-m) - t82(1 -11:2) t81(1-1I:1) 
o 0 t82(1 -11:2) t82(1 -11:2) 1 - 8S(1-1I:2). 

Note that the probability of an Al response when in state {Sb S2} is one, 
when in states {SI} or {S2} is t, and when in state 0 is zero. Whence from 
computation ofthe asymptotic probabilities for each state we may at once 
determine the asymptotic probability of an Al response. As already 
remarked, the result is again Equation (2). We shall not consider the 
details of these computations here. In fact, at this point we end the con
sideration of stimulus-sampIing theory in order to turn to utility theory 
proper. 

11. UTiLITY 

As indicated in the introductory section, in this paper I am mainly con-
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cerned with a utility function for the kind of choice behavior which has 
come to be labeled, not entirely happily, 'stochastic'. Roughly speaking, 
the central character of stochastic choice behavior is that upon pres
entation of two alternatives a and b, with a choice of one required, under 
essentially identical circumstances sometimes a will be chosen by a subject 
and sometimes b. Let p(a, b), then, be the probability that a is chosen 
over b. A (stochastic) utility Junction for a set of alternatives A is a real
valued function u defined on A such that for every a, b, c and d in A 

(4) p(a, b) ~ p(c, d) ifand only if u(a) - u(b) ~ u(c) - u(d). 

Combining results in Suppes and Winet (1955)2t , Suppes (1956a), and 
Davidson and Marschak (1959), it may be shown that ifthe set A and the 
probabilities p(a, b) satisfy the following axioms, then there exists a 
stochastic utility function for A, and moreover this function is unique 
up to a positive linear transformation. 

Axiom VI: p(a, b)+p(b, a)= 1. 
Axiom V2: o <p(a, b)<1. 
Axiom V3: Ifp(a, b)~p(c, d) thenp(a, c)~p(b, d). 
Axiom V4: There is ac in A such that p(a, c)=p(c, b). 
Axiom V5: If p(c, d»p(a, b»! then there is an e in A such that 

p(c, e»! andp(e, d)~p(a, b). 
Axiom V6: (Archimedean Axiom): If p (a, b) >! then Jor every prob

ability q such that p (a, b) > q >! there is a positive integer n such that 
q~p(a, c1)=P(Cl' c2 )=···=p(c", b»!. 

Now one implication of these six axioms is that A must be an infinite 
set if for at least two members a and b of A, p(a, b)~!. Simple and 
natural conditions, which are not unduly restricted and which will 
guarantee existence of a stochastic utility function for a finite set A, are 
not easily found. An unworkable recursive, but not finite, axiomatization 
can be given by enumerating for each n all isomorphism types. Some of 
the fundamental difficulties of finite axiomatization are brought out in 
Scott and Suppes (1958).3t The upshot of these axiomatic problems, it 
seems to me, is that for finite sets of alternatives we have no c1ear and 
intuitively natural ideas in terms only of probabilities of choice of the 
notion ofutility, and thus ofthe notion ofrationality for such situations.4 

On the other hand, we may apply the results of the preceding section to 
indicate how from the axioms of stimulus-sampling theory a utility 
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function may be derived for finite sets of alternatives. To begin with, let 
us consider the second example of the application of stimulus-sampling 
theory, namely, the two-arm bandit. On each trial the subject must 
choose between two alternatives, but now, to make the utility consider
ations interesting, we assume there is a set of alternatives available, 
with choice restricted on each trial to one of a pair. Clearly alternative a 
does not in and of itself have more value than alternative b; the value of 
a is determined by the probability of pay-off, as is that of b. Thus the 
experimenter may manipulate the value of any alternative according to 
his determination of its pay-off function. We seek a function u satisfying 
(4). Now according to (2) of the last section, at asymptote, 

(5) 

where 7ta is the probability of pay-off of alternative a when it is chosen, 
8a is the probability the sampled stimulus will become conditioned to the 
other alternative when the choice of a is not rewarded, and similar 
definitions hold for 7tb and 8b. In view of (5) to satisfy (4), we need to find 
a function u such that 

(6) 
8b(1 - 7tb) 8d (1 - 7td) 

-----=---'-------:-~-----:---':----,----:-
8a (1- 7ta) + 8b(1 - 7tb) 8c (1- 7tc) + 8d(1 - 7td) 

ifand only if u (a) - u(b) ~ u(c) - u(d). 

Let Pa = 8aCl- 7ta) for every a in A.5 The right-hand inequality of (6) may 
then be written: 

(7) 

but (7) holds, if and only if 

which holds, if and only if 
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which again holds, if and only if 

I/Pa I/Pe 
-;;?::-
I/Pb I/pe' 

which, finaIly, holds, if and only if 

(8) log I/Pa -log I/Pb ;;?:: log I/Pe -log I/Pd' 

From (6), (7) and (8) we conclude that an appropriate utility function is, 
for a in the set A of alternatives: 

(9) 
1 

u(a) = log ( ) 
8a 1 - 1I:a 

If 8a =8b for every a and b in A, we may take the simpler function 

u'(a)=log_I_. 
l-1I:a 

It is straightforward to show that the utility function defined by (9) is 
unique up to a positive linear transformation if the reasonable restriction 
is made that any acceptable utility function must be continuous in 8a 

and 1I:a• Moreover, from the existence of a function u satisfying (4), it 
immediately follows that the asymptotic choice behavior predicted by 
stimulus-sampling theory satisfies all the various conditions of weak and 
strong stochastic transitivity discussed in the literature, as weIl as the 
quadrupie condition expressed by Axiom U3 above. It should be men
tioned that these results do not necessarily hold during the course of 
learning; in particular the utility function defined by (9) does not satisfy 
(4) during the course of learning. This fact, it seems to me, accords weIl 
with the widespread assumption, albeit often tacit, that the utility 
function of a person is an equilibrium concept. It mayaiso be noted that 
the numerical-valued utility function defined by (9) may be replaced by a 
function whose values are probability distributions if the basic theory is 
formulated so that p(a, b) is a random variable rather than a number. 
Unfortunately the derivation of the distribution of this random variable 
is tedious and difficult. As formulated here, the number p(a, b) is the 
asymptotic expectation of the response random variable that has the 
value 1 for choice of a and 0 for choice of b. The utility function of (9) 
is defined in terms of this expectation and is not sensitive to the trial-by-



142 PART 11. METHODOLOGY: PROBABILITY AND UTILITY 

trial fiuctuations in the values of the response random variable itself, 
which is another facet of its equilibrium character. 

It is, of course, to be emphasized that the utility function defined by (9) 
is not that of the mathematical statistician bent on maximizing his 
monetary pay-off in the long run. It should be abundantly clear that the 
whole theory of probabilistic choice behavior is not meant to apply to 
such aperson. For under the pay-off conditions defined here, if 1ta>1tb 

the statistician should have at asymptote p (a, b) = 1. The point of(9) is 
rather to define a utility function which may be used to predict the actual 
behavior of all but the statistically sophisticated few. Numerous empirical 
studies (Mosteller and Nogee, 1951; Davidson et al., 1957; Papandreou, 
1957; Atkinson and Suppes, 1958; Davidson and Marschak, 1959) have 
clearly shown that naive subjects do not behave like mathematical 
statisticians. Experimental data on utility functions as defined by (9) for 
the two-arm bandit situation will be reported elsewhere. 

The preceding analysis also has direct application to the first example 
of simple contingent reinforcement discussed in the preceding section. 
By replacing 1t2 by 1-1t2' for purpöses of symmetry, thus having as 
reinforcement probabilities P(E1 / A1)= 1tl and P(E2 / A2)= 1t2' we may, 
obviously, get a utility function satisfying (4) by taking 

1 
u(a) = log--. 

1 - 1ta 

Further remarks on this case do not seem necessary. 
The interesting question of generalization, it seems to me, is that of con

sidering situations in which choice is made from one of n alternatives. In 
classical economic theory, the resolution of this choice problem is im
mediate: simply choose the most preferred item. But, as far as I know, 
with the notable exception of Luce (1959) there has been little if any 
analysis of stochastic choice behavior when the choice set has more than 
two alternatives. To describe this situation, let us use the notationp(a, A) 
to mean the probability a is chosen in preference to any member of A, 
with the understanding that {al u A is the full choice set available, i.e., 
p(a, A)+p(A, a)= 1, where p(A, a) means the probability an element of 
Ais chosen in preference to a.6 Beginning simply with p(a, A), it is far 
from clear to me what axioms of rational behavior one might expect an 
organism to satisfy, in order to guarantee the existence of a utility 
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function. In fact, it is not completely obvious what should be the defining 
characteristic of a utility function. In analogy to (4) I suggest: 

(10) p(a, A) ~ p(b, B) if and only if 
u(a) - u(A) ~ u(b) - u(B). 

Condition (10) requires the utility of a set of alternatives to be defined, 
but it by no means implies that this set function need be additive, i.e., we 
need not have if A and Bare disjoint sets that 

u(A u B) = u(A) + u(B). 

On the other hand, the intuitive interpretation of p(a, A) suggests that if 
A is a subset of B then the utility of A is equal to or less than that of B, for 
in some sense the utility of A is the overall value weighting assigned to the 
set in deciding to choose a rather than any member of A. Also, it seems 
reasonable to require that if the utility of A is equal to or greater than 
that of Band a set C is added to both A and B, with C disjoint from both 
A and B, then the utility of Aue is equal to or greater than that of 
B u C. These two principles may be summarized: 

(11) if A s;; B then u(A) ~ u(B), 
(12) if An C = B n C = 0 and u(A) ~ u(B) then 

u(A u C) ~ u(B u C). 

(Evidently (11) and (12) would not be acceptable if some ofthe alternatives 
had negative pay-offs, a possibility which we exc1ude here.) 

What I now want to show is that for this multi-choice case a utility 
function satisfying (10), (11), and (12) may be derived from the axioms of 
stimulus-sampling theory by generalizing the approach to the two-arm 
bandit problem. For simplicity I shall again consider only the model with 
one stimulus element, although the results given here may easily be 
extended to a finite number of stimulus elements. The axioms given in the 
preceding section do need to be supplemented in one important respect, 
namely, we sha11 make Axiom C3 more definite by assuming that when a 
chosen response is not reinforced, the probability ofthe stimulus element 
becoming conditioned to some other response is uniformly distributed 
over the remaining set of available responses. Thus, in the notation of 
Section H, if there are nother available responses and total probability 
Bi that the stimulus element will become conditioned to some other 
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response than Ai after Ai is not reinforced, then 8;/n is the probability it 
will become conditioned to A j' for j op i and A j in the available set. 
Keeping this notation in mind, it is easy to see that the transition matrix 
for n+ 1 possible responses (i.e., n+ 1 possible choices) has the following 
form: 

(13) 

8n+ 1 ( )8n+ 1 ( ) ( ) An + 1 - l-1I:n+ 1 -- l-1I:n+l ••• 1-8n+l l-1I:n+l • 
n n 

Following standard notation, let Uj be the asymptotic probability of 
response A j. Then, as is weIl known, the asymptotic probabilities Uj may 
be obtained as the solution of the system of linear equations 

I \ 8.(1 - 11:.) u· 
Uj = (1 - 8j {1 - 1I:j)) Uj + !tj' n' " 

I for j= 1, ... , n + 1, 

~:Uj=l, 

(14) 

provided the matrix (13) satisfies certain regularity conditions, which are 
indeed satisfied here because every entry in the matrix is strictly positive. 

It is not diflicult to show that the solution of (14) is: 

(15) 

Now p(a, A)=ua, and ifwe divide the numerator and denominator ofthe 
right-hand side of (15) by ITjeX Pj' where as before pj=8j (I-1I:j) and the 
set of alternatives is X=A u {a}, then 

) I/Pa 
(16) p{a, A = L l/pj 

jeX 
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On the basis of (16) we have a simple chain of equivalences like that 
leading from (7) to (8), which yields that p (a, A) > p (b, B) if and only if 

(17) log I/Pa -log l: l/pj > log I/Pb -log l: l/pj' 
jeA jeB 

and thus to satisfy (10), we define a utility function u for any nonempty 
finite set A of alternatives as: 

(18) u(A) = log l: l/pj. 
jeA 

Moreover, we may use (18) to generalize (10) immediately to the proba
bilities p(A, A), where Ais the complement of the set A with respect to 
the total set of alternatives, i.e., A u A = X. The interpretation of p (A, A) 
is that this is the prob ability of choosing an alternative from A rather than 
from its complement A. We observe first that (16) yields: 

l: l/pj 
(19) (A A) _ A 

P , -l:I/pj+l:l/pj' 
A A 

Manipulations similar to those already carried out then result in: 

(20) p (A, A) > p (B, B) if and only if 
u(A) - u(A) > u(B) - u(B). 

It is easily verified that the utility function u defined by (18) satisfies (11) 
and (12) as weIl as (10) and (20). If u were also an additive set function it 
would be more appropriate to call it a subjective probability function. It 
seems to me that its logarithmic rather than additive character is in
tuitively sound. In particular, the marginal utility of adding another 
alternative to a set of such is appropriately a decreasing function of the 
size of the set. In other words, the utility function defined by (18) has the 
classical property that as wealth increases each additional unit has 
decreasing marginal utility. 

III. RE LA TIONS TO OTHER THEORIES 

To begin with, I want to show that the entropy of any set of alternatives 
X, probability distribution p, and partition TI of X is a negative linear 
transformation of the expected utility of (X, p, TI).7 Following the well-
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known work of Shannon (see, e.g., Shannon and Weaver, 1949) on the 
theory of information, the entropy Hof (X, p, TI) is defined as: 

(20) H (TI) = - L p (A, .1) log2 p (A, Ä). 
Aen 

And the expected utility C(u, TI) is defined in the standard manner as: 

(21) C(u,TI)= L p(A,Ä)u(A). 
Aen 

Now 

= et log2p(A,.1) + ß, 

where et=log2 and ß=logLx l/pj, and it is clear et and ß are both in
dependent of TI.s 

Substituting this last result for u(A) into (21) we have 

C(u, TI) = L p(A,.1) [et-log2P(A, A) + ßJ 
Aen 

= - etH (TI) + ß, 

the desired conclusion. It is to be noticed that the finest partition of X 
maximizes entropy, whereas the coarsest one maximizes expected utility 
(with respect to the set of all partitions of X). 

I now turn to consideration of Luce's choice axiom (1959, p. 6) which 
we may formulate as follows: if AsBsXthen 

where Px (A) is the probability that an element of A is selected from the 
total choice set X. Thus if Au.1=X, then in the notation used earlier, 
Px (A) = P (A, .1). The purpose of the subscript usage is to indicate an ex
plicit change in the total set of available alternatives. 

Without further assumptions (22) cannot be derived from the postulates 
for learning theory given ai the beginning, because they include no 
assertions about the constancy or continuity ofbehavior when the number 
of available responses is changed. To derive (22), however, we need add 
only the postulate that the conditioning parameter Ei of response Al for 
every i is independent of what subset of the alternatives X is available. 
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Granted this additional assumption about conditioning, derivation of 
Luce's axiom is a simple matter, for 

Using his choice axiom Luce proves the existence of a ratio scale 
v(j) (1959, pp. 20-28) with the property that 

L v(j) 

Px(A) = i v(j)' 
x 

The relation of this additive ratio scale to the utility function u defined 
by (18) is simply 

v(A) = keu(A) , 

where k is a positive real number. 

NOTES 

1 I have benefited from conversations with several people on the topic of this paper. 
but most particularly from those with Donald Davidson, William K. Estes, and R. 
Duncan Luce. 
2t Article 8 in this volume. 
3t Article 4 in this volume. 
4 Under a rather natural continuity assumption, which is however stronger than U4-
U6, Debreu (1958) has shown that the quadruple condition (U3) is necessary and 
sufficient for the existence of a utility function satisfying (4). Of course, granted U4-U6, 
and the "technical axioms" U1 and U2, it is obvious that the quadruple condition is 
also necessary and sufficient in this context. It may also be remarked that to give 
necessary and sufficient conditions on the set A and the function p, without continuity 
or finiteness restrictions, is the extremely difficult mathematical problem of classifying 
all isomorphism types representable by a real-valued function u satisfying (4). 
5 I assume throughout that O<na, Ba< 1, for every a in A. 
6 From this point on, X rather than A will represent the total set of available alternatives. 
7 A partition of a set Xis a family of nonempty, pairwise disjoint subsets of X such 
that the union of all sets in the family is X. 
8 When no base of a logarithm is indicated, it is understood to be e. 



10. SOME FORMAL MODELS OF GRADING 

PRINCIPLES*l 

I. INTRODUCTION 

The present paper offers an analysis of grading principles from the view
point of statistica1 decision theory and game theory. The mi staken notion 
is widely held that the plain man is really clear about practical ethical and 
moral issues and that philosophers need only tidy up certain wayward 
corners of the subject. 2 Personally I find difficult the problem of devising 
any general ethical rules of behavior for simple two-person games; the 
ethical complexities of progressive taxation, tariff barriers, or treatment of 
sexual psychopaths are beyond any exact conceptual analysis. That de
cisions are and must be made about these issues no more proves that their 
ethical aspects are completely understood than does the fact that the 
Romans built bridges prove that they had any quantitative grasp of the 
mechanical theory of stress. 

It is pertinent to remark that the first model used in this paper is at the 
basis of much recent foundational work in statistics (see Blackwell and 
Girshick, 1954; Savage, 1954). The considerations in the last two sections 
are within the more general framework of the theory of games as devel
oped by von Neumann and others. My particular concern is the em
bedding in this framework of a theory of two-person justice. 

H. INDIVIDUAL DECISION MODEL 

The structure of the first model to be considered is simple. We shall call an 
ordered tripie [/' = <S, c, D) an individual decision situation when S 
and C are sets and D is a set of functions mapping Sinto C. The intended 
interpretation is: 

S = set of states of nature, 
C = set of consequences, 
D = set of decisions or actions. 

* Reprinted from Synthese 16 (1966), 284-306. 
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Since the terms 'states of nature', 'consequences', 'decisions' and 
'actions' are used here in a somewhat special manner, an example may 
help to make c1earer their intended meaning. 

Example I: Suppose I come horne and find a bottle of ink spilt on the 
rug, and also suppose I know immediately that it could have been spilt 
either by my four-year-old daughter or by my cat. These two possibilities 
correspond to the two states of nature. I can take one of two actions, let us 
say: spank the child or do not spank the child. And the possible con
sequences are four in number, as illustrated in Table I. The rows corre
spond to the two states of nature, the columns to the two actions, and the 
entries in the table to possible consequences. 

states of 
nature 

actions 

Sl - child spilt the ink 

S2 - cat spilt the ink 

TABLE I 

a1 - spank the child 

Cl - ink spilt by child 
and child spanked 

Cs - ink spilt by cat 
and child spanked 

a2 - do not spank the child 

C2 - ink spilt by child 
and child not spanked 

C4 - ink spilt by cat 
and child not spanked 

Since the term 'states of nature' is not much used in philosophy there 
should be little objection to its special use here; the term 'action' is used in 
a way that is consonant with at least one of its major uses in ordinary 
contexts. But my use of 'consequence' is probably at variance with its 
primary use in the writings of moral philosophers. The consequence Cl 

above, for instance, ink spilt by child and child spanked, would be 
regarded by many as the bare beginning of consequences. It is to avoid 
exacdy the vagueness of the consequences fiowing from Cl' Cz, C3 or C4' 

that I have adopted the restricted use. The longer term 'immediate 
consequence' could be used. Yet in ordinary usage there is much to defend 
the use adopted here. When a quarterback throws an intercepted pass in 
the last two minutes of play it might be appropriate to remark "The 
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consequence of that is obvious. We lose the game." It would seem pedantic 
to insist on saying "The immediate consequence of that is obvious. We 
lose the game." And it would be a classroom gambit to object that the use 
of the definite article is wrong, because the action could have other im
portant consequences for the quarterback: he quarrels with his girl that 
night, the coach decides not to start him in the next game. 

Apart from any questions of ordinary usage there is a technical device 
which may be used to meet the difliculty that it is almost always im
possible to characterize the full set of consequences which may flow from 
an action. Given an individual decision situation (8, C, D), let C' be the 
set of all consequences which result from some state of nature in 8 and 
some decision in D. Then Cis a partition of C', that is Cis a family of non
empty pairwise disjoint sets whose union is C'. In this analysis, each Ci in 
our example is a set of consequences. It is practically impossible to say 
exacdy what the members of Cl' say, are, but in rough terms they are the 
possible consequences, proximate and remote, which would wholly or in 
part result from the immediate consequence ofthe ink's being spilt by the 
child and the child's being spanked.3-

The still more complicated question of what kind of language is 
appropriate for describing either consequences or states of nature cannot 
be examined here. Certainly in most situations it is diflicult to avoid 
evaluative or normative terms, but the use of non-factuallanguage does 
not direcdy disturb or vitiate the analysis given here. 

One of the basic problems of statistical decision theory is to introduce a 
preference ordering on the set of decisions of an individual decision 
situation and to consider what postulates the preference ordering of a 
reasonable man should satisfy. (For such an analysis see Savage, 1954 or 
Suppes, 1956b.4t) The notion of reasonableness or rationality used here is 
an informal, intuitive one, and its application in defense of any particular 
postulate consists of analyzing particular examples. The problem is 
presumed solved if reasonable postulates can be found which are strong 
enough to guarantee the existence of a (subjective) probability measure on 
the states of nature and a utility function on the set of consequences such 
that one decision is to be preferred to another if and only if the expected 
utility of the first decision with respect to the probability measure is 
greater than that of the second. Once such a probability measure and 
utility function are constructed no further principles of action are needed. 
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The sole maxim to be followed by the rational man is: maximize expected 
utility. 

Historically the idea of maximizing utility is closely connected with the 
hedonistic ideas of Bentham, Mill, Sidgwick, and their followers. How
ever, it is an unequivocal mistake to think that the maxim: maximize 
expected utility, in any respect involves a commitment to hedonism. As I 
hope to make clear in the sequel, if the utility function on consequences 
were guided by an ethic of duty rather than pleasure, it would still be good 
advice to maximize expected utility. In this case a calculus of duty would 
replace a calculus of pleasure. To my mind the inost important aspect of 
the hedonistic tradition in ethics has been the clear recognition that some 
principle of calculation is required for rational action in the face of other 
than trivial situations. The main point of this paper is to defend a thesis as 
to how grading principles should enter into these calculations. 

Before developing these ideas further I want to say something about a 
major criticism that is usually made ofthe general maximization viewpoint 
adopted here. To wit, as one philosopher scornfully put it to me, whoever 
heard of a man making such calculations prior to making any actual 
decision. Naturally this philosopher had in mind the "ordinary" man in 
"ordinary" situations like that of buying a pint of whiskey or selecting a 
new tobacco. One might as weIl reject a whole discipline such as the 
physical theory of the strength of materials by remarking that no car
penter computes the load capacity of a joist before sawing and nailing it. 
There are situations where elaborate calculations are made in order to 
maximize utility; the new disciplines of management science and opera
tions research provide numerous examples.5 Moreover, I maintain that in 
many ordinary situations it is not the impossibility of detailed calculation 
that is relevant but rather the superfluity of it. For instance, in the simple 
situation schematized by Table I, if it is definitely known that the ink was 
spilt by the child and not the cat then to take appropriate action I need 
only order in preference two consequences: Cl and C2' according to my 
principles of childrearing. I need no numerical utility function. And this 
situation is characteristic: whenever uncertainty regarding the true state of 
nature is eliminated, the pertinence of a numerical utility function dis
appears, and the principle of maximizing expected utility assumes a very 
simple form: choose that action whose consequence is most preferred (for 
reasons of pleasure, duty, justice, or what have you). 
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111. DEFINITION OF GRADING PRINCIPLES 

Traditionally in ethics, actions are said to be right or wrong, and con
sequences good or bad. If we carried over this distinction to individual 
decision situations then we would need moral principles of grading 
governing acts and value principles of grading arranging consequences in 
order of preference. But I am proposing here that the one controlling 
moral principle of action is the maxim: maximize expected utility, here
after referred to as the M.E.V. maxim. On this view it is amistake to hold 
that grading principles aid us direct1y in distinguishing between the 
quality of acts. The function of grading principles is rather to aid the in
dividual in constructing his preference relation on the set of consequences. 6 

There is a simple reason why this position is not in conflict with most of 
the standard examples purporting to show how grading principles should 
regulate actions; namely, if the state of nature is known, there is an 
effective one-one correspondence between the set D of acts and the set C of 
consequences, and any relation on C defines a corresponding relation 
on D. This point is further amplified_below. 

To put it baldly then, I am claiming that the proper logical status of a 
grading principle in an individual decision situation is as a binary relation 
on the set C of consequences, in fact, an asymmetrie, transitive relation 
on C, i.e., astriet partial ordering of C. 

DEFINITION 1 : Let .'7 = (S, C, D) be an individual decision situation. Then 
a grading principle with respect to .'7 is astriet partial ordering of C. 

I have insisted that a grading principle have at least the properties of a 
strict partial ordering, for otherwise it would scarcely be a guide to fixing 
the preference relation. 

Example 2: A principle of ehildrearing. Referring to Example 1, a 
tenable grading principle held by some modern parents is: never punish a 
child. This leads to the following strict partial ordering of C7, which we 
may represent by a Hasse diagram : 
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It should be noted that this principle of childrearing is sufficient to deter
mine action although the set of consequences is not completely ordered 
by it. For, whatever the true state of nature, the consequence of taking 
action a2 is preferred to the consequence of taking action al , that is, C2 is 
preferred to Cl and C4 is preferred to C3' 

As the following example drawn from welfare economics shows, most 
grading principles are not sufficient to determine action. 

Example 3: Principle 01 unanimity. Suppose that the decision situation 
consists of an arbitrary set S of states of nature, and C is a set of ordered 
n-tuples (n-dimensional vectors) representing the distribution of some 
desired commodity to a group of n individuals. Administrator A, a 
member of the group, is to decide in a just manner which distribution 
vector is to be used in allotting the quantities of the commodity. The 
grading principle of unanimity asserts that vector x= (Xl' ... , Xn> is to be 
preferred to vector Y=(Yl' ... , Yn> if for every i=l, ... , n,xi ~Yi and for 
some i, Xi > Yi' This principle, also known as the principle of efficiency or 
Pareto optimality, is a very weak grading principle and surely any adminis
trator who did not satisfy it would be stoned out of office,s It is obvious 
that in general the principle of unanimity does not uniquely determine the 
optimal action even when there is only one state of nature. 

More troublesome, at least from a psychological standpoint, is the 
decision situation in which two grading principles are in conflict. This 
state of affairs is reflected formally in our model by the fact that 
the union of two strict partial orderings is not always a strict partial 
ordering. 

DEFINITION 2: Let fI' = (S, C, D> be an individual situation, and let Gi 
and G2 be grading principles with respect to fI'. Then Gi and G2 are 
compatible if, and only if, Gi U G2 is a grading principle with respect 
to fI'.9 

Two simple conditions with reasonable interpretations which will insure 
compatibility of grading principles are the following. 

THEOREM 1: 1f(i) Gi is a subrelation 0lG2 or G2 is a subrelation olGl , or 
(ii) if the fields 01 Gi and G2 are mutually exclusive, then Gi and G2 are 
compatible. 

The proof of this theorem is trivial. Some examples illustrating it may 
be drawn from welfare economics, where Sand C are defined as in 
Example 3. 
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Example 4: Let 

Gi =principle of unanimity, 
G2 =principle of gross aggregation, 
G3 =principle of social weights a = (al> ... , a,,), 

where 
" " 

xG2 y if,andonlyif, LXi> L Yj 
j=1 j=i 

and 
" " 

X G3 Y if, and only if, L alXj > L ajYj· 
j=1 1=1 

Principle Gi has already been discussed; Principle G2 says that one 
distribution X is to be preferred to another y if X results in a greater total 
quantity ofthe commodity for the social group; Principle G3 corresponds 
to the assignment of weights to each individual by Administrator A; 
presumably A would use some further principle of need or merit to aid in 
determining the weights.10 As application ofTheorem 1, we have that Gi 
and G2 are compatible, since Gi is a ~ubrelation of G2, that is, if X Gi Y 
then X G2 y. To see this, we observe that if X Gi y then 

(1) Xi ;;?l: Yi for all i 
Xi> YI for some i, 

whence 

LXj> LYj' 

Moreover, if each individual is given a strictly positive weight, that is, 
aj > 0 for all i, then Gi is a subrelation of G3 , and hence compatible with it. 
The reasoning is obvious. From (1) and the hypothesis that aj>O we have: 

ajxj ;;?l: ajYj for all i 
ajX1 > ajYj for some i, 

whence by addition of inequalities 

L ajXj > L ajYI' 

On the other hand, when C has any abundance of different distribution 
vectors, G2 and G3 are incompatible. For instance, let n=3 and 

x = (1,2,4) 
y=(4, 1, I) 
a = (2, -1, !) . 
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Then 

x G2 Y 
since 

Lx;=7 and LYI=6, 
but 

yG3 x 

since 

Laixi = 4 and L aiYi = 8i. 
Examples which satisfy (ii) of Theorem 1 are easy to construct but will 

not be considered here. The intuitive idea of (ii) is the truism that grading 
principles concerned with entirely different spheres of activity are 
compatible. 

The use of the word 'activity' in the last sentence underlines the diffi
culty of not speaking of grading principles as referring to acts or decisions 
rather than consequences. Before turning to social decision situations in 
the next section, something more needs to be said about the status here 
advocated for grading principles. One natural tendency is to formulate 
grading principles in the imperative mood so as to command the execution 
of certain acts. But Hare (1952, Part III) has cogently argued it is more 
appropriate to use the indicative mood and the auxiliary verb 'ought' to 
obtain the proper sort of universal formulation. The one further emenda
tion required here is to add the infinitive 'to prefer' after 'ought'. Thus, we 
go from the imperative: 

"Honor thy father" 
to: 

"Everyone ought to honor his father", 

and on to: 

(I) "Everyone ought to prefer to honor his father." 

I maintain that ordinary usage addresses moral principles of grading 
directly to acts because the problem of acting without knowing the true 
state of nature is ignored. This point is important enough to be amplified 
by referring again to Example 1. Consider the moral imperative 'Punish 
the guilty and defend the innocent'. Suppose this is the only moral 
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imperative guiding my choice of action al or a2 in Example 1. It seems 
patently obvious that without knowing the true state of nature I can make 
no direct application of the imperative to choose between al and a2. If 81 

is the true state of nature I should choose a1, but if 82 is the true state, I 
should choose a2 • To be sure, I could first sum up the factual evidence 
for 81 and 82' decide which is more likely, assume the more likely state is 
nearly certain to be the true state, and then take the appropriate action. 
But this is surely a crude way to proceed and is wholly inadequate in more 
complicated situations; for instance, suppose there were three states of 
nature to each of which I assigned a subjective probability of t. On the 
other hand, the imperative may be applied directly to constrain my 
preference relation on the set {Ch C2' C3' C4} of consequences. The Hasse 
diagram of the resulting strict partial ordering is obviously: 

which may be compared with the diagram for Example 2. When applied 
direcdy to consequences, application of the imperative need not be con
founded with the difficult and distinct problem of weighing factual 
evidence regarding the true state of nature. 

The particular homily about honoring fathers illustrates another point: 
it and all principles of a similar form lead to a simple and crude partial 
ordering of consequences, namely, consequences are divided into two 
classes and all members of one are preferred to all members ofthe other. As 
Examples 3 and 4 emphasize, such principles are not of much help in 
making a rational decision in a complicated situation like that generated 
by a labor-management dispute or the problem of pricing policy in a 
semi-controlled economy. 

IV. SOCIAL DECISION MODEL 

Against the analysis of previous sections may be brought the charge that 
the indivual decision model unduly and unrealistically isolates the 
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behavior of one man from another. In the remainder of this paper social 
situations shall be considered. For reasons of technical simplicity the 
discussion shall be restricted to two persons, although most of the 
concepts introduced readily generalize to n persons. 

The structure of the basic model is still relatively simple. We shall 
call an ordered sextuple [/=(8, Cl' C2 , Dl , D2,f> a two-person decision 
situation when 8, Cl' C2 , Dl> D2 are sets and/is a function mapping the 
Cartesian product 8 x D l X D 2 into Cl x C2 • The intended interpretation is: 

8 = set of states of nature, 
Cl = set of consequences for person I, 
C2 = set of consequences for person 11, 
Dl = set of decisions or acts available to I, 
D 2 = set of decisions or acts available to 11, 
I = social decision function. 

Some examples will be given in the next section in connection with the 
theory of two-person justice. 

The definition of grading principles is an -obvious generalization of 
the one already given for the individual case. 

DEFINITION 3: Let [/=(8, Cl' C2 , D1 , D2 ,1> be a two-person decision 
situation. Then a grading principle with respect to [/ is astriet partial 
ordering 01 the Cartesian produet Cl x C2 • 

This definition does not require that in applying a grading principle 
person I need consider consequences to person 11, but does make possible 
such a consideration. We could in fact use Definition 3 as a basis for 
defining a wholly egocentric person, namely aperson, say I, whose 
grading principles and preference relations in all two-person situations 
are orderings uniquely determined by elements of Cl (the character of 
C2 being never considered). 

The same arguments given previously apply to the requirement that 
ordinary grading principles in two-person situations be partial orderings 
on consequences and not on acts. On the other hand, the arguments for a 
rigid adherence to the M.E.U. maxim are not so persuasive, since other 
rules ofbehavior like minimax or minimax regret can be strongly defended 
for two-person situations. But these matters will not be gone into here; 
for our purposes adoption of any of these alternative rules requires 
admission only that a utility or value function on Cl x C2 is needed for 
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both persons land II. We want to investigate how a formal principle of 
justice may be introduced which will put non-trivial constraints on the 
utility function. Moreover, it will be of interest to investigate the adequacy 
of ajustice maxim compared to the M.E.U. or minimax kind ofmaxim, 
as an over-all rule of behavior. 

In concentrating attention on justice no claim is intended that it is 
the most significant grading principle for social situations, nor even that 
the definitions given here provide more than the merest beginning of a 
formal theory of justice. 

To begin with we need the notion of a preference relation on Cl U C2 , 

that is, on the set of consequences to both land II. The idea is that 
one consequence in Cl x C 2 will be deemed more just or fair than another 
relative to a preference ranking of all consequences together. How in fact 
would a person make such a ranking? Presumably by treating hirnself and 
the other person on an "equal" basis. A suggestion as to how this idea of 
equality or symmetry may be formalized will be given the following 
definition: 

DEFINITION 4: A system fI'=(S, Cl' C2 , Dl , D2 ,f, Rl , R2 > is a two
person decision situation with preference rankings if, and only if, (S, Cl' 
C2 , D l , D2,f> is a two-person decision situation, and R l and R2 are 
weak orderings of Cl U C2• (A weak ordering is a relation which is 
transitive and strongly connected.) 

The intended interpretation is that R l is the preference ranking of 
person land R 2 that of II. Formally we might say that a person's prefer
ence ranking R of Cl U C 2 is equitable or symmetric if it remains unchanged 
when the two persons change positions in the decision situation. Diffi
culties of making this suggestion precise will not be pursued here, but it 
would seem best to do it in terms of a specific game, or at least gamelike, 
structure, with the exchange being defined in terms of becoming a 
different player in the game, not, by all means, in terms of the personal 
attributes of the players somehow being exchanged. It is intended that in 
constructing Rh say, person I will say to hirnself, it is better that II have 
x in C2 than that I have y in Cl whence x Rl y and not y R l x, etc. For 
example, a man should judge it better that his neighbor of equal economic 
status receive a thousand dollars than that he hirnself should receive 
fifty dollars. Unfortunately, I see no way of characterizing in an adequate 
formal manner the intuitive notion of better than used in this example. 
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But it would be amistake to consider this situation peculiar to moral 
philosophy. The notion ofpreference or better than has a status in formal 
moral philosophy very similar to that of the notion of force in mechanics. 
It is not a problem of mechanics proper to classify forces according to 
their physical origin.ll 

We now define the notion of more just than (abbreviated by J) relative 
to each person's preference ranking. 

DEFINITION 5: If Xl' Yl ECl and X2, Y2EC2 and X=<Xl , X2) and Y= 
<Yl, Y2) thenfor i= 1,2, xJi Y if, and only if, either (i) Xl Ri Yl and X2 Ri Yl 
and not (Yl Ri Xl and Y2 Ri X2), or (ii) Xl R i Yl and X2 Ri Yl and not (Y2 Ri Xl 
and Yl Ri x2). 

This definition is simpler than it may appear at first glance. It is framed 
so as to make Ji (for i= 1,2) astriet partial ordering of the Cartesian 
product Cl x C2 , and yet permits the comparison of elements of Cl with 
C2 • The two 'not' clauses in the definition guarantee that Ji is asymmetrie. 

Examples of Ji are at the beginning of the next section. We conclude 
this section with the theorem: 

THEOREM 2: Both Jl and J2 are grading principles with respect to !/'. 
Proof: For i= 1,2, to prove that Ji is asymmetrie, suppose by way 

of contradiction that for some X=<Xl' X2) and Y=<Yl' Y2) in Cl x C2 

that 

X Ji Y and Y Ji X • 

From X Jj Y it follows from the definition that (dropping subscript i on 
R for brevity) Xl R Yl or Xl R Y2' and similarly from Y Jj x it follows that 
Yl R Xl or Yl R X2' We thus have four cases to consider: 

Case 1: Xl R Yl and Yl R Xl' 
Case 2: Xl R Yl and Yl R X2' 

Case 3: Xl R Yl and Yl R Xl' 
Case 4: Xl RYl and Yl R X2' 

Since the proofs for all cases are similar, we shalllook only at Case 2 
in detail. From the hypothesis of this case, we have from (i) of the 
definition: 

(1) Xl R Yl , 

(2) X2 R Y2' 

(3) not Yl R Xl or not Y2 R X2' 
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and from (ii): 

(4) Y1Rx2 

(5) Y2 R Xl 

(6) not X2 R Yl or not Xl R Y2. 

From (1), (4) and the transitivity of R we infer: 

(7) Xl R X2 

and from (7) and (2): 

(8) Xl R Y2. 

From (2) and (5) (and transitivity of R): 

(9) X2 R Xl' 

and from (9) and (1): 

(10) x2 RY1, 

hut (8) and (10) contradict (6). 
To prove now that Ji is transitive, we assume 

X Ji Y and Y ~ Z, 

which leads to four cases also. Again we shall consider only one typical 
case: 

(11) Xl R Y2 and Yl R Z2· 

From (11) and (ii) of the definition, we have: 

(12) X2 R Yl 

(13) Y2 R Zl 

(14) not Y2 R Xl ornot Yl R X2 

(15) not Z2 R Yl or not Zl R Y2. 

From (11), (13) and transitivity of R, we get: 

(16) xlRzl , 

and similarly from (11) and (12): 

(17) X2 R Z2. 
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It remains to show that not Zl R Xl or not Z2 R X2. Suppose by way of 
contradiction that 

(18) Zl R Xl and Z2 R X2. 

From (18) and (11), we have: 

(19) Zl R Y2' 

and from (18) and (12) 

(20) Z2 R YI' 

but (19) and (20) contradict (15), which completes our proof, since for J; 
to be a grading principle with respect to [/, it is required by definition 
that J; be asymmetrie and transitive in Cl x C2 • 

v. POINTS OF JUSTICE AND THE PRISONER'S DILEMMA 

It will be instructive to apply the ideas introduced in the last section to 
a simple but conceptually troublesome example of a two-person, non
zero-sum, non-co operative game known as -the prisoner's dilemma.12 

We quote the description from Chapter 5 of Luce and Raiffa (1957): 

Two suspects are taken into custody and separated. The district attorney is certain that 
they are guilty of a specific crime hut he does not have adequate evidence to convict 
them at a trial. He points out to each prisoner that each has two alternatives: to confess 
to the crime the police are sure they have done, or not to confess. If they both do not 
confess, then the district attomey states he will book them on some very minor trumped
up charge such as vagrancy and they will both receive minor punishment; ifthey both 
confess they will be prosecuted, but he will recommend less than the most severe 
sentence; but if one confesses and the other does not, then the confessor will go free 
while the latter will get "the book" slapped at him. 

Let n = no conviction on any charge, 
v = vagrancy conviction, 
r = reduced conviction (less than maximum), 
m = maximum conviction. 

Then the game may be represented by: 

~I confess not confess 

confess <r, r> <n,m> 
not confess <m,n> <v, v> 
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where a pair like (n, m) is interpreted so that the first member n is the 
outcome to person land the second member m the outcome to person 11. 
We have not distinguished nl and nn, ml and mn, etc. These conse
quences are treated the same for each player. Keeping this in mind, the 
complete two-person decision situation with preference rankings may be 
identified, provided we introduce the one obvious preference ranking on 
the set of consequences: 

S = one element set (trivial here), 
Cl =C2 = {m, n, r, v} 13, 

Dl = D 2 = {confess, not confess}, 
/ = function defined by above game matrix, 
R l = R2 = weak ordering arising from linear ordering n, v, 

r, m, with n most preferred. 
Clearly here 

Jl = J2 , 

and the ordering more just than of Cl x C2 may be represented by the 
following Hasse diagram (see next page), where two elements of Cl x C2 

standing at the same point in the diagram are not comparable under .T;.14 
Of course, only the four elements in the game matrix are of direct concern 
in discussing the prisoner's dilemma. The ordering induced by Ji on them 
may be represented by: 

<v,v> 

(1) I 
<r,r> 

• 
<n,m> 

• 
<m,n> 

The important thing is that (n, m) is not related by Ji to any ofthe other 
three elements, nor is (m, n). 

The weak relation expressed by (1) would not seem to be of much help 
in guiding the choice of an action or strategy by either prisoner. As a 
direct constraint on the utility function of either it scarcely imposes 
any structure. Before attempting to show that considerably more can be 
obtained from (1) by introducing the concept of a point 0/ justice, it will 
be useful briefly to review the game-theoretic solution of the prisoner's 
dilemma. 

Two concepts of optimality for two-person, non-zero-sum, non-
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<n,v>,<v,n> 

/ 
<n,r>,<r,n> 

/~ 
<n,m>,~ /,<r,v> 

<v,m>,<m,v> 

~ 
<r,m>.<m,r> 

<n,n> 

<v,V> 

<r, r> 

<m,m> 
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co operative games yield the conc1usion that both prisoners should choose 
the strategy of confessing, which leads to the outcome or consequence 
(r, r). One concept arises from the highly appealing sure-thing principle. 
A strategy or decision satisfies the sure-thing principle if no matter what 
your opponent does you are at least as weH off, and possibly better off, 
with this strategy in comparison to any other available to you. Thus if 
person I adheres to the sure-thing principle he should confess, for if II 
confesses I gets r rather than m, and if II does not confess I gets n rather 
than v; whence for every choice of II, I is better off confessing. A similar 
situation obtains for II. 

In many games no strategy satisfies the sure-thing principle. But 
every finite game of the c1ass being discussed does have at least one 
equilibrium point, the second concept of optimality (introduced by 
Nash, 1950, 1951). Roughly speaking, an equilibrium point is a set of 
strategies, one for each player, with the property that these strategies 
provide a way of playing the game such that if aH the players but one 
foHow their given strategies, the remaining player cannot do better by 
foHowing any strategy other than the one belonging to the equilibrium 
point. As is easily verified, the unique equilibrium point for the prisoner's 
dilemma is the pair of confession strategies, the same result obtained by 
application of the sure-thing principle. 

In spite of the weight of these optimality principles there are several 
unsatisfactory aspects of the recommended solution. If both prisoners 
completely trust each other it seems more reasonable for both of them to 
adopt the strategy of not confessing. Moreover, the act of confessing 
might from a moral standpoint be distasteful. The various game-theoretical 
principles of behavior like the two just discussed are aimed at satisfying 
intuitive ideas of prudential rather than moral behavior - the notion of 
prudence being that of acting in one's own best interest without direct 
concern for others. The point ofthe remainder ofthis paper is to contrast 
moral and prudential behavior, with special reference to the prisoner's 
dilemma. 

In Section III, I have argued that grading principles should be addressed 
to consequences rather than decisions or acts. I now want to suggest that 
a (first-order) grading principle concerned with consequences may lead to 
a (second-order) moral principle which is a direct guide to action. Such 
second-order moral principles may be termed ethical rules behavior, in 0/ 
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contrast to game-theoretical prudential principles of behavior. I shall 
use the justice relation on consequences to formulate one such ethical rule 
of behavior. First we define a (~) admissible element as an element of 
Cl x C2 which is not dominated under the relation Ji by any other element. 
In diagram (1) elements (v, v), (n, m) and (m, n) are (~) admissible. 
In the preceding diagram only (n, n) iso Next, in analogy with the 
definition of an equilibrium point, let us define a (Ji) point of justice 
as a set of strategies, one for each player, such that adoption of these 
strategies leads to an admissible element as outcome. 

The simplest justice-oriented rule of behavior is then: 

(I) If J1 = J2 and there is a unique point of justice, the strategy 
belonging to this point ought to be chosen. 

Unfortunately, (I) is not applicable to the prisoner's dilemma, for the 
requirement that there be a unique point of justice is not satisfied.15 

A more complicated, but still relatively simple ethical rule of behavior 
may be introduced in terms of the notion of a justice-saturated strategy. 
A strategy for player i is justice-saturated (with respect to ~) if whatever 
strategies are picked by the other players the resulting set of strategies is 
a (~) point of justice. The rule of behavior is then: 

(11) If for any player this set of justice-saturated strategies is 
non-empty, he ought to choose one. 

In the prisoner's dilemma each player has a unique justice-saturated 
strategy, namely, the strategy of not confessing, joint use ofwhich leads to 
the reasonable outcome (v, v). 

To be sure, when a person's set of justice-saturated strategies contains 
more than one element, (II) does not lead to a unique action, and some 
supplementary ethical rule of behavior may be needed. A similar problem 
arises for prudential game-theoretical rules of behavior and should 
surprise only those who believe that satisfactory categorical rules of 
action are easily come by. 

If neither (I) nor (11) is applicable (and simple two-person decision 
situations exist for which this is the case), the theory of justice outlined 
here is of no use in determining what action to take, except insofar as 
the relation Ji is a constraint on the person's utility function.16 

But this last problem of applicability is one of the least difficulties 
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that face an adequate formal theory of justice. For example, even when 
(11) is applicable, an "ethical" man using it may be at adefinite competitive 
disadvantage against a "prudential" man. In the prisoner's dilemma if 
prisoner I adopts his justice-saturated strategy and prisoner 11 his equi
librium-point strategy, then prisoner I will receive the maximum con
viction. It is not easy, for me at least, to decide if this is an intuitive 
argument against the formal theory of justice or fair play set forth here, 
or if it is an intuitively reasonable instance of a just or fair man getting the 
worst of a situation. If the latter is the case, I think it may be claimed 
that a man who in all situations acts according to ethical rules of behavior 
may fare as weIl in the long run as the purely prudential man, provided 
knowledge of his standards of actions are known to his fellow man. 

Another difficulty with the present theory is its structural weakness. 
It is apriori certain that no very elaborate theory of action can be buHt 
on the simple notion of a strict partial ordering. A major step in the 
development of rational theories of behavior has been the quantification 
of value (i.e., utility) and of subjective probability (i.e., reasonable 
degree of belief). Plausible assumptions which will lead to quantification 
of the theory of justice seem hard to find. 

Making the theory of justice depend on the individual preference 
rankings is very much in the spirit of modern welf are economics, but may 
seem highly unsatisfactory to many philosophers. And I think it may be 
rightly objected that the intuitive success of the theory depends upon 
these individual preference rankings themselves satisfying certain criteria 
of justice. To admit this objection is not to accede to acharge of circu
larity, for moral principles of justice, logically independent of the theory 
developed here, can be consistently introduced as constraints on individual 
preference rankings of Cl u C2 • I simply do not have at the present any 
such interesting formal principles to suggest. 

However, it may be appropriate to mention an alternative way of 
treating the theory developed here. The one detaHed application has been 
to a non-co operative game. In a co operative game, for instance, an arbi
tration situation, it might be reasonable for the two participants who are 
in confIict, but who are upholders of ethical rules of behavior, to appoint 
an arbitrator they both trust. The arbitrator is then asked to make what 
he considers the fairest preference ranking of Cl u C2 in terms of his 
knowledge of the participants' needs and wants. Rules (I) and (11), if 
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applicable, might then determine the outcome of arbitration. The immedi
ate objection to this seems to be that if the arbitrator is going to do the 
ranking, why not simply let him rank the outcomes, and then agree on the 
one he considers fairest as the negotiated outcome. There is a simple 
answer to such an objection. It may be easy to rank Cl U C2 , but very 
difficult to rank Cl x C2 • For example, let 

Cl = {trip to Hawaii, trip to N.Y.}, 
C2 = {trip to Florida, trip to Chicago}, 

and the arbitrator, knowing persons land 11, may find it easy to rank 
Cl uC2 : 

trip to Hawaii, 
trip to Florida, 
trip to N.Y., 
trip to Chicago, 

but he finds it very difficult to compare elements of Cl x C2 like <trip to 
Hawaii, trip to Chicago) and <trip to N.Y., trip to Florida). 

In conclusion an example may be construcied for which equilibrium
point analysis seems to lead to a more equitable and just solution of a 
non-co operative game than the theory of justice outIined here. Let 

Cl={a,b,c} 
C2 = {IX, ß, y, t5}, 

let Rl =R2 =the ranking: a, IX, b, ß, c, 15, y, and let the game matrix be: 

XI 1 2 

1 <a, y> <b,P> 

2 <C, a> <b,ö> 

Then Jl = J2 , and we have as the Hasse diagram of the justice partial 
ordering of Cl x C2 : 

<C, a> <a.r> 
o 

<b,S> 

<b,ß> 
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It is easily checked that decision 1 is the unique justice-saturated strategy 
for each player, yielding the outcome <a, y), whereas the unique 
equilibrium point strategies yield <h, ß) as the outcome. In terms of the 
ordinal properties of the consequences at least, outcome <h, ß) seems 
fairer than <a, y). I conc1ude that the theory of justice developed here 
satisfactorily solves only a certain perhaps small proper subset of two
person, non-cooperative games. 

The difliculties of formulating a theory of justice for even a very 
restricted set of situations suggests there may be something seriously 
wrong with this kind of effort, at least in terms of any principles we seem 
able to formulate at present. What seems needed as a prolegomena is the 
painstaking working out of some less sweeping, more concrete grading 
principles of the sort needed to take a position on particular issues of 
economic, political or social significance. Example 4 is a sketch of one 
sort in this direction. 

NOTES 

1 I am indebted to Richard Brandt, Donald Davidson and F. Studnicki for a number of 
useful and penetrating criticisms of a much earlier draft of this paper written in 1957 
and circulated as a technical report in that year under the title, 'Two formal models 
for moral principles'. 
2 Kant's views are typical: " ... in matters which concern aIl men without distinction, 
nature cannot be accused of any partial distribution of her gifts; and that with regard to 
essential interests of human nature, the highest philosophy can achieve no more than 
that guidance which nature has vouchsafed even to the meanest understanding" 
(1949a, p. 666). 
3 I emphasize that consequences are to be construed broadly here. Causal as weIl as 
logical relationships are relevant, but an exact discussion of the significance of causal 
concepts in the present context would require too lengthy a digression to be appropriate. 
4t Artic1e 6 in this volume. 
5 In this respect it seems unfortunate that in his inaugurallecture Theory 01 Games as 
a Toollor the Moral Philosopher (1955) Professor Braithwaite picked for detailed 
analysis an example which would not in practice be subject to elaborate ca1culations. 
His painstakingly careful presentation would apply equally well to more realistic 
labor-management bargaining situations. 
6 However, second-order moral principles as ethical rules of behavior directly govemmg 
acts are introduced in the final section. 
7 The intuitive idea behind a Hasse diagram is simple: if point x may be reached from 
point y by a continuaIly ascending, not necessarily straight line, then xGy. 
8 The proof is immediate that the principle of unanimity yields a strict partial ordering 
ofe. 
9 The symbol U denotes the union of two sets. A binary relation is a set of ordered 
couples, whence we may speak of the union of two relations. 
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10 In the literature of socialist economics, Administrator A is often the Central 
Planning Board, but a bureaucratic assignment of weights is not essential to the 
economic theory of the welfare state (cf. Lange and Taylor, 1938). 
11 These remarks are admittedly Kantian in fiavor. Cf., "And just as nothing follows 
from the primary formal principles of our judgments of truth except when primary 
material grounds are given, so also no particular definite obligation follows from these 
... rules except when indemonstrable material principles of practical knowledge are 
connected with them" [Kant, 1949b, pp. 283-284]. 
12 Agame is non-cooperative when no precommunication or bargaining between the 
players is permitted. The prisoner's dilemma is attributed to A. W. Tucker. 
13 The identification of Cl and C2 merely simplifies the presentation and is not essential. 
14 Under the equivalence relation which "identifies" elements like <r, m) and <m, 
r), Cl X C2 is a lattice with respect to Jt, but this fact is of no significance here. 
15 It is perhaps useful to mention that in general agame of the type being considered 
here does not have a unique equilibrium point; the prisoner's dilemma is a happy 
exception. 
16 In general, finite games only have equilibrium points when mixed strategies (Le., 
probability mixtures of pure strategies) are admitted. A discussion of Rules (I) and (11) 
with respect to mixed strategies would take us too far afield. 



11. PROBABILISTIC INFERENCE AND THE CONCEPT 

OF TOTAL EVIDENCE* 

I. INTRODUCTION 

My purpose is to examine a cluster of issues centering around the so
called statistical syllogism and the concept of total evidence. The kind of 
paradox that is alleged to arise from uninhibited use of the statistical 
syllogism is of the following sort. 

(1) The probability that Jones will live at least fifteen years given 
that he is now between fifty and sixty years of age is r. J ones is 
now between fifty and sixty years of age. Therefore, the 
probability that Jones will live at least fifteen years is r. 

On the other hand, we also have: 

(2) The probability that Jones will live at least fifteen years given 
that he is now between fifty-five and sixty-five years of age is s. 
Jones is now between fifty-five and sixty-five years of age. 
Therefore, the probability that Jones will live at least fifteen 
years is s. 

The paradox arises from the additional reasonable assertion that r=f:s, or 
more particularly that r>s. The standard resolution of this paradox by 
Carnap (1950, p. 211), Barker (1957, pp. 76-77), Hempel (1965, p. 399) 
and others is to appeal to the concept of total evidence. The inferences in 
question are illegitimate, because the total available evidence has not been 
used in making the inferences. Taking the premises of the two inferences 
together, we know more about Jones than either inference alleges, 
namely, that he is between fifty-five and sixty years of age. (Parenthetically 
I note that if Jones happens to be a personal acquaintance what else we 
know about hirn may be beyond imagining, and if we were asked to 
estimate the probability of his living at least fifteen years we might find 

* Reprinted from Aspects 0/ Inductive Logic (ed. by J. Hintikka and P. Suppes), 
North-Holland Publ. Co., Amsterdam, 1966, pp. 49-65. 
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it impossible to layout the total evidence that we should use according to 
Carnap et al., in making our estimation.) 

There are at least two good reasons for being suspicious ofthe appeal to 
the concept of total evidence. In the first place, we seem in ordinary 
practice continually to make practical estimates of probabilities, as in 
forecasting the weather, without explicitly listing the evidence on which 
the forecast is based. At a deeper often unconscious level the estimations 
of probabilities involved in most psychomotor tasks - from walking up a 
flight of stairs to catching a ball - do not seem to satisfy Carnap's in
junction that any application of inductive logic must be based on the total 
evidence available. Or, at the other end of the scale, many actually used 
procedures for estimating parameters in stochastic processes do not use 
the total experimental evidence available, just because it is too unwieldy 
a task (see, e.g., the discussion of pseudo-maximum-likelihood estimates 
in Suppes and Atkinson (1960, Chap. 2). It might be argued that these 
differing sorts of practical examples have as a common feature just their 
deviation from the ideal of total evidence, but their robustness of range, 
if nothing else, suggests there is something-wrong with the idealized 
applications of inductive logic with an explicit listing of the total evidence 
as envisioned by Carnap. 

Secondly, the requirement of total evidence is totally missing in 
deductive logic. If it is taken seriously, it means that a wholly new 
principle of a very general sort must be introduced as we pass from 
deductive to inductive logic. In view of the lack of a sharp distinction 
between deductive and inductive reasoning in ordinary talk, the intro
duction of such a wholly new principle should be greeted with considerable 
suspicion. 

I begin my critique of the role of the concept of total evidence with a 
discussion of probabilistic inference. 

11. PROBABILISTIC INFERENCE 

As a point of departure, consider the following inference form: 

(3) 

p(AIB)=r 
P(B) = p 

P(A) ~ rp. 
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In my own judgment (3) expresses the most natural and general rule of 
detachment in probabilistic inference. (As we shall see shortly, it is often 
useful to generalize (3) slightly and to express the premises also as 
inequalities, 

P(A I B) ~ r 
P(B) ~ P 

(3a) 
P(A) ~ rp. 

The application of (3a) considered below is to take r=p=l-e.) 
It is easy to show two things about (3); first, that this rule of 
probabilistic inference is derivable from elementary probability theory 
(and Carnap's theory of confirmation as weIl, because a confirmation 
function e(h, e) satisfies all the elementary properties of conditional 
probability), and secondly, no contradiction can be derived from two 
instances of (3) for distinct given events Band C, but they may, as in the 
case of deductive inference, be combined to yield a complex inference. 

The derivation of (3) is simple. By the theorem on total probability, or 
by an elementary direct argument 

(4) P(A) = P(A I B) P(B) + P(A 1.8) P(.8), 

whence because probabilities are always non-negative, we have at once 
from the premises that P(A I B)=r and P(B)=p, P(A)~rp. Secondly, 
from the four premises 

P(A I B) = r 
P(B) = p 

P(A I C) = 3 

P(C) = (1, 

we conelude at once that P (A) ~ max (rp, 3(1), and no contradiction results. 
Moreover, by considering the special case of P(B)=P(C)=l, we move 
elose to (1) and (2) and may prove that r=3. First we obtain, again by an 
application of the theorem on total probability and observation of the 
fact that P(.8)=O if P(B) = 1, the foIlowing inference form as a special 
case of (3) 

(5) 

P(A I B) = r 
P(B) = 1 

P(A) = r. 
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The proofthat r=s when P(B)=P(C)= 1 is then obvious: 

(1) p(AIB)=r Premise 
(2) P(B) = 1 Premise 
(3) P (A I C) = s Premise 

(6) (4) P(C) = 1 Premise 
(5) P(A) = r 1,2 
(6) P(A) = s 3,4 
(7) r=s 5,6. 

The proof that r = s seems to fly in the face of statistical syllogisms (1) and 
(2) as differing predictions about Jones. This matter I want to leave aside 
for the moment and look more carefully at the rule of detachment (3), as 
weIl as the more general case of probabilistic inference. 

For a given probability measure P the validity of (3) is unimpeachable. 
In view of the completely elementary - indeed, obvious - character of the 
argument establishing (3) as a rule of detachment, it is in many ways 
hard to understand why there has been so much controversy over whether 
a rule of detachment holds in inductive logic. -Undoubtedly the source of 
the controversy lies in the acceptance or rejection of the probability 
measure P. Without explicit relative frequency data, objectivists with 
respect to the theory of probability may deny the existence of P, and in 
similar fashion confirmation theorists mayaIso if the language for 
describing evidence is not explicitly characterized. On the other hand, for 
Bayesians like myself, the existence of the measure P is beyond doubt. The 
measure P is a measure of partial belief, and it is a condition of coherence 
or rationality on my simultaneously held beliefs that P satisfy the axioms 
of probability theory (forceful arguments that coherence implies satis
faction of the axioms of probability are to be found in the literature, 
starting at least with de Finetti, 1937). It is not my aim here to make a 
general defense ofthe Bayesian viewpoint, but rather to show how it leads 
to a sensible and natural approach to the concept of total evidence. 

On the other hand, I emphasize that much of what I have to say can be 
accepted by those who are not fuIl-fledged Bayesians. For example, what I 
have to say ab out probabilistic inference will be acceptable to anyone who 
is able to impose a common probability measure on the events or premises 
in question. 

For the context of the present paper the most important thing to 
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emphasize about the rule of detachment (3) is that its application in an 
argument requires no query as to whether or not the total evidence has 
been considered. In this respect it has exactly the same status as the rule 
of detachment in deductive logic. On the other hand it is natural from a 
logical standpoint to push for a still closer analogue to ordinary deductive 
logic by considering Boolean operations on events. 

It is possible to assign probabilities to at least three kinds of entities: 
sentences, propositions and events. To avoid going back and forth 
between the sentence-approach of confirmation theory and the event
approach of standard probability theory, I shall use event-Ianguage but 
standard sentential connectives to form terms denoting complex events. 
For those who do not like the event-Ianguage, the events may be thought 
of as propositions or elements of an abstract Boolean algebra. In any 
case, I shall use the language of logical inference to talk about one event 
implying the other, and so forth. 

First of all, we define A -+ B, as Ä v B in terms of Boolean operations on 
the events A and B. And analogous to (3), we then have, as a second rule 
of detachment: 

(7) 

P(B-+A) ~ r 
P(B) ~ p 

---
:. P(A) ~ r + p - 1. 

The proof of (7) uses the general addition law rather than the theorem on 
total probability: 

P(B -+ A) = P(E vA) 
= P(E) + P(A) - P(E & A) 
~ r, 

whence, solving for P(A), 

P(A) ~ r - P(E) + P(E & A) 
~r-(l-p) 
~r+p-l, 

as desired. The general form of (7) does not seem very enlightening, and 
we may get a better feeling for it if we take the special but important case 
that we want to claim both premises are known with near certainty, in 
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particular, with probability equal to or greater than 1-8. We then have 

P(B-+A)~l-e 

P(B)~l-e 

:.P(A)~1-2e. 
(8) 

It is worth noting that the form of the rule of detachment in terms of con
ditional probabilities does not lead to as much degradation from certainty 
as does (8), for 

p(AIB)~l-e 
P(B) ~ 1 - e 

(9) 
:. P(A) ~ (1 - 8)2, 

andfore>O, (l-e)2 > 1-2e. Itis useful tohavethis well-defined difference 
between the two forms of detachment, for it is easy, on casual inspection, 
to tbink that ordinary-Ianguage conditionals can be translated equivalently 
in terms of conditional probability or in terms of the Boolean operation 
corresponding to material implication. Which is the better choice I shall 
not pursue here, for application of either rule of inference does not 
require an auxiliary appeal to a court of total evidence. 

Consideration of probabilistic rules of inference is not restricted to de
tachment. What is of interest is that classical sentential rules of inference 
naturally fall into two classes, those for wbich the probability of the con
clusion is less than that of the individual premises, and those for which 
tbis degradation in degree of certainty does not occur. Tollendo ponens, 
tollendo tollens, the rule of adjunction (forming the conjunction), and the 
hypothetical syllogism all lead to a lower bound of 1-2e for the prob
ability of the conclusion given that each of the two premises is assigned 
a probability of at least 1-8. The rules that use only one premise, e.g., 
the rule of addition (from A infer A vB), the rule of simplification, the 
commutative laws and De Morgan's laws assign a 10wer probability 
bound of I - e to the conclusion given that the premise has probability of 
at least 1 - e. 

We may generalize this last sort of example to the following theorem. 
THEOREM 1: If P(A)~ l-e and A logically implies B then P(B)~ l-e. 
Proof: We observe at once that if A logically implies B then Ä u B = X, 

the whole sampIe space, and therefore AsB, but if AsB, then P(A)~ 
P(B), whence by hypothesis P(B)~ l-e. 
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It is also clear that Theorem 1 can be immediately generalized to any 
finite set of premises. 

THEOREM 2: lf each o/the premises Al' ... , An has probability 0/ at least 
I-e and these premises logically imply B then P(B)~ I-ne. 

Moreover, in general the tower bound 0/ I-ne cannot be improved on, 
i.e., equality holds in some cases whenever I-ne~O. 

Proof' By hypothesis for i= 1, ... , n, P(Ai)~ I-e. We prove by in
duction that under this hypothesis P(Al & ... & An)~ I-ne. The argu
ment for n= 1 is immediate from the hypothesis. Suppose it holds for n. 
Then by an elementary computation 

P(Al & ... &A" &An+l ) = 1- (1- P(Al & ... & An)) 
- (1 - P(An+ l )) 

+ P«Al & ... & All) &Än+ l ) 
~ 1- (1- P(Al & ... & An)) 

- (1 - P(AII + l )) 

~ 1- ne - e 
~1-(n+l)e, 

as desired. (Details of how to handle quantifiers, which are not explicitly 
treated in the standard probability discussions of the algebra of events, 
may be found in Gaifman, 1964, or Krauss and Scott, 1966. The basic 
idea is to take as the obvious generalization of the finite case 

P«3x) Ax) = sup {P(Aal v Aaz v .. · v Aall)} , 

where the sup is taken over a1l finite sets of objects in the domain. Re
placing sup by inf we obtain a corresponding expression for P«(Vx)Ax). 
Apart from details it is evident that however quantifiers are handled, the 
assignment of probabilities must be such that Theorem 1 is satisfied, i.e., 
that if A logically implies B then the probability assigned to B must be at 
least as great as the probability assigned to A, and this is a1l that is 
required for the proof of Theorem 2.) 

The proof that the lower bound 1 - ne cannot in general be improved 
upon reduces to constructing a case for which each of the n premises has 
probability l-e, but the conjunction, as a logical consequence of the 
premises takenjointly has probability I-ne, when I-ne~O. The example 
I use is most naturally thought of as a temporal sequence of events 



PROBABILISTIC INFERENCE 

Al' ... , An. Initially we assign 

P(A l )=I-e 
P(Al ) = e. 

Then 

1- 2e 
p(A2 1 Al) =-

l-e 

P(A2 I Al)=I, 

and more generally 

1 - ne 
P(An I An- lAn- 2 ... A l ) = ( ) I-n-le 

P(An I An-lAn-i .. · Al) = 1 

P(An I An- lAn- 2 ... Al) = 1, 

177 

in other words for any combination of pr~ceding events on trials 1 to n-l 
the conditional probability of An is 1, except for the case An- l An- 2 ... Al' 
The proof by induction that P (An) = 1 - e and P (AnAn -1 .•• Al) = 1 - ne is 
straightforward. The case for n = 1 is trivial. Suppose now the assertion 
holds for n. Then by inductive hypothesis 

P(An+lAn .. · Al) = P(An+l I An .. · Al) P(An ... Al) 

1 - (n + 1) e( ) 
= 1- ne 

1 - ne 
= 1- (n + 1) e, 

and by the theorem on total prob ability 

P(An+l ) = P(An+l I An .. · Al) P(An .. · Al) 
+ [P(An+l I An .. · Al) P(An .. · Al) + ... 
+ P(An+l I An .. · Al) P(An· .. Al)]' 

By construction all the conditional pro babilities referred to in the bracketed 
expression are 1, and the unconditional probabilities in this expression by 
inductive hypothesis simply sum to ne, i.e., 1-(1-ne), whence 

1 - (n + 1) e 
P(An+ l ) = '(1 - ne) + ne = 1- e, 

1- ne 

which completes the proof. 
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It is worth noting that in interesting special cases the lower bound of 
I-ne can be very much improved. For example, ifthe premises Al, ... , An 
are statistically independent, then the bound is at least (I -et. 

The intuitive content of Theorem 2 reflects a common-sense suspicion 
of arguments that are complex and depend on many premises, even when 
the logic seems impeccable. Overly elaborate arguments ab out politics, 
personal motives or circumstantial evidence are dubious just because of 
the uncertainty of the premises taken jointly rather than individually. 

A natural question to ask about Theorem 2 is whether any nondeductive 
principles of inference that go beyond Theorem 2 arise from the imposition 
of the probability measure P on the algebra of events. Bayes' theorem 
provides an immediate example. To illustrate it with a simple artificial 
example, suppose we know that the composition of an um of black (B) 
and white (W) balls may be exactly described by one of two hypotheses. 
According to hypothesis H" the proportion of white balls is r, and 
according to H., the proportion is s. Moreover, suppose we assign a 
priori probability p to Hr and 1 - p to H •. Our four premises may then be 
expressed so: 

P(W IHr) = r 
P(WIH.)=s 

P(Hr) = p 
P(H.) = 1- p. 

Given that we now draw with replacement, let us say, two white balls, we 
have as the likelihood ofthis event as a consequence ofthe first two premises 

P(WW IHr) = r 2 

P(WW I Hs) = S2, 

and thus by Bayes' theorem, we may infer 

r2p 
P(Hr I WW) = 2 2( )' rp+s I-p 

(10) 

and this is elearly not a logical inference from the four premises. Logical 
purists may object to the designation of Bayes' theorem as a principle of 
inference, but there is little doubt that ordinary talk about inferring is 
very elose to Bayesian ideas, as when we talk about predicting the weather 
or Jones' health, and such talk also has widespread currency among 
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statisticians and the many kinds of people who use statistical methods to 
draw probabilistic inferences. 

The present context is not an appropriate one in which to engage upon 
a full-scale analysis of the relation between logical and statistical inference. 
I have only been concernedhereto establish two mainpoints aboutinference. 
First, in terms of standard probability theory there is a natural form of 
probabilistic inference, and inference from probabilistically given premises 
involves no appeal to the concept of total evidence. Second, all forms of 
such probabilistic inference are not ·subsumed within the forms of logical 
inference, and two examples have been given to substantiate this claim, 
one being the rule of detachment as formulated for conditional probability 
and the other being Bayes' theorem. 

111. THE STATISTICAL SYLLOGISM RE-EXAMINED 

There is, however, a difficulty about the example of applying Bayes' 
theorem that is very similar to the earlier difficulty with the statistical 
syllogism. I have not stated as explicit premises the evidence WW that 
two white balls were drawn, and the reason I have not provides the key 
for re-analyzing the statistical syllogism and removing all air of paradox 
from it. 

