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PREFACE 

The thirty-one papers collected in this volume represent most of the arti
cles that I have published in the philosophy of science and related founda
tional areas of science since 1970. The present volume is a natural succes
sor to Studies in the Methodology and Foundations of Science, a collection 
of my articles published in 1969 by Reidel (now a part of Kluwer). 

The articles are arranged under five main headings. Part I contains six 
articles on general methodology. The topics range from formal methods 
to the plurality of science. Part II contains six articles on causality and 
explanation. The emphasis is almost entirely on probabilistic approaches. 
Part III contains six articles on probability and measurement. The impor
tance of representation theorems for both probability and measurement 
is stressed. Part IV contains five articles on the foundations of physics. 
The first three articles are concerned with action at a distance and space 
and time, the last two with quantum mechanics. Part V contains eight 
articles on the foundations of psychology. This is the longest part and the 
articles reflect my continuing strong interest in the nature of learning and 
perception. Within each part the articles are arranged chronologically. I 
turn now to a more detailed overview of the content. 

The first article of Part I concerns the role of formal methods in the 
philosophy of science. Here I discuss what is the new role for formal 
methods now that the imperialism of logical positivism has disappeared. 
The new imperialism of historicism is also now showing signs of fading. 
We have, I hope, entered a pluralistic era of irenic appreciation of many 
different ways of looking at science. In a closely related vein, Article 
2 expresses skepticism about the methods used as yet to study the na
ture of scientific revolutions. I contrast the literature on these matters 
with methodologically more sophisticated approaches dealing with other 
subjects in history, especially economic history. Article 3 examines the 

xi 
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limitations of the axiomatic method in ancient Greek mathematical sci
ences, which have too often been viewed themselves as paradigms of the 
axiomatic method. There is, I would claim, not too great a difference 
between the situation then and now regarding the use of axiomatic meth
ods in science. Article 4 expresses skepticism about the unity of science 
and affirms the evident plurality of modern science, which has increased 
even more since this article was written. Article 5 contrasts the role of 
heuristics and the role of the axiomatic method in science and mathemat
ics. Greater attention to working heuristics in various parts of science is 
something I hope to devote more effort to in the future. What is said here 
is a beginning. The final article ( #6) in this section is on representation 
theory and the analysis of structure, a favorite topic of mine, since I first 
wrote about such matters in detail in the last chapter of my Introduction 
to Logic, published in 1957. 

Part II is focused on causality and explanation. Much of what I have 
to say in the six articles in this part develops questions unanswered in 
my monograph A Probabilistic Theory of Causality, published in 1972. 
Article 7 deals with causal analysis of hidden variables with, as would be 
expected, special reference to quantum mechanics. This article could also 
easily have been placed in Part IV on the foundations of physics. Article 
8 is a long reply to criticisms of some of my views on causality by the late 
Richard Martin. In answer to Martin's criticisms I appropriately modified 
some of my more sweeping claims and concentrated on the use of causal 
concepts in science. In Article 9 I deal with a phenomenon that I would 
have been skeptical of at one time, but no longer am, namely, giving good 
scientific explanations of unpredictable phenomena. With a modern em
phasis on chaos it is a topic we shall be hearing a great deal more about in 
the future. In Article 10 dealing with conflicting intuitions about causal
ity, I examine a number of puzzles, including Simpson's paradox, which as 
a Bayesian I do not find fundamentally paradoxical. Article 11 is the only 
article written jointly with another person, in this case Mario Zanotti, and 
is on probabilistic explanations. Here we prove the somewhat surprising 
theorem that deterministic hidden variables can be found if and only if 
the phenomenological variables have a joint probability distribution. In 
the last article of this part (#12) I deal with non-Markovian causality 
and show what conditions are required for non-Markovian causes to be 
transitive, a puzzle that was left open in my 1971 monograph. I use some 
earlier work of Eells and Sobers showing that a Markovian condition is 
sufficient for transitivity. 

Part III concerns the foundations of probability and the foundations 
of measurement, two subjects that in my own work have been much inter
twined. Article 13 gives a simple presentation of measurement structures 
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of a variety of kinds. The elementary character comes from assuming 
finiteness of the basic domain and equal-interval placement of the ob
jects, as would be characteristic of the fundamental theory of various 
measurement scales. Article 14 uses some of the same results to give a 
more general theory of the measurement of belief, with the use of upper 
and lower probabilities to characterize the nature of partial beliefs. Ar
ticle 15 widens the domain of analysis to the logic of clinical judgment 
with emphasis on Bayesian and other approaches. This is the only article 
I have written on clinical judgment in medicine, although it is a subject I 
have been interested in for a long time, and have worked with a number of 
students on. I regret not having as yet written more in this direction, for 
it is a wonderful area in which to test one's intuitions about the useful
ness of probability and also fundamental measurement. Article 16 gives 
arguments for randomizing, a topic of special importance to a sometime 
Bayesian like myself. As is clear from the article, I reject an extreme 
Bayesian viewpoint that sees no need for randomizing at all. I continue 
to be reasonably satisfied with the arguments given in this article, but 
I also see the need to accompany it with a more satisfactory technical 
discussion of randomization in finite sequences. As evidence that I am 
not completely a Bayesian about probability, Article 17 is concerned with 
propensity representations of probability. Here I am especially concerned 
to examine the way in which such representations of probability naturally 
arise objectively in physics. Two important cases are considered. One 
exemplifies Poincare's method of arbitrary functions, and the other the 
important results one can get from the classical three-body problem to 
show that randomness can be found in as strong a form as you desire 
in simple deterministic systems consisting of a small number of parti
cles. The last article in this part (#18) concerns general philosophical 
arguments about the choice between indeterminism or instability and the 
question of whether it matters which we choose. The concept of instabil
ity as a replacement for that of indeterminism has not been considered as 
much as it should in the philosophy of science. What I have to say needs 
much further development. 

Part IV is concentrated on the foundations of physics. Article 19 is 
the only one written before 1970. It is an early article of mine from 
1954 on Descartes and the problem of action at a distance, originally 
published in the Journal of the History of Ideas. In fact, it is a rewrite 
of a chapter in my 1950 doctoral dissertation on the problem of action 
at a distance. Article 20 concerns some open problems in the philosophy 
of space and time. Most of the problems seem to still be with us, even 
though the article was written 20 years ago. In a similar vein, Article 21 
concerns Aristotle's concept of matter and it's relation to modern concepts 
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of matter. Along the way I look at the theory of matter advocated by 
Descartes, Boscovich, and Kant. In spite of my long-term interest in 
Kant's philosophy of science, this is the only article in the volume dealing 
with Kant, and even the discussion here is somewhat en passant. Article 
22 deals with Popper's analysis of probability and quantum mechanics. It 
is closely related to my views on the foundations of probability and could 
just as well have been placed in Part III. Article 23 represents my most 
recent views on the probabilistic foundations of quantum mechanics. It 
was an article written for a symposium for the statistician Jack Good, on 
the occasion of his 70th birthday. The theory of probability in quantum 
mechanics is a weak theory of the mean, as I try to explain in detail in the 
article. In my judgment the recognition of the probabilities being only 
mean distributions is a much more important fact about probability in 
quantum mechanics than is an attempt to develop a theory of probability 
defined on structures that generalize classical Boolean algebra. 

Part V is concerned with the foundations of psychology. Article 24 is 
one I wrote in 1975 to chart a course from behaviorism to neobehavior
ism. By "neobehaviorism" I meant the still standard practice in cognitive 
psychology to use as data psychological responses, but at the same time 
to admit the necessity of rich internal mental structures. Article 25 was 
written for a conference on structural models of thinking and learning and 
is concerned with learning theory for probabilistic automata and register 
machines, with applications to education research, in particular the learn
ing of elementary mathematics. The work here amplifies and makes more 
concrete results that were part of my earlier work on stimulus-response 
theory of finite automata. Article 26 moves to perception and analyzes 
from both a historical and conceptual standpoint the question of whether 
or not visual space is Euclidean. I will not state the answer here; you have 
to read the article to find out. Article 27 is one concerned with Donald 
Davidson's views on psychology as a science. Davidson was a colleague 
of mine at Stanford in the 50's and we wrote several articles and a book 
together on decision making. It was a pleasure to write an analysis of the 
views on psychology he has expressed in articles published over the last 
several decades. Article 28 is a rather long one on current directions in 
mathematical learning theory. The first part surveys many different kinds 
of work including perceptrons and cellular automata, and the second part 
is devoted to amplifying and extending in a technical way my earlier work 
on stimulus-response theory of finite automata. Article 29 is on deriving 
models in the social sciences. Here I try to put emphasis on a theme I have 
emphasized elsewhere, but nowhere else in this volume really, namely, on 
the importance of studying and thoroughly understanding the methods 
used for deriving models, starting of course with the classical methods of 
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deriving differential equations in physics. I try to draw some contrasts 
with various methods currently widely used in the social sciences. I end 
with a model aimed at very specific psychological ideas but which depends 
on classical methods for deriving the governing differential equation. Ar
ticle 30 in this section returns to the theme of perception and analyzes the 
principle of in variance with special reference to perception. The first part 
deals with geometrical semantics for spatial prepositions. Here I extend 
some earlier work with Colleen Crangle. In the second part I return to 
the question of visual space being Euclidean and present more details of 
recent experiments and relevent theory. Anyone who is not persuaded by 
the answer given in Article 26, should also read the second half of this 
article to be fully convinced of what is the correct answer to the question 
of whether or not visual space is Euclidean. The final article (#31) is 
one that I wrote for a recent symposium on reductionism in science. I 
ask the question, Can psychological software be reduced to physiological 
hardware? In this case I will give away the answer. The article consists 
of four arguments for answering in the negative. 

Broadly speaking, all of the articles on the foundations of psychology 
are concerned either with learning or perception. Some of the work in 
the part on probability and measurement could also easily be classified 
as belonging to the foundations of psychology. In any case, my most 
recent work in learning is not reflected in these articles for I am now 
concentrating above all on machine learning of natural language. This 
work is represented in the volume of my papers on language recently 
published, Language for Humans and Robots (1991b ). 

Among philosophers of science I am probably best known for advocat
ing set-theoretical models and methods in studying particular problems. 
That interest and viewpoint are certainly reflected in the present volume. 
On the other hand, I like to stress that the strong empirical aspect of 
my work in the philosophy of science and also in science is present in 
this volume, although not as adequately represented. The general point 
I want to emphasize by mentioning this continuing concern with detailed 
empirical data is that I very much believe in a pluralistic approach to both 
,philosophy and science. I am not at all dedicated to reducing all ques
tions to those that can be framed in an explicit way within an appropriate 
set-theoretical model. 

In preparing these thirty-one articles for publication, I have made 
no essential changes, but have of course corrected obvious mistakes or 
misprints. In addition I have tried to standardize the notation in a given 
area. However, given the diversity of topics covered and the conventions 
of notation reigning in different disciplines, it has not been feasible to 
introduce a completely standard notation throughout the volume. I have 
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also deleted from some articles preliminary material of a standard formal 
kind which appeared in an earlier article, in order to avoid the most 
egregious forms of repetition. There is still some repetition in articles on 
common topics since it would have been awkward to delete all areas of 
overlap. I have also standardized the format of section headings, for the 
original articles were published in journals with many different styles. The 
references to the literature given in the various articles are all collected 
together at the end in a single list. Footnotes in the original articles are 
numbered beginning anew with each article. An index of authors referred 
to is given. In place of a subject index, there is a detailed table of contents 
at the beginning of the volume. 

Acknowledgments for permission to reproduce the various articles are 
given at the bottom of the first page of each article, but thanks are ex
tended here to the many editors and publishers who generously agreed to 
publication. Finally, I want to acknowledge the extensive work of Laura 
Tickle, sometimes with Emma Pease's assistance, in preparing this vol
ume for publication in the now increasingly standard format of U.TEX. I 
also want to express my thanks to Kaija Lewis for her careful reading of 
the proofs and final U.TEX editing. 

PATRICK SUPPES 

Stanford, California 
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THE ROLE ~OF FORMAL 

METHODS IN THE PHIL,OSOPHY 

OF SCIENCE 

1. THE END OF IMPERIALISM 

In the period that ran from Frege to the Vienna Circle and Carnap, a 
strongly reductionist view of the philosophy of science held sway. The 
significant problems should be reducible to problems that could be for
malized within logic. Those that could not be treated in this fashion 
should be dismissed as being too vague to be of interest. This description 
is something of a caricature but I shall not convert it into a genuine his
torical account. It is too familiar to all of us to be recounted here. My 
point is, rather, to emphasize that such a reductionist view of the place of 
formal methods in the philosophy of science is now faded. If anything, we 
face currently a new imperialism of historical methods, but I am doubtful 
that we will move to anything like a reductionist Hegelian position that 
all questions are ultimately historical in nature. 

The present pluralistic and schematic view of the philosophy of science 
does have the danger of a lack of intellectual discipline. It can too easily 
be said that any sort of method is appropriate, but in most areas of 

*Reprinted from GurTient re11earch in the philosophy of .science, P. D. Asquith and 
H. E. Kyburg, Jr. (Eds), 1979, pp. 16--27. East Lansing, MI: Philosophy of Science 
Association. 
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4 PART I. GENERAL METHODOLOGY 

science, as well as in the philosophy of science, no broad fundamental 
theory seems achievable. We shall be faced for the foreseeable future with 
a plurality of problems and methods. Yet I am stating the thesis in a 
weaker form than I am prepared to affirm it. The absence of fundamental 
theory dominating a given area of science or the philosophy of science is 
a healthy and normal state of affairs. It is only during certain periods of 
aberration that we seem to have a fundamental theory that is at all close 
to being satisfactory in relation to the problems and data confronting 
us. Ptolemy had such a theory when he was flourishing in Alexandria 
and it was the case when Kepler rewrote the fundamental assumptions 
of astronomy and later when Newton rewrote them once again. Other 
examples of the hegemony of single fundamental theories can be drawn, 
given certain periods of chemistry, perhaps recently from certain parts of 
molecular biology, and even probably for a while in economics. It is my 
view, however, that since World War II the engines of empiricism have 
vastly outrun the horse-drawn carriages of theory. The facts that have 
been accumulated have simply overwhelmed theory in almost every area. 
The range of problems that have been posed has exceeded the capacity of 
theory to handle, and we are now in most scientific domains in a happy 
state of schematic and pluralistic approaches to most problems. High
energy physicists still like to announce that with just another order of 
magnitude of increase in the energies available we shall finally get to the 
ultimate simples of the universe. Most outsiders who have followed such 
repeated claims over the past two decades can scarcely be anything but 
skeptical, and marvel at this latest expression of philosophical naivete. 

It is also worth mentioning that at the very time historical methods 
are becoming increasingly important in the philosophy of science, formal 
methods are assuming a comparable importance in history. Some acces
sible examples of elementary quantitative research in history are to be 
found in the volume edited by Aydelotte, Bogue, and Fogel (1971). Tech
nically more. sophisticated instances are abundant in the restricted area 
of economic history. 

Perhaps one of the best examples of the decline of theoretical hege
mony is in psychology. During the 1940s and much of the 1950s, behav
iorism was the dominant theoretical viewpoint and the organizing force, 
from a methodological standpoint, throughout the parts of psychology 
considered fundamental or basic by a large number of American psychol
ogists. (The situation was rather different in Europe, but experimental 
psychology is the most American of all of the fundamental scientific dis
ciplines, and so I shall not try to comment on the European scene.) The 
symbolic end of this hegemony was Chomsky's famous review (1959) of 
Skinner's book on verbal behavior (1977), but the thrust of behaviorism 



THE ROLE OF FORMAL METHODS IN THE PHILOSOPHY OF SCIENCE 5 

continued into the middle 1960s, and it is only in the present decade that 
the deep-lying nature of the theoretical disarray in psychology has become 
so apparent. It is my conjecture, along the lines of what I have already 
said in general, that the many separate theoretical enterprises now flour
ishing in psychology will not be replaced in the future by a single unifying 
discipline. In retrospect it is apparent that the claims of theoretical psy
chology, as exemplified for instance in Clark Hull's work of the 1930s and 
1940s, are as intellectually absurd as the claims of Kant to establish an 
a priori foundation of natural science-indeed, most philosophers would 
probably find Kant more sensible, but then I think that is because they do 
not often look at his detailed arguments as, for example, in the Metaphys
ical Foundations of Natural Science but at the more general and therefore 
less absurd views to be found in the Critique of Pure Reason. 

One of the points that I want to make in these remarks about the 
pluralism of theories is that, just as physicists have in the past been dom
inated by the search for ultimate simples and ultimate theory, so philoso
phers of science have sought certainty and completeness of theoretical 
foundations for science. This search runs all the way from Aristotle's 
views on demonstration in the Posterior Analytics to Carnap on the logi
cal structure of the world. The decline of this long search for bedrock does 
not mean the end of the relevance of formal methods in the philosophy 
of science but rather the beginning of a new era of realism about their 
limitations as well as their potential. 

The rest of this paper is concerned to expand on this last point. In the 
next section I discuss the variety of formal methods that seem appropriate 
in the philosophy of science. The following section is concerned with a 
survey of some of the open problems in the philosophy of science, in the 
analysis of which formal methods can play a role. 

2. VARIETY OF FORMAL METHODS 

The theme of my remarks is, as before, pluralistic in nature. I begin 
with the point that there is no agreed upon formal methodology to be 
used in the philosophy of science; a variety of methods are available and 
appropriate. It is no longer a philosophically interesting question to seek 
a single methodology. 

At least four methods have a certain saliency; two of them have been 
prominent in the last half century. The four I have in mind are: formal
ization in first-order or second-order logic (extensional or intensional), 
formalization within set theory, the procedural approach characteristic of 
computer science, and the approach of informal rigor vividly supported 
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by Georg Kreisel on various occasions. Broadly speaking, all of these 
methods are characterized by some form of mathematical approach to 
problems in the philosophy of science. It is not my thesis to argue that 
all problems can be brought within the framework of one of these formal 
approaches, but I would strongly resist the view that most problems of in
terest lie outside of such methods. There are, of course some philosophers 
who now have such a strongly historical orientation toward problems in 
the foundations of science that there is skepticism about the use of formal 
methods on any problems of significance. In my view, this is a momen
tary fashion that is mistaken. A properly balanced philosophy of science 
will encompass both formal and historical methods, and, indeed, some 
of the more sophisticated problems in the history of science can well be 
approached from a formal standpoint. Some of the claims about scientific 
revolutions, for example, would seem to require quantitative and statisti
cal analyses of data if they are to be taken as serious claims having the 
same status as other scientific claims about natural or social phenomena. 

Of the four methods of formalization I mention, logical formalization 
is certainly the one that has received the most attention from philoso
phers, and those who are not very conversant with science often tend to 
think of this as the only kind of formalization. Many interesting results 
have been achieved by such methods. Perhaps even more important, the 
widespread and almost universal familiarity among philosophers of sci
ence with the concepts of elementary formal logic have provided a useful 
common framework for discussion of a great variety of problems. 

On the other hand, I have emphasized in numerous publications for 
many years the limitations of such formalization because of the richness 
of structure characteristic of most developed scientific theories. I have 
baptized this attitude of mine "to axiomatize a scientific theory is to define 
a set-theoretical predicate." I continue to think that such set-theoretical 
methods are appropriate for a wide variety of problems in the philosophy 
of science, and I have tried in various papers to make this view a concrete 
one by providing a number of examples. Such set-theoretical methods are 
not as widely used in the philosophy of science as methods of formal logic 
but they are certainly better known and more widely accepted than the 
last two methods I mentioned. 

The procedural approach characteristic of computer science is just 
gaining currency in the philosophy of science. It is almost certainly the 
case that the pursuit of procedural or computational methods will be of 
considerably more importance than the further extension of set-theoretical 
methods in the development of fundamental psychological theories of cog
nition, learning, and perception. More generally, procedural approaches 
will probably come to be of greater importance theoretically in the phi-
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losophy of the social sciences than they now are. Because of the extensive 
use of computational methods by most empirically oriented social sci
entists, it seems likely that many future theoretical developments will 
depend upon the use of computational ideas, rather than set-theoretical 
concepts, for their formalization. Of course, such formalizations outside 
of set theory are already familiar in constructive parts of the foundations 
of mathematics but their use in science, as opposed to mathematics, will 
have a different flavor because of the extensive computer orientation of 
the methods. 

I also want to mention the conjecture that procedural methods will 
turn out to be especially important in developing an appropriate theory 
of meaning and of comprehension for natural language. An example that 
would not be accepted by many people is the proposal that the meaning 
of a proper name may be taken to be the set of internal procedures by 
which the individual that uses or recognizes the proper name attaches 
properties or relations to the object denoted by the proper name. These 
procedures or programs internal to a particular language user are private 
and in detailed respects idiosyncratic. The appropriate notion for a public 
theory of meaning is a notion of equivalence or congruence of programs 
or procedures that is considerably weaker than this very strong sense of 
idiosyncratic individual program. If this viewpoint is at all correct, the 
search for any hard and fast sense of identity of meaning is mistaken-it 
is hidden away in the internal programming of each individual and is a 
notion of limited scientific interest. What we are after are congruences of 
procedures that can collapse these private features across language users 
to provide a public and stable notion of meaning. 

Put still another way, procedural approaches are a natural method for 
incorporating intensional and constructive ideas within the same concep
tual framework. For this reason especially they would seem to have a 
very considerable future as an appropriate method of formalization in the 
philosophy of science. 

Kreisel's lively defense of informal rigor (see especially his 1967 arti
cle) has been directed at overly formalistic and positivistic conceptions 
of the foundations of mathematics and rather little at the philosophy of 
science. His views are a proper propaedeutic to those who have been too 
enthusiastic about formalism and not sufficiently attentive to the need for 
informal and intuitive ideas of a definite nature about a subject in order 
to have significant ideas about it. In my own view, some of the analyses 
offered of the notion of causality in the philosophy of science suffer from a 
lack of informal rigor, that is, from a lack of serious attention to detailed 
scientific examples and the test of the formal ideas proposed against a 
variety of systematic intuitive results. Kreisel has made the point to me 
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in several conversations that the use of set-theoretical methods in the 
philosophy of science is actually an example of informal rigor because it 
is the intuitive notion of set that is being used and not one axiomatized 
within first-order logic. 

3. VARIETY OF OPEN PROBLEMS 

I have divided this discussion of open problems to which formal methods 
are relevant into three parts, one dealing with theories, one with method
ology, and one with problems of experimental evidence. 

Theories. The historical development of physics is being investigated in 
fascinating ways by historians of science and by philosophers of science 
using an historical approach. All of us will learn a great deal from this 
work, whether we concentrate on Neugebauer's history of ancient astron
omy (1975), current work concerned with the history of quantum mechan
ics, or any period in between. Although I am a strong advocate of formal 
methods, I am also an inveterate reader who has learned much from a 
variety of historically oriented works. My own generally skeptical views 
about having certain knowledge of a clear and definite sort about any 
complex phenomena have been much reenforced by Neugebauer's skep
ticism concerning the possibility of ever tracing causal influences in the 
history of science. 

But historical study of fundamental scientific disciplines is, I want to 
insist once again, not the whole story for the philosophy of science. There 
are many questions of great philosophical interest that are no more histor
ical than the corresponding development of new science. All such work, 
of course, should be properly historical in paying attention in technical 
detail to prior work that is relevant. But this is not what is meant by 
historically oriented studies and I only mention it because there has been 
a tendency in the philosophy of science to write about subjects without 
prior attention to the serious previous work. One of my own favorite ex
amples of the view that ignorance is best is Norman Campbell's work on 
the theory of measurement, which reflects no serious acquaintance with 
the deeper and more sophisticated earlier work of Helmholtz and Holder. 

In those domains of physics that are properly regarded as being of 
fundamental philosophical interest, the number of formal problems of 
foundational interest is too large to enumerate here. It is easy to give 
a long list of open formal problems in quantum mechanics alone, the 
most important empirical scientific theory of this century. We are as yet 
far from understanding the role of probability in quantum mechanics. At 
an even more general level, there is still dispute about whether the final 
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formulation of quantum mechanics should depend upon a nonstandard 
special quantum logic. The role of the theory of measurement and the 
explicit theory of the observer is also still a subject of controversy and one 
whose clarification bears on a number of significant problems of theory 
construction. 

It is sometimes thought that the use offormal or axiomatic methods in 
the study of such problems is quite foreign to the work of physicists them
selves and should be regarded as a new kind of scholasticism introduced 
by philosophers seeking to impale new angels on new needles. 

Without entering into a dialectical discussion of this matter, I want to 
quote one significant piece of evidence to the contrary, the introductory 
paragraph of the well-known book on axiomatic quantum field theory by 
Bogolubov, Logunov, and Todorov (1975) on the place of the axiomatic 
approach in physics. 

It is widely believed that axiomatization is a kind of polish
ing, which is applied to an area of science after it has been, 
for all practical purposes, completed. This is not true, even 
in pure mathematics. Admittedly, the modern axiomatization 
of arithmetic and Euclidean geometry marked the completion 
of these disciplines (although at the same time it stimulated a 
new science-mathematical logic, or metamathematics). For 
most areas of contemporary mathematics, however, such as 
functional analysis, axiomatization is a fundamental method 
of exploration, a starting point. (Of course, the system of ax
ioms may be modified as the subject develops.) In theoretical 
physics, since the time of Newton, the axiomatic method has 
served not only for the systematization of results previously 
obtained, but also in the discovery of new results. (1975, p. 1) 

I mention as examples two other areas of science in which open problems 
exist for which formal methods are appropriate, and both the analysis 
and results would be of philosophical interest. 

One concerns the notion of causality in the work of modern mathemat
ical economists and econometricians. There is an increasingly technical 
literature on the use of causal notions in economics, especially as inter
twined with a variety of detailed statistical methods for the analysis of 
economic data. To some extent the methods are mathematically intricate 
and relatively sophisticated because of the absence of the possibility of 
experimentation in economics. More powerful analytical methods are re
quired in order to make a firm identification of causal phenomena. As far 
as I know there has not been any really thorough formal analysis from 
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the standpoint of the philosophy of science of this large economic litera
ture (a beginning may be found in Suppes (1970)). It is my belief that 
we as philosophers could learn much from this literature and at the same 
time we could bring to it a philosophical perspective that could contribute 
something as well. A simple but elegant technical example of this litera
ture is to be found in Hosoya's (1977) proof of the general equivalence of 
the Granger (1969) condition for noncausality and the Sims (1972) con
dition. It is my impression that economics is almost the only science at 
present in which one can find unabashed technical discussions of causality 
in general terms and with careful theoretical development of concepts. (I 
exclude in this remark the use of causality principles in physics which 
refer essentially only to precedence in time.) 

As a second example I mention the classical mind-body problem in the 
new guise of software and its independence of hardware. One need not go 
far in current neuroscience to realize that we are probably further from 
understanding how the mind works at a neural level than we ever thought 
we would be, at this point in time, say 30 or 40 years ago. The more work 
that is done, the greater the mystery deepens and it now seems an ap
propriate formal problem for psychology to establish under the weakest 
and most reasonable assumptions possible the impossibility of reducing 
complex phenomena to neurophysiological phenomena. The analogy here 
is that from an inspection of computers one can say very little about the 
kind of software that will be written for them, and if the problem were 
approached, once the program is encoded, in a purely physical fashion, I 
do not doubt that we would be unable ever to discover what the program 
is. There is even some skepticism that a large operating system encoded 
in binary digits could be fully understood if no external cognitive guides 
were provided. In any case, the relation between brain and mind is much 
worse because we do know so little about the detailed physical basis for 
encoding complex mental events. It would be interesting to formulate 
a variety of theorems about the impossibility of a reduction of mind to 
brain. Such theorems should play the same role in psychology that im
possibility theorems about hidden variables play in quantum mechanics. 
The rigorous pursuit of the details should prove enlightening and should 
give us new ideas about how to formulate the concepts of psychology in a 
way that is properly independent of neurophysiology. (A somewhat more 
detailed discussion of these matters is to be found in Suppes (1975).) 

Methodologies. The two decades running from 1945 to 1965 were marked 
by a more rapid expansion of work in mathematical statistics than in any 
other period of history. This was the time when decision-theoretic ideas 
were made the center of much of the theoretical literature in statistics. 
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The spread of applied statistics in the empirical sciences has also been 
more marked in the period since World War II than at any other time. At 
least until rather recently, these developments in mathematical statistics 
at both the theoretical and applied level have been largely ignored by 
philosophers, even those interested in the foundations of probability and 
induction. 

Part of the reason for this separation between the statistical and philo
sophical literature on the foundations of induction has been the develop
ment of a separate strand of work by philosophers, generally labelled con
firmation theory. A characteristic feature of confirmation theory has been 
its use of particular formal methods, primarily those of elementary logic. 
As a consequence, it has been difficult to make contact with the more 
elaborate and mathematically more technical machinery of mathematical 
statistics. Recently this situation has begun to change and there is now 
an increasing number of philosophers becoming knowledgeable about the 
foundations of statistics. 

I would like briefly to mention some of the problems of statistical 
methodology of great importance in applied work which have not yet re
ceived definitive solutions. These are problems of obvious philosophical 
interest, and they illustrate the important role of formal methods in the 
foundations of probability and induction. First, there has been in the 
last decade and a half a new and extensive body of work on the con
cept of randomness. In the hands of Martin Lof and others, this concept 
has now begun to have implications for the theory of statistics as well 
as probability. A related question is the Bayesian problem of justifying 
random-sampling procedures. Formal and axiomatic analysis of the ba
sis for random sampling continues to be a prominent problem and one 
that deserves philosophical consideration. More generally, the theory of 
finite samples and the admissibility or inadmissibility of the concept of an 
infinite population from which samples are drawn need further analysis. 
Certainly finitistic Bayesians would not be willing to admit the appro
priateness of the concept of an infinite population, but the concept, on 
the other hand, has a long history of use and development in objective 
statistical theory. 

The theory of experimental design has had intensive technical devel
opment since World War II, but the foundational principles are still in 
an unsatisfactory state. The recent flurry of interest in Bayesian statis
tics has not yet produced a satisfactory Bayesian theory of experimental 
design. The foundational literature that derives from de Finetti has as 
yet scarcely made contact with the technical problems of design. Almost 
certainly the principle of exchangeability, whose importance de Finetti 
has emphasized since the late 1920s, should play a prominent role in the 
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foundations of the relevant Bayesian concepts, but much remains to be 
done to work out the formal theory. 

This last mention of the role of the principle of exchangeability pro
vides an opportunity to make a point that is implicit in what I have 
already said. I see no basis for drawing a sharp separation between the 
work that is to be done by philosophers interested in these problems and 
by statisticians with similar interests. There is a necessary and even a 
desirable overlap. It does not mean that philosophers must become pro
fessional mathematical statisticians in order to pursue problems of the 
foundations of statistics but it does mean, as in the case of the philoso
phy of science in other areas, as, for example, the philosophy of quantum 
mechanics, that detailed knowledge of relevant scientific work is a neces
sary background of informed philosophical analysis. What I would urge 
as strongly as possible is that philosophers meld their own formal meth
ods with those of statisticians, in order to concentrate on the conceptual 
problems of interest. In this necessarily superficial survey of problems, 
I have especially mentioned problems of randomness of sampling, and of 
experimental design, because it is just these problems of central impor
tance in the conceptual foundations of statistics that have received quite 
inadequate analysis in the philosophical literature on probability and in
duction. 

Problems of experimental evidence. I have for a long time worried about 
formal models of data (1962). It is still my conviction that the philos
ophy of science has a significant contribution to make to the theory of 
how experimental evidence is used to test or evaluate scientific theories. 
Obviously a variety of problems that arise in this context are primarily 
statistical in character and would properly be treated under the heading of 
methodologies as discussed above. However, a cursory examination of the 
experimental literature in any developed part of science makes clear that 
there is a plethora of problems about the relation of evidence to theory 
that are not statistical in character and that need systematic analysis. 

One task of formal analysis that I have tried to encourage several of 
my students to undertake, but as yet without any major success, is the 
detailed analysis of the relation between the major experimental evidence 
supporting quantum mechanics and the theory itself. There is, as far as I 
know, no place that systematically presents the evidence supporting the 
classical theory in a methodologically meticulous fashion. Indeed, it is the 
practice in textbooks and treatises on classical quantum mechanics not 
to present supporting experimental evidence in any serious form at all. 
A couple of years ago I wanted to determine how well the experimental 
evidence supported the claim that radioactive decay obeys an exponential 
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probability law. I was surprised to find how difficult it was to locate 
in the literature a detailed statistical analysis of this problem and how 
much it was neglected even in its most superficial aspects in the standard 
discussions of radioactive decay. This, however, is a simple case. The 
much more complicated cases of the main experimental data supporting 
quantum mechanics are in a very unsatisfactory status from a systematic 
viewpoint, and much remains to be done. 

To some extent, one of the best traditions in this respect is in psy
chology, but even here the formal theory of how experimental evidence is 
related to theory is not as explicit as it should be. I do want to empha
size the formidable character of the problems of organizing in a formal 
way the relationship between experimental evidence and theory. In re
cent years I have attempted to read some of the current experimental 
literature in physics. It is almost as if I had decided to learn a foreign 
language. Although I have a reasonable familiarity with certain areas of 
theoretical discussion in physics, I found the experimental literature to 
be an entirely different matter. The abbreviated technical descriptions 
of equipment, its functional characteristics, and the description of the 
data obtained, require a major effort of analysis to become conceptually 
independent of the large preceding literature on the same topic. I can 
now understand why my friends in physics tell me that the experimental 
literature in one area is almost unreadable even by someone working in 
a nearby area. I am not proposing that philosophers attempt to rework 
a large part of this literature-the task is clearly an impossible one. It 
would be of interest to have a detailed formal analysis of some particu
lar areas of philosophical significance, for example, recent experiments on 
hidden-variable theories, if only for the purpose of bringing out how com
plicated the relation is between theory and experiment in the developed 
domains of science. The stories we get from formal accounts in philosophy 
unrelated to these details, or the equally simplified stories we get from 
historical accounts of past work in science when matters were technically 
much less complicated, are misleading. We need a corrective both to too 
much emphasis on purely formal methods on the one hand and purely 
historical methods on the other, by a proper and detailed look at current 
experiments in developed parts of science. 

4. FINAL REMARK ON HISTORICAL AND FORMAL METHODS 

There has been throughout this conference an obvious intellectual tension 
between those who advocate historical methods as the primary approach 
in the philosophy of science and those who advocate formal methods. 
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This tension in itself is a good thing. It generates both a proper spirit of 
criticism and a proper sense of perspective. Each group can tell the other 
about their weaknesses and the pursuit of philosophical matters can be 
undertaken at a deeper level. There is no worse fate for a developing the
ory or method than not to be confronted with opposing views that require 
a sharpening of concepts and a detailed development of arguments. On 
the other hand, there seems no reason not to find room in the philosophy 
of science for a vigorous pursuit of both historical and formal approaches. 

I share with my more historically oriented colleagues a kind of horror 
at the thought of a formal philosophy of science that develops on its own, 
independent of the rich material offered by the sciences themselves. I 
have already mentioned some examples of this tendency and I join them 
in encouraging the pursuit of problems and of methods that have a com
plexity adequate to the actual work in developed sciences. But I also want 
to remind those concerned with historical methods in the philosophy of 
science that about ninety percent of all scientists who have ever lived are 
now alive, and the development of science since World War II is the most 
smashing success story in the history of thought. To be concerned only 
with the long historical perspective and not to understand the systematic 
details of modern science is as mistaken as the pursuit of empty formal 
methods that make no contact with developed scientific theories and their 
supporting experiments. 

My intent is to end on the pluralistic note that there is more than 
enough interesting and important work for all of us. The tyranny of any 
single approach or any single method, whether formal or historical, should 
be vanquished by a democracy of methods that will coalesce and separate 
in a continually changing pattern as old problems fade away and new ones 
arise. 



2 

THE STUDY OF SCIENTIFIC 

REVOLUTIONS: THEORY AND 

METHODOLOGY 

The nature of scientific revolutions has become a fashionable topic both 
in the history and in the philosophy of science. I shall not in this paper 
attempt to review the many controversies that have filled the literature in 
the past decade. My purpose is to try to take a longer view as to what the 
proper role of philosophy should be in the study of scientific revolutions. 
What I have to say is certainly tentative, and many of the ideas will 
probably be regarded as wrong by a fair number of my colleagues. This is 
not meant as a prefatory apology but simply as a prediction. I am quite 
prepared to defend what I have to say but regard the present study of 
such matters as so tentative and immature that to be at all certain of 
the correctness of my views would be too dogmatic for my skeptical and 
empirical view of philosophy, history, and science. 

From the standpoint from which I approach the subject there are two 
natural divisions. One is consideration of the theory of scientific revolu
tions and the other is the methodology of evaluating the empirical sound
ness of such theories. In saying something about these matters I shall not 
make strenuous efforts to separate philosophy from other disciplines that 
can approach the same problems. 

*Reprinted from, La filosof{a ylas revoluciones cient{ficas: Teorla y praxis. Mexico, 
D. F.: Editorial Grijalbo, S. A., 1979, pp. 295-306, but with the original English text. 
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1. THEORY 

The theory of scientific revolutions seems to me to itself divide naturally 
into three parts. The first part is simply the description of the structure 
of science during the period that a presumed revolution took place. The 
second part concerns the kinematics of the presumed revolution, what 
is an appropriate description of the changes that took place, how can 
we describe those changes, and can we meaningfully talk about them as 
continuous or discrete in character? The third part concerns the dynamics 
of the revolution. Here the search is for causes and especially a theory of 
the causes. 

Structure. As an example of the problems of having an adequate theory of 
structure, let us consider the history of geometry. Because of the paucity 
of texts, we can perhaps see in realistic terms the possibility of describing 
the state of geometry as a mathematical or scientific discipline in 200 B.C. 
in the Hellenistic world of Alexandria, Rhodes, Syracuse, and a few other 
places. Even then, the theory of what is to be regarded as essential in that 
structure and what is accidental or unimportant is not, as far as I can 
see, clearly formulated anywhere. Moreover, there are puzzles that seem 
difficult to solve in characterizing the structure; for example, how much 
relative weight should we attach to the methods of proof that were used 
as compared to the depth of the mathematical results that were obtained? 

When we move across the centuries to the many rigorous formulations 
of geometry given at the end of the 19th century, with the work of Hilbert 
often being taken as a paradigm example, I at least find it even more 
perplexing to characterize what is to be regarded as the structure of the 
science of geometry. Are the rigorous axiomatic methods of Hilbert the 
most important feature, or is the group-theoretic viewpoint of Klein more 
fundamental? Moreover, this is to ask only the most elementary and 
primitive question. A structure as we ordinarily think of it is not properly 
characterized by simply listing its main features but rather by saying 
how these features are related and interlocked. We can talk with some 
precision about the structure of Euclidean Geometry in an abstract sense, 
but can we talk in a reasonably meaningful way about the structure of 
geometry as a s~ientific discipline at the end of the 19th century? What 
I have said about geometry seems to me to apply as well to any other 
major scientific discipline, running from astronomy to zoology. 

The basis of the problem or, put 9nother way, the reason for the 
absence of any substantive theory of structure is similar, it seems to me, to 
the absence of any systematic theory of structure for almost all historical 
phenomena of human interest. In the same way that we can question 
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what is meant by the structure of a scientific discipline at a given time, 
we can ask about the structure of a society, the structure of a market, the 
structure of a military campaign. In those cases that have been regarded 
as of great historical interest it is fair to say that the concept of structure 
that is imposed is rudimentary at best and most often left at a completely 
impressionistic level. The reasons for this seem clear. We simply have 
not yet developed adequate abstractions to provide the basis for a serious 
theory of structure. 

To my severe strictures about structure it is possible to reply that 
an unreasonable standard is being set, but it is important to recognize 
that here is a radical difference in that. case between what we should 
hope to achieve in a given part of science itself as, for example, in the 
study of the structure of the atom, or the structure of the solar system, 
and what we have as our intellectual ambition about the structure of 
scientific revolutions. If the view is held that the theory of structure 
of such revolutions cannot rise above the present impressionistic state 
of affairs, then the theory of such matters will remain committed to a 
romantic view of what may be regarded as the highest products of our 
intellectual activities as human beings. 

Kinematics. Without a theory of structure it is difficult to see how a 
theory of kinematics or of change can be developed. The kinematical 
theory of scientific revolution is in an even more primitive state than the 
theory of their structure. It is hard to think even of a nontrivial scientific 
problem that has yet been posed about such changes. Where indeed is to 
be found a testable theory or hypothesis of change about any branch of 
science? 

Let us look at some typical questions that arise in the kinematics of a 
wide variety of natural phenomena and ask whether these questions can 
be transformed into meaningful programs of inquiry for the kinematics of 
scientific revolutions. One classical kind of question is whether change is 
continuous or discontinuous. The conservative postulate of most of clas
sical physics, for example, is that change is continuous. In the case of 
classical mechanics, the further requirement would be imposed that the 
paths of particles are not merely continuous but piecewise twice differen
tiable. In the theory of Brownian motion, we end up with the result that 
the paths of particles are continuous but almost nowhere differentiable. 
On the other hand, in quantum mechanics a fundamental change in atti
tude was expressed in the discovery that the transitions between energy 
states of atoms were discontinuous and discrete rather than continuous. 
In the psychology of contemporary learning theory there has been an in
tense study of various kinds of learning, with some being characterized as 
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continuous in character and others as being discrete or all-or-none. The 
differing theoretical assumptions that lead to these different kinematical 
predictions have been laid out in explicit detail. 

These comparisons, it may be said, are unreasonable and unwarranted. 
Surely it is absurd, it may be claimed, to even think of distinguish
ing between differentiable and nondifferentiable continuous trajectories 
of change for scientific revolutions. With this point I agree, but the ex
ample from psychology illustrates the kind of theoretical work that can 
discriminate between our intuitive ideas of continuous versus discontinu
ous phenomena. In the case of the examples of learning, the main studies 
deal with experiments consisting of discrete trials, and there is no sharp 
notion of differentiability directly definable for the phenomena. On the 
other hand, very clear mutually contradictory hypotheses about the na
ture of learning can be formulated and given exact expression. Still, it 
may be said, the example is not appropriate because the study of his
torical phenomena cannot hope to achieve the precision or quantitative 
definiteness of developed experimental sciences. 

But refuge in the nonexperimental character of historical phenomena 
is no refuge at all because for many centuries the most exact science, 
namely, astronomy, was and is wholly non experimental in character. 

In rather brief and superficial terms it may be useful to make a com
parison of an important but structurally simple kinematical theory of 
historical phenomena. I have in mind data on the modern rise in popula
tion. I take my discussion from McKeown (1976). Approximate estimates 
of the modern rise of population are given by McKeown as follows: By 
1750 the world population is estimated to have been about 750 million; 
by 1830 it was one billion, two billion in 1930, three billion in 1960, and 
four billion in 1975. Through these data points we can fit a remark
ably simple nonlinear function, and the kinematical theory consists of 
studying carefully which functions fit the data best. The example I have 
quoted is rather crude; much more exact population estimates exist for 
the more recent years and also for particular countries. In each case, the 
surface kinematical problem is to fit to the data a function that has a 
small number of parameters. For these kinds of data the problem is rel
atively simple. The kinematical problem faced by Kepler was not, as it 
was not for earlier Hellenistic astronomers, and especially if we regard, as 
we would today, the epicycle theory as a kinematical theory of the motion 
of the planets. 

One problem about the kinematics of scientific revolutions that would 
be interesting to me, but perhaps would be regarded as not so by many 
philosophers and historians, would be the analysis of the rate of publica
tion about a given topic across the period of a revolution. Do, for exam-
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pie, these spreads of publication have very similar mathematical form as 
a nearly universal characteristic of scientific revolutions, at least in the 
context of science since 1800, or are quite different rate functions to be 
found? I fear that my colleagues interested in the history of science and 
its relation to the philosophy of science have no real taste for such quanti
tative questions, but this, it seems to me, is mainly because they are not 
really interested in approaching their subject in a scientific fashion. 

Dynamics. The population example cited earlier provides a good point to 
begin the discussion of dynamics. Many of us are alarmed at the nonlinear 
growth of population over the past hundred years, but of even greater 
interest is the investigation of the causes of this growth. As McKeown's 
book shows in some detail, a satisfactory causal analysis is not easy to 
come by, but some progress is possible and even some assessment of the 
contribution of modern medical discoveries and measures can be made. 
On the other hand, the theoretical status of causal analyses of major 
political upheavals such as the French or Russian revolutions seems to be 
in a shambles. An excellent survey was given some years ago by Howard K. 
Beale (1946) on the variety of attitudes toward causality and the nature of 
particular cause of the American Civil War. Here is how Beale summarizes 
some of the variety of views: 

Historians, whatever their predispositions, assign to the Civil 
War causes ranging from one simple force or phenomenon 
to patterns so complex and manifold that they include, in
tricately interwoven, all the important movements, thoughts, 
and actions of the decades before 1861. One writer finds in 
events of the immediately preceding years an adequate expla
nation of the War; another feels he must begin his story with 
1831 or even 1820; still another goes back to the importation 
of the first slaves, to descriptions of geographic differences be
fore white men appeared, or to differentiation in Europe be
tween those who settled North and South .... Moral, ideolog
ical, political, economic, social, psychological explanations of 
the War have been offered. Responsibility has been ascribed 
both to action of men and to forces beyond human control. 
Conspiracy, constitutional interpretation, human wickedness, 
economic interest, divine will, political ambition, climate, "ir
repressible conflict", emotion, rival cultures, high moral prin
ciples, and chance have severally been accredited with bringing 
on the War. There is a Marxian interpretation; also a racist 
theory. (pp. 55-56) 
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Beale goes on to spell out this vast variety of causal explanations, and any 
but the most dogmatic reader can scarcely end up with other than a highly 
skeptical attitude that it is possible at the present state of historical theory 
to provide a satisfactory or even partially satisfactory causal analysis of 
a major political or social revolution or conflict. 

For much of the history of science, the development of a causal theory 
seems a futile exercise because of the paucity of data to test such a theory. 
This attitude is well expressed by Neugebauer (1957) in the following 
passage concerning causal theories of the origin of mathematics. 

The Greeks themselves had many theories about the origin 
of mathematics. A favored one, which is still kept alive in 
modern textbooks, makes the necessity of repeated land mea
surement responsible for geometry. Modern authors have of
ten referred to the marvels of Egyptian architecture, though 
without ever mentioning a concrete problem of statics solv
able by the known Egyptian arithmetical procedure. A much 
more sophisticated attitude is represented by Aristotle, who 
considers the existence of a "leisure class", to use a modern 
term, a necessary condition for scientific work. Our factual 
knowledge about the development of scientific thought and of 
the social position of the men who were responsible for it is so 
utterly fragmentary, however, that it seems to me completely 
impossible to test any such hypothesis, however plausible it 
may appear to a modern man. (pp. 151-152) 

For science since 1800 or so, it may be felt that adequate data can 
be collected to test reasonable causal ideas, but, as the example of the 
American Civil War shows, we are faced in modern cases with the opposite 
difficulty namely, the data are so rich and varied that we have no serious 
idea as to how to make a scientific analysis of causes that can be properly 
defended. 

Tales of detail from either an internalist or externalist standpoint 
about any particular scientific revolution are fascinating and intriguing 
to me as well as to many others, but I do not find in these lovely tales 
any trace of a serious scientific causal theory, and I am skeptical that in 
any near future we shall have one. 

A proper role for philosophers here, as in other aspects of historical 
analysis, is to press the point about theory and to insist whether a com
mitment is being made or a claim is being made about the theoretical 
status of the propositions set forth on the nature of scientific revolutions. 
There is irony in the fact that after decades of formalist effort in the phi
losophy of science many philosophers seem to have been overcome by the 
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richness of the data set in front of them by historians, no matter how 
primitive the theory that accompanies these data may be. 

