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TO ERNEST NAGEL AND ALFRED TARSKI



PREFACE

The twenty-three papers collected in this volume represent an important
part of my published work up to the date of this volume. I have not
arranged the paper chronologically, but under four main headings.

Part I contains five papers on methodology concerned with models and
measurement in the sciences. This part also contains the first paper
I published, ‘A Set of Independent Axioms for Extensive Quantities’, in
Portugaliae Mathematica in 1951.

Part II also is concerned with methodology and includes six papers
on probability and utility. It is not always easy to separate papers on
probability and utility from papers on measurement, because of the close
connection between the two subjects, but Articles 6 and 8, even though
they have close relations to measurement, seem more properly to belong
in Part II, because they are concerned with substantive questions about
probability and utility.

The last two parts are concerned with the foundations of physics and
the foundations of psychology. I have used the term foundations rather
than philosophy, because the papers are mainly concerned with specific
axiomatic formulations for particular parts of physics or of psychology,
and it seems to me that the term foundations more appropriately describes
such constructive axiomatic ventures. Part III contains four papers on
the foundations of physics. The first paper deals with foundations of
special relativity and the last three with the role of probability in quantum
mechanics. I regret not including some of the earlier work with
J. C. C. McKinsey on the foundations of classical mechanics, but I
already have given an account in general terms of that work in the last
chapter of my Introduction to Logic.

The largest number of papers is in the final part on the foundations
of psychology. The greater concentration of papers here correctly reflects
my interests over the past decade. In fact, the bulk of my papers that I
think are of some conceptual importance and that are not included in this
volume are papers that lie strictly within mathematical psychology as a
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scientific discipline, and are consequently not really appropriate for
inclusion in the present volume. Because so many of the papers in Part IV
are concerned with the psychological foundations of mathematics in one
form or another, it would almost have been appropriate to have so labeled
Part IV. But I have included several papers that have nothing directly to
do with his subject, and so I have kept the more general title.

Two of the papers in this collection were written with co-authors.
The fourth paper, ‘Foundational Aspects of Theories of Measurement’,
was written jointly with Dana Scott. The eighth paper, ‘An Axiomatization
of Utility Based on the Notion of Utility Differences’, was written jointly
with Muriel Winet. The appearance of these two papers here has been
generously agreed to by them.

Two of the papers have not previously been published. These are the
papers, ‘Behaviorism’ and ‘On the Theory of Cognitive Processes’. The
first of these two papers was written between 1963 and 1965, and was
given in various revised forms at Swarthmore College and at the University
of Illinois. The second of the two papers was written in 1967 and was
given as an Arnold Isenberg Memorial Lecture at Michigan State
University.

Acknowledgments for permission to publish the various papers are
given at the bottom of the first page of each article, but thanks are
extended here to the many editors and publishers who generously granted
this permission. No substantive or real stylistic changes have been made
in any of the articles; only the manner of referring to published articles
and books has been standardized, as has the formatting of section
headings. Footnotes in the original articles are numbered, beginning
anew with each article; the bibliographic footnotes that originate with
this publication are indicated by a dagger following the number. Some
introductory remarks about each article and subsequent pertinent lit-
erature are to be found at the beginning of each part.

The publication of a series of papers spanning more than 18 years of
work seems an appropriate occasion to acknowledge some of the intel-
lectual debts I have incurred during those years. For my initial intro-
duction to the philosophy of science and for continual intellectual counsel
and advice, I owe a great deal to Ernest Nagel. Shortly after my arrival at
Stanford University in 1950, J. C. C. McKinsey joined the faculty of the
Department of Philosophy, and I learned from him the set-theoretical
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tools that have been one of my main stocks in trade over the years.
Various collaborative work that we planned beyond the several articles
we originally published was abruptly halted by his untimely death in 1953.
McKinsey acknowledged that the greatest influence on his scientific career
had been Alfred Tarski. Both through McKinsey and also through direct
acquaintance with Tarski, including attendance at his seminars at Berkeley
during the years when I was first at Stanford and through his published
works as well, I learned much of what I know about intellectual clarity and
precision. And so, I take this occasion to acknowledge how much I owe
to Tarski. I am indebted to William K. Estes for my first introduction to
the conceptual and foundational problems of psychology, especially
mathematical learning theory. We worked together intensively during
1955-56 when we were both Fellows at the Center for Advanced Study in
the Behavioral Sciences at Stanford. In more recent years I have also
learned much from Duncan Luce about both mathematical psychology
and the theory of measurement.

It is important to record that I owe a very considerable debt to my
younger colleagues as well. I mention especially Dana Scott and Richard
C. Atkinson.

The idea of putting this volume together originated with Donald
Davidson and Jaakko Hintikka. To both of them I owe a further debt for
enlightening and penetrating conversations about philosophical matters.
This is especially true of Davidson, who was my colleague at Stanford for
many years. Finally, I want to acknowledge the dedicated and able editorial
assistance of Miss Diana Axelson and Mrs. Lillian O’Toole, as well as
the excellent help of Miss Anne Fagot in preparing the indexes and that
of Mrs. Maria Jedd in preparing the illustrations.

PATRICK SUPPES
Stanford, California, January 1969
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PART I

METHODOLOGY:
MODELS AND MEASUREMENT



The five papers in this part examine some of the many issues surrounding
the general use of models in empirical science, and also the conceptual
foundations of the theory of measurement. In discussing both the general
use of models and the particular case of measurement, I have tried to
show in these papers how set-theoretical tools standard in modern
mathematics can also be used to good advantage in discussing methodolog-
ical matters in the empirical sciences.

Because of restrictions on re-publication, I have not been able to
include later papers that carry further some of the themes begun in these
five papers. In connection with the theory of measurement, I would
mention particularly the joint article with Joseph L. Zinnes, ‘Basic
Measurement Theory’, which is Chapter 1 of the Handbook of Mathe-
matical Psychology, published in 1963.1 In that article, Zinnes and I give
a more leisurely and general approach to the theory than is to be found
in any one of the articles in Part I of the present volume, although most
of the ideas worked out by Zinnes and me are anticipated in the fourth
article in this volume, which I wrote jointly with Dana Scott. I mention
the joint article with Zinnes especially for those who are interested in
general questions about the theory of measurement, but find the fourth
article somewhat heavy going. At the end of the article with Scott, there
is a conjecture about finite axiomatizability. Tait (1959) has given a
counterexample to this conjecture, and the subject remains as intractable
as ever. On the other hand, some important, positive results giving
necessary and sufficient conditions for various qualitative measurement
structures to have a numerical representation are given in Scott (1964).

The ideas on empirical meaningfulness begun in the fifth article are also
extended in the article with Zinnes. The development of a three-valued
logic is extended further in Suppes (1965b).

The second article, the one on models of data, moves in a promising
direction that I have not yet had the opportunity to explore in greater
depth. More explicit and more extended analysis of the relation between
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theories and data, once the data are expressed in canonical form, is much
needed. From a general philosophical standpoint, the analysis of this
relation brings back many aspects of atomism and earlier, simplistic
versions of logical positivism. The difference in the present case, how-
ever, is that the selection of the canonical form of the data, that is, how
the data of experiments are to be recorded, is not something fixed in
nature or in the perceiving apparatus of men, but is something subject to
modification in light of experience and according to demands of current
theory. I continue to stand by what I say in this article, but I do recognize
it as only a bare beginning.

The third article on extensive measurement is part of a continuing
stream of articles on this subject since its publication in 1951; perhaps
the best and latest treatment is to be found in an article by Luce and
Marley (1969). At the end of the 1951 article, I mentioned two problems
that remain unsolved by the analysis given there. The first is that the set
of objects must contain an infinite number of elements because of the
closure condition on the basic operation of combination introduced.
The second problem concerns the absence of any theory of error as part
of the basic conceptual framework introduced. The problem of error is
still, I think, in an unsatisfactory state, although some significant prog-
ress is made in Krantz (1967). On the other hand, the problem of
finiteness can be handled rather directly. What I consider to be the
simplest and, in many ways, most attractive axioms for the finite case can
be sketched in a few pages, and I think it may be of interest to do that
here, especially because none of the developments in this set of axioms
is at all technical in character. The axioms themselves are, in a strict
logical sense, elementary in that the theory can be stated as a theory with
standard formalization, that is, as a formalized theory within first-order
predicate logic with identity.

We may develop the axioms of extensive measurement with at least
three specific interpretations in mind. One is for the measurement of mass
by means of an equal-arm balance, one is for the measurement of length
of rigid rods, and one is for the measurement of subjective probability.
Other interpretations are certainly possible, but I shall restrict detailed
remarks to these three.

From a formal standpoint the basic structures are triples <X, &, =),
where X is a nonempty set, & is a family of subsets of X, and the
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relation > is a binary relation on &. By using subsets of X as objects, the
need for a separate primitive concept of concatenation is avoided,
contrary to the requirement in Article 3. As a general structural con-
dition, it shall be required that % be an algebra of sets on X, which is just
to require that # be nonempty and be closed under union and com-
plementation of sets, i.e., if 4 and B are in & then AUB and ~ A4 are
also in &#.

In addition to their finiteness, the distinguishing characteristic of the
structures considered is that the objects are equally spaced in an ap-
propriate sense along the continuum, so to speak, of the property being
measured. The restrictions of finiteness and equal spacing enormously
simplify the mathematics of measurement, but it is fortunately not the
case that the simplification is accompanied by a total separation from
realistic empirical applications. Finiteness and equal spacing are char-
acteristic properties of many standard scales, for example, the ordinary
ruler, the set of standard weights used with an equal-arm balance in the
laboratory or shop, or almost any of the familiar gauges for measuring
pressure, temperature, or volume.

The intended interpretations of the primitive concepts for the three
cases mentioned is fairly obvious. In the case of mass, X is a set of
physical objects, and for two subsets 4 and B, 4> B if and only if the set
A of objects is judged at least as heavy as the set B. It is probably worth
emphasizing that several different uses of the equal-arm balance are
appropriate for reaching a judgment of comparison. For example, if
A={x, y} and B={x, z}, it will not be possible literally to put 4 on one
pan of the balance and simultaneously B on the other, because the object
x is a member of both sets, but the comparison can be made in at least
two different ways. One is just to compare the nonoverlapping parts of
the two subsets, which in the present case just comes down to the com-
parison of {y} and {z}. A rather different empirical procedure that even
eliminates the need for the balance to be equal arm is to first just balance
A with sand on the other pan (or possibly water, but in either case, sand
or water in small containers), and then to compare B with this fixed
amount of sand. No additional interpretations of these operations are
required, even of union of sets, which serves as the operation of con-
catenation, when the standard meaning of the set-theoretical operations
of intersection, union, and complementation is given.
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In the case of the rigid rods, the set X is just the collection of rods, and
A= B if and only if the set 4 of rods, when laid end to end in a straight
line is judged longer than the set B of rods also so laid out. Variations on
exactly how this qualitative comparison of length is to be made can
easily be supplied by the reader.

In the case of subjective probability, the set X is the set of possible
outcomes of the experiment or empirical situation being considered. The
subsets of X in & are just events in the ordinary sense of probability
concepts, and 4> B if and only if 4 is judged at least as probable as B.

Axioms for extensive measurement, subject to the two restrictions of
finitude and equal spacing, are given in the following definition. In
Axiom 5, = is the equivalence relation defined in the standard fashion in
terms of > ; namely, A=~ B if and only if A>B and B> A4.

DEFINITION: A structure y=<{X, %, =) is a finite, equally spaced
extensive structure if and only if X is a finite set, F is an algebra of sets on
X, and the following axioms are satisfied for every A, B, and C in F:

1. The relation > is a weak ordering of F ;

2. If AnC=0 and BnC=0, then-A=B if and only if AoC>BuC,

3. A>0;

4, Not 0= X;

5. If A= B then there is a C in & such that A~Bu C.

From the standpoint of the standard ideas about the measurement of
mass or length, it would be natural to strengthen Axiom 3 to assert that
if A#0, then 4> 0, but because this is not required for the representation
theorem and is unduly restrictive in the case of subjective probability, the
weaker axiom seems more appropriate.

In stating the representation and uniqueness theorem, we use the
notion of an additive measure yu from & to the real numbers, i.e., a
function p such that for any 4 and B in &

@ 1@ =0,
i) u4)>0,
(i) fAnB=0 then u(4u B)=p(A)+u(B),
where @ is the empty set, and it is also required for the applications
intended here that u(X)>0. A surprisingly strong representation theorem

can be proved to the effect that there are only two nonequivalent sorts of
atoms.
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THEOREM: Let y=<{X, F, =) be a finite, equally spaced extensive
structure. Then there exists an additive measure u such that for every A
and B in &

u(4)>u(B) ifandonly if A= B,

and the measure u is unique up to a positive similarity transformation.
Moreover, there are at most two equivalence classes of atomic events in F
and if there are two rather than one, one of these contains the empty event.?

Proof* It will suffice to restrict ourselves to the atomic events, for by
Axiom 2, the results can then easily be extended to any event. From the
finiteness of X, it follows at once that there are a finite number of atomic
events, which by Axiom 1 may be arranged in an ordered set of equiv-
alence classes, where & is the equivalence relation. Let &7, %75,..., %,
be these classes with &7, <&, if m<n, and if 4, is in &7, set u(A4,)=0.
If 4, is in &7,

u(4)=1.

Now consider an atomic event 4, in &/,. By virtue of Axiom 5, there
must exist an event C such that if 4, is any atomic event in 27,

Ay v Cr A4,,

but clearly C can have as members only atoms belonging to 27;. Thus
if k is the cardinality of 4; U C, we assign pu(4,)=k, and again this same
measure to every atomic event in &7,.

To prove that every 7, is an integer multiple of 27, in the sense just
indicated, suppose there is some equivalence class that is not. Let %7, be
the first such in the ordering. Then there must exist a C such that for any
A, in &,

A,-,vC=A,.
Clearly, C must contain only atoms that precede .7, in the ordering,
whence by hypothesis 4,_; U C must be an integer multiple of 4, and

consequently so must A4,, contrary to hypothesis.
We now want to show that each &7; is empty for i>1. Let

A=Ay, A}

Let us suppose, by way of contradiction, that some 27, is nonempty for
i>1, and, in fact, let i be the least such i. So there is a B in &7;, and we
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know at once that
A, <B,

because 4, is in &7;. Now let
C=4,0--UA,_;.

Then by virtue of Axiom 2
A, vC<BuUC,

and thus by Axiom 5 there exists a D in & such that
A, vCuD=~BuC.

Without loss of generality, we may assume that
(4,vCnD=0,

because we may always take
D*=D—(4,v C)eF

and so
A, vD=~B.

Now if 4 is any atomic event and 4 < D then 4 must be in &7, U &7, by
virtue of our supposition about =7;. Moreover, D must contain at least
one such atomic event, and so for some j, 1 <j<r,

A=A,
but then
4,vC)nD#0,

since 4,uC is equal to U &/, and this last inequality contradicts an
earlier equation.

Finally, it is easy to check that u is an additive measure when we set
u(0)=0, and that from the construction for any 4 and B in &

p(A4) = u(B) ifandonlyif 4> B.

For the interpretation of subjective probability, we obtain a standard
probability measure P by the normalization:
1(4)
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NOTES

1 A consolidated list of references referred to in these introductory remarks or in the
articles themselves is to be found at the end of the book.
2 This last observation I owe to Robert Titiev.



1. A COMPARISON OF THE MEANING AND USES
OF MODELS IN MATHEMATICS
AND THE EMPIRICAL SCIENCES*

I. MEANING

Consider the following quotations:

A possible realization in which all valid sentences of a theory T are satisfied is called a
model of T [Tarski, 1953, p. 11].

In the fields of spectroscopy and atomic structure, similar departures from classical
physics took place. There had been accumulated an overwhelming mass of evidence
showing the atom to consist of a heavy, positively charged nucleus surrounded by
negative, particle-like electrons. According to Coulomb’s law of attraction between
electric charges, such a system will collapse at once unless the electrons revolve about
the nucleus. But a revolving charge will, by virtue of its acceleration, emit radiation.
A mechanism for the emission of light is thereby at once provided.

However, this mechanism is completely at odds with experimental data. The two
major difficulties are easily seen. First, the atom in which the electrons revolve con-
tinually should emit light all the time. Experimentally, however, the atom radiates only
when it is in a special, ‘excited’ condition. Second, it is impossible by means of this
model to account for the occurrence of spectral lines of a single frequency (more
correctly, of a narrow range of frequencies). The radiating electron of our model would
lose energy; as a result it would no longer be able to maintain itself at the initial
distance from the nucleus, but fall in toward the attracting center, changing its fre-
quency of revolution as it falls. Its orbit would be a spiral ending in the nucleus. By
electrodynamic theory, the frequency of the radiation emitted by a revolving charge is
the same as the frequency of revolution, and since the latter changes, the former should
also change. Thus our model is incapable of explaining the sharpness of spectral lines
[Lindsay and Margenau, 1936, pp. 390-91].

The author (Gibbs) considers his task not as one of establishing physical theories
directly, but as one of constructing statistic-mechanical models which have some
analogies in thermodynamics and some other parts of physics; hence he does not
hesitate to introduce some very special hypotheses of a statistical character [Khinchin,
1949, p. 4].

Thus, the model of rational choice as built up from pair-wise comparisons does not
seem to suit well the case of rational behavior in the described game situation [Arrow,
1951, p. 21].

In constructing the model we shall assume that each variable is some kind of average or
aggregate for members of the group. For example, D might be measured by locating the

* Reprinted from Synthese 12 (1960), 287-301.
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opinions of group members on a scale, attaching numbers to scale positions and
calculating the standard deviation of the members’ opinions in terms of these numbers.
Even the intervening variables, although not directly measured, can be thought of as
averages of the values for individual members [Simon, 1957, p. 116].

This work on mathematical models for learning has not attempted to formalize any
particular theoretical system of behavior; yet the influences of Guthrie and Hull are
most noticeable. Compared with the older attempts at mathematical theorizing, the
recent work has been more concerned with detailed analyses of data relevant to the
models and with the design of experiments for directly testing quantitative predictions
of the models [Bush and Estes, 1959, p. 3].

I shall describe ... various criteria used in adopting a mathematical model of an
observed stochastic process ... For example, consider the number of cars that have
passed a given point by time z. The first hypothesis is a typical mathematical hypothesis,
suggested by the facts and serving to simplify the mathematics. The hypothesis is that
the stochastic process of the model has independent increments ... The next hypothesis,
that of stationary increments, states that, if s < ¢, the distribution of x(#) — x(s) depends
only on the time interval length ¢ —s. This hypothesis means that we cannot let time
run through both slack and rush hours. Traffic intensity must be constant.

The next hypothesis is that events occur one at a time. This hypothesis is at least
natural to a mathematician. Because of limited precision in measurements it means
nothing to an observer ... The next hypothesis is of a more quantitative kind, which
also is natural to anyone who has seen Taylor’s theorem. It is that the probability that
at least one car should pass in a time interval of length 4 should be ck + o(#) [Doob,
1960, p. 271.

The first of these quotations is taken from a book on mathematical logic,
the next two from books on physics, the following three from works on
the social sciences, and the last one from an article on mathematical
statistics. Additional uses of the word ‘model’ could easily be collected
in another batch of quotations. One of the more prominent senses of the
word missing in the above quotations is the very common use in physics
and engineering of ‘model’ to mean an actual physical model as, for
example, in the phrases ‘model airplane’ and ‘model ship’.

It may well be thought that it is impossible to put under one concept the
several uses of the word ‘model’ exhibited by these quotations. It would,
I think, be too much to claim that the word ‘model’ is being used in
exactly the same sense in all of them. The quotation from Doob exhibits
one very common tendency, namely, to confuse or to amalgamate what
logicians would call the model and the theory of the model. It is very
widespread practice in mathematical statistics and in the behavioral
sciences to use the word ‘model’ to mean the set of quantitative assump-
tions of the theory, that is, the set of sentences which in a precise treatment
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would be taken as axioms, or, if they are themselves not adequately
exact, would constitute the intuitive basis for formulating a set of axioms.
In this usage a model is a linguistic entity and is to be contrasted with the
usage characterized by the definition from Tarski, according to which a
model is a non-linguistic entity in which a theory is satisfied.

There is also a certain technical usage in econometrics of the word
‘model’ that needs to be noted. In the sense of the econometricians a
model is a class of models in the sense of logicians, and what logicians
call a model is called by econometricians a structure.

It does not seem to me that these are serious difficulties. I claim that the
concept of model in the sense of Tarski may be used without distortion
and as a fundamental concept in all of the disciplines from which the
above quotations are drawn. In this sense I would assert that the meaning
of the concept of model is the same in mathematics and the empirical
sciences. The difference to be found in these disciplines is to be found in
their use of the concept. In drawing this comparison between constancy
of meaning and difference of use, the sometimes difficult semantical
question of how one is to explain the meaning of a concept without
referring to its use does not actually arise. When I speak of the meaning
of the concept of a model I shall always be speaking in well-defined
technical contexts and what I shall be claiming is that, given this technical
meaning of the concept of model, mathematicians ask a certain kind of
question about models and empirical scientists tend to ask another kind
of question.

Perhaps it will be useful to defend this thesis about the concept of model
by analyzing uses of the word in the above quotations. As already in-
dicated, the quotation from Tarski represents a standard definition of
‘model’ in mathematical logic. Our references to models in pure math-
ematics will, in fact, be taken to refer to mathematical logic, that branch
of pure mathematics explicitly concerned with the theory of models. The
technical notion of possible realization used in Tarski’s definition need not
be expounded here. Roughly speaking, a possible realization of a theory
is a set-theoretical entity of the appropriate logical type. For example, a
possible realization of the theory of groups is any ordered couple whose
first member is a set and whose second member is a binary operation on
this set. The intuitive idea of a model as a possible realization in which a
theory is satisfied is too familiar in the literature of mathematical logic to
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need recasting. The important distinction that we shall need is that a
theory is a linguistic entity consisting of a set of sentences and models are
non-linguistic entities in which the theory is satisfied (an exact definition
of theories is also not necessary for our uses here).

I'would take it that the use of the notion of models in the quotation from
Lindsay and Margenau could be recast in these terms in the following
manner. The orbital theory of the atom is formulated as a theory. The
question then arises, does a possible realization of this theory in terms of
entities defined in close connection with experiments actually constitute a
model of the theory, or, put another way which is perhaps simpler, do
models of an orbital theory correspond well to data obtained from physi-
cal experiments with atomic phenomena? It is true that many physicists
want to think of a model of the orbital theory of the atom as being more
than a certain kind of set-theoretical entity. They envisage it as a very
concrete physical thing built on the analogy of the solar system. I think it
is important to point out that there is no real incompatibility in these two
viewpoints. To define formally a model as a set-theoretical entity which
is a certain kind of ordered tuple consisting of a set of objects and rela-
tions and operations on these objects is not to rule out the physical
model of the kind which is appealing to physicists, for the physical model
may be simply taken to define the set of objects in the set-theoretical
model. Because of the importance of this point it may be well to illustrate
it in somewhat greater detail. We may axiomatize classical particle
mechanics in terms of the five primitive notions of a set P of particles, an
interval T of real numbers corresponding to elapsed times, a position
function s defined on the Cartesian product of the set of particles and the
time interval, a mass function m defined on the set of particles, and a
force function f defined on the Cartesian product of the set of particles,
the time interval and the set of positive integers (the set of positive
integers enters into the definition of the force function simply in order to
provide a method of naming the forces). A possible realization of the
axioms of classical particle mechanics, that is, of the theory of classical
particle mechanics, is then an ordered quintuple Z=<(P, T, s, m, f ).

A model of classical particle mechanics is such an ordered quintuple.
It is simple enough to see how an actual physical model in the physicist’s
sense of classical particle mechanics is related to this set-theoretical sense
of models. We simply can take the set of particles to be in the case of the
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solar system the set of planetary bodies. Another slightly more abstract
possibility is to take the set of particles to be the set of centers of mass
of the planetary bodies. This generally exemplifies the situation. The
abstract set-theoretical model of a theory will have among its parts a
basic set which will consist of the objects ordinarily thought to constitute
the physical model (for a discussion of the axiomatic foundations of
classical particle mechanics in greater detail along the lines just suggested
see Suppes, 1957, Chap. 12).

In the preceding paragraph we have used the phrases, ‘set-theoretical
model’ and ‘physical model’. There would seem to be no use in arguing
about which use of the word ‘model’ is primary or more appropriate in
the empirical sciences. My own contention in this paper is that the set-
theoretical usage is the more fundamental. The highly physically minded
or empirically minded scientists who may disagree with this thesis and
believe that the notion of a physical model is the more important thing in
a given branch of empirical science may still agree with the systematic
remarks I am making.

An historical illustration of this point is Kelvin’s and Maxwell’s efforts
to find a mechanical model of electromagnetic phenomena. Without
doubt they both thought of possible models in a literal physical sense,
but it is not difficult to recast their published memoirs on this topic into a
search for set-theoretical models of the theory of continuum mechanics
which will account for observed electromagnetic phenomena. Moreover,
it is really the formal part of their memoirs which has had permanent
value. Ultimately it is the mathematical theory of Maxwell which has
proved important, not the physical image of an ether behaving like an
elastic solid.

The third quotation is from Khinchin’s book on statistical mechanics,
and the phrase, ‘the author’, refers to Gibbs whom Khinchin is discussing
at this point. The use of the word ‘model’ in the quotation of Khinchin is
particularly sympathetic to the set-theoretical viewpoint, for Khinchin is
claiming that in his work on the foundations of statistical mechanics
Gibbs was not concerned to appeal directly to physical reality or to
establish true physical theories, but rather, to construct models or theories
having partial analogies to the complicated empirical facts of thermo-
dynamics and other branches of physics. Again in this quotation we have
as in the case of Doob, perhaps even more directly, the tendency toward a
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confusion of the logical type of theories and models, but again this does
not create a difficulty. Anyone who has examined Gibb’s work or Khin-
chin’s will readily admit the ease and directness of formulating their
work in such a fashion as to admit explicitly and exactly the distinction
between theories and models made in mathematical logic. The abstract-
ness of Gibb’s work in statistical mechanics furnishes a particularly good
example for applying the exact notion of model used by logicians, for
there is not a direct and immediate tendency to think of Gibbs’ statistical
mechanical theories as being the theories of the one physical universe.

I think the following observation is empirically sound concerning the
use of the word ‘model’ in physics. In old and established branches of
physics which correspond well with the empirical phenomena they attempt
to explain, there is only a slight tendency ever to use the word ‘model’. The
language of theory, experiment and common sense is blended into one
realistic whole. Sentences of the theory are asserted as if they are the
one way of describing the universe. Experimental results are described
as if there were but one obvious language for describing them. Notions
of common sense refined perhaps here and there are taken to be appro-
priately homogeneous with the physical theory. On the other hand, in
those branches of physics which give as yet an inadequate account of the
detailed physical phenomena with which they are concerned there is a
much more frequent use of the word ‘model’. Connotation of the use of
the word is that the model is like a model of an airplane or ship. It
simplifies drastically the true physical phenomena and only gives account
of certain major or important aspects of it. Again, in such uses of the word
‘model’, it is to be emphasized that there is a constant interplay between
the model as a physical or non-linguistic object and the model as a theory.

The quotation from Arrow which follows the one from Khinchin exem-
plifies in the social sciences this latter tendency in physics. Arrow, I
would say, refers to the model of rational choice because the theory he
has in mind does not give a very adequate description of the phenomena
with which it is concerned but only provides a highly simplified schema.
The same remarks apply fairly well to the quotation from Simon. In
Simon we have an additional phenomenon exemplified which is very
common in the social and behavioral sciences. A certain theory is stated
in broad and general terms. Some qualitative experiments to test this
theory are performed. Because of the success of these experiments scien-
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tists interested in more quantitative and exact theories then turn to what
is called ‘the construction of a model’ for the original theory. In the lan-
guage of logicians, it would be more appropriate to say that rather than
constructing a model they are interested in constructing a quantitative
theory to match the intuitive ideas of the original theory.

In the quotation from Bush and Estes and the one from Doob, there is
introduced an important line of thought which is, in fact, very closely
connected with the concept of model as used by logicians. I am thinking
here of the notion of model in mathematical statistics, the extensive
literature on estimating parameters in models and testing hypotheses
about them. In a statistical discussion of the estimation of the parameters
of a model it is usually a trivial task to convert the discussion into one
where the usage of terms is in complete agreement with that of logicians.
The detailed consideration of statistical questions almost requires the
consideration of models as mathematical or set-theoretical rather than
simple physical entities. The question, “How well does the model fit the
data?”’ is a natural one for statisticians and behavioral scientists. Only
recently has it begun to be so for physicists, and it is still true that much
of the experimental literature in physics is reported in terms of a rather
medieval brand of statistics.

It may be felt by some readers that the main difficulty with the thesis
being advanced in this paper is the lack of substantive examples in the
empirical sciences. Such a reader would willingly admit that there are
numerous examples of exactly formulated theories in pure mathematics,
and thereby an exact basis is laid for precisely defining the models in
which these theories are satisfied. But it might be held the situation is far
different in any branch of empirical sciences. The formulation of theory
goes hand in hand with the development of new experiments and new
experimental techniques. It is the practice of empirical scientists, so it
might be claimed, not to formulate theories in exact fashion but only to
give them sufficient conceptual definiteness to make their connections
with current experiments sufficiently clear to other specialists in the field.

He who seeks an exact characterization of the theory and thus of models
in such branches of science as non-vertebrate anatomy, organic chemistry
or nuclear physics is indeed barking up the wrong tree. In various papers
and books I have attempted to provide some evidence against this view.
In the final chapter of my Introduction to Logic I have formulated axio-
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matically a theory of measurement and a version of classical particle
mechanics which satisfy, I believe, the standards of exactness and clarity
customary in the axiomatic formulation of theories in pure mathematics.

In Estes and Suppes (1959a) such a formulation is attempted for a branch
of mathematical learning theory. In Rubin and Suppes (1954) an exact
formulation of relativistic mechanics isconsidered andin Suppes (1959a)1t
such a formulation of relativistic kinematics is given. These references are
admittedly egocentric; it is also pertinent to refer to the work of Woodger
(1957), Hermes (1938), Adams (1959), Debreu (1959), Noll (1959) and
many others. Although it is not possible to pinpoint a reference to every
branch of empirical science which will provide an exact formulation of
the fundamental theory of the discipline, sufficient examples do now
exist to make the point that there is no systematic difference between the
axiomatic formulation of theories in well-developed branches of empirical
science and in branches of pure mathematics.

By remarks made from a number of different directions, I have tried to
argue that the concept of model used by mathematical logicians is the
basic and fundamental concept of model needed for an exact statement
of any branch of empirical science. To agree with this thesis it is not
necessary to rule out or to deplore variant uses or variant concepts of
model now abroad in the empirical sciences. As has been indicated, I am
myself prepared to admit the significance and practical importance of the
notion of physical model current in much discussion in physics and
engineering. What I have tried to claim is that in the exact statement of
the theory or in the exact analysis of data the notion of model in the
sense of logicians provides the appropriate intellectual tool for making
the analysis both precise and clear.

II. USES

The uses of models in pure mathematics are too well known to call for
review here. The search in every branch of mathematics for representation
theorems is most happily characterized in terms of models. To establish a
representation theorem for a theory is to prove that there is a class of models
of the theory such that every model of the theory is isomorphic to some
member of this class. Examples now classical of such representation
theorems are Cayley’s theorem that every group is isomorphic to a group
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of transformations and Stone’s theorem that every Boolean algebra is
isomorphic to a field of sets. Many important problems in mathematical
logic are formulated in terms of classes of models. For a statement of
many interesting results and problems readers are referred to Tarski (1954).
When a branch of empirical science is stated in exact form, that is, when
the theory is axiomatized within a standard set-theoretical framework,
the familiar questions raised about models of the theory in pure mathe-
matics may also be raised for models of the precisely formulated empirical
theory. On occasion such applications have philosophical significance.
Many of the discussions of reductionism in the philosophy of science may
best be formulated as a series of problems using the notion of a representa-
tion theorem. For example, the thesis that biology may be reduced to
physics would be in many people’s minds appropriately established if one
could show that for any model of a biological theory it was possible to
construct an isomorphic model within physical theory. The diffuse
character of much biological theory makes any present attempt to
realize such a program rather hopeless. An exact result of this character
can be established for one branch of-physics in relation to another. An
instance of this is Adams’ (1959) result that for a suitable characterization
of rigid body mechanics every model of rigid body mechanics is isomorphic
to a model defined within simple particle mechanics. But I do not want to
give the impression that the application of models in the empirical
sciences is mainly restricted to problems which interest philosophers of
science. The attempt to characterize exactly models of an empirical
theory almost inevitably yields a more precise and clearer understanding
of the exact character of the theory. The emptiness and shallowness of
many classical theories in the social sciences is well brought out by the
attempt to formulate in any exact fashion what constitutes a model of the
theory. The kind of theory which mainly consists of insightful remarks and
heuristic slogans will not be amenable to this treatment. The effort to
make it exact will at the same time reveal the weakness of the theory.
An important use of models in the empirical sciences is in the construction
of Gedanken experiments. A Gedanken experiment is given precision and
clarity by characterizing a model of the theory which realizes it. A stan-
dard and important method for arguing against the general plausibility of
a theory consists of extending it to a new domain by constructing a model
of the theory in that domain. This aspect of the use of models need not
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however be restricted to Gedanken experiments. A large number of
experiments in psychology are designed with precisely this purpose in
mind, that is, with the extension of some theory to a new domain, and the
experimenter’s expectation is that the results in this domain will not be
those predicted by the theory.

It is my own opinion that a more exact use of the theory of models in
the discussion of Gedanken experiments would often be of value in
various branches of empirical science. A typical example would be the
many discussions centering around Mach’s proposed definition of the
mass of bodies in terms of their mutually induced accelerations. Because
of its presumed simplicity and beauty this definition is frequently cited.
Yet from a mathematical standpoint and any exact theory of models of
the theory of mechanics, it is not a proper definition at all. For a very wide
class of axiomatizations of classical particle mechanics, it may be proved
by Padoa’s principle that a proper definition of mass is not possible.
Moreover, if the number of interacting bodies is greater than seven, a
knowledge of the mutually induced acceleration of the particles is not
sufficient for unique determination of the ratios of the masses of the
particles. The fundamental weakness of Mach’s proposal is that he did
not seem to realize a definition in the theory cannot be given for a single
model, but must be appropriate for every model of the theory in order to
be acceptable in the standard sense.

Another significant use of models, perhaps peculiar to the empirical
sciences, is in the analysis of the relation between theory and experimental
data. The importance of models in mathematical statistics has already
been mentioned. The homogeneity of the concept of model used in that
discipline with that adopted by logicians has been remarked upon. The
striking thing about the statistical analysis of data is that it is shot through
and through with the kind of comparison of models that does not ordinarily
arise in pure mathematics. Generally speaking, in some particular branch
of pure mathematics, the comparison of models involves comparison of
two models of the same logical type. The representation theorems
mentioned earlier provide good examples. Even in the case of embedding
theorems, which establish that models of one sort may be extended in a
definite manner to models of another sort, the logical type of the two
models is very similar. The situation is often radically different in the
comparison of theory and experiment. On the one hand, we may have a
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rather elaborate set-theoretical model of the theory which contains con-
tinuous functions or infinite sequences, and, on the other hand, we have
highly finitistic set-theoretical models of the data. It is perhaps necessary
to explain what I mean by ‘models of the data’. The maddeningly diverse
and complex experience which constitutes an experiment is not the entity
which is directly compared with a model of a theory. Drastic assumptions
of all sorts are made in reducing the experimental experience, as I shall
term it, to a simple entity ready for comparison with a model of the
theory.

Perhaps it would be well to conclude with an example illustrating these
general remarks about models of the data. I shall consider the theory of
linear response models set forth in Estes and Suppes (1959a). For simplic-
ity, let us assume that on every trial the organism can make exactly one
of two responses, 4, or A,, and after each response it receives a reinforce-
ment, E,; or E,, of one of the two possible responses. A learning parameter
®, which is a real number such that 0<® <1, describes the rate of
learning in a manner to be made definite in a moment. A possible
realization of the theory is an ordered triple & =<X, P, ®) of the
following sort. X is the set of all sequences of ordered pairs such that the
first member of each pair is an element of some set 4 and the second
member an element of some set B, where 4 and B each have two elements.
Intuitively, the set 4 represents the two possible responses and the set B
the two possible reinforcements. P is a probability measure on the Borel
field of cylinder sets of X, and @ is a real number as already described.
(Actually there is a certain arbitrariness in the characterization of possible
realizations of theories whose models have a rather complicated set-
theoretical structure, but this is a technical matter into which we shall
not enter here.) To define the models of the theory, we need a certain
amount of notation. Let 4; , be the event of response 4; on trial n, E; ,
the event of reinforcement E; on trial n, where i, j=1, 2, and for x in X’
let x, be the equivalence class of all sequences in X which are identical
with x through trial n. A possible realization of the linear response
theory is then a model of the theory if the following two axioms are
satisfied in the realization:

Axiom 1: If P(E; ,A;:, yXp—1)>0 then
P(A; p44 I E; Ay, Xu-1) =1 — O)P(4; 4| Xps1) + O.
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Axiom 2: If P(E; ,A;r, 4%n-1)>0 and i%j then
P(Ai,n+1 I Ej,nAi’,nxn—l) = (1 - @) P(Ai,n I xn—1)~

As is clear from the two axioms, this linear response theory is intuitively
very simple. The first axiom just says that when a response is reinforced
the probability of making that response on the next trial is increased by a
simple linear transformation. And the second axiom says that if some
other response is reinforced, the probability of making the response is
decreased by a second linear transformation. In spite of the simplicity
of this theory, it gives a reasonably good account of a number of ex-
periments, and from a mathematical standpoint, it is by no means trivial
to characterize asymptotic properties of its models.

The point of concern here, however, is to relate models of this theory to
models of the data. Again for simplicity, let us consider the case of simple
noncontingent reinforcement. On every trial, the probability of an E;
reinforcement, independent of any preceding events, is #. The experi-
menter decides on an experiment of, say, 400 trials for each subject,
and he uses a table of random numbers to construct for each subject a
finite reinforcement sequence of 400 trials. The experimental apparatus
might be described as follows.

The subject sat at a table of standard height. Mounted vertically on the
table top was a 125 cm wide by 75 cm high black panel placed 50 cm
from the end of the table. The experimenter sat behind the panel, out of
view of the subject. The apparatus, as viewed by the subject, consisted
of two silent operating keys mounted 20 cm apart on the table top and
30 cm from the end of the table; upon the panel, three milk-glass panel
lights were mounted. One of these lights, which served as the signal for
the subject to respond, was centered between the keys at a height of 42
cm from the table top. Each of the two remaining lights, the reinforcing
signals, was at a height of 28 cm directly above one of the keys. On all
trials the signal light was lighted for 3.5 sec; the time between successive
signal exposures was 10 sec. The reinforcing light followed the cessation
of the signal light by 1.5 sec and remained on for 2 sec.

The model of the data incorporates very little of this description. On each
trial the experimenter records the response made and the reinforcement
given. Expressions on the subject’s face, the movement of his limbs, and
in the present experiment even how long he takes to make the choice of
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which key to punch, are ignored and not recorded. Even though it is clear
exactly what the experimenter records, the notion of a possible realization
of the data is not unambiguously clear. As part of the realization it is
clear we must have a finite set D consisting of all possible finite sequences
of length 400 where, as previously, the terms of the sequences are ordered
couples, the first member of each couple being drawn from some pair set
A and the second member from some pair set B. If a possible realization
consisted of just such a set D, then any realization would also be a model
of the data. But it seems natural to include in the realization a probability
measure P on the set of all subsets of D, for by this means we may impose
upon models of the data the experimental schedule of reinforcement.