The evidence WW has not been included in the statement of the 
premises of the Bayesian example, because the probability measure P 
referred to in the premises is the measure that holds before any taking of 
evidence (by drawing a ball) occurs. The measure P does provide a means 
of expressing the aposteriori probability after the evidence is taken as a 
conditional probability, but the hypothetical or conditional nature ofthis 
assertion has been too little appreciated. Using just the measure P there 
is no way to express that in fact two white balls were drawn, rather than, 
say, a white ball and then a black ball. Using conditional probabilities 
we can express the aposteriori probabilities of the two hypotheses under 
any possible outcomes of one, two or more drawings. What we cannot 
express in these terms is the actual evidence, and it is amistake to try. 
(It should be apparent that these same remarks apply to Carnapian 
confirmation functions.) Commission of this mistake vitiates what appears 
to be the most natural symbolic formulation of the statistical syllogism -
the inference form (5) as a special case of (3). 
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We can symbolize statistical syllogism (1) as folIows, where e(x) is the 
life expectancy of person x and a(x) is the age of person x, and let 
j=Jones: 

(11) 

P(e(j) ~ 15150< a(j) < 60) = r 
50< a(j) < 60 

:. P(e(j) ~ 15) = r. 

Now let us schematize this inference in terms of hypothesis and evidence as 
these notions occur in Bayes' theorem 

P(hypothesis 1 evidence) = r 

(12) 
evidence 

:. P (hypothesis) = r, 

and the incorrect character of this inference is clear. From the standpoint 
of Bayes' theorem it asserts that once we know the evidence, the a 
posteriori probability P(H I E) is equal to the apriori probability P(H), 
and this is patently false. The difficulty is that the measure P cannot be 
used to assert that P(50<a(j)<60)= 1, which is, I take it, a direct 
consequence of the assertion that 50< a (j) < 60. (I shall expand on this 
point later.) The measure P is the measure used to express the con
ditional probabilities about Jones' life expectancy generated by any 
possible evidence. The inference-form expressed by (11) is illegitimate 
because the same probability measure does not apply to the two premises 
and the conclusion, as the scheme (12) makes clear when compared to 
Bayes' theorem. 

Because there seems to be something genuine even if misleading about 
the statistical syllogism, it is natural to ask what are nonparadoxical ways 
of symbolizing it. One way is simply to adopt the symbolism used in 
Bayes' theorem, and then the conclusion is just the same as the first 
premise, the assertion of the aposteriori probability P(hypothesis I evi
dence). A related approach that makes the inference seem less trivial 
is the following. First, we symbolize the major premise in universal form, 
rather than with particular reference to Jones, for example: 

The prob ability that a male resident of California will live at least 15 
years given that he is now between 50 and 60 years is r, or symbolically, 
where m(x) is male resident of California, 

P(e(x) ~ 151 m(x) & 50 < a(x) < 60) = r, 
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and secondly, given as second premise the event A that 

m (j) & 50 < a (j) < 60, 

we may write the conclusion in terms of a new probability measure PA 
conditionalized on A:PA(e(j)~15)=r. Moreover, it is clear that no 
paradox arises from (2) because the evidence expressed in the second 
premise of (2) represents an event B distinct from A, and the conclusion 
PB(e(j)~ 15)=s, is consistent with the conclusion PA (e(j)~ 15)=r of 
(1). 

There is stilI another way of putting the matter which may provide ad
ditional insight into the inferential kernel inside the dubious statistical 
syllogism. We may think ofthe premises as aII the aposteriori probabilities 
given aII the different possible kinds of evidence. As an additional final 
premise, some evidence Ais asserted. On this basis a new measure PA is 
generated and the probability of the hypothesis is then asserted in terms 
of this new measure PA' as the conclusion of the inference. 

At this point it might seem easy to insist that delicate questions of con
sistency or coherence about the probability measure P do indeed differ
entiate deductive and inductive logic, but this is not at all the case. The 
problem of temporal order of knowledge is as characteristic of deductive 
as of inductive logic. In discussing deductive canons of inference we 
tacitly assume the statements whose inferential relations are being 
considered are all asserted or denied at a given time or are timeless in 
character. It is not a paradox of deductive logic that the joint assertion of 
two statements true at different times leads to a paradox - for example, 
it rained yesterday, and it did not rain yesterday. The same thing, I have 
argued, is to be said about the statistical syllogism. The same probability 
measure does not apply to the first and second premise; the measure 
referred to in the first premise is tempo rally earlier than the one implicit 
in the second premise and the conclusion. 

In the next section I turn to these temporal problems and their relation 
to the complex task of defining rationality, but before doing this I want 
briefly to pull several strands together and summarize in slightly different 
fashion the place given to the concept of total evidence by the view of 
probability advocated here. 

According to this view it is automatic that if a person is asked for the 
prob ability of an event at a given time it will follow from the conditions of 
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coherence on an his bellefs at that time that the probability he assigns to 
the event automatically takes into account the total evidence that he 
believes has relevance to the occurrence of the event. The way in which 
the total evidence is brought in is straightforward and simple through the 
theorem on total probability. To be quite c1ear how this theorem operates 
it may be useful to take a somewhat detailed look at the gradual ex
pansion ofthe probability of an event A in terms of given evidence Band 
C. For purposes of generality we may assume that the probability of B 
and C is not precisely 1 and therefore deal with the general case. (In the 
interest of compactness of notation, I here let juxtaposition denote inter
section or conjunction.) First we have 

(13) P(A) = P(A I B) P(B) + P(A I B) P(B). 

We also have 

(14) P(A) = P(A I C) P(C) + P(A I C) P(C). 

And in terms of both Band C we have the more complex version: 

(15) P(A) = P(A I BC) P(BCY + P(A I BC) P(BC) 
+ P(A I BC) P(BC) + P(A I BC) P(BC). 

In the special case that P(B)=P(C)= 1, we then have 

P(A) = P(A I B) = P(A I C) = P(A I BC). 

We have in the general case, as indications of the relations between 
"partial" and "total" evidence, 

and 
P(A I B) P(B) = P(A I BC) P(BC) + P(A I BC) P(BC) 

P(A I B) P(B) = P(A I BC) P(BC) + P(A I BC) P(BC). 

The point of exhibiting these identities is to show that no separate concept 
of total evidence need be added to the concept of a probability measure 
on an individual's beliefs. It also may seem that these identities show that 
the notion of conditional probability is not even needed. The important 
point however is that the serious use contemplated here for the notion of 
conditional probability is in terms of passing from the probability 
measure expressing partial beliefs at one time to a later time. It is just by 
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conditionalizing in terms of the events that actually occurred that this 
passage is made a good deal of the time by most information-processing 
organisms. 

I conclude this paper with a more detailed look at the processes by 
which beliefs are changed. 

IV. RATIONAL CHANGES IN BELIEF 

It seems important to recognize that the partial beliefs, or probability 
beliefs as we may term them, that an individual holds as a mature adult 
are not in any realistic way, even for an ideally rational individual, to be 
obtained simply by conditionalization, that is, in terms of conditional 
probability, from an overall probability measure which the individual 
was born with or acquired early in life. The patent absurdity of tbis idea 
does not seem to have been adequately reflected upon in Bayesian 
discussions of these matters. The static adherence to a single probability 
measure independent of time is characteristic of de Finetti (1937) and 
Savage (1954), but even a superficial appraisal of the development of a 
cbild's information-processing capacities makes it evident that other 
processes than conditionalization are required to explain the beliefs held 
by a mature adult. Moreover, even an adult who does not live in a 
terribly static and simple world will need other processes than condition
alization to explain the course of development of his beliefs during his 
years as an adult. 

Acceptance of the view that a person's beliefs at time t are to be ex
pressed by a probability measure special for that time raises certain 
problems that go beyond ordinary talk about probabilities. Under tbis 
view what probability are we to assign to events that a person knows 
have occurred? I can see no other course but to assert that such events 
have probability 1. Thus if I know that Jones is between 50 and 60 years 
of age then tbis event has probability 1 for me. We shall take as an axiom 
linking knowing and probabilistic beliefs as weIl as an axiom Iinking 
beliefs and probabilistic beliefs exactly tbis assertion, that is, if a person 
knows or believes that an event occurred then the probability of this 
event for that person is 1. For example, since I now believe with certainty 
in my own mind that Julius Caesar stayed several weeks in Gaul the 
probability of tbis event for me is 1. 
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The kind of problem that is solved by this axiom, and that is trouble
some in a more detailed look at the standard Bayesian viewpoint, is the 
following. It is customary to remark, as has already been indicated, that 
the probability of an event should be conditionalized on that which has 
occurred. But it is also natural to ask what currently is the prob ability to 
be attached to an event that has occurred. Thus ifthe event B has occurred 
what probability is to be assigned to it (here I engage in the standard 
simplification of talking about the event occurring and not using the more 
carefullocution of talking about knowing or believing that the event has 
occurred). It is not sufficient to say that we may refer to the probability 
of B given B because in this vein we can talk about the conditional prob
ability of any event given that event. It is necessary to assign probability 
1 to all such conditional probabilities independent of whether or not the 
event B has actually occurred. 

To put in another way an argument already given, once the continual 
adjustment of probability to the current state of affairs is supposed, and 
there is much in ordinary thinking and language that supports this idea, 
the problem of seeming to need to introduce aseparate assumption about 
using all the evidence available simply disappears. As has been shown, it 
is an immediate consequence of the theorem on total probability that 
when we discuss the probability of an event A the relevance of any in
formation we have about the event is immediately absorbed in a cal
culation of this probability, as a direct consequence of the theorem on 
total probability. 

Unfortunately, there is another problem oftotal evidence, related to but 
not the same as, the one we started with. This new problem would seem to 
occupy a central position in any analysis of how we change our beliefs 
from one time to another. The problem is that of characterizing what part 
of the weIter of potential information impinging on an organism is to be 
accepted as evidence and how this evidence is to be used to change the 
organism's basic probability measure. From the standpoint of psychology 
and physiology, a satisfactory empirical answer seems a great distance 
away. The fact of our empirical ignorance about matters conceptually so 
elose to central problems of epistemology is philosophically important, 
but of still greater philosophical importance is the fact that our general 
concept of rationality seems intimately involved in any answer, empirical 
or not, that we give. Until we can say how an organism of given capacities 
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and powers should process the information impinging on it we cannot 
have a very deep running concept of rationality. 

The point that I want to make here needs some delineation. The prob
lem is not one of giving many instances in which there is great agreement 
on what is the rational way to process information. If a man is in a house 
that is burning, he is irrational calmly to continue to listen to music, or if 
a man is driving down a highway at high speed, he is irrational if he 
becomes absorbed in the beauty of the landscape and looks for forty or 
fifty seconds at an angle nearly perpendicular to the road itself. These 
simple instances can be multiplied to any extent desired, but what is not 
easy to multiply is the formal characterization of the principles that should 
be applied and that govern the variety of cases in which we all have a c1ear 
intuitive judgment. 

To a large extent work in inductive logic and statistical inference tends 
to obscure the fundamental character of this problem of giving principles 
by which information is to be judged important and to be responded to. 
The reason for this neglect in inductive logic or theoretical statistics is 
that once the formallanguage or the random variables are selected, then 
the problem of information-processing is reduced to re1atively simple 
proportions. The selection of the language or the selection of the random 
variables, as the case may be, is the largest single decision determining 
how information will be processed, and to a very large extent the simple 
rule of conditionalizing, so that the measure held at a later time arises 
from an earlier probability measure as a conditional probability measure, 
then furnishes the appropriate way to proceed. It might alm ost be said 
that the rule of pure prudence is always to derive beliefs held at time t from 
beliefs held at time t' by conditionalization on the probability measure 
characterizing partial beliefs at the earlier time. Although such a principle 
ofpure prudence may seem attractive at first glance, in my ownjudgment 
it is a piece of pure fantasy. A myriad of events are occurring at all times 
and are noticeable by a person's perceptual apparatus. What is not the 
least bit c1ear is what sort of filter should be imposed by the individual on 
this myriad of events in order to have a workable simplifying scheme of 
decision and action. The highly selective principles of attention that must 
necessarily be at work do not seem to be characterizable in any direct way 
from the concept of conditional probability. 

The two interrelated processes that any adequate theory of rationality 
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must characterize are the proeess of information selection and the process 
of changing bellefs according to the significanee of the information that is 
selected. In other words, to what should the rational man pay attention in 
his ever-changing environment and how should he use the evidence of 
that to which he does attend in order to change his beliefs and thereby 
modify his decisions and actions. 

What seems particularly difficult to describe are rational mechanisms of 
selection. In a first approximation the c1assical theory of maximizing ex
pected utility as developed by Ramsey, de Finetti, Savage and others uses 
the mechanism of conditional probabilities to change beliefs onee the in
formation to be attended to has been selected. This classical mechanism is 
certainly inadequate for any proeess of concept formation, and thus for 
any very deep running change in belief, and as Jeffrey (1965) points out, it 
is not even adequate to the many cases in which changes in belief may be 
expressed simply as changes in probability but not explicitly in terms of 
changes in conditional probability, because the changes in probability are 
not completely analyzable in terms of the explicitly noticed occurrenee of 
events. For example, the probability that I will assign to the event of rain 
tomorrow will change from morning to afternoon, even though I am not 
able to express in explicit form the evidence I have used in coming to this 
change. In Suppes (1966) I have attempted to show how inadequate the 
Bayesian approach of conditional probability is in terms of even fairly 
simple processes of coneept formation, and I do not want to go over that 
ground again here, except to remark that it is clear on the most casual 
inspection that all information processing that an organism engages in 
cannot be coneeived of in terms of conditional probabilities. 

It is even possible to question whether any changes can be so expressed. 
The measure P effectively expressing my beliefs at time t cannot be used to 
express what I actually observe immediately after time t, for P is already 
"used up" so to speak in expressing the apriori probability of each 
possible event that might occur, and cannot be used to express the 
unconditional occurrence of that which in fact did happen at time t. 
Pragmatically, the situation is clear. If an event A occurs and is noticed, 
the individual then changes his belief pattern from the measure P to the 
conditional measure PA, and our reformulated version of the statistical 
syllogism is exemplified. What has not been adequately commented upon 
in discussions of these matters by Bayesians is that the probability 
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measure P held at time t cannot be used to express what actually happened 
immediately after t, but only to express, at the most, how P would change 
if so and so did happen. 

In any case, genuine changes in conceptual apparatus cannot in any 
obvious way be brought within this framework of conditional probability. 
As far as I can see, the introduction of no genuinely new concept in the 
history of scientific or ordinary experience can be adequately accounted 
for in terms of conditional probabilities. A fundamental change in the 
algebra of events itself, not just their probabilities, is required to account 
for such conceptual changes. Again, it is a problem and a responsibility 
of an adequate theory of normative information processing to give an 
account of how such changes should take place. 

What I would like to emphasize in conclusion is the difficulty of ex
pressing in systematic form the mechanisms of attention a rationally
operating organism should use. It is also worth noting that any interesting 
concept of rationality for the behavior of men must be keyed to a realistic 
appraisal of the powers and limitation of the perceptual and mental 
apparatus of humans. These problems of attention and selection do not 
exist for an omniscient God or an information-processing machine whose 
inputs are already schematized into something extraordinarily simple and 
regular. The difficulty and subtlety of characterizing the mechanisms of 
information selection and at the same time a recognition of their im
portance in determining the actual behavior of men make me doubt that 
the rather simple Carnapian conception of inductive logic can be of much 
help in developing an adequate theory ofrational behavior. Even the more 
powerful Bayesian approach provides a very thin and inadequate 
characterization of rationality, because only one simple method for 
changing beliefs is admitted. It is my own view that there is little chance 
of defining an adequate concept of rationality until analytical tools are 
available to forge a sturdy link between the selection and use of evidence 
and processes of concept formation. 



PART III 

FOUNDATIONS OF PHYSICS 



My earliest interest in philosophy was in the philosophy of physics, and as 
I remarked in the preface, I have not inc1uded any work on the foundations 
of c1assical mechanics, because that work, undertaken jointly with 
J. C. C. McKinsey, is covered in some detail in my Introduction to Logic. 
Over the past decade, my interests have shifted more to mathematical 
psychology and to the foundations of psychology, but I continue to 
retain my original interest in the foundations of physics, and hope that I 
shall be able to make contributions to the subject in the years to come. If 
time and energy permitted, I would like best to write a kind of Bourbaki 
of physics showing how set-theoretical methods can be used to organize 
all parts of theoretical physics and bring to all branches of theoretical 
physics a uniform language and conceptual approach. I rather suspect, 
however, that only a very small circ1e of scholars would be interested in 
such work. Physicists consider the subject of no real interest from the 
standpoint of physics, the present generation of philosophers with some 
mathematical training are little interested in physics, and mathematicians 
are interested only if new results of mathematical interest are obtained. 
Perhaps the message is that system building, even of this austere kind, is 
not currently in fashion as a way of doing the philosophy of physics. 

The four articles in this part do not represent any sort of system building, 
but concentrate on conceptually important aspects of relativity theory 
and quantum mechanics. The first of the four articles is concerned 
mainly with the derivation of the Lorentz transformations of the special 
theory of relativity from an explicit, but minimal set of assumptions. 
Since the initial publication in 1959 of Artic1e 12 on the derivation ofthe 
Lorentz transformations, important new results have been published by 
Walter NoH (1964) and also by E. C. Zeeman (1964). 

The elegant aspect of NoH's paper is that he axiomatizes Minkowskian 
chronometry using coordinate-free methods. The representation and 
derivations in Article 12 depend upon co ordinate methods. Zeeman 
shows that it is not necessary to assume invariance of timelike intervals as 
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in Article 12, but that it is sufficient to assume the preservation of order, 
that is, the relativistic partial ordering of beforeness between points is 
sufficient to guarantee derivation of the Lorentz transformations. Like 
many simple and beautiful ideas, it is surprising that this did not occur to 
someone sooner. The key to the results was already present in the early 
work of Robb (1936), which shows that the binary relation of beforeness 
is a sufficient conceptual basis for the kinematical theory of special 
relativity. (Reference to Robb's very original book is to be found at the 
end of Article 12.) 

The phrase 'with or without parity' in the title of Article 12 refers to 
whether it is possible to derive the direction of time from the axioms of 
relativistic kinematics. It is clearly not possible for the axioms given in 
that paper. In order to do this, I discuss in the final section the possibility 
of introducing a relation of signaling. It is obvious that this can be done 
very directly in an ad hoc fashion. What is needed, however, is some 
natural approach that is fully satisfying from an intuitive and a con
ceptual standpoint. In his article, Noll makes some remarks about this, 
and he raises the question of whether-his approach solves the problem I 
raised. Essentially, Noll introduces a directed signal relation that is 
asymmetrie, and of course if we postulate that the numerical represen
tation must preserve the signal direction in terms of signals passing from 
earlier to later events, the direction of time is guaranteed. I find this 
approach unsatisfactory since this is an arbitrary stipulation in the 
definition of isomorphism, and we get just as good an isomorphism from 
a structural standpoint ifthe direction in time is reversed. What is needed 
are substantive postulates about the nature of signaling, probably in 
terms of the spread of information, but any such postulates will necessarily 
take us far beyond the ordinary kinematics of the special theory of 
relativity. I suppose my present view is that there is no hope of deriving 
the direction of time within a framework of ideas natural to the special 
theory of relativity, but deeper investigation of this question is certainly 
desirable. 

The last three articles ofPart In, Articles 13 to 15, are concerned with 
probability concepts in quantum mechanics and the relation of these 
probability concepts to a nonclassicallogic of quantum mechanies. The 
number of philosophically interesting problems that remain open in this 
domain is large, and I certainly recognize the modest nature of my own 
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contribution to the problems. From a purely logical standpoint, a 
thorough investigation of the axiomatization as a sententiallogic of the 
nonclassicallogic of quantum mechanics expressed in algebraic form in 
Article 15 would be a matter of interest to some logicians and some 
philosophers of science. It is too remote from physics itself to be of major 
interest to those wrapped up in the conceptual problems of quantum 
mechanics. Much more pressing from the standpoint of the foundations 
of physics is the working out of a fully satisfactory axiomatization of 
classical quantum mechanics. Probably the best presentation as yet 
available is that found in Mackey (1963). Mackey, however, does not 
reach the level of a specific representation of physical problems; and it is 
not clear how to extend Mackey's axioms in a natural way to give 
particular experimental situations a categorical representation. Such 
extensions in the case of classical mechanics are obvious. In other words, 
once we specify the state of the system at a given instant in terms of the 
positions and velocities of all particles, and express a force function, the 
motions ofthe particles are determined uniquely. But general assumptions 
that match observables to operators in a constructive way are not apart 
of Mackey's axiomatization. 

The other essential topic in the philosophy of quantum mechanics not 
touched upon here is the collection of problems generally lumped together 
under the heading of problems of measurement in quantum mechanics. 
What I have said in the three articles included here about probability in 
quantum mechanics is, I believe, important for working out a correct 
theory of measurement in quantum mechanics, but that is about all that 
can be claimed. For a look at some ofthe problems central to the quantum 
mechanical theory of measurement, I would recommend an article by my 
younger colleague, Joseph Sneed (1966). 

Finally, for a spirited defense of classical Iogic in quantum mechanics, 
I would recommend the recent article by Arthur Fine (1968). In spite of 
Fine's clearly stated arguments, I continue to think the case is strong for 
defending the nonclassical character of both probability and logic in 
quantum mechanics. If the view I defend in Articles 13-15 is correct, this 
deviation from classicaI probability theory and classicallogic is the most 
philosophically significant aspect of quantum mechanics. 
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WITH OR WITHOUT PARITY* 

I. INTRODUCTION 

The primary aim of this paper is to give an elementary derivation of the 
Lorentz transformations, without any assumptions of continuity or 
linearity, from a single axiom concerning invariance of the relativistic 
distance between any two space-time points connected by an inertial 
path. The concluding section considers extensions of the theory of 
relativistic kinematics which will destroy conservation oftemporal parity, 
that is, extensions which are not invariant under time reversals. 

It is philosophically and empirically interesting that the Lorentz 
transformations can be derived without any extraneous assumptions of 
continuity or differentiability. In a word, the single assumption needed 
for relativistic kinematics is that all observers at rest in inertial frames get 
identical measurements of relativistic distances along inertial paths when 
their measuring instruments have identical calibrations. Note that it is 
a consequence and not an assumption that these observers are moving 
with a uniform velocity with respect to each other. Granted the possi
bility of perfect measurements everywhere of relativistic intervals, this 
single axiom isolates in apreeise way the narrow operation al basis needed 
for the special theory of relativity. 

Prior to any search of the literature it would seem that this result would 
be weIl known, but I have not succeeded in finding the proof anywhere. 
Every physics textbook on relativity makes a linearity assumption at the 
minimum. In geometrical discussions of indefinite quadratie forms it is 
often remarked that the relativistic interval is invariant under the Lorentz 
group, but it is not proved that it is invariant under no wider group, whieh 
is the main fact established here. Some further remarks in this connection 
are made at the end of Seetion H. 

* Reprinted from The Axiomatic Method with Special Reference to Geometry and 
Physics (ed. by L. Henkin, P. Suppes, and A. Tarski), North-Holland Publ. Co., 
Amsterdam, 1959, pp. 291-307. 
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11. PRIMITIVE NOTIONS AND SINGLE AXIOM 

Our single initial axiom for relativistic kinematics is based on three 
primitive notions, each of which has a simple physical interpretation. 
The first notion is an arbitrary set X interpreted as the set of physical 
space-time points. The second notion is a nonempty family ~ of one-one 
functions mapping X onto R4 , the set of all ordered quadrupies of real 
numbers. (Thus X must have the power of the continuum.) Intuitively 
each function in ~ represents an inerlial space-limeframe ofreference, or, 
more explicitly, a space-time measuring apparatus at rest in an inertial 
frame. If xEX,fE~, andf(x) = <Xl' X2' X3' I) then Xl' X2' andx3 are the 
three orthogonal spatial coordinates of the point X, and 1 the time 
co ordinate, with respect to the frame f For a more explicit formal 
notation,/; (x) is the ith co ordinate of the space-time point X with respect 
to the frame 1, for i= 1, ... ,4. The third primitive notion is a positive 
number c, which is to be interpreted as the speed of light. 

It is convenient to have a notation for the relativistic distance with 
respect to a framefbetween any two space-time points x and y. 

DEFINITION 1: lf x, y E X and f E ~ then 

(We always take the square root with positive sign.) If fis an inertial 
frame, then (i) If(xy)=O if x and y are connected by a light 1ine; (ii) 
I} (xy) < 0 if x and y lie on an inertial path (the square is negative since 
If(xy) is imaginary); (iii) I(xy»O if x and y are separated by a "space
like" interval. We use (ii) for a formal definition. 

DEFINITION 2: lf x, YEX and fE~ then x AND y LIE ON AN INERTIAL 

PATH WITH RESPECT TOfif and only if I} (xy) <0. 
It will also occasionally be useful to characterize inertial paths in terms 

oftheir speed. We may do this informally as folIows. By the slope of a line 
Ci in R4 , whose projection on the 4th co ordinate (the time co ordinate) is a 
non-degenerate segment, we mean the three-dimensional vector W such 
that for any two distinct points <Zl' (1 ) and <Z2' t2 ) of Ci 

Zl - Z2 
W=--

t1 - t2 
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By the speed of a we mean the nonnegative number I WI. An inertial path 
is a line in R4 whose speed is less than c; and a light line is of course a line 
whose speed is c. 

The single axiom we require is embodied in the following definition. 
DEFINITION 3: A system ;I=(X, IJ, c) is a COLLECTION OF RELA

TIVISTIC FRAMES if and only if for every x, y in X, whenever x and y lie 
on an inertial path with respect to some frame in IJ, then for all J, f I in IJ 

I originally formulated this invariance axiom so as to require that Equation 
(1) hold for all space-time points x and y, that is, without restricting 
them to lie on an inertial path (with respect to some frame in IJ). Walter 
NoH pointed out to me that with this stronger axiom no physically 
motivated arguments of the kind given below are required to prove that 
any two frames in IJ are related by a linear transformation; a relatively 
simple algebraic argument may be given to show this. 

On the other hand, when the invariance assumption is restricted, as it is 
here, to distances between points on inertial paths, the line of argument 
formalized in the theorems of the next section seems necessary. This 
restriction to pairs of points on inertial paths is physically natural 
because their distances I f (xy) are more susceptible to direct measure
ments than are the distances of points separated by a space-like interval 
(i.e., I f (xy) > 0). 

III. THEOREMS 

In proving the main result that any two frames in IJ are related by a 
Lorentz transformation, some preliminary definitions, theorems and 
lemmas will be useful. We shall use freely the geometrical language 
appropriate to Euclidean four-dimensional space with the ordinary 
positive definite quadratic form. 

THEOREM 1: /f k~O and f(x)-f(y)=k[f(u)-f(v)] then If(xy)= 
kIf (uv). 

Proof: If k=O, the theorem is immediate. So we need to consider 
the case for which k>O. It follows from the hypothesis of the theorem 
that 

(1) xj-Yj=k(uj-vj) for i=1, ... ,4, 
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where, for brevity here and subsequently, when we are considering a 
fixed elementfof lj,jj(X)=Xi' etc. Using (1) and Definition 1 we then 
have: 

IAxy) = J
i
t1 (XI- YI)2 - C2(X4 - Y4)2 

= J
i
t1 k2(U i - VI)2 - c2k2(U4 - V4)2 

= kI,(uv). Q.E.D. 

In the next theorem we use the notion of betweenness in a way which is 
meant not to exclude identity with one of the end points. 

THEOREM 2: If the points fex), f(y) and fez) are collinear and f(y) is 
betweenf(x) andf(z) then 

IAxy) + I,(yz) = I,(xz). 

Proof; Extending our subscript notation, let f(x)=x, etc. Since the 
three points x, y and z are collinear, and y is 1J.etween x and z, there is a 
number k such that 0 ~ k ~ 1 and 

(1) y = kx + (1 - k) z, 
whence 

y-z=k(x-z), 

and thus by Theorem 1 

(2) I,(yz) = kI,(xz). 

By adding and subtracting x from the right-hand side of (1), we get: 

y = kx + (1 - k) z + x - x, 
whence 

x - y = (1 - k)(x - z), 

and thus by virtue of Theorem 1 again, 

(3) IAxy) = (1 - k) I,(xz). 

Adding (2) and (3) we obtain the desired result: 

I,(xy) + I,(yz) = I,(xz). Q.E.D. 
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Our next objective is to prove a partial converse of Theorem 2. Since 
the notion of Lorentz transformation is needed in the proof, we introduce 
the appropriate formal definitions at this point. J is the identity matrix 
of the necessary order. 

DEFINITION 4: A matrix d (of order 4) is a LoRENTZ MATRIX if and 
only if there exist real numbers ß, 0, a three-dimensional vector U, and an 
orthogonal matrix tff of order 3 such that 

(In this definition and elsewhere, if Ais a matrix, A* is its transpose, and 
vectors like U are one-rowed matrices - thus U* is a one-column ma
trix.) The physical interpretation ofthe various quantities in Definition 1 
should be obvious. The number ß is the Lorentz contractionfactor. When 
0= -1, we have areversal of the direction of time. The matrix tff rep
resents a rotation of the spatial coordinates, or a rotation followed by a 
reflection. The vector U is the relative velocity of the two frames of ref
erence. For future reference it may be noted that every Lorentz matrix is 
nonsingular. 

DEFINITION 5: A Lorentz transformation is a one-one function cp 
mapping R4 onto itself such that there is a Lorentz matrix d and a 4-
dimensional vector B so that for all Z in R4 

cp(Z) = Zd + B. 

The physical interpretation of the vector B is c1ear. Its first three co
ordinates represent a translation of the origin of the spatial coordinates, 
and its last co ordinate a translation ofthe time origin. Definition 5 makes 
it clear that every Lorentz transformation is a nonsingular affine transfor
mation of R4, a fact which we shall use in several contexts. The important 
consideration for the proof of Theorem 3 is that affine transformations 
preserve the collinearity of points. 

THEOREM 3: If any two ofthe three points x, y, z are distinct and lie on an 
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inertial path with respect to fand if 1Axy)+IAyz)=I,(xz), then the 
pointsf(x)J(Y) andf(z) are collinear, andf(y) is betweenf(x) andf(z). 

Proof· Three cases naturally arise. 
Case I: 12(xy)<0. In this case the line segment f(x)-f(y) is an 

inertial path segment from x to y, and there exists a Lorentz transfor
mation qJ which will transform the segmentf(x)-f(y) to "rest", that is, 
more precisely, qJ may be chosen so as to transformfto a framef', which 
need not be a member of ty, such that the spatial coordinates of x and y 
are at the origin, the time co ordinate of x is zero, and z has but one 
spatial co ordinate, by appropriate spatial rotation. That is, we have: 

f'(x) = (0,0,0,0), 

f' (y) = (0,0, 0, y~), 

f' (z) = (z~, 0, 0, z~). 

We shall prove that!, (x),f' (y) and!, (z) are collinear. Since qJ is non
singular and affine, its inverse qJ -1 exists and is affine, whence collinearity 
is preserved in transforming from f' back to f 

It is a familiar fact that the relativistic intervals 1,(xy), 1,(yz) and 
1,(xz) are Lorentz invariant and thus have the same value with respect to 
f' as f Consequently, from the additive hypo thesis of the theorem, we 
have: 

(1) J - c2y~2 + J Z~2 - C2(y~ - Z~)2 = J~2 - C2Z~2. 

Squaring both sides of (I), then cancelling and rearranging terms, we 
obtain: 

(2) J - yt·Jz? - C2(y~ - Z~)2 = cy~(y~ - z~). 

If y~ = 0, then x and y are identical, contrary to the hypo thesis that 
12 (xy) < 0. Taking then y~ '# 0, dividing it out in (2), squaring both sides 
and cancelling, we infer: 

whence 

z~ = 0, 

which establishes the collinearity in f' of the three points, since their 
spatial coordinates coincide, and obviously f' (y) is between f' (x) and 
f'(z). 
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Case 2: I;(yz)<O. Proof similar to Case 1. 
Case 3: I;(xz)<O. By an argument similar to that given for Case 1, 

we may go fromjto a frameJ' by a Lorentz transformation which will 
transform the inertial segmentj(x)-j(z) to "rest". That is, we obtain: 

f' (x) = (0,0,0,0), 

f' (y) = (y~, 0, 0, y~>, 

f' (z) = (0,0, 0, z~). 

Then by the additive hypothesis of the theorem: 

(3) Jy~2 - c2y~2 + Jy~2 - C2(y~ - Z~)2 = J - C2Z~2. 

Proceeding as before, by squaring and cancelling, we obtain from (3): 

(4) J - C2Z~2.Jy~2 - c2y~2 = - c2y~Z~. 

Squaring again and cancelling yields: 

(5) y~2z~2 = 0. 

There are now two possibilities to consider: either y~ = ° or z~ = 0. If the 
former is the case, then the three points are collinear in R4 , for they are all 
three placed at the origin of the spatial coordinates. On the other hand, 
if z~ = 0, then x and z are identical points, contrary to hypothesis. Again 
it is obvious thatJ'(y) is betweenJ'(x) andJ'(z). Q.E.D. 

That a full converse of Theorem 2 cannot be proved, in other words 
that the additive hypothesis 

does not imply collinearity, is shown by the following counterexample: 

I (x) = (0,0,0,0), 
I (y) = (I, 1,0,0) 

I (z) = (J2c, 0, 0, 1). 

Clearly,J (x),J (y) andj(z) are not collinear in R4 , but IAxy) + IAYz) = 

IAxz), that is, 
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For, simplifying and rearranging (1), we see it is equivalent to: 

(2) J2 - 2.J'ic + c2 = C -.,j'i 
and the Ieft-hand of (2) is simply 

J (c - ..)'1)2 = C - ..)'1 . 

(It may be mentioned that the full eonverse of Theorem 2 does hold for 
R2 , that is, when there is a restrietion to one spatial dimension.) 

We now want to prove some theorems about properties whieh are 
invariant in ty. Formally, a property is invariant in ty if and only if it 
holds or does not hold uniformly for every member 1 of ty. Thus to say 
that the property of a line being an inertial path is invariant in ty means 
that a line with respeet to 1 in ty, is an inertial path with respeet to 1 if 
and only if it is an inertial path with respeet to every 1 I in ty. All geometrie 
objeets referred to here are with respect to the frames in ty. 

THEOREM 4: The property 01 being the midpoint 01 a finite segment 01 an 
inertial path is invariant in ty. 

Proof' Suppose x, y and z lie on an inertial path with respeet to fand 

(1) f(y) =tf(x) + tf(z), 

and thus 

f(y) - fex) =!U (z) - f (x)]. 

Consequently by virtue of Theorem 1 

(2) I,(xy) = !IAxz) 

and similarly 

(3) I,(yz) = Y,(xz) , 

whence 

(4) IAxy) + I,(yz) = IAxz). 

Now by the invarianee axiom of Definition 3, for any f' in 0: 

II'(xy) = I,(xy) 
II'(Yz) = I,(yz) 
II'(xz) = I,(xz). 
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Substituting these identities in (4) we obtain: 

Ir (xy) + Ir (yz) = Ir (xz). 
Thus by virtue of Theorem 3, f' (x), f' (y) and f' (z) are collinear with 
f'(y) betweenf' (x) andf' (z). Moreover, since by the invariance axiom 
(2) and (3) hold for f', we conclude f' (y) is actually the midpoint. 
Q.E.D. 

This proof is easily extended to show that the property of being an 
inertial path is invariant in ty, but we do not directly need this fact. We 
next want to show that this midpoint property is invariant for arbitrary 
segments. In view of the counterexample following Theorem 3 it is 
evident that a direct proof in terms of the relativistic intervals cannot be 
given. The method we shall use consists essentially of constructing a 
parallelogram whose sides are segments of inertial paths. A similar but 
somewhat more complicated proof is given in Rubin and Suppes (1954). 

THEOREM 5: The property 0/ being the midpoint 0/ an arbitrary finite 
segment is invariant in ty. 

Proo/: Let A=(Z1' (1) and B=(Zz,lz) where A is an arbitrary 
segment in R4 • (The points A to G defined here are with respect to / in 
ty.) For definiteness assume 11 ~ Iz• We set 

Z1 +Zz 
Zo=---

2 

and we choose to and 13 so that 

IZ1 - Zzl 
10 < Iz - , 

2c 

IZI - Zzl 
t3 > t 1 + 2c ' 

IA - (Zo, t3 )1 = I(Zo, to> - BI, 
IA - (Zo, to>1 = I(Zo, t3> - BI· 

We now let (see Figure 1) 

C = (Zo, to>, 
A+B 

E=--, 
2 

A+C 
G=--. 

2 

D = (Zo, t3>, 
B+D 

F=-2-' 
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o 

A 

B 

c 
Fig. 1. 

Denoting now the same points with respect to!' in (J by primes, we have 
by virtue ofthis construction in! and the invariance property ofTheorem 4, 

(1) E' = HC' + D'), 

(2) F' = HB' + D'), 
(3) G' = HA' + C'), 
(4) E' = HF' + G'). 

Substituting (2) and (3) into (4) we have: 

E' = !U(B' + D') + HA' + C')] 
= HHA' + B') + HC' + D')]. 

Now substituting (1) into the right-hand side of the last equation and 
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simplifying, we infer the desired result: 

E' = HA' + B'), 

since by construction E=HA+B). Thus the midpoint of an arbitrary 
segment is preserved. Q.E.D. 

THEOREM 6: The property of two finite segments of inertial paths being 
parallel and in afixed ratio is invariant in !J. 

Proof" Letf(x)-f(y)=k[f(u)-f(v)], withf(x)-f(y) andf(u)
f (v) segments of inertial paths. Without loss of generality we may assume 
k~ 1. Let z be the point such thatf (x)-f(y) =k [f(x)-f(z)]. We now 
construct a parallelogram withf(u)-f(v) andf(x)-f(z) as two parallel 
sides. By the previous theorem any parallelogram in f is carried into a 
parallelogram in!, since the midpoint of the diagonals is preserved. Thus 

(1) I' (u) - I' (v) = I' (x) - I' (z), 

but by Theorems 2 and 3 

(2) I' (x) - I' (y) = k [I' (x) - I' (z)] , 

(for details see proof of Theorem 4), whence from (1) and (2) 

f'(x) - I'(Y) = k[l'(u) - I'(v)]. Q.E.D. 

As the final theorem about properties invariant in !J, we want to 
generalize the preceding theorem to arbitrary finite segments. 

THEOREM 7: The property of two arbitrary finite segments being parallel 
and in a fixed ratio is invariant in !J. 

Proof: In view of preceding theorems, the crucial thing to show is that if 

f (x) - f (y) = k [J (x) - f (z)] 
then 

I'(x) - I'(y) = k[J'(x) - I'(z)]. 

Our approach is to use an "inertial" parallelogram similar to the one used 
in the proof of Theorem 5. In fact an exactly similar construction will be 
used; points A to E are constructed identically, where A=f(x) and 
B=f(Y). Without loss of generality we may assume k>2, that is, that 
f(z)=Fis between A and E. We then have that 

(1) A - E = (kj2)[A - FJ. 
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o 

A 

B 

c 
Fig.2. 

We draw through Fa line parallel to CD, which cuts AC at G and AD at 
H. (See Figure 2.) 
Now (1) is equivalent to: 

(2) F = (1 - 2jk) A + (2jk) E. 

Moreover, by construction 

(3) F = HG + H) 
(4) E=HC+D) 
(5) G = (1 - 2jk) A + (2jk) C 

(6) H = (1 - 2jk) A + (2jk) D. 

Since GFH, AGC, AHD and CED are by construction segments of in-
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ertial paths, by virtue of Theorem 7, we have from (3)-(6): 

(7) F' = HG' + H') 
(8) E' = HC' + D') 
(9) G' = (1 - 2/k) A' + (2/k) C' 

(10) H' = (1 - 2/k) A' + (2/k) D'. 

Substituting (9) and (10) in (7), we get: 

(11) F' = (1 - 2/k) A' + (l/k)(C' + D'). 

And now substituting (8) in (11), we obtain the desired result: 

(12) F' = (1 - 2/k) A' + (2/k) E' . 

But now by virtue of Theorem 5 

E' = HA' + B'), 

which together with (12) yields: 

F' = (1 - l/k) A' + (l/k) Ei' , 

which is equivalent to: 

(13) f' (x) - f' (y) = k Cf' (x) - f' (z)] . 

The remainder of the proof, based upon considering f(x)-f(y)= 
k [f(u)-f(v)], is exactly like that of Theorem 6 and may be omitted. 
(In place of Theorems 2 and 3 in that proof we use the result just es
tablished.) Q.E.D. 

We now state the theorem toward which the preceding seven have been 
directed. 

THEOREM 8: Any two frames in (J are related by a nonsingular affine 
transformation. 

Proo/" A familiar necessary and sufficient condition that a transfor
mation of a vector space be affine is that parallel finite segments with a 
fixed ratio be carried into parallel segments with the same fixed ratio. 
(See, e.g. Birkhoff and MacLane, 1941, p. 263.) Hence by virtue of 
Theorem 7 any two frames are related by an affine transformation. Non
singularity of the transformation follows from the fact that each frame 
in (J is a one-one mapping of X onto R4 • Q.E.D. 
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Once we have any two frames in IJ related by an affine transformation, 
it is not difficult to proceed to show that they are related by a Lorentz 
transformation. In the proof of this latter fact, it is convenient to use a 
Lemma about Lorentz matrices, which is proved in Rubin and Suppes 
(1954) and is simply a matter of direct computation. 

Lemma I: A matrix d (of order 4) is a Lorentz matrix if and only if 

d('J 0) d* = ('.f 0). o - c2 0 - c2 

We now prove the basic result: 
THEOREM 9: Any two frames in IJ are related by a Lorentz transfor

mation. 
Proof: Let!,!, be two frames in IJ. As before, for x in X,f(x)=x, 

h (X)=X1' !,(x)=x', etc. We consider the transformation <p such that 
for every x in X, <p(x)=x'. By virtue ofTheorem 8 there is a nonsingular 
matrix (of order 4) and a four-dimensional vector B such that for every x 
inX 

<p(x) = xd + B. 

The proof reduces to showing that d is a Lorentz matrix. 
Let 

(1) d = (: :*). 
And let IX be a light line (in!) such that for any two distinct points x and y 
of IX if x= <Zl' t1> and y= <Z2' t2>, then 

Zl -Z2 
---=W. 
t1 - 12 

(2) 

Clearly IWI=c. Now let 

(3) 

From (1), (2) and (3) we have: 

, (Zl - Z2) .@ + (t1 - 12) F 
W= . 

(Zl - Z2) E* + (t1 - 12) g 
(4) 
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Dividing a1l terms on the right of (4) by t1 -t2 , and using (2), we obtain: 

W.!'i}+F 
W'= . 

WE*+g 
(5) 

At this point in the argument we need to know that I W'I = c, that is 
to say, we need to know that if I,{xy) =0, then I,. (xy) =0. The proof of 
this fact is not difficult. From our fundamental invariance axiom we have 
thatI,.{xy);;?;O, that is, 

(6) I W'I ~ c. 

Consider now a sequence of inertiallines 0(1' 0(2' ••• whose slopes WJ., 
W2 , ••• are such that 

(7) lim Wn = W. 
n .... oo 

Now corresponding to (5) we have: 

(8) , IWn.!'i}+F! IWnl = WnE* + g < c. 

Whence, from (8) we conclude that if WE* + g =F 0, then 

(9) IW'I = IHm W~I ~ c. 
n .... oo 

Thus from (6) and (9) we infer 

(10) IW'I = c, 

if WE* + g =F 0, but that this is so is easily seen. For, suppose not. Then 

lim (WnE* + g) = 0, 
n .... oo 

and thus 

lim {w,..!'i} + F) = 0. 
n .... oo 

Consequently W2#+F=O, and <W, l)d=O, which is absurd in view 
of the nonsingularity of d. 

Since IW'I=c, we have by squaring (5): 

W2#2#*W* + 2W2#F* + IFI2 
(11) {WE* + g)2 = c2 , 
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and consequently 

(12) W(~~* - c2E*E) W* + 2W(~F* - c2E*g) 
+ IFI 2 - c2g = 0. 

Since (12) holds for an arbitrary light line, we may replace W by - W, 
and obtain (12) again. We thus infer: 

W(~F* - c2E*g) = 0, 

but the direction of W is arbitrary, whence 

(13) ~F* - c2E*g = 0. 

Now let x=(O, 0, 0, 0) andy=(O, 0, 0, I). Then 

I} (xy) = - c2 • 

But it is easily seen from (1) that 

Ij;(xy) = 1F1 2 _ c2g 2 , 

and thus by our fundamental invariance axiom 

(14) c2g2 - 1F1 2 = c2 • 

From (12), (13), (14) and the fact that I WI 2 = c 2 , we infer: 

W(~~* - c2E*E) W* = IWI 2 , 

and because the direction of W is arbitrary we conclude: 

where f is the identity matrix. 
Now by direct computation on the basis of (1), 

( f 0) * (~~* - c2E*E ~F* - C2E*g) 
(16) d ° _ c2 d = (~F* _ c2E*g)* FF* _ c2g2 . 

From (13), (14), (15) and (16) we arrive finally at the resu1t: 

d (f 0) d* = (f 0) ° -c2 ° _ c2 , 

and thus by virtue of Lemma 1, d is a Lorentz matrix. Q.E.D. 
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IV. TEMPORAL PARITY 

Turning now to problems of parity, we may for simplicity restrict the 
discussion to time reversals. Similar considerations apply to spatial 
reflections. 

A simple axiom, which will prevent time reversal between frames in Ij, 
is: 

(Tl) There are elements x and y in X such that lor alliin Ij 

There is, however, a simple objection to this axiom. It is unsatisfactory 
to have time revers al depend on the existence of special space-time points, 
which could possibly occur only in some remote region or epoch. This 
objection is met by T2. 

(T2) If I} (xy) < 0 then either lor alliin Ij 

f4(X) < f4(Y)' 

or lor alliin Ij 

f4(Y) < f4(X). 

T2 replaces the postulation of special points by a general property: given 
any segment of an inertial path, all frames in Ij must orient the direction 
of time for this segment in the same way. 

Nevertheless, there is another objection to Tl which holds also for T2: 
the appropriate axiom should be formulated so that a given observer in a 
frame/may verify it without observing any other frames, that is, he may 
decide if he is a qualified candidate for membership in Ij without ob
serving other members of Ij. (This issue is relevant to the single axiom of 
Definition 3 but cannot be entered into here.) From a logical standpoint 
this means eliminating quantification over elements of Ij, which may be 
done by introducing a fourth primitive notion, a binary relation U of 
signaling on X. To block time reversal we need postulate but two proper
ties of u: 

(T3.1) For every x in X there is a y in X such that xuy. 

(T3.2) If xuy thenl4(x) </4(Y)' 
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However, a third objection to (Tl) also applies to (T2) and (T3). 
Namely, we are essentially postulating what we want to prove. The 
axioms stated here correspond to postulating artifically in a theory of 
measurement of mass that a certain object must be assigned the mass of 
one. I pose the question: Is it possible to find "natural" axioms whichfix a 
direction of time? It may be mentioned that Robb's meticulous axio
matization (1936) in terms ofthe notion of after provides no answer. 



13. PROBABILITY CONCEPTS IN QUANTUM 

MECHANICS* 

I. INTRODUCTION 

The fundamental problem considered is that of the existence of a joint 
probability distribution for momentum and position at a given instant. 
The philosophical interest of this problem is that for the potential energy 
functions (or Hamiltonians) corresponding to many simple experimental 
situations, the joint "distribution" derived by the methods of Wigner 
(1932) and Moyal (1949) is not a genuine probability distribution at all. 

If this "distribution" is accepted as the most reasonable one possible, 
then we may infer a stronger result than the Heisenberg uncertainty 
principle, namely, not only are position and momentum not precisely 
measurable simultaneously, they are noJ simultaneously measurable at all. 

To make the discussion as accessible and elementary as possible, the 
next section is devoted to the most relevant probability concepts. In 
Section III the general expression for the joint distribution of momentum 
and position is derived, and then computed, as an illustration, for the 
ground state and first excited state of a one-dimensional harmonic 
oscillator. The implications for the Heisenberg uncertainty principle of 
the results obtained are analyzed in Section IV. The final section (Section 
V) consists of some observations concerning the axiomatic foundations of 
quantum mechanics. 

11. SOMB PROBABILITY CONCBPTS 

For subsequent discussion it will be desirable to have at hand several 
notions from general probability theory. For some ofthe definitions given 
below questions of continuity and differentiability can arise. To avoid 
these issues, which have no bearing on the central theme, adequate 
smoothness properties will be assumed in general arguments, and will be 
exhibited in all particular cases. 

* Reprinted from Philosophy 01 Science 28 (1961), 378-389. 
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To begin with, we assume as the starting point for probability con
siderations the underlying sampie space. Points in this space represent 
possible experimentaloutcomes. For example, the set of all sequences of 
l's and o's is an appropriate sampie space to represent the possible 
outcomes of flipping a coin an infinite number of times. Or, to be more 
finitistic, the set of 16 finite sequences offour terms, each term being 1 or ° represents the set of possible outcomes of flipping a coin four times. In 
addition, we need a countably additive probability measure on an 
appropriately specified (Borei) field of sets. (In the finitistic cases, the 
probability measure may be defined for all subsets of the sampie space.) 

A random variable is then simply a (measurable) function defined on 
the sampie space. Later on, we shall be considering the position and 
momentum of a particle as random variables. For the experiment of 
flipping a coin four times, a typical random variable would be the function 
h whose values are the number of l's in any experimental outcome, i.e., 
any point of the sampie space. Thus, h(I, 1, I, 1»)=4, h(O, I, I, 1»)= 
h(I,O, I, 1»)=h«l, 1,0, 1»)=h(I, I, 1,0»)=3, etc. The practical 
justification of random variables should be apparent; they permit 
simplification of the structure of experimentaloutcomes in order to 
concentrate on the aspects of the experiment considered most significant. 

Let 3 be the sampie space, let P be the probability measure on B(3), 
the given Borel field of sub sets of 3, and let X be a (measurable) real
valued function defined on 3, i.e., let Xbe a random variable on 3. Then 
the distribution function F of X is defined for every real number x as 
follows: 

F(x) = Pg: eE3 &X(e) ~ x}. 

It is easily shown that Fis a monotonically increasing function such that 

O~F(x)~l 

F(-oo)=O 

F(oo) = 1. 

The derivative of F, which we assume exists, is the density f Put the other 
way round, 

x 

F(x) = f f(x)dx. 
-00 



214 PART 111. FOUNDATIONS OF PHYSICS 

The expected value or mean E(X) is defined as: 

00 

E(X) = f xf(x)dx. 
-00 

Let x be the mean of X. Then the variance of X is defined as: 

00 

(J~= f (x - X)2 f (x) dx. 
-00 

We now turn to the characteristic function of F. Let F be the distribution 
function of a single random variable. Then the complex-valued function 
ep of the real variable 1 such that 

00 

-00 

is the eharaelerislie lunelion of F. 
Note that 

(i) ep(O) = 1 

(ii) lep(t)I~J~oo dF(x) = 1 

(iii) ep (-1)= ep (I). 

A distribution is uniquely determined by its characteristic function and 
conversely. Moreover, various properties of a distribution can be inferred 
from properties of its characteristic function. Granted that F has a 
derivative I which is the density function, we obtain at once from (1) 

00 

(2) ep(t) = f eitxf(x)dx. 
-00 

From (2) we conclude that/is the Fourier transform of ep, and thus we 
obtain at once by the standard resuIt for Fourier transforms the im
portant inversion: 

00 

(3) f (x) = 21n f e -itx ep (t) dt. 
-00 
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The analogue of (3) for two random variables will give us the joint density 
function of position and momentum. 

In fact, developments corresponding to the above for the joint distri
bution of two (or more) random variables proceed in the expected 
fashion. Let X and Y be two real-valued random variables defined on the 
sampIe space B. Their joint distribution F(x, y) is defined as folIows: 

F(x, y) = Pg:~EE &X(~):::; x & Y(~):::; y}. 

The joint density function/(x, y) is defined by: 

1 ( ) = a2 F (x, y) 
x, y ax ay . 

The marginal densitiesft (x) and/2 (y) are defined by: 

00 

11 (x) = II(x,y)dY 
-00 

00 

12(Y) = J I(x,y)dx. 
-00 

The two random variables X and Yare (statistically) independent if for all 
xandy 

1 (x, y) = 11 (x) 12 (y). 

The means and variances of X and Y are defined as above, using now 
ft (x) for X and 12 (y) for Y. The covariance of X and Y is defined as 

00 00 

Cov(X, Y) = I I (x - x)(y - y) 1 (x, y) dx dy 
-00 -00 

and the correlation coefficient PXyas: 

Pxy 
Cov(X, Y) 

uxuy 

Note that if X and Yare independent then the covariance and correlation 
coefficient equal zero, but the converse is not necessarily true. 
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The characteristic function of the joint distribution function F(x, y) is 
defined by 

co co 

(4) q>(t, u) = E(eitX+iuY) = f f eitx+iuy dF(x, y). 
-IX) -00 

Analogously to (2), we have: 

co co 

(5) 11' (t, u) = f f eitx+iuy f (x, y) dx dy. 
-00 -QO 

Analogously to (3), we then have by the Fourier inversion theorem 
co co 

(6) f (x, y) = 4~2 f f e-itx-iuy q>(t, u) dt du. 
-00 -00 

111. JOINT DISTRIBUTION OF MOMENTUM AND POSITION 

Consider now the momentum and position random variables P and Q. 
Following (4) the characteristic function 11' (t, u) is defined by 

(7) q>(u, v) = E(eiuP+iua). 

Throughout this paper we shall for simplicity consider only time
independent phenomena. Using the Hilbert space formulation, let (t/J, t/J) 
be the inner product of astate with itself. Following the usual formalism, 
the expectation E(R) of an operator R when the quantum mechanical 
system is in state t/J is simply (t/J, Rt/J). In view of (7) the characteristic 
function q>(u, v) for the joint distribution of P and Q is given by: 

(8) q>(u, v) = (t/J, ei(up+uq) t/J). 

Corresponding to (6) we then have from (7) and (8) by Fourier inversion 

co co 

(9) f(p,q)=1/4n2 f f e-i(uP+uq)(t/J,ei(up+Uq)t/J)dudv. 

-00 -00 

For canonically conjugate operators P and Q, i.e., PQ-QP=h/i, it may 
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be shown that (8) simplifies to 1 

q>(u, v) = f ljJ*(q-!liu)eiVqljJ(q+!liu)dq 

and whence by Fourier inversion 

(10) f (p, q) = 1/2n f ljJ* (q - !liu) e- 1up ljJ(q + !liu) du. 

As is weIl known in probability theory not every characteristic function 
determines a proper probability distribution, and this is indeed the 
difficulty with (10). 

The expression given by (10) for the joint density was first proposed by 
Wigner (1932). The derivations just sketched follow Moyal (1949). It is 
natural to ask how "inevitable" is (10) in the framework of classical 
quantum mechanics. To the writer it seems to be by far the most obvious 
approach compatible with standard probability theory and the formalism 
of quantum mechanics. Different approaches are to be found in Dirac 
(1945) and Feynman (1948). Dirac's theory leads to distributions which 
are complex-valued and thus cannot be interpreted as probabilities; 
formidable mathematical problems beset the Feynman pathintegral 
approach. 

Before considering the Heisenberg uncertainty principle in the light of 
(10), it will be useful to consider two simple one-dimensional cases, for 
one of which - the harmonie oscillator in the ground state - f(P, q) is a 
genuine density, and for the other - the oscillator in the first excited 
state - it is not. 

A. Ground State 2 

The potential energy is given by 

v (x) = !Kx2 , 

and the time-independent wave equation is 

The solution of this equation in terms of Hermite polynomials is familiar 
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from the literature. In the lowest energy state Ho 

(11) ( oe )1/2 
1/1 (x) = 1r,t/2 exp( - !oe2X2), 

where 

Thus 

(12) 11/1 (x)1 2 = (oe/n I/2 ) e-«2x2 

which is anormal density with mean zero and variance u2 = 1/2oe2 = 
1i12JKm. 

We now apply (10) and (11) to obtain the joint distribution of momen
turn and position. For convenience of calculation, we replace p by the 
propagation vector k=p/Ii. We have at once: 

Or, in terms of the momentum p, the joint density is 

(13) ( ) 1 ( 2 2 p2 ) 1 p, x = - exp - oe x - -- . 
!in 1i2oe2 

Integrating out x in (13) we obtain for the marginal distribution of 
momentum 

1 (p2 ) 
(14) 11 (p) = oe!in1/2 exp - !i2oe2 ' 

which is anormal density with mean zero and variance u;=(1i2oe2)/2= 
1i12J Km. And integrating out p in (13) we obtain precisely (12), i.e., 

(15) 12 (x) = (oe/n I/2) e-«2x2. 
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We note at onee that the Heisenberg uncertainty relation is satisfied by 
the produet of the standard deviations (1p and (1", of the two marginal 
distributions (14) and (15), for 

(16) 
na. 1 

(1p(1", = ../2'../2 a. = n12. 

It is interesting to note that from the full marginal distributions we get 
the equality (16) as a stronger form than the usual inequality - for this 
special ease of the harmonie oseillator in the lowest energy level. It may 
also be noted that the distributions of momentum and position are 
statistieally independent, beeause !l(P)!l(X)=!(p, x). A !ortiori, the 
eovarianee and eorrelation eoeffieient are zero. This predietion of 
statistical independenee is one whieh is not diseussed in the usual treat
ments of the harmonie oseillator - in fact, I have not seen it anywhere. 
Consideration of this prediction illustrates one of the difficulties in 
analyzing the foundations of quantum mechanies. The diffieulty is that 
it is so hard to eome by an exaet account of the experimental data. For 
example, for what c1asses of experiments have standard X2 goodness-of
fit tests been applied to test the null hypothesis that the observed data fit 
the quantum mechanical marginal distributions for momentum and 
position? Even more to the point, for the experimental setups corres
ponding to a potential energy V(x) from which we derive a genuine joint 
distribution is it possible to eolleet data on this joint distribution? 
Admittedly my own ignorance of the experimental literature is partly 
responsible for these questions, but it would seem that not only the 
philosophical discussions of quantum mechanics, but the standard 
treatises as well provide inadequate answers. 

B. First Excited State 

In the first excited state, we have from the literature 

",(x) = (;~/:Y/2 x exp( _ }(X2X2), 

whenee 
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Applying now (10) and (11), and again replacing p by the propagation 
vector k=p/h, we have: 

(17) j(k,x)={1/2n)(4rx3/Jn) 

x f (x2 - (U/2)2) exp[ - rx2(X2 + (U/2)2)] e- iku du. 

Integrating (17) we obtain 

(18) j (k, x) = (4/n)[exp( - rx2x2 - k2/rx2)] (rx2x2 + k2/rx2 - -!-), 

and the functionj (k, x) is negative for those values of k and x such that 

rx2x2 + k2/rx2 < 1-, 
which means that/(k, x) is not a proper joint density. 

A quite different examp1e for which/(p, x) is not a proper density is 
given in Rubin (1959). 

IV. HEISENBERG UNCERTAINTY PRINCIPLE 

For the momentum and position random variables the Heisenberg uncer
tainty relation is the inequality 

a,/'p ~ 1i/2. 

On the basis of the general results in the preceding section I want to urge 
that many of the interpretations given this inequality are mistaken. 

The first thing to note is that this inequality for the product of the 
standard deviations of two random variables in itself teIls us nothing 
about the process of measuring the values of these random variables. 
Suppose, for example, we can measure the height and the weight of any 
human being (at a given time) with absolute accuracy. It will still be the 
case that for any reasonably sized sub-population of humans the product 
of the standard deviations of height and weight will exceed some positive 
number. The Heisenberg relation is disturbing because we think of 
'identically prepared' particles having the same momentum and position, 
as we do not in the case of the height and weight of humans. But the 
disturbance of classical ideas is not only this psychological one. 

It is commonly said that the Heisenberg principle shows we cannot 
measure both momentum and position simultaneously with arbitrary 
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precision. As we have already remarked, there is in fact a logical gap 
between the relationship itself and this measurement statement. This 
logical gap is not, however, the main problem. The real point is that the 
uncertainty relation does not represent a genuine statistical relationship 
at all, for there does not in general exist a joint probability distribution of 
the momentum and position random variables. The real claim to be made 
is that when a proper joint distribution of momentum and position does 
not exist, then these two properties are not simultaneously measurable at 
all. 

The conclusion that momentum and position are not simultaneously 
measurable at all does not follow from the Heisenberg relation but from 
the more fundamental results ab out the absence of a genuine joint 
distribution. There is no underlying sampie space which may be used to 
represent the simultaneous measurements, exact or inexact. It is in this 
sense that the Heisenberg inequality is not a genuine statistical relation. 
On the other hand, it may be admitted that in a weaker sense it is areal 
statistical relation. For particles prepared in astate described by a given 
Hamiltonian or potential energy function, it may be possible to measure 
the position of some and the momentum of others. And we would expect 
the product of the standard deviations of these two sets of measurements 
to be equal to or greater than 1i/2. 

The physically important fact, which is not equivalent to the un
certainty relation, is that the results of the successive measurement of two 
noncommuting observables like momentum and position depend on the 
order in which the measurements are performed. Let the pair of numbers 
(p, x) represent in a one-dimensional case the result of measuring the 
momentum p and then the position x, and let (x',p') represent for an 
'identically prepared' particle the results of measuring the position x' and 
then the momentump'. The important thing is that in generalp~p' and 
x ~ x'. Formally this relation for noncommuting canonically conjugate 
observables is expressed by the fundamental commutation rule 

PQ - QP = li/i, 

which, under the interpretation urged here, is more physically significant 
than the uncertainty relation (1p(1x~Ii/2. Wey! (1931) clearly shows the 
importance of the commutation rules in the basic structure of quantum 
mechanics. 
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Koopman (1957) is concerned to argue that quantum mechanics 
provides no real evidence for changing the foundations of probability. 
And with this I am in complete agreement, for the simple reason that there 
is, so far as I know, no substantial argument for making any such changes. 
The use of functions like the improper joint densities of the last section is 
for purposes of calculation. In no sense do they help make a case for 
changing the basic laws of probability. Par from it, rather it may be 
argued that we can use their very improperness as a key to inferring what 
is not possible to measure experimentaIly. Koopman goes on to claim 
that the inability to measure momentum and position simultaneously is 
not an unusual one. He says the following: 

The standard example of incompatibility is in quantum mechanics, where a and ß are 
statements concerning the same components of position and momentum. But it is 
possible to give a much more obvious example. Suppose that, as a result of a gamma
ray mutation, an altogether different and unique creature were produced from rat 
parents, and suppose that its resistance to lethai doses of certain poisons A and B is of 
interest. If a is a statement conceming the number of days before it dies when injected 
solely with A, while ß is a similar statement regarding B, then a and ß are clearly 
incompatible, for the simple reason that you can kill your creature with A alone or else 
with B alone, but not "with both alone." Therefore no logical combinations such as 
aß, a + ß have any meaning: the situation assumed in the definition of ais inconsistent 
with that needed to make ß meaningful. Nor is the situation improved by restating IX 

and ß as implications (a being interpreted as that the A experiment implies that the 
creature survives so many days, etc.), simply because, in order to become experimental 
propositions, a single experiment ("trial") must be capable of telling whether a is true 
("succeeds") or false; and similarly for ß - and we are back where we were [po 100]. 

His rat example is weIl put, but it goes too far in reducing the incom
patibility of two quantum mechanical statements to what is essentially 
ordinary incompatibility. In his example the conjunction a&ß would 
ordinarily simply be regarded as false. The quantum mechanical situation 
is more complicated. We have twofunctions, themomentum and position 
random variables, describing two quantitative properties of some physical 
phenomenon - in realistic language, of some physical particle. We 
consider the functions to be defined for every instant of time. We then 
feel uneasy when we cannot talk about the values of these functions at the 
same time t. In a given experimental setup that we can appropriately 
describe by a Hamiltonian or potential energy function, it is possible to 
derive the marginal probability distributions of momentum and position. 

Moreover, it seems possible with some slightmodifications to talk about 
the joint distribution of the tendency of the two poisons A and B to kill 
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the rats in a and b days, respectively. Suppose we find, for example, that 
according to the amount Ci of a certain organic substance in the kidneys 
of the rats the number of days until death with injection of poison A is 
ai ± 1 and with injection of B is bi ± 2, with prob ability one. On the basis 
of observation of the amount Ci in the kidneys of a rat we could then 
assert that the probability of the rat having the property of dying in 
ai days from poison A and the property of dying in bi days from poison B 
is such and such. And by studying the distribution of the given organic 
substance in the kidneys of rats of a particular colony, we could go on to 
make unconditional probability statements about the rats in the colony 
having the property of dying in a days from poison A and b days from 
poison B. Because the effects of only one poison can be observed, the 
inference to the joint distribution depended upon discovering controlling 
factors like the organic substance in the kidney. In fact, the aim of the 
scientist is to investigate more and more thoroughly the chemistry of 
poisons in order to predict more and more accurately the effect of giving 
any particular one. It is, so far as I can see, completely meaningful to 
summarize the results of such investigations -by joint probability state
ments. Note that given Ci' the probabilities of ai and bi are statistically 
independent, but without this information they are not. 

Koopman asserts in the passage quoted above that the conjunction 
(X & ß is meaningless. What I am claiming is that by rephrasing (X and ß 
in terms of properties or dispositions we obtain new statements (x' and ß' 
whose conjunction is perfectly meaningful. The defense of this change is 
the same as the standard defense against a too narrow criterion of 
empirical or operational meaningfulness in evaluating scientific theories. 
It is, I take it, now a truism that not all scientific concepts or terms are 
directly observable, and a jortiori are not simultaneously observable. 

The qualitative difference between the rat experiment and a quantum 
mechanical one is that in the quantum mechanical case we seem to be 
prevented even in principle from talking about the joint distribution of 
momentum and position. 

v. AXIOMATIC FOUNDATIONS 

I conclude with some general remarks about the axiomatic foundations of 
classical quantum mechanics. It is widely but mistakenly thought that von 
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Neumann provided an exact axiomatization in his well-known book on 
quantum mechanics. He gives there exact axioms for Hilbert space, but 
he does not adjoin in exact fashion an axiomatic characterization of 
quantum mechanics. (By 'exact' I do not mean in logical symbolism but 
according to the standards ofaxiomatization in geometry or abstract 
algebra.) Perhaps the clearest axiomatization yet given is that of Mackey 
(1957). 

Briefly speaking, Mackey proceeds in the following fashion for the 
time-independent case. Let () be the set of observables and let S be the set 
of states; any structure on the sets () and S is explicitly stated in the 
axioms. The functionp(A, IX, E) is defined whenever Ae(}, lXeS and Eis a 
Borel set of real numbers. Intuitively p(A, IX, E) is the probability of 
measuring observable A in set E when the state of the system is IX. The 
first axiom states in fact that for every A in () and IX in S, p(A, IX, E) is a 
probability measure in the argument E on the set of all real numbers. The 
second axiom guarantees uniqueness of observables with a given prob
ability distribution, and similarly for states. It is a kind of extensionality 
axiom for observables and states. 

lf p(A, IX, E)=p(A', IX, E) for all IX in Sand Borel sets Ethen A=A', 
and ifp(A, IX, E)=p(A, IX', E)for all A in () and alt Borel sets Ethen IX = IX'. 

The remaining axioms are more technical and will not be given here. 
Properties as two-valued observables are defined, and a certain partial 
ordering in terms of probability distributions on properties is defined. 
The final and most powerful axiom is then the assertion that the set of all 
properties under the given ordering is isomorphie to the partially ordered 
set of all closed subspaces of a separable infinite dimensional complex 
Hilbert space. 

It is important to point out that Mackey's axiomatization is not com
plete, for to get a system that is adequate to analyze detailed physical 
examples, further axioms are needed to set up the proper correspondence 
between observables and operators. To solve particular problems it is by 
no means sufficient to know only that such a one-one correspondence 
exists; the correspondence must be given constructively by additional 
axioms. 

From the standpoint of probability theory, the present formalism of 
quantum mechanics in terms of operators on a complex Hilbert space is 
not a natural one. It is apparent that no one approaching the subject from 
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the standpoint of stochastic processes would be in any direct way led to 
this formulation. Because most of the observable predictions of the 
theory are in fact probabilistic predictions, the question naturally arises 
of giving an axiomatic formulation in terms more congenial to the theory 
of stochastic processes. It should be clear from Section III that such a 
formulation is possible in terms of quasi-probability distributions, a term 
commonly used for the joint distribution of conjugate observables 
because of the possible negativity of the distribution. On the basis of 
Moyal (1949) and Baker (1958) such a formulation is not too difficult to 
give, although it is beyond the scope of the present paper to enter into the 
details, particularly since the discussion here has been restricted to 
quantum statics. 

Moyal's paper demonstrates the conceptual advantages ofthis statistical 
approach in making detailed comparisons between classical and quantum 
statistical mechanics. From a more general philosophical standpoint it 
seems to me there are at least two reasons for interest in the quasi
probability distribution formulation. The first is the negative but thera
peutic one of reducing the interminable discussion of the wave vs. particle 
interpretation of quantum mechanics. A statistical approach to the 
observable quantities is neutral as between these two interpretations. On 
another occasion I hope to recast in terms of the present statistical 
approach the many distinctions introduced by Reichenbach (1944) in his 
philosophical analysis of quantum mechanics. 

The second reason for the philosophical interest of the statistical 
approach to quantum mechanics has already been mentioned. It provides 
a more natural place for probability concepts, thereby leading to a 
formulation in which it is easier to discuss general philosophical concepts 
like those of determinism and causality and to compare in a relatively 
direct way the role of these concepts in probabilistic theories of phenomena 
outside the quantum domain. I have tried to illustrate in Section IV how 
such a formulation can clarify the meaning of Heisenberg's uncertainty 
principle. Consideration of quantum dynamics in terms of quasi-prob
ability distributions is also helpful in clarifying the status of causality 
in quantum mechanics, but this is a task beyond the scope of the present 
paper. 
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NOTES 

1 Henceforth the range of integration is understood to be ( - 00, (0) and notation for it 
is omitted. 
2 I am indebted to Sidney Drell and Raymond Willey for some helpful suggestions 
concerning these two examples. 