2. METHODOLOGY 

In a number of sciences--experimental psychology and econometrics are 
perhaps the best examples-there is little development of the kind of de
tailed and rigorous theory I have been calling for. It may be thought by 
many that I am setting an unreasonable standard in drawing on devel
oped theories in the physical sciences or in mathematics as models that 
should be followed in a theory of scientific revolutions. There is, of course, 
back of this issue a hoary problem of many years standing concerning the 
ideographic or nomothetic character of historical investigations. I am as
suming without further debate that the case for the nomothetic view is 
overwhelming-at least it should be among those who want to make pre
tentious claims about the structure or the nature of scientific revolutions. 
My own attitude is plain: If the theory of scientific revolutions is primitive 
or nonexistent, let us not burke the facts. 

But even if the theory is primitive, we can, as in the case of much of 
experimental psychology or econometrics, try to make serious scientific 
progress by application of a careful and explicitly thought out method
ology. Some order can be brought to the welter of empirical data and 
some sense of cumulative progress can develop. A good many aspects of 
the historical study of population changes satisfy such a standard. Even 
that marvelous 18th century spinner of psychological fables, David Burne, 
was cautious, highly empirical, and careful in dealing with estimates of 
the population of the ancient world. The modern historical literature on 
population has become technical and scientific and to my mind all to its 
credit. 

A valiant effort at developing a more quantitative methodology in the 
history of science has been made by Derek Price in his 1961 book and in 
a number of articles. Price has studied a number of phenomena of growth 
in science: the number of journals, the number of physics abstracts since 
1900, the growth in the number of papers in a given field of science, 
and the growth in the number of scientists. He has investigated the ex
tent to which exponential functions or other analytically simple nonlinear 
functions fit the data. He has not looked very much at scientific revo
lutions, but the kind of quantitative techniques he has begun to apply 
would not be inappropriate, especially in the analysis of the rise and fall 
of publications on a given scientific topic following its introduction into 
the literature. But in many ways Price has been a lonely example; not 
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many people have followed the line of work he has begun. Above all, 
the detailed and tedious analysis of data required to pursue with any 
thoroughness the program he has started has not really taken place, and 
certainly not in the study of scientific revolutions. The result seems to 
be the inevitable one that the quantitative study of the history of science 
remains in a primitive state, just as the theory of scientific revolutions 
remains in such a state. 

There is a notorious case of applying quantitative methods in history 
to which I would like to draw a parallel to what I think it would be 
desirable to see happen in the study of scientific revolutions or, more gen
erally, in the study of many aspects of the history of science. In 1974, 
Robert William Fogel and Stanley L. Engerman published a controversial 
work, Time on the Cross, subtitled The Economics of American Negro 
Slavery. This work has become famous in the recent scholarship of Amer
ican history for two reasons. First, it contravened a number of standard 
historical theses about the conditions of slavery and the performance of 
slaves in the pre-Civil War South. Second, the authors brought to bear 
as a me.thod of establishing their theses a battery of statistical tools and 
techniques that have been developed and used extensively in economet
rics but seldom, if at all, in the quantitative study of such matters as 
were the focus of their book. The repercussions of the work of Fogel and 
Engerman have been widespread in American circles of scholarship and 
there has perhaps been a tendency for a lineup of acceptance by histo
rians oriented toward social science, on the one hand, and rejection by 
humanistically oriented historians on the other. But this is not the moral 
of my tale. A much more interesting outcome, in my judgment, is the 
painstaking and meticulous examination of the methodology of Time on 
the Cross by a group of economic historians sophisticated in the methods 
of econometrics. It is right and proper, in my view of things, that the 
really careful and exacting critique of Fogel and Engerman's work came 
from David, Gutman, Sutch, Temen, and Wright (1976), writing in the 
very spirit exemplified by Time on the Cross and not in terms of some 
humanistic broadside. 

Sadly enough, the same kind of critical assessment and detailed analy
sis and reanalysis of data has not taken place within the framework begun 
by Price in the history of science. Compared with the sophistication of 
the methodology in Time on the Cross and the riposte of David et al. 
in Reckoning with Slavery, the quantitative methodology begun by Price 
is, especially from a statistical standpoint, still in its infancy. As Price 
remarks, "It is perhaps especially perverse of the historian of science to 
remain purely an historian and fail to bring the powers of science to bear 
upon the problems of its own structure. There should be much scope for 
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scientific attack on science's own internal problems, yet, curiously enough, 
any such attack is regarded with much skepticism" (p. 93). 

In the same year that Time on the Cross appeared, 1974, the distin
guished American historian Eugene D. Genovese also published a book 
on American slavery entitled Roll, Jordan, Roll: The World the Slaves 
Made. Genovese writes in the traditional historical manner, giving his 
own intuitive digest of the vast amount of data surveyed, especially the 
personal accounts of the conditions of slavery in the old South. It is not 
my purpose here to assess the merits of Genovese's book, but one reviewer 
made a remark that I think is most appropriate. The really fundamen
tal difference between Time on the Cross and Roll, Jordan, Roll is that 
the first can be proved wrong, and resoundingly so; the second is essen
tially inaccessible to either proof or disproof, for the methods do not lend 
themselves to any deeper analysis of evidence for or against any particular 
thesis. Fogel and Engerman made many mistakes but they were honest 
enough to lay out the data and to describe it in such a way that their 
tracks could be traced. Not so Genovese. It is not a question of intellec
tual dishonesty but a question of method. His tracks are covered not only 
from others but from himself. He cannot give a rational account of the 
methods by which his summary views or selections of individual sketches 
were made. I am happy to leave the creative sources of hypotheses or even 
of theories deep in the unconscious of the individual scientist or scholar 
but I am not happy at all to leave the methodology of verification at the 
same unconscious level. As far as I can see, this is where we still are in 
the analysis of scientific revolutions. 



3 

LIMITATIONS OF THE 

AXIOMATIC METHOD IN 

ANCIENT GREEK 

MATHEMATICAL SCIENCES 

My thesis in this chapter is that the admiration many of us have for the 
rigor and relentlessness of the axiomatic method in Greek geometry has 
given us a misleading view of the role of this method in the broader frame
work of ancient Greek mathematical sciences. By stressing the limitations 
of the axiomatic method or, more explicitly, by stressing the limitations of 
the role played by the axiomatic method in Greek mathematical science, I 
do not mean in any way to denigrate what is conceptually one of the most 
important and far-reaching aspects of Greek mathematical thinking. I do 
want to emphasize the point that the use of mathematics in the math
ematical sciences and in foundational sciences, like astronomy, compare 
rather closely with the contemporary situation. It has been remarked by 
many people that modern physics is by and large scarcely a rigorous math
ematical subject and, above all, certainly not one that proceeds primarily 
by extensive use of formal axiomatic methods. It is also often commented 
upon that the mathematical rigor of contemporary mathematical physics, 

*Reprinted from Theory change, ancient axiomatics, and Galileo 's methodology, 
Pisa Conference Proceedings Vol. 1 (ed. by J. Hintikka, D. Gruender and E. Agazzi), 
1980, pp. 197-213. 
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in relation to the standards of rigor in pure mathematics today, is much 
lower than was characteristic of the 19th century. However, my point 
about the axiomatic method applies also to 19th-century physics. There 
is little evidence of rigorous use of axiomatic methods in that century 
either. This is true not only of the periodical literature but also of the 
great treatises. Three casual examples that come to mind are Laplace's 
Celestial Mechanics, his treatise on probability, and Maxwell's treatise on 
electricity and magnetism. 

Three examples from ancient Greek mathematical sciences that I have 
chosen to comment on are Euclid's Optics, Archimedes' On the Equilib
rium of Planes, and Ptolemy's Almagest. 

1. EUCLID'S OPTICS 

It is important to emphasize that Euclid's Optics is really a theory of 
vision and not a treatise on physical optics. A large number of the propo
sitions are concerned with vision from the standpoint of perspective in 
monocular vision. Indeed, Euclid's Optics could be characterized as a 
treatise on perspective within Euclidean geometry. The tone of Euclid's 
treatise can be seen from quoting the initial part, which consists of seven 
'definitions'. 

1. Let it be assumed that lines drawn directly from the eye pass through 
a space of great extent; 

2. and that the form of the space included within our vision is a cone, 
with its apex in the eye and its base at the limits of our vision; 

3. and that those things upon which the vision falls are seen, and that 
those things upon which the vision does not fall are not seen; 

4. and that those things seen within a larger angle appear larger, and 
those seen within a smaller angle appear smaller, and those seen 
within equal angles appear to be of the same size; 

5. and that those things seen within the higher visual range appear 
higher, while those within the lower range appear lower; 

6. and, similarly, that those seen within the visual range on the right 
appear on the right, while those within that on the left appear on 
the left; 

7. but that things seen within several angles appear to be more clear. 



ANCIENT GREEK MATHEMATICAL SCIENCES 27 

(The translation is taken from that given by Burton in 1945.) 
The development of Euclid's Optics is mathematical in character, but 

it is not axiomatic in the same way that the Elements are. For example, 
Euclid later proves two propositions, "to know how great is a given eleva
tion when the sun is shining" and "to know how great is a given elevation 
when the sun is not shining". As would be expected, there is no serious 
introduction of the concept of the sun or of shining but they are treated 
in an informal, commonsense, physical way with the essential thing for 
the proof being rays from the sun falling upon the end of a line. Visual 
space is of course treated by Euclid as Euclidean in character. 

It might be objected that there are similar formal failings in Euclid's 
Elements, but it does not take much reflection to recognize the very great 
difference between the introduction of many sorts of physical terms in 
these definitions from the Optics and the very restrained use of language 
to be found in the Elements. Moreover, the proofs have a similar highly 
informal character. It seems to me that the formulation of fundamental 
assumptions in Euclid's Optics is very much in the spirit of what has come 
to be called, in our own time, physical axiomatics. There is no attempt 
at any sort of mathematical rigor but an effort to convey intuitively the 
underlying assumptions. 1 

2. ARCHIMEDES' ON THE EQUILIBRIUM OF PLANES 

Because I want to discuss the Archimedean treatise in some detail, a 
review of the theory of conjoint measurement is needed. The mixture of 
highly explicit axioms of conjoint measurement (as we would call them) 
and very inexplicit axioms about centers of gravity make Archimedes' 
treatise a peculiarly interesting example. 

Conjoint measurement. In many kinds of experimental or observational 
environments, the measurement of a single magnitude of property is not 
feasible or theoretically interesting. What is of interest, however, is the 
joint measurement of several properties simultaneously. The intended 
representation is that we consider ordered pairs of objects or stimuli. 
The first members of the pairs are drawn from one set, say A1 , and conse
quently represent one kind of property or magnitude; the second members 

1 Ptolemy's Optics is much more physical and experimental in character. A more 
mathematical example, without any explicit axioms at all, is Diodes' treatise On Burn
ing Mirrors (Toomer, 1976). The detailed mathematical proofs are also interesting in 
Diodes' work because of the absence in most cases of reasons justifying the steps in 
the argument, but, as in a modern nonaxiomatic text, familiar mathematical facts and 
theorems are used without comment. 
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of the pairs are objects drawn from a second set, say A2 , and represent 
a different magnitude or property. Given the ordered pair structure, we 
shall only require judgments of whether or not one pair jointly has more 
of the 'conjoined' attribute than a second pair. 

Examples of interpretations for this way of looking at ordered pairs are 
abundant. In Archimedes' case, we are dealing with the measurement of 
static moments offorce, or torques, where the two properties that make up 
the conjoint attribute are mass (or weight) and distance from the fulcrum. 
Momentum is another familiar example of a conjoint attribute. Quite 
different examples may be drawn from psychology or economics. For 
instance, a pair (a, p) can represent a tone with intensity a and frequency 
p, and the problem is to judge which ofthe two tones sounds louder. Thus 
the individual judges (a,p) t (b, q) if and only if tone (a,p) seems at least 
as loud as (b, q). 

The axioms of conjoint measurement are stated in terms of a single 
binary relation defined on the Cartesian product A1 x A2 • All the axioms 
have an elementary character, except for the Archimedean axiom, which 
I shall not formulate explicitly along with the other axioms, but which 
I discuss below. In formulating the axioms, I use the usual equivalence 
relation~. which is defined in terms of!:::, i.e., (a,p) ~ (b,q) if and only 
if (a, p) !::: (b, q) and (b, q) !::: (a, p). Later, we shall also use the strict 
ordering: (a,p) >- (b, q) if and only if (a,p)!::: (b, q) and not (b, q)!::: (a,p). 
The axioms are embodied in the following definition. 

DEFINITION 1. A structure (A1, A2, !:::} is a conjoint structure if and 
only if the following axioms are satisfied for every a, b and c in A1 and 
every p, q and r in A 2 : 

Axiom 1. If (a,p)!::: (b,q) and (b,q)!::: (c,r) then (a,p)!::: (c,r); 

Axiom 2. (a,p) t (b,q) or (b,q)!::: (a,p); 

Axiom 3. If (a,p)!::: (b,p) then (a, q)!::: (b, q); 

Axiom 4- If(a,p)!::: (a,q) then (b,p)!::: (b,q}; 

Axiom 5. If (a,p) t (b,q) and (b,r)!::: (c,p) then (a,r)!::: (c,q); 

Axiom 6. There is an sin A 2 such that (a,p) ~ (b,s); 
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Axiom 7. There is ad in A1 such that (a,p) ~ (d, q); 

Axiom 8. Archimedean axiom. 

The intuitive content of most of the axioms is apparent. Axiom 1 is merely 
the familiar requirement of transitivity and Axiom 2 that of strong con
nectivity. Axioms 3 and 4 express the independence of one component 
from the other. Axioms 3 and 4 actually follow from the other axioms, 
but in the treatment of Krantz, Luce, Suppes, and Tversky (1971), weaker 
solvability axioms are used than Axioms 6 and 7, and in that context, Ax
ioms 3 and 4 are needed. In any case, they state an important conceptual 
property. Axiom 5 states a cancellation property. When it is formulated 
in terms of the equivalence relation ~ instead of~, it is called the Thom
sen condition, especially in the theory of webs. As already remarked, 
Axioms 6 and 7 state simple solvability axioms. Finally, Axiom 8 must 
be some form of the Archimedean axiom. Of course, I mean not an axiom 
directly pertinent to the treatise we are discussing here, but the familiar 
Archimedean axiom which is usually attributed to Eudoxus and not to 
Archimedes. In its most familiar form, it says that if we are given two 
magnitudes and the first is less than the second, there is a finite multiple 
of the first that is larger than the second. To formulate the axiom in 
explicit mathematical form in the present context, with no concept of ad
dition or multiplication directly given, is somewhat troublesome. Because 
it is not important for our present discussion, I shall leave the axiom in 
inexplicit form. 

For subsequent discussion of the postulates stated in Archimedes' trea
tise, some elementary consequences of Axioms 1-4 of Definition 1 are 
useful. 

THEOREM 1. The relation~ is an equivalence relation on A1 X A2, i.e., 
it is reflexive, symmetric and transitive on A1 X A2 ; and the relation >
is irreflexive, asymmetric and transitive on A 1 X A2 • 

It is also desirable to define corresponding relations for each component. 

Thus, for a and bin A 1 ,a b b if and only if for some pin A2 , (a,p) ~ 
(b,p); and for p and q in A2,P ~2 q if and only iffor some a in A1 , (a,p) ~ 
(a,q). Then as before, we may define fori= 1,2,x ~i y if and only if 
x ~i y andy ~i x; and x >-i y if and only if x ~i y and not y b x. Using 
especially Axioms 3 and 4, the independence axioms, we may easily prove 
the following theorem. 

THEOREM 2. For i = 1, 2, the relation ~i is transitive and strongly 
connected on Ai, the relation ~i is an equivalence relation on Ai and the 
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relation >-; is irrefiexive, asymmetric and transitive on Ai. 

We can prove that any structure satisfying the axioms of Definition 1 can 
be given either an additive or a multiplicative representation in terms of 
real numbers. Because the multiplicative representation is most pertinent 
here, we shall state the basic representation theorem in that form. The 
reader is referred to Krantz et al. (1971, Chapter 6) for the proof of the 
theorem. 

THEOREM 3. Let (A1 , A2 , ~) be a conjoint structure. Then there exist 
real-valued functions cp1 and cp2 on A1 and A 2 , respectively, such that for 
a and b in A1 and p and q in A2 

cpl(a)cp2(P) 2: cpl(b)cp2(q) if and only if (a,p) ~ (b,q). 

Moreover, if cp~ and cp~ are any two other functions with the same prop
erty, then there exist real numbers a, {32 , {32 > 0 such that 

and 
C{)2 = f32cp2' 

provided there are elements a and b in A 1 and pin A 2 such that (a,p) >
(b,p), and elements p and q in A2 and c in A 1 such that (c,p) >- (c,q). 

More than the theory of conjoint measurement is needed to give a correct 
analysis of Archimedes' treatise, for he obviously assumes that weight and 
distance are extensive or additive magnitudes. (This point is documented 
in the later discussion.) It will therefore also be useful to have in front of 
us the modern theory of extensive magnitudes. A rather complete pre
sentation of the theory is to be found in Krantz et al. (1971, Chapter 3). 
Because of their relative simplicity I shall state here the axioms of Suppes 
(1951). In this case the Archimedean axiom is easily stated explicitly. A 
binary operation o on the set A of magnitudes, as well as a binary relation 
~~is introduced, and we define recursively 1x = x and nx = (n -1)x ox. 
As before, the relations~ and >- are defined as expected in terms of~-

DEFINITION 2. A structure (A,~~ o) is a structure of extensive magni
tudes if and only if the following axioms are satisfied for every a,b and c 
in A: 

Axiom 1. If x ~ y and y ~ z then x ~ z; 

Axiom 2. (x o y) o z ~ x o (yo z); 
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Axiom 3. If x !:: y then x o z !:: z o y; 

Axiom 4. If x >- y then there is a z in A such that x ~ yo z; 

Axiom 5. x o y >- x; 

Axiom 6. If x!:: y then there is a natuml number n such that y t nx. 

The six axioms of Definition 2 have an obvious content when A is a 
set of positive numbers closed under addition and subtraction of smaller 
numbers from larger ones, !:: is the numerical weak inequality, and o 
is the operation of addition. It should be noted that Axiom 3 combines 
monotonicity and commutativity. The numerical interpretation just given 
is itself the basis of the following representation theorem. 

THEOREM 4. Let (A,!::, o) be a structure of extensive magnitudes. Then 
there exists a real-valued function cp on A such that for a and b in A 

cp(a) ~ cp(b) if and only if at b, 

and 
cp(a o b)= cp(a) + cp(b). 

Moreover, if cp' is any other such function then there zs a real number 
a > 0 such that cp' = acp. 

Archimedes' postulates. With the axioms of conjoint and extensive mea
surement given above as background, let us now turn to Archimedes' 
postulates at the beginning of Book I of On the Equilibrium of Planes. I 
cite the Heath translation. 

I postulate the following: 

1. Equal weights at equal distances are in equilibrium, and 
equal weights at unequal distances are not in equilibrium but 
incline towards the weight which is at the greater distance. 

2. If, when weights at certain distances are in equilibrium, 
something be added to one of the weights, they are not in 
equilibrium but incline towards that weight to which the ad
dition was made. 

3. Similarly, if anything be taken away from one of the 
weights, they are not in equilibrium but incline towards the 
weight from which nothing was taken. 
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4. When equal and similar plane figures coincide if applied to 
one another, their centers of gravity similarly coincide. 

5. In figures which are unequal but similar the centers of 
gravity will be similarly situated. By points similarly situated 
in relation to similar figures I mean points such that, if straight 
lines be drawn from them to the equal angles, they made equal 
angles with the corresponding sides. 

6. If magnitudes at certain distances be in equilibrium, (other) 
magnitudes equal to them will also be in equilibrium at the 
same distances. 

7. In any figure whose perimeter is concave in (one and) the 
same direction the centre of gravity must be within the figure. 

Looking at the postulates, it is clear that postulates 1, 2, 3 and 6 fall 
within the general conceptual framework of conjoint measurement, but 
the remaining postulates introduce geometrical ideas that go beyond the 
general theory of conjoint measurement. I shall have something more to 
say about these geometrical postulates later. For the moment I want to 
concentrate on what I have termed the conjoint postulates. The wording 
of Postulates 2 and 3 makes it clear that Archimedes treated weight as 
an extensive magnitude. We shall thus assume that W = (W, t 1, o) is a 
structure of extensive magnitudes, that (W X D, t) is a conjoint structure, 
and that b of W is the defined relation !: 1 , of the conjoint structure. 
Also, to formulate Postulate 3 explicitly we need a subtraction operation 
that is well defined for extensive structures: If x >- y then x - y ~ z if 
and only if x ~ y o z. 

The formulation of Postulates 1, 2,3 and 6 then assumes the following 
elementary form, with subscripts of t 1 and t 2 dropped to simplify the 
notation. 

la. Ifw1 ~ w2 and d1 ~ d2 then (w1,d1) ~ (w2,d2). 

lb. lfw1 ~ w2 and d1 >- d2 then (w17 dt) >- (w2,d2). 

2. Ij(w1,d1) ~ (w2,d2) then (w1 ox,dt) >- (w2,d2). 

3. Ij(w1,di) ~ (w2,d2) and w2 >- x then (w1,di) >- (w2- x,d2 ). 

6. Ij(w1,di) ~ (w2,d2),wa ~ w1 and w4 ~ w2 then (wa,di) ~ 
(w4,d2). 

The first three propositions of Book I can be proved from these purely 
conjoint postulates and the assumption that weight is an extensive magni
tude. For detailed analysis I cite the Heath translation of the propositions 
and their proofs. 
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Proposition 1. 

Weights which balance at equal distances are equal. 
For, if they are unequal, take away from the greater the differ
ence between the two. The remainders will then not balance 
[Post. 3]; which is absurd. 
Therefore the weights cannot be unequal. 

Proposition 2. 

Unequal weights at equal distances will not balance but will 
incline towards the greater weight. 
For take away from the greater the difference between the two. 
The equal remainders will therefore balance [Post. 1]. Hence, 
if we add the difference again, the weights will not balance but 
incline towards the greater [Post. 2]. 

Proposition 3. 

Unequal weights will balance at unequal distances, the greater 
weight being at the lesser distance. 
Let A, B be two unequal weights (of which A is the greater) 
balancing about C at distances AC, BC respectively. 
Then shall AC be less than BC. For, if not, take away from A 
the weight (A- B). The remainders will then incline towards 
B [Post. 3]. But this is impossible, for (1) if AC = CB, the 
equal remainders will balance, or (2) if AC > CB, they will 
incline towards A at the greater distance [Post. 1]. 
Hence AC < CB. 
Conversely, if the weights balance, and AC < CB, then A> B. 
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My aim is to catch the spirit of Archimedes' formulation of these 
first three propositions and their proofs within the formalization I have 
given. To be as explicit as possible about my procedure, I use in the 
proofs elementary properties of extensive magnitudes that follow from 
the axioms of Definition 2, but only properties of conjoint structures that 
follow from Archimedes' postulates, not the full set of Definition 1. 

PROPOSITION 1. IJ(w1,d1) ~ (w2,d2) and d1 ~ d2 then w1 ~ w2. 

Proof Suppose w1 )- w 2. Let z = w1 - w 2. Then w1 - z ~ w2. Then 
by Postulate 1a 

(1) 

but by Postulate 3 and the hypothesis of the theorem 
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(2) 

and (1) and (2) are from the definitions of>- and~ jointly absurd. 

PROPOSITION 2. Ifwt >- w2 and dt ~ d2 then (wt,dt) >- (w2,d2). 

Proof Let z = Wt- w2. Then Wt- z ~ w2, and by Postulate 1a 

Therefore, by Postulate 2 

(wt, dt) >- (w2, d2). 

PROPOSITION 3. If Wt >- w2 and (wt, dt) ~ (w2, d2) then d2 >- dt. 

Proof Suppose not d2 >- dt. Let z = Wt - w2. Then by Postulate 3, 

( 1) 

but this we shall show is absurd. First if dt ~ d2, then by Postulate 1a 

(2) (wt- Zt, dt) ~ (w2, d2), 

and (as in the proof of Prop. 1) (1) and (2) are jointly absurd. On the 
other hand, if d1 >- d2 , then by Postulate 1b 

(3) 

and (1) and (3) are jointly absurd (from the asymmetry of>-). Hence 
d2 >- dt. 

On one point my formalization is clearly not faithful to Archimedes. I 
have replaced his symmetrical relation unequal by the asymmetric >-, but 
this is a trivial formal difference, easy to eliminate if desired. 

The remaining propositions of Book I use the concept of center of 
gravity in either their formulations or proofs, and I defer the consideration 
of this much-disputed concept. 

The postulates and propositions as I have reformulated them above are 
a part of the elementary theory of conjoint measurement on the assump
tion that the first component is a structure of extensive magnitudes as 
well. A casual perusal of modern textbooks on mechanics reveals quickly 
enough that postulates like the ones formulated here are not an explicit 
part of modern discussions of static moments of force. The reason is 
simple. Once a numerical representation is assumed, explicit conjoint 
axioms are not necessary. Take Postulate 1a, for instance, and use the 
multiplicative representation: 



ANCIENT GREEK MATHEMATICAL SCIENCES 

If Cf'l ( w1) = Cf'l ( w2) and Cf'2( dl) = cp( d2) then 
Cf'l(wl)Cf'2(dl) = Cf'1(w2)1P2(d2), 
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but this is just an elementary truth of arithmetic and consequently not 
necessary to assume. 

The important historical fact is that the concept of a numerical rep
resentation was missing in Greek mathematics, and consequently explicit 
conjoint axioms were needed. There seems little doubt that Archimedes' 
statement of such axioms is historically the earliest instance of an explicit 
approach to conjoint measurement, certainly at least in terms of extant 
texts of Greek mathematics and science. 

It has been noted by many modern commentators that Greek math
ematicians were completely at ease in comparing ratios of different sorts 
of magnitudes, e.g., the ratio of two line segments to that of two areas. 
Given this tradition it is natural to query why Archimedes did not state 
the Postulates of Book I in terms of ratios. The answer it seems to me 
is clear. Proof that two weights balance at distances reciprocally propor
tional to their magnitudes, which is Propositions 6 and 7 of Book I, is 
the Greek equivalent of a numerical representation theorem in the the
ory of measurement. The conjoint postulates that Archimedes formulates 
provide a simple qualitative basis from which the Greek 'representation 
theorem' can be proved. (I shall have more to say later about this proof.) 

I know of no other instance of conjoint concepts in Greek mathematics 
and science. Certainly modern examples like momentum were not con
sidered, and no such concepts were needed in Archimedes' other physical 
work, On Floating Bodies. It is perhaps for this reason that the level 
of abstraction to be found, for example, in Book V of Euclid's Elements 
is not reached in On the Equilibrium of Planes. 2 A higher level of ab
straction was superfluous because other pairs of magnitudes satisfying 
like postulates were not known. 

2 The attitude toward abstraction is very clearly expressed by Aristotle in the Pos
terior Analytics (Book I, 5, 74a 17-25). "An instance of (2) would be the law that 
proportionals altemate. Alternation used to be demonstrated separately of numbers, 
lines, solids, and durations, though it could have been proved of them all by a single 
demonstration. Because there was no single name to denote that in which numbers, 
lengths, durations, and solids are identical, and because they differed specifically from 
one another, this property was proved of each of them separately. Today, however, the 
proof is commensurately universal, for they do not possess this attribute qua lines or 
qua numbers, but qua manifesting this generic character which they are postulated as 
possessing universally". The reference to (2) is to one kind of error we can make in 
drawing a conclusion that is too specific or concrete. Errors of type (2) arise "when 
the subjects belong to different species and there is a higher universal, but it has no 
name" (74a 7). 
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Centers of gravity. The most difficult conceptual problem of Archimedes' 
treatises concerns the status of the concept of center of gravity of a plane 
figure. This concept is essential to the formulation of Postulates 4, 5 
and 7, but it is quite evident, on the other hand, that these postulates 
in themselves do not provide a complete characterization of the concept. 
By this I mean that if we knew nothing about centers of gravity except 
what is stated in Postulates 4, 5 and 7, we would not be able to derive the 
theorems in which Archimedes is interested, and which he does derive. As 
Dijksterhuis (1956) points out, it is possible to argue that the concept of 
center of gravity is being taken over by Archimedes from more elementary 
discussions and thus really has the same status as the geometrical concept 
of similarity in his treatise. On the face of it, this argument seems sounder 
than that of Toeplitz and Stein (published in Stein, 1930), who propose 
that the postulates are to be taken as implicitly defining centers of gravity 
once the postulates are enlarged by the obvious and natural assumptions. 

It is also clear that a standard formalization of Archimedes' theory, in 
the sense of first-order logic, cannot be given in any simple or elegant way. 
It is possible to give the standard formalization of the part of the theory 
embodied in Postulates 1, 2, 3 and 6, as we have seen in the previous 
section. 

Quite apart from the question of standard formalization, there are se
rious problems involved in giving a reconstruction in set-theoretical terms 
of Archimedes' postulates. In such a set-theoretical formulation, we can 
without difficulty use a geometrical notion like similarity. If we take over 
from prior developments a definition of center of gravity, then it would 
seem that Postulate 4, for example, would simply be a theorem from 
these earlier developments and would not need separate statement. Put 
another way, under this treatment of the concept of center of gravity, no 
primitive notion of Archimedes' theory would appear in Postulate 4 and 
thus it would clearly be an eliminable postulate. The same remarks apply 
to Postulates 5 and 7. It would seem that Archimedes has constructed a 
sort of halfway house; his postulates do not give a complete characteriza
tion of centers of gravity, but on the other hand, they cannot be said to 
depend upon a completely independent characterization of this concept. 

Schmidt (1975) gives an interesting axiomatic reconstruction of Archi
medes' theory, but his elegant postulates for centers of gravity are re
stricted to plane polygonal figures, whereas in Book II Archimedes is 
especially concerned with centers of gravity of parabolic segments. The 
'reduction' of such segments to rectangles of equal area requires the results 
found in Archimedes' treatise Quadrature of the Parabola. (Schmidt's 
treatment of the 'conjoint' axioms discussed above does not use the stan
dard modern results on conjoint measurement.) 
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It is worth noting that the fundamental pair of propositions ( 6 and 
7) asserting the law of the lever, or what we may also term the law of 
static torque, does not really need any geometrical facts about centers 
of gravity, as do later propositions of Book I, and the whole of Book II. 
Archimedes could have used something like the following definition to get 
as far as Proposition 7: The center of gravity of ( w1 , dl) and ( w2 , d2) ,is 
the distance d3 such that ( w1, d2 - d3) ~ ( w2, d3 - d!). This definition 
assumes that distances are extensive magnitudes, but there is little dif
ficulty about this assumption. It seems obvious to me why it is unlikely 
Archimedes even momentarily would have considered such a definition. 
The mathematically difficult and geometrically significant propositions 
all deal with the centers of gravity of geometric figures; in fact, the whole 
of Book II is concerned with finding the centers of gravity of parabolic 
segments, and for this purpose a geometric concept of center of gravity is 
a necessity.3 

From a purely axiomatic standpoint, therefore, Archimedes is no more 
satisfactory than a modern physical treatise with some mathematical pre
tensions. A good comparative example, perhaps, is von Neumann's book 
(1932/1955) on quantum mechanics, which contains a beautifully clear ax
iomatic development of the theory of Hilbert spaces, but not of quantum 
mechanics itself. 

3 In closing this discussion, it is worth noting that Mach (1942), in his famous trea
tise on mechanics, seems to be badly confused on what Archimedes' work is all about. 
The focus of Mach's analysis is the famous Proposition 6 asserting that commensurable 
magnitudes are in equilibrium at distances reciprocally proportional to their weights. 
Mach is particularly exercised by the fact that "the entire deduction (of this propo
sition) contains the proposition to be demonstrated by assumption if not explicitly" 
(p. 20). A central point of Mach's confusion seems to be a complete misunderstanding 
as to the nature of the application of mathematics to physics. He seems to have no 
real conception of how mathematics is used to derive particular propositions from gen
eral assumptions, and what the relation of these general assumptions to the particular 
proposition is. He seems to think that any such proposition as the one just quoted 
must somehow be established directly from experience. His mistaken sentiments on 
these matters are clearly expressed in the following passage: 

From the mere assumption of the equilibrium of equal weights at equal 
distances is derived the inverse proportionality of weight and lever arm! 
How is that possible? IT we were unable philosophically and a priori to 
excogitate the simple fact of the dependence of equilibrium on weight 
and distance, but were obliged to go for that result to experience, in how 
much less a degree shall we be able, by speculative methods, to discover 
the form of this dependence, the proportionality! (p. 19) 

This last quotation shows, it seems to me, the basic fact that is usually not explicitly 
admitted in discussing Mach's views on the foundations of mechanics. He simply had 
no coherent or reasonable conception of how mathematics can be used in science, and 
his wrong-headed analysis of Archimedes is but one of many instances that support 
this conclusion. 
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3. PTOLEMY'S ALMAGEST 

The third and most important example I cite is Ptolemy's Almagest. It 
is significant because it is the most important scientific treatise of an
cient times and because it does not contain any pretense of an axiomatic 
treatment. 

It is to be emphasized that Ptolemy uses mathematical argument, and 
indeed mathematical proof, with great facility, but he uses the mathemat
ics in an applied way. He does not introduce explicit axioms about the 
motion of stellar bodies, but reduces the study of their motion to geo
metrical propositions, including of course the important case of spherical 
trigonometry. 

Near the beginning of the Almagest, Ptolemy illustrates very well in 
the following passage the spirit of the way in which assumptions are 
brought in:4 

And so in general we have to state that the heavens are spheri
cal and move spherically, that the earth in figure is also spher
ical to the senses when taken in all its parts; in position lies 
right in the middle of the heavens, like a geometrical center; 
and in magnitude and distance has the ratio of a point with 
respect to the sphere of the fixed stars, having no local mo
tion itself at all. And we shall go through each of these points 
briefly to bring them to mind (p. 7). 

There then follows a longer and more detailed discussion of each of these 
matters, such as the proposition that the heavens move spherically. My 
point is that the discussion and the framework of discussion are very much 
in the spirit of what we think of as nonaxiomatic mathematical sciences 
today. There is not a hint of organizing these ideas in axiomatic fashion. 
When Ptolemy gets down to details he has the following to say: 

But now we are going to begin the detailed proofs. And we 
think the first of these is that by means of which is calculated 
the length of the arc between the poles of the equator and 
the ecliptic, and which lies on the circle drawn through these 
poles. To this end we must first see expounded the method of 
computing the values of chords inscribed in a circle, which we 
are now going to prove geometrically, once for all, one by one 
(p. 14). 

4 The quotations given here are adapted from the translation by Taliaferro (1952), 
but after this article was written the definitive English translation by Toomer (1984) 
appeared, which will be standard reference in English for many years. The two passages 
cited do not differ materially from Toomer's. 
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The detailed discussion, then, on the size of chords inscribed in a circle 
emphasizes, above all, calculation and would make a modern physicist 
happy by its tone and results as well. This long and important analysis 
of computations is concluded with a numerical table of chords. 

The thesis I am advancing is illustrated, in many ways even more 
strikingly, by the treatment of the motion of the moon in Book IV. Here 
Ptolemy is concerned to discuss in considerable detail the kind of observa
tions that are appropriate for a study of the moon's motion and especially 
with the methodology of how a variety of obse.rvations are to be rectified 
and put into a single coherent theory. 

Various hypotheses introduced in later books, e.g., the hypothesis of 
the moon's double anomaly in Book V, are in the spirit of modern astron
omy or physics, not axiomatic mathematics. Moreover, throughout the 
Almagest, Ptolemy's free and effective use of geometrical theorems and 
proofs seems extraordinarily similar in spirit to the use of the differential 
and integral calculus and the theory of differential equations in a modern 
treatise on some area of mathematical physics. 

4. CONCLUDING REMARKS 

In this analysis of the use of axiomatic methods and their absence in ex
plicit form in ancient mathematical sciences such as optics and astronomy, 
I have not entered into a discussion of the philosophical analysis of the 
status of axioms, postulates and hypotheses. There is a substantial an
cient literature on these matters running from Plato to Proclus. Perhaps 
the best and most serious extant discussion is to be found in Aristotle's 
Posterior Analytics. Aristotle explains in a very clear and persuasive way 
how geometrical proofs can be appropriately used in mechanics or optics 
(75b 14ff). But just as Aristotle does not really have any developed ex
amples from optics, mechanics or astronomy, so it seems to me that the 
interesting distinctions he makes do not help us understand any better the 
viewpoint of Euclid toward the 'definitions' of his optics or the postulates 
of Archimedes about centers of gravity cited above. 

Many of you know a great deal more than I do about the history of 
Greek mathematics and Greek mathematical sciences, but, all the same, 
I want to venture my own view of the situation I have been describing. 
I may be too much influenced by my views about contemporary science, 
but I find little difference between contemporary physics and the prob
lems of Greek science I have been describing. Physicists of today no more 
conform to an exact canon of philosophical analysis in their setting forth 
of physical principles or ideas than did those ancient scientists and mathe-
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maticians who wrote about the subjects I have been discussing. There was 
certainly a sense of methodology deeply embedded in Euclid, Archimedes 
and Ptolemy, but it was not a sense of methodology that was completely 
explicit or totally worked out, just as Aristotle's own general principles 
are never exemplified in any detailed and complicated scientific examples 
of an extended sort. The gap between philosophical analysis, canons of 
axiomatic method, and actual working practice was about the same order 
of magnitude that it is today. What is surprising, I think, from a philo
sophical standpoint is that the gap seems, if anything, to have widened 
rather than narrowed over the past 2000 years. 



4 

THE PLURALITY OF SCIENCE 

What I have to say falls under four headings: What is unity of science, 
unity and reductionism, the search for certainty, and the search for com
pleteness. 

1. WHAT IS UNITY OF SCIENCE SUPPOSED TO BE? 

To answer this initial question, I turned to the introductory essay by Otto 
Neurath (1938) for Volume 1, Part 1, of the International Encyclopedia 
of Unified Science. He begins this way: 

Unified science became historically the subject of this Encyclo
pedia as a result of the efforts of the unity of science movement, 
which includes scientists and persons interested in science who 
are conscious of the importance of a universal scientific atti
tude. 

The new version of the idea of unified science is created by the 
confluence of divergent intellectual currents. Empirical work 
of scientists was often antagonistic to the logical constructions 
of a priori rationalism bred by philosophico-religious systems; 
therefore, "empiricalization" and "logicalization" were consid-

*Reprinted from PSA 1978, Vol 2 (ed. by P. Asquith and I. Hacking), 1981, 3-16. 
East . Lansing MI: Philosophy of Science Association. I am indebted to Georg Kreisel 
for a nwnber of penetrating criticisms of the first draft of this paper. 
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ered mostly to be in opposition-the two have now become 
synthesized for the first time in history (1938, p. 1). 

Later he continues: 

All-embracing vision and thought is an old desire of human
ity. . . . This interest in combining concepts and statements 
without empirical testing prepared a certain attitude which 
appeared in the following ages as metaphysical construction. 
The neglect of testing facts and using observation statements 
in connection with all systematized ideas is especially found 
in the different idealistic systems (1938, pp. 5-6). 

Later he says: 

A universal application of logical analysis and construction 
to science in general was prepared not only by empirical pro
cedure and the systematization of logico-empirical analysis of 
scientific statements, but also by the analysis of language from 
different points of view (1938, pp. 16-17). 

In the same volume of the Encyclopedia, the thesis about the unity of 
the language of science is taken up in considerably more detail in Carnap 's 
analysis of the logical foundations of the unity of science. He states his 
well-known views about physicalism and, concerning the terms or predi
cates of the language, concludes: 

The result of our analysis is that the class of observable thing
predicates is a sufficient reduction basis for the whole of the 
language of science, including the cognitive part of the every
day language (1938, p. 60). 

Concerning the unity oflaws, Carnap reaches a negative but optimistic 
conclusion--optimistic in the sense that the reducibility of the laws of one 
science to another has not been shown to be impossible. Here is what he 
has to say on the reduction of biological to physical laws: 

There is a common language to which both the biological and 
the physical laws belong so that they can be logically com
pared and connected. We can ask whether or not a certain 
biological law is compatible with the system of physical laws, 
and whether or not it is derivable from them. But the answer 
to these questions cannot be inferred from the reducibility of 



THE PLURALITY OF SCIENCE 

the terms. At the present state of the development of sci
ence, it is certainly not possible to derive the biological laws 
from the physical ones. Some philosophers believe that such a 
derivation is forever impossible because of the very nature of 
the two fields. But the proofs attempted so far for this thesis 
are certainly insufficient (1938, p. 60). 
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Later he has the same sort of thing to say about the reduction of psychol
ogy or other social sciences to biology. 

A different and less linguistic approach is to contrast the unity 
of scientific subject matter with the unity of scientific method. 
Many would agree that different sciences have different sub
ject matters; for example, in no real sense is the subject matter 
of astronomy the same as that of psychopharmacology. But 
many would affirm that in spite of the radically different sub
ject matters of science there are important ways in which the 
methods of science are the same in every domain of investi
gation. The most obvious and simple examples immediately 
come to mind. There is not one arithmetic for psychological 
theories of motivation and another for cosmologic;U theories of 
the universe. More generally, there are not different theories 
of the differential and integral calculus or of partial differential 
equations or of probability theory. 

There is a great mass of mathematical methods and results that are avail
able for use in all domains of science and that are, in fact, quite widely 
used in very different parts of science. There is a plausible prima facie 
case for the unity of science in terms of unity of scientific method. This 
may be one of the most reasonable meanings to be attached to any central 
thesis about the unity of science. However, I shall be negative even about 
this thesis in the sequel. 

2. UNITY AND REDUCTIONISM 

What I have said earlier about different sciences having obviously differ
ent subject matters was said too hastily because there is a historically 
important sense of unity. One form or another of reductionism has been 
central to the discussion of unity of science for a very long time. I con
centrate on three such forms: reduction of language, reduction of subject 
matter, and reduction of method. 
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Reduction of language. Carnap's views about the reduction of the lan
guage of science to commonsense language about physical objects remain 
appealing. He states his general thesis in such a way that no strong claims 
about the reduction of psychology to physics, for example, are implied, 
and I am sure much is correct about what he has had to say. On the 
other hand, it seems appropriate to emphasize the very clear senses in 
which there is no reduction of language. The reduction certainly does not 
take place in practice, and it may be rightly claimed that the reduction 
in theory remains in a hopelessly vague state. 

There are many ways to illustrate the basis for my skepticism about 
any serious reduction of language. Part of my thesis about the plurality 
of science is that the languages of the different branches of science are 
diverging rather than converging as they become increasingly technical. 
Let me begin with a personal example. My daughter Patricia is taking 
a PhD in neurophysiology, and she recently gave me a subscription to 
what is supposed to be an expository journal, entitled Neurosciences: 
Research Program Bulletin. After several efforts at reading this journal, 
I have reached the conclusion that the exposition is only for those in 
nearby disciplines. I quote one passage from an issue (1976) dealing with 
neuron-target cell interactions. 

The above studies define the anterograde transsynaptic regu
lation of adrenergic ontogeny. Black and co-workers (1972b) 
have also demonstrated that postsynaptic neurons regulate 
presynaptic development through a retrograde process. Dur
ing the course of maturation, presynaptic ChAc activity in
creased 30- to 40-fold (Figure 19), and this rise paralleled the 
formation of ganglionic synapses (Figure 20). If postsynaptic 
adrenergic neurons in neonatal rats were chemically destroyed 
with 6-hydroxydopamine (Figure 24) or immunologically de
stroyed with antiserum to NGF (Figure 25), the normal de
velopment of presynaptic ChAc activity was prevented. These 
data, viewed in conjunction with the anterograde regulation 
studies lead to the conclusion that there is a bidirectional flow 
of regulatory information at the synapses during development 
(1976, p. 253). 

This is by no means the least intelligible passage. It seems to me it illus
trates the cognitive facts of life. The sciences are diverging and there is no 
reason to think that any kind of convergence will ever occur. Moreover, 
this divergence is not something of recent origin. It has been present for 
a long time in that oldest of quantitative sciences, astronomy, and it is 
now increasingly present throughout all branches of science. 
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There is another point I want to raise in opposition to a claim made by 
some philosophers and philosophically minded physicists. Some persons 
have held that in the physical sciences at least, substantial theoretical 
unification can be expected in the future and, with this unification, a 
unification of the theoretical language of the physical sciences, thereby 
simplifying the cognitive problem of understanding various domains. I 
have skepticism about this thesis that I shall explain later, but at this 
point I wish to emphasize that it takes care of only a small part of the 
difficulties. It is the experimental language of the physical sciences as 
well as of the other sciences that is difficult to understand, much more 
so for the outsider than the theoretical language. There is, I believe, no 
comparison in the cognitive difficulty for a philosopher of reading theo
retical articles in quantum mechanics and reading current experimental 
articles in any developed branch of physics. The experimental literature 
is simply impossible to penetrate without a major learning effort. There 
are reasons for this impenetrability that I shall not attempt to go into on 
this occasion but stipulate to let stand as a fact. 

Personally I applaud the divergence of language in science and find in 
it no grounds for skepticism or pessimism about the continued growth of 
science. The irreducible pluralism of languages of science is as desirable 
a feature as is the irreducible plurality of political views in a democracy. 

Reduction of subject matter. At least since the time of Democritus in 
the 5th century B.C., strong and attractive theses about the reduction 
of all phenomena to atoms in motion have been set forth. Because of 
the striking scientific successes of the atomic theory of matter since the 
beginning of the 19th century, this theory has dominated the views of 
plain men and philosophers alike. In one sense, it is difficult to deny 
that everything in the universe is nothing but some particular swarm of 
particles. Of course, as we move into the latter part of the 20th century, 
we recognize this fantasy for what it is. We are no longer clear about 
what we mean by particles or even if the concept as originally stated is 
anywhere near the mark. The universe is indeed made of something but 
we are vastly ignorant of what that something is. The more we probe, the 
more it seems that the kind of simple and orderly view advanced as part 
of ancient atomism and that seemed so near realization toward the end of 
the 19th century is ever further from being a true description. To reverse 
the phrase used earlier, it is not swarms of particles that things are made 
of, but particles that are made of swarms. There are still physicists about 
who hold that we will one day find the ultimate simples out of which all 
other things are made, but as such claims have been continually revised 
and as the complexity of high-energy physics and elementary particle 
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theory has increased, there seems little reason that we shall ever again be 
able to seriously believe in the strong sense of reduction that Democritus 
had attractively formulated. 

To put the matter in a skeptical fashion, we cannot have a reduction of 
subject matter to the ultimate physical entities because we do not know 
what those entities are. I have on another occasion (1974a) expressed my 
reasons for holding that Aristotle's theory of matter may be sounder and 
more sensible than the kind of simpleminded atomistic reductionist views 
dominating our thinking about the physical world for 200 years. 

There is another appealing argument against reduction of subject mat
ter in the physical sense that does not rest on the controversy about the 
status of mental events but on what has happened in the development 
of computers. Perhaps for the first time we have become fully and com
pletely aware that the same cognitive structures can be realized in phys
ically radically different ways. I have in mind the fact that we now have 
computers that are built on quite different physical principles for example, 
old computers using vacuum tubes and modern computers using semicon
ductors can execute exactly the same programs and can perform exactly 
the same tasks. The differences in physical properties are striking be
tween these two generations of computers. They stand in sharp contrast 
to different generations of animal species, which have very similar physi
cal constitutions but which may have very different cultural histories. It 
has often been remarked upon that men of quite similar constitutions can 
have quite different thoughts. The computer case stands this argument 
on its head-it is not that the hardware is the same and the software 
different but rather that the hardware is radically different and the soft
ware of thoughts the same. Reduction in this situation, below the level 
of the concepts of information processing, seems wholly uninteresting and 
barren. Reduction to physical concepts is not only impractical but also 
theoretically empty. 