In these terms, a possible realization of the data is an ordered couple
29={D,P) and, for the case of noncontingent reinforcement, a
realization is a model if and only if the probability measure P has the
property of being a Bernouilli distribution with parameter z on the second
members of the terms of the finite sequences in D, i.e., if and only if for
every n from 1 to 400, P(E,,, | x,—,)=m= when P(x,)>0.

Unfortunately, there are several respects in which this characterization
of models of the data may be regarded as unsatisfactory. The main point is
that the models are still too far removed even from a highly schematized
version of the experiment. No account has been taken of the standard
practice of randomization of response A; as the left key for one subject
and the right key for another. Secondly, a model of the data, as defined
above, contains 24°° possible response sequences. An experiment that
uses 30 or 40 subjects yields but a small sample of these possibilities. A
formal description of this sample is easily given, and it is easily argued
that the ‘true’ model of the data is this actual sample, not the much larger
model just defined. Involved here is the formal relation between the three
entities labeled by statisticians the ‘sample’, the ‘population’, and the
‘sample space’. A third difficulty is connected with the probability measure
that I have included as part of the model of the data. It is certainly
correct to point out that a model of the data is hardly appropriately
experimental if there is no indication given of how the probability
distribution on reinforcements is produced.

Itis not possible in this paper to enter into a discussion of these criticisms
or the possible formal modifications in models of the data which might
be made to meet them. My own conviction is that the set-theoretical



MEANING AND USES OF MODELS 23

concept of model is a useful tool for bringing formal order into the
theory of experimental design and analysis of data. The central point for
me is the much greater possibility than is ordinarily realized of developing
an adequately detailed formal theory of these matters.

NOTE

1t Article 12 in this volume.



2. MODELS OF DATA*

I. INTRODUCTION

To nearly all the members of this Congress, the logical notion of a model
of a theory is too familiar to need detailed review here. Roughly speaking,
a model of a theory may be defined as a possible realization in which all
valid sentences of the theory are satisfied, and a possible realization of the
theory is an entity of the appropriate set-theoretical structure. For in-
stance, we may characterize a possible realization of the mathematical
theory of groups as an ordered couple whose first member is a nonempty
set and whose second member is a binary operation on this set. A possible
realization of the theory of groups is a model of the theory if the axioms of
the theory are satisfied in the realization, for in this case (as well as in many
others), the valid sentences of the theory are defined as those sentences
which are logical consequences of the axioms. To provide complete mathe-
matical flexibility I shall speak of theories axiomatized within general set
theory by defining an appropriate set-theoretical predicate (e.g., ‘is a
group’) rather than of theories axiomatized directly within first-order
logic as a formal language. For the purposes of this paper, this difference
is not critical. In the set-theoretical case, it is convenient sometimes to
speak of the appropriate predicate’s being satisfied by a possible real-
ization. But whichever sense of formalization is used, essentially the same
logical notion of model applies.?

It is my opinion that this notion of model is the fundamental one for
the empirical sciences as well as mathematics. To assert this is not to deny
a place for variant uses of the word ‘model’ by empirical scientists, as, for
example, when a physicist talks about a physical model, or a psychologist
refers to a quantitative theory of behavior as a mathematical model. On
this occasion I do not want to argue for this fundamental character of the
logical notion of model, for I tried to make out a detailed case at a collo-
* Reprinted from Logic, Methodology and Philosophy of Science: Proceedings of the

1960 International Congress (ed. by E. Nagel, P. Suppes, and A. Tarski), Stanford
University Press, Stanford, Calif., 1962, pp. 252-261.
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quium in Utrecht last January, also sponsored by the International Union
of History and Philosophy of Science (Suppes, 1960b).2f Perhaps the most
persuasive argument which might be singled out for mention here is that
the notion of model used in any serious statistical treatment of a theory
and its relation to experiment does not differ in any essential way from
the logical notion of model.

The focus of the present paper is closely connected to the statistical
analysis of the empirical adequacies of theories. What I want to try to
show is that exact analysis of the relation between empirical theories and
relevant data calls for a hierarchy of models of different logical type.
Generally speaking, in pure mathematics the comparison of models
involves comparison of two models of the same logical type, as in the
assertion of representation theorems. A radically different situation often
obtains in the comparison of theory and experiment. Theoretical notions
are used in the theory which have no direct observable analogue in the
experimental data. In addition, it is common for models of a theory to
contain continuous functions or infinite sequences although the con-
firming data are highly discrete and finitistic in character.

Perhaps I may adequately describe the kind of ideas in which I am in-
terested in the following way. Corresponding to possible realizations of
the theory, I introduce possible realizations of the data. Models of the
data of an experiment are then defined in the customary manner in terms of
possible realizations of the data. As should be apparent, from a logical
standpoint possible realizations of data are defined in just the same way as
possible realizations of the theory being tested by the experiment from
which the data come. The precise definition of models of the data for any
given experiment requires that there be a theory of the data in the sense
of the experimental procedure, as well as in the ordinary sense of the
empirical theory of the phenomena being studied.

Before analyzing some of the consequences and problems of this view-
point, it may be useful to give the ideas more definiteness by considering
an example.

II. EXAMPLE FROM LEARNING THEORY
I have deliberately chosen an example from learning theory because it is

conceptually simple, mathematically non-trivial and thoroughly proba-
bilistic. More particularly, I consider linear response theory as developed
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by Estes and myself (1959a). To simplify the presentation of the theory in
an inessential way, let us assume that on every trial the organism in the
experimental situation can make exactly one of two responses, 4; or 4,,
and after each response it receives a reinforcement, E; or E,, of one of the
two possible responses. A possible experimental outcome in the sense of
the theory is an infinite sequence of ordered pairs, where the nth term of
the sequence represents the observed response — the first member of the
pair — and the actual reinforcement — the second member of the pair — on
trial n of the experiment.

A possible realization of the theory is an ordered triple Z ={X, P, 6)
of the following sort. The set X is the set of all sequences of ordered pairs
such that the first member of each pair is an element of some set 4, and
the second member an element of some set B, where 4 and B each have
two elements. The set 4 represents the two possible responses and the set
B the two possible reinforcements. The function P is a probability
measure on the smallest Borel field containing the field of cylinder sets of
X; and 6, a real number in the interval 0 < 6 <1, is the learning parameter.
(Admittedly, for theories whose models have a rather complicated set-
theoretical structure, the definition of possible realization is at points
arbitrary, but this is not an issue which affects in any way the development
of ideas central to this paper.)

There are two obvious respects in which a possible realization of the
theory cannot be a possible realization of experimental data. The first is
that no actual experiment can include an infinite number of discrete trials.
The second is that the parameter 0 is not directly observable and is not
part of the recorded data.

To pursue further relations between theory and experiment, it is nec-
essary to state the axioms of the theory, i.e., to define models of the
theory. For this purpose a certain amount of notation is needed. Let
A;, , be the event of response 4; on trial n, E; , the event of reinforcement
E; on trial n, where i, j=1, 2, and for x in X let x,, be the equivalence class
of all sequences in X which are identical with x through trial n. A possible
realization of the linear response theory is then a model of the theory if
the following two axioms are satisfied in the realization:

Axiom 1: If P(E; ,A; pXn-1)>0, then
P(Ai,n+1 l Ei,nAi’,nxn—l) = (1 - 0) P(Ai,n I xn—l) + 0.
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Axiom 2: If P(E; ,A; nXn—1)>0 and i#j, then
P(Ai,n+1 I Ej,nAi',nxn—l) = (1 - 0) P(Ai,n I xn—l)'

The first axiom asserts that when a response is reinforced, the prob-
ability of making that response on the next trial is increased by a simple
linear transformation. The second axiom asserts that when a different
response is reinforced, the probability of making the response is decreased
by a second linear transformation. To those who are concerned about the
psychological basis of this theory, it may be remarked that it is derivable
from a much more complicated theory that assumes processes of stimulus
sampling and conditioning. The linear response theory is the limiting case
of the stimulus sampling theory as the number of stimuli approaches
infinity.

For still greater definiteness, it will be expedient to consider a particular
class of experiments to which the linear response theory has been applied,
namely, those experiments with simple contingent reinforcement sched-
ules. On every trial, if an 4, response is made, the probability of an E,
reinforcement is n;, independent of the trial number and other preceding
events. If an A4, response is made, the probability of an E, reinforcement
is 7,. Thus, in summary for every n,

P(El,n|A1,n)=n1 =1 _P(EZ,nIAl,n)’
P(E2,n I A2,n)= my=1-— P(El,n | A2,n)'

This characterization of simple contingent reinforcement schedules has
been made in the language of the theory, as is necessary in order to
compute theoretical predictions. This is not possible for the finer details
of the experiment. Let us suppose the experimenter decides on 600 trials
for each subject. A brief description (cf. Suppes and Atkinson, 1960, pp.
81-83) of the experimental apparatus might run as follows.

The subject sits at a table of standard height. Mounted vertically in front of the subject
is a large opaque panel. Two silent operating keys (41 and A2 responses) are mounted at
the base of the panel 20 cm apart. Three milk-glass panel lights are mounted on the
panel. One of these lights, which serves as the signal for the subject to respond, is
centered between the keys at the subject’s eye level. Each of the other two lights, the
reinforcing events E1 and Es, is mounted directly above one of the keys. On all trials
the signal light is on for 3.5 sec; the time between successive signal exposures is 10 sec.
A reinforcing light comes on 1.5 sec after the cessation of the signal light and remains
on for 2 sec.
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It is not surprising that this description of the apparatus is not incorpo-
rated in any direct way at all into the theory. The important point is to take
the linear response theory and this description as two extremes between
which a hierarchy of theories and their models is to be fitted in a detailed
analysis.

In the class of experiments we are considering, the experimenter
records only the response made and reinforcement given on each trial.
This suggests the definition of the possible realizations of the theory that
is the first step down from the abstract level of the linear response theory
itself. This theory I shall call the theory of the experiment, which term
must not be taken to refer to what statisticians call the theory of ex-
perimental design — a topic to be mentioned later. A possible realization
of the theory of the experiment is an ordered couple % =<Y, P)>, where (i)
Y is a finite set consisting of all possible finite sequences of length 600
with, as previously, the terms of the sequences being ordered pairs, the
first member of each pair being drawn from some pair set A and corres-
pondingly for the second members, and (ii) the function P is a probability
measure on the set of all subsets of Y.

A possible realization % =(Y, P) of the theory of the experiment is a
model of the theory if the probability measure P satisfies the defining
condition for a simple contingent reinforcement schedule. Models of the
experiment thus defined are entities still far removed from the actual data.
The finite sequences that are elements of ¥ may indeed be used to rep-
resent any possible experimental outcome, but in an experiment with,
say, 40 subjects, the observed 40 sequences are an insignificant part of the
4590 sequences in Y. Consequently, a model closer to the actual situation
is needed to represent the actual conditional relative frequencies of
reinforcement used.

The appropriate realization for this purpose seems to be an N-tuple Z'
of elements from Y, where N is the number of subjects in the experiment.
An N-tuple rather than a subset of Y is selected for two reasons. The first
is that if a subset is selected there is no direct way of indicating that two
distinct subjects had exactly the same sequence of responses and reinforce-
ments — admittedly a highly improbable event. The second and more
important reason is that the N-tuple may be used to represent the time se-
quence in which subjects were run, a point of some concern in considering
certain detailed questions of experimental design. It may be noted that in
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using an N-tuple as a realization of the data rather than a more com-
plicated entity that could be used to express the actual times at which
subjects were run in the experiment, we have taken yet another step of
abstraction and simplification away from the bewilderingly complex
complete experimental phenomena.3

The next question is, When is a possible realization of the data a model
of the data? The complete answer, as I see it, requires a detailed statistical
theory of goodness of fit. Roughly speaking, an N-tuple realization is a
model of the data if the conditional relative frequencies of E; and E, rein-
forcements fit closely enough the probability measure P of the model of
the experiment. To examine in detail statistical tests for this goodness of
fit would be inappropriate here, but it will be instructive of the com-
plexities of the issues involved to outline some of the main considerations.
The first thing to note is that no single simple goodness-of-fit test will
guarantee that a possible realization Z of the data is an adequate model
of the data. The kinds of problems that arise are these: (i) (Homogeneity)
Are the conditional relative frequencies (C.R.F.) of reinforcements
approximately =; or 1—m;, as the case may be, for each subject? To
answer this we must compare members of the N-tuple Z. (ii) (Stationarity)
Are the C.R.F. of reinforcements constant over trials? To answer this
practically we sum over subjects, i.e., over members of Z, to obtain
sufficient data for a test. (iii) (Order) Are the C.R.F. of reinforcements
independent of preceding reinforcements and responses? To answer this
we need to show that the C.R.F. define a zero order process — that serial
correlations of all order are zero. Note, of course, that the zero order is
with respect to the conditional events E; given 4;, for i, j=1, 2. These
three questions are by no means exhaustive; they do reflect central
considerations. To indicate their essentially formal character, it may be
helpful to sketch their formulation in a relatively classical statistical
framework. Roughly speaking, the approach is as follows. For each
possible realization Z of the data, we define a statistic 7(Z) for each
question, This statistic is a random variable with a probability distribution
— preferably a distribution that is (asymptotically) independent of the
actual C.R.F. under the null hypothesis that Z is a model of the data. In
statistical terminology, we “accept’ the null hypothesis if the obtained
value of the statistic 7((Z) has a probability equal to or greater than some
significance level « on the assumption thatindeed the null hypothesisistrue.
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For the questions of homogeneity, stationarity, and order stated above,
maximum likelihood or chi-square statistics would be appropriate. There
is not adequate space to discuss details, but these statistics are standard in
the literature. For the purposes of this paper, it is not important that some
subjectivists like L. J. Savage might be critical of the unfettered use of
such classical tests. A more pertinent caveat is that joint satisfaction of
three statistical tests (by ‘satisfaction’ I mean acceptance of the null hy-
pothesis with a level of significance =0.05) corresponding to the three
questions does not intuitively seem completely sufficient for a possible
realization Z to be a model of the data.? No claim for completeness was
made in listing these three, but it might also be queried as to what realistic
possibility there is of drawing up a finite list of statistical tests which may
be regarded as jointly sufficient for Z to be a model of the data. A skepti-
cal non-formalistic experimenter might claim that given any usable set of
tests he could produce a conditional reinforcement schedule that would
satisfy the tests and yet be intuitively unsatisfactory. For example,
suppose the statistical tests for order were constructed to look at no more
than fourth-order effects, the skeptical experimenter could then construct
a possible realization Z with a non-random fifth-order pattern. Actually
the procedure used in well-constructed experiments makes such a dodge
rather difficult. The practice is to obtain the C.R.F. from some published
table of random numbers whose properties have been thoroughly
investigated by a wide battery of statistical tests. From the systematic
methodological standpoint, it is not important that the experimenter
himself perform the tests on Z.

On the other hand, in the experimental literature relevant to this
example, it is actually the case that greater care needs to be taken to
guarantee that a possible realization Z of the data is indeed a model of
the data for the experiment at hand. A typical instance is the practice of
restricted randomization. To illustrate, if P(E,,, | Ay ,)=0.6, then some
experimenters would arrange that in every block of 10 A; responses,
exactly 6 are followed by E, reinforcements, a result that should have a
probability of approximately zero for a large number of trials.®

The most important objection of the skeptical experimenter to the im-
portance of models of the data has not yet been examined. The objection
is that the precise analysis of these models includes only a small portion
of the many problems of experimental design. For example, by most
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canons of experimental design, the assignment of 4, to the left (or to the
right) for every subject would be a mistake. More generally, the use of an
experimental room in which there was considerably more light on the left
side of subjects than on the right would be considered mistaken. There
is a difference, however, in these two examples. The assignment of 4, to
the left or right for each subject is information that can easily be in-
corporated into models of the data — and requirements of randomization
can be stated. Detailed information about the distribution of physical
parameters characterizing the experimental environment is not a simple
matter to incorporate in models of data and is usually not reported in the
literature; roughly speaking, some general ceteris paribus conditions are
assumed to hold.

The characterization of models of data is not really determined, how-
ever, by relevant information about experimental design which can easily
be formalized. In one sense there is scarcely any limit to information of
this kind; it can range from phases of the moon to 1.Q. data on subjects.

The central idea, corresponding well, I think, to a rough but generally
clear distinction made by experimenters and statisticians, is to restrict
models of the data to those aspects of the experiment which have a para-
metric analogue in the theory. A model of the data is designed to in-
corporate all the information about the experiment which can be used in
statistical tests of the adequacy of the theory. The point I want to make is
not as simple or as easily made precise as I could wish. Table I is meant to

TABLE I
Hierarchy of theories, models, and problems
Theory of Typical problems
Linear response models Estimation of 6, goodness of fit to models of data
Models of experiment Number of trials, choice of experimental
parameters
Models of data Homogeneity, stationarity, fit of experimental
parameters
Experimental design Left-right randomization, assignment of subjects

Ceteris paribus conditions Noises, lighting, odors, phases of the moon
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indicate a possible hierarchy of theories, models, and problems that arise
at each level to harass the scientist. At the lowest level I have placed
ceteris paribus conditions. Here is placed every intuitive consideration of
experimental design that involves no formal statistics. Control of loud
noises, bad odors, wrong times of day or season go here. At the next level
formal problems of experimental design enter, but of the sort that far
exceed the limits of the particular theory being tested. Randomization of
A, as the left or right response is a problem for this level, as is random
assignment of subjects to different experimental groups. All the con-
siderations that enter at this level can be formalized, and their relation
to models of the data, which are at the next level, can be made explicit —
in contrast to the seemingly endless number of unstated ceteris paribus
conditions.

At the next level, models of the experiment enter. They bear the relation
to models of the data already outlined. Finally, at the top of the hierarchy
are the linear response models, relatively far removed from the concrete
experimental experience. It is to be noted that linear response models are
related directly to models of the data, without explicit consideration of
models of the experiment. Also worth emphasizing once again is that the
criteria for deciding if a possible realization of the data is a model of the
data in no way depend upon its relation to a linear response model. These
criteria are to determine if the experiment was well run, not to decide if
the linear response theory has merit.

The dependence is actually the other way round. Given a model of the
data, we ask if there is a linear response model to which it bears a satis-
factory goodness-of-fit relation. The rationale of a maximum likelihood
estimate of 6 is easily stated in this context: given the experimental
parameters w; and ©, we seek that linear response model, i.e., the linear
response model with learning parameter #, which will maximize the
probability of the observed data, as given in the model of the data.

It is necessary at this point to break off rather sharply discussion of this
example from learning theory, but there is one central point that has not
been sufficiently mentioned. The analysis of the relation between theory
and experiment must proceed at every level of the hierarchy shown in
Table I. Difficulties encountered at all but the top level reflect weaknesses
inthe experiment, not in the fundamental learning theory. It is unfortunate
that it is not possible to give here citations from the experimental literature
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of badly conceived or poorly executed experiments that are taken to
invalidate the theory they presume to test, but in fact do not.

III. THE THEORY OF MODELS IN THE EMPIRICAL SCIENCES

I began by saying that I wanted to try to show that exact analysis of the
relation between empirical theories and relevant data calls for a hierarchy
of models of different logical type. The examination of the example from
learning theory was meant to exhibit some aspects of this hierarchy. I
would like to conclude with some more general remarks that are partially
suggested by this example.

One point of concern on my part has been to show that in moving from
the level of theory to the level of experiment we do not need to abandon
formal methods of analysis. From a conceptual standpoint, the distinction
between pure and applied mathematics is spurious — both deal with set-
theoretical entities, and the same is true of theory and experiment.

It is a fundamental contribution of modern mathematical statistics to
have recognized the explicit need of a model in analyzing the significance
of experimental data. It is a paradox of scientific method that the branches
of empirical science that have the least substantial theoretical developments
often have the most sophisticated methods of evaluating evidence. In such
highly empirical branches of science, a large hierarchy of models is not
necessary, for the theory being tested is not a theory with a genuine logical
structure, but a collection of heuristic ideas. The only models needed are
something like the models of the experiment and models of the data dis-
cussed in connection with the example from learning theory.

Present statistical methodology is less adequate when a genuine theory
is at stake. The hierarchy of models outlined in our example corresponds
in a very rough way to statisticians’ concepts of a sample space, a pop-
ulation, and a sample. It is my own opinion that the explicit and exact
use of the logical concept of model will turn out to be a highly useful
device in clarifying the theory of experimental design, which many
statisticians still think of as an ““art’ rather than a “science’’. Limitations
of space have prevented working out the formal relations between the
theory of experimental design and the theory of models of the data, as I
conceive it.

However, my ambitions for the theory of models in the empirical
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sciences are not entirely such practical ones. One of the besetting sins of
philosophers of science is to overly simplify the structure of science.
Philosophers who write about the representation of scientific theories as
logical calculi then go on to say that a theory is given empirical meaning
by providing interpretations or coordinating definitions for some of the
primitive or defined terms of the calculus. What I have attempted to
argue is that a whole hierarchy of models stands between the model of the
basic theory and the complete experimental experience. Moreover, for
each level of the hierarchy, there is a theory in its own right. Theory at one
level is given empirical meaning by making formal connections with
theory at a lower level. Statistical or logical investigation of the relations
between theories at these different levels can proceed in a purely formal,
set-theoretical manner. The more explicit the analysis, the less place there
is for non-formal considerations. Once the empirical data are put in
canonical form (at the level of models of data in Table I), every question
of systematic evaluation that arises is a formal one. It is important to
notice that the questions to be answered are formal, but not mathematical
- not mathematical in the sense that their answers do not in general
follow from the axioms of set theory (or some other standard framework
for mathematics). It is precisely the fundamental problem of scientific
method to state the principles of scientific methodology that are to be
used to answer these questions — questions of measurement, of goodness
of fit, of parameter estimation, of identifiability, and the like. The
principles needed are entirely formal in character in the sense that they
have as their subject matter set-theoretical models and their comparison.
Indeed, the line of argument I have tried to follow in this paper leads to
the conclusion that the only systematic results possible in the theory of
scientific methodology are purely formal, but a general defense of this
conclusion cannot be made here.

NOTES

1 For a detailed discussion of axiomatization of theories within set theory, see Suppes
(1957, Chap. 12).

2t Article 1 in this volume.

3 The exact character of a model % of the experiment and a model Z of the data is not
determined uniquely by the experiment. It would be possible, for instance, to define %/
in terms of N-tuples.

4 For use at this point, a more explicit definition of models of the data would run as
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follows. Z is an N-fold model of the data for experiment % if and only if there is a set
Y and a probability measure P on subsets of ¥ such that%/ = (¥, P is a model of the
theory of the experiment, Z is an N-tuple of elements of Y, and Z satisfies the statistical
tests of homogeneity, stationarity, and order. A fully formal definition would spell
out the statistical tests in exact mathematical detail. For example, a chi-square test
of homogeneity for E1 reinforcements following 41 responses would be formulated as
follows. Let N; be the number of 4; responses (excluding the last trial) for subject j,
i.e., as recorded in Z; - the jth member of the N-tuple Z, and let v; be the number of E1
reinforcements following A1 responses for subject j. Then

N

E@) =Y

i=1

vy — Njm)2 ~ (Nj — v — Nj(1 — m)?
Njmy N;(1 — ny)

_ S, (v — Nym)?

_j= ‘ Njmi(1 — w1y’

and this x2 has N degrees of freedom. If the value x#2(Z) has probability greater than
0.05 the null hypothesis is accepted, i.e., with respect to homogeneity Z is satisfactory.
5 To emphasize that conceptually there is nothing special about this particular example
chosen from learning theory, it is pertinent to remark that much more elaborate
analyses of sources of experimental error are customary in complicated physical
experiments. In the literature of learning theory it is as yet uncommon to report the
kind of statistical tests described above which play a role analogous to the physicists’
summary of experimental errors.



3. A SET OF INDEPENDENT AXIOMS FOR
EXTENSIVE QUANTITIES*1

I .. INTRODUCTION

The modern viewpoint on quantities goes back at least to Newton’s
Universal Arithmetick. Newton asserts that the relation between any two
quantities of the same kind can be expressed by a real, positive number.2
In 1901, O. Hoelder gave a set of ‘Axiome der Quantitaet’, which are
sufficient to establish an isomorphism between any realization of his
axioms and the additive semigroup of all positive real numbers. Related
work of Hilbert, Veronese and others is indicative of a general interest
in the subject of quantities in the abstract on the part of mathematicians
of this period. During the last thirty years, from another direction,
philosophers of science have become interested in the logical analysis of
empirical procedures of measurement.? The interests of these two groups
overlap insofar as the philosophers have been concerned to state the
formal conditions which must be satisfied by empirical operations
measuring some characteristic of physical objects (or other entities).
Philosophers have divided quantities (that is, entities or objects con-
sidered relatively to a given characteristic, such as mass, length or
hardness) into two kinds. Intensive quantities are those which can
merely be arranged in a serial order; extensive quantities are those for
which a ‘“‘natural” operation of addition or combination can also be
specified. Another, more exact, way of making a distinction of this order
is to say that intensive quantities are quantities to which numbers can be
assigned uniquely up to a monotone transformation, and extensive
quantities are quantities to which numbers can be assigned uniquely up
to a similarity transformation (that is, multiplication by a positive
constant).4 This last condition may be said to be the criterion of formal
adequacy for a system of extensive quantities.

Hoelder’s system satisfies this criterion of adequacy for extensive
quantities, and his system has in fact been used by some philosophers

* Reprinted from Portugaliae Mathematica 10 (1951), 163-172.
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(see, for instance, Nagel, 1931) in methodological studies of measurement.
But from the methodological standpoint, there are at least two serious
defects in Hoelder’s system. The first is that he does not axiomatize the
relation designated by ‘=" but instead, treats it as the logical relation of
identity. However, it is ordinarily admitted that two distinct line segments
may have the same numerical length or two distinct physical objects the
same mass; and consequently, ‘=’ should designate an equivalence
relation which is not the logical one of identity.5 The second defect of
Hoelder’s system is that it is too strong for a general characterization of
extensive quantities. His system is categorical in the sense that any two
realizations of it are isomorphic, and, in addition, isomorphic to the
additive semigroup of all positive real numbers. But these requirements
are certainly too demanding, for it is intuitively obvious that a set of
extensive quantities need not even have the density property of the
rational numbers. The masses of objects in a given set could, for instance,
surely be determined, even if relatively to some unit, the mass of every
object in the set were a positive integer.

The purpose of the present paper is to present a formally adequate
system of axioms for extensive quantities, from which these two defects
are eliminated. In addition, proofs of the independence of the axioms
and the primitives of the system are given.

II. AXIOMS

We consider a system consisting of a nonempty set K of arbitrary elements
X,¥,z...,abinaryrelation Q defined over K, and a binary function * defined
over K. Such a system may be regarded as the ordered triple {K, Q, *)>.
Variables ‘m’, ‘n’, etc., take as values the natural numbers ; the notation ‘nx’
is defined in the usual recursive way: 1x=x, and nx=(n—1)x*x.

DEFINITION: A system {K, Q, %) will be said to be a system of extensive
quantities if it satisfies the following seven axioms:

Al Ifx,yandzarein K, and if x Qy and y Q z, then x Q z.

AIL. If x and y are in K, then xxy is in K.

AIIL If x, y and z are in K, then (x*y)*z Q x*(y*z).

AIV. If x,y and z are in K and x Q y, then xxz Q z*y.

AV. If x and y are in K and not x Q y, then there is a z in K such that
xQy*zand yxz Q x.
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AVL If x and y are in K, then not x*y Q x.

AVIL. If x and y are in K and x Q y, then there is a number n such that
y Q nx.

If = is interpreted as + and Q as <, it may easily be seen that these
axioms are satisfied by any additive semigroup of positive numbers
closed under subtraction of smaller numbers from larger ones. The
formal adequacy of these axioms, in the sense defined in Section I, is
established in Section V; that they are mutually independent is established
in Section VI.

III. ELEMENTARY THEOREMS

In the statement and proof of theorems which follow from the seven
axioms just given, the statement of the condition that elements be in K is
omitted for brevity. The proofs are all elementary in character and are
therefore considerably abbreviated.

THEOREM 1: x Q x.

Proof: Assume: not x Q x. Then, by A.V, there is a z such that
x*z Q x, but this contradicts A.VI. -

THEOREM 2: x*y Q y*X.

Proof: Use Th. 1 and A.IV.

THEOREM 3: If x Q y and u Q v, then x+u Q y*uv.

Proof: x*u Qu+y and uxy Q y*v, by A.IV and hypothesis. Then
use A.L

THEOREM 4: x#(y*z) Q(x*y)*z.

Proof: Using Th. 2, we get: x*(y*z) Q (y*z)*x. Then using Th. 3,
Th. 2, A.I and A.III on this, we get: x*(y*z) Q z*(y*x). Using Th. 2,
Th. 3, and A.I, we get theorem,

THEOREM 5: x Q y ory Q x.

Proof: Assume: not x Qy and not y Q x. Then y*z; Q x and x#*z,
Q y, by A.V. From this by Th. 1 and Th. 3, we get: (y*z;)%z, Q x*z,,
and then, by A.I, (y*z,)*z, Q y. From this, using Th. 4 and A.I, we get:
y#*(zy%2,) Q y, which contradicts A.VI.

THEOREM 6: If x*u Q y*u, then x Q y.

Proof: Assume: not x Q y. Then by A.V, thereis a z such that yxz Q x.
Using Th. 3, hypothesis, Th. 4 and A.I, we get: y*(z*u) Q y*u. From
this, by Th. 3, A.IIl and A.I, we obtain: (y*u)*z Q y*u, which con-
tradicts A.VL
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THEOREM 7: If y%z Q u and x Q y, then x+z Q u.

Proof: xxz Q y*z, by Th. 1, hypothesis, and Th. 3. Then, x*z Q u,
by hypothesis and A.L

THEOREM 8: If u Q x*xz and x Q y, then u Q y+z.

Proof: Similar to Th. 7.

THEOREM 9: mx*nx Q (m+n)x.

Proof: We use mathematical induction on ». For n=1, the proof is
immediate. For n+ 1, we begin with: mx*(n+1) x Q mx#*(nx*x). Using
principally Th. 1, Th. 3, and Th. 6 and the hypothesis that theorem holds
for n, we obtain: mx*(n+1)x Q (m+n+1)x.

THEOREM 10: (m+n)x Q mx*nx.

Proof: Similar to Th. 9.

THEOREM 11: n(mx) Q (nm)x.

Proof: We use mathematical induction on n. For n=1, the proof is
immediate. For n+1, we begin with: (n+1) (mx) Q n(mx)*mx. Using
principally Th. 10, the hypothesis that theorem holds for n, and Th. 9,
we get: (n+1) (mx) Q ((n+1) m) x.

THEOREM 12: (nm) x Q n(mx).

Proof: Similar to Th. 11.

THEOREM 13: n(x*y) Q nx*ny.

Proof: Again we use mathematical induction on n. The proof is
obvious for n=1. For n+ 1, we begin with: (n+1)(x*y) Q n(x*y)*(x*y),
which follows from Th. 10. Using hypothesis that theorem holds for n,
Th. 1, Th. 3, AIIL, and A.I, we get then: (n+1)(x*y) Q nx*(ny*(x*y)).
Starting now from Th. 6, then using Th. 2, Th. 1, Th. 3, A.IIl, A.I, Th. 1,
and Th. 3 again, we get: nx *(ny*(x*y))Q nx*(x*(ny*y)). Combining
this with previous result, using A.I and Th. 4, and definition of ‘nx’, we
get the theorem.

THEOREM 14: nx*ny Q n(x*y).

Proof: Similar to Th. 13.

THEOREM 15: If x Q y, then nx Q ny.

Proof: We use mathematical induction on n. For n=1 the proof is
immediate. From hypothesis that theorem holds for n we get immediately:
nx Q ny. And, then, by use of Th. 3 and x Q y, we get: nx*x Q ny*y,
from which we get the theorem immediately.

THEOREM 16: If nx Q ny, then x Q y.

Proof: Assume: not x Q y. Then by A.V, there is a z such y*z Q x;
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and from this by Th. 15, Th. 14, and A.I, we obtain: ny*nz Q nx. By use
of hypothesis and A.I, this yields: ny*nz Q ny, which contradicts A.VIL.

THEOREM 17: If m<n, then mx Q nx.

Proof: If m=n, then the theorem immediately by Th. 1. This leaves
the case of m<n. Thus, n=m+k. Now assume: not mx Q nx. Then by
Th. 5, nx Q mx, that is, (m+k) x Q mx. From this, by Th. 9 and A.I, we
get: mx+kx Q mx, which contradicts A.VL.

THEOREM 18: There is a number n such that x 'Q ny.

Proof: By Th. 5, xQy or yQx. Case 1. xQ y. Let n=1. Case 2.
y Q x. Theorem follows immediately from A.VIL

IV. SYSTEM OF MAGNITUDES

If magnitudes are defined as certain equivalence classes of quantities, a
system of extensive magnitudes may be developed, which is useful for
proving the formal adequacy of our axioms for extensive quantities.
Conceived this way, there would seem to be a proper place for magnitudes
as well as quantities, and there need be no interminable debate about the
relative merit of each.$

The relation defined by the logical product of Q and its converse is
obviously reflexive, symmetrical and transitive, that is, it is an equiv-
alence relation, which we may designate by ‘C’:

xCy=4/(xQyand yQx).

Thus, C defines a partition of K, that is, a set of pair-wise disjoint,
nonempty subsets of K whose union equals K. We designate the C-
equivalence class of which x is a member (that is, the coset x/C) by
‘[x]’, and the partition of K by ‘K/C’. The relation C has the substitution
property relatively to Q and #, that is, (i) if x C y and y Q z, then x Q z,
and if xCy and zQ y, then zQ x, and (ii) if x Cy and u C v, then
x*u C yxv. (i) is trivial and (ii) follows immediately from Th. 3 and the
definition of ‘C’. Thus we may define a relation < and an operation + in
K/C:

() [x]<[y]if and only if x Q y;

(i) [x]+[»] is the C-equivalence class in K/C which consists of the
elements in K standing in relation C to the element x*y. Also, ‘n[x]’ is
defined recursively, just as ‘nx’ was previously: 1[x]=[x] and n[x]=
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(n—1)[x]+[x]. In fine, where M=<K, Q, *> is a system of extensive
quantities, IN/C=(K/C, <, +)> is the equivalence-class (or coset)
system of MM under relation C, and we shall call It/C a system of extensive
magnitudes.

On the basis of the axioms and theorems already given, it is easy to
prove the following theorems for extensive magnitudes, which we shall
begin numbering with 21. The theorems are arranged in an order to bring
out clearly the algebraic structure of a system of extensive magnitudes.
For brevity we write ‘[x]<[y] for ‘not ([y]<[x]).

Th. 21: If [x] and [ y] are in K|C, then [x]+[y] is in K/C.

Th. 22: If [x], [¥] and [z] are in K|C, then ([x]+[»])+[z]=[x]+
(1 +[=D-

Th. 23: If [x] and [y] are in K|C, then [x]+[y]=[»]+[x].

Th. 24: If [x], [y] and [z] are in K|C and [x]+[z]=[y]+[z], then
[x]=[y].

Th. 25: If [x] and [y] are in K|C, [x]<[y] and [y]<[x], then
[x]=[y].

Th. 26: If [x], [¥] and [z] are in K|C, [x}<[y] and [y]<[z], then
[x]<[2]

Th. 27: If [x] and [y] are in K|C, then [x]<[y] or [y]1<[x].

Th. 28: If [x] and [y] are in K|C, and [ y]<[x], then there is a [z] in
K|C such that [x]=[y]+[z].

Th. 29: If [x] and [ y] are in K|C, then [x]<[x]+[»].

Th. 30: If[x] and [ y] are in K|C and [x]<[y], then there is a number
n such that [ y]<n[x].

It is apparent that obvious analogues of all the theorems in Section ITT
may be easily proved. From the theorems stated here, we see that the
algebraic structure of a system of extensive magnitudes is that of a simply
ordered, ‘Archimedean’, Abelian semigroup which does not have a zero
element and which is closed under subtraction of ‘smaller’ elements from
‘larger’ ones.

V. ADEQUACY OF AXIOMS

The formal adequacy of our axioms is proved by making essential use of
the theorems on extensive magnitudes. The reason for this is that a
system of extensive quantities is in general merely homomorphic to an
additive semigroup of positive real numbers, which is to be expected,
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since in measurement of objects relative to a certain characteristic the
same number is often assigned to distinct objects. In particular, a given
number is assigned to a C-equivalence class of objects, which leads to the
following metatheorem.

METATHEOREM A: If M=<K, Q, ) is a system of extensive quantities,
then the system of extensive magnitudes IN/C is isomorphic to an additive
semigroup of positive real numbers, closed under subtraction of smaller
numbers from larger ones.™

Proof: The proof of this metatheorem follows along standard lines, as
given, for instance, in Hoelder (1901) or Birkhoff (1948, p. 226). (Birkhoff’s
proof for simply-ordered, Archimedean groups need be only slightly
modified ; Birkhoff also gives detailed references to the literature.) It will
therefore suffice briefly to describe the construction of a mapping f with
the desired properties. We define the set Sp,y;,; Where [x] and [e] are in
K]|C, as the set of all rational fractions m/n such that n[x]<m[e]. It is
easy to show that S, .; has a greatest lower bound, which we define as
the number assigned to [x], that is, the mapping f is defined as follows:

fra([x]) is the greatest lower bound of  Sp,y(e-

Since it may be shown that f;,;([e])=1, the choice of [e] corresponds to
the choice of a unit. And, using the theorems of Section IV, it may be
shown in a straightforward manner that f;,; has the desired properties: If
[x1<Dy). then fin( ) <fiaTpD): Se([¥1+[3D) =i XD +aT¥D):
and if [x]#[y], then fiuy([x]) #fre([¥])-

The following metatheorem establishes the desired uniqueness property
of our axioms. It is equivalent to saying that in the measurement of
extensive quantities, only the choice of a unit is arbitrary.

METATHEOREM B: If M= <K, Q,*) is a system of extensive quantities,
then any two additive semigroups of positive real numbers, which are
isomorphic to MM/C, are related by a similarity transformation.

Proof: Consider any additive semigroup of positive real numbers
isomorphic to M/C under the mapping g. Then it will be sufficient to show
that there exists a positive constant ¢ such that for every [x] in K/C,
9([x])=cft1([x]), where f,, is the mapping defined above. Let g([e])=c.
Then, assume that there exists an [x] in K/C such that g([x]) < ¢fi¢;([x])-
On this assumption, we may find an m/n such that

(6)) g([x])/c < m/n < fr([x]).
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It is clear from definition of f;, that then m[e] <n[x], and therefore, on
hypothesis for g, mg([e])<ng([x]), that is, m/n<g([x])/c, but this
contradicts (1). Similarly, on the assumption that there exists an [x] in
K|C such that c¢fi.;([x])<g([x]), we also get a contradiction. Q.E.D.

It may be remarked that a system of extensive magnitudes 9/C is also
isomorphic to (nonadditive) semigroups in the number domain which
are not related by a similarity transformation. The last realization of our
axioms given in Section VII below is an example of this kind.

VI. INDEPENDENCE OF AXIOMS

The following seven examples establish the mutual independence of our
axioms for extensive quantities. The first example provides an inter-
pretation of K, Q and = that is satisfied by all but the first axiom, etc.
Since the examples are all of an elementary character, all proofs are
omitted.

I. Let K be the set of all positive integers; let x Q y if and only if
x<y+1; and define x*y as x+y+2.

II. Let K be simply the set consisting of the number one; let x Q y if
and only if x<y; and define * as ordinary addition.

III. Let K be the set of all positive rational numbers; let x Q y if and
only if x<y; and define x*y as Max (x, y)+% Min (x, y).

IV. Let K be the set of all positive rational numbers; let x Q y if and
only if x<y; and define x*y as x+10y.

V. Let K be the set of all positive integers with the exception of the
number one; let x Q y if and only if x<y; and define * as ordinary
addition.

VI. Let K be the set consisting of the number one; let x Q y if and only
if x<y; and define * as ordinary multiplication.