14. THE ROLE OF PROBABILITY IN 

QUANTUM MECHANICS* 

The view I attempt to support in this paper by various sorts of arguments 
is that if we examine the structure of quantum mechanics for paradoxical 
or surprising implications, it is not the interpretation of the uncertainty 
principle as showing the untenability of determinism that is most im
portant. I take it that many would now agree that strict determinism was 
a fragile flower nurtured for a few decades in the special climate of 
classical mechanics, particularly as formulated by Laplace. The once 
broad claims for determinism have in many ways been replaced by 
universal claims for the theory of probability and the methodology of 
statistics, although I do not wish to suggest for a moment that determinism 
as a thesis and prob ability theory as a methodological cornerstone of 
science are on the same conceptual footing. Rather, my point is to try 
to show that the really radical intellectual thing about quantum mechanics 
is not its challenge to determinism as a philosophical thesis, but its 
challenge to probability theory and modern mathematical statistics as the 
universal methodology of all empirical science. 

Let us begin by considering some of the standard interpretations of the 
Heisenberg uncertainty relation. Landau and Lifshitz have this to say: 

whereas in c1assical mechanics a particle has definite coordinates and velocity at any 
given instant, in quantum mechanics the situation is entirely different. If, as a result of 
measurement, the electron is found to have definite coordinates, then it has no definite 
velocity whatever. Conversely, if the electron has adefinite velocity, it cannot have a 
definite position in space. For the simultaneous existence of the coordinates and 
velocity would mean the existence of adefinite path, which the electron has not. Thus, 
in quantum mechanics, the coordinates and velocity of an electron are quantities which 
cannot be simultaneously measured exactly, i.e., they cannot simultaneously have 
definite values. We may say that the coordinates and velocity of the electron are 
quantities which do not exist simultaneously [1958, p. 4]. 

Similar views are to be found in Reichenbach. He says that the uncertainty 

* Reprinted from Philosophy 0/ Science, The Delaware Seminar, Vol. 2: 1962-63 (ed. 
by B. Baumrin), Wiley, New York, 1963, pp. 319-337. 
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relation ... can be interpreted in the form: When the position of the particle is weIl 
determined, the momentum is not sharply determined and vice versa [1944, p. 13]. 

As can be seen from these two quotations the orthodox viewpoint is to 
emphasize that the uncertainty relation means that when position is 
determined exactly the momentum is not determined at aIl, or when 
momentum is sharply determined, position is badly determined, if at all. 
It is particularly interesting to note that Landau and Lifshitz, and 
Reichenbach as weIl, do not give a quantitative interpretation of the 
uncertainty relation. 

A somewhat more sophisticated characterization is given in Schiff's 
well-known textbook: 

The relation ... means that the component of the momentum of a particle cannot be 
precisely specified without our loss of all knowledge of the corresponding component of 
its position at that time, that a particle cannot be precisely localized in a particular 
direction without our loss of all knowledge of its momentum component in that 
direction, and that in intermediate cases the product of the uncertainties of the 
simultaneously measurable values of corresponding position and momentum com
ponents is at least of the order of magnitude of h [1949, p. 7]. 

Schiff does mention the "intermediate cases" when neither position nor 
momentum is sharply determined, but none of the authors cited give 
anything like a thorough probability interpretation of the inequality. I 
have, for instance, seen no book on quantum mechanics in which an 
"intermediate case" is described in quantitative or experimental detail. 
What single experiment can be cited on behalf of the presumed inter
mediate cases, that is, in what experiment can we determine approxi
mately, apart from other sources of experimental error, that 

0'",>0 
O'p>O 

O'",O'p ;;::: 1i12 

and more particularly, what numerical values of the standard deviations 
0'", and O'p are found? The third of the three inequalities is a standard 
formulation of the uncertainty principle. From its form one would 
naturally infer that it is possible simultaneously and jointly to determine 
the standard deviations 0'", and O'p' but, as we shaIl see, this is not in 
general possible. 

If we consider this inequality from the standpoint of probability theory, 
there seem to be no persuasive arguments whatsoever for accepting the 
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orthodox interpretation. To say this is not to say that the orthodox 
interpretation is necessarily wrong, but to emphasize that there is a very 
large logical gap between the claims that are ordinarily made for the 
meaning of the uncertainty principle and the literal interpretation of the 
principle itself as a statement about the product oftwo standard deviations. 
At this point it may be instructive to consider other interpretations that 
are possible within the framework of standard probability theory. 

Perhaps the first point that needs clarification is the distinction between 
measurements that are exact when taken at a given instant and the 
probability distribution of quantitative properties of objects, when those 
objects are "identically prepared" for experimental manipulation. Con
sider the following simple example. Let H be the random variable defined 
on the set of all human beings such that for any person x, H(x) is the 
height of x, and let W be the random variable measuring the weights of 
human beings. Now we do not need to collect any new experimental data 
in order to know that both of these random variables will have con
siderable variation in the population of human beings. This variation in 
itself has nothing to do with the measuring process. For purposes of any 
investigation in which we would be interested in the height and weight of 
human beings, we can assume that both these variables may be measured 
with absolute accuracy. It will still be the case that the product of the 
standard deviations of the distributions of the two random variables will 
exceed some fairly large positive number, in spite of the fact that for any 
individual x, H(x) and W(x) are perfectly definite. On the basis of the 
positive variances of both height and weight, we could paraphrase 
Landau and Lifshitz and say that if the height of a person has adefinite 
value, then his weight has no definite value whatsoever. The patent 
absurdity of this is obvious, which is just to say that Landau and Lifshitz 
have explained the meaning of the uncertainty relation rather badly. 

The immediate rejoinder in considering this example in relation to the 
Heisenberg uncertainty inequality is that of course there is a drastic 
difference. For we know that the members of the set of human beings are 
distinct individuals with quite different properties of height and weight. 
On the other hand, when we prepare an electron or some other "eIe
mentary" particle for experimental observation, we think of all electrons 
brought into the experimental situation as being in some sense identical or 
equivalent, at least being identical in a sense that we do not expect the 
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various human beings to be identical. Yet there does not seem any 
reason to accept this principle of identity or equivalence for elementary 
particles other than as a kind of prejudice derived from two hundred 
years of cIassical particle mechanics. It seems apparent that if this 
principle of identity is not adopted, then it is perfectly consistent to hold 
that in any given instant, position and momentum of an elementary 
particle may be measured exactly, but if the measurements are repeated 
on other elementary particles of the same kind under what the ex
perimenter thinks are identical experimental conditions, then a genuine 
probability distribution of both kinds of measurements will be obtained, 
and in fact the product of the standard deviations of these two distri
butions will satisfy the Heisenberg uncertainty relation. 

This is the kind of situation that obtains in a wide range of psychological 
experiments. It may be useful to describe in detail one kind of such 
experiment that has a number of affinities from a methodological stand
point with the issues we are discussing in connection with the uncertainty 
principle. I have in mind a simple paired-associate experiment. This 
simple example from mathematical behavior theory conjoins four 
properties that collectively challenge overly simple analyses of the un
certainty relation: (1) homogeneity or 'identity' ofitems is assumed; (2) a 
detailed theory of the learning phenomena is given; (3) the measurements 
ofthe trial oflast error are absolutely exact; (4) a positive variance for the 
distribution of last errors is predicted. The orthodox interpretation of 
quantum mechanics needs to make clearer why a similar conjunction of 
properties could not be postulated in quantum mechanics. On this point I 
must be absolutely clear. I am not saying that an interpretation of 
quantum mechanics in terms of exact joint measurements of position and 
momentum is correct. We need to be told in more detail why it is wrong. 
(It is the burden of the latter part of this paper to show it must in fact be 
rejected for deeper reasons than those provided by the uncertainty 
relation.) 

In our simple paired-associate experiment, the task for the subject is 
to learn to associate each one of a list of nonsense syllables with an 
appropriate response. In a typical setup the list might consist of 20 
nonsense syllables of the form cvc (consonant, vowel, consonant). The 
responses are given by pressing one of two keys. On a random basis, ten 
of the syllables are assigned to key 1 and ten to key 2. The subject is 
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shown eaeh nonsense syllable in turn, is asked to make a response, and is 
then shown the eorreet response by one of several deviees, for example, 
by the illumination of a small light above the eorreet key. After the 
subjeet has proeeeded through the list onee, he is taken through the list a 
seeond time, but the order or presentation of the 20 items is randomized. 
A eriterion of learning is set; for example, four times through the list 
without amistake. The subjeet is asked to eontinue to respond until he 
satisfies this eriterion. The eriterion is selected so as to give substantial 
evidenee that the subjeet has indeed learned the eorreet assoeiation 
between eaeh stimulus item and its appropriate response. There are a 
number of statisties to be derived from a simple and very adequate model 
for these phenomena. For the present purpose it will be sufficient to 
eoneentrate on the distribution of the trial of last error. 

The simple model to be applied to the phenomena is the following. The 
subjeet begins the experiment by not knowing the arbitrary assoeiation 
established by the experimenter between individual stimuli and the 
response keys. He is thus in the uneonditioned state U. On eaeh trial there 
is a probability c that he will pass from the -uneonditioned state to the 
eonditioned state C. It is postulated that this probability cis eonstant over 
trials and independent of responses on preeeding trials. Onee the subjeet 
passes into the eonditioned state it is also postulated he remains there for 
the balance of the experiment. A simple transition matrix for the model, 
whieh is a first-order Markov ehain in the two states U and C, is the 
following: 

C 

C /1 
U c 

U 

o 
1- c. 

To eomplete the model for the analysis of experimental data it is also 
neeessary to state what the probabilities of response are in the two states 
U and C. When the subjeet is in the uneonditioned state, it is postulated 
that there is a guessing probability p of making a eorreet response, and 
this guessing probability is independent of the trial number and the 
preeeding pattern of responses. When the subjeet is in the eonditioned 
state, the probability of making a eorreet response is postulated to be 1. 
With these assumptions it may be shown that the distribution of the 
trials on whieh state C is entered is geometrie, where c is the parameter of 
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the geometrie distribution. We recall that the mean of the geometrie 
distribution with parameter c is Ifc and its varianee is the quantity 
(l-c)fc2 • Unfortunately, it is not possible to observe when the subjeet 
enters state C, for he may or may not have guessed the eorreet responses 
on immediately preeeding trials. What is behaviorally observable is the 
trial number of the last error on eaeh item. This distribution is, as would 
be expeeted, approximately geometrie. The exaet distribution is as 
follows. Let n be any trial. Then the probability f(n) that the last error 
with respeet to responses to a given stimulus oeeurs on trial n is: 

{ bP for n = ° 
f(n)= b(1-p)(1-ct- 1 for n>O, 

where b=cf[l-p(l-c)]. The mean, p., and varianee, (12, of this distri
bution are: 

p. = b(l - p)fc2 

(12 = P. [2fc - 1 - p.] • 

(Note that if p=O, we just obtain tOO geometrie distribution.) For our 
purposes the important thing about this example is that the varianee of 
the trial of last error is eertainly not zero, in any exeept degenerate eases. 
It is important to realize that this positive varianee is not due to any 
hypothesis of individual differenees. The hypothesis of individual differ
enees among subjeets or among stimulus items would be brought into the 
theory by postulating variation in the parameter c and possibly the 
guessing parameter p. The assumption of a eonstant c and a eonstant p 
either for all stimulus items or a group of subjeets is equivalent to 
assuming homogeneity of items or of subjeets. In spite of this assumption 
of homogeneity, the predieted behavior has a positive varianee. The 
experimenter attempts to seleet items for a given subjeet as earefully as he 
ean in terms of empirieal eriteria ofhomogeneity. No matter how earefully 
sueh items are seleeted, a wide variety of studies shows that a distribution 
of last errors with a positive varianee is always obtained in sueh paired
assoeiate experiments. 

In eonneetion with the earlier quotations about the interpretation of 
the uneertainty relation, it should be remarked that in the ease of the 
empirieal observation of the distribution of trials of last error in a given 
experiment there is no problem whatsoever eoneerning errors of measure-
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ment. The measurements are absolutely exaet. They are diserete ob
servations, for whieh it is neeessary only to reeord which of two keys was 
pressed by the subjeet on a given trial. In other words, the positive 
varianee and thus the uneertainty in the trial of last error are in no sense 
due to the measurement proeedure. 

Let us try transferring these results on exaet measurements with a 
positive varianee to a quantum-meehanical eontext. As a simple example 
we may eonsider a one-dimensional harmonie oseillator in the ground 
state. It may be shown that the theoretieal distributionf(x) ofposition for 
this physieal system is given by the following expression: 

f (x) = (rx/n 1/2) e-,,2x 2. 

This expression is that for anormal density with mean zero and varianee 
(12 = rx2 /2, where rx is a physieal eonstant defined in terms of Ii and mass m. 
More preeisely, 

(12 = 1i/2JKm, 

where K is the eonstant arising in the expression for the potential energy: 
V(x)=-tKx2 • This distribution with its positive varianee for position is 
derived from the theory in quite straightforward terms. The important 
point at the moment is that this derivation in no way mentions any pro
eesses of measurement. An obvious empirieal interpretation of the result 
is that if measurements of position are made for a harmonie oseillator 
in the ground state, then the obtained measurements will fit anormal 
distribution with mean zero and varianee as indicated. There is nothing as 
such in the theory that says the proeedures of measurement themselves 
give rise to the distribution. 

A related point of interpretation of the uneertainty relation is the 
following. The standard verbal formulations or interpretations imply, or 
tend to imply, that the experimenter may at will decide to measure a 
partieular physical variable with arbitrary preeision. Of course, if he 
does so he must saerifiee eorresponding precision in conjugate physieal 
variables. But the example of the linear oscillator in the ground state 
suggests that this interpretation is wrong. For a given energy state of a 
system that is a linear oseillator it is not possible to make a precise 
measurement of position or momentum. In the case of the oscillator in 
the ground state, all that can be obtained, no matter how exact the 
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experimental procedure, is a normal distribution with mean zero and 
positive variance as indicated for the position, and similar results obtain 
for the momentum. 

The tenor of these remarks suggests that I am proposing it may be 
consistent with the fundamental theory of quantum mechanics to 
measure position and momentum exact1y on any given occasion. As the 
measurements are repeated on identically prepared partic1es, distributions 
with positive variance will of course be obtained, and these will satisfy 
the uncertainty relation. This state of affairs would fit in very well with 
ordinary probability concepts. Unfortunately, it is not a possible inter
pretation of the uncertainty relation. Such an interpretation requires that 
there be ajoint probability distributionof position and momentum at any 
given instant. However, if the usual formalism is applied to the com
putation of the joint distribution of two conjugate physical variables like 
position and momentum, then the distribution obtained by standard 
arguments is in general not a proper probability distribution at all. This 
result raises serious difficulties for any attempt to interpret quantum 
mechanics within a standard probability framework. It is extremely hard 
to think of any other empirical examples of physical variables having this 
property of not possessing a genuine joint probability distribution. 

In order to bring out the full significance of having a joint distribution 
of position and momentum, it will be useful first to consider a much sim
pler case that will require no detailed computations of any sort. Suppose 
that we have two fair coins and we are flipping them in the following two 
ways. In the first case, we flip the first coin and then whatever comes up, 
either heads or tails, we automatically turn the second coin so that the 
same side is facing up. In the second case, we flip the two coins at the 
same time and assurne that the physical handling of the coins is such that 
the outcomes are statistically independent. 

First of all, then, let us write down the joint distribution for these two 
different cases. We shall use a subscript 1 for the first case and a subscript 
2 for the second case, and we shall use a subscript a for the first coin and a 
subscript b for the second coin. In the first case the four possible out
comes have the following probabilities 

Pt (Ha, Hb) = t Pt er.., Hb) = 0 

Pt (Ha, 11,) = 0 Pt (Ta, Tb) = 1-. 



THE ROLE OF PROBABILITY IN QUANTUM MECHANICS 235 

Because of the physical conditions of this case, it is c1ear that the prob
ability must be zero of having Ha and 11" or also Ta and Hb• 

In the second case, the joint distribution of heads and tails of the two 
coins assumes quite a different form. On the assumption of statistical 
independence, we have at once that the probability of any two outcomes, 
for example, Ha and Tb, is simply one-fourth: 

P2 (Ha, Hb) =! P2 (r.., Hb) = ! 
P2 (Ha, Tb) =! P2 (r.., Tb) = !. 

In spite of the c1ear difference between these two joint distributions, that 
is, PI and P2 , there are a number of probability statements that are the 
same for both of them. In particular, the two marginal distributions for 
coins a and bare precisely the same. By marginal distributions we mean 
just the probability statements about the single coins. Thus, we have 

PI (Ha) = PI (Hb) = P2 (Ha) = P2 (Hb) = t 
PI (Ta) = PI (Tb) = P2 (Ta) = P2 (Tb) = t· 

Another way of putting it is that if we are abfe only to observe one coin 
at a time, that is, either coin a or coin b, we are not able to infer from such 
observations which of the two joint distributions is the true one. As this 
example clearly illustrates, the marginal distributions tell us a great deal 
less about the behavior of a "system" of two coins than does the joint 
distribution. 

To obtain some numerical results similar in spirit, but of course much 
simpler than those we obtain in quantum mechanics in dealing with such 
physical variables as position and momentum, we may define for each 
coin a random variable. This random variable is a function defined on the 
two possible outcomes, heads or tails, and for each coin the random 
variable has the value 1 when the outcome is heads and the value zero 
when the outcome is tails. We sha11 use Xa for the random variable 
corresponding to coin a, and X b for the random variable corresponding to 
coin b. As would be expected from what we have said about the identity 
of the marginal distributions for the two different joint distributions PI 
and P2 , the expected values or means E(Xa) and E(Xb) are the same for 
PI and P2 • Namely, 
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Similar results obtain for any other quantities we want to eompute for 
Xa and Xb separately, that is, the quantities are the same for the two 
distributions Pt and P2 • For example, the varianees of Xa and Xb have 
the following form: 

Vari(Xa) = Vari(Xb) = !Cl - t) =!, for i = 1,2. 

But onee we move to any eonsiderations involving both variables at the 
same time, the results are quite different. For example, eonsider the 
eovarianee of Xa and Xb, defined as follows: 

where xa=E(Xa) and xb=E(Xb). The eovarianee has the following 
distinet values for Pt and P2 • 

And 

COVt (Xa, X b) = (1 - t) (1 - t)·t 
+ (1 - !)(O - !)·O 
+ (0 - t)(l - !)·O 
+ (0 - t) to - t)· t = !. 

COV2(Xa, Xb) = (1 - t)(l - ·n·! 
+ (1 - t) (0 - thi: 
+ (0 - t) (1 - !).! 
+(0-!)(0-1}!=0. 

Similarly, the eorrelation eoefficient P of Xa and Xb is defined in general 
as follows 

( ) _ Cov(Xa, Xb) 

P Xa, Xb - u(Xa) u(Xb) 

and from the ealeulations already made, it is elear that for the joint 
distribution Pt, Pt (Xa, Xb) = 1 and for the joint distribution P2 , P2 (Xa, 
Xb) = O. The eovarianee and eorrelation are measures of the dependency 
relationship holding between two events or random variables. When the 
events are independent, the eovarianee and eorrelation eoeffieient are 
both zero, as is the ease for X a and X b under distribution P2 • 

These eomputations for the simple random variables we have defined 
eorrespond to eomputations for expeeted positions and the like in 
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quantum mechanics. 1t will be useful now to look at some corresponding 
results for a simple physical case in quantum meehanies. I shall not here 
justify the results stated, but I have indieated in a previous paper (Suppes, 
196Ib)lt how they may be derived inastraightforwardfashion from the 
usual formulations of elassieal quantum meehanies. For purposes of 
diseussion, I seleeted one of the simplest eases possible, namely, the one
dimensional harmonie oseillator already mentioned. By applying the 
usual methods of ealeulation, we may show that in the ground state the 
harmonie oseillator does indeed have a genuine joint distribution of 
position and momentum, given by the expression 

(1) f (p, x) = (I/lin) exp ( - ex2x2 - p2/1i2ex2) , 

where ex is the familiar physieal coeffieient defined earlier. 1ntegrating out 
x, we obtain for the marginal distribution of momentum 

1 (p2 ) f (p) = exliJ;' exp - IiZex2 ' 

whieh is anormal density with mean zero- and varianee u;=h2ex2/2. 
Integrating out p, we obtain for the marginal distribution of position 

f (x) = (ex/Jii) exp( - exZXZ) , 

whieh is the normal density with mean zero and varianee u; = 1 /2ex2, pre
viously mentioned. Then we know at onee that the Heisenberg un
eertainty relation is satisfied by the produet of the standard deviations 
up and u'" of the two marginal distributions: 

liex 1 Ii 
upu", = ../2· J2ex = 2· 

It is perhaps worth noting that in the present ease we get an aetual 
equality rather than the weak inequality of the general ease. Also of 
partieular interest is the observation that the joint distribution (1) shows 
that the distributions of momentum and position are statistieally in
dependent beeausef(p)f(x)=f(P, x). Anditofeoursefollowsfrom this 
independenee result that the eovarianee and eorrelation eoeffieient of 
position and momentum are zero. 

The situation is quite different when we turn to the first exeited state of 
a harmonie oseillator. For simplieity, let us replaee the momentum p by 
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the propagation vector k = pli. We then have for the joint density of k and 
x, the following expression: 

f (k, x) = (4/n) [exp ( - CX 2X 2 - k2 /CX2)] [CX2X 2 + k2/CX2 - 1/2]. 

Unfortunately, the function f in this case is not a genuine probability 
density. In particular, the function is negative for those values of k and x 
such that 

CX2X 2 + k2 /CX 2 < 1/2. 

Similar results are obtained for other states ofthe harmonic oscillator; 
namely, the joint distributions obtained by the usual arguments are not 
genuine distributions at all. This situation is characteristic in quantum 
mechanics. It is only the unusual or special case for which a genuine joint 
distribution is obtained. From a statistical standpoint, the covariance or 
correlation of position and momentum would be at least as natural and 
important to consider as the product of their standard deviations, but 
when their joint distribution does not exist we cannot in a meaningful 
way talk of their covariance or correlation. 

The strangeness of these results from a methodological standpoint is 
difficult to overemphasize. As we all know, the applications ofprobability 
theory range over all domains of science, and have become increasingly 
important in the past several decades. The mathematical techniques of 
probability theory, as well as the conceptual foundations, have received 
an enormous amount of attention from mathematicians, statisticians, and 
philosophers. In the several domains of application with which I am 
familiar or which I have at least cursorily inspected I have not been able 
to find a single example having the conceptual status ofthese results about 
the nonexistence of a joint distribution in quantum mechanics. Moreover, 
the idea that two physical variables that we are able to observe even 
separately must have a joint probability distribution is a very deep and 
natural one from the standpoint of probability theory. It may, of course, 
not be the case that we can make direct observations on this joint distri
bution, but what is unusual and dismaying is to find a case in which the 
postulate of the mere existence of a joint distribution is inconsistent with 
the fundamental theory of the phenomena. 

Those of you among the audience who are not already familiar with 
these results will, roughly speaking, probably have one of two reactions. 
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Those whose backgrounds are in physics will tend to accept the non
existence of the joint distribution of conjugate physical variables with 
scarcely a murrnur, and say that here is simply another piece of evidence 
of the inadequacy of classical ideas. I shall have more to say in a moment 
about this rather casual attitude toward prob ability theory. On the other 
hand, those who are more thoroughly acquainted with probability theory 
than quantum mechanics will undoubtedly tend to think initially that it is 
perhaps a simple and not very deep matter to change the quantum
mechanical computations in such a way as to obtain genuine distributions. 
In the present lecture I have not attempted to examine this rather techni
cal point, or, in fact, even to substantiate my own computations in any 
mathematical detail. I do, however, off er assurances that the framework 
within which I have performed these computations is perfectly standard 
and derives from classical and fundamental work by Wigner (1932) and 
Moyal (1949). It is true that other approaches to probability questions 
within classical quantum mechanics can be found in the literature. But 
generally speaking, these lead to even more strange results. A typical 
example is to be found in Dirac's paper (1945}, in which he formulates a 
theory that leads to probability distributions that are complex valued. It 
need hardly be said that no direct empirical significance from a pro bability 
standpoint can be attached to such mathematical functions. It would, in 
fact, seem to be a complete misnomer to call them probability distributions 
in any sense. 

The recent proposals of Margenau (1963) and Margenau and Hill 
(1961) to avoid these difficulties by a bold redefinition of the joint prob
ability distribution are clearly inconsistent with the standard formulations 
of quantum mechanics. Reasons for skepticism about their proposals are 
too technical to enter into here. Suffice it to say that it is seldom possib1e 
to redefine a derived quantity 1ike that of a joint distribution in the 
context of a complex theory and hope to end up with a complete theory 
that is both mathematically exact and consistent. 

It is doubtful that any simple way can be found of avoiding the 
perplexing and paradoxical problems that arise in quantum mechanics, 
when probability notions are developed with anything even faintly 
approaching the thoroughness with which they are used in other dis
ciplines. For those familiar with the applications of probability and 
mathematical statistics in mathematical psychology or mathematical 
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economies, it is surprising indeed to read the treatments of probability 
even in the most respected texts of quantum mechanics. I do not mean 
by this remark to belittIe in any sense the magnificent and profound 
accomplishments embodied in quantum mechanics. These accomplish
ments, as well as the subtIety of the kind of results achieved, we surely 
aIl recognize. What is surprising is that the level of treatment both in 
terms of mathematical c1arity and in terms of mathematical depth and 
detail is surprisingly low. Probability concepts even have astrange and 
awkward appearance in quantum mechanics, as if they had been brought 
within the framework of the theory only as an afterthought and with 
apology for their inclusion. I cannot, for instance, recall reading a single 
book or article on quantum mechanics by a physicist which uses the 
fundamental notion of a random variable in an explicit manner, although 
this notion is central to every modern treatise on probability theory. That 
many physicists still find it difficult to feel at horne with probability 
notions is weIl attested to by the large number of people who prefer the 
more c1assical physicallanguage of wave mechanics to talk about prob
ability distributions and expected values. The inteIlectual tension that 
exists between the widely applicable methodology of modern probability 
and statistical theory on the one hand, and quantum mechanics as the 
boldest and most important scientific theory of the twentieth century, 
with its peculiar and strange use of probability - this tension will surely 
receive a different final resolution than is now in view. 

If my diagnosis of the antinomy between probability theory and 
quantum mechanics, exemplified in the nonexistence of the joint prob
ability distribution of conjugate physical variables, is correct, then it is 
very likely also correct to say that we are confronted with one of those 
fundamental conflicts that have in the past been so important to the 
history of mathematics and science. Perhaps the oldest clear example of 
such a con:tlict is to be found in the discovery of the irrational by the 
Pythagoreans. The Pythagorean philosophers and mathematicians found 
that the ratio of the diagonal to the side of a square could not be expressed 
by a "number," that is, by what mathematicians would now call a 
rational number - a number which is the ratio of two integers. We can, if 
we like, regard the Pythagorean derivation of the irrationality or in
commensurability of the diagonal of the unit square as the derivation of a 
contradiction within the mathematical framework accepted at that time. 
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In the same way, we could by adding plausible postulates to the usual 
methodology of probability theory construe the nonexistence of a joint 
distribution of conjugate physical variables as the derivation of a contra
diction from the joint assumptions of probability theory and quantum 
mechanics. The decision as to whether we are to regard the conflict as one 
issuing in a formal contradiction is not of critical importance. What is of 
fundamental importance is the recognition that two of the most power
fully entrenched ways of looking at the world lead to a fundamental 
conceptual conflict. 

What happened in the Pythagorean case of the discovery of incom
mensurable line segments is weIl known. The fundamental concept of 
number was changed and extended to include irrational numbers, but the 
chronicle of this change and the acceptance of irrational numbers is a 
long and torturous one in the history of mathematics. The Greeks them
selves did not really direct1y accept it, but in fact, rejected numerical 
algebra as an adequate instrument for the study of geometrical problems. 
The theory of proportion of Theatetus and Eudoxus, beautiful as it is 
from a mathematical standpoint, is clearly a geometrical escape. It was 
not really until many centuries later, due to the work of Weierstrass, 
Dedekind, and others in the nineteenth century, that the theory of real 
numbers, in particular of irrational numbers, was put on asound mathe
matical basis as a theory in its own right. 

It may be claimed that I have exaggerated the conflict between prob
ability theory and quantum mechanics. Those who wish to support such 
a claim will emphasize that the problem of the nonexistence of the joint 
distribution of conjugate variables arises in a natural way out of the 
quantum-mechanical theory of measurement. I have not in this paper 
said a great deal about the difficult and numerous problems of measure
ment in quantum mechanics. For the purposes of the present point, I 
think it is sufficient to mention, however, that it is not the theory of 
measurement per se that can be made to assume the burden of the conflict. 
For the kind of peculiar probability results derivable from quantum
mechanical theory exist nowhere else in the theory of measurement. 
Secondly, these nonexistence results do not depend on any specific 
assumptions about the processes of measurement, but follow in a natural 
and simple way from the fundamental theory. 

As I have already said, it is certainly possible to avoid any implication 
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of a formal contradiction from the nonexistence of a joint distribution of 
conjugate variables. What I think is much more difficult to avoid is the 
sense of tension and instability in the confrontation of quantum mechan
ics and probability theory. The existence of this conflict will surely lead 
to further fundamental conceptual changes in our basic scientific view of 
the world. 

NOTE 

1 t Article 13 in this volume. 



15. THE PROBABILISTIC ARGUMENT FOR 

A NONCLASSICAL LOGIC 

OF QUANTUM MECHANICS* 

I. THE ARGUMENT 

The aim of this paper is simple. I want to state as clearly as possible, 
without a long diseursion into technical questions, what I consider to be 
the single most powerful argument for use of a nonclassical logic in 
quantum mechanics. There is a very large mathematical and philosophical 
literature on the logic of quantum mechanics, but almost without ex
ception, this literature provides a very poor intuitive justification for 
considering a nonclassical logic in the first place. A classical example in 
the mathematical literature is the famous article by Birkhoff and von 
Neumann (1936). Although Birkhoff and von Neumann pursue in depth 
development of properties of lattices and projective geometries that are 
relevant to the logic of quantum mechanics, they devote less than a third 
of a page (p. 831) to the physical reasons for considering such lattices. 
Moreover, the few lines they do devote are far from clear. The philosophi
calliterature is just as bad on this point. One of the better known philo
sophical discussions on these matters is that found in the last chapter of 
Reichenbach's book (1944) on the foundations of quantum mechanics. 
Reichenbach offers a three-valued truth-functional logic which seems 
to have little relevance to quantum-mechanical statements of either a 
theoretical or experimental nature. What Reichenbach particularly fails 
to show is how the three-valued logic he proposes has any functional role 
in the theoretical development of quantum mechanics. It is in fact fairly 
easy to show that the logic he proposes could not possibly be adequate 
for a systematic theoretical statement of the theory as it is ordinarily 
conceived. The reasons for this will become clear later on in the present 
paper. 

The main premises of the argument I outline in this paper are few in 
number. I state them at this point without detailedjustification in order to 
give the broad outline of the argument the simplest possible form . 

... Reprinted from Philosophy 0/ Science 33 (1966), 14-21. 
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PREMISE 1: In physical or empirical contexts involving the application 0/ 
probability theory as a mathematical discipline, the /unctional or working 
logic 0/ importance is the logic 0/ the events or pro positions to which 
probability is assigned, not the logic 0/ qualitative or intuitive statements to 
be made about the mathematically /ormulated theory. (In the classical 
applications ofprobability theory, this logic of events is a Boolean algebra 
of sets; for technical reasons that are unimportant here this Boolean 
algebra is usually assumed to be countably additive, i.e., au-algebra.) 

PREMISE 2: The algebra 0/ events should satis/y the requirement that a 
probability is assigned to every event or element 0/ the algebra. 

PREMISE 3: In the case 0/ quantum mechanics probabilities may be 
assigned to events such as position in a certain region or momentum within 
given limits, but the probability 0/ the conjunction 0/ two such events does 
not necessarily exist. 

CONCLUSION: The /unctional or working logic 0/ quantum mechanics is 
not classical. 

°From a scientific standpoint the conclusion from the premises is weak. 
All that is asserted is that the functional logic of quantum mechanics is 
not classical, which means that the algebra of events is not a Boolean 
algebra. Nothing is said about what the logic of quantum mechanics iso 
That question will be considered shortly. First I want to make certain 
that the support for the premises stated is clear, as weIl as the argument 
leading from the premises to the conclusion. 

Concerning the :first premise, the arguments in support of it are several. 
A source of considerable confusion in the discussion of the logic of 
quantum mechanics has been characterization of the class of statements 
whose logic is being discussed. On the one hand we are presented with the 
phenomenon that quantum mechanics is a branch of physics that uses 
highly developed mathematical tools, and on the other hand, discussions 
of logic deal with the foundations of mathematics itself. It is usually 
difficult to see the relation between characterization of the sentential 
connectives that seem appropriate for a new logic and the many mathe
matical concepts of an advanced character that must be available for 
actual work in quantum mechanics. The problem has often been posed as 
how can one consider changing the logic of quantum mechanics when the 
mathematics used in quantum mechanics depends in such a thorough 
fashion on classicallogic. The point of this :first premise is to narrow and 
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sharpen the focus of the discussion of the logic of an empirical science. 
As in the case of quantum mechanies, we shall take it for granted that 
probability theory is involved in the mathematical statement of the 
theory. In every such case a logic of events is required as an underpinning 
for the probability theory. The structure ofthe algebra of events expresses 
in an exact way the logical structure of the theory itself. 

Concerning the second premise the arguments for insisting that a 
probability may be assigned to every event in the algebra is already apart 
of classical probability theory. It is only for this reason that one considers 
an algebra, or u-algebra, of sets as the basis for classical probabiIity 
theory. If it were permitted to have events to which probabiIities could 
not be attached, then we could always take as the appropriate algebra the 
set of all subsets of the basic sampie space. The doctrine that the algebra 
of events must have the property asserted in the second premise is too 
deeply embedded in classical probability theory to need additional 
argument here. One may say that the whole point of making explicit the 
algebra of events is just to make explicit those sets to which probabiIities 
may indeed be assigned. It would make no sense to have an algebra of 
events that was not the entire family of subsets of the given sampie space 
and yet not be able to assign a probabiIity to each event in the algebra. 

Concerning the third premise it is straightforward to show that the 
algebra of events in quantum mechanics cannot be closed under con
junction or interseetion of events. The event of a particle's being in a 
certain region of space is weIl defined in all treatments of classical 
quantum mechanics. The same is true of the event of the particle's 
momentum's being in a certain region as weIl. If the algebra of events 
were a Boolean algebra we could then ask at once for the probabiIity of 
the event consisting of the conjunction of the first two, that is, the event 
of the particle's being in a certain region at a given time t and also having 
its momentum lying in a certain interval at the same time t. What may be 
shown is that the probabiIity of such a joint event does not exist in the 
classical theory. The argument goes back to Wigner (1932), and I have 
tried to make it in as simple and direct a fashion as possible in Suppes 
(1961b).lt The detailed argument shall not berepeated here.lts main line 
of development is completely straightforward. In the standard formalism, 
we may compute the expectation of an operator when the quantum
mechanical system is in a given state. In the present case the operator we 
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choose is the usual one for obtaining the characteristic function of a 
probability distribution of two variables. Having obtained the chatac
teristic function we then invert it by the usual Fourier methods. Inversion 
should yield the density corresponding to the joint probability distri
bution of position and momentum. It turns out that for most states of 
any quantum-mechanical system the resulting density function is not the 
density function of any genuine joint probability distribution. We 
conclude that in general the joint distribution of two random variables 
like position and momentum does not exist in quantum mechanics and, 
consequently, we cannot talk about the conjunction oftwo events defined 
in terms of these two random variables. From the standpoint of the logic 
of science, the fundamental character of this result is at a much deeper 
level than the uncertainty principle itself, for there is nothing in the 
uncertainty principle as ordinarily formulated that runs counter to 
classical probability theory. 

The inference from the three premises to the conclusion is straight
forward enough hardly to need comment. From premise (1) we infer that 
the functional logic of events is the fermal algebra of events on which a 
probability measure is defined. According to premise (2) every element, 
i.e., event, of the algebra must be assigned a probability. According to 
premise (3) the algebra of events in quantum mechanics cannot be closed 
under the conjunction of events and satisfy premise (2). Hence the algebra 
of events in quantum mechanics is not a Boolean algebra, because every 
Boolean algebra is closed under conjunction. Whence according to 
premise (1) the functionallogic of quantum mechanics is not a Boolean 
algebra and thus is not classicaI. 

H. THE LOGIC 

Although the conclusion of the argument was just the negative statement 
that the logic of quantum mechanics is not classical, a great deal more 
can be said on the positive side about the sort of logic that does seem 
appropriate. To begin with it will be useful to record the familiar def
inition of an algebra, and u-algebra, of sets. 

DEFINITION 1: Let X be a nonempty set. ff is a classical algebra of sets 
on X if and only if ff is a nonempty family of subsets of X and for every 
A and Bin ff: 
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1. ",Ae$'. 
2. AuBe$'. 

Moreover, if $' is closed under countqble unions, that is, ifJor Al> A 2 , ••• , 

An,···e$', 

then $' is a classical (I-algebra on X. 
It is then standard to use the concepts of Definition 1 in defining the 

concept of a classical probability space. In this definition we assume that 
the set-theoretical structure of X, $' and P is familiar; in particular, that 
X is a nonempty set, $' a family of subsets of X and P a real-valued 
function defined on $'. 

DEFINITION 2: A structure fI=(X, $', P) is afinitely additive classical 
probability space if and only if Jor every A and B in $': 

PI.$' is a classical algebra oJ sets on X; 
P2. P(A)~O; 
P3. P(X)=l; 
P4. lf AnB=O, thenP(AuB)=P(A)+P(B). 

Moreover, fI is a classical probability space (without restriction 10 

finite additivity) if the Jollowing two axioms are also satisfied: 

P5. $' is a (I-algebra oJ sets on fI; 
P6. lf Al> A 2 , ••• , is a sequence oJ pairwise incompatible events in $', i.e., 

Ai n A j = 0 Jor i =/), then 

In modifying the classical structures characterized in Definitions 1 and 
2 to account for the truculent "facts" of quantum mechanics, there are a 
few relatively arbitrary choice points. One of them needs to be described 
in order to explain an aspect of the structures soon to be defined. I 
pointed out earlier that the joint probability of two events does not 
necessarily exist in quantum mechanies. A more particular question 
concerns the joint probability of two disjoint events. In this case there is 
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no possibility of observing both of them, since the very structure of the 
algebra of events rules this out. On the other hand, it is theoretically 
convenient to include the union of two such events in the algebra of sets, 
or a denumerable sequence of pairwise disjoint events, in the case of a 
er-algebra. This liberal attitude toward the concept of event has been 
adopted here, but it should be noted that it would be possible to take a 
stricter attitude without affecting the concept of an observable in any 
important way. (This stricter attitude is taken by Kochen and Specker, 
1965, but they also deliberately exclude all probability questions in their 
consideration of the logic of quantum mechanics.) 

So the logic of quantum mechanics developed here permits the union of 
disjoint events apart from any question of noncommuting random 
variables' being involved in their definition. A more detailed discussion 
of this point may be found in Suppes (1965b). Roughly speaking, the 
definitions that follow express the idea that the probability distribution of 
a single quantum-mechanical random variable is classical, and the 
deviations arise only when several random variables or different kinds 
of events are considered. 

The approach embodied in Definition 3 follows Varadarajan (1962); it 
differs in that Varadarajan does not consider an algebra of sets, but only 
the abstract algebra. 

DEFINITION 3: Let X be a nonempty set . .fI'" is a quantum-mechanical 
algebra of sets on X if and only if .fI'" is a nonempty family of subsets of X 
and for every A and B in .fI'": 

1. '" A E.fI'"; 
2. lf AnB=O then AuBE.fI'". 

Moreover, if.fl'" is closed under countable unions ofpairwise disjoint sets, 
that is, if Al> Az, ... is a sequence of elements of .fI'" such that for i =1= j, 
AjnAj=O 

00 

U AjE.fI'" , 
j=l 

then .fI'" is a quantum-mechanical er-algebra of sets. 
The following elementary theorem is trivial. 
THEOREM 1: lf.fl'" is a classical algebra (or er-algebra) of sets on X then 

.fI'" is also a quantum-mechanical algebra (or er-algebra) of sets on X. 
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The significance of Theorem 1 is apparent. It shows that the concept of 
a quantum-mechanical algebra of sets is a strictly weaker concept than that 
of a classical algebra of sets. This is not surprising in view of the break
down of joint probability distributions in quantum mechanics. We 
cannot expect to say as much, and the underlying logical structure of our 
probability spaces reflects this restriction. 

It is hardly necessary to repeat the definition of probability spaces, 
because the only thing that changes is the condition on the algebra /F, 
but in the interest of completeness and explicitness it shall be given. 

DEFINITION 4: A structure f!C = (X, /F, P> is afinitely additive quantum-
mechanical probability space if and only if for every A and B in /F: 

PI. /F is a quantum-mechanical algebra of sets on X; 
P2. P (A);;?; 0,' 
P3. P(X)=l,' 
P4. lf AnB=O, then P(AuB)=P(A)+P(B). 

Moreover, X is a quantum-mechanical probability space (without 
restrietion to finite additivity) if the following two axioms are also satisfied: 

PS. /F is a quantum-mechanical (I-algebra of sets on X,' 
P6. lf Al' A 2 , ... , is a sequence of pairwise incompatible events in /F, 

i.e., A;nAj=Ofor i=j, then 

It is evident from the elose similarity between Definitions 2 and 4 that we 
have as an immediate consequence of Theorem I the following result: 

THEOREM 2: Every classical probability space is also a quantum
mechanical probability space. 

It goes without saying that in the case of both of these theorems it is 
easy to give counterexamples to show that their converses do not hold. 

Quantum-mechanical probability spaces can be used as the basis for an 
axiomatic development of elassical quantum mechanies, but the re
striction to algebras of sets in order to stress the analogy to elassical 
probability spaces is too severe. The spaces defined are adequate for 
developing the theory of all observables that may be defined in terms of 
position and momentum, but not for the more general theory. The 
fundamental characteristic ofthe general theory is that not every quantum-
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mechanical algebra may be embedded in a Boolean algebra, and thus is 
not isomorphie to a quantum-mechanical algebra of sets, because every 
such algebra of sets is obviously embeddable in the Boolean algebra of 
the set of all subsets of x. 

It is thus natural to consider the abstract analogue of Definition 3 and 
define the general concept of a quantum-mechanical algebra. (The 
axioms given here simplify those in Suppes, 1965b, which are in turn 
based on Varadarajan, 1962.) Let A be a non-empty set, corresponding to 
the family ~ of Definition 2, let ~ be a binary relation on A - the relation 
~ is the abstract analogue of set inclusion, let I be a unary operation 
on A - the operation I is the abstract analogue of set complementation, 
and let 1 be an element of A - the element 1 is the abstract analogue of the 
sampIe space X. We then have: 

DEFINITION 5: A structure m = (A, ~, I, 1> is a quantum-mechanical 
algebra if and only if the following axioms are satisfied for every a, band 
c in A: 

1. a~a; 
2. lf a~b and b~a then a=b,· 
3. lfa~b and b~c then a~c; 
4. lfa~b then b'~a'; 
5. (al)l=a; 
6. a~l; 
7. lfa~b and a'~b then b=l,· 
8. lfa~b' then there is a c in A such that a~c, b~c, andfor all d in A if 

a~d and b~d then c~d,· 
9. lf a~b then there is a c in A such that c~al, c~b andfor every d in A 

if a~d and c~d then b ~d. 

The only axioms of any complexity are the last three. If the operation of 
addition for disjoint elements were given the three axioms would be 
formulated as folIows: 

7! a+al=I,· 
8! a+b is in A; 
9! lf a~b then there is a c in A such that a+c=b. 

The difficulty with the operation of addition is that we do not want it to 
be defined except for disjoint elements, i.e., elements a and b of A such 
that a:5. b' . 
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It should also be apparent that we obtain a a-algebra by adding to the 
axioms of Definition 5 the condition that for any sequence of pairwise 
disjoint elements a1, a2' ... , an>'" of A there is a c in A such that for all 
n, an~c and for every din A, iffor every n, an~d, then c~d. 

Although it may be apparent, in the interest of explicitness, it is 
desirable to prove the following theorem. 

THEOREM 3: Every quantum-mechanical algebra 0/ sets is a quantum
mechanical algebra in the sense 0/ Definition 5. 

Proof: Let .'J" be a quantum-mechanical algebra of sets on X. The 
relation ~ of Definition 5 is interpreted as set inc1usion ~, and Axioms 
1-3 immediately hold. The complementation is interpreted as set com
plementation with respect to X, and Axioms 4 and 5 hold in this inter
pretation. The Unit I is interpreted as the set X, and Axiom 6 holds 
because for any A in .'J", A ~ X. In the case ofAxiom 7 it is evident from 
elementary set theory that if A ~ Band '" A ~ B, then AU", A ~ B, whence 
X~B, but B~X, and so B=X. Regarding Axiom 8, if A~ ",B then 
An B = 0, so Au BE.'J" by virtue of the second axiom for algebras of sets, 
and we may take C = A u B to satisfy the existential requirement of the 
axiom, because A~AuB, B~AuB, and if A~D and B~D then 
A u B~D. Finally, as to Axiom 9, if A ~B then we first want to show that 
B",AE.'J". By hypothesis A, BE.'J", whence ",BE.'J", and since A~B, 
An ",B=O and thus Au ",BE.'J", but then because.'J" is c10sed under 
complementation, ",(Au ",B)=",AnB=B",AE.'J", as desired. It is 
easily checked, in order to verify Axiom 9 that because A ~B, we have 
B,...,A~ ",A, B",A~B and for every set D in.'J", if A~D and B",A~D 
then B~D, since Au(B",A)~D and Au(B",A)=B. Thus B",A is the 
desired C, which completes the proof. 

To obtain a sentential calculus for quantum-mechanical algebras, we 
define the notion of validity in the standard way. More particularly, in 
the calculus implication ----+ corresponds to the relation ~ and negation -, 
to the complementation operation I. We say that a sentential formula is 
quantum-mechanically valid if it is satisfied in all quantum-mechanical 
algebras, i.e., if under the expected interpretation the formula designates 
the element 1 of the algebra. The set of such valid sentential formulas 
characterizes the sententiallogic of quantum mechanics. The axiomatic 
structure of this logic will be investigated in a subsequent paper. 



252 PART III. FOUNDATIONS OF PHYSICS 

I conclude with abrief remark about Reichenbach's three-valued logic. 
It is easy to show that the quantum-mechanicallogic defined here is not 

truth-functional in his three values (for more details see Suppes, I 965b). 
It seems clear to me that his three-valued logic has Httle if anything to do 
with the underlying logic required for quantum-mechanical probability 
spaces, and I have tried to show why the logic of quantum-mechanical 
probability is the logic of quantum mechanies. What I have not been able 
to do within the confines of this paper is to make clear precisely why the 
algebras characterized in Definition 5 are exactly appropriate to express 
the logic of quantum-mechanical probability. The argument in support of 
this choice is necessarily rather long and technical. A fairly good case is 
made out in detail in Varadarajan (1962). 

However, apart from giving a mathematically complete argument for 
Definition 5, it may be seen that quantum-mechanical algebras have 
many intuitive properties in common with Boolean or classical algebras. 
The relation of implication or inclusion has most of its ordinary properties, 
the algebras are closed under negation, and the classical law of double 
negation holds. What is lacking are just the properties of closure under 
union and intersection - or disjunction and conjunction - that would 
cause difficulties for nonexistent joint probability distributions. 

NOTE 

lt Artiele 13 in this volume. 



PART IV 

FOUNDATIONS OF PSYCHOLOGY 



This part contains the most articles of the four parts and reflects properly 
the greater emphasis and stress of my own research over the past decade. 
The first three articles deal with general issues in the foundations of 
psychology. The first article gives an axiomatization of stimulus-sampling 
theory for a continuum ofresponses, which represents an extension ofthe 
theory to this experimentally and conceptually useful case. The second, 
more philosophical article discusses the nature and limitations of be
haviorism. A main concern are the arguments of intentionalists like 
Chisholm about the limitations of behaviorism. The third article treats 
an interesting claim about the predictability of human behavior originally 
put forth by Michael Scriven. In these two philosophical articles, 18 and 
19, I have used the apparatus laid out in more detail in the first article on 
stimulus-sampling theory. 

The remaining articles in this part deal in one way or another with the 
foundations of mathematics or the foundations of psycholinguistics. The 
first article on this subject, Article 19, reports some ofmy earliest work in 
attempting to provide behavioral foundations for the learning of mathe
matical concepts by children. Article 20 extends this work to some very 
simple cases of mathematical proofs, and Article 21 continues this 
extension to a wider range of topics in the foundations of mathematics. 
Article 22 is a recently written general survey of the theory of cognitive 
processes and extends beyond the foundations of mathematics or 
psycholinguistics, but much of what is said bears on the psychological 
analysis of mathematics learning or thinking. Finally, the last article, in 
many ways the most substantial one in this part, deals with stimulus
response theory of finite automata. I try to link the work of linguists 
concerned with production or recognition automata for various types of 
languages to classical concepts and assumptions of stimulus-response 
theory. The work begun on this last article is not yet finished, but I think 
the direction of research, if it can be successfully continued, will be of 
some importance for psycholinguistics and also for the psychological 
foundations of mathematics itself. 
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Because of the conceptual richness and depth of mathematics, it is a 
particularly inviting topic for psychological analysis. It is surprising that 
so little scientific work of a complex or extended sort has yet been done 
on mathematics leaming or thinking. The articles reprinted here certainly 
represent only a very modest beginning, and I know many mathematicians 
and philosophers are skeptical that this kind of beginning can lead to a 
more adequate framework for what goes on in the minds of students as 
they leam mathematics or in the minds of mathematicians as they create 
new concepts and domains of thought. In the opening pages of the last 
article, I try to give reasons for thinking that there is some ground for 
hope, and I shalI not review the arguments given there. 

During the period when these eight articles were written, I also wrote 
a number of articles concemed with more detailed questions in mathe
matical psychology, or in some cases, actual reports of experiments. 
Although I have a considerable personal involvement in this work, it did 
not seem sufficiently methodologically or philosophically oriented to 
include in the present volume, or to review in detail. Also, I have not 
attempted to provide additional leads into the literature, because the 
articles reprinted here were written recently and contain references to the 
relevant current literature. 

It is clear that the foundations of psychology as discussed here is quite 
a different subject from what is currently called 'philosophical psychology'. 
The only one of the eight articles that makes serious contact with the 
current literature in philosophical psychology is the one on behaviorism 
(Article 18). This is not the proper occasion to defend my conceptual 
approach against that typical in philosophical psychology. I would say, 
however, that whatis said here is much closerto the scientific spirit dominant 
in contemporary psychology, particularly in the U.S.A. Also, the main 
topic of these papers, the psychological foundations of mathematics, has 
scarcely been discussed in this recent literature ofphilosophical psychology. 

Because the work in the final paper, the one on stimulus-response 
theory of finite automata, is perhaps the one of greatest philosophical 
interest, or at least because it is now of greatest interest to me, I would 
like to say something about the sort of additional results needed to 
convert what I think is a promising beginning into a substantial approach 
to language leaming, of significance for both psycholinguistics and the 
philosophy of language. 
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At least six stages of additional results seem necessary to establish in 
any definitive way the viability of the approach in the article reprinted 
here. 

(1) Detailed grammars of a probabilistic sort need to be worked out 
for the speech of young children. The developmental changes in these 
grammars need to be clearly identified, in order to provide a much sharper 
sense of what the child continues to acquire in terms of grammar or 
syntax as he matures from, say, 20 months to 5 years. (I leave aside all 
the important matters of phonology and the learning to recognize and 
produce the physical sounds of a language - primarily because I have 
nothing of significance to conjecture about them.) 

(2) Such detailed grammars will provide a first estimate of the number 
of states required for language production or recognition on the part of a 
child. One of the apparently strongest lines of attack against a stimulus
response approach to language learning is centered on the claim that, if 
this approach were really correct, the child must learn an impossibly 
Iarge number of conditioning connections. Perhaps everyone can agree 
that the number is too large if each sentence produced must somehow be 
learned as a discrete and indivisible unit. But a more sophisticated attack 
has scarcely begun on estimating the number of states in an automaton 
model ofthe child's behavior and determining by any serious quantitative 
argument whether the minimum number of states can possibly be 
acquired by conditioning processes. 

There are two recurring but mi staken objections oflinguists to stimulus
response ideas, which are appropriate to mention at this point. The first 
is the claim that an automaton with an unbounded number of states is 
needed to recognize or produce a naturallanguage. There are many ways 
of showing how nonsensical this claim is when addressed to the actual 
performance of language users. Some of these ways are detailed in the 
fIrst chapter of Crothers and Suppes (1967), and I shall not explore 
others here, except to remark that a very appropriate probabilistic 
approximation of any unbounded automaton generating a probabilistic 
grammar can be made by a fixed finite-state device, along lines familiar in 
the theory of ergodic stochastic processes, especially chains of infinite 
order. (I hope to publish some results on these matters in the near future.) 

The second misplaced objection is to the asymptotic nature of the 
theorems proved in Article 23. Linguists unfamiliar with how such 
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asymptotic mathematical results are ordinarily related to finite ex
perimental data elaim that what is needed is actual, not asymptotic, 
modeling of a production automaton by a stimulus-response process. As 
can be seen by even the most casual perusal of the literature of modern 
mathematicallearning theory, however, the behavior after a small finite 
number of trials in most straight learning experiments is already, for all 
practical purposes, at asymptote. When theoretical parameters of 
conditioning are then estimated from the experimental data, the difference 
in probabilities of responses on trial 500, say, and at asymptote (at trial 
infinity, so to speak), as predicted in terms of the estimated parameters, 
will be less than 10 - 4. 

The use of asymptotic results in learning theory is like the use of twice
differentiable paths in theoretical mechanics, a mathematical fiction for 
convenience of computation and analysis, and an approximation that 
remains elose to the less tractable brute facts. 

(3) Those who are not sympathetic to a stimulus-response approach 
rightly point out that it is not a simple matter to identify the reinforcing 
events required for conditioning to take place. No doubt the details are 
difficult to supply and the problems of analysis extraordinarily subtle, 
because of the intimate and rapid nonverbal means of communication 
and reinforcement between parent and child. But, some of the gross 
facts reside on the behavioristic side of the fence. Not even the most 
hidebound nativist suggests any child has ever learned any language 
except the one spoken around him. On the other hand, any behaviorist 
with the slightest modicum of scientific sense will admit that the genetic 
structure of the human child brings a high order of finely tuned equip
ment to the job of language learning. Identifying more sharply the 
nature and role of reinforcement will help immensely in locating with 
greater precision the line between innate and behavioral components of 
language learning. 

(4) The article on finite automata has nothing at all to say about 
semantics, but in any successful theory of language learning, that omission 
can be only temporary. In many ways the associationistic nature of 
stimulus-response theory would seem to provide a natural home for 
semanties, but in simplest garb, this would be only a theory of reference 
and not a theory of meaning. It may well be that the currents and nuances 
of ordinary talk will be as difficult to analyze and predict with any 
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accuracy as are the currents and eddies of a gust of wind moving through 
a treetop, even though the fundamental dynamical theory of the motion 
of air is thought to be weil understood. Our objective, therefore, for a 
theory must be more limited than that of providing a complete account. 
But, even though a complete semantical theory of nuance may be un
attainable, a more modest semantical theory, comparable at least to 
what now exists for formallanguages in the theory of models, will be 
required. 

(5) Something not too far from the theory of models may provide a 
good first approximation to a semantical theory of ordinary language, 
but for any real account of language learning and use, something far 
more is required. A theory is required to explain why one utterance rather 
than another, or nothing at all, is spoken on a given occasion. A satis
factory and adequate account of a child's language-Iearning must 
enunciate principles that lead to at least probabilistic predictions about 
the contents of his utterances on given occasions. Such a theory might 
weH be called the semantical theory 0/ utterances, as opposed to the 
semantical theory of statements or sentences. 

The first necessity of such a theory would seem to be the inclusion of a 
theory of perception, for the child above aH responds to the stimuli 
immediately impinging on his peripheral receptors, not on his own 
brooding thoughts of yesteryear. A variety of theories of perception and 
concept formation centering on the notion of the organism's always 
working with and modifying an internal template of the environment are 
currently being developed and seem to hold some promise. The philo
sophicaHy interesting point about these "activist" template models is that 
they are far removed from the conception of passive sense-data receivers 
often entertained by philosophers as models of perceiving. 

(6) Perhaps the best test of any theory of language learning will be 
its ability to provide the plans for the construction of a computer that 
learns to talk. The !ine of behaviorism that derives from Wittgenstein 
does not offer any systematic or scientific account of the mechanisms by 
which behavior is learned, and at times; as in the case of Ryle, seems to 
suggest that such a deeper scientific account of mechanism would be 
otiose. But the man who wants to try to build, or more aptly, program, a 
computer to talk knows better after the first hour of the first day of attack 
on the problem. It is not unreasonable to forecast that in fifty years the 
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most controversial and important topic in the philosophy of language will 
be the conceptual attitude taken toward talking computers. And if this is 
so, it is very likely that the status of stimulus-response theories of lan
guage, albeit much better developed, will continue also to be apart of the 
controversy. 



16. STIMULUS-SAMPLING THEORY FOR A 

CONTINUUM OF RESPONSES* 

I. INTRODUCTION 

The aim of the present investigation is to extend stimulus-sampling theory 
to situations involving a continuum of possible responses. The theory for 
a finite number of responses sterns from the basic paper by Estes (1950); 
the present formulation will resemble most closely that given for the 
finite case in Suppes and Atkinson (1959). In a previous study (Suppes, 
1959b) I was concerned with a corresponding extension oflinear learning 
models, and several results of that study are, as we shall see, closely 
related to the present one. 

The experimental situation consists of a sequence of trials. On each 
trial the subject (of the experiment) makes a response from a continuum 
of possible responses; his response is followed by a reinforcing event 
indicating the correct response for that trial. In situations of simple 
learning, which are characterized by a constant stimulating situation, 
responses and reinforcements constitute the only observable data, but 
stimulus-sampling theory postulates a considerably more complicated 
process which involves the conditioning and sampling of stimuli. In the 
finite case the usual assumption is that on any trial each stimulus is 
conditioned to exactly one response. Such a highly discontinuous assump
tion seems inappropriate for a continuum of responses, and I have 
replaced it with the postulate that the conditioning of each stimulus is 
smeared over a certain interval of responses, possibly the whole con
tinuum. In these terms, the conditioning of any stimulus may be rep
resented uniquely by a smearing distribution. These distributions, one 
for each stimulus, will play the same role as did the single smearing 
distribution introduced in my earlier paper on linear models (Suppes, 
1959b). 

>10 Reprinted from Mathematical Methods in the Social Sciences, 1959 (cd. by K. J. 
Arrow, S. Karlin, and P. Suppes), Stanford University Press, Stanford, Calif., 1960, 
pp. 348-365. 
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The theoretically assumed sequence of events on any trial may then be 
described as folIows: 

trial begins with certain response reinforcement possible 
each stimulus in -+ stimuli -+ occurs -+ occurs -+ change in 
a certain state of are conditioning 
conditioning sampled occurs. 

The sequence of events just described is, in broad terms, postulated to be 
the same for finite and infinite sets of possible responses. Differences of 
detail will become clear. The main point of the axioms in Section II is to 
state specific hypotheses about this sequence of events. As has already 
been more or less indicated, three kinds ofaxioms are needed: con
ditioning axioms, sampling axioms, and response axioms. 

Seetion III contains some general theorems of the theory. Seetion IV 
considers in some detail the c1assical case of noncontingent reinforcement. 
Seetion V treats other cases more superficially. 

Although no experimental data will be described in this paper, it will 
perhaps help to describe schematically one piece of apparatus which has 
been used to test the theory extensively. The subject is seated facing a 
large circular vertical disco He is told that his task on each trial is to 
predict by means of apointer where a spot of light will appear on the rim 
of the disco The subject's pointer predictions are his responses in the sense 
of the theory. At the end of each trial the "correet" position of the spot 
is shown to the subject, which is the reinforcing event for that trial. The 
most important variable controlled by the experimenter is the choice of a 
particular probability distribution of reinforcement. 

II. AXIOMS 

The axioms are formulated verbally but with some effort to convey a 
sense of formal precision. It is not difficult, although not wholly routine, 
to convert them into a mathematically exact form. As already indicated, 
they fall naturally into three groups. In the statement of the axioms we 
use x for the response variable and z for the parameter of the smearing 
distribution Ks{x; z) of any stimulus S. Moreover, z is the mode of the 
distribution; for the circular disc apparatus it is also assumed to be the 
mean, but not all apparatus to which the theory applies is so completely 
symmetrie. 
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Conditioning axioms 

Cl. For each stimulus s there is on every trial a unique smearing distribu
tion Ks(x; z) on the interval [a, b] oJ possible responses such that (a) the 
distribution Ks(x; z) is determined by its mode z and its variance; (b) the 
variance is constant over trials Jor a fixed stimulating situation; (e) the 
distribution Ks(x; z) is continuous and piecewise differentiable in both 
variables. 

C2. lf a stimulus is sampled on a trial, the mode oJits smearing distribu
tion becomes, with probability e, the point oJ the response (if any) which is 
reinJorced on that trial; with probability I - e the mode remains unchanged. 

C3. Ifno reinJorcement occurs on a trial, there is no change in the smear
ing distributions oJ sampled stimuli. 

C4. Stimuli wh ich are not sampled on a given trial do not change their 
smearing distributions on that trial. 

CS. The probability e that the mode oJ the smearing distribution oJ a 
sampled stimulus will become the point oJ the reinforced response is 
independent oJ the trial number and the preceding pattern oJ occurrence oJ 
events. 

Sampling axioms 

Sl. Exactly one stimulus is sampled on each trial. 
S2. Given the set oJ stimuli available Jor sampling on a given trial, the 

probability oJ sampling a given element is independent oJ the trial number 
and the preceding pattern of occurrence oJ events. 

Response axioms 

Rl. Ifthe sampled stimulus sand the mode z oJits smearing distribution 
are given, then the probability oJ a response in the interval [al' a2] is 
KS(a2 ; z)-KS(al ; z). 

R2. This probability oJ response is independent oJ the trial number and 
the preceding pattern oJ occurrence of events. 

Because of the similarity of these axioms to those in Suppes and 
Atkinson (1959) I shall here mainly eomment on those aspeets peculiar to 
the eontinuum ease. In the finite ease the eomplieated form ofAxiom Cl 
reduces simply to the assertion that on any trial eaeh stimulus is con
ditioned to exaedy one response. As already remarked, the assumption 
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[Cl (a)] that the smearing distribution of any stimulus is determined by 
its mode and variance, rather than its mean and variance, is used in order 
to permit application of the theory to unsymmetrical apparatus. For 
instance, suppose the experimental set-up consists of a bar a meter or so 
in length on which the subject is to set apointer to predict the occurrence 
of a spot of light. It seems unreasonable to suppose that the conditioning 
effect of a reinforcement near the end points of the bar will be smeared 
symmetrically to the left and to the right. For such a situation the mean of 
the smearing distribution (of a sampled stimulus) may not be at the point 
of reinforcement even though conditioning is effective. On the other hand, 
it seems psychologically sound to assume that the mode of the smearing 
distribution will be at the point of reinforcement - granted the effectiveness 
of conditioning. In the present formulation of the theory it is essential to 
have the one free parameter of the smearing distribution closely tied to 
the points of reinforcement, for when conditioning is effective, which 
occurs with probability (), this parameter assumes the value of the point 
of reinforcement (Axiom C2). This corresponds to the assumption in the 
finite response case that with probability () sampled stimuli become 
conditioned or connected to the reinforced response. 

The remaining conditioning axioms (C3, C4, C5) have almost exactly the 
form which is also appropriate for the finite case. The same is true of the 
two sampling axioms. In contrast, the first response axiom, RI, has a 
much simpler form in the finite case: with probability I the response is 
made to which the sampled stimulus is conditioned. Axiom RI generalizes 
this assumption in the obvious manner in terms of the smearing distribu
tion of the sampled stimulus. 

The three axioms C5, 82, and R2 are what have been termed in the liter
ature independence-of-path assumptions. Only R2 is new here; the other 
two are also needed in the finite case. These three axioms are crucial in 
proving that for simple reinforcement schedules the sequence of random 
variables which take as values the modes of the smearing distributions of 
the stimuli constitutes a continuous-state Markov process. 

We next introduce some notation. In particular, we need notation for 
five random variables, their values, and their distributions, as weIl as a 
notation for their joint distribution. Three of these random variables take 
values in the interval [a, b], the continuum of possible responses and rein
forcements fixed throughout the paper. Thus we have for trial n: 
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(i) the response random variable X"' with values x" or simply x, distri
bution R", and density r,,; 

(ii) the reinforcement random variable Y", with values y" or y, distribu
tion F", and density f,,; 

(iii) the smearing-parameter random variable Zs,,, of stimulus s, with 
values zs,,, or zs' distribution Gs,,,, and density gs,,,. As indicated already, 
Zs is the mode of the smearing distribution of stimulus s. The random 
variable Z", without the subscript s, shall take as values finite vectors z= 
(zs" ... , ZSN) relative to the ordering (Si' ••• , SN) of the set 8 of stimuli. 

We also need for occasional use: 
(iv) the sampling random variable 8", with values S" or s for the sampled 

stimulus, and discrete density 0"" (it is always assumed that the set 8 of 
stimuli is finite); 

(v) the effectiveness-of-conditioning random variable D", with value 1 
for effective and 0 for noneffective, and probability () ofvalue 1, following 
Axiom C2. I use (;i,,, for values of D". Thus (;i,,, is always either 1 or O. 

I use J" for the joint distribution of any finite sequence of these random 
variables the last of which occurs on trial n, and i" for the corresponding 
density. For occasional reference to points in the underlying sampie 
space, e is used. Finally, the notation Ks(x,,; z,,) for the smearing distri
bution of stimulus s was introduced earlier. 

In terms of the five random variables introduced, the postulated 
sequence of events on any trial, which was described informally before, 
may be symbolized as follows: 

Z,,-+ S,,-+ X,,-+ Y,. -+ D,,-+ Z"+l. 

Note that the value ofthe random variable Z" represents the conditioning 
of each stimulus at the beginning of trial n, for in the present continuous 
theory conditioning is in terms of a one-parameter family of smearing 
distributions. 

It will also be useful to give a more precise formulation of the response 
axioms, Rl and R2, in terms ofthe notationjust introduced. It is intended 
that Rl should simply make the following assertion: 

112 

P(al ~ X" ~ a21 S" = s, Zs,,, = z) = f i,,(x I s, Z) dx 
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Axiom R2 states an independence-of-path assumption. Let Wn-l be any 
sequence of outcomes of the random variables defined up to trial n - 1. 
Then R2 asserts: 

= Ks (a2; z) - Ks (al; z). 
The following obvious relations for the response density r" will also be 
helpfullater. First, we have that 

rn (x) = j,,(x) , 

i.e., r" is just the marginal density obtained from the joint distributionj". 
Second, we have "expansions" like 

b 

r,,(x) = f j,,(x, zs.,.) dzs.,,' 
a 
b b b 

r,,(x) = f f f j,.(x, zs.,., Y,,-l' X"-l) dzs." dY1I-l dx"-l' 
a a a 

111. GENERAL THEOREMS 

This section contains five general theorems, most of which correspond to 
theorems that have proved useful in experimental work with the finite 
case. It is assumed that the reinforcement distribution Fm which is selected 
by the experimenter, is always continuous and piecewise differentiable in 
all variables. Under these assumptions and those ofAxiom Clon the 
smearing distributions, no questions of integrability arise. Proofs of the 
first theorems are rather explicit in order to indicate the role of the 
axioms. 

THEOREM 1 (General Response Theorem): 
b 

(1) r1l (x) = L U,.(s) f ks(x; zs) gs.n(zs) dzs· 
seS 

a 

Proof' Mainly by virtue ofAxiom SI, which asserts that exact1y one 
stimulus is sampled on each trial, 
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b 

(2) rn (x) = ~ J jn(x, s, zs) dzs 
a 
b 

= ~ J jn(x I s, zs)jn(s I Zs) jn (zs) dzs . 
a 

In view ofAxioms Cl and RI, 

(3) jn(x I s, zs) = ks(x; zs); 

from Axiom S2, the independence-of-path assumption on sampling, 

(4) jn(s I zs) = O'n(s); 

and on the basis of the notation introduced in the last section, 

(5) jn(zs) = gs,n(zs)' 

The theorem follows immediately from (2)-(5). Q.E.D. 
The next theorem asserts the Markov property, which is essential for 

further deductive developments of the theory. It is a straightforward 
matter to generalize this theorem to more complicated reinforcement 
distributions which depend on the actual responses or reinforcements on 
several preceding trials; the generality of the present theorem is sufficient 
for our purposes here. 

THEOREM 2 (Markov Theorem): If the reinforcement distribution F(y) 
on trial n is independent ofn and depends only on the immediately preceding 
response on trial n, then the sequence of random variables <Z1' Zz, ... , 
Zn> ... > is a continuous-state Markov process. 