The same kinds of arguments against reductionism of subject matter 
can be found even within physics. A familiar example is the currently 
accepted view that it is hopeless to try to solve the problems of quantum 
chemistry by applying the fundamental laws of quantum mechanics. It 
is hopeless in the same way that it is hopeless to program a computer to 
play the perfect chess game by always looking ahead to all possible future 
moves. The combinatorial explosion is so drastic and so overwhelming 
that theoretical arguments can be given that not only now but also in 
the future it will be impossible by direct computation to reduce the prob
lems of quantum chemistry to problems of ordinary quantum mechanics. 
Quantum chemistry, in spite of its proximity to quantum mechanics, is 
and will remain an essentially autonomous discipline. At the level of com-



THE PLURALITY OF SCIENCE 47 

potability, reduction is not only practically impossible but theoretically 
so as well. 

An impressive substantive example of reduction is the reduction of 
large parts of mathematics to set theory. But even here, the reduction 
to a single subject matter of different parts of mathematics has a kind 
of barren formality about it. It is not that the fact of the reduction 
is conceptually uninteresting but rather that it has limited interest and 
does not say much about many aspects of mathematics. Mathematics, 
like science, is made up of many different subdisciplines, each going its 
own way and each primarily sensitive to the nuances of its own subject 
matter. Moreover, as we have reached for a deeper understanding of the 
foundations of mathematics we have come to realize that the foundations 
are not to be built on a bedrock of certainty but that, in many ways 
developed parts of mathematics are much better understood than the 
foundations themselves. As in the case of physics, an effort of reduction 
is now an effort of reduction to we know not what. 

In many ways a more significant mathematical example is the reduc
tion of computational mathematics to computability by Turing machines, 
but as in the case of set theory, the reduction is irrelevant to most com
putational problems of theoretical or practical interest. 

Reduction of method. As I remarked earlier, many philosophers and sci
entists would claim that there is an important sense in which the methods 
of science are the same in every domain of investigation. Some aspects of 
this sense of unity, as I also noted, are well recognized and indisputable. 
The common use of elementary mathematics and the common teaching 
of elementary mathematical methods for application in all domains of sci
ence can scarcely be denied. But it seems to me it is now important to 
emphasize the plurality of methods and the vast difference in methodology 
of different parts of science. The use of elementary mathematics-and I 
emphasize elementary because almost all applications of mathematics in 
science are elementary from a mathematical standpoint-as well as the 
use of certain elementary statistical methods does not go very far toward 
characterizing the methodology of any particular branch of science. As 
I have emphasized earlier, it is especially the experimental methods of 
different branches of science that have radically different form. It is no 
exaggeration to say that the handbooks of experimental method for one 
discipline are generally unreadable by experts in another discipline (the 
definition of 'discipline' can here be quite narrow). Physicists working in 
solid-state physics cannot intelligibly read the detailed accounts of method 
in other parts of physics. This is true even of less developed sciences like 
psychology. Physiological psychologists use a set of experimental methods 
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that are foreign to psychologists specializing, for example, in educational 
test theory, and correspondingly the intricate details of the methodology 
of test construction will be unknown to almost any physiological psychol
ogist. 

Even within the narrow domain of statistical methods, different dis
ciplines have different statistical approaches to their particular subject 
matters. The statistical tools of psychologists are in general quite differ
ent from those of economists. Moreover, within a single broad discipline 
like physics, there are in different areas great variations in the use of statis
tical methods, a fact that has been well documented by Paul Humphreys 
( 1976). 

The unity of science arose to a fair degree as a rallying cry of philoso
phers trying to overcome the heavy weight of 19th-century German ide
alism. A half century later the picture looks very different. The period 
since the Encyclopedia of Unified Science first appeared has been the 
era of greatest development and expansion of science in the history of 
thought. The massive enterprise of science no longer needs any philo
sophical shoring up to protect it from errant philosophical views. The 
rallying cry of unity followed by three cheers for reductionism should now 
be replaced by a patient examination of the many ways in which differ
ent sciences differ in language, subject matter, and method as well as by 
synoptic views of the ways in which they are alike. Related to unity and 
reduction are the two long-standing themes of certainty of knowledge and 
completeness of science. In making my case for the plurality of science, I 
want to say something about both of these unsupported dogmas. 

3. THE SEARCH FOR CERTAINTY 

From Descartes to Russell, a central theme of modern philosophy has 
been the setting forth of methods by which certainty of knowledge can be 
achieved. The repeatedly stated intention has been to find a basis that 
is, on the one hand, certain and, on the other hand, adequate for the 
remaining superstructure of knowledge, including science. The introduc
tion of the concept of sense data and the history of the use of this concept 
have dominated the search for certainty in knowledge, especially in the 
empirical tradition, as an alternative to direct rational knowledge of the 
universe. 

All of us can applaud the criticism of rationalism and the justifiable 
concern not to accept the possibility of direct knowledge of the world 
without experience. But it was clearly in a desire to compete with the 
kind of foundation that rationalism offered that the mistaken additional 
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step was taken of attempting to ground knowledge and experience in a way 
that guaranteed certainty for the results. The reduction of the analysis 
of experience to sense data is itself one of the grand and futile themes 
of reductionism, in this case largely driven by the quest for certainty. 
Although it is not appropriate to pursue the larger epistemological issues 
involved, I would like to consider some particular issues of certainty that 
have been important in the development of modern scientific methods. 

Errors of measurement. With the development of scientific methodology 
and probability theory in the 18th century, it was recognized that not only 
did errors in measurements rise but also that a systematic theory of these 
errors could be given. Fundamental memoirs on the subject were written 
by Simpson, Lagrange, Laplace, and others. For our purposes, what is 
important about these memoirs is that there was no examination of the 
question of the existence or nonexistence of an exact value for the quantity 
being measured. It was implicit in these 18th-century developments, as 
it was implicit in Laplace's entire theory of probability, that probabilistic 
considerations, including errors, arise from ignorance of true causes and 
that the physical universe is so constituted that in principle we should be 
able to achieve the exact true value of any measurable physical quantities. 
Throughout the 19th century it was implicit that it was simply a matter 
of tedious and time-consuming effort to refine the measured values of 
any quantity one more significant digit. Nothing fundamental stood in 
the way of making such a refinement. It is a curious and conceptually 
interesting fact that, as far as I know, no one in this period enunciated 
the thesis that this was all a mistake, that there were continual random 
fluctuations in all continuous real quantities, and that the concept of an 
exact value had no clear meaning. 

The development of quantum mechanics in this century made physi
cists reluctantly but conclusively recognize that it did not make sense 
to claim that any physical quantity could be measured with arbitrary 
precision in conjunction with the simultaneous measurement of other re
lated physical quantities. It was recognized that the inability to make 
exact measurement is not due to technological inadequacies of measuring 
equipment but is central to the fundamental theory itself. 

Even within the framework of quantum mechanics, however, there has 
tended to be a large conceptual equivocation on the nature of uncertainty. 
On the one hand, the claim has been that interference from the measur
ing apparatus makes uncertainty a necessary consequence. In this context 
some aspects of uncertainty need to be noted. It is not surprising that if 
we measure human beings at different times and places we expect to get 
different measurements of height and weight. But in the case of quantum 
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mechanics what is surprising is that variation is found in particles sub
mitted to "identical" experimental preparations. Once again a thesis of 
simplicity and unity is at work. Electrons should differ only in numerical 
identity, not in any of their properties. And if this is not true of electrons, 
there should be finer particles discoverable that do satisfy such a principle 
of identity. 

The other view, and the sounder one in my judgment, is that random 
fluctuations are an intrinsic part of the behavior of microscopic phenom
ena. No process of measurement is needed to generate these fluctuations; 
they are a part of nature and lead to a natural view of the impossibil
ity of obtaining results of arbitrary precision about microscopic physical 
quantities. 

If we examine the status of theory and experiments in other domains of 
science, it seems to me that similar claims about the absence of certainty 
can be made. The thrust for certainty associated with classical physics, 
British empiricism, and Kantian idealism is now spent. 

4. THE SEARCH FOR COMPLETENESS 

Views about the unity of science, coupled with views about the reduction 
of knowledge to an epistemologically certain basis like that of sense data, 
are often accompanied by an implicit doctrine of completeness. Such a 
doctrine is often expressed by assumptions about the uniformity of na
ture and assumptions about the universe being ultimately totally ordered 
and consequently fully knowable in character. Unity, certainty, and com
pleteness can easily be put together to produce a delightful philosophical 
fantasy. 

In considering problems of completeness, I begin with logic and math
ematics but have as my main focus the subsequent discussion of the em
pirical sciences. 

Logic is the one area of experience in which a really satisfactory theory 
of completeness has been developed. The facts are too familiar to require 
a detailed review. The fundamental result is Godel's completeness the
orem that in first-order logic a formula is universally valid if and only if 
it is logically probable. Thus, our apparatus of logical derivation is ade
quate to the task of deriving any valid logical formula, that is, any logical 
truth. What we have in first-order logic is a happy match of syntax and 
semantics. 

On the other hand, as Kreisel has emphasized in numerous publica
tions (e.g., (1967)), this match of syntax and semantics is not used in the 
proof of logical theorems. Rather, general set-theoretical and topological 
methods are continually drawn upon. One reason is that proofs given in 
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the syntax of elementary logic are psychologically opaque and therefore in 
nontrivial cases easily subject to error. Another is that it is not a natural 
setting for studying the relation of objects th~t are the focus of the theory 
to other related objects; as an example, even the numerical representa
tion theorem for simple orderings cannot be proved in first-order fashion. 
Completeness of elementary logic is of some conceptual interest, but from 
a practical mathematical standpoint useless. 

Incompleteness of arithmetic. The most famous incompleteness result oc
curs at an elementary level, namely, at the level of arithmetic or elemen
tary number theory. In broad conceptual terms, Godel's result shows that 
any formal system whose language is rich enough to represent a minimum 
of arithmetic is incomplete. A much earlier and historically important 
incompleteness result was the following. 

Incompleteness of geometric constructions. The three classical construc
tion problems that the ancient Greeks could not solve by elementary 
means were those of trisecting an angle, doubling a cube, and squar
ing a circle. It was not until the 19th century that these constructions 
were shown to be impossible by elementary means, thereby establishing 
a conceptually important incompleteness result for elementary geometry. 

Incompleteness of set theory. In the latter part of the 19th century, on 
the basis of the work of Frege in one direction and Cantor in another, it 
seemed that the theory of sets or classes was the natural framework within 
which to construct the rest of mathematics. Research in the 20th century 
on the foundations of set theory, some of it recent, has shown that there 
is a disturbing sense of incompleteness in set theory, when formulated 
as a first-order theory. The continuum hypothesis as well as the axiom 
of choice is independent of other principles of set theory, and, as in the 
case of geometry, a variety of set theories can be constructed, at least 
first-order set theories. 

The continuum hypothesis, for example, is decidable in second-order 
set theory, but we do not yet know in which way, that is, as true or 
false. Thus there is clearly less freedom for variation in second-order set 
theory, but also at present much less clarity about its structure. The 
results of these various investigations show unequivocally that the hope 
for some simple and complete foundation of mathematics is not likely to 
be attained. 

Theories with standard formalization. The modern logical sense of com
pleteness for theories with standard formalization, that is, theories for
malized within first-order logic, provides a sharp and definite concept 
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that did not exist in the past. Recall that the characterization of com
pleteness in this context is that a theory is complete if and only if every 
sentence of the theory is either valid in the theory or inconsistent with 
the theory-that is, its negation is valid in the theory. 

In back of this well-defined logical notion is a long history of discussions 
in physics that are vaguer and less sharply formulated but that have a 
similar intuitive content. 

Kant's sense of completeness. Although there is no time here to examine 
this history, it is worth mentioning the high point of its expression as 
found in Kant's Metaphysical Foundations of Natural Science. Kant's 
claim is not for the completeness of physics but for the completeness of 
the metaphysical foundations of physics. After giving the reason that it 
is desirable to separate heterogeneous principles in order to locate errors 
and confusions, he gives as the second reason the argument concerning 
completeness. 

There may serve as a second ground for recommending this 
procedure the fact that in all that is called metaphysics the 
absolute completeness of the sciences may be hoped for, which 
is of such a sort as can be promised in no other kind of cog
nitions; and therefore just as in the metaphysics of nature in 
general, so here also the completeness of the metaphysics of 
corporeal nature may be confidently expected .... 

The schema for the completeness of a metaphysical system, 
whether of nature in general or of corporeal nature in partic
ular, is the table of the categories. For there are no more pure 
concepts of the understanding, which can concern the nature 
of things. (1970, pp. 10-11). 

It need scarcely be said that Kant's argument in terms of the table of 
the categories scarcely satisfied 18th-century mathematical standards, let 
alone modern ones. His argument for completeness was not subtle, but 
his explicit focus on the issue of completeness was important and original. 

The unified field theory. After Kant, there was important system building 
in physics during the 19th century, and there were attempts by Kelvin, 
Maxwell, and others to reduce all known physical phenomena to mechan
ical models, but these attempts were not as imperialistic and forthright in 
spirit as Kant's. A case can be made, I think, for taking Einstein's general 
theory of relativity, especially the attempt at a unified field theory, as the 
real successor to Kant in the attempt to obtain completeness. I do not 
want to make the parallel between Kant and Einstein too close, however, 
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for Einstein does not hold an a priori metaphysical view of the founda
tions of physics. What they do share is a strong search for completeness 
of theory. Einstein's goal was to find a unified field theory defining one 
common structure from which all forces of nature could be derived. In the 
grand version of the scheme, for given boundary conditions, the differen
tial equations would have a unique solution for the entire universe, and all 
physical phenomena would be encompassed within the theory. The geo
metrodynamics of John Wheeler and his collaborators is the most recent 
version of the Einstein vision. Wheeler, especially, formulates the prob
lem in a way that is reminiscent of Descartes: "Are fields and particles 
foreign entitles immersed in geometry, or are they nothing but geometry?" 
(1962, p. 361). 

Had the program of Einstein and the later program of Wheeler been 
carried to completion, my advocacy of skepticism toward the problem of 
completeness in empirical science would have to retreat from bold asser
tion of inevitable incompleteness. However, it seems to me that there is, 
at least in the current scientific temperment, total support for the thesis 
of incompleteness. Grand building of theories has currently gone out of 
fashion in fields as far apart as physics and sociology, and there seems to 
be a deeper appreciation of the problems of ever settling, in any definitive 
way, the fundamental laws of complex phenomena. 

As the examples I have mentioned-and many others that I have not
demonstrate, in most areas of knowledge it is too much to expect theories 
to have a strong form of completeness. What we have learned to live with 
in practice is an appropriate form of completeness, but we have not built 
this working practice explicitly into our philosophy as thoroughly as we 
might. It is apparent from various examples that weak forms of complete
ness may be expected for theories about restricted areas of experience. It 
seems wholly inappropriate, unlikely, and, in many ways, absurd to ex
pect theories that cover large areas of experience, or, in the most grandiose 
cases, all of experience, to have a strong degree of completeness. 

The application of working scientific- theories to particular areas of 
experience is almost always schematic and highly approximate in charac
ter. Whether we are predicting the behavior of elementary particles, the 
weather, or international trade-any phenomenon, in fact, that has a rea
sonable degree of complexity-we can hope only to encompass a restricted 
part of the phenomenon. 

It is sometimes said that it is exactly the role of experimentation to 
isolate particular fragments of experience that can be dealt with in rela
tively complete fashion. This is, I think, more a dogma of philosophers 
who have not engaged in much experimentation than it is of practicing 
experimental scientists. When involved in experimentation, I have been 
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struck by how much my schematic views of theories also apply to experi
mental work. First one concrete thing and then another is abstracted and 
simplified to make the data fit within the limited set of concepts of the 
theory being tested. 1 

Let me put the matter another way. A common philosophical con
ception of science is that it is an ever closer approximation to a set of 
eternal truths that hold always and everywhere. Such a conception of sci
ence can be traced from Plato through Aristotle and onward to Descartes, 
Kant, and more recent philosophers, and this account has no doubt been 
accepted by many scientists as well. It is my own view that a much bet
ter case can be made for the kind of instrumental conception of general 
terms by Peirce, Dewey, and their successors. In this view scientific ac
tivity is perpetual problem solving. No area of experience is totally and 
completely settled by providing a set of basic truths; but rather, we are 
continually confronted with new situations and new problems, and we 
bring to these problems and situations a potpourri of scientific methods, 
techniques, and concepts, which in many cases we have learned to use 
with great facility. 

The concept of objective truth does not directly disappear in such a 
view of science, but what we might call the cosmological or global view of 
truth is looked at with skepticism just as is a global or cosmological view 
of completeness. Like our own lives and endeavors, scientific theories are 
local and are designed to meet a given set of problems. As new prob
lems arise new theories are needed, and in almost all cases the theories 
used for the old set of problems have not been tested to the fullest extent 
feasible nor been confirmed as broadly or as deeply as possible, but the 
time is ripe for something new, and we move on to something else. Again 
this conception of science does not mean that there cannot be continued 
correction in a sequence of theories meeting a particular sequence of prob
lems; but it does urge that the sequence does not necessarily converge. In 
fact, to express the kind of incompleteness I am after, we can even make 
the strong assumption that in many domains of experience the scientific 
theory that replaces the best old theory is always an improvement, and 
therefore we have a kind of monotone increasing sequence. Nonetheless, 
as in the case of a strictly monotone increasing sequence of integers, there 
is no convergence to a finite value-the sequence is never completed-and 
so it is with scientific theories. There is no bounded fixed result toward 
which we are converging or that we can hope ever to achieve. Scientific 
knowledge, like the rest of our knowledge, will forever remain pluralistic 
and highly schematic in character. 

1This idea is developed in some detail in Suppes (1962). 
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HEURISTICS AND THE 

AXIOMATIC METHOD 

1. THE PLACE OF THE AXIOMATIC METHOD 

Over the last 100 years a variety of arguments have been given for using 
the axiomatic method in mathematics and in science. There is not uniform 
agreement that the method is always appropriate or useful. However, 
there is, I think, general agreement that the use of such methods has 
revolutionized the presentation of mathematics and has had signi:ficant 
impact in the empirical sciences as well. 

Various arguments in favor of giving an explicit axiomatic analysis of 
structures in a given discipline have been given. The standard arguments 
concentrate on matters of clarity, explicitness, generality, objectivity, and 
self-containedness (Suppes, 1968). 

Arguments of another sort are sometimes found in physics. I quote 
one example from quantum field theory (Bogolubov, Logunov, Todorov, 
1975). 

It is widely believed that axiomatization is a kind of polish
ing, which is applied to an area of science after it has been, 
for all practical purposes, completed. This is not true, even 

*Reprinted from Methods of heuristics (ed. by R. Groner, M. Groner and W. F. 
Bischof), 1983, pp. 79-88. Hillsdale, NJ: Erlbaum. I am indebted to Georg Kreisel for 
several useful criticisms of an earlier draft. 
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in pure mathematics. Admittedly, the modern axiomatization 
of arithmetic and Euclidean geometry marked the completion 
of these disciplines (although at the same time it stimulated a 
new science-mathematical logic, or metamathematics). For 
most areas of contemporary mathematics, however, such as 
functional analysis, axiomatization is a fundamental method 
of exploration, a starting point. (Of course, the system of ax
ioms may be modified as the subject develops.) In theoretical 
physics, since the time of Newton, the axiomatic method has 
served not only for the systematization of results previously 
obtained, but also in the discovery of new results (p. 1). 

What I want to do in the present chapter is rather similar. The ar
gument I want to concentrate on is sometimes stated very informally, 
but it is often implicit and behind the scenes. It is that the use of the 
axiomatic method has a positive heuristic value in understanding a sub
ject, in solving problems in it, and in formulating new problems. At the 
most satisfactory level, this chapter would contain some conceptual ideas 
about the heuristic value of the axiomatic method and would then go 
on to present detailed empirical evidence in support of or against these 
conceptual claims. As you might imagine, I am not able to provide any 
detailed empirical data, but what I have to say should in principle be 
testable. 

I also want to make clear that my analysis is not meant to be a pane
gyric for the axiomatic method. Application of the method in some parts 
of science has had a negative effect. I should also mention that, in spite 
of the fact that axiomatic methods have certainly been developed and 
applied mainly in pure mathematics, I consider on an equal basis the 
physical and social sciences. 

When axioms are appropriate. The preceding quotation from a well
known treatise on quantum field theory represents one important view
point. I now want to move to the social sciences. Economics uses mathe
matical methods, and in particular axiomatic methods, to a much greater 
extent than any other social science. As some of my economist friends put 
it, you have to know some modern mathematics in order not to become 
technologically obsolete as an economist. In a subject like economics that 
has been developed over many years, that has close ties to politics in many 
of its intellectual roots and that often reflects strong national biases, the 
virtues of the extensive use of mathematical methods, and especially ax
iomatic methods, are apparent. Economists from all parts of the world 
converse easily and clearly about their basic assumptions when they op-
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erate within the axiomatic frameworks that are so much a common part 
of contemporary work in economics. 

For different reasons the use of axiomatic methods has played a sim
ilar positive role in sociology. For over 100 years sociology has been al
most overwhelmed with large-scale, high-sounding theories. Inside some 
of these theories are some interesting and original ideas, but these creative 
seeds have often been lost in the mounds of chaff. What is happening in 
sociology reminds me of what has sometimes been said of the 17th century; 
Newton's Principia was not only a work marvelous for its deep results but 
also for its intellectual purity and austerity. The speculative and over
wrought ideas of Descartes and others about the nature of matter and of 
physical phenomena, exemplified most strikingly in Descartes' Principles 
of Philosophy, were replaced by something that was substantial and solid 
throughout. The modern tendency in sociology represents a correspond
ing move from Cartesian method to Newtonian analysis. Good examples 
of modern work are Coleman (1964), Fararo (1973), and Blalock, Aganbe
gian, Borodkin, Boudon, and Capecchi {1975). These three works are of 
quite a different sort. Coleman's treatise is an early and influential book 
in the extended application of mathematical methods to standard prob
lems in sociology. Fararo's book is closer to being a standard textbook, 
and the multiple-authored book edited by Blalock et al. provides reprints 
of many current articles relevant to mathematical and axiomatic studies 
in sociology. The material in these three volumes is a far cry from the 
kind of philosophical sociology that is still very prominent in many parts 
of Europe and that was dominant throughout the world a few decades 
ago. The mathematical methods in sociology I am referring to have the 
heuristic virtue of forcing those who use them to achieve a certain degree 
of explicitness and precision of formulation. It is too easily forgotten how 
important it is to convert certain subject matters from vague qualitative 
discussions to disciplined mathematically based discourse. It is also too 
easy to think that this is a problem that has only been faced by the social 
sciences. A little reading in Descartes, Boscovich, or any of a number of 
other authors provides evidence that physics had a similar problem before 
the 19th century. 

The story is somewhat different in psychology, which has always been 
more data bound and experimentally bound than either economics or 
sociology. The earlier attempts at axiomatization in psychology were 
more in the spirit of Descartes than Newton. Leibniz said in a famous 
phrase that Descartes' treatise on physics, the Principles of Philosophy 
just mentioned, was a roman de physique. I have said the same of Piaget's 
attempts at axiomatization in psychology and have called them a roman 
de psychologie (Suppes, 1973a). I would say the same also of the earlier 



58 PART I. GENERAL METHODOLOGY 

work of the learning theorists of the 1930s and 40s, for example, Tolman 
and Hull. Do not misunderstand me, novels are not necessarily bad; they 
have a place even in science. The speculative system of Descartes played 
in its own way a major role in the development of physics in the 17th 
century. The same can be said, in an even more positive way, about the 
work of Piaget, Tolman, and Hull. 

Since 1950 there has been a great variety of axiomatic work in psy
chology, most of it closely linked to experimental data. I am thinking of 
the work in learning theory, decision theory, measurement theory, formal 
models of perception, and psychophysical processes, to mention what are 
perhaps the most important areas. On the other hand, the story has 
not been one of unmitigated success. Much of the work in contemporary 
cognitive psychology is not even mathematical in character, let alone ax
iomatic. There is no doubt a feeling among many cognitive psychologists 
that it is premature to think of the development of cognitive structures in 
mathematical terms. I do not think these cognitive psychologists holding 
the views I attribute to them are entirely wrong. They are just misguided! 

2. HEURISTIC VERSUS NONHEURISTIC AXIOMS 

I assume for the remainder of this chapter that for many scientific theories 
it is appropriate to attempt to give a thorough axiomatic treatment. What 
I want to do is to classify various axiomatic analyses as heuristic or not. 
By an axiomatic analysis being "heuristic," I mean that the analysis yields 
axioms that seem intuitively to organize and facilitate our thinking about 
the subject, and in particular our ability to formulate, in an ordinarily 
self-contained way, problems concerned with the phenomena governed by 
the theory and their solutions. 

In considering these examples, I have in mind that the axiomatic 
method is relatively neutral regarding its heuristic value. It seems to 
me that there are examples, well-known in fact in the literature, that 
do facilitate our thinking. On the other hand, there are also well-known 
examples that represent a sophisticated mathematical foundation of a dis
cipline, but that are formulated in such a way that they prohibit natural 
and intuitive ways of thinking about problems, especially new problems 
in the discipline. By calling some axiomatic analyses unheuristic, I do 
not mean to suggest that they do not have value for other reasons. I do 
mean to suggest that they do not represent the kind of transparent and 
conceptually satisfactory solution we should aim at whenever possible. 

First heuristic example: field of real numbers. The construction of real 
numbers by Dedekind cuts or as equivalence classes of Cauchy sequences 
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completes an important 19th-century program on the arithmetization of 
analysis, but the resulting objects, taken as the real numbers in a literal 
fashion, are unnatural to deal with. In contrast, the standard axioms for 
the field of real numbers using the least upper-bound axiom for complete
ness seem very natural and intuitive. The axioms express the algebraic 
content of the rational operations on the real numbers in a simple and 
elegant way (I recognize, of course, that there is a slight variance on how 
the axioms are formulated in this respect, but these minor variations are 
not of concern here). Moreover, the least upper-bound axiom, to the ef
fect that every nonempty bounded set of real numbers has a least upper 
bound, also seems easy to comprehend, even though it has a very different 
character from the other axioms. Elementary proofs in real analysis can 
use these axioms in a way that is easy for students to understand and 
for instructors to explain. Part of the heuristic value of the axioms is, I 
believe, that all but the least upper-bound axiom can be formulated with 
free variables only. This leaves the algebraic structure transparent and 
easy for the student to manipulate. 

Second heuristic example: Ko/mogorov's axioms for probability. To appre
ciate the clarity and definite intuitive foundation Kolmogorov (1933) gave 
to the concept of probability in his well-known axiomatization, one needs 
only to examine the literature on the foundations of probability prior to 
his work. Even basic general properties were not entirely clear. Certainly 
the appropriate generality was not obtained together with axioms whose 
conceptual foundation was easy to understand. By formulating the ax
ioms in terms of a measure on a algebra of sets, with the sets interpreted as 
events, he provided an axiomatic foundation that has dominated 50 years 
of probability theory. The earlier work of Borel and Keynes, for exam
ple, lacked both clarity and generality. Also important in Kolmogorov's 
treatment was the explicit introduction of random variables as the main 
tool used in advanced probability work. 

To a remarkable degree, Kolmogorov's approach has simply obliter
ated in the mathematical literature of probability theory the earlier foun
dational formulations. Before Kolmogorov's work it used to be said that 
probability was a subject that could not be treated in a proper mathe
matical fashion because the foundations were so unclear. The heuristic 
value of Kolmogorov's work was to clear away the underbrush of the past 
and leave a new and adequate axiomatic formulation standing unsup
ported by any need for historical references to earlier work. This elim
ination of the past is one of the great heuristic virtues of simplification 
that the axiomatic method can achieve when used in the best possible 
form. 
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It is also important to recognize that a brilliant piece of axiomatic work 
like that of Kolmogorov need not be in any absolute sense final. It is just 
that it provides a basis for going forward in a new and unencumbered 
fashion. 

For many reasons, I do not think that Kolmogorov's axioms are re
ally the natural ones for many physical applications, but this is a minor 
complaint in the perspective of what was accomplished by his axiomatic 
presentation in the 1930s. 

A nonheuristic example: Mackey's axioms for quantum mechanics. Be
cause of its mathematical clarity and thoroughness, Mackey's (1957, 1963) 
axiomatic foundations of classical quantum mechanics have been generally 
well-received and cited often as the standard work on the subject. I take 
the view here that heuristically this is a bad example of axiomatization. 
As might be expected, I hope that what I have to say will be intrinsically 
more interesting than the rather laudatory general things I said about the 
two previous examples cited as good heuristic instances. 

Let me first try to put in a general way my central objection to 
Mackey's axiomatization. There are two main points I want to make. 
First, the axioms about the probability distribution of operators are for
mulated for single operators. There is no natural discussion about the 
causal development of a quantum-mechanical system and, consequently, 
the way in which one would intuitively think of a temporal sequence of 
operators being causally related. I expect, of course, that these causal re
lations will be stochastic in nature, but they are intuitively important to 
consider, indeed essential to the dynamical aspects of the theory. Second, 
if we think in natural terms of the trajectory of a particle, for example, 
we must think of it as a continuous sequence of operators being able to 
ask at each instant in time in which Borel sets the value of the operator 
lies. I submit that if physics had started this way, no serious complex 
problem would ever have been solved. A more natural and intuitive way 
of thinking of trajectories of particles is needed. It might be said that 
Mackey is just cleaning up what the physicists have said in an informal 
way. I think that a case can be made for this. My point is not to criticize 
Mackey's work as introducing discrepancies between the way physicists 
talk and the axioms he has given, but rather that the axioms taken liter
ally present a wrong picture of how to think about physical problems in 
quantum mechanics. 

I mention at this point the more important of Mackey's axioms. Briefly 
speaking, Mackey proceeds in the following fashion for the time-indepen
dent case. Let e be the set of observables and let S be the set of states; 
any structure on the sets e and S is explicitly stated in the axioms. The 
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function p(A, a, E) is defined whenever A E 8, a E S and E is a Borel 
set of real numbers. Intuitively p(A, a, E) is the probability of measuring 
observable A in set E when the state of the system is a. The first axiom 
states in fact that for every A in e and a in S, p(A, a, E) is a probability 
measure in the argument E on the 'set of all real numbers. The second 
axiom guarantees uniqueness of observables with a given probability dis
tribution, and similarly for states. It is a kind of extensionality axiom for 
observables and states. 

If p(A, a, E) = p(A', a, E) for all a in S and Borel sets E then 
A= A', and ifp(A,a,E) = p(A,a',E) for all A in e and all Borel sets 
E then a= a'. 
The remaining axioms are more technical and are not given here. Proper
ties as two-valued observables are defined, and a certain partial ordering 
in terms of probability distributions on properties is defined. The final 
and most powerful axiom is then the assertion that the set of all proper
ties under the given ordering is isomorphic to the partially ordered set of 
all closed subspaces of a separable infinite-dimensional complex Hilbert 
space. 

The last axiom also makes clear another heuristic weakness. The cor
respondence between operators and observables is left at the postulation 
of a one-to-one correspondence. Clearly, not much real physics could be 
done within this framework. What is important from the standpoint of 
physics is the derivation of the important correspondences and the pro
vision of tools for the derivation of others that may be wanted. Thus, 
the various arguments that are given for the standard operator for posi
tion and the standard operator for momentum need to be, I would claim, 
incorporated directly into the axiomatic framework in order to have a 
heuristically acceptable set of axioms. 

In criticizing so severely Mackey's axioms from a heuristic standpoint, 
I am not suggesting that it is either obvious or easy how to replace them 
by axioms for quantum mechanics that are heuristically of the right sort. 
Mackey (1963) himself agrees with this point: "It is not yet possible to 
deduce the present form of quantum mechanics from completely plausible 
and natural axioms (p. 62)." My view is that, given the way in which 
classical quantum mechanics developed historically, only a rather radical 
shift in our thinking will lead to a heuristically transparent formulation. 

Starting with a quotation from the treatise of Bogolubov et al., on 
quantum field theory, I have stressed the heuristic value of the axiomatic 
method in simplifying subject matters so as to make discoveries easier 
and the exposition of subjects pedagogically more accessible. It seems 
to me that Mackey's treatment fails on both these points in spite of the 
other virtues of his classical work. 
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3. AXIOMATIC ANALYSIS OF QUALITATIVE DERIVATIONS 

It is widespread folklore in physics and engineering that if one gets di
verted into proving theorems nothing of real interest will come out from a 
physical standpoint. The focus of physics should be on solving problems 
and not on proving theorems. Leave that business to the mathemati
cians. We could agree that there is a proper division of work here and 
that, moreover, without any consideration of division of work it is still 
better and more useful to have the solution of a hard problem than the 
proof of a trivial theorem (or vice versa). 

It is also a standard claim that graduate students in physics and in 
engineering are not expected to be able to prove theorems. It is not a 
part of their training. When physicists discuss axiomatics, it is sometimes 
called physical axiomatics, because it is not meant to have the status of 
a genuine axiomatic analysis. 

There is little doubt about the importance attached in engineering and 
physics to students' having the ability to derive from qualitative princi
ples an appropriate differential equation. Such derivations are considered 
an essential part of problem-solving skills. Good teachers have a lot of 
important things to say about how one is to think about such derivations, 
but the systematic theory is quite undeveloped. Indeed, it is a common 
thing to juxtapose the quite informal state of such problem solving to for
mal theorem proving. However, I think this is a false division. We should 
be able to give an axiomatic analysis of such qualitative derivations in 
the same spirit that we analyze other systematic phenomena. Now it is 
quite true that this axiomatic analysis could miss the heuristic spirit that 
seems so central to learning how to make such derivations, but it should 
be an important criterion of evaluation that the axioms do not miss this 
heuristic spirit. 

I want to be clear that the giving of such an axiomatic analysis of the 
foundation of qualitative derivations in physics, engineering, and other 
sciences does not in itself constitute a heuristic analysis, but I think that 
it is an important and essential step that will guide students in their 
attempts to give proper derivations. 

What I am asking for corresponds in many ways to the analysis of 
the concept of mathematical proof, but I am not interested here in the 
direction so characteristic of proof theory, namely, the reduction of proofs 
to an explicit form consisting of a large number of elementary steps. I 
am interested more in the analysis of mathematical proofs as they are 
presented by good writers in textbooks and treatises. This later kind of 
analysis, which is what many mathematicians expect, I think, from proof 
theory, is nearly as undeveloped as the analysis of qualitative derivations. 
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Mathematicians are generally aware of the rigorous and explicit theory 
of proofs that has developed since Hilbert, but they are not always sensi
tive to the differences between this explicit formal theory and the actual 
practices in giving proofs in mathematics. As we move from mathematics 
to sciences, awareness of this gap assumes a different form. In the classical 
tradition of problem solving I have alluded to, there is no concern at all 
for formal proofs. In spite of these differences, I think there is a natural 
and homogeneous common ground that can be occupied by a theory of 
informal mathematical proofs and a theory of qualitative derivations in 
engineering, physics, and the other sciences. 

There is a final historical point I want to make on the place of the 
axiomatic method in the kind of analyses I have just been discussing. 
It is commonly observed that the explicit role of the axiomatic method 
in mathematics is less important now than it was at the turn of the 
century. The detailed discussion of axioms and consideration of their 
independence, consistency, and completeness were the focus of intensive 
inquiry especially in the foundations of geometry. The lack of current 
concern for such questions can be seen in the l~ck of attention they receive 
in the treatise of Bourbaki covering so many parts of modern mathematics. 
As developments of particular disciplines have matured, the emphasis 
has shifted from explicit axiomatic methods to the identification of basic 
structures. It is this identification of basic structures without regard to 
the finer points of the axiomatic assumptions that is characteristic of 
Bourbaki and many other systematic treatises in modern mathematics. 

It seems to me, on the other hand, that the rather primitive status of 
the theory of qualitative derivations or the theory of informal proofs is 
precisely a subject calling for a sustained attempt at axiomatic analysis. 
We should anticipate interesting results of the sort that should contribute 
to the development of better heuristics in both theorem proving as it is 
actually done informally and in problem solving as it is now done in the 
quantitative and mathematically oriented empirical sciences. 

4. CONCLUDING REMARK ON THE DISTINCTION BETWEEN HEURISTICS 

AND AXIOMATICS 

It is possible to take a line that says that what I have urged in the pre
ceding section blurs the distinction between the axiomatic analysis of 
informal proofs and derivations and the codification of heuristics for the 
activities of giving such informal proofs and derivations. It is possible to 
take this line but I think it is important to maintain the distinction. The 
axiomatic analysis of qualitative derivations of differential equations in a 



64 PART I. GENERAL METHODOLOGY 

given domain can aim at a kind of informal rigor characteristic of contem
porary mathematics, especially characteristic of the kinds of discussions 
of such matters in modern probability theory, for example. On the other 
hand, I see the development of heuristics as being more psychological and 
much more incomplete. The real problem is to develop a useful heuristics 
that is, on the one hand, not a collection of general banalities but, on the 
other hand, is not simply an axiomatic analysis of the process that is the 
focus of inquiry. 

To make this distinction more vivid, let me consider an example in 
my own experience. I am responsible at Stanford for a computer-assisted 
instruction course in axiomatic set theory. This is an intermediate un
dergraduate course giving students their first introduction to the subject. 
Proofs are given in an informal style but the computer program the stu
dents address in giving their proofs must construct internally a formal 
representation. We also have for certain parts of the course, and we hope 
in the future to have in more parts, hints that are given to the student 
about constructing a proof of a given theorem. Our objective is to have 
contingent hints that are based on an analysis of the student's proof and 
that give him advice on how to complete it. In constructing a computer 
program able to give such contingent hints we have no intention of being 
able to provide an adequate analysis of every proof a student might give. 
Some of the theorems are rather hard and some of the partial proofs will 
be too deviant for the heuristic program to understand them. In contrast, 
the informal proof procedures are meant to be complete in the sense that 
a student knows that he has available machinery adequate to giving the 
proof. Moreover, we know from our own experience that a variety of 
proofs can be constructed for any of the theorems assigned by using the 
informal proof procedures available. I would expect this contrast to con
tinue. It is why I think a deeper theory of heuristics than anything I have 
suggested should be to a large extent psychological in character. 

Another way of putting the matter is that a virtue of the axiomatic 
method is that it brings an unusual and sometimes startling degree of 
explicitness to the analysis of a subject matter, and I do not think of 
heuristics as doing this. If a heuristic achieves a total degree of explicit
ness, it passes from being a heuristic to being an algorithm. The contrast 
I have in mind, put still another way, is that axiomatic analysis primar
ily deals with the analysis of a subject matter. Heuristics should deal 
with a process or activity. We are as incomplete in the formulation of 
heuristics as we are incomplete in the formulation of rules for learning 
or performing any finely tuned skill. Readers of Polya can increase their 
skill in problem solving just as readers of a good manual on tennis can 
improve their game. But in both cases the rules that are formulated are 
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only hints at how the skill should in fact be exercised. From simply read
ing the statement of rules about serving or hitting a good backhand in 
tennis it would be impossible, in fact, to play the game well. Not only 
are the rules quite incomplete in statement, but a person must actually 
practice in a nonverbal and active way the skills themselves in order to 
acquire any competence. Exactly the same thing, it seems to me, is true 
of heuristics. We cannot hope to teach each other at a deep level how 
to discover new theorems or to solve new problems in any detailed way. 
We can only provide heuristics to point in certain directions that make us 
perform more efficiently and more effectively. The rules of heuristics are 
as incomplete, fragmentary, and insufficient as are manuals of any other 
skill, from tennis to glass blowing. 



6 

REPRESENTATION THEORY AND 

THE ANALYSIS OF STRUCTURE 

A central topic in the philosophy of science is the analysis of the structure 
of scientific theories. Much of my own work has been concerned with this 
topic, but in a particular guise. The fundamental approach I have advo
cated for a good many years is the analysis of the structure of a theory in 
terms of the models of the theory. In a general way, the best insight into 
the structure of a complex theory is by seeking representation theorems 
for its models, for the syntactic structure of a complex theory ordinarily 
offers little insight into the nature of the theory. I develop that idea here 
in a general way, and expand upon things I have written earlier. I begin 
with some informal introductory remarks about the nature of representa
tions. The first section is devoted to the central concept of isomorphism 
of models of a theory, the second section to the nature of representation 
theorems, with some elementary examples given, and the third section to 
the related question of in variance and meaningfulness of a representation. 

A representation of something is an image, model, or reproduction 
of that thing. References to representations are familiar and frequent in 
ordinary discourse.1 Some typical instances are these: 

*Reprinted from Philosophia Natura/is, 25 (1988), 254-268. 
1 Other meanings of representation will not be analyzed here, even though a close 

affinity can be found for many of them, as in 'The representation of the union ap
proached management yesterday'. 

67 
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Sleep is a certain image and representation of death. 

The Play is a representation of a world I once knew well. 

It is the very representation of heaven on earth. 

The representation of Achilles in the painting was marvelous. 

This is a representation of the triumphal arch erected by Au
gustus. 

An intuitive and visual representation of nuclear forces is not 
possible. 

In some cases we can think of a representation as improving our under
standing of the object represented. Many of us certainly understand the 
proportions of a building better-especially the layout of the interior
after examining its architectural drawings. 

The formal or mathematical theory of representation has as its pri
mary goal such an enrichment of the understanding, although there are 
other goals of representation of nearly as great importance-for instance, 
the use of numerical representations of measurement procedures to make 
computations more efficient. Representation in the formal sense to be 
developed here has also been closely associated with reduction. An ad
mirable goal accepted on almost all sides is to reduce the unknown to the 
known. Controversies arise when claims about reduction are ideological 
rather than scientific in character. It is usually not appreciated how in
volved and technical the actual reduction of one part of science-even a 
near neighbor-is to another. 

Philosophical claims about the reduction-and thus representation
of one kind of phenomena or set of ideas by another are as old as philos
ophy itself. Here is Epicurus' reduction of everything to simple bodies, 
i.e., atoms, and space in his letter to his follower Herodotus: 

Moreover, the universe is bodies and space: for that bodies 
exist, sense itself witnesses in the experience of all men, and 
in accordance with the evidence of sense we must of neces
sity judge of the imperceptible by reasoning, as I have already 
said. And if there were not that which we term void and place 
and intangible existence, bodies would have nowhere to exist 
and nothing through which to move, as they are seen to move. 
And besides these two nothing can even be thought of either 
by conception or on the analogy of things conceivable such 
as could be grasped as whole existences and not spoken of as 
the accidents or properties of such existences. Furthermore, 
among bodies some are compounds, and others those of which 
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compounds are formed. And these latter are indivisible and 
unalterable. 

This passage from Epicurus, written about 300 B.C., is nearly duplicated 
in several places in Lucretius' long poem De Rerum Natura written about 
250 years later. The reduction of all phenomena to the motion of atoms 
in the void was a central theme of ancient atomism, and the speculative 
development of the ideas of significance for the scientific developments 
that occurred much later. 

A claimed reduction much closer to the formal spirit promoted here 
and one of great importance in the history of ideas is Descartes' reduction 
of geometry to algebra. He puts the matter this way in the opening lines 
of his La Geometrie (1637, 1954, p. 2): 

Any problem in geometry can easily be reduced to such terms 
that a knowledge of the lengths of certain straight lines is suf
ficient for its construction. Just as arithmetic consists of only 
four or five operations, namely, addition, subtraction, multi
plication, division and the extraction of roots, which may be 
considered a kind of division, so in geometry, to find required 
lines it is merely necessary to add or subtract other lines; or 
else, taking one line which I shall call unity in order to relate 
it as closely as possible to numbers, and which arbitrarily, and 
having given two other lines, to find a fourth line which shall 
be to one of the given lines as the other is to unity ... 

The difference between these two theses of reduction could hardly be 
greater in the degree to which they were carried out at the time of their 
conception. The ancient atomists could establish in a satisfactory sci
entific sense practically nothing about their reductive thesis. Descartes' 
detailed mathematical treatment constituted one of the most important 
conceptual breakthroughs of early modern mathematics. On the other 
hand, Descartes' attempted reduction of matter to nothing but extension 
in his Principles of Philosophy (1644) was in its way just as speculative 
as that of Epicurus or Lucretius. 

I emphasize that these comparisons are not meant to encourage a 
reductionistic methodology that asserts we should only talk about reduc
tions that can be fully carried out from a formal standpoint. Nothing 
could be further from the truth. As an unreconstructed pluralist, I am 
happy to assign a place of honor to speculation as well as results, espe
cially in view of how difficult it is to establish specific results on reduction 
for any advanced parts of science. We just need to recognize speculation 
for what it is. 
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1. ISOMORPHISM OF MODELS 

One of the most general and useful set-theoretical notions that may be 
applied to a theory is the concept of two models of a theory being iso
morphic. Roughly speaking, two models of a theory are isomorphic when 
they exhibit the same structure from the standpoint of the basic concepts 
of the theory. The point of the formal definition of isomorphism for a 
particular theory is to make this notion of same structure precise. It is to 
be emphasized, however, that the definition of isomorphism of models of a 
theory is not dependent on the detailed nature of the theory, but is in fact 
sufficiently independent often to be termed "axiom free." The use of the 
phrase "axiom free" indicates that the definition of isomorphism depends 
only on the set-theoretical character of models of a theory. Thus two 
theories whose models have the same set-theoretical character, but whose 
substantive axioms are quite different, would use the same definition of 
isomorphism. 

These ideas may be made more definite by giving the definition of iso
morphism for algebras that are often groups. Here a structure (A, o, e,-1) 

is an algebra if A is a nonempty set, o is a binary operation from A X A 
to A, e is an element of A, and - 1 is a unary operation from A to A. 

DEFINITION 1. An algebra ~ = (A, o, e,-1 ) is isomorphic to an 
algebra~'= (A', o', e',- 1') if and only if there is a function f such that 

(i) the domain off is A and the range off is A', 

(ii) f is a one-one function, 

(iii) if x andy are in A, then f(x o y) = f(x) o' f(y), 

(iv) if x is in A, then f(x- 1 ) = f(x)- 1', 

(v) f(e) = e'. 

When we ask ourselves whether or not two distinct objects have the same 
structure, we obviously ask relative to some set of concepts under which 
the objects fall. It is an easy matter to show that the relation of isomor
phism just defined is an equivalence relation among algebras, i.e., it is 
reflexive, symmetric, and transitive. As a rather interesting example, we 
might consider two distinct but isomorphic groups which have application 
in the theory of measurement. Let one group be the additive group of 
integers. In this case, the set A is the set of all integers, the operation o 
is the operation of addition, the identity element e is 0, and the inverse 
operation - 1 is the negative operation. As the second group, isomorphic 
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to the first, consider the multiplicative group of all integer powers of 2. 
In this case, the set A' is the set of all numbers that are equal to 2 to 
some integer power, the operation o' is the operation of multiplication, 
the identity element is the integer 1, and the inverse operation is the stan
dard reciprocal operation, i.e., the inverse of x is 1/x. To establish the 
isomorphism of the two groups Ql =(A, +, 0,-) and Ql' =(A',·, 1,-1 ), 

we may use the function f such that for every integer n in the set A 

f(n) = 2n . 

Then it is easy to check that the range of f is A', that f is one-one, and 

and 

f(m o n) = f(m + n) = 2m+n =2m· 2n = f(m) · f(n) 
= f(m) o' f(n), 

f(n-1) = f(-n) = 2-n = 21" = /(n)-1', 

f(O) = 2° = 1. 

It should be apparent that the same isomorphism between additive and 
multiplicative groups is possible if we let the set of objects of the additive 
group be the set of all real numbers, positive or negative, and the set of 
objects of the multiplicative group be the set of all positive real numbers. 
From the standpoint of the theory of measurement, this isomorphism 
is of interest primarily because it means that there is no mathematical 
basis for choosing between additive and multiplicative representations. 
Standard discussions of extensive quantities, for example, those concern
ing the measurement of mass or distance, often do not emphasize that 
a multiplicative representation is as acceptable and correct as an addi
tive representation. Because measurements of mass or distance are never 
negative, it may be thought that the remarks about groups do not apply 
precisely, for the additive groups considered all have negative numbers as 
elements of the group. The answer is that in considering the actual mea
surements of mass or distance, we restrict ourselves to the semigroup of 
positive elements of the additive group in question. However, the details 
of this point are not relevant here. Concerning the earlier remark that 
isomorphism or sameness of structure is relative to a set of concepts, note 
that the integers and the multiplicative group of powers of two differ in 
many number-theoretical properties. 