VII. Let K be the set consisting of (i) all ordered pairs whose first
members are positive integers and whose second members are integers,
together with (ii) all ordered pairs whose first members are zero and
whose second members are positive integers; where x=<a, b) and
y={c, d),let x Q yif and only if a <¢, or a=c and b<d; define <{a, b) *
{c,d) as {a+c,b+d).



44 PART I. METHODOLOGY : MODELS AND MEASUREMENT

VII. INDEPENDENCE OF PRIMITIVES

Using Padoa’s principle?, we may establish the mutual independence of
the three primitives K, Q and # of our axioms for extensive quantities.
The application of Padoa’s principle requires that we find for each
primitive two different realizations of our axioms such that the other two
primitives are given the same interpretation for both realizations.

I. Independence of K. For the first realization, let K’ be the set of
positive integers; let x Q' y if and only if x<y; and define *’ as ordinary
addition. And, for the second realization, let K" be the set of even positive
integers; Q"=Q'; %"=+,

I1. Independence of Q. For the first realization, let K’ be the set of all
ordered pairs of positive integers; where x = (a, b) and y={c, d), let
x Q' y if and only if a<c; and <a, b)+'{c, d)=<a+c, b+d). For the
second realization, K"=K'; %" = %’; where x=<a, b and y=<c, d),
let x 0"y if and only if b<d. Thus, we have, for instance, {1, 2)>0'<2, 1),
and not (1, 2>Q"¢2, 1).

ITI. Independence of *. For the first realization, let K’ be the set of
positive real numbers; let x Q'y if and only if x<y; and define ' as
ordinary addition. For the second realization, K"=K'; Q"=Q’; x*"y=

\/xz +32. Thus, we have, for instance, 1%'2=3, and 1x" 2#3.

VIII. EMPIRICAL REALIZATIONS

Our system of axioms for extensive quantities was designed to eliminate
the two defects of Hoelder’s system, which were mentioned in Section I.
In this concluding section, I would like to point out, from the standpoint
of the methodological analysis of measurement, two more fundamental
defects common to both systems.

Given any realization of our axioms, it is apparent, in the first place,
that the set K must contain an infinite number of elements. This flagrantly
violates obvious finitistic requirements of empirical measurement. And
it is apparent, in the second place, that the realization of Q must be a
perfectly transitive relation, which entails that the measuring instrument
used to determine whether or not two objects stand in the relation Q must
possess perfect sensitivity. However, a lack of such perfect sensitivity
seems characteristic of nearly all measuring instruments. An equal-arm
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balance, for instance, can only differentiate between objects having a
mass-difference greater than some finite amount.

The standard axiomatic theory of quantities must be altered rather
profoundly in order to take account of these two problems. At least from
a methodological standpoint, such an altered formal system, mirroring
more accurately the facts of actual, imperfect measurement, would be of

interest.
NOTES

1 T am grateful to J. C. C. McKinsey for a number of helpful suggestions in connection
with the present paper.

2 Newton (1769, p. 2).

3 The work of Norman R. Campbell (1920) and (1928) has been outstanding in this
direction.

4 It may be remarked that this traditional classification is not very satisfactory, since
there are also quantities which are assigned numbers uniquely up to a variety of other
groups of transformations. However, this issue is irrelevant here, since we are solely
concerned with extensive quantities in the sense just defined, and the problem of
precisely how many formally different kinds of quantities it is useful to distinguish need
not concern us.

5 This criticism would also seem to apply to the axioms for the measurement of utility
given by J.von Neumann and O. Morgenstern (1947): ‘=’ should designate the
relation of indifference rather than that of identity.

6 For some aspects of this debate, see Russell (1903, Chaps. 19, 20) and Nagel (1931).
7t I would now call Metatheorem A the ‘Representation theorem’ for extensive quanti-
ties, and Metatheorem B the ‘Uniqueness theorem’.

8 Another method of proof of this metatheorem is to show that 9t/C can be uniquely
embedded in an Archimedean, simply ordered group. And it is well known (see
Birkhoff, 1948) that any such group is isomorphic to a subgroup of the additive group
of all real numbers.

9 Padoa (1901); a clear statement of this principle is also to be found in McKinsey
(1935).



4. FOUNDATIONAL ASPECTS OF THEORIES
OF MEASUREMENT*1

I. DEFINITION OF MEASUREMENT

It is a scientific platitude that there can be neither precise control nor
prediction of phenomena without measurement. Disciplines as diverse as
cosmology and social psychology provide evidence that it is nearly
useless to have an exactly formulated quantitative theory, if empirically
feasible methods of measurement cannot be developed for a substantial
portion of the quantitative concepts of the theory. Given a physical
concept like that of mass or a psychological concept like that of habit
strength, the point of a theory of measurement is to lay bare the structure
of a collection of empirical relations which may be used to measure the
characteristic of empirical phenomena-corresponding to the concept. Why
a collection of relations? From an abstract standpoint, a set of empirical
data consists of a collection of relations between specified objects. For
example, data on the relative weights of a set of physical objects are easily
represented by an ordering relation on the set; additional data, and a
fortiori an additional relation, are needed to yield a satisfactory quanti-
tative measurement of the masses of the objects.

The major source of difficulty in providing an adequate theory of
measurement is to construct relations which have an exact and reasonable
numerical interpretation, and, yet also, have a technically practical
empirical interpretation. The classical analyses of the measurement of
mass, for instance, have the embarrassing consequence that the basic set
of objects measured must be infinite. Here the relations postulated have
acceptable numerical interpretations, but are utterly unsuitable empiri-
cally. Conversely, as we shall see in the last section of this paper, the
structure of relations which have a sound empirical meaning often cannot
be succinctly characterized so as to guarantee a desired numerical inter-
pretation.

* Reprinted from The Journal of Symbolic Logic 23 (1958), 113-128. Written jointly
with Dana Scott.
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Nevertheless, this major source of difficulty will not here be carefully
scrutinized in a variety of empirical contexts. The main point of the
present paper is to show how foundational analyses of measurement may
be grounded in the general theory of models, and to indicate the kind of
problems relevant to measurement which may then be stated (and
perhaps answered) in a precise manner.

Before turning to problems connected with construction of theories of
measurement, we want to give a precise set-theoretical meaning to the
notions involved. To begin with, we treat sets of empirical data as being
(finitary) relational systems, that is to say, finite sequences of the form
WA=<{A4, Ry,..., R,y, where A is a nonempty set of elements called the
domain of the relational system U, and R;,..., R, are finitary relations
on A. The relational system U is called finite if the set A is finite; other-
wise, infinite. It should be obvious from this definition that we are mainly
considering qualitative empirical data. Intuitively we may think of each
particular relation R; (an m;-ary relation, say) as representing a complete
set of ‘yes’ or ‘no’ answers to a question asked of every m;-termed se-
quence of objects in 4. The point of this paper is not to consider that
aspect of measurement connected with the actual collection of data, but
rather the analysis of relational systems and their numerical interpre-
tations.

If s={my,..., m,» is an n-termed sequence of positive integers, then
a relational system A=<4, R,,..., R,> is of type s if for each i=1,...,n
the relation R; is an mj-ary relation. Two relational systems are similar
if there is a sequence s of positive integers such that they are both of type s.
Notice that the type of a relational system is uniquely determined only if
all the relations are nonempty; the avoiding of this ambiguity is not
worthwhile. Suppose that two relational systems AU=<{4, R,,..., R,> and
B=(B,S,,..., S,y are of type s={my,...,m,». Then B is a homo-
morphic image of U if there is a function f from A onto B such that, for
each i=1,...,n and for each sequence <a,..., a,, of elements of 4,
Ri(ay, ..., ay,) if and only if S;(f(ay),-.., f(@yn,)). If the function f is one-
one, then B is an isomorphic image of U, or simply A and B are isomorphic.
W is a subsystem of B if A< B and, for each i=1,..., n, the relation R,
is the restriction of the relation S; to A. Wis imbeddable in B if some sub-
system of B is a homomorphic image of UA.2 A numerical relational system
is simply a relational system whose domain of elements is the set Re of all
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real numbers. A numerical assignment for a relational system U with
respect to a numerical relational system 9 is a function which imbeds U
in N. A numerical assignment is not required to be one-one.

Within the framework of the preceding formal definitions, it is now
possible to give an exact characterization of a theory of measurement.
First of all, the general outlines of a theory are determined by fixing a
finite sequence s of positive integers and only considering relational
systems of type s. Next, a numerical relational system it of type s is
selected which corresponds to the intended numerical interpretation of
the theory, and only relational systems imbeddable in ¢ are permitted.
Moreover, the theory need not concern all relational systems of type s
imbeddable in 9, but only a distinguished subclass. Since it is reasonable
that no special set of objects be preferred, we require that the distinguished
subclass be closed under isomorphism. We thus arrive at the following
characterization of theories of measurement as definite entities: a theory
of measurement is a class K of relational systems closed under isomor-
phism for which there exists a finite sequence s of positive integers and a
numerical relational system It of type s such that all relational systems
in K are of type s and imbeddable in 9t.3

Some readers may object that the definition of theories of measurement
should be linguistic rather than set-theoretical in character, since a theory
is ordinarily thought of as a linguistic entity. To be sure, many theories
of measurement have a natural formalization in first-order predicate logic
with identity. Notice, however, that first-order axioms by themselves are
not adequate, for if they admit one infinite relational system as a model
then they have models of every infinite cardinality, and it is difficult to see
how any natural connection can be established between numerical models
and models of arbitrary cardinality. Even neglecting this criticism, first-
order axioms are not adequate to express properties involving arbitrary
natural numbers, for example, that a relational system is finite or that as
an ordering it has Archimedean properties. Any linguistic definition of
theories which will permit expression of these more general properties
would require extensive machinery and be immediately involved in some
of the deepest problems of modern metamathematics. On the other hand,
we do not wish to give the impression that we reject any linguistic
questions. In fact, we use our set-theoretical definition as a point of
departure for asking just such questions.
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On the basis of the definition of theories of measurement adopted, two
questions naturally arise, to each of which we devote a section. In the
first place, is a given class of relational systems a theory of measurement?
And in the second place, given a theory of measurement, in what sense
can it be axiomatized?

II. EXISTENCE OF MEASUREMENT

A simple counterexample shows that not every class of relational systems
of a given type closed under isomorphism is a theory of measurement.
Let O be the class of all relational systems of type {2) that are simple
orderings. Let {4, R) be a system in O where R well-orders 4 and 4 has
a power not equal to or less than that of the continuum. Such a relational
system can be proved to exist even without the help of the axiom of
choice, but of course with aid of this axiom, the existence is obvious. By
way of contradiction, suppose that O is a theory of measurement relative
to a numerical relational system (Re, S). From the definition, it follows
that {4, R) is imbeddable in (Re, $) and that there is a numerical
assignment f mapping 4 onto a subset of Re such that xRy if and only if
f(x) S f(p) for all elements x, yeA. Let a, b be elements of 4 such that
f(a)=f(b). From the hypothesis that R is a simple ordering, we can
assume without loss of generality that aRb. Hence, we have f(a) S f(b),
and then f(b) S f(a), and finally, bRa. R is antisymmetric, and so a=bh.
This argument shows that the function fis one-one. Hence A has the same
power as a subset of Re, which is impossible. This proof shows that every
theory of measurement included in the class O contains only relational
systems of power at most that of the continuum. It is an unsolved problem
of set-theory closely connected with the continuum hypothesis whether
the class O restricted to systems of power at most that of the continuum is
actually a theory of measurement.4 At least it can be very easily shown
that O so restricted is not a theory of measurement relative to the system
{Re, <), where the relation < is the usual ordering of the real numbers.5
Indeed, the exact condition that a relational system in O must satisfy to
be imbeddable in {Re, <) is not really elementary, and the proof of the
necessity involves the axiom of choice.®

Let O’ be O restricted to countable relational systems.? It was proved
by Cantor that O’ is a theory of measurement relative to (Re, =), to
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formulate somewhat irreverently his classical result in the terminology of
this paper. This restriction to countable relational systems is always
sufficient, for it can be shown that the class of al/ countable relational
systems of a given type is a theory of measurement; however, the
numerical relational system required is so bizarre as to be of no practical
value.

A primary aim of measurement is to provide a means of convenient
computation. Practical control or prediction of empirical phenomena
requires that unified, widely applicable methods of analyzing the im-
portant relationships between the phenomena be developed. Imbedding
the discovered relations in various numerical relational systems is the
most important such unifying method that has yet been found. But
among the morass of all possible numerical relational systems only a very
few are of any computational value, indeed only those definable in terms
of the ordinary arithmetical notions. From an empirical standpoint, most
sets of qualitative data can find numerical interpretation by relations
defined in terms of addition and ordering alone. By way of example, we
may cite the measurement of masses, distances, sensation intensities, and
subjective probabilities. Frequently the consideration of weighted averages
requires also the use of the multiplication of numbers. However, in the
examples given in this paper, we shall restrict ourselves to the notions of
addition and ordering,.

No natural scientific situation would seem strictly to require the con-
sideration of sets of infinite data. This state of affairs suggests that theories
of measurement containing only finite relational systems would suffice for
empirical purposes. The problem is delicate, however, for the measure-
ment of a meteorological quantity such as temperature by an automatic
recording device is usually treated as continuous, both in its own scale
and in time. Yet the important problem of measurement does not really
lie in the correct use of such recording devices, but rather in their initial
calibration, a process proceeding from a finite number of qualitative
decisions. Because of the awkwardness of the uniform application of finite
relational systems, we shall not generally make this restriction.

Further remarks about establishing the existence of measurement are
best motivated by reference to a concrete example. In a recent paper
(1956), Luce has introduced a generalization of simple orderings which
he calls semiorders. A semiorder is a relational system {4, P) of type (2)
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which satisfies the following axioms for all x, y, z, weA:

S1. Not xPx.

S2. If xPy and zPw, then either xPw or zPy.

S3. If xPy and zPx, then either wPy or zPw.8

Such relations are most likely to occur in situations where objects are to
be arranged in order, and where it is difficult to say exactly when two
objects are indifferent. For example, to say that xPy might be interpreted
as meaning that the pitch of the sound x is definitely higher than the pitch
of y, or that the hue of color x is definitely brighter than the hue of color y,
or that the weight of the object x is noticeably greater than that of y, etc.
Indifference between two objects x and y (in symbols: x[y) is defined as
not xPy, and not yPx. The point of Luce’s axioms is that the relation I of
indifference is not always transitive, a fact easily appreciated for each of
the intuitive interpretations given above.

In his paper, Luce gives a certain numerical interpretation for certain
kinds of semiorders, but he does not show that any particular class of
semiorders is a theory of measurement in the sense used here, because his
interpretations are not relative to a fixed numerical relation. However, in
the finite case, the situation becomes relatively simple. Let > be that
relation between real numbers defined by the condition: x>y if and
only if x> y+1. Clearly, if x and y are real numbers such that x>y, then
it is fair to say that x is definitely greater than y, or better, x is noticeably
greater than y. It is in fact a simple exercise to prove that the relational
system (Re, > is a semiorder. Further, we shall give the proof of the
following result:

The class of finite semiorders is a theory of measurement relative to the
numerical relational system {Re, > ).

Before presenting the proof of the above, it would be well to outline a
general method in proofs of the existence of measurement which we shall
call the method of cosets. Let W={A, R,, ..., R,> be a relational system
of type (m;,..., m,». A uniquely determined equivalence relation E is
introduced into A by the condition: xEy if and only if for eachi=1,..., n
and each pair {z, ..., Zy,», {Wy, ..., Wy, » of m-termed sequences of elements
of A, if z;#w; implies {z;, w;} ={x, y} for j=1,..., m;, then R;(z, ..., Zp,,)
if and only if R;(wy,..., Wy,).

Even though the above definition is complicated to state in general, the
meaning of the relation xEy is simple: elements x and y stand in the
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relation E just when they are perfect substitutes for each other with
respect to all the relations R;.9

The notion of a weak ordering can serve as an example. Let A=<{4, R)
where the binary relation R is connected and transitive. Then xEy is
equivalent to the condition: For all ze A, xRz if and only if yRz, and zRx
if and only if zRy. However, this simplifies finally to: xRy and yRx.

Returning now to the general case, define, for each xe 4, [x] to be the
class of all y such that xEy. [x] is called the coset of x. Let A* be the class
of all [x] for xe 4. Directly from the definition of E we can deduce that it
is permissible to define m;-ary relations R} over 4* such that, for all
Xiyoeer X, €4, RF([x(]),..s [Xm]) if and only if Ry(xy,..., X,,). The
relational system A*={A4% R%,..., R*) is called the reduction of W by
cosets.

It is at once obvious that A* is a homomorphic image of A and that
A ** js isomorphic with A*. What is not quite obvious is the following:
If B is a homomorphic image of W, then * is a homomorphic image of
B.

By way of proof, let £ be a homomorphism of % onto B. We wish to
show that if f(x)=f(»), then [x]=[y]. Instead of the general case,
assume for simplicity that U and B are of type {2) and A=<{4, R,
B=(B, S). We must show that if f(x)=f(p), then xEy, or in other
words, for all ze A, xRz if and only if yRz, and zRx if and only if zRy.
Assume xRz. It follows that f(x) S f(z), and hence f(») S f(z), which
implies that yRz. The argument is clearly symmetric. We have therefore
shown that there is a function g from B onto 4 * such that g( f(x))=[x]
for xe A. It is trivial to verify that g is a homomorphism of B onto *,

Notice the following relation between the concepts of homomorphic
image and subsystem: if 8B is a homomorphic image of 2, then B is
isomorphic to a subsystem of . For let f be a homomorphism of U onto
B. Let g be any function from B into 4 such that f'(g(y))=y for all yeB.
The restriction of U to the range of g yields the subsystem of U isomorphic
with B.

Using the above remarks, we can establish at once the equivalence:
W is imbeddable in B if and only if W* is imbeddable in B.

Further, it follows that any function imbedding A * in B is always an
isomorphism of UA* onto a subsystem of B, and of all homomorphic
images of U this property is characteristic of U *.
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Let K now be any class of relational systems closed under isomorphism.
Let K* be the class of all systems isomorphic to some W* for AeK. In
effect we have shown above:

(i) K is a theory of measurement relative to a numerical relational
system N if and only if K* is also.

(i) If K in addition is closed under the formation of subsystems, then
K* is the class of all systems in K possessing only one-one numerical
assignments.

To use our example again, if K is the class of weak orders, then K* is
the class of simple orders. Notice that the proof in the first paragraph of
this section is a special case of (ii).

It should be remarked that for a relational system 2, A and A* always
satisfy exactly the same formulas of first-order logic not involving the
notion of identity. Hence, if K is the class of all relational systems satis-
fying first-order axioms without identity, then K* is the class of all
systems satisfying the axioms for K and in addition satisfying the axiom:

(*) If xEy, then x=y.

The application of this remark to weak orderings and simple orderings
is left to the reader.

Consider again the case of semiorders. Let S be the class of all finite
semiorders. For any {4, P)esS, consider the relation I of indifference
defined above. In terms of 7 one can establish a simplified characterization
of E: xEy if and only if for all ze A, xIz if and only if ylz.

Introduce (*) as a new axiom S4. The class of all Ae S satisfying S4
is just the class S*. Notice that unlike the pleasant situation with weak
orderings and simple orderings, the class S* is not closed under the
formation of subsystems even though S'is.

For any semiorder {4, P) introduce a further relation R as follows:
xRy if and only if for all z, if zPx then zPy, and if yPz then xPz.

We leave to the reader the elementary verification of the fact that R
is a weak ordering of A4, and that xEy if and only if xRy and yRx. Thus,
if (4, P>eS*, then R is a simple ordering of A. The connection between
P and R is clearer if one notices that xPy implies xRy, and that, if xRx;,
x,Py,, and y, Ry, then xPy.

Now let A={4, P) be a fixed member of S*. We wish to show that U
has an assignment in {Re, > ). Under the relation R, 4 is simply ordered.
Let A={xy,..., x,} where x;Rx;_; and x;#x;_;. Define by a course of
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values recursion a sequence d,..., a, of rational numbers determined
uniquely by the following two conditions:

(1) If x;Ix,, then a;=i/(i+1)

(2) If xIx; and x;Px;_; where j>O0, then a;=i/(i+1)a;+
1/(i+1)a;-,+1.

Notice that in (2) the hypothesis implies that j<i, while in the case
j=i the formula for g; simplifies to a,=a;_;+i+1. Notice further that
every element x; comes either under (1) or (2); for letting x; be the first
element such that x;Ix;, there are two cases: j=0, j>0. Clearly we always
have a;=0.

We show first that @;>a;_; by induction on i. For case (1), this is
obvious. Passing to (2), assume that x;/x; and x;Px;_;. If x;_;Ix,, then
a;_, <1 while g;> 1. Hence we can assume not x;_,x,, or in other words
x;-1Px,. Let x; be the first element such that x;_,Ix; and x;_;Px;_;. By
definition a@;_;=(i—1)/iqy+1/ia_,+1. If j=i, there is no problem.
Assume then that j<i. Now x;_; Rx;, x;Rx;_;, and x;Ix;, hence x;Ix;_,,
and so by our choice of k we have k£ < j. By the induction hypothesis on i,
it follows that a;>a;_, and a;>a;_y. If k=j, the required inequality is
obvious. If k<j—1, then a;>a;_,+1. Similarly a;,_, <@, +1, but again,
by the induction hypothesis, @, <a;_,, and hence ¢;>aq;_,.

The next step is to prove that, if x;Px;, then a;>a+1. Let x; be
the first element such that x;Ix; and x;Px;_;. We have j—1=k, and, in
view of the preceding argument, @;_;=a. But a;_;+1<a;, whence
a;>a+1.

Conversely we must show that, if ;> a; + 1, then x;Px;. The hypothesis
of course implies i>k. Assume by way of contradiction that not x;Px;.
It follows that x;Ix;. Let x; be the first element such that x;lx;; then k= j
and a2 a;. If j=0, then x,Ix, and x,Ix,, because x;Rx;. But then0=a;<1
and 0=g; <1, which contradicts the inequality a;>a;+1. We can con-
clude that j>0. Now a;<a;+1, but g, =a;, and thus a;<a;+1, which
again is a contradiction. All cases have been covered, and the argument
is complete.

Finally, define a function f on A4 such that f(x;)=a;. We have actually
shown that fimbeds % in {Re, > >. Thus it has been proved that $* is a
theory of measurement relative to (Re, > ), and, by the general remarks
on the method of cosets, we conclude that S is also a theory of measure-
ment relative to {(Re, > ).
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Notice that the above proof would also work in the infinite case as long
as the ordering R is a well-ordering of type w.

Let us now summarize the steps in establishing the existence of measure-
ment using as examples simple orderings and semiorders. First, after one
is given a class, K say, of relational systems, the numerical relational
system should be decided upon. The numerical relational system should be
suggested naturally by the structure of the systems in K, and as was re-
marked, it is most practical to consider numerical systems where all the
relations can be simply defined in terms of addition and ordering of real
numbers. Second, if the proof that K is a theory of measurement is not at
once obvious, the cardinality of systems in K should be taken into con-
sideration. The restriction to countable systems would always seem
empirically justified, and adequate results are possible with a restriction
to finite systems. Third, the proof of the existence of measurement can
often be simplified by the reduction of each relational system in K by the
method of cosets. Then, instead of trying to find numerical assignments
for each member of K, one concentrates only on the reduced systems.
This plan was helpful in the case of semiorders. Instead of cosets, it is
sometimes feasible to consider imbedding by subsystems. That is to say,
one considers some convenient subclass K’ < K such that every element
of K is a subsystem of some system in K. If K’ is a theory of measure-
ment, then so is K. In the case of semiorders we could have used either
plan: cosets or subsystems.

After the existence of measurement has been established, there is one
question which is often of interest: For a given relational system, what
is the class of all its numerical assignments? We present an example.

Consider relational systems =<4, D) of type {4). For such systems
we introduce the following definitions: xRy if and only if xyDyy. xyM*zw
if and only if xyDzw, zwDxy, yRz and zRy. xyM™**zw if and only if there
exist u, ve A such that xyM™uv and uwM*zw.

Let H be the class of all such relational systems which satisfy the
following axioms for every x, y, z, u, v, weA:

Al. If xyDzw and zwDuv, then xyDuv.

A2. xyDzw or zwDxy.

A3. If xyDzw, then xzDyw.

A4. If xyDzw, then wzDyx.

AS. If xRy and yzDuv, then xzDuv.
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A6. There is a ze A such that xzDzy and zyDxy.

AT. If not xyDzw and not xRy, then there is a ue A such that zwDxu,
not xRu, and not uRy.

A8. If xyDzw and not xRy, then there are u, ve A and an n such that
zuM"vw and zuDxy.

These axioms imply that for a system U in H, the relation R is a weak
ordering of A4, and the intuitive interpretation of xyDzw in case yRx and
wRz is that the interval between x and y is not greater than the interval
between z and w. Making heavy use of the last three existence axioms, it
can be shown that H is a theory of measurement relative to the numerical
relational system {Re, 4) where 4 is the quaternary relation defined by
the condition xyAzw if and only if x—y<z—w for all x, y, z, weRe. It
must be stressed that the Archimedean property of the ordering embodied
in A8 cannot be formulated in first-order logic, because it implies that all
systems in H* have cardinality not more than the power of the continuum.
In addition, it can be shown that, if Wisin H, and fand g are two numerical
assignments of U relative to {Re, 4), then fand g are related by a positive
linear transformation ;0% that is, there exist o, feRe with >0 such that,
forall xeRe, f(x)=ag(x)+ f. This gives in a certain sense the answer to the
question above: if we know one numerical assignment for 2, we know
them all. Except for very special systems in H, nothing more specific can
really be expected.

Notice that all relational systems in H are necessarily infinite. In the
next section we shall consider in detail the theory of measurement F
consisting of all finite relational systems imbeddable in (Re, 4. Here the
situation is quite hopeless. There simply is no apparent general statement
that can be made about the relation between assignments. Inasmuch as
any function ¢ which imbeds {Re, 4) in itself is necessarily a linear trans-
formation and conversely, it follows that, if % is a system in F and f'is an
assignment for 9, then f composed with a linear transformation is also an
assignment. The main difficulty with F is that two assignments for the
same system in F need not be related by a linear transformation.

III. AXIOMATIZABILITY

Given a theory of measurement, it is natural to ask various questions
about its axiomatizability, for the axiomatic analysis of any mathematical
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theory usually throws considerable light on the structure of the theory.
In particular, given an extrinsic characterization of a theory of measure-
ment via a particular numerical relational system, it is quite desirable to
have an intrinsic axiomatic characterization of the theory to be able
better to recognize when a relational system actually belongs to the
theory. In view of the paucity of metamathematical results concerning the
axiomatics of higher-order theories, we shall restrict ourselves to the
problem of axiomatizing theories of measurement in first-order logic.

It is a well-known result that if a set of first-order axioms has one
infinite model, then it has models of unbounded cardinalities. Since for
the most part we are interested in one-one assignments with values in the
set of real numbers, unbounded cardinalities are hardly an asset. That is to
say, the class of all relational systems that are models of a given set of
first-order axioms is usually not a theory of measurement. To remove such
difficulties without having to understand them, we simply restrict the
cardinalities under consideration. Even a restriction to finite cardinalities
is not too strong and leads to some rather difficult questions. Thus for the
remainder of this section we shall consider- only finitary theories of
measurement, i.e., theories containing only finite relational systems. Such
a theory is called axiomatizable, if there exists a set of sentences of first-
order logic (the axioms of the theory) such that a finite relational system
is in the theory if and only if the system satisfies all the sentences in the
set. A theory is finitely axiomatizable if it has a finite set of axioms. A
theory is universally axiomatizable if it has a set of axioms each of which
is a universal sentence (i.e., a sentence in prenex normal form with only
universal quantifiers).

It should be observed, first, that any finitary theory of measurement is
axiomatizable. This is no deeper than saying that in first-order logic we
can write down a sentence completely describing the isomorphism type of
each finite relational system not in the given theory, and clearly the nega-
tions of these sentences can serve as the required set of axioms. It is of
course quite obvious that we cannot in each instance give an effective
method for writing down the axioms, since there are clearly a continuum
number of distinct finitary theories of measurement. Notice also that if the
theoryis closed under subsystems then the axioms may be taken as universal
sentences, and conversely. In case one considers theories consisting of all
finite relational systems imbeddable in a given numerical relational
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system, then the problem of a recursive or effective axiomatization is
simply the problem of whether the class of universal sentences true in the
given numerical relational system is recursively enumerable or not. It is
not difficult to establish that this last problem is equivalent to the problem
of giving a recursive enumeration of all the relation types of finite
relational systems not imbeddable in the given numerical relational
system. For numerical relational systems whose relations are definable in
first-order logic in terms of + and <, these problems do not arise since
the first-order theory of + and < is decidable, and it is to these relational
systems that we shall primarily restrict our further attention.

In the second place, in all domains of mathematics a finite axi-
omatization of a theory is usually felt to be the most satisfactory result.
No doubt the psychological basis for such a feeling rests on the fact that
only a finite characterization can in one step explicitly lay bare the full
structure of a theory. Of course an extremely complicated axiomatization
may be of little practical value, and as regards theories of measurement,
there is a further complication. Namely, if an axiomatization in first-
order logic, no matter how elegant it-may be, involves a combination of
several universal and existential quantifiers, then the confirmation of this
axiom may be highly contingent on the relatively arbitrary selection of the
particular domain of objects. From the empirical standpoint, aside from
the possible requirement of a fixed minimal number of objects, results
ought to be independent of an exact specification of the extent of the
domain.

We are thus brought to our third observation: A finite universal axi-
omatization of a theory of measurement always yields a characterization
independent of accidental object selection. To be precise, consider a fixed
universal sentence. This formula will obviously contain just a finite num-
ber of variables. Hence, to verify the truth of the sentence in a particular
relational system, we need consider only subsets of the domain of a
uniformly bounded cardinality. Furthermore, verification for each subset
is completely independent of any relationships with the complementary
set.

Simple orderings and semiorders are examples of this last point. To
determine whether a finite relational system of type {2) is a simple
ordering, one has only to consider triples of objects; for semiorders,
quadruples. In constructing an experiment, say, on the simple ranking of
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objects with respect to a certain property, the design is ordinarily such that
connectivity and antisymmetry of the relation are satisfied, because for
each pair of objects the subject is required to decide the ranking one way
or the other, but not in both directions. Analysis of the data then reduces
to searching for intransitive triads.

Vaught (1954) has provided a useful criterion for certain classes of
relational systems to be axiomatizable by means of a universal sentence.
A straightforward analysis of his proof yields immediately the following
criterion for finitary theories of measurement.

A finitary theory of measurement K is axiomatizable by a universal
sentence, if and only if K is closed under subsystems and there is an integer
n such that, if any finite relational system U has the property that every
subsystem of W with no more than n elements is in K, then U is in K.

Though classes of finite simple orderings and finite semiorders are two
examples of finitary theories of measurement axiomatizable by a universal
sentence, there are interesting examples of finitary theories of measure-
ment closed under subsystems which are not axiomatizable by a universal
sentence. We now turn to the proof for one such case.

Let F be the class of all finitary relational systems of type <{4) im-
beddable in the numerical relational system {Re, 4)>. A wide variety of
sets of empirical data are in F. In fact, all sets of psychological data based
upon judgments of differences of sensation intensities or of differences in
utility qualify as candidates for membership in F. For example, in an
experiment concerned with the subjective measurement of loudness of »
sounds, the appropriate empirical data would be obtained by asking
subjects to compare each of the » sounds with every other and then to
compare the difference of loudness in every pair of sounds with every
other. More elaborate interpretations are required to obtain appropriate
data on utility differences for individuals or social groups (cf. Davidson
et al., 1957; Suppes and Winet, 1955).11t It may be of some interest to
mention one probabilistic interpretation closely related to the classical
scaling method of paired comparisons. Subjects are asked to choose only
between objects, but they are asked to make this choice a number of
times. There are many situations in which they vacillate in their choice,
and the probability p,, that x will be chosen over y may be estimated
from the relative frequency with which x is so chosen. From inequalities
of the form p,,<p,, we may obtain a set of empirical data, that is, a
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finite relational system of type (4), which is a candidate for membership
in F. The intended interpretation is that, if p,,2% and p,,=3%, then
Dxy <Py if and only if the difference in sensation intensity or difference in
utility between x and y is equal to or less than that between z and w, the
idea being, of course, that if x and y are closer together than z and w in
the subjective scale, then the relative frequency of choice of x over y is
closer to one-half than that of z over w.

Before formally proving that the theory of measurement F is not axi-
omatizable by a universal sentence, we intuitively indicate for a relational
system of ten elements the kind of difficulty which arises in any attempt
to axiomatize F. Let the ten elements be a,..., a;, ordered as shown on
the following diagram with atomic intervals given the designations
indicated.

I“ll X2 J“sL %4 I Y Iﬂ1lﬂ2Lﬁ3 | Ba l

a, a, as a4 as ae¢ a7 ag ag a10

Let o be the interval (a,, as), let B be the interval (aq, @), and let y be
larger than o or 8. We suppose further-that o4, a,, a3, @, is equal in size to
B2, B4, Bi, B3, respectively, but « is less than .12

The size relationships among the remaining intervals may be so chosen
that any subsystem of nine elements is imbeddable in {Re, 4), whereas
the full system of ten elements is clearly not.

Generalizing this example and using the criterion derived from Vaught’s
theorem we now prove:

THEOREM: The theory of measurement F is not axiomatizable by a uni-
versal sentence.

Proof: In order to apply the criterion of axiomatizability by a universal
sentence, we need to show that for every n there is a finite relational
system U of type <{4) such that every subsystem of 2 with n elements in
its domain is in F but U is not.

To this end, for every even integer n=2m =10 we construct a finite
relational system 9 of type {(4) such that every subsystem of 2m—1 ele-
mentsisin F. (A fortiori every subsystem of 2m—k elements for £ <2m
is in F.) To make the construction both definite and compact, we take
numbers as elements of the domain and disrupt exactly one numerical
relationship. Let now m be an even integer equal to or greater than 10.
The selection of numbers aj, ..., a,, may be most easily described by
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specifying the numerical size of the atomic intervals. We define a;=
a;.1—a; for i=1,...,m—1 and B;=a,.;+;—ans+; for i=1,...,m—1.
We then set @, =1, a;=2' for i=1,..., m—1, and a,,,, =2 In fixing the
size of f;, we have two cases to consider depending on the parity of m.

Case 1: m is even. Then m—1 is odd, and we set f;=w;, for i=2,
4,...,m—2and B;=04;-1y2 fori=1,3,..., m—1.

Case 2: m is odd. Then m—1 is even, and we set f;=a,, for i=2,
4,...,m—1 and B;=0,;), for i=1,3,...,m—2. Thus if n=2m=12,
we have oy =pf,, 0, =04, 3=, ay=P3, as=hs. With the set A=
{a,..., @y} defined, we now define the relation D as the expected nu-
merical relation except for permutations of a,, a,, @,+; and a,,. If
x, ¥, z, weA and {x, y, z, w) is not some permutation of <{a,, a,, @p+1,
a,.), then {x, y, z, w)eD if and only if

(€)) X—ySz-—w.

Moreover, let a=a,, b=a,,, c=a,,+,, d=a,,. Then we put the following
nine permutations of <a, b, ¢, d) in D:

{b,a,d,c) {a, b, d, c) {¢, b,d, a)
<b,d,a,c) {a, ¢, d, b) {c,d,a, b)
<b,d,c,a) {a,d, c,b) {c,d, b,a).

(These nine permutations correspond exactly to the strict inequalities
following from b—a<d—c. All nine are needed to make the subsystems
of {4, D) have the appropriate properties.)

From the choice of the numbers in 4 and the definition of D, itis obvious
that {4, D) is not imbeddable in {Re, 4), that is, that {4, D) is notin F;
for the atomic intervals between a; and a,, must add up to a length equal
to the sum of the atomic intervals between a,, ., and a,,,, but by hypothesis
the interval (a,, a,,) is less than the interval (a,, + 1, 4,,,). It remains to show
that every subsystem of 2m— 1 elements is in F. Two cases naturally arise.

Case 1: The element omitted in the subsystem is @;, @, @41 OF Aoy
Then the nine permutations of (2) are not in D restricted to the subsystem,
and the subsystem is not merely imbeddable in {Re, 4), but by virtue of
(1) is a subsystem of it.

Case 2: The element omitted is neither ay, 4, a,.,; nor a,,. Let a;
be the element not in the subsystem. There are two cases to consider.

Case 2a: ¢;<a,. For this situation we may use for our numerical
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assignment the function f defined by f(a;-;)=a;-;+1 for j=1,...,i—1,
f(ais;)=a;4; for j=1,..., n—i. It is straightforward but tedious to verify
that f'is a numerical assignment, that is, that it preserves the relation D as
defined by (1) and (2). Only two observations are crucial to this verifi-
cation. First, regarding atomic intervals (in the full system), if @;_;,, —
G-j=a1—a, for k>i, then f(a;—ji1)—fla;-;)=(ai—j+1—1)—
(@-j—1)=ay+1—a,=f(a+,)—f(a). Second, the numbers in 4 were so
chosen that, if x, y, z, we4, and (z, w) is not an atomic interval, and
(x, »)#(z, w) and x—y<z—w, then x—y+2=<z—w. Then it is clear
from the definition of f that f(x)—f(») < f(z) —f(w). (Note that the above
implies the weaker result that no two distinct nonatomic intervals have
the same size.)

Case 2b: a;>a,+1. Here we may use a numerical assignment f
defined, as would be expected from the previous case, by f(a;-;)=a;_;
for j=1,...,i—1, f(a;+;)=a;+;+1 for j=1,..., n—i. This completes the
proof of the theorem.

It would be pleasant to report that we could prove a stronger result
about the theory of measurement F, namely, that it is not finitely axiom-
atizable. Unfortunately, there seems to be a paucity of tools available for
studying such questions for classes of relational systems. However, we
would like to state a conjecture which if true would provide one useful
tool for studying the finite axiomatizability of finitary theories of measure-
ment like F which are closed under submodels. We say that two sentences
are finitely equivalent if and only if they are satisfied by the same finite
relational systems, and we conjecture: If S is a sentence such that if it is
satisfied by a finite model it is satisfied by every submodel of the finite
model, then there is a universal sentence finitely equivalent to S. If this
conjecture is true, it follows that any finitary theory of measurement closed
under submodels is finitely axiomatizable if and only if it is axiomatizable
by a universal sentence.

The proof (or disproof) of this conjecture appears difficult. It easily
follows from Tarski’s results (1954) on universal (arithmetical) classes in
the wider sense that, if the finitistic restrictions are removed throughout in
the conjecture, the thus modified conjecture is true; for the class of
relational systems satisfying S, being closed under submodels, is a
universal class in the wider sense and is axiomatizable by a denumerable
set of universal sentences. Since S is logically equivalent to this set of
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universal sentences, it is a logical consequence of some finite subset of
them; but because it implies the full set, it also implies the finite subset
and is thus equivalent to it.

Our conjecture is one concerning the general theory of models and
its pertinence is not restricted to theories of measurement. In conclusion
we should like to mention an unsolved problem typical of those which
arise in the special area of measurement. Let R be any binary numerical
relation definable in an elementary manner in terms of plus and less than.
Is the finitary theory of measurement of all systems imbeddable in R
finitely axiomatizable? (If our conjecture about finite models is true, then
the theory of measurement F is not finitely axiomatizable and shows that
the answer to this problem is negative for quaternary relations definable
in terms of plus and less than.)

NOTES

1 We would like to record here our indebtedness to Alfred Tarski, whose clear and
precise formulation of the mathematical theory of models has greatly influenced our
presentation (Tarski, 1954, 1955). Although our theories of measurement do not
constitute special cases of the arithmetical classes of Tarski, the notions are closely
related, and we have made use of results and methods from the theory of models.

2 Although in most mathematical contexts imbeddability is defined in terms of
isomorphism rather than homomorphism, for theories of measurement this is too
restrictive. However, the notion of homomorphism used here is actually closely
connected with isomorphic imbeddability and the facts are explained in detail in
Section II.