Proo!, By direct probability considerations for t1, ... , tm > 1, 

(6) jn(zn I Zn-1o Zn-tl' ... , Zn-tJ = 
b b 

a a 

xjn(Zn I (ji,n-1' Yn-1' xn- 1, Sn-1o Zn-1' Zn-tl' ... , Zn-tm) 

xjn-1 ((ji,n-1 I Yn-1' xn- 1, Sn-1' Zn-1' Zn-tl' ... , Zn-t,,.) 

xjn-1 (Yn-1 I Xn- 1, Sn-1' Zn-1o Zn-tl' ... , Zn-tm) 

Xjn-1 (Xn-1 I Sn-1' Zn-1' Zn-tl' ... , Zn-t",) 

xjn-1 (Sn-1 I Zn-1' Zn-t" ... , Zn-tJ dYn-1 dXn-1' 
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Now by Axiom C2, if c5I,"-l = 1, then 

provided the vector Z" = Y"-l in its co ordinate for stimulus s; otherwise 
j"(z,, 1 ... )=0. And if c5i ,,,-l =0, thenj"(z,, 1 ... )=1 if Z,,=Zn-l; otherwise 
j"(z,, 1 ... )=0. For any ofthese cases, the value ofj"(z,, I ... ) is not affected 
by Z,,-tl' ... , Zn-tm' Second, by virtue ofAxiom CS, 

j"-l (c5 i , n-l 1 Yn-l' Xn-l' S,,-l' Zn-i' Z,,-tl' ... , Z,,-tm) 

=jn-l(c5i ,n-l)' 

Third, on the basis of the hypothesis of the theorem, 

jn-l (Y"-l 1 X,,-l' S"-1> Zn-1> Zn-tl' ... , Zn-t,J 

=!(Y,,-ll X,,-l)' 

Fourth, in view ofAxioms Rl and R2, 

j"-l (X"-l 1 Sn-i' Zn-i' Zn-tl' ... , Zn-tm) 

=j"-l (X"-l 1 S,,-l' Zn-i)' 

Finally, in view ofAxiom S2, 

When all these results of applying the independence-of-path assumptions 
are substituted in (6), and the summations and integrations are performed 
on the result, we have 

the desired result. Q.E.D. 
Some readers may feel that the above theorem could have been assumed 

as an axiom, but this is to misunderstand the character of the theorem in 
the context of the general stimulus-sampling theory formulated by the 
axioms. The axioms on which this theorem is based are of a general nature 
and are concerned with fundamental aspects of the postulated psycholog
ical process of learning. In contrast, the theorem is relatively restricted, 
dealing as it does with only a small dass of the possible schedules of 
reinforcement. 

We turn now to some recursion theorems for various quantities; of 
particular interest is the one for response probabilities. It is possible to 
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state and prove these theorems under the general assumption of N 
stimuli in the set S. However, both computations and notation become 
rather cumbersome, so that at this stage of development of the theory it 
is a reasonable simplification to impose the following 

RESTRICTIVE HYPOTHESIS: There is exactly one stimulus element in S. 
Probabilities enter the theory for a continuum of responses in so many 

different ways that it is difficult to distinguish empirically between models 
with different numbers of stimuli when the stimulation is constant. And 
in the case of discrimination experiments, each stimulating situation may 
be treated as a single stimulus, with the result that on any trial there is 
exactly one stimulus available for sampIing, although the set S may 
contain more than one element. As a matter of fact, this restrictive 
hypothesis of a single stimulus is already a practical necessity for com
plicated reinforcement situations in the finite case (see, for instance, 
Atkinson and Suppes, 1958). 

We begin with a recursion for the distribution gn of the smearing 
parameter Z of the single stimulus. (On the assumption of a single 
stimulus we drop the subscript s.) 

THEOREM 3: 

Proof: By Axiom C2, if conditioning is effective, then Zn+1 = Ym and 
thus the distribution of Zn +1 is that of Yn' which isfn- On the other hand, if 
conditioning is not effective, then Zn+1 =Zn' and thus the distribution of 
Zn+1 is simply gn' By Axiom C2 the probability ofthe first alternative is 0, 
and that of the second 1-0, which yields the theorem. Q.E.D. 

In the famiIiar notation of the finite case, where Ai,n is response ion 
trial n and Ej,n is reinforcing eventj on trial n, (7) corresponds to: 

(8) P(A i ,n+1) = (1 - 0) P (Ai, n) + OP(Ei,n)' 

For the response density rn we have 
THEOREM 4: 

b 

(9) r,,+1 (x) = (1 - 0) r,,(x) + ° f k(x; y) f,,(Y) dy. 
a 
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Proo!' We have at once from Theorem 1 

b 

rn+1 (x) = f k(x; z) gn+l (z) dz. 
a 

Applying Theorem 3 to the right-hand side, we have 
b 

rn+1 (x) = f k(x; z) [(1 - 0) gn(z) + Ofn(z)] dz 
a 

b b 

= (1 - 0) f k(x; z) gn(z) + 0 f k(x; z) fn(z) dz 
a a 

b 

= (1 - 0) rn(z) + 0 f k(x; y) fn(Y) dy, 
a 

where the variable of integration is changed in the second integral on the 
right. Q.E.D. 

Robert R. Bush suggested that it is of interest to see what happens when 
the interval Ca, bJ is cut into a finite number of parts and the resulting 
finite response case is studied. For simplicity, we may divide the interval 
into exactly two parts. Let a< c < b, and call Xl, n a response on trial n in 
the interval Ca, e], and XZ,n a response on trial n in [e, b]. Clearly 

P(X1,n) = Rn(c) - Rn(a) = Rn(c), 
P(XZ,n) = Rn(b) - Rn(e) = 1 - Rn(e). 

And by integrating (9) of Theorem 4, we have at once 
THEOREM 5: 

c b 

P(X1,n+l)=(1-0)P(X1,n)+O f f k(x; Y)fn(Y) dxdy, 

(10) 
a a 
b b 

P(XZ,n+Z) = (1 - 0) P(Xz,n) + 0 f f k(x; y) fn(Y) dx dy. 
c a 

The recursions for X1 ,n and X2 ,n may be regarded as a generalization of 
(8) for the finite case when a continuous smearing of the effects of rein-
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forcement is postulated. By further specialization, it is possible to get an 
exact analog of (8). Let us suppose that there are only two points of 
reinforcement, one the midpoint Y1 of the interval [a, c], and the other 
the midpoint Y2 of the interval [c, bJ. Suppose, moreover, that the 
smearing densities around these two points of reinforcement are strictly 
positive only in the subinterval [a, c] or [c, b] as the case may be. Define 
then 

c b 

Y1,II = I k(x; Yl) dx, Y2,II = I k(x; Y2) dx, 
a c 

and under these suppositions (10) becomes 

an exact analog of (8). (Naturally, weaker suppositions will also yield 
such an analog, but the present example is illustrative of one method for 
obtaining the finite case from the continuous one.) 

The suppositions just made to yield (8) may also be used to yield the 
standard theory of the finite case at a deeper level, for (8) is only a recur
sion in the mean probabilities of responses and in itself does not justify 
derivation of any sequential statistics like the probability oftwo successive 
Al responses. However, these matters will not be pursued further here. 

In connection with this comparison of models, it mayaiso be remarked 
that the response density recursion (9) of Theorem 4 is exactly the same as 
that obtained in Suppes (1959b) for the continuous-response linear 
model. Consequently, the results in Suppes (1959b) for various kinds of 
contingent reinforcement (and a fortiori noncontingent reinforcement) 
follow at once in the present theory. 

IV. NONCONTINGENT REINFORCEMENT 

For noncontingent reinforcement schedules - that is, those for which the 
distribution F(y) is independent of n and the past - we first use the 
response density recursion (9) to prove some simple, useful results which 
do not explicitly involve the smearing distribution of the single stimulus 
element and which also hold in the linear model but were not stated in 
Suppes (1959b). There is, however, one necessary preliminary concerning 
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derivation of the asymptotic response distribution in the stimulus
sampling theory. 

THEOREM 6: In the noncontingent case 
b 

(11) rex) = !~~ rll(x) = I k(x; y) f (y) dy. 
a 

Proof: Because in the noncontingent case/"(Y)=f(Y), we have at once 
from Theorem 3 

(12) g(z) = lim gll(z) =f(z). 
11 .... 00 

The theorem immediately follows from (12) and Theorem 1. Q.E.D. 
We now use (11) to establish the following recursions. In the statement 

of the theorem C(XII) is the expectation of the response random variable 
XII; fl,(XII) is its rth raw moment; 0'2(XII) is its variance; and Xis the 
random variable with density r. 

THEOREM 7: 

(13) rll +1 (x) = (1 - ()) r,,(x) + (}r(x) , 
(14) C (XII + 1) = (1 - ()) C(XII) + (}C(X) , 
(15) fl,(XII+ 1) = (1 - ()) fl,(XII) + (}fl,(X) , 
(16) 0'2 (XII + 1) = (1 - ()) 0'2 (XII) + (}0'2 (X) + () (1 - ()) 

x [C(XII) - C(X)]2. 

Proof: Because/"(Y)=f(Y) in the noncontingent case, (13) follows at 
once from (9) and (11), i.e., from Theorems 4 and 6. Multiplying both 
sides of (13) by x and integrating over the interval [a, b], we obtain (15), 
ofwhich (14) is a special case. As for (16), we infer it from the following: 

0'2 (XII + 1) = fl2 (XII + 1) - C (X" + 1)2 

= (1 - ()) fl2 (X2) + (}fl2 (X) - (1 - (}y C(X,,) 
- 2(}(1 - (}) C(X,,) C(X) - (}2C(X)2 

= (1 - ()) [fl2 (X,,) - C (X,,)2] + () [fl2 (X) - C (X)2] 
+ (() - (}2) C(XII)2 _ 2(() - (}2) C(X,,) C(X) 
+ (() _ (}2) C(X)2 

= (1 - ()) 0'2 (XII) + (}0'2 (X) + () (1 - ()) 

x [C(X) - C(X,,)]2. Q.E.D. 
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Because (13)-(15) are first-order difference equations with constant 
coefficients we have as an immediate consequence of the theorem: 

COROLLARY 7.1 : 

(17) rn(x) = rex) - [rex) - r1 (x)] (1 - ()t- l , 

(18) @'(Xn) = @'(X) - [@'(X) - @'(X l )] (1 - ot- l , 

(19) Jl,(Xn) = Jlr(X) - [Jlr(X) - Jlr(X1)] (1 - ot- 1 • 

Although the linear and (one-element) stimulus-sampling models both 
yield (13)-(19), predictions in the two models are already different for one 
of the simplest sequential statistics, namely, the probability of two 
successive responses in the same or different subintervals. 

For two subintervals [a, c] and [c, b], we have the following theorem 
for the stimulus-sampling model. The result generalizes directly to any 
finite number of subintervals. 

THEOREM 8: For noncontingent reinforcement 

(20) Iim P(a ~ Xn+1 ~ c, a ~ Xn ~ c) = ()R(c? + (1 - 0) 
n->ao 

c c b 

x f f f k(x;z)k(x';z)j(z)dxdx'dz, 
a a a 

(21) lim P(a ~ Xn+1 ~ C, C ~ Xn ~ b) = OR(c) [1 - R(c)] 
n->ao 

c b b 

+(1-() f f f k(x;z)k(x';z)j(z)dxdx'dz, 
a c a 

where 
R(c) = !im Rn(c). 

n-> ao 

Proof: We first establish (20). To begin with, 

c c 

P(a ~ Xn+1 ~ c, a ~ Xn ~ c) = f f jn+l(Xn+l' xn) dXn+l dxn • 

a a 
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Applying the axioms in the usual way to the right-hand side, we obtain 

Now 

c c 

a a 
c b beb 

= f f ~ f f f jn+1 (Xn+1' Zn+1> Öi• n, y", x'" zn) 
a a a a a 

x dX"+l dZn+1 dYn dx" dz" 
c b beb 

a a a a a 

X j(c5i• n) f (YII)j(Xn I ZII)j(ZII) dXn+l dZII +1 dYII dXn dZn 
c beb 

= f f f f [k(x lI +1; YII) 9f (YII) k(xlI ; ZII) gn(Zn) 
a a a a 

+ k(Xn+l; zn)(l- 91k(Xn; Zn)gll(ZII)] 
X dXII +l dYn dXII dzn. 

lim g,,(z) = f (z), 
n .... oo 

whence at asymptote, by rearranging the right-hand side and relettering 
variables, we obtain 

lim P(a ;a XII + 1 ;a C, a;a X,,;a c) 
c b 

= 0 (f f k (x; y) f (y) dx dY) 
a a 
c b 

X (f f k (x'; z) f (z) dx' dZ) 
a a 

c c b 

+(1-0) f f f k(x;z)k(x';z)f(z)dxdx'dz. 
a a a 



STIMULUS-SAMPLING THEORY 275 

But the first term on the right is just (}R(cY, which when substituted in 
yields (20). 

The argument establishing (21) proceeds along exactly the same lines, 
with functions of Xn now integrated over the interval [c, b]. Q.E.D. 

For comparative purposes the corresponding results for the linear model 
are derived in the Appendix. 

The theorem just proved may be used to develop a reasonably good 
method of estimating the learning parameter (). The sequence of response 
random variables (Al> A2 , ••• , Am ... ), where 

A = {1 ifresponse on trial n is in interval [a, c], 
n 2 otherwise , 

is achain of infinite order. If it were a first-order Markov chain, (20) and 
(21) could be used to obtain a maximum likelihood estimate of (). The 
estimate ()* proposed here is formally identical with the latter, but of 
course it is not the maximum likelihood estimate. I shall call it the pseudo
maximum likelihood estimate. 

Let al , a2 , ••• , an represent a finite sequence- of values of the response 
random variables Al' A2 , ••• , An from trial 1 to trial n. Lets be the number 
of subjects. Then, granted statistical independence of the subjects, the 
maximum likelihood estimate of () is the number {j (if it exists) such that 
for all ()' 

s s 

(22) TI j(a)(ah a2' ... , an; (j) ~ TI j(a)(ah a2' ... , an; (}'), 
a= 1 a= 1 

where j(a)( aI, a2, ... , an; (j) is the probability of the sequence of responses 
al a2' ... , an for subject (J when the learning parameter is (j. 

As should be clear from preceding remarks, the pseudo-maximum 
likelihood estimate of () is the number ()* such that for all ()' 

s n 

(23) TI TI j(a) (am! am-I; ()*) j(a) (a 1; ()*) 
a=l m=2 

• n 

~ TI TI j(a) (am ! am-I; (}')j(a) (al; (}'). 
a=l m=2 

To simplify notation, let Pti(}) be the probability of going from state i to 
statej (i,j= 1, 2) with parameter (); let nij be the number ofactual transi-
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tions from state i to state j, summed over trials and subjects (the nij are 
tabulated from experimental data); letPice) be the probability ofbeing in 
state i on trial 1; and let ni be the number of subjects in state i on trial 
1. We then want to find the e that maximizes 

TI p~1 ce) p7j' ce). 
i, j 

It is usually easier to work with the log of this expression, so we seek to 
maximize 

In most cases L*(e) has a 10cal maximum, so we can find e* as an 
appropriate solution of 

(25) 

where p' is the derivative of P with respect to e. 
Now on the basis of (20) and (21), at asymptote we have 

c c b 

(26) P11 (e) = OR(c) + (~(c~) f f f 
a a a 

x k(x; z) k(x'; z) f (z) dx dx' dz 
and 

c b b 

(27) P21 (0) = OR(c) + 1(~ ~~~)f f f 
a c a 

x k(x; z) k(x'; z) f (z) dx dx' dz, 

and Pi(e) is independent of e. Also, of course, P12 (e) = I-pu (e), and 
P22 ce) = 1-P21 (e). Moreover, 

(28) P~1 (e) = R(c) - R~C)' P~2 (0) = R(c) - 1 _ ~(c)' 
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where 
b 

(29) oe = f K(c; zl j (z) dz 
a 
c c b 

= f f f k(x; z) k(x'; z)j (z) dx dx' dz 

a " a 
and 

c b b 

(30) ß= f f f k(x;z)k(x';z)j(z)dxdx'dz 
a c a 
b 

= f K(c; z)(l - K(c; z» j (z) dz = R(c) - oe. 
a 

Applying (26)-(30) to (25) and using the fact thatPI«()) is independent of 
(), we obtain: 

dL*«() nll ( R(c) - R~C») n:2(R~C) - R(C») 
(31) -- = + ---'----'--'----:----':-

d() () () (1 - () oe () () (1 - () oe 
R c + R(c) 1 - R c - R(c) 

n21 ( R(c) - 1 _ ~(c») 
+ ()R(c) + (1 - () ß 

1- R(c) 

n22 (1 _ ~(c) - R(C») 
+ =0. 

1 _ ()R(c) _ (1 - () ß 
1- R(c) 

Solving (31), we have 
THEOREM 9: Ifrl(x)=r(x)lor all x in [a, b], then the estimate ()* is a 

solution 01 the quadratic equation 

(32) N()2 + [(N - nll) A + (n 11 + n22) B + (N - n22) C] () 
+ n22AB + (n12 + n21) AC + nllBC = 0, 
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where 
A = a/[R{c)2 - a]. B = - [R{c) - a]/[R{c)2 - a]. 
C = [1 + a - 2R{c)]/[R{c)2 - a]. N = I nlj' 

i,j 

Moreover. if R(c)=t. then 

0* = _ A{n12 + n21) + B{nu + n22). 
N 

Note that the hypothesis of the theorem simply requires that we start 
counting trials at asymptote. The statistical properties of the estimator 0* 
need investigation; it can be shown to be consistent. 

I conclude the treatment of noncontingent reinforcement with two ex
pressions dealing with important sequential properties of stimulus
sampling models. The first gives the probability of a response in the 
interval [at. a2] given that on the previous trial the reinforcing event 
occurred in the interval [bt. b2]. 

THEOREM 10: 

(33) P{al ~ X"+l ~ a21 bl ~ ~,,~ b2) 
= (I - 0) [R,,(a2) - R,,{al)] 

O. b2 

+ F(b2 ) ~ F(b l ) f f k(x; y) j (y) dx dy. 
01 b1 

Proof: By the usual expansion 

1 
P(al ~ X"+l ~ a21 bl ~ Y" ~ b2) = F(b2) _ F(b l) 

02 b b2 b 

X f f ~ f f j,,+ 1 (Xn+1' Z,,+ 1. 15"". y". z,,) 
01 0 b1 0 

And the right-hand side is 
02 b2 b 

F(b2 ) ~ F(b l ) [(1- 0) f f f k(x; z) 9,,{Z) j (y) dx dy dz 
01 b1 0 

02 b. b 

+ 0 f f f k(x;y)j(Y)9n(z) dXdYdzl 
01 b1 0 
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Now in the first and second terms, respectively, we have 

~ b 

I j (y) dy = F(b2) - F(bl) and I gn(Z) dz = 1. 

h 0 

Using these two results, we obtain the theorem at once. Q.E.D. 
The expression to which we now turn gives the probability of a response 

in the interval [al' a2] given that on the previous trial the reinforcing 
event occurred in the interval [bI' b2 ] and the response in the interval 
[a3' a4]. 

THEOREM 11: 

(34) P(al ~ Xn+ l ~ a21 bl ~ Yn ~ b2, a3 ~ Xn ~ a4) 

0103 a 

x k(x; z) k(x'; z) gn(z) dx_dx' dz 
0161 

+ F(b2)~F(bl)f f k(x;y)j(y)dxdy. 
01 61 

Proof: It is first useful to observe that for noncontingent reinforcement 

P(b1 ~ Y,. ~ b2 , a3 ~ Xn ~ a4) 
= P(b l ~ Y,. ~ b2 1 a3 ~ Xn ~ a4) P(a3 ~ Xn ~ a4) 
= P(b l ~ Y,. ~ b2) P(a3 ~ Xn ~ a4) 
= [F(b 2 ) - F(b l )] [Rn (a4) - Rn (a3)] . 

Applying the usual expansion to the left-hand quantity in (34), we obtain 

1 

02 6 62 02 b 

X I I'tI I Ijn+l(Xn+l>Zn+l>~i.n'Yn>Xn,Zn) 
61 a bl 61 a 
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from which, using particularly Axioms C2 and CS, we have 

1 

112b2114 b 

x [(1- 0) f f f f k(x; z) k(x'; z) gn(z) f (y) 

x dx dy dx' dz 
112 b 2114 b 

+ 0 f f f f k (x; y) f (y) k (x' ; z) g n (z) dx dy dx' dZ] . 
11, b, 113 11 

Now in the first term of this last expression we may integrate out the 
function f (y) to obtain F (b2 ) - F (b1), which cancels the corresponding 
quantity in the denominator. Similarly, in the second term we may 
integrate out k(x'; z) gn(z) to obtain Rn (a4) - Rn (a3), which for this term 
cancels the corresponding quantity in the denominator. Putting these 
results together, we have exactly the theorem. Q.E.D. 

It may be noticed that by applying Corollary 7.1 more explicit results 
are easily obtained from both Theorems 10 and 11. 

V. SIMPLE DISCRIMINATION 

It is of some interest to sketch how the present theory may be applied to 
simple discrimination situations in which on each trial exactly one 
stimulus Sj is presented, and associated with each Si is a reinforcement 
distributionp. (Readers who do not like the idea of exactIy one stimulus 
being presented may think of each Sj as being a particular pattern of 
stimuli.) Let the probability of presentation of Sj on any trial be Wj, with 

N 

L WI = 1 , wj ~ 0 
1=1 

for i= 1, ... , N, and Wj independent of trial number and any behavior on 
preceding trials. 

The tree of the Markov process in the states (Zl, Z2) for N = 2 and 
wj = t is given in Figure 1. 

Corresponding to Theorem 1, we have by the same sort of proof for 
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« Y'Z2) 

-- fl(y) 

1-9 (zl,z2) 

Fig.1. 

arbitrary N 

b 

(35) rn (x) = It1 COi f ks,(x; Zi) gShn(Zi)?tzI • 
.. 

Corresponding to Theorem 3, we have 

(36) gn+1 (Zi) = (1 - 0) gn(Zi ! Sn = Si) + Ofi(Zi); 

and by virtue ofAxiom C4 for i=l=j and Sn=Sj' 

(37) gn+l(Zi) = gn(Zi) , 

whence it easily follows that 

(38) lim gn(zl) = fi(Zi). 
n-+QO 

We then have also that 

a2 b 

(39) lim P(al ~ Xn ~ az! Sn = Si) = f f ks,(x; y) P(y) dx dy. 
n .... oo 

a1 .. 

The results (35)-(39) and some other related ones that are easily 
obtained, although simple in character, permit application of the theory 
developed in this paper to simple discrimination experiments with a 
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continuum of responses. On the other hand, it is obvious that the present 
theory must be modified and extended in fundamental ways to deal with 
discrimination experiments that have a continuum of stimuli as weIl as 
responses. 

APPENDIX 1 

Our purpose is to derive for the linear model of Suppes (l959b) the 
analogs of(20) and (21). Abrief description ofthe linear model will make 
the present discussion nearly self-contained. An experiment may be 
represented by a sequence (Xl' Y1• X2 , Y2 , ... , Xm Ym ... ) of response and 
reinforcement random variables. The theory is formulated for the 
probability of a response on trial n + 1 given the entire preceding sequence 
ofresponses and reinforcements. For this sequence we use the notation Sn 
(not to be confused with the notation for the value of the sampling 
random variable in the main body of the paper). Aside from continuity 
and piecewise-differentiability assumptions, the single axiom of the linear 
model is 

(40) Jn+1 (x I Yn. XII' Sn-l) = (1 - 0) J,,(x I S"-l) + OK(x; YII)' 

where Jn is the joint distribution and K is the smearing distribution. 
We first need to define the cross-moments 

42 Q4 

(41) W(al' a2. a3. a4' n) = f f f 
xjn(X I Sn-l)jn(X' I Sn-l)j(SII-l) dx dx' dsn- 1 , 

where the subscript sn-l on the third integration sign indicates integration 
over the 2(n-I)-Cartesian product oftheinterval [a, b] for the sequence 
Sn-l' The cross-moments defined by (41) generalizethe moments W;1,tJ2,II 
of Suppes (l959b). 

Assuming henceforth noncontingent reinforcement, it follows by simple 
extension of some results in Suppes (l959b) that 

(42) lim P(al ~ X"+l ~ a2' a3 ~ X" ~ a4) 
"-+00 

"-+00 
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To obtain an explicit answer we must compute the limit on the right, 
which we now proceed to do. 

By virtue of the definition of sn-I' the right-hand side of (41) may be 
rewritten, and we have 

02 04 b b 

= I I I I I jn(X I Yn-l,Xn-l,Sn-2) 
Ql Q3 a a Sn-Z 

xjn(X' I Yn-t' Xn-t> Sn-2)j(Yn-t, Xn-l, 8n-2) 

X dxdx' dYn-l dXn-l d8n-2' 

Applying the axiom (40) to the right-hand side of (43) and simplifying, 
we obtain 

Oz 04 

= (1 - 0)2 I I I jn-l (x 18n-':2) 

02 04 b 

+02 I I I k(x, Yn-l) k(x', Yn-l)f(Yn-l) 

X dx dx' dYn-l' 

Now the first term on the right of (44) is simply (1- 0)2 W(a1, a2, a3' a4 , 

n-l), the second term is 

and the integral of the third term is a direct generalization of ß as defined 
by (30). Moreover, it is independent of n; and we may thus define, for 
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ease of notation, 

In these terms, (44) becomes: 

(46) W(al> az, a3' a4' n) 
= (1 - O)Z W(al> az, a3' a4' n - 1) 

+ 20(1 - 0) [Rn - l (az) - Rn - l (al)] [R(a4) - R(a3 )] 

+ OZy(al' az, a3' a4)' 
It then easily follows from (46) that 

(47) lim W(ah az, a3' a4' n) 
n .... ClO 

= W(al> az, a3' a4) 
2(1 - 0) [R(az) - R(al)] [R(a4) - R(a3)] + Oy(al' az, a3' a4) 

2-0 

Combining (42) and (47), we then have the following theorem. 
THEOREM: In the linear model 

(48) lim P(al ;;;; Xn + l ;;;; az, a3 ;;;; Xn ;;;; a4) 
n .... ClO 

= o [R(az) - R(al)] [R(a4) - R(a3)] + (1 - 0) 

x [2(1 - 0) [R(az) - R(al)] [R(a4) - R(a3)] + Oy(al' az, a3, a4)J. 
2-0 

To obtain the direct analog of (20), (48) specializes to: 

!im P(a;;;; Xn + l ;;;; C, a ;;;; Xn ;;;; c) = OR(c)Z + (1 - 0) 
n .... ClO 

X [2(1 - 0) R(c)Z + Oll] 
2-0 ' 

where Il is defined by (29). The analog of (21) may be obtained in like 
fashion. 

NOTE 

1 I am indebted to Raymond W. Frankmann for useful comments on the subject of 
this Appendix. 



17. ON AN EXAMPLE OF UNPREDICT ABILITY 

IN HUMAN BEHA VIOR *1 

Scriven's example of essential unpredictability in human behavior goes 
like this. Assurne a rational predictor P who wants to infer from in
formation available to hirn the choice behavior of an individual C, where 
(i) C is choosing rationally and intelligently, (ii) C is a contrapredictive 
relative to P, i.e., C wishes to falsify any prediction made by P about his, 
C's choice behavior, (iii) C knows the information available to P. It is 
easy to make these conditions more precise and then to prove that P 
cannot predict C's behavior. Scriven fills out the bare bones of this 
example with many illustrations and comments, which I shall not attempt 
to sketch. His example of essential unpredictability is one I accept as in 
the main correct. The critical tenor of my remarks is to place the example 
in perspective from the standpoint ofthe theory of games and to challenge 
the significance of the example for the development of a quantitative and 
predictive behavioral science. 

Consider the following simple game played under two different 
conditions. Following Scriven, let us call the two players C and P. We 
shall require that player P (the predictor) move first. Player P chooses 
action b1 or b2 • Player C then moves, choosing action a1 or a2 • Related to 
Scriven's example, we may interpret b1 as a prediction by P that C will 
choose a1, and b2 the prediction by P that C will choose a2 • The payoff 
matrix for the game we may take to have the following simple form 

Ä:l b2 

a 1 -1 1 

a2 1 -1 

We shall make it zero-sum by assuming that when C obtains 1 unit, P 
loses 1 unit, and vice versa. (The exact payoff outcomes are not essential 

* Reprinted from Philosophy 0/ Science 31 (1964), 143-148. 
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for the discussion, and it is not necessary to assume the game is zero-sum 
or even constant sum, but we mayas weIl for simplicity.) 

From the standpoint of the theory of games, the fundamental question 
concerning the rules of this game is whether C does or does not know P's 
choice when he makes his own move. If Cis informed of P's choice, then 
the game is one of perfeet information and according to a theorem that 
originates with Zermelo, the game is strict1y determined. (A game is 
strictly determined when optimal strategies for both players are non
random pure strategies.) Zermelo's theorem asserts that this is the case 
for games of perfeet information. As is obvious for this simple game, 
when played under conditions of perfect information, C is in a position 
always to win. This is certainly a trivial and obvious conclusion. 

If the rules of the game are now changed in a fundamental way so that 
P's move is not known to C, then the game is no longer one of perfect 
information, and pure, nonrandom strategies are no longer optimal. For 
the outcome payoffs indicated, the optimal, minimax strategies for both 
P and C are to choose one of their two alternatives with probability t. 
If changes are made in the outcomes to upset the perfect symmetry of the 
present matrix, then the exact numerical randomization that should be 
followed for optimality will be something different from t. But these 
minor quantitative variations do not seem important enough to pursue. 
Moreover, the restrietion to two choices each for P and Cis not essential; 
it is a straightforward matter to consider the case of n alternatives, and it 
is technically but not conceptually complicated to consider a continuum 
of possible choices for each of the two players. 

Scriven's example of essential unpredictability of human behavior 
seems to me to be simply a special case of such a simple two-person 
competitive game. His second condition on Cis the condition that assures 
us that C is playing the game, namely, the condition that C is a contra
predictive relative to P. 

To show why I think that Scriven is making claims that are too large for 
his example, I want to distinguish first various cases of prediction for the 
behavior ofplayers in agame. For those who prefer Scriven's language of 
contrapredictives, the translation is simple and direct. Before considering 
these cases, it is important to emphasize that prior to the analysis of the 
predictability of C's moves, we must fix upon the game Cis playing. We 
can scarcely be expected to analyze or make assertions about the pre-
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dictability of C's moves if after we have made the predictions, we are told 
that C is not playing this game, but some other game. So I take it in the 
following analysis that C and P are playing agame with moves and out
comes as specified above. If, in fact, they are not playing this game but 
some other game, then what is to be said about predictability must be 
changed. This talk about games should not be taken in too restrictive a 
sense, for it is a way of saying what C is motivated to do. Consider, for 
example, the first case I shall describe. The game is the game of perfect 
information already described. P's problem is to predict what move C 
will make. Now as a side bet, with another person P', P says that he will 
predict, separate from the game, what C's moves will be. In this game of 
perfect information, if C is playing it with serious intent, it is perfectly 
cIear that on the basis of side bets P can indeed make such a prediction in 
a deterministic fashion. Namely, when P chooses move bi , C will choose 
a2 and when P chooses b2, C will choose ai . That is, when P predicts in the 
game that C will choose ai' then in actual fact, C will choose a2 in the 
game, etc. 

There is nothing surprising or paradoxical in this. As most parents 
know, a situation very dose to this arises in the age of most children. 
Namely, the parents will tell or ask the child to do something and in a 
very high probability of cases the initial response of the child will be 
negative. Sotto voce or in conversation with another person, the parent 
can reIiably predict this response on the part of the child. We are able to 
make such predictions by first specifying the game that C, (here, the 
child) is playing. If C or the child is concerned with the actions, side bets, 
motives, etc., of person P' he can begin to playanother game and behave 
in a different way, but it is a matter of observation to decide what game 
he is playing. By these remarks I don't mean to suggest that if we begin to 
analyze complicated social behavior on the part of candidates for office, 
lawyers in courtrooms, or lovers in parked cars, we can precisely describe 
the game the participants are playing and readily predict their moves. Our 
understanding ofthe details ofbehavior are not yet that good. My point is 
just that the conceptual schema introduced by Scriven does not raise 
any new or essentially surprising difficulties. 

Holding these remarks in mind, let us look at some of the possible 
cases of prediction that may arise in the context of simple games. 

Case lA: C and P are playing agame of perfect information. p's 
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moves in the game, intended to be predictions of C's moves, are bad 
indeed. The game is as defined above, and P is always wrong. 

Case 1 B: Pis making side bets about Case lA with person P'. The side 
bets are always correct. If C does want to change the game and now play 
agame of perfect information defined against both P and P', then it will 
in general be possible for P to make new side bets with person P" pre
dicting with probability I, C's behavior in the enlarged game, provided 
of course that C is playing the new enlarged game with the same serious
ness he played the original game. 

Case 2A: C and P are now playing the game in the condition of im
perfect information described above. In this case the optimum strategy 
for both players is to use a randomized strategy and no deterministic 
predictions within the game or as side bets are possible. If essential 
unpredictability is defined in terms of strictly deterministic predictions 
then the existence of this case certainly supports Scriven's thesis. Simple 
competitive games of imperfect information played weIl by both players 
provide immediate examples of essential unpredictability in the sense of 
strictly deterministic predictions. 

Case 3A: We give up the hope for deterministic predictions, as has 
already been done in much of empirical science, and ask what are the 
possibilities of probabilistic predictions. In the game of imperfect in
formation played by C and P it is now possible for P to make a side bet of 
a probabilistic sort concerning the behavior of C. For the payoffs as 
defined above, and in the environment in which C is playing the game 
seriously, P would do weIl to bet that C will use a minimax randomized 
strategy. P can profitably balance his bets to come out weIl in either case. 
If C does use this strategy, P will win the side bet. If C does not use this 
strategy, P can win at the game by taking advantage of C's departure 
from a minimax strategy. 

Case 3B: C becomes aware that Pis making side bets about his, C's 
probabilistic behavior in the original game and decides to take the 
falsification of P's side bets more seriously than the original game. In this 
case we enter a new game and the same analysis can be repeated, although 
the strategy space is now a much enlarged one. Having fixed this new 
game, P can in the same way enter upon side bets concerning C's behavior 
in the new game. 

This enumeration of cases is not meant to be exhaustive. More im-
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portantly, the talk about games and side bets can be replaced by talk 
about motives and the study by Pof C's motivations and goals. My point 
thus far has been twofold. In the first place, I agree with Scriven that the 
deterministic prediction of human behavior is impossible in many 
situations. Simple competitive games provide perhaps the best examples 
of such situations. But, secondly, I maintain that probabilistic prediction 
is not only possible but feasible for a very wide class of situations. If 
classical physics occupied the position it did at the end of the nineteenth 
century, modern behavior theory would undoubtedly be criticized and 
judged inferior for its probabilistic rather than its deterministic character. 
In actual fact, however, the kind ofprobabilistic behavior theory which I 
would now like briefly to discuss, is in general methodology very similar 
to quantitative theories in physics. Modern physical theories are no longer 
deterministic but thoroughly probabilistic in character. It is not possible 
to argue effectively that probabilistic theories are needed for specifically 
human behavior, whereas fully deterministic theories are appropriate and 
adequate for nonhuman or inanimate behavior. To substantiate the 
claim that a predictive behavior theory and predictive behavior laws can 
be developed, what is wanted, it may be said, is the kind of predictive 
quantification found in physics: From a knowledge of the present state 
oftheorganismanditsenvironmentwe should be able to predict its future 
state, atleast in a probabilistic sense, for the nottoo distantfuture and for 
a moderately diverse even if restricted set of environmental conditions. 

Mathematical behavior theory, as developed in recent years by 
psychologists, provides perhaps the most important example at present of 
the kind of theory just described. It would be out of place to describe in 
detail the nature of this theory, but its main features can be sketched as 
weIl as some of the problems it successfully handles. It should be em
phasized from the start that modern behavior theory is thoroughly 
probabilistic rather than deterministic. Abandoning the development of 
a deterministic theory has undoubtedly been one of the main reasons for 
the considerable number of quantitative successes of the new theory. It 
is recognized that the very large number of underlying physiological 
mechanisms cannot yet be connected in an explicit and detailed way to 
overt behavior. On the other hand causal relationships of a probabilistic 
character, holding between behavioral variables, have been postulated 
and approximately verified. 
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A causal quantitative analysis of human behavior is the sort of thing 
often considered impossible in principle. It will be useful to consider one 
simple but fundamental example of a learning experiment that may be 
very satisfactorily analyzed within the framework of mathematical 
behavior theory. 

The task for a subject in this experiment is to learn the arbitrary 
associations set by the experimenter between a given list of non sense 
syllables and two telegraph keys. On each trial the subject is shown a 
nonsense syllable, for example, XUH, and then asked to punch that key 
with which it is associated. After one of the keys is punched, the trial is 
terminated by the experimenter flashing a light, let us say, or using some 
other similarly simple device, to show the subject which key was in fact 
the correct one. Of course, on the first trial it is necessary for the subject 
simply to guess which is the correct response to make, that is, which key 
to press, but as would be expected, the subject soon uses the information 
furnished by the lights above the keys. Even the most gross empirical 
analysis of the data from such experiments shows that the relation 
between receiving the information as to which key is correct and behavior
ally learning to respond correctly is not deterministic. For example, 
neither the number of errors nor the trial number oflast error is the same 
for all the nonsense syllabies. On the other hand, a very simple probabilis
tic behavior theory gives an excellent account of the data. The intuitive 
idea is that each nonsense syllable may be represented as a single stimulus. 
At the beginning ofthe experiment no stimulus is conditioned or connected 
by an association bond to its correct response. It is postulated that on 
each trial there is a constant probability that the appropriate association 
bond will be formed. It is also postulated that until this association bond 
is formed the subject is simply guessing the correct answer. After the 
correct association is formed, the subject makes the correct response on 
all subsequent trials. From these postulates it is possible to derive a large 
number of probabilistic predictions about the behavior of subjects, and 
these predictions have been confirmed to a remarkably accurate degree in 
a number of experiments. (See, e.g., Bower, 1961; Suppes and Ginsberg, 
1963.) 

Now those who challenge the very idea of quantifying human behavior 
will have at least two objections to this simple learning experiment. First, 
they will wish to point out that in the usual experiment of this kind data 
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are analyzed for an entire group of subjects together and not in terms of 
individual behavior. Their line of criticism is then, "Yes, we will admit 
it is possible to develop some sort of theory for the gross charaeteristics 
of group behavior, but it is not possible to do this for the fine nuances and 
difIerences of individual behavior. Those characteristics that are special 
for a given individual can in no sense be accounted for by the kind of 
theory you describe, which is whoHy devoted to the average or norm of 
the group." However, this view represents both a misunderstanding of 
the experiment and the theory used to explain it. For several kinds of 
reasons, many of which are administrative rather than scientific, it is 
often convenient to run learning experiments for a short period but with 
a large number of subjects. The theory however applies just as weH to the 
learning behavior of a single subject over a number of hours. In our 
laboratory at Stanford we have been performing such extensive experi
ments on individual subjects and, as a result, analyzing and testing the 
theory in terms of individual behavior. A typical example of sueh an 
experiment is one in which the subject is asked to learn a large number of 
voeabulary items from a foreign language. - In one experiment, for 
instanee, the subject hears a Russian word and then is shown three 
English words. His task is to seleet the English word that has approxi
mately the same meaning as the Russian word he has heard. The ex
perimental setup and the theory used to analyze the data are very simple 
and direet extensions of the experiment with nonsense syllables already 
described. The important point is that we can ask in a direct and meaning
ful way if the behavior of an individual subjeet over the course of fifteen 
or twenty days satisfies the theory. 

The second and perhaps more important objection to the experiment 
with nonsense syllabies, or the second experiment with Russian vocabu
lary, is that although principles of stimulus-response association may be 
used to explain the simplest sort of learning, it is not possible to use these 
principles to develop a quantitative theory for more complicated human 
behavior. It will perhaps be claimed that no simple principles of association 
between stimuli and responses can possibly account for the learning of 
even the most elementary concepts, in particular, mathematical concepts, 
the learning of which must go beyond any completely simple principles of 
stimulus association. For the past several years we have conducted 
extensive experimental investigations on the learning of mathematieal 
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concepts by young children. A typical instance of one of these experiments 
is the following. Children of kindergarten age are asked on each trial to 
push one of three keys. Above the first key is shown a small triangle, 
above the second a small quadrilateral, and above the third a small 
pentagon. On each trial the child is shown a large figure that is either a 
triangle, quadrilateral, or pentagon and is asked to push the appropriate 
key. The child cannot learn the concept of triangle, quadrilateral or 
pentagon in this experiment by any simple principles of stimulus as
sociation, because on each trial he is shown a different figure, that is, the 
same triangle, the same quadrilateral or the same pentagon is never 
shown on more than one trial. On each occasion when a quadrilateral, 
for example, is shown, the child is presented with a new quadrilateral 
having a different shape and orientation from any of the previous ones 
he has seen. On the other hand, the kind of theory described above gives 
a very good quantitative account in probabilistic terms ofthe data ofthis 
experiment, provided that the role played earlier by the nonsense syllables 
or Russian words is now played by the three simple geometrical concepts. 
In other words, the association is established between the concept and the 
appropriate response rather than between a single stimulus and the 
appropriate response. 

In claiming that we are adequately predicting quantitative aspects of 
the behavior of children in learning mathematical concepts, I would not 
want to be interpreted as saying that we have anything like the final story 
on such behavior, for there are many deep questions concerned with how 
the concepts are formed, or with how the concept-response association 
is established, which we cannot yet answer. For the present purpose, 
however, the important point is that we do have sufficient theory to 
provide a very satisfactory quantitative analysis of the behavior. 

Contrary to Scriven's casual claim that geography and geology rather 
than physics are the appropriate models for psychology, I wish to assert, 
and have tried to show, that we are already weIl on the way to a mathe
matical behavior theory adequate for the analysis of many simple 
experiments and of such a character that it has the kind of mathematical 
viability and predictive "feel" about it that we expect of physical theories. 
Let me conclude by saying that the kind of behavior theory I have de
scribed has very good philosophical roots. The associationist psychology of 
Hume is an obvious precursor. Hume, I feel, would be very happy with 
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the aH-or-none learning laws now weH confirmed in a variety of ex
periments concerned with stimulus-response associations or the formation 
of simple concepts. 

NOTE 

1 These comments were read on May 2, 1963 at the annual meeting of the Western 
Division of the American Philosophical Association at Columbus, Ohio. They were 
directed at Scriven's paper, 'An essential unpredictability in human behavior'. In 
E. Nagel & B. B. Wohlman (Eds.), Scientific Psychology. New York: Basic Books, 
1965. pp. 411-425. I have very briefly abstracted his main argument in order to make 
my remarks intelligible without familiarity with his paper. 



18. BEHAVIORISM* 

I. WHAT IS BEHAVIORISM 

I should like to begin by characterizing in a very preliminary way my own 
conception of behaviorism. Before beginning this characterization, there 
is something I want to say about the kind of definition I expect to 
develop. It is philosophically important to be quite c1ear about the kinds 
of things or concepts for which it is possible to offer a precise definition 
and those for which it is not. Consider, for example, the definition of a 
physical concept like that of mass. It depends on an exact characterization 
of mechanics or some other branch of physics. On the other hand, the 
problem is quite different if we are asked to give adefinition of physics or 
of psychology. The source of difficulty in the latter kind of case is that 
we do not have a well-defined and sufficiently large and flexible formal 
framework within which we can formulate adefinition of physics or of 
psychology. Of course, it is not simply a problem of the breadth or 
flexibility of our general framework, but also a problem of the very 
vagueness and looseness ofwhat we want to mean by physics or psycholo
gy. The concept of behaviorism is in many respects much closer to the 
vague concept of what is physics or what is psychology than to the much 
more precise concept of mass or of a prime number. For this reason, I 
shall not attempt in this preliminary discussion of behaviorism to sketch 
a possible formal definition. I shall, however, have something to say 
about the characterization of behaviorism as a formal theory. 

One initial way to distinguish behaviorism from other approaches to 
the study of human beings is in terms of the vocabulary used. In be
havioristic discussions of human actions or attitudes there continually 
recur words like 'stimulus', 'response', 'conditioning', 'discrimination', 
and 'reinforcement'. On the other hand, those who are critical of a 
behaviorist approach, or those who feel it is not adequate to account for 

... This paper has not been previously published. Except for minor revisions it was 
written during the period 1963-65. 
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all kinds of human behavior, will emphasize such words as 'intention', 
'belief', 'purposive behavior', 'rule-following behavior'. Many of those 
who like to use these latter terms in a systematic way will favor Brentano's 
thesis that intentional sentences are required for the description of 
psychological phenomena, but not for the description of physical 
phenomena. This formulation of a thesis in terms of sentences is most 
characteristic of philosophers, but highly unusual for psychologists. An 
early behavioristic psychologist like John B. Watson, for instance, would 
scarcely understand the talk ab out intentional sentences. For him the 
issue is very clear cut between introspective or subjective psychology of 
the sort represented by James and Freud, on the one hand, and be
havioristic psychology on the other. There has been in the past, though 
not so much currently, a very considerable literature on behaviorism 
written by psychologists. Probably none of this literature formulates 
criteria of behaviorism in terms of the kind of words that occur in 
sentences, or the kind of sentences that are uttered by scientists. Aversion 
to talking about sentences is not peculiar to psychologists but is common 
to scientists of all stripes. For example, physicists who debate the merits 
of field vs. non-field theories of matter, or who argue about contact
action vs. action-at-a-distance theories of electrodynamics, never for
mulate the issues in terms of the kind of sentences being uttered. This is 
true even for such discussions in mathematics, with the exception ofthose 
conducted by professionallogicians. 

Whatever the merits of the linguistic approach to the analysis of 
behaviorism, it is certainly widespread among philosophers, and there is 
a very common tendency to convert talk about intentional sentences into 
talk about intensional sentences. Thus, statements like "John believes 
thatthere are lions in Alaska" are not only intentional but also intensional; 
for the truth conditions of such belief sentences, it is commonly, and I 
think correctly said, do not satisfy the ordinary extensional truth
functionallogic. We mean by this that knowing wheth~r or not there are 
lions in Alaska does not enable us to determine the truth or falsity of the 
sentence asserting that John believes that there are lions in Alaska. 

The widespread and subtle use of intentional sentences in ordinary talk 
is not something I see any reason for attempting to exorcise. The task 
for the behaviorist presumably is to provide an analysis of the truth 
conditions for such sentences in nonintentional terms. A large and subtle 
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literature of more than two decades shows clearly enough that this is not 
a simple or straightforward matter. All the same, I am not at all pes si
mistic about such an analysis uItimately being given. Later on, I shall 
attempt to indicate how I think nonintentionally formulated truth 
conditions for belief sentences can be given. For the present it is only to 
the point to mention it as a problem. 

An apparently very different approach to the issues between the 
behaviorist and the intentionalist is for the behaviorist to ask the in
tentionalist at what point in the developing complexity of psychological 
phenomena, the phenomena become intentional in character. For 
instance, does the simplest sort of conditioning of a paramecium require 
intentional concepts for an adequate description? It is interesting to find 
writers like Chisholm wavering on this point. With the increasing progress 
of biology and experimental psychology it is surely a difficuIt thesis to 
maintain that every kind of conditioning of living organisms requires 
intentional concepts for their adequate description. On the other hand, if 
the simplest sorts of conditioning do not require such intentional con
cepts, it is not easy to say just when intentional concepts do enter. Yet as 
often occurs with such scientific problems, a case can surely be made by 
the intentionalist even if he is not able to classify precisely all psychological 
phenomena into two parts, one of which requires intentional concepts for 
adequate description and the other of which does not. He can admit that 
the position of the line which he would draw to make a distinction between 
the two kinds of phenomena is vague; still he can properly maintain that 
the concept of intention, and possibly also the concept of the recognition 
of intention by one organism in relation to another, is central to more 
complex psychological phenomena and cannot be eliminated or reduced 
to purely behavioristic terms. It is, of course, part of behaviorism to 
claim that such a reduction can in fact be made. 

The committing of an intentional action and the recognition by another 
organism that an intentional action has been performed are in many cases 
closely and intimately related to the use of language. It is another aspect 
ofbehaviorism to maintain that linguistic behavior can be analyzed in the 
same terms as nonlinguistic behavior, without the introduction of any new 
fundamental or primitive concepts.1 

Although I do not want to attempt to give a formal definition of 
behaviorism, the discussion of the kind of issues already mentioned can 
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be pursued much more thoroughly and deeply if a rather definite theoreti
cal commitment about the nature of behaviorism is made. What I 
propose to do is to formulate a theoretical framework within wbich the 
analysis of the issues will be made. I would not claim that this theoretical 
framework encompasses aH that is often meant by behaviorism, or even 
that it is adequate to the analysis of aH problems that constitute central 
challenges to the behavioristic philosopher or scientist. In the next 
section I shall give a sketch of the theory, but before turning to that 
sketch there are certain preliminary distinctions I would like to make. 

One distinction treacherously easy to forget is that between making 
an analysis in terms of a theory and making an analysis in terms of 
known experimental or empirical facts. Consider, for example, the 
problem of formulating in extensional behavioristic terms truth condi
tions for belief sentences. On the one hand, we can attempt this in an 
informal and intuitive fashion by attempting to describe in a rough way 
the kind of empirical facts we think can be used to provide the basis for 
such an analysis. By anecdote, illustration, and reference to the vaguely 
defined thing caHed the paradigm case, we can attempt to elucidate how 
we think such an analysis would go. From a formal standpoint tbis 
approach will inevitably be unsatisfactory. An alternative is to attempt to 
proceed within a weH-defined theory. In this case, we would ultimately 
want an analysis possessing the same kind of formal c1arity and rigor 
that are characteristic of Tarski's definition of truth for mathematical 
languages. What we gain in precision in tbis case will perhaps be lost in 
terms of generality and detailed analysis of particular cases. At this stage 
a schematic formal characterization is the very most that could be 
expected, but even in schematic form the formal analysis has the virtue of 
making c1ear the weak points as weH as the strong points of the proposed 
behavioristic analysis. In the present case there are, it seems to me, certain 
difficulties besetting a formal analysis that do not usually arise. If, for 
example, one presents a formal axiomatization of some branch of 
physics, the formal properties of the physical concepts occurring in the 
formal statement ofthe theory are usually weH enough known to permit a 
reasonable evaluation of whether or not the formalization of the theory is 
intuitively adequate. It is understood, of course, that the formal statement 
of theory does not itself make c1ear how the theory is to be interpreted in 
relation to experiment. The job of connecting the formal theory to 
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experiment is itself an elaborate and complicated business requiring a 
detailed methodological theory in its own right. The peculiar difficulty on 
this score in the discussion of psychological phenomena, particularly in 
connection with the use of intentional concepts, is that the intentionalist 
may claim that the behaviorist's extensionally stated formalism will 
require intentional concepts in order to provide an adequate interpretation 
in terms of experiments. I do not think there is any simple way to meet 
this objection. It can be met adequately only by elaborating a methodolog
ical theory of the relation between theory and experiment, and it would 
take us too far afield to attempt to state in detail such a theory. In the 
meantime, I am prepared to accept intentional criticisms of my use of 
theory. (For those interested in how I would begin to formulate the 
methodological theory to exorcise at this new level the intentionalist 
ghost, I mention the first two artic1es reprinted in this volume, 'A Com
parison of the Meaning and Uses of Models in Mathematics and the 
Empirical Sciences' and 'Models of Data'.) 

My second preliminary point is that the kind of details required of a 
formal theory ofbehavior are rather different ifwe are pursuing particular 
scientific problems rather than philosophical problems. For the purpose 
of philosophical analysis many of the particular details of the theory can 
be omitted ; or put another way, detailed formulation of partieular axioms 
about eonditioning or responses is not espeeially relevant to the problems 
of philosophieal analysis. A typical example of a seientifie issue, not 
particularly relevant to the problems of philosophical analysis about 
behaviorism, is the eurrently mueh diseussed issue as to whether learning 
oecurs on an all-or-none or incremental basis. From the standpoint ofthe 
preeise axioms of learning or of eonditioning it is a eritieal matter for 
many experiments; but it is hard to see that this issue in the psyehologieal 
literature has mueh bearing on the philosophieal issues posed to be
haviorists by the intentionalists. On the other hand, many of the definitions 
needed for a detailed analysis of intentional aets are not the sort that are 
of mueh interest to experimental psychologists. This lack of interest is not 
because the definitions are too banal or too vague, but because they move 
in a direetion of detail and precision which is either unfamiliar to psychol
ogists or at the present development of scientific work uninteresting to 
them. The point I am trying to make is that the formulation and use of 
the theory are rather different when we are dealing with particular 
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scientific issues than when we are dealing with fundamental philosophical 
issues. It might be thought by some people that if behaviorism had yet 
received an adequate theoretical formulation, there would be no problem 
ofthe kind I am posing; for there would be one well-defined formulation 
of the theory, and this theory would be appropriate for all purposes 
either scientific or philosophical. I wish indeed that this were the case, 
but as in all areas of currently developing science, the status of theory is 
not so weIl defined nor so beautifully etched in detail. It is only for 
theories long established and now static in character, like classical 
mechanics or classical electromagnetism, that such an agreed-upon, 
detailed formulation can be given. Behavioristic psychology is as yet too 
new a science and at present too rapidly developing to hope to be able to 
formulate a theory adequate for all purposes. I would like to formulate 
the theory so that it is general enough to be used with some precision for 
the analysis of philosophical problems, and yet contains axioms which 
are in themselves not the sort that will easily be refuted by new experi
ments performed the day after tomorrow. I know that it is not possible 
to achieve this objective, but in principle this is what I would hope to do. 

11. SKETCH OF FORMAL THEORY OF BEHAVIOR 

The key concepts of the theory are those of stimulus, response and 
reinforcement. The detailed axioms of the theory, which we shall not 
considerhere, are based on the following postulated sketch ofthe sequence 
of events on a given learning trial.2 First, a certain set of stimuli is . 
presented to the organism. From this set, the organism sampies a certain 
sub set. On the basis of the conditioning connections or associations, 
sampled stimuli and possible responses, a response is made - in the 
detailed theory it is postulated that the probability of response is simply 
the proportion of sampled stimuli connected to this response. After a 
response is made, a reinforcement is given indicating which response was 
in fact the correct one. On the basis of this reinforcement the sampled 
stimuli may become reconditioned, that is, a new association between 
stimuli and responses is set up and the organism enters a new state of 
conditioning ready for the next trial. Before we go any further, some 
comment is needed about this talk of trials. Philosophers will be inclined 
to ask what the discussion of trials has to do with the problems of analysis 
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confronting uso The answer is that ifwe attempt a formal characterization 
of the theory we are naturally led to a characterization c10sest to that of 
the majority of experiments performed to support the theory. There is no 
logical requirement that the concept of conditioning in learning be 
imbedded in a theory formulated in terms of discrete trials. It is in fact 
possible to give a continuous-time formulation, but this is a matter of 
technical rather than conceptual interest. Talk about discrete trials 
simplifies the job of constructing formal models for the analysis of 
experiments. 

It will be useful to consider an example of the sort of thing the theory 
ought to cover. We may begin with the familiar Pavlovian conditioning 
of a hungry dog. This example, as we shall see later, is particularly 
interesting because Chisholm has claimed it is one of the simplest kinds 
of psychological phenomena to require intentional concepts for an 
adequate explanation. In this conditioning experiment the dog comes to 
salivate when a bell is sounded, and it is common to say that the bell has 
become the sign of food. One of the things we want to do within our 
theoretical framework is to offer a formal definition of one stimulus' 
being a sign of another. To begin with, putting matters in an informal 
way, I would say that the bell is a sign of food to the dog after aseries of 
learning trials if essentially the following four conditions are satisfied. 
First, before any learning takes place, the response of salivation is made 
by the dog in the presence of the food with approximately probability 
one. Second, before any learning takes place, the probability of the 
response of salivation taking place upon the presentation of the bell but 
not the food is approximately zero. Third, there are aseries of training 
trials in which the food and the stimulus bell are presented simultane
ously. On these trials the dog responds to the joint stimuli by giving the 
response of salivation with approximately probability one. Fourth, after 
the series of training trials, the dog responds by salivating upon presen
tation of the stimulus bell alone, with approximately probability one. 

I shalllater want to make a number of comments about this example 
because we shall use it in the analysis of the necessity of intentional 
concepts in describing or explaining psychological phenomena. For the 
present, however, I wish to use it only to suggest a schema for defining 
the notion of one stimulus' being a sign of another. For the purposes of 
providing a formal definition I shall use some familiar simple apparatus 
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from probability theory. We shall suppose that there is an underlying 
sampie space that represents in a formal way the possible outcomes of the 
experiments we wish to perform. As is customary in probability theory, 
it is usually not necessary to describe in detail the formal structure of this 
sampie space, but rather to postulate only the probability laws followed 
by events defined as subsets of the sampie space (or, altematively, 
random variables defined on the sampie space). In the present case the 
events we shall consider will all have a clear intuitive meaning. I shall use 
notation that is familiar in the psychological literature. Let Rn be the 
event of the response of salivation on trial n, let USn be the event of the 
appearance of food, the unconditioned stimulus on trial n, let eSn be the 
event of the bell's ringing, the conditioned stimulus on trial n; --, USn is 
the absence of event US on trial n. 

With this notation available, we may define es as a sign of US on 
trial n. The four conditions in the definiens correspond to the four 
conditions stated in the particular case of the dog salivating. 

(1) P(R1 I US1) ~ 1, 

(2) P(R1 I eS1 & --, US1) ~ 0, 

(3) For 1< m ~ n, p(eSm & USm) ~ 1 & 

P(Rn I (eSn & USn) ~ 1, 

(4) For n' > n, P(Rn, I esn, & --, USn,) ~ 1. 

Prom the standpoint of philosophical problems confronting behaviorism, 
there are several general things to be said about this definition and the 
particular example of canine conditioning, but I shall weave these 
remarks into the comments on Chisholm's view of intentionalists. 
However, I do want to note several particular things about this character
ization of the salivation experiment. In the first place the definition is so 
set up that one kind offood familiar to the dog will not be a sign for the 
other, for according to the second condition, the dog will not salivate in 
the presence of the sign before the training trials. This would not be true 
of a different kind of food. Also, conditions (1) and (2) formulate a clear 
difference between the stimulus and the sign. The fourth condition, on the 
other hand, excludes most of the stimuli the dog sampies in his environ
ment, for he will not salivate upon sampling most of these stimuli. 
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IH. CHIS HOLM ON INTENTIONALITY 

What I have said thus far about behaviorism will not really satisfy those 
philosophers who are concemed to maintain the view that much specif
ically human behavior cannot be adequately expressed or explained in 
behavioristic terms. The central concept of an intentional or purposeful 
action is most often cited as an example of a concept that cannot be 
reduced to the behavioristic notions of stimulus, response, conditioning, 
and the Iike. In the remainder of this paper I would Iike to examine some 
of the issues surrounding this controversy. 

I cannot claim to deal with all aspects of the controversy or even to 
understand some of them. There are two related but different matters 
that I feel are particularly relevant. One is the discussion of the im
possibility of extensionally or behaviorally defining intentional terms; 
the other concems the inappropriateness of causal as opposed to "reason" 
explanations. 

A meticulous and careful defense of the claim that intentional terms 
used to describe intentional actions cannot be defined extensionally is to 
be found in the writings of Roderick Chisholm, and it will be sufficient 
to examine some of his views to express my own attitude to this aspect of 
the controversy. 

Chisholm (1957, pp. 170-171) states three criteria for recognizing 
intentional sentences. First, a simple declarative sentence is intentional if 
it uses a substantival expression in such a way that neither the sentence nor 
its contradictory impIies there is anything designated by the substantival 
expression. For example, "Mr. Bailey hopes to find a three-headed calf 
to add to his collection of circus animals", "Hilbert wanted to find a 
decision procedure for the whole of mathematics". 

Secondly, a non-compound sentence containing a propositional clause 
is intentional if neither the sentence nor its contradictory impIies that the 
propositional clause is true or that it is false. For example, "John beIieves 
that there are polar bears in Africa", "At one time Hilbert beIieved that 
a finitistic consistency proof could be found for the whole of mathe
matics". 

The third criterion is the famiIiar one that a sentence is intentional 
when its truth value is disturbed by the substitution of one name or 
description for another, even though the original phrase and the sub-
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stituted phrase designate the same object. Sentences asserting necessity 
provide familiar examples: "It is necessary that nine is greater than seven. 
The number of planets is equal to nine. However, it is not necessary that 
the number of planets is greater than seven". 

It is certainly possible to refine the statement of these three criteria, or 
perhaps to quibble either ab out their adequacy - whether they cover all 
cases - or ab out their c1assifying as intentional some sentences many 
people regard as extensional. However, I think they will provide tools of 
the appropriate degree of precision. 

Chisholm then formulates Brentano's thesis that intentional sentences 
are required for the description of psychological phenomena, but not for 
the description of physical phenomena. He says the following about the 
invention of a psychological terminology to describe activities like 
perceiving in nonintentional sentences. 

Instead of saying, for example, that a man takes something to be a deer, we could say 
'His pereeptual environment is deer-inclusive.' But in doing so, we are using technical 
terms - 'pereeptual environment' and 'deer-inc1usive' - wbich, presumably, are not 
needed for the description of nonpsychological phenomena. And unless we can re
express the deer-sentenee onee again, tbis time as a noDintentional sentenee containing 
no such technical terms, what we say about the man and the deer will conform to our 
present version of Brentano's thesis [po 173]. 

Chisholm then goes on to examine three methods of showing that 
Brentano's thesis is wrong. He first examines the attempt by Ayer and 
others to describe psychological attitudes in terms of linguistic behavior. 
Secondly, he examines an approach in terms of the psychological or 
behavioral concept of "sign behavior". He cites as typical instances of 
this viewpoint the work of the psychologist Charles Osgood and the 
philosopher Charles Morris. Thirdly, he examines the attempt to define 
intentional concepts in terms of the eoneept of expectation. 

There are two sorts ofthings I want to say about Chisholm's defense of 
Brentano's thesis. In the first place, I try to show that his eriticism of the 
"theory of sign behavior" is far too simple and erude. But, more im
portantly, in the second place, I try to argue that Brentano's thesis and 
similar doctrines about intentionality are essentially irrelevant to the 
development of behaviorism as a seientifie theory. 

Coneerning nonintentional definitions of 'sign' Chisholm says that 
sueh definitions of 'sign' depend upon the substitution of one stimulus for 
another, or in more standard psyehologieal terminology on the relation 
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between an uneonditioned and a eonditioned stimulus. Chisholm focuses 
his critieisms of this kind of definition of 'sign' on the difficulty of 
charaeterizing the respect or degree of similarity between the sign and the 
stimulus for whieh it is the substitute. Chisholm summarizes his argument 
as follows: 

Shall we say that V is a sign of R provided that V has all the effects which R would 
have had 'llf the bell is to have all the effects which the food would have had, then, as 
Morris notes, the dog must start to eat the bell. Shall we say that V is a sign of R 
provided that V has the effects which only R would have had? If the sign has effects 
which only the referent can have, then the sign is the referent and only food can be a 
sign of food. The other methods of specifying the degree or respect of similarity 
required by the substitute-stimulus definition, so far as I can see, have equally un
acceptable consequences [pp. 179-180]. 

Before stating criticisms of Chisholm's analysis, let me say parenthetieally 
that if we were to take his remarks seriously we would be denying the 
possibility of an objective scientific description of the ubiquitous psycho
logical phenomena of transfer and generalization in learning. The eentral 
weakness of his critieism is to present us with essentially only two alter
natives: either the sign produces all the effeets that the original stimulus 
itself does, or it produces, in some vague fashion, only some of the effeets. 
In the first case the sign needs to be the same kind of event as the original 
stimulus, and in the second case, any two stimuli share some property 
with the original stimulus. Another primary difficulty of Chisholm's 
analysis of the Pavlovian example is that he does not take any aecount of 
the fact that a sign must be learned as a sign of a stimulus. His analysis 
provides no room for changes in the conditioning of the organism. 

I have indicated above how an extensional definition of one thing's 
being a sign for another can be given. The identification of the events 
Rn> US, es and I US on any trial on whieh they oecur is as extensional 
as the similar identification of events in physieal experiments, and so also 
is the eoncept of probability - the same sense of probability can be used 
and is used for the analysis of psyehological and physical experiments. 

I realize that my definition is still partially schematie, but I see no 
essential diffieulty in making it as elaborate and detailed as necessary. 
The eonditions for elaboration are not different from those necessary to 
speIl out in satisfactory detail physieal or chemical experiments. The 
point of the constructive definition of being a sign is simply to show that 
onee even a rather meager quantitative apparatus is introduced, partie-
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ularly of a probabilistic kind, then Chisholm's criticisms seem to fall 
very wide of the mark. In connection with the next to last sentence of the 
quotation from Chisholm, I note that my definition does not require that 
the signs have effects only the referents can have, and therefore be led 
into the absurdity that only food can be a sign of food. We turn our 
attention only to a certain subset of responses of the organism taking 
place at that time, just as in a physical experiment, for example, one 
dealing with the behavior of magnets, we examine only some behavior of 
the magnet and do not concern ourselves with such problems as the 
shadow cast by the magnet on the laboratory bench, etc. In the salivation 
experiment, we do not examine the responses that take place in the 
organism as the food is ingested, nor do we take account ofthe motions of 
the mouth in chewing the food, etc. For other purposes it may be desirable 
to consider such responses, but in every experiment, whether it is an 
experiment on the behavior of organisms, or the behavior of inanimate 
things, we are never concerned with all aspects of that behavior, but only 
with a very selected portion. In this respect, too, it seems that Chisholm's 
criticisms have gone badly astray. 

I turn now to my argument against the relevance, for the development 
of behaviorism as a scientific theory, of Brentano's thesis or similar 
arguments in favor ofthe irreducibility ofintentional concepts. I maintain 
that it is not essential to provide an adequate definition in behavioristic 
terms of intentional notions in order to develop a quantitative theory of 
behavior. And this is not because the intentional concepts are wrong or 
inapplicable to the discussion of behavior, but rather because an intro
duction of new distinctions and concepts does not require as a necessary 
prolegomenon the analysis without remainder of the concepts already in 
the field. The view that such a definitional analysis is needed is based on a 
kind of completeness claim that cannot be supported in empirical domains. 
Systematic terms or concepts of any empirical theory are fantastically 
incomplete or schematic. Whether we look at a theory of learning or a 
theory of mechanics the point is the same. The concepts of the theory are 
only loosely connected to any actual experiment. The point I am making 
is not new; it has been made by many others and I have tried to amplify it 
elsewhere.3 From the standpoint of sophisticated common sense or the 
previous theory in the field, the concepts of a new theory may be un
believably crass and crude in their analysis of the nuances of experience. 
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This is certainly true of the 17th-century theories of mechanics in relation 
to their Aristotelian predecessors. It was not taken as a responsibility of 
these new theories to analyze out in terms of the simple Cartesian and 
Newtonian concepts the many subtle distinctions introduced by Aristotle 
and the Scholastics in describing physical phenomenon. Indeed, this 
would have been a hopeless enterprise. Even so simple a distinction as 
that of Aristotle's between natural and violent motion would seem to 
have no clear definition in the Cartesian or Newtonian theories. The 
Aristotelian doctrines of the potential and the actual and of form and 
matter had even less chance of being explained. 

A small-scale example of such irreducibility is to be found in the 
development of theories of choice and quantitative theories of belief. 
One appropriate way of describing modern theories of subjective prob
ability is in terms of the attempt to develop a quantitative theory of 
belief - partial belief, if you will. It is not feasible to describe here the 
work that has been done on this subject by Ramsey, de Finetti, Savage, 
and others. The only point I want to make is that the rather considerable 
quantitative development of this theory has been made in blithe in
dependence of Brentano's thesis. The problems that still beset the theory 
do not seem primarily to involve problems of intentionality. Consider, for 
example, the analysis of the degree of belief in terms of the two-place 
relation equal to or less probable than. If we use the ordinary formalism 
familiar in probability theory, then this relation is said to hold between 
two events, although in older writers it would be said to hold between two 
propositions. I think it is possible to object, on intentional grounds, to the 
use of the event-language for it may be maintained that the description of 
an event is an important determiner of the degree of belief we assign to an 
event. My answer to this is twofold. On the one hand, ifwe are interested 
in studying beliefs as opposed to the assertion of belief statements, a good 
case can be made for concentrating mainly on non-verbal behavior. The 
oft-emphasized rubric is that the true indication of a person's beliefs are 
the actions he takes and not the statements he makes. Numerous recent 
writers on subjective prob ability have emphasized this behavioristic point 
about measuring degrees of belief. This viewpoint is very weIl expressed 
but unfortunately thereafter abandoned in the opening lines of Hare's 
The Language 0/ Morals (1952): 
If we were to ask of a person 'What are his moral principles?' the way in which we could 
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be most sure of a true answer would be by studying what he did. He might, it is true, 
profess in his conversation all sorts of principles, which in his actions he completely 
disregarded; but it would be when, knowing all the relevant facts of a situation, he was 
faced with choices or decisions between alternative courses of action, between alternative 
answers to the question 'What shall I do?', that he would revea1 in what principles of 
conduct he really believed. The reason why actions are in a peculiar way revelatory of 
moral principles is that the function of moral principles is to guide conduct (P. 1]. 

In view of these opening lines, it is somewhat surprising to find that 
almost the entire remainder of Hare's book is devoted to an analysis of 
the language of morals and not to the development of any theory of moral 
decisions or actions themselves. 

In line with Hare's dictum, the surest way to understand a man's moral 
principles is to study what he does. Over the past 15 years there have been 
a large number of experimental studies that are more or less relevant to 
formal theories ofpreference and choice (for a review ofthis experimental 
literature see Luce and Suppes, 1965). It is characteristic of this literature 
that it is directly concerned with testing behavioristic theories of choice, 
and secondly, that problems of intention of the sort raised by Chisholm 
and other writers do not impinge in any systematic way on the design and 
execution of the experiments. I do not mean to suggest that this ex
perimentalliterature makes it a point specifically to deny the correctness 
or appropriateness of intentional concepts in describing much human 
behavior. It is rather, as I have already indicated, that these difficult and 
subtle concepts are bypassed and ignored in the new formal developments 
of a theory of behavior. As a sampIe ofthe kind of empirical findings that 
are coming out of these studies, let me mention just one that is of some 
generality. The study of betting behavior both in experimental settings 
and in real-life settings at the race track show that under a wide variety of 
circumstances there is a very strong tendency on the part of most people 
to underestimate high probabilities and to overestimate low probabilities. 
This kind of finding says something important about the belief structures 
of average people, and yet obviously does not depend in any way on 
intentional notions. Perhaps another way of putting a criticism of 
intentionality theses like those of Chisholm's is that it is not made c1ear 
what the relation of the thesis about intentionality is to the scientific 
study of intentional behavior. The sense in which a scientific theory of 
human behavior must be intentional for Chisholm is not at all clear. 