As another simple example of a theory axiomatized by defining a 
set-theoretical predicate, we may consider the ordinal theory of mea
surement. Models of this theory are customarily called weak orderings 
and we shall use this terminology in defining the appropriate predicate. 
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The set-theoretical structure of models of this theory is a nonempty 
set A and a binary relation R defined on this set. Let us call such 
a couple ~ = (A, R) a simple relation structure. We then have the 
following. 2 

DEFINITION 2. A simple relation structure ~ 
ordering if and only if for every x, y, and z in A 

(i) if xRy and yRz then xRz, 

(ii) xRy or yRx. 

(A, R) zs a weak 

The definition of isomorphism of simple relation structures should be ap
parent, but for the sake of explicitness I give it anyway, and emphasize 
once again that the definition of isomorphism depends only on the set
theoretical structure of the simple relation structures and not on any of 
the substantive axioms imposed. 

DEFINITION 3. A simple relation structure~ = (A, R) is isomorphic to 
a simple relation structure ~' = (A', R') if and only if there is a function 
f such that 

(i) the domain off is A and the range off is A', 

(ii) f is a one-one function, 

(iii) if x andy are in A then xRy if and only if f(x)R' f(y). 

To illustrate this definition of isomorphism let us consider the question, 
"Are any two finite weak orderings with the same number of elements iso
morphic?" Intuitively it seems clear that the answer should be negative, 
because in one of the weak orderings all the objects could stand in the re
lation R to each other and not so in the other. It will be interesting to ask 
what is the counterexample with the smallest domain we can construct 
to show that such an isomorphism does not exist in general. It is clear at 
once that two one-element sets will not do, because within isomorphism 
there is only one weak ordering with a single element, namely the order
ing that makes that single element stand in the given relation R to itself. 
However, a counterexample can be found by adding one more element. 
In one of the weak orderings we can let R be the universal relation, i.e., 
R = A x A, the Cartesian product of A with itself, and in the other, let R' 

2 Notice that we use R to represent the weak ordering rather than the qualitative 
relation !::: much used elsewhere in this volume. The reason for this choice here is 
so as not to prejudge the direction of the ordering, which is intuitively implied by 
t. 
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be a "minimal" relation satisfying the axioms for a weak ordering. More 
formally, let 

A {1,2} 

R {(1, 1), (2, 2), (1, 2), (2, 1)} 

A' A 
R' {(1, 1), (2, 2), (1, 2)}. 

Then it is easily checked that ~ = (A, R) and ~' = (A', R!) are both weak 
orderings with domains of cardinality two, but A cannot be isomorphic to 
A'. For suppose there were a function f establishing such an isomorphism. 
Then we would have 

1 R 2 if and only if !(1) R' !(2) 

and 

2 R 1 if and only if !(2) R' !(1), 

but we also have 1 R 2 and 2 R 1, whence 

(1) !(1) R' !(2) and !(2) R' !(1), 

but this is impossible, for if f(1) = 1, then f(2) = 2, and thus from (1) 
2 R' 1, but we do not have 2 R' 1. On the other hand, as the only other 
possible one-one function, if f(1) = 2 then !(2) = 1, and again we must 
have from (1) 2 R' 1, contrary to the definition of R'. 

2. REPRESENTATION THEOREMS 

In attempting to characterize the nature of the models of a theory the 
notion of isomorphism enters in a central way. Perhaps the best and 
strongest characterization of the models of a theory is expressed in terms 
of a significant representation theorem. By a representation theorem for a 
theory the following is meant. A certain class of models of a theory distin
guished for some intuitively clear conceptual reason is shown to exemplify 
within isomorphism every model of the theory. More precisely, let M be 
the set of all models of a theory, and let B be some distinguished subset 
of M. A representation theorem for M with respect to B would consist 
of the assertion that given any model M in M there exists a model in B 
isomorphic to M. In other words from the standpoint of the theory every 
possible variation of model is exemplified within the restricted set B. It 
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should be apparent that a trivial representation theorem can always be 
proved by taking B = M. A representation theorem is just as interesting 
as the intuitive significance of the class B of models and no more so. An 
example of a simple and beautiful representation theorem is Cayley's the
orem that every group is isomorphic to a group of transformations. One 
source of the concept of a group, as it arose in the nineteenth century, 
comes from consideration of the one-one functions which map a set onto 
itself. Such functions are usually called transformations. It is interest
ing and surprising that the elementary axioms for groups are sufficient to 
characterize transformations in this abstract sense, namely, in the sense 
that any model of the axioms, i.e., any group, can be shown to be isomor
phic to a group of transformations. (For a discussion and proof of this 
theorem, see Suppes, (1957), Ch. 12.) 

Certain cases of representation theorems are of special interest. When 
the set B can be taken to be a unit set, i.e., a set with exactly one element, 
then the theory is said to be categorical. Put another way, a theory is cat
egorical when any two models are isomorphic. Thus, a categorical theory 
has within isomorphism really only one model. Examples of categorical 
theories are the elementary theory of numbers when a standard notion 
of set is used, and the elementary theory of real numbers with the same 
standard notion of set. It has sometimes been asserted that one of the 
main differences between nineteenth- and twentieth-century mathematics 
is that nineteenth-century mathematics was concerned with categorical 
mathematical theories while the latter deals with noncategorical theories. 
It is doubtful that this distinction can be made historically, but there 
is certainly a rather sharp conceptual difference between working with 
categorical and noncategorical theories. There is a clear sense in which 
noncategorical theories are more abstract. 

From a psychological standpoint a good case can probably be made 
for the view that a theory is regarded as abstract when the class of mod
els becomes so large that any simple image or picture of a typical model 
is not possible. The range of models is too diverse; the theory is very 
noncategorical. Another closely related sense of "abstract" is that certain 
intuitive and perhaps often complex properties of the original model of 
the theory have been dropped, as in the case of groups, and we are now 
prepared to talk about models which satisfy a theory even though they 
have a much simpler internal structure than the original intuitive model. 
This meaning of "abstract" is very close to the etymological one. 

Homomorphism of models. In many cases within pure mathematics a 
representation theorem in terms of isomorphism of models turns out to 
be less interesting than a representation theorem in terms of the weaker 
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notion of homomorphism. A good example of this sort within the philos
ophy of science is provided by theories of measurement, and the gener
alization from isomorphism to homomorphism can be illustrated in this 
context. When we consider general practices of measurement it is evident 
that in terms of the structural notion of isomorphism we would, roughly 
speaking, think of the isomorphism as being established between an em
pirical model of the theory of measurement and a numerical model. By 
an empirical model we mean a model in which the basic set is a set of 
empirical objects and by a numerical model one in which the basic set is 
a set of numbers. However, a slightly more detailed examination of the 
question indicates that difficulties about isomorphism quickly arise. In 
all too many cases of measurement, distinct physical objects are assigned 
the same number, and thus the one-one relationship required for isomor
phism of models is destroyed. Fortunately, this weakening of the one-one 
requirement for isomorphism is the only respect in which we must change 
the general notion, in order to obtain an adequate account for theories 
of measurement of the relation between empirical and numerical models. 
The general notion of homomorphism is designed to accommodate exactly 
this situation. To obtain the formal definition of homomorphism for two 
algebras or two simple relation structures as previously defined, we need 
only drop the requirement that the function establishing the isomorphism 
be one-one. When this function is many-one but not one-one, we have a 
homomorphism that is not an isomorphism.3 

These remarks may be made more concrete by considering the theory 
of weak orderings as a theory of measurement. It is easy to give a simple 
example of two weak orderings such that the first is homomorphic to the 
second, but not isomorphic to it. Let 

A {1, 2} 

R {(1, 1), (2, 2), (1, 2), (2, 1)} 

A' {1} 

R' {(1, 1)} 

and 

/(1) 1 
----------------------

3 A weaker notion of homomorphism is generally used in algebra. The condition 
that, e.g., structures (A, R) and (A', R') be homomorphic with f being the mapping 
A onto A' is that if xRy then f(x)R1 f(y), rather than if and only if. However, in 
the theory of measurement and in other applications in the philosophy of science, the 
definition used here is more satisfactory. 
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/(2) 1. 

From these definitions it is at once obvious that the weak ordering 
Ql = (A, R) is homomorphic under the function f to the weak ordering 
Ql' =(A', R'). 

The point in showing the homomorphism is that we have 

1 R 2 if and only if /(1) R' /(2), 

as well as 

2 R 1 if and only if /(2) R' /(1), 

and both these equivalences hold just because 

/(1) = /(2) = 1. 

On the other hand, it is also clear simply on the basis of cardinality 
considerations that Ql is not isomorphic to Ql', because the set A has two 
elements and the set A' has one element. It is also evident that Ql' is 
not homomorphic to Qt. This also follows from cardinality considerations, 
for there is no function whose domain is the set A' and whose range is 
the set A. As this example illustrates, the relation of homomorphism 
between models of a theory is not an equivalence relation; it is reflexive 
and transitive, but not symmetric. 

By a numerical weak ordering I mean a weak ordering Ql = (A, :S:) 
where A is a set of numbers. The selection of the numerical relation ::; to 
represent the relation R in a weak ordering is arbitrary, in the sense that 
the numerical relation ;:::: could just as well have been chosen. However, 
choice of one of the two relations ::; or ;:::: is the only intuitively sound 
possibility. The following theorem provides a homomorphic representa
tion theorem for finite weak orderings, and thus makes the theory of finite 
weak orderings a theory of measurement. 

THEOREM 1. Every finite weak ordering is homomorphic to a numerical 
weak ordering. 

Proof. Let Ql = (A, R) be a finite weak ordering. 
Probably the simplest approach is first to form equivalence classes of 
objects in A, with respect to the obvious equivalence relation E defined 
in terms of R: 

xEy if and only if xRy & yRx. 
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Thus, using the standard notation "[x]" for equivalence classes, i.e., 

[x] = {y: y E A&xEy}, 

we first order the equivalence classes according to R. Explicitly, we define 

[x]R*[y] if and only if xRy. 

It is straightforward to prove that R* is reflexive, antisyrnmetrical, tran
sitive, and connected in the set A/ E of equivalence classes, or, in other 
words, that it is a simple ordering of A/ E. Since A is a finite set, nec
essarily A/ E is finite. Let [x1] be the first element of A/ E under the 
ordering R*, [x2] the second, ... , and [xn] the last element. Consider now 
the numerical function g defined on A/ E, defined as follows: 

g([x,]) = i fori= 1, ... ,n. 

Then the function g establishes an isomorphism between the ordering 
0./ E = (A/ E, R*) and the numerical ordering 91 = (N, 5_), where N is 
the set of first n positive integers. (The details of this part of the proof 
are tedious but obvious.) We then define the numerical function f on A, 
for every y in A, by: 

f(y) = i if and only if y E [xi], 

i.e., if y is in the ith equivalence class under the ordering R* . The function 
f establishes a homomorphism between f)! and m, as desired. 

Theorem 1 was restricted to finite weak orderings for good reason; it 
is false if this restriction is removed. The classic counterexample is the 
lexicographical ordering of the plane. 

Let A be the set of all ordered pairs (x, y) of real numbers, and let the 
relation R be defined by the equivalence (xr, x2) R (y1 , y2 ) if and only if 
x1 < Yl, or x1 = Yl and x2 '5:. Y2. Suppose that there exists a real-valued 
function f satisfying the equivalence: 

(1) f(x) '5:. f(y) if and only if xRy. 

We fix x2 and Y2 with x2 < Y2 and define for each x 1 : 

f'(xr) = J(x1,x2) 

J"(x!) = f(xl,Y2). 

In terms of these functions define the following function g from real num
bers to intervals: 
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On the assumption that the ordering is lexicographic, g must be one-one 
since two distinct numbers are mapped into two disjoint intervals. For 
instance, if x1 >xi then f'(x1) = j(x1,x2) > j(xi,y2) = f"(xi). But it 
is well known that there can be no one-one correspondence between the 
uncountable set of real numbers and the countable set of nondegenerate 
disjoint intervals. Thus no such function g can exist, and a fortiori there 
can be no function f satisfying (1) for the lexicographic ordering. 

Embedding of models. We have seen that the notion of two models being 
homomorphic is a generalization of the notion of two models being isomor
phic. A still more general and therefore weaker relation between models 
is that of one model being embedded in another. To prove an embedding 
theorem for a theory is to prove that there is an interesting class M of 
models such that every model of the theory is isomorphic, or at least 
homomorphic, to a sub model belonging to M. The exact definition of 
submodel will vary slightly from one theory to another depending on the 
set-theoretical character of its models. For example, if Qt. = (A, o, e, - 1 ) 

is an algebra as defined above, then an algebra Ql' = (A',o',e',- 1') is a 
subalgebra of Qt. if A' is a subset of A, o' is the operation o restricted to 
A' (i.e., a' = 0 n (A' X A' X A')), e' = e, and - 1' is the operation - 1 

restricted to A'. In the case of simple relation structures the definition is 
still simpler. Let Qt. = (A, R) and Ql' = (A', R') be two such structures. 
Then Ql' is a submodel of Qt. if A' is a subset of A and R' is the relation 
R restricted to A', i.e., R' = R n (A x A). 

Theorem 1 could have been formulated as an embedding theorem along 
the following lines. Let Re be the set of real numbers. Then it is apparent 
at once that (Re, :::;) is a numerical weak ordering as defined earlier, and 
every finite weak ordering can be homomorphically embedded in (Re, :::;), 
i.e., is homomorphic to a submodel of (Re, :::;). 

3. INVARIANCE AND MEANINGFULNESS 

In connection with any measured property of an object, or set of objects, it 
may be asked how unique is the number assigned to measure the property. 
For example, the mass of a pebble may be measured in grams or pounds. 
The number assigned to measure mass is unique once a unit has been 
chosen. A more technical way of putting this is that the measurement of 
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mass is unique up to a similarity transformation.4 

The measurement of temperature in °C or °F has different charac
teristics. Here an origin as well as a unit is arbitrarily chosen: techni
cally speaking, the measurement of temperature is unique up to a lin
ear transformation. 5 Other formally different kinds of measurement are 
exemplified by (1) the measurement of probaoility, which is absolutely 
unique (i.e., unique up to the identity transformation), and (2) the or
dinal measurement of such physical properties as hardness of minerals, 
or such psychological properties as intelligence and racial prejudice. Or
dinal measurements are commonly said to be unique up to a monotone 
increasing transformation. 6 

Use of these different kinds of transformations is basic to the main 
idea of this section. An empirical hypothesis, or any statement in fact, 
which uses numerical quantities is empirically meaningful only if its truth 
value is invariant under the appropriate transformations of the numerical 
quantities involved. As an example, suppose a psychologist has an ordinal 
measure of I. Q., and he thinks that scores S( a) on a certain new test 
T have ordinal significance in ranking the intellectual ability of people. 
Suppose further that he is able to obtain the ages A( a) of his subjects. The 
question then is: Should he regard the following hypothesis as empirically 
meaningful? 

HYPOTHESIS 1. For any subjects a and b, if S(a)/A(a) < S(b)/A(b), 
then I.Q.(a) < I.Q. (b). 
From the standpoint of the in variance characterization of empirical mean
ing, the answer is negative. To see this, let I.Q. (a) 2:: I.Q. (b), let A( a) 
= 7, A( b) = 12, S( a) = 3, S( b) = 7. Make no transformations on the 
I.Q. data, and make no transformations on the age data. But let t/J be 
a monotone-increasing transformation which carries 3 into 6 and 7 into 
itself. Then we have 

3 7 
7 < 12' 

4 A real-valued function 4> is a similarity transformation if there is a positive number 
01 such that for every real number x 

rf>(x) =ax. 
In transforming from pounds to grams, for instance, the multiplicative factor 01 is 
453.6. 

5 A real-valued function r/> is a linear transformation if there are numbers 01 and (3 
with 01 > 0 such that for every number x 

rf>(x) = ax+ (3. 
In transforming from Centigrade to Fahrenheit degrees of temperature, for instance, 
01 = 9/5 and (3 = 32. 

6 A real-valued function r/> is a monotone increasing transformation if, for any two 
numbers x and y, if x < y, then rf>(x) < rf>(y). Such transformations are also called 
order-preserving. 
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6 7 ->-7- 12' 

and the truth value of Hypothesis 1 is not invariant under ¢. 
The empirically significant thing about the transformation character

istic of a quantity is that it expresses in precise form how unique is the 
structural isomorphism between the empirical operations used to obtain a 
given measurement and the corresponding arithmetical operations or re
lations. If, for example, the empirical operation is simply that of ordering 
a set of objects according to some characteristic, then the corresponding 
arithmetical relation is that of less than (or greater than), and any two 
functions which map the objects into numbers in a manner preserving the 
empirical ordering are adequate. More exactly, a function f is adequate 
if, and only if, for any two objects a and b in the set, a stands in the given 
empirical relation to b if and only if 

f(a) < f(b) .7 

It is then easy to show that, if / 1 and f2 are adequate in this sense, 
then they are related by a monotone-increasing transformation. Only 
those arithmetical operations and relations which are invariant under 
monotone-increasing transformations have any empirical significance in 
this situation. 

When we turn from the examination of numerical quantities to models 
of more complex theories, we obtain results of a similar character. For 
example, in examining classical mechanics we get a representation that is 
unique, when units of measurement are fixed, up to a Galilean transfor
mation, that is, a transformation to some other inertial system. In the 
case of relativistic structures of particle mechanics, the uniqueness is up 
to Lorentz transformations. 

To give an example of an elementary result, we can state the unique
ness theorem corresponding to the representation theorem (Theorem 1) 
for finite weak orders. 

THEOREM 2. Let Ql = (A, R) be a finite weak order. Then any two 
numerical weak orderings to which it is homomorphic are related by a 
strictly increasing numerical function. 

Put in other language, the numerical representation of finite weak orders 
is unique up to an ordinal transformation. Invariance up to ordinal trans
formations is not a very strong property of a measurement, and it is for 

7 For simplicity we shall consider here only the arithmetical relation <. There is no 
other reason for excluding >. 
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this reason that Hypothesis 1 turned out not to be meaningful, because 
the hypothesis was not invariant under monotone transformations of the 
measurement data. 

I have not mentioned as yet what is probably the most important, 
certainly the most important historical domain, in which invariance and 
meaningfulness were applied, namely, geometry. Here is a famous quo
tation from Felix Klein from his Erlangen address of 1872 (see Klein, 
1893-I have made occasional minor changes in the quotation of the En
glish translation). 

For geometric properties are, from their very idea, indepen
dent of the position occupied in space by the configuration in 
question, of its absolute magnitude, and finally of the sense in 
which its parts are arranged. The properties of a configura
tion remain therefore unchanged by any notions of space, by 
transformation into similar configurations, by transformation 
into symmetrical configurations with regard to a plane (reflec
tion), as well as by any combination of these transformations. 
The totality of all these transformations we designate as the 
principal group of space-transformations: geometric proper
ties are not changed by the transformations of the principal 
group. And, conversely, geometric properties are character
ized by their remaining invariant under the transformations 
of the principal group. For, if we regard space for the moment 
as immovable, etc., as a rigid manifold, then every figure has 
an individual character; of all the properties possessed by it as 
an individual, only the properly geometric ones are preserved 
in the transformations of the principal group. (p. 218) 

Thus, under Klein's view, which is now widely adopted, one can recognize 
a meaningful Euclidean relation between points just by testing whether or 
not the relation is invariant under the group of Euclidean motions. Corres
pondingly, one can tell whether a relation between points is topologically 
meaningful by determining whether the relation is invariant under any 
homomorphism. 

Moving back to the general scheme of things, a representation theorem 
should ordinarily be accompanied by a matching in variance theorem stat
ing the degree to which a representation of a structure is unique. In the 
mathematically simple and direct cases it is easy to identify the group as 
some well-known group of transformations. For more complicated struc
tures, for example, structures that satisfy the axioms of a scientific theory, 
it may be necessary to introduce more complicated apparatus, but the ob
jective is the same, to wit, to characterize meaningful concepts in terms 
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of invariance. 
One note to avoid confusion: it is when the concepts are given in 

terms of the representation, for example, a numerical representation in 
the case of measurement, or representation in terms of Cartesian coor
dinates in the case of geometry, that the test for invariance is needed. 
When purely qualitative relations are given which are defined in terms 
of the qualitative primitives of a theory, for example, those of Euclidean 
geometry, then it follows at once that the defined relations are invariant 
and therefore meaningful. On the other hand, the great importance of 
the representations and the reduction in computations and notation they 
achieve, as well as understanding of structure, make it imperative that 
we have a clear understanding of invariance and meaningfulness for rep
resentations which may be in appearance, rather far removed from the 
qualitative structures that constitute models of the theory. 

In the case of physics, the primitive notions themselves of a theory are 
not necessarily invariant. For example, if we axiomatize mechanics in a 
given frame of reference, then the notion of position for a particle, for ex
ample, is not invariant but is subject to a transformation itself. A more 
complicated analysis of invariance and meaningfulness is then required 
in such cases. The general point is clear, however: the study of repre
sentation is incomplete without an accompanying study of invariance of 
representation. 
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CAUSAL ANALYSIS OF HIDDEN 

VARIABLES 

My contribution to this symposium is focused on the retreat from strong 
conditions of causality that have been forced upon us by quantum me
chanics. My intent is to describe in more or less successive stages the 
retreat from the paradise of deterministic causation. This retreat has 
taken place through a thicket of quantum-mechanical details. It is my 
intention to describe the general principles involved but to refer to the 
literature for proofs and full technical elaboration, even of matters that 
are crucial to the conceptual development. 

The history of the efforts to prove or disprove the possibility of hid
den variables begins at least with von Neuman and includes important 
work by Kochen and Specker and others, but much of the recent analysis 
has centered around Bell's inequality and related results. In spite of its 
importance and significance I shall ignore this earlier history and begin 
with these recent discussions. 

The experimental situation most referred to by Bell and others is 
a system in which we are generating two spin-1/2 particle initially in 
the singlet state. We measure the spin of each particle as it leaves the 
source, one going in one direction and the other in the opposite direction. 
The puzzles and paradoxes arise from the strong dependencies we find 

*Reprinted from PSA 1980, Vol. 2 (ed. by P. Asquith and R. Giere), 1981, 563-571. 
East Lansing, MI: Philosophy of Science Association. 
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between the spins of the two particles that are spatially separated, but 
which originated from the source in the singlet state at the same time. 

There are five assumptions about these systems that are essentially 
noncontroversial, which I shall state here but not formulate in an explicit 
mathematical fashion. 

(i) Axial symmetry. For any direction of the measuring apparatus the 
expected spin is 0, where spin is measured by +1 and -1 for spin 
+1/2 and spin -1/2, respectively. Further, the expected product 
of the spin measurements is the same for different orientations of 
the measuring apparatuses, as long as the angle between the mea
suring apparatuses remains the same. By the angle between the 
measuring apparatuses we refer to the angle between the different 
orientations. Thus, one apparatus, the one on the left, for example, 
might be oriented up and the one on the right 90 degrees away, taken 
counterclockwise. Notice that the assumption of axial symmetry is 
just like a standard assumption about the isotropy of space. 

(ii) Opposite measurement for same orientation. The correlation be
tween the spin measurements is -1 if the two measuring appara
tuses have the same orientation. This assumption is theoretically 
sound but in actual measurements the correlations obtained are not 
precisely -1. We shall weaken this assumption in some of the sub
sequent discussion. 

(iii) Independence of the hidden variable. The expectation of any func
tion of the hidden variable. which we shall in accordance with the 
literature call .A, is independent of the orientation of the measuring 
apparatus. It is generally agreed that the hidden variable which 
gives us a causal analysis of the motion of the two spin-1/2 parti
cles should not itself be affected by the way in which we happen to 
orient the measuring apparatus. 

(iv) Locality. The spin measurement obtained with one apparatus is 
independent of the orientation of the other measuring apparatus. 

(v) Quantum-mechanical correlations. The quantum-mechanical covari
ance for the spin of the two particles, given the values +1 and -1 
as stated above, is -cos B, where (} is the angle between the orien
tations of the two measuring apparatuses. 

Using these assumptions, with some changes here and there, we now 
proceed to chronicle the retreat to ever weaker causal conditions. 
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1. DETERMINISTIC CAUSES 

It is natural in the framework of classical physics to add to the assump
tions just given above that, given the hidden variable,\ and the orientation 
of the measuring apparatus, the result of the spin measurement should 
be determined uniquely. In other words, intuitively the hidden variable >. 
should be a deterministic cause. 

It is shown in Bell (1964, 1966) and with particular clarity in Wigner 
(1970) that under these assumptions there can be no hidden variable, so 
that the search for deterministic causes is mistaken. 

In an earlier paper, Zanotti and I (1976) weaken the deterministic 
assumption to conditional statistical independence, that is, to the as
sumption that the expectation of a product of the spin measurements, 
given ,\ and the orientation of the measuring apparatuses, is equal to the 
product of the expectations under the same conditions. Our argument is a 
straightforward probabilistic one. We first show that statistical indepen
dence, given >., together with a correlation of -1, implies determinism. I 
mention this assumption of conditional statistical independence because 
I shall be returning to it throughout the paper. 

Within the deterministic framework of classical physics, the negative 
results of Bell constitute in the minds of many people the most definitive 
refutation of the search to expand classical quantum mechanics into a 
more encompassing classical theory of deterministic causes. 

2. DE FINETTI'S THEOREM 

Given that the case for determinism is hopeless in the context of quantum 
mechanics, the first line of retreat is to look for causal hidden variables 
that render the correlated spin phenomenon conditionally independent. 
The general rubric here, of widespread application in modern statistics, is 
that a proper probabilistic causal analysis should render the phenomeno
logical data statistically conditionally independent. This is precisely the 
role of a probabilistic common cause. There is a famous theorem of de 
Finetti's that looks as if it might have some application here because of 
the very general results about conditional independence. 

Before stating the theorem, I need to say something about the prin
ciple of exchangeability. It is a principle of symmetry that has not been 
used in physics in any extended way. The principle was introduced by de 
Finetti to provide a natural alternative in the subjective theory of proba
bility to objective theories of independence. The subjective aspects of the 
principle are of no importance here but only its strong form of symmetry. 
Here is a simple example to illustrate exchangeability. Suppose we flipped 
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ten times a coin whose bias is unknown. Then the flips will not be inde
pendent because the outcomes of preceding flips will provide information 
about the probability of a head on the next flip. On the other hand, 
given the number of heads that occur in ten trials, the trials in which the 
heads occur are of no importance. In other words, we have permutational 
in variance in the sense that the probability of a sequence of ten outcomes 
with a fixed number of trials is the same regardless of exactly on which 
trials heads occur. Notice that exchangeability as a principle of symmetry 
radically reduces the number of probabilities that have to be determined. 
In the case of the ten flips of a coin, instead of considering 210 sequences 
of possible outcomes we can reduce this to just 11, the probabilities of 0 to 
10 heads. A little later I shall reintroduce the principle of exchangeability 
in the particular application of the spin experiments. 

Given the principle of exchangeability, de Finetti's theorem may be 
stated in the following form: An infinite sequence of random variables is 
exchangeable if and only if there exists a random variable, which we may 
think of as causal, such that the random variables in the infinite sequence 
have identical conditional distributions and are conditionally indepen
dent given this causal random variable. (For those used to thinking of de 
Finetti's theorem in terms of mixtures of distributions, what the formu
lation I am referring to does is simply treat the weightings of the mixing 
as being identified with a causal random variable.) For infinite sequences 
of random variables, my interpretation of de Finetti's theorem is that ex
changeability is equivalent to being able to find a causal mechanism that 
renders the random variables of the original phenomenon conditionally 
independent. As a simple example, take the case of flipping a coin that 
may have a bias. As has already been mentioned, we have exchangeabil
ity but not independence of the flips phenomenologically because, as the 
flips continue, their outcomes give us information for predicting future 
outcomes but if we know the causal random variable-in this case, the 
parameter of the bias-then we have conditional independence and the 
proper abstract causal account of the phenomenon. It is important to re
alize in these formulations that of course the causal mechanism identified 
is abstract and in general will in no sense be the fullest one possible. What 
is important about the theorem from the standpoint of causal concepts 
is that it shows the close relation between properly designed experiments 
for investigating causes of phenomena and the principle of exchangeabil
ity. 

It has not always been recognized that de Finetti's theorem is a fun
damental contribution to the theory of causality. An infinite sequence, of 
course, is approximated by large numbers of trials in actual experimenta
tion. What the theorem shows is that if we have an experimental design 
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in which exchangeability is satisfied phenomenologically, then we know on 
the basis of de Finetti's theorem alone that a common cause can be found 
that will render the phenomenological data conditionally independent
just as any good common cause should. Satisfaction of exchangeability is 
a nontrivial matter in experiments, but it is also important to recognize 
that the causal results implied by de Finetti's theorem are already a step 
away from a purely deterministic causal requirement. There is a good 
deal more to be said about de Finetti's theorem from the standpoint of 
the general theory of causality but I shall move on now to the case of two 
exchangeable events. 

3. EXCHANGEABILITY IN THE SPIN EXPERIMENTS 

The kind of symmetry expressed in the principle of exchangeability applies 
directly to the spin experiments that are a centerpiece of the literature 
surrounding Bell's results. This point is really uncontroversial and is an 
accepted part of the phenomenological data of the spin experiments. To 
be completely explicit it will be useful to express exchangeability in a 
formal way. Let X be the random variable for the measuring apparatus 
on the left-and on occasion we will call it apparatus I -and let Y be 
the random variable for expressing the measurement on the right with 
apparatus II. Exchangeability of X and Y may then be expressed as 
follows: 

P(X = 1, Y = -1) = P(X = -1, Y = 1). 

The symmetry of experimental design immediately satisfies this principle 
for the spin experiments. 

Now if we extend de Finetti's theorem to this much weaker and sim
pler situation of two exchangeable random variables, then we would want 
a causal hidden variable .X such that X and Y are conditionally indepen
dent, given .X, and, secondly, the conditional distributions of X and Y 
are identical, given .X. This second requirement of identity of conditional 
distributions is a fundamental aspect of de Finetti's result and a standard 
classical demand in the theory of causality. It is, in its own way, a theoret
ical principle of symmetry as opposed to the phenomenological principle 
of exchangeability. Thus, for example, when we throw out a pair of dice 
that have the same bias, that is, have the same causal hidden variable 
.X, we expect identity of conditional distributions, namely, the conditional 
probability of a face is the same for both. The principle of symmetry is an 
old and classical one-there is no basis for the conditional distributions 
to be different. I emphasize a point that is sometimes forgotten in these 
discussions, that the actual outcomes will be different most of the time, 
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in particular 5/6 of the times in the case of fair dice, even though the 
conditional distributions are identical. 

Now for a second point about two exchangeable random variables such 
as X and Y. It is easy to show that, in general for just two random 
variables as opposed to de Finetti's infinite sequence, an underlying causal 
hidden variable need not necessarily exist. 

Zanotti and I (1980) proved the following theorem giving necessary 
and sufficient conditions on the phenomenological data for two exchange
able hidden variables such as X and Y to have a causal hidden variable 
that will render them conditionally independent with identical conditional 
distributions. The condition is that their correlation be nonnegative. I 
restate the theorem in the following more formal fashion. 

THEOREM 1. Let X and Y be two-valued random variables, for defi
niteness with possible values 1 and -l, and with positive variances, i.e., 
u(X), u(Y) > 0. In addition, let X andY be exchangeable. Then a nec
essary and sufficient condition that there exist a hidden variable ~ such 
that E(XYI= ~ = A) = E(XI~ = A)E(YI~ = A) and E(XI~ = A) = 
E(YI~ =A) for every value A (except possibly on a set of measure zero) 
is that the correlation of X and Y be nonnegative. 

Some related results about finite sequences of exchangeable random vari
ables are to be found in Diaconis (1977). It is, as one might expect, easy 
to show that in the case of an infinite exchangeable sequence of random 
variables all pairs of random variables must necessarily have nonnegative 
correlation, so the condition that is imposed here is not one that is really 
stronger than one that holds for the infinite sequence of de Finetti's the
orem. It is just that this condition now needs to be made explicit for the 
weaker case of two random variables. 

From what was said at the beginning about negative correlations in 
the case of the spin experiments, it is obvious that the necessary and suf
ficient condition for the existence of a causal hidden variable ~ will not be 
satisfied. Thus, in its most natural form our retreat from deterministic to 
probabilistic common causes that yield identical conditional distributions 
is not successful. Notice how little of quantum mechanics has been used 
in the present result--only the existence of negative correlations, not as 
in the case of Bell's earlier papers the specific covariance or correlation 
result for quantum mechanics in terms of the cosine of the angle between 
the orientation of the two apparatuses. What this theorem shows is that 
strong causal intuitions cannot be satisfied, even at the probabilistic level, 
in quantum mechanics. Something has to give and it must be either the 
requirement of conditional independence or the requirement of identity of 
conditional distribution. The first is a principle of locality and the second 
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a natural principle of symmetry. There is a more detailed discussion of 
these matters in Suppes and Zanotti (1980). Here I continue the line of 
retreat. 

4. PROBLEM OF MORE THAN TWO EXCHANGEABLE VARIABLES 

As an illustration of how complicated the general theory of causality is, 
I mention the fact that there are no pretty and simple conditions now 
known in terms of the phenomenological data of pairwise covariances or 
correlations that guarantee an underlying causal hidden variable for n 
exchangeable variables, when n > 2. In other words, the pairwise inter
actions between the variables can assume a complicated pattern and it is 
not clear what are the natural necessary and sufficient conditions on this 
pattern to guarantee the existence of an underlying common cause. In 
other words, the right generalization of Theorem 1 for n > 2 is not at all 
obvious. 

5. BELL'S STOCHASTIC INEQUALITY 

Bell ( 1971) derived a useful and important inequality that requires no 
deterministic assumption. Let A and A' be two random variables corre
sponding to two orientations of the left apparatus and random variables 
B and B' be two orientations of the apparatus on the right in the spin ex
periments. Let us assume now that there is a causal hidden variable that 
renders the random variables conditionally independent but, I emphasize, 
does not necessarily guarantee identity of conditional distributions. Bell 
shows that the requirement of statistical conditional independence implies 
the following inequality: 

(1) -2:::; E(AB)- E(AB') + E(A'B) + E(A'B'):::; 2. 

It is then easy to select angle values for the difference in orientation on 
the left and the right for the four expectations shown in this inequality 
such that the inequality is violated by the quantum-mechanical result (v) 
given above. 

In our continual retreat, what we have now done is drop the theoretical 
symmetry of identical conditional distributions, kept only the locality 
condition of conditional independence, and yet, as Bell's inequality shows 
in the formulation he gives, there cannot exist an underlying common 
cause because of violation of his inequality. The central point for the 
present exposition is that still further retreat is required. 
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6. CAUSAL HIDDEN VARIABLES WITHOUT CONDITIONAL 

INDEPENDENCE 

The results of Bell's inequality and the earlier results on exchangeability 
suggest that the best we can do is look for causal hidden variables that 
do not guarantee conditional independence but something less strong. 
If we look at examples in medicine and the social sciences where the 
search for conditional correlations is standard and the focus is the search 
for a common cause that factors out phenomenological correlations, it is 
absolutely standard not to expect to get results as strong as conditional 
independence. These applications of causal ideas are of course in highly 
empirical nontheoretical situations. The analysis does not take place in 
an environment where a strong fundamental theory is available. 

A proper attitude about quantum mechanics is perhaps that it sug
gests a similar kind of result but at a deep theoretical level for physics. 
The demand for conditional independence is too strong a causal demand. 

Unfortunately, once we give up conditional independence, within the 
framework of classical physics there is no obvious weaker but still quite 
general condition to impose on a causal theory for quantum and other 
phenomena. On the other hand, if we introduce relativistic considerations 
there is a natural way of expressing locality, namely, that if the state of 
the system is given just prior to the occurrence of an event of interest, 
no other earlier information about the system can change the conditional 
probability ofthe occurrence of the event in question. The so-called in
dependence of path assumption is standard in stochastic processes and 
is easy to formulate in a relativistic setting. It prohibits, of course, in
stantaneous action at a distance and depends upon assuming that the 
propagation of any action cannot be faster than that of the velocity of 
light. It would take us beyond the framework of classical quantum me
chanics to enter into this principle and I only mean to suggest that it is a 
way of finding a new line of retreat, hopefully one on which we can stand 
and move no further to the rear. 

Some of the foundational discussions of quantum mechanics, both by 
philosophers and physicists, often imply, at least implicitly, that causal 
analysis of quantum phenomena is not really possible. Such a general 
conclusion seems to me clearly mistaken. We cannot have a causal theory 
of quantum phenomena as rich in structural properties as are the theories 
of nineteenth-century classical physics. Even the weaker but still powerful 
concept of a common probabilistic cause will not be usable without some 
changes. But causal notions are implicit in all systematic quantum phe
nomena, and I am confident that we will ultimately have a satisfactory 
general analysis of causal concepts applicable to quantum phenomena. Of 
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course, by "satisfactory" I do not mean that all classical requirements will 
be met but rather that we shall have a concept of cause that is as strong 
and as complete as is consistent with current well-supported theories of 
quantum phenomena. The process of this clarification will undoubtedly 
have ramifications all the way back to ordinary talk about causes, and 
ultimately we shall have a new way of thinking about causes. 



8 

SCIENTIFIC CAUSAL TALK 

It is a pleasure to reply to Martin's comments on my theory of proba
bilistic causality, for he raises issues that occur in a rather natural way 
and that no doubt have been of concern to others (Martin, 1'981). I have 
divided my reply into four major topics, which I have organized in a dif
ferent order from that of their occurrence in Martin's comments. The 
topics are: the problem of a unified language of causality, the role of set 
theory in science, the language of events in science and ordinary talk, and 
problems of intensionality. 

1. PROBLEM OF A UNIFIED LANGUAGE OF CAUSALITY 

Martin is concerned that the probabilistic theory I have introduced does 
not adequately account for both S·cientific and ordinary occurrences of 
causal terms .. In my monograph (Suppes, 1970) I claimed that a unified 
account could he given. Ten years later I am less optimistic about this 
and I think I would accept his criticism that I did not really accomplish 
this task, and I would now agree it is a mistake to try to have a unified 
language of any tightness and completeness. I have become increasingly 
persuaded of the plurality of science and of other realms of experience 
(Suppes, 1981). There are, of course, common elements to scientific and 
ordinary talk; there is not some sharp division of the kind Carnap wanted, 

"Reprinted from Theory and Decision, 13 (1981), 363-380. Written as a reply to 
Martin (1981) 
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for example, in his two senses of probability. Yet there is a great deal of 
diversity and no real reason to think that these diverse uses will tend to 
converge in the future. I shall give some detailed examples later in terms 
of the language of random variables. 

It is clear that of the two directions my analysis of causal language 
might go it is more directed toward scientific practice. I do want to 
reemphasize that I do not think there is a sharp division between scientific 
talk and ordinary talk. In the article on the plurality of science I in fact 
argue for there being a veritable Tower of Scientific Babel, with each 
subdiscipline in science having its unique concepts and language. This is 
especially true of advanced experimental work. There is a common core of 
ordinary talk that almost all of us understand who speak English as a first 
language or as a highly developed second language. This core does not 
contain very much scientific language, but among subsets of speakers and 
listeners there is a common core of causal and probabilistic talk that goes 
smoothly over into more exact scientific talk. I shall not here try to chart 
that transition, which I think could in fact be documented empirically. 

2. SET THEORY IN SCIENCE 

One of Martin's points is that my use of a set-theoretical framework is 
mistaken, for such an apparatus is not needed scientifically. He pro
poses instead to use various philosophical variants, such as an axiom
atized Boolean algebra or a language of part-whole as exemplified by 
mereology. I think he is flatly and unequivocally wrong. The idiosyn
cratic languages he talks about are of interest in philosophy but for very 
special reasons, and they cut off philosophical discourse about causality 
from the mainstream of scientific talk. It is worth noting that none of 
the more complicated set-theoretical machinery I consider is duplicated 
in any way by Martin-for instance, the detailed and extensive learning
theory example which uses a probability space of countable sequences, or 
the entire apparatus of random variables which is the standard appara
tus in modern probability theory and modern mathematical and applied 
statistics. The kind of language moves that Martin proposes would lead 
to further isolation of philosophical talk about these matters, an isolation 
that has already been too noticeable in the literature on confirmation and 
the foundations of induction. 

I am quite willing to accept that with enough effort, all of the stan
dard machinery characteristic of modern probability theory, not to speak 
of statistical theory, could be built up in one of Martin's idiosyncratic 
frameworks. But this would seem to me to be a terrible waste of time, and 
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at the same time would isolate the developments from the large and inter
esting literature in science, mathematics, and statistics on these matters. 

To drive this point home, I would like to consider one extended exam
ple to show why set-theoretical apparatus is natural even if not necessary. 
The purpose of this example is to introduce standard mathematical con
cepts that are needed for a causal analysis but that would not be readily 
available in any of the language frameworks suggested by Martin. 

We may take as an example of suitable complexity the theory of lin
ear learning models set forth in Estes and Suppes (1959a). We assume 
that on every trial the organism can make exactly one of r responses, 
A;, i = 1, ... , r and that after each response it receives one of r + 1 rein
forcements, Ej , j = 0, 1, ... , r. A learning parameter B , which is a real 
number such that 0 < B .S 1, describes the rate of learning in a manner 
to be made definite in a moment. A possible realization of the theory is 
an ordered triple X = (X, P, B) of the following sort. X is the set of all 
sequences or ordered pairs (i, j) of natural numbers with i = 1, ... , r and 
j = 0, 1, ... , r. Pis a probability measure on the smallest cr-algebra B(X) 
of cylinder sets of X, and B is a real number as already described. ( Cylin
der sets are those events definable by the outcome of a finite number of 
trials.) To define the models of the theory, we need a certain amount of 
notation. Let Aj,n be the event of response j on trial n; Ek,n the event 
of reinforcement k on trial n, and for x in X, let [xn] be the equivalence 
class of all sequences in X that are identical with x through trial n, and 
let Pxj,n = P(Aj, nj[x]n-1)· We may then characterize the theory by the 
following set-theoretical definition. 

DEFINITION. A triple X = (X, P, B) is a linear learning model if and 
only if the following three axioms are satisfied for every n, every x in X 
with P([x]n) > 0 and every j and k: 

1. If x E Ek,n and j = k and k f= 0 then 

Pxj,n+l = (1- B)Pxj,n + B; 

2. If x E Ek,n and j f= k and k f= 0 then 

Pxj,n+I = (1- B)Pxj,n; 

3. If x E Eo,n then 

Pxj,n+l = Pxj,n· 

The three axioms express assumptions concerning the effects of rein
forcement and nonreinforcement. The first two say, in effect, that when a 
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reinforcing event occurs, the response class corresponding to it increases 
in probability and all others decrease. A similar assumption is utilized in 
a number of stochastic and statistical models of learning. The third ax
iom expresses the assumption that response probabilities are unchanged 
on nonreinforced trials. 

The critical point for the present discussion is the characterization of 
the probability measure P. It is easy to show that three conceptual in
gredients enter into determining uniquely the probability of any event's 
happening, for example, any response or response sequence. The first 
ingredient is the initial probability of response at the beginning of the ex
periment before any reinforcements have been delivered; the second is the 
learning parameter 0 that determines how fast change in behavior takes 
place under various reinforcement schedules; and the third is the sched
ule of reinforcements, which in general will be probabilistic in character 
and contingent upon previous reinforcements or responses. These three 
ingredients are the three causal factors, and theoretically the only causal 
factors determining the probability measure P, which fixes the probabil
ity of any event. The quantitative causal relations between events are all 
in turn determined by the measure P. 

Of course, what I have just given is an informal analysis. In order to 
make it clear that the apparatus Martin refers to is far too elementary, I 
give the statement of the theorem and its complete proof in an appendix. 
The theorem can be regarded as a theorem about causality in learning 
theory. The rather lengthy and somewhat technical developments seem 
unavoidable in establishing precise results about the causal structure of 
models of the theory. I note among other things that the proof depends 
upon the well-known theorem of topology that a decreasing sequence of 
nonempty compact sets has a nonempty intersection. Secondly, the the
orem does not hold for a finitely additive measure on all subsets of X, 
but only on the u-algebra B(X) of cylinder sets, a somewhat delicate 
set-theoretical point. 

3. LANGUAGE OF EVENTS 

There is a considerable area of agreement between Martin and me concern
ing what he has to say about my discussion of events and his objections 
to my analysis being in certain directions too simplified. The language of 
events comes into play in much ordinary talk and in many parts of science. 
I would again take a pluralistic view that it is probably not possible to 
give a tightly unified account of these many different uses. 

First I want to make a couple of technical remarks in response to some 
things that Martin says. He objects to my restriction to instantaneous 
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events, and I certainly agree that, in general, this is not adequate. I cer
tainly agree that this simplification restricts the applications of the formal 
concepts I introduced. I took it that it would be feasible but technically 
somewhat complicated to make the extension to noninstantaneous events. 

One way to put what is somewhat surprising about Martin's objec
tions to my use of standard event-language is that he simply does not 
consider the standard usage. It is as if someone were writing a treatise on 
the foundations of physics and assumed for that purpose classical mathe
matics. Someone who objected to classical mathematics might then raise 
objections to this use in physics of classical mathematics, but for most 
purposes such a move would be regarded as rather strange. It is part of 
the pluralism of approach I have already urged that when we are doing 
the foundations of causality, we should not try at the same time to reform 
the standard concepts of probability theory. Reforming or changing the 
standard concepts of probability is, for other purposes, a useful matter, 
but it is not even useful when it is idiosyncratic in the way that Martin's 
discussion is. The kind of discussion and framework he suggests in terms 
of mereology simply isolates all such discussion from the standard devel
opment of probability theory, as I have already argued. I have labored the 
point, but it seems to me to be worth laboring because adopting Martin's 
recommendations would isolate philosophical discussion of causality and 
a consequence of that isolation would be consideration only of the most 
elementary points about causality. 

Martin objects, in particular, to my use of negation. Here I simply 
again followed standard usage. Complementation of an event is comple
mentation with respect to the sample space or probability space. Such 
set-theoretical complementation is meant to correspond to the absence 
of occurrence of an event. My treatment here is standard and, as Jane 
Austin would say, unexceptionable. It is certainly possible to argue that 
in the translation of some ordinary talk this particular approach will not 
work. Certainly for the most general setting we might want to cite the 
fact that the complement of a set is not defined in Zermelo-Fraenkel set 
theory. Another point from another direction is that when the appara
tus of random variables is used, as I claim most standard usage actually 
adopts for detailed statistical work, there is no longer a natural concept 
of negation in terms of random variables but only by reference once again 
to the sample space on which the random variable is defined. 

It is certainly true that, in a certain sense, the notion of event as 
having definite physical properties is treated in a rather cavalier fashion 
in standard probability theory. I take it the reason for this is mainly the 
desire for flexibility and generality. When we are concerned with more 
specific philosophical questions or more specific physical questions, as for 
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example in a discussion of how one should use the concept of event in 
relativistic physics, we may want to say a good deal more. I certainly 
want to admit that such extensions are proper but I also want to make 
clear that I think the direction Martin takes the discussion is mistaken. 

For a general theory of causality with any pretension to be useful in 
a wide variety of sciences, it seems mistaken to tie down the concept of 
event by more detailed assumptions, as for example the kind that are 
easily suggested by physical theories. I do not see the concept of event 
as used in theories of space-time, for example, being of any real use and 
therefore of value in the formulation of causal concepts in economics or 
sociology. It is tempting to state my own general metaphysical views on 
the concept of physical events and to try to support my claim that the 
proper space for representing such events is atomless, but this does not 
seem the proper occasion. 