3 In some contexts we shall say that the class K is a theory of measurement of type s
relative to R. Notice that a consequence of this definition is that if K is a theory of
measurement, then so is every subclass of K closed under isomorphism. Moreover, the
class of all systems imbeddable in members of K is also a theory of measurement.

4 In this connection see Sierpinski (1934, Section 7, pp. 1411f.) in particular Proposition
Crs, where of course different terminology is used.

5 It is sufficient here to consider a relational system isomorphic to the ordering of the
ordinals of the second number class or to the lexicographical ordering of all pairs of
real numbers.

6 A simple ordering is imbeddable in <{Re, <) if and only if it contains a countable
dense subset. For the exact formulation and a sketch of a proof, see Birkhoff (1948,
pp. 31-32, Theorem 2).

7 The word ‘countable’ means at most denumerable, and it refers to the cardinality of
the domains of the relational systems.

8 See Luce (1956, Section 2, p. 181). The axioms given here are actually a simplification
of those given by Luce.

9 The authors are indebted to the referee for pointing out the work by Hailperin (1954),
which suggested this general definition.
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10t The proofs of both these facts about H are very similar to the corresponding proofs
in Suppes and Winet (1955; Article 8 in this volume).

11t Article 8 in this volume.

12 Essentially this example was first given in another context by Herman Rubin to
show that a particular set of axioms is defective.



5. MEASUREMENT, EMPIRICAL MEANINGFULNESS,
AND THREE-VALUED LOGIC*!

I. INTRODUCTION

The predominant current opinion appears to be that it is scarcely possible
to set up criteria of empirical meaningfulness for individual statements.
What is required, it is said, is an analysis of theories taken as a whole.
There is even some skepticism regarding this, and it has been romantically
suggested that the entire fabric of experience and language must be
considered and taken into account in any construction of general cate-
gories of meaning or analyticity. What I have to say makes no con-
tribution to the attempt to find a general criterion of meaning applicable
to arbitrary statements. Rather I am concerned to exemplify a general
method that will yield specific positive criteria for specific branches of
science.

A brief analysis of two simple examples will indicate the sort of thing
I have in mind. Consider the statement:

@) The mass of the sun is greater than 10°,

If a physicist were asked if (i) is true or false, he would most likely
reply that it depends on what unit of mass is implicitly understood in
uttering (i). On the other hand, if we were to ask him about the truth
of the sentence:

(ii) The mass of the sun is at least ten times greater than that of
the earth,

he would, without any reservation about units of measurement, state
that (ii) is true, and perhaps even add that its truth is known to every
schoolboy. Now my main point is that we may insist that our systematic
language of physics (or of any other empirical science) has no hidden
references to units of measurement. The numerals occurring in the

* Reprinted from Measurement: Definitions and Theories (ed. by C. West Churchman
and P. Ratoosh), Wiley, New York, 1959, pp. 129-143.
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language are understood to be designating “pure” numbers. An excel-
lent example of a physical treatise written without reference to units is
provided by the first two books of Newton’s Principia. (Units are in-
troduced in the consideration of data in Book III, and occasionally in
examples in the earlier books.) Newton avoids any commitment to units
of measurement by speaking of one quantity being proportional to
another or standing in a certain ratio to it. Thus he formulates his fa-
mous second law of motion:

The change of motion is proportional to the motive force impressed ; and is made in the
direction of the right line in which that force is impressed [Cajori edition, p. 13].

Systematic reasons for adopting Newton’s viewpoint as the funda-
mental one are given in later sections. My only concern at the moment
is to establish that adoption of this viewpoint does not represent a gross
violation of the use of physical concepts and language by physicists. It
seems obvious that, in using a unitless language, we would not find occa-
sion to use (i), for there would be no conceivable way of establishing its
truth or falsity, either by empirical observation or logical argument. In
contrast, (ii) would be acceptable. Yet it is difficult to see how to de-
velop a simple and natural syntactical or semantical criterion within,
say, a formal language for expressing the results of measurements of
mass, which would rule out sentences like (i) and admit sentences like
(ii). The central purpose of this paper is to explore some of the possi-
bilities for classifying as meaningless well-formed sentences like (i), or,
more exactly, the analogues of (i) in a formalized language. Formaliza-
tion of a certain portion of the unitless language of physicists is not
absolutely necessary for expressing the ideas I want to put forth, but
it is essential to a clear working out of details. Moreover, the exact
formal construction seems to pose some interesting problems which could
scarcely be stated for a natural language. In the final section, the pos-
sibility is explored of interpreting this formalized language in terms of a
three-valued logic of truth, falsity, and meaninglessness.

II. INVARIANCE AND MEANINGFULNESS

In connection with any measured property of an object, or set of objects,
it may be asked how unique is the number assigned to measure the
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property. For example, the mass of a pebble may be measured in grams
or pounds. The number assigned to measure mass is unique once a unit
has been chosen. A more technical way of putting this is that the measure-
ment of mass is unique up to a similarity transformation.2 The measure-
ment of temperature in °C or °F has different characteristics. Here an
origin as well as a unit is arbitrarily chosen: technically speaking, the
measurement of temperature is unique up to a linear transformation.3
Other formally different kinds of measurement are exemplified by (1) the
measurement of probability, which is absolutely unique (unique up to the
identity transformation), and (2) the ordinal measurement of such
physical properties as hardness of minerals, or such psychological
properties as intelligence and racial prejudice. Ordinal measurements are
commonly said to be unique up to a monotone-increasing transfor-
mation.4

Use of these different kinds of transformations is basic to the main
idea of this paper. An empirical hypothesis, or any statement in fact,
which uses numerical quantities is empirically meaningful only if its truth
value is invariant under the appropriate transformations of the numerical
quantities involved. As an example, suppose a psychologist has an
ordinal measure of 1.Q., and he thinks that scores S(a) on a certain new
test T have ordinal significance in ranking the intellectual ability of people.
Suppose further that he is able to obtain the ages 4 (@) of his subjects. The
question then is: Should he regard the following hypothesis as empirically
meaningful ?

HYPOTHESIS 1: For any subjects a and b if S(a)/A(a)<S(b)/A(D),
then 1.Q. (a)<1.Q. (b).

From the standpoint of the invariance characterization of empirical
meaning, the answer is negative. To see this, let 1.Q. (a)=1.0. (b), let
A(a)=17, A(b)=12, S(a)=3, S(b)=7. Make no transformations on the
I.Q. data, and make no transformations on the age data. But let ¢ be a
monotone-increasing transformation which carries 3 into 6 and 7 into
itself. Then we have

3 7

7<712>
but

6 7

7212’

and the truth value of Hypothesis 1 is not invariant under ¢.
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The empirically significant thing about the transformation character-
istic of a quantity is that it expresses in precise form how unique is the
structural isomorphism between the empirical operations used to obtain
a given measurement and the corresponding arithmetical operations or
relations. If, for example, the empirical operation is simply that of or-
dering a set of objects according to some characteristic, then the corre-
sponding arithmetical relation is that of less than (or greater than), and
any two functions which map the objects into numbers in a manner pre-
serving the empirical ordering are adequate. More exactly, a function f
is adequate if, and only if, for any two objects @ and b in the set, a stands
in the given empirical relation to b if and only if

fla)<f(b).5

It is then easy to show that if f; and f, are adequate in this sense, then
they are related by a monotone-increasing transformation. Only those
arithmetical operations and relations which are invariant under monotone-
increasing transformations have any empirical significance in this situation.

The key notion referred to in the last sentence is that of invariance. In
order to make the notion of invariance or the related notion of mean-
ingfulness completely precise, we can do one of two things: set up an
exact set-theoretical framework for our discussion (e.g., for classical
mechanics, see McKinsey and Suppes, 1955), or formalize a language
adequate to express empirical hypotheses and facts involving numerical
quantities. Here we shall formalize a simple language for expressing the.
results of mass measurements. It should be clear that the method of
approach is applicable to any other kind of measurement, or combi-
nations thereof.

III. EMPIRICAL MEANINGFULNESS IN THE LANGUAGE L,,

To avoid many familiar details, we shall use as a basis the formal language
of Tarski’s monograph (1951) enriched by individual variables ‘a’, ‘b,
‘e fay’, by’ ‘cy’..., the individual constants: oy,..., 0,9, Which
designate ten, not necessarily distinct, physical objects, and the mass term
‘m’, where ‘m(a)’ designates a real number, the mass of a. The values of
the individual variables are physical objects. The numerical variables are
XY 2y X Vs 24y ... Tarski’s numerical constantsare: 1,0, —1.
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We shall include, for purposes of examples, numerical constants for the
positive and negative integers less than 100 in absolute value. The operation
signs are those for addition and multiplication. We also include the
standard sign for exponentiation with the fixed base 2. A term is any
arithmetically meaningful expression built up from this notation in the
usual manner. (We omit an exact definition.) Thus the following are
terms: m(a), 5-m(a)+3, 2+ 1, x+3, 2%. Our two relation symbols are the
usual sign of equality and the greater than sign. An atomic formula is then
an expression of the form

(“zﬁ)’ (a>ﬁ)1

where a and f are terms with the restriction in the case of («> f) that
o and § are both numerical terms, that is, neither « nor § is an individual
variable or constant. When no confusion will result, parentheses are
omitted. Formulas are constructed from atomic formulas by means of
sentential connectives and quantifiers. The symbol ‘—’ is used for
negation; the ampersand ‘&’ for conjunction; the symbol ‘v’ for dis-
junction (to be read ‘or’); the arrow ‘—’ fof implication (to be read
‘if...then..."); the double arrow ‘<’ for equivalence (to be read ‘if and
only if”); the reverse ‘I’ is the existential quantifier; and the upside down
‘Y’ the universal quantifier. Thus the following are formulas: (3x)(m(a)=
x), Ax)(3y)(x>y), 0> x—-m(b)>x. We also use the standard symbol ‘ #’
for negating an equality. A formula is a sentence if it contains no free
variables, that is, every occurrence of a variable is bound by some
quantifier.

Sentences are true or false, but unlike the situation in the language of
Tarski’s monograph (1951), the truth or falsity of many sentences in the
language L, constructed here depends on empirical observation and
contingent fact. For example, the truth of the sentence:

6)) (3a) (Vb) (b # a » m(a) > 5-m(b))

is a matter of physics, not arithmetic.

Pursuing now in more detail the remarks in the first section, the in-
tuitive basis for our classification of certain formulas of L, as empirically
meaningless may be brought out by considering the simple sentence:

()] m(oy) =4.
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It must first be emphasized that in the language L,;, the numeral ‘4’
occurring in Sentence 2 designates a “pure’” number. There is no con-
vention, explicit or implicit, that ‘4’ stands for ‘4 g’, ‘4 1b’, or the like. It is
to be clearly understood that no unit of mass is assumed in the primitive
notation of L,,. With this understanding in mind, it is obvious that no
experiment with apparatus for determining the masses of physical objects
could determine the truth or falsity of Sentence 2. It is equally obvious
that no mathematical argument can settle this question. On the other
hand, it is clear that sentences like:

(3) m(0,) > m(0,)
or

4 m(03) = 5-m(04),
which are concerned with numerical relations between the masses of
certain objects can be determined as true or false on the basis of experi-
ment without prior determination of a unit of mass.

It seems to me that the use of ‘pure’ numerals in L,, is more funda-
mental than the use of what we may term ‘unitized numerals’. The
justification of this view is that the determination of units and an appre-
ciation of their empirical significance comes after, not before, the inves-
tigation of questions of invariance and meaningfulness. The distinction
between Sentence 2 and the other three Sentences 1, 3, and 4 is that the
latter sentences remain true (or false) under any specification of units.
In other words, the truth value of these sentences is independent of the
arbitrary choice of a unit. Paraphrasing Weyl, we may say®: only the
numerical masses of bodies relative to one another have an objective meaning.

My claim regarding fundamentals may be supported by an axiomatic,
operational analysis of any actual experimental procedure for measuring
mass. Most such procedures may be analyzed in terms of three formal
notions: the set 4 of physical objects, a binary operation Q of compari-
son, and a binary operation * of combination. The formal task is to show
that under the intended empirical interpretation the triple A= (4, Q, *)>
has such properties that it may be proved that there exists a real-valued
function m defined on A4 such that for any @ and b in 4

@ aQb ifandonlyif m(a)<m(b),
(ii) m(a*b) =m(a) + m(b).
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The empirically arbitrary character of the choice of a unit is established
by showing that the functional composition of any similarity trans-
formation ¢ with the function m yields a function ¢om which also
satisfies (i) and (ii), where o is the operation of functional composition.?t

We may think of such an operational analysis as supporting the choice
of L,,, where the term ‘m’ of L,, designates a numerical representing
function satisfying (i) and (ii). Roughly speaking, because this repre-
senting function is only unique up to a similarity transformation, we
then expect any sentence to be empirically meaningful in L, if and only
if its truth value is the same when ‘m’ is replaced by any expression which
designates multiplication of the representing function by a positive
number. However, there are certain difficulties with deciding exactly
how to make this intuitive definition of empirical meaningfulness precise.
For example, if the definition applies to any sentences, then we have the
somewhat paradoxical result that Sentence 2 and its negation are both
empirically meaningless, but their disjunction:

©) m(o)=4v m(oy) #4

is meaningful, since it is always true.

To facilitate our attempts to meet this problem, we first need to intro-
duce the semantical notion of a model of L,;. For simplicity in defining
the notion of model, and without any loss of generality, we shall from
this point on consider L,; as not having any individual constants that
designate physical objects.

On this basis, a model I of L,, is an ordered triple (&, 4, m) where

(i) © is the usual system of real numbers under the operations of addi-
tion, multiplication, and exponentiation with the base 2, and the relation
less than with the appropriate numbers corresponding to their numerical
designations in L,,8;

(i) A is a finite, nonempty set;

(iii) m is a function on 4 which takes positive real numbers as values.
The intended interpretation of 4 is as a set of physical objects whose
masses are being determined; the function m is meant to be a possible
numerical function used to represent experimental results. We assume
the semantical notion of satisfaction and suppose it to be understood
under what conditions a sentence of L, is said to be satisfied in a model
M. Roughly speaking, a sentence S of Ly, is satisfied in IN=<S, 4, m)
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if S is true when the purely arithmetical symbols of S are given the usual
interpretation in terms of &, when the individual variables occurring in
S range over the set 4, and when the symbol ‘»’, if it occurs in S, is taken
to designate the function m.

We say that a sentence of Ly, is arithmetically true if it is satisfied in
every model of L,;. And we deal with the arithmetical truth of formulas
with free variables by considering the truth of their closures. By the
closure of a formula we mean the sentence resulting from the formula
by adding sufficient universal quantifiers to bind all free variables in the
formula. Thus ‘(Va)(m(a)>0)’ is the closure of ‘m(a)>0’, and is also the
closure of itself.

Using these notions, we may define meaningfulness by means of the
following pair of definitions.

DEFINITION 1: An atomic formula S of Ly, is empirically meaningful
if and only if the closure of the formula

«>0-(SeS()

is arithmetically true for every numerical term o, where S (&) results from S
by replacing any occurrence of ‘m’ in S by the term a, followed by the
multiplication sign, followed by ‘m’.®

If, for example,

S =‘m(a) > m(by
a=2+1),
then
S@)=‘Q+1)m(a)>2+1)m(b).

DEFINITION 2: A formula S of Ly is empirically meaningful in sense A
if and only if each atomic formula occurring in S is itself empirically mean-
ingful in the sense of Definition 1.

It is clear on the basis of Definitions 1 and 2 that Sentence 5 is not
empirically meaningful in sense A.

On the other hand, there is a certain logical difficulty, within ordinary
two-valued logic, besetting the set of true formulas which are meaning-
ful in sense A. Following Tarski (1930), a set of formulas is a deductive
system if and only if the set is closed under the relation of logical conse-
quence, that is, a formula which is a logical consequence of any subset
of formulas in the given set must also be in the set. Clearly it is most
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desirable to have the set of meaningful true formulas about any phe-
nomenon be a deductive system, but we have for the present case the
following negative result.

THEOREM 1: The set of formulas of Ly which are meaningful in sense
A and whose closures are true is not a deductive system.

Proof: The true sentence:

VX)) (x>2->x>1)

is meaningful in sense 4, but the following logical consequence of it is
not:
m(oy) >2->m(oy)>1,

for the two atomic sentences ‘m(0,)>2’ and ‘m(0,)>1" are both mean-
ingless in the sense of Definition 1.

To be sure, there are some grounds for maintaining that formulas that
are empirically meaningless may play an essential deductive role in em-
pirical science, but prima facie it is certainly desirable to eliminate them
if possible. g

A second objection to Definition 1 is that, by considering numerical
terms o rather than similarity transformations, we have in effect re-
stricted ourselves to a denumerable number of similarity transformations
because the number of such terms in L, is denumerable. The intuitive
idea of invariance with respect to @/l similarity transformations may be
caught by a definition of meaningfulness which uses the concept of two
models of Ly, being related by a similarity transformation. (The opera-
tion o referred to in the definition is that of functional composition.)

DEFINITION 3: Let M, =<(G, 4;, my> and IM,{S, 4,, m,> be two
models of Ly Then I, and I, are related by a similarity transformation
if and only if:

(i) A4,=4,.

(ii) There is a similarity transformation ¢ such that

¢ ollly =Mm,.
Using these notions, we may replace Definitions 1 and 2 by the follow-
ing:
DEFINITION 4: A formula S of Ly is empirically meaningful in sense
B if and only if S is satisfied in a model IN of Ly, when and only when it is
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satisfied in every model of Ly, related to IR by a similarity transformation.

Unfortunately, we have for meaningfulness in sense B a result analo-
gous to Theorem 1.

THEOREM 2: Let MM be a model of Ly. Then the set of all formulas
which are meaningful in sense B and which are satisfied in I is not a deduc-
tive system.

Proof: Consider the two sentences:

() (Ya)(¥b) (a = b (m(a) =2 > m(b) = 2))
@  (Ya)(¥b)(a=b).

It is easy to verify that Sentences 1 and 2 are satisfied in any model whose
set 4 has exactly one element, and are meaningful in sense B, yet they
have as a logical consequence the sentence:

©) (Va) (Vb) (m(a) =2 - m(b) = 2),

which is not meaningful in sense B. That this is so may be seen by con-
sidering a model with at least two objects with different masses. Let
A={o0s,0,}, and let M;=<(S, 4, m;> be such that m,(o;)=2 and
m, (0;)=3, and let M, =(S, 4, m,) be related to I, by the similarity
transformation ¢ (x)=2x. Thus m,(0;)=4 and m,(0,)=6. It is then
easily checked that Sentence 3 is satisfied in 9)t, but not in IN,.

The negative result of these two theorems indicates the difficulties of
eliminating the appearance of empirically meaningless statements in
valid arguments with meaningful premises. We return to this point in
the next section in connection with consideration of a three-valued logic.

On the other hand, we do have the positive result for both senses of
meaningfulness that the set of meaningful formulas is a Boolean algebra;
more exactly, the set of such formulas under the appropriate equivalence
relation is such an algebra. Here we carry out the construction only for
sense B. We consider the theory of Boolean algebras as based on six
primitive notions: the nonempty set B of elements; the operation + of
addition which corresponds to the sentential connective ‘or’; the opera-
tion + of multiplication which corresponds to the connective ‘and’; the
operation X of complementation which corresponds to negation; the zero
element 0, which corresponds to the set of logically invalid formulas;
and the unit element 1, which corresponds to the set of logically valid
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formulas. We omit stating familiar postulates on these notions which a
Boolean algebra must satisfy.

Let E be the set of formulas which are empirically meaningful in
sense B. We define the equivalence class of a formula S in E as follows:
[S] is the set of all formulas S’ in E which are satisfied in exactly the same
models M of Ly as S is. Let E be the set of all such equivalence classes;
obviously E is a partition of E. The zero element 0 is the set of formulas
in E which are satisfied in no model of L,;; the unit element 1 is the set
of formulas in E which are satisfied in all models of L. If S and T are
in E, then [S]+[ 7] is the set of all formulas in E which are satisfied in
the models of L,; in which either S or T is satisfied. If S and T are in E,
then [ ST]-[77] is the set of all formulas in E which are satisfied in those
models in which both S and T are satisfied. Finally if S is in E, then [S] is
the set of formulas which are satisfied in a model if and only if S is not
satisfied in the model. On the basis of these definitions, it is straight-
forward but tedious to prove the following:

THEOREM 3: The system {E, +,+, —, 0, 1) is a Boolean algebra.

(The proof is omitted.)

I interpret this theorem as showing that the set of meaningful
formulas in sense B of L, has a logical structure identical with that
of classical logic. In connection with other systems of measurement
for which the set of transformations referred to in the analogue of
Definition 3 is not a group, this classical Boolean structure does not
necessarily result.

Exponentiation was introduced into L,, deliberately to illustrate the
sensitivity of the decidability of meaningfulness to the strength of L,,.
The problem of decidability for the arithmetical language of Tarski’s
monograph mentioned earlier is open when his language is augmented
by notation for exponentiation to a fixed base. It seems unlikely that the
decidability of meaningfulness in L,; can be solved without solving this
more general problem. If L, is weakened by deleting exponentiation to
the base 2, then it easily follows from Tarski’s well-known result that
meaningfulness is decidable. On the other hand, if L, is strengthened
to include sufficient elementary number theory to yield undecidability of
whether, for instance, a given term designates zero, then meaningfulness
is not decidable, for the meaningfulness of formulas of the form m(a)=t,
where t is a numerical term, would not be decidable.
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IV. A THREE-VALUED LOGIC FOR L,

Since sentences like ‘(Va)(m(a)>2) of L,, cannot be determined as true
or false on the basis either of logical argument or of empirical observation,
it is natural to ask what are the consequences of assigning them the truth
value meaningless, which we designate by ‘y’, and reserving the values
truth and falsity for meaningful sentences, which we designate by ‘7’ and
‘F’, respectively. The first thing to be noticed is that meaningfulness in
sense B does not lead to a truth-functional logic in these three values.
This may be seen by considering two examples. The component sentences
of the sentence:

(3a) (m(a) = 1) v — (3a) (m () = 1)

have the value u but the whole sentence is meaningful in sense B and has
the value T. On the other hand, the component sentences of:

(3a) (m(a) =1) v (3b) (m(b) = 2)

have the value p and so does the whole sentence. Thus these two examples
taken together show that disjunction is not truth-functional for a three-
value logic of meaningfulness in sense B.

The state of affairs for meaningfulness in sense 4 is much better; it
does lead to a truth-functional logic in the three values, T, F, and p.
The appropriate truth tables are easily found by using the simple obser-
vation that a formula has the value yu if any well-formed part of it has
that value. Thus as the tables for negation and conjunction we have:

S[-S &|T F pu

T|F T|T F u
F|T F|F F p
T polp opop.

Tables for the sentential connectives of disjunction, implication, and
equivalence follow at once from the standard definitions of these con-
nectives in terms of negation and conjunction. On the other hand, it is
obvious that this three-valued logic is not functionally complete with
respect to negation and conjunction. For example, we cannot define in
terms of these two connectives a unary connective which assigns the
value u to formulas having the value 7.
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Besetting meaningfulness in sense 4 is the negative result of Theorem 1.
This difficulty we shall meet head on by proposing a revision of the
definition of the semantical notion of logical consequence. However,
before turning to this definition, it will be advantageous to give a model-
theoretic definition of meaningfulness which combines the virtues of
sense A4 and sense B.

DEFINITION 5: A formula S of Ly, is empirically meaningful in sense C
if and only if every atomic formula occurring in S is meaningful in sense B.

It is easily verified that the truth tables just given are satisfied when
the value p signifies meaninglessness in sense C. Moreover, the exact
analogue of the Boolean structure theorem for sense B (Theorem 3) can
be proved for sense C.

To meet the difficulty of having formulas which are meaningless in
sense C be logical consequences of formulas which are meaningful in
sense C, a revision of the standard definition of logical consequence is
proposed. For this purpose we need to widen the notion of a model to that
of a possible realization of Ly;. A model of L,, requires that the arithmetical
symbols be interpreted in terms of the usual system of real numbers, but
no such restriction is imposed on a possible realization. For example, any
domain of individuals and any two binary operations on this domain
provide a possible realization of the operation symbols of addition and
multiplication. Details of the exact definition of a possible realization are
familiar from the literature and will not be given here. This notion is used
to define that of logical consequence, namely, a formula S of L, is a
logical consequence of a set A of formulas of L, if S is satisfied in every
possible realization in which all formulas in A4 are satisfied. We may then
define:

DEFINITION 6: Let S be a formula and A a set of formulas of Ly. Then S
is a meaningful logical consequence of A if and only if S is a logical con-
sequence of A and S is meaningful in sense C whenever every formula in A
is meaningful in sense C.

The central problem in connection with this definition is to give rules
of inference for which it may be established that if A is a set of formulas
meaningful in sense C, then S is a meaningful logical consequence of 4
if and only if S is derivable from A by use of the rules of inference.1® For
this purpose, we may consider any one of several systems of natural
deduction. The eight essential rules are: rule for introducing premises;
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rule for tautological implications; rule of conditional proof (the deduction
theorem); rule of universal specification (or instantiation); rule of
universal generalization; rule of existential specification; rule of existen-
tial generalization; and rule governing identities.!! To these eight rules
we add the general restriction that every line of a derivation must be a
formula meaningful in sense C. This means, for instance, that in deriving
a formula by universal specification from another formula we must check
that the result of the specification is meaningful. This restriction entails
that the modified rules of inference are finitary in character only if there is
a decision procedure for meaningfulness in sense C. Remarks on this
problem were made at the end of the previous section. Because we have
modified the rules of inference only by restricting them to meaningful
formulas, it follows easily from results in the literature on the soundness
of standard rules of inference that:

THEOREM 4: Let A be a set of formulas meaningful in sense C. If a
Jformula S is derivable from A by use of the rules of inference subject to the
general restriction just stated, then S is a meaningful logical consequence
of A.

Of considerable more difficulty is the converse question of complete-
ness, namely, does being a meaningful logical consequence of a set of
meaningful formulas imply derivability by the restricted rules? The
following considerations suggest that the answer may be affirmative to
this question. Let Ly, * be a second language which differs from L,, in the
following single respect: the one-place function symbol ‘m’ is replaced by
the two-place function symbol ‘r’, where both argument places are filled
by individual variables or constants. The intuitive interpretation of the
formula ‘r(a, b)=x" is that the numerical ratio of the mass of a to the
mass of b is the real number x, that is,

r(a, b) = m(a)/m(b).

Clearly every formula in L, * is meaningful with respect to our intui-
tive criterion of invariance. (The practical objection to Ly, % is that such a
ratio language is tedious to work with and does not conform to ordinary
practice in theoretical physics.) No restrictions on the rules of inference
are required for Ly * and, consequently, the usual completeness result
holds. The suggestion is to use translatability of meaningful formulas of
Ly into Ly#* to prove completeness of inferences from meaningful
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formulas of Ly The possible pitfall of this line of reasoning is that trans-
latability requires certain arithmetical operations which are preserved
in every model but not necessarily in every possible realization of L.

Certain aspects of this construction of a three-valued logic for L,, seem
worthy of remark. In the first place, the construction has assumed
throughout use of a two-valued logic in the informal metalanguage of
L. In particular, ordinary two-valued logic is used in deciding if a given
sentence of L,, is satisfied in a given model of L,,;. On the other hand, the
relation between sets of empirical data on mass measurements and models
of L, is one-many. The empirical content of the data is expressed not by a
particular model but by an appropriate equivalence class of models.
Consequently, sentences of L, which are not invariant in truth value (in
the two-valued sense) over these equivalence classes do not have any
clear empirical meaning even though they have a perfectly definite
meaning relative to any one model. Thus it seems to me that to call a
formula like ‘m(a)=35" empirically meaningless is no abuse of ordinary
ideas of meaningfulness, and in this particular situation accords well with
our physical intuitions. If this is granted, the important conclusion to be
drawn is that, for the language L,,, the three-valued logic constructed is
intuitively more natural than the ordinary two-valued one.

NOTES

1 T am indebted to Georg Kreisel for several helpful comments on an earlier draft of
this article.

2 A real-valued function ¢ is a similarity transformation if there is a positive number
a such that for every real number yx

$(x) = ax.

In transforming from pounds to grams, for instance, the multiplicative factor « is
453.6.

3 A real-valued function ¢ is a linear transformation if there are numbers « and f with
a> 0 such that for every number x

$(x) =ax + B.

In transforming from Centrigrade to Fahrenheit degrees of temperature, for instance,
a=%and f=32.

4 A real-valued function ¢ is a monotone increasing transformation if, for any two
numbers x and y, if x <y, then ¢ (x) < (»). Such transformations are also called order-
preserving.

5 For simplicity we shall consider here only the arithmetical relation <. There is no
other reason for excluding >.
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6 Weyl’s original statement is with respect to Galileo’s principle of relativity, “Only
the motions of bodies (point-masses) relative to one another have an objective meaning”
[1922, p. 152].

7t An axiomatic analysis in terms of these ideas may be found in Suppes (1951;
Article 3 in this volume). However, the analysis given there may be criticized on several
empirical counts; for example, the set 4 must be infinite.

8 Technical details about G are omitted. Characterization of models of the purely
arithmetical part of Las are familiar from the literature.

9 In this definition and subsequently we follow, without explicit discussion, certain
use-mention conventions. It would be diversionary to go into these conventions, and
it seems unlikely any serious confusion will result from not being completely explicit
on this rather minor point.

10 Although two kinds of variables are used in L, We may easily modify Lar to
become a theory with standard formalization in first-order predicate logic and thus
consider only modification of standard rules of inference for first-order predicate logic.
11 By various devices this list can be reduced, but that is not important for our present
purposes. Exposition of systems of natural deduction which essentially use these eight
rules is to be found in Copi (1954), Quine (1950), and Suppes (1957).
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METHODOLOGY:
PROBABILITY AND UTILITY



The six articles in this part represent over a decade of work on subjective
probability and utility, primarily in the context of investigations that fall
within the general area of decision theory. Articles 6 and 8 are closely
related to the theory of measurement. Because of doubts about the
possibility of measuring either subjective probability or utility, much of
the theory of these subjects has been devoted to an explicit working out
of the theory of measurement. Article 9 on the behavioristic foundations
of utility is related closely to the articles in Part IV on the foundations of
psychology. The discussion in this article of learning theory overlaps the
more detailed analyses given in Articles 16 and 23. To those readers who
want a quick survey of decision theory without confronting the technical
problems, I would recommend Article 7 on the philosophical relevance of
decision theory. Duncan Luce and I (1965) have attempted a much more
substantial and technical survey in an article not reprinted here.

The last article in this part, Article 11 on probabilistic inference, makes
the closest connection of any of the articles with much of the recent
philosophical literature on induction. I think the line of attack begun in
this article can be considerably extended, particularly in areas of ex-
perience and those parts of science not yet well organized from a theoreti-
cal standpoint. Above all, however, the problems raised about rational
behavior at the end of this article seem to me the most important open
problems that I have raised in any of the six articles in this part, and in
this respect, the article is closely related to the tradition of analysis in
decision theory exemplified by the first article of this part, Article 6.

From a general philosophical standpoint, the central theme of these six
articles is the problem of characterizing and analyzing the elusive con-
cept of rationality. I suppose it is clear to everyone who thinks about the
matter very much that we are still only in the beginning stages of a
satisfactory analysis, and there are many people who are skeptical of ever
giving a systematic characterization that is intuitively satisfactory. I do
not think we should yet aim or hope for anything that is complete, but,
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as in the case of work in the foundations of mathematics over the past
century, there is now some ground at least for believing that progress of
a definite and objectively agreed upon sort is possible. The work that
originates with the theory of games is turning out to be one of the most
useful general lines of approach, even though the classical article by
Milnor (1954) shows how treacherous and difficult it is to give an in-
tuitively complete, but consistent list of attributes of a rational strategy in
an uncertain situation, even when that situation is highly restricted. In
many respects, the great classical tradition in economics, going back to
Adam Smith, can be viewed as an attempt to work out a normative
theory of rational behavior in economic contexts. The recent literature in
normative economics has generalized the relatively narrow economic
context to a wider context of decision or action, as exemplified, for
example, in Arrow’s classical book (1951).

I turn now to a more detailed consideration of the last two articles in
this part. In an as yet unpublished book on welfare economics, Dr.
Amartya K. Sen of the Delhi School of Economics, University of Delhi,
India has made a number of acute comments on the grading principle of
justice introduced in Article 10. The fundamental point he makes is that
some possible relations J; of more just than can violate Pareto optimality.
The relation J; is person i’s preference ordering of the possible con-
sequences accruing to him and the possible consequences accruing to the
other person as well (in Article 10 I restricted the number of persons to
two, but the generalization to » is straightforward and has been carried
out by Dr. Sen). Here is a simple instance of Sen’s demonstration of
incompatibility with Pareto optimality. Consider two vectors of con-
sequences x=<{x;, X, and y=_y;, y,>. Let person 1 order these four
consequences

X, Py y1, 1 Px; and x; Py,,
and let person 2 order them thus
X1 Pyy,, y2Px,, and x, Py;.

Then according to Definition 5 (p. 159), we have x J; y and x J, y, but on
the other hand, for person 1, y; P; x; and for person 2, y, P x,, whence
by Pareto optimality, the appropriate social choice is y over x. This
undesirable result follows whenever each man presumes to know his
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neighbor’s preferences better than the neighbor does himself. Thus in
Sen’s example, person 1 thinks that for 2, x, is better than y,, even though
2 thinks the opposite. Person 2 judges similarly the ranking of x, and y,
for 1.

I accept Dr. Sen’s criticism and believe that it calls for a change.
Fortunately, one is already implicit in his analysis. This is to require that
in ordering the set C, of consequences for person 2, person 1, with
ordering relation R;, agree on C, with R,, i.e., with person 2’s own
ordering on C,; a similar constraint is placed on R, with respect to R,
on C;. Formally, we need to add to Definition 4 (p. 158) the condition that
on the subsets C; and C, of C;uC, the ordering relations R; and R,
agree.

Dr. Sen’s criticism leads to an emendation in the right direction,
because it forces more structure on the concept of justice being set forth.
I am, however, still far from satisfied with matters as they now stand.
Far stronger structural principles are required to rule out other counter-
intuitive examples, such as the one given at the end of the article.

The issues concerning probabilistic inference, its nature and its
justification, have received extensive discussion in recent philosophical
literature. I originally intended to relate what I had to say about these
matters in Article 11 to what other people have said in the past couple of
years. A wide-ranging and informative discussion of many of the central
issues in inductive logic is to be found in the volume edited by Lakatos
(1968), and the 1968 volume of Philosophy of Science contains useful
papers by Hempel and others. When I attempted a preliminary review of
the rapidly increasing literature, however, it soon became apparent that
it would not be possible to deal with it briefly and in a way that was
limited to trying to extend my own work to meet it. For example, a good
part of the Lakatos volume is taken up by discussions by Salmon and
others of rules of acceptance. In my judgment, the issues raised need to
be analyzed in the context of modern statistical decision theory, not in
terms of extending the theory of inference and the theory of explanation.
In other words, to take the idea of acceptance seriously, we must proceed
to an analysis of behavior and a theory of decisions.

The lottery paradox, which has been so much discussed in relation to
rules of acceptance, seems to me an example of the sort of artificial puzzle
generated by considering rules of acceptance apart from a theory of
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decisions. In a way, perhaps, the St. Petersburg paradox of utility theory
is similar in spirit to the lottery paradox, but in terms of the concepts of
acceptance and certainty, there is a total lack of similarity. From still
another standpoint, the law of large numbers, the central limit theorem,
and other asymptotic results in probability theory are related both to
probabilistic inference and rules of acceptance, because they describe
what, under rather general assumptions, may be predicted to happen with
near certainty in the long run. But to examine these relations is not
possible here.

Ian Hacking’s criticisms of Salmon and Reichenbach in the Lakatos
volume are also pertinent. Hacking presses his remarks from the stand-
point of de Finetti’s ideas on the foundations of probability and in-
duction. Hacking argues well for the Bayesian conception of learning by
experience, especially in criticizing relative-frequency theories of in-
duction. I share his skepticism of the ability of Bayesian ideas to deal with
large parts of our cognitive experience. In another article (Suppes, 1966)
published at the same time as Article 11, I tried to show in some detail
why Bayesian ideas are not adequate to that part of learning by ex-
perience which requires the learning of a new concept. Some brief remarks
about these matters are made at the end of Article 11. The learning-
theoretic account of finite automata in the very last article of the present
volume says as much as I can sharply formulate at the present time about
the manner in which a learning mechanism might operate in learning a
new concept.

In a detailed critique of Article 11 given in Levi’s review (1967), I am
accused, probably rightly, of adopting a radical psychologism toward the
problems of induction. I am increasingly prepared to defend this general
way of looking at both deductive and inductive logic. I suppose I feel the
real test of a theory of concept formation or a theory of induction is its
ability to generate the drawings for a machine, or more specifically, a
computer that can form concepts and make inductions. Theories of this
kind will not answer many sorts of Humean puzzles about predicting the
future from knowledge of the past. Nevertheless, the contribution of such
theories, once developed, to the philosophy of induction should be as
substantial as have been the contributions of explicitly formulated set
theories to the philosophy of mathematics.



6. THE ROLE OF SUBJECTIVE PROBABILITY
AND UTILITY IN DECISION-MAKING*1

I. INTRODUCTION

Although many philosophers and statisticians believe that only an
objectivistic theory of probability can have serious application in the
sciences, there is a growing number of physicists and statisticians, if not
philosophers, who advocate a subjective theory of probability. The
increasing advocacy of subjective probability is surely due to the in-
creasing awareness that the foundations of statistics are most properly
constructed on the basis of a general theory of decision-making. In a
given decision situation subjective elements seem to enter in three ways:
(i) in the determination of a utility function (or its negative, a loss
function) on the set of possible consequences, the actual consequence
being determined by the true state of nature and the decision taken; (ii) in
the determination of an a priori probability distribution on the states of
nature; (iii) in the determination of other probability distributions in the
decision situation.

These subjective factors may be illustrated by a simple example. A field
general knows he is faced with opposing forces which consist of either (s;)
three infantry divisions and one armored division, or (s,) two infantry
divisions and two armored divisions. Thus the possible states of nature
are s; and s,. The possible consequences are a tactical victory (v), a
stalemate (¢), and a defeat (d). He subjectively estimates utilities as
follows: u(v)=3, u(t)=2, u(d)=—1. On the basis of his intelligence he
subjectively estimates the probability of s, as 4, and of s, as . Also in his
view there are two major possible dispositions of his forces (f; and f).
Using military experience and knowledge he now estimates the probability
of victory, stalemate or defeat if he decides for disposition f; and s, is the
true state of nature. Corresponding estimates are made for the pairs
(f15 52)s (f2, 1) and (f3, s,). He then presumably decides on f; or f,

* Reprinted from The Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability, 1954-55 5 (1956), 61-73.
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depending on which yields the greater expected utility with respect to his
estimated a priori distribution on s; and s,.

In connection with this example, it may properly be asked why prob-
abilities and utilities play such a prominent role in the analysis of the
general’s problem. The most appropriate initial answer, it seems to me,
is that we expect the general’s decision to be rational in some definite
sense. The probabilities are measures of degree of belief, and the utilities
measures of value. To be rational he should try to maximize expected value
or utility with respect to his beliefs concerning the facts of the situation.
The crucial problem is: what basis is there for introducing numerical prob-
abilities and utilities? Clearly methods of measurement and a theory
which will properly sustain the methods are needed. Our intuitive ex-
perience is that at least in certain limited situations, like games of chance,
such measurement is possible. The task for the decision theorist is to find
unobjectionable postulates which will yield similar results in broader
situations. It would be most unusual if any set of postulates which
guaranteed formally satisfactory measures of probability and utility also
was unequivocally intuitively rational. As we shall see in Section III,
compromises of some sort must be reached.