My second point of emphasis is to stress my conviction that the 
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peculiar character of intentional contexts to be found in belief statements 
and in other kinds of modal statements that may be cited in support of 
Brentano's thesis will disappear once a properly detailed behavioristic 
analysis of language is given. As a very preliminary indication of how 1 
would conceive doing this, we may consider belief statements about the 
dog's response to the ringing of the bell. Without quibbling about exact 
perceptual details, 1 think we may agree that the event of the bell's 
ringing in the dog's presence is identical with the event of certain sound 
waves of a specified range of intensity and frequency reaching the 
auditory receptor organs of the dog. We do not raise problems about 
substitutibility in asserting, on the one hand, that the dog believes that the 
ringing of the bell in his presence is a sign that food is to follow, and the 
parallel assertion that the dog believes that the reception of certain sound 
waves of a given frequency and intensity range is to be followed by his 
receiving food. At least, 1 do not find any difficulties of substitutivity 
here; and the central reason, 1 feel sure, is the fact that the dog is not a 
language user. Yet 1 would maintain that belief statements about the dog 
or other non-human mammals are unexceptional. The difficulty with 
belief statements about human users of complicated language is that a 
variety of signs are used to encode beliefs, and in a fully detailed analysis 
it is necessary not only to describe the event about which the belief is 
held but also the encoding signs. 1 would defend the thesis that it is 
impossible to have a belief without such specific encoding. (Whether the 
organism is explicitly conscious of the encoding is an irrelevant matter.) 
The essential point is that in terms of the specific encoding one should in 
principle be able to offer a general definition of truth for belief statements. 
Thus, if John says, "I believe that there are lions in Alaska" the truth of 
this statement would be defined in the c1assical Tarskian manner except 
that the model is not now a direct model of the real world, but a model of 
the encoded beliefs of John. It is quite true that the methods for deter
mining whether or not belief statements are true or not will usually be 
highly indirect, but of course this is true for many statements of other 
sorts as well. Secondly, the problems ofvaguenessin belief are not different 
from the problems of vagueness in ordinary statements. There is no more 
difficulty in principle in deciding on the truth of a vague statement about 
belief or a precise statement about vague beliefs than there is in dis
criminating between the truth of "John ran quickly" and "John ran very 
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quickly". Perhaps the following analogy will make what I am trying to 
say about the truth of belief statements clearer. The method of testing the 
truth of belief statements I am suggesting would be simiIar to the following 
test by a computer. The computer has certain information about the 
world stored in memory. When a sentence is handed to the computer it 
then applies a Tarskian definition of truth to check the truth of the new 
statement in terms of the information stored in memory. What is im
portant for the truth of the belief sentence for the computer is the in
formation stored in memory, not correct knowledge about the world. I 
certainly do not think that what I have said here in this brief way about a 
nonintentional definition of truth for belief sentences has been sufficiently 
detailed to solve the many puzzling questions raised about belief state
ments in the recent literature. I do think it points in the right direction, 
and in particular, is much closer to the intuitive content ofbelief sentences 
than linguistic accounts that involve translating belief sentences in 
ordinary parlance into statements about belief in certain sentences. 

IV. TYPES OF EXPLANATION 

I mentioned earlier that an important aspect of controversies surrounding 
the development of a quantitative theory of human actions concerns the 
inappropriateness of causal as opposed to "reason" explanations. I had 
hoped to have time in this paper to devote a fairly detailed effort to 
refuting the kind of claims that are typified in the arguments given by 
R. S. Peters in his book on philosophical psychology (1958). Briefly put, 
Peters' argument is that the rule-following purposive model of human 
behavior is always required for an adequate explanation of a human 
action. He admits that causal explanations are relevant and can on 
occasion state necessary conditions for an action. His argument is that 
we can never give sufficient conditions in causal terms for a human action, 
because "we can never specify an action exhaustively in terms of move
ments of the body or within the body" [po 12]. As an example of a human 
action that cannot exhaustively be described in terms of physical move
ments, Peters mentions the act of signing a contract. He points out the 
many different ways in which the pen may be held, how the size of the 
writing or the time taken to finish the signature may vary, etc. His entire 
position is well summarized in the passage following this example. 
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So we could never give a sufficient explanation of an action in causal terms because we 
could never stipulate the movements which would have to count as dependent variables. 
A precise functional relationship could never be established. Of course, just as we 
could stipulate a general range of movements necessary to define signing a contract, 
so also we could lay down certain very general necessary conditions. We could, for 
instance, say that a man could not sign a contract unless he had a brain and nervous 
system. Such physiologica1 knowledge might enable us to predict bodily movements. 
And i/we had bridging laws to correlate such physiological findings with descriptions 
of actions we rnight indirectly predict actions. But we would first have to grasp concepts 
connected with action like 'knowing what we are doing' and 'grasp of means to an end'. 
As such concepts have no application at the level of mere movement, such predictions 
would not count as sufficient explanations 0/ actions [pp. 13-14]. 

It seems to me that tbis passage reflects a profound misunderstanding of 
the nature of scientific method in the physical sciences as weIl as in the 
psychological and biological sciences. If we were to take these strictures 
correctly, no causal explanation in macroscopic physics would be 
acceptable; in fact, no adequate causal explanation could be given of any 
physical phenomena at the macroscopic or microscopic level involving 
motions and interactions of a large number of particles, because we are 
not now able, and probably never shall be able, to state a precise func
tional relationship between the motions of the individual particles and 
the observed macroscopic phenomena. Consider, for example, the 
thermodynamical and mechanical explanation of the formation of clouds 
on the windward side of a mountain. This explanation is given in terms 
of the upward motion of an incredibly large number of air and water 
vapor molecules. Some general characteristics of this motion can be stated, 
for example, the mean velocity of a molecule, but it is utterly hopeless to 
attempt to give any account of"precise functional relationships" between 
the motions of individual particles and the cloud we can all observe. 

Perhaps my deepest objection to what Peters says is that, like Chisholm, 
he does not seem to recognize the highly schematic character of the 
causal explanation of any phenomena, animate or inanimate. It is, I 
would claim, never possible to give a direct characterization of sufficient 
conditions for the occurrence of a phenomenon. The concept ofsufficiency 
is relative to our description of the phenomenon, and the adequacy of a 
causal explanation must also be judged relative to that description. There 
is indeed no such thing as an ultimate causal analysis of any phenomenon. 
Behaviorism and quantum physics are in the same causal boat afloat on a 
probabilistic sea. 
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1 For a detailed discussion of this point see the final article in this volume. 
2 See the last article of this volume for a detailed and formal set ofaxioms. 
3 Article 2 in this volume. 
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19. ON THE BEHAVIORAL FOUNDATIONS OF 

MATHEMATICAL CONCEPTS* 

I. INTRODUCTION 

The tide of this paper will perhaps mean different things to different 
people. Philosophers and mathematicians interested in the foundations of 
mathematics and the philosophy of language may think I intent to pursue 
a systematic pragmatics built around such notions as Ajdukiewicz' con
cept of acceptance. Actually, I am going in a different direction. What I 
want to do is outline present applications of mathematical learning 
theory to mathematical concept formation. The aims of this paper are 
primarily constructive, that is, to contribute to the development of a 
scientific theory of concept formation. Before I turn to this subject, 
however, I want to comment on two general aspects of the teaching of 
mathematical concepts. 

The first concerns the much-heard remark that the newer revisions of 
the mathematics curriculum are particularly significant because of the 
emphasis they place on understanding concepts as opposed to the per
fection of rote skills. My point is not to disagree with this remark, but to 
urge its essential banality. To understand is a good thing; to possess mere 
rote skill is a bad thing. The banality arises from not knowing what we 
mean by understanding. This failure is not due to disagreement over 
whether the test of understanding should be a behavioral one. I am 
inclined to think that most people concerned with this matter would 
admit the central relevance of overt behavior as a measure of under
standing. The difficulty is, rather, that no one seems to be very dear 
about the exact specification of the behavior required to exhibit under
standing. Moreover, apart even from any behavioral questions, the very 
notion of understanding seems fundamentally vague and ill defined. 

To illustrate what I mean, let us suppose that we can talk about under-

... Reprinted from Mathematical Learning (Monographs of the Society for Research in 
ehild Development, 30, Serial No. 99) (ed. by L. N. Morriset and J. Vinsonhalers), 
1965, pp. 60-96. 
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standing in some general way. Consider now the concept of triangularity. 
Does understanding this concept entail the understanding that the sum of 
the interior angles is 1800 , or that triangles are rigid whereas quadrilaterals 
are not, or the ability to prove that if the bisectors of two angles of a 
triangle are equal then the triangle is isosceles? This example suggests one 
classical phiIosophical response to our query, that is, to understand a 
concept means, it is said, to know or believe as true a certain set of 
propositions that use the concept. Unfortunately, this set is badly defined. 
It is trivial to remark that along these lines we might work out a com
parative notion of understanding that is a partial ordering defined in 
terms of the inc1usion relation among sets of propositions that use the 
concept. Thus, one person understands the concept of triangularity 
better than a second if the set of propositions that uses the concept and 
is known to the first person inc1udes the corresponding set for the second 
person. (Notice that it will not do to say simply that the first person 
knows more propositions using the concept, for the second person might 
know fewer propositions but among them might be some of the more 
profound propositions that are not known -by the first person; this 
situation corresponds to the widely held and probably correct belief that 
the deepest mathematicians are not necessarily the best mathematical 
scholars.) 

But this partial ordering does not take us very far. A more behavioral 
line of thought that, at first glance, may seem more promising is the re
sponse of the advocates of programmed learning to the charge that the 
learning of programmed material facilitates rote skills, but not genuine un
derstanding of concepts. They assert that if the critics will simply specify 
the behavior they regard as providing evidence of understanding, the pro
grammers will guarantee to develop and perfect the appropriate repertory 
of responses. This approach has the practical virtue of sidestepping any 
complex discussion of understanding and supposes, with considerable cor
rectness, no doubt, that without giving an intellectually exact analysis of 
what to understand a concept means, we still can obtain a rough consensus 
at any given time of what body of propositions we expect students to 
master about a given concept. This is the appropriate practical engineering 
approach, but it scarcely touches the scientific problem. 

In this paper I do not pretend to off er any serious characterization of 
what it means to understand a concept. I do think that the most promising 
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direction is to develop a psychological theory of concept transfer and gen
eralization. The still relatively primitive state of the theory of the much 
simpler phenomena of stimulus transfer and generalization do not make 
me optimistic about the immediate future. For immediate purposes, 
however, let me sketch in a very rough way how the application of ideas 
of transfer and generalization can be used to attack the banality mentioned 
earlier in the standard dichotomy of understanding vs. rote skill. 

We would an agree, I think, that such matters as learning to give the 
multiplication tables quickly and with accuracy are indeed rote skills. But 
there is also what I consider to be amistaken tendency to extend the label 
"rote skill" to many parts ofthe traditional mathematics curriculum at an 
levels. The body of mathematical material tested, for example, by the 
British Sixth Form examinations is sometimes so labeled by advocates of 
the newer mathematics curriculum. In terms of the accepted notion of rote 
skin developed and studied by psychologists, this is amistake, for the 
production of a correct response on these examinations cannot be 
explained by any simple principle of stimulus-response association. 
Moreover, the problems of transfer -involved in solving typical British 
Sixth Form examination problems, in comparison with the kind of 
examination set by advocates of the newer mathematics curriculum may, 
in fact, require more transfer of concepts; at least, more transfer in one 
obvious way of measuring transfer, that is, in terms of the number of 
hours of training spent in relation to the ability to solve the problems by 
students matched for general background and ability. I recognize that 
these are complicated matters and I do not want to pursue them here. 
Also, I am fully in sympathy with the general objectives of the newer 
mathematics curriculum. I am simply protesting against some of the 
remarks about understanding and rote skills that occur in the pedagogical 
conversations and writings of mathematicians. 

The second general point I want to mention briefly is of a similar sort. 
I have in mind the many current discussions ofthe efficacy ofthe discovery 
method of teaching. Such discussions seem to provide yet one more 
remarkable example, in the history of education, of a viewpoint achieving 
prominence without any serious body of empirical evidence to support or 
refute its advocates. From the standpoint oflearning theory, I do not even 
know of a relatively systematic definition of the discovery method. I do 
not doubt that some of its advocates are themselves remarkably capable 
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teachers and able to do unusual and startling things with classes of 
elementary-school children. The intellectual problem, however, is to 
separate the pedagogical virtuosities of these advocates' personalities 
from the systematic problem of analyzing the method itself. Workable 
hypotheses need to be formulated and tested. I know that a standard 
objection of some advocates of the discovery method is that any quick 
laboratory examination of this teaching method vs. a more standard 
immediate reinforcement method, particularly as applied to young 
children, is bound not to yield an unbiased test. The results and the 
implications of the methods, it is said, can only be properly evaluated after 
a long period. I rather doubt that this is the case but, if it is so, or if it is 
propounded as a working hypothesis by advocates of the method then, it 
seems to me, it is their intellectual responsibility to formulate proper 
tests of a sufficiently sustained sort. 

I realize that my remarks on this subject have the character of obiter 
dicta. On the other hand, in a more complete treatment of mathematical 
concept formation in young children, I would consider it necessary to 
probe more deeply into the issues of motivation, reinforcement and con
cept formation that surround the controversy between the discovery 
method and other more classical methods of reinforcement. Some experi
mental results on methods of immediate reinforcement are reported in 
Section III, 'Some Concept Experiments with Children'. 

I turn now to the specific topics I would like to develop more system
atically. In the next section, aversion of stimulus-sampling learning 
theory is formulated that holds considerable promise for providing a 
detailed analysis of the behavioral processes involved in the formation of 
mathematical concepts. In the following section, I report in somewhat 
abbreviated form six experiments dealing with mathematical concept 
formation in young children. A particular emphasis is placed on whether 
the learning process in this context is represented better by all-or-none or 
incremental conditioning. The final section is concerned with behavioral 
aspects of logical inference and, in particular, of mathematical proofs. 

II. FUNDAMENTAL THEORY 

The fundamental theory I shall apply in later seetions is a variant of 
stimulus-sampling theory first formulated by Estes (1950). The axioms 
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given here are very similar to those found in Suppes and Atkinson (1960). 
I shall not discuss the significance of the individual axioms at length be
cause this has been done in print by a number of people. The axioms I 
may mention, however, are based on the following postulated sequence of 
events occurring on a given trial of an experiment: The organism begins 
the trial in a certain state of conditioning. Among the available stimuli a 
certain set is sampled. On the basis of the sampled stimuli and their con
ditioning connections to the possible responses, a response is made. After 
the response is made, a reinforcement occurs that may change the con
ditioning of the sampled stimuli. The organism then enters a new state of 
conditioning ready for the next trial. The following axioms (divided into 
conditioning, sampling, and response axioms) attempt to make the 
assumptions underlying such a process precise (they are given in verbal 
form, but it is a routine matter to translate them into an exact mathematical 
formulation) : 

Conditioning Axioms 
Cl. On every trial each stimulus element is conditioned to at most one 

response. 
C2. If a stimulus element is sampled on a trial, it becomes conditioned 

with probability c to the response (if any) that is reinJorced on that trial; 
if it is already conditioned to that response, it remains so. 

C3. If no reinforcement occurs on a trial, there is no change in con
ditioning on that trial. 

C4. Stimulus elements that are not sampled on a given trial do not 
change their conditioning on that trial. 

C5. The probability c that a sampled stimulus element will be conditioned 
to a reinforced response is independent oJ the trial number and the preceding 
pattern oJ events. 

Sampling Axioms 
SI. Exactly one stimulus element is sampled on each trial. 
S2. Given the set oJ stimulus elements available Jor sampling on a trial, 

the probability oJ sampling a given element is independent oJ the trial 
number and the preceding pattern oJ events. 

Response Axioms 
RI. If the sampled stimulus element is conditioned to aresponse, then 

that response is made. 
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R2. lf the sampled stimulus element is unconditioned, then there is a 
probability Pi that response i will occur. 

R3. The guessing probability Pi olresponse i, when the sampled stimulus 
element is not conditioned, is independent 01 the trial number and the 
preceding pattern 01 events. 

Although not stated in the axioms, it is assumed that there is a fixed 
number of responses and reinforcements and a fixed set of stimulus ele
ments for any specific experimental situation. 

Axioms e5, S2, and R3 are often not explicitly formulated by learning 
theorists, but for the strict derivation of quantitative results they are 
necessary to guarantee the appropriate Markov character of the sequence 
of state-of-conditioning random variables. Axioms of this character are 
often called independence-of-path assumptions. 

The theory formulated by these axioms would be more general ifAx
iom SI were replaced by the postulate that a fixed number of stimuli are 
sampled on each trial or that stimuli are sampled with independent prob
abilities, and ifAxiom Rl were changed to read that the probability ofre
sponse is the proportion of sampled stimulus elements conditioned to that 
response, granted that some conditioned elements are sampled. For the 
experiments to be discussed in the next section this is not an important 
generalization and will not be pursued here. (Prom the historical stand
point the generalizations just mentioned actually were essentially Estes' 
original ones.) Nowadays, they are referred to as the assumptions of the 
component model of stimulus sampling. Axiom SI as formulated here is 
said to formtilate the pattern model, and the interpretation is that the 
organism is sampling on a given trial the pattern of the entire stimulating 
situation, at least the relevant pattern, so to speak. This pattern model 
has turned out to be remarkably effective in providing a relatively good, 
detailed analysis of a variety of learning experiments ranging from rats in 
T-mazes to two-person interaction experiments. 

There is one other general remark I would like to make before turning 
to the discussion of particular experiments. The kind of stimulus-response 
theory just formulated is often objected to by psychologists interested in 
cognitive processes. I do not doubt that empirical objections can be found 
to stimulus-response theory when stated in too simple a form. I am 
prepared, however, to defend the proposition that, at the present time, no 
other theory in psychology can explain in the same kind of quantitative 



318 PART IV. FOUNDATIONS OF PSYCHOLOGY 

detail an equal variety of learning experiments, including concept 
formation experiments. I should also add that I do not count as different, 
cognitive formulations that are formally isomorphic to stimulus-sampling 
theory. In our recent book Atkinson and I (Suppes and Atkinson, 1960) 
attempted to show how the hypothesis language favored by many people 
(e.g., Bruner et al., 1956) can be formulated in stimulus-sampling terms. 
For example, a strategy in the technical sense corresponds precisely to a 
state of conditioning and a hypothesis to the conditioned stimulus 
sampled on a given trial, but details of this comparison are not pertinent 
here. 

III. SOME CONCEPT EXPERIMENTS WITH CHILDREN 

I now turn to the application of the fundamental theory, stated in the 
preceding section, to a number of experiments that are concerned with 
concept formation in young children. It would be possible, first, to 
describe these experiments without any reference to the theory, but, in 
order to provide a focus for the limited-amount of data it is feasible to give 
in this survey, it will be more expedient to specialize the theory initially to 
the restricted one-element model, and report on data relevant to the 
validity of this model. 

We obtain the one-element model by extending the axioms given in the 
preceding section in the following respect: we simply postulate that 
there is exactly one stimulus element available for sampling on each trial 
and that at the beginning of the experiment this single element is uncon
ditioned. 

This special one-element model has been applied with considerable 
success by Bower (1961) and others to paired-associate experiments, that 
is, to experiments in which the subject must learn an arbitrary association 
established by the experimenter between, say, a nonsense syllable as single 
stimulus and a response, such as one of the numerals 1-8 or the pressing 
of one ofthree keys. The most important psychological implication ofthis 
one-element model is that in the paired-associate situation the con
ditioning takes place on an all-or-none basis. This means that prior to 
conditioning the organism is simply guessing the correct response with 
the probability Pi mentioned in Axiom R3, and that the probability of 
conditioning on each trial in which the stimulus is presented is c. Once 
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the stimulus is conditioned the correct response is made with probability 
one. 

In an earlier paper, Rose Ginsberg and I (Suppes and Ginsberg, 1963) 
analyzed a number of experiments, including some of those reported here, 
to exhibit a simple but fundamentally important fact about this all-or-none 
conditioning model. The assumptions of the model imply that the 
sequence of correct and incorrect responses prior to the last error form a 
binomial distribution of Bernouilli trials with parameter p. This null 
hypothesis of a fixed binomial distribution of responses prior to the last 
error admits, at once, the possibility of applying many powerful classical 
statistics that are not usually applicable to learning data. What is partic
ularly important from a psychological standpoint is this hypothesis' 
implication that the mean learning curve, when estimated over responses 
prior to the last error, is a horizontalline. In other words, no effects of 
learning should be shown prior to conditioning. Ginsberg and I analyzed 
experiments concerned with children's concept formation, animal 
learning, and prob ability learning, and with paired-associate learning in 
adults from this standpoint. I shall not propose to give as extensive an 
analysis of data in the present paper as we attempted there, but I will 
attempt to cite some of the results on this question of stationarity, 
because of its fundamental importance for any psychological evaluation 
of the kind of processes by which young children acquire concepts. 

Other features of the experiments summarized below will be mentioned 
seriatim, particularly if they have some bearing on pedagogical questions. 
One general methodological point should be mentioned, however, before 
individual experiments are described. In many of the experiments, the 
stimulus displays were different on every trial so that there was no possi
bility of establishing a simple stimulus-response association. How is the 
one-element model to be applied to such data? The answer represents, I 
think, one of our more important general findings: a very good account 0/ 
much 0/ the data may be obtained by treating the concept itself as the single 
element. The schema, then, is that a simple concept-response association 
is established. With the single exception of Experiment I, we have applied 
this interpretation to the one-element model in our experiments. 

Experiment l. Binary Numbers 
This experiment is reported in detail in Suppes and Ginsberg (1962a). 
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Five- and six-year-old subjects were required to leam the concepts of the 
numbers 4 and 5 in the binary number system, each concept being repre
sented by three different stimuli; for example, if the stimuli had been 
chosen from the Roman alphabet, as in fact they were not, 4 could have 
been represented by abb, cdd, and eff, and 5 by aba, cdc, and efe. The 
child was required to respond by placing direct1y upon the stimulus one of 
two cards. On one card was inscribed a large Arabic numeral 4 and on the 
other a large Arabic numeral 5. All the children were told on each trial 
whether they made the correct or incorrect response, but half of them 
were also required to correct their wrong responses. Thus, in this ex
periment, in addition to testing the one-element model, we were concerned 
with examining the effect upon learning of requiring the subject to correct 
overtly a wrong response. There were 24 subjects in each of the two 
experimental groups. From test responses, after each experimental session, 
it seemed evident that whereas some subjects in both groups learned the 
concept as such, others learned only some of the specific stimuli rep
resenting the concepts so that, in effect, within each group there were 
two subgroups of subjects. It is interesting to note that this finding agrees 
with some similar results in lower organisms (Hull and Spence, 1938), but 
is contrary to results obtained with adult subjects for whom an overt 
correction response seems to have negligible behavioral effects (Burke 
et al., 1954). 

The data for both correction and noncorrection groups are shown in 
Figure 1. It is apparent that there was a significant difference between the 
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Fig. 1. Proportion of correct responses over all trials (binary-nurnber experiment). 
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two groups in the rate of learning. The t of 4.00 computed between over
all responses of the two groups is significant at the .001 level. 

For the analysis of paired associates and concept formation we re
stricted ourselves to the 24 subjects of the correction group. To begin 
with, we analyzed the data as if each of the six stimuli, three for each 
number, represented an independent paired-associate item. In accordance 
with this point of view, we have shown in Figure 2 the proportion of 
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Fig. 2. Proportion of correct responses prior to last error and mean leaming curve 
(binary-number experiment). 

correct responses prior to the last error and the mean learning curve for 
all responses. 

The data points are for individual trials. Because a total of only 16 
trials were run on each stimulus we adopted a criterion of six successive 
correct responses, and thus the proportion of correct responses prior to 
the last error is shown only for the first 10 trials. A X2 test of stationarity 
over blocks of single trials supports the null hypothesis Cx 2 = 8.00, df = 9, 
P>0.50, N=844). 

Let us now turn to the question of concept formation. The identification 
we make has already been indicated. We treat the concept itself as the 
single stimulus, and in this case we regard the experiment as consisting of 
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two concepts, one for the number 4 and one for the number 5. (It should 
be apparent that the identification in terms of the numbers 4 and 5 is not 
necessary; each concept can be viewed simply as an abstract pattern.) 

The criterion for the learning of the concept was correct responses to 
the last three presentations of each stimulus. On this basis we divided the 
data into two parts. The data from the group meeting the criterion were 
arranged for concept-Iearning analysis - in this case a two-item learning 
task. The remaining data were assumed to represent paired-associate learn
ing involving six independent stimulus items. For the paired-associate 
group over the first 10 trials we had 81 cases; for the concept-formation 
group we had 21 cases with 48 trials in each. The X2 test of stationarity 
was not significant for either group (for the concept subgroup X2 = 8.36, 
df = 9, P> 0.30, N = 357; for the paired-associate subgroup X2 = 11.26, 
df=8, P>O.lO, N=570). 

To provide a more delicate analysis of this important question of sta
tionarity we can construct Vincent curves in the following manner (cf. 
Suppes and Ginsberg, 1963). The proportion of correct responses prior to 
the last error may be tabulated for percentiles of trials instead of in terms 
of the usual blocks of trials. In Figure 3 the mean Vincent curve for the 
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to last error, binary numbers and identity of sets (Exps. I and 11). 
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subjects in the binary-number experiment who met the concept criterion 
is shown. The curve is plotted in terms of quartiles. As the mean percentile 
of each of the four quartiles is 12.5%,37.5%,62.5%, and 87.5%, respective
ly, and C represents the 100% point, the distance between 4, the fourth 
quartile, and C on the abscissa is one-half of that between the quartiles 
themselves. The evidence for nonstationarity in the final quartile will be 
discussed subsequently along with the other Vincent curve shown in this 
figure. 

It should be noted, of course, that the subjects who take longer to meet 
the criterion are weighted more heavily in the Vincent curves. For 
example, suppose one subject has 16 responses prior to his last error 
whereas another subject has only 4. The first subject contributes 4 
responses to each quartile whereas the second subject contributes only 1. 
This point will be discussed in more detail below. I turn now to the 
second experiment. 

Experiment II. Equipollence and Identity 0/ Sets 
This experiment was performed with Rose Ginsberg and has been 

published in Suppes and Ginsberg (1963). The learning tasks involved in 
the experiment were equipollence of sets and the two related concepts of 
identity of sets and identity of ordered sets. 

The subjects were 96 first graders run in 4 groups of 24 each. In Group 
1 the subjects were required to learn identity of sets for 56 trials and then 
equipollence for a further 56 trials. In Group 2 this order of presentation 
was reversed. In Group 3 the subjects learned first identity of ordered sets 
and then, identity of sets. In Group 4 identity of sets preceded identity of 
ordered sets. Following our findings in Experiment I, that is, that learning 
was more rapid when the child was required to make an overt correction 
response after an error, we included this requirement in Experiment 11 
and most of the subsequent experiments reported below. Also, in this 
experiment and those reported below, no stimulus display on any trial 
was repeated for an individual subject. This was done in order to guarantee 
that the learning of the concept could not be explained by any simple 
principles of stimulus-response association, as was the case for Ex
periment I. For convenience of reference we termed concept experiments 
in which no stimulus display was repeated pure property or pure concept 
experiments. 
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The sets depicted by the stimulus displays consisted of one, two, or 
three elements. On each trial two of these sets were displayed. Minimal 
instructions were given the subjects to press one of two buttons when the 
stimulus pairs presented were "the same" and the alternative button when 
they were "not the same". 

Our empirical aims in this experiment were several. First, we wanted to 
examine in detail if the learning of simple set concepts by children of this 
age took place on an all-or-none conditioning basis. Second, as the two 
sequences of learning trials on two different concepts for each group 
would indicate, we were interested in questions of transfer. Would the 
learning of one kind of concept facilitate the learning of another, and were 
there significant differences in the degree of this facilitation? Third, we 
were concerned with considering the question of finding the behavioral 
level at which the concepts could be most adequately defined. For example, 
in learning the identity of sets could the learning trials be satisfactorily 
analyzed from the standpoint of all trials falling under a single concept? 
W ould it be better to separate the trials on which identical sets were 
presented from those on which nonidentical sets were presented in order 
to analyze the data in terms of two concepts? Or would a still finer 
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division of concepts in terms of sets identical in terms of order, sets 
identical as nonordered sets, equipollent sets and nonequipollent sets, be 
desirable? 

In somewhat summary fashion the experimental results were as folIows: 
The mean learning curves over all trials for all four groups are shown in 
Figures 4-7. As is evident from these curves the number of errors on the 
concept of identity of ordered sets was extremely smalI. From the high 
proportion of correct responses even in the first block oftrials it is evident 
that this concept is a very natural and simple one for children. Learning 
curves for trials before the last error are also shown in these figures. To 
identify the last error prior to conditioning, we adopted a criterion of 16 
successive correct responses. For this reason, these curves are only shown 
for the first 40 trials. The combined curve for Groups la and 4a is clearly 
stationary. This is also the case for 2b, 3a, 3b and 4b.1 The results ofthe 
X2 test of stationarity for blocks of 4 trials are shown in Table land con
firm these graphie observations. Only the curve for 1 b approaches signif
icance. (No computation was made for 3a because of the small number 
of errors; the number of subjects in the final block of 4 trials is shown in 
the right-hand column of the table.) 
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TABLE I 

Stationarity results for equipollence and identity of sets experiment 
(Exp.II) 

Group x2 df p> Ss in last block 

la&4a 4.95 9 0.80 9 
Ib 16.69 9 0.05 12 
2a 4.79 9 0.80 11 
3a - Too few errors - 1 
4b 4.89 9 0.80 5 
2b 5.96 9 0.70 5 
3b 3.49 9 0.90 10 

I shall restrict myself to one Vincent curve for tbis experiment. The 48 
subjects of Groups 1 and 4 began with the concept of identity of sets. Of 
the 48 subjects, 38 met the criterion of 16 successive correct responses 
mentioned above. The Vincent curve for the criterion subjects is shown in 
Figure 3. Evidence of nonstationarity in the fourth quartile is present as in 
the case of Experiment I. 

Examination of the mean learning curves over all trials apparently in
dicates little evidence oftransfer. Somewhat surprisingly, the only definite 
evidence confirms the existence ofnegative transfer. In particular, it seems 
c1ear from Figure 6, there is negative transfer in learning the concept of 
identity of ordered sets after the concept of identity of unordered sets. 
Also, from Figures 4 and 7, it seems apparent that there is negative transfer 
in learning identity of sets after identity of ordered sets, but not after equi
pollence of sets. 

The efl"ects of transfer are actually more evident when we examine the 
data from the standpoint of two or four concepts. The mean learning 
curves over all 56 trials for the various concepts are shown in Figures 
8-14. The data points are for blocks of 8 trials. The abbreviations used in 
the legends are nearly self-explanatory. For the learning curves shown at 
the right of each figure, the 0 curve i's for pairs of sets identical in the 
sense of ordered sets, the IÖ curve for pairs of sets identical only in the 
sense of unordered sets, the EI curve for pairs of equipollent but not 
identical sets, and the E curve for pairs of nonequipollent sets. These four 
curves thus represent all pairs of sets in four mutually exclusive and 
exhaustive c1asses. The legend is the same for all figures. On the other 
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hand, the curves for the two-concept analysis shown at the left of each 
figure differ in definition according to the problem being learned. In 
Figure 8 the dichotomy is identical and nonidentical sets (I and 1); in 
Figure 9 it is equipollent and nonequipollent sets (E and E), and so forth 
for the other five figures. 
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Before considering questions of transfer, several observations should 
be made about the individual figures. First, for each of the eight sub
groups (la-4b) the learning curves for the two-concepts and the four
concepts are not homogeneous. A difference in difficulty at either level of 
analysis can be detected in all cases. Second, contrary to some experi
mental results in concept formation, the two-concept curves at the left of 
each figure show that the absence of identity or equipollence is often 
easier to detect than its presence. The dichotomy of 0 vs. Ö, that is, 
identity or nonidentity of ordered sets, is the natural one. When the 
"presence" of a concept disagrees with this natural dichotomy, as it does 
in the case of identity and equipollence of sets, it is more difficult to 
detect than the absence of the concept. This conclusion is borne out by 
Figures 8 and 10 for the groups beginning with identity and equipollence, 
respectively, as weIl as for Group 3b (Figure 13), that was trained on 
ordered sets before identity of sets. This same conclusion even holds 
fairly weIl for the second sessions after training on some other concept 
(Figures 9, 11, 12). Figure 14, which compares 0 and Ö after training on 
identity of sets, indicates, I think, the tentative conclusion to be drawn. 
Whether the absence or presence 0/ a concept is more difficult to leam 
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depends much more on the previous training and experience 0/ a subject 
than on the concept itself. When we compare Figure 12 with Figure 14 we 
see that even the difference between ° and Ö in Figure 12 is influenced 
by the prior training or identity, for the difference is greater in Figure 14, 
and surely this is so because the IÖ cases have to be reversed in going from 
sets to ordered sets. 

Third, examination of the four-concept curves reveals a natural 
gradient of difficulty. We may apply something rather like Coombs's 
(1950) unfolding technique to develop an ordinal generalization gradient. 
The natural or objective order of the c1asses of pairs of sets is 0, IÖ, 
EI, E. For any of the three concepts of sameness studied in the experi
ment, we may, without disturbing this objective ordering, characterize 
the c1asses exhibiting presence of the concept and those exhibiting its 
absence by cutting the ordering into two pieces. On a given side of the 
cut, as I shall call it, the nearer a c1ass is to the cut the more difficult it iso 
Consider, to begin with, Figure 8. The task is identity of sets, and the cut 
is between IÖ and EI; we see that, on the one side IÖ is more difficult than 
0, and on the other side ofthe cut, EI-is more difficult than E. Turning to 
Figure 9, the task is equipollence and thus the cut is between EI and E; 
of the three concepts on the EI side, EI is c1early the most difficult and 
IÖ is slightly more difficult than 0, sustaining the hypothesis of an 
ordinal gradient. In Figure 10, the task is equipollence again, but in this 
case without prior training, and the results are as expected but more 
decisive than those shown in Figure 9. Figure 11, like Figure 8, sustains 
the hypothesis when the task is identity of sets. In the case of Figure 12, 
the task is identity of ordered sets and thus IÖ, EI and E occur on the 
same side of the cut. IÖ is clearly the most difficult, but it is not really 
possible clearly to distinguish EI and Ein difficulty, for very few errors 
are made in either class. In Figure 13 the task is identity of sets again, but 
this time following identity of ordered sets. The proper order of difficulty 
is maintained but the distinction between EI and E is not as sharply 
defined as in Figure 8 or Figure 11. Finally, in Figure 14, the task is 
identity of ordered sets following identity of sets. The gradients are as 
predicted by the hypothesis and are better defined than in Figure 12 - no 
doubt because of the prior training on identity of sets. The existence and 
detailed nature of these natural gradients of difficulty within a concept 
task are subjects that seem to be worth considerable further investigation. 



BEHA VIORAL FOUNDATIONS OF MA THEMA TICAL CONCEPTS 333 

I turn now to evidence of transfer in the four-concept analysis. From 
examination ofthe over-all, mean learning curves which, in the terminolo
gy of the present discussion, are the one-concept curves, we observed no 
positive transfer but two cases ofnegative transfer. As might be expected, 
the four-concept curves yield a richet body of results. I shall try to 
summarize only what appear to be the most important points. Comparing 
Figures 8 and 11, we see that for the learning of identity of sets, prior 
training on equipollence has positive transfer for class IÖ and negative 
transfer for EI. The qualitative explanation appears obvious: the initial 
natural dichotomy seems to be 0, Ö, and for this dichotomy IÖ is a dass 
of "different" pairs, but the task of equipollence reinforces the treatment 
of IÖ pairs as the "same"; the situation is reversed for the dass EI, and 
thus the negative transfer, for under equipollence EI pairs are the "same", 
but under identity of sets they are "different". 

Comparing now Figures 8 and 13 in which the task is again identity of 
sets but the prior training is on identity of ordered sets rather than 
equipollence, there is, as would be expected by the kind of argument just 
given, negative transfer for the dass IÖ. There-is also some slight evidence 
of positive transfer for EI. 

Looking next at Figures 9 and 10, we observe positive transfer for the 
dass IÖ when the task is equipollence and the prior training is on identity 
of sets. What is surprising is the relatively slight amount of negative 
transfer for the dass EI. 

Finally, we compare Figures 12 and 14, in which the task is identity 
of ordered sets; in the latter figure this task is preceded by identity of sets 
and we observe negative transfer for the dass IÖ, as would be expected. 
The response curves for the other three classes are too dose to probability 
1 to make additional inferences, although there is a slight negative 
transfer for EI that cannot be explained by the principles stated above. 

It seems apparent from these results that the analysis of transfer in the 
learning of mathematical concepts may often be faci1itated if a fine-scale 
breakdown of the concepts in question into a number of subconcepts is 
possible. Needed most is a quantitative theory to guide a more detailed 
analysis of the transfer phenomena. 

Experiment III. Polygons and Angles 
This experiment is reported in detail in Stoll (1962), and some of the 
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data are presented here with her permission. The subjects were 32 kinder
garten children divided into two equal groups. For both groups the 
experiment was a successive discrimination, three-response situation, 
with one group discriminating between triangles, quadrilaterals, and 
pentagons, and the other group discriminating between acute, right, and 
obtuse angles. For all subjects a typical case of each form (that is, one of 
the three types of polygons or three types of angles) was shown im
mediately above the appropriate response key. As in the case of Experi
ment 11, no single stimulus display was repeated for any one subject. 
Stimulus displays representing each form were randomized over ex
perimental trials in blocks of nine, with three of each type appearing in 
each block. The subjects were run to a criterion of nine successively 
correct responses, but with not more than 54 trials in any one session. 

For the quadrilaterals and pentagons, the guessing probability prior to 
the last error was essentially the same,p = 0.609 and p = 0.600, respectively. 
Consequently, the proportions of correct responses for the combined data 
are presented in blocks of six trials, together with the mean learning curve 
for all trials, in Figure 15. The corresponding data for the triangles are not 
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presented because the initial proportion of correct responses was quite 
high and the subjects 1earned to recognize triangles correct1y very easily. 

Figure 16 presents the same curves for the combined data for the three 
types of ang1es, a1though the guessing probability varied between the 

Fig. 16. Proportion of correct responses prior to last error and mean learning 
curve (acute, right, and obtuse angle concepts, Stoll experiment). 

angles. Both figures strongly support the hypothesis of a constant guessing 
probability prior to conditioning. In the case of the quadri1atera1s and 
pentagons, X2 =0.71, d/=4, P>0.90, N = 548. In the case ofthe combined 
data for the angles, X2 =0.97, d/=4, P>0.90, N=919. 

The Vincent curves for each concept (except that of the triangle) are 
shown in Figure 17. The pentagons, quadrilaterals, and right ang1es have 
quite stationary Vincent curves, whereas there is adefinite increase in the 
fourth quartile ofthe Vincent curves for the acute and obtuse angles, and 
in the case of the obtuse ang1es there is, in fact, a significant increase in 
the third quartile. Statistical tests of stationarity of these Vincent curves 
support the results of visua1 inspection. Bach test has 3 degrees of freedom 
because the analysis is based on the data for the four quartiles. In the case 
of the quadri1atera1s, X2 = 1.75; for the pentagons, X2 = 1.33; for the right 



angles, X2 =O.95; for the obtuse angles, X2 =12.63; and for the acute 
angles, X2 = 16.43. Only the last two values are significant. 

Using responses before the last error, for all concepts except that of 
triangle, goodness-of-fit tests were performed for (I) stationarity in blocks 
of six trials, (2) binomial distribution of responses as correct or incorrect 
in blocks of four trials, and (3) independence of responses, the test made 
for zero-order vs. first-order dependence. The results of these tests are 
presented in Table II. The results shown strongly support the adequacy of 
the one-element model for this experiment. 

Experiment IV. Variation in Method oi Stimulus Display 
In this study conducted with Rose Ginsberg, we compared the rate of 

learning in two experimental situations, one in which stimulus displays 
were presented individually in the usual way, and the other in which the 
same stimulus displays were presented by means of colored slides to 
groups of four children. The concept to be learned was identity of sets, 
and in both situations the children were required to respond by pressing 
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TABLE 11 

Stationarity, order, and binomial distribution results (Stoll experiment 
on geometrie forms) 

X2 dj p> 

Quadrilateral, p = 0.609: 
Stationarity (N = 273) 1.68 4 0.70 
Order (N = 262) 0.65 1 0.40 
Binomial distribution (N = 65) 1.77 2 0.40 

Pentagon, p = 0.600: 
Stationarity (N = 275) 2.40 4 0.60 
Order (N = 269) 1.76 1 0.15 
Binomial distribution (N = 65) 2.07 2 0.35 

Aeute angle, p =0.674: 
Stationarity (N = 338) 7.96 4 0.05 
Order (N = 348) 3.17 1 0.05 
Binomial distribution (N = 85) 2.66 2 0.25 

Right angle, p =0.506: 
Stationarity (N = 313) 6.34 4 0.10 
Order (N = 326) 2.41 1 0.10 
Binomial distribution (N = 80) 10.52 2 0.001* 

Obtuse angle, p =0.721: 
Stationarity (N = 268) 1.10 4 0.85 
Order (N = 256) 7.32 1 0.001* 
Binomial distribution (N = 63) 2.90 2 0.20 

Quadrilateral and pentagon, p = 0.604: 
Stationarity (N = 548) 0.71 4 0.90 
Binomial distribution (N = 130) 1.77 2 0.40 

All angles, p = 0.624: 
Stationarity (N = 919) 0.97 4 0.90 

one of two buttons, depending upon whether the stimulus display on that 
trial was identical or nonidentical. üf the 64 subjects 32 were from first 
grade and 32 from kindergarten classes. For the children receiving 
individual displays the experimental situation was essentially identical 
with that of Experiment 11. 
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Each group, however, was divided into two subgroups. One subgroup 
received the stimulus material in random order, and the other in an order 
based on anticipated difficulty; in particular, presentations of one-element 
sets came first, then two-element sets, and finally three-element sets. 

The mean learning curves for the two subgroups with random presen
tation are shown in Figure 18. The resuIts suggest that presentation by 
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Fig. 18. Proportion of correct responses in blocks of 12 trials, subgroups with 
random presentation (Exp. IV). 

slides is a less effective learning device for younger children, and the 
younger the child, the more this finding seems to apply. At all levels of 
difficuIty, the kindergarten children learned more efficiently when the 
stimuli were presented to them in individual sessions. With one- or two
element sets displayed, grade-I subjects learned only slightly better in the 
individual session situation than in the slide situation, but when the task 
was more difficuIt (stimulus displays of three-element sets) the individual 
learning situation was clearly the most adequate. In interpreting these re
suIts it should be emphasized that the individual session was strictly 
experimental so that the amount of interaction between subject and 
experimenter was paralleled in both individual and slide situations. 
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Why these two experimental situations should produce different results 
in terms of learning efficiency is not yet clear to uso One possibility is the 
following: It has been shown, both with lower organisms (Murphy and 
Miller, 1955) and young children (Murphy and Miller, 1959), that the 
ideal situation for learning is the contiguity of stimulus, response and 
reinforcement. In the individual sessions these requirements were met, 
for the response buttons were 1.5 inches below the stimulus displays and 
the reinforcement lights were 1.0 inches from the stimuli. On the other 
hand, in the slide presentations, although the stimulus displays and 
reinforcements were immediately adjacent to each other, the response 
buttons were about 3 feet from the screen on which the stimulus display 
was projected. Experimentally, it has been shown (Murphy and Miller, 
1959) that with children of this age group aseparation of 6.0 inches is 
sufficient to interfere with efficient learning. 

Experiment V. Incidental Learning 
This experiment represents a joint study with Rose Ginsberg. Thirty

six kindergarten children, in 3 groups of 12 each, were run for 60 trials a 
day on 2 successive days of individual experimental sessions during which 
they were required to learn equipollence of sets. On the first day, the stim
ulus displays presented to the subjects on each trial differed in color 
among the three groups but otherwise were the same. In Group 1, all dis
plays were in one color - black - and in Group 2, equipollent sets were 
red and nonequipollent sets, yellow. For the first 12 trials in Group 3, 
equipollent sets were red and nonequipollent sets, yeIlow; for the re
maining 48 trials on that day the two colors were gradually fused until 
discrimination between them was not possible. On the second day, all sets 
were presented to all three groups in one color - black. 

As is apparent from the brief description of the experimental design, 
Group 1 simply had two days' practice under the same conditions with 
the concept of equipollence. In Group 2, the child did not actually need to 
learn the concept of equipollence but could simply respond to the color 
difference on the first day. It is weIl known that such a color discrimination 
for young children is a simple task. If the child in this group learned any
thing about equipollence of sets the first day, therefore, we may assume it 
to have been a function of incidentallearning. If incidentallearning is ef
fective, his performance on the second day, when the color cue is dropped, 
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should have been at least better than the performance of children in Group 
1 on the first day. In Group 3, where we gave the child the discriminative 
cue of color difference in the first trial and then very slowly withdrew that 
cue, the child should have continued to search the stimulus displays very 
elosely for a color stimulus and thus have been obliged to pay elose 
attention to the stimuli. 

The mean learning curves for the three groups are shown in Figure 19. 
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Fig. 19. Proportion of correct responses in blocks of six trials for both days (Exp. V). 

Of the three groups only Group 2 approached perfect learning on the 
first day. In this group, of course, only color discrimination was necessary. 
Both the other groups did not improve over the first 60 trials, although 
Group 3 showed some initial improvement when the color cues remained 
discriminable. On the second day, Group 1 showed no improvement, and 
the learning curves for this group and Group 2 were practically identical. 
For Group 3, on the other hand, the results were conspicuously better on 
the second day than for those of any other group. It is apparent from 
these curves that the task chosen was re1atively difficult for the age of the 
children, because essentially no improvement was shown by Group lover 
the entire 120 trials. The conditions in Group 3, where the children were 
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forced to pay very close attention to the stimuli, do seem to have sig
nificantly enhanced the learning. 

Experiment TI/. Variation 0/ Response Methods 
This study was made jointly with Rose Ginsberg. Its object was to 

study the behavioral effects of different methods of response. Specifically, 
3 groups, each composed of20 kindergarten children, were taken individ
ually through a sequence of 60 trials on each of 2 successive days for a 
total of 120 trials. The task for all 3 groups was equipollence of sets. 

In Group 1, the child was presented with pictures of two sets of objects 
and was to indicate, by pressing one of two buttons, whether the sets 
"went together" or did not "go together" (were equipollent or non
equipollent). 

In Group 2, the child was presented with one display set and two 
"answer" sets and was required to choose the answer that "went together" 
with the display set. 

In Group 3, the child was presented with one display set and three 
"answer" sets and was to make his choice from-the three possible answers. 

This situation has fairly direct reference to teaching methodology in 
the sense that Group 2 and Group 3 represent multiple-choice possibilities. 
In Group 1, where the child is required to identify either the presence of 
the concept or its absence on each trial, the situation is comparable to one 
in which the child must indicate whether an equation or statement is cor
reet or incorrect. 

On the first day, each group of children learned the task described 
above. On the second day, they were run on an alternative method. 
Specifically, Group 1 was run under Group 3 conditions and Groups 2 
and 3 were run under Group 1 conditions. 

The mean learning curves for all groups on both days are shown in 
Figure 20. It will be noticed that in Group 2, where the subjects were 
required to choose from one of two available responses, they learned 
slightly more quickly and to a slightly better level of achievement on the 
first day than the other groups but, on the second day, when the ex
perimental conditions were shifted, Group 2 subjects did less weIl than 
the subjects in the other two groups. The clear superiority of Group 1 on 
the second day, when they were transferred to Group 3 conditions, 
indicates some positive transfer from learning to judge whether or not a 
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Fig. 20. Proportion of correct responses for two successive days in blocks of six 
trials for all subjects (Exp. VI). 

concept is present to the multiple-choice situation, whereas the results for 
Groups 2 and 3 on the second day iridicate some negative transfer from 
the multiple-response methods to the presence-or-absence method. 
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Fig. 21. Proportion of correct responses for two successive days in blocks of six trials 
for subjects achieving of 12 successive correct responses (Exp. VI). 
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These results are further supported when we examine separately the 
data from subjects achieving a criterion of 12 successive correct responses 
on the first day. The more successful method was clearly that used in 
Group I, as indicated by the curves in Figure 21. The subjects in this 
group were conspicuously more successful than the other groups on the 
second day, making, in fact, no errors from Trial 30 to Trial 60. Group 3 
achieved perfect scores on the second day only on the last six trials, and 
Group 2 never reached that level on the second day, although, like the 
other criterion subjects, they had achieved perfect learning on the first 
day. 

It seems reasonable to conclude tentatively that the method used with 
Group 1, where subjects were required to recognize the presence or ab
sence of some property on each trial, is the more successful method in es
tablishing the understanding of a concept weIl enough to permit transfer 
to a different response method. 

Support for the all-or-none model of conditioning is also to be found in 
this experiment. In Table III, X2 goodness-of-fit tests of stationarity over 

TABLE III 

Test for stationarity over trials before the final error (Exp. VI) 

Group 1 Group 2 Group 3 

Day 1 Day2 Day 1 Day2 Day 1 Day2 

X2 4.97 2.41 10.76 4.255 16.07 2.87 
df 8 1 9 8 9 7 
p> 0.70 0.10 0.20 0.80 0.05 0.80 

trials before the final error for each group on each day are shown. The six 
values are all nonsignificant and thus support the basic assumption of the 
all-or-none models. 

Some Tentative Conclusions 
On the basis of the six experiments just discussed I would like to draw 

some tentative conclusions, some of which are important for pedagogical 
procedures (cf. Suppes and Ginsberg, 1962b). I want to emphasize, how
ever, that I do not wish to claim that the evidence from these experiments 
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is conclusive enough to establish any one of the six conclusions in any 
final way, but what I do hope is that the attempt to summarize some of 
the implications of these experiments will stimulate other research 
workers to investigate these and related propositions in more adequate 
detail. 

(1) Formation of simple mathematical concepts in young children is 
approximately an all-or-none process. Evidence indicates, however, that 
significant deviations from the all-or-none model are present (see the 
discussion of the two-element model below). 

(2) Learning is more efficient if the child who makes an error is re
quired to make an overt correction response in the presence of the 
stimulus to be learned (Exp. I). 

(3) Incidental learning does not appear to be an effective method of 
acquisition for young children. In Experiment IV the group of children 
that responded to a color discrimination did not subsequently give any 
indication of having learned the underlying concepts. 

(4) Contiguity of response, stimulus, and reinforcement enhances 
learning (Exp. V). 

(5) In the learning of related mathematical concepts the amount of 
over-all transfer from the learning of one concept to another is sur
prisingly smalI. However, considerable positive or negative transfer 
between specific subconcepts is often present (Exp. 11). 

(6) Transfer of a concept is more effective if, in the learning situation, 
the subject is required to recognize the presence or absence of a concept 
in a number of stimulus displays, than if learning has involved matching 
from a number of possible responses (Exp. VI). 

Several of these conclusions are at variance with generally accepted 
results for adult learning behavior. For example, the efficacy of an imme
diate overt correction response (see Burke et al., 1954, for negative results 
on this method in adults), the variation of response method, or the relative 
specificity of the learning of concepts with relatively litde transfer. What 
is much needed is a wider range of systematic studies to isolate the factors 
of learning in young children which are particularly distinct from common 
features of adult learning behavior. 

Two-Element Model 
In the first conclusion mentioned above, we stated that the formation of 
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concepts is approximately an all-or-none process in young children. On 
the other hand, the detailed analysis of responses prior to the last error in
dicates that, in many cases, there is an incremental effect appearing in the 
last quartile or even, sometimes, in the last two quartiles of the data. This 
matter is discussed in some detail in Suppes and Ginsberg (1963). I would 
simply like briefly to mention here what currently appears to be the best 
extension of the one-element model to account for these results. 

The simplest alternative model is the linear incremental model with a 
single operator. The intuitive idea of this model is precisely the opposite 
of the all-or-none conditioning model. The supposition is that learning 
proceeds on an incremental basis. Let qn be the prob ability of an error on 
trial n. Then the model is formulated by the following recursive equation: 

(1) qn+l = (1 - 0) qn' 

where 0< 0 ~ 1. It is simple to show but somewhat surprising that this 
purely incremental model has precisely the same mean learning curve as 
the all-or-none model ifwe set c= O. (To obtain thisidentity ofthelearning 
curves we must, of course, consider all responses and not simply responses 
prior to the last error.) The incremental model differs sharply from the 
all-or-none model in the kind of learning curve predicted for responses 
prior to the last error, as is evident from Equation (1). It may be shown, 
moreover, that the concave upward Vincent curves obtained in several 
of the experiments discussed above (see Figures 3 and 17) cannot be 
accounted for by the linear incremental models. 

The second simple alternative that will account for these concave
upward Vincent curves is a model that represents a kind of compromise 
between the all-or-none model and the incremental model. It results from 
a simple extension of the one-element model, that is, the assumption that 
associated with each situation are two stimulus elements and, therefore, 
learning proceeds in two stages of all-or-none conditioning. Each ofthe two 
elements is conditioned on an all-or-none basis, but the two parameters of 
conditioning, one for each element, may be adjusted to produce various 
incremental effects on the response probabilities. Let 0' and 't" be the two 
elements. The basic learning process may be represented by the following 
four-state Markov process in which the four states (0', 't"), 0', 't", and 0 
represent the possible states of conditioning of the two stimulus elements. 
Because we do not attempt experimentally to identify the stimuli 0' and 't", 
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(0', 't') 0' 't' 0 

(0', 't') 1 0 0 0 
0' b'/2 I-b'/2 0 0 
't' b'/2 0 I-b'/2 0 
0 0 a/2 a/2 l-a 

this Markov process may be collapsed into a three-state process, in whieh 
the states are simply the number of stimuli eonditioned to the correet 
response. In the matrix shown above a is the probability of conditioning 
at the first stage and b' is the probability of eonditioning at the seeond 
stage. The division by t in the matrix simply represents the equal prob
ability of sampling one of the two elements. If we consider only the 
number of stimuli, it is eonvenient to replace b' /2 by band we obtain the 
transition matrix shown below: 

2 
1 
o 

2 

1 
b 
o 

1 

o 
I-b 

a 

o 
o 
o 

l-a 

To eomplete the deseription of the process we associate with the sampling 
of each element 0' and 't' a guessing probability U" and U, when the elements 
are stilI unconditioned. For the states 0 and 1 ofthe second matrix shown 
we then have the guessing probabilities Uo and Ul defined in the obvious 
manner in terms of the sampling probabilities: 

Uo = -!-U" + -!-U" 
Ul = tu" + tu, + -!- = -!-Uo + t· 

The probabilities U" and U, are not observable but UO is, and Ul is a simple 
function of it. This means that we now have a process with three free 
parameters, the conditioning parameters a and band the guessing 
probability Uo. I shall not attempt to report on the detailed application of 
this two-element model, but we are now in the process of applying it to a 
number of different experimental situations and hope to report in detail 
on its empirical validity in the near future. 2t I would, however, Iike to 
remark that a very interesting interpretation of this kind of two-stage 
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model has recently been given by Restle (1964), who interprets the two 
stages of learning as conditioning and discrimination. The model he 
proposes differs in detail from that given here, but for most observable 
response patterns the differences between the two will not be large. 

Before turning to another topic, I would like to emphasize that I do not 
feel that the analysis of concept formation in terms of the simple one- and 
two-element models sketched here is fully satisfactory intellectually. It is 
apparent that these models must be regarded as schemata of the full pro
cess that is taking place in concept formation. What is surprising is that 
they are able to account for response data as weIl as they do. Theories 
that postulate more details about the learning process in concept for
mation are needed to go beyond the present analysis. This, I take it, will 
be particularly true as we proceed to the analysis of more complicated 
mathematical concepts, whose learning must rest upon the understanding 
of simpler concepts. 

IV. LOGIC AND MATHEMATICAL PROOFS 

Together with several younger associates I have conducted, for several 
years, pedagogical and psychological experiments on the learning of math
ematicallogic with elementary-school children. Before turning to a rela
tively systematic statement of some of our results, I would like to survey 
briefly what we have attempted. 

In the fall of 1956 I brought into my college logic course a selected 
group of sixth, seventh, and eighth graders (they were, in fact, no more 
selected than the Stanford students in the course). Their demonstrated 
ability to master the course and perform at a level only slightly below that 
of the college students was the initial impetus for further work. The next 
important step was the extensive study by Shirley HilI of the reasoning 
abilities of first, second, and third graders. This study was begun in 1959 
and completed as her dissertation in 1961. I shall report brieflyon this be
low. In 1960 Dr. Hill and I wrote a text and taught a pilot group of fifth 
graders a year's course in mathematicallogic. The course was structured 
very similarly to a college logic course except that material was presented 
more explicitly and at a much slower pace. Students were selected on the 
basis of ability and interest (the minimum I.Q. was 110), and again the 
positive results were an impetus to further work. Because of the success of 
this class, the textbook was revised (Suppes and HilI, 1964) and, during 
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the academic year 1962-63, was taught to approximately 300 selected fifth 
graders in the Bay Area, with support for the project coming from the 
Office of Education and the National Science Foundation. These same 
classes were given a second year of instroction as sixth graders and, in 
another year, we shall be able to report in detail on their level of achieve
ment. We were also interested in seeing if we could train fifth-grade 
teachers to teach the course as part of their regular curriculum. To this 
end, we gave them a special course in logic in the summer of 1961 and all 
the classes but one were taught by the teachers. 

We began experimental psychological studies of how and to what de
gree children of still younger ages could learn the concepts of formal in
ference. I shall report brieflyon a pilot study with first graders. On the 
basis of the experience of several of us with the teaching of logic to 
elementary-school children, we conducted an extensive psychological 
experiment with fourth-grade children to determine whether it was easier 
initially to learn roles of sentential inference when the standard inter
pretations were given, or whether it was easier simply to learn the roles as 
part of an uninterpreted meaningless -game. This last possibility was, of 
course, most disturbing for a wide variety of mathematicians interested in 
the teaching of mathematics. I shall not enter here into the many reasons 
why I think there are good psychological arguments to believe that the 
initial teaching of inference simply as a game will turn out to be the most 
effective approach. I am frankly reluctant to formulate any very definite 
ideas about this highly controversial matter until we have accumulated a 
much more substantial body of evidence. 

I turn now to the two experiments mentioned above on which I want 
to report briefly. 

Experiment VII. Logical Abilities 0/ Young Children 
As already remarked, this extensive empirical study constituted ShirIey 

Hill's doctoral dissertation (1961). Dr. Hill gave a test instrument con
sisting of 100 items to 270 children in the age group 6-8 years (first, 
second, and third grades). Each of the 100 items consisted of 2 or 3 verbal 
premises plus a conc1usion presented orally as a question. The subject was 
asked to affirm or deny the conc1usion as presented. There were two 
primary reasons for not asking the children to compose a conc1usion: In 
the first place; children of this age sometimes have difficulty formulating 
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sentences ; this has sometimes been cited as the reason for inappropriate 
measures of their reasoning abilities. The second reason is, simply, the 
methodological difficulty of interpreting the correctness or incorrectness 
of a conclusion given as a free response. The 100 items were equally 
divided between positive and negative answers. The first part of the test 
consisted of 60 items that were drawn from sentential logic. Every 
conclusion or its negation followed from the given premises by the 
sentential theory of inference. The second part consisted of 40 items that 
were drawn from predicate logic, including 13 classical syllogisms. The 
predicate logic items, however, also included inferences using two-place 
predicates together with existential quantifiers. 

Because it is easy for children to give the correct answer to a problem 
in which the conclusion is generally true or false, every attempt was made 
to construct the items in such a way that the omission of one premise 
would make it impossible to draw the correct conclusion. To provide a 
behavioral check on this aspect of the items a base-line group of 50 
subjects was given the test with the first premise of each item omitted. 
For instance, to quote the illustration given- by Dr. HilI (1961, p. 43), 
the original item might read: 

If that boy is John's brother, then he is ten years old. 
That boy is not ten years old. 
Is he John's brother? 

For the base-line group the item would be presented: 

If that boy is not ten years old, is he John's brother? 

An example of a badly constructed item would be the following: 
If boys are stronger than girls, then boys can run faster than 
girls. 
Boys are stronger than girls. 
Can boys run faster than girls? 

Naturally almost a11 children gave the correct answer to this latter item, 
but their behavioral response actually told us little about their intuitive 
grasp of principles of logical inference. That Dr. Hill's items were weIl 
constructed are attested to by the fact that the base-line group averaged 
52.02% correct items, which does not significantly differ from chance. 
(Note that this percentage is based on 5000 subject items.) 

I shall not go into all the facets of Dr. Hill's study here. I mainly want 
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to report on one or two of the most important conclusions. Let me first 
mention the results of the three standard groups of ages 6, 7, and 8 years. 
The 6-year-old group receiving the items described above got 71.18% of 
the items correct. The 7-year-old group got 79.54% of the items correct, 
and the 8-year-old group got 85.58% correct. These percentage figures 
indicate a steady increase with age in the ability to draw correct logical 
inferences from hypothetical premises. In addition to the fact of in
crease, it is just as important to note that the 6-year-old children performed 
at quite a high level, in contradiction to the view of Piaget and his 
followers that such young children are limited to concrete operations. 
Dr. Hill's study certainly provides substantial evidence to the contrary. 

To avoid any possible confusion, it should be borne in mind that no 
claim is made that this study shows young children to be able explicitly to 
state formal principles of inference. What is claimed is that their grasp of 
the structure of ordinary language is sufficiently deep for them to be able 
to make use of standard principles of inference with considerable accuracy. 

I would like to present just two other results of Dr. Hill's study. To 
avoid the conjecture that children aged six may be able to do the simpler 
forms of inference quite weIl, but will do badlyon the more difficult 
inferences involving two-place predicates, the percentage of correct 
responses for each age group on the 10 types of inferences appearing in 
the 100-item test are shown in Table IV. The last two categories entitled 

TABLE IV 

Percentage of correct responses for different principles of inference by age level 

Principles of Inference 

Modus ponendo ponens 
Modus tollendo ponens 
Modus tollendo tollens 
Law of hypothetical syllogism 
Hypothetical syllogism and tollendo tollens 
Tollendo tollens and tollendo ponens 
Ponendo ponens and tollendo tollens 
Classical syllogism 
Quantificationallogic - universal quantifiers 
Quantificationallögic - existential quantifiers 

Percentage of 
correct responses 

Age6 

78 
82 
74 
78 
76 
65 
65 
66 
69 
64 

Age7 Age 8 

89 92 
84 90 
79 84 
86 88 
79 85 
77 81 
67 76 
75 86 
81 84 
79 88 
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'Quantificational Logic - Universal Quantifiers' and 'Quantificational 
Logic - Existential Quantifiers' refer to inferences that do not fall within 
the scheme of the classical syllogism. Although these last two categories 
are more difficult than the simplest modus ponendo ponens applications, 
the performance level of the children aged six is still well above chance, 
and it is interesting to note that the performance on universal quantifiers is 
actually slightly better than the performance on sentential inferences using 
both ponendo ponens and tollendo ponens. 

The second result concerns the attempt to identify some of the more 
obvious sources of difficulty. The lack of a sharply defined gradient in 
Table IV suggested further examination of individual items. What turned 
out to be a major source of difficulty was the inclusion of an additional 
negation in an inference. Two hypothetical items that illustrate this differ
ence are the following: Consider first as a case of modus ponendo ponens: 

If this is Room 7, then it is a first-grade room. 
This is Room 7. 
Is it a first-grade room? 

Let us now modify this example, still making it an application of modus 
ponendo ponens: 

If this is not Room 8, then it is not a first-grade room. 
This is not Room 8. 
Is it a first-grade room? 

The additional negations in the second item are a source of considerable 
difficulty to the children. It might be thought that the negations simply 

TABLE V 

Comparison of increase in error associated with the addition of negation and with 
compound implications 

Percentage of error out of total possible responses 

Regular 
Principles of inference form 

Modus ponendo ponens 0.06 
Modus tollendo tollens 0.12 
Modus tollendo ponens 0.03 
Modus tollendo tollens 0.12 
Law of hypothetical syllogism 0.08 
Modus tollendo tollens 0.12 

Additional 
negation 

0.19 
0.34 
0.25 
0.34 
0.22 
0.34 

Combined 
implication 

0.17 

0.27 

0.16 
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cause difficulty because they represent an increase in general complexity. 
To examine this question Dr. Hill compared the cases using a single rule 
of inference in which negations occurred, with the use of combined im
plications involving more than one rule of inference. The results are 
shown in Table V. It is clear from this table that an additional negation 
adds a greater factor of difficulty than the use of more than one principle 
of inference. 

I have only presented here a few of the results of this important study. 
A complete statement of the results are included in Hill (1961). 

Experiment VIII. Pilot Study of Mathematical Proofs 
The details of this pilot study are in 8uppes (1965a). st The original study 

was conducted with the assistance of John M. Vickers, and we are now 
engaged in a larger study along the same lines. The primary objective 
of this pilot study was to determine if it is feasible to apply the one
element model, described earlier, to the behavior of young children by 
constructing proofs in the trivial mathematical system, described as 
follows: Any finite string of 1 's is a well-formed formula of the system. 
The single axiom is the single symbol 1. The four rules of inference are: 

R1. 8-+811 
R2. 8-+800 
R3. 81-+8 
R4. 80-+8 

where S is a nonempty string. A theorem of the system is, of course, 
either the axiom or a finite string that may be obtained from the axiom by 
a finite number of applications of the rules of inference. A general 
characterization of all theorems is immediate: any finite string is a 
theorem if and on1y if it begins with 1. A typical theorem in the system is 
the following one, which I have chosen because it uses all four rules of 
inference: 

Theorem 101 
(1) 1 Axiom 
(2) 100 R2 
(3) 10 R4 
(4) 1011 R1 
(5) 101 R3. 
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The proofs of minimallength in this system are easily found, and the cor
rection procedure was always in terms of a proof of minimallength. 

The stimulus discrimination facing the subject on each trial is simply 
described. He must compare the last line of proof in front of him with the 
theorem to be proved. This comparison immediately leads to a classi
fication of each last line of proof into one of four categories: additional 
l's need to be added to master the theorem (Rl); additional O's need to be 
added to master the theorem (R2); a 1 must be deleted to continue to 
master the theorem (R3); or a 0 must be deleted in order to master the 
theorem (R4). The rule in terms of whether the response should be made 
is shown in parentheses. When the subject is completely conditioned to 
all four stimulus discriminations, he will make a correct response corre
sponding to the application of a rule that will produce apart of a proof of 
minimallength. For each ofthe four discriminations with respect to which 
he is not yet conditioned, there is a guessing probability Pi' i= 1,2,3, or 4, 
that he will guess the correct rule and thus the probability I-PI that he 
will guess incorrect1y. In the analysis of data it was assumed that four 
independent one-element models were applied, one for each stimulus 
discrimination. (It is a minor but not serious complication to take account 
of two possible responses, both correct, i.e., leading to a minimal proof; 
e.g., in the proof of 1111 we may apply R1 twice and then R3, or R1, R3, 
and then R1 again.) 

The pilot study was conducted with a group of first-grade children 
from an elementary school near Stanford University. There were 18 
subjects in all, divided into 2 groups of 9 each. One group received the 
procedure just described, including a correction procedure in terms of 
which a correct response was always shown at the end of the trial. The 
other group used a discovery method of sorts and was not given a 
correction procedure on each trial but, at the end of each proof, the 
subjects were shown a minimal proof or, in the event the subject con
structed a·minimal proof, told that the proof constructed was correct. 

The following criterion rule was used: A subject, according to the cri
terion, had learned how to give minimal proofs in the system when 4 
correct theorems were proved in succession, provided the subject had 
proved at least 10 theorems. All subjects were given a maximum of 17 
theorems to prove, and all subjects, except for 2 in the discovery group, 
satisfied this criterion by the time the seventeenth theorem was reached. 
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The 17 theorems were selected according to some relatively definite 
criteria of structural simplicity from the set of theorems of which the 
length was greater than 1 and less than 7. 

In Table VI, the mean proportion of errors prior to the last error, in 

TABLE VI 
Observed proportion of errors prior to last error for the correction, 

discovery, and combined groups (blocks of 12 trials) 

Block 

Group 1 2 3 4 5 

Correction 0.28 0.23 0.15 0.00 0.10 
Discovery 0.23 0.20 0.40 0.30 0.33 
Combined 0.25 0.21 0.30 0.18 0.24 

blocks of 12 trials for each group and for the 2 groups combined, are sum
marized. A trial in this instance is defined as a step, or line, in the proof. 

More than 60 trials were necessary in order to prove the 17 theorems, 
but because very few subjects needed the entire 17 theorems to reach cri
terion, the mean learning curves were terminated at Trial 60. From this 
table, it seems that the correction group did better than the discovery 
group, but I do not think the number of subjects or the total number of 
trials was adequate to draw any serious conclusions about comparison of 
the two methods. It is interesting to note that the discovery group had a 
much more stationary mean learning curve than did the correction group, 
and in that sense satisfied the one-element model. Of course, these curves 
are obtained by summing over errors on all four rules. It is very possible 
that with a larger set of data, for which it would be feasible to separate 
out the individual rules as the application of the one-element model de
scribed above would require, the correction group also would have 
stationary mean learning curves for data prior to the last error on the 
basis of the individual rules. 

NOTES 

1 'Group la' refers to the performance of Group 1 subjects on the first of their two 
tasks, 1 b to performance on the second task, and similarly for 2a, 2b, 3a, 3b, 4a, and 4b. 
2t Por extensive applications, see Crothers and Suppes (1967). 
3t Article 20 in this volume. 



20. TOWARDS A BEHAVIORAL FOUNDATION 

OF MATHEMATICAL PROOFS* 

I. INTRODUCTION 

The logical theory of mathematical proofs has been developed intensively 
and with great success in this century. I do not need to review for a collo
quium audience in Warsaw the main outlines of this development. What 
is surprising is that so little has been written about the psychological theory 
of mathematical proofs. However interesting they may be as literary doc
uments, I am not willing to count as scientific psychology mathematicians' 
testimonials of how they made discoveries. It is not that this material is 
not interesting. It is just that it holds very little promise scientifically. The 
psychological phenomena which lie at the base of any genuinely new 
mathematical discovery are surely as complicated and intellectually 
involved as any in the whole range of human behavior. Introspective 
accounts of these phenomena are as diflicult to work with as basic data, 
as are the descriptions of nature lovers of sunsets and storms in developing 
the science of meteorology. 