4. INTENSIONALITY AND PROCEDURAL SEMANTICS 

Martin quotes my own admission that the standard set-theoretical frame
work of probability concepts I adopt does not give a fully satisfactory 
treatment of intensional matters, especially for subjective theories of prob
ability. Free substitution of terms that are held to be identical in the 
extensional sense leads to contradictions in the standard fashion. 

On this point I agree with Martin and I agree with my earlier self. I 
remain, however, firm in the conviction that the handling of these inten
sional matters is not important in the framework of developing a causal 
theory for scientific purposes. A full-blown apparatus to handle these 
matters in completely explicit fashion will be another step toward the 
isolation I have already spoken of. 

On the other hand, I think Martin is right in insisting that such in
tensional matters can be important in the sensitive analysis of causal 
concepts as they are referred to in ordinary talk. My own approach to 
such matters is to pursue, not for this reason alone but more generally in 
the interest of psychological realism, a move from set-theoretical to pro
cedural semantics (Suppes, 1980, 1982). Unfortunately, it does not seem 
practical to go into these rather intricate matters in the short space of 
this reply. 

I have covered what seems to me are the main points that Martin dealt 
with in some detail. He makes some passing mention of my references to 
different interpretations of probability but he does not develop this theme, 
and it therefore seems appropriate not to go into a discussion here. I will 
affirm, however, what I said in the original monograph. It seems to me 
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there is a place for different uses of probability concepts ranging from that 
of a purely theoretical measure used as illustrated in several examples 
in the monograph in the formulation of theory. There is also a purely 
experimental use where one restricts oneself at most to a Bayesian prior if 
at all, and the data that carry the day from a probabilistic standpoint are 
the relative frequencies obtained in the experiment. There also remains 
the possibility of a generally subjective interpretation. I do not think it 
is necessary or perhaps even useful to try to draw a sharp line between 
these various uses. It is part of my pluralistic attitude to expect them. 
It is important to identify certain core properties that we expect any 
interpretation of probability to have. 

I have enjoyed writing this reply to the substantive objections Martin 
makes to my ideas about causality. As is obvious, we disagree on many 
issues, but I do not expect to be able to offer precise arguments that will 
be regarded by him or by others as decisive. I do not think the subject 
of causality is like that. It has a glorious history and will have, no doubt, 
a robust pluralistic future. I hope only to help keep future efforts at 
analysis from being too much diverted from the mainstream of science to 
idiosyncratic philosophical bayous. 

5. APPENDIX 

In empirical applications of the learning theory described in the main 
text, the term Pxj,n is to be interpreted as the probability of response Aj 
for a particular subject on trial n. In principle, the values of Pxj,n can be 
predicted for all sequences and all n, given Pj,l, r and 0 (see Theorem 1 
below). In practice, however, it is impracticable to evaluate trial by trial 
probabilities for individual subjects, so in experimental tests of the model 
we usually deal only with the average value of P:r:j,n over all sequences ter
minating on a given trial, i.e., with Pi,n. The latter can be predicted for 
all n, given the values of Pi,l, r and 0, and sufficient information concern
ing probabilities or reinforcement and nonreinforcement (see Theorem 2 
below). 

We now turn to the two general theorems mentioned. The first the
orem says that if Pj,l, r and 0 are given, then Pxj,n is determined for all 
sequences x and all trials n. In formulating the theorem we make this 
idea precise by considering two models of the theory for which Pj,l, r and 
0 are the same. 

THEOREM I. Let X= (X, P, 0) and X'= (X, P', 0) be two linear models 
for simple learning such that Pj,l = Pj, 1• Then if P([x]n-1) > 0 and 
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P 1([x]n-l) > 0, we have: 
I 

Pxj,n = Pxj,n· 

Proof Suppose the theorem is false. Let n be the smallest integer 
such that (for some j and x) 

(1) 

(By hypothesis of the theorem, n > 1.) Now if 

(2) P([x]n-d > 0 

and 

(3) P1([x]n-d > 0, 

then by our hypothesis on n we have: 

(4) Pxj,n-l = P~j,n-l· 

There are now three cases to consider: x E Ej,n, x E Ek,n with k =/ j 
and k =f 0, and x E Eo,n· Since the proof is similar for all three cases, 
each requiring application of the appropriate one of the three axioms, we 
consider only the first case: 

(5) X E Ej,n· 

From (2), (3), (5) and Axiom 1 we infer immediately: 

(6) Pxj,n = (1- O)Pxj,n-l + (} Pxj,n = (1- O)p~j,n-l + 8. 

From ( 4) and (6) we conclude: 

I 
Pxj,n = Pxj,n> 

which contradicts (1) and establishes our supposition as false. 
The second theorem establishes the fundamental result that given the 

initial probabilities of response of the subject, and the conditional prob
abilities of reinforcement, then a unique model of simple learning is de
termined. Moreover, no restrictions on these probabilities are required 
to establish the theorem. The significant intuitive content of this last 
assertion is that the experimenter may conditionalize the probabilities 
of reinforcement upon preceding events of the sample space in whatever 
manner he pleases. 

Some preliminary definitions and lemmas are needed. The third def
inition introduces the notion of an experimenter's partition of X. The 
intuitive idea is that the conditional probabilities of reinforcing events 
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on trial n depend on any partition of the equivalence classes [x]n- 1 and 
responses on the nth trial. 1 

DEFINITION 1. 3( n) = { e : there is an x in X and a j such that 

e = [x]n-1 n Aj,n}· 

3(n) is the finest experimenter's partition of X which we can use on the 
nth trial. It is immediately obvious that 

LEMMA 1. For every n, 3(n) is a partition of X. 

We now use 3(n) to define the general notion of an experimenter's par
tition H ( n), but for this definition we explicitly need the notion of one 
partition of a set being finer than another. (The definition is so phrased 
that any partition is finer than itself.) 

DEFINITION 2. If A and B are partitions of X, then A is finer than B 

if, and only if, for every set A in A there is a set B in B such that A ~ B. 

We than have: 

DEFINITION 3. H(n) is an experimenter's partition of X (at trial n) if, 
and only if, H(n) is a partition of X and 3(n) is finer than H(n). 

Finally, we need a lemma which provides a recursive equation for 
P([x]n) in terms of a given experimenter's partition on trial n. Notice 
that (iv) of the hypothesis of the lemma is a condition controlled by the 
experimenter, not by the subject. 

LEMMA 2. Let H(n) be an experimenter's partition of X. Let 

(i) rJ E H(n), 
(ii) [x]n ~ Aj,n n Ek,n n rJ, 
(iii) P(Aj,n n [x]n-d > 0, 
(iv) P(Ek,niAj,n n [x]n-d = P(Ek,nlrJ). 
Then 

P([x]n) = P(Ek,n lrJ)Pxj,nP([x]n-d· 

Proof By (ii) of the hypothesis 

P([x]n) = P(Ek,n n Ai,n n [x]n-d, 

whence, 

P([x]n) = P(Ek,niAi,n n [x]n-1)P(Aj,nl[x]n-1)P([x]n-d· 

Applying (iii) and (iv) to the first term on the right and the definition of 
Pxj,n to the second, we obtain the desired result. 

1 A partition of a nonempty set X is a family of pairwise disjoint, nonempty subsets 
of X whose union is equal to X. 
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We are now prepared to state and prove the uniqueness theorem. Re
garding the notation of the theorem it may be helpful to keep in mind 
that qj,1 is the a priori probability of making response jon the first trial, 
and /,k,n is the conditional probability of reinforcing event k on trial n 
given the event TJ of an experimenter's partition H(n). It should be obvi
ous why we use the notation qj,1 rather than Pj,1 (and at the beginning 
of the proof q:cj,n rather than P:cj,n); namely, the function p is defined in 
terms of the measure P whose unique existence we are establishing. 

THEOREM 2. Let X be an r-response space and let () be a real number 
in the interval (0, 1], and let the numbers qj,1 be such that 

r 

L:qj,1 = 1. 
j=1 

For every n let H(n) be an experimenter's partition of X, and let 1 be a 
function defined for every n and k and every TJ E H(n) such that 

r 

L lf/k,n = 1. 
k=O 

Then there exists a unique probability measure P on B(X} such that 

(i) (X, p, 0) is a linear model of simple learning, 

(ii) qj,1 = Pi,b 

{iii) 'Y11k,n = P(Ek,niTJ). 

(iv) If TJ E H(n) and W is ann- 1 cylinder set such that W ~ TJ and 
P(W) > 0 then P(Ek,niW) = P(Ek,niTJ.J 

Proof. We first define recursively a function q intuitively correspond
ing top, i.e., q:cj,n = P:cj,n. 

(1) q:cj,1 = qj,1 

(2) q:cj,n = (1- O)q:cj,n-1 + 08(j, &(x, n- 1)) + Oq:cj,n-18(0, &(x, n- 1)), 

where f) is the usual Kronecker delta function: 

i:( . k) { 1 if j = k 
u J, = 0 if j 'I k, 

and 

{3) &(x,n) =kif and only if [x]n ~ Ek,n· 
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{In effect, {2) combines all three axioms of the theory into one to provide 
this recursive definition.) 

For subsequent use we prove by induction that 

{4) Lq:cj,n = 1. 
j 

For n = 1, the proof follows at once from {1) and the hypothesis of 
the theorem that 

Suppose now that 

L q:cj,n-1 = 1. 
j 

There are two cases to consider. If x E Ek,n for some k :f:. 0 then from {2) 
and {3) we have at once: 

If x E Eo,n, then 

= E{l- B)q:cj,n-1 + B 
j 

= {1- B) L q:cj,n-1 + B 
j 

= {1- B)+ B 
=1. 

= L[{1- B)q:cj,n-1 + Bq:cj,n-d 
j 

= Lq:cj,n-1 
j 

=1. 

Following Lemma 2 we now recursively define P([x]n) in terms of q and 
the function 1 introduced in the hypothesis of the theorem. 

{5) 

where 
[xh ~ Aj,1 
[x]n ~ A;',n 

[xh ~ 'f/1 E H(1) 
[x]n ~ TJ E H(n). 
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We first need to show that the function P may be extended in a well
defined manner to any cylinder set C. To this end we prove by induction 
that if 

m1 m2 

c = U[xi]n, = U[y,Jn, 
i=l i=l 

then 

m 1 m 2 

(6) L P([x;]n,) = L P([yi]n2 ). 

i=l i=l 

When n1 = n2 the proof is trivial. Without loss of generality we may 
assume that n 1 < n 2; i.e., there is a positive integer t such that n1 +t = n2. 

We proceed by induction on t. But first we observe that the family of sets 
[ x;]n, constitutes a partition of C, as does the family of sets [y;]n 1 +t, and 
the latter is a refinement of the former. Whence for each set [x;]n, there 
is a subset I of the first m2 positive integers such that 

(7) [xi]n, = U [Yh]n 1 +t· 
hE I 

And on the basis of (7) to establish (6) it is obviously sufficient to show 
that 

P([xi]n,) = LP([Yh]n 1+t)· 
hE I 

Now if t = 1 then 

[xi]n, = [x;Jn, nUAj,n,+l nUEk,n,+l 
j k 

= UU([xi]n. nAj,n,+l nEk,n+d 
j k 

= U [Yh)n 1 +1· 
hE I 

Since for h E I, [Yh]n, = [xi]n,, we infer from the above and (5) that 

L P([Yh]n 1+1) = L L fl'/k,n 1+1qxj,n1 P([xi]n1 ) 

hEl j k 

= L qxj,n 1 P([x;]n.) by hypothesis on 'Y 
j 
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Suppose now that (6) holds for t. Then there are sets ! 1 and h of 
positive integers such that 

[x;]nt = U [Yh]nt +t n U Ai,nt +t+l n U Ek,nt +t+l 
hEft j k 

= U [zg]nt+t+l· 
gE/2 

Since for each g E h there is an h in h such that 

( zg]nt +t = [Yh]nt +t, 

similarly to the case for t = 1 we infer that 

2::.:: P([zg]nt+t+t) = 2::.::2::.:: 2::.:: /']k,nt+t+lqxj,nt+tP([Yh]nt+t) 
gEh j k hEft 

= L P([Yh]nt+t) 
hEft 

= P([x;]nJ, 

by our inductive hypothesis, which completes the proof of (6) and justifies 
the extension of P to any cylinder set: if 

m 

C = U[x;]n 
i=l 

then 
m 

(8) P(C) = 2::.:: P([x;]n). 2 

i=l 

We now want to show that P is a probability measure on the algebra 
of cylinder sets of X. Since the functions q and 1 are non-negative it 
follows at once from (5) and (8) that the nonnegativity probability axiom 
is satisfied, i.e., for every cylinder set C, P(C) 2: 0. 

Now it is easy to select a subset Y of X such that 

2 In using the notation 
m 

c = U[xi]n 
i:;::l 

we always assume that sets [x;]n are distinct (and consequently pairwise disjoint in 
this case); otherwise the extension of P would be incorrect. 
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whence by virtue of (5) and (8) 

P(X) = I: P([x]!) =I: I: qj,l/11 k,1 

xEY j k 

= I: qj,l I: "YI)k,l 

j k 

= 1·1 
=1 

which establishes that P(X) = 1. 
To verify finite additivity of the measure P, let C1 and C2 be two 

cylinder sets such that C1 n C2 = 0. Without loss of generality we may 
assume they are both non-empty n-cylinder sets, and we may represent 
them each by 

ml 

cl = U[xi]n 
i=l 

m2 

c2 = u [xh]n, 
h=mt+l 

and by hypothesis, for each i = 1, ... , m1 and h = m1 + 1, ... , m2 

Whence 

m2 

= LP([x;]n) 
i=l 

i=l 

Now for countable additivity. Let (C1, C2, ... , Cn, .. . ) be a decreasing 
sequence of cylinder sets, that is, 

(9) 

and 
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00 

(10) n Cn = 0. 
n=l 

Suppose now that 

(11) lim P(Cn) =F 0. 
n-+oo 

(This limit must exist since the sequence is bounded and monotone de
creasing. The monotonicity follows from (9) and the properties of P 
already established.) 

In fact, let 
lim P(Cn) = s > 0. 

n-+oo 

Hence for every n 
P(Cn) 2:: s, 

and it follows- at once that 

(12) 

We now use a topological argument to show that 

00 

contrary to (10). The idea is simple; details will be omitted to avoid too 
serious a diversion. We know that X is the countably infinite product 
of a finite set. Hence, every cylinder set of X is compact in the product 
topology of the discrete topology on this finite set; in particular for every 
n, Cn is compact. Also by virtue of (12) every Cn is non-empty. But it 
is a well-known theorem of topology that a decreasing sequence of non
empty compact sets has a non-empty intersection, which contradicts (5). 
Thus our supposition (11) is false and the measure Pis continuous from 
above at zero, which implies countable additivity. 

Finally, the unique extension of P to the u-algebra of cylinder sets 
follows from the standard theorem on this extension (see Kolmogorov, 
1933, p. 17). The verification that the measure P defined by (5), (8) and 
the extension just mentioned has properties (ii)-(iv) of the theorem is 
straightforward and will be omitted. 



9 

EXPLAINING THE 

UNPREDICTABLE 

It has been said-and I was among those saying it-that any theory of 
explanation worth its salt should be able to make good predictions. If 
good predictions could not be made, the explanation could hardly count as 
serious. This is one more attempt at unification I now see as misplaced. I 
want to examine some principled reasons why the thrust for predictability 
was mistaken. I begin with the familiar sort of example of explanation, 
the kind that occurs repeatedly in analyses of the past. 

Hume's (1879) long and leisurely discussion of Charles I in his History 
of England provides a number of excellent examples. Here is one in which 
he is discussing Charles' decision to take action against the Scots in 1639. 

So great was Charles' aversion to violent and sanguinary mea
sures, and so strong his affection to his native kingdom, that 
it is probable the contest in his breast would be nearly equal 
between these laudable passions and his attachment to the hi
erarchy. The latter affection, however, prevailed for the time, 
and made him hasten those military preparations which he 
had projected for subduing the refractory spirit of the Scot
tish nation. (History of England, Volume V, p. 107) 

*Reprinted from Erkenntnis, 22 (1985), 187-195. The first version of this article 
was given at the Pacific Division meeting of the American Philosophical Association 
at a symposium on models of explanation, March 24, 1984. I am indebted to Jens Erik 
Fenstad for a number of helpful conunents on the earlier draft. 

111 
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H ume faces the standard difficulty of assessing attitudes and attachments 
when there is any sort of complex issue at stake. Charles' conflict between 
loyalty to Scotland and attachment to the religious hierarchy has the 
kind of psychological instability that makes prediction impossible. But 
from our perspective of looking back on the past, we are satisfied-at 
least many of us are--by the explanation that Charles' religious ties and 
commitments won out. By saying that we are satisfied I do not mean to 
suggest any ultimate sense of satisfaction. 

The central feature of this example, the instability of Charles' con
flicting feelings that are nearly equally matched, is the source of drama 
in many important historical events, in the tensions surrounding private 
choices of colleges to attend, careers to follow, and spouses to wed. The 
importance of such conflict and instability in our lives is mirrored in the 
importance they assume in the novels, plays, and movies that both express 
and define our ways of feeling and talking. 

This instability and unpredictability of human affairs are in no sense 
restricted to conflicts of feeling. The vicissitudes of politics and war have 
been recorded and analyzed since Thucydides. In that long tradition, 
almost without exception there have been sound attempts at explanation 
but scarcely any attention given to what seemed to be the impossible 
task of predicting the outcomes. There is, in fact, a general view of the 
matter that is not correct in every detail but that expresses a major truth. 
Real conflicts occur in human affairs when the outcomes are uncertain, 
because the forces controlling them are unstable. One-sided battles that 
are known in advance by all concerned parties to be such are the exception 
rather than the rule. Napoleon thought he could conquer Russia, and at 
least some of his generals believed him. Hitler and at least some of his 
generals thought they could conquer the world. After the fact we can 
easily see how foolish they were. 

One view of the American adversarial system of justice is that only 
conflicts in the law that have unpredictable outcomes should reach the 
stage of being tried in court. When the facts and the law are clear, early 
settlement should be reached, because the clarity about the facts and the 
law makes the situation stable and the outcome predictable. This rule 
does not always work but it probably covers a substantial majority of 
instances of legal conflict. Of course I do not want to overplay the ar
gument for stability as the reason for settlement prior to trial. Just the 
expenses alone of a trial push the parties for settlement even when the 
facts and the law taken together do not provide a stable view of what 
the nature of a settlement should be. All the same the stability of the 
facts and the law is an important ingredient in many cases of conflict. 
The conflict goes nowhere because of the sound advice of a good attor-
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ney who convinces his client to control his anger and ignore his ruffled 
feathers. Major institutions of our society are organized to a large extent 
to deal with the instability generated by conflict. If the phenomena in 
question were predictable, much of the need for the institutions would 
be eliminated. There may still be Utopian social planners that dream 
of eliminating conflict and tension in some ideally structured future soci
ety, but most of us are prepared to accept conflict as part of the human 
condition and to work on ways to minimize it locally without hope of 
eliminating it. 

The difficulties of predicting outcomes in the kind of human situations 
I have been describing are familiar. The complexity and subtlety of human 
affairs are often singled out as features that make a science of human 
behavior impossible, at least a predictive science in the way in which parts 
of physics and chemistry are predictive. Moreover, given the absence of 
powerful predictive methods, there are those who go on to say that the 
behavior in question is not explainable. I have already indicated my 
difference from this view. 

I now want to move on to my main point. There is, I claim, no 
major conceptual difference between the problems of explaining the un
predictable in human affairs and in non-human affairs. There are, it is 
true, many remarkable successes of prediction in the physical sciences 
of which we are all aware, but these few successes of principled science 
making principled predictions are, in many ways, misleading. 

Let me begin my point with a couple of simple examples. Suppose 
we balance a spoon on a knife edge. With a little steadiness of hand 
and patience, this is something that any of us can do. The spoon comes 
approximately to rest, perhaps still oscillating a little up and down. Our 
problem is to predict which way the spoon will fall, to the left or the right 
side of the knife blade, when there is a slight disturbance from a passing 
truck or some other source. In most such situations we are quite unable 
to make successful predictions. If we conduct this experiment a hundred 
times we will probably find it difficult to differentiate the sequence of 
outcomes from that of the outcomes of flipping a fair coin a similar number 
of times. Of course, in each of the particular cases we may be prepared 
to offer a sound schematic explanation of why the spoon fell to the left or 
to the right, but we have no serious powers of prediction. 

Let me take as a second example one that I have now discussed on 
more than one occasion. The example originates with Deborah Rosen 
and was reported in my 1970 monograph on causality. A golfer makes a 
birdie by accidentally hitting a limb of a tree at just the right angle. The 
birdie is made by the ball's proceeding to go into the cup after hitting the 
limb of the tree. This kind of example raises difficulties for probabilistic 
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theories of causality of the kind I have advocated. I do not want to go 
into the difficulties at this point but rather to use this simple physical 
example as a clear instance of having a good sense of explanation of the 
phenomenon, but not having any powers of predicting it. A qualitative 
explanation is that the exact angle at which the ball hit the limb of the tree 
deflected it into the cup. We cover the difficulties of giving a quantitative 
explanation by the usual qualitative method of talking about the ball's 
hitting the limb at 'just the right angle." Of course, this is elliptical for 
"hitting the ball at just the right angle, just the right velocity, and just the 
right spin." The point is that we do not feel there is any mystery about 
the ball's hitting the limb and then going into the cup. It is an event that 
we certainly did not anticipate and could not have anticipated, but after 
it has occurred we feel as comfortable as can be with our understanding 
of the event. 

There is a principled way of describing our inability to predict the tra
jectory of the golf ball. The trajectory observed with the end result of the 
ball's going into the cup is a trajectory followed in an unstable environ
ment. We cannot determine the values of parameters sufficiently precisely 
to predict the golf ball will hit the limb of the tree at just the right angle 
for bouncing into the cup because the right conditions of stability do not 
obtain. To put it in a familiar way, very small errors in the measurement 
of the initial conditions lead to significant variations in the trajectory
here significant means going or not going into the cup. Correspondingly, 
when intentions are pure and simple we can expect human behavior to be 
stable and predictable, but as soon as major conflicts arise, e.g., of the 
sort confronting Charles I, the knowledge of intentions is in and of itself 
of little predictive help, though possibly of great explanatory help after 
the fact. To put it in a summary way, Charles I facing the Scots and our 
golf ball share a common important feature of instability. 

Here is another simple example of a physical system of the sort much 
studied under what is currently called chaos in classical dynamics. We 
have a simple discrete deterministic system consisting of a ball being ro
tated around the circumference of a fixed circle, each move "doubling" 
the last. The only uncertainty is that we do not know the initial position 
with complete precision. There is a small uncertainty not equal to zero 
in our knowledge of the starting position of the ball. Then, although the 
motion of the system is deterministic, with each iteration around the cir
cumference of the ball the initial uncertainty expands. More particularly, 
it is easy to show that after n iterations the uncertainty will be 2n times 
the initial uncertainty. So it is obvious that after a sufficient number of 
iterated moves the initial uncertainty expands to fill the entire circum
ference of the circle, and the location of the ball on the circle becomes 
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completely unpredictable_! Though the system just described is slightly 
artificial, it is enormously simple, with very limited degrees offreedom. It 
is an excellent example of an unstable dynamical system-the instability 
coming from the fact that a small uncertainty in the initial conditions 
produces an arbitrarily large uncertainty in subsequent location. 

The general principle that I am stressing in these analyses that stretch 
from the mental conflicts of Charles I to simple rotating balls is the pres
ence of instability as the central feature that makes prediction impossible. 
Fortunately, after the events have occurred we can often give a reasonable 
explanation. 

I do not want to suggest that the absence of stability as such is the 
only cause for failure of prediction. We can take the view that there is 
an absence of determinism itself as in probabilistic quantum phenomena 
and in other domains as well. It will suffice here to consider some simple 
quantum examples. Perhaps the best is that of radioactive decay. We 
cannot predict when a particle will decay. We observe the uneven intervals 
between the clicking of a Geiger counter. After the events of decay have 
occurred we offer an "explanation," namely, we have a probabilistic law 
of decay. There is no hope of making an exact prediction but we feel 
satisfied with the explanation. Why are the intervals irregular? They are 
irregular because the phenomena are governed in a fundamental sense by 
a probabilistic decay law. Don't ask for a better explanation-none is 
possible. 

I do not mean to suggest that instability and randomness are the 
only causes of not being able to make predictions. I do suggest that 
they provide principled explanations of why many phenomena are not 
predictable and yet in one sense are explainable. 

The point I want to emphasize is that instability is as present in purely 
physical systems as it is in those we think of as characteristically human. 
Our ability to explain but not predict human behavior is in the same gen-

1 A more technical description of such a simple deterministic description goes like 
this. Instead of moving around a circle, we consider a first-order difference equation, 
which is a mapping of the unit interval into itself: 

Xn+l = 2xn (mod 1), 

where mod 1 means taking away the integer part so that Xn+l 1 lies in the unit interval. 
So if X1 = 2/3, X2 = 1/3, X3 = 2/3, X4 = 1/3, etc., and if X~ = 2/3 + e, X~ = 
1/3 + 2e, x~ = 2/3 + 4e, and in general 

(mod 1) for n even 
(mod 1) for n odd 

the instability of this simple system is evident, for the initial difference in x 1 and x~ 1 

no matter how small, grows exponentially. 
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eral category as our ability to explain but not predict many physical phe
nomena. The underlying reasons for the inability to predict are the same. 
The concept of instability which accounts for many of these failures is one 
of the most neglected concepts in philosophy. We philosophers have as a 
matter of practice put too much emphasis on the contrast between deter
ministic and probabilistic phenomena. We have not emphasized enough 
the salient differences between stable and unstable phenomena. One can 
argue that the main sources of probabilistic or random behavior lie in 
instability. We might even want to hold the speculative thesis that the 
random behavior of quantum systems will itself in turn be explained by 
unstable behavior of classical dynamical systems. But whether this will 
take place or not, much ordinary phenomena of randomness in the macro
scopic world can best be accounted for in terms of instability. This is true 
of the behavior of roulette wheels as much as it is of the turbulence of air 
or the splash of a baby's bath. 

A disturbing example of instability is to be found in the theory of 
population growth. A reasonable hypothesis is that the rate of growth 
is proportional to the current size of the population. The exponential 
solution of this equation is unstable. This means that slight errors either 
in the initial population count or in the constant of proportionality for 
the breeding rate can cause large errors in prediction, quite apart from 
any other influences that might disturb the correctness of the equation. 2 

It is worth saying once more in somewhat more abstract terms the 
central meaning of stability in the theory of dynamical systems. What I 
paraphrase here is the classical Lyapunov condition for a stable solution.3 

The idea is straightforward and already stated once intuitively. A solu
tion is Lyapunov-stable if two different trajectories keep arbitrarily close 
together as they arise from different initial conditions provided the initial 
conditions are sufficiently close. So the intuitive idea of stability is that 

2The differential equation expressing that growth of population ~~ is proportional 
to present population is 

dx 
dt =ax, 

and the solution is 
x =beat, 

which is Lyapunov unstable, as defined in Note 3. 
3 The classical Lyapunov condition for a system of ordinary differential equations is 

the following, which formalizes the intuitive description in the text. Let a system of 
differential equations 

(1) 
dx; dt = J;(x1, ... , Xn, t), i = 1, ... ,n 
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a trajectory can be known with any desired precision, given sufficiently 
small errors of measurement in determining the initial conditions. This 
is exactly what is not characteristic of instability. Very fine variations 
in the initial conditions of a roulette wheel, not to speak of variations in 
its motion produce very large differences in outcome. Namely, in almost 
identical conditions we have on one occasion a red and on another oc
casion a black outcome. Now I am not suggesting that this exact idea 
of the stability of a dynamical system can be applied to our analysis of 
the behavior of Charles I deciding what to do with the Scots. There is, 
however, an underlying and robust notion of stability that reflects the 
instability in his behavior in a faithful way, just as much as it reflects the 
instability of a roulette wheel and its resulting random behavior. 

The general qualitative concept of stability is this. A process is stable 
if it is not disturbed by causes of small magnitude. Thus, a chair is stable 
if it cannot be easily pushed over. A political system is stable if it can 
withstand reasonably substantial shocks. A person is stable if he is not 
continually changing his views. More specifically, a person's belief in a 
given proposition is stable if it can only be changed by very substantial 
new evidence. We often say something similar about feelings. One of the 
features of a stable personality is constancy of feeling. The Lyapunov 
formal definition of stability can be put under this qualitative tent. 

Some of the best and most sophisticated predictive science is about 
well-defined stable systems, but here I am interested in the opposite story. 
When a system is unstable we can predict its behavior very poorly. Yet 
in many instances we can still have satisfactory explanations of behavior. 
There are at least three kinds of explanation that may qualify as satis
factory analyses of unpredictable behavior. The first and most satisfying 
arises from having what is supported by prior evidence as a highly accu
rate quantitative and deterministic theory of the phenomena in question. 
Classical physics has constituted the most important collection of such 
theories. In the golf-ball example discussed earlier we feel completely con
fident that no new fundamental physical principles are needed to give an 
account ofthe ball's surprising trajectory. It was and will remain hopeless 
to accurately predict such trajectories with their salient but unexpected 

be given. A solution y;(t), i = 1, ... , n of (1) with initial conditions y;(to) is a Lyapunov 
stable solution if for any real number E > 0 there is a real number {j > 0 such that 
for each solution x;(t),i = 1, ... ,n, if 

lx;(to)- y;(to)l < 5, i = 1, ... ,n 

then 
lx;(t)- y;(t)i < E, i = 1, ... , n 

for all t ~ to. 
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qualitative properties. Our serenity, however, is principled. Classical 
mechanical systems that are unstable have unpredictable behavior but 
the physical principles that apply to them are just those that are highly 
successful in predicting the behavior of stable systems. The explanatory 
extrapolation from stable to unstable systems seems conceptually highly 
justified by prior extensive experience. Moreover, in cases of importance, 
we can often estimate relevant parameters after the fact. Such estimates 
increase our confidence in our explanatory powers. Ex post facto stress 
analyses of structural failures in airplanes, bridges, and buildings are good 
instances of what I have in mind. 

Application of fundamental theory or quantitative estimate of param
eters seems out of the question in the second kind of explanation of unpre
dictable behavior I consider. Here I have in mind familiar common sense 
psychological explanations of unpredictable behavior, exemplified in the 
passage from Hume about Charles I. Consider, for instance, a standard 
analysis of an election that was said to be "too close to call." A variety of 
techniques are applied after the fact to explain the result: the bad weather 
affected Democrats more than Republicans, the last-minute interview of 
one candidate went badly, the rise in interest rates the past two weeks 
hurt the Republican candidate, and so on and so on. Simple psychological 
hypotheses relate any one of these explanatory conditions to the behavior 
of voters. Most of us have faith in at least some of these explanations, 
but we have no illusion that they are derived from a fundamental theory 
of political behavior. We also recognize the instability of the outcomes 
and the consequent difficulty of prediction. 

The third kind of explanation of unpredictable behavior does not 
apparently depend on instability but on randomness. As has already 
been noted, the random behavior of classical mechanical systems, roulette 
wheels, for example, can be attributed to instability, but this is not the 
case for quantum phenomena. In either case, however, the important 
point is that explanation cannot go behind some basic probabilistic law 
that assigns a probability distribution to the phenomena in question. We 
explain the irregular pattern of radioactive decay or other data by the 
probability law thought to govern the phenomena. Individual events, no 
matter how controlled the environment, cannot be predicted with accu
racy. Yet at a certain level we feel we have explained the phenomena. 

Chaos, the original confusion in which all the elements were mixed 
together, was personified by the Greeks as the most ancient of the gods. 
Now in the twentieth century, chaos has returned in force to attack that 
citadel of order and harmony, classical mechanics. We have come to rec
ognize how rare and special are those physical systems whose behavior 
can be predicted in detail. The naivete and hopes of earlier years will not 
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return. For many phenomena in many domains there are principled rea
sons to believe that we shall never be able to move from good explanations 
to good predictions. 



10 

CONFLICTING INTUITIONS 

ABOUT CAUSALITY 

In this article I examine five kinds of conflicting intuitions about the na
ture of causality. The viewpoint is that of a probabilistic theory of causal
ity, which I think is the right general framework for examining causal 
questions. It is not the purpose of this article to defend the general thesis 
in any depth but many of the particular points I make are meant to offer 
new lines of defense of such a probabilistic theory. To provide a conceptual 
framework for the analysis, I review briefly the more systematic aspects 
of the sort of probabilistic theory of causality I advocate. I first define 
the three notions of prima facie cause, spurious cause, and genuine cause. 
The technical details are worked out in an earlier monograph (Suppes, 
1970) and are not repeated. 

DEFINITION 1. An event B is a prima facie cause of an event A if and 
only if (i) B occurs earlier than A, and (ii) the conditional probability of 
A occurring when B occurs is greater than the unconditional probability 
of A occurring. 

Here is a simple example of the application of Definition 1 to the 
study of the efficacy of inoculation against cholera (Greenwood & Yule 
1915, cited in Kendall & Stuart 1961). I also discussed this example in 

*Reprinted from, Midwest Studies ,in Philosophy IX (ed. by P. A. French, T. E. 
Uehling, Jr. and H. K. Wettstein), Hl84, pp. 150-168. 

This article overlaps with Chapter 3 of my Probabilistic Metaphysics, (1984). 

121 
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my 1970 monograph. The data from the 818 cases studied are given in 
the accompanying tabulation. 

Inoculated 
Not inoculated 
Totals 

Not attacked 
276 
473 
749 

Attacked 
3 

66 
69 

Totals 
279 
539 
818 

The data clearly show the prima facie efficacy of inoculation, for the 
mean probability of not being attacked is 749/818 = 0.912, whereas the 
conditional probability of not being attacked, given that an individual was 
inoculated, is 276/279 = 0.989. Here A is the event of not being attacked 
by cholera and B the event of being inoculated. 

In many areas of active scientific investigation the probabilistic data 
are not so clear-cut, although they may be scientifically and statistically 
significant. I have selected one example concerning vitamin A intake 
and lung cancer to illustrate the point. The results are taken from Bjelke 
(1975). The sample of Norwegian males 45-75 years of age was drawn from 
the general population of Nor way but included a special roster of men who 
had siblings that had migrated to the United States. In 1964, the sample 
reported their cigarette smoking habits. More than 90 percent of those 
surviving in 1967 completed a dietary questionnaire sufficiently detailed 
to permit an estimate of vitamin A intake. On January 1, 1968, of the 
original sample, 8,278 were alive. Their records were computer-matched 
against the records ofthe Cancer Registry of Norway as of March 1, 1973. 

The sample was classified into two groups according to an index of 
vitamin A intake as inferred from the dietary questionnaire, with 2,642 
classified as having low intake and 5,636 as not low-I am ignoring in 
this recapitulation many details about this index. There were for the 
sample, as of March 1, 1973, 19 proven cases of carcinomas other than 
adenocarcinomas, which we ignore for reasons too detailed to go into here. 
Of the 19 proven cases, 14, i.e., 74 percent occurred among the 32 percent 
of the sample-the 2,642, who had a low intake of vitamin A. Only 5 cases, 
i.e., 26 percent, occurred among the 68 percent of the sample who had a 
high intake of vitamin A. Let C be the event of having a lung carcinoma 
and let L be low intake of vitamin A. Then for the sample in question 

P(C) = .0023 < P(CIL) = .0053. 

Using Definition 1 we infer that low intake of vitamin A is a prima facie 
cause of lung cancer. The probabilities in question are small but the 
results suggest further scientific investigation of the proposition that high 
intake of vitamin A may help prevent lung cancer. 
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It is now widely accepted that cigarette smoking causes lung cancer, 
but as the present data show, the incidence of lung cancer in the general 
population is so small that it is a primary medical puzzle to explain why so 
few smokers do get lung cancer. This study is meant to be a contribution 
to solving this puzzle. 

An important feature of this study is that the results are fragile enough 
to warrant much further investigation before any practical conclusion is 
drawn--such as the admonition to heavy smokers to eat lots of carrots. 
In my view, perhaps a majority of scientific studies of causal connections 
have a similar tentative character. It is mainly science far from the fron
tiers, much worked over and highly selected, that has clear and decisive 
results. 

A common argument of those who oppose a probabilistic analysis of 
causality is to claim that it is not possible to distinguish genuine prima 
facie causes from spurious ones. This view is mistaken. Because in my 
sense spuriousness and genuineness are opposites, it will be sufficient to 
define spurious causes, and then to characterize genuine causes as prima 
facie causes that are not spurious. 

For the definition of spurious causes, I introduce the concept of a 
partition at a given time of the possible space of events. A partition is 
just a collection of incompatible and exhaustive events. In the case where 
we have an explicit sample space, it is a collection of pairwise disjoint, 
nonempty sets whose union is the whole space. The intuitive idea is 
that a prima facie cause is spurious if there exists an earlier partition 
of events such that no matter which event of the partition occurs, the 
joint occurrence of B and the element of the partition yields the same 
conditional probability for the event A as does the occurrence of the 
element of the partition alone. To repeat this idea in slightly different 
language, we have: 

DEFINITION 2. An event B is a spurious cause of A if and only if B is 
a prima facie cause of A, and there is a partition of events earlier than 
B such that the conditional probability of A, given B and any element of 
the partition, is the same as the conditional probability of A, given just 
the element of the partition. 

The history of human folly is replete with belief in spurious causes. 
One of the most enduring is the belief in astrology. The better ancient 
defenses of astrology begin on sound empirical grounds, but they quickly 
wander into extrapolations that are unwarranted and that would pro
vide upon deeper investigation excellent examples of spurious causes. 
Ptolemy's treatise on astrology, Tetrabiblos, begins with a sensible dis
cussion of how the seasons, the weather, and the tides are influenced by 
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the motions of the sun and the moon. But he then moves rapidly to 
the examination of what may be determined about the temperament and 
fortunes of a given individual. He proceeds to give genuinely fantastic 
explanations of the cultural characteristics of entire nations on the basis 
of their relation to the stars. Consider, for example, this passage: 

Of these same countries Britain, (Transalpine) Gaul, Ger
many, and Bastarnia are in closer familiarity with Aries and 
Mars. Therefore for the most part their inhabitants are fiercer, 
more headstrong, and bestial. But Italy, Apulia, (Cisalpine) 
Gaul, and Sicily have their familiarity with Leo and the sun; 
wherefore these peoples are more masterful, benevolent, and 
co-operative (63, Loeb edition). 

Ptolemy is not an isolated example. It is worth remembering that Kepler 
was court astrologer in Prague, and Newton wrote more about theology 
than physics. In historical perspective, their fantasies about spurious 
causes are easy enough to perceive. It is a different matter when we ask 
ourselves about future attitudes toward such beliefs current in our own 
time. 

The concept of causality has so many different kinds of applications 
and is at the same time such a universal part of the apparatus we use to 
analyze both scientific and ordinary experience that it is not surprising 
to have a variety of conflicting intuitions about its nature. I examine five 
examples of such conflict, but the list is in no sense inclusive. It would 
be easy to generate another dozen just from the literature of the last ten 
years. 

1. SIMPSON'S PARADOX 

Simpson (1951) showed that probability relationships of the kind exem
plified by Definition 1 for prima facie causes can be reversed when a finer 
analysis of the data is considered. From the standpoint of the framework 
of this article, this is just a procedure for showing that a prima facie cause 
is a spurious cause, at least in the cases where the time ordering follows 
the definitions given. In Simpson's discussion of these matters and in the 
related literature, there has not been an explicit attention to temporal 
order, and I shall ignore it in my comments on the 'paradox'. There is 
an intuitively clear and much discussed example of sex bias in graduate 
admissions at Berkeley (Bickel, Hammel, & O'Connell, 1975). When data 
from the university as a whole were considered, there seemed to be good 
evidence that being male was a prima facie cause for being admitted to 
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graduate school. In other words, there was a positive bias toward the 
admission of males and a negative bias toward the admission of females. 
On the other hand, when the data were examined department by depart
ment it tuned out that a majority of the departments did not show such 
a bias and in fact had a very weak bias toward female admission. The 
conflict in the data arose from the large number of female applications 
to departments that had a large number of rejections independent of the 
sex of the applicant. As is clear from this example, there is no genuine 
paradox in the problem posed by Simpson. There is nothing inconsistent, 
or in fact even close to inconsistent, in the results described, which are 
characteristic of the phenomenon. 

Cartwright (1979) proposes to meet the Simpson problem by imposing 
further conditions on the concept of one event being a cause of another. 
In particular, she wants to require that the increase in probability charac
teristic of prima facie causes defined above is considered only in situations 
that are "otherwise causally homogeneous with respect to" the effect. I 
am skeptical that we can know when situations are causally homogeneous. 
In the kind of example considered earlier concerning high intake of vitamin 
A being a potential inhibitor of lung cancer, it is certainly not possible to 
know or even to consider causally homogeneous situations. This is true of 
most applications of causal notions in nonexperimental settings and even 
in many experimental situations. I am also skeptical at a conceptual or 
philosophical level that we have any well-defined notion of homogeneity. 
Consider, for example, the data from Berkeley just described. There is 
no reason that we could not also pursue additional hypotheses. We might 
want to look at partial data from each department where the data were 
restricted just to the borderline cases. We might test the hypothesis that 
the female applicants were more able than the males but that at the bor
derline there was bias against the females. So far as I know, such a more 
refined analysis of the data has not been performed but there is no reason 
conceptually that we might not find something by entertaining such addi
tional questions. My point is that there is no end to the analysis of data 
in a practical sense. We can, of course, exhaust finite data theoretically 
by considering all possible combinations, but this is only of mathematical 
significance. 

A conflict of intuition can arise as to when to stop the refinement of 
data analysis. From a practical standpoint, many professional situations 
require detailed rules about such matters. The most obvious example is in 
the definition of classes for actuarial tables. What should be the variables 
relevant to fixing the rates on insurance policies? I have in mind here 
not only life insurance but also automobile insurance, property insurance, 
etc. I see a conflict at the most fundamental level between those who 
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think there is some ultimate stopping point that can be determined in 
the analysis and those who do not. 

There is another point to be mentioned about the Simpson problem. 
It is that if we can look at the data after they have been collected and 
if the probabilities in question are neither zero nor one, it is then easy 
to artificially define events that render any prima facie cause spurious. 
Of course, in ordinary statistical methodology it would be regarded as a 
scandal to construct such an event after looking at the data, but from 
a scientific standpoint the matter is not so simple. Certainly, looking 
at data that do not fit desired hypotheses or favorite theories is one of 
the best ways to get ideas about new hypotheses or new theories. But 
without further investigation we do not take seriously the ex post facto 
artificial construction of concepts. What is needed is another experiment 
or another set of data to determine whether the hypotheses in question are 
of serious interest. There is, however, another point to be made about such 
artificial concepts constructed solely by looking at the data and counting 
the outcomes. It is that somehow we need to exclude such concepts to 
avoid the undesirable outcome of every prima facie cause being spurious, 
at least every naturally hypothesized prima facie cause. One way to do 
this of course is to characterize the notion of genuine cause relative to 
a given set of concepts that may be used to define events considered as 
causes. Such an emendation and explicit restriction on the definition 
given above of genuine cause seems appropriate.1 

2. MACROSCOPIC DETERMINISM 

Even if one accepts the general argument that there is randomness in na
ture at the microscopic level, there continues to be a line of thought that 
in analysis of causality in ordinary experience it is useful and, in fact, in 
some cases almost mandatory to assume determinism. I will not try to 
summarize all the literature here but will concentrate on the arguments 
given in Hesslow (1976,1981), which attempt to give a deep-running ar
gument against probabilistic causality, not just my particular version of 
it. (In addition to these articles of Hesslow, the reader is also referred 
to Rosen (1978] and for a particularly thorough critique of deterministic 
causality, Rosen (1982].) 

1 As Cartwright (1979) points out, it is a historical mistake to attribute Simp
son's paradox to Simpson. The problem posed was already discussed in Cohen and 
Nagel's well-known textbook (1934), and according to Cartwright, Nagel believes that 
he learned about the problem from Yule's classic textbook of 1911. There has also been 
a substantial recent discussion of the paradox in the psychological literature (Hintzman 
1980; Martin 1981 ). 
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As a formulation of determinism that avoids the global character of 
Laplace's, both Hesslow and Rosen cite Anscombe's (1975, p. 63) principle 
of relevant difference, "If an effect occurs in one case and a similar effect 
does not occur in an apparently similar case, then there must be a rele
vant further difference." Although statistical or probabilistic techniques 
are employed in testing hypotheses in the biological and social sciences, 
Hesslow claims that "there is nothing that shows that these hypotheses 
themselves are probabilistic in nature. In fact one can argue that the op
posite is true, for statistics are commonly used in a way that presupposes 
determinism, namely, in various kinds of eliminative arguments." 

Hesslow's intuitions here are very different from mine, so there is a 
basic conflict that could best be resolved by extensive review of the bi
ological, medical, and social science literature. I shall not attempt that 
here but state what I think is wrong with one of Hesslow's ideal examples. 
He says that these kinds of eliminative arguments all have a simple struc
ture. He takes the case of Jones, who had a fatal disease but was given a 
newly discovered medicine and recovered. We conclude, he says, that the 
cause of his recovery was M, the event of taking medicine. Now he says 
at the beginning that Jones had a "universally fatal disease." The first 
thing to challenge is the use of the adverb universally. This is not true 
of all the diseases of interest. Almost no diseases that are the subject for 
analysis and study by doctors are universally fatal. It is a familiar fact 
that when medicine is given we certainly like to attribute the recovery 
to medicine. But ordinarily the evidence is not overwhelming, because 
in the case of almost all diseases there is evidence of recovery of individ
uals who were not treated by the medicine. This is true of all kinds of 
diseases, from the plague to pneumonia. In making this statement, I am 
certainly not asserting that medicine is not without efficacy but only that 
Hesslow's claim is far too simple. The actual data do not support what 
he says. 

Hesslow's claim that this is a case of determinism is puzzling because 
in his own explicit formulation of the argument he says, "Thus, (proba
bly) M caused R," where R is the event of recovery. He himself explicitly 
introduces the caveat of probability. What he states is that "because 
something caused the recovery and, other causes apparently being scarce, 
M is the most likely candidate." Determinism comes in the use of some
thing, but the conclusion he draws is probabilistic in character and could 
just as well have been drawn if he had started with the view that in most 
cases an identifiable agent caused the recovery but that in the remaining 
cases the recovery was spontaneous. Moreover, I would claim that there 
is no powerful argument for the determinism of the kind Hesslow was 
trying to give. One could look from one end of the medical literature to 
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the other and simply not find the kind of need for the premises he talks 
about. 

There is a point to be clear about on this matter. Because one is not 
endorsing determinism as a necessary way of life for biological and social 
scientists, it does not mean that the first identification of a probabilistic 
cause brings a scientific investigation of a given phenomenon to an end. It 
is a difficult and delicate matter to determine when no further causes can 
be identified. I am not offering any algorithms for making this determi
nation. I am just making a strong claim that we do get along in practice 
with probabilistic results and we do not fill them out in an interesting 
deterministic fashion. 

3. TYPES AND TOKENS 

There are a host of conflicting intuitions about whether causality should 
mainly be discussed in terms of event types or event tokens, and also 
how the two levels are related. I restrict myself here to two issues, both 
of which are fundamental. One is whether cases of individual causation 
must inevitably be subsumable under general laws. The second is whether 
we can make inferences about individual causes when the general laws are 
merely probabilistic. 

A good review of the first issue on subsumption of individual causal 
relations under general laws is given by Rosen (1982), and I shall not try 
to duplicate her excellent discussion of the many different views on this 
matter. Certainly, nowadays probably no one asserts the strong position 
that if a person holds that a singular causal statement is true then the 
person must hold that a certain appropriate covering law is true. One 
way out, perhaps most ably defended by Horgan (1980) is to admit that 
direct covering laws are not possible but that there are at work underneath 
precise laws, formulated in terms of precise properties that do give us 
the appropriate account in terms of general laws. But execution of this 
program certainly is at present, and in my own view will forever be, at 
best a pious hope. In many cases we shall not be able to supply the 
desired analysis. 