Because of the many controversies concerning the nature of probability
and its measurement, those most concerned with the general foundations
of decision theory have abstained from using any unanalyzed numerical
probabilities, and have insisted that quantitative probabilities be inferred
from a pattern of qualitative decisions. A most elaborate and careful
analysis of these problems is to be found in L. J. Savage’s recent book,
Foundations of Statistics (1954). The present paper gives an axiomatization
of decision theory which is similar to Savage’s. The summary result
concerning the role of subjective probability and utility is the same: one
decision is preferred to a second if and only if the expected value of the
first is greater than that of the second.

The theory presented here differs from Savage’s in two important
respects: (i) the number of states of nature is arbitrary rather than in-
finite; (ii) a fifty-fifty randomization of two pure decisions is permitted;
this does not presuppose a quantitative theory of probability. More
detailed differences are discussed in Section III. Since the present scheme
is offered as an alternative to Savage’s it is perhaps worth emphasizing
that the intuitive ideas at its basis were developed in collaboration with
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Professor Donald Davidson in the process of designing experiments to
measure subjective probability and utility (1955, 1956). I suspect that
experimental application of Savage’s approach may be more difficult. It
should also be mentioned that the approach developed here goes back
to the early important, unduly neglected work of Ramsey (1931).

The proof of adequacy of the axioms in Section I'V depends on previous
work by Mrs. Muriel Winet and me (1955) 2%, and unpublished results by
Professor Herman Rubin (1954); it is unfortunate that Rubin’s important
results are still unpublished. His work differs from the present in that he
assumes a quantitative theory of probability.

Finally it should be remarked that the theory developed in the present
paper is presumed susceptible of either prescriptive or descriptive use.

II. PRIMITIVE AND DEFINED NOTIONS

The four primitive notions on which our axiomatic analysis of decision-
making is based are very similar to the four used by Savage (1954). Our
first primitive is a set S of states of nature; the second, a set C of con-
sequences; and the third, a set D of decision functions mapping S into
C. Savage’s first three primitive notions are identical. His fourth primitive
is a binary relation of preference on D. In contradistinction, our fourth
primitive > is a binary relation of preference on the Cartesian product
Dx D. (D x D is the set of all ordered couples (f, g) such that fand g are
in D.) This apparently slight technical difference reflects the introduction
of a restricted notion of randomization which does not require a quanti-
tative concept of probability. Thus if £, g, f ' and g’ are in D, the intended
interpretation of (fg)=(f’',g’) is that the decision-maker (weakly)
prefers a half chance on f and a half chance on g to the mixed decision
consisting of a half chance on f’ and a half chance on g’. For application
of the apparatus developed here it must be possible to find a chance event
which is independent of the state of nature and which has a subjective
probability of 4 for the decision-maker.3 In most applications of decision
theory it should be relatively easy to find such a chance event, since we are
usually dealing with what Savage calls small-world situations, and not the
fate of the whole universe.

To illustrate the intended interpretation of our primitive notions we
may consider the following example. A certain independent distributor



90 PART II. METHODOLOGY : PROBABILITY AND UTILITY

of bread must place his order for a given day by ten o’clock of the
preceding evening. His sales to independent grocers are affected by
whether or not it is raining at the time of delivery, for if it is raining, the
grocers tend to buy less on the reasonably well-documented evidence that
they have fewer customers. On a rainy day the maximum the distributor
can sell is 700 loaves; on such a day he makes less money if he has
ordered more than 700 loaves. On the other hand, when the weather is
fair, he can sell 900 loaves. If the simplifying assumption is made that the
consequences to him of a given decision with a given state of nature
(rainy or not) may be summarized simply in terms of his net profits, the
situation facing him is represented in Table I.

TABLE 1
di-buy da—-buy ds—buy
700 loaves 800 loaves 900 loaves
s1—rain $21.00 $19.00 $17.00

S2—-n0 rain 21.00 24.00 26.50

The distributor’s problem is to make a decision. Decision d, is a kind of
hedge. We also permit him the hedge of randomizing fifty-fifty between
two pure decisions. He may own a coin which he believes is fair, and he
does not believe that flipping this coin has an effect on the weather. Thus
he may choose the mixture (d;, d5) over d,. On a particular morning he
might prefer the possible course of action open to him as follows:

)] dy > (dy, dy) > (dy, d3) > d; > (dy, d3) > d.

The use of the relation > in this example is made precise by two
definitions. Since the mixture (f,f) in the intended interpretation just
means decision (or action) f, it is natural to extend the field of > to D.

DEFRINITION 1: (f, g)=h if and only if (f, g)=(h, h); h=(f, g) if and
only if (h, B)=(f, g); and h=g if and only if (h, h)=(g, g).

For o and f either mixtures or pure decisions we now define the
relation > of strong preference.

DEFINITION 2: o> f if and only if o= f and not f>a.

For later work we also need the definition of equivalence in preference
(that is, indifference).
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DEFINITION 3: o~ f if and only if o= and f>o.

For the statement of our axioms on decision-making two further
definitions are needed. The first is the definition of a notion we need for
the statement of the Archimedean axiom (A.7).

DEeFINITION 4: (f,9) L (f', g') if and only if f~f" and (f, g)~9'.

The Archimedean axiom makes use of powers of L. We have that
(f9) L2 (f', ¢') if and only if there exist decisions /" and g” such that
(,9)L(f", 9") and (f",9") L (f', g'), which situation is represented
in Figure 1. (Note that f; f' and /" all occupy the same position.)

f, £ g gl gn g
Fig. 1.

The nth power of L is defined recursively:

(1) (£, 9) L (f', ¢') if and only if (£, g) L (", 9);

@ (f,9) L"(f', ¢') if and only if there are elements f” and g” in D
such that (f,g) L' *(f",g") and (f",¢9") L(f’, g'). The numerical
interpretation of the relationship (f; g) L' (f’, g’) is that f=f"' and

2" —1 1 ,
o f+§g—g-

Finally, we need the notion of a constant decision function, that is, a
function which yields the same consequence independent of the state of
nature.

DEFINITION 5: If xe C then x* is the function mapping S into C such that
for every seS, x*(s)=x.

As we shall see, the constant decisions play an all too important role in
the theory developed in this paper.

III. AXIOMS

Using the primitive and defined notions just considered we now state our
axioms for what we shall call rational subjective choice structures.

A system {S, C, D= is a RATIONAL SUBJECTIVE CHOICE STRUCTURE if'
and only if the following axioms 1-11 are satisfied for every f, g, h, f', g’,
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W, f"and g" in D:

AL (f,9)=(f", 9") or (f', 9')=2(/, 9);

A2. I (f,9)=(f", 9") and (f', 9')=(f", 9") then (£, 9)=(f", 9");

A3. (f,9)~(9,f);

A4. f>g if and only if (f, h)=(g, h);

A5. If (£, 9)=(f", g') and (b, g')2(V', g) then (£, )=(f", I');

A6. If (f,9)>(f', g') and g>g' then there is an h in D such that g>h
and h>g' and (f, 9)=(f", h);

ATl. If f>g and f'>g’, then there is an h in D and a natural number n
such that (f,g) L" (f, k) and (f', h)=(1, 9');

A8. For every x in C, x*eD;

A9. If for every s in S, (f(s)*, g (s)*)=(f" ()%, 9" (5)*) then (£, 9)>
(f'9);

A10. There is an h in D such that for every s in S, h(s)*=f(s)* and
h()* =g ()%

A11. Thereis an hin D such that for every s in S, (f(s)*, g (s)*)~h(s)*.

The interpretation of the first two axioms is clear: they require a simple
ordering of decisions. The third axiom- guarantees that our special chance
event independent of the state of nature has subjective probability 4. To
see this, let f>g, and let E* be our special chance event. The inter-
pretation of (f, g) is that decision f is taken if E* occurs and g if E*
occurs (that is, if E* does not occur). If the subjective probability of E*
(in symbols: s(E*)) is greater than that of £*, (f, g) will be preferred to
(g,f). On the other hand, if s (E*) <s(£*), then (g, f) will be preferred to
(. g). Hence, A.3 corresponds to saying that s(E*)=s(£*)=4. (For
further discussion of this, see Davidson and Suppes, 1956.)

Axiom A.4 states an obvious substitution property. It is a special case
(x=%) of an axiom introduced by Friedman and Savage (1952, p. 468,
axiom P3). It also is essentially a special case of Samuelson’s strong
independence axiom (1952). A kind of domination property is expressed
by A.5. If the mixture ( f, g) is at least as desirable as the mixture (f”, g’),
and # is sufficiently preferred over 4’ to reverse this preference in the sense
that (h, g') is weakly preferred to (#, g), then it is reasonable to expect
that (£, #)is weakly preferred to ( /', #"). The content of this axiom is made
clearer by considering particular cases among the possible orderings of
the decisions. An example which brings out the implications of the axiom
is given by the supposition that we have the following ordering:
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f'>f>g>g’. Now we must then have h>h' since (h, g")=(#, 9);
furthermore, the latter implies that the difference between 4 and A’ is
greater than between f’ and f, since when % is coupled with the least
desirable decision g’, the mixture (A, g') is preferred to (#’, g), but in the
case of f/, the mixing with g’ leads to ( f, g) being preferred. Hence, we
expect to find that (f, &) is weakly preferred to (', 4’), which is what the
axiom requires.

Axiom A.6 I regard as a blemish which should be eliminated or changed
in form. It says nothing essentially new about the structure of any model
of our axioms; just that if ( f, g) is preferred to (f”, g’), then we may find
a decision £ slightly better than g’ such that we will have ( f, g) preferred
to the new mixture (f, h). Axiom A.7 is an Archimedean axiom of the
sort necessary to get measurability. Its existence requirements are not
unreasonable in view of the plenitude of decisions guaranteed by A.10
and A.11. The meaning of A.7 is very simple. No matter how great the
interval between f and g, the interval may be subdivided sufficiently to
find an A closer to f than g’ is to f’. The axiom could be weakened by
adding to the hypothesis the condition that (£, g)=(f", g).

Axiom A.8 requires that all constant decisions, that is, decisions whose
consequences are independent of the state of nature, be in D. The in-
clusion of such constant decisions, or of something essentially as strong,
is necessary to obtain the summary result we want: f is preferred to g
if and only if the expected value of f with respect to a utility function on
consequences and an a priori distribution on states of nature is greater
than the corresponding expected value of g. The inclusion of these con-
stant decisions is not peculiar to the theory of decision-making developed
here, but is also essential to Rubin’s (1954) and Savage’s (1954) theories.4
The difficulties surrounding the inclusion of these decisions may be
illustrated by considering one of Savage’s colorful examples (see Savage,
1954, p. 14). We have before us an egg. One of two states of nature
obtains: the egg is good (s;) or the egg is rotten (s,). We are making an
omelet and five good eggs have already been broken into the bowl. We
may take one of three actions: break the egg in the bowl (f), break the
egg in a saucer and inspect it (g), simply throw the egg away (/). The
various consequences are easy to describe: f(s;)=six-egg omelet,
g (s,)=six-egg omelet and saucer to wash, etc. But now suppose we add
the constant decisions. How are we to think about the decision which
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guarantees us a six-egg omelet? If the true state of nature is s,, it is not
clear that we are considering an action which makes any kind of sense.
Certainly we are in no position to push the ultrabehavioristic interpreta-
tion of decision-making favored by Savage when we consider the constant
decisions. I can, for instance, imagine no behavioristic evidence which
would persuade me that an individual in the situation just described had
chosen the constant decision guaranteeing a six-egg omelet. As far as 1
can see, about the most reasonable way to analyze a preference involving
a constant decision such as the above one is to regard it as a non-
behavioristic subjective evaluation of consequences. Axioms A.8-A.11
have the effect intuitively of requiring such direct evaluations of con-
sequences.

Axiom A.9 corresponds closely to Savage’s seventh postulate and to
Rubin’s sixth axiom (1954). If for every state of nature the consequences
of the mixture of decisions f and g are preferred to the consequences of
the mixture of £’ and g’, then the mixture of fand g should be preferred
to that of /’ and g’. As Savage remarks, the kind of sure-thing principle
expressed by this axiom is one of the most acceptable postulates of ra-
tional behavior. Axiom A.10 asserts that given any two decisions there is
a third at least as good as either of the two with respect to every state of
nature. This axiom is weaker than the assumption that the set of con-
sequences of any decision f has an upper bound, that is, there is an x
in C such that for every s in S, x*>1(s)*. It is possible that the main
theorem of Section IV can be proved without this axiom, but I have not
succeeded in finding such a proof.

Axiom A.11 should probably be regarded as the strongest axiom of the
group. Given any two decisions f and g, A.11 asserts there is another
decision /4 with the property that for each state of nature the consequence
of 4 is halfway between the consequence of f and the consequence of g.
This axiom may be regarded as a very strong form of Marschak’s
continuity axiom (1950). His axiom is that if f>g and g > & then there is a
numerical probability « such that the mixture of f and /4 with probability
o and 1—a respectively is equivalent to g. The significance of A.11 is
discussed in more detail below.

Now that the analysis of individual axioms is complete, some general
remarks are pertinent. Compared to Savage’s axiomatization (1954), we
may say of the present theory that there are more axioms but perhaps less
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complicated definitions. A more important kind of comparison between
Savage’s and the present analysis is the rather radical difference in what
I like to call the structure axioms (as opposed to the rationality axioms).
By and large, a structure axiom is an existential assertion.? Axiom A.11 is
the main structure axiom in the present axiomatization. If we consider
the situation facing the independent distributor of bread, which was
discussed in the last section, it is clear that A.11 is not satisfied. In fact,
it is easy to show that if there are two decisions, one of which is strictly
preferred to the other, then A.11 and certain of the other axioms imply
that there is an infinity of decisions. However, I for one am reluctant to
call the distributor irrational because an insufficient number of decisions
is available to him. I prefer to say that the situation the distributor is in
does not permit the structure axioms to be satisfied, and hence the present
theory is inapplicable; we cannot use it to decide if the distributor is
regularly choosing an action or decision solely in terms of its expected
value. In a given axiomatic analysis of decision-making it is not always
easy or even possible clearly to separate the axioms into the two categories
of rationality axioms and structure axioms. Of the eleven axioms used in
this paper, I would say that A.1-A.5 and A.9 are “‘pure’ rationality
axioms which should be satisfied by any rational, reflective man in a
decision-making situation. On the other hand, A.8, A.10 and A.11 are
“pure” structure axioms which have little directly to do with the intuitive
notion of rationality. They are to be considered as axioms which impose
limitations on the kind of situations to which our analysis may be applied.
Axiom A.6 is a technical structure axiom which tells us little intuitively
about restrictions on applicability of the theory. Without A.11, the Archi-
medean axiom, A.7, would need to be considered a structure axiom, but
in the presence of A.11, I regard it as a rationality axiom.

Of Savage’s seven postulates, two are structure axioms (P5 and P6), and
the rest are rationality axioms. His P5 excludes the trivial case where all
consequences are equivalent in utility and thus every decision is equivalent
to every other. Postulate P6 is his powerful structure axiom corresponding
to my A.11. Essentially his P6 says that if event B is less probable than
event C (B and C are subsets of S, the set of states of nature), then there
is a partition of S such that the union of each element of the partition
with B is less probable than C. As Savage remarks, this postulate is
slightly stronger than the axiom of de Finetti and Koopman which
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requires the existence of a partition of S into arbitrarily many events
which are equivalent in probability. Thus the consequence of his P6 is
that there must be an infinity of states of nature, and as a consequence, an
infinity of decisions; whereas the consequence of A.11 is that there must
be an infinity of decisions, with the number of states of nature wholly
arbitrary. Such infinite sets, either of decisions or states of nature, can be
eliminated by various kinds of special structure axioms. Davidson and I
(1956) eliminated them by requiring that all consequences be equally
spaced in utility — an assumption which has proved manageable in some
controlled experiments on decision-making at Stanford (Davidson et al.,
1955), but is not realistic in general.

Savage defends his P6 by holding it is workable if there is a coin which
the decision-maker believes is fair for any finite sequence of flips (1954,
p- 33). However, if the decision-maker does not believe the flipping of the
coin affects what is ordinarily thought of as the state of nature, such as
raining or not raining in the case of the bread distributor, then it seems to
me that it is misleading to construct the states of nature around the fair
coin. Once repeated flips of a fair coin are admitted, we can extend the
single act of randomization admitted in the interpretation of the axi-
omatization given here, and directly introduce all numerical probabilities
of the form k/2". With this apparatus available we can give an axi-
omatization very similar to Rubin’s (1954) and drop any strong structure
axioms on the number of states of nature or the number of decisions.

To illustrate further the nature of the structure axiom A.11, and at the
same time to argue by way of example that it does not make our theory
impossible of application, I would like to modify one of Savage’s finite
examples (1954, pp. 107-108) which does not, even as modified, satisfy
his P6. A man is considering buying some grapes in a grocery store. The
grapes are in one of three conditions (the three states of nature): green,
ripe, or rotten. The man may decide to buy any rational number of
pounds between O and 3. If, for example, the state of nature is that the
grapes are rotten and he makes the decision to buy two pounds, then the
immediate consequence is possession of two pounds of rotten grapes and
the loss of a certain small amount of capital. If the man is at all intuitively
rational in his preferences concerning the amount of grapes to buy, it will
not be hard for him to satisfy A.1-A.11 - provided, of course, that he has
at hand some simple random mechanism, such as a coin he believes to be
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fair for single tosses (he need not believe that any finite sequence of
outcomes is as likely as any other). This example is discussed further in
Section V.

By way of summary my own feeling is that Savage’s postulates are
perhaps esthetically more appealing than mine, but this fact is balanced
by two other considerations: my axioms do not require an infinite
number of states of nature, and their intuitive basis derives from ideas
which have proved experimentally workable.

IV. ADEQUACY OF AXIOMS

We now turn to the proof that our axioms for decision-making are
adequate in the sense that decision f is weakly preferred to decision g if
and only if the expected value of f is at least as great as the expected
value of g. The actual result is not quite this strong. As might be expected,
the theorem holds only for bounded decisions (precisely what is meant by
a bounded decision is made clear in the statement of the theorem). On
the basis of A.1-A.11 uniqueness of the a priori distribution on the states
of nature cannot be proved, since the constant decisions alone constitute
a realization of the axioms. If S is assumed finite, various conditions
which guarantee uniqueness are easy to give. In stating the theorem, we
use the notation: U.f for the composition of the functions U and f.

TrHeEOREM: If S, C, D, =) is a rational subjective choice structure, then
there exists a real-value function ¢ on D such that

(i) for every £, g, f" and g’ in D (£, 9)=(/", ¢') if and only if $ (f)+
$(9)=o(f)+¢(9)

(ii) ¢ is unique up to a linear transformation, and

(iii) if U is the function defined on C such that for every x in C

€Y U(x) = ¢(x*),
then there exists a finitely additive probability measure P on S such that for
every fin D if Uof is bounded, then

@ ()= j (U f) () dP(s).

Proof: The proof of (i) and (ii) follows rather easily from some previous
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results obtained by Mrs. Muriel Winet and me. Using a notion R of
utility differences and a notion Q of preference, we established (1955) 6t
that, on the basis of axioms similar to A.1-A.7 and A.11 of this paper,
there exists a real-valued function  unique up to a linear transformation
such that

(€)) f Qg ifandonlyif ¥ (f)=>v(g),
fsgRf’,g" ifandonlyif W (f)—v¥ ()= (f)—-¥(g)l.

If we introduce the two defining equivalences?

@  fQg ifandonlyif (f,f)>(g,9);

®) f.gRf',g" ifandonlyifeither (i) f >g,f =g
and (f,9)>(f"9), or ()g>/f, f'>g
and (g,9) > (f, f'), or (111)f>g, g=f
and (f, /') > (9, 9), or (V)g>f,9'> f'

and (g, f) = (f, 9",

then on the basis of A.1-A.7, A.9 and A.11 we may prove the axioms of
Suppes and Winet (1955)8 on Q and R as theorems, as well as the equiv-
alence

©  (f,9)>(f"g) ifandonlyifcither ()f >g,f >
and f,gR f',g', or (11)f g andg’ > f or
(iii)g > f,g'>f'and f',g'R f, g

Parts (i) and (ii) of our theorem then follow immediately from the main
theorem in Suppes and Winet (1955).

The proof of (iii), concerning the existence of an a priori distribution on
S, essentially uses Rubin’s results (1954). However, certain extensions of
D are required in order to apply his main theorem.

By means of the utility function U on the set of consequences C, as
defined in the hypothesis of (iii), we define the set F of all numerical
income functions

@ F = {p: there exists f in Dsuch that p = Uo f},
and we define the functional # on F

(©) n(Uef)=¢(f).
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We observe first that if p, c€F, then
® 1p + jo€F,

for let p=Uofand o= Uo,g, then by (i) and (ii) of our theorem, A.9, and
A.11, there exists an 4 in D such that for every s in S

(10)  HUf)(s)+3(U-g)(s)=(Uch)(s).
Hence,

(11)  3p+i6=Uoh,
and U.h is in F. Also, since

(12)  n(Ueh)=¢(h)=1¢(f) +1¢(9) = (U-f) + n(U-g),
we have

(13 n(Ep +10) =1n(p) + i1 (o).

From (9) and (13) it easily follows that if p, € F and k and # are positive
integers such that k<2", then

14) k 1 k eF
( Pt o) CEF,

and

a9 | zo+(1-5)e]= g0+ (1- ) nco.

We now extend F by the following definition: pe Fif and only if there is
a finite sequence <ay,..., a,) of real numbers and a finite sequence
{P1s+--s Puy Of elements of F such that

(16)  p=Y ap;.

(It is clear from (16) that Fis a linear space.)
In order to extend # in a well-defined manner to F, we need to prove
that if

(17) Z a,-pi = Z bJO-J
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then
(18) ; an(p;) = %‘, bim(a;).

Clearly without loss of generality we may assume
(19) a,b;>0 for 1<is<nl<j<m.
We shall first establish (18) under the restriction that

(20) z_: a; = %: b;.

If a; and b; are rational numbers of the form k/2" with k<2", then (18)
follows from (15) by a straightforward inductive argument (which we
omit), provided

(21) Ya=)bj=1.
But the requirement of (21) is easily weakened to
(22) Za;=2bj<1,

for we may add cp with c=1-Y, g; to both sides of (17), and then (21)
will be satisfied. Furthermore, (22) is readily extended to arbitrary positive
rationals, since two finite sequences of positive rationals can be reduced
to (22) by multiplying through and dividing by a sufficiently high power
of 2.

We are now ready to consider the case where the a;’s and b;’s are
arbitrary positive real numbers. There are rational numbers r; and s;
such that

(23) r;<a; and s;>b;.
It is an immediate consequence of A.10 that there is a 7 in F such that
24) t2p; and 72o0;.

From (23) and (24) we have, by a regrouping of coefficients
(25) Yrp+ [ (ai—r)+ X (s;—bJlr =Y s0;.
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Since the coefficient of 7 is rational, we obtain by our previous results

(26) ; ri(p;) + An(t) > ; s;in (G'j),

where

7N l=2(a,-—r,-)+§(sj—-ﬂj).

n

By suitable choice of the 7;’s and s,’s, we may make A arbitrarily small,
and we thus infer from (23) and (26)

(28)  Yam(p) =Y bu(oy).
By an exactly similar argument, we get

(29) Z bjn(o;) > Z an (py).

To establish (18) in full generality it remains only to consider the case
where

(30)  Ya;#Yb;.
Suppose, for definiteness, that
(31 Ya, >3 b;.

There are elements x and y in C such that U(x)> U(y) (if there are no

two such elements, the proof of the whole theorem is trivial). Further-

more, in view of A.11, we may choose x and y such that U(x)>0 and

U(y)>0, or U(x)<0 and U(y)<O0. Let p=Uo.x* and v="Uo,y*. Then

u and v are in F, and there are nonnegative numbers @, and b, such that
(32) ag+Y a;=by+Y b;

and

(33) aolt = byv.

Then by our previous result under the restriction (20), we have

(34 aoh (1) + ; am(p)) = bon (v) + ; bn (s,
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but from (33), (8) and the definition of U

(35 aot (1) = bon (v),

and thus
(36) Z am(p;) = Z b (O'j) >

which establishes (18) in full generality.

On the basis of (18) we extend 5 to F. The argument from (30) on has
closely followed Rubin’s proof (1954). His proof may now be used to
complete the proof of (iii). We sketch the main steps. Clearly # is a linear
functional on F, and it is easily shown that 5 is nonnegative, and hence,
that 5 (p) is between inf ;. 5p(s) and sup ,.sp(s). Let G be the space of
all functions on S bounded by elements of F. Then by the Hahn-Banach
theorem (Banach, 1932, pp. 27-28) 5 can be extended to G. Finally, it can
be shown (Rubin, 1949a, b) that such a linear functional on G is, for
bounded functions in F, their expected value with respect to an a priori
distribution on .S which is in general finitely additive. (A result closely
related to the existence of such a distribution is established in Theorem
2.3, Yosida and Hewitt, 1952.)

V. CRITICAL REMARKS

The theory of decision developed in the previous sections is no doubt
defective in a number of ways, some of which I am well aware of. In this
final section I briefly examine what I consider to be its gravest weakness,
at least for normative applications. It is laudable to wish to base a theory
of decision on behaviorally observable choices, but the decision-maker is
interested in something more. He wants advice on how to choose among
alternative courses of action. He wants to have at hand a theory which
tells him how to use initial information. The result of the analysis in this
paper and in Savage’s book is that if certain structure axioms are satisfied,
any rational man acts as if he had an a priori distribution on the states of
nature. But what the rational man wants is a method for selecting that a
priori distribution which best uses his a priori information. The present
theory or Savage’s offers little help on this point. The importance of this
problem is testified to by the over-all situation in statistical decision
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theory: we have clear ideas of optimality only when given an a priori
distribution on the states of nature. Bayesian principles of choice seem
naturally to dominate the scene. (For some penetrating reasons, see
Blackwell and Girshick, 1954, Chap. 4.)

In recent years a serious attempt has been made by philosophical
logicians to develop a theory of confirmation which is closely related to
the problem under discussion. The theory of confirmation is concerned
with precisely characterizing the degree to which a given hypothesis is
supported by given evidence. The confirmation function which is usually
introduced is very similar in its formal properties to the standard notion of
conditional probability. Perhaps because the theory of confirmation has
usually been stated in logical or linguistic terms, its connections with
decision theory have not been made as clear as they could. Thus viewed,
the purpose of confirmation theory is to develop methods for codifying
prior information to yield an a priori distribution on the states of nature.
The available evidence is our prior information, and a hypothesis cor-
responds to asserting that a given state of nature is the true one.

For concreteness we may consider the grape example of Section IIIL. In
Savage’s discussion of this example (1954, p. 108) he assigns subjective
probabilities to the three states of nature, and then goes on to consider
what action the decision-maker should take after observing a sample of
one grape. But the point at issue here is: given certain prior information
is one a priori distribution as reasonable as any other? As far as I can see,
there is nothing in my or Savage’s axioms which prevents an affirmative
answer to this question. Yet if a man had bought grapes at this store on
fifteen previous occasions and had always got green or ripe, but never
rotten grapes, and if he had no other information prior to sampling the
grapes, I for one would regard as unreasonable an a priori distribution
which assigned a probability of % to the rotten state. Unfortunately,
though I am prepared to reject this one distribution as unreasonable, I
am not prepared to say what I think is optimal.

The most thoroughgoing analysis of confirmation theory has been made
by Carnap (1950), but his chosen confirmation function c¢* is beset with
many technical difficulties which give rise to counterintuitive examples
(see, for example, Kemeny, 1951, 1953; Rubin and Suppes, 1955). Here 1
am not concerned to scrutinize the current problems of confirmation
theory, but merely to argue for the relevance of the theory to decision
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theory.? An adequate confirmation theory would not discredit the kind
of axiomatization of decision-making given in this paper; it would not
disturb the central role of subjective probability and utility.1? It would
stand to the theory of this paper more as statistical mechanics stands to
macroscopic thermodynamics: a decision theory which included a
confirmation function would have the axioms of the present paper (or
of a similar theory such as Savage’s) forthcoming as theorems. Such an
enlarged decision theory would remain subjective, but an important
element of counterintuitive arbitrariness would have been eliminated.

In conclusion, I should like to acknowledge my indebtedness to
Herman Rubin for a number of helpful suggestions, as well as to Donald
Davidson, Robert McNaughton and Jean Rubin for their useful com-

ments.
NOTES

1 T am indebted to Herman Rubin for a number of helpful suggestions.

2t Article 8 in this volume.

3 The term ‘mixed decision’ is used here in the very restricted sense of referring to
gambles involving just this special chance event independent of the state of nature;
formally such gambles are the elements of D X D.

4 An analogue of our A8 is not included among Savage’s seven axioms unless his set
F of acts (corresponding to our set D of decisions) is meant to be the set of @/l functions
mapping S into C, which is of course a stronger assumption than A8. In any case it is
essential to his formal developments to have such decisions at hand (see Savage, 1954,
from p. 25 on).

5 This is certainly not always the case. The strong structure axiom in Davidson and
Suppes (1956), which asserts that consequences are equally spared in utility, is not
existential in character.

6t Article 8 in this volume.

7 In Suppes and Winet (1955; Article 8 in this volume) the inequalities of (3) are
actually reversed, but trivial changes in the axioms given there yield (3) as a consequence.
8t Article 8 in this volume.

9 A central problem in confirmation theory is what a priori distribution to choose when
there is no information whatsoever. Chernoff (1954) has shown that if certain reason-
able postulates are accepted and if the number of states of nature is finite, then the
distribution to choose is that one which makes each state equally probable.

10 This remark is controversial. In the opinion of many competent investigators an
adequate confirmation theory would dispense with any need for subjective probability.
I cannot here state my reasons for disagreeing with this view.



7. THE PHILOSOPHICAL RELEVANCE OF
DECISION THEORY*

I. INTRODUCTION

There is, I am sure, a sense in which any developed scientific theory has
philosophical significance. It is equally clear that some scientific theories
are of considerably more philosophical importance than others. For
philosophy, quantum mechanics is more important than hydrodynamics,
learning theory than social psychology, the theory of sets than topology,
and so on. It is the primary point of the present paper to discuss the
philosophical relevance or importance of decision theory, a theory I
classify as a new branch of mathematical statistics and economics, with
certain ramifications in psychology. I hope to be able to show that in its
own way decision theory has the kind of primary relevance for philosophy
that we associate with quantum mechanics or the theory of sets.

To begin with, we may characterize the fundamental problem of
decision theory in the following way. A person, or group of persons, is
faced with several alternative courses of action. In most cases the decision-
maker will have only incomplete information about the true state of
affairs and the consequences of each possible act. The problem is to
choose an act that is optimal relative to the information available and
according to some definite criteria of optimality.

In a very natural way, the most important branches of decision theory
may be characterized by a 2 x 2 table as illustrated in Table I. The left
column is for the category of individual decisions and the right column
for the category of group decisions. The first row is for the category of
normative theory and the second for the category of descriptive theory.

Rather than comment on the philosophical relevance of decision
theory in general, I shall attempt to indicate what I think are the most
interesting ramifications for philosophy of each of the quadrants shown.
The emphasis will be on normative theory.

* Reprinted from The Journal of Philosophy 58 (1961) 605-614.
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TABLE 1
Individual decisions Group decisions
Classical economics Game theory
Normative theory Statistical decision theory Welfare economics
Moral philosophy Political theory

Experimental decision studies Social psychology

Descriptive Learning theory Political science
theory Survey studies of voting
behavior

II. INDIVIDUAL NORMATIVE THEORY

A common problem besetting both the theory of induction and moral
philosophy is that of giving an adequate account of the concept of
rationality. The normative theory of individual decision making has been
concerned to explicate the notion of rationality in what is, in some re-
spects, a very thorough fashion. It would be rather absurd in this general
paper to attempt to survey even a small fraction of the many substantial
results, primarily of a technical nature, that have been achieved in the
last two decades. There is, however, a central kind of difficulty that has
arisen and that I think is of great philosophical importance.

Let me begin in an indirect fashion by a comparison with the situation
in the foundations of mathematics. As work on the arithmetization of
analysis and the development of the theory of sets progressed in the 19th
century, it seemed possible, at least for a short period, that the whole of
mathematics could be derived from three simple postulates: the principle
of abstraction, that is, that for any property there exists a set of elements
having this property; the principle of extensionality, that is, that twonets
are identical just when they;have the same members; and the axiom of
choice. Mathematical:work in the 19th century indicated that the theory
of sets was a natural framework within which to construct the rest of
mathematics.! The intuitive and simple reasonableness of these three
principles (with the possible exception of the axiom of choice) seemed
overwhelming.

The discovery of paradoxes derivable from the first two assumptions
by Burali-Forti, Russell, and others shook the foundations of mathematics
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to such an extent that a full recovery has not yet been made. But the
discovery of the paradoxes has had an effect that has not been entirely
negative. The many attempts, ranging from intuitionism to formalism,
to put the foundations of mathematics on a secure basis have brought our
understanding of the nature of mathematics to a new level of sophistica-
tion. Related negative results like the incompleteness theorems of Godel
have shown that what seemed to be immediate and obvious intuitions
about even so restricted a branch of mathematics as elementary number
theory are unreliable.

Recent work in decision theory has shown in similar fashion that there
is no simple coherent set of principles capable of precise statement that
corresponds to naive ideas of rationality. Just as research in this century
in the foundations of mathematics has shown that we do not yet know
exactly what mathematics is, so the work in decision theory shows that
we do not yet understand what we mean by rationality. I mean by this not
merely that we have no adequate general definition of rationality, but
that, even for highly restricted circumstances, it turns out to be extremely
difficult to characterize what we intuitively would want to mean by a
rational choice among alternative courses of action. To focus on a
collection of special situations and to attempt to characterize a rational
strategy of choice for them is very similar and, in fact, closely related to
an attempt to solve particular problems of induction without necessarily
resolving ‘‘the” problem of induction.

The formidable problems besetting the rational decision-maker may be
illustrated by considering the difficulty of formulating an adequate
principle of choice for finite games against ‘“nature”. Such games are
special cases of the description given above of the general decision
situation, although a wide variety of decision situations may be mathe-
matically represented as such finite games. The game may be represented
by a matrix in which a player must choose a row and a column is chosen
by nature. The entries in the matrix represent the payoff to the decision-
maker, when he chooses a row and nature chooses a column, but the
metaphorical talk about nature should not mislead anyone. This is
merely a way of referring to a situation in which a course of action must be
taken against an opponent or in an objective situation about which there
is no information. The restriction to no information is not so severe as it
may seem, for a situation in which partial information is incorporated
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may be redefined to yield a game with no information — a familiar
practice in the mathematical theory of decisions. The happy situation
when the entries in some one row are for every column better than those
for any other row presents no difficulties. We simply apply the sure-thing
principle; i.e., we choose that clearly preferred row. Unfortunately this
is the unusual situation, and this principle in itself is seldom selective of a
unique course of action.

The classical principle of indifference of Laplace states that when we
have no information about the different possible states of nature (the
columns of the game) we should assume that the probabilities of each are
equal and then choose that row whose expectation is maximal. The much
more conservative minimax principle states that we should choose
according to the hypothesis that we may expect the worst and thereby
minimize our maximum loss. The minimax principle was first proposed
by von Neumann as a sound principle of strategy in games against an
intelligent opponent. Its extension to games against nature as a funda-
mental principle of statistical decision theory was first made by Wald. A
variety of other principles have been proposed.

In view of the numerous suggestions that have been made, particular
interest may be attached to John Milnor’s analysis (1954) of what would
seem to be the desirable characteristics of any rational principle of
selection. His results, like those of Russell’s paradox for the foundations
of set theory, yield an impossibility theorem. Briefly, Milnor proposes the
following nine axioms for any fully acceptable principle of choice. First,
the principle must order the alternative courses of action. Second, this
ordering must be independent of the arbitrary ordering of the rows and
columns of the matrix. Third, the principle must be compatible with the
sure-thing principle mentioned earlier; that is, if one row dominates
another row in every column, that first row must be preferred. Fourth,
the principle must satisfy an obvious condition of continuity. Fifth, the
preference ordering of the courses of action must be unaffected by a
linear change in all entries in the matrix. (This principle reflects the
general result that the utility of consequences is measured only on an
interval scale.) Sixth, the principle of choice must satisfy the condition of
independence from irrelevant alternatives, namely that the ordering
between old rows must not be changed by the addition to the game of a
new row. The seventh axiom asserts that the principle must be invariant
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under a linear change of any column; in other words, the ordering among
courses of action must not change if a constant is added to some column.
Eighth, the ordering generated by the principle of choice must be in-
different to a column duplication; that is, the ordering must not change if
a new column identical with some old column is added to the game. The
ninth axiom asserts the requirement of convexity, which means simply
that, if a row is equal to the average of two other rows judged equivalent
in the preference ordering, then the first row must not be judged worse
than the two equivalent rows of which it is an average. This axiom is
sometimes described as asserting that the decision-maker should not be
prejudiced against randomization.

None of the familiar criteria of rationality for the decision-maker is
compatible with all nine of these axioms. These nine axioms are obtained
by extracting desirable properties of various criteria of rationality that
have been proposed. Milnor shows, for example, that the Laplacean
criterion is characterized by axioms 1, 2, 3, 6, and 7 and the Wald minimax
criterion by axioms 1, 2, 3, 4, 6, 8, and 9. The undesirable negative result
is that no criterion satisfies all nine together. -

Closely related paradoxical results in confirmation theory suggest that
the naive theory of rationality, like the naive theory of sets, cannot easily
be systematically reconstructed in any simple and consistent fashion.

Certain moral philosophers will undoubtedly be inclined to dismiss
the kind of results I have been discussing as applicable only to the
technical problems that arise in the theory of induction. In their minds,
the concept of rationality I have been discussing has little if any relevance
to the concept of rationality that arises in moral theory. This I think is
clearly a mistake, as the discussion in the next section is meant to show.

Elsewhere (Suppes, 1960a) I have discussed the difficulties of character-
izing the pure theory of rationality even when we accept a principle of
choice, in this case the Bayesian principle that enjoins the decision-maker
to maximize his expected utility (the expectation being relative to a
subjective probability distribution on the possible states or strategies of
nature). Roughly speaking, the pure theory permits no structural assump-
tions about the environment, but is intended rather to hold always and
everywhere. An example of an axiom of the pure theory is the postulate
that the preference relation on the set of acts is transitive. A typical
structural axiom is the assumption that the decision-maker can partition
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the set of states of nature as fine as he pleases in terms of probability, an
assumption which seems to me irrelevant to the pure concept of making a
rational decision. I shall not try to summarize the technical results
obtained, but only remark that they are all essentially negative and
indicate the difficulties of axiomatizing even the simplest part of the pure
theory of rationality.

By concentrating on the difficulties facing the development of any
adequate concept of rationality, I do not mean to imply that the philo-
sophical significance of decision theory under the heading of individual
normative theory is restricted entirely to negative results. The revival of
subjective probability, for instance, within the framework of decision
theory by L. J. Savage and others has already had and will undoubtedly
have further repercussions in the foundations of the theory of probability.
The simple relative-frequency theories of von Mises and Reichenbach are
already beginning to seem old-fashioned.

The development of utility theory within the general framework of
decision theory has brought the kind of calculus envisioned long ago by
Bentham to a high degree of technical perfection. It is unfortunate that
the word ‘utility’ is connected in most philosophers’ minds with hedonism.
The formal calculus of utility developed in recent decades is no more
committed to a calculus of pleasure than to one of duty. The important
intellectual contribution of the hedonistic tradition has been the re-
cognition that some principle of calculation is required for rational action
in the face of partial or incomplete information. Some years ago Davidson,
McKinsey, and I (1955) attempted to show the close relations that exist
between the measurement of utility and a formal theory of value. I shall
not attempt here to restate the arguments we gave, but only to reiterate
my conviction that the recent formal theories of utility are as important
for moral philosophy as are recent theories of subjective probability for
the philosophical problems of induction.