Perhaps to the disappointment of some of you I shall approach the 
problem of providing a psychological analysis of mathematical proofs by 
considering examples of an almost ridiculous simplicity. The analysis 
shall proceed on the assumption that it is possible for sufliciently simple 
contexts to analyze written and spoken speech acts within the general 
framework of behavioral psychology (what I shall mean by 'behavioral 
psychology' will become clearer in the sequel). As an act of faith I would 
also express the conviction that a still further reduction of behavioral 
psychology to neurophysiology will ultimately be possible, but I am not 
hopeful that this reduction will occur in the near future, particularly 
with reference to complicated intellectual processes. 

As W. K. Estes wisely pointed out in the original discussion of this paper 

• Reprinted from The Foundations 0/ Statements and Decisions: Proceedings 0/ the 
International Colloquium on Methodology 0/ Science, September 18-23, 1961 (ed. by 
K. Ajdukiewicz), PWN-Polish Scientific Publishers, Warszawa, 1965, pp. 327-341. 
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in Warsaw, I also do not believe that a detailed explanation in behavioral 
terms of the genuine discoveries of mathematicians can be given in the 
framework I am describing here. The aims of the psychological theory 
I shall set forth are schematic in the same way that physical theories are 
schematic. There are only a few phenomena caught in the raw, so to speak, 
in nature that are subject to any exact explanation and prediction of be
havior in terms of existing physical theories, and we all have a good rough 
estimate of the relative power of physical and psychological theories. On 
the other hand, I do believe that the kind of theory and analysis I shall 
be giving of the simplest elements of the learning of mathematical proofs 
do provide the right sort of framework for the analysis of the most compli
cated mathematical activity. A phrase I used in this last sentence also pro
vides an important indication of what I wish to mean by a behavioral 
foundation of mathematical proofs. I do not, it should be clear, mean a 
behavioral foundation for the written or inscribed proofs themselves, but 
rather, for the act of learning to give such proofs on the part of students 
of mathematics. In this sense, a behavioral foundation emphasizes the 
learning or discovery of proofs. 

I will return to these general comments after giving a brief sketch of 
the relevant psychological theory and an indication of how it may be 
applied to a simple mathematical system. 

H. BRIEF SKETCH OF STIMULUS-SAMPLING THEORY 

Stimulus-sampling learning theory was first given a quantitative formula
tion in 1950 by W. K. Estes, but its basic concepts were developed by a 
number of psychologists running back to the beginning of the century; 
particularly important have been the general contributions of such 
figures as Pavlov, Watson, Hull, and Guthrie. The great merit of Estes is 
to have shown how these ideas may be cast in a quantitative formulation 
subject to genuine mathematical analysis. In a highly simplified form the 
basic ideas run as folIows. The organism is presented with a sequence of 
trials, on each of which he makes a response that is one of several possible 
choices. In any particular experiment it is assumed that there is a set of 
stimuli from which the organism draws a sampIe at the beginning of each 
trial. It is also assumed that on each trial each stimulus is conditioned to 
at most one response. The probability of making a given response on any 
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trial is postulated to be simply the proportion of sampled stimuli con
ditioned to that response, unless there are no conditioned stimuli in the 
sampie, in which case, there is a 'guessing' probability for each response. 
Learning takes place in the following way. At the end of a trial a rein
forcing event occurs which identifies that one of the possible responses 
which was correct. With some fixed probability the sampled stimuli 
become conditioned to this response, if they are not already, and the 
organism begins another trial in a new state of conditioning. The sequence 
of events occurring on a given trial may be illustrated by the following 
diagram. 

State of Stimuli Response Reinforcement 
Conditioning -+ Sampled -+ Made -+ Occurs -+ 

Reconditioning 
of Sampled -+ 

Stimuli 

New State 
of 

Conditioning 

Note that the trial begins with a certain kind of conditioning and ends 
with a new state of conditioning. This change of conditioning is the kernel 
of the learning process.1 

To illustrate how a quantitative theory may be developed with these 
ideas we shall consider what is perhaps the simplest possible version. We 
assume that there is exactly one stimulus element and that this element 
is sampled on every trial by the subject. In the scheme sketched above, 
this reduces to triviality the sampling process. Secondly, onee the single 
element is conditioned the response is known whenever the conditioning 
of that single element is known. A mathematical model that arises from 
this simple one-element assumption can be described in the following way. 
On every trial the subject - the learner in the experiment - is in one of two 
states. Either the single element is conditioned (state C) to the correct 
response or it is unconditioned (state U). In the simplest applications we 
wish to consider, which are also the ones pertinent to our subsequent 
discussion of mathematical proofs, we also assume that of the two re
sponses available exact1y one is always correct. (The restrietion to two 
responses is not essential. What is needed is that the correct response in a 
given situation is weIl defined. We may classify the other responses 
simply as incorrect.) We then formulate the mathematical background of 
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the model in such a way that the subject's behavior forms a Markov 
process in these two states with the transition matrix indicated below. 

c 
C 11 
U c 

u 
o 

1-c 

The meaning of this matrix is exceedingly simple. When the subject is in 
the unconditioned state, on each trial there is a probability c that he will 
move to the conditioned state. Once he becomes conditioned he remains 
so, as indicated by the probability 1. Secondly, we postulate that the 
subject guesses the correct response with probability p when he is in the 
unconditioned state, and responds correctly with probability 1 when he is 
in the conditioned state. In spite of the simplicity of this model, it is 
interesting to note that the two states of conditioning, that is, being 
conditioned or being unconditioned, are not themselves directly observ
able. In this sense even this simplest formulation of the theory already 
has a non-trivial theoretical component. 

It will be instructive to consider two simple applications of this one
element model to experiments. I first consider a typical paired-associate 
experiment. The subject is shown a succession of nonsense syllables on 
printed cards; each nonsense syllable constitutes a stimulus, and on each 
trial he sees exactly one stimulus. What the subject must learn to do is to 
make an appropriate response when a stimulus is shown. Typically, he 
might be asked to respond with one of the numerals 1, 2, 3, or 4. Given 
a list of twenty nonsense syllabIes, the experimenter would arbitrarily 
assign five of them to each of the four numerals. On the first trial the 
subject is in the unconditioned state; if the experiment had been weIl 
designed, the probability p of guessing the correct answer should be 
0.25. There is considerable evidence (Bower, 1961; Estes, 1960) to show 
that when the subject does make a firm association between a nonsense 
syllable and the correct response, he makes this association on an aIl-or
none basis and retains it throughout the experiment. The probability c 
of moving from the unconditioned state may be estimated from the 
experimental data. 

The paired-associate experiment provides a paradigm of the stimulus
response conditioning connection, but it is not necessary for application 
of this model that the conditioning connection be conceived as holding 
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between a particular stimulus display and a given response. We have also 
applied tbis model extensively to concept formation in cbildren (Suppes 
and Ginsberg, 1961, 1962a). Here I shall describe briefly an experiment 
concerned with the concept of identity of sets. The subjects were 48 
children offirst-grade age (6 or 7 years). On each trial the cbild's task was 
to indicate whether two sets were identical or not. There were a total of 
56 trials on 28 of wbich the stimulus display showed identical sets and the 
remaining 28 nonidentical sets. The subjects were instructed to press one 
of two buttons when the stimulus pairs presented were 'the same' and the 
other button when they were 'not the same'. In tbis experiment no 
stimulus display on any trial was repeated for individual subjects. In this 
case the conditioning connection may be postulated as holding at different 
levels of abstraction. To begin with, we may assume there is a single 
concept of identity of sets, and the child is learning to establish the 
appropriate connection between tbis concept and the two responses. Until 
this connection is established he is guessing the correct answer with 
probability p, and after it is made he makes the correct response with 
probability 1. 

The next natural level of analysis is in terms of two concepts, one for 
the pairs of sets that are identical and one for the pairs of sets that are not 
identical. The one-element model may then be applied to the subsequences 
oftrials on wbichidentical sets are displayed and again to the complemen
tary subsequences of trials on wbich nonidentical sets are displayed. As 
the model has been formulated above and as applied to paired-associate 
data, it is assumed that the probabilities of conditioning are statistically 
independent for the two subsequences. For the analysis of any concept 
formation experiment in terms of more than one concept, it is necessary 
directIy to test this assumption of statistical independence against the 
data. 

At a still more refined level, we may analyze the stimulus displays in 
terms of pairs of sets that are identical in the sense of ordered sets, pairs 
of sets that are identical but not in the sense of ordered sets, pairs of sets 
that are not identical but equipollent, and pairs of sets that are not equi
pollent. In tbis case, we consider four concepts rather than one or two. 

n is not the purpose of this paper to evaluate the empirical adequacy 
of any of the alternative ways of analyzing an experiment on identity of 
sets. n is worth emphasizing, however, that there is no direct way of build-
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ing from the individual stimulus displays to these various concepts by 
simple stimulus connections when no stimulus display is repeated for an 
individual subject. Admittedly, it is not fully satisfactory intellectually to 
analyze the learning of concepts simply in terms of a conditioning connec
tion between the concept and the correct response. Theories which 
postulate more details ab out the learning process in concept formation 
are needed to go beyond the present analysis. There are two things to be 
said about such theories at the present time. In the first place, there seems 
little doubt but that a good first approximation to the data may be 
obtained in terms oftheories formulated in terms ofnotions ofhypothesis 
and strategies (compare the discussion in Suppes and Atkinson, 1960, 
Sec. 1.7; Restle, 1961). On the other hand, at the moment, these theories 
have little more to offer than the simple one-element model in terms of 
detailed analysis of actua1 experimental data. 

It is also not appropriate here to consider in detail statistical methods 
of analyzing the goodness of fit of the simple one-element model to ex
perimental data. However, in order to sketch briefly some results for a 
pilot experiment at the end of this paper, I recapitulate briefly the ideas 
set forth in Suppes and Ginsberg (1961). There are just two basic ideas 
needed for essentially complete statistical analysis of the one-element all
or-none conditioning model. In the first place, the assumption that there 
is a constant guessing probability p that the subject responds correct1y 
before he is conditioned implies that the sequence of responses prior to 
the last error of the subject is a sequence of Bernoulli trials with binomial 
distribution parameter p. Classical statistical tests for stationarity of the 
response probability, independence from trial to trial, and the actual 
binomial distribution of responses in blocks of fixed size may be applied 
to the data considered in terms of responses made prior to the last error. 
The conditioning parameter c, on the other hand, enters only in terms of 
the distribution of the last error. Across a group of subjects this last error 
may be estimated from the essentially geometric distribution of the last 
error as derived from the theory formulated above. A standard goodness
of-fit test may then be performed to seeifthe assumption of a homogeneous 
conditioning parameter for all subjects in a given experiment is acceptable. 

Before turning to the specific context of mathematical proofs, there is 
one further remark ab out applications of the one-element all-or-none 
conditioning model which is needed. This is the application to simple 
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discrimination experiments. Essentially a discrimination experiment is 
one in which the subject needs to learn to discriminate between two or 
more stimuli and make the appropriate response to each. It is possible to 
think of a paired-associate experiment as such a discrimination ex
periment. On the other hand, because the discrimination itself is not 
difficult, it is not ordinarily described as such. However, in many cases, 
the problem of discrimination is one of discriminating between two 
stimuli that are highly similar in their perceptual characteristics. When it 
is assumed that the similarity is negligible, or in more technical terms, 
that there are no common stimuli between the two stimulus displays, the 
one-element model may be applied to the discrimination experiment in 
the same way that we have applied it above to a paired-associate ex
periment. For instance, suppose the subject is a rat in a T-maze. At the 
choice point of the T-maze a white card is placed on some trials, and on 
other trials, a black card. The animal must learn to turn left in order to 
receive food when the card is white, and to turn right when it is black. 
We may analyze such an experiment exact1y in the manner indicated for 
paired-associate situations. The ideas of discrimination to be mentioned 
below will implicitly assurne the simple context in which there is no 
problem of stimulus overlap. 

111. AN UTTERLY TRIVIAL MATHEMATICAL SYSTEM 

The simple mathematical system we shall analyze in terms of the be
havioral ideas just discussed is concerned with production of finite strings 
of l's and O's. Any finite string of l's and O's is a well-formed formula of 
the system. The single axiom is the single symbol 1. The four rules of 
inference are: 

RI. S-+Sl1 
R2. S-+SOO 
R3. SI-+S 
R4. SO-+S, 

where S is a nonempty string. A theorem of the system is, of course, either 
the axiom or a finite string that may be obtained from the axiom by a 
finite number of applications of the rules of inference. A general character
ization of all theorems is immediate: any finite string is a theorem if and 
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only if it begins with 1. A typical theorem in the system is the following 
one, which I have chosen because it uses all four rules of inference. 

Theorem 101 
(1) 1 Axiom 
(2) 100 R2. 
(3) 10 R4. 
(4) 1011 Rl. 
(5) 101 R3. 

It is apparent that a shorter proof of this theorem could not be given, 
and this is generally true of this system. A proof of minimallength of any 
theorem is easily found, but it is not the case that there is exactly one 
proof of minimallength. For instance, if we want to prove the theorem 
111 we may apply rule Rl twice to obtain 1111 and then remove the last 1 
by applying R3; or we may interchange the position of the application of 
R3 and prove the theorem by first using RI then R3 and then RI again. 
Counting the introduction of the axiom as one line, the two proofs are 
both of length four in terms of number of steps. (I have not fully for
maHzed the system here by giving a recursive definition of proof, etc., 
because it is completely obvious how these matters go for a system of this 
kind; I want to give only enough formal detail to make the mathematical 
system definite.) 

For simple reference in the behavorial analysis to follow let us call 
this mathematical system, the system U. 

IV. BEHAVIORAL ANALYSIS OF PROOFS IN THE SYSTEM 

Initially, it will be simplest to ignore the possibility of more than one 
proof of minimallength and consider only an analysis that will always yield 
exactly one proof of minimallength. The stimulus discrimination facing 
the subject on each trial is simply described. He must compare the last 
line of proof in front of him with the theorem to be proved. This com
parison immediately leads to a classification of each last line of a proof 
into one of four categories: additional 1 's need to be added to match the 
theorem (Rl); additional O's need to be added to match the theorem 
(R2); a 1 must be deleted to continue to match the theorem (R3); or, 
finally, a 0 must be deleted in order to match the theorem (R4). The rule 
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that should be applied once the stimulus comparison has been made is 
indicated in parentheses. When the subject is completely conditioned to 
all four stimulus discrimination situations, he will make the response 
corresponding to applying that rule. For each of the four discriminations 
with respect to which he is not yet conditioned, there is a guessing prob
ability Pb i= 1, 2, 3, or 4, that he will guess the correct rule and thus a 
probability I-Pi that he will guess incorrectly. Also, when the subject is 
unconditioned, for any one of the discrimination comparisons there is a 
probability Ci that he will become conditioned on the next trial. On the 
assumption of statistical independence made earlier, we may then analyze 
separately the four subsequences of trials on which the four stimulus 
discrimination categories appear. It is to be emphasized again that the 
four guessing parameters Pi and the four conditioning parameters Ci are 
to be estimated from the experimental data. 

The example given in the preceding section of two proofs of minimal 
length shows that the analysis just stated represents a slight oversimpli
fication. For example, if exactly one 1 is needed and two 1 's are at the end 
of the string standing as the last line of proof, it will be just as efficient 
first to apply R3 and then Rl as to apply Rl and then R3. It does not 
require serious modification of the behavioral analysis of the system U 
to take account of this fact. Reinforcement can be given randomly of 
either of the rules that are correct in terms of rendering a minimal proof 
and either one of these responses can be counted as correct when made. 
This leaves the analysis in terms of the two states of conditioning un
touched. It does change the relation between the state of conditioning and 
the probability of a response. The weaker requirement for this discrimi
nation is that the probability of making one of the two correct responses is 
1. We could, if we so desired, analyze the system U in such a way that 
there were more than four discriminating situations in order to take 
account of the cases in which more than one response was correct. For 
an extensive experiment this would be desirable. In terms of the pilot 
study to which I would now like to turn, it is not necessary. 

The pilot study was conducted with a group offirst-grade children (ages 
6 and 7) in an elementary school near Stanford University. Initially, we 
considered doing the experiment with fourth-grade children (ages 9 and 
10), but preliminary testing with a few children ofthis age indicated that 
the experimental problem was far too easy for them; most ofthe fourth-
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grade children made no errors at all. There is a variety of evidence to 
indicate that the reasoning abilities of young children are far superior to 
their ability to put an argument in written form (see e.g., Hill, 1961). For 
this reason we attempted to avoid entirely a written context for the 
exhibiting of proofs in the system U. Our procedure was the following. 2 

We considered only theorems which are of length greater than one and 
less than seven. There are 62 members of this dass of theorems. We 
ordered their proofs according to the following four criteria of simplicity. 

(1) Ifproof P1 maybe obtainedfromproof P2 byinterchanging l's and 
O's in allIines, then P1 and P2 are of equal simplicity. 

(2) If m < n then a proof of length m is simpler than a proof of length n. 
(3) If P1 and P2 are minimal proofs of the same length, P1 is one of 

several alternative minimal proofs and P2 is a unique minimal proof, 
then P1 is simpler than P2 • 

(4) If P2 is not simpler than P1 by virtue of Criteria 2 or 3 and P1 uses 
a smaller number of different rules of inference than does P2 , then P1 is 
simpler than P2 • 

These four criteria arrange the 62 members into 17 equivalence dasses 
of increasing complexity. Within an equivalence dass the theorems were 
randomized and each subject was presented with a sequence of 17 
theorems, as determined by random selection from each of the classes. 

The four criteria of simplicity are not necessarily the only ones or even 
the best ones with which to begin. They did provide jointly a workable 
basis for arranging the theorems of length not greater than six. 

The apparatus consisted of a plywood board, approximately 20 in. by 
6 in., placed horizontally. The top half of the board was slotted for 
insertion of cards 20 in. by 2t in. Theorems were written on these large 
cards. The bottom half of the board had hooks at 2! in. intervals to 
permit hanging 2 in. by 2t in. cards on which were printed either a 0 or a 
1. Bach theorem was written on one of the large cards in such a way that 
it could be matched directly below it by hanging the appropriate small 
cards on the hooks. 

Subjects were instructed as follows: 

This is astring of zeros and ones. Whenever I put astring of zeros and ones up here 
you are to put astring just like it down here. Every string that I shall put up begins 
with a one, and so we'llleave these ones in the first places. 

Now of course if you could hang zeros and ones on the board any way you wanted, 
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the game would be terribly easy. Why don't you try that now: Make astring of zeros 
and ones just like this one underneath it. 

That's right. Now that was too easy to be much fun, wasn't it? In the game we are 
going to play now there are some rules about the ways in which you may make strings. 
These are the rules: 

First, you may put two zeros on the end of astring you have made, but you may not 
put one zero by itself on the end. With ones it's the same way: you may put two ones on 
the end, but you may not put one one by itself on the end. 

If you wish though, you may take the last card off the end of a string, whether it's 
a one or a zero, and put it back in its box, but you may only remove the last card, none 
of the others. 

So the rules are: You may add two zeros to the end of astring, add two ones to the 
end of astring, take a zero off the end of a string, or take a one off the end of astring, 
except that you may not take away this first one (practice). Now would you teIl me the 
rules, just to make sure you understand them? 

Now each time you put cards on or take a card away, I want you to tell me what 
you're doing; what rule it is that you're following. That is, say, "I'm adding two zeros", 
or "I'm adding two ones", or "I'm taking off the last zero", or ''I'm taking off the last 
one". 

Subjects were divided into two groups. Subjects in the correction group 
were corrected for each wrong step in each proof. Subjects in the other 
group (the discovery group) were stopped only when a valid proof was 
not completed in three times the length of a minimal proof. At the end 
of each proof, subjects in the discovery group were shown a minimal 
proof or - in the event that the subject constructed a minimal proof - told 
that the proof constructed was correct. For theorems which have several 
alternative proofs, we considered either proof correct and when dem
onstrating a minimal proof selected randomly. 

Subjects made correction responses overtly, that is, in the correction 
group they removed the eards themselves and put up correct cards (or 
took down the correct cards) as instructed. In the discovery group they 
executed a minimal proof following instructions. 

Actually not all subjects were required to prove 17 theorems. The 
following criterion rule was used. We considered that a subject had 
learned how to give minimal proofs in the system when four correct 
theorems were proved in succession. However, it was required that each 
subject prove at least ten theorems. All subjects, except for two in the 
discovery group, satisfied this criterion by the time the seventeenth 
theorem was reached. (It should be noted, however, that the nine subjects 
in each group represent a net figure; approximately this same number of 
subjects were discarded because ofvarious kinds ofproblems that arose: 
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seeming failure to comprehend the instructions at all, lack of attention 
after the first few theorems, etc.) 

Because there were only nine subjects in each group the empirical data 
are not to be taken seriously and no detailed statistical analysis shall be 
presented here. I have summarized in Table I below the mean proportion 

TABLE I 

Observed proportion of errors prior to last error for the correction, discovery and 
combined groups. Blocks of 12 trials 

Block 

Group 1 2 3 4 5 

Correction .28 .23 .15 .00 .10 
Discovery .23 .20 .40 .30 .33 
Combined .25 .21 .30 .18 .24 

of errors prior to the last error in blocks of twelve trials for each group 
and for the two groups combined. A trial in this instance is defined as a 
step in a proof and not as an entire proof. There were more than sixty 
trials, that is, more than a total of sixty lines of proof in the seventeen 
theorems, but because very few subjects needed the entire seventeen 
theorems to reach criterion, it has been necessary to terminate the mean 
curves with the last block ending on trial 60. Several things are to be noted 
about the data in Table r. In the first place, the correction group seems to 
have done better than the discovery group, which result is consistent with 
experiments of a similar character dealing with the effects of immediate 
reinforcement. Secondly, the discovery group is more or less stationary 
(i.e., the learning curve in terms of responses prior to the last error is 
approximately flat). If anything, there is a tendency for the proportion of 
errors to increase with trials, whereas the correction group is clearly not 
stationary, and there is adefinite tendency for the proportion of errors to 
decrease with trials. When the two groups are combined, an approximately 
stationary learning curve is obtained. The problem for future investigation 
is to discover which of these effects will be observed in larger and more 
stable bodies of data. In interpreting Table I it should be emphasized 
again that these figures are based on responses prior to the last error. 
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Naturally, if the fuH set of data were considered, the learning curves 
would approach 1 at trial 60. It is also important to emphasize that the 
data of Table I are based on considering only a single sequence of trials. 
There is no analysis of the data into the separate subsequences defined by 
the various stimulus comparisons. This lumping together of the four sets 
of stimulus discrimination situations could in itself account for the lack 
of stationarity for the correction group, because responses were not 
deleted from consideration after the appropriate rule became conditioned 
to the stimulus discrimination. The rule for considering responses prior 
to the last error was invoked only for the whole sequence and not for the 
subsequences. 

There was also some evidence against the independence of responses as 
shown by the figures given in Table 11. Here are shown the conditional 

TABLE II 

Conditional probability prior to last error of a correct 
response following a correct response and following 

anerror 

Group 

Correction 
Discovery 
Combined 

After correct R. After error 

.85 

.81 

.83 

.77 

.58 

.64 

probabilities of a correct response following a correct response and 
following an incorrectresponse for the correction, discovery and combined 
groups. The biggest difference occurs for the discovery group, which has 
a mean probability of 0.81 that a correct response will follow a correct 
response in comparison to a mean probability of 0.58 that a correct 
response will follow an incorrect response. 

From this preliminary evidence it is perhaps doubtful that the one
element all-or-none conditioning model will fit very weIl the fine structural 
details of experimental data derived from young children learning proofs 
in the mathematical system U. On the other hand, this model does seem 
to give a pretty good first approximation to actual behavior. To give 
some idea of the immediate range of alternative possibilities I shall 
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briefly sketch three other models that might be applied to data similar to 
those obtained from our pilot study. 

The simplest alternative model is the linear incremental model with a 
single operator. The intuitive idea of this model is precisely the opposite 
of the all-or-none conditioning model. The supposition is that learning 
proceeds on an incremental basis. Let qn be the probability of an error 
on trial n. Then the model is formulated by the following recursive 
equation 

where 0< () ::::;; 1. It is simple to show but somewhat surpnsmg that 
this purely incremental model has precisely the same mean learning 
curve as the all-or-none model ifwe set c=(}. (To obtain this identity of 
the learning curves we must consider all responses and not simply 
responses prior to the last error.) The incremental model does differ 
sharply from the all-or-none model in the kind oflearning curve predicted 
for responses prior to the last error, as is evident from Equation (1). 

The second simple alternative is a model which represents a kind of 
compromise between the all-or-none model and the incremental model. 
It assumes that associated with each discrimination situation there are 
two elements. Each of these (unobserved) elements is conditioned on an 
all-or-none basis but the two parameters of conditioning may be adjusted 
to produce various incremental effects on the response probabilities. A 
model of this kind, as is pointed out in Suppes and Ginsberg (1961), 
could account fairly well for the kind of data shown in Tables land 11. 
Probably its main inadequacy for accounting for more extensive data 
obtained from a large number of subjects would be found in connection 
with the problem ofthe assumed independence of the subsequences defined 
by the four types of stimulus comparisons. 

The third alternative is to start with one of the three models already 
sketched and to introduce in a natural way dependencies among the sub
sequences. To introduce these dependencies we define a new process 
whose states are now ordered quadrupIes. The first coordinate of the 
quadrupIe indicates the state of conditioning of Ru1e Rl, the second 
coordinate the state of conditioning of Ru1e R2, etc. One natural direction 
is then to define conditioning parameters c ij f or each Rule i, where j is the 
number of other rules already conditioned. By assuming further that the 
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parameters depend only onj and not on i, we once again obtain a process 
with four conditioning parameters but with the parameters defined in an 
entirely different way. Without a large set of data to analyze and thereby 
to decide among these various alternatives it does not seem profitable to 
pursue them in any detail. Experiments are now underway in our labora
tory and I hope to be able to report soon which models are most able to 
account for the fine structure of the data. 

V. GENERAL COMMENTS 

I would like to conclude with two general comments. In the discussion 
following the original presentation of this paper in Warsaw, Professor 
Kalmar appropriately raised the question of how the reinforcement 
schedule, i.e., the correction procedure, would be defined for more 
complicated mathematical systems than U, in particular for systems 
which do not possess adecision procedure. It should be apparent that the 
behavioral theory outlined above is certainly not yet powerful enough to 
specify clear recipes for laying out the schedu1e of reinforcements. At the 
present time for more complicated systems, for example, the elementary 
algebra of integers and real numbers, the only practical procedure seems 
to be to proceed in a manner very similar to that used by Newell and 
Simon (1956) and Newell et al. (1957) in working out a program for 
proving theorems of elementary logic. Essentially their procedure is to 
abstract those heuristic principles that seem most useful in giving the set 
of proofs under consideration. My own conjecture is that in this area we 
shall find a substantial intersection between the work of mathematical 
psychologists interested in behavior theory and scientists like Simon who 
are interested in artificial intelligence and computer simulation of human 
behavior. 

My second general comment is to emphasize that I am under no 
illusions about the fragmentary character of the behavioral foundations 
sketched in this paper. The next step forward it seems to me is to provide 
a theory at the following level of generality. Suppose we retained the 
problem of proving theorems in systems whose wen formed formulas are 
strings of I 's and O's. As rules of inference we have various rules of 
production of the kind given for the system U. The problem is to for
mulate in sufficiently general terms the behavior theory that wi11lead to 
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appropriate conditioning connections in at least a fairly wide class of 
systems similar to U. The weakness of the present theory is easily brought 
out by considering the problem of using the theory to build a machine to 
prove theorems in such systems. It is clear that a machine could not be 
programmed, on the basis ofthe present theory, in a general way to prove 
theorems in systems similar to U. It is of course a trivial matter to 
program a machine to prove theorems in systems like U if the program
ming is done for that particular system after the rules of inference of the 
system are specified. The much deeper problem of programming a 
machine to accommodate itself to proofs in a variety of systems similar 
to U seems to me to be one of the most pressing problems to solve in 
order to provide a more adequate behavioral foundation of mathematical 
proofs. The solution of tbis problem will be of direct help in constructing 
a more general theory to predict the "proof-giving" behavior of our 
young subjects. 

NOTES 

1 For an explicit axiomatic formulation of these ideas, see Suppes and Atkinson (1960, 
p. 5); for a more complete discussion of the technical aspects ofaxiomatization, see 
Estes and Suppes (1959b) or Artic1e 23 in tbis volume. 
2 I am much indebted to John M. Vickers for bis contributions to the detailed design 
and actual execution of tbis pilot study. Susan Matheson assisted Mr. Vickers in 
running the experiment. 



21. THE PSYCHOLOGICAL FOUNDATIONS 

OF MATHEMATICS* 

I. INTRODUCTION 

I would like to say to begin with that it is a pleasure to be here and to 
participate in this colloquium on models. For the topic ofmy own lecture 
today I am somewhat hesitant in view of the fact that Professor Piaget is 
sitting here and has been writing on this topic for many years. I wish 
that I had confidence that the kind of things I want to say will turn out to 
be the right things, the significant things to suggest in investigations on 
the psychological foundations of mathematics, but I have no such 
confidence. Secondly, it is perhaps paradoxical considering the subject of 
this colloquium and my own interests that I shall not have more to say of 
a direct sort ab out models, but it seems to me that the problems raised by 
the learning of mathematics provide an excellen t touchstone for testing 
and evaluating models, particularly with respect to many of the issues we 
have already discussed. In the cognitive domain mathematics provides 
one of the clearest examples of complex learning, for the structure of the 
subject itself provides numerous constraints on the structure of any 
models that are to be considered adequate to mathematics learning. 
Therefore I hope to justify, in the context of the present colloquium, my 
own concern with the psychological foundations of mathematics by 
emphasizing the importance of the kind of learning found in mathematics 
for the development of complex models of learning. I would agree 
wholeheartedly with those two good cognitivists Frank Restle and 
Herbert Simon that simple stimulus models are certainly not adequate to 
give a very deep account of mathematics learning. On the other hand, I 
am equally skeptical of the cognitive models that have as yet been 
proposed with respect to the central problems of giving such an account, 
although I have a great deal of respect and appreciation for the kind of 

• Reprinted from Les Modeles et la Formalisation du Comportement (Colloques Inter
nationaux du Centre National de la Recherche Scientifique), Editions du Centre 
National de la Recherche Scientifique, Paris, 1967, pp. 213-234. 
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thing that Restle, Simon and their associates have been concerned with 
over the past few years. 

Before I begin discussing particular psychological issues there is 
another direction of interest quite apart from models that I want to 
mention, and that is the relation of the psychological foundations of 
mathematics to foundations of mathematics in the classical sense, and by 
the classical sense I mean the work in foundations that has been character
istic of this century. The three main positions in the twentieth century on 
the foundations of mathematics characteristically differ in their con
ception of the nature of mathematical objects. Intuitionism holds that in 
the most fundamental sense mathematical objects are themselves thoughts 
or ideas. For the intuitionist formalization of mathematical theories can 
never be certain of expressing correctly the mathematics. Mathematical 
thoughts, not the formalization, are the primary objects of mathematics. 
Yet the nature of mathematical thinking has scarcely been seriously 
discussed from a psychological standpoint on the part of any intuitionist. 

The second characteristic view of mathematical 0 bjects is the Platonistic 
one that mathematical objects are abstract objects existing independently 
ofhuman thought or activity. Those who hold that set theory provides an 
appropriate foundation for mathematics usually adopt some form of 
Platonism in their basic attitude toward mathematical objects. The 
philosophy of Bourbaki, for example, is that of Platonism. 

The view of mathematical objects adopted by the formalists is some
thing else again. According to an often quoted remark of Hilbert, 
formalism adopts the view that mathematics is primarily concerned with 
the manipulation of marks on paper. In other words, the primary subject 
matter of mathematics is the language in which mathematics is written, 
and it is for this reason that formalism goes by the name 'formalism'. 

In spite of the apparent diversity of these three conceptions of what 
mathematics is about - and certainly they differ extraordinarily in their 
conception of the proper object of mathematical attention - there is a 
very high degree of agreement about the validity of any carefully done 
piece of mathematics. The intuitionist will not always necessarily accept 
as valid a c1assical proof of a mathematical theorem, but the intuitionist 
will, in general, always agree with the classicist as to whether or not the 
theorem follows according to c1assical principles of construction and 
inference. There is a highly invariant content of mathematics recognized 
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by all mathematicians, inc1uding those concerned with the foundations of 
mathematics, which is absolutely untouched by radically different views 
of the nature of mathematical objects. It is also clear that the standard 
philosophical methods for discussing the nature of mathematical objects 
do not provide appropriate tools for characterizing this invariant content. 
A main thesis of this paper is that the classical philosophical discussions 
of the nature of mathematical objects may fruitfully be replaced by 
concentration, not on mathematical objects, but on the character of 
mathematical thinking. There is reason to hope that by concentration on 
mathematical thinking or mathematica1 activity we can be led to character
ize the invariant content of mathematics. ür, to put it another way, to get 
at the nature ofworking mathematics without commitment to a particular 
philosophical doctrine. 

My original tide for this paper was 'Behavioral Foundations' rather 
than 'Psychological Foundations'. The reason for changing is the desire 
to avoid the charge of attempting to reduce mathematics to the kind of 
considerations exemplified in Skinner's Verbal Behavior (1957). More
over, it is an increasing conviction of mine that the classica1 concepts of 
behaviorism, namely, those of stimulus, response and reinforcement, are 
not, at least in their standard formulation, nearly adequate for any 
complicated behavior, and in particular, for the intellectual activity of 
mathematicians and scientists. 

It will perhaps be desirable to make this point somewhat more explicit, 
particularly because of the considerable interest in this colloquium in the 
formal properties of models. It would be too substantial a digression to 
present possible formal axiomatizations of stimulus-response theory and 
then to analyze in this rather detailed and cumbersome framework the 
severe limitations on accounting for the formation ofnew concepts in the 
repertoire of a subject. The essential idea of the argument that shows how 
severe these limitations are can be presented within various fragments of 
stimulus-response theory. 

The first thing to be noticed in considering the question of what does 
the theory say ab out the formation ofnew concepts out of old ones is that 
many details of the learning process are irrelevant. For example, for 
analysis of this problem it is not essential to know whether learning is 
mainly all-or-none or incremental. The second thing to note is that unless 
the theory has sufficient apparatus for defining new concepts in terms of 
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old ones the theory cannot give a systematic account of how the new 
concepts are learned. 

This logical question of definability is central to my argument, and a 
simple example of a purely mathematical sort may be useful in c1arifying 
the method by which it may be shown that one concept may not be 
defined in terms of other concepts. 

Consider first the ordinal theory of preference based on a set A of 
alternatives, a binary relation P of strict preference and a binary relation 
1 of indifference, where P and 1 are relations on A. A tripie m: = (A, P, I) 
is an ordinal preference pattern if and only if the following three axioms 
are satisfied for every x, y and z in A: 

Axiom 1: Ifx P y and y P z then x P z; 
Axiom 2: Ifxlyandylzthenxlz; 
Axiom 3: Exactly one of the following: x P y, y P x, xl y. 
The Italian mathematician Alessandro Padoa formulated in 1900 a 

principle that may be used to show in a rigorously definite way that one 
concept of a theory is not definable in terms of the others. The principle 
is simple to formulate: find two models of the theory such that the given 
concept is different in the two models, but the remaining concepts are the 
same in both models. It is easy to show that if the given concept were now 
definable in terms of the other concepts then it would be possible to 
derive a formal contradiction within the theory. (For a more detailed 
discussion ofthese matters, see Chap. 8 ofmy Introduction to Logic.) Thus 
to show that the concept P of strict preference cannot be defined in terms 
of the concept of the set A of alternatives and the concept 1 of indifference, 
it is sufficient to consider the following two models m:l and m:2 of the theory. 

Al = A2 = {I, 2} 
11 = 12 = {(I, 1), (2, 2)} 

P1 = {(I, 2)} 

P2 = {(2, I)} 

Note that two trivial numerical examples of ordinal preference patterns 
are sufficient to establish the undefinability of the concept of strict 
preference. On the other hand, it is easy to offer adefinition of indifference 
in terms of strict preference: 

x 1 y if and only if not x P y and not y P x. 
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If this example is kept explicitly in mind, it will be easier to appreciate 
the point I want to make about any current variant of stimulus-response 
theory of concept formation. One way or another the theory must be 
rich enough to make possible the formal definability of the new concept 
to be learned. I can see no other way of giving a formal account of 
learning the new concept. If the machinery does not exist within the 
theory for characterizing the new concept, then the theory cannot give an 
adequate account of how the new concept is formed by the subject. In 
this connection it is important to emphasize how incomplete are all 
standard learning-theoretic accounts of concept formation. Current 
theories simply do not postulate mechanisms of concept formation which 
are adequate to even the most primitive and simple concepts, let alone 
ones of any mathematical complexity. 

To illustrate this failure, we may consider some examples of the sort 
often studied experimentally. In line with earlier remarks, I shall ignore 
detailed assumptions about learning and give a schematic account that is 
compatible with any one of several fully worked-out learning models. As 
a matter of notation, let S be the basic set of stimuli, and given concepts 
may be represented as partitions Cl> ... , Cn of S. In general, each Ci is a 
partition of S, although in many familiar experimental examples the 
concepts are just two-valued and thus lead to concepts that may be 
represented as subsets of S. Let new concepts be represented as partitions 
K l , ... , Km of S. The first general point to note is that if we are simply 
given an m + n + 1- tuple (5 = (S, Cl>"" Cm K l , ••. , Km) then no questions 
about generating the concepts K j from the given concepts Ci can be 
definitely settled. It is necessary also to specify what operations may be 
performed on the given Ci' or what additional structure is imposed on the 
basic set S of stimuli. It is a matter of the postulated psychological theory 
of concept formation to impose this additional structure. 

In familiar experiments on concept identification it is assumed that the 
intersection, union and complement of two-valued concepts can be 
formed, but these Boolean operations are weak. Certainly they are not 
adequate to give an account of the formation of any complex mathema
tical concepts. For example, ifwe assume in an experiment, for purposes 
of theoretical analysis at least, that an individual has the concepts of 
shape, size and color, with indefinitely many values for each concept, we 
cannot in terms of the Boolean operations, or their generalizations to 
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partitions, define or characterize any of the intuitively simple comparative 
concepts of greater size, more saturation of color, etc. 

Although the matter cannot be pursued in detail here, it should be all 
too obvious to those familiar with the psychologicalliterature of concept 
formation that the structures of the mechanisms of concept formation as 
yet proposed are far too simple, as a direct application of Padoa's method 
will show, to account for the formation of the great variety of mathe
matical concepts. 

Because of their central importance for any theory of concept for
mation in mathematics, the three topics I shall concentrate on in the 
remainder of this paper are abstraction, imagery and algorithms. 

H. ABSTRACT ION 

It has long been customary, although probably less so now than pre
viously, to talk about abstract set theory or abstract group theory. To a 
psychologist or philosopher concerned with the nature of mathematics, it 
is natural to ask what is the meaning of 'abstract' in these contexts. There 
is, I think, more than one answer to this query. One possibility is that 
abstract often means something very elose to 'general', and the meaning of 
'general' is that the elass of models of the theory has been consid
erably enlarged. The theory is now considered abstract because 
the elass of models of the theory is so large that any simple imagery 
or picture of a typical model is not possible. The range of models is too 
diverse. 

In the case of group theory, for example, one intuitive basis was the 
particular case of groups oftransformations. In fact, the very justification 
of the postulates of group theory is often given in terms of Cayley's 
theorem that every group is isomorphie to a group of transformations. 
It has been maintained that the "basic" properties of groups of trans
formations have been correctly abstracted in the abstract version of the 
axioms just because we are able to prove Cayley's theorem. So we can see 
that another sense of abstract, elosely related to the first, is that certain 
intuitive and perhaps often complex properties of the original objects of 
the theory have been dropped, as in the case of groups, sets of natural 
numbers, or sets of real numbers, and we are now prepared to talk about 
objects satisfying the theory which may have a very much simpler interna I 
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structure. This meaning of abstract, it may be noted, is very close to the 
etymological meaning. 

Under still another, closely related sense of the term, a theory is called 
abstract when there is no one highly suggestive model of the theory that 
most people think of when the theory is mentioned. In this sense, for 
example, Euclidean plane geometry is not abstract, because we all 
immediately begin to think of figures drawn on the blackboard as an 
approximate physical model ofthe theory. In the case of group theory the 
situation is different. It would indeed be an interesting question to ask a 
wide range of mathematicians what is called to mind or what imagery is 
evoked when they read or think ab out, let us say, the associative axiom 
for groups or the axiom on the existence of an inverse. Or as another 
suitable example, what sort of stimulus associations or imagery do they 
have in thinking about the axiom of infinity in set theory? It is my own 
conjecture that the combinatorial, formalist way ofthinking is much more 
prevalent than many people would like to admit. Many mathematicians, 
particularly those with an algebraic tendency, have as the immediate sort 
of stimulus imagery the mathematical symbols-themselves and think very 
much in terms of recombining and manipulating these symbols. 

It is interesting to note that the classical search for a representation 
theorem for a theory can very weIl be thought of as an effort to make the 
abstract theory more intuitive. The formal idea of a representation 
theorem can be put as folIows. We begin by discussing the class or 
category M of all models of the theory. We then seek a subclass or 
subcategory R of models of the theory such that given any model in M 
there exists an isomorphie model in the representing class R. We may of 
course always obtain a trivial representation theorem by simply taking 
R = M, but the satisfying representation theorems are just those that are 
able to select as the class R an intuitively clear and relatively simple class 
of models. Cayley's theorem is a good example. Another classic example 
is Stone's representation theoremfor Boolean algebras. Many ofus would 
have had a feeling that we did not quite understand what the abstract theory 
of Boolean algebras came to if Stone's theorem had proved not to be 
tr.ue. The motivation for Boolean algebras is mainly thought of in terms 
of the algebra of sets, but if the abstract theory has models of Boolean 
algebras that are not isomorphie to algebras of sets, what indeed are we 
to make of the structure of these abstract algebras? Stone's theorem 
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shows that we do not have any worries on this score, but in the history of 
mathematics and science many negative examples can be mentioned, in 
which the move to a more abstract theory was not buffered by the proof 
of an appealing representation theorem, but these matters cannot be 
pursued in further detail here. 

III. IMAGER Y 

Mathematicians classify each other as primarily geometers, algebraists, 
or analysts. The contrast between the geometers and algebraists is 
particularly c1ear in folklore conversations about imagery. The folklore 
version is that the geometers tend to think in terms of visual geometrical 
images and the algebraists in terms of combination of symbols. I do not 
know to what extent this is really true, but it would be interesting indeed to 
have a more thorough body of data on the matter. To begin with, it would 
be desirable to have some of the simple association data which exist in 
such abundance in the experimentalliterature of verbal leaming. Such 
association data would be an interesting supplement to the kind of thing 
discussed and reviewed in Hadamard's Httle book on the psychology of 
mathematics. 

I tend to think of the concepts of imagery and abstraction as closely 
related. I could in fact see attempting to push a definition of abstraction 
as the measure ofthe diversity ofimagery produced by a standard body of 
mathematics and stimulus material in a given population. 

As one kind of investigation connected with imagery in abstraction, 
the following sort of modification of the standard association experiment 
is of considerable interest. With a standard body of mathematical 
material we would set students to work proving theorems from the 
axioms of different mathematical systems. It would, of course, be inter
esting to take axioms from different domains ; for example, to compare 
Euclidean geometry and group theory. As the subjects proceeded to prove 
theorems we would at each step ask for their associations. Two sorts of 
questions would be of immediate interest. What is the primary character 
of the associations given? Secondly, what kinds of dependence exillt 
between the association given at different stages in the proof of a given 
theorem, or in proofs of successive theorems of a given system? As far as 
I know, no investigations of this sort have yet been conducted. On the 
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other hand, such experiments should not be difficult to perform and the 
results might be of interest. 

I have undoubtedly put the matter too simply. One main problem is to 
distinguish between associations that play an essential and important role 
in obtaining the proof, and those which are more or less accidental 
accompaniments ofthe central activity offinding the proof. For example, 
a person may read a theorem about geometry, written in English words, 
and as he begins to search for a proof of this theorem, he associates to 
simple geometrical figures - in particular, to the sort of figure useful for 
setting up the conditions of the theorem. At the same time that he has 
this geometrical association, he may have associations about his wife, 
his mother, or his children. We would not want to think of these latter 
associations as playing the same sort of role in finding proofs. In other 
words, we want to see to what extent a chain of associations may be 
identified, which is critical for the heuristic steps of finding a proof. It is 
also important, I am sure, to separate the geometrical kind of case from 
the other extreme - as a pure case, the kind of thinking that goes on 
when one is pIaying a game such as chess or checkers. What kind of 
associations are crucial for finding a good move in chess, checkers, or, to 
pick a different sort of exampIe, bridge? 

An experiment we have conducted in our Iaboratory has some bearing 
on these questions. This experiment concerned the possible differences 
between Iearning rules of Iogical inference in a purely formal way and as 
part of ordinary English. The three rules studied were 

Det 
P~Q 

P 

Q 

Sim 
p/\Q 

P 

Com 
p/\Q 

Q P 

(Here ~ is the sign of implication and /\ the sign of conjunction, but 
subjects were not told this when they began the formal part of the 
experiment.) Group 1 received the formal part first (FA) and the inter
preted Iogic in ordinary English (IB). Group 2 reversed this order: IA 
then FB. Note that Astands for the first part ofthe experiment and B for 
the second part. Schematically then: 

Group 1. FA + IB 
Group 2. IA + FB . 
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The formal (F) and interpreted (I) parts of the experiment were formally 
isomorphie. 

TABLE I 

Comparisons of errors on different parts of logic experiment 

Comparlson df Significance 

FA>FB 1.94 46 0.1 
IA>IB 3.28 46 0.01 
FA'i'IA 1.47 46 
FB'i'IB 0.08 46 
FA+FB'i'IA+ID 1.15 94 
FA+ID'i'IA+FB 1.07 94 

Some of the results are shown in Tables land II. The subjects were 
fourth graders with an I.Q. ran..,ge from 110 to 131; there were 24 subjects 
in each group. 

-TABLE II 

Vincent learning curves in quartiles for logic experiment 

Probability of error in each quartile 

Group 1 2 3 4 

FA 0.40 0.36 0.39 0.24 
ID 0.32 0.32 0.30 0.19 
IA 0.48 0.41 0.33 0.28 
FB 0.21 0.21 0.28 0.14 

Perusal of Tables land II indicates that the order of presentation, 
formal material first or last, does not radieally affect learning. There is, 
however, some evidence in the mean trials of last error that there was 
positive transfer from one part of the experiment to the other for both 
groups. For example, the group that began with the formal material had a 
mean trial of last error of 14.1 on this part, but the group who received 
this material as the second part of their experiment had a smaller mean 
trial of last error of 10.9. In the case of the interpreted part, the group 
beginning with it had a mean trial of last error of 18.3, but the group that 
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received tbis material after the formal part had a mean trial oflast error of 
7.7, a very considerable reduction. N ow one way of measuring the amount 
of transfer from one concept or presentation of mathematical material to 
a second is to consider the average mean trial of last error for both 
concepts in the two possible orders. If we look at the logic experiment 
from this standpoint there is a significant difference between the group 
beginning with the formal material, completely uninterrupted as to 
meaning, and the group beginning with the interpreted material. The 
average trial of last error on both parts of the experiment for the group 
beginning on the formal part is 10.9 and that for the group beginning on 
the interpreted part is 14.6. In a very tentative way these results favor an 
order of learning of mathematical concepts not yet very widely explored 
in curriculum experiments. 

IV. ALGORITHMS IN ARITHMETIC 

I conclude this paper with consideration of a pedagogically important and 
theoretically interesting example of a problem that needs deeper psy
chological analysis, namely, the problem of how the first algorithms in 
arithmetic are learned. 

As an initial model for tbinking about algorithms, I would like to 
propose the following. We have in mind a given collection of problems 
that we wish the cbild to be able to solve. To make our analysis definite 
at tbis point, let us consider a set of arithmetical problems. They might be 
in theform of8-5=3, 8+2= 10,10-6=4, 8-3=5,etc. The machinery 
needed to solve these problems can be roughly divided into two parts. 
One part consists of direct storage in memory of certain elementary facts. 
Exact1y what these elementary facts are will vary from stage to stage in 
the curriculum. Towards the beginning of arithmetic, it might consist of 
storage of the elementary addition facts: 1 + 1 = 2, 1 + 2 = 3, 2 + 1 = 3, 
1 +0= 1,2+0=2,3+0=3,0+3=3, etc. The second part ofthe macbin
ery consists of algorithms, or constructive rules, for transforming the 
elementary facts in memory into new elementary facts or, what is prob
ably more important, transforming new stimulus presentations into one 
of these elementary facts stored in memory. 

An immediate problem of psychological importance with respect to a 
given body of problems is how much should be stored in memory and 
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how much should be carried by the algorithmic rule. It is seldom the case 
that for a given set of problems we want all the answers stored directly 
in memory - it is certainly contrar y to the usual spirit in teaching mathe
matics, but it is also unusual to want to store in memory only a minimal 
set offacts. For illustrative purposes, let me describe in some detail a way 
of teaching arithmetic that would consist of storing in memory a small 
number of facts and transferring the larger part of the load to the al
gorithmic rules. 1 emphasize that the example chosen is not one that is 
meant to have direct pedagogical applications. This system for computing 
sums is clearly not the sort of system we would wish to teach. 

Let us suppose that our set of problems is just the following thirty 

O+O=n O+n=O n+O=O 
O+I=n O+n=1 n+l=1 
1+0=n l+n=1 n+O=1 
1+I=n l+n=2 n+l=2 
2+1=n 2+n=3 n+l=3 
1+2=n l+n=3 n+2=3 
3+1=n 3+n=4 n+l=4 
1+3=n l+n=4 n+3=4 
2+2=n 2+n=4 n+2=4 
4+1=n 4+n=5 n+ 1 = 5. 

We put the following four facts in memory 

1+1=2 
2+1=3 
3+1=4 
4+ 1 = 5. 

We have the following four rules of operation: 

(1) Use the four facts in memory to replace equals by equals. 
(2) Replace a term of the form a+(b+c) by (a+b)+c, or vice versa. 
(3) Replace a term of the form a + b by b + a. 
(4) Cancel an equation ofthe form a+n=a+c to get n=c. 

These four rules are then used to transform a problem, step by step, 
until we reach an expression of the form n = c. Thus, 
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2+2=n 
2+(1 + 1) =n 
(2+ 1) + 1 =n 

3+1=n 
4=n 

or, similarly, 

3+n=5 
3+n=4+1 
3 + n = (3 + 1) + 1 
3 + n = 3 + (1 + 1) 
3+n=3+2 

n=2 

Problem 
by (1) 
by (2) 
by (1) 
by (1) 

Problem 
by (1) 
by (1) 
by (2) 
by (1) 
by (4). 

There are several immediate criticisms to be made of this set-up, as I 
have described it. First, I have not been really explicit about parentheses 
in connection with rule (1). And I have not really made clear the role of 
the associative law, i.e., rule (2). More importantly, I have not written 
down a genuine algorithm for the set of problems. The four rules are 
four rules of proof, not an algorithm for solving any one of the thirty 
problems. 

To convert the four rules into an algorithm, it is necessary to specify an 
order in which they are to be applied, and this order, to be efficient, 
should vary with the particular problem. Not only is it necessary to 
specify an order, but it also is necessary to show that the algorithm can 
be given to a machine and automatically used to solve any of the thirty 
problems. 

To convert the present four rules into a genuine algorithm is somewhat 
tedious. Let me describe another simpler system that may be used to solve 
the same thirty problems. 

We put in memory the following five definitions: 

1=/ 
2=// 
3 = / / / 
4=//// 
5=/////. 
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Our algorithm is then the following: 
(1) Replace all Arabic numerals by their stroke definitions and delete 

all plus symbols. 
(2) If there are strokes on both sides of the equal sign, cancel one-by

one starting from the left of each side until there remain no strokes on 
one side. Ignore n in cancelling. 

(3) On the one side still having strokes, replace the strokes by an 
Arabic numeral, using the definitions in memory. 

The solution in the form n = C or c = n will result. 
Let us apply this algorithm to the two problems previously considered. 
First problem: 

2+2=n 
// //=n 

4=n 

Problem 
by (1) 
by (3). 

In this case no cancelling is required. 
Second problem: 

3+n=5 
/// n=///// 
// n=//// 
/ n=/// 

n = / / 
n=2 

Problem 
by (1) 
by (2) 
by (2) 
by (2) 
by (3). 

It should be elear from these examples how the algorithm may be 
applied to solve the other twenty-eight problems in the original set, and 
moreover, how simply by adding new definitions in memory we may, 
without changing the algorithm, move on to similar problems involving 
larger numbers. 

From a logical standpoint this algorithm is perhaps as simple as any 
to be found, and is very elose in spirit to a direct characterization of the 
operation of counting. Consideration of its possible use by children 
takes us out of the domain of elementary mathematics - the theory of 
algorithms for simple mathematical systems - into the domain of psy
chology. Let me try to state some of the problems we encounter as we 
enter this domain. 

(1) It seems highly unlikely that any children, without training, 



PSYCHOLOGICAL FOUNDATIONS OF MATHEMATICS 385 

actually use the algorithm just described. The perplexing question is: 
what algorithms do they in fact use? At the level at which this problem 
is often discussed, the obvious answer is that they use the algorithms 
taught in the classroom and presented in their textbooks. But even casual 
inspection of the curriculum shows the inadequacy of this response, for 
algorithms for the thirty problems listed above (or with the numerical 
variable 'n' replaced by a blank or box) are not explicitly taught, although 
some partial hints in terms of counting may be given. A typical curriculum 
instruction to teachers is to let the children find the answer "intuitively" 
by working with the numbers. Parenthetically, the use of the word 
"intuition" in its nominal, adjectival or adverbial form by a curriculum 
builder, reformer, planner or evaluator should be a signal to the psy
chologist that unexplained and ill-understood learning behavior is about 
to be mentioned, and, unfortunately, often described as if it were under
stood. 

So the problem remains, how do children in the fourth, fifth or sixth 
month of the first grade, solve problems like those in our set of thirty? 

(2) A proposal often heard is that children solve such problems by 
simple rote learning. This is a possible response when any single set of 
twenty or thirty simple problems is considered. It does not seem nearly as 
plausible when we look at the larger set of problems from which our 
thirty have been drawn. There are 55 ordered pairs of numbers summing 
to 9 or less (0+0=,0+ 1 = 1,1 +0= 1, etc.). There are then 165 problems 
ofthe same type as our thirty (n+O=O, O+n=O, O+O=n, etc.). And the 
number of problems is increased considerably further by adding triplets 
of the form 1 +2+n=4, 1 +n+2=4, etc. It is extremely doubtful that 
this large stock of problems is held in memory, available for direct 
access. The child solves them by applying some sort of algorithm. Some of 
the possibilities are the following. 

(a) The child counts offthe necessary number words, aloud or in silent 
speech. Thus, the solution to '4+5=n' is obtained by counting off five 
number names after 'four', namely 'five, six, seven, eight, nine'. The 
solution to '4+n=9' is obtained by counting off number names after 
'four' until 'nine' is reached and then judging the cardinality of the set of 
number names counted off. Even without detailed analysis it is clear that 
the second kind of problem is harder than the first. The third kind of 
problem is still harder. The solution to 'n+5=9' is obtained by counting 
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off enough number names such that five more take the child to 'nine' . It 
seems doubtful to me tha t the algorithm can be successfully applied in this 
form to the third kind of problem. Notice that no advantage has been 
taken of the commutativity of addition. Serious training on this property 
would enable the child to reduce problems of the third kind to those of 
the second kind. The relatively greater difficulty alm ost all first-grade 
children have with the third kind of problem, when the unknown is at the 
far left, indicates that if the algorithm just described is used, it is not 
augmented by the commutative law. 

For a great many different reasons it seems improbable that the 
algorithms actually used require very many closely knit steps to obtain an 
answer. The counting algorithm just described is realistic for problems of 
the form '4 + 5 = n' and not out of the question for problems of the form 
'4+n=9'. For problems of the form 'n+5=9' the child may, without 
being explicitly conscious of it, make rough estimates of n and test the 
guess by counting. He remembers, say, that 5 + 5 = 10, and 'nine' is close 
to 'ten', so he tries 3 or 4. Or, he may remember, that is, have in im
mediate storage, that 4+4=8, and he uses this fact to guess 3, 4 or 5. 

(b) In many ways the above discussion sells the counting algorithm 
short, because of the seeming difficulty of counting a set of number names 
like 'five, six, seven, eight' pronounced aloud or in silent speech, because 
the trace of 'five' may have departed before 'eight' is said. When the 
algorithm is externalized and applied in terms of physical objects (even 
the fingers) it seems much easier. I have seen something like the following 
used quite successfully in Ghana with harder problems than those we are 
now discussing. 

The child has a counting set of pebbles on his desk. To solve the 
problem '4+5=n' he first counts out 4 pebbles from his pile. He stops, 
and then counts out five more. This counting is done by simultaneously 
saying the number names 'one, two, three, four' and pulling one pebble 
from the pile as he says each name. Mter counting out the set offour, and 
then counting out the set of five, he now counts the separated set of nine 
pebbles and gets the answer. He solves the problem '4+n=9', by first 
counting out a set of nine pebbles and then taking four away, that is, by 
counting off a set of four from the set of nine. (It is to be emphasized that 
each ofthese counting operations is a highly physical thing.) After taking 
away the set offour, he then counts the remaining set offive to obtain the 
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answer. Notice that the act of taking away four from the set of nine 
pebbles can be clearly and succinctIy taught even though the subtraction 
sym bol has not been introduced. As already remarked, lots of people have 
observed that for American children the 'n+5=9' sort of problem is 
harder than the '4 + n = 9' sort. For the counting algorithms just described 
they would seem to be on an equal footing. I think, but do not have real 
evidence at hand, that the Ghanaian children have the same sort of 
relative difficulty. The explanation is most likely to be found in the 
decoding required to pass from the written problem to the physical 
execution of the algorithm. The detailed analysis of how the stimulus 
arrangement expressing the problem sets off the algorithm shall not be 
gone into here, but I may say in passing that this kind of example provides 
an excellent opportunity to analyze the behavioral semantics of the 
simplest sort of language. Briefly put, I interpret a problem format like 
'4+n=9' as acommand in the imperative mood. The symbol '9' standing 
by itselfto the right ofthe equals sign means for the pebble model "Count 
out a set ofnine pebbles". The symbol '4' means "Count out a set offour 
pebbles from the set of nine". And, roughly speaking, the remaining 
phrase '+n' means "Count the remaining set ofpebbles and record the 
answer" . For this kind of semantic the classical notion of truth is replaced 
by that of a response, or class of responses, satisfying a command. What I 
have sketched here in the roughest sort of way can be made precise by 
using with only slight modification the standard methods and concepts of 
formal semantics. 

From the standpoint of the usual way of characterizing algorithms, the 
pebble-counting algorithm is unusual, for the operations of the algorithm 
are performed on the pebbles and not on the number symbols themselves. 
In this case the number symbols have meaning and this meaning is used 
to give instructions for performing the algorithm. It would seem that it is 
this sort of algorithm many people now advocate in arithmetic in order 
to avoid development of great facility with algorithms defined wholly in 
terms of the number symbols and which may thus be learned without 
"understanding numbers". 

In order to give a concrete sense of some of the complexities that arise 
in understanding how children learn and perform algorithms, I would like 
to review briefly two pertinent experiments. 

In the first experiment children in the first, second and third grades 
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(ages 6, 7 and 8 years approximately) were asked to give the correct 
answers to the 63 problems of the form 1 + 2 = n, 1 + n = 3 and n + 2 = 3, 
with the sums ranging from 0 to 5. The problems were shown on a screen 
by a slide projector in the form 1 + 2 =L-j, 1 +L-J= 3, etc., and the 
subjects responded by pushing one of six buttons marked 0, 1, 2, 3, 4, 5; 
the buttons were arranged linearly. A timer also measured the response 
latency from the appearance of a problem on the screen to the pushing of 
one of the six buttons. In a given daily session a subject was presented 
with each of the 63 problems for a total of 63 trials. One group of first 
graders had six sessions; the remaining subjects had three sessions. The 
only data we shall examine here are those resulting from summing over 
all grades, days and subjects. This summation yields a total of 280 
responses for each of the 63 problems. 

In line with the general discussion of possible algorithms, the following 
simple model is proposed for analyzing the rather complex data of this 
experiment. The fundamental operation, it is postulated, is that of 
counting. For problems of the type a+b=m, where a and bare given 
numbers and m is to be found, the time required is (b+ l)IX+b. 

Here 15 is a constant of the sort familiar in reaction-time studies; IX is 
the time it takes to count one step for problems of this type (hereafter 
called Type 1); b+ 1 rather than b steps are called for, because '0' is the 
first possible answer, '1' the second, etc. In the case of Type II problems, 
whose form is a + m = b, the only change is to replace the timing parameter 
IX by ß. Thus the time required to solve a+m=b is (m+ 1) ß+b. Note 
that here m replaces b, because in all cases we think of counting up to the 
sumo For problems of Type III, that is, problems of the form m+a=b, 
we introduce a third parameter y, and the time required to solve m+a=b 
is (m+ 1) y+b. Also in line with the earlier discussion it is natural to 
postulate that IX<ß<y. Concerning errors, it is also natural to postulate 
a parameter (J such that for the three types of problems the probability 
of an error on each counting step is (JIX, (Jß and (Jy, respectively. Thus for 
n-step problems of Type I the probability of an error is l-(l-(JIX)", 
which in first approximation is simply n(JIX, because O<(JIX< 1. (It is 
assumed for simplicity that the probabilities of an error on the successive 
steps are statistically independent and that successive errors will not 
cancel each other out.) 

The detailed analysis of this model will not be pursued here. The model 
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goes badly awry in a number of its detailed predictions, but several 
qualitative features are weIl confirmed without requiring statistical 
estimates ofthe five parameters oe, p, ')I, ~ and e. Here are some predictions 
and the supporting or disconfirming evidence. 

(1) For the three problem types, the order ofincreasing difficulty both 
in response error and latency is I< II < III. The data are shown in Table 
III, with the distribution ofthe three types given for the first 21 problems 

TABLE III 

Error and latency distributions for three types of problems in rank-order 
blocks of size 21 

First 21 
Second 21 
Third 21 

11 
6 
4 

I 

11 
6 
4 

5 
8 
8 

11 

6 
6 
9 

5 
7 
9 

III 

4 
9 
8 

with least errors, the second 21, and the third 21, and corresponding data 
for the first 21 problems in speed of response, the second 21 and the third 
21. For each entry the error data are shown first and the latency data 
second. 

The evidence that Type I problems are easiest is good, both in terms of 
errors and latencies because they are concentrated in the first 21 problems 
in both distributions, but the discrimination between Types II and III is 
subtle and does not strongly favor the hypothesis that P< ')I, even though 
other pedagogical evidence does. 

(2) For problems of a given type, the speed and accuracy is greater 
when the number of counting steps is less. Thus we may begin by looking 
at matching pairs, such as 3 + 1-.J = 5 and 2 + 1-.J = 5 to see if indeed 
the first is easier. To be more explicit, let each problem be defined by a 
tripie (x, y, z) of numbers such that x+y=z. A matching pair then 
consists of two problems (x, y, z) and (y, x, z) of the same type, i.e., 
with the blank in the same spot. For example, '--.J + 1 = 5 and 
'--.J+4=5 form a pair. There are 27 pairs with x,#-y. For simplicity, I 
restrict myself to the latency data. The prediction of the model is that the 
response will be faster for the member of each pair having the smaller 
number to find. Thus the response to L-..J+4=5, which should take 
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2y+ö seconds, should be faster than the response to L-.]+ 1 =5, which 
should take 5y+ö seconds. These predictions for the matching pairs are 
pretty weIl borne out by the data. The prediction is true for 20 of the 27 
pairs. Four of those for which it is not are problems of the form 
L-.]+O=a; when these special cases of adding zero are eliminated, the 
results are even more favorable to the model. 

(3) The problems with the smallest error rate and latency are consistent 
with the model, namely 0 + 0 =L-.], L-.] +0 = 0 and 0 + L-.] =0. On 
the other hand, there are some striking anomalies, hard to explain from 
nearly any standpoint. On only four problems is the error rate greater 
than for 1 + 1 =L-.], which was missed 26% of the time! Part of the 
explanation may be that the subjects responded very fast to this problem 
- it ranked fourth immediately after the three 'zero' problems just 
mentioned - and thus made many careless errors. The mean latency for 
1 + 1 =L-.] was 3.3 seconds; it was 2.6 seconds for O+O=L-j as the 
minimum ofthe set of63 problems and 7.0 seconds for 4+L-j=5 as 
the maximum. Whatever the explanation, only a quite complicated model 
seems likely to fit this surprising enor rate into the scheme of things. 
Other aspects of the response errors are not weIl explained by the model, 
but shall not be considered here. 

The analysis presented has been necessarily very sketchy. A more 
detailed quantitative assessment will be made elsewhere of the family of 
models suggested by the simple five-parameter model examined here. The 
preliminary results seem to be encouraging enough to warrant such 
investigations in greater depth. 

I want now to move on to a second experiment that has some inter
esting bearing on the complexity of understanding the learning of 
algorithms. Roughly speaking, the significance of the experiment I want 
to describe is related to the fact that we probably have been and will 
continue to be much misled by the mathematical structure of algorithms, 
so that we are deceived into thinking that young students leam the 
material very much in the way it is formulated from a mathematical 
standpoint. As in most areas of complex learning, what is actually going 
on is undoubtedly a good deal more subtle. The experiment is one per
formed with 9- and 10-year-old children who had already been given 
extensive instruction on the commutative, associative and distributive 
laws of arithmetic. They had had verbal instruction as to the significance 
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ofthese laws, and they had performed and executed presumably correct1y, 
but without detailed check on the part of the teacher, a great many 
exercises applying the laws. Manyoftheexercisesemphasized the fact that 
the commutative, associative and distributive laws are central to the 
justification of the more complex algorithms of elementary arithmetic -
multiplication of two-digit numbers, the algorithm for long division, etc. 

The experiment was conducted as part ofthe program ofthe Computer
Based Laboratory we have constructed in the last two years at Stanford; 
the experiment was performed adjacent to the school classroom in a very 
small room in which was located a teletype that was connected to the 
computer at Stanford. The school itself is approximately 20 km south of 
Stanford. The children participating in this experiment had used the 
teletype for at least a month for the purposes of review and drill in 
elementary mathematics, and were fully familiar with the instrument and 
the experimental setting. 

We had noticed in earlier work that the students were having difficulty 
with the commutative, associative, and distributive laws and that they 
particularly had difficulties with exercises that called for a rapid shift from 
one law to another. 

We decided to perform a fairly simple learning experiment on the 
mastery of this material. We broke up the types of problems into 48 
categories; shortage of time prohibits me from giving adescription of 
these 48 categories. They depend on which particular law is involved and 
where the blank occurs. The equations 5+3=3+L-J and 5+3= 
L-J + 5 would be two instances of two categories exemplifying the 
commutative law of addition. The subjects got 24 problems a day and 
they cycled through the entire 48 types every two days. The students were 
given 10 seconds to answer each problem. If an answer was not given in 
that time interval, the pro gram returned control of the teletype to the 
computer, and the teletype printed out "Time is up" before repeating 
the problem again. After the second appearance and failure to respond 
correctly or within ten seconds, the correct answer was printed out, the 
problem was repeated for a final time, and the program moved on to a 
new problem. 

The results for the first six days of the experiment are shown in Table 
IV. 

For the first day the mean proportion of correct responses was 0.53, the 



392 PART IV. FOUNDATIONS OF PSYCHOLOGY 

TABLEIV 

Mean learning data for the first six days of the computer-based teletype 
experiment on the laws of arithmetic 

Day Prob. Prob. Prob. Mean time 
correct wrong time-out in sec. 

1 0.53 0.22 0.25 630 
2 0.56 0.33 0.11 520 
3 0.74 0.21 0.05 323 
4 0.72 0.23 0.05 390 
5 0.77 0.18 0.05 355 
6 0.91 0.08 0.01 279 

mean proportion of errors 0.22, the mean proportion of time-outs 0.25 
and the mean completion time 630 seconds for the entire set of 24 prob
lems. So the students began by being rather slow and by making lots of 
errors. The second day we see an increase, and an increase each day there
after, except on the fourth day, until on the sixth day of the experiment the 
mean proportion correct is 0.91, the-number of time-outs is very slight 
and there is a very considerable reduction in mean completion time from 
630 seconds to 279 seconds. From the standpoint of learning we get very 
c1ear mean results. If I had the time I would show you the results for the 
the best student and the worst student in the c1ass on the first day. Both of 
them showed considerable learning and one of the pleasing things about 
the experiment is that every student showed marked improvement in 
performance. Now one next question to ask is about how to analyse the 
difficulty of items. At the moment it appears that the best way is not in 
terms of the mathematical law involved, for example, the distributive 
law, but in terms of the kind of patterns required in the answer. These 
patterns can be defined fairly directly in a psychological rather than in a 
mathematical fashion. For instance, regardless of whether we are 
concerned with an associative, commutative or distributive law, if the 
student must fi11 in a single blank on the right of the equation, using a 
stimulus pattern or a numeral already occurring on the left, then the 
problem is relatively easy. What appears to be the case psychologically is 
that the students are perceiving the kind of pattern required without 
regard to the mathematical meaning of the law involved. Data for this 
sort ofproblem are labeled 'Type A' in Table V. Ofnext order of difficulty 
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TABLE v 
Learning data on the three types of problems in the computer-based teletype experiment 

Days TypeA TypeB TypeC 

Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. 
correct wrong time-out correct wrong time-out correct wrong time-out 

1-2 0.63 0.21 0.16 0.37 0.35 0.28 0.06 0.80 0.14 
3-4 0.89 0.09 0.02 0.62 0.36 0.02 0.26 0.53 0.21 
5-6 0.93 0.06 0.01 0.75 0.24 0.01 0.23 0.55 0.22 

are the problems requiring that two blanks be mIed in on the left, but 
using numerals that occur on the right; for example, 

(5xL....J) + (5 xL....J) = 5 x (6 + 3). 