There is a kind of psychological investigation that would throw in
teresting light on actual beliefs about these matters. Epistemological or 
philosophical arguments of the kind given by Horgan do not seem to me to 
be supportable. It would be enlightening to know if most people believe 
that there is such an underlying theory of events and if somehow it gives 
them comfort to believe that such a theory exists. The second and more 
particular psychological investigation would deal with the kinds of beliefs 
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individuals hold and the responses they give to questions about individual 
causation. Is there a general tendency to subsume our causal accounts of 
individual events under proto-covering laws? It should be evident what I 
am saying about this first issue. The defense that there are laws either of 
a covering or a foundational nature cannot be defended on philosophical 
grounds, but it would be useful to transform the issue into a number of 
psychological questions as to what people actually do believe. 

The second issue is in a way more surprising. It has mainly been em
phasized by Hesslow. It is the claim that inferences from generic statistical 
relations to individual causal relations are necessarily invalid. Thus, he 
concludes that "if all generic causal relations are statistical, then we must 
either accept invalid inferences or refrain from talking about individual 
causation at all" (1981, p. 598). It seems to me that this line of argument 
is definitely mistaken and I would like to try to say why as clearly as I 
can. First of all, I agree that one does not make a logically or a math
ematically valid argument from generic statistical relations to individual 
causal relations. It is in the nature of probability theory and its applica
tions that the inference from the general to the particular is not in itself 
a mathematically valid inference The absence of such validity, however, 
in no way prohibits using generic causal relations that are clearly statisti
cal in character to make inferences about individual causation. It is just 
that those inferences are not mathematically valid inferences-they are 
inferences made in the context of probability and uncertainty. I mention 
as an aside that there is a large literature by advocates of a relative fre
quency theory of probability about how to make inferences from relative 
frequencies to single cases. Since I come closer to being a Bayesian than a 
relative frequentist, I shall not review these arguments, but many of the 
discussions are relevant in arguing from a different viewpoint than mine 
about Hesslow's claims. 

First, though, let me distinguish sharply between the generic relations 
and the individual relations and what I think is the appropriate terminol
ogy for making this distinction. The language I prefer is that the generic 
relations are average or mean relations. The individual relations at their 
fullest and best depend upon individual sample paths known in great de
tail. An individual sample path is the continuous temporal and spatial 
path of development of an individual's history. There is in this history 
ordinarily a great deal of information not available in simple mean data. 
I can say briefly and simply what the expected or mean life span is of 
an adult male who is now forty-five years old and is living in the United 
States, but if I consider some single individual and examine him in terms 
of his past history, his ancestors, his current state of health, his employ
ment, etc., I may come to a very different view of his expected number of 
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remammg years. Certainly it would be ludicrous to think that there is a 
logically valid inference from the mean data to the individual data. 

But for a Bayesian or near Bayesian like myself, the matter has a rather 
straightforward solution. First of all, probabilities as matters of belief are 
directly given to individual events and their individual relationships. Sec
ond, by the standard theorem on total probability, when I say that a given 
individual has an expected lifetime of twenty years, I have already taken 
account of all the knowledge that I have about him. Of course, if I learn 
something new, the probability can change, just on the basis of the the
orem on total probability. Now the central point is that ordinarily much 
of what I know about individuals is based upon generic causal relations. 
I simply do not know enough to go very much beyond generic relations, 
and thus my probabilistic estimate of an individual's expected remaining 
lifetime will very much depend on a few generic causal relations and not 
much else. The absence of logical validity in relating the generic to the 
individual in no way keeps me from talking about individual causation, 
contrary to Hesslow's claim. In fact, I would say that what I have said 
is just the right account of how we do talk about individual causation in 
the cases where we know something about generic probabilistic causal re
lations. We know, for example, that heavy clouds are a good sign of rain, 
and when accompanied by a drop in atmospheric pressure an even better 
sign. We know that these two conditions alone will not cause rain with 
probability one, but there is a strong probabilistic causal relation. We go 
on to say, well, rain is likely sometime this afternoon. We are quite happy 
with our causal views of the matter based on a couple of generic causal 
relations. Intimate details of the kind available to meteorologists with 
the professional responsibility to predict the weather are not available, let 
us say, in the instance being discussed. The meteorologist faced with a 
similar problem uses a much more complex theory of generic relations in 
order finally to issue his prediction for the afternoon. It is also important 
to note, of course, that on the kind of Bayesian view I am describing here 
there is no algorithm or simple calculus for passing by probability from 
generic causal relationships to individual ones, even for the trained mete
orologist. It is a matter of judgment as to how the knowledge one has is 
used and assessed. The use of the theorem on total probability mentioned 
above depends on both conditional and unconditional probabilities, which 
in general depend on judgment. In the case where there is very fine sci
entific knowledge of the laws in question it might be on occasion that the 
conditional probabilities are known from extensive scientific experimen
tation, but then another aspect of the problem related to the application 
to the individual event will not be known from such scientific experimen
tation except in very unusual cases, and judgment will enter necessarily. 
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4. PHYSICAL FLOW OF CAUSES 

In his excellent review article on probabilistic causality, Salmon (1980) 
puts his finger on one of the most important conflicting intuitions about 
causality. The derivations of the fundamental differential equations of 
classical physics give in most cases a very satisfying physical analysis of 
the flow of causes in a system, but there is no mention of probability. It is 
characteristic of the areas in which probabilistic analysis is used to a very 
large extent that a detailed theory of the phenomena in question is miss
ing. The examples from medicine given earlier are typical. We may have 
some general ideas about how a vaccine works or about the mechanisms 
for absorbing vitamin A, but we do not have anything like an adequate 
detailed theory of these matters. We are presently very far from being 
able to make any kind of detailed theoretical predictions derived from 
fundamental assumptions about molecular structure, for example. Con
cerning these or related questions we have a very poor understanding in 
comparison with the kinds of models successful in various parts of classical 
physics about the detailed flow of causes. I think Salmon is quite right in 
pointing out that the absence of being able to give such an analysis is the 
source of the air of paradox of some of the counterexamples that have been 
given. The core argument is to challenge the claim that the occurrence 
of a cause should increase the probability of the occurrence of its effect. 

Salmon uses as a good example of this phenomenon the hypothetical 
case made up by Deborah Rosen and reported in my 1970 monograph. A 
golfer makes a birdie by hitting a limb of a tree at just the right angle, 
not something that he planned to do. The disturbing aspect is that if 
we estimated the probability of his making a birdie prior to his making 
the shot and we added the condition that the ball hit the branch, we 
would ordinarily estimate the probability as being definitely lower than 
that he would have made a birdie without this given condition. On the 
other hand, when we see the event happen we have an immediate physical 
recognition that the exact angle that he hit the branch played a crucial 
role in the ball's going into the cup. In my 1970 discussion ofthis example, 
I did not take sufficient account of the conflict of intuition between the 
general probabilistic view and the highly structured physical view. I now 
think it is important to do so and I very much agree with Salmon that the 
issues here are central to a general acceptability of a probabilistic theory 
of causality. I therefore want to make a revised response. 

There are at least three different kinds of cases in which what seem 
for other reasons to be prima facie causes in fact turn out to be negative 
causes, i.e., the conditional probability of the effect's occurring is lowered 
given the cause. One sort of case involves situations in which we know a 
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great deal about the classical physics. A second kind of case is where an 
artificial example can be constructed and we may want to make claims 
about observing a causal chain. Salmon gives a succinct and useful exam
ple of this kind, which I discuss. Third, there are the cases in which we 
attribute without any grounds some surprising event as a cause of some 
significant effect. In certain respects the ancient predilection for omens 
falls under this category, but I shall not expand upon this view further. 

In the first kind of case there is a natural description of the event 
after the fact that makes everything come out right. Using the golf ball 
example as typical, we now describe the event as that of the golf ball's 
hitting the branch at exactly the right angle to fall into the cup. Given 
such a description we would of course make the conditional probability 
close to one, but it is only after the fact that we could describe the event 
in this fashion. On the other hand, it is certainly too general to expect 
much to come out of the event described simply as the golf ball's hitting 
the limb of the tree. It is not really feasible to aim before the event 
at a detailed description of the event adequate to make a good physical 
prediction. We will not be given the values of parameters sufficiently 
precisely to predict that the golf ball will hit the limb of the tree at an 
angle just right for bouncing into the cup. Consequently, in such cases 
we cannot hope to predict the effects of such surprising causes, but based 
upon physical theories that are accurate to a high degree of approximation 
we understand that this is what happened after we have observed the 
sequence of events. Another way of putting the matter is that there is a 
whole range of cases in which we do not have much hope of applying in an 
interesting scientific or commonsense way probabilistic analysis, because 
the causes will be surprising. Even in cases of extraordinary conceptual 
simplicity, e.g., theN-body problem with only forces of gravitation acting 
between the bodies, extended prediction of behavior for any length of time 
is not in general possible. Thus, although a Bayesian in such matters, I 
confess to being unable to make good probabilistic causal analyses of 
many kinds of individual events. In the same fashion, I cannot apply 
to such events, in advance of their happening, detailed physical theories. 
The possibilities of application in both cases seem hopeless as a matter 
of prediction. This may not be the way we want the world to be but this 
is the way it is. 

Salmon also gives an example that has a much simpler physical de
scription than the golf ball example. It involves the eight ball and the 
cue ball on a pool table with the player having a 50-50 chance of sinking 
the eight ball with the cue ball when he tries. Moreover, the eight ball 
goes into the corner pocket, as Salmon says, "if and almost only if his cue 
ball goes into the other far corner pocket." Let event A be the player's 
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attempting the shot, B the dropping ofthe eight ball in the corner pocket, 
and C the dropping of the cue ball into the other corner pocket. Under 
the hypotheses given, B is a prima facie cause of C, and Salmon is con
cerned about the fact that A does not screen B off from C, i.e., render 
B a spurious cause of C. Salmon expresses his concern by saying that 
we should have appropriate causal relations among A, B, and C with
out having to enter into more detailed physical theory. But it seems to 
me that this example illustrates a very widespread phenomenon. The 
physical analysis, which we regard as correct, namely, the genuine cause 
of C, i.e., the cue ball going into the pocket, is in terms of the impact 
forces and the direction of motion of the cue ball at the time of impact. 
We certainly believe that such specification can give us a detailed and 
correct account of the cue ball's motion. On the other hand, there is an 
important feature of this detailed physical analysis. We must engage in 
meticulous investigations; we are not able to make in a commonsense way 
the appropriate observations of these earlier events of motion and impact. 
In contrast, the events A, B, and C are obvious and directly observable. 
I do not find it surprising that we must go beyond these three events for 
a proper causal account, and yet at the same time we are not able to do 
so by the use of obvious commonsense events. Aristotle would not have 
had such an explanation, from all that we know about his physics. Why 
should we expect it of untutored common sense? 

The second class of example, of which Salmon furnishes a very good 
instance, is when we know only probability transitions. The example he 
considers concerns an atom in an excited state. In particular, it is in the 
fourth energy level. The probability is one that it will necessarily decay 
to the zeroeth level, i.e., the ground state. The only question is whether 
the transitions will be through all the intermediate states three, two, and 
one, or whether some states will be jumped over. The probability of going 
directly from the fourth to the third state is 3/4 and from the fourth to 
the second state is 1/4. The probability of going from the third state to 
the first state is 3/4 and from the third state to the ground state 1/4. 
Finally, the probability of going from the second state to the first state 
is 1/4 and from the second state directly to the ground state 3/4. It is 
required also, of course, that the probability of going from the first state 
to the ground state is one. The paradox arises because of the fact that if a 
decaying atom occupies the second state in the process of decay, then the 
probability of its occupying the first state is 1/4, but the mean probability 
whatever the route taken of occupying the first state is the much higher 
probability of 10/16. Thus, on the probabilistic definitions given earlier 
of prima facie causes, occupying the second state is a negative prima facie 
cause of occupying the first state. 



134 PART II. CAUSALITY AND EXPLANATION 

On the other hand, as Salmon emphasizes, after the events occur of the 
atom going from the fourth to the second to the first state, many would 
say that this sequence constitutes a causal chain. My own answer to this 
class of examples is to meet the problem head on and to deny that we want 
to call such sequences causal sequences. If all we know about the process is 
just the transition probabilities given, then occupancy of the second state 
remains a negative prima facie cause of occupying the first state. The 
fact of the actual sequence does not change this characterization. In my 
own constructive work on causality, I have not given a formal definition of 
causal chains, and for good reason. I think it is difficult to decide which 
of various conflicting intuitions should govern the definition. 

We may also examine how our view of this example might change if 
the probabilities were made more extreme, i.e., if the mean probability of 
occupying the first energy state comes close to one and the probability of 
a transition from the second to the first state is close to zero. In such cases 
when we observe the sequence of transitions from the fourth to the second 
to the first state, we might be inclined to say that the atom decayed to the 
first state in spite of occupying the second state. By using such phrases 
as in spite of we indicate our skepticism that what we have observed is a 
genuine causal chain. 

5. COMMON CAUSES 

It was a virtue of Reichenbach to have recognized that a natural principle 
of causality is to expect events that are simultaneous, spatially separated, 
and strongly correlated, to depend upon some common cause to gener
ate the correlation. There are a variety of controversial questions about 
the principle of common cause, and the source of the controversy is the 
absence of clear and widely accepted intuitions about what we should ex
pect of such causes. Should we expect such causes to exist? Thus, when 
we observe phenomenologically simultaneous events strongly correlated, 
should we always be able to find a common cause that eliminates this 
phenomenological correlation in the sense that, when we condition on the 
common cause, the new conditional correlation is zero? Another question 
concerns the determinism of common causes. Ought we to expect such 
causes to be deterministic, or can we find common causes that are strictly 
probabilistic? In a recent essay, Van Fraassen {1982) expresses the view 
that the causes must be deterministic in the following way. 

But a belief in the principle of the common cause implies a 
belief that there is in the relevant cases not merely a compat
ibility (so that deterministic hidden variables could be intro-
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duced into models for the theory) but that all those hidden 
events which are the common causes, are real, and therefore, 
that the world is really deterministic (p. 208). 
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Salmon (1982) in his reply to Van Fraassen suggests that the principle of 
common cause is sometimes used as an explanatory principle and some
times as a principle of inference. Also he implicitly suggests a third and 
different use as a maxim of rationality, which is a use also considered by 
Van Fraassen. The maxim is: search for a common cause whenever fea
sible to explain simultaneous events that are strongly correlated. Using 
the principle as a maxim does not guarantee any explanations nor any 
inferences but can be important in the strategy of research. The dia
logue between Salmon and Van Fraassen in the two articles mentioned 
contains a number of useful points about common causes, but rather 
than consider in detail their examples, counterexamples, arguments, and 
counter arguments to each other, I want to suggest what I think is a rea
sonable view of the principle of common cause. In doing so I shall avoid 
references to quantum mechanics except in one instance. I shall also gen
eralize the discussion to more than two events, because in many scientific 
applications it is not adequate to consider the correlations of only two 
events. 

First let me say more explicitly what I shall mean by common cause. 
The exposition here will be rather sketchy. The technical details of many 
of the points made are given in the Appendix. 

Let A and B be events that are approximately simultaneous and let 

P(AB) f. P(A)P(B); 

i.e., A and B are not independent but correlated. Then the event C is a 
common cause of A and B if 

(i) C occurs earlier than A and B; 

(ii) P(ABIC) = P(AIC)P(BIC); 

(iii) P(ABIC) = P(AIC)P(BIC). 

In other words, C renders A and B conditionally independent, and so 
does C, the complement of C. When the correlation between A and B is 
positive, i.e., when 

P(AB) > P(A)P(B), 

we may also want to require: 

(iv) C is a prima facie cause of A and of B. 
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I shall not assume (iv) in what follows. I state in informal language a 
number of propositions that are meant to clarify some of the controversy 
about common causes. The first two propositions follow from a theorem 
about common causes proved in Suppes and Zanotti, (1981). 

PROPOSITION I. Let events A1, A2, · · ·, An be given with any two of 
the events correlated. Then a necessary and sufficient condition for it to 
be possible to construct a common cause of these events is that the events 
A1 , A2, ... , An have a joint probability distribution compatible with the 
given pairwise correlations. 

An important point to emphasize about this proposition is its generality 
and at the same time its weakness. There are no restrictions placed on the 
nature of the common causes. Once any sorts of restrictions of a physical 
or other empirical kind are imposed, then the common cause might not 
exist. If we simply want to know whether a common cause can be found as 
a matter of principle as an underlying cause of the observed correlations 
between events, then the answer is not one that has been much discussed 
in the literature. All that is required is the existence of a joint probability 
distribution of the phenomenological variables. It is obvious that if the 
candidates for common causes are restricted in advance, then it is a simple 
matter to give artificial examples that show that among possible causes 
given in advance no common cause can be found. The ease with which 
such artificial examples are constructed makes it obvious that the same 
holds true in significant scientific investigations. When the possible causes 
of diseases are restricted, for example, it is often difficult for physicians 
to find a common cause among the given set of candidates. 

PROPOSITION II. The common cause of Proposition I can always be 
constructed so as to be deterministic. 

Again, without restriction, determinism is always open to us. On the 
other hand, it is easy to impose some natural principles of symmetry that 
exclude deterministic causes when the correlations are strictly probabilis
tic, i.e., the correlations between the events at the phenomenological level 
are not themselves deterministic. Explicit formulations of these principles 
of symmetry are given in the Appendix. 

PROPOSITION III. Conditions of symmetry can easily be found such 
that strictly probabilistic correlations between phenomenologically observed 
events have as a common cause one that is strictly probabilistic. 

This last proposition is special in nature, of course. It refers to principles 
of symmetry discussed in the Appendix. The conditions are sufficient 
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but not necessary. It would be desirable to find significant necessary and 
sufficient conditions that require the common cause to be probabilistic 
rather than deterministic in character. 

Finally, I state one application to quantum mechanics. 

PROPOSITION IV. There are correlated phenomenological data that can
not have a common cause that is theoretically consistent with quantum 
mechanics, because there can be no joint probability distribution of the 
data, as described in Proposition I. 

APPENDIX ON COMMON CAUSES 

In this Appendix I present a number of theorems about inferences from 
phenomenological correlations to common causes. In the framework of 
quantum mechanics, the theorems are mainly theorems about hidden vari
ables. Most of the proofs will not be given, but references will be cited 
where they may be found. The content of this Appendix follows closely 
the first part of Suppes and Zanotti (1984). 

To emphasize conceptual matters and to keep technical simplicity in 
the forefront, I consider only two-valued random variables taking the val
ues ±1. We shall also assume symmetry for these random variables in 
that their expectations will be zero and thus they will each have a posi
tive variance of one. For emphasis we state: 

GENERAL ASSUMPTION. The phenomenological random variables 
X1, ... , XN have possible values ±1, with means E(Xi) = 0, 1 ~ i ~ N. 

We also use the notation X, Y and Z for phenomenological random vari
ables. We use the notation E(XY) for covariance, which for these sym
metric random variables is also the same as their correlation p(X, Y). 

The basic meaning of common cause that we shall assume is that when 
two random variables, say X and Y, are given, then in order for a hidden 
variable .\ to be labeled a common cause, it must render the random 
variables conditionally independent, that is, 

(1) E(XYj.\) = E(XI.\)E(YI.\). 

We begin with a theorem asserting a deterministic result. It says that if 
two random variables have a strictly negative correlation, then any cause 
in the sense of (1) must be deterministic, that is, the conditional variances 
of the two random variables, given the hidden variable .\, must be zero. 
We use the notation u(XI.\) for the conditional standard deviation of X 
given .\, and its square is, of course, the conditional variance. 
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THEOREM 1. (Suppes and Zanotti, 1976). If 

(i) E(XYIA) = E(XIA)E(YIA) 

(ii) p(X, Y) = -1 

then 

u(XIA) = u(YIA) = 0. 

The second theorem asserts that the only thing required to have a 
common cause for N random variables is that they have a joint probability 
distribution. This theorem is conceptually important in relation to the 
long history of hidden variable theorems in quantum mechanics. For 
example, in the original proof of Bell's inequalities, Bell (1964) assumed a 
causal hidden variable in the sense of ( 1) and derived from this assumption 
his inequalities. What Theorem 2 shows is that the assumption of a hidden 
variable is not necessary in such discussions-it is sufficient to remain 
at the phenomenological level. Once we know that there exists a joint 
probability distribution then there must be a causal hidden variable, and 
in fact this hidden variable may be constructed so as to be deterministic. 

THEOREM 2. (Suppes and Zanotti, 1981). Given phenomenological 
random variables X 1 , ... , XN then there exists a hidden variable A, a 
common cause, such that 

if and only if there exists a joint probability distribution of X 1 , ... , XN. 
Moreover, A may be constructed as a deterministic cause, i.e., for 1 :::; 

:S: N 
u(X;IA) = 0. 

6. EXCHANGEABILITY 

We now turn to imposing some natural symmetry conditions both at 
a phenomenological and at a theoretical level. The main principle of 
symmetry we shall use is that of exchangeability. Two random variables 
X and Y of the class we are studying are said to be exchangeable if the 
following probabilistic equality is satisfied. 

(2) P(X = 1, Y = -1) = P(X = -1, Y = 1). 

The first theorem we state shows that if two random variables are ex
changeable at the phenomenological level then there exists a hidden causal 
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variable satisfying the additional restriction that they have the same con
ditional expectation if and only if their correlation is not negative. 

THEOREM 3. (Suppes and Zanotti, 1980). If X andY are exchangeable, 
then there exists a hidden variable A such that 

(i) A is a common cause of X andY, 

(ii) E(XIA) = E(YIA) 

if and only if 

p(X, Y) 2:0. 

There are several remarks to be made about this theorem. First, the phe
nomenological principle of symmetry, namely, the principle of exchange
ability, has not been used in physics as explicitly as one might expect. 
In the context of the kinds of experiments ordinarily used to test hidden 
variable theories, the requirement of phenomenological exchangeability 
is uncontroversial. On the other hand, the theoretical requirement of 
identity of conditional distributions does not have the same status. We 
emphasize that we refer here to the expected causal effect of A. Obviously 
the actual causal effects will in general be quite different. We certainly 
would concede that in many physical situations this principle may be too 
strong. The point of our theorems is to show that once such a strong theo
retical principle of symmetry is required then exchangeable and negatively 
correlated random variables cannot satisfy it. 

Theorem 4 strengthens Theorem 3 to show that when the correla
tions are strictly between zero and one then the common cause cannot be 
deterministic. 

THEOREM 4. (Suppes and Zanotti, 1984). Given the conditions of 
Theorem 3, if 0 < p(X, Y) < 1 then A cannot be deterministic, i.e., 
a-(XIA), a-(YIA) i: 0. 

Proof We first observe that under the assumptions we have made: 

Min{P(X = 1, Y = -1), P(X = 1, Y = 1), P(X = -1, Y = -1)} > 0. 

Now, let n be the probability space on which all random variables are 
defined. Let A= {A;}, 1::; i::; Nand 1i = {Hj}, 1 ::; j::; M be two 
partitions of n. We say that 1i is a refinement of A in probability if and 
only if for all i's and j's we have: 

Now let A be a causal random variable for X and Y in the sense of 
Theorem 3, and let A have induced partition 1i = {Hj}, which without 
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loss of generality may be assumed finite. Then ..\ is deterministic if 1i is 
a refinement in probability of the partition A= { Ai} generated by X and 
Y, for assume, by way of contradiction, that this is not the case. Then 
there must exist i and j such that P(Ai n Hi) > 0 and 

but then 0 < P(Ai I Hi) < 1. 
We next show that if..\ is deterministic then E(XJ..\) -=J E(YJ..\), which 

will complete the proof. 
Let, as before, 1i = { Hj} be the partition generated by ..\. Since we 

know that 

EjP(X = 1,Y = -1,Hj) = P(X = 1,Y = -1) > 0 

there must be an Hj such that 

P(X = 1, Y = -1,Hj) > 0, 

but since ..\ is deterministic, 1i must be a refinement of A and thus as 
already proved 

P(X = 1, Y = -1JHi) = 1, 

whence 

P(X = 1, Y = 1JHi) 0 

P(X = -1, Y = lJHi) 0 
P(X = -1, Y = -1JHj) 0, 

and consequently we have 

(3) 

{ P(X = 1JHi) = P(Y = -11Hi) = 1 
P(X = -1JHi) = P(Y = 1JHj) = 0 

Remembering that E(XJ..\) is a function of..\ and thus of the partition 
1i, we have from (3) at once that 

E(XI..\) "t E(YI..\). 
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WHEN ARE PROBABILISTIC 

EXPLANATIONS POSSIBLE? 

The primary criterion of adequacy of a probabilistic causal analysis is 
that the causal variable should render the simultaneous phenomenolog
ical data conditionally independent. The intuition back of this idea is 
that the common cause of the phenomena should factor out the observed 
correlations. So we label the principle the common cause criterion. If we 
find that the barometric pressure and temperature are both dropping at 
the same time, we do not think of one as the cause of the other but look 
for a common dynamical cause within the physical theory of meteorology. 
If we find fever and headaches positively correlated, we look for a common 
disease as the source and do not consider one the cause of the other. But 
we do not want to suggest that satisfaction of this criterion is the end 
of the search for causes or probabilistic explanations. It does represent a 
significant and important milestone in any particular investigation. 

Under another banner the search for common causes in quantum me
chanics is the search for hidden variables. A hidden variable that satisfies 
the common cause criterion provides a satisfactory explanation "in classi
cal terms" ofthe quantum phenomenon. Much of the earlier discussion of 
hidden variables in quantum mechanics has centered around the search for 
deterministic underlying processes, but for some time now the literature 
has also been concerned with the existence of probabilistic hidden vari-

•Reprinted from Synthese, 48 (1981), 191-199. Written jointly with Mario Zanotti. 
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ables. It is a striking and important fact that even probabilistic hidden 
variables do not always exist when certain intuitive criteria are imposed. 
One of the simplest examples was given by Bell in 1971, who extended 
his earlier deterministic work to construct an inequality that is a conse
quence of assuming that two pairs of values of experimental settings in 
spin-1/2 experiments must violate a necessary consequence ofthe common 
cause criterion, that is, the requirement that a hidden variable render the 
data conditionally independent. It is easy to show that Bell's inequality 
is a necessary but not sufficient condition for conditional independence. 
However, we shall not pursue further matters involving specific quantum 
mechanical phenomena in the present context. 

Our aims in this short article are more general. First we establish a 
necessary and sufficient condition for satisfaction of the common cause 
criterion for events or two-valued random variables. The condition is 
existence of a joint probability distribution. We then consider the more 
difficult problem of finding necessary and sufficient conditions for the 
existence of a joint distribution. We state and prove a general result 
only for the case of three (two-valued) random variables, but it has as a 
corollary a pair of new Bell-type inequalities. 

The limitation from a scientific standpoint of the first result on sat
isfaction of the common cause criterion is evident. The mere theoretical 
existence of a common cause is often of no interest. The point of the 
theorem is clarification of the general framework of probabilistic analy
sis. The theorem was partially anticipated by some unpublished work of 
Arthur Fine on deterministic hidden variables. 

The second theorem about the existence of a joint distribution is more 
directly applicable as a general requirement on data structures, for it is 
easy to give examples of three random variables for which there can be no 
joint distribution. Consider the following. Let X, Y, and Z be two-valued 
random variables taking the values 1 and -1. Moreover, let us restrict 
the expectation of the three random variables to being zero, that is, 

E(X) = E(Y) = E(Z) = 0. 

Now assume that the correlation of X andY is -1, the correlation of Y 
and Z is -1, and the correlation of X and Z is -1. It is easy to show 
that there can be no joint distribution of these three random variables. 

THEOREM ON COMMON CAUSES. Let X 1 , ••. , Xn be two-valued ran
dom variables. Then a necessary and sufficient condition that there is 
a random variable A such that X 1 , ... , Xn are conditionally independent 
given A is that there exists a joint probability distribution of X 1 , ... , Xn. 
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Proof. The necessity is trivial. By hypothesis 

P(Xt = 1, ... , Xn = 1IA = >.) = IIi'=t P(X; = 1IA = >.). 

We now integrate with respect to A, which has, let us say, measure J.l, so 
we obtain 

P(Xt = 1, ... ,Xn = 1) = J P(Xt = 1, ... ,Xn = 1IA = >.) = dJJ(>.). 

The argument for sufficiency is more complex. To begin with, let 0 be 
the space on which the joint distribution of X 1, ... , Xn is defined. Each 
X; generates a partition of 0: 

A; = { w : w E 0 & X; ( w) = 1} 

A; = { w : w E 0 & X; ( w) = -1}. 

Let P be the partition that is the common refinement of all these two
element partitions, i.e., 

where juxtaposition denotes intersection. Obviously P has 2n elements. 
For brevity of notation we shall denote the elements of partition P by Cj, 
and the indicator function for Cj by Cj, i.e., 

C· w - 1 ~ { 1 if wE C· 
J ( ) - 0 otherwise. 

We now define the desired random variable A in terms of the Cj. 

(1) 

where the aj are distinct real numbers, i.e., a; =f. aj for i =f. j. The 
distribution J.l of A is obviously determined by the joint distribution of 
the random variables X 1, ... , Xn. 

Using (1), we can now express the conditional expectation of each X; 
and of their product given A. 

(2) 

and 

(3) 
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We need to show that the product of (2) over the X;'s is equal to (3). We 
first note that in the case of (2) or (3) the integrand, X; in one case, the 
product X 1 · · · Xn in the other, has value 1 or -1. (So ~ as constructed 
is deterministic-a point we comment on later.) Second, the integral over 
the region Cj is just P(Cj)· So we have 

( 4) E(X;I~) = I:sgnc;(X;)Cj 
j 

where sgnc;(X;) is 1 or -1, as the case may be for X; over the region 
Cj. From ( 4) we then have 

(5) II~= 1 E(Xd.X) =II; Lsgnc;(X;)Ci. 
j 

Given that the product cici' = 0, if j # j', we may interchange product 
and summation in (5) to obtain 

(6) II;E(Xil~) = L Il;sgnc; (X;)Cj, 
j 

but by the argument already given the right-hand side of (6) is equal to 
E(X1 · · · Xnl~) as desired. 

There are several comments we want to make about this theorem and 
its proof. First, because the random variables X; are two-valued, it is suf
ficient just to consider their expectations in analyzing their conditional 
independence. Second, and more important, the random variable ~ con
structed in terms of the partition P yields a deterministic solution. This 
may be satisfying to some, but it is important to emphasize that the 
artificial character of ~ severely limits its scientific interest. What the 
theorem does show is that the general structural problem of finding a 
common cause of a finite collection of events or two-valued random vari
ables has a positive abstract solution. Moreover, extensions to infinite 
collections of events or continuous random variables are possible but the 
technical details will not be entered into here. We do emphasize that the 
necessary inference from conditional independence to a joint distribution 
does not assume a deterministic causal structure. 

The place where the abstract consideration of common causes has 
been pursued the most vigorously is, of course, in the analysis of the 
possibility of hidden variables in quantum mechanics. Given the negative 
results of Bell already mentioned, it is clear how the Theorem on Common 
Causes must apply: the phenomenological events in question do not have 
a joint distribution. We are reserving for another occasion the detailed 
consideration of this point. 
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Within the present general framework it is important to explore fur
ther the existence of nondeterministic common causes. Many important 
constructive examples of such causes are to be found in many parts of 
science, but the general theory needs more development. One simple 
example is given at the end of this article. 

We turn now to the second theorem about the existence of a joint 
distribution for three two-valued random variables, which could be the 
indicator functions, for example, for three events. We assume the possible 
values as 1 and -1, and the expectations are zero, so the variances are 1 
and the covariances are identical to the correlations. 

JOINT DISTRIBUTION THEOREM. Let X, Y, and Z be random vari
ables with possible values 1 and -1, and with 

E(X) = E(Y) = E(Z) = 0. 

Then a necessary and sufficient condition for the existence of a joint prob
ability distribution of the three random variables is that the following two 
inequalities be satisfied. 

-1 ~ E(XY) + E(YZ) + E(XZ) ~ 1 +.2 Min{E(XY), E(YZ), E(XZ)}. 

Proof. We first observe that 

(1) E(XY) = Pu· -Pta· -Pot· + Poo·, 

where 
Pta• = P(X = 1, Y = -1),etc. 

(We use 0 rather than -1 as a subscript for the -1 value for simplicity 
of notation. The dot refers to Z.) 
It follows easily from ( 1) that 

(2) 

and similarly 

(3) 

(4) 

(5) 

(6) 

(7) 

_ _ t E(XY) 
Poo· - Pu· - 4 + 4 , 

_ _ t E(XZ) 
Po·o - Pt·t - 4 + 4 , 

_ _ t E(YZ) 
P·oo- P·u - 4 + 4 , 

_ _ t E(XY) 
Pot·- Pta·- 4--4-, 

_ _ t E(XZ) 
Po·t - Pt·O - 4 - 4 , 

_ _ t E(YZ) 
P·ot - P•tO - 4- 4 ° 



146 PART II. CAUSALITY AND EXPLANATION 

Using (2)-(7) we can directly derive the following seven equations for 
the joint distribution-with p111 being treated as a parameter along with 
E(XY), E(YZ), and E(XZ): 

1 E(XY) 
Pno = 4 + 4 - Plll 

1 E(XZ) 
P101 = 4 + -4- - Plll 

1 E(YZ) 
Pan = 4 + 4 - P111 

(8) R(YV) E(XZ) 
PlOD = Plll - ~ - 4 

R(YV) E(YZ) 
POlO =Plll-~- 4 

RfY'7.) E(YZ) 
POOl = Plll - ~ - 4 

_ 1 + E(XY) + E(XZ) + E(YZ) Pooo - 4 - 4- - 4- - 4- - P111 

From (8) we derive the following inequalities, where a = 4pnl: 

(9) 

1 + E(XY) 2:: a 

1 + E(XZ) 2:: a 

1 + E(YZ) 2:: a 

E(YZ) + E(XZ) ::; a 

E(XY) + E(YZ) ::; a 

E(YZ) + E(XZ) ::; a 

1 + E(XY) + E(XZ) + (YZ) 2:: a 

From the last inequality of (9), we have at once 

(10) -1::; E(XY) + E(XZ) + (YZ), 

because a must be nonnegative. Second, taking the maximum of the 
fourth, fifth, and sixth inequalities and the minimum of the first, second, 
and third, and adding Min(E(XY), E(XZ), E(YZ)) to both sides, we 
obtain 

(11) E(XY) + E(XZ) + (YZ)::; 1 + 2 Min{E(XY), E(XZ), E(YZ)}. 
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Inequalities (10) and (11) represent the desired result. Their necessity, 
i.e., that they must hold for any joint distribution of X, Y, and Z, is 
apparent from their derivation. 

Sufficiency follows from the following argument. Let 

C1 Max{E(XY) + E(XZ), E(XY) + E(YZ), E(XZ) + E(YZ)}, 
C2 Min{E(XY), E(XZ), E(YZ)}. 

It is an immediate consequence of (10) and (11) that 

(12) 

(13) 

Assume now that C1 ;::: 0. 
We may then choose a= 4Plll so that 

a= {3C1 + (1- {3)(1 + Cz), for 0 :S {3 :S 1. 

On the other hand, if C1 < 0, choose a so that 

It is straightforward to show that for either case of cl' any choice of 
{3 in the closed interval [0,1] will define an a/4 = Plll satisfying the 
distribution equation (8). 
The two theorems we have proved can be combined to give a pair of Bell
type inequalities. Two differences from Bell's 1971 results are significant. 
First, we give not simply necessary, but necessary and sufficient conditions 
for existence of a hidden variable. Second, we deal with three rather than 
four random variables. As would be expected from the proofs of the two 
theorems, our method of attack is quite different from Bell's. 

The corollary is an immediate consequence of the two theorems. 

COROLLARY ON HIDDEN VARIABLES. Let X, Y, and Z be random 
variables with possible values 1 and -1, and with 

E(X) = E(Y) = E(Z) = 0. 

Then a necessary and sufficient condition for the existence of a hidden 
variable or common cause A with respect to which the three given ran
dom variables are conditionally independent is that the phenomenological 
correlations satisfy the inequalities 

-1 :S E(XY) + E(YZ) + E(XZ) :S 1 + 2 Min{E(XY), E(YZ), E(XZ)}. 
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NONDETERMINISTIC EXAMPLE. The deterministic result of the The
orem on Common Causes can, as already indicated, be misleading. We 
conclude with a simple but important example that is strictly probabilis
tic. 

Let X and Y be two random variables that have a bivariate normal 
distribution with lp(X, Yl f. 1, i.e., the correlation to be factored out 
by a common cause is nondeterministic, and without loss of generality 
E(X) = E(Y) = 0. It is a standard result that the partial correlation of 
X and Y with Z held constant is (for a proof, see Suppes, 1970, p. 116). 

(XY. Z) = p(X, Y)- p(X, Z)p(Y, Z) 
p yf1- p2 (X, Z)yf1- p2 (Y, Z) 

Because a multivariate normal distribution is invariant under an affine 
transformation, we may take 

E(Z) = 0, 
E(Z2 ) = 1. 

If p(X, Y) 2': 0, we set 

p(X, Z) = p(Y, Z) = yfp(X, Y). 

If p(X, Y) < 0, we set 

p(X,Z) = -p(Y,Z) = Jlp(X,Y)I. 

It is straightforward to check that we now have a proper multivariate 
normal distribution of X, Y, and Z with 

p(XY. Z) = 0 

and p(X, Z) and p(Y, Z) nondeterministic. 
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NON-MARKOVIAN CAUSALITY 

IN THE SOCIAL SCIENCES WITH 

SOME THEOREMS ON 

TRANSITIVITY 

When we consider familiar observable properties of a physical object we 
postulate almost without thinking that these properties are determined by 
the particular atomic structure of the object at the moment of observation. 
If we know the current atomic structure we firmly believe that it is not 
necessary to know anything about the history of the object. It may well be 
that in many practical instances this assumption is a theoretical one that 
we cannot put into practice, but it is a deep and important theoretical 
assumption about the Markovian character of the physical world. It is a 
standard theoretical move in physics to postulate a concept of state such 
that if we know the state of a system at a given time we need know nothing 
about the system at any earlier time in order to analyze and predict its 
future behavior. This radical Markovian truncation of the past is one of 
the most essential general concepts in the physical sciences. 

It is an important methodological and scientific question to what ex
tent a similar viewpoint can be made to work in the social sciences. I have 
deliberately not said that it was a general philosophical issue. The reason 

*Reprinted from Synthese, 68 (1986), 129-140. 
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for this omission is obvious. It is reasonable to believe that a person's be
liefs and actions at a given time are determined by the current encoding 
of his past experience in his central nervous system and by the current 
state of the many chemical substances in his body at the present instant, 
together with the current circumstances of his environment. Almost none 
of us accept a philosophical view of action at a distance across time so that 
an event that occurred in the past directly affects an action taking place 
now. In the present instance, however, our philosophical views although 
perhaps correct in general principle are too complacent and do not readily 
form a basis in many areas for serious scientific endeavor. The difficulty 
is easy to describe. We are not able to give a theory or description of the 
current state of a person, or more generally of a society, with sufficient 
accuracy and detail to be of much direct use in scientific analysis of any 
personal or social phenomenon of interest. 

The scientific problem is that of being able to postulate detailed in
ternal states that have essential properties of uniformity across many 
different situations. The great success of the physical sciences has de
pended upon the structural identity of substances, at least in relation 
to the phenomenological properties we have as yet investigated with any 
thoroughness. In essential ways, all atoms of a given kind, for example, 
hydrogen, mercury, etc., are identical in structure, or there are in almost 
all circumstances a very small number of variants. In contrast, it seems 
a plausible negative thesis that in the case of persons nothing like such 
uniformity of structure holds for the properties we consider essential, for 
example, the internal psychological structure of a person's memory, feel
ings, etc. There is much to support such a negative thesis at the present 
time and, therefore, many reasons to be skeptical that a powerful and 
scientifically useful concept of state can be introduced in ways that ren
der the postulated processes of a person or a social group Markovian in 
character. 

Whatever the status of the general conceptual argument I have been 
trying to give, the empirical evidence on the kinds of models that are 
actually used in the social sciences very much supports my thesis. What 
I want to do in the remainder of this article is to explore various aspects of 
this non-Markovian kind of analysis, and to speculate on its consequences 
for theory construction. 

To begin with, I show that transitivity of probabilistic causality does 
not depend upon a Markov condition although, as has been shown by 
Eells and Sober (1983), such a Markov condition is sufficient even though 
too restrictive. It is easy to want to hold that any reasonable theory of 
causality should be transitive in character, that is, if A is a cause of B 
and B is a cause of C, then A should be a cause of C. As we shall see, this 
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is a characteristic feature of a wide class of non-Markovian processes. It 
would be disturbing for the theory of non-Markovian causality if this were 
not so. In the second section, I in fact turn to examples of such processes, 
drawn from psychology, in particular from learning theory. The third 
section considers examples of such processes familiar from econometrics. 

To avoid any misunderstanding in the examples that follow, I note 
that by Markov condition I mean first-order Markov condition. We can, 
of course, have a second-order or a third-order Markov condition especially 
in the case of discrete trials or time periods, but the basic intuition about 
states, and the familiar use of the concept in physics, is certainly only in 
terms of first-order Markov processes. In some of the examples, only a 
finite segment of the past is included, but that is usually for purposes of 
practical simplification. Further refinements and more accurate analysis 
can be obtained by further extension into the past. 

1. TRANSITIVITY OF NON-MARKOVIAN CAUSES 

In Suppes (1970) I gave a specific counterexample to show that proba
bilistic causation need not be transitive. For the purposes of this discus
sion I have in mind my definition of prima facie cause. Event Bt' is a 
prima facie cause of event At if and only if (i) t' < t-these subscripts 
refer, of course, to time of occurrence of an event, (ii) P(Bt') > 0, and 
(iii) P(At !Bt') > P(At)· Eells and Sober (1983), as already mentioned, 
showed that a Markov condition is sufficient to guarantee transitivity of 
prima facie causes, as just defined. To facilitate comparison with their 
proof I use the same letters for causes as they do: Ct" is a prima facie 
cause of Ft', which is itself a prima facie cause of Et, with t" < t' < t. 
Hereafter I drop the time subscript since it plays no role in the proof. 
As for other notation, juxtaposition of letters standing for events denotes 
intersection and a bar over such a letter denotes complementation. 

THEOREM 1. Given 

(i) P(FIC) > P(FIC), 
(ii) P(E!F) > P(EIF), 
(iii) P(EIFC) ~ P(EIFC) and P(EIFC) ~ P(EIFC), 

with P(FC), P(FC), P(FC), P(FC) > 0. 
Then 

P(EIC) > P(EIC). 

Before giving the proof, note that condition (iii) replaces the Markov con
dition. Cause C can directly affect the occurrence of E (strict inequality 
in (iii)). Equality in both conjuncts of (iii) is just the first-order Markov 
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condition. I label (iii) the principle of remote causes, for in the natural 
temporal interpretation, C is remote in time from E rather than contigu
ous. The name does not say as much as it should, for it is also important 
that C act on E in the same positive way that it acts on F. 

Proof We have at once from the theorem on total probability 

(1) P(EIC) = P(EIFC)P(FIC) + P(EiFC)P(FIC) 

and 

(2) P(EIC) = P(EIFC)P(FIC) + P(EIFC)P(FIC). 

From (i) and (ii) 

(3) P(EIF)(P(FIC)- P(FIC)) + P(EIF)(P(FIC)- P(FIC)) > 0. 

Using now P(FIC) = 1- P(FIC) and P(FIC) = 1- P(FIC), we obtain 
from (3) 

(4) P(EIF)(P(FIC)- P(FIC)) + P(EIF)(P(FIC)- P(FIC)) > 0, 

and so rearranging ( 4) 

(5) P(EIF)P(FIC) + P(EIF)P(FIC) > P(EIF)P(FIC) + P(EIF) 
P(FIC). 

It follows easily from (iii) that 

(6) P(EIFC) ~ P(EIF) ~ P(EIFC) 

and 

(7) P(EIFC) ~ P(EIF) ~ P(EFC). 

From (5)-(7) we infer 

(8) P(EIFC)P(FIC) + P(EiFC)P(FIC) > P(EIFC)P(FIC) + 
P(EIFC)P(FIC). 

From (1), (2), and (8) we have at once, as desired, 

P(EIC) > P(EIC). 

It is immediately obvious that the counterexample to transitivity given 
earlier by me (Suppes 1970, p. 58) does not satisfy condition (iii). It is 
also easy to show that (iii) is sufficient but not necessary for transitivity. 

Eells and Sober (1983) also prove a theorem involving several inter
mediary causes. The event C causes each of the events F; and they in 
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turn cause E. Their Markov condition in this case can be generalized in 
a similar fashion-see (III) of Theorem 2 below. For comparison, I again 
use their notation. Let F1, ... , Fn be the intermediate causes; then each 
K;, i = 1, ... , 2n, is the intersection of all the Fj 's or their complements. 
Eells and Sober call the K;'s specifications. The notation Kj; is for the 
specification of the F's excepting Fj. Then for each j, i = 1, ... , 2n-l. 

THEOREM 2. If 

(I) P(FiiC) > P(FiiC), for j = 1, ... , n 
(II) P(EIKi;Fi) > P(EIKi;Fi ), for j = 1, ... , n, 

i=1, ... ,2n-l 
(III) P(EIK;C) ~ P(EIK;C), for i = 1, ... , 2n 

with P(K;C), P(K;C) > 0, 

then 

(IV) The Fj 's are mutually independent conditional on C and 
also conditional on C, 

P(EIC) > P(EIC). 

Proof The proof consists of showing that (III), together with (I), (II), 
and (IV), imply the Markov case already established by Eells and Sober. 
More explicitly, let (III') be: 

(III') P(EIK;C) = P(EIK;C) for i = 1, ... , 2n. 

Eells and Sober prove that (I), (II), (III'), and (IV) imply the conclusion 
of Theorem 2. 

The important step in the reduction is to prove 

(1) P(EIK;C) ~ P(EIK;) ~ P(EIK;C), i = 1, ... , 2n. 

but, as was already seen in similar fashion in the proof of Theorem 1, we 
have for each i: 

(2) P(EIK;) = P(EIK;C)P(CIK;) + P(EIK;C)P(CIK;), 

but since P(CIK;), P(CIK;) ~ 0 and P(CIK;) + P(CIK;) = 1 we infer 
(1) from (2) and (III). 

Now let 

(3) 

a;= P(FiiC) 
a;= P(FiiC) 
b; = P(FiiC) 
b; = P(FjiC), for j = 1, ... ,n. 
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And let 

(4) 
Sj = P(EIK;C) 
s; = P(EIK;C), fori= 1, ... , 2n. 

Then, with the obvious extensions of this notation, we have: 

and 

where K1 = F1···Fn,K2 = Fl···Fn, ... ,K2n = F1···Fn. 
Now define 

(7) si = si = P(EIK;). 

Define P* ( EIC) to be P( EIC) with each s; replaced by si, and define 
similarly P*(EIC). Thus 

(8) 

and 

(9) 

First, in view of ( 1), we have at once 

(10) P(EIC) ~ P*(EIC), 

since all terms of P(EIC) are nonnegative. Similarly 

(11) P*(EIC) ~ P(EIC). 

But Eells and Sober's theorem is just: 

(12) P*(EIC) > P*(EIC), 

where the Markov assumption is incorporated in (8) and (9). 
From (10)-(12) we have at once the desired result: 

(13) P(EIC) > P(EIC). 
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2. NON-MARKOVIAN LEARNING MODELS 

To illustrate various specific points about causality, I shall draw on the 
theory of linear learning models already used for similar purposes in my 
1970 monograph. Although I shall not dwell on the many applications 
of these models, they have been used extensively in psychology and more 
recently in control theory, especially by a number of Russian mathemati
cians and scientists. 