III. GROUP NORMATIVE THEORY

In the table shown above three disciplines are listed in this quadrant:
game theory, welfare economics, and political theory. The relations of
game theory to the concept of rationality as discussed in the preceding
section are apparent and will not be considered in any detail here. Suffice
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it to say that one of the most satisfactory analyses of the concept of
rationality exists for competitive games. This is the classical minimax
theory of von Neumann already mentioned.

In this section I should like to turn from the concept of rationality to
the more specifically moral concept of justice.

I have the impression that for many years the consideration of political
theory by either philosophers or political scientists has been nearly
identical with consideration of the history of political theory. It is my
feeling that the newer welfare economics has broken out of its specific
economic context and has already laid the foundations of a new approach
to political theory. The central problem of welfare economics has been the
Benthamite one of devising and analyzing a variety of schemes for the
distribution of economic goods in the society. It has gradually come to be
realized that the restriction to economic goods can be dropped and that
the problem may be regarded as the more general one of setting social
and political policy. It is assumed in this theoretical work that in some
sense decisions reached reflect in an equitable and just manner the values
and tastes of the members of the society. In-fact, the preferences of the
individuals making up the society are usually and somewhat unrealisti-
cally taken as given data.

To indicate the kind of results that may be obtained by the methods of
welfare economics, I should like to sketch another impossibility theorem.
This is due to Kenneth J. Arrow (1951) and is concerned with the
existence of a just or equitable method of social decision. We suppose
that there are a number of possible social states and that each member of
the society has a preference ordering for these states. The problem is to
construct an intuitively reasonable social preference ordering from the
given individual orderings. One simple proposal is, of course, the method
of majority decision. Social state 4 is preferred to social state B by the
group as a whole if a majority of the members of the group prefer 4 to B,
otherwise not. Just as in the case of the Laplacean principle of indifference
or the minimax principle for choosing a strategy in games against nature,
there are intuitively desirable axioms that are violated by the method of
majority decision. Perhaps the easiest way to illustrate the difficulties is
to describe the so-called paradox of voting. Suppose there are three
issues 4, B, C and three people voting on these issues. Let us assume that
the first person prefers A to B to C, the second person prefers Bto C to 4,
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and the third person prefers C to 4 to B. The issues are voted on in pairs.
It is easily checked that if the first choice is between 4 and B the selected
issue will be C. If it is between A and C the outcome will be B, and if it is
between B and C the outcome will be 4. In other words, the outcome
chosen is completely dependent in this symmetrical situation on the
arbitrary choice of which issues are to be voted first.

What Arrow has done is to proceed as Milnor did, namely, to write
down reasonable axioms that any social decision method should satisfy
and then to ask if indeed there exist any methods satisfying the axioms.
In essence his four axioms are the following. The first axiom postulates
a positive association of social and individual values. In particular, if one
alternative social state rises in the ordering of every individual without
any other change in the orderings, it is natural to postulate that it rises
or at least does not fall in the social ordering. The second axiom states
the independence of irrelevant alternatives. The meaning of this postulate
is that if, for instance, a set of candidates is being considered for an office
and the preferences of voters for these candidates are known, then the
deletion of one candidate from the list will not affect the relative pref-
erences for the other candidates. In thinking about this postulate it is
important to emphasize that strategic considerations are not being
considered. We are concerned with the actual preferences of the group
members and not with their behavioral use of a strategy in those situations
where they feel their first choice could not possibly be elected. For instance,
in the 1948 presidential election a strong states’ rights advocate might
have preferred J. Strom Thurmond to Thomas E. Dewey, but, because he
felt that Thurmond did not have a chance, he may have voted for Dewey.
It is this kind of strategic consideration that is being ignored in this
postulate. The meaning of the postulate is that, if the states’ rights
conservative preferred Thurmond to Dewey to Truman to Wallace, then
if Dewey were no longer a candidate he would retain the same ordering
of preferring Thurmond to Truman to Wallace, and similarly the deletion
of any one of the four candidates would not disturb the preference
ordering for the remaining three, even though the deletion of one of the
four might affect his voting behavior. The third axiom asserts that the
social decision method is not to be imposed. A decision method is said
to be imposed when there is some pair of alternative social states X and
Y such that the community can never express its preference for Y over X
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no matter what the preferences of all the individuals concerned may be.
The existence of outmoded taboos furnishes examples violating this
condition. The fourth axiom asserts that the social decision method shall
not be dictatorial; that is, the preferences shall not simply correspond to
those of some one individual in the social group. Unfortunately, Arrow
is able to prove that, if there is any degree of variety in the individual
preference orderings, then there exists no social decision method satisfying
the four axioms stated.

The point I have been concerned to make here is that the Milnor and
Arrow impossibility theorems are as philosophically relevant to the
foundations of the concepts of rationality and justice as are the paradoxes
of set theory for the foundations of mathematics. These impossibility
theorems demonstrate that our naive intuitions about rationality and
justice cannot be counted upon to yield a coherent and consistent theory.

IV. DESCRIPTIVE THEORY

Perforce the descriptive or behavioristic theory has less direct relevance
to philosophical problems than the normative theory, but there is one
particularly important point I should like to describe in the brief space
remaining. There are a rapidly increasing number of experimental studies
of the actual decision behavior of human beings. Studies have been made
of value choices, of actual inductive behavior, and of behavior in com-
petitive or cooperative game contexts. The literature is too large to
review here, but an important general conclusion seems to be that actual
behavior deviates rather sharply from the normative models, even in the
case of strictly competitive games. On the other hand, the behavior of
experimental subjects in many cases corresponds well with quantitative
predictions derived from learning theory formulated in terms of stimulus
sampling and conditioning (Suppes and Atkinson, 1960).
Stimulus-sampling learning theory was first given a quantitative
formulation in 1950 by the psychologist W. K. Estes. It has since been
developed by a number of investigators. In a highly simplified form, the
basic ideas run as follows. The organism is presented with a sequence of
trials, on each of which he makes a response that is one of several
possible choices. In any particular setup it is assumed that there is a set
of stimuli from which the organism draws a sample at the beginning of
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each trial. It is assumed that on each trial each stimulus is conditioned
to at most one response. The probability of making a given response on
any trial is postulated to be simply the proportion of sampled stimuli
conditioned to that response, unless there are no conditioned stimuli in
the sample, in which case there is a “guessing” probability for each
response. Learning takes place by the following mechanism. At the end
of a trial a reinforcing event occurs which identifies that one of the possible
responses which was correct. With some fixed probability the sampled
stimuli become conditioned to this response if they are not already, and
the organism begins another trial in a new state of conditioning.

Independent of the question of empirical adequacy in predicting
actual choice behavior, behavioral scientists have more general reasons
for preferring a learning theory (like the stimulus-sampling variety just
sketched) to decision theory. To the experimental psychologist, the
static character of the concepts of subjective probability and utility is
suspect, and these two concepts are the central concepts of decision
theory. The psychologist resists accepting them as basic or primitive
concepts of behavior. Ideally, what he desires is a dynamic theory of the
inherent or environmental factors determining the acquisition of a
particular set of beliefs or values. If these factors can be identified and
their theory developed, the concepts of probability and utility become
otiose in one sense. I have recently tried to show how stimulus-sampling
learning theory provides the beginnings of such a development (Suppes,
1961a).2* The philosophical interest of the behavioristic approach lies in
the possibility of constructing a more realistic framework than the
static one of decision theory for discussing the normative theory of
choice. This is not to say that the distinction between normative and
descriptive questions is to be abolished. It is rather that the more detailed
and fundamental behavioral theory opens up the possibility of analyzing
normative questions at a deeper conceptual level, but this is a matter that
cannot be explored here.

NOTES

1 This sketch is not meant to be historically exact.
2t Article 9 in this volume.



8. AN AXIOMATIZATION OF UTILITY BASED ON
THE NOTION OF UTILITY DIFFERENCES*

I. INTRODUCTION

In the literature of economics (e.g. Allais, 1952; Frisch, 1937; Lange-
1934) the notion of utility differences has been much discussed in con,
nection with the theory of measurement of utility.! However, to the best
of our knowledge, no adequate axiomatization for this difference notion
has yet been given at a level of generality and precision comparable to the
von Neumann and Morgenstern construction of a probabilistic scheme
for measuring utility. (The early study of Wiener, 1919-1920, is not
axiomatically oriented.) The purpose of this paper is to present an
axiomatization of this notion and to establish the expected representation
theorem guaranteeing measurement unique upto a linear transformation.

Recent experimental work by economists and psychologists (see the
bibliography in Edwards, 1954) suggests there are cogent reasons for
reviving the notion of utility differences in order clearly to separate
utility and subjective probability. The interaction between probability
and utility makes it difficult to make unequivocal measurements of either
one or the other. The recent Mosteller and Nogee experiments (1951)
may be interpreted as measuring utility if objective probabilities are
assumed or as measuring subjective probabilities if utility is assumed
linear in money.

In Davidson et al. (1955) and Davidson and Suppes (1955) a detailed
description is given of how utility may be experimentally measured by
use of utility differences and a single chance event with subjective prob-
ability 3.

The scheme may be briefly described as follows.2 Let E* be a chance
event with subjective probability 4, and suppose that the individual we
are testing prefers outcome x to y, and outcome z to w. We present him
with two alternative gambles, one of which he must choose. Gamble 1

* Reprinted from Management Science 1 (1955), 259-270. Written jointly with Muriel
Winet.
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is that if E* occurs he gets x, and if E* does not occur he gets w; Gamble
2 is that if E* occurs he gets z, and if E* does not occur he gets y. It seems
intuitively reasonable to say that the individual should prefer Gamble 2
if and only if the utility difference between x and yisless than that between
z and w. Once utility is measured by a procedure of this kind, we may
measure subjective probabilities. (To some extent, this approach was
anticipated in Ramsey, 1931.)

Since the chance event E* is fixed throughout the discussion, it does
not play any formal role in our axiomatization and enters only via one
particular empirical interpretation of the notion of utility differences.
Consequently, interpretations of our primitive notions, completely
divorced from any probability questions, are available for analyzing
other approaches to utility theory. A justification for considering alter-
native schemes is the limited applicability of the probabilistic approach
just described. It can and has been used in some laboratory experiments
at Stanford (Davidson et al., 1955), but it is far from clear that it can be
seriously applied to market behavior. An interpretation of utility differ-
ences in terms of amounts of money is an obvious alternative. We present
such a scheme in the form of a reduction sentence (the general character
of reduction sentences is discussed in Carnap, 1936, 1937). For simplicity
we consider a fixed individual, say, Jones, and we assume that a prior
satisfactory analysis of preference (as opposed to preference differences)
has already been given.

(1) 17: (i) Jones prefers commodity x to commodity y, and commodity u
to commodity v, (ii) Jones has in his possession commodities y and v, and
(iii) Jones is presented with the opportunity of paying money to replace y
by x and v by u, THEN: the utility difference between x and y is at least as
great as that between u and v if and only if Jones will pay at least as much
money to replace y by x as to replace v by u.

An obvious objection to (1) is that it has the effect, so often argued
against, of measuring utility in terms of money. However, the only
assumption needed for (1) is that the relation between amounts of money
and utility differences is monotonically increasing. A linear relation is not
required. In our opinion such a monotonicity assumption is very reason-
able for a wide variety of persons and situations.

An alternative reduction may easily be stated in terms of work. It
should be clear that the choice of money or work is not meant to entail
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any special status for these two commodities. What is needed as a basis
for constructing other reductions is simply the existence of a commodity
flexible enough to serve in different situations and such that its marginal
utility is either always positive or always negative in the situations under
consideration.

In view of the many complex issues involved in assessing the work-
ability, even in principle, of such reductions, it may be more useful to
describe a particular experimental set-up which could be used to measure
utility differences. For reasons which will become obvious, this scheme
would not be directly applicable to market behavior, but on the other
hand, it does not presuppose any fixed relations between money and
other commodities.

For definiteness, we consider six household appliances of approximately
the same monetary value, for instance, a mixer, a deluxe toaster, an
electric broiler, a blender, a waffle iron and a waxer. A housewife who
does not own any of the six is chosen as subject. Two of the appliances
are selected at random and presented to the housewife, say, the toaster
and the waxer. She is then confronted with-the choice of trading the
toaster for the waffle iron, or the waxer for the blender. Presumably she
will exchange the toaster for the waffle iron if and only if the utility
difference between the waffle iron and the toaster is at least as great as the
difference between the blender and the waxer (due account being taken of
the algebraic sign of the difference). A sequence of such exchanges
(repetitions permitted) can easily be devised such that every utility
difference is compared to every other. Our axioms specify for the set of
choices sufficient ideal properties to guarantee the existence of a cardinal
utility function.3

From another conceptual standpoint (as pointed out to us by our
colleague, Professor Davidson), we may think of the housewife as
expressing a simple preference between pairs of appliances. Thus if she
trades the toaster for the waffle iron she has decided that she would
rather have the pair (waffle iron, waxer) than the pair (toaster, blender).
Put in these terms we are asking for a utility function ¢ of the Frisch
(1932) and Fisher (1927) type such that one pair (x, y) is preferred to
another (v, v) if and only if

e(x)+ () > oW+ ¢(v).
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The existence of such a function is taken to mean that ‘utilities are
independent’, that is, the commodities involved are neither comple-
mentary nor competitive with respect to each other. Viewed in this light,
our axioms analyze the special conditions required for the existence of a
cardinal utility function on a set of independent commodities. Whatever
one’s a priori feelings about the plausibility of the independence hypothesis
there can be little doubt that the experiment just described would provide
a means of empirically testing the hypothesis4, and thus would satisfy
Samuelson’s methodological demand (1947, p. 183):

It may be argued that regarded purely as a working hypothesis the facts do not sharply
contradict the independence assumption. A little investigation reveals that such a hy-
pothesis has not been tested from this point of view. On the contrary, it is implicitly as-
sumed from the beginning in the manipulation of the statistical data. Hence, one would
have to go back to examine the original empirical data.

It is interesting to note that the problem of complementarity occupies a
position in this interpretation analogous to the position occupied by the
problem of a specific utility of gambling in a probabilistic interpretation.

It is also our opinion that many areas of economic and modern
statistical theory do not warrant a behavioristic analysis of utility. In
these domains, there seems little reason to be ashamed of direct appeals
to introspection. For example, in welfare economics there are sound
arguments for adopting a subjective view which would justify the deter-
mination of utility differences by introspective methods. Some psycholog-
ical experiments on utility differences which essentially use introspective
methods are reported in Coombs and Beardslee (1954).

It is to be emphasized that the formal results presented in the remainder
of this paper do not depend on any of the particular interpretations here
proposed.

II. PRIMITIVE AND DEFINED NOTIONS

Our axiomatization is based on three primitive notions. The primitive X
is a nonempty set, to be interpreted as a set of alternatives (objects,
experiences, events, or decisions) available to a given individual at a
given time. The primitive Q is a binary relation whose field is K; the
interpretation of Q is that x Q y if and only if the individual does not
prefer y to x. The third primitive is a quaternary relation R whose field
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is also K. In the intended interpretation x, y Rz, w if and only if the
difference in preference between x and y is not greater than the difference
in preference between z and w.

Our axiomatization assumes a rather complicated form if it is given
only in terms of our three primitives. It is intuitively desirable to use some
defined notions whose interpretation follows directly from that of the
primitives.

DErFINITION D1: x Iy if and only if x Q y and y Q x. Obviously, I is the
relation of indifference.

DEerFINITION D2: x Py if and only if not y Q x. The relation P is the
relation of strict preference.

DEerINITION D3: X,y Ez, w if and only if X,y Rz,w and z, w R x, y.
The interpretation of the quaternary relation E is that if x, y, z and w are
alternatives, then x, y E z, w if and only if the difference in preference
between x and y is equivalent to the difference in preference between z and
w.

DErINITION D4: x, y Sz, w if and only if not z,w R x,y. Clearly,
x,y Sz, wif and only if the difference in preference between x and y is
strictly less than the difference between z and w.

DERINITION D5: B(y, x, z) if and only if either x Py and y Pz, or
zPy and y P x. The intuitive idea of betweenness is expressed by the
relation B,

The above notions suffice for the statement of all but the last axiom,
the Archimedean axiom. For the latter, one further quaternary relation
is needed.

DEFINITION D6: x,y M z, w if and only if y Iz and B(y, x, w) and
X,y E z, w. The quaternary relation M appears to be a trivial speciali-
zation of the relation E. To clarify this situation, we introduce the notion
of powers of M. The second power of M, for example, is the relation M2
such that x, y M? z, wif and only if there exist elements « and v such that
X,y Mu,v and u, v M z, w. The nth power of M is defined recursively:

x,yM'z,w ifandonlyif, x,yM z,w;
x,y M" z, w if and only if there exist elements # and v
suchthat x,yM" 'y,v and w,oMz,w.

The difference between powers of E and of M may be brought out by
interpreting x, y, z, and w as points on a line. The interpretation of x,
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y M3 z, w, for instance, is that the intervals (x, y) and (z, w) are of the
same length, and there are two intervals of this length between y and z.
Of special significance is the fact that the interval (x, w) is four times the
length of (x, y). On the other hand, in the case of the relation E* no
specific length relation may be inferred for intervals (x, w) and (x, ).
As we shall see in Section V, the proof of our representation theorem
essentially depends on exploiting the properties of the powers of M.

III. AXIOMS

Using our primitive and defined notions, we now state our axioms for
difference structures.

A system A ={K, Q, R) will be said to be a DIFFERENCE STRUCTURE if’
the following eleven axioms are satisfied for every x, y, z, w, u, and v, in K:

Axiom Al: xQyoryQx;

Axiom A2: IfxQyandy Q z then x Q z;

Axiom A3: x,yRz,worz,wRx,y;

Axiom A4: Ifx,y Rz,wand z, wRu, v then x,y Ru, v;

Axiom A5: x,y Ry, x;

Axiom A6: Thereis atin K such that x,t E t, y;

Axiom AT7: IfxIyand x,z Ru, v, theny,z Ru, v;

Axiom A8: If B(y, x,z) then x,y S x, z;

Axiom A9: If B(y, x, z) and B(w, u, v) and x,y Ru, w and y,z R w,
v, then x,z Ru, v;

Axiom A10: If x, y S u, v then there is a t in K such that B(t, u, v) and
X, yRu,t;

Axiom All: If x, y Ru, v and not x I y, then there are elements s and t
in K and a positive integer n such thatu, s M" t, v and u, s R x, y.

The interpretation of Axioms A1-A4 is obvious. Axiom A5 expresses
a commutativity property of R and means essentially that for pairs of
elements to stand in the relation R only their differences matter and not
their relative order.

Axiom A6 means intuitively that between any two elements of K, there
is a midpoint. This axiom represents a more reasonable assumption than,
for instance, a formulation requiring that between any two elements there
exist an element some arbitrary part, say s%th, of the distance between
them. Indeed, the axiom as here stated, receives empirical corroboration



AXIOMATIZATION OF UTILITY 121

in the field of psychology from the practice of ‘fractionation’ and ‘bi-
section’ experiments requiring the subject to select the tones in just the
way described, and from the existence of laboratory equipment designed
for such experimental use. (See, e.g., Stevens, 1936, and Stevens and
Volkmann, 1940.) Also, the probabilistic experiments (Davidson et al.,
1955) described in the first section have demonstrated the practicality of
finding such midpoints.

Axiom A10 means that if the difference between x and y is less than
that between u and v, then there is an element ¢ of K between u and v and
the difference between x and y is not greater than the difference between
u and t.

Axiom All, the Archimedean axiom, means that if the difference
between x and y is not greater than that between u and v, and if x is not
indifferent to y, then there are n elements of K equally spaced in utility
between u and v such that the difference between any consecutive two of
these elements is not greater than the difference between x and y.

IV. ELEMENTARY THEOREMS

A rather large number of elementary theorems is required for the complete
proof of our representation theorem for difference structures. In the
present paper, however, we are concerned merely to sketch the main
outlines of such a proof; and, for this purpose, it will be sufficient in this
section to present definitions of certain relations, not needed for stating
the axioms, but used in a key way to develop the required proof; and to
state without proof several elementary theorems which describe typical
properties of the relations defined, or which figure centrally in the
sketched proof of the representation theorem. In particular, we omit
completely a large group of theorems which develops the expected
properties of Q and R and of the other simple ‘qualitative’ relations
(I, P, E, S, B) described in Section II.

We first introduce the notion of the quaternary relation N (a).

DEFINITION D7: N(a) is the quaternary relation defined as follows

(i) ifa=1, then x,y N (@) u, vif and only if x Tu and y I v

(i) if a#1, then x,y N(a) u, v if and only if x I u and there exists a z
such that x,y M*~* z, v.

The interpretation of N(1), of course, is obvious. To say for a#1, that
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x, ¥ N(a) u, v means that x and u coincide, and that there are a— 1 equally
spaced elements of K between u and v such that the difference between
any two of them equals the difference between x and y. If x, y, v and v
are interpreted as points on a line, this notion obviously corresponds to
the intuitive notion of ‘laying off” an interval on another interval; that is,
we interpret x, y N(a) u, v intuitively as meaning that if we start from u,
and ‘lay off” an interval of the length (x, y) a times in the appropriate
direction, we obtain the interval (u, v). By means of the N(a) relation,
therefore, we are able to express the quantitative fact that the length of
an interval (u, v) is a times the length of a subinterval (x, y).

The sort of ‘multiplication’ of intervals characterized by the N(a)
relation possesses the expected properties; for example, we have the
following theorem concerning ratios of intervals.

THEOREM 1: Ifx,z N(a) x, y and x, z N(ab) x, w then x, y N(b) x, w.

Another theorem involving the N (a) relation generalizes A6 and may be
justified along similar lines. Characteristic of our system, it asserts that
appropriate elements exist for dividing any interval into powers of 2.

THEOREM 2: If not x I y then there is a z such that x, z N(2") x, y.

Further N (a)-theorems state properties of ‘ N-multiplication’ for powers
of 2. We have, for example, the usual law for addition of exponents:

THEOREM 3: If x, w N(2") x, z and x,z N(2") x,y then x, w NQ2Q™*")
X, y.

A crucial, but less obvious property is stated in the following theorem.

THEOREM 4: If B(y, x,z) and x,t N(2™) x,y and y, s N(2") y, z and
X, N2Q™)x,z then t,r E y, s.

We now define a relation in terms of which most of the proof of the
representation theorem is carried through.

DeFINITION D9: H(m, a; n, b) is the quaternary relation such that
x,y H(m, a; n, b) u, v if and only if there are elements z,, z,, w; and w,
such that x, zy N(2™) x, y and u, wy N(2") u, v and x, z; N(a) x, z, and u,
wy N(b) u, wy and x, z, R u, w,.

To say that x, y H(m, a; n, b) u, v means intuitively that an (a/2™)th
part of the interval (x, y) is not greater than a (b/2")th part of the interval
(u, v).

We may view our first theorem on this notion as enabling us to specify
a partial bound for the values of arguments satisfying the H-relation
between two intervals.
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THEOREM 5: If not xIy and x,y H(m,a;n,b)u, v, then not u,v
H(m,b;m+1,a)x, y.

Since the H-relation can be thought of intuitively as a special sort of
inequality, we would expect to be able to prove many of the laws govern-
ing inequalities. Thus Theorem 6 expresses a kind of transitivity property
and Theorem 7 an intuitively simple conservation property. Theorems
8,9, 10 and 11 assert cancellation and multiplication laws.

THEOREM 6: If x,y H(m, a;n, b) u, v and u, v H(n, b; p, c) r, s then
x,y H(m,a;p,c)r,s.

THEOREM 7: If not x, y H(m, a; n, b) u, vand w, z H(p, c; n, b) u, v and
a<2™ and not x Iy, then not x,y H(m, a; p, c) w, z.

THEOREM 8: If x, y H(m, a; n, b) u, v and ac<2™ and bc<2", then x,
v H(m, ac; n, bc) u, v.

THEOREM 9: If x, y H(m, ac; n, bc) u, v, then x, y H(m, a; n, b) u, v.

THEOREM 10: If x, y H(m, a; n, b) u, v and either m#0 or not x Iy,
then x, y H(m+c, a; n+c, b) u, v.

THEOREM 11: If x, y H(m+c, a; n+c, b) u, v and a<2" and b<2" then
x,y H(m, a; n, b) u, v.

Theorem 12 states an addition property for the arguments of the
H-relation in the case of adjacent intervals.

THEOREM 12: If B(y, x, z) and a+b<2" and x, y H(m, 1; n, a) u, v and
v,z H(m, 1;n,b) u, v then x, z H(m, 1; n, a+b) u, v.5

Finally, we state two existence theorems for arguments of the H-relation.
These theorems are the form in which we make use of our purely quali-
tative continuity axiom (A10) and our Archimedean axiom (All) re-
spectively.

THEOREM 13: If x,y S u, v, then there are integers b and n such that
b<2"and x,y H(0, 1; n, b) u, v.

THEOREM 14: If not u I v, then there is an integer m such that x, y H(m,
1;0, 1) u, v.

V. REPRESENTATION THEOREM

Our desired representation theorem is an immediate consequence of the
following lemma. (As a matter of fact, it is rather customary in the
theory of measurement to label a lemma of this sort the “theorem of
adequacy’’ and not to state explicitly a representation theorem. Cf., e.g.,
von Neumann and Morgenstern 1947, pp. 24-29.)
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Fundamental Lemma: Let X ={K, Q, R) be adifference structure. Then:

(A) There exists a real-valued function ¢ defined on K such that for
every x,¥y,z, win K,

() x Qy if and only if ¢(x)< (), and

(i) x,y Rz, wif and only if |p(x)— P (»)| =|d(2) - p(W)l.

(B) if ¢, and ¢, are any two functions satisfying (A), then there exist
real numbers o« and B with «>0 such that for every x in K, ¢, (x)=a¢p, (x)
+B.

Proof of Part A: We begin by choosing two elements # and v in K such
that u P v (if no such two elements exist, the proof is trivial). We next
define for x and y in K the set of numbers & (x, y;u, v). A rational
number 7 is in & (x, y; u, v) if and only if there are non-negative integers
m and n and a positive integer b such that b<2" and r=(b2")/2" and
x,y H(m, 1;n,b)u, v.

Let r and r’ be positive rational numbers. Using Theorems 8, 10, 6, 9
and 11, in that order, we may easily prove that

(1) Ifre#(x,y;u,v) and r<r then r'eF(x,y;u,v).

Using now principally Theorem 14 and Theorem 5 we may show that if
not x Iy then the set & (x, y; 4, v) has a positive number as a lower
bound. Since by Theorem 14 % (x, y; u, v) is not empty, we conclude
that it has a greatest lower bound. We use this fact to define the function

ﬁu. 0)*
S, 0 (%, y) is the greatest lower bound of & (x, y; u,v).

Obvious arguments prove that

Swn(x,y)=0 ifandonlyif xIy
and

f(u,v)(u9 U) = 1’

the choice of (u, v) thus corresponding to choice of a unit of length.
We obtain by an indirect argument from (1) that for any rational
number r

2 If fu n(xy)<r then re(x,y;uv),
and we are in a position to establish:

?3) If x,yRz,w then fu (% ¥) =S 0z w).
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(The proof is trivial in case x I y; hence we assume: not x I y.) Suppose,
if possible, that f, ,)(z, W) <fu, (%, ). Then there are integers m, n, b
such that

f(u,v)(z’ W) < bzm/zn < f(u,v)(x’ y) .
From (2) we then obtain:
z,wH(m,1;n,b)u,v andnot x,yH(m,1;n,b)u,v.

Hence by Theorem 7, not x, y H(m, 1; m, 1) z, w, and thus by Theorem 10
and D9, not x, y R z, w, which contradicts the hypothesis of (3).
We next prove:

(4) If f(u,v)(xy y)éf(u,v)(za W) then x,.VRZ, w.
Let
r=>b2"2" bein F(x,y;u,v)
and let
g =Db,2"2" bein F(z,w;x,z).

Then we have: by 2", b, <2", x, y H(my, 1 ;}zl, b)) u, v, and z, w H(m,,
1; n,, b,) x, y. Hence by Theorem 10, Theorem 8, and Theorem 6, z,
w H(my+m,, 1; n,+n,, byb,) u, v. We conclude that

(5) rq isin & (z, w;u,v).

Now for the moment let

a =f(u,u)(x’ y)
B =f(x,y)(z’ W)
Y =f(u,v)(z, W)‘

Suppose, if possible, that aff <y. Then there is a positive ¢ such that
(x+¢)-(B+¢)=1y. Clearly we may choose a number r in the open interval
(o, a+¢) and a number g in the open interval (B, f+¢) such that r is in
& (x,y;u,v) and q is in L (z, w; x, y). Since rg<y, rq is not in F(z, w;
u, v), but this contradicts (5), and we conclude that

(6) S, 0y (%5 ) fix, 0 (2 W) Z fru, 0 (2, ).

Suppose now that not x, y R z, w. By Theorem 13 it follows that there is
an n and a b with 5/2"<1 such that z, w H(O, 1; n, b) x, y, and we con-
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clude that f, , (z, w) <1. Combined with (6), this result gives us: f{, ,
(%, ¥)>f(,0p(2, w), which contradicts our hypothesis, completing the
proof of (4).

We now define the function ¢, ,) as follows. For every x in K,

— fu,v (U,X), lf uQx.
o) ={_Jn e 1 02

We see at once that ¢, ,,(#) =0, and thus our choice of u corresponds to
the choice of an origin. (3) and (4) provide the basis for an obvious proof
that

(7) X Q y ]f and Only lf ¢(u, v) (x) é ¢(u, v) (y) .
To complete the proof of Part A we need to show that

8) x,yRz,w ifandonlyif |¢, ,) (%)= w0l
é ]¢(u, v) (Z) - ¢(u, v) (W)l .

From (3) and (4) we see at once that it will be sufficient to prove

(9) f(u, v) (xs y) = |¢(u, v) (x) - d)(u, v) (y)l .

Of the five possible cases that need to be considered for (9) we consider
only the typical one where x P y and y P u. For this case we must prove:

(10) f(u,v)(xs y)"'f(u,v)(us y) =f(u,v)(ua X).
Suppose, if possible, that

f(u,v)(xa y) + f(u,v)(u5 y) < f(",v)(u’ x)'

Then clearly there are integers m, n, b, by, b, such that

f(u,u)(x» y) + f(u,v)(“a y) < bzmlzn < f(u,v)(u’ X),
(11) f(u, v)(x9 y) < b12m/2"

f(u,u)(u, y) < b22m/2n,
and
b = b1 + b2 é 2”.

By (2) we have: x, y H(m, 1;n,b,)u, v and y, u H(m, 1;n, b,) u, v.
Hence by Theorem 12, x, u H(m, 1;n, b, +b,) u, v, but from (11), we
infer: not x, u H(m, 1; n, by +b,) u, v. On the basis of this contradiction,
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we conclude that

(12) f(u,v)(x5 y)+f(u,v)(u9 y)gf(u,v)(u’ X),

and by an argument similar to the above we may show that equality
holds in (12), thus establishing (9) for a typical case, and completing the
proof of Part A.

Proof of Part B: Using elements u and v in K as in the proof of (A), we
define functions 4, and A, for every x in K by the equations:

¢, (x) — ¢4 (“)

¢1(v) — ¢4 (u)

‘_/’_i’i) — ¢, (u)

$2(v) — ¢, (u)°

where ¢, and ¢, are functions satisfying (A). Since u P v, we see at once
that

hy(x) =

hy (x) =

hy(u)=h,(u)=0
hy(0)=hy(v) =1,

and that &, and h, satisfy (A). Thus in order to establish (B) it will be
sufficient to prove that

€Y) hy=h,.
We give the proof for the case where u P x and x P v. Suppose, if

possible, that A, (x)#h, (x). For definiteness, let A, (x) <h, (x). Then there
is a positive ¢ such that

2) hy(x)=hy(x)+¢.
We now consider the smallest integer, say, n*, such that 1" <e. (Since
hy (x) and h, (x) are both between 0 and 1, n*#0.) By Theorem 2 there
exists an element, say, z*, such that u, z* N(2") u, v. A simple argument
shows that we must have: z* P x.

Suppose now that there is an integer a such that u, z* N(a) u, x. It is
easy to prove by induction that we must then be able to infer:

3) hy(x) = hy(x) = a/2",

which contradicts (2).
Since on the supposition of (2) there is no such integer a, there must be
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an integer b and elements z; and z, such that

u, z* N(b) u, z,
u,z* N(b+1)u,z,
z; Px

xPz,.

4

Using the induction which yielded (3), we have from (4),
hy(z2) — hi(z) = (b + 12" —b2" <,
and we also obtain from (4):

hy(zy) < hy(x) < hy(z,)
hy(z1) < hy(x) < hy(z2).

Combining inequalities we conclude:

hy(x) — hy(x) < hy(zy) — hy(zy) <e,

which contradicts (2). ]

The proof of (1) is completed by a consideration of the four other
possible cases for the position of x with respect to u and v. (Two of the
cases are trivial: u I x and v I x.) Since (1) establishes (B), the proof of our
lemma is finished.

We would not expect to have a strict isomorphism between an arbitrary
difference structure /" =<{K, Q, R) and some numerical structure, since
distinct elements which stand in the relation I are assigned the same
number. However, by considering the coset algebra ' [I={(K]I, Q/I,
R/I'Y of A" under I, we may easily establish such an isomorphism. (Since
I is obviously a congruence relation on K with respect to Q and R, it
should be clear that K/I is the set of all J-equivalence classes and that
Q/I and R/I are the relations between equivalence classes corresponding
to Q and R.)

We define the quaternary relation T for real numbers as follows:

if «,fB,7,andd arereal numbers, then o, f Ty, S
ifand only if |¢— S| < |y —4].

Let N be a set of real numbers. Then we call an ordered triple (N, <, T)
a numerical difference structure if N is closed under the formation of
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midpoints, i.e., if «, B, are in N, then («+ B/2) is in N. We then obtain the
following representation theorem as an immediate consequence of our
lemma.

REPRESENTATION THEOREM: If 4" =<K, Q, R) is a difference structure,
then A [I={K|I, Q[I, R[I) is isomorphic to a numerical difference
structure. Moreover any two numerical difference structures isomorphic to
A [I are related by a linear transformation.

NOTES

1 The formally similar notion of sensation differences is important in the literature of
psychology (e.g., Coombs, 1950; Guilford, 1936; Hanes, 1949; Stevens, 1936; Stevens
and Volkmann, 1940).

2 The intuitive idea of this approach was primarily due to Donald Davidson. It was
suggested in Davidson et al. (1954) and has been the basis for the experiments reported
in Davidson et al. (1955).

3 By considering just six items, we cannot get a realization of the axioms given in
Section III. However, by increasing the number of items, we would presumably be
able to get a successively closer approximation.

4 Some experiments are planned in collaboration with Professor Davidson.

5 We are indebted to Herman Rubin for the proof of this theorem.



9. BEHAVIORISTIC FOUNDATIONS OF UTILITY*!

In the past two decades there has been an intensive development of the
subject of decision making. A variety of objectives and viewpoints has
dominated the constructive as well as the critical work on the subject.
Nonetheless a pervasive goal of nearly all contributors has been the
elucidation of a theory of rationality for purposive behavior in situations
of risk and uncertainty. Intuitively we expect every considered judgment
or decision of a serious person to be rational in some definite sense.
Certain authorities would maintain even that every considered decision
of any mammalian organism is rational in the sense of representing the
attempt to maximize some significant quantity. The most prominent
“maximization” analysis of rationality is the thesis that the decision-
maker should maximize expected utility or value with respect to his
beliefs concerning the facts of the situation. To perform this maximization,
he needs to have, or to act as if he had, a subjective probability function
measuring his degrees of belief and a utility function measuring the
relative value to him of the various possible outcomes of his actions or
decisions.

It is not my purpose here to expound the expected utility theory of
behavior. An excellent detailed and leisurely analysis is Savage (1954).
Rather, my concern is to explore the extent to which behavioristic
foundations can be supplied for utility. And I am using the term ‘be-
havioristic’ in the rather narrow sense of the experimental psychologist.
The static character of the concepts of subjective probability and utility is
suspect to the psychologist and he resists accepting them as basic concepts
of behavior. Ideally, what is desired is a dynamic theory of the inherent or
environmental factors determining the acquisition of a particular set of
beliefs or values. Moreover, in the notions of stimulus, response, and
reinforcement the experimental psychologist has a triad of concepts which
have proved adequate to explain much simple choice behavior. It is,

* Reprinted from Econometrica 29 (1961), 186-202.



BEHAVIORISTIC FOUNDATIONS OF UTILITY 131

therefore, a scientific problem of some interest to try to use just these
behavioristic notions to derive a theory of subjective probability and
utility.

In the first section I set forth the fundamental assumptions of stimulus-
sampling learning theory, which is the most formally sophisticated
theory yet stated in terms of the concepts of stimulus, response, and
reinforcement. In the second section I attempt to show how this theory
may be used to derive a utility function for various simple choice sit-
uations. This derived utility function is for stochastic choice behavior of
the kind studied by Davidson and Marschak (1959), Luce (1959),
Papandreou (1957), and others. In the third and final section, the earlier
results are related to Shannon’s concept of entropy and Luce’s choice
axiom.

I. STIMULUS-SAMPLING LEARNING THEORY

The theory to be used in this paper is a modification of stimulus sampling
theory as first formulated by Estes (1950), Estes and Burke (1953), and
Burke and Estes (1957). It is most closely connected with a formulation
given by Suppes and Atkinson (1960), but it also differs, in ways indicated
below, from the latter. The concepts of stimulus, response, and reinforce-
ment and the processes of stimulus sampling and conditioning are the
basic notions of the theory. In an economic situation a typical stimulus
might be the price set by a competitor for a given product during the past
quarter ; the response, the firm’s own price decision for the current quarter;
and the reinforcement or reward, the quarterly gross profits. In a simple
two-choice experiment the single stimulus might be the light signaling onset
of the trial; the response, the pressing of one of two keys used to predict
which one of two lights will flash; and the reinforcement, the actual
flashing of one of these two lights.

The axioms are formulated verbally here, and although there is no
attempt in this paper to give a mathematically exact statement of the
theory, it is hoped that the relation between the fundamental axioms and
the results derived later will be reasonably clear, even to the reader
without prior familiarity with the literature. The first group of axioms
deals with the conditioning of sampled stimuli, the second with the
sampling of stimuli, and the third with responses.
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Conditioning Axioms

Cl. On every trial each stimulus element is conditioned to exactly one
response.

C2. If a stimulus element is sampled on a trial it becomes conditioned
with probability 0 to the response (if any) which is reinforced on that trial.

C3. If no reinforcement occurs on a trial there is a probability that the
sampled stimulus becomes conditioned to some other response.

C4. Stimulus elements which are not sampled on a given trial do not
change their conditioning on that trial.

CS. The probability of a sampled stimulus element being conditioned is
independent of the trial number and the outcome of preceding trials.
Sampling Axioms

S1. Exactly one stimulus element is sampled on each trial.

S2. If on a given trial it is known what stimuli are available for sampling,
then no further knowledge of the subject’s past behavior or of the past
pattern of reinforcement will change the probability of sampling a given
element.

Response Axiom

R1. On any trial that response is made to which the sampled stimulus
element is conditioned.

Detailed remarks about these axioms are to be found in Suppes and
Atkinson (1960). The major change from the version in Suppes and
Atkinson (1960) is to be found in Axiom C3. There this axiom reads:
“If no reinforcement occurs on a trial there is no change in conditioning
on that trial.”” For the kind of experimental situation to be considered
below it is natural to adopt the modified axiom given above as C3. A
slight change in Axiom C5 has been made to accommodate the major
change in C3; otherwise the axioms given here are those of Suppes and
Atkinson (1960).