Data for this kind of problem are labeled 'Type B' in Table V. 
Finally, most difficult are the problems that require the use of a number 

not shown on the right-hand side of the equation, which in the present 
experiment were essentially examples showing that neither subtraction 
nor division is commutative: 

7-L....J= 12-7. 

Data for this sort of problem are labeled 'Type C' in Table V. 
Admittedly a deeper sort of theory is required to explain the data of 

Table V than that exemplified in the simple five-parameter model 
discussed earlier. On the other hand, this experiment as weIl as the earlier 
one should make evident that a theory of how mathematics is learned and 
mathematical concepts are formed will not fall out of the consideration 
in any direct or simple way of the structure of mathematics itself as it is 
usually thought of by mathematicians. A new and rather subtle psycho
logical theory of learning is clearly necessary. The present paper has 
merely tried to delineate what may be important aspects of such a new 
theory. 



22. ON THE THEORY OF COGNITIVE PROCESSES* 

I. THE PROBLEM 

Within a number of disciplines ranging from psychology to computer 
science, the subject of cognitive processes is now being given a great deal 
of attention and discussion. Many of the problems and viewpoints 
expressed about cognitive processes have a very old ring in philosophy, 
and clearly have a very respectable ancestry in the history of philosophy. 
It is not too difficult to cite a number of definitions of what cognitive 
processes are taken to be. Even the man in the street may often have a 
fairly readyanswer, namely, that talk about cognitive processes is just a 
fancy way oftalking about thinking. This man-in-the-street answer is not 
a bad one. It makes quite clear that the central problem of a theory of 
cognitive processes must be to develop the theory of how we think. 
Philosophers and psychologists have had almost as much to say about 
thinking as they have about perception, and consequently, it might be 
assumed that we can rapidly move to consideration of current systematic 
theories of thinking, and consider their various strengths and weaknesses. 

Unfortunately, however, this is too sanguine a description of the 
actual state of affairs. What has been written about thinking, either by 
philosophers or psychologists, scarcely qualifies as systematic theory in 
the way in which we think of mechanics, thermodynamics or quantum 
chemistry as being such developed theories. On the other hand, one 
current direction of interest does enable us to give a very clear and 
concrete description of the kind of thing any adequate theory of thinking 
or cognitive processes must be able to accomplish. It is simply this. Any 
adequate theory must, in principle, be sufficiently detailed and categorical 
to enable us to use it to construct a machine that can think and possibly 
perceive. In using a thinking machine as a central desideratum of any 
theory, I do not intend to enter into controversies ab out whether or not 

* This paper has not been previously published. It was given as an Arnold Isenberg 
Memorial Lecture at Michigan State University, December 9, 1966. 
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machines can think. A good deal ofwhat has been said in this controversy 
seems rather silly. In any case, I shall talk here about thinking machines; 
but for those who are unhappy with this phrase, I am willing to replace 
the general phrase by a list of problems that I expect the machine to be 
able to handle. This list of problems includes the learning of elementary 
mathematics, and the development of the abilities to play various com
petitive games ranging from chess to bridge, and to conduct a dialogue 
with a human being over a fairly wide range of su bject matters. Another 
requirement is that a human being find it difficult to distinguish a dialogue 
conducted with the machine from a dialogue conducted with another 
human being. A machine that can do these things I am quite willing to 
baptize as a thinking machine. The extent to which a classical theory of 
cognitive processes provides a basis for the construction of such a 
machine is, in my own judgment, perhaps the most single useful criterion 
for evaluating the depth and significance of the theory. 

Before we turn to any particular theories, aremark about the relation 
between thinking and perceiving is in order. For brevity, I shall refer to 
the thinking-machine criterion, but I see no objective way of separating 
thinking and perceiving, and consequently, I intend that perceiving be 
implied by the concept of thinking, at least in the present context. 

II. SURVEY OF SO ME THEORIES 

Almost every major philosopher from Plato onward can be viewed as 
offering a theory of cognitive pro ces ses, and it is not difficult for anyone 
trained in philosophy to isolate major defects of any of the theories that 
have been historically important. Using the test proposed in this paper, 
it is quite clear that none of the major philosophers has provided a theory 
that is sufficiently deep and detailed to enable us to draw up the blue
prints for a thinking machine. 

Before examining this question in somewhat more detail, there is 
another way of putting the matter that will perhaps be more to the taste 
of those intrinsically opposed to machine talk. A very clear contrast can 
be drawn between the standards of evaluation traditionally used in 
dealing with epistemological theories and the standards that have been 
applied in this century in dealing with proposals about the foundations 
of mathematics. In the foundations of mathematics there is a recognized 
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body of hard fact, so to speak, that any approach to foundations must 
come to terms with. A serious philosophical approach to mathematics 
must off er a basis rich and exact enough t\) derive in non-subjective 
fashion the main results of classical analysis, including at the very least 
the elementary parts of the differential and integral calculus and the 
theory of differential equations. This criterion of being able to derive at 
least the major part of classical analysis introduces a note of realism and 
hard-headedness into discussions about the foundations of mathematics 
that is often lacking in epistemology. In evaluating different approaches 
to the foundations of mathematics, it is not required that they all yield 
precisely the same results in classical analysis. The account given by 
Zermelo-Fraenkel set theory is certainly different from that given by 
intuitionistic mathematics or recursive analysis, but in every case there 
is a large body of agreement about central results, and it is the respon
sibility of any proposed theory to give an account of these central results. 
The concept of a thinking machine is introduced to provide a similar 
criterion for evaluating theories of cognitive processes. If models - and 
here I mean semantical models - of a proposed theory cannot serve as the 
prototype of a thinking machine, and if it can be demonstrated that the 
models of the theory are not nearly adequate to account for some of the 
major cognitive phenomena mentioned already, then the theory should 
receive little attention as a fundamental account of cognitive processes. 

In order to get a sense of what the thinking-machine criterion implies 
when it is used to evaluate a theory of cognitive processes, we may look 
at several examples of such theories. A very good place to begin is with 
Rume. The main features of his theory are to be found in Book I, Part I 
of A Treatise 0/ Human Nature (references are to the Selby-Bigge 
edition). 

Rume begins with his famous division of perceptions of the mind into 
two distinct kinds, namely, impressions and ideas. "The difference be
twixt these consist in the degrees of force and liveliness in which they 
strike upon the mind, ... " Re goes on to distinguish between simple and 
complex ideas, and insists upon the fundamental proposition that all 
simple ideas are initially derived from simple impressions. For our 
purposes, the next important distinction is made in terms of how ideas 
can reappear in the mind. The two ways in which they can reappear 
depend upon the two faculties of memory and imagination; and again, it 
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is the degree of vivacity that distinguishes the ideas of memory from those 
of imagination. 

Next, we come to the famous account of how complex ideas are built 
up from simple ones. Here Hume introduces the three principles for 
connecting or associating ideas: resemblance, contiguity, and cause and 
effect. Hume then divides complex ideas into relations, modes and 
substances. For the purposes of building a thinking machine, what he 
has to say about relations is particularly pertinent and also terribly 
puzzling. He asserts without any very substantial argument that all 
philosophical relations, as he terms them, can be organized under seven 
general headings: resemblance, identity, space and time, quantity or 
number, quality, contrariety, and, again, cause and effect. 

His familiar position on substance is weIl conveyed in this sentence. 
"The idea of a substance as weIl as that of a mode, is nothing but a 
collection of simple ideas, that are united by the imagination, and have 
a particular name assigned to them, by which we are able to recaIl, 
either to ourselves or others, that collection". 

The final section of Part I is devoted to abstract ideas and the defense 
of Berkeley's thesis that there are no general ideas, but only particular 
ones. As Hume puts it, "All general ideas are nothing but particular ones, 
annexed to a certain term, which gives them a more extensive signification, 
and makes them recall upon occasion other individuals, which are similar 
to them". The doctrine of Berkeley and Hume that abstract ideas are 
particular in character is surely an essential step forward in constructing 
a thinking machine. The rationalistic doctrine of general ideas that they 
are attacking seems difficuIt to develop concretely and constructively. 

Because the process of abstraction in some form is essential for any 
theory of cognitive processes, it is desirable to take a closer look at what 
Hume has to say about abstract ideas. A first major point in his argu
ment that ideas must be particular and not general is that the mind 
cannot form a concept of quantity or quality without forming a precise 
notion of the degree of each. For example, according to Hume it is not 
possible to have a general idea of redness, as opposed to a particular idea 
of redness with a given hue, saturation, and so forth. Secondly, he 
emphasizes that abstract ideas must be individual in themselves, aIthough 
"they may become general in their representation". What he emphasizes 
is that the image in the mind is only that of a particular object "though 
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the application of it in our reasoning be the same, as if it were universal". 
He continues, "This application of ideas beyond their nature proceeds 
from our collecting all their possible degrees of quantity and quality in 
such an imperfect manner as may serve the purposes of life .,. When we 
have found a resemblance among several objects, that often occur to us, 
we apply the same name to all of them, whatever differences we may 
observe in the degrees of their quantity and quality, and whatever other 
differences may appear among them. After we have acquired a custom of 
this kind, the hearing of that name revives the idea of one of these ob
jects, and makes the imagination conceive it with all its particular 
circumstances and proportions" [po 20]. 

All this is very sound and promising, and very modern in its ring. But 
how this custom or convention of associating many ideas under a general 
term takes place Hume does not really try to explain. That is, he does not 
really offer a mechanism for generating the abstractions. His most 
succinct description of what happens is in the following passage. 

For this is one of the most extraordinary circumstances in the present affair, that after 
the mind has produc'd an individual idea; upon which we reason, the attendant 
custom reviv'd by the general or abstract term, readily suggests any other individual, 
ifby chance we form any reasoning, that agrees not with it. Thus shou'd we mention the 
word, triangle, and form the idea of a particular equilateral one to correspond to it, 
and shou'd we afterwards assert, that the three angles 0/ a triangle are equal to each 
other, the other individuals of a scalenum and isoceies, which we overlook'd at first, 
immediately crowd in upon us, and make us perceive the falsehood of this proposition, 
tho' it be true with relation to that idea, which we had form'd [po 21]. 

In a passage occurring on the next page Hume indicates that he thinks 
a deeper explanation is not possible. He says, "To explain the ultimate 
causes of our mental actions is impossible. 'Tis sufficient, if we can 
give any satisfactory account of them from experience and analogy". 

Hume has other wise and important things to say about the process of 
abstraction, but the main tenets of his theory have been covered in the 
aspects discussed thus far. If without even asking questions of empirical 
correctness, we apply the thinking-machine criterion, I am sure it is clear 
to everyone that Hume's theory does not meet the criterion. He has not 
provided a sufficiently definite and deeply enough structured theory to 
enable us to construct a model, even in principle, which will be able to 
think, or, in fact, to solve even the simplest sort of problems. The real 
truth is that on the basis of the analysis Hume gives us we would not be 
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able to get off the ground in attempting to construct a thinking 
machine. 

This point becomes even more obvious when we attempt to get a closer 
view of Hume's theory. At every turn we are unable to understand in any 
clear objective sense precisely what he intends to mean. We are not able 
to ground the discussion in any unequivocal empirical or physical 
concepts that could be used as a basis for beginning the construction of 
oUf thinking machine. Drawing an analogy from the foundations of 
mathematics, we might think, at first glance, that simple ideas should 
play the role of sets in classical foundations; but as we examine the matter 
more closely, we find that no structural assumptions about simple ideas, 
no enumerations of other properties, nor even any systematic listing of 
what are simple ideas, is given. Secondly, if we turn to the processes by 
which complex ideas are supposed to be constructed out of simple ideas, 
we find that only contiguity among the three principles of construction 
has anything like a very definite meaning. Again, when we turn to the 
seven general categories of relations, it is not clear how we build these 
relations into the potential structure of our machine. In all this discussion, 
a key role is played by the concept of resemblance; and it is precisely this 
concept that is perhaps the most difficult to come to grips with. To take a 
concrete example, suppose that our machine has a simple seeing eye 
consisting of a matrix of points, one thousand by one thousand with each 
point in the matrix being either light or dark, depending upon whether a 
simple line figure that we are attempting to recognize crosses a point. 
What does it mean to say that two figures resemble one another? No 
obvious criterion of an applicable operational sort comes to mind. It is 
possible, perhaps, to take the attitude that we cannot explicitly define 
what we mean by resemblance, but can state a large number of systematic 
properties. However, no such list of systematic properties is given, and 
matters are left in a totally indefinite state. No doubt this same vagueness 
about resemblance is at the heart of the difficulty already expressed about 
Hume's analysis of abstraction. The process by which individual ideas 
are gathered together under a general term depends upon resemblance; 
and without a clear account of resemblance we cannot begin to give an 
account of abstraction. What we are left with is a tantalizing beginning, 
one which makes important distinctions such as those between impressions 
and ideas, simple and complex ideas, memory and imagination, but 
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which is only a bare and crude sketch ofwhat must be a very complicated 
mechanism. 

It might be thought that contemporary philosophy or psychology can 
improve on Hume's theory in many different ways, and offer a very much 
more substantial theoretical analysis of cognitive processes. As I indicated 
at the beginning, I do not think this is the case, and it is important to say 
why by referring at least to typical representatives of contemporary theory. 

In the case of philosophy, we have in this century a tradition of 
constructive theory about epistemological problems running from White
head and Russell to Carnap, Goodman and other philosophers. The focus 
of this body of work is not constant and does not necessarily always 
include the topic central to this paper, but there is a common core of 
problems and concerns that runs straight from Berkeley, Hume and 
Kant to Whitehead, Russell, Carnap and Goodman. In spite of the quite 
different aims, for example, of Hume and Whitehead, a significant overlap 
may be found in Hume's discussion of abstract ideas and Whitehead's 
development of his method of extensive abstraction. But for the purposes 
of the present paper, Whitehead is a bad example, because his concern for 
what we might term the psychology of thinking and perception is minimal. 
He is not really interested in giving an account of realistic mechanisms of 
thinking and perceiving. Rather, he attempts to construct the main lines 
of contemporary physical science from some basic assumptions and ideas 
about perception that can scarcely be regarded as a faithful account of 
how the human organism operates, or how a thinking machine could 
possibly be made to operate. (In my own judgment, the sober task of 
having to construct a thinking and perceiving machine might have had a 
most salutary effect upon Whitehead's ruminations - even the earlier ones 
embodied in The Principles 01 Natural Knowledge and The Concept 01 
Nature.) 

Probably the most ambitious recent effort in constructive epistemology 
is Goodman (1951). The clarity and precision of Goodman's analysis is 
incomparably greater than that of Hume's; but much is lost in the 
process, for it is undeniable that major aspects and characteristics of 
human knowing and thinking that are treated by Hume are omitted by 
Goodman. Three examples are the synthesis of complex ideas out of 
simple ideas, the structural character of memory, and the simulation of 
the real world in imagination. Goodman does not consider the more 
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active parts of the human apparatus for thinking and perceiving, but 
concentrates instead on relatively simple aspects of perception of the sort 
one associates with Locke's tabula rasa. In making this remark about 
Goodman's work, I do not mean to say that he elaims to have given a 
complete account of thinking and perceiving, but has not done so. He 
quite correctly and modestly appraises what he has accomplished, and 
certainly one of the virtues ofwhat he has done is that it may be evaluated 
as a specific set of results, in a way that is not possible for much of the 
philosophical analysis in this area. Just to give a sense of how far we are 
from an adequate solution, even within the domain covered by Goodman 
(1951, Parts II and III), we may note the considerable body of psycholog
ical evidence that an adequate account of the perception of size and 
shape must enter at least into the kinematics of eye and body movement, 
and also the complexities of binocular vision. In fact, once motion or 
binocular vision is considered, there seems to be an excellent basis for 
challenging the entire concept of the visual field that is the basis of much 
of Goodman's analysis of visual perception. Yet, it is all too easy to 
criticize Goodman - he does it himself in terms of outlining what he has 
not yet accomplished; it is not nearly as easy to proceed to the construc
tive task of improving on his results. I do think that amistaken aspect 
of Goodman's approach is to work within a nominalistic framework and 
not to use all possible devices of modern mathematics and logic as tools 
of analysis in trying to get a grip on the main problems. Once the intri
cacies of motion are introduced, the whole ritual of working in a nomi
nalistic fashion seems futile. The full apparatus of i mathematical 
analysis is required even to analyze quite simple problems - for 
example, the perceived invariance of a static world as seen by a moving 
Cyelops. 

By turning from philosophy to psychology, we might hope to find in 
recent years a larger body of constructive work and a eloser approximation 
to the set of blueprints we need for our thinking machine. But first there 
is one point that needs to be c1eared up. It is very much to be emphasized 
that I do not have in mind blueprints that would tell, for example, how 
DNA molecules are used to code information from the outside world and 
to synthesize concepts. Rather, the blueprints should be at the level of 
logical function and logical organization. They need not inelude a 
physiological specification of how human organisms work at the molec-
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ular level. Ultimately, of course, it is a desirable and essential scientific 
goal to achieve this molecular understanding, but there is every reason to 
think that we are a very great distance from it. We still have much 
important work to do in solving the logical problem of how a thinking 
machine is best organized to perform characteristicaHy human tasks in 
cognition. Neither psychologists nor philosophers are prepared to offer a 
physiological analysis of the actual structural mechanisms used in the 
human brain and nervous system; and physiologists, on the other hand, 
are certainly not prepared to make the inference from what they know 
about the behavior of neurons or larger parts of the nervous system to 
major functional characteristics of the system. Moreover, the task of 
analyzing the logical character of human thinking and perceiving is not 
only in a classical philosophical tradition, but also has current relevance 
for the attempts actuaHy to build thinking machines by using digital 
computers. 

If we begin with the mathematical models of learning processes which 
have been most thoroughly explored in the past decade, it is easy enough 
to show that they are scarcely adequate to provide structural mechanisms 
that will enable us to draw the blueprints of our thinking machine. For 
both the linear model and the smaH-element stimulus-sampling Markov 
models, I have tried to make out the case in some detail elsewhere (Suppes, 
1964) and will not repeat the arguments. In the last several years, more 
complex models of learning have begun to appear. It will perhaps be 
useful to consider as a typical example one that intro duces mechanisms 
of memory as weH as mechanisms of conditioning in order to give a 
deeper running account of learning processes. A weH worked-out theory 
is to be found in the recent report by Atkinson and Shiffrin (1968). They 
propose a two-process model for memory with the foHowing features. 
The memory system has two central components, a short-term memory 
buffer and a long-term store. Experiments for which the model was 
designed are those in which aseries of items is presented to the subject 
for subsequent recall. Familiar examples would be digit-span studies, 
paired-associates learning, or second-Ianguage experiments on vocabulary 
learning. Each stimulus-item presented to the subject is postulated to 
enter the short-term buffer which has the characteristics of a pushdown 
store. The term pushdown comes from the fact that when an item enters 
the store it enters at the top and works its way down to the first position 



ON THE THEORY OF COGNITIVE PROCESSES 403 

as new items are entered. The short-term buffer is postulated to have a 
fixed finite size. Once the buffer is filled, each time a new item is entered, 
an old one is displaced. But this displacement need not consist simply of 
the earliest item being displaced by the latest item. More compIicated 
probabilistic arrangements are postulated in order to give a more 
realistic account of actual experimental data. A simple one-parameter 
assumption is to postulate that the oldest item in slot one is dropped 
with probability (j; if that item is not dropped, then the item in position 2 
is dropped with probability (j, and so forth. We thus obtain an approxi
mately geometrical distribution for the probability of any item being 
dropped. 

Concerning the long-term store, it is postulated by Atkinson and 
Shiffrin (1968) that while items are held in the short-term buffer, in
formation about them is transferred to the long-term store. This in
formation will not in all cases be sufficient to allow recall ofthe item, and 
even when the information is sufficient, the subject may not be able to 
recall the item because his search of the long-term store is unsuccessful. 
A probabilistic mechanism for search of the long-term store is introduced; 
it has the property that the greater the number of items in long-term 
store, the smaller the probability that any particular one will be retrieved. 
The assumptions that have been described qualitatively and rather loosely 
here are worked out in detail by Atkinson and Shiffrin (1968), and applied 
successfully to the prediction of data from several experiments. On the 
other hand, it is also clear that the model of Atkinson and Shiffrin (1968) 
is still too simple to account for any of the major features that Hume was 
striving to deal with. There are no mechanisms for making comparisons 
or judging resemblances. The information about a stimulus item that is 
put in long-term store is measured in unanalyzed fashion by a single 
numerical parameter. We could scarcely use this parameter in any direct 
way to aid us in drawing up the blueprints of our thinking machine. In 
fact, the properties of the memory already used in current computers are 
at least as complex as those postulated by Atkinson and Shiffrin (1968), 
but the compIicated problems of cross-referencing and structuring to 
provide judgments of resemblance and synthesis of new concepts or 
complex ideas are scarcely touched. The direction of work exempIified 
by the paper of Atkinson and Shiffrin and related papers by others is 
promising and will lead to useful results; but it is easy to underestimate 
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the distance that still lies between the simplicity of these models and the 
complexity implied by our thinking-machine criterion. 

When we survey the problems of cognition from Hume onward and 
examine at the same time processes by which we are able to build up 
mathematics on a conceptual basis, the overwhelming importance of 
processes of abstraction becomes apparent. As the discussions of Berkeley 
and Hume indicate, the importance of abstraction has been fully ap
preciated for a long time. It is perhaps unfortunate that it has not received 
more attention in psychology. The psychological studies of discrimination, 
generalization and transfer have not as yet provided a basis upon which to 
build a theory of abstraction. Indeed, they have scarcely yet been adequate 
to build a theory of the processes they initially consider. It is from certain 
standpoints a conceptual miracle that the whole foundations of mathe
matics can be constructed on the empty set just by the appropriate 
cascading of sets. That we can extract mathematics by a process of 
abstraction from entities no more complicated than the empty set is a 
real intellectual surprise. 

There has been one direction of research in psychology aimed at con
structing theories that mirror to some extent the processes of abstraction 
refiected in the foundations of mathematics. I refer to theories of me
diation; it will be useful to take a cursory look at what they have ac
complished. 

The paradigm of mediation is of the following sort. The subject learns 
to associate item B to item A. He then learns to associate item C to item 
B. He is now presented item A; the prediction of mediation theory is that 
he will learn more rapidly to associate C to A on the basis of B as a 
mediator. By picking arbitrary items A, Band C, we attempt to study the 
pure process of mediation apart from any cognitive structuring of the 
stimuli. Apart from specific experimental work, general supporting 
evidence for the process of mediation is characterized in terms of the 
obvious facilitating effect of verbalizing concepts and ideas. On the 
surface, the positive effects of mediation in organizing thought seem to be 
evident, and are closely related to some of the things Hume has to say 
about abstract ideas. A typical problem for precisely stated models of 
mediation is to predict the relative efficacy ofthe eight different paradigms 
of mediation that can be based upon the precise location of the mediating 
stimulus Band the stimuli A and C. For example, we can begin with the 
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stimulus B, elicit stimulus A as a response in the first training, then 
present stimulus C and elicit stimulus B as a response. Finally, we test as 
before the extent to which the mediation of B affects positively the 
elicitation of C when A is presented. It is easy to compute that there are 
eight possible such paradigms given that the test is always in the form 
A-C, and that Bis always the mediating item. Experimental studies of the 
eight paradigms have been reported by Peterson et al. (1964), and others. 
A mathematically formulated model ofthe sort needed to make predictions 
of relative facilitation is given in Crothers and Suppes (1967); their model 
is closely allied to the one of Atkinson and Shiffrin already described, 
although the models were developed independently. 

For some purposes, the stripping away of all cognitive structure in 
studies of mediation seems appropriate in asking what are the pure effects 
of the arrangement of stimuli in obtaining mediational effects. On the 
other hand, from the standpoint of the present paper, the stripping away 
of all structure means that the mediational models that are developed, and 
the experimental results that are obtained, have little bearing on the more 
complex processes required to outline the structure of a thinking machine. 
The central concept of mediation theory, which in many cases we would 
think of as verbalization of concepts, certainly seems in the right direction. 
It also seems to be a way of catching in psychological terms the important 
and powerful methods of abstraction exemplified in axiomatic set theory, 
as applied to building up the structure of mathematics. Unfortunately, 
mediation theory has not yet been successful in postulating the additional 
aspects of structure central to erecting a substantial theory. The funda
mental problems faced by Hume in his discussion of abstract ideas have 
not been solved in current attempts at mediation theory. The method of 
subsuming particular ideas under general terms, which Hume found 
extraordinary and essentially unexplainable, is essentially as much a 
mystery for current mediation theories. Once again, what seem to be 
missing are the concrete principles of resemblance and concept synthesis. 

Many cognitive psychologists would judge that the examples of theory 
I have selected from psychology or philosophy all reflect the stimulus
response tradition of which Hume is one of the first creators. There do 
exist cognitive alternatives in psychology, running from gestalt psychology 
to the theories of Piaget and Bruner. In many respects, the theoretical 
stance and experimental work ofthese cognitive psychologists have served 
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as an excellent corrective to excessive concentration by stimulus-response 
psychologists on a few paradigm experiments and a few overly simplified 
issues. On the other hand, if we look to the cognitive psychologists for 
the blueprints of our thinking machine, we will find that it is about as 
hopeless as looking for architectural details of a house from a sketch of 
an impressionist like Renoir. This lack of concrete detail and well worked
out theory is characteristic. 

There is, however, one new direction that is considerably more prom
ising and should be looked at in a different light. This is the approach to 
cognitive problems through information-processing languages developed 
by Allen Newell and Herbert Simon. Although in principle the use of 
information-processing languages and pro grams is independent of the 
existence of digital computers, in practice this theoretical framework has 
only come to the fore as it has been applied to the programming of 
computers. Specific tests have been made of the extent to which the 
pro grams written do imitate, or to use the favorite current word, simulate, 
human behavior in specified circumstances. Among the circumstances 
that have been studied rather thoroughly are relatively simple experiments 
on paired-associates learning or concept identification. 

It is not possible here to examine in detail the accomplishments and 
limitations of what has been done thus far with information-processing 
programs. It is fair to say that the kind of problems framed initially for 
our thinking machine have not yet been satisfactorily solved by this 
rather direct approach to the construction of a thinking machine. Without 
doubt, part of the problem has been that too many aspects of human 
thinking are not caught in the structure of information-processing 
languages. Their structure is relatively close to ordinary English, or at 
least does not provide a framework for what must be essential aspects of 
any thinking device with the approximate power of the human mind. 

A convergence of the programming or simulation approach and the 
mathematical-models approach seems likely to occur in the future. There 
is some reason to think we are on the edge of rapid developments. Any 
theory that is successful would seem to need functional and structural 
concentration in at least four areas: problems of concept formation and 
learning; problems of perception, particuIarly the geometry of perception; 
problems of information processing in the Bayesian sense; and problems 
of organization for accessing and cross-referencing long-term memory. 
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Rather than attempt to survey all of these problem areas, I would like 
to conc1ude with some relatively detailed remarks about two special 
problems: the logic of belief as reflected in the organization of belief 
structures; and the problems of mechanisms for changing belief. 

III. LOGIC OF BELIEF 

In illustrating how difficult it is to understand how belief structures are 
organized in the human memory, it will be possible to work from some 
simple examples. Think of writing down memories of a11 your personal 
experiences beginning with those of earliest childhood. As a rough 
approximation, let us suppose that this is done in a very thorough 
fashion, and you are able to fi11 something about the size of a complete set 
of Encyclopedia Britannica. I do not mean to suggest this would be as 
much information as you could provide, but it will do to illustrate the 
problems of indexing and accessing. We now ask some simple questions 
of you, on the one hand, and of the written record, on the other. Have 
you ever been to Calcutta? Have you been in an airplane at an altitude 
greater than 500oo? Have you been married at least twice? Do you have 
two sisters? Are your grandparents now living? Did you do well in 
high-school geometry? Did you like the teacher of English you had as a 
senior in high school? Can you speak Chinese? What I find fantastic 
about these questions is that any individual in the audience can answer 
them almost instantaneously, whereas almost any procedure for or
ganizing the written record will make it laborious to find the answers to 
at least some of the questions, even with a large computer available. One 
kind of problem is cross-indexing of subject matter in what is apparently 
a wide variety of ways. The second problem is the central one of trying 
to become c1ear about the logical or semantical form in which beliefs are 
stored. Certainly it seems clear that a11 of them are not stored in terms of a 
verbal symbolic representation. Just about all of us can introspectively 
testify to beliefs or memories that are represented by visual or auditory 
images. Even if we restrict ourselves to beliefs that are stored in terms of 
a symbolic representation, it is by no means c1ear how this storage takes 
place. For example, can a case really be made out that symbolic beliefs 
are stored in the form of kernel sentences? 

In this connection, we encounter a problem ofrationality that has been 



408 PART IV. FOUNDATIONS OF PSYCHOLOGY 

little discussed either in philosophy or psychology. We are all aware that 
beliefs or knowledge we have in detail at a given time will gradually 
decay and disappear if they are not reviewed and used on some sort of 
intermittent schedule. If we grant for simplicity of the present discussion 
that review is the main device for maintaining knowledge stored in 
memory, we can see that the reßective man needs to decide what is most 
rational for him to remember, and what degree of detail is appropriate. 
Experience left to take its own course will dictate an answer ; but just as 
in the case of other analyses of rational behavior, it would be interesting 
to have some clear concepts of rational maintenance of belief to compare 
to what occurs in actual practice. The problem arises in a direct way in 
using computers, because storage devices are finite in size; thus we have 
the option of simply throwing away large bodies of material, or putting it 
in relatively inaccessible storage. Here the problem of rationality can be 
given a quite clear formulation in some general decision framework. 
What I want to emphasize is that a similar sort of theory can and should 
be developed for the maintenance of human knowledge in the mind of a 
given individual. 

IV. MECHANISMS FOR CHANGING BELIEFS 

Traditionally, there are three important ways of changing beliefs. One is 
to learn a new fact; the second is to make a new inference from known 
facts; and the third is to discover a new concept and possibly a new law. 
The scholastic ring of my description of these three methods is testimony 
enough to how far removed they are from the details of what actually 
goes on when belief structures are changed in the mind of a given person. 
Two central mechanisms that have not received sufficient notice are the 
mechanism of information selection and the assignment of a measure of 
significance to the information that is selected. The peripheral nervous 
system of an organism is under constant bombardment by a variety of 
forms of energy impinging upon receptors. In addition, the organism is 
continually making conscious or unconscious decisions about how to 
scan and probe the surrounding environment. So very little of the potential 
information impinging on the organism is actually selected for attention 
that very strong selective principles must be at work. There have been 
few attempts at characterization of a rational way of handling these 
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mechanisms of attention, although they have been studied in other 
settings. For example, they have been discussed in connection with the 
design of search procedures and the organization of artificial perceiving 
devices. It is often not only rational, but necessary to respond to many 
immediate stimuli simply in order to avoid immediate harm. One parody 
of the philosopher is as the absentminded thinker strolling about in a 
state of concentration that ignores all immediate stimulus input; but this 
is a parody. In our modern urban society, a philosopher who walked 
about oblivious of his surroundings would be considered foolish rather 
than wise, and, in any case, would not be long for this world. On the other 
hand, it continues to be apart of both the popular and serious con
ception of rationality that deliberate and considered response to many 
stimuli and situations is appropriate. 

The most thoroughly worked-out theory for analyzing the structure of 
beliefs and the application of beliefs to behavior is the theory of expected 
utility, as developed by Ramsey, de Finetti, Savage, and others. It will be 
worth examining in conc1usion how adequately this theory provides a 
mechanism for changing beliefs. Even if we ignore the fundamental 
problems of attention and selection, there are at least three main defects 
in the theory. 

Recall that beliefs are expressed in this theory in terms of an algebra of 
possible events and a probability measure P on this algebra. 

My first point is that the probability measure P, effectively expressing 
my beliefs at time t, cannot be used to express what I actually observe 
immediately after time t; for P is already "used up", so to speak, in 
expressing the apriori probability of each possible event that might occur. 
Thus it cannot be used to express the unconditional occurrence of that 
which in fact did happen at time t. Pragmatically, the situation is c1ear. If 
an event A occurs and is noticed, the individual then changes his belief 
pattern from the measure P to the conditional measure PA- What has not 
been adequately commented upon in discussions of these matters is that 
the probability measure P held at time t cannot be used to express what 
actually happened immediately after t, but only to express, at the most, 
how P would change if so and so did happen. 

My second point is that the theory is not adequate to the many cases 
in which changes in belief may be expressed simply as changes in prob
ability, but not explicitly in terms of changes in conditional probability, 
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because the changes in probability are not completely analyzable in terms 
of the explicitly noticed occurrence of events. For example, the prob
ability that I assign to the event of rain tomorrow will change from 
moming to aftemoon, even though I am not able to express in explicit 
form the evidence I have used in coming to this change. 

My third point is that the introduction of a new concept will ordinarily 
require a change in the algebra of events and not just in the probability 
measure P. Scientific examples of this kind of change are easily given. 

In my view, any interesting concept of human rationality must be tied 
to an adequate theory of human powers and limitations of cognition. To 
move beyond the relatively simple scheme offered by Ramsey and de 
Finetti, and meet the three criticisms just stated, we must develop a 
deeper and more detailed theory of cognitive processes than has yet been 
formulated. 



23. STIMULUS-RESPONSE THEORY OF 

FINITE AUTOMATA* 

I. INTRODUCTION 

Ever since the appearance of Chomsky's famous review (1959) ofSkinner's 
Verbal Behavior (1957), linguists have conducted an effective and active 
campaign against the empirical or conceptual adequacy of any learning 
theory whose basic concepts are those of stimulus and response, and 
whose basic processes are stimulus conditioning and stimulus sampling. 

Because variants of stimulus-response theory had dominated much of 
experimental psychology in the two decades prior to the middle fifties, 
there is no doubt that the attack of the linguists has had a salutary 
effect in disturbing the theoretical complacency of many psychologists. 
Indeed, it has posed for all psychologists interested in systematic theory 
a number of difficult and embarrassing questions about language learning 
and language behavior in general. However, in the flush of their initial 
victories, many linguists have made extravagant claims and drawn 
sweeping, but unsupported conclusions about the inadequacy of stimulus
response theories to handle any central aspects of language behavior. I 
say 'extravagant' and 'unsupported' for this reason. The claims and 
conclusions are supported neither by careful mathematical argument to 
show that in principle a conceptual inadequacy is to be found in all 
standard stimulus-response theories, nor by systematic presentation of 
empirical evidence to show that the basic assumptions of these theories 
are empirically false. To cite two recent books of some importance, 
neither theorems nor data are to be found in Chomsky (1965) or Katz and 
Postal (1964), but rather one can find many useful examples of linguistic 
analysis, many interesting and insightful remarks ab out language behavior, 
and many incompletely worked out arguments about theories oflanguage 
learning. 

The central aim of the present paper and its projected successors is to 
prove in detail that stimulus-response theory, or at least a mathematically 

* Reprinted from Journal 0/ Mathematical Psychology 6 (1969), 327-355. 
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precise version, can indeed give an account of the learning of many 
phrase-structure grammars. I hope that there will be no misunderstanding 
about the claims I am making. The mathematical definitions and theorems 
given here are entirely subservient to the conceptual task of showing that 
the basic ideas of stimulus-response theory are rich enough to generate 
in a natural way the learning of many phrase-structure grammars. I am 
not claiming that the mathematical constructions in this paper correspond 
in any exact way to children's actuallearning of their first language or to 
the learning of a second language at a later stage. A number of funda
mental empirical questions are generated by the formal developments in 
this paper, but none of the relevant investigations have yet been carried 
out. Some suggestions for experiments are mentioned below. I have been 
concerned to show that linguists are quite mistaken in their claims that 
even in principle, apart from any questions of empirical evidence, it is not 
possible for conditioning theory to give an account of any essential parts 
of language learning. The main results in this paper, and its sequel 
dealing with general context-free languages, show that this linguistic 
claim is false. The specific constructions given here show that linguistic 
objections to the processes of stimulus conditioning and sampling as 
being unable in principle to explain any central aspects of learning a 
grammar must be reformulated in less sweeping generality. 

The mathematical formulation and proof of the main results presented 
here require the development of a certain amount of formal machinery. 
In order not to obscure the main ideas, it seems desirable to describe 
in a preliminary and intuitive fashion the character of the results. 

The central idea is quite simple - it is to show how by applying accepted 
principles of conditioning an organism may theoretically be taught by an 
appropriate reinforcement schedule to respond as a finite automaton. An 
automaton is defined as a device with a finite number of internal states. 
When it is presented with one of a finite number of letters from an 
alphabet, as a function of this letter of the alphabet and its current 
internal state, it moves to another one of its internal states. (A more 
precise mathematical formulation is given below.) In order to show that an 
organism obeying general laws of stimulus conditioning and sampling 
can be conditioned to become an automaton, it is necessary first of all to 
interpret within the usual run of psychological concepts, the notion of a 
letter of an alphabet and the notion of an internal state. In my own 
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thinking about these matters, I was first misled by the perhaps natural 
attempt to identify the internal state of the automaton with the state of 
conditioning of the organism. This idea, however, turned out to be 
clearly wrong. In the first place, the various possible states of conditioning 
of the organism correspond to various possible automata that the 
organism can be conditioned to become. Roughly speaking, to each state 
of conditioning there corresponds a different automaton. Probably the 
next most natural idea is to look at a given conditioning state and use the 
conditioning of individual stimuli to represent the internal states of the 
automaton. In very restricted cases this correspondence will work, but 
in general it will not, for reasons that will become clear later. The corres
pondence that turns out to work is the following: the internal states of 
the automaton are identified with the responses of the organism. There 
is no doubt that this "surface" behavioral identification will make many 
linguists concerned with deep structures (and other deep, abstract ideas) 
uneasy, but fortunately it is an identification already suggested in the 
literature of automata theory by E. F. Moore and others. The suggestion 
was originally made to simplify the formal characterization of automata 
by postulating a one-one relation between internal states of the machine 
and outputs of the machine. From a formal standpoint tbis means that 
the two separate concepts of internal state and output can be welded into 
the single concept of internal state and, for our purposes, the internal 
states can be identified with responses of the organism. 

The correspondence to be made between letters of the alphabet that 
the automaton will accept and the appropriate objects within stimulus
response theory is fairly obvious. The letters of the alphabet correspond 
in a natural way to sets of stimulus elements presented on a given trial 
to an organism. So again, roughly speaking, the correspondence in tbis 
case is between the alphabet and selected stimuli. It may seem like a 
happy accident, but the correspondences between inputs to the autom
ata and stimuli presented to the organism, and between internal states 
of the machine and responses of the organism, are conceptually very 
natural. 

Because of the conceptual importance of the issues that have been 
raised by linguists for the future development of psychological theory, 
perhaps above all because language behavior is the most characteristically 
human aspect of our behavior patterns, it is important to be as clear as 
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possible about the claims that can be made for a stimulus-response theory 
whose basic concepts seem so simple and to many so woefully inadequate 
to explain complex behavior, ineluding language behavior. I cannot 
refrain from mentioning two examples that present very useful analogies. 
First is the reduction of all standard mathematics to the concept of set 
and the simple relation of an element being a member of a set. From a 
naive standpoint, it seems unbelievable that the complexities of higher 
mathematics can be reduced to a relation as simple as that of set member
ship. But this is indubitably the case, and we know in detail how the 
reduction can be made. This is not to suggest, for instance, that in 
thinking about a mathematical problem or even in formulating and 
verifying it explicitly, a mathematician operates simply in terms of 
endlessly complicated statements about set membership. By appropriate 
explicit definition we introduce many additional concepts, the ones 
actually used in discourse. The fact remains, however, that the reduction 
to the single relations hip of set membership can be made and in fact has 
been carried out in detail. The second example, which is close to our 
present inquiry, is the status of simple machine languages for computers. 
Again, from the naive standpoint it seems incredible that modern com
puters can do the things they can in terms either of information processing 
or numerical computing when their basic language consists essentially 
just of finite sequences of 1 's and O's; but the more complex computer 
languages that have been introduced are not at all for the convenience of 
the machines but for the convenience of human users. It is perfectly 
clear how any more complex language, like ALGOL, can be reduced by a 
compiler or other device to a simple machine language. The same attitude, 
it seems to me, is appropriate toward stimulus-response theory. We 
cannot hope to deal directly in stimulus-response connections with 
complexhuman behavior. Wecanhope, asin the two casesjust mentioned, 
to cons truct a satisfactory systematic theory in terms of which a chain of 
explicit definitions of new and ever more complex concepts can be 
introduced. It is these new a nd explicitly defined concepts that will be 
related directly to the more complex forms of behavior. The basic idea of 
stimulus-response association or connection is elose enough in character 
to the concept of set membership or to the basic idea of automata to 
make me confident that new and better versions of stimulus-response 
theory may be expected in the future and that the scientific potentiality of 
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theories stated essentially in this framework has by no means been 
exhausted. 

Before turning to speeifie mathematical developments, it will be useful 
to make explieit how the developments in this paper may be used to show 
that many of the eommon eonceptions of eonditioning, and partieularly 
the claims that eonditioning refers only to simple reflexes like those of 
salivation or eye blinking, are mistaken. The mistake is to eonfuse 
partieular restrieted applieations of the fundamental theory with the 
range of the theory itself. Experiments on classical eonditioning do 
indeed represent a narrow range of experiments from a broader eon
eeptual standpoint. It is important to realize, however, that experiments 
on classieal eonditioning do not define the range and limits of eon
ditioning theory itself. The main aim of the present paper is to show how 
any finite automaton, no matter how eomplieated, may be eonstrueted 
purely within stimulus-response theory. But from the standpoint of 
automata, classieal eonditioning represents a partieularly trivial example 
of an automaton. Classical eonditioning may be represented by an 
automaton having a one-Ietter alphabet and -a single internal state. The 
next simplest ease eorresponds to the strueture of classieal diserimination 
experiments. Here there is more than a single letter to the alphabet, but 
the transition table of the automaton depends in no way on the internal 
state of the automaton. In the ease of discrimination, we may again think 
of the responses as eorresponding to the internal states of the automaton. 
In this sense there is more than one internal state, eontrary to the ease of 
elassieal eonditioning, but what is fundamental is that the transition 
table of the automaton does not depend on the internal states but only 
on the external stimuli presented aeeording to a sehedule fixed by the 
experimenter. It is ofthe utmost importanee to realize that this restrietion, 
as in the ease of classical eonditioning experiments, is not a restrietion 
that is in any sense inherent in eonditioning theory itself. It merely 
represents eoneentration on a eertain restrieted class of experiments. 

Leaving the teehnical details for later, it is still possible to give a very 
clear example of eonditioning that goes beyond the classical eases and 
yet represents perhaps the simplest non-trivial automaton. By non-trivial 
I mean: there is more than one letter in the alphabet; there is more than 
one internal state; and the transition table ofthe automaton is a function 
of both the external stimulus and the eurrent internal state. As an example, 
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we may take a rat being run in a maze. The reinforcement schedule for the 
rat is set up so as to make the rat become a two-state automaton. We will 
use as the external alphabet of the automaton a two-Ietter alphabet 
consisting of a black or a white card. Bach choice point of the maze will 
consist of either a left turn or a right turn. At each choice point either a 
black card or a white card will be present. The following table describes 
both the reinforcement schedule and the transition table of the automaton. 

L R 

LB rrro LW 0 1 
RB 0 1 
RW 1 0 

Thus the first row shows that when the previous response has been left 
(L) and a black stimulus card (B) is presented at the choice point, with 
probability one the animal is reinforced to turn left. The second row 
indicates that when the previous response is left and a white stimulus card 
is presented at the choice point, the animal is reinforced 100% ofthe time 
to turn right, and so forth, for the other two possibilities. From a formal 
standpoint this is a simple schedule of reinforcement, but already the 
double aspect of contingency on both the previous response and the 
displayed stimulus card makes the schedule more complicated in many 
respects than the schedules of reinforcement that are usually run with 
rats. I have not been able to get a uniform prediction from my experi
mental colleagues as to whether it will be possible to teach rats to learn 
this schedule. (Most of them are confident pigeons can be trained to 
respond like non-trivial two-state automata.1) One thing to note about 
this schedule is that it is recursive in the sense that if the animal is properly 
trained according to the schedule, the length of the maze will be of no 
importance. He will always make a response that depends only upon his 
previous response and the stimulus card present at the choice point. 

There is no pretense that this simple two-state automaton is in any 
sense adequate to serious language learning. I am not proposing, for 
example, that there is much chance of teaching even a simple one-sided 
linear grammar to rats. I am proposing to psychologists, however, that 
already automata of a small number of states present immediate ex
perimental challenges in terms of what can be done with animals of each 
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species. For example, what is the most complicated automaton a monkey 
may be trained to imitate? In this case, there seems some possibility of 
approaching at least reasonably complex one-sided linear grammars 
(using the theorem that any one-sided linear grammar is definable by a 
finite-state automaton). In the case of the lower species, it will be neces
sary to exploit to the fullest the kind of stimuli to which the organisms are 
most sensitive and responsive in order to maximize the complexity of the 
automata they can imitate. 

If a generally agreed upon definition of complexity for finite automata 
can be reached, it will be possible to use this measure to gauge the 
relative level of organizational complexity that can be achieved by a 
given species, at least in terms of an extern al schedule of conditioning and 
reinforcement. I do want to emphasize that the measures appropriate to 
experiments with animals are almost totally different from the measures 
that have been discussed in the recent literature of automata as com
plexity measures for computations. What is needed in the case of animals 
is the simple and orderly arrangement on a complexity scale of automata 
that have a relatively small number of states and that accept a relatively 
small alphabet of stimuli. The number of distinct training conditions is 
not a bad measure and can be used as a first approximation. Thus in the 
case of classical conditioning, this number is one. In the case of dis
crimination between black and white stimuli, the number is two. In the 
case of the two-state automaton described for the maze experiment, this 
number is four, but there are some problems with this measure. It is not 
clear that we would regard as more complex than this two-state autom
aton, an organism that masters a discrimination experiment consisting 
of six different responses to six different discriminating stimuli. Con
sequently, what I have said here about complexity is pre-systematic. I do 
think the development of an appropriate scale of complexity can be of 
theoretical interest, especially in cross-species comparison of intellectual 
power. 

The remainder of this paper is devoted to the technical development of 
the general ideas already discussed. Section 11 is concerned with standard 
notions of finite and probabilistic automata. Readers already familiar 
with this literature should skip this section and go on to the treatment of 
stimulus-response theory in Section 111. It has been necessary to give a 
rigorous axiomatization of stimulus-response theory in order to formulate 
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the representation theorem for finite automata in mathematically precise 
form. However, the underlying ideas of stimulus-response theory as 
formulated in Section HI will be familiar to all experimental psychologists. 
In Section IV the most important result of the paper is proved, namely, 
that any finite automaton can be represented at asymptote by an ap
propriate model of stimulus-response theory. In Section V some extensions 
of these results to probabilistic automata are sketched, and an example 
from arithmetic is worked out in detail. 

The relationship between stimulus-response theory and grammars is 
established in Section IV by known theorems relating automata to 
grammars. The results in the present paper are certainly restricted 
regarding the full generality of context-free languages. Weakening these 
restrietions will be the focus of a subsequent paper. 

Some results on tote hierarchies and plans in the sense of Miller et al. 
(1960) are also given in Section IV. The representation oftote hierarchies 
by stimulus-response models follows directly from the main theorem of 
that section. 

-
11. AUTOMATA 

The account of automata given here is formally self-contained, but not 
really self-explanatory in the deeper sense of discussing and interpreting 
in adequate detail the systematic definitions and theorems. I have followed 
closely the development in the well-known article of Rabin and Scott 
(1959), and for probabilistic automata, the article of Rabin (1963). 

DEFINITION I: A structure m: = (A, 1:, M, so, F) is a finite (determin-
istic) automaton if and only if 

(i) A is afinite, nonempty set (the set 01 states olm:), 
(ii) 1: is a finite, nonempty set (the alphabet), 

(iii) M is a lunction Irom the Cartesian product A x 1: to A (M defines 
the transition table 01 m:) , 

(iv) So is in A (so is the initial state 01 m:), 
(v) Fis a subset 01 A (F is the set olfinal states olm:). 

In view of the generality of this definition it is apparent that there are 
a great variety of automata, but as we shall see, this generality is easily 
matched by the generality of the models of stimulus-response theory. 

In notation now nearly standardized, 1:* is the set of finite sequences of 
elements of 1:, including the empty sequence A. The elements of 1:* are 
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ordinarily ealled tapes. If 0"1' ••. ' O"k are in 1:, then x= 0"1··· O"k is in 1:*. (As 
we shall see, these tapes eorrespond in a natural way to finite sequenees of 
sets of stimulus elements.) The funetion M ean be extended to a funetion 
from A x 1:* to A by the following reeursive definition for s in A, x in 1:*, 
and 0" in 1:. 

M(s, A) = s 

M(s, xO") = M(M(s, x), 0"). 

DEFINITION 2: A tape x 011:* is aeeepted by m if and only if M(so, x) 
is in F. A tape x that is aeeepted by m is a sentenee 01 m. 

We shall also refer to tapes as strings of the alphabet 1:. 
DEFINITION 3: The language L generated by m is the set 01 all sentenees 

olm, i.e., the set 01 all tapes aeeepted by m. 
Regular languages are sometimes defined just as those languages 

generated by so me finite automata. An independent, set-theoretieal 
eharaeterization is also possible. The basic result follows from Kleene's 
(1956) fundamental analysis of the kind of events definable by McCulloch
Pitts nets. Several equivalent formulations are given in the article by 
Rabin and Scott. From a linguistic standpoint probably the most useful 
eharaeterization is that to be found in Chomsky (1963, pp. 368-371). 
Regular languages are generated by one-sided linear grammars. Such 
grammars have a finite number of rewrite rules, whieh in the case of 
right-linear rules, are of the form 

A~xB. 

Whichever of several equivalent formulations is used, the fundamental 
theorem, originally due to Kleene, but closely related to the theorem of 
Myhill given by Rabin and Seott, is this. 

THEOREM ON REGULAR LANGUAGES: Any regular language is generated 
by some finite automaton, and every finite automaton generates a regular 
language. 

For the main theorem of this article, we need the concepts of isomor
phism and equivalence of finite automata. The definition of isomorphism 
is just the natural set-theoretical one for structures like automata. 

DEFINITION 4: Let m=(A, 1:, M, so, F) and m' =(A', 1:', M', s~, F') 
be finite automata. Then m and m' are isomorphie if and only if there exists 
a lunetion I sueh that 
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(i) fis one-one, 
(ii) Domain off is A u 1: and range off is A' u 1:', 

(iii) For every a in Au 1: 

aEA if and only if f(a)EA', 

(iv) For every s in A and u in 1: 

f(M(s, 0")) = M'(t(s),j(u)) , 

(v) f(so)=s~, 
(vi) For every s in A 

sEF if and only if f(s)EF'. 

It is apparent that eonditions (i)-(iii) of the definition imply that for 
every a in A u 1: 

a E 1: if and only if f( a) E 1:' , 

and eonsequently, this eondition on 1: need not be stated. From the 
standpoint of the general algebraie -or set-theoretieal eoneept of iso
morphism, it would have been more natural to define an automaton in 
terms of abasie set B = Au 1:, and then require that A and 1: are both 
subsets of B. Rabin and Seott avoid the problem by not making 1: apart 
of the automaton. They define the eoneept of an automaton m: = <A, M, 
So, F> with respeet to an alphabet 1:, but for the purposes of this paper it 
is also desirable to include the alphabet 1: in the definition of m: in order 
to make explieit the natural plaee ofthe alphabet in the stimulus-response 
models, and above all, to provide a simple setup for going from one 
alphabet 1: to another 1:'. In any ease, exaetly how these matters are 
handled is not of eentral importanee here. 

DEFINITION 5: Two automata are equivalent if and only if they accept 
exactly the same set of tapes. 

This is the standard definition of equivalenee in the literature. As it 
stands, it means that the definition of equivalenee is neither stronger nor 
weaker than the definition of isomorphism, because, on the one hand, 
equivalent automata are clearly not neeessarily isomorphie, and, on the 
other hand, isomorphie automata with different alphabets are not 
equivalent. It would seem natural to weaken the notion of equivalenee to 
include two automata that generate distinet but isomorphie languages, or 
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sets of tapes, but this point will bear on matters here only tangentially. 
A finite automaton is connected if for every state s there is a tape x such 

that M(so, x)=s.1t is easy to show that every automaton is equivalent to 
a connected automaton, and the representation theorem of Section N is 
restricted to connected automata. It is apparent that from a functional 
standpoint, states that cannot be reached by any tape are of no interest, 
and consequently, restriction to connected automata does not represent 
any realloss of generality. The difficulty of representing automata with 
unconnected states by stimulus-response models is that we have no way 
to condition the organism with respect to these states, at least in terms of 
the approach developed here. 

It is also straightforward to establish a representation for probabilistic 
automata within stimulus-response theory, and, as will become apparent 
in Section V, there are some interesting differences in the way we may 
represent deterministic and probabilistic automata within stimulus
response theory. 

DEFINITION 6: A structure m= (A, I,p, So, F) is a (finite) probabilistic 
automaton if and only if 

(i) A is afinite, nonempty set, 
(ii) I is a finite, nonempty set, 
(iii) p is a function on A x I such that for each s in A and (1 in I, P s," 

is a probability density over A, i.e., 
(a) for each s' in A, Ps,,,(s')~O, 
(b) Ls'eA Ps, ,,(s') = I, 

(iv) So is in A, 
(v) Fis a subset of A. 
The only change in generalizing from Definition 1 to Definition 6 is 

found in (iii), although it is natural to replace (iv) by an initial probability 
density. It is apparent how Definition 4 must be modified to characterize 
the isomorphism of probabilistic automata, and so the explicit definition 
will not be given. 

III. STIMULUS-RESPONSE THEORY 

The formalization of stimulus-response theory given here follows closely 
the treatment in Estes and Suppes (1959b) and Suppes andAtkinson (1960). 
Some minor changes have been made to facilitate the treatment of finite 
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automata, but it is to be strongly emphasized that none of the basic ideas 
or assumptions has required modification. 

The theory is based on six primitive concepts, each ofwhich has a direct 
psychological interpretation. The first one is the set S of stimuli, which 
we shaH assume is not empty, but which we will not restrict to being 
either finite or infinite on aH occasions. The second primitive concept is 
the set R of responses and the third primitive concept the set E of possible 
reinforcements. As in the case of the set of stimuli, we need not assume 
that either R or Eis finite, but in the present applications to the theory of 
finite automata we shaH make this restrictive assumption. (For a proper 
treatment of phonology it will c1early be necessary to make R, and 
probably E as weH, infinite with at the very least a strong topological if 
not metric structure.) 

The fourth primitive concept is that of a measure 11 on the set of 
stimuli. In case the set S is finite this measure is often the number of 
elements in S. For the general theory we shall assume that the measure of 
S itse1f is always finite, i.e., Il(S) < 00. 

The fifth primitive concept is the sampie space X. Each element x ofthe 
sampie space represents a possible experiment, that is, an infinite sequence 
of trials. In the present theory, each trial may be described by an ordered 
quintuple (C, T, S, r, e), where Cis the conditioning function, T is the 
sub set of stimuli presented to the organism on the given trial, S is the 
sampled subset of T, r is the response made on the trial, and e is the 
reinforcement occurring on that trial. It is not possible to make all the 
comments here that are required for a fuH interpretation and under
standing of the theory. For those wanting a more detailed description, 
the two references already given will prove useful. A very comprehensive 
set of papers on stimulus-sampling theory has been put together in the 
collection edited by Neimark and Estes (1967). The present version of 
stimulus-response theory should in many respects be called stimulus
sampling theory, but I have held to the more general stimulus-response 
terminology to emphasize the juxtaposition of the general ideas of 
behavioral psychology on the one hand and linguistic theory on the 
other. In addition, in the theoretical applications to be made here the 
specific sampling aspects of stimulus-response theory are not as central 
as in the analysis of experimental data. 

Because of the importance to be attached later to the set T of stimuli 
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presented on each trial, its interpretation in cIassical learning theory 
should be explicitly mentioned. In the case of simple learning, for example, 
in classical conditioning, the set T is the same on all trials and we wouId 
ordinarily identify the sets T and S. In the case of discrimination learning, 
the set T varies from trial to trial, and the application we are making to 
automata theory falls generally under the discrimination case. The 
conditioning function C is defined over the set R of responses and Cr is 
the subset of S conditioned or connected to response r on the given trial. 
How the conditioning function changes from trial to trial is made clear 
by the axioms. 

From the quintuple description of a given trial it is cIear that certain 
assumptions about the behavior that occurs on a trial have already been 
made. In particular it is apparent that we are assuming that only one 
sampie of stimuli is drawn on a given trial, that exactly one response 
occurs on a trial and that exactly one reinforcement occurs on a trial. 
These assumptions have been built into the set-theoretical description 
of the sampie space X and will not be an explicit part of our axioms. 

Lying behind the formality of the ordered quintuples representing each 
trial is the intuitively conceived temporal ordering of events on any trial, 
which may be represented by the following diagram : 

State of presen- state of 
conditioning tation sampling conditioning 
at beginning -+ of -+ of -+ response -+ reinforce- -+- at beginning 
of trial stimuli stimuli ment of new trial. 

c .. -+- T .. -+- r .. -+ e .. 

The sixth and final primitive concept is the probability measure P on the 
appropriate Borel field of cylinder sets of X. The exact description of this 
Borel field is rather complicated when the set of stimuli is not finite, but 
the construction is standard, and we shall assume the reader can illl in 
details familiar from general probability theory. It is to be emphasized 
that all probabilities must be defined in terms of the measure P. 

We also need certain notation to take us back and forth between ele
ments or subsets of the sets of stimuli, responses, and reinforcements to 
events ofthe sampie space X. First, rn is the event ofresponse r on trial n, 
that is, the set of a1I possible experimental reaIizations or elements of X 
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having r as a response on the nth trial. Similarly, er." is the event of 
response r's being reinforced on trial n. The event eO. n is the event of no 
reinforcement on trial n. In like fashion, C" is the event of conditioning 
function C occurring on trial n, T" is the event of presentation set T 
occurring on trial n, and so forth. Additional notation that does not 
follow these conventions will be explicitly noted. 

We also need a notation for sets defined by events occurring up to a 
given trial. Reference to such sets is required in expressing that central 
aspects of stimulus conditioning and sampling are independent of the 
pattern of past events. If I say that Yn is an n-cylinder set, I mean that the 
definition of Y" does not depend on any event occurring after trial n. 
However, an even finer breakdown is required that takes account of the 
postulated sequence Cn---+T,,---+slI---+rll---+en on a given trial, so in saying that 
Y" is a C,,-cylinder set what is meant is that its definition does not depend 
on any event occurring after C" on trial n, i.e., its definition could depend 
on T"-l or C", for example, but not on T" or Sn. As an abbreviated 
notation, I shall write Y(C,,) for this set and similarly for other cylinder 
sets. The notation Y" without additional qualification shall always refer 
to an n-cylinder set. 

Also, to avoid an overly cumbersome notation, event notation of the 
sort already indicated will be used, e.g., er.,., for reinforcement ofresponse 
r on trial n, but also the notation (JE Cr ." for the event of stimulus (J's 
being conditioned to response r on trial n. 

To simplify the formal statement of the axioms it shall be assumed 
without repeated explicit statement that any given events on which 
probabilities are conditioned have positive probability. Thus, forexample, 
the tacit hypothesis ofAxiom S2 is thatP(Tm»O and P(T,,) >0. 

The axioms naturally fall into three classes. Stimuli must be sampled in 
order to be conditioned, and they must be conditioned in order for 
systematic response patterns to develop. Thus, there are naturally three 
kinds ofaxioms : sampling axioms; conditioning axioms; and response 
axioms. A verbal formulation of each axi om is given together with its 
formal statement. From the standpoint of formulations of the theory 
already in the literature, perhaps the most unusual feature of the present 
axioms is not to require that the set S of stimuli be finite. It should also be 
emphasized thatfor any one specific kind of detailed application additional 
specializing assumptions are needed. Some indication of these will be 
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given in the particular application to automata theory, but it would take 
us too far afield to explore these specializing assumptions in any detail 
and with any faithfulness to the range of assumptions needed for different 
experimental applications. 

DEFINITION 7: A strueture //=(S, R, E, /l, X, P) is a stimulus-re
sponse model if and only if the /ollowing axioms are satisfied: 

Sampling Axioms 

81. P(/l(sn»O)=l. 
(On every trial a set 0/ stimuli 0/ positive measure is sampled with 

probability 1.) 
S2. P(sm I Tm)=P(sn I T,,). 
(If the same presentation set oeeurs on two different trials, then the 

probability 0/ a given sam pIe is independent 0/ the trial number.) 
S3. Ifsus'~Tand /l(s)=/l(s') then P(sn I Tn)=P(s~ I T,,). 
(Samples 0/ equal measure that are subsets 0/ the presentation set have 

an equal probability 0/ being sampled on a given trial.) 
S4. P(sn I T", Yn(Cn))=P(sn I Tn). 
(The probability 0/ a partieular sam pIe on trial n, given the presentation 

set 0/ stimuli, is independent 0/ any preeeding pattern Yn(Cn) 0/ events.) 

Conditioning Axioms 

Cl. Ifr, r'ER, r#r' and Crrl Cr' #0, then P(Cn)=O. 
(On every trial with probability 1 eaeh stimulus element is eonditioned 

to at most one response.) 
C2. There exists a e>O sueh that/or every u, C, r, n, s, er> and Yn 

(The probability is c 0/ any sampled stimulus element's becoming 
eonditioned to the reinforeed response if it is not already so conditioned, 
and this probability is independent 0/ the particular response, trial number, 
or any preceding pattern Yn 0/ events.) 

C3. P(Cn+1 I CR' eo,n)=1. 
( With probability 1, the conditioning 0/ all stimulus elements remains the 

same ifno response is reinforeed.) 
C4. P(UECr,n+1 I UECr,n' ur/sn, Yn)=l. 

(Withprobability 1, theconditioning o/unsampled stimuli does not change.) 
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Response Axioms 
Rl. lfUreR Cr('u=/=O then 

(lf at least one sampled stimulus is conditioned to some response, then 
the probability 0/ any response is the ratio 0/ the measure 0/ sampled 
stimuli conditioned to this response to the measure 0/ all the sampled 
conditioned stimuli, and this probability is independent 0/ any preceding 
pattern Y(SIl) 0/ events.) 

R2. lfUreR CrIlS=O then there is a number Pr such that 

(lf no sampled stimulus is conditioned to any response, then the prob
ability 0/ any response r is a constant guessing probability Pr that is 
independent 0/ n and any preceding pattern Y(s,.) 0/ events.) 

A general discussion of these axioms and their implications for a wide 
range of psychological experiments may be found in the references 
already cited. The techniques of analysis used in the next section of this 
paper are extensively exploited and applied to a number of experiments 
in Suppes and Atkinson (1960). 

IV. REPRESENTATION OF FINITE AUTOMATA 

A useful beginning for the analysis of how we may represent finite 
automata by stimulus-response models is to see what is wrong with the 
most direct approach possible. The difficulties that turn up may be 
illustrated by the simple example of a two-Ietter alphabet (i.e., two stimuli 
0'1 and 0'2' as weIl as the "start-up" stimulus 0'0) and a two-state automaton 
(i.e., two responses r1 and r2). Consideration of this example, already 
mentioned in the introductory section, will be useful for several points of 
later discussion. 

By virtue ofAxiom SI, the single presented stimulus must be sampled 
on each trial, and we assume that for every n, 
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Suppose, further, the transition table of the machine is: 

rl r2 
rlO'l 1 0 
rl0'2 0 1 
r20'1 0 1 
r20'2 1 0 

which requires knowledge ofboth ri and 0' j to predict what response should 
be next. The natural and obvious reinforcement schedule for imitating 
this machine is: 

P(el,n I O'l,n> rl,n-l) = 1 

P(e2,11 I O'l,n' r2,n-1) = 1 

P(e2,11 I 0'2,n> rl ,II-l) = 1 

P(el ,,, I 0'2,n' r2,n-l) = 1, 

where O'i,II is the event of stimulus O'/s being sampled on trial n. But for 
this reinforcement sched ule the conditioning of each of the two stimuli 
continues to fiuctuate from trial to trial, as may be illustrated by the 
following sequence. For simplification and without loss of generality, 
we may assurne that the conditioning parameter c is 1, and we need 
indicate no sampling, because as already mentioned, the single stimulus 
element in each presentation set will be sampled with probability 1. We 
may represent the states of conditioning (granted that each stimulus is 
conditioned to either r1 or r2) by subsets of S={O'o, 0'1' 0'2}. Thus, if 
{0'1' 0'2} represents the conditioning function, this means both elements 
0'1 and 0'2 are conditioned to r1; {0'1} means that only 0'1 is conditioned to 
r1> and so forth. Consider then the following sequence from trial n to 
n+2: 

The response on trial n + 1 satisfies the machine table, but already on 
n+2 it does not, for r2,II+I0'2,II+2 should be followed by rl,II+2. It is easy 
to show that this difficulty is fundamental and arises for any of the four 
possible conditioning states. (In working out these difficulties explicitly, 
the reader should assurne that each stimulus is conditioned to either 
rl or r2' which will be true for n much larger than 1 and c= 1.) 
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What is needed is a quite different definition ofthe states ofthe Markov 
chain of the stimulus-response model. (For proof of a general Markov
chain theorem for stimulus-responsetheory, see Estes and Suppes, 1959b.) 
Naively, it is natural to take as the states of the Markov chain the 
possible states of conditioning ofthe stimuli in S, but this is wrong on two 
counts in the present situation. First, we must condition the patterns of 
responses and presentation sets, so we take as the set of stimuli for the 
model, R x S, i.e., the Cartesian product of the set R of responses and the 
set S of stimuli. What the organism must be conditioned to respond to on 
trial n is the pattern consisting of the preceding response given on trial 
n - 1 and the presentation set occurring on trial n. 

It is still not sufficient to define the states of the Markov chain in terms 
of the states of conditioning of the elements in R x S, because for reasons 
that are given explicitly and illustrated by many examples in Estes and 
Suppes (1959b) and Suppes and Atkinson (1960), it is also necessary to 
include in the definition of state the response ri that actually occurred 
on the preceding trial. The difficulty that arises if ri,n-l is not included in 
the definition of state may be brought out by attempting to draw the tree 
in the case of the two-state automaton already considered. Suppose just 
the pattern rlO"l is conditioned, and the other four patterns, 0"o, rl0"2, 

TZ"" <e1-
(lZ,n-r''',n 

1-21 ez-
Fig.1. 



STIMULUS-RESPONSE THEORY OF FINITE AUTOMATA 429 

'20"1' and '20"2' are not. Let us represent this conditioning state by Cl' and 
let 1:j be the noncontingent probability of O"j, 0~j~2, on every trial with 
every 1: j > O. Then the tree is shown in Figure 1. 

The tree is incomplete, because without knowing what response 
actually occurred on trial n-I we cannot complete the branches (e.g., 
specify the responses), and for a similar reason we cannot determine the 
probabilities x, y and z. Moreover, we cannot remedy the situation by 
including among the branches the possible responses on trial n-I, for 
to determine their probabilities we would need to look at trial n - 2, and 
this regression would not terminate until we reached triall. 

So we include in the definition of state the response on trial n - 1. On 
the other hand, it is not necessary in the case of deterministic finite 
automata to permit among the states all possible conditioning of the 
patterns in R x S. We shall permit only two possibilities - the pattern is 
unconditioned or it is conditioned to the appropriate response because 
conditioning to the wrong response occurs with probability zero. Thus 
with p internal states or responses and m letters in 1:, there are (m+ I)p 
patterns, each ofwhichis in one oftwo states, conditioned orunconditioned, 
and there are p possible preceding responses, so the number of states in 
the Markov chain is p2(m+l)p. Actually, it is convenient to reduce this 
number further by treating 0"0 as a single pattern regardless of what 
preceding response it is paired with. The number of states is then p2mp+ 1. 

Thus, for the simplest 2-state, 2-alphabet automaton, the number of 
states is 64. We may denote the states by ordered mp+2-tuples 

where ikl is 0 or 1 depending on whether the pattern 'kO"I is unconditioned 
or conditioned with O~k~p-I and 1 ~l~m; rj is the response on the 
preceding trial, and io is the state of conditioning of 0"0. What we want to 
prove is that starting in the purely unconditioned set of states <rj,O, 
0, ... ,0), with probability 1 the system will always ultimately be in a 
state that is a member of the set of fully conditioned states < r j, 1, 1, ... , 1). 
The proof of this is the main part of the proof of the basic representation 
theorem. 

Before turning to the theorem we need to define explicitly the concept 
of a stimulus-response model's asymptotically becoming an automaton. 
As has already been suggested, an important feature of this definition is 
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this. The basic set S of stimuli corresponding to the alphabet E of the 
automaton is not the basic set of stimuli of the stimulus-response model, 
but rather, this basic set is the Cartesian product R x S, where R is the 
set of responses. Moreover, the definition has been framed in such a way 
as to permit only a single element of S to be presented and sampled on 
each trial; this, however, is an inessential restriction used here in the 
interest of conceptual and notational simplicity. Without this restriction 
the basic set would be not R x S, but R x fYJ(S), where fYJ(S) is the power 
set of S, i.e., the set of all subsets of S, and then each letter ofthe alphabet 
E would be a subset of S rather than a single element of S. What is 
essential is to have R x S rather than S as the basic set of stimuli to which 
the axioms of Definition 6 apply. 

For example, the pair (rb (Tj) must be sampled and conditioned as a 
pattern, and the axioms are formulated to require that what is sampled 
and conditioned be a subset of the presentation set T on a given 
trial. In this connection to simplify notation I shall often write 
T .. =(r""_l' (Tj, .. ) rather than 

T = {(ri , (Tj)} , 

but the meaning is clear. TII is the presentation set consisting of the single 
pattern (or element) made up of response ri on trial n-l and stimulus 
element (Tj on trial n, and from Axiom SI we know that the pattern is 
sampled because it is the only one presented. 

From a psychological standpoint something needs to be said about part 
of the presentation set being the previous response. In the first place, and 
perhaps most importantly, this is not an ad hoc idea adopted just for the 
purposes of this paper. It has already been used in a number of ex
perimental studies unconnected with automata theory. Several worked
out examples are to be found in various chapters of Suppes and Atkinson 
(1960). 