For simplicity, let us assume that on every trial the organism can make 
exactly one of two responses, A1 or A2 , and after each response it receives 
a reinforcement, E1 or E2, of one of the two possible responses. A learning 
parameter 0, which is a real number such that 0 < 0 ~ 1, describes 
the rate of learning in a manner to be made definite in a moment. A 
possible realization of the theory is an ordered triple X = (X, P, 0) of 
the following sort. X is the set of all sequences or ordered pairs such 
that the first member of each pair is an element of some set A and the 
second member an element of some set B, where A and B each have two 
elements. Intuitively, the set A represents the two possible responses and 
the set B the two possible reinforcements. P is a probability measure 
on the u-algebra of cylinder sets of X, and 0 is a real number as already 
described. To define the models of the theory, we need a certain amount 
of notation. Let A;,n be the event of response A; on trial n; Ej,n the 
event of reinforcement Eon trial n, where i,j = 1, 2; and for x in X let 
Xn be the equivalence class of all sequences in X which are identical with 
x through trial n. We may then characterize the theory by the following 
set-theoretical definition. 

DEFINITION. A triple X = (X, P, 0) is a linear learning model if and 
only if the following two axioms are satisfied: 

A1 If P(E;,nAi',nXn-d > 0 then 
P(Ai,n+liE;,nAi',nXn-1) = (1- O)P(A;,nlxn-d + 0; 

A2 If P(Ej,nAi',nXn-d > 0 and i :/; j then 
P(Ai,n+liEj,nAi',nXn-d = (1- O)P(A;,nlxn-d· 

As is clear from the two axioms, this linear response theory is intuitively 
very simple. The first axiom just says that when a response is reinforced, 
the probability of making that response on the next trial is increased by 
a simple linear transformation. The second axiom says that if some other 
response is reinforced, the probability of making the response is decreased 
by a second linear transformation. 

The theoretical models of the theory of linear learning are determined 
by three types of parameters. First, a numerical value for the learning 
parameter 0 must be selected; second, the initial probability of an A1 
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response must be selected, that is, the probability P(A1,1); and third, a 
reinforcement schedule must be chosen. 

To illustrate various ideas, let us pick a Markov reinforcement schedule 
with P(E1,!) = /, and 

Also, let P(A1,1) = Pl· 
Let a= 'Y = p1 = 0.5, and let f3 = 0.25. Then it is easy to show 

P(E1,2IE2,!) > P(E1,2IE1,!) 
P(A1,aiE1,2) > P(A1,aiE2,2), 

but transitivity fails, for 

It is easy to see that condition (iii) of Theorem 1 fails, for 

In this example, the Markov reinforcement schedule upsets the expected 
transitivity, but there is a certain additional oddity present. In most 
applications of this kind of theory we do not tend to think in terms of one 
reinforcement causing another. Note that if we change parameters a and 
f3 to: a = f3 = 0.75, then we have the transitive chain: E1,1 is a prima 
facie cause of E 1,2, E 1,2 is a prima facie cause of A1,3 , and also, E 1,1 is a 
prima facie cause of A1,3· 

A more interesting point about causality in the linear learning model 
as formulated is that if we consider the entire temporal sequence of re
inforcements preceding a response, then the preceding responses are all 
rendered causally irrelevant, even though for many reinforcement sched
ules A;,n-1 is a prima facie cause of A;,n, fori= 1, 2. On the other hand, 
it is easy to generalize the theory so that this causal irrelevance is re
moved. The change in probability of a response following a reinforcement 
of that response also depends on whether that response actually occurred 
just before the reinforcement. This generalization also has a body of ex
periments to support it. Once it is made, preceding responses as well as 
reinforcements are genuine causes within the theory, as so modified. 

The linear learning models I have been discussing are examples of 
chains of infinite order, so called because the dependence on the past 
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does not terminate after some fixed time or fixed number of trials. Still 
we find it very natural for a variety of reasons to think in terms of Markov 
processes, with the present state absorbing all needed information about 
the past, and so a definite effort has been made to redefine the concept of 
state for such chains of infinite order as linear learning models. When the 
reinforcement occurring on trial n is probabilistically dependent at most 
on the immediately preceding response on that trial, then the response 
probabilities can be taken as the states, and it is easy to show-under 
the restriction stated-that the process is Markov. Extensive examples 
of this Markovian approach are developed, as well as the general theory, 
in Norman (1972). However, even for the simple Markov reinforcement 
schedule introduced above, this approach will not work. 

A more fundamental approach to "reducing" a linear learning model 
to a Markov one is to enlarge the set of psychological concepts. This 
reduction has been done by Estes and Suppes (1959b) by introducing 
concepts of stimulus sampling theory. The past history of the organism is 
rendered superfluous when the current state of conditioning is given. This 
state gives the conditioning relation of each stimulus to each response. 
The history of the learning that led to the current conditioning state is 
irrelevant to predictions of future responses. 

For a certain class of phenomena such stimulus sampling models, which 
can also be described in terms of sampling hypotheses and having strate
gies with no change in the mathematics, can lead to a very satisfactory 
view of psychological phenomena. Unfortunately not even most cognitive 
experiments involving learning, let alone real-world learning, can be ade
quately dealt with by stimulus-sampling theory. Detailed analysis reverts 
to chains of infinite order. Correspondingly the systematic study of psy
chological causes in the real world must use, in a wide variety of cases, a 
non-Markovian setup. 

3. ECONOMETRICS 

Some of the most thoroughly studied empirical cases of non-Markovian 
causality are to be found in econometrics. Most weather forecasts are 
not made on the basis of a single set of simultaneous observations but 
from a set of observations extended in time. This is even more the case 
in economics where the causal data used in an analysis ordinarily extend 
back considerably further in time. 

To illustrate the ideas, especially in a way that relates to the previous 
section, I examine an analysis ofthe causes of the levels of consumption in 
terms of individual disposable income in a given population. In this sort 
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of analysis there is no claim that the amount of disposable income is the 
only cause of the level of consumption of individuals or households, but 
almost everyone would expect it to be a principal cause. The interesting 
question is whether present consumption is influenced by past disposable 
income. We also might expect such past influence would be stronger in the 
case of self-employed persons than in the case of wage-earners, although 
we shall not explore this idea. 

To examine some models, let 

Cit = consumption in time period t by individual or household i 
dit = disposable income of i in period t, 

and for aggregation of n individuals, let 

n 

Ct = LCit 
i=l 

n 

Dt = Ldit. 
i=l 

(For a good discussion of such aggregation and other methodological 
aspects of the models considered in this section, see Malinvaud (1966, 
Ch. 4).) 

Then an obvious linear model is: 

T 

(1) Ct = ao L b(t- r)Dt-r + e + Et, 
r=l 

where a0 and e are constants, b(t- r) is a constant for period t- T and 
Et is the error term for period t. In the usual probabilistic formulation 
it is assumed that the expectation of Et is zero. A natural specialization 
of (1) is to assume that the influence of disposable income on current 
consumption fades exponentially with time, and so we set 

(2) 

If we take the period of t and T to be one year, a variety of empirical 
studies show that the influence of the past as reflected in the linear model 
of (1), or (1) augmented by (2), is significant. 

For example, a classic study by Friedman (1957) of annual data on 
consumption and disposable income for heads of household in the United 
States for the period 1905-1951 but excluding the war years yields the 
following numerical version of (1): 
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(2) Ct = 0.29Dt + 0.19Dt-1 + 0.13Dt-2 + 0.09Dt-3 + 0.06Dt-4 
+0.04Dt-s - 4. 

According to (2) about 30% of an increase in income would be used for 
additional consumption in the current year, but it would be five years 
before more than 90% was so used. Defense of the validity of (2) is not 
my concern. The point in the present context is to show that workaday 
empirical economics is often non-Markovian in character, and no effective 
method of changing the situation seems even remotely in sight. 

The issue of validity here is not, however, purely academic. A tradi
tional view of consumers is that changes in real income are quickly trans
lated into changes of consumption. Following out this "quick-adaptation" 
assumption, it is argued that changes in income brought about by tax 
changes are a significant countercyclical force for stabilization of the econ
omy. The other main view, reflected in the data of (2), is the life cy
cle/permanent income hypothesis. This hypothesis is that consumers 
slowly alter their consumption with changes of income and the rate of 
change depends on their perception of the extent to which the income 
change is temporary. Extensions of (2) and substantial microeconomic 
household data bearing on the alternative hypothesis are to be found in 
Hall and Mishkin (1982). 

I also note that extensive recent theoretical discussion of causality in 
econometrics by Granger (1969), Sims (1972), and others is in a non
Markovian framework. More explicitly, let (X1, Yt) be a stochastic pro
cess with t = · · · - 1, 0, 1, ... Granger defines "Y does not cause X" 
as: the (minimum mean square error) linear predictor of Xt+1 based on 
Xt,Xt-l>···•Yt,Yt-1,··· is identical to the linear predictor based on 
the X-process alone, i.e., X 1,Xt-1, .... 

Philosophical views of causality-at least if it is intended for them to 
be relevant to theoretical and empirical work in the social sciences-must 
not be restricted to the dominant Markovian conceptions of causality that 
have played such a central role in physics. 
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FINITE EQUAL-INTERVAL 

MEASUREMENT STRUCTURES 

In this article I consider some of the simplest non-trivial examples of 
measurement structures. The basic sets of objects or stimuli will in all 
cases be finite, and the adequacy of the elementary axioms for various 
structures depends heavily on this finiteness. 

In addition to their finiteness, the distinguishing characteristic of the 
structures considered is that the objects are equally spaced in an ap
propriate sense along the continuum, so to speak, of the property being 
measured. The restrictions of finiteness and equal spacing enormously 
simplify the mathematics of measurement, but it is fortunately not the 
case that the simplification is accompanied by a total separation from 
realistic empirical applications. Finiteness and equal spacing are char
acteristic properties of many standard scales, for example, the ordinary 
ruler, the set of standard weights used with an equal-arm balance in the 
laboratory or shop, or almost any of the familiar gauges for measuring 
pressure, temperature, or volume. 

Four kinds of such structures are dealt with, and each of them corre
sponds to a more general set of structures analyzed in the comprehensive 
treatise of Krantz, Luce, Suppes and Tversky (1971). The four kinds of 
structures are for extensive, difference, bisection, and conjoint measure
ment. 

*Reprinted from Theoria, 38 (1972), 45-63. 
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1. EXTENSIVE MEASUREMENT 

The distinction between extensive and intensive properties or magnitudes 
is a very old one in the history of science and philosophy. Extensive mag
nitudes are ones that can be added; e.g., mass and length are extensive 
magnitudes or quantities. Intensive magnitudes, in contrast, cannot be 
added, even though they can be measured. Two volumes of gas, e.g., with 
the same temperature, do not combine to form a gas with twice the tem
perature. It has been claimed by some theorists, e.g., Campbell {1920, 
1928), that fundamental measurement of intensive magnitudes is not pos
sible. However, I do not find the negative arguments of Campbell and 
others at all persuasive, and many examples of measurement structures 
provide a concrete refutation of Campbell's thesis. 

I develop the axioms of extensive measurement in this section with 
three specific interpretations in mind. One is for the measurement of 
mass on an equal-arm balance, one is for the measurement of length of 
rigid rods, and one is for the measurement of subjective probabilities. 
Other interpretations are certainly possible, but I shall restrict detailed 
remarks to these three. 

From a formal standpoint the basic structures are triples (X, :F, t} 
where X is a non-empty set, :F is a family of subsets of X and the relation 
t is a binary relation on :F. By using subsets of X as objects, we avoid 
the need for a separate primitive concept of concatenation. As a general 
structural condition, it shall be required that :F be an algebra of sets on 
X, which is just to require that :F be non-empty and be closed under 
union and complementation of sets, i.e., if A and B are in :F then AU B 
and -A are also in :F. 

The intended interpretations of the primitive concepts for the three 
cases mentioned is fairly obvious. In the case of mass, X is a set of 
physical objects, and for two subsets A and B, A t B if and only if the 
set A of objects is judged at least as heavy as the set B. It is probably 
worth emphasizing that several different uses of the equal-arm balance 
are appropriate for reaching a judgment of comparison. For example, if 
A = { x, y} and B = { x, z} it will not be possible literally to put A on 
one pan of the balance and simultaneously B on the other, because the 
object x is a member of both sets, but we can make the comparison in 
at least two different ways. One is just to compare the non-overlapping 
parts of the two subsets, which in the present case just comes down to 
the comparison of {y} and { z }. A rather different empirical procedure 
that even eliminates the need for the balance to be equal arm is to first 
just balance A with sand on the other pan (or possibly water; but in 
either case, sand or water in small containers), and then to compare B 
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with this fixed amount of sand. Given the standard meaning of the set
theoretical operations of intersection, union, and complementation, no 
additional interpretations of these operations is required, even of union of 
sets, which serves as the operation of concatenation. 

In the case of the rigid rods, the set X is just the collection of rods, 
and A t B if and only if the set A of rods, when laid end to end in 
a straight line, is judged longer than the set B of rods also so laid out. 
Variations on exactly how this qualitative comparison of length is to be 
made can easily be supplied. 

In the case of subjective probabilities, the set X is the set of possible 
outcomes of the experiment or empirical situation being considered. The 
subsets of X in :F are just events in the ordinary sense of probability 
concepts, and A t B if and only if A is judged at least as probable as B. 

Axioms for extensive measurement, subject to the two restrictions of 
finitude and equal spacing, are given in the following definition. In the 
definition and subsequently we use the standard definitions for equivalence 
"""' in terms of a weak ordering and also of a strict ordering. The definitions 
are just these: A """' B if and only if A !::: B and B !::: A; A >- B if and 
only if A !::: B, and not B !::: A. 

DEFINITION 1. A structure X= (X, :F, t} is a finite, equally spaced 
extensive structure if and only if X is a finite set,, :F is an algebra of sets 
on X, and the following axioms are satisfied for every A, B, and C in :F: 

1. The relation !::: is a weak ordering of :F; 
2. If AnC = 0 and BnC = 0, then A t B if and only if AUG t BUC; 
3. At 0; 
4. Not 0 t X; 
5. If A!::: B then there is a C in :F such that A"""' B U C. 

From the standpoint of the standard ideas about the measurement of mass 
or length, it would be natural to strengthen Axiom 3 to assert that if 
A :f:. 0, then A >- 0, but because this is not required for the representation 
theorem and is unduly restrictive in the case of subjective probabilities, 
the weaker axiom seems more appropriate. 

In stating the representation and uniqueness theorem, we use the no
tion of an additive measure Jl from :F to the real numbers, i.e., a function 
Jl such that for any A and B in :F 

I. JJ(0) = 0, 
n. JJ(A) ~ 0, 

m. if An B = 0 then JJ(A U B)= JJ(A) + JJ(B). 
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THEOREM 1. Let X= (X, F, t} be a finite, equally spaced extensive 
structure. Then there exists an additive measure p, such that for every A 
and Bin F 

p,(A) ~ p,(B) if and only if At B. 

The measure p, is unique up to a positive similarity transformation. More
over, there are at most two equivalence classes of atomic events in F;. if 
there are two, one of these contains the empty event. 

The proof of this theorem and much of the preceding discussion is to be 
found in Suppes (1969a, pp. 4-8). 

2. DIFFERENCE MEASUREMENT 

Referring to the distinction between extensive and intensive properties 
discussed at the beginning of the previous section, I could easily make a 
case for entitling this section intensive measurement, for it is characteristic 
of difference measurement that no operation corresponding to addition is 
present, and no meaningful combin·ation of objects or stimuli is postulated 
for the difference structures. 

In this section I shall deal with quaternary structures. As before, the 
basic set will be non-empty and finite, but in this case the relation on the 
set will be a quaternary relation. I will denote the basic set of objects 
by A and the quaternary relation by t. The idea behind the quaternary 
relation t is that ab t cd holds when and only when the subjective 
(algebraic) difference between a and b is at least as great as that between 
c and d. In the case of similarity judgments, for example, the relation t 
would hold when the subject of an experiment judged that the similarity 
between a and b was at least as great as the similarity between c and 
d, due account being taken of the algebraic sign of the difference. The 
inclusion of the algebraic difference requires some care in interpretation; 
for example, in many similarity experiments a natural algebraic sign is not 
attached to the similarity. Instances that satisfy the present requirement 
are judgments of utility or of pitch or of intensity of sound; in fact, any 
kind of judgments in which the subject will recognize and accept that the 
judgments naturally lie along a one-dimensional continuum. 

We define for the quaternary relation t just as for a binary relation, 
>- and "' : 

ab >- cd if and only if not cd t ab, 

ab "' cd if and only if ab t cd and cd t ab. 
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It is also convenient to have at hand certain elementary definitions of the 
binary relation of strict precedence or preference and the relation ...... of 
indifference or indistinguishability. These definitions are the following. 

DEFINITION 2. a >- b if and only if ab >- aa. 

DEFINITION 3. a ,..... b if and only if ab ,..... ba. 

In order to express the equal-spacing part of our assumptions, we need one 
additional definition, namely, the definition that requires that adjacent 
objects in the ordering be equally spaced. For this purpose we introduce 
the definition of the binary relation J. The binary relation J is just the 
relation of immediate predecessor. Axiom 4 given below relates J to the 
quaternary relation ,..... . The intuitive idea of Axiom 4 is just that if a 
stands in the relation J to b, and c stands in the relation J to d, then 
the difference between a and b is judged to be the same as the difference 
between c and d, due account being taken of algebraic sign. 

DEFINITION 4. aJb if and only if a >- b and for all c in A if a >- c, then 
either b ,..... c or b >- c. 

I now turn to the definition of finite equal-difference systems. The axioms 
given follow those given by Suppes and Zinnes (1963). 

DEFINITION 5. A quaternary structure ~ = {A, t} is a finite, equally 
spaced difference structure if and only if the following axioms are satisfied 
for every a, b, c, and d in A: 

1. The relation t is a weak ordering of A x A; 

2. If ab t cd, then ac t bd; 

3. If ab t cd, then de t ba; 

4. If aJb and cJd, then ab ,..... cd. 

Keeping in mind the empirical interpretations mentioned already, it is 
easy to grasp the intuitive interpretation of each axiom. The first axiom 
just requires that the quaternary relation t be a weak ordering in terms 
of the qualitative difference between objects or stimuli. Axiom 2 is the 
most powerful and fundamental axiom in many ways. It expresses a simple 
necessary property of the intended interpretation of the relation t. Axiom 
3 just expresses a necessary algebraic fact about the differences. Notice 
that Axioms 1-3 are necessary axioms. Only Axiom 4 is sufficient but not 
necessary; it expresses the equal-spacing assumption already discussed. 

From these four axioms we can prove the following representation and 
uniqueness theorem. 
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THEOREM 2. Let Ql = (A,!::) be a finite, equally spaced difference struc
ture. Then there exists a real-valued function cp on A such that for every 
a, b, c, and d in A 

cp(a)- cp(b) 2:: cp(c)- cp(d) if and only if ab!:: cd. 

Moreover, if cp' is any other real-valued function having the same property, 
then cp and cp' are related by a (positive) linear transformation, i.e., there 
exist real numbers a and f3 with a > 0 such that for every a in A 

cp'(a) = acp(a) + (3. 

The proof of this theorem is given at the end of the article. In addition, 
a number of elementary properties are organized in a series of elementary 
lemmas leading up to the proof of the theorem. 

Upon casual inspection it might be thought that the first three axioms 
of Definition 5 would characterize all finite-difference structures for which 
a numerical representation could be found. However, Scott and Suppes 
(1958) showed that the theory of all representable finite difference struc
tures is not characterized by these three axioms and indeed cannot be 
characterized by any simple finite list of axioms. 

It might be thought that with the addition of the non-necessary Axiom 
4 it would be difficult to satisfy the axioms, because an arbitrary collection 
of stimuli or objects would not. However, if the stimuli being studied lie 
on a continuum, then it will be possible to select a standard sequence that 
will satisfy the axioms, just as is done in the case of selecting a standard 
set of weights for use on an equal-arm balance. 

3. BISECTION MEASUREMENT 

Relational structures closely related to the finite difference structures are 
bisection systems Ql = (A, B) where B is a ternary relation on the fi
nite set A with the interpretation that B(a, b, c) if and only if b is the 
midpoint of the interval between a and c. The method of bisection has 
a long history in psychophysics, but it is important to emphasize that 
satisfaction of the axioms given below requires no assumptions of an un
derlying physical measurement. All we need is the intuitive idea of a 
qualitative continuum, and even that is not needed for formal purposes. 
It is, of course, interesting, after the fundamental psychological measure
ment in terms of the method of bisection has been made, to construct a 
psychophysical function relating physical measurements of the same mag
nitude to psychological measurements. The axioms given below for the 
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method of bisection imply a number of checks that should be satisfied be
fore it is asserted that a numerical representing function exists, but these 
checks have often been ignored in the experimental literature that reports 
use of the method of bisection. 

For the simplest set of axioms and definitions, we take both the bisec
tion relation B and the ordering relation !: as primitive, but it is easy to 
eliminate !: by definition. We use the binary relation J as defined in the 
previous section (Definition 4). 

DEFINITION 6. A structure ~ = (A,!:, B) is a bisection structure if 
and only if the following axioms are satisfied for every a, a', b, c, and c' 
in A: 

1. The relation !: is a weak ordering of A; 

2. If B( abc) and B( abc') then c "" c'; 
3. If B(abc) and B(a'bc) then a"" a'; 

4. If B( abc) then a >- b and b >- c; 

5. If aJb and bJc then B( abc); 
6. If B( abc) and a' Ja and cJc' then B( a' be'). 

The intuitive interpretation of the axioms is relatively transparent. The 
first axiom is already familiar. Axioms 2 and 3 require uniqueness of the 
endpoints up to equivalence, which clearly separates bisection from be
tweenness. Axiom 4 relates the ternary bisection relation and the binary 
ordering relation in a natural way, although it imposes a formal constraint 
on the bisection relation which would often be omitted. Inclusion of this 
order property as part of the relation B simplifies the axioms. Axiom 5 
is a strong assumption of equal spacing, and Axiom 6 expresses an addi
tional feature of this equal spacing. In view of the axioms given earlier 
for difference structures, it is somewhat surprising that Axiom 6 can be 
shown to be independent of Axiom 5, but it is easy to give a model of 
Axioms 1-5 to show that this is the case. For we can take a model with 

B(abc) if and only if aJb and bJc 

and satisfy all of the first five axioms. 
The representation and uniqueness theorem assumes the following 

form. 

THEOREM 3. Let~ = (A,!:, B) be a (finite) bisection structure. Then 
there exists a real-valued function cp defined on A such that for every a, 
b, and c in A 

(i) cp(a) ~ cp(b) if and only if a!: b, 
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(ii) 2<p(b) = <p(a)+<p(b) and <p(a) > <p(b) > <p(c) if and only if B(a, b, c). 

Moreover, any other real-valued function <p1 satisfying ( i) and ( ii) is related 
to <p by a (positive) linear transformation, i.e., there exist real numbers a 
and (3 with a > 0 such that for all a in A 

<p1(a) = a<p(a) + (3. 

The proof of this theorem is given in the final section. 

4. CONJOINT MEASUREMENT 

In many kinds of experimental or observational environments, it turns 
out to be the case that the measurement of a single magnitude or prop
erty is not feasible or theoretically interesting. What is of interest is the 
joint measurement of several properties simultaneously. In this section we 
consider axioms for additive conjoint measurement. The intended repre
sentation here is that we consider ordered pairs of objects or stimuli. The 
first members of the pairs are drawn from one set and consequently rep
resent one kind of property or magnitude, and the second members of the 
pairs are objects drawn from a second set representing a different magni
tude or property. Given the ordered-pair structure, we shall only require 
judgments of whether or not one pair jointly has more of the "conjoined" 
attribute than a second pair. 

It is easy to give examples of interpretations for which this way of 
looking at ordered pairs is natural. Suppose we are asked to judge the 
capabilities of individuals to assume a position of leadership in an orga
nization. What we are given about the individuals is their intelligence 
scores on an ordinal scale and a charisma measure on an ordinal scale. 
Thus for each individual we can say how he compares on each scale with 
any other individual. The problem is to make judgments as between the 
individuals in terms of their overall capabilities. The axioms given be
low indicate the kind of conditions that are sufficient to guarantee finite 
equally spaced conjoint measurement, where in this case the equal spacing 
is along each dimension. 

As a second example, a pair (a,p) can represent a tone with intensity 
a and frequency p, and the problem is to judge which of two tones sounds 
louder. Thus the subject judges (a,p)!:: (b,q) if and only if tone (a,p) 
seems at least as loud as (b, q). Other examples from disciplines as widely 
separated as economics and physics are easily given, and are discussed in 
considerable detail in Krantz, Luce, Suppes and Tversky (1971, Ch. 6). 

It is to be stressed that the additive representation sought in this 
section is a special case. Generalizations of additivity are discussed in 
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the reference just cited. It is also to be noted that the restriction in this 
section to ordered pairs rather than ordered n-tuples is not essential. 

Before turning to the axioms of (additive) conjoint measurement, we 
need a couple of elementary definitions that permit us to define ordering 
relations on the individual components. On the basis of the axioms on 
the ordering relation between pairs, we shall be able to prove that these 
ordering relations on the components are also weak orderings. In the 
following elementary definitions A1 is the set of first components and A2 

the set of second components. Thus, when reference is made to an ordered 
pair (a,p), it is understood that a is in A1 and pis in A2. 

DEFINITION 7. a~ b if and only if for all pin A2, (a,p) ~ (b,p). 

In terms of this relation we define a >- b and a ,..., b in the usual fashion. 
Also, a similar definition is needed for the second component . 

DEFINITION 8. p ~ q if and only if for all a in A1, (a, p) ~(a, q). 

We also use the notation already introduced for the relation~ on A 1 xA2 , 

namely, 

(a,p) >- (b, q) if and only if not (b, q) ~ (a,p), 

and 

(a,p),..., (b, q) if and only if (a,p) ~ (b,q) and (b,q) ~ (a,p). 

Our axioms for additive conjoint measurement in the finite, equal-spacing 
case are embodied in the following definition. 

DEFINITION 9. A structure (A1 , A2 , ~) is a finite, equally spaced ad
ditive conjoint structure if and only if the following axioms are satisfied 
for every a and b in A1 and every p and q in A2: 

1. The relation ~ is a weak ordering on A1 X A 2 ; 

2. If(a,p) ~ (b,p) then (a,q) t (b,q); 

3. If(a,p) t (a,q) then (b,p) ~ (b,q); 

4. If alb and plq then (a, q),..., (b,p). 

The intuitive content of the four axioms of Definition 9 is apparent, but 
requires some discussion. Axiom 1, of course, is the familiar requirement 
of a weak ordering. Axioms 2 and 3 express an independence condition of 
one component from the other. Thus Axiom 2 says that if the pair (a,p) 
is at least as great as the pair (b,p) then the same relationship holds when 
p is replaced by any other member q of A2 , and Axiom 3 says the same 
thing about the second .component. Axiom 4 is, of course, sufficient but 
not necessary. It states the equal-spacing assumption, and corresponds 
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closely to the corresponding axiom for finite, equally spaced difference 
structures. 

It might be thought the monotonicity assumption that if (a, p) ...... ( b, q) 
and a >- b, then q >- p, also needs to be assumed as an axiom, but as we 
show in the proof of the representation theorem in the final section, this 
additional assumption is not necessary: it can be proved from the first 
four axioms alone. 

The statement of the representation and uniqueness theorem, to which 
we now turn, assumes exactly the expected form. The only thing to 
note is that the two real-valued functions on each component are welded 
together by the same unit as reflected by the common change of unit a 
in the theorem, but a different origin is permitted. 

THEOREM 4. Let (A1, A2, !::) be a finite, equally spaced additive conjoint 
structure. Then there exist real-valued functions 'Pl and 'P2 on A1 and A2 
respectively such that for a and b in A1 and p and q in A2 

cp1(a) +cp2(q) 2:: 'Pl(b) +cp2(P) if and only if(a,q)!:: (b,p). 

Moreover, if cpi and cp~ are any two other functions with the same prop
erly, then there exist real numbers a, a', f3 and 1 with a, a' > 0 such 
that 

cp~ = acp + f3 and cp~ = a' 'P2 + 'Y, 

and if A 1 and A2 each have at least two elements not equivalent in order, 
then a = a'. 

It is worth noting that the uniqueness part of Theorem 4 has a natural ge
ometrical interpretation. If we think of the functions cp1 and cp2 mapping 
pairs into the Cartesian plane, then the uniqueness theorem says that in 
the standard geometrical sense, any change of scale must be uniform in 
every direction, but the origin can be translated by a different distance 
along the different axes. 

5. PROOFS 

Proof of Theorem 2. Although the following elementary lemmas are not 
necessary to give a proof of Theorem 2, they are needed in a completely 
explicit discussion, and their inclusion will perhaps be useful in organizing 
the reader's thinking about difference structures, which are not as famil
iar as extensive structures. Indications of the proofs of the elementary 
lemmas are given only in a few instances. 

All of the lemmas refer to a fixed quaternary structure Ql = (A,!::), 
and the binary relations >-, ...... , and J defined in Section 2. 
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LEMMA 1. The relation >- is asymmetric and transitive on A. 

LEMMA 2. The relation ,....., is reflexive, symmetric, and transitive on A. 

LEMMA 3. Exactly one of the following holds for any a and b in A: a >
b, b >- a, a ,....., b. 

LEMMA 4. If aJnb, then a >- b. (The proofs require use of induction on 
n in this and most of the following lemmas_)! 

LEMMA 5. If a >- b, then there is a (positive integer) n such that a.? b. 

LEMMA 6. If arb and arc, then b ,....., c. 

LEMMA 7. If aJmb and bJnc, then aJm+nc. 

LEMMA 8. If aJmb and aJm+nc, then brc. 

LEMMA 9. If aJm+nb, then there is a c in A such that aJmc. 

LEMMA 10. If arb and crd, then ab "'cd. 

LEMMA 11. If ab "' cd then either there is some n such that aJnb and 
cJnd, or there is some n such that bJna and dJnc, or a ,....., b and c 
....., d. 

We turn now to a sketch of the proof of Theorem 2. Let c* be the first 
element of A with respect to the ordering>-. Define the numerical function 
<p on A as follows for every a in A: 

{ 1 if a....., c*, 
<p(a) = -n + 1 if c* ra. 

Then using the elementary lemmas we may prove: 

(i) <p(a) > <p(b) if and only if a>- b; 

(ii) <p(a)- <p(b)!::: <p(d)- <p(e) if and only if ab!::: de. 

1 In this and subsequent lemmas, as well as in the proof of Theorem 2 and later 
theorems, the concept of the nth power of the binary relation J is repeatedly used. 
This concept is defined recursively: 

aJ1 b if and only if aJb, 

aJnb if and only if there is a c such that aJn-lc and cJb. 



174 PART III. PROBABILITY AND MEASUREMENT 

To prove that the function r.p is unique up to a linear transformation, we 
define for every a in A two functions hi and h2 : 

h ( ) 'PI (a) - 'PI ( c*) 
I a = 'PI(c*)- 'PI(c**)' 

h ( ) 'P2 (a) - <p2 ( c*) 
2 a = 'P2(c*)- 'P2(c**)' 

where 'Pl and <p2 are two functions satisfying the representation construc
tion and c* is the first element of A under the ordering t and c** the 
second element. We can easily show that hi is a linear transformation of 
'PI and h2 is a linear transformation of r.p 2 and also that hi is identical to 
h2 . It is then easy to prove that 'PI is a linear transformation of r.p2 , that 
is, there are numbers a, f3 with a > 0 such that for every a in A 

Proof of Theorem 3. We begin with the proof of two lemmas. The first 
corresponds to Lemma 10 in the proof of Theorem 2 and the second to 
Lemma 11. It should be noted that the lemmas of Theorem 2 which are 
just about the relations >- and J also apply here. 

LEMMA 1. If arb and brc then B(abc). 

Proof We proceed by induction. For n = 1, we have Axiom 5. 
Suppose now that our inductive hypothesis holds and we have 

Then we know at once from properties of J that there are elements a' 
and c' in A such that 

(2) aJa'anda'Jnb, 

(3) brc' and c'Jc. 

Whence by inductive hypothesis from (2) and (3) 

( 4) B( a' be'), 

and then from (2) and (3) again, as well as ( 4) and Axiom 6, we infer 

B(abc) 

as desired. 
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LEMMA 2. If B(abc) then there is an n such that arb and brc. 

Proof From the hypothesis of the theorem and Axiom 4 we have 

a >- b and b >- c, 

whence from familiar properties of J, there are m, n such that 

Suppose now m =F n; for definiteness and without loss of generality we 
may suppose that m < n. Then there is d such that 

whence by Lemma 1 
B(abd), 

but by hypothesis B(abc), whence by Axiom 2 

c'""' d. 

But then we have 
bJm c and bJn c, 

which is impossible, and so we conclude m = n, as desired. 
Given Lemmas 1 and 2, the proof of the existence of a function cp such 

that 

(i) cp(a) > cp(b) if and only if a>- b 

and 

(ii) cp(b) = Hcp(a) + cp(c)) and cp(a) > cp(b) > cp(c) if and only if 
B(a,b,c) 

is similar to the proof of the corresponding part of Theorem 2 and need 
not be developed in detail. 

For the proof of the uniqueness of cp up to a linear transformation, as 
in the case of the proof of Theorem 2, we assume we have two functions 
cp1 and 1{)2 both satisfying (i) and (ii). We then define h1 and h2, just as in 
that proof. By the very form of the definition it is clear that h1 is a linear 
transformation of cp 1 , and h2 a linear transformation of cp2 • We complete 
the proof by an inductive argument to show that h1 = h2 (whence 1{)2 is 
a linear transformation of cpl). 

The induction is with respect to the elements of A ordered by>-, with 
c* the first element. 
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Now by definition 

Suppose now that for am, with m ~ n, 

We prove that 

Now we know at once that an-1Jan and anJan+l, whence by virtue of 
Axiom 5 

and therefore by hypothesis 

whence 

for i = 1 ,2. Now since h; is a linear transformation of t.p;, it follows that 
we also have 

but by inductive hypothesis the right-hand side of this last equation is 
the same for h1 and h2, and so we conclude that hl(an+l) = h2(an+d· 

Proof of Theorem 4. First of all, on the basis of Axioms 1-3 of Definition 
9 the following elementary lemmas about the ordering induced on the two 
components A1 and A2 are easily proved. 

LEMMA 1. The relation,..._ on A;, fori= 1, 2, is an equivalence relation, 
i.e., it is reflexive, symmetric, and transitive. 

LEMMA 2. The relation >- on A;, for i = 1, 2, zs asymmetric and 
transitive. 

LEMMA 3. For a and b in A1 exactly one of the following is true: a"' 
b, a >- b, b >- a. For p and q in A 2 , exactly one of the following is 
true: p ,..._ q, p >- q, q >- p. 
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We next prove the two lemmas mentioned earlier in the discussion of the 
axioms of Definition 9. 

LEMMA 4. If (a,p) ""(b, q) and a>- b then q >- p. 

Proof Suppose it is not the case that q >- p. Then by Lemma 3 either 
p "" q or p. >- q. If p"" q, then (a,p) "" (a, q), whence by transitivity 
and the hypothesis of the lemma, (b, q) "" (a, q), and thus b "" a, which 
contradicts Lemma 3 and the hypothesis that a >- b. On the other hand, 
a contradiction also follows from the supposition of the other alternative, 
i.e., p >- q. For we have (a,p) >- (a,q), whence by familiar properties of 
weak orderings and the hypothesis of the lemma, (b, q) >- (a, q) and thus 
b >- a, which again contradicts Lemma 3 and the hypothesis that a >- b. 
Thus, we conclude that from the hypothesis of the lemma it follows that 
q >- p, as desired. 

LEMMA 5. If(a,p) ""(b,q) and p >- q then b >-a. 

Proof Identical in structure to that for Lemma 4. 

We turn next to the proof of Theorem 4. The proof closely resembles 
that of Theorem 2. Let c* be the first element of A1 with respect to the 
ordering t on A1 , and let r* be the first element of A 2 with respect to 
the ordering t on A2. Define, then, the numerical functions 'Pl and 'P2 
on A1 and A2 as follows (for a in A1 and pin A2): 

'Pl(a) = { 
1 if a"" c*, 
-n + 1 if c* Jna, 

{ 1 if plr*, 
cp2(p) = -n + 1 if r* rp. 

As in the case of the proof of Theorem 2, it is easy to show: 

cp1(a) > cp1(b) if and only if a>- b, 

'P2(P) > 'P2(q) if and only if p >- q. 

Moreover, Lemmas 1-9 proved in preparation for the proof of Theorem 
2 also hold in the present setting, for they just depend on the binary 
relations on the components. Of course, for each of these lemmas, there 
is, strictly speaking, now a pair of lemmas, one for the ordering on each 
component. 

Corresponding to Lemma 10 of this earlier list, we can now prove by 
the same inductive argument, using Axiom 4 of Definition 9: 

(i) if arb and pJnq then (a, q) ""(b,p). 
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Second, we can prove the elementary fact: 

{ii) if (a,q) .....- (b,p) then either (a) there is some n such that arb and 
pJnq, or (b) there is some n such that bra and qrp, or (c) a.....- b 
and p .....- q. 

From (i) and (ii) we prove then the fundamental result that cp1 (a) + 
cp2(q) = cp1(b) + 'P2(P) if and only if {a, q) .....- {b,p), which completes the 
first part of the proof of Theorem 4. 

To prove the uniqueness results on cp1 and cp2, we may proceed as in 
the case of Theorem 2. We define four functions: 

t.p' (a) - <p1 ( c*) g'(a) _ 1 1 
- cpi(c*)- cpi(c**)' 

h _ 'P2(P)- 'P2(r*) 
(p)- t.p2(r*)- cp2(r**)' 

h'( ) _ 'P2(P)- 'P2(r*) 
p - 'P2(r*) - cp2(r**)', 

where c* is the first element of A, under the ordering t on A1, c** is 
the second element, r* is the first element of A2 , and r** the second. It 
is, as before, obvious that g is a linear transformation of <p1 , g1 a linear 
transformation of cpi, h a linear transformation of <p2, and h' a linear 
transformation of 'P2. Secondly, we can show that g = g1 and h = h' by 
an inductive argument similar to that used in the proof of Theorem 3. So 
we obtain that there are numbers a, a', f3 and 'Y with a, a' > 0 such that 
for every a in A1 and every p in A2 

(iii) cpi(a) = acp1(a) + f3 and cp2(P) = a'cp2(p) + 'Y· 

It remains to show that a = a' when A1 and A2 each have at least two 
elements not equivalent in order. Without loss of generality we may take 
a>- band p >- q. Then we have, from (a,q) .....- {b,p), 

and thus by (iii) 

and so 

but by hypothesis 

'Pi(a)- 'Pi(b) = cp~(p)- cp~(q), 

a<p1(a)- acp1(b) _ 1 
a'cp2(p)- a'<p2(q) - ' 

~ (cp1(a)- 'Pl(b)) _ 1. 
a' 'P2(P) - 'P2(q) - ' 

t.p1(a)- t.p1(b) = 'P2(P)- 'P2(q), 
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whence 

i.e., 

which completes the proof. 

a 
-=1; 
a' 

a=a', 



14 

THE MEASUREMENT OF BELIEF 

1. INTRODUCTION 

Almost everyone who has thought about the problems of measuring beliefs 
in the tradition of subjective probability or Bayesian statistical procedures 
concedes some uneasiness with the problem of always asking for the next 
decimal of accuracy in the prior estimation of a probability or of asking for 
the parameter of a distribution that determines the probabilities of events. 
On the other hand, the formal theories that have been developed for 
rational decision-making under uncertainty by Ramsey (1951), de Finetti 
(1931, 1937), Koopman (1940a, b), Savage (1954) and subsequent authors 
have almost uniformly tended to yield a result that guarantees a unique 
probability distribution on states of nature or whatever other collection 
of entities is used for the expression of prior beliefs. 

In the next section I examine some of these standard theories and 
address the question of how we can best criticize the claims they make. 
Among other points, I consider the claim that the idealizations expressed 
in the axioms can be regarded as theories of pure rationality. 

In the third section I examine two constructive possibilities that yield 
inexact measurements of belief. Because the issues are almost entirely 
conceptual and not technical at the present stage of investigation, I con
fine myself to comparing some elementary axiom systems and raise the 

*Reprinted from Journal of the Royal Statistical Society (Series B), 36 (1974), 160-
191. I am indebted to Mario Zanotti for a number of useful comments on the ideas 
developed here, especially those dealing with upper and lower probability. 
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question of their suitability as a basis for empirical investigation. The 
first system is relatively trivial, but is designed to make a certain con
ceptual point. The second system is considerably more interesting and 
presents, I think, a useful approach to inexact measurement of subjective 
probability, with a representation theorem formulated in terms of upper 
and lower probabilities. 

In the final section I compare the measurement of belief to the classical 
theory of measurement embodied in Euclidean geometry and challenge the 
view that idealizations of exact measurement are as useful and harmless in 
the case of the theory of beliefs as they are in the case of geometry. I also 
briefly compare the situation with that which exists in quantum mechanics 
and meteorology and argue for the conclusion that the inexact results of 
these sciences are a more appropriate model than that of geometry. More 
importantly, I try to state in this section some unfinished ideas about 
processes for constructing beliefs. 

I do not have as much to say about empirical matters in this article as 
I would like. A common view I share is that the conceptual and formal 
analysis of belief structures has currently far outstripped the empirical 
study of beliefs, and probably what is needed most at the present time 
are several relentless programs of empirical investigation guided and mo
tivated by the insights afforded from various formal concepts and theories 
that are mathematically now well understood. 

2. WEAKNESSES OF THE STANDARD THEORIES 

Because the standard theories mentioned earlier reach essentially the same 
formal results, namely, the existence of a unique probability distribution 
on states of nature, criticisms of one will pretty much apply to criticisms 
of the lot. For this reason, it may pay to concentrate on Savage's (1954) 
axioms, because of their familiarity to a wide audience and because they 
have been much discussed in the literature. I emphasize, however, that 
what I have to say about Savage's axioms will apply essentially without 
change to other standard theories. 

Because Savage's axioms are rather complicated from a formal stand
point, I shall not state them explicitly here, but shall try to describe 
their intuitive content. The axioms are about preference among deci
sions, where decisions are mappings or functions from the set of states of 
nature to the set of consequences. To illustrate these ideas, let me use an 
example I have used before (Suppes, 1956). 

A certain independent distributor of bread must place his order for 
a given day by ten o'clock of the preceding evening. His sales to inde-
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s1-ram 
s2-no ram 

dl 
buy 700 
loaves 
$21.00 
$21.00 

d2 
buy 800 
loaves 
$19.00 
$24.00 

Table 14.1. 

d3 
buy 900 
loaves 
$17.00 
$26.50 
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pendent grocers are affected by whether or not it is raining at the time 
of delivery, for if it is raining, the grocers tend to buy less on the accu
mulated evidence that they have fewer customers. On a rainy day the 
maximum the distributor can sell is 700 loaves; on such a day he makes 
less money if he has ordered more than 700 loaves. On the other hand, 
when the weather is fair, he can sell about 900 loaves. If the simplifying 
assumption is made that the consequences to him of a given decision with 
a given state of nature ( s1-rain or s2-no rain) may be summarized sim
ply in terms of his net profits, the situation facing him is represented in 
Table 1. The distributor's problem is to make a decision. 

Clearly, if he knows for certain that it is going to rain, he should make 
decision d1, and if he knows for certain that it is not going to rain, he 
should make decision d3. The point of Savage's theory, expanded to more 
general and more complex situations, is to place axioms on choices or 
preferences among the decisions in such a way that anyone who satisfies 
the axioms will be maximizing expected utility. This means that the way 
in which he satisfies the axioms will generate a subjective probability dis
tribution about his beliefs concerning the true state of nature and a utility 
function on the set of consequences such that the expectation of a given 
decision is defined in a straightforward way with respect to the subjective 
probability distribution on states of nature and the utility function on 
the set of consequences. As one would expect, Savage demands, in fact 
in his first axiom, that the preference among decisions be transitive and 
that given any two decisions one is at least weakly preferred to the other. 
Axiom 2 extends this ordering assumption to having the same property 
hold when the domain of definition of decisions is restricted to a given 
set of states of nature; for example, the decision-maker might know that 
the true state of nature lies in some subset of the whole set. Axiom 3 
asserts that knowledge of an event cannot change preferences among con
sequences, where preferences among consequences are defined in terms of 
preferences among decisions. Axiom 4 requires that given any two sets of 
states of nature, that is, any two events, one is at least as probable as the 
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other, that is, qualitative probability among events is strongly connected. 
Axiom 5 excludes the trivial case in which all consequences are equivalent 
in utility and, thus, every decision is equivalent to every other. Axiom 6 
says essentially that if event A is less probable than event B (A and B 
are subsets of the same set of states of nature), then there is a partition of 
the states of nature such that the union of each element of the partition 
with A is less probable than B. As is well known, this axiom of Savage's 
is closely related to the axiom of de Finetti and Koopman, which requires 
the existence of a partition of the states of nature into arbitrarily many 
events that are equivalent in probability. Finally, his last axiom, Axiom 
7, is a formulation of the sure-thing principle. 

My first major claim is that some of Savage's axioms do not in any 
direct sense represent axioms of rationality that should be satisfied by 
any ideally rational person but, rather, they represent structural assump
tions about the environment that may or may not be satisfied in given 
applications. 

Many years ago, at the time of the Third Berkeley Symposium (1955), 
I introduced the distinction between structure axioms and rationality ax
ioms in the theory of decision-making (Suppes, 1956). Intuitively, a struc
ture axiom as opposed to a rationality axiom is existential in character. In 
the case of Savage's seven postulates, two (5 and 6) are structure axioms, 
because they are existential in character. 

Savage defended his strong Axiom 6 by holding it applicable if there 
is a coin that a decision-maker believes is fair for any finite sequence of 
flips. There are however, several objections to this argument. First of 
all, if it is taken seriously then one ought to redo the entire foundations 
and simply build it around Bernoulli sequences with p = 0 · 5 and get 
arbitrarily close approximations to the probability of any desired event. 
(See the second system of axioms in the next section.) More importantly, 
without radical changes in human thinking, it is simply not natural on 
the part of human beings to think of finite sequences of flips of a coin 
in evaluating likelihoods or probabilities, qualitative or quantitative, of 
significant events with which they are concerned. 

Consider the case of a patient's deciding whether to follow a surgeon's 
advice to have major surgery. The surgeon, let us suppose, has evaluated 
the pros and cons of the operation, and the patient is now faced with the 
critical decision of whether to take the risk of major surgery with at least 
a positive probability of death, or whether to take the risk of having no 
surgery and suffering the consequences of the continuing disease. I find it 
very unlikely and psychologically very unrealistic to believe that thinking 
about finite sequences of flips of a fair coin will be of any help in making 
a rational decision on the part of the patient. 
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On the other hand, other axioms like those on the ordering of prefer
ences or qualitative probability seem reasonable in this framework and are 
not difficult to accept. But the important point is this. In a case in which 
uncertainty has a central role, in practice, decisions are made without any 
attempt to reach the state of having a quantitative probability estimate 
of the alternatives or, if you like, a computed expected utility. 

It is, in fact, my conviction that we usually deal with restricted situ
ations in which the set of decisions open to us is small and in which the 
events that we consider relevant are small in number. The kind of enlarged 
decision framework provided by standard theories is precisely the source 
of the uneasiness alluded to in the first sentence of the introduction. In
tuitively we all move away from the idea of estimating probabilities with 
arbitrary refinement. We move away as well from the introduction of an 
elaborate mechanism of randomization in order to have a sufficiently large 
decision space. Indeed, given the Bayesian attitude towards randomiza
tion, there is an air of paradox about the introduction a Ia Savage of finite 
sequences of tosses of a fair coin. 