Many readers may be particularly critical of the first sampling axiom,
S1. There are at least two different kinds of remarks to be made in
defense of the assumption that exactly one stimulus element is sampled
on each trial. In the first place, this assumption is mathematically
extremely convenient and it is scarcely possible to distinguish, for the
kind of experiments to be described here, between it and more ‘‘liberal”
sampling axioms, as for example the assumption that all stimulus elements
in the basic stimulus set are sampled with independent probabilities.
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Secondly, S1 may be made more intuitively plausible by interpreting
‘stimulus element’ to mean pattern of stimuli, for it may be maintained
that in any given situation an organism, at any given moment, is sampling
exactly one pattern of stimuli. (For a more detailed discussion of the
pattern concept, see Estes, 1957.)

We may consider two simple applications, which will be integrated into
our discussion of utility in the next section. These two examples should
serve adequately to illustrate how the basic axioms of stimulus-sampling
theory are related to particular experimental situations in order to make
predictions about response behavior.

Suppose the task presented a subject is to predict on each trial exactly
which one of two lights will come on. Thus on each trial exactly one of
two reinforcing events, E, or E,, occurs. The subject indicates his
prediction at the beginning of each trial by pressing one of two keys,
response A, or A,, where A4, is the key under light E;. The sequence of
events on a given trial may be described thus:

trial begins with stimulus  response  reinforcement  possible change
stimuli conditioned — sampled — A; or A2 — E1 or Ez — in conditioning of
to A1 or A2 sampled stimulus.

Using the “‘independence of path’ assumptions represented by Axioms
C5 and S2, it may be shown that if we assume that the stimulus set S
consists of exactly one element then the sequence of response random
variables {A4;, A,,..., Ay, ...y is a Markov chain for many schedules of
reinforcement satisfying the experimental conditions just described. (Here
the value for each » of the random variable 4, is 1 or 2, according to
whether the 4, or 4, response is made on trial #n.) Using this result about
Markov chains and the description of events on a trial, we may, upon
imposition of a particular schedule of reinforcement, derive the transition
matrix of the Markov chain. For consideration at this point we introduce
the simple contingent case of reinforcement, namely, the probability of
an E; or E, reinforcement on trial # depends only on the response made
on trial #n. Thus, using notation common in the literature:

P(EIIA1)=7t13
P(El |A2)=7T2-

The states of the Markov process are 4; and 4,. Being in state 4,, for in-



134 PART II. METHODOLOGY : PROBABILITY AND UTILITY

stance, means that the single stimulus element is conditioned to 4;. The
trees of the process are as shown in Figure 1.

The probabilities § and 1—0 occurring in the final branches of the
trees are derived from Axiom C2, which is concerned with the con-

A

ditioning of stimulus elements. For example, in the lower half of the
first tree, an E, reinforcement occurs with probability 1—=, after the
initial response A4,. This initial response means that the single stimulus
element is connected (or conditioned) to 4,. However, an E, reinforce-
ment occurs. With probability 0 this reinforcement is effective in changing
the connection or conditioning of the single stimulus element to the A4,
response.

We immediately derive from the two trees the following transition
matrix for the Markov chain:

4, A4,
A, 1-01-=n) 6(1-m)
Az 07‘[2 1 - 97‘[2 .

The asymptotic probability p., of an 4; response is easily computed
from this matrix. The probability p, ., of being in state A4, is just

Pu+1=P11Pn + P21 (1 — p,),

where p;; is the transition probability of going from 4; to 4; in one trial.
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(Thus p;; is just the entry for the ith row and jth column of the transition
matrix.) Now at asymptote

pn+1 = pn = Poo s
whence

Po=(1—-0(1~n)) po + 07, (1 = poo),
and this simple linear equation has as its solution

T2
M pw_l—-n1+n2.

It is worth noting that the asymptotic probability p , is independent of
the conditioning parameter 6. Experimental evidence supporting Equation
(1) is to be found in Estes (1954).

Rather than derive further predictions for the simple contingent case of
reinforcement, I now turn to the second example, which I shall call the
two-arm bandit case of reinforcement. The name stems from the resem-
blance of the experimental situation to that of playing a slot machine
with two arms or levers rather than one; on each trial a choice between
the levers is made. (Mathematical statisticians have, during the past few
years, considered in detail what is the optimal way to play a two-arm
bandit for a finite number of trials when the probabilities of pay-off of
the two arms are unknown.)

The experimental situation, then, consists of choosing on each trial
between two levers. In the experiment to be described in somewhat more
detail in the next section, lever 1 is given a probability ; of paying, and
lever 2 a probability ©,. Unlike the simple contingent case there is no
“correction” procedure, i.e., the subject is not told, or led to believe,
that on each trial exactly one of the arms of the “bandit will pay off. If
he chooses lever 1, say, then either it pays off or it does not, without
reference to the possible choice of lever 2. Such an analysis of reinforce-
ment leads to an application of Axiom C3: if lever i is chosen (i.e.,
response A; occurs) and no reward or reinforcement follows (event E,
occurs), then there is a probability ¢; that the sampled stimulus will
become conditioned to the other response, i.e., choosing the other lever.
Application of C3 to the present situation seems natural and intuitively
sound, but it is to be emphasized that any uniform method, applicable to
many other experiments, for handling nonreinforcement trials would be
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premature in view of the highly conflicting experimental evidence
obtained by various investigators, particularly in connection with the
extinction of learning. The trees for the one-element model may be
drawn as in Figure 2 (we have eliminated the 8 and 1 — 0 branches in case
of reward, for they lead to the same result, namely, retention in the same
state with which the trial began).

Fig. 2.

(Note that we use E, to designate the event of no reinforcement.)
The trees yield as the transition matrix of the Markov chain:
4, A,
A 1—e (1 —m) & (1 —m)
A2 82(1 “71:2) 1 _82(1 ‘_7t2).
And by the same line of argument which led to Equation (1) we obtain as
the asymptotic probability p., of the 4, response for the two-arm bandit:

) B & (1 —m,)
&) pw_sl(l—n1)+82(1—n2)'

If &, =¢,, Equation (2) simplifies to:

_ 1—7I2
(e e e s

In connection with these two applications of stimulus-sampling theory,
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it is important to emphasize that the asymptotic probabilities (1) and (2)
do not in any way depend on the assumption that there is exactly one
stimulus element. In fact, the results (1) and (2) hold on the assumption
of any finite number of stimulus elements. To illustrate the methods of
working with more than one stimulus element, we may write down some

{s+55}

{s2}

{si:s2}
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of the trees and the transition matrix for the two-element model as
applied to the case of the two-arm bandit (see Figure 3). The states of the
Markov chain are no longer the responses 4, and A4,, but the possible
partitions representing the conditioning of the two stimulus elements.
Let s; and s, be the two elements. We may indicate any partition of the
set {5y, 5,} between the two responses 4; and A4, simply by indicating
which elements are conditioned to 4;. Thus the four states of the process
may be denoted by {sy, s,}, {s;}, {s,}, and 0, where 0 is the empty set
(meaning here that neither s; nor s, is conditioned to A4, if the subject is
in state 0). We give the trees when the subject begins in either state {s;, s,}
or {s;}; the other two trees are similar to these. The one assumption
needed, and not given in our fundamental axioms, is the probability of
sampling s; as against that of sampling s,. Here we assume there is an
equal chance of sampling either, although this is not very crucial to any
of our results.

Note that in the first tree either E; or E, must occur since both stimulus
elements are conditioned to A4;, and thus only the 4, response occurs
regardless of which element is sampled. This is not the case for the second
tree;if s; issampled 4, occurs and then either E; or E,, but if s, is sampled
A, occurs and then either E, or E,. The transition matrix to be derived
from these two trees and the other two not shown here is the following:

{s1, 52} {s1} {s2} 0
{s1, 82} |1 —e1(1l —m1) $e1(1 —m1) te1(1 —m) 0
{51} [3e2l —m2) 1—3e1(1 —m)—4e2(1—m2) O Ya1(1 —m1)
{s2} teo(1 —m2) 0 1—3%e1(1 —m1) —3e2(1 —m2) 3e1(1 —m1)
0 0 ea(1 — 7o) 3ea(1 — 7o) 1—e2(1 —m2).

Note that the probability of an 4; response when in state {s,, s,} is one,
when in states {s;} or {s,} is 4, and when in state 0 is zero. Whence from
computation of the asymptotic probabilities for each state we may at once
determine the asymptotic probability of an A, response. As already
remarked, the result is again Equation (2). We shall not consider the
details of these computations here. In fact, at this point we end the con-
sideration of stimulus-sampling theory in order to turn to utility theory
proper.

II. UTILITY

As indicated in the introductory section, in this paper I am mainly con-
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cerned with a utility function for the kind of choice behavior which has
come to be labeled, not entirely happily, ‘stochastic’. Roughly speaking,
the central character of stochastic choice behavior is that upon pres-
entation of two alternatives a and b, with a choice of one required, under
essentially identical circumstances sometimes a will be chosen by a subject
and sometimes b. Let p(a, b), then, be the probability that a is chosen
over b. A (stochastic) utility function for a set of alternatives A4 is a real-
valued function u defined on A4 such that for every a, b, ¢c and d in 4

) p(a, b) = p(c, d) ifand onlyif wu(a)— u(b) > u(c) —u(d).

Combining results in Suppes and Winet (1955)2f, Suppes (1956a), and
Davidson and Marschak (1959), it may be shown that if the set 4 and the
probabilities p(a, b) satisfy the following axioms, then there exists a
stochastic utility function for 4, and moreover this function is unique
up to a positive linear transformation.

Axiom Ul: p(a, b)+p(b, a)=1.

Axiom U2: 0<p(a, b)<1.

Axiom U3: If p(a, b)=p(c, d) then p(a, ¢)=p(b, d).

Axiom U4: There is a c in A such that p(a, c)=p(c, b).

Axiom US5: If p(c, d)>p(a, b)>% then there is an e in A such that
p(c,e)>% and p(e, d)=p(a, b).

Axiom U6: (Archimedean Axiom): If p(a, b)>% then for every prob-
ability q such that p(a, b)>q>% there is a positive integer n such that
q=p(a, ¢;)=p(cy, ¢;)="--=p(c,, b)>%.

Now one implication of these six axioms is that 4 must be an infinite
set if for at least two members a and b of 4, p(a, b)#4. Simple and
natural conditions, which are not unduly restricted and which will
guarantee existence of a stochastic utility function for a finite set 4, are
not easily found. An unworkable recursive, but not finite, axiomatization
can be given by enumerating for each » all isomorphism types. Some of
the fundamental difficulties of finite axiomatization are brought out in
Scott and Suppes (1958).3% The upshot of these axiomatic problems, it
seems to me, is that for finite sets of alternatives we have no clear and
intuitively natural ideas in terms only of probabilities of choice of the
notion of utility, and thus of the notion of rationality for such situations.4

On the other hand, we may apply the results of the preceding section to
indicate how from the axioms of stimulus-sampling theory a utility
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function may be derived for finite sets of alternatives. To begin with, let
us consider the second example of the application of stimulus-sampling
theory, namely, the two-arm bandit. On each trial the subject must
choose between two alternatives, but now, to make the utility consider-
ations interesting, we assume there is a set of alternatives available,
with choice restricted on each trial to one of a pair. Clearly alternative a
does not in and of itself have more value than alternative b; the value of
a is determined by the probability of pay-off, as is that of 5. Thus the
experimenter may manipulate the value of any alternative according to
his determination of its pay-off function. We seek a function u satisfying
(4). Now according to (2) of the last section, at asymptote,

& (1 — m)
sa(l - 7I:a) + 8b(1 - nb)

©) P(a’ b) =

where 7, is the probability of pay-off of alternative @ when it is chosen,
&, is the probability the sampled stimulus will become conditioned to the
other alternative when the choice of & is not rewarded, and similar
definitions hold for x, and ¢,. In view of (5) to satisfy (4), we need to find
a function u such that

& (1 — m) S &a(1 — )
ta(l — 7o) + & (1 —m) ~ (1 —m) + &g(1 — my)
ifand only if wu(a) —u(b) > u(c) — u(d).

Q)

Let p,=¢,(1—m=,) for every a in A.5 The right-hand inequality of (6) may
then be written:

o Pa
Pat Py Pt pi

Q)

but (7) holds, if and only if

PolPe = PalPa>

which holds, if and only if

pb/pa > pd/pc’
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which again holds, if and only if

1/p, S l/pc,
l/pb 1/pc
which, finally, holds, if and only if

® log1/p, —log1/p, > log1/p, — log1/p,.

From (6), (7) and (8) we conclude that an appropriate utility function is,
for a in the set A4 of alternatives:

1
9 =log —.
©®  u() Sy
If ¢,=¢, for every a and b in A, we may take the simpler function
1
u'(a) =log .
1-m,

It is straightforward to show that the utility function defined by (9) is
unique up to a positive linear transformation if the reasonable restriction
is made that any acceptable utility function must be continuous in ¢,
and n,. Moreover, from the existence of a function u satisfying (4), it
immediately follows that the asymptotic choice behavior predicted by
stimulus-sampling theory satisfies all the various conditions of weak and
strong stochastic transitivity discussed in the literature, as well as the
quadruple condition expressed by Axiom U3 above. It should be men-
tioned that these results do not necessarily hold during the course of
learning; in particular the utility function defined by (9) does not satisfy
(4) during the course of learning. This fact, it seems to me, accords well
with the widespread assumption, albeit often tacit, that the utility
function of a person is an equilibrium concept. It may also be noted that
the numerical-valued utility function defined by (9) may be replaced by a
function whose values are probability distributions if the basic theory is
formulated so that p(a, b) is a random variable rather than a number.
Unfortunately the derivation of the distribution of this random variable
is tedious and difficult. As formulated here, the number p(a, b) is the
asymptotic expectation of the response random variable that has the
value 1 for choice of a and O for choice of 5. The utility function of (9)
is defined in terms of this expectation and is not sensitive to the trial-by-
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trial fluctuations in the values of the response random variable itself,
which is another facet of its equilibrium character.

It is, of course, to be emphasized that the utility function defined by (9)
is not that of the mathematical statistician bent on maximizing his
monetary pay-off in the long run. It should be abundantly clear that the
whole theory of probabilistic choice behavior is not meant to apply to
such a person. For under the pay-off conditions defined here, if n,> =,
the statistician should have at asymptote p(a, b)=1. The point of (9) is
rather to define a utility function which may be used to predict the actual
behavior of all but the statistically sophisticated few. Numerous empirical
studies (Mosteller and Nogee, 1951; Davidson et al., 1957; Papandreou,
1957; Atkinson and Suppes, 1958; Davidson and Marschak, 1959) have
clearly shown that naive subjects do not behave like mathematical
statisticians. Experimental data on utility functions as defined by (9) for
the two-arm bandit situation will be reported elsewhere.

The preceding analysis also has direct application to the first example
of simple contingent reinforcement discussed in the preceding section.
By replacing ©, by 1—m=,, for purposes of symmetry, thus having as
reinforcement probabilities P(E; | 4;)=m, and P(E, | A,)=m,, we may,
obviously, get a utility function satisfying (4) by taking

1
u(a)= log1 g
Further remarks on this case do not seem necessary.

The interesting question of generalization, it seems to me, is that of con-
sidering situations in which choice is made from one of # alternatives. In
classical economic theory, the resolution of this choice problem is im-
mediate: simply choose the most preferred item. But, as far as I know,
with the notable exception of Luce (1959) there has been little if any
analysis of stochastic choice behavior when the choice set has more than
two alternatives. To describe this situation, let us use the notation p (a, 4)
to mean the probability @ is chosen in preference to any member of A4,
with the understanding that {a}uU 4 is the full choice set available, i.e.,
p(a, A)+p(4, a)=1, where p(A, a) means the probability an element of
A is chosen in preference to a.% Beginning simply with p(a, 4), it is far
from clear to me what axioms of rational behavior one might expect an
organism to satisfy, in order to guarantee the existence of a utility



BEHAVIORISTIC FOUNDATIONS OF UTILITY 143

function. In fact, it is not completely obvious what should be the defining
characteristic of a utility function. In analogy to (4) I suggest:

(10) p(a, A) = p(b, B) ifand only if
u(a) — u(A) = u(b) — u(B).

Condition (10) requires the utility of a ser of alternatives to be defined,
but it by no means implies that this set function need be additive, i.e., we
need not have if 4 and B are disjoint sets that

u(A v B) =u(A) + u(B).

On the other hand, the intuitive interpretation of p(a, A) suggests that if
A is a subset of B then the utility of 4 is equal to or less than that of B, for
in some sense the utility of A4 is the overall value weighting assigned to the
set in deciding to choose a rather than any member of 4. Also, it seems
reasonable to require that if the utility of A is equal to or greater than
that of B and a set C is added to both 4 and B, with C disjoint from both
A and B, then the utility of 4U C is equal to or greater than that of
Bu C. These two principles may be summarized:

(11) if A<B then u(A)<u(B),
(12) if AnC=BnC=0andu(4)<u(B) then
u(Au C)<u(Bu C).

(Evidently (11) and (12) would not be acceptable if some of the alternatives
had negative pay-offs, a possibility which we exclude here.)

What I now want to show is that for this multi-choice case a utility
function satisfying (10), (11), and (12) may be derived from the axioms of
stimulus-sampling theory by generalizing the approach to the two-arm
bandit problem. For simplicity I shall again consider only the model with
one stimulus element, although the results given here may easily be
extended to a finite number of stimulus elements. The axioms given in the
preceding section do need to be supplemented in one important respect,
namely, we shall make Axiom C3 more definite by assuming that when a
chosen response is not reinforced, the probability of the stimulus element
becoming conditioned to some other response is uniformly distributed
over the remaining set of available responses. Thus, in the notation of
Section II, if there are n other available responses and total probability
g that the stimulus element will become conditioned to some other
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response than A; after A, is not reinforced, then ¢;/n is the probability it
will become conditioned to A;, for j#i and A4; in the available set.
Keeping this notation in mind, it is easy to see that the transition matrix
for n+1 possible responses (i.e., n+ 1 possible choices) has the following
form:

A, A, At

e e
A, 1—31(1“771) ;1(1“”1) ;1(1—771)

1) A Pl-m) 1-gn-m) 2 (-m)

sn en
y ’:l(l — Ty1) ’:1 (1= 7ppq) oo 1=y (1 = T y).

Following standard notation, let u; be the asymptotic probability of
response A;. Then, as is well known, the asymptotic probabilities »; may
be obtained as the solution of the system of linear equations

u;=1—¢;(1—m))u; + Z ‘il_nﬂi’
(14) Y

l Yuj=1,
provided the matrix (13) satisfies certain regularity conditions, which are
indeed satisfied here because every entry in the matrix is strictly positive.

It is not difficult to show that the solution of (14) is:

H g(1—m)
i#*j
(15) u; ST si(l—ni)'
Ji#)
Now p(a, A)=u,, and if we divide the numerator and denominator of the
right-hand side of (15) by [ [;<x p;» Where as before p;=¢;(1—n;) and the
set of alternatives is X=A U {a}, then

1/pa
> 1/p;

jeX

for j=1,...,n+1,

(16)  p(a, 4)=
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On the basis of (16) we have a simple chain of equivalences like that
leading from (7) to (8), which yields that p(a, 4)>p (b, B) if and only if
(17)  logl/p, —log 'ZA 1/p; > log1/p, — longB 1/p;,
J€ €

and thus to satisfy (10), we define a utility function u for any nonempty
finite set A of alternatives as:

a8 u(4)=log T 1/p;.

Moreover, we may use (18) to generalize (10) immediately to the proba-
bilities p (4, A), where 4 is the complement of the set A4 with respect to
the total set of alternatives, i.e., 4 U 4= X. The interpretation of p(4, 4)
is that this is the probability of choosing an alternative from A rather than
from its complement 4. We observe first that (16) yields:

2 1/p;
4
21lpj+ 3 1p;
A A
Manipulations similar to those already carried out then result in:

(20) p(4, A) > p(B, B) if and only if
u(A) — u(A4) > u(B) — u(B).

It is easily verified that the utility function » defined by (18) satisfies (11)
and (12) as well as (10) and (20). If u were also an additive set function it
would be more appropriate to call it a subjective probability function. It
seems to me that its logarithmic rather than additive character is in-
tuitively sound. In particular, the marginal utility of adding another
alternative to a set of such is appropriately a decreasing function of the
size of the set. In other words, the utility function defined by (18) has the
classical property that as wealth increases each additional unit has
decreasing marginal utility.

(19  p4,4)=

III. RELATIONS TO OTHER THEORIES

To begin with, I want to show that the entropy of any set of alternatives
X, probability distribution p, and partition [] of X is a negative linear
transformation of the expected utility of (X, p, []).” Following the well-
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known work of Shannon (see, e.g., Shannon and Weaver, 1949) on the
theory of information, the entropy H of (X, p, []) is defined as:

@) H(D=- X p(4, A)log:p(4, 4).
And the expected utility & (u, []) is defined in the standard manner as:
Q)  ew][D= Az" p(4, A)u(4).

Now

;I/Pj
u(A)=1log) 1/p;=log=—— +1log) 1/p;
= alog, p(4, 4) + B,

where a=1log2 and f=log) x 1/p;, and it is clear « and B are both in-
dependent of [].8
Substituting this last result for u(4) into (21) we have

s, [P = EH p(4, A) [alog, p(4, A) + B]
=—aH([]) + B,

the desired conclusion. It is to be noticed that the finest partition of X
maximizes entropy, whereas the coarsest one maximizes expected utility
(with respect to the set of all partitions of X).

I now turn to consideration of Luce’s choice axiom (1959, p. 6) which
we may formulate as follows: if 4= B< X then

(22)  px(4) = ps(4) px(B),

where py (A) is the probability that an element of 4 is selected from the
total choice set X. Thus if 4u A=X, then in the notation used earlier,
px (4)=p (4, A). The purpose of the subscript usage is to indicate an ex-
plicit change in the total set of available alternatives.

Without further assumptions (22) cannot be derived from the postulates
for learning theory given at the beginning, because they include no
assertions about the constancy or continuity of behavior when the number
of available responses is changed. To derive (22), however, we need add
only the postulate that the conditioning parameter ¢; of response A; for
every i is independent of what subset of the alternatives X is available.
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Granted this additional assumption about conditioning, derivation of
Luce’s axiom is a simple matter, for

Z 1/Pj Z 1/Pj Z 1/Pj
px(4) = < =Z =
; 1/Pj z; 1/Pj ; 1/Pj

Using his choice axiom Luce proves the existence of a ratio scale
v(j) (1959, pp. 20-28) with the property that

2 v(i)
px(4) = E—:v—(j)'

= ps(4) px(B).

X

The relation of this additive ratio scale to the utility function u defined
by (18) is simply

v(A4) = ke"®,

where k is a positive real number.

NOTES

1 T have benefited from conversations with several people on the topic of this paper,
but most particularly from those with Donald Davidson, William K. Estes, and R.
Duncan Luce.

2t Article 8 in this volume.

3t Article 4 in this volume.

4 Under a rather natural continuity assumption, which is however stronger than U4~
U6, Debreu (1958) has shown that the quadruple condition (U3) is necessary and
sufficient for the existence of a utility function satisfying (4). Of course, granted U4-U6,
and the ““technical axioms™ Ul and U2, it is obvious that the quadruple condition is
also necessary and sufficient in this context. It may also be remarked that to give
necessary and sufficient conditions on the set 4 and the function p, without continuity
or finiteness restrictions, is the extremely difficult mathematical problem of classifying
all isomorphism types representable by a real-valued function u satisfying (4).

5 I assume throughout that 0<< zs, 4 < 1, for every a in A.

6 From this point on, X rather than A4 will represent the total set of available alternatives.
7 A partition of a set X is a family of nonempty, pairwise disjoint subsets of X such
that the union of all sets in the family is X.

8 When no base of a logarithm is indicated, it is understood to be e.



10. SOME FORMAL MODELS OF GRADING
PRINCIPLES*?

I. INTRODUCTION

The present paper offers an analysis of grading principles from the view-
point of statistical decision theory and game theory. The mistaken notion
is widely held that the plain man is really clear about practical ethical and
moral issues and that philosophers need only tidy up certain wayward
corners of the subject.? Personally I find difficult the problem of devising
any general ethical rules of behavior for simple two-person games; the
ethical complexities of progressive taxation, tariff barriers, or treatment of
sexual psychopaths are beyond any exact conceptual analysis. That de-
cisions are and must be made about these issues no more proves that their
ethical aspects are completely understood than does the fact that the
Romans built bridges prove that they had any quantitative grasp of the
mechanical theory of stress.

It is pertinent to remark that the first model used in this paper is at the
basis of much recent foundational work in statistics (see Blackwell and
Girshick, 1954; Savage, 1954). The considerations in the last two sections
are within the more general framework of the theory of games as devel-
oped by von Neumann and others. My particular concern is the em-
bedding in this framework of a theory of two-person justice.

II. INDIVIDUAL DECISION MODEL

The structure of the first model to be considered is simple. We shall call an
ordered triple =<8, C, D) an individual decision situation when S
and C are sets and D is a set of functions mapping S into C. The intended
interpretation is:

S = set of states of nature,
C = set of consequences,
D = set of decisions or actions.

* Reprinted from Synthese 16 (1966), 284-306.
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Since the terms ‘states of nature’, ‘consequences’, ‘decisions’ and
‘actions’ are used here in a somewhat special manner, an example may
help to make clearer their intended meaning.

Example 1: Suppose I come home and find a bottle of ink spilt on the
rug, and also suppose I know immediately that it could have been spilt
either by my four-year-old daughter or by my cat. These two possibilities
correspond to the two states of nature. I can take one of two actions, let us
say: spank the child or do not spank the child. And the possible con-
sequences are four in number, as illustrated in Table 1. The rows corre-
spond to the two states of nature, the columns to the two actions, and the
entries in the table to possible consequences.

TABLE 1
actions a1 — spank the child az — do not spank the child

states of
nature
s1 — child spilt the ink c1 — ink spilt by child c2 — ink spilt by child

and child spanked and child not spanked
s2 —cat spilt the ink c3 — ink spilt by cat ¢4 — ink spilt by cat

and child spanked and child not spanked

Since the term ‘states of nature’ is not much used in philosophy there
should be little objection to its special use here; the term ‘action’ is used in
a way that is consonant with at least one of its major uses in ordinary
contexts. But my use of ‘consequence’ is probably at variance with its
primary use in the writings of moral philosophers. The consequence ¢,
above, for instance, ink spilt by child and child spanked, would be
regarded by many as the bare beginning of consequences. It is to avoid
exactly the vagueness of the consequences flowing from ¢y, ¢,, ¢3 or ¢4,
that I have adopted the restricted use. The longer term ‘immediate
consequence’ could be used. Yet in ordinary usage there is much to defend
the use adopted here. When a quarterback throws an intercepted pass in
the last two minutes of play it might be appropriate to remark “The
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consequence of that is obvious. We lose the game.” It would seem pedantic
to insist on saying ‘“The immediate consequence of that is obvious. We
lose the game.”” And it would be a classroom gambit to object that the use
of the definite article is wrong, because the action could have other im-
portant consequences for the quarterback: he quarrels with his girl that
night, the coach decides not to start him in the next game.

Apart from any questions of ordinary usage there is a technical device
which may be used to meet the difficulty that it is almost always im-
possible to characterize the full set of consequences which may flow from
an action. Given an individual decision situation {S, C, D), let C’ be the
set of all consequences which result from some state of nature in S and
some decision in D. Then C'is a partition of C’, that is C is a family of non-
empty pairwise disjoint sets whose union is C’. In this analysis, each ¢; in
our example is a set of consequences. It is practically impossible to say
exactly what the members of ¢,, say, are, but in rough terms they are the
possible consequences, proximate and remote, which would wholly or in
part result from the immediate consequence of the ink’s being spilt by the
child and the child’s being spanked.3-

The still more complicated question of what kind of language is
appropriate for describing either consequences or states of nature cannot
be examined here. Certainly in most situations it is difficult to avoid
evaluative or normative terms, but the use of non-factual language does
not directly disturb or vitiate the analysis given here.

One of the basic problems of statistical decision theory is to introduce a
preference ordering on the set of decisions of an individual decision
situation and to consider what postulates the preference ordering of a
reasonable man should satisfy. (For such an analysis see Savage, 1954 or
Suppes, 1956b.4t) The notion of reasonableness or rationality used here is
an informal, intuitive one, and its application in defense of any particular
postulate consists of analyzing particular examples. The problem is
presumed solved if reasonable postulates can be found which are strong
enough to guarantee the existence of a (subjective) probability measure on
the states of nature and a utility function on the set of consequences such
that one decision is to be preferred to another if and only if the expected
utility of the first decision with respect to the probability measure is
greater than that of the second. Once such a probability measure and
utility function are constructed no further principles of action are needed.
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The sole maxim to be followed by the rational man is: maximize expected
utility.

Historically the idea of maximizing utility is closely connected with the
hedonistic ideas of Bentham, Mill, Sidgwick, and their followers. How-
ever, it is an unequivocal mistake to think that the maxim: maximize
expected utility, in any respect involves a commitment to hedonism. As I
hope to make clear in the sequel, if the utility function on consequences
were guided by an ethic of duty rather than pleasure, it would still be good
advice to maximize expected utility. In this case a calculus of duty would
replace a calculus of pleasure. To my mind the most important aspect of
the hedonistic tradition in ethics has been the clear recognition that some
principle of calculation is required for rational action in the face of other
than trivial situations. The main point of this paper is to defend a thesis as
to how grading principles should enter into these calculations.

Before developing these ideas further I want to say something about a
major criticism that is usually made of the general maximization viewpoint
adopted here. To wit, as one philosopher scornfully put it to me, whoever
heard of a man making such calculations prior to making any actual
decision. Naturally this philosopher had in mind the “ordinary’’ man in
“ordinary”’ situations like that of buying a pint of whiskey or selecting a
new tobacco. One might as well reject a whole discipline such as the
physical theory of the strength of materials by remarking that no car-
penter computes the load capacity of a joist before sawing and nailing it.
There are situations where elaborate calculations are made in order to
maximize utility; the new disciplines of management science and opera-
tions research provide numerous examples.5 Moreover, I maintain that in
many ordinary situations it is not the impossibility of detailed calculation
that is relevant but rather the superfluity of it. For instance, in the simple
situation schematized by Table I, if it is definitely known that the ink was
spilt by the child and not the cat then to take appropriate action I need
only order in preference two consequences: ¢; and c,, according to my
principles of childrearing. I need no numerical utility function. And this
situation is characteristic: whenever uncertainty regarding the true state of
nature is eliminated, the pertinence of a numerical utility function dis-
appears, and the principle of maximizing expected utility assumes a very
simple form: choose that action whose consequence is most preferred (for
reasons of pleasure, duty, justice, or what have you).
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III. DEFINITION OF GRADING PRINCIPLES

Traditionally in ethics, actions are said to be right or wrong, and con-
sequences good or bad. If we carried over this distinction to individual
decision situations then we would need moral principles of grading
governing acts and value principles of grading arranging consequences in
order of preference. But I am proposing here that the one controlling
moral principle of action is the maxim: maximize expected utility, here-
after referred to as the M.E.U. maxim. On this view it is a mistake to hold
that grading principles aid us directly in distinguishing between the
quality of acts. The function of grading principles is rather to aid the in-
dividual in constructing his preference relation on the set of consequences.®
There is a simple reason why this position is not in conflict with most of
the standard examples purporting to show how grading principles should
regulate actions; namely, if the state of nature is known, there is an
effective one-one correspondence between the set D of acts and the set C of
consequences, and any relation on C defines a corresponding relation
on D. This point is further amplified below.

To put it baldly then, I am claiming that the proper logical status of a
grading principle in an individual decision situation is as a binary relation
on the set C of consequences, in fact, an asymmetric, transitive relation
on C, i.e., a strict partial ordering of C.

DEFINITION 1: Let & ={S, C, D) be an individual decision situation. Then
a grading principle with respect to & is a strict partial ordering of C.

I have insisted that a grading principle have at least the properties of a
strict partial ordering, for otherwise it would scarcely be a guide to fixing
the preference relation.

Example 2: A principle of childrearing. Referring to Example 1, a
tenable grading principle held by some modern parents is: never punish a
child. This leads to the following strict partial ordering of C7, which we
may represent by a Hasse diagram:

Co Ca
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It should be noted that this principle of childrearing is sufficient to deter-
mine action although the set of consequences is not completely ordered
by it. For, whatever the true state of nature, the consequence of taking
action a, is preferred to the consequence of taking action a;, that is, ¢, is
preferred to ¢, and ¢, is preferred to cj.

As the following example drawn from welfare economics shows, most
grading principles are not sufficient to determine action.

Example 3: Principle of unanimity. Suppose that the decision situation
consists of an arbitrary set .S of states of nature, and C is a set of ordered
n-tuples (n-dimensional vectors) representing the distribution of some
desired commodity to a group of » individuals. Administrator 4, a
member of the group, is to decide in a just manner which distribution
vector is to be used in allotting the quantities of the commodity. The
grading principle of unanimity asserts that vector x={x;,..., X, is to be
preferred to vector y={yy,..., y,» if for every i=1,..., n,x; >y; and for
some i, x;>y;. This principle, also known as the principle of efficiency or
Pareto optimality, is a very weak grading principle and surely any adminis-
trator who did not satisfy it would be stoned out of office.8 It is obvious
that in general the principle of unanimity does not uniquely determine the
optimal action even when there is only one state of nature.

More troublesome, at least from a psychological standpoint, is the
decision situation in which two grading principles are in conflict. This
state of affairs is reflected formally in our model by the fact that
the union of two strict partial orderings is not always a strict partial
ordering.

DEFINITION 2: Let & ={S, C, D) be an individual situation, and let G,
and G, be grading principles with respect to . Then G, and G, are
compatible if, and only if, G, UG, is a grading principle with respect
to &9

Two simple conditions with reasonable interpretations which will insure
compatibility of grading principles are the following.

THEOREM 1: If (i) G, is a subrelation of G, or G, is a subrelation of Gy, or
(ii) if the fields of G, and G, are mutually exclusive, then G, and G, are
compatible.

The proof of this theorem is trivial. Some examples illustrating it may
be drawn from welfare economics, where S and C are defined as in
Example 3.
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Example 4: Let
G, =principle of unanimity,
G, =principle of gross aggregation,
G; =principle of social weights a = <{a,,..., a,),
where

xG,y if,andonlyif, Y x;> ) y
i=1 i=1
and

n n
xGyy if,andonlyif, ) ax;> Y ay;.
i=1 i=1

Principle G; has already been discussed; Principle G, says that one
distribution x is to be preferred to another y if x results in a greater total
quantity of the commodity for the social group; Principle G; corresponds
to the assignment of weights to each individual by Administrator A4;
presumably 4 would use some further principle of need or merit to aid in
determining the weights.10 As application of Theorem 1, we have that G,
and G, are compatible, since G, is a subrelation of G,, that is, if x G, y
then x G, y. To see this, we observe that if x G, y then

) x; = y; foralli
x;>y; forsomei,
whence

Yxi>Y y.

Moreover, if each individual is given a strictly positive weight, that is,
a;>0 for all , then G, is a subrelation of G, and hence compatible with it.
The reasoning is obvious. From (1) and the hypothesis that a; >0 we have:
a;x; > a;y; foralli
a;x; > a;y; for some i,

whence by addition of inequalities

Y oax; > ay;.
On the other hand, when C has any abundance of different distribution
vectors, G, and G are incompatible. For instance, let =3 and
x=<1,2,4)
y=<41, 1>
a=<2,%%.
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Then
xG,y
since
Yx;=7 and Y y;=6,
but
yGs3x
since

Yax;=4 and ) ayy;=8%.

Examples which satisfy (ii) of Theorem 1 are easy to construct but will
not be considered here. The intuitive idea of (ii) is the truism that grading
principles concerned with entirely different spheres of activity are
compatible.

The use of the word ‘activity’ in the last sentence underlines the diffi-
culty of not speaking of grading principles as referring to acts or decisions
rather than consequences. Before turning to social decision situations in
the next section, something more needs to be said about the status here
advocated for grading principles. One natural tendency is to formulate
grading principles in the imperative mood so as to command the execution
of certain acts. But Hare (1952, Part III) has cogently argued it is more
appropriate to use the indicative mood and the auxiliary verb ‘ought’ to
obtain the proper sort of universal formulation. The one further emenda-
tion required here is to add the infinitive ‘to prefer’ after ‘ought’. Thus, we
go from the imperative:

“Honor thy father”
to:
“Everyone ought to honor his father”,

and on to:
) “Everyone ought to prefer to honor his father.”

I maintain that ordinary usage addresses moral principles of grading
directly to acts because the problem of acting without knowing the true
state of nature is ignored. This point is important enough to be amplified
by referring again to Example 1. Consider the moral imperative ‘Punish
the guilty and defend the innocent’. Suppose this is the only moral
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imperative guiding my choice of action a; or a, in Example 1. It seems
patently obvious that without knowing the true state of nature I can make
no direct application of the imperative to choose between @, and a,. If s,
is the true state of nature I should choose a,, but if s, is the true state, I
should choose a,. To be sure, I could first sum up the factual evidence
for s; and s,, decide which is more likely, assume the more likely state is
nearly certain to be the true state, and then take the appropriate action.
But this is surely a crude way to proceed and is wholly inadequate in more
complicated situations; for instance, suppose there were three states of
nature to each of which I assigned a subjective probability of . On the
other hand, the imperative may be applied directly to constrain my
preference relation on the set {c, ¢,, ¢3, ¢4} of consequences. The Hasse
diagram of the resulting strict partial ordering is obviously:

C, Cy

C2 C3

which may be compared with the diagram for Example 2. When applied
directly to consequences, application of the imperative need not be con-
founded with the difficult and distinct problem of weighing factual
evidence regarding the true state of nature.

The particular homily about honoring fathers illustrates another point:
it and all principles of a similar form lead to a simple and crude partial
ordering of consequences, namely, consequences are divided into two
classes and all members of one are preferred to all members of the other. As
Examples 3 and 4 emphasize, such principles are not of much help in
making a rational decision in a complicated situation like that generated
by a labor-management dispute or the problem of pricing policy in a
semi-controlled economy.

IV. SOCIAL DECISION MODEL

Against the analysis of previous sections may be brought the charge that
the indivual decision model unduly and unrealistically isolates the
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behavior of one man from another. In the remainder of this paper social
situations shall be considered. For reasons of technical simplicity the
discussion shall be restricted to two persons, although most of the
concepts introduced readily generalize to n persons.

The structure of the basic model is still relatively simple. We shall
call an ordered sextuple & =<{S, C,, C,, Dy, D,, f) a two-person decision
situation when S, C,, C,, D,, D, are sets and fis a function mapping the
Cartesian product S x D; x D, into C; x C,. The intended interpretation is:

S =set of states of nature,

C, = set of consequences for person I,

C, = set of consequences for person II,

D, =set of decisions or acts available to I,
D, = set of decisions or acts available to II,
f =social decision function.

Some examples will be given in the next section in connection with the
theory of two-person justice.

The definition of grading principles is an-obvious generalization of
the one already given for the individual case.

DEFINITION 3: Let =4S, C,, C,, D,, D,, f > be a two-person decision
situation. Then a grading principle with respect to < is a strict partial
ordering of the Cartesian product C; X C,.

This definition does not require that in applying a grading principle
person I need consider consequences to person II, but does make possible
such a consideration. We could in fact use Definition 3 as a basis for
defining a wholly egocentric person, namely a person, say I, whose
grading principles and preference relations in all two-person situations
are orderings uniquely determined by elements of C; (the character of
C, being never considered).

The same arguments given previously apply to the requirement that
ordinary grading principles in two-person situations be partial orderings
on consequences and not on acts. On the other hand, the arguments for a
rigid adherence to the M.E.U. maxim are not so persuasive, since other
rules of behavior like minimax or minimax regret can be strongly defended
for two-person situations. But these matters will not be gone into here;
for our purposes adoption of any of these alternative rules requires
admission only that a utility or value function on C; x C, is needed for
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both persons I and II. We want to investigate how a formal principle of
justice may be introduced which will put non-trivial constraints on the
utility function. Moreover, it will be of interest to investigate the adequacy
of a justice maxim compared to the M.E.U. or minimax kind of maxim,
as an over-all rule of behavior.