Secondly, and more importantly, the use of R x S is formally con
venient, but is not at all necessary. The classical S-R tradition of analysis 
suggests a formally equivalent, but psychologically more realistic 
approach. Each response r produces a stimulus (T" or more generally, a 
set of stimuli. Assuming again, for formal simplicity just one stimulus 
element (T" rather than a set of stimuli, we may replace R by the set of 
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stimuli SR, with the purely contingent presentation schedule 

P(U" .. I r ll-l) = 1, 

and in the model we now consider the Cartesian product SR x S rather 
than R x S. Within this framework the important point ab out the 
presentation set on each trial is that one component is purely subject
controlled and the other purely experimenter-controlled - if we use 
familiar experimental distinctions. The explicit use of SR rather than R 
promises to be important in training animals to perform like automata, 
because the external introduction of Ur reduces directly and significantly 
the memory load on the animal.2 The importance of SR for models of 
children's language learning is less c1ear. 

DEFINITION 8: Let //=(RxS, R, E, j.t, X, P) be a stimulus-response 
model where 

R = {ro, ... , rp - 1} 

S = {uo, ... , um} 

E = {eo, ... , ep-l}' 

and j.t(S') is the cardinality oJ S' Jor S' s;:; S. Then // asymptotically 
becomes the automaton m:(//)=(R, S-{Uo}, M, ro, F) if and only if 

(i) as n-+oo the probability is 1 that the presentation set T" is (ri, .. -l' 
Uj, .. )Jor some i andj, 

(ii) M(rl> uj)=rk if and only if lim .. -+<X>P(rk, .. I T,,=(rl,"-l' Uj, .. )) = 1 
Jor O~i~p-l and 1 ~j~m, 

(iii) lim .. -+<X>P(ro, .. I T,,=(ri,II-1' Uo, .. )) = 1 Jor O~i~p-l, 
(iv) Fs;:;R. 
A minor but c1arifying point about this definition is that the stimulus 

Uo is not part ofthe alphabet ofthe automaton m:(//), because a stimulus 
is needed to put the automaton in the initial state ro, and from the stand
point of the theory being worked out here, this requires a stimulus to 
which the organism will give response roß That stimulus is Uo. The 
definition also requires that asymptotically the stimulus-response model 
// is nothing but the automaton m:(//). It should be c1ear that a much 
weaker and more general definition is possible. The automaton m:(//) 
could merely be embedded asymptotically in // and be only apart of the 
activities of //. The simplest way to achieve this generalization is to make 
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the alphabet of the automaton only a proper subset of S - {O" o} and 
correspondingly for the responses that make up the internal states of the 
automaton; they need be only a proper subset of the fuH set R of responses. 
This generalization will not be pursued here, although something of the 
sort will be necessary to give an adequate stimulus-response account of 
the semantical aspects of language. 

REPRESENTATION THEOREM FOR FINITE AUTOMATA: Given any eonneeted 
finite automaton, there is a stimulus-response model that asymptotieally 
beeomes isomorphie to it. Moreover, the stimulus-response model may have 
all responses initially uneonditioned. 

Proof: Let m:= <A, r, M, so, F) be any connected finite automaton. 
As indicated already, we represent the set A of internal states by the set 
R of responses; we shall use the natural correspondence Si - ri' for 
O~i~p-l, where pis the number of states. We represent the alphabet r 
by the set of stimuli 0"1' •.• , O"m> and, for reasons already made explicit, 
we augment this set of stimuli by 0"0' to obtain 

For sub se quent reference let f be the function defined on Au r that 
establishes the natural one-one correspondence between A and R, and 
between rand S-{so}. (To avoid some trivial technical points I shall 
assume that A and rare disjoint.) 

We take as the set of reinforcements 

and the measure /1(S') is the cardinality of S' for S' t;;;. S, so that as in 
Definition 8, we are considering a stimulus-response model !I' = <R x S, 
R, E, /1, X, P). In order to show that !I' asymptotically becomes an 
automaton, we impose five additional restrietions on !I'. 

They are these. 
First, in the case of reinforcement eo the schedule is this: 

(1) P(eo,n I O"O,n) = 1, 

i.e., if O"O,n is part of the presentation set on trial n, then with probability 
1 response ro is reinforced - note that the reinforcing event eO,n is in
dependent of the actual occurrence of the event rO,n. 

Second, the remaining reinforcement schedule is defined by the 
transition table M of the automaton m:. Explicitly, for j, k#O and for all 
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i and n 

(2) P (ek , n I 0" j, nri, n-l) = 1 if and only if 

M(J-l (r i), i- 1 (O"j)) = i- 1 h). 
Third, essential to the proof is the additional assumption beyond (1) 

and (2) that the stimuli 0"0" •• , O"m eaeh have a positive, noneontingent 
prob ability of oeeurrenee on eaeh trial (a model with a weaker assumption 
eould be eonstrueted but it is not signifieant to weaken this requirement). 
Explieitly, we then assurne that for any eylinder set Y(Cn) sueh that 
P(Y(Cn))>O 

(3) P(O"i,n) = P(O"i,n I Y(Cn)) ~ "i > 0 

for 0 ~ i ~ m and for all trials n. 
Fourth, we assurne that the probability Pi of response ri oeeurring 

when no eonditioned stimuli is sampled is also strietly positive, i.e., for 
every response r i 

(4) Pi>O, 

whieh strengthens Axiom R2. 
Fifth, for eaeh integer k, O~k~mp+ 1, we define the set Qk as the set 

of states that have exaetly k patterns eonditioned, and Qk,n is the event 
of being in astate that is a member of Qk on trial n. We ass urne that at the 
beginning of trial 1, no patterns are eonditioned, i.e., 

(5) P(QO,1)=1. 

It is easy to prove that given the sets R, S, E and the eardinality measure 
/1, there are many different stimulus-response models satisfying restrie
tions (1)-(5), but for the proof of the theorem it is not neeessary to seleet 
some distinguished member of the dass of models beeause the argument 
that follows shows that all the members of the dass asymptotieally 
beeome isomorphie to m:. 

The main thing we want to prove is that as n-HIJ 

(6) P(Qmp+1,n) = 1. 

We first note that if j<k the probability of a transition from Qk to Qj 
is zero, i.e., 
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moreover, 

even if j>k unlessj=k+ 1. In other words, in a single trial, at most one 
pattern can become conditioned. 

To show that asymptotically (6) holds, it will suffice to show that there 
is an 8>0 such that on each trial n for O~k~mp<n if P(Qk,n»O, 

(9) P(Qk+1,n+1 I Qk,n) ~ 8. 

To establish (9) we need to show that there is a probability of at least 8 

of a stimulus pattern that is unconditioned at the beginning of trial n 
becoming conditioning on that trial. The argument given will be a uniform 
one that holds for any unconditioned pattern. Let r*O'* be such a pattern 
on trial n. 

Now it is weIl known that for a connected automaton, for every 
internal state s, there is a tape x such that 

(10) M(so, x) = s 

and the length of x is not greater than the number of internal states. In 
terms of stimulus-response theory, x is a finite sequence of length not 
greater than p of stimulus elements. Thus we may take X=O'll'"'' O'lp 

with O'lp =0'*. We know by virtue of (3) that 

(11) min '1:, = 'I: > O. 
O~i~m 

The required sequence of responses r'l' ... , rlp -1 will occur either from 
prior conditioning or if any response is not conditioned to the appropriate 
pattern, with guessing probability p,. By virtue of (4) 

(12) min PI = P > O. 
0"""'p-1 

To show that the pattern r*O'* has a positive probability 8, of being 
conditioning on trial n, we need only take n large enough for the tape x to 
be "run", say, n>p+ I, and consider the joint probability 

(13) p* = P(O':, r:- 1, 0'Ip _l. n- 1' r'p_z.n-2' 

... , O'IJ' n-'p' ro, n-ip - h 0'0, n-ip -1). 

The basic axioms and the assumptions (l)-{5) determine a lower bound on 
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P * independent of n. First we note that for each of the stimulus elements 
uo, UIJ'"" u*, by virtue of (3) and (11) 

P(u: I ... ) ~ -r, ... , P(Uo,n-ip -l) ~ -r. 

Similarly, from (4) and (12), as well as the response axioms, we know that 
for each of the responses ro, ri,"'" r* 

P(r:-l I· .. ) ~ p, ... , P(rO,n-ip -l 1 Uo,n-ip -l) ~ p. 

Thus we know that 

and given the occurrence of the event u:r:_ 1, the probability of con
ditioning is c, whence we may take 

8 = cpP-rP+ 1 > 0, 

which establishes (9) and completes the proof. 
Given the theorem just proved there are several significant corollaries 

whose proofs are almost immediate. The first combines the representation 
theorem for regular languages with that for finite automata to yield: 

CoROLLARY ON REGULAR LANGUAGES: Any regular language is generated 
by some stimulus-response model at asymptote. 

Once probabilistic considerations are made a fundamental part of the 
scene, we can in several different ways go beyond the restriction of 
stimulus-response generated languages to regular languages, but I shall 
not explore these matters here. 

I suspect that many psychologists or philosophers who are willing to 
accept the sense given here to the reduction of finite automata and 
regular languages to stimulus-response models will be less happy with 
the claim that one well-defined sense of the concepts of intention, plan 
and purpose can be similarly reduced. However, without any substantial 
new analysis on my part this can be done by taking advantage of an 
analysis already made by Miller and Chomsky (1963). The story goes 
like this. In 1960, Miller, Galanter, and Pribram published a provocative 
book entitled Plans and the Structure 0/ Behavior. In this book they 
severely criticized stimulus-response theories for being able to account 
for so little of the significant behavior of men and the higher animals. 
They especially objected to the conditioned reflex as a suitable concept for 
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building up an adequate scientific psychology. It is my impression that a 
number of cognitively oriented psychologists have feIt that the critique 
of S-R theory in this book is devastating. 

As I indicated in the introductory section, I would agree that conditioned 
reflex experiments are indeed far too simple to form an adequate scientific 
basis for analyzing more complex behavior. This is as hopeless as would 
be the attempt to derive the theory of differential equations, let us say, 
from the elementary algebra of sets. Yet the more general theory of sets 
does encompass in a strict mathematical sense the theory of differential 
equations. 

The same relation may be shown to hold between stimulus-response 
theory and the theory of plans, insofar as the latter theory has been 
systematically formulated by Miller and Chomsky.4 The theory of plans 
is formulated in terms of tote units ('tote' is an acronym for the cyc1e 
test-operate-test-exit). A plan is then defined as a tote hierarchy, which 
is just a form of oriented graph, and every finite oriented graph may be 
represented as a finite automaton. So we have the resu1t: 

COROLLARY: Any tote hierarehy in the sense 0/ Miller and Chomsky is 
isomorphie to some stimulus-response model at asymptote. 

V. REPRESENTATION OF PROBABILISTIC AUTOMATA 

From the standpoint of the kind of learning models and experiments 
characteristic of the general area of what has come to be termed prob
ability learning, there is near at hand a straightforward approach to 
probabilistic automata. It is worth illustrating this approach, but it is 
perhaps even more desirable to discuss it with some explicitness in order 
to show why it is not fully satisfactory, indeed for most purposes con
siderably less satisfactory than a less direct approach that follows from 
the representation of deterministic finite automata already discussed. 

The direct approach is dominated by two features: a probabilistic 
reinforcement schedule and the conditioning of input stimuli rather than 
response-stimulus patterns. The main simplification that results from 
these features is that the number of states of conditioning and conse
quently the number of states in the associated Markov chain is reduced. 
A two-Ietter, two-state probabilistic automaton, for example, requires 
36 states in the associated Markov chain, rather than 64, as in the 
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deterministic case. We have, as before, the three stimuli eTo, eT1' and eT2 and 
their conditioning possibilities, 2 for eTo as before, but now, in the 
probabiIistic case, 3 for eT1 and eT2' and we also need as part of the state, 
not for purposes of conditioning, but in order to make the response
contingent reinforcement definite, the previous response, which is always 
either'1 or '2' Thus we have 2'3'3'2=36. Construction ofthe trees to 
compute transition probabilities for the Markov chain follows closely 
the logic outlined in the previous section. We may define the probabilistic 
reinforcement schedule by two equations, the first of which is deter
ministic and plays exact1y the same role as previously: 

and 

for 1~i,j~2. 
The fundamental weakness of this setup is that the asymptotic tran

sition table representing the probabilistic automaton only holds in the 
mean. Even at asymptote the transition values fluctuate from trial to trial 
depending upon the actual previous reinforcement, not the probabiIities 
1tij' Moreover, the transition table is no longer the transition table of a 
Markov process. Knowledge of earlier responses and reinforcements will 
lead to a different transition table, whenever the number of stimuli 
representing a letter of the input alphabet is greater than one. These 
matters are weH known in the large theoretical literature of probabiIity 
learning and will not be developed further here. 

For most purposes of application it seems natural to think of prob
abilistic automata as a generalization of deterministic automata intended 
to handle the problem of errors. A similar consideration of errors after a 
concept or skill has been learned is common in learning theory. Here is a 
simple example. In the standard version of all-ar-none learning, the 
organism is in either the unconditioned state (U) or the conditioned state 
(C). The transition matrix for these states is 

c U 
C 1 0 
U c l-c 
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and, consistent with the axioms of Section III, 

(1) P(Correct response I C) = 1 

(2) P(Correct response I U) = P 

and 

i.e., the probability of being in state U on trial 1 is 1. Now by changing 
(2) to 

P(Correct response I C) = 1 - 6, 

for 6>0, we get a model that predicts errors after conditioning has 
occurred. 

Without changing the axioms of Section III we can incorporate such 
probabilistic-error considerations into the derivation of a representation 
theorem for probabilistic automata. One straightforward procedure is to 
postulate that the pattern sampled on each trial actually consists of N 
elements, and that in addition M background stimuli common to all 
trials are sampled, or available for sampling. By specializing further the 
sampling axioms Sl-S4 and by adjusting the parameters M and N, we 
can obtain any desired probability 6 of an error. 

Because it seems desirable to develop the formal results with intended 
application to detailed learning data, I shall not state and prove a 
representation theorem for probabilistic automata here, but restrict 
myself to considering one example of applying a probabilistic automaton 
model to asymptotic performance data. The formal machinery for 
analyzing learning data will be developed in a subsequent paper. 

The example I consider is drawn from arithmetic. For more than three 
years we have been collecting extensive data on the arithmetic perfor
mance of elementary-school students, in the context of various projects on 
computer-assisted instruction in elementary mathematics. Prior to 
consideration of automaton models, the main tools of analysis have been 
linear regression models. The dependent variables in these models have 
been the mean probability of a correct response to an item and the mean 
success latency. The independent variables have been structural features of 
items, i.e., arithmetic problems, that may be objectively identified 
independently of any analysis of response data. Detailed results for such 
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models are to be found in Suppes et al. (1967, 1968). The main conceptual 
weakness of the regression models is that they do not provide an explicit 
temporal analysis of the steps being taken by a student in solving a 
problem. They can identify the main variables but not connect these 
variables in a dynamically meaningful way. In contrast, analysis of the 
temporal process of problem solution is a natural and integral part of an 
automaton model. 

An example that is typical of the skills and concepts encountered in 
arithmetic is column addition of two integers. For simplicity I shall 
consider only problems for which the two given numbers and their sum 
all have the same number of digits. It will be useful to begin by defining a 
deterministic automaton that will perform the desired addition by out
putting one digit at a time reading from right to left, just as the students 
are required to do at computer-based teletype terminals. For this purpose 
it is convenient to modify in inessential ways the earlier definition of an 
automaton. An automaton will now be defined as a structure ~=<A, 
E., Eo, M, Q, so> where A, EI and Eo are non-empty finite sets, with A 
being the set of internal states as before, EI the-input alphabet, and Eo the 
output alphabet. Also as before, M is the transition function mapping 
A x EI into A, and So is the initial state. The function Q is the output 
function mapping A x EI into Eo. 

For column addition oftwo integers in standard base-ten representation, 
an appropriate automaton is the following: 

A = {O, I}, 

EI = {( m, n): 0 ~ m, n ~ 9} 

Eo = {O, 1, ... , 9} 

M(k (m n)={O ~f m+n+k~9. 
" 1 If m + n + k > 9 , for k = 0, 1 . 

Q(k, (m, n) = (k + m + n) modl0. 

So = O. 

Thus the automaton operates by adding first the ones' column, storing 
as internal state 0 if there is no carry, 1 if there is a carry, outputting the 
sum of the ones' column modulus 10, and then moving on to the input 
of the two tens' column digits, etc. The initial internal state So is 0 because 
at the beginning of the problem there is no "carry". 
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For the analysis of student data it is necessary to move from a deter
ministic to a probabilistic automaton. The number of possible parameters 
that can be introduced is uninterestingly large. Each transition M (k, 
(m, n») may be replaced by a probabilistic transition I-Bk,m,,, and 
Bk,m,,,, and each output Q (k(m, n»), by ten probabilities for a total of 
2200 parameters. Using the sort of linear regression model described 
above we have found that a fairly good account of student performance 
data can be obtained by considering two structural variables, Ci> the 
number of carries in problem item i, and Di> the number of digits or 
columns. Let Pi be the mean probability of a correct response on item i 
and let 

1- Pi 
zi=log--. 

Pi 

The regression model is then characterized by the equation 

(1) Zi = (Xo + (Xl Ci + (X2Di' 

and the coefficients (Xo, (Xl' and (X2 are. estimated from the data. 
A similar three-parameter automaton model is structurally very natural. 

First, two parameters, 13 and '1, are introduced according to whether there 
is a "carry" to the next column. 

and 
P(M(k, (m, n)) = 0 1 k + m + n ~ 9) = 1 - 13 

P(M(k, (m, n)) = 11 k + m + n > 9) = 1 - '1. 

In other words, if there is no "carry", the probability of a correct tran
sition is 1-13 and if there is a "carry" the probability of such a transition 
is 1-'1. The third parameter, ,,/, is simply the probability of an output 
error. Conversely, the probability of a correct output is: 

P(Q(k, (m, n)) = (k + m + n) modlO) = 1- y. 

Consider now problem i with Ci carries and D i digits. If we ignore the 
probability of two errors leading to a correct response - e.g., a transition 
error followed by an output error - then the probability of a correct 
answer is just: 

(2) P(Correct Answer to Problem i) 
= (1 - ytl (1 - '1fl (1 - B)Dt- CI- 1 • 
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As already indicated it is important to realize that this equation is an 
approximation of the "true" probability. However, to compute the 
exact probability it is necessary to make adefinite assumption about how 
the probability y of an output error is distributed among the 9 possible 
wrong responses. A simple and intuitively appealing one-parameter model 
is the one that arranges the 10 digits on a circle in natural order with 9 
next to 0, and then makes the probability of an error j steps to the right or 
left of the correct response tJi. For example, if 5 is the correct digit, then 
the probability of responding 4 is (j, of 3 is (j2, of 2 is (j3, of 1 is b4, of 0 
is (j5, of 6 is (j, of 7 is (j2, etc. Thus in terms of the original model 

Consider now the problem 

47 
+ 15. 

Then, where di = the ith digit response, 

P(d1 = 2) = (1 - y) 
P(d2 = 6) = (1 - y) (1 - 17) + 17b. 

Here the additional term is 17b, because if the state entered is 0 rather 
than 1 when the pair (7, 5) is input, the only way of obtaining a correct 
answer is for 6 to be given as the sum ofO+4+ 1, which has a probability 
b. Thus the probability of a correct response to this problem is 
(l-y)[(1-y)(1-17)+17b]. Hereafter we shall ignore the 17(j (or eb) terms. 

Returning to Equation (2) we may get a direct comparison with the 
linear regression model defined by Equation (I), ifwe take the logarithm 
of both sides to obtain: 

(3) logpi = D i log(l - y) + Ci log(l -17) 

+ (D i - Ci - 1) log(1 - e), 

and estimate 10g(l-y), 10g(I-17), and loge l-e) by regression with the 
additive constant set equal to zero. We also may use some other approach 
to estimation such as minimum X2 or maximum likelihood. An analytic 
solution of the standard maximum-likelihood equations is very messy 
indeed, but the maximum of the likelihood function can be found 
numerically. 
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The automaton model naturally suggests a more detailed analysis of 
the data. Unlike the regression model, the automaton provides an 
immediate analysis of the digit-by-digit responses. Ignoring the eb-type 
terms, we can in fact find the general maximum-likelihood estimates of 
')I, e, and 1] when the response data are given in this more explicit form. 

Let there be n digit responses in a block of problems. For 1 ~i:::;n let 
Xi be the random variable that assumes the value 1 if the ith response is 
correct and ° otherwise. It is then easy to see that 

(1 - ')I) 

(1 - ')1)(1 - e) 

P(X i = 1) = 

(1 - ')1)(1 -1]) 

if i is a ones'-column digit 
if it is not a ones' column and 
there is no carry to the 
ith digit 
if there is a carry to the 
ith digit, 

granted that eb-type terms are ignored. Similarly for the same three 
alternatives 

P(Xi = 0) = I i - (1 - ')1)(1 - e) 
1-(1-')1)(1-1]). 

So for astring of actual digit responses Xl"'.' Xn we can write the likeli
hood function as: 

(4) L(Xl' ... , Xn) = (1 - ')It ')Ib(l - eY (1 -1]t 
x [1 - (1 - ')I) (1 - e)J [1 - (1 - ')I) (1 - 1])]' , 

where a=number of correct responses, b=number ofincorrect responses 
in the ones' column, c=number of correct responses not in the ones' 
column when the internal state is 0, d=number of correct responses 
when the internal state is 1, e = number of incorrect responses not in the 
ones' column when the internal state is 0, and j=number of incorrect 
responses when the internal state is 1. In the model statistical independence 
of responses is assured by the correction procedure. It is more convenient 
to estimate ')I' = 1- ')I, e' = I-e, and 1]' = 1-1]. Making this change, taking 
the log of both sides of (4) and differentiating with respect to each of the 
variables, we obtain three equations that determine the maximum-
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likelihood estimates of y', e', and 11': 

aL a b ee' 111' - = - - ---- - -- - --- = 0 
ay' y' I-y' I-y'e' l-y'l1' , 

aL e ey' 
- =- ---- =0 
oe' e' I - y'e' , 

oL d fy' 
-=~- 1,=0. 
011' 11' I - Y 11 

Solving these equations, we obtain as estimates: 

A, a - e - d 
y =----

a+b-e-d' 

e(a + b - e - d) 
e' 

(e + e)(a - e - d)' 

, d(a+b-e-d) 
f/ = (d + 1)( a - e - d)' 

The most interesting feature of these estimates is that f is just the ratio of 
correct responses to total responses in the ones' column. The two equations 
that yield estimates of e' and 11' are especially transparent if they are 
rewritten: 

(1 - y) (1 - e) = y'e' = ej(e + e), 

(1 - y) (1 -11) = y'r!, = dj(d + 1). 

Additional analysis of this example will not be pursued here. I do want 
to note that the internal states 0 and 1 are easily externalized as oral 
responses and most teachers do indeed require such externalization at the 
beginning. 

To many readers the sort of probabilistic automaton just analyzed will 
not seem to be the sort of device required to account for Ianguage behavior. 
Certainly the automata that are adequate to analyze arithmetic are 
simpler in structure than what is needed even for the Ianguage output of a 
two-year-old child. On the other hand, I have already begun constructing 
probabilistic automata that will generate the language output of young 
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children and the preliminary results are far from discouraging. Prob
abilistic automata and their associated probabilistic grammars seem 
likely to be the right devices for such language analysis. 

NOTES 

1 Indeed, Phoebe C. E. Diebold and Ebbey Bruce Ebbesen have already successfully 
trained two pigeons. Sequences of several hundred responses are easily obtained, and 
the error rate is surprisingly low - well under I %. 
2 Exactly such a procedure has proved very successful in the pigeon experiments with 
Diebold and Ebbesen mentioned in note 1. 
3 Two other points about the definition are the following. First, in tbis definition and 
throughout the rest of the article eo is the reinforcement of response ro, and not the 
null reinforcement, as in Section IH. Tbis conflict arises from the different notational 
conventions in mathematicallearning theory and automata theory. Second, strictly 
speaking I should write m:p (9") because Fis not uniquely determined by:/. 
4 After tbis was written Gordon Bower brought to my attention the article by Millenson 
(1967) that develops this point informally. 
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abstraction 29, 376-378, 397-399, 400, 
404,405 

additivity 6, 8, 102, 143, 145, 147, 250 
adequacy 
- empiricaI25-26, 114,259 
- ofaxioms for decision making 

97-102 
- ofaxioms for difference structures 

123 
- ofaxioms for extensive quantities 

41-43 
- of justice maxim 158 
algebra 
- Boolean 74, 75, 77, 174, 244, 245, 

250, 252, 377 
- coset 128 
- classical (of sets) 5, 246 (def), 248, 

249 
- u- (countably additive) 244,247 (def), 

251 
- quantum-mechanical 248 (def), 249, 

250 (general concept), 251, 252 
- of events 178, 187, 244-248, 409 
algorithm 381-391 
alphabet 412, 413, 418, 426, 431 
Archimedean 
- axiom 91, 93, 121, 139 
- property 41, 48, 56 
artificial intelligence 369 
association(s) 
- of ideas 378-379, 397, 399 
- stimulus-response 291-293,314,319, 

414,358 
assumption(s) 
- of a theory 11 
- continuity 147,194,212,266,282 
- differentiability 194, 212, 266, 282 
- equal-probability 108 
- equal-spacing 5, 43, 104 (in utility) 
- finiteness 4-5, 44, 96-97, 139-140, 

147,265,269,317,422 

- independence-of-path 133, 264-268, 
280,317 

- invariance 196 
-linearity 115, 194 
- monotonicity (for measurement of 

utility) 116 
- statistical independence 359, 363, 

388 
- about conditioning 147,264 
- of the component model of stimulus 

sampling (Estes) 317 
- of concept learning theories 367-368 
- for a theory of justice 166 
- for a theory of memory 403 
- of relativistic kinematics 194 
- of special relativity theory 191-192 
- of stimulus-sampling theory 132, 

137,269,271,356,423 
automata 255, 257, 414-444 
- finite 86 
- finite deterministic 258, 411, 412, 

417,418 (def), 439 
- finiteprobabilistic417,418,421 (def), 

436,437,440,443 
- isomorphism of 419-420 
- equivalence of 420 
- connected 421, 434 
- non-trivial 415 
- two-state 426, 428 
- transition table of 415,416,427,432, 

437 
- and organism 412-413 
- complexity of - and species 416-417 
axiom see also adequacy; independence 
- Archimedean 91, 93, 121, 139 
- of choice 49, 106 
- Luce's choice 131, 146-147 
- continuity 94 
- extensionality (for observables and 

states) 224 
- independence 92 
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- invariance 196, 205 
- structure vs. rationality 95 
axioms for 
- difference structures 120 
- extensive measurement 6 
- extensive quantities 37-38 
- linear-response theory 20-21,26-27, 

282 
- any social decision method (Arrow) 

112 
- any acceptable principle of choice 

(Milnor) 108 
- rational subjective choice structures 

91-92 
- relational systems (specmed) 55 
- relativistic kinematics 196 
- semiorders 51 
- stimulus-sampling learning theory 

132,262-263,316-317,435-426 
- stochastic choice behavior 139 
axiomatizability 
- finite 57, 62-63, 139 
- of a theory 57 
- of a theory of measurement 57-63 
- universal 57-60 
axiomatization 
- of a theory (via definition of a set-

theoretical predicate) 24 
- finite 57, 58, 62, 139 
- first order 48, 53, 58 
- recursive or effective 58 
- universal 57-60 
- of c1assical partic1e mechanics 13 
- of c1assical quantum mechanics 192, 

223-225 
- of the nonc1assical logic of quantum 

mechanics 192 
- of decision theory 88, 104, 110 
- of learning theory 373-375 
- of the theory of measurement 56-63 
- of rational behavior 142 
- of special relativity theory 191 
- of stimulus-sampling theory for a 

continuum of responses 255 
- of utility theory 115, 118-121 

Bayesian 86,103, 109, 173, 183-187 
behavior 
- rational 94 

- purposive or intentional 130, 295, 
302,307,309,435 

- rule-following 295 
- moral or ethical148, 164-166 
- prudential 164-166 
-linguistic 303,411,443 
-linguistic vs. non-linguistic 296 
- betting 307 
- choice or decision 113, 130 
- stochastic choice 139, 141 (asymp-

totic),142 
- sign 303 
- 'proof-giving' 370 
-learning 231-232, 291 
- market 116-117 
- constancy of 146 
- group vs. individual 291 
- actual vs. theories of 113 
- probabilistic theory of 288-289 
- formal theory of 298, 299-301 
- quantitative theory of 289-292, 305 
- explanation of (causal vs. "reason") 

302, 309, 356 
-- prediction of 255,356 
- - deterministic 285-289 
- - probabilistic 288-292 
- unpredictability of 285-293 
- computer simulation of 369, 406 
behaviorism 114, 255, 259, 294-311, 

355,373 
behavioristic 
- foundations of utility 118, 130-147 
- interpretation of decision making 94 
- interpretation of language learning 

258 
- psychology 295, 299, 355 
belief(s) 
- sentences or statements 295, 306, 308 
- - truth conditions for 296-297 
- set of 114, 130 (acquisition) 
- structure or organization 307,407, 

409 
- degree of 88,130,166,306 
- problem of vagueness in 308 
- measure of partial 173 
- probabilistic 183 
- rational changes in 183-187,407-410 
- - conditionalization 183-187 
- - information selection 185-187 
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- quantitative theory of 305 
bet 287-288 
Boolean 
- algebra 74, 75, 77, 174,244,245,250, 

252,377 
- operations 174, 375 
Borel 
- field 213, 423 
- set 224 

calculus 
- ofduty 151 
- ofpleasure 151 
cardinality 48, 55-58, 63n see also iso-

morphism 
categorical37,165 
causal 
- analysis ofhuman behavior 290,302, 

309 
- explanation in physics 310 
- relationships of a probabilistic 

character 289 
- vs. teleological 290 
causality 225 
chain 
- of infinite order 257 
- Markov 133-138, 231, 275, 428-429, 

436-437 
characterization 
- of a theory 16-17,297, 300 
- intrinsic vs. extrinsic 57 
- of the theory of measurement 48 
- of behaviorism as a formal theory 

294 
choice 
- behavior 113, 130, 139, 141-142 
- continuum of possible choices 286 
- experiments 131, 135 
- from one of n alternatives 142, 143 
- individual 102 
- principle 108-109 
- set 142, 146 
- situation 131 
- social 84 
cIosure 
- condition 4 
- of a formula 72 
- property 251-252 
- under the formation of midpoints 

128-129 
- under the relation of logical conse-

quence (deductive system) 72 
collinearity 197-200 
commodity 116-118, 153-154 
computer 86, 259-260, 309, 369, 391 

(teaching), 402, 406, 408, 414, 438 
(assisted instruction) 

concept(s) 
- definition 294, 373-375 
- formation 86, 186-187, 293, 312, 

321,331,347,359,373,375 
- learning (of a new) 86, 360, 406 
- leaming of mathematical 255-256, 

291-292,314-315,318-347 
- generalization 314 
-meaning 12 
- as partitions of a set of stimuli 375 
- transfer 314 
- understanding 312-313, 343 
condition 
-cIosure 4 
- coherence 173, 181-182 
- equilibrium 141-142 
- independence of irrelevant alterna-

tives 108, 112 
- quadrupie 141, 147n 
- stochastic transitivity 141 
conditionalization 183-187,409 
conditioning 27, 114, 133-135, 147, 

257-258,264,294,302,402 
- all-or-none 318, 324, 343, 345 
- axioms 132,263,316,425 
- changes in the conditioning of the 

organism (Iearning) 304, 357 
- cIassical 415, 423 
- effectiveness of 265, 269 
- function 422-423 
- parameters 135, 146, 258, 264, 346, 

360, 363, 368, 427 
- pattern 433-434 
- Pavlovian 300-301 
- state of 114, 358, 363, 368, 413, 

427-429,436,437 
-theory415 
conftrmation 
- function 172, 179 
- theory (Carnapian) 103-104, 

172-174,187 
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consequences 
- set of 85-89 
- ordering of 152, 156-157 
contrapredictives (Scriven) 285-286 
coordinates 191, 195, 198,227 
correlation coefficient 215, 219, 236-238 
covariance 215 (def), 219, 236-238 
criterion 
- of (formal) adequacy 36 
- for evaluating the depth and signifi-

cance of a theory 395-396 
- Chisholm's criteria for recognizing 

intentional sentences 302 
- of learning 231, 322, 325, 334, 353, 

365 
- of meaning 65-66 
- for deciding if a possible realization 

of the data is a model of the data 32 
- of optimality of decision 105 
- of rationality 109 
- of simplicity of proof 364 
- thinking-machine 395, 398, 404 
- of understanding 313 
- Vaught's 59 
curves 
- learning 319, 325-333, 334-335, 

340-342,345,354,366,368 
- Vincent 322, 323, 327, 335, 336, 345, 

380 

data see also experiment 
- analysis of 324, 360 
- canonical form of 4, 34 
- empirical 46, 47, 50, 59, 118, 219 
- latency 389 
- model of 3, 16, 20-22, 24-35, 

389-390 
- observable 261 
- relative frequency 173 
- significance of 33 
- statistical analysis of 19 
- vs. mathematical theory 258 
decidability 58 
- of meaningfulness 75 
decision 
- making 87-95 
- bounded97 
- constant 91, 93, 94 
- under certainty 151 

- under risk (incomplete information) 
110,130 

- under uncertainty 84, 107, 130 
- rational 88, 107, 110, 130, 156 
- situation 87 
- - individual 148-156 
- - two-person 157, 158, 162 
- individual vs. group 106 
- sociall11-112, 156-161 
- set 148-150 
- function 89 
- theory 83, 85, 102-104, 105-108, 114 
deductive 
-logic 86, 171-172, 181 
- system 72 (def), 73, 74 
definability (Padoa's method) 374, 376 
definition 
- proper 19 
- of a set-theoretical predicate 24 
- coordinating 34 
- of a concept 294, 373-375 
- extensional definition of intensional 

terms 302-304 
- behavioristic definition of intention

al concepts 305 
density 213, 214 (function), 215 (joint), 

217,218 (normal), 220, 233, 237-238, 
246, 265-266 see also distribution 

determinism 225, 227, 286-289 
dialogue 385 
discrimination 280-281, 294, 404, 417, 

423 
distribution 
- apriori 87, 88, 93, 97, 98, 102, 103, 

109,178-180 
- aposteriori 179-181 
- binomial 319 
- characteristic function of 214-215 
- function 213 
- joint 215, 244, 266 
- - of conjugate physical variables 

238-242 
- - of disjoint events 247 
- - of heads and tails in a coin ex-

periment 234-236 
- - of momentum and position 212, 

216-221, 225, 234,237, 245, 246, 
249 

- - of random variables 264 
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- marginal 215, 218-219, 222, 235, 237 
- mode of 262-265 
- smearing 261-266, 271, 282 
- of parameters 31 
- oftrials oflast error 231-233,360 

economics 84, 105, 110, 111, 115, 142, 
153,166 

embeddingI9,47-49,52,54,56-61,63n 
entropy 131, 145-146 
equilibrium 141, 142, 164-168, 169n 
equivalence 
- c1asses (cosets) 40, 52, 128, 364 
- - method of 51, 55 
- - of atomic events 6 
- - of formulas 75 
- - of sequences of trials 20, 26 
- of automata 420 
error 
- problem of 4, 437 
- experimental 35n 
- of measurement 232 
- prediction of 438 
- correction of 323 
- rate 389-390 
- mean trial of last 230-232, 290. 380 
- proportion of errors prior to the last 

325, 354, 366 
event(s) 181,263, 304, 308,423-424 
- as sets 301,424 
-atomic 7 
- chance 89, 92, l04n, 115-116 
- algebra of 174, 178, 244-248, 409 
- conjunction of 246 
- disjoint 247-248 
- incompatible 247 
- reinforcing 27, 261, 269, 278, 279, 

357,432 
- sequence of 176, 262, 263, 265 
- description of (and degree of belief) 

306 
- event·language vs. proposition 

language 306 
evidence 90, 103, 161, 313-314, 348, 

358,389,401,410,411 
- actual179 
- experimental 135-136 
- partial 182 
- total 170-187 

- evaluation of 33 
- selection of 185-187 
expectation 108, 141,216,272, 303 
expected value or mean 214 (def), 215, 

218,232-237,262,264 
experiment see also data 
- analysis of 305 (problem of selection) 
- design of 23, 28, 30-33 
- model of 28, 32, 300, 388-390 
- theory of the 28 
- representation of an experiment by a 

sequence 282 
- and truth of sentences 70 
experiments 
- bisection 121 
- choice 131, 135 
- Gedanken 18-19 
-learning 21, 27, 258, 261-262, 264, 

290-292,317 
- - algorithms 387-393 
- - concept formation 318, 323, 359 
- - discrimination 269,281, 334, 361 
- - mathematical concepts 318-347 
- - mathematical proofs 347-354, 

378-379 
- - paired associate 230-23], 

318-322, 358, 361 
- - Pavlovian dog salivation 

300-301,308 
- - rat maze 222-223, 416 
- - rules of logical inference 379 
- in physics ("elementary partic1es") 

229-230 
- ranking of objects 58 
- reasoning abilities of children 

348-352,364-367 
- stimulus sampling 113-114, 135 
- subjective probability and utility 89 
- utility differences 117 
explanation 
- causal, in physics 310 
- causa! vs. "reason" 302, 309 
- of psychologica1 phenomena 300 
- sufficiency of 310 
extensive 
- measurement 4 
- magnitudes 41 
- quantities 36-45 
- vs. intensive 36 
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facilitation 405 
finite see also assumption(s), finiteness 
- axiomatizability 57-58, 139 
- equivalence of sentences 62 
- model 20, 62 
- number of states of nature 96-97 
- number of trials 26 
- relational system 47, 50, 55, 59 
- set of alternatives 140 
- finitary requirement of empirical 

measurement 4-5, 44 
- finitary theories of measurement 57, 

59 
- vs. infinite 25, 262, 264, 269, 271 
first order 
- axioms 48, 57 
- logic 53, 56, 57 
- theory 58 
formalism 107, 372, 377 
formula 69 
- weIl-formed 361 
-atomic 69 
-value of76 
- empirical meaningfulness of 69, 

72-73 (def), 77,78 
- translatability of 78-79 
- validity of a quantum mechanical 

sentential 251 
- set of meaningful formulas as a 

Boolean algebra 74-75 
- logicaIly valid 74 
- meaningful logical consequence 77 
foundations of VII 
- decision theory 88 
- induction 86 
- mathematics 84, 106-107, 395-396, 

399 
- - psychological 255-256, 371-372 
- c1assical mechanies 191 
- quantum mechanics 212, 219, 

223-225,243,244,249 
- physics 193 
- probability 86, 110 
- psycholinguistics 255 
- psychology 83, 255, 256 
- statistics 87 
- utility (behavioristic) 83, 130--147 
Fourier 
- inversion theorem 216, 217 

- methods 246 
- transform 214 
function 
- conditioning 422-423 
- decision 89 
- constant decision 91 
- distribution 213-215 
- force 193 
- income 98 
-loss 87 
- potential energy 212, 221, 222 
- subjective probability 130, 145, 150 
- utility 87, 93, 98, 117, 130, 131, 

139-147, 150, 151, 157, 158, 165 
functional 98, 102 

gamble 115, 116,118 
games 150, 158, 162, 164, 285-287, 379 

see also theory of 
- against nature 107-108, 111 
- against an intelligent opponent 108 
- competitive 111, 113,286,395 
- cooperative 113, 166 
- finite 159n 
- of chance 88 
- of perfect information 286-288 
- two-person 148,161-162,168,286 
- non-cooperative 161, 163, 167-168, 

169n (def) 
- non-zero-sum 161-162 
- zero-sum 285 
generalization 313-314, 404 
goodness-of-fit test 29, 34, 219,336,343, 

360 
grammar 
-linear 416, 417 
- one-sided linear 417, 419 
- phrase-structure 412 
- probabilistic 257, 444 
- and automata 418 

harmonie osciIIator 219, 233, 237-238 
Hasse diagram 152, 156, 162, 167, 168n 
hedonism 110, 151 
Heisenberg 
- inequality as a statistical relation 

221,228,229,233-234,237-242 
- relation 219-221, 227-234, 237 
- uncertainty principle 212, 217, 
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220-223,227,246 
hierarchy 
- of models 25, 28, 33, 34 
- of theories, models, and problems 31 
- tote hierarchies 418,436 
homogeneity 29-30, 35n 
homomorphism 41, 47,52, 63n 
hypothesis 103, 180, 314 
- null 29, 219, 319, 321 
- empirical test of 118 

imbedding see embedding 
independence of 
- axioms for extensive quantities 43 
- events (statistical) 235-237,263,425 
- irrelevant alternatives 108, 112 
- primitive notions of theory of ex-

tensive quantities 44 
- path see assumption(s) 
- random variables 215, 219, 223 
- utilities 118 
induction 83, 86,107,110 see also infer

ence; logic, inductive; prediction; 
rational, decision 

inertial 
-frame 195 
-Une 208 
- path 194-196, 199, 201-206, 210 
inference 
- canons of 181 
-logicaI174,178,315,348,350-351 
- probabilistic 83, 85-86, 170-187 
information 
-coding401 
- inference from 285 
- processing or selection 183-187, 406, 

408,414 
- spread of 192 
- storage in memory 381-382, 403, 407 
-theory 146 
-use of 
- - in decision making 102-107, 110, 

286 
- - in learning experiments 290 
intention 295-296 
intentional 
- action 296, 298 
- concepts 296, 298, 300, 303, 305 
- sentences 295, 302, 303 

- vs. intensional 295 
- vs. extensional 296, 298 
- extensional definition of intentional 

terms 302 
- irrelevance of intentional concepts in 

a formal theory of behavior 307 
intentionalism 255, 301 
intentionality 301-302 
interpretation 
- intuitive 56, 195 
- empirical 46, 116 
- intended 51, 70, 157-158 
- - of concepts of a theory 5-6, 38, 

60, 89, 118-119, 149,234, 251 
- - ofaxioms 92-94, 120-121 
- numerical46, 51,91 
- of quantum mechanics (wave vs. 

particle) 225, 234, 239 
- probabilistic interpretation of 

Heisenberg uncertainty principle 
228-229 

intervall20-125 
- space-like 195 
- relatiVistic 194, 199 
intuition 
- "intuitive" learning 385 
- intuitionism (in mathematics) 107, 

372 
invariance 
- axiom 196, 205 
- and meaningfulness 66-68, 73 
- of relativistic distance 194, 196, 

201-205 
- under a transformation 68, 73 
- in truth-value 79 
isomorphism 
- closure under 48-49 
- of automata 419-420 
- of models of a theory 17, 18, 36, 37, 

43, 47, 52, 53, 57, 63n, 68, 128, 192, 
224 

- types 139, 147 

justice 151 see also normative 
- concept of 85 
- formal theory of 158, 166-168 
- intuitive notion 158 
- points of 161,162,165 
- sociall11 
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- theory of two-person 148 - discovery methods vs. correction 
methods 314, 353-354, 365-367 

kinematics 192, 194-211 - discovery methods vs. reinforcement 

language(s) 
- natural or ordinary 257, 259 
- formal 68-69, 259 
- decidability of 75 
-learning 256-258, 411-412, 431 
- philosophy of 255-256, 260 
- set-theoretical characterization of 

419 
- behavioristic analysis of 308 
- context-free 412 
- generated by an automaton 419,443 
- regular 419, 435 
lattice 169n, 243 
law 
- associative 383, 390-392 
- commutative 386, 390-392 
- distributive 390-392 
- of large numbers 86 
learning see also stimulus-response; 

stimulus-sampling; axioms; theory; 
experiments 

- situation (simple) 261 
- process 141,268,290 
- - all-or-none or incremental 298, 

315, 324, 345, 358, 367-368, 373, 
437 

- sequence of events in a learning trial 
262,265,299,316,357,423 

- mechanism 86, 114,259 
- curves 319, 325-333, 334-335, 

340-342,345,354,366,368 
- rate 321, 336 
- efficiency 339, 343, 344 
- gradient of difficulty 332 
- criterion 231,322,325,334,353,365 
- parameter 20, 26, 32, 275 
- extinction 136 
- role of previous training 331-332 
- transfer and generalization in 304 see 

also these words 
- theory 25-33, 105-106, 113, 146,230, 

258, 411 (behavioristic) 
- models see model(s) 
- discrete vs. continuous 300 
- programmed 313 

314-315 
- formal material vs. interpreted ma

terial 348, 381, 387 
- of a new concept 86 
- of mathematical and logical concepts 

255, 291-292, 315-379 see also ex
periments 

- - storing answers in memory vs. 
algorithmic rules 382-385 

- of how to solve problems 355-370, 
381-383 

- of language 256, 259, 411, 412, 431 
- - phrase-structure grammars 412 
- - innate and behavioral com-

ponents 258 
- paired-associate 230-231, 318-322, 

358,361 
- incidental 339, 344 
light line 196, 209 
likelihood 178 
- function 442 
- maximum likelihood 30-32,441 
- maximum-likelihood estimate 30, 32, 

171,442,443 
- pseudomaximum-likelihood 

estimate 275 
linguistics 255-257 
logic 
- classical193 
- deductive 86, 171-172, 181 
- extensional truth-functional 295 
- first-order 53, 56-57, 79n 
- inductive 85-86, 171, 173, 181, 185, 

187 
- nonclassical 192 
- - of quantum mechanies 243, 

246-252 
- of events 244, 246 
- predicate 79n, 349 
- sentential 349 
- three-valued 3, 65-66, 76-79, 243, 

252 
- - completeness of 76, 78 
- - truth-functionality of 76 
Lorentz 
- contraction factor 198 
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- group 194 
- invariant 199 
- matrix 198, 207, 209 
- transformation 191, 192, 194 (deri-

vation of), 196, 198 (def), 199, 200, 
207 

maehine 
- language 414 
- thinking 86, 394-395, 398-399, 

400-406 
magnitudes 40-41 see also quantities 
Markov 
- ehain 133-138, 231, 275, 428-429, 

436-437 
- process 264, 267, 280, 317, 345-346, 

358 
- theorem 267 
mathematieal 
- psyehology 256, 378 
- system 361-362 
- objects vs. thinking 373 
- leaming of mathematieal eoneepts 

255-256, 291-292 
- - binary numbers 319-323 
- - equipollence of sets 323-333, 

339-343 
- - identity of sets 323-333, 336-339 
- - polygons and angles 333-336 
- leaming of mathematieal proof 

347-354 
matrix 
- game 162, 167 
- Lorentz 198,207,209 
- payoff285 
- transition 133-138, 144, 231, 346, 

358,437 
maximization 276 
- of entropy 146 
- of expected utility 88, 109, 130, 146, 

151, 157, 158 
mean see expected value 
meaningfulness 
- empirical3, 34,46,65-79 (72, 73, 77 

def),223 
- of formulas 72-77 
- of an hypothesis 67 
- of a sentence 76 
- decidability of 75 

- invariance 66-68, 70, 73 
measure 422, 432 
- additive 6 (def), 8 
- ordinal67 
- probability 8, 20, 22, 26, 97, 173, 

178-181,185,224,409,423 
- of eomplexity of automata 417 
- of degree of belief 88, 130, 173 
- ofvalue 88 
measurement 
- definition of 46-49 
- methods of 46, 50 
- existenee of 49-56 
- theory of 48-49, 83, 193, 241 
- - finitary 57, 59, 62 
- - not axiomatizable 58-59 
- - assumptions of finiteness and 

equal spacing 44 see also these 
words 

- unit of 65, 66 
- extensive 4 
- procedure 233, 234, 241 (in quantum 

mechanies) 
- of extensive quantities 42 
measurement of 
- degree of belief 306-307 
- distance 50 
- habit strength 46 
- hardness 67 
- height 220, 229 
- intelligence 67 
- length 4, 6, 37 
- loudness of sound 59 
- mass 4, 6, 37, 46, 50, 66-69, 211 
- pressure 5 
- raeial prejudice 67 
- relativistie distance, 194,196 
- sensation intensities 50, 60 
- subjective probability 4,6,50,67, 

83,88,89,115-116 
- temperature 5, 50, 67 
- utility 60, 84, 89, 90, 116 
-volume 5 
- weight 5, 220, 229 
- simultaneous measurement of mo-

mentum and position 212, 220-222, 
227-230,233 

- simultaneous measurement of height 
and weight 220 
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mechanics 159 
- classical particle 13, 191-192,227, 

230 
- quantum 105, 191-242 
- - axiomatic foundations of 212, 

219, 223-225, 243, 244, 249 
- - classical 217 
- - interpretation of 225, 234, 239 
- - problems of measurement in 193 
- - nonclassicallogic of 192,243-252 
- - role of probability in 212-225, 

227-242 
- - statistical 225 
memory 381-382, 396,402-403, 

407-408 
method(s) 
- coordinate vs. coordinate-free 191 
- Fourier 246 
- of cosets 51 
- of measurement 46 
- scaling, of pair comparison 59 
midpoint 120,201-204 
mixture 
- of decisions 90-94, l04n 
model(s) 
- concept of 10-17 
- - as a set-theoretical entity (possi-

ble realization) 10, 12-14, 16 
- - as a linguistic entity (theory) 12, 

15,48 
- - as a physical entity 13-16, 

377-378 
model(s) 
- use of 17-23,371,374 (padoa's 

method) 
- theory of 11, 33, 63, 259 
- class of 433 
- range of, and abstraction 376-377 
- comparison of 19, 25, 377 see also 

isomorphism 
- hierarchy of 25, 28, 33, 34 
- cardinality of 48, 57 
-finite 62 
- normative 113 
- and structure 12 
- and theory 11,13,14,15,396,398 
- and data 13, 396, 398 
- of a theory 18,21,24-26 
- of the data 3, 16, 20-22, 24-25, 

389-390 
- of the experiment 28, 32, 300, 

388-390 
- model of the experiment vs. model of 

the data 34n 
- model of a theory vs. model of the 

data 20-21, 25, 26 
- mathematical model approach vs. 

simulation programming approach 
406 

- of classical particle mechanics 13 
- of electromagnetic phenomena 14 
- of the theory of the atom 13 
- of encoded beliefs 308 
- ofa formal language 71, 73, 75, 77 
- of grading principles 148-168 
- - individual decision 148-156 
- - socia! decision 156-161 
- of learning and concept formation 

231,258,347,367-368,371,375,402 
- -linear 261, 282-284, 402 
- - linear incremental with a single 

operator 367 
- - linear response 32 
- - continuous response linear 271 
- -linear regression 438-441 
- - one-element 136, 143, 336, 354, 

357-359 
- - one-element all-or-none con

ditioning 319, 343, 360, 367 
- - one-element linear stimulus 

sampling 273 
- - one-element applied to discrimi

nation experiment 361 
- - two-element 137-138 
- - stimulus-response model asymp-

totically becoming an automaton 
429,431,432,442 

- automaton model of chiId's behavior 
257 

momentum 212, 216-222, 228-230, 
233-237,249 

money 115-117 
mora! 
- actions vs. beliefs 307 
- imperative 155 
- philosophy 149, 151, 152, 159 
- principles 164 
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nominalism 401 
normative 84, 150, 187 
- vs. descriptive 89,102,105-106, 111, 

113,114 
numerica1 
- assignment 48, 55, 56, 62 
- interpretation 46 
- representation 192 
- system 47-49, 55 

observable 223, 224, 232, 248, 249 
operations 5 
- empirical 36, 68, 70 
- arithmetica1 68, 71 
- Boolean 174, 375 
- unary 250 
- addition 250 
optimality 103, 162, 164, 286 
- Pareto optimality 84, 153 
order 29-30, 35n 
ordering 50, 55 
- empirica1 68 
- lexicographical 63n 
-linear 162 
- partial 156, 157, 192,224,313 
- strict partial 152, 156, 157, 159, 166, 

168n 
- simple 49, 53, 55, 58, 59, 63n, 92 
- weak 6,52,53,56,158,162 
- well-ordering 49, 55 
- individual vs. social112 
- of consequences 85, 152, 156, 157 
- of decisions 92 
- of preferences 84, 85, 92, 109, 112, 

150 
outcome 26,162,164,167, 168, 179, 

213,234,266,301 

paradigm 297, 404-405 
paradox 
- Burali-Forti 106 
- lottery 85, 86 
- of statistica1 inference 170, 179, 181 
- ofvoting 111-112 
- Russell 106, 108 
- St. Petersburg 86 
parameter 
- conditioning 135,146,258,264,346, 

360,363,368,427 

- guessing 232, 363 
- learning 20, 26, 32, 275 
-timing 388 
- distribution 231 
- estimation of 16, 34, 171 
- of smearing distribution 262, 264, 

265 
parity 194,210-211 
particle 193, 221, 222, 227, 229, 230, 

234,245 
partition 147n (def), 150 
path 227 (of electron) 
- inertialI94-196, 199, 210-206, 210 
- twice-differentiable 258 
pattern 
- of stimuli 133 
payoff 107, 135, 140, 142, 143,285,288 
perception 259, 395, 396, 400, 401, 406 
position (ofparticle) 193,212,216-222, 

228-230,233-237,249 
power 
- of a relation 91, 119 
prediction 
- ordifiary 178 
- from a theory 19, 27, 86, 113-114, 

135,225,258-259 
- from a model 232, 273, 389-390,405, 

438 
- of data from experiment 403 
- of error 438 
- of behavior 142,255, 356 
- - deterministic 285-289 
- - probabilistic 288-292 
- impossibility of (unpredictability in 

human behavior) 285-293 
- and measurement 46, 50 
- experience on 133, 262 
preference(s) 92-95, 98, 111-112, 116 
- relation 109, 152, 158 
- ranking 85, 162, 166 see also 

ordering 
- theory of 307, 374 
primitive concepts 
- interpretation of 422 see also inter-

pretation 
- of a theory 305-306 
- of the theory of behavior 299 
- of classical particle mechanics 13 
- of theory of decision making 89 
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- of relativity theory 195 
- ofstimulus-samplingtheory 131,422 
- of theory of utility differences 

118-119 
principle(s) 
- of abstraction 106 
- Bayesian 103, 109 
- of childrearing 152 
- of choice 108-109, 150 
- equilibrium 141-142 
- of extensionality 106 
- grading 148-169 
- - definition of 152-153, 157 
- - formulation of 155 
- - compatibility of 153 
- of gross aggregation 154 
- Heisenberg uncertainty 212,217, 

220--223,227,246 
- of indifference (Laplace) 108, 111 
- of inference see rule(s) 
- of irrelevant alternatives see 

condition(s) 
- of justice 84, 158, 166 
- of majority decision 111 
- of maximizing expected utility 

151-152,157-158 
- minimax 108, 111, 157-158 
- minimax regret 157 
- Padoa's 19, 44, 45n, 374 
- of social weights 154 
- sure-thing 94,108,164 
- of unanimity 153, 154, 168n 
prisoner's dilemma 161, 162, 169n 
probabilistic 
- analysis of "intentional" concept of 

learning 300, 304 
- behavior 288-289 
- grammar 257, 444 
- inference 83, 85, 86, 170--187 
- interpretation of Heisenberg 

uncertainty principle 228-229 
- mechanism of searching of items in 

memory 403 
- physical theory 289 
- prediction 288-292 
probability 
- subjective 6, 8, 83, 87, 88, 104, 110, 

114,115,130,166 
- estimated from relative frequencies 

59 
- measure (on algebra of events) 8, 20, 

22,26,224,409,423 
- - countably additive 213 
- apriori 87,409 
- conditional103, 174, 177, 179, 

182-187,278-279 
- aposteriori 181 
-joint 434 
- numerica1 88, 96 
- estimation or assignment of 87,171, 

174,176,246 
- space 247-249 
- - c1assical247 (def) 
- - quantum mechanical 249 (def) 
- theory see theory 
- distribution see distribution 
- concepts 192 
- - applications 238-240 
- - in quantum mechanies 212-225, 

227-242,243-252 
- function (subjective) 130, 145, 150 
- asymptotic 138, 144 
- as a measure of degree of belief 88 
- of conditioning 316, 357, 359, 363 
- of error 338, 438, 441 
- guessing 114, 334, 335, 346, 353, 

357-360,363,426,434 
- of response 114, 231, 317, 360, 363, 

367,426,433,438,440,442 
- of sampling 138,316, 346 
problems 
- relative difficulty of 385-386, 

392-393 
- solving problems by algorithms 

384-385 
proof 
- finding 378-379 
- learning 352-354 
- rules of 383 
- simplicity of 364 
- psychologica1 theory of 355-370 
- of minimallength 362, 363 
property 
- Archimedean 41, 48,56 
- c10sure 251-252 
- domination 92 
- Markov 267 
- substitution 92 
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- invariance in an inertial space-time 
frame of reference 201-204 

- sequential property of stimulus
sampling models 278 

- of relations 40, 44 (trans), 49 (anti
sym), 52, 59, 109 (trans), 121, 123, 
152,158-160,252 

proposition 174 
psychologism 86 
psychology see also behaviorism; foun

dations; learning 
- associationist 292 
- behaviorist vs. intentionalist 296, 

298,302 
- behavioristic 295, 299, 355 
- Gestalt 405 
- introspective vs. behavioristic 118, 

295 
- mathematical 256, 378 
- philosophical 256 
- and physiology 401-402 

qualitative 47 
- vs. quantitative (measurement) 88 
quantifiers 58, 72, 176, 210 
quantities 45n 
- extensive vs. intensive 36 
- proportional 66 

random 230 
-number 30 
- variable 29, 133, 141, 185, 213 (def), 

215, 220, 222, 229, 235, 240, 246, 
248, 264, 265, 266, 272, 282, 301, 
442 

- mechanism 96 
randomization 22,30-31,231,286, 364 
- of decisions 88-90, 96, 109 
rational 
- behavior 94 
- decision 88, 107, 110, 130, 156 
- man 102, 150-151,408 
- strategy 84 
- changes in belief 183-187 
- maintenance of belief 408 
- processing of information 185-187, 

409 
- principles of attention selection (and 

perception) 185-187 

rationality 
- concept of 83, 106-110, 185-187 
- intuitive notion 150 
- naive theory 109, 113 
- theory of 130,185-186 
-axioms 95 
- condition, of belief 173 
- and cognitive processes 410 
realization (possible) 
- of a theory 10,24,28,97 
- as a model 3, 22, 29, 30 
- of the data 22, 25, 29, 30 
- of a language 77-79 
- of the theory of the experiment 28 
- of linear learning theory 26 
- of the theory of extensive quantities 

44 
- of the linear-response theory 20, 26 
reductionism 18, 435 
reinforcement 20,26,30,114,130-135, 

258,261-264,269,282,294,299,344, 
422,432 

- continuous smearing of the effects of 
27.-

- distribution 267, 280 
- point of 271 
- random variable 265 
- schedu1e 22,27,262,264,268, 369, 

412,416, 417, 427, 432, 436 
- - noncontingent 21,271-279,282 
- - simple contingent 133, 142 
- - two-arm bandit 135-143 
relation(s) see also property 
- classical categories of 397,399 
- Heisenberg uncertainty 219-221, 

227-234,237 
- binary 
- - beforeness 192 
- - congruence 128 
- - empirical46, 51, 59 
- - equivalence, 6, 37,40,51, 169n 
- - identity 37 
- - inclusion 251, 313 
- - indifference 51, 90, 91, 119,374 
- - ordering 46, see also this word 
- - preference 109, 152, 158 
- - probability 306 
- - signaling 192, 210 
- - strict preference 90, 119, 374 
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- - weak preference 89, 92, 97, 118 
-ternary 
- - betweenness 119, 197, 199, 204 
- - midpoint 201-204 
- quaternary 55, 61, 63, 118-122, 128 
relative frequency 28-29, 59 
- theory 86, 110 
- data 176 
relativistic 
- distance 194, 195 (def) 
-frame 196 
- intervals 194,199 
- kinematics 192, 194 
relativity theory 191-192, 194-195 
relevance 
- of decision theory 105-114 
representation theorem 25, 70, 377 
- definition of 17 
- use of 18 
- for theory of extensive measurement 

6,7 
- for theory of extensive quantities 42 
- for difference structures 123-129 
- for theory of stochastic choice 

behavior 139 
- for finite automata 418, 421, 429, 

432-435 
- for theory of decision making 97 
resemblance 399, 403, 405 
response(s) 130-134, 143-144,230-231, 

261,263,294,302,305,344,413,416, 
422,428,437 see also stimulus; 
stimulus-response; learning 

- axiomes) 132,262-265,316,424-426 
- continuum of255, 261, 275, 282 
- set of 20, 26 
- probability of 21,231,266-269, 

278-282,290,299,317,357 
- random variable 265 
- independence of 367 
- theorem 266 
- guessing 358-359 
- conditioning see this word 
- correction of (in learning experi-

ments) 320, 323, 353, 365 
- methods of (variation in) 341-343 
- and internal state of automaton 413, 

432 
rote skill 312-314 

rule 
- of acceptance 85, 86 
- of behavior 
- - ethica1 or normative 148,164, 

165,168 
- - prudential 164-165 
- of inference 352, 361, 379 
- of natural deduction 17-78 
- of probabilistic inference 172-179 
- of pure prudence 185 
- of sentential inference 175 

sampIe space 22, 33, 103, 113, 175,213, 
250,265,301,422 

sampling see also stimulus 
- axioms 132, 262, 264 
- probability of 138 
- random variable 265 
- of a pattern 133, 317 
satisfaction 
- of a sentence in a model 71, 75 
scale 
- ratio 147 
- standard 5 
- subjective 60 
semantics 71, 258-259, 387, 432 
semigroups 37,41,42 
semiorder 50, 51, 53, 55, 58, 59 
sentence(s) 69, 174 
- finitely equivalent 62 
- universal 57-62 
- recursively enumerable class of 58 
- weIl-formed 66 
- meaningful 76 see also meaningful-

ness 
- satisfaction 71, 79 
- truth or falsity 69, 70, 72, 73, 76, 295, 

296,303 
- intentional 295, 302, 303 
- intentional vs. intensional 295 
- belief 295 
- semantical theory of 259 
- meaning of 79 
- reduction 116 
sentential 
- connectives 174, 244 
- formula 251 
sequence 213, 282 
- of events in a learning trial 262, 265, 
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299, 316, 357, 423 
- equivalence class of sequences which 

are equivalent through trial n 20, 26 
- finite 28, 48, 99-100 
- of trials 113, 356, 422 
set(s) 
- theory 86,105-106,396,404-405, 

414 
- membership 414 
- cylinder sets 20, 26, 423-424, 433 
- events as 424 
- presentation set (set of stimuli) 

430-431 
- Borel 213, 224 
- identity of 323-333, 336-339, 359 
- equipollence of 323-333, 339-341 
- choice set 142,146 
- of alternatives 118, 139-146, 147n 
- of decisions 148-150 
- of consequences 85-89 
- of particles 13-14 
set-theoretical 
- characterization of languages 419 
- methods (in physics) 191 
- model of a theory 14 see also 

model(s) 
- predicate 24 
sign 300, 303 (nonintentional def of), 

304,305 
space 
- Hilbert 216,224 
- probability 247-249 
- - classical finitely additive 247 (def) 
- - quantum mechanical 249 (def) 
- sampie 22, 33, 103, 113, 175, 213, 

250,265, 301,422 
space-time 
- frame of reference 195 
- point 194, 195,210 
standard deviation 219-221, 228-230, 

237,238 
state 
- intemal (of an automaton) 257, 412, 

413,415,418,432,439 
- of nature 87-97, 103, 105, 109, 

148-153, 156 
- unconditioned/conditioned 231,358, 

429 see also conditioning 
stationarity 29-30, 35n, 322, 325, 327, 

335,337,360,367 
statistical 
- independence 235-237, 263, 359, 

363, 388, 425 
- methods 179 
- quantum mechanics 225 
- syllogism 170, 179-181 
stimulus-response 
- association 291-293, 314, 319, 358, 

414 
- theory 255, 257, 258, 291, 411, 418, 

421,422,425,426,428,436 see also 
axioms for 

- - of concept formation 373, 375 
- - of finite automata 255, 256, 

411-444 
- - of language 260, 412-414 
- - insufficiency of 291 
stimulus-sampling learning theory 

113-114,131-138, 139, 143, 
315-317, 356,402 see also axioms 
for; assumptions for a finite number 
of responses 261, 266-271, 422 for a 
corilinuum of responses 255, 
261-284 

stochastic 
- choice behavior 139 
- process 171,225,257 
- transitivity 141 
strategy 162, 164,318 
- equilibrium-point 168 
- justice-saturated 165, 167 
- minimax 286, 288 
-mixed 169n 
- nonrandom 286 
- optimal 286 
- pure 286 
- randomized 288 
- rational 107 
structure 85, 250 
- mathematical (in theory of measure-

ment) 4 
- set-theoretical 20 
- of science 34 
- of a theory 58 
- and model 12 
- axioms 95, 104, 109 
- - vs. rationality axioms 95 
- finite, equally spaced, extensive 6 
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(def) 
- rational subjective choice 91-92 (def) 
- numerical difference 128 
subjectivism 30 
submodel62 
subsystem 47, 52-61 
syntax 257 
system 
- categorical 37 
- deductive 72 (def), 73, 74 
- mathematical 361-362, 369 
- relational 47-62, 63n 
- - countable 49-50, 55 
- - finite 47, 59 
- - numerical 47-49, 54 

tapes 419,420,434 
temporal 
- order of knowledge and statistical 

inference 181 
- parity 194, 210-211 
theorem 361-362 
- Arrow impossibility 111,113 
- Bayes' 178-180 
- Cayley's 17, 376-377 
- centrallimit 86 
- embedding 19 
- general response 266 
- Hahn-Banach 102 
- Markov 267 
- Milnor impossibility 109, 113 
- representation see this word 
- Stone's 17, 377 
- on total probability 172,177,182, 

184 
- uniqueness see this word 
- Zermelo's 286 
theory see also axioms for 
- as a linguistic entity 13, 48 
- axiomatizability 57 see also this word 
- axiomatization 17, 24, 297 see also 

this word 
- formalization in first-order logic 

(standard formalization) 4, 48,57,79 
- higher-order 57 
- cbaracterization 16-17, 297, 300 see 

also tbis word 
- possible realization 20 
- analysis in terms of a theory (formal 

cbaracterization) vs. analysis in terms 
of empirical facts (paradigm case) 
297 

- deterministic vs. probabilistic 289 
- evaluation of depth and significance 

395-396 
- status of theories 299 
- relevance 105, 305 
- empirical meaning 33-34 
- and data (empirical adequacy) 

25-26 
- and experiment 16, 19, 25, 32, 281, 

297-298 
- of model 11, 20-26, 33 
- of the experiment 28 
- of data 25, 290, 360 
- in physics 295 
- schematic character of a scientific 

theory 356 
- abstract 376-377 
theory of 
- cognitive processes 394-410 
- concept formation 360 see also 

concept 
- confirmation 103-104, 172-174, 187 
- decision 85, 87-104, 105 
- - individual normative 106-110 
- - group normative 110-113 
- - descriptive 113-114 
- explanation 85 
- games 84,106,110, 168n, 285 
- groups 24, 376 
- induction 86,106,109-110 
- inference 85 see also inference 
- information 146 
- justice 158, 166-168 
-language 259, 419 
-learning 25-33, 105-106,113, 146, 

230, 258, 411 
- -linear-response 20,26-27,282 see 

also stimulus-response 
- - stimulus-sampling 27,113-114, 

131-132,262-263,316-317, 
425-426 

- meaning 258 
- measurement 3, 48-49, 54, 63n, 83, 

193,241 
- mediation 404-405 
- numbers 240-241 
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- partial belief 306 
- perception 259 
- preference 307, 374 
- probability 86, 87-104, 110, 174,227, 

238 
- quantum mechanies 212-226, 234 
- rational behavior 84,166,185-187 
- reference 258 
- relativity 191-192 
- relativistic kinematics 194 
- utility 110, 138-145,409 
time 
- direction 192, 211 
- reversal 194, 198,210 
- time-independent wave equation 217 
total evidence 170-187 
transfer 313-314,324,327,333,343,344, 

381,404 
- positive 333, 341, 380 
- negative 327, 333, 342 
transformation 68 
-linear 21, 27, 56, 67, 79n (def), 98, 

108,115,128,139,141,145,196 
- monotone 36 
- monotoneincreasing67, 68, 79n(def) 
- identity 67 
- similarity 36, 42, 67, 71, 73, 74, 79n 

(def) 
- Lorentz 191, 192, 196, 198 (def), 199, 

200,207 
- nonsingular affine 198-199, 206, 207 
tree 134, 136, 138, 280, 428, 429 
trial(s) 132-136, 140-142,231-233,258, 

269,270,275-280,290,300,321,322, 
325,354,427,429 

-learning 261-265,299-300,316,334, 
357,423 

- training 300 
- Bemouilli 319, 360 
- sequence of 113, 356,422 
- number of (finite/infinite) 26 

truth 
- Tarski's definition of 297,309 
- truth-functional 252, 295 
- truth-value of sentences 66-73, 76, 

302 
- truth-conditions for belief sentences 

296-297,308-309 
- truth-conditions for intentional 

sentences 295-296, 303 

uniqueness see also scale 
- theorem 71 
- - for the theory of extensive 

measurement 6, 7, 42 
- - for the theory of stochastic choice 

behavior 139 
- - for theory of decision making 97 
- up to a transformation 67, 97-98 
- of apriori distribution 97 
- of observables 224 
- problem (of measure) 66 
unit 42, 65-67, 70-71, 124 
utility 87-104, 114 
- behavioristic foundations of 83,118, 

130-147 
- cardinaI117-118 
- expected 93, 145, 146, 150 see also 

maximization 
- differences 98, 115-118, 121 
- marginal 117, 145 
- numerical 88 
- function 139 see also function 
- theory 110,138-145,409 
- vs. pleasure 110 
- as a measure of value 88 
utterance 65, 259 

variance 214 (def), 215,218,232-237, 
263,264,272 

vector 155, 220 (propagation) 
velocity 193, 194, 198, 227 
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