Another way of putting the matter, it seems to me, is that there is 
a strong intuitive feeling that a decision-maker is not irrational simply 
because a wide range of decision possibilities or events is not available to 
him. It is not a part of rationality to require that the decision-maker en
large his decision space, for example, by adding a coin that may be flipped 
any finite number of times. I feel that the intrinsic theory of rationality 
should be prepared to deal with a given set of states of nature and a 
given set of decision functions, and it is the responsibility of the formal 
theory of belief or decision to provide a theory of how to deal with these 
restricted situations without introducing strong structural assumptions. 

A technical way of phrasing what I am saying about axioms of pure 
rationality is the following. For the moment, to keep the technical appa
ratus simple, let us restrict ourselves to a basic set S of states of nature 
and a binary ordering relation of qualitative probability on subsets of S, 
with the usual Boolean operations of union, intersection and complemen
tation having their intuitive meaning in terms of events. I then say that 
an axiom about such structures is an axiom of pure rationality only if it is 
closed under submodels. Technically, closure under submodels means that 
if the axiom is satisfied for a pair (S, t) then it is satisfied for any non
empty subset of S with the binary relation !:: restricted to the power set 
of the subset, i.e., restricted to the set of all subsets of the given subset. 
(Of course, the operations of union, intersection and complementation 
are closed in the power set of the subset.) Using this technical definition, 
we can easily see that of Savage's seven axioms, five of them satisfy this 
restriction, and the two already mentioned as structure axioms do not. 
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Let me try to make somewhat more explicit the intuition which is 
behind the requirement that axioms of pure rationality should satisfy the 
condition of closure under submodels. One kind of application of the 
condition is close to the axiom on the independence of irrelevant alter
natives in the theory of choice. This axiom says that if we express a 
preference among candidates for office, for example, and if one candidate 
is removed from the list due to death or for other reasons, then our order
ing of preferences among the remaining candidates should be unchanged. 
This axiom satisfies closure under submodels. The core idea is that ex
istential requirements that reach out and inake special requirements on 
the environment do not represent demands of pure rationality but rather 
structural demands on the environment, and such existential demands are 
ruled out by the condition of closure under submodels. 

A different, but closely related, way of defining axioms of pure ratio
nality is that such an axiom must be a logical consequence of the existence 
of the intended numerical representation. This criterion, which I shall call 
the criterion of representational consequence, can be taken as both nec
essary and sufficient, whereas the criterion of closure under submodels 
is obviously not sufficient. On the other hand, the extrinsic character 
of the criterion of representational consequence can be regarded as un
satisfactory. It is useful for identifying axioms that are not necessary for 
the intended representation and thus smuggle in some unwanted arbitrary 
structural assumption. As should be clear, Savage's Axioms 5 and 6 do 
such smuggling. 

I am quite willing to grant the point that axioms of rationality of a 
more restricted kind could be considered. One could argue that we need 
special axioms of rationality for special situations, and that we should 
embark on a taxonomy of situations providing appropriate axioms for 
each of the major classes of the taxonomy. In the present primitive state 
of analysis, however, it seems desirable to begin with a sharp distinction 
between rationality and structure axioms and to have the concept of pure 
rationality universal in character. 

Returning now to my criticisms of Savage's theory, it is easy to give 
finite or infinite models of Savage's five axioms of rationality for which 
there exists no numerical representation in terms of utility and subjective 
probability. In the language I am using here, Savage's axioms of pure 
rationality are insufficient for establishing the existence of representing 
numerical utility and subjective probability functions. 

Moreover, we may show that no finite list of additional elementary ax
ioms of a universal character will be sufficient to guarantee the existence 
of appropriate numerical functions. By elementary axioms I mean axioms 
that can be expressed within first-order logic. First-order logic essentially 
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consists of the conceptual apparatus of sentential connectives, one level 
of variables and quantifiers for these variables, together with non-logical 
predicates, operation symbols and individual constants. Thus, for exam
ple, the standard axioms for groups or for ordered algebraic fields are 
elementary, but the least upper-bound axiom for the field of real numbers 
is not. It is possible to formulate Savage's Axiom 5 in an elementary way, 
but not his Axiom 6. 

In the case of infinite models, the insufficiency of elementary axioms, 
without restriction to their being of a universal character, follows from 
the upward Lowenheim-Skolem-Tarski theorem, plus some weak general 
assumptions. This theorem asserts that if a set of elementary axioms has 
an infinite model (i.e., a model whose domain is an infinite set, as is the 
case for Savage's theory), then it has a model of every infinite cardinality. 
Under quite general assumptions, e.g., on the ordering relation of prefer
ence or greater subjective probability, it is impossible to map the models 
of high infinite cardinality into the real numbers, and thus no numerical 
representation exists. 

In the case of finite models, the methods of Scott and Suppes (1958) 
apply to show that no finite set of universal elementary axioms will suffice. 
The system consisting of Savage's five axioms of pure rationality has finite 
models, but by the methods indicated we can show there is no finite 
elementary extension by means of universal axioms of rationality that 
will be strong enough to lead to the standard numerical representation. 
(The essential idea of Scott and Suppes' work is to show that if for every 
positive integer n there is a finite model M such that every submodel of 
n elements satisfies the theory in question, but the model M does not, 
then the theory is not axiomatizable by a finite list of elementary axioms 
that are universal in form.) 

The results I have outlined indicate the nature of some of the general 
restrictions that obtain in the hope of finding elementary axioms of pure 
rationality sufficient to lead to an appropriate numerical representation 
of the decision situation. 

On the other hand, in the case of finite models, necessary and suffi
cient conditions can be given, and using the criterion of closure under sub
models as a criterion of pure rationality, we then have formally adequate 
axioms of pure rationality in the finite case, even if the conditions are not 
fixed in number, but are represented by a potentially infinite schema. 

The simplest and most elegant version of such axioms is probably that 
given by Scott (1964) for the de Finetti framework of qualitative subjec
tive probability in which decisions and consequences are not explicitly 
considered. (His axioms improve on the earlier ones given by Kraft et al., 
1959.) Because I want to comment on their character from the standpoint 
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developed in this paper, Scott's axioms are embodied in the following def
inition, in which the notation Ac is used for the characteristic function of 
a set A, and 0 for the empty set. 

DEFINITION 1. Let X be a non-empty finite set and ~ a binary rela
tion on the set of all subsets of X. Then a structure (X,~} is a (finite) 
qualitative belief structure if and only if for all subsets A and B of X 

Axiom 1. A ~ B or B ~ A; 

Axiom 2. A ~ 0; 

Axiom 3. X >- 0; 

Axiom 4. For all subsets Ao, ... , An, Bo, ... , Bn of X, if Ai >- Bi for 
0 ~ i < n, and for all x in X 

Ag(x) + ... + A~(x) = B8(x) + ... + B~(x), 

then Bn ~An. 

Axiom 4 only requires that any element of X, that is, any atomic event, 
belong to exactly the same number of A; and Bi, for 0 ~ i ~ n. To illus
trate the force of Scott's Axiom 4, we may see how it implies transitivity. 
First, necessarily for any three characteristic functions 

that is, for all elements x of X 

By hypothesis, At Band B t C, whence by virtue of Axiom 4, 

Cj A, 

and thus, by definition A ~ C, as desired. Scott proves that for any 
finite structure X = (X,~} satisfying the axioms of Definition 1 there is 
a probability measure P such that for A and B subsets of X 

A t B if and only if P(A) ~ P(B). 

A first point to note is that the probability measure P is not unique, 
nor apparently can its uniqueness up to a given set of transformations 
be characterized in an interesting way, a situation that is true for many 
finite geometries when the set of transformations is as general as possible 
consistent with the finite number of relationships expressed. 
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The more profound difficulty with Scott's axioms as a theory of belief 
is the combinatorial explosion that occurs in verifying the axioms when 
the number of events is large. To check connectedness, for example, we 
need only consider pairs of events, and to check transitivity, only triples of 
events. But, it is fundamental for the kind of axiom schema (Scott's Ax
iom 4) required to express necessary and sufficient conditions in the finite 
case that n-tuples of events of arbitrary n must be studied as the number 
of events increases. As a possible empirical theory of belief, or as a ra
tional one, this seems impractical, and even for fairly small experiments, 
the effort to determine whether there is a representing probability mea
sure requires the use of a moderate-sized computer facility. Certainly the 
experiments do not themselves check all the possible n-tuples of compari
son. Again, I will not enter into detailed computations, but in conducting 
some unpublished experiments on measuring beliefs some years ago, al
ready I found that in considering a space with ten atoms, a small number 
for complex matters, the combinatorial explosion of possible comparisons 
of pairs of events (not necessarily atomic) was impressive. (Talk about 
atoms is just another way of talking about the points in a sample space.) 
If we deal with 30 or 40 or 50 atoms, the numbers are out of hand, even 
when we take maximal advantage of relationships implied by the axioms. 

3. INEXACT MEASUREMENT 

In thinking about these problems once again, I asked myself what are the 
simplest axioms that would minimize the number of comparisons needed, 
and that would still yield some results on the underlying measure if it is 
there. You may find the following axioms amusing. Although I do not 
propose them as a serious set to be used in extensive studies of actual 
beliefs, I do advance them as one modest conceptual model of how far we 
can go in simplifying the comparisons we ask for, and yet obtain some kind 
of results different from those of simple order if the axioms are satisfied. 

The intuitive idea of the restricted system is to have five classes of 
events: Those that are certain (C), those that are more likely than not 
( M), those that are less likely than not ( L), those that are as likely as 
not (E) and those that are impossible (I). However, only two of these 
five classes of events need be taken as primitive. For example, taking the 
class of certain events and the class of events that are more likely than 
not as primitive, we can define the other three in the following manner, 
where if A is an event, then not A is of course the event that occurs if A 
does not, i.e., the complement of A: A is impossible if and only if not A 
is certain; A is less likely than not if and only if not A is more likely than 
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not; A is as likely as not if and only if A is neither certain, impossible, 
more likely than not, nor less likely than not. 

Let X be a non-empty set and let events be subsets of X. Then the 
axioms of what I shall call weak qualitative probability structures are the 
following: 

Axiom 1. X is certain. 

Axiom 2. If A implies B and A is certain, then B is certain. 

Axiom 3. If A implies B and A is more likely than not, then B is more 
likely than not. 

Axiom 4. If A implies B but B does not imply A and A is as likely as 
not, then B is more likely than not. 

Axiom 5. If A is certain, then not A is impossible. 

Axiom 6. If A is more likely than not, then not A is less likely than not. 

(A completely formal version of these axioms can easily be given.) 
From the axioms we can easily prove the following sorts of elementary 

theorems: If A implies Band B is less likely than not, then A is less likely 
than not; if A is as likely as not, then not A is as likely as not; if A is as 
likely as not, B is as likely as not, and A and B are mutually exclusive, 
then the disjunction A or B is certain. (The proof of the last assertion 
uses Axiom 4.) 

In many cases the situation described by these axioms is about the 
appropriate degree of crudeness of what a person knows about his beliefs. 
Even in the present framework we can add axioms that will force the 
situation to be much tighter. These axioms are of course structural axioms 
and in general will not be satisfied in a given situation. For example, we 
can require that every atom be less likely than not, but still not impossible, 
and also that if an event is less likely than not, then there is some second 
event such that the disjunction of the two is as likely as not. When 
these structural assumptions are added, we can show that a system with 
three atoms is impossible, and a system of four atoms requires that they 
be equally probable. The three-atom case is easy to see. By way of 
contradiction, let x, y and z be the numerical probabilities of the three 
atoms. By hypothesis x < ~, and thus also by hypothesis either x + y = ~ 
or x + z = ~, but in the first case then z = ~, contrary to assumption, 
and in the second case, y = ~, also contrary to assumption. I shall not 
explore the situation in more detail, because it seems to me that these 
particular structural axioms are not especially interesting. I merely state 
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them as an indication of the kind of results we can get by some relatively 
innocent-appearing structural assumptions. Notice that even with the 
structural atoms, we are not able to prove that there is an ordering of 
events in terms of less probable and more probable. 

For weak qualitative probability structures, we can prove a represen
tation theorem. 

THEOREM 1. If X is finite or countable, and (X, C, M) is a weak quali
tative probability structure, then there is a probability measure defined on 
the power set of X such that 

(i) P(A) = 1 if and only if A is certain, 

(ii) P(A) > ~ if and only if A is more likely than not. 

From the definitions given above it follows that P(A) < ~ if and only if 
A is less likely than not, P(A) = ~ if and only if A is as likely as not and 
P(A) = 0 if and only if A is impossible. 

As a final system of axioms, I want to introduce purely in terms of 
belief or subjective probability what I consider the appropriate finitistic 
analogue of Savage's axioms. These constitute an extension of de Finetti's 
qualitative conditions and lead to simple approximate measurement of 
belief in arbitrary events. The axioms require something that I partly 
criticized earlier, namely, the existence of some standard set of events 
whose probability is known exactly. They would, for example, be satisfied 
by flipping a fair coin n times for some fixed n. They do not require that 
n be indefinitely large and therefore n may be looked upon as somewhat 
more realistic. I give the axioms here in spite of my feeling that, from the 
standpoint of a serious decision like that on surgery mentioned earlier, 
they may be unsatisfactory. 

They do provide a combination of de Finetti 's ideas and a finite version 
of the standard structural axiom on infinite partitions . 

. The concept of upper and lower probabilities seems to be rather recent 
in the literature, but it is obviously closely related to the classical con
cepts of inner and outer measure, which were introduced by Caratheodory 
and others at the end of the nineteenth century and the beginning of this 
century. Koopman (1940b) explicitly introduces lower and upper proba
bilities but does nothing with them from a conceptual standpoint. He uses 
them as a technical device, as in the case of upper and lower measures in 
mathematical analysis, to define probabilities. The first explicit concep
tual discussions seem to be quite recent (Smith, 1961; Good, 1962). Smith 
especially enters into many of the important conceptual considerations, 
and Good states a number of the quantitative properties it seems natural 
to impose on upper and lower probabilities. Applications to problems of 
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statistical inference are to be found in Dempster (1967). However, so far 
as I know, a simple axiomatic treatment starting from purely qualitative 
axioms does not yet exist in the literature, and the axioms given below 
represent such an effort. It is apparent that they are not the most gen
eral axioms possible, but they do provide a simple and hopefully rather 
elegant qualitative base. 

From a formal standpoint, the basic structures to which the axioms 
apply are quadruples (X, F, C, ~),where X is a non-empty set, F is an 
algebra of subsets of X, that is, F is a non-empty family of subsets of X 
and is closed under union and complementation, C is a similar algebra of 
sets, intuitively the events that are used for standard measurements, and 
I shall refer to the events in C as standard events S, T, etc. The relation 
t is the familiar ordering relation on F. I use familiar abbreviations for 
equivalence and strict ordering in terms of the weak ordering relation. (A 
weak ordering is transitive and strongly connected, i.e., for any events A 
and B, either A~ B orB~ A.) 

DEFINITION 2. A structure X = (X, F, S, ~) is a finite approximate 
measurement structure for beliefs if and only if X is a non-empty set, :F 
and S are algebras of sets on X, and the following axioms are satisfied 
for every A, B and C in :F and every S and T in S: 

Axiom 1. The relation ~ is a weak ordering ofF; 

Axiom 2. If A n C = 0 and B n C = 0 then A >- B if and only if 
AUC~BUC; 

Axiom 3. A t 0; 

Axiom 4. X >- 0; 

Axiom 5. S is a finite subset of :F; 

Axiom 6. If S f= 0 then S >- 0; 

Axiom 7. If S ~ T then there is a V inS such that S ~ T U V. 

In comparing Axioms 3 and 6, note that A is an arbitrary element of the 
general algebra F, but event S (referred to in Axiom 6) is an arbitrary 
element of the subalgebra S. Also in Axiom 7, S and T are standard 
events in the subalgebra S, not arbitrary events in the general algebra. 
Axioms 1-4 are just the familiar de Finetti axioms without any change. 
Because all the standard events (finite in number) are also events (Axiom 
5), Axioms 1-4 hold for standard events as well as arbitrary events. Axiom 
6 guarantees that every minimal element of the subalgebra S has positive 
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qualitative probability. Technically a minimal element of S is any event 
A in S such that A :j:: 0, and it is not the case that there is a non-empty 
B in S such that B is a proper subset of A. A minimal open interval 
(S, S') of S is such that S -< S' and S'- Sis equivalent to a minimal 
element of S. Axiom 7 is the main structural axiom, which holds only for 
the subalgebra and not for the general algebra; it formulates an extremely 
simple solvability condition for standard events. It was stated in this form 
in Suppes (1969b, p. 6) but in this earlier case for the general algebra F. 

In stating the representation and uniqueness theorem for structures 
satisfying Definition 3, in addition to an ordinary probability measure on 
the standard events, I shall use upper and lower probabilities to express 
the inexact measurement of arbitrary events. A good discussion of the 
quantitative properties one expects of such upper and lower probabilities 
is found in Good (1962). All of his properties are not needed here because 
he dealt with conditional probabilities. The following properties are fun
damental, where P.(A) is the lower probability of an event A and P*(A) 
is the upper probability (for every A and B in :F): 

I. P.(A);::: 0. 

II. P.(X) = P*(X) = 1. 

III. If A n B = 0 then 

P.(A) + P.(B)::; P.(A U B)::; P.(A) + P*(B)::; P*(A U B) 
::; P*(A) + P*(B). 

Condition (I) corresponds to Good's Axiom D2 and (III) to his Axiom 
D3. 

For standard events P(S) = P*(S) = P*(S). For an arbitrary event 
A not equivalent in qualitative probability to a standard event, I think of 
its "true" probability as lying in the open interval (P.(A), P*(A)). 

Originally I included as a fourth property 

where ·A is the complement of A, but Mario Zanotti pointed out to me 
that this property follows from (II) and (III) by the following argument: 

A stronger property possessed by some upper and lower measures is this: 
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Good mentions that he suspected that this principle is independent of the 
others he introduces. (He actually states the dual form in terms of upper 
probabilities.) After the proof of Theorem 2, I give a counterexample to 
show that (IV) does not hold for every qualitative structure satisfying 
Definition 3. 

In the fourth part of Theorem 2, I define a certain relation and state 
it is a semiorder with an implication from the semiorder relation holding 
to an inequality for upper and lower probabilities. Semiorders have been 
fairly widely discussed in the literature as a generalization of simple orders 
first introduced by Duncan Luce. I use here the axioms given by Scott 
and Suppes (1958). A structure (U, R) where U is a non-empty set and R 
is a binary relation on U is a semiorder if and only if for all x, y, z, w E U: 

Axiom 1 . Not xRx; 

Axiom 2. If xRy and zRw then either xRw or zRy; 

Axiom 3. If xRy and yRz then either xRw or wRz. 

THEOREM 2. Let X= (X, :F, S, t) be a finite approximate measurement 
structure for beliefs. Then 

(i) there exists a probability measure P on S such that for any two 
standard events S and T 

S t T if and only if P(S) ~ P(T), 

(ii) the measure P is unique and assigns the same positive probability to 
each minimal event of S, 

(iii) if we define P* and P* as follows: 

(a) for any event A in :F equivalent to some standard eventS, 

P*(A) = P*(A) = P(S), 

(b) for any A in :F not equivalent to some standard event S, but 
lying in the minimal open interval (S, S') for standard events 
SandS' 

P*(A) = P(S) and P*(A) = P(S'), 

then P. and P* satisfy conditions {I)-(III) for upper and lower 
probabilities on :F, and 

(c) if n is the number of minimal elements in S then for every A 
in :F 

P*(A)- P.(A) ~ 1/n, 



THE MEASUREMENT OF BELIEF 195 

(iv) if we define for A and B in :F 
A*>- B if and only if 38 in S such that A>- S >- B, 

then *>- is a semiorder on :F, if A*>- B then P*(A) ~ P*(B), and 
if P*(A) ~ P*(B) then A!:: B. 

Proof Parts (i) and (ii) follow from the proof given in Suppes (1969, 
pp. 7-8) once it is observed that the subalgebra S is isomorphic to a finite 
algebra U of sets with the minimal events of S corresponding to unit sets, 
i.e., atomic events of U. 

As to part (iii), conditions (I) and (II) for upper and lower probabilities 
are verified immediately. To verify condition (III) it will be sufficient to 
assume that neither A nor B is equivalent to a standard event, for if 
either is, the argument given here is simplified, and if both are, (III) 
follows at once from properties of the standard measure P. So we may 
assume that A is in a minimal interval (S, S') and Bin a minimal interval 
(T, T'), i.e., S -< A -< S' and T-< B -< T'. Since by hypothesis of (III), 
An B = 0, T ~ •S for if T >- •S, we would have AU B >- S U •S, which 
is impossible. Now it is easily checked that for standard events if T ~ •S 
then 3 T* in S such that T* ~ T and T* ~ •S. So we have 

P*(A) + P*(B) ~ P(S) + P(T*) = P(S U T*) ~ P*(A U B), 

with the last inequality following from S U T* < A U B, which is itself 
a direct consequence of S -< A, T* -< B, An B = 0 and Axiom 2. For 
the next step, if 3T** inS such that T** ~ T' and T** ~ •S', then 
A U B -< S' U T** and let A U B be in the minimal closed interval [V, V'], 
i.e., V ~AU B ~ V'. Then it is easy to show that V ~ S U T**, whence 

P*(A U B)= P(V) ~ P(S U T**) = P(S) + P(T**) = P*(A) + P*(B) 

and since S U T* -< A U B, and V ~ S U T**, either A U B ~ S U T** or 
A U B ~ S' U T**. In either case 

P*(A) + P*(B) = P(S U T**) ~ P*(A U B)~ P(S' U T**) 
= P(S') + P(T**) = P*(A) + P*(B). 

On the other hand, if there were no T** such that T** ~ T' and T** ~ 
•S', then T' >- •S', so that S U T* = S U •S, and consequently A U B ~ 
SUT*, so that A!:: SorB!:: T* contrary to hypothesis, which completes 
the proof of (III). 

Proof of (c) of part (iii) follows at once from (ii) and the earlier parts 
of (iii). Proof of (iv) is also straightforward and will be omitted. 

I turn now to some remarks about Theorem 2. The implications stated 
in part (iv) cannot be strengthened to equivalence. It is easy to give 
counterexamples to each of the following four equivalences: 
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A *>- B if and only if P*(A) ~ P*(B); 
A >- B if and only if P*(A) ~ P*(B); 
A >- B if and only if P*(A) ~ P*(B); 
A >- B if and only if P*(A) > P*(B). 

A counterexample to the strong condition (IV) for upper and lower prob
abilities is the following. Let the outcomes of X be the four possible out
comes of two flips of a coin, the first without bias and the second with some 
unknown bias favouring heads. Explicitly, let X = {hh, ht, th, tt}. Then 
the standard events are X,0,{hh,ht} and {th,tt}, with P({hh,ht}) = 
P({th,tt}) = ~- Let A= {ht,hh} and B = {hh,tt}. Then it is easy to 
see that P*(A) = P*(B) = P*(A U B)=~' but P*(A n B)= 0, and thus 
{IV) does not hold. 

In my opening remarks I mentioned the embarrassing problem of being 
asked for the next decimal of a subjective probability. Without claiming 
to have met all such problems, the results embodied in Theorem 2 show 
that the axioms of Definition 3 provide a basis for a better answer. If 
there are n minimal standard events, then the probabilities of the 2n 
standard events are known exactly as rational numbers of the form mfn, 
with 0 ~ m ~ n, and further questions about precision are mistaken. The 
upper and lower probabilities of all other events are defined in terms of 
the probabilities of the 2n standard events, and so the upper and lower 
probabilities are also known exactly as rational numbers of the same form 
mfn. 

One can object to knowing the probabilities of standard events exactly, 
but this is to raise another problem that I also think can be dealt with in 
a way that improves on the axioms of Definition 3, but these additional 
matters will have to be pursued on another occasion. 

Finally, I note explicitly that there is no need in Definition 3 to require 
that the sample space X be finite. The only essential requirement is that 
the set S of standard events be finite. The algebra :F could even have a 
cardinality greater than that of the continuum and thus the order relation 
t on :F might not be representable numerically, and yet the upper and 
lower probabilities for all events in :F would exist and be defined as in the 
theorem. 

4. COMPARISON WITH GEOMETRY 

I mentioned at the beginning that I wanted to compare the measurement 
of belief with the kind of classical measurement characteristic of geome
try. We are all familiar with what we expect of geometry, namely, that 
sufficient postulates are laid down to lead to a unique representation of 
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the Euclidean plane or Euclidean space in terms of numerical Cartesian 
coordinates. The theory leads to exact results, and the uniqueness of the 
measurements, that is, the numbers assigned to points, is determined up 
to the group of rigid motions. This is a seductive ideal and is often taken 
as the ideal we should aim at in the case of the measurement of belief. 

My point is to express skepticism that this is the correct ideal and 
to conjecture that the situation is more like the prototypical situation of 
quantum mechanics. Any time we measure a microscopic object by using 
macroscopic apparatus we disturb the state of the microscopic object and, 
according to the fundamental ideas of quantum mechanics, we cannot 
hope to improve the situation by using new methods of measurement that 
will lead to exact results of the classical sort for simultaneously measured 
conjugate variables. I do not mean to suggest that the exact theoretical 
ideas of quantum mechanics carry over in any way to the measurement 
of belief, but I think the general conceptual situation does. In fact, it 
seems to me that some of the recent empirical work of Tversky and his 
collaborators shows how sensitive the measurement of belief in the sense of 
subjective probability is to the particular method of measurement chosen. 
There is a general way of talking about this situation that is suggestive 
of a line of investigation, in terms of the theory of the measurement of 
belief, that has not yet been explored, but that may be promising for the 
future. 

The basic idea is that it is a mistake to think of beliefs as being 
stored in some fixed and inert form in the memory of a person. When a 
question is asked about personal beliefs, one constructs a belief coded in 
a belief statement as a response to the question. As the kind of question 
varies, the construction varies, and the results vary. What I am saying 
about the construction of beliefs is similar to a view commonly held about 
memory, namely, that very little of memory represents an inert encoding. 
We are primarily constructing detailed memories by procedures that we 
do not at present understand, but that operate in a more subtle way on 
encoded data than simply by a direct retrieval of information. As many 
of you will recognize, such a conception of memory is classical and is 
especially associated with the early important work on memory by Sir 
Frederic Bartlett, especially in his book, Remembering (1932). A good 
recent overview of these matters, including an appraisal of the current 
status of Bartlett's ideas, is found in Cofer (1973). 

Let me be clear about the basic point I want to make. After all, con
structions are familiar in geometry and.lead to exact results. A similar 
claim might be made about the constructive processes in memory in which 
we examine past experience in reaching comparative evaluations of belief. 
My point is, however, that the constructive processes in the case of belief 
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are not of this kind, but are easily disturbed by slight variations in the 
situation in which the constructive processes are operating. This kind of 
view backs up the layman's view that it is ridiculous to seek exact mea
surements of belief; it can also be used to defend the expert opinion that 
it is unseemly to ask for the next decimal in a measurement of subjective 
probability. I do not at the present time have any good ideas of how to 
think about these constructive processes. My conjecture is that this is a 
move in the right direction, and that in making this move we should try to 
operate at an abstract level that will lead to specific results in explaining 
the felt uneasiness of any attempts to seek exact measurements of belief. 

My one definite idea about such constructive processes is that mathe
matical models of learning provide a preliminary, simple schema. Modern 
rationalists of human thought sometimes seem to think that beliefs are 
changed simply by the use of Bayes's theorem, or at least in first approxi
mation this is what happens empirically. And, ideally, this is what always 
should happen in the case of a rational man. There are many ingredients 
for considering this Bayesian idea a fantasy of reason, however, and I have 
on a previous occasion tried- to state several of them (Suppes, 1966). Let 
me summarize the matter by saying that in many cases of change of belief 
it appears obvious that we cannot identify directly or indirectly the evi
dence on the basis of which the belief is changed, much less the relevant 
likelihoods or probabilities. 

Simple learning models that work in first approximation, both for an
imals and humans, give some idea of how such constructive processes 
operate. It seems appropriate to say that the kind of changes that take 
place in learning can be regarded as examples of changes in belief. Thus 
if we study as a process of stimulus sampling and conditioning the ac
quisition of simple mathematical concepts by children, it is correct to say 
that during the course of learning, their beliefs about the concepts being 
taught change, as reflected in their responses. In making this remark, 
I am not suggesting for a moment that changes in belief are always re
flected in responses, but rather that this is one way of getting evidence 
on changes of belief. 

It is of course sometimes said that learning theories that postulate 
learning primarily on the basis of stimulus sampling and conditioning are 
too passive in nature, and that they do not consider adequately the con
scious use of cognitive strategies by learners. I think that on occasion 
conscious strategies are used but, ordinarily, these strategies are not ar
ticulated, and when a learning theory based on stimulus sampling and 
conditioning is formulated in proper mathematical terms (see, for ex
ample, Estes, 1959; Suppes, 1969; Estes and Suppes, 1974), there is no 
commitment to whether the internal processes are constructive or passive 



THE MEASUREMENT OF BELIEF 199 

in nature. The level of abstraction in handling the concept of stimulus is 
such that constructive processes could easily be assumed for handling the 
conditioning of stimulus patterns or, if you will, in more cognitive terms, 
the formation and storage of hypotheses. 

To illustrate these ideas with a concrete but simple example I draw 
upon some earlier work reported in Suppes and Ginsberg (1963). The two
element model I consider may be conceptualized as follows. There are two 
stimulus features or patterns associated with each experimental situation. 
With equal probability exactly one of the two features is sampled on every 
trial. Let us call the features or elements O" and r. When either element 
is unconditioned there is associated with it a guessing probability Yu or 
Yr as the case may be, that the correct response will be made when 
that unconditioned stimulus is sampled. An assumption of particular 
importance to the present model is that the probability of the sampled 
stimulus element becoming conditioned is not necessarily the same when 
both elements are unconditioned as it is when the non-sampled element 
is already conditioned. We call the first probability a and the second b. 

Under these assumptions, together with appropriate general indepen
dence of path assumptions as given, for example, in Suppes (1969), the ba
sic learning process may be represented by the following four-state Markov 
process, where the four states (O", r), O", r and 0 represent the possible 
states of conditioning of the two stimulus elements. 

(O",r) (j r 0 
(O",r) 1 0 0 0 

(j b/2 1- b/2 0 0 
r b/2 0 1- b/2 0 
0 0 a/2 a/2 1-a 

The model just described can be applied with reasonable success to 
data on children's learning simple mathematical concepts. A typical ex
ample would be the experiment on geometrical forms of Stoll (1962) re
ported in Suppes and Ginsberg (1963). In this experiment the subjects 
were kindergarten children who were divided into two equal groups. For 
both groups the experiment required successive discrimination, with three 
possible responses permitted. One group discriminated between triangles, 
quadrilaterals and pentagons, and the other group discriminated between 
acute, right and obtuse angles. For all subjects a typical case of each was 
shown immediately above the appropriate response key. 

I shall not go into the detailed analysis of data; those interested are 
referred to the references just given. From the standpoint of concern here, 
it is easy to see why passive stimulus sampling seems absurd. The stimu
lus displays varied from trial to trial. For example, the same acute angle 
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was not displayed on each trial. Obviously the subjects had to go through 
the constructive process of approximately matching the salient features 
of the display (conceptualized by the model to be two in number) to ob
tain a decision on their presence or absence. It is certainly true that the 
kind of theory I have described does not provide adequate details of this 
processing. It does provide a coarse analysis that fits data remarkably 
well. This is a simple example, but hopefully illustrates my point. The 
subjects were too young to verbalize in any precise way what they had 
learned, but they were able to learn the constructive processes of iden
tification, and their beliefs and knowledge were changed in the process. 
There is a good deal more I would like to say about how these internal 
constructive processes operate. Conceptually I currently think of them in 
terms of computer programs written in terms of a simple set of instruc
tions involving perceptual as well as internal processes. The features (J' 

and r in the simple model described above are each represented internally 
by two elementary programs. In a recent publication I have tried to spell 
out this approach to learning for the case of children's acquisition of the 
standard algorithm of numerical addition, but it is not possible to enter 
into detail here (Suppes, 1973a). 

5. FINAL REMARK 

When one examines the status of learning theory in relation to complex 
concepts, or the analysis from any other standpoint, including contem
porary cognitive psychology, of the acquisition and holding of beliefs, it 
seems appropriate to be skeptical of our ever achieving a complete theory 
of such matters. The information we can obtain about an individual's 
beliefs will, in my judgment, always be schematic and partial in charac
ter. Even if the time comes when we shall be able to have what we feel is 
an adequate fundamental schema of the processes involved, it is doubtful 
that we shall be able to implement a complete quantitative study of an 
individual's beliefs. 

To accept the necessary incompleteness of what we can analyze is, 
to my mind, no different from accepting the impossibility of complete 
meteorological predictions. It is hopeless and, probably in one sense, 
uninteresting to attempt to measure and predict exactly the motion of 
the leaves on a tree as a breeze goes by. Our beliefs, it seems to me, are 
rather like the leaves on a tree. They tremble and move under even a 
minor current of information. Surely we shall never predict in detail all 
of their subtle and evanescent changes. 
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THE LOGIC OF CLINICAL 

JUDGMENT: BAYESIAN AND 

OTHER APPROACHES 

Not many years ago it would have seemed impractical, if not impossible, 
to have physicians and philosophers engaged in dialogue about the logic 
and nature of clinical judgment. The philosophers would have been un
willing or unprepared to think about matters that on the surface seemed 
far removed from classical philosophical problems. Physicians on their 
part would have been wary of entering into the labyrinth of methodologi
cal issues dealing with the relation between judgment and evidence. Now 
it seems wholly natural to have such an interaction and to have a confer
ence that focuses on clinical judgment, with physicians and philosophers 
doing their best to interact and to understand each other's problems and 
methods. 

I am sure that a difficulty for all of us is not to get carried away with 
expounding the technical subjects on which we are now working and to 
strive to communicate at the appropriate level of generality and simplic
ity. I know from experience that medical talk about any specialized area 
of disease can almost immediately get beyond my competence and knowl
edge if the full clinical details are presented. Over the past several years I 

*Reprinted from Clinical judgment: A critical appraisal (ed. by H. T. Engelhardt, 
Jr., S. F. Spieker and B. Towers), 1979, pp. 145-159. Dordrecht, Holland: D. Reidel 
Publishing Co. 
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have had the pleasure of talking about matters that are generally relevant 
to this conference with my colleagues in the Stanford Medical School. A 
number of these conversations have been with members of the Division 
of Clinical Pharmacology. I have been pleasantly surprised at my ability 
to get a sense of the problems they consider important to attack, even 
though the detailed terminology and data of clinical pharmacology lie 
outside areas of knowledge about which I claim to have accurate ideas. I 
think that the same goes for my own areas of special knowledge. It would 
be easy enough for me to raise particular questions in the foundations of 
probability or decision theory that are of current concern to me and that 
have some general relevance to the theory of clinical judgment, but that 
would be too specialized and esoteric for detailed discussion in this con
text. No doubt I shall not be able to be totally austere in this forbearance 
and will occasionally at least allude to current technical interests of my 
own that have potential relevance to the topic of this conference. 

There is of course another danger-a practice of which philosophers 
are often guilty-that what I have to say could be formulated in such a 
general way that it would not really be of interest to anyone, perhaps 
because the ideas in their most general form are already widely familiar. 

With these considerations in mind I have divided my paper into four 
sections The first deals with probability and the general foundations of 
statistical inference, with attention focused on the Bayesian approach. 
The second section enlarges the framework of probability to that of de
cision theory by introducing the concept of the value or utility of conse
quences. Unlike many applications of modern decision theory to scientific 
research, the application to clinical judgment seems especially natural and 
appropriate. The third section deals with models. The main point here 
is that a general theory of decision making is no substitute for particular 
scientific understanding. The fourth and final section deals with what 
seem to be some of the perplexing problems of data analysis in medicine, 
at least from the perspective of an outsider who has had more problems 
and experience with data analysis in other areas than he cares to think 
about. 

1. PROBABILITY 

Among fundamental scientific concepts, that of quantitative probability 
is a late arrival on the scene, as my colleague Ian Hacking has shown 
in a splendid monograph on the emergence of the concept in the 17th 
century (1975). The theory of statistical inference is even more recent, 
and is really only a product of the 20th century. Given the long and 
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developed history of medicine, reaching back for thousands of years, it is 
not surprising that the recent concepts of probability and statistics have 
as yet had little impact on the practice of medicine. 

Moreover, some of the foundational views of probability do not in any 
natural way lend themselves to the clinical practice of medicine. One im
portant and fundamental approach to probability has been to emphasize 
that probability always rests on the estimation of relative frequency of 
favorable cases to possible cases in some repeatable phenomena, of which 
games of chance provide paradigm examples. The long history of empha
sis in medicine on the diagnosis of the individual case does not easily lend 
itself to this relative frequency view of probability. 

Fortunately, there is an equally persuasive and important view of prob
ability as expressing primarily degree of belief or, as it is sometimes put 
for pedantic purposes, degree of partial belief. In ordinary talk, most of 
us consider it sensible to ask what is the probability of rain tomorrow. 
We have even come to expect the evening TV news to provide a numerical 
estimate. When the forecaster says that the chance of rain tomorrow is 60 
percent, he is not using in any direct way the relative frequency approach 
but is expressing his degree of belief even if he does not himself explicitly 
use such language. 

Physicians, it seems to me, generally do not need any persuasion about 
the importance and value of the expression of a degree of belief as an 
approach to probability. This approach is often called Bayesian because 
of its early lucid formulation as a foundational viewpoint by the Reverend 
Thomas Bayes in the 18th century (1763). 

The centerpiece of this approach is Bayes' theorem, which says that 
the posterior probability of a hypothesis, given evidence, is proportional 
to the likelihood of the evidence, given the hypothesis, times the prior 
probability of the hypothesis itself. If consequences are ignored, then 
the maximum of rationality that follows from Bayes' theorem is that we 
should act on the hypothesis that has the highest posterior probability. 

Let us examine some of the difficulties in a direct application of Bayes' 
theorem to clinical practice. A general problem is the unwillingness of 
many physicians, on the basis of temperament and training, to put them
selves in an intellectual framework that calls for probability judgments 
in diagnosing a patient's illness. It seems to me that there are two good 
intellectual reasons for this resistance on the part of physicians. The first 
is skepticism that a mechanical or semimechanical algorithm can be as 
effective in assessing a patient's state as the intuitive judgment of an ex
perienced diagnostician. It has not been part of the long tradition of 
clinical practice to attempt numerical assessments of any kind, really, of 
a patient's state, and an experienced clinician can be skeptical that a 
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reduction to a numerical statement is feasible. There are many kinds of 
decisions or judgments we make that are not easily or naturally reduced 
to verbal rules, let alone quantitative rules. Perhaps one of the simplest 
examples that has received a good deal of study in experimental psychol
ogy is the way in which we recognize faces or familiar smells. Either in 
the visual case of face recognition or in the olfactory recognition of famil
iar smells the verbal descriptions we can give of the evidence on which 
our decisions of recognition are based are extremely poor and vague in 
character. A reduction to explicit rule of recognition procedures in ei
ther of these relatively simple but familiar domains would probably be 
unworkable for even the most articulate. Similarly, so the argument goes, 
the intuitive judgment of clinicians is based upon a depth and range of 
experience that cannot be reduced to explicit rules. 

The second major argument against Bayes' theorem is that even in 
arenas where explicit data, for example, of a laboratory sort, are being 
considered and a framework of explicit concepts is being used, there is 
often no natural and nonarbitrary way to incorporate new objective ev
idence within a feasible application of Bayes' theorem. In this case the 
evidence is explicit and the data are objective, but we do not have ex
plicit rules for calculating likelihoods. We especially do not have such 
rules when we suspect there is strong probabilistic dependence among 
various parts of the evidence being considered. 

I respect both of these arguments in an essential way. As far as I can 
see, there is no reason to believe that the time will ever come when we 
can have any simple direct mechanical application of Bayes' theorem or 
similar statistical tools to provide a satisfactory but automatic diagnosis 
of an individual patient's illness. This does not mean that I am against 
pushing the use of Bayes' theorem and other similar methods as far as we 
can and indeed insisting on as many studies as possible of their feasible 
application. A number of studies, in fact, of the use of Bayes' theorem in 
medical diagnosis have already been made, and several with quite positive 
results. For example, Warner et al. (1964) incorporated Bayes' theorem 
in a computer program that was used in the diagnosis of congenital heart 
disease. The program that applied Bayes' theorem classified new patients 
with an accuracy close to that of experienced cardiologists. I shall not 
attempt to survey here the number of other excellent studies in this di
rection. A good brief survey is to be found in Shortliffe (1976), who 
is sympathetic to what has been demonstrated thus far but who is at 
the same time dissatisfied with a Bayesian statistical approach as being 
anything like the final word. 

The remaining three sections of this paper deal with broad concepts 
that I think are necessary to augment a Bayesian approach to clinical 
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judgment. Before turning to these matters, I do want to emphasize that 
I have made no attempt here to enter into the deeper technical develop
ments of the Bayesian theory of statistical inference or alternatives that 
have been extensively studied by mathematical statisticians over the past 
several decades. 

2. EVALUATION OF CONSEQUENCES 

The standard Bayesian application often emphasizes only the assessment 
of beliefs and how these beliefs change with the accumulation of new ev
idence. The general theoretical setting, however, of decision theory has 
emphasized the fundamental place not only of belief but also of evaluation 
of consequences. It is my impression that the current literature on clinical 
judgment in medicine has placed much more emphasis on methods for as
sessing beliefs consistently and rationally than it has on assessing rational 
methods of evaluating the consequences of the decisions taken. There is 
undoubtedly a sound intuition back of this emphasis. If all the evidence 
is in, it often seems clear enough what action should be taken and what 
the anticipated consequences of the action will be. For example, if a pa
tient is diagnosed with extremely high probability to have a particular 
infectious disease for which there is a standard, highly specific treatment, 
and, moreover, the probability is low that any known side effects of the 
treatment will have deleterious effects on the patient, then the main task 
of decision making is over. The consequences of deciding to prescribe the 
standard treatment seem obvious and do not require extended analysis. 

The difficulty, of course, is that this kind of clear situation seldom 
obtains. Moreover, in the context of modern medicine, a new factor has 
arisen which has already led to some emphasis being given to problems 
of evaluation of consequences. This is the problem of holding down the 
cost of laboratory or physical tests (Gorry and Barnett, 1967-1968). 

In practice, of course, physicians do automatically attach some evalua
tion of consequences, including the cost of laboratory tests, for if they did 
not, the rational decision would always be to require as many laboratory 
tests as possible in order to maximize the evidence available in making 
a diagnosis. Reasonable rules of thumb no doubt were appropriate and 
proper in the past. With the much more elaborate possibilities available 
today, and with the costs rapidly rising of the more sophisticated labora
tory tests, it also seems appropriate that more elaborate tools of decision 
making will come to have a natural place in clinical judgment. 

It is safe to predict that, with the national concern to control the costs 
of health services, attention to the problem of costs just mentioned will be 
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a major focus of both theoretical and practical work on clinical judgment. 
I would like, however, to focus on some different issues that arise from 
the evaluation of consequences and that have possible implications for 
changing the traditional relation between physician and patient. What 
I have to say about these matters is certainly tentative and sketchy in 
character, but the issues raised are important and, moreover, the tools 
for dealing with them in a rather specific way are available. 

The issue I have in mind is that of making explicit the possible con
sequences of a decision taken about medical treatment on the basis of 
clinical judgment. Traditionally, no very explicit model of evaluation is 
used by the physician either for his own decision making or for his con
sultation with the patient about what decision should be made. It is a 
proper part of the traditional relation between physician and patient that 
with certain unusual exceptions, the final decision about treatment is the 
patient's and not the physician's. On the other hand, it is a part not only 
of traditional but also of modern medicine for the vast majority of pa
tients to accept the treatment that is preferred by the physician. I have 
not seen any real data on this question but it would be my conjecture 
that in most cases the physician makes relatively obvious to the patient 
what he thinks is the preferred treatment. In cases of certain risky op
erations or experimental drug treatments, etc., almost certainly there is 
a much stronger tendency to lay out the options for the patient and to 
make explicit to him the risks he is taking in the decisions he makes. 

It is especially the decisions that have possibly grave negative conse
quences to the patient that suggest a more explicit analysis of the decision 
process. To provide a concrete example for discussion, let us consider the 
following highly simplified case. I hope that you will bear with the ob
viously oversimplified character of my description. Let us suppose that 
the patient is one with a serious heart condition. He is presented by the 
heart surgeon to whom he has been referred with any one of three op
tions: bypass surgery, continual treatment with drugs without surgery, no 
treatment of any sort. To carry through an explicit decision model of a 
quantitative sort, the patient needs now to be presented data on possible 
consequences of each of the three actions, together with the medical evi
dence on his heart condition. According to the standard expected utility 
scheme, the patient should then select the medical treatment that will 
maximize his own expected value or expected consequences or, in other 
terminology, expected utility. 

Satisfaction of the conditions required to make an expected-value 
model work well do not seem easy to come by even in the most clearcut 
clinical situations, and consequently I would like to examine in some more 
detail the feasibility of using such a model at all. 
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The problems that arise naturally separate into two parts. One part 
concerns the ability of physicians to make quantitative assessments of 
possible consequences of treatment as well as of the current true state 
of the patient as inferred from the evidence available. We can question 
whether the state of the art and of the science can bear the load of such 
quantitative assessments at the present time. We may certainly want to 
hold the view that assessment of individual cases in such a quantitative 
fashion is not practical. I will return to this point in a moment. The 
second part concerns the ability of the patients to absorb the data con
cerning the options presented to them by the physician. The number of 
patients who feel at home with probability calculations or the concept of 
expected value is very small indeed. Anything like a routine quantitative 
application of the model seems totally impractical for all but an extremely 
small segment of patients, at least at the present time~ It may properly be 
claimed that the detailed quantitative assessment of evidence or of conse
quences is as complicated a technical topic as the laboratory tests called 
for by the clinician, and the ordinary patient is simply not competent to 
deal with a quantitative decision model even when its application is of 
great personal consequence to himself. 

There is a second approach that seems a good deal more promising 
in the present context of medical practice and the expected knowledge of 
patients. This is to move the development and analysis of a quantitative 
decision-making model from the level of the individual case to statistical 
analysis of a large number of cases. It is certainly true, for example, 
that the consequences will vary enormously from one patient to another, 
not only because of his physical condition but also because of his age, 
his wealth, his family responsibilities, etc. On the other hand, there are 
clearly four consequences that dominate the analysis of the full nexus of 
consequences, namely, (i) the probability of recovery, (ii) the probability 
of death, (iii) the probability of serious side effects in terms of medical 
consequences, and (iv) the expected cost in terms oftypes of treatment. In 
summary, the direct medical consequences and the direct financial costs of 
a given method of treatment are the most important consequences, and 
these can be evaluated by summing across patients and ignoring more 
detailed individual features. This does not mean, for example, that in 
assessing the consequences of treatment we ignore the age of the patient, 
because this is part of the evidence and should go into the assessment of 
the consequences for the given state of the patient. 

The unconditional or mean assessment of the consequences of partic
ular treatments is a relatively straightforward piece of data analysis. The 
situation is quite different, however, if we want to make the appropriate 
conditional assessment-conditional upon the variation in relevant pa-
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rameters of the patient's state at the time of treatment. The complexity 
of estimating the joint probability distribution of various consequences
or symptoms-is admitted by almost everyone who has considered the 
problem. 

What seems desirable at the present time is development of an actuar
ial approach to both the state of health and the consequences of treatment. 
Such an actuarial analysis could serve only as a guideline in the treatment 
of individual cases, but useful information about medical decisions by in
dividual physicians or groups of physicians could be obtained. 

Let me give an example. A number of studies (Peterson, Andrews, 
Spain and Greenberg, 1956; Scheckler and Bennett, 1970; Roberts and 
Visconti, 1972; Kunin, Tupasi, and Craig, 1973; Simmons and Stolley, 
1974; and Carden, 1974) have shown that there is a definite tendency for 
nonspecialists to prescribe more antibiotics than are required by patients' 
conditions. Studies