In concentrating attention on justice no claim is intended that it is
the most significant grading principle for social situations, nor even that
the definitions given here provide more than the merest beginning of a
formal theory of justice.

To begin with we need the notion of a preference relation on C; U C,,
that is, on the set of consequences to both I and II. The idea is that
one consequence in C; x C, will be deemed more just or fair than another
relative to a preference ranking of all consequences together. How in fact
would a person make such a ranking? Presumably by treating himself and
the other person on an “equal’ basis. A suggestion as to how this idea of
equality or symmetry may be formalized will be given the following
definition:

DEFINITION 4: A system & =(S, C,, C,, D,, D,, f, Ry, R,) is a two-
person decision situation with preference rankings if, and only if, {S, Ci,
C,, Dy, D,, f> is a two-person decision situation, and R, and R, are
weak orderings of C;uUC,. (A weak ordering is a relation which is
transitive and strongly connected.)

The intended interpretation is that R, is the preference ranking of
person I and R, that of II. Formally we might say that a person’s prefer-
enceranking R of C; u C, is equitable or symmetric if it remains unchanged
when the two persons change positions in the decision situation. Diffi-
culties of making this suggestion precise will not be pursued here, but it
would seem best to do it in terms of a specific game, or at least gamelike,
structure, with the exchange being defined in terms of becoming a
different player in the game, not, by all means, in terms of the personal
attributes of the players somehow being exchanged. It is intended that in
constructing Ry, say, person I will say to himself, it is better that IT have
xin C, than that T have y in C; whence x R; y and not y R, x, etc. For
example, a man should judge it better that his neighbor of equal economic
status receive a thousand dollars than that he himself should receive
fifty dollars. Unfortunately, I see no way of characterizing in an adequate
formal manner the intuitive notion of better than used in this example.
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But it would be a mistake to consider this situation peculiar to moral
philosophy. The notion of preference or better than has a status in formal
moral philosophy very similar to that of the notion of force in mechanics.
It is not a problem of mechanics proper to classify forces according to
their physical origin.11

We now define the notion of more just than (abbreviated by J) relative
to each person’s preference ranking.

DEFINITION 5: If x;, y,€C; and x,,y,€C, and x={x;, x,) and y=
<Y1, V2> thenfori=1, 2, xJ; y if, and only if, either (i) x; R; y; and x, R; y,
and not (y, R;x; and y, R; x,), or (ii) x; R; y, and x, R; y; and not (y, R; x,
and y; R; x,).

This definition is simpler than it may appear at first glance. It is framed
so as to make J; (for i=1, 2) a strict partial ordering of the Cartesian
product C; x C,, and yet permits the comparison of elements of C; with
C,. The two ‘not’ clauses in the definition guarantee that J; is asymmetric.

Examples of J; are at the beginning of the next section. We conclude
this section with the theorem:

THEOREM 2: Both J, and J, are grading principles with respect to & .

Proof: For i=1, 2, to prove that J; is asymmetric, suppose by way
of contradiction that for some x={x,, x,)» and y={y,,y,> in C; xC,
that

xJ;y and yJ;x.
From x J; y it follows from the definition that (dropping subscript i on

R for brevity) x; R y, or x; Ry,, and similarly from y J; x it follows that
¥1 R x; or y; R x,. We thus have four cases to consider:

Case 1: x; Ry; and y; R x;. Case 3: x; Ry, and y; R x;.
Case 2: x; Ry, and y; R x,. Case 4: x; Ry, and y; R x,.

Since the proofs for all cases are similar, we shall look only at Case 2
in detail. From the hypothesis of this case, we have from (i) of the
definition:

(1) leyl’
(2) xZRst
3 not y, Rx; ornot y,Rx,,
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and from (ii):

4 Y1 Rx,
(5) Y2 R x4
(6) not x, Ry; ornot x;Ry,.
From (1), (4) and the transitivity of R we infer:
@) x; Rx,
and from (7) and (2):
(®) x; Ry,.
From (2) and (5) (and transitivity of R):
® X Rxy,

and from (9) and (1):
(10) X; Ry,

but (8) and (10) contradict (6).
To prove now that J; is transitive, we assume

xJ;y and yJz,

which leads to four cases also. Again we shall consider only one typical
case:

(11) xRy, and y,Rz,.

From (11) and (ii) of the definition, we have:
12) X, Ry,
(13) y2 Rz,

(14) not y, Rx; ornot y;Rx,
(15) not z, Ry, ormot z,Ry,.
From (11), (13) and transitivity of R, we get:

(16) xi Rz,
and similarly from (11) and (12):
17 x, R z,.
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It remains to show that not z; R x; or not z, R x,. Suppose by way of
contradiction that

(18) z;,Rx; and 2z, RXx,.
From (18) and (11), we have:

(19) zy Ry,
and from (18) and (12)

(200  z Ry,

but (19) and (20) contradict (15), which completes our proof, since for J;
to be a grading principle with respect to &, it is required by definition
that J; be asymmetric and transitive in C; x C,.

V. POINTS OF JUSTICE AND THE PRISONER’S DILEMMA

It will be instructive to apply the ideas introduced in the last section to
a simple but conceptually troublesome example of a two-person, non-
zero-sum, non-cooperative game known as-the prisoner’s dilemma.l2
We quote the description from Chapter 5 of Luce and Raiffa (1957):
Two suspects are taken into custody and separated. The district attorney is certain that
they are guilty of a specific crime but he does not have adequate evidence to convict
them at a trial. He points out to each prisoner that each has two alternatives: to confess
to the crime the police are sure they have done, or not to confess. If they both do not
confess, then the district attorney states he will book them on some very minor trumped-
up charge such as vagrancy and they will both receive minor punishment; if they both
confess they will be prosecuted, but he will recommend less than the most severe

sentence; but if one confesses and the other does not, then the confessor will go free
while the latter will get “‘the book” slapped at him.

Let n =no conviction on any charge,
v = vagrancy conviction,
r =reduced conviction (less than maximum),
m = maximum conviction.

Then the game may be represented by :

I
\1 confess not confess

confess {ryry {n,m)

not confess {m,n> {v,v)
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where a pair like {n, m) is interpreted so that the first member # is the
outcome to person I and the second member m the outcome to person II.
We have not distinguished #; and ny, m; and my, etc. These conse-
quences are treated the same for each player. Keeping this in mind, the
complete two-person decision situation with preference rankings may be
identified, provided we introduce the one obvious preference ranking on
the set of consequences:

S = one element set (trivial here),

C, =C,={m, n,r,v}13,

D, = D, = {confess, not confess},

f =function defined by above game matrix,

R, = R, = weak ordering arising from linear ordering #, v,

r, m, with n most preferred.
Clearly here

Ji=J,,
and the ordering more just than of C; x C, may be represented by the
following Hasse diagram (see next page), where two elements of C; x C,
standing at the same point in the diagram are not comparable under J;.14
Of course, only the four elements in the game matrix are of direct concern
in discussing the prisoner’s dilemma. The ordering induced by J; on them
may be represented by:

<V,Vv>
[ ] ®
) I <nm> <m,n>
<hr>

The important thing is that {n, m) is not related by J; to any of the other
three elements, nor is {m, n).

The weak relation expressed by (1) would not seem to be of much help
in guiding the choice of an action or strategy by either prisoner. As a
direct constraint on the utility function of either it scarcely imposes
any structure. Before attempting to show that considerably more can be
obtained from (1) by introducing the concept of a point of justice, it will
be useful briefly to review the game-theoretic solution of the prisoner’s
dilemma.

Two concepts of optimality for two-person, non-zero-sum, non-
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<n, n>
<n,v>,<v,n>
<n,r>,<r,n> <V, V>
<n,m>,<m,n> <v,r>,<r,v>
<v,m>,<m,v> <r, r>

<r ,m>,<m,r>

<m, m>
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cooperative games yield the conclusion that both prisoners should choose
the strategy of confessing, which leads to the outcome or consequence
{r, r). One concept arises from the highly appealing sure-thing principle.
A strategy or decision satisfies the sure-thing principle if no matter what
your opponent does you are at least as well off, and possibly better off,
with this strategy in comparison to any other available to you. Thus if
person I adheres to the sure-thing principle he should confess, for if II
confesses I gets r rather than m, and if IT does not confess I gets n rather
than v; whence for every choice of II, I is better off confessing. A similar
situation obtains for II.

In many games no strategy satisfies the sure-thing principle. But
every finite game of the class being discussed does have at least one
equilibrium point, the second concept of optimality (introduced by
Nash, 1950, 1951). Roughly speaking, an equilibrium point is a set of
strategies, one for each player, with the property that these strategies
provide a way of playing the game such that if all the players but one
follow their given strategies, the remaining player cannot do better by
following any strategy other than the one belonging to the equilibrium
point. As is easily verified, the unique equilibrium point for the prisoner’s
dilemma is the pair of confession strategies, the same result obtained by
application of the sure-thing principle.

In spite of the weight of these optimality principles there are several
unsatisfactory aspects of the recommended solution. If both prisoners
completely trust each other it seems more reasonable for both of them to
adopt the strategy of not confessing. Moreover, the act of confessing
might from a moral standpoint be distasteful. The various game-theoretical
principles of behavior like the two just discussed are aimed at satisfying
intuitive ideas of prudential rather than moral behavior — the notion of
prudence being that of acting in one’s own best interest without direct
concern for others. The point of the remainder of this paper is to contrast
moral and prudential behavior, with special reference to the prisoner’s
dilemma.

In Section III, I have argued that grading principles should be addressed
to consequences rather than decisions or acts. I now want to suggest that
a (first-order) grading principle concerned with consequences may lead to
a (second-order) moral principle which is a direct guide to action. Such
second-order moral principles may be termed ethical rules behavior, in of
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contrast to game-theoretical prudential principles of behavior. I shall
use the justice relation on consequences to formulate one such ethical rule
of behavior. First we define a (J;) admissible element as an element of
C, x C, which is not dominated under the relation J; by any other element.
In diagram (1) elements <{v, v), {n, m) and {m, n) are (J;) admissible.
In the preceding diagram only {n, n) is. Next, in analogy with the
definition of an equilibrium point, let us define a (J;) point of justice
as a set of strategies, one for each player, such that adoption of these
strategies leads to an admissible element as outcome.
The simplest justice-oriented rule of behavior is then:

o If Jy=J, and there is a unique point of justice, the strategy
belonging to this point ought to be chosen.

Unfortunately, (I) is not applicable to the prisoner’s dilemma, for the
requirement that there be a unique point of justice is not satisfied.15

A more complicated, but still relatively simple ethical rule of behavior
may be introduced in terms of the notion of a justice-saturated strategy.
A strategy for player i is justice-saturated (with respect to J;) if whatever
strategies are picked by the other players the resulting set of strategies is
a (J;) point of justice. The rule of behavior is then:

(ID) If for any player this set of justice-saturated strategies is
non-empty, he ought to choose one.

In the prisoner’s dilemma each player has a unique justice-saturated
strategy, namely, the strategy of not confessing, joint use of which leads to
the reasonable outcome <v, v).

To be sure, when a person’s set of justice-saturated strategies contains
more than one element, (IT) does not lead to a unique action, and some
supplementary ethical rule of behavior may be needed. A similar problem
arises for prudential game-theoretical rules of behavior and should
surprise only those who believe that satisfactory categorical rules of
action are easily come by.

If neither (I) nor (II) is applicable (and simple two-person decision
situations exist for which this is the case), the theory of justice outlined
here is of no use in determining what action to take, except insofar as
the relation J; is a constraint on the person’s utility function.18

But this last problem of applicability is one of the least difficulties
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that face an adequate formal theory of justice. For example, even when
(IT) is applicable, an “ethical”’ man using it may be at a definite competitive
disadvantage against a “prudential” man. In the prisoner’s dilemma if
prisoner I adopts his justice-saturated strategy and prisoner II his equi-
librium-point strategy, then prisoner I will receive the maximum con-
viction. It is not easy, for me at least, to decide if this is an intuitive
argument against the formal theory of justice or fair play set forth here,
or if it is an intuitively reasonable instance of a just or fair man getting the
worst of a situation. If the latter is the case, I think it may be claimed
that a man who in all situations acts according to ethical rules of behavior
may fare as well in the long run as the purely prudential man, provided
knowledge of his standards of actions are known to his fellow man.

Another difficulty with the present theory is its structural weakness.
It is a priori certain that no very elaborate theory of action can be built
on the simple notion of a strict partial ordering. A major step in the
development of rational theories of behavior has been the quantification
of value (i.e., utility) and of subjective probability (i.e., reasonable
degree of belief). Plausible assumptions which will lead to quantification
of the theory of justice seem hard to find.

Making the theory of justice depend on the individual preference
rankings is very much in the spirit of modern welfare economics, but may
seem highly unsatisfactory to many philosophers. And I think it may be
rightly objected that the intuitive success of the theory depends upon
these individual preference rankings themselves satisfying certain criteria
of justice. To admit this objection is not to accede to a charge of circu-
larity, for moral principles of justice, logically independent of the theory
developed here, can be consistently introduced as constraints on individual
preference rankings of C; U C,. I simply do not have at the present any
such interesting formal principles to suggest.

However, it may be appropriate to mention an alternative way of
treating the theory developed here. The one detailed application has been
to a non-cooperative game. In a cooperative game, for instance, an arbi-
tration situation, it might be reasonable for the two participants who are
in conflict, but who are upholders of ethical rules of behavior, to appoint
an arbitrator they both trust. The arbitrator is then asked to make what
he considers the fairest preference ranking of C; UC, in terms of his
knowledge of the participants’ needs and wants. Rules (I) and (II), if
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applicable, might then determine the outcome of arbitration. The immedi-
ate objection to this seems to be that if the arbitrator is going to do the
ranking, why not simply let him rank the outcomes, and then agree on the
one he considers fairest as the negotiated outcome. There is a simple
answer to such an objection. It may be easy to rank C, u C,, but very
difficult to rank C,; x C,. For example, let

C, = {trip to Hawalii, trip to N.Y.},

C, = {trip to Florida, trip to Chicago},
and the arbitrator, knowing persons I and II, may find it easy to rank
C,uCy:

trip to Hawaii,

trip to Florida,

trip to N.Y.,

trip to Chicago,

but he finds it very difficult to compare elements of C; x C, like {trip to
Hawaii, trip to Chicago) and {trip to N.Y., trip to Florida}.

In conclusion an example may be constructed for which equilibrium-
point analysis seems to lead to a more equitable and just solution of a
non-cooperative game than the theory of justice outlined here. Let

Cl = {aa b; C}
C2 = {OC, B) )’: 6}’

let R, =R, =the ranking: a, a, b, f, ¢, , y, and let the game matrix be:

P ! z

1 {a,7> <b,B>
2 {c,a) <b,8>

Then J; =J,, and we have as the Hasse diagram of the justice partial
ordering of C; x C5:

<c,a> <a,y> <b,B8>
o

\/

<b,8 >
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It is easily checked that decision 1 is the unique justice-saturated strategy
for each player, yielding the outcome <{a, y), whereas the unique
equilibrium point strategies yield (b, B> as the outcome. In terms of the
ordinal properties of the consequences at least, outcome <b, B> seems
fairer than <{a, 7). I conclude that the theory of justice developed here
satisfactorily solves only a certain perhaps small proper subset of two-
person, non-cooperative games.

The difficulties of formulating a theory of justice for even a very
restricted set of situations suggests there may be something seriously
wrong with this kind of effort, at least in terms of any principles we seem
able to formulate at present. What seems needed as a prolegomena is the
painstaking working out of some less sweeping, more concrete grading
principles of the sort needed to take a position on particular issues of
economic, political or social significance. Example 4 is a sketch of one
sort in this direction.

NOTES

1 Tam indebted to Richard Brandt, Donald Davidson and F. Studnicki for a number of
useful and penetrating criticisms of a much earlier draft of this paper written in 1957
and circulated as a technical report in that year under the title, ‘Two formal models
for moral principles’.

2 Kant’s views are typical: “...in matters which concern all men without distinction,
nature cannot be accused of any partial distribution of her gifts; and that with regard to
essential interests of human nature, the highest philosophy can achieve no more than
that guidance which nature has vouchsafed even to the meanest understanding”
(1949a, p. 666).

3 T emphasize that consequences are to be construed broadly here. Causal as well as
logical relationships are relevant, but an exact discussion of the significance of causal
concepts in the present context would require too lengthy a digression to be appropriate.
4t Article 6 in this volume.

5 In this respect it seems unfortunate that in his inaugural lecture Theory of Games as
a Tool for the Moral Philosopher (1955) Professor Braithwaite picked for detailed
analysis an example which would not in practice be subject to elaborate calculations.
His painstakingly careful presentation would apply equally well to more realistic
labor-management bargaining situations.

6 However, second-order moral principles as ethical rules of behavior directly governing
acts are introduced in the final section.

7 The intuitive idea behind a Hasse diagram is simple: if point x may be reached from
point y by a continually ascending, not necessarily straight line, then xGy.

8 The proof is immediate that the principle of unanimity yields a strict partial ordering
of C.

9 The symbol U denotes the union of two sets. A binary relation is a set of ordered
couples, whence we may speak of the union of two relations.
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10 In the literature of socialist economics, Administrator 4 is often the Central

Planning Board, but a bureaucratic assignment of weights is not essential to the

economic theory of the welfare state (cf. Lange and Taylor, 1938).

11 These remarks are admittedly Kantian in flavor. Cf., “’And just as nothing follows

from the primary formal principles of our judgments of truth except when primary

material grounds are given, so also no particular definite obligation follows from these
. rules except when indemonstrable material principles of practical knowledge are

connected with them” [Kant, 1949b, pp. 283-284].

12 A game is non-cooperative when no precommunication or bargaining between the

players is permitted. The prisoner’s dilemma is attributed to A. W. Tucker.

13 The identification of C1and Cz merely simplifies the presentation and is not essential.

14 Under the equivalence relation which “‘identifies” elements like <{r, m> and <{m,

r>, C1 X Cq is a lattice with respect to Ji, but this fact is of no significance here.

15 Tt is perhaps useful to mention that in general a game of the type being considered

here does not have a unique equilibrium point; the prisoner’s dilemma is a happy

exception.

16 Tn general, finite games only have equilibrium points when mixed strategies (i.e.,

probability mixtures of pure strategies) are admitted. A discussion of Rules (I) and (II)

with respect to mixed strategies would take us too far afield.



11. PROBABILISTIC INFERENCE AND THE CONCEPT
OF TOTAL EVIDENCE*

I. INTRODUCTION

My purpose is to examine a cluster of issues centering around the so-
called statistical syllogism and the concept of total evidence. The kind of
paradox that is alleged to arise from uninhibited use of the statistical
syllogism is of the following sort.

0)) The probability that Jones will live at least fifteen years given
that he is now between fifty and sixty years of age is ». Jones is
now between fifty and sixty years of age. Therefore, the
probability that Jones will live at least fifteen years is 7.

On the other hand, we also have:

) The probability that Jones will live at least fifteen years given
that he is now between fifty-five and sixty-five years of age is s.
Jones is now between fifty-five and sixty-five years of age.
Therefore, the probability that Jones will live at least fifteen
years is s.

The paradox arises from the additional reasonable assertion that r#s, or
more particularly that r>s. The standard resolution of this paradox by
Carnap (1950, p. 211), Barker (1957, pp. 76-77), Hempel (1965, p. 399)
and others is to appeal to the concept of total evidence. The inferences in
question are illegitimate, because the total available evidence has not been
used in making the inferences. Taking the premises of the two inferences
together, we know more about Jones than either inference alleges,
namely, that he is between fifty-five and sixty years of age. (Parenthetically
I note that if Jones happens to be a personal acquaintance what else we
know about him may be beyond imagining, and if we were asked to
estimate the probability of his living at least fifteen years we might find

* Reprinted from Aspects of Inductive Logic (ed. by J. Hintikka and P. Suppes),
North-Holland Publ. Co., Amsterdam, 1966, pp. 49-65.
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it impossible to lay out the total evidence that we should use according to
Carnap et al., in making our estimation.)

There are at least two good reasons for being suspicious of the appeal to
the concept of total evidence. In the first place, we seem in ordinary
practice continually to make practical estimates of probabilities, as in
forecasting the weather, without explicitly listing the evidence on which
the forecast is based. At a deeper often unconscious level the estimations
of probabilities involved in most psychomotor tasks — from walking up a
flight of stairs to catching a ball — do not seem to satisfy Carnap’s in-
junction that any application of inductive logic must be based on the total
evidence available. Or, at the other end of the scale, many actually used
procedures for estimating parameters in stochastic processes do not use
the total experimental evidence available, just because it is too unwieldy
a task (see, e.g., the discussion of pseudo-maximum-likelihood estimates
in Suppes and Atkinson (1960, Chap. 2). It might be argued that these
differing sorts of practical examples have as a common feature just their
deviation from the ideal of total evidence, but their robustness of range,
if nothing else, suggests there is something-wrong with the idealized
applications of inductive logic with an explicit listing of the total evidence
as envisioned by Carnap.

Secondly, the requirement of total evidence is totally missing in
deductive logic. If it is taken seriously, it means that a wholly new
principle of a very general sort must be introduced as we pass from
deductive to inductive logic. In view of the lack of a sharp distinction
between deductive and inductive reasoning in ordinary talk, the intro-
duction of such a wholly new principle should be greeted with considerable
suspicion.

I begin my critique of the role of the concept of total evidence with a
discussion of probabilistic inference.

II. PROBABILISTIC INFERENCE

As a point of departure, consider the following inference form:

P(A|B)=r
P(B)=p

3 P(A)=rp.
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In my own judgment (3) expresses the most natural and general rule of
detachment in probabilistic inference. (As we shall see shortly, it is often
useful to generalize (3) slightly and to express the premises also as
inequalities,

P(A|B)zr
P(B)zp
P(A)=rp.

The application of (3a) considered below is to take r=p=1-s¢.)
It is easy to show two things about (3); first, that this rule of
probabilistic inference is derivable from elementary probability theory
(and Carnap’s theory of confirmation as well, because a confirmation
function c(h, ) satisfies all the elementary properties of conditional
probability), and secondly, no contradiction can be derived from two
instances of (3) for distinct given events B and C, but they may, as in the
case of deductive inference, be combined to yield a complex inference.

The derivation of (3) is simple. By the theorem on total probability, or
by an elementary direct argument

“ P(A)=P(A|B)P(B)+ P(A|B)P(B),

(3a)

whence because probabilities are always non-negative, we have at once
from the premises that P(4 | B)=r and P(B)=p, P(A)2rp. Secondly,
from the four premises

P(A|B)=r
P(B)=p

P(4|C)=s
P(C)=o,

we conclude at once that P(4)= max (rp, so), and no contradiction results.
Moreover, by considering the special case of P(B)=P(C)=1, we move
close to (1) and (2) and may prove that r=s. First we obtain, again by an
application of the theorem on total probability and observation of the
fact that P(B)=0 if P(B)=1, the following inference form as a special
case of (3)
P(A|B)=r

P(B)=1

®) PA) =7
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The proof that r=s when P(B)=P(C)=1 is then obvious:

(1) P(4|B)=r Premise
(2) P(B)=1 Premise
(3) P(A|C)=s Premise
(6) 4 P(C)=1 Premise
5) PMA=r 1,2

6) PA)=s 3,4

@) r=s 5,6.

The proof that r=s seems to fly in the face of statistical syllogisms (1) and
(2) as differing predictions about Jones. This matter I want to leave aside
for the moment and look more carefully at the rule of detachment (3), as
well as the more general case of probabilistic inference.

For a given probability measure P the validity of (3) is unimpeachable.
In view of the completely elementary — indeed, obvious — character of the
argument establishing (3) as a rule of detachment, it is in many ways
hard to understand why there has been so much controversy over whether
a rule of detachment holds in inductive logic. Undoubtedly the source of
the controversy lies in the acceptance or rejection of the probability
measure P. Without explicit relative frequency data, objectivists with
respect to the theory of probability may deny the existence of P, and in
similar fashion confirmation theorists may also if the language for
describing evidence is not explicitly characterized. On the other hand, for
Bayesians like myself, the existence of the measure P is beyond doubt. The
measure P is a measure of partial belief, and it is a condition of coherence
or rationality on my simultaneously held beliefs that P satisfy the axioms
of probability theory (forceful arguments that coherence implies satis-
faction of the axioms of probability are to be found in the literature,
starting at least with de Finetti, 1937). It is not my aim here to make a
general defense of the Bayesian viewpoint, but rather to show how it leads
to a sensible and natural approach to the concept of total evidence.

On the other hand, I emphasize that much of what I have to say can be
accepted by those who are not full-fledged Bayesians. For example, what I
have to say about probabilistic inference will be acceptable to anyone who
is able to impose a common probability measure on the events or premises
in question.

For the context of the present paper the most important thing to
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emphasize about the rule of detachment (3) is that its application in an
argument requires no query as to whether or not the total evidence has
been considered. In this respect it has exactly the same status as the rule
of detachment in deductive logic. On the other hand it is natural from a
logical standpoint to push for a still closer analogue to ordinary deductive
logic by considering Boolean operations on events.

It is possible to assign probabilities to at least three kinds of entities:
sentences, propositions and events. To avoid going back and forth
between the sentence-approach of confirmation theory and the event-
approach of standard probability theory, I shall use event-language but
standard sentential connectives to form terms denoting complex events.
For those who do not like the event-language, the events may be thought
of as propositions or elements of an abstract Boolean algebra. In any
case, I shall use the language of logical inference to talk about one event
implying the other, and so forth.

First of all, we define A— B, as A v B in terms of Boolean operations on
the events 4 and B. And analogous to (3), we then have, as a second rule
of detachment:

P(B—A)>r
P(B)zp
SPAzr+p—1.

Q)

The proof of (7) uses the general addition law rather than the theorem on
total probability:

P(B—A)=P(Bv A)
=P(B)+ P(4)— P(B&A)
=r,

whence, solving for P(A4),

P(A)=r— P(B)+ P(B & A)
zr—(1-p)
2r+p-1,

as desired. The general form of (7) does not seem very enlightening, and
we may get a better feeling for it if we take the special but important case
that we want to claim both premises are known with near certainty, in
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particular, with probability equal to or greater than 1 —e. We then have
P(B->A)=1—c¢
P(B)=1-—c¢

®) S P(A)=21-—2e.

It is worth noting that the form of the rule of detachment in terms of con-
ditional probabilities does not lead to as much degradation from certainty
as does (8), for

P(A|B)z1-c¢
P(B)z1-¢
L P(A)z (1 —¢)?,

and fore>0, (1—¢)?>1—2¢. Itis useful to have this well-defined difference
between the two forms of detachment, for it is easy, on casual inspection,
to think that ordinary-language conditionals can be translated equivalently
in terms of conditional probability or in terms of the Boolean operation
corresponding to material implication. Which is the better choice I shall
not pursue here, for application of either rule of inference does not
require an auxiliary appeal to a court of total evidence.

Consideration of probabilistic rules of inference is not restricted to de-
tachment. What is of interest is that classical sentential rules of inference
naturally fall into two classes, those for which the probability of the con-
clusion is less than that of the individual premises, and those for which
this degradation in degree of certainty does not occur. Tollendo ponens,
tollendo tollens, the rule of adjunction (forming the conjunction), and the
hypothetical syllogism all lead to a lower bound of 1—2¢ for the prob-
ability of the conclusion given that each of the two premises is assigned
a probability of at least 1 —e. The rules that use only one premise, e.g.,
the rule of addition (from A infer 4 v B), the rule of simplification, the
commutative laws and De Morgan’s laws assign a lower probability
bound of 1 —¢ to the conclusion given that the premise has probability of
at least 1 —e.

We may generalize this last sort of example to the following theorem.

THEOREM 1: If P(A)=1—¢ and A logically implies B then P(B)=1—e¢.

Proof: We observe at once that if 4 logically implies B then 4 U B=X,
the whole sample space, and therefore 4 < B, but if 4< B, then P(4)=<
P(B), whence by hypothesis P(B)=1—e.

®
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It is also clear that Theorem 1 can be immediately generalized to any
finite set of premises.

THEOREM 2: If each of the premises Ay, ..., A, has probability of at least
1 —¢ and these premises logically imply B then P(B)=1—ne.

Moreover, in general the lower bound of 1 —ne cannot be improved on,
i.e., equality holds in some cases whenever 1 —ne=0.

Proof: By hypothesis for i=1,...,n, P(4;)=1—¢. We prove by in-
duction that under this hypothesis P(4; &--- & 4,)=1—ne. The argu-
ment for n=1 is immediate from the hypothesis. Suppose it holds for ».
Then by an elementary computation

P(A; & & A, & Apy)=1—(1—P(4; &+ & 4,))
_(1 _P(An+1))
+P((4; & & A,) & 4, ,)
21-(1—-P(4y & & 4,))
—(1 _P(An+1))
=1—ne—c¢
21—-(n+1)e,

as desired. (Details of how to handle quantifiers, which are not explicitly
treated in the standard probability discussions of the algebra of events,
may be found in Gaifman, 1964, or Krauss and Scott, 1966. The basic
idea is to take as the obvious generalization of the finite case

P((3x) Ax) =sup{P(Aay v Aa, vV Aa,)},

where the sup is taken over all finite sets of objects in the domain. Re-
placing sup by inf we obtain a corresponding expression for P((Vx)Ax).
Apart from details it is evident that however quantifiers are handled, the
assignment of probabilities must be such that Theorem 1 is satisfied, i.e.,
that if 4 logically implies B then the probability assigned to B must be at
least as great as the probability assigned to A4, and this is all that is
required for the proof of Theorem 2.)

The proof that the lower bound 1—ne cannot in general be improved
upon reduces to constructing a case for which each of the n premises has
probability 1—e¢, but the conjunction, as a logical consequence of the
premises taken jointly has probability 1 —»ne, when 1 —ne =0. The example
I use is most naturally thought of as a temporal sequence of events
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Ay, ..., A, Initially we assign

P(4)=1-¢
P(A-l)=8-
Then
1-—-2¢
P(4,]|4,))=
(2] 1) 1—8
P(4,|4)=1,
and more generally
1—ne
P(A,|4,-4,—»... A))= —F——
(nl n—14tn=-2 1) 1—(1’!—1)8

P(A,| Ay-14,-5...4;)=1

P(4, l 4,14, ... A)=1,
in other words for any combination of preceding events on trials 1 ton—1
the conditional probability of 4, is 1, except for the case 4,_14,-,... 4;.
The proof by induction that P(4,)=1—¢ and P(4,4,-y...4;)=1—neis
straightforward. The case for n=1 is trivial. Suppose now the assertion
holds for n. Then by inductive hypothesis

P(Ays14,...A)) =P(Ayss | Ap... A1) P(4,... 4y)

= 1———_1(’i :al) £ (1 — ne)
=1—-(n+1)e,

and by the theorem on total probability
P(An+1) = P(An+1 I An Al) ?(An Al)

+[P(4p41 |_A,,...:41)P(:4,,...ffl) e

+P(Aysy | 4,... 4,) P(4,... 4,)].
By construction all the conditional probabilities referred to in the bracketed
expression are 1, and the unconditional probabilities in this expression by
inductive hypothesis simply sum to rg, i.e., 1 —(1 —ne), whence
1—-(n+1)e

1- =1-—g¢,
T —ns (1 — ne) + ne €

P(4,41) =

which completes the proof.
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It is worth noting that in interesting special cases the lower bound of
1 —ne can be very much improved. For example, if the premises 4, ..., 4,
are statistically independent, then the bound is at least (1 —g)".

The intuitive content of Theorem 2 reflects a common-sense suspicion
of arguments that are complex and depend on many premises, even when
the logic seems impeccable. Overly elaborate arguments about politics,
personal motives or circumstantial evidence are dubious just because of
the uncertainty of the premises taken jointly rather than individually.

A natural question to ask about Theorem 2 is whether any nondeductive
principles of inference that go beyond Theorem 2 arise from the imposition
of the probability measure P on the algebra of events. Bayes’ theorem
provides an immediate example. To illustrate it with a simple artificial
example, suppose we know that the composition of an urn of black (B)
and white (W) balls may be exactly described by one of two hypotheses.
According to hypothesis H,, the proportion of white balls is r, and
according to H,, the proportion is s. Moreover, suppose we assign a
priori probability p to H, and 1—p to H,. Our four premises may then be
expressed so: -

P(W|H)=r

P(W|H)=s
P(H,)=p
PH)=1-p.

Given that we now draw with replacement, let us say, two white balls, we
have as the likelihood of this event as a consequence of the first two premises

P(WW | H,)=r?
P(WW |H) =s?,

and thus by Bayes’ theorem, we may infer

rp

r’p+s*(1-p)’

and this is clearly not a logical inference from the four premises. Logical
purists may object to the designation of Bayes’ theorem as a principle of
inference, but there is little doubt that ordinary talk about inferring is
very close to Bayesian ideas, as when we talk about predicting the weather
or Jones’ health, and such talk also has widespread currency among

(10)  P(H |WW)=
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statisticians and the many kinds of people who use statistical methods to
draw probabilistic inferences.

The present context is not an appropriate one in which to engage upon
a full-scale analysis of the relation between logical and statistical inference.
Ihave only been concerned hereto establishtwo main pointsaboutinference.
First, in terms of standard probability theory there is a natural form of
probabilistic inference, and inference from probabilistically given premises
involves no appeal to the concept of total evidence. Second, all forms of
such probabilistic inference are not-subsumed within the forms of logical
inference, and two examples have been given to substantiate this claim,
one being the rule of detachment as formulated for conditional probability
and the other being Bayes’ theorem.

III. THE STATISTICAL SYLLOGISM RE-EXAMINED

There is, however, a difficulty about the example of applying Bayes’
theorem that is very similar to the earlier difficulty with the statistical
syllogism. I have not stated as explicit premises the evidence WW that
two white balls were drawn, and the reason I have not provides the key
for re-analyzing the statistical syllogism and removing all air of paradox
from it.

The evidence WW has not been included in the statement of the
premises of the Bayesian example, because the probability measure P
referred to in the premises is the measure that holds before any taking of
evidence (by drawing a ball) occurs. The measure P does provide a means
of expressing the a posteriori probability after the evidence is taken as a
conditional probability, but the hypothetical or conditional nature of this
assertion has been too little appreciated. Using just the measure P there
is no way to express that in fact two white balls were drawn, rather than,
say, a white ball and then a black ball. Using conditional probabilities
we can express the a posteriori probabilities of the two hypotheses under
any possible outcomes of one, two or more drawings. What we cannot
express in these terms is the actual evidence, and it is a mistake to try.
(It should be apparent that these same remarks apply to Carnapian
confirmation functions.) Commission of this mistake vitiates what appears
to be the most natural symbolic formulation of the statistical syllogism —
the inference form (5) as a special case of (3).
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We can symbolize statistical syllogism (1) as follows, where e(x) is the
life expectancy of person x and a(x) is the age of person x, and let
j=Jones:

P(e(j)= 15|50 <a(j)<60)=r

50 <a(j) <60

S Pe(j)z15)=r.

Now let us schematize this inference in terms of Aypothesis and evidence as
these notions occur in Bayes’ theorem

(11)

P (hypothesis | evidence) = r
evidence
.". P(hypothesis) = r,

(12)

and the incorrect character of this inference is clear. From the standpoint
of Bayes’ theorem it asserts that once we know the evidence, the a
posteriori probability P(H [ E) is equal to the a priori probability P (H),
and this is patently false. The difficulty is that the measure P cannot be
used to assert that P(50<a(j)<60)=1, which is, I take it, a direct
consequence of the assertion that 50 <a(j)<60. (I shall expand on this
point later.) The measure P is the measure used to express the con-
ditional probabilities about Jones’ life expectancy generated by any
possible evidence. The inference-form expressed by (11) is illegitimate
because the same probability measure does not apply to the two premises
and the conclusion, as the scheme (12) makes clear when compared to
Bayes’ theorem.

Because there seems to be something genuine even if misleading about
the statistical syllogism, it is natural to ask what are nonparadoxical ways
of symbolizing it. One way is simply to adopt the symbolism used in
Bayes’ theorem, and then the conclusion is just the same as the first
premise, the assertion of the a posteriori probability P(hypothesis l evi-
dence). A related approach that makes the inference seem less trivial
is the following. First, we symbolize the major premise in universal form,
rather than with particular reference to Jones, for example:

The probability that a male resident of California will live at least 15
years given that he is now between 50 and 60 years is #, or symbolically,
where m(x) is male resident of California,

Pe(x) 2 15| m(x) &50 <a(x) <60)=r,
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and secondly, given as second premise the event 4 that
m(j) & 50 < a(j) < 60,

we may write the conclusion in terms of a new probability measure P,
conditionalized on 4:P,(e(j)=15)=r. Moreover, it is clear that no
paradox arises from (2) because the evidence expressed in the second
premise of (2) represents an event B distinct from 4, and the conclusion
Pp(e(j)=15)=s, is consistent with the conclusion P,(e(j)=15)=r of
).

There is still another way of putting the matter which may provide ad-
ditional insight into the inferential kernel inside the dubious statistical
syllogism. We may think of the premises as all the a posteriori probabilities
given all the different possible kinds of evidence. As an additional final
premise, some evidence A is asserted. On this basis a new measure P, is
generated and the probability of the hypothesis is then asserted in terms
of this new measure P,, as the conclusion of the inference.

At this point it might seem easy to insist that delicate questions of con-
sistency or coherence about the probability measure P do indeed differ-
entiate deductive and inductive logic, but this is not at all the case. The
problem of temporal order of knowledge is as characteristic of deductive
as of inductive logic. In discussing deductive canons of inference we
tacitly assume the statements whose inferential relations are being
considered are all asserted or denied at a given time or are timeless in
character. It is not a paradox of deductive logic that the joint assertion of
two statements true at different times leads to a paradox — for example,
it rained yesterday, and it did not rain yesterday. The same thing, I have
argued, is to be said about the statistical syllogism. The same probability
measure does not apply to the first and second premise; the measure
referred to in the first premise is temporally earlier than the one implicit
in the second premise and the conclusion.

In the next section I turn to these temporal problems and their relation
to the complex task of defining rationality, but before doing this I want
briefly to pull several strands together and summarize in slightly different
fashion the place given to the concept of total evidence by the view of
probability advocated here.

According to this view it is automatic that if a person is asked for the
probability of an event at a given time it will follow from the conditions of
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coherence on all his beliefs at that time that the probability he assigns to
the event automatically takes into account the total evidence that he
believes has relevance to the occurrence of the event. The way in which
the total evidence is brought in is straightforward and simple through the
theorem on total probability. To be quite clear how this theorem operates
it may be useful to take a somewhat detailed look at the gradual ex-
pansion of the probability of an event A in terms of given evidence B and
C. For purposes of generality we may assume that the probability of B
and C is not precisely 1 and therefore deal with the general case. (In the
interest of compactness of notation, I here let juxtaposition denote inter-
section or conjunction.) First we have

(13) P(4)=P(A|B)P(B)+ P(A| B)P(B).
We also have
(14)  P(4)=P(4|C)P(C)+ P(4|C) P(C).
And in terms of both B and C we have the more complex version:
(155  P(A)=P(4|BC)P(BC)+ P(4|BC)P(BC)
+ P(A| BC)P(BC)+ P(A| BC)P(BC).
In the special case that P(B)=P(C)=1, we then have
P(4)=P(4|B)=P(4]|C)=P(4| BC).

We have in the general case, as indications of the relations between
“partial” and ‘“‘total” evidence,

P(A|B)P(B)=P(A|BC)P(BC)+ P(A|BC) P(BC)
d
" P(4| B)P(B)=P(4| BC) P(BC) + P(4 | BC) P(BC).

The point of exhibiting these identities is to show that no separate concept
of total evidence need be added to the concept of a probability measure
on an individual’s beliefs. It also may seem that these identities show that
the notion of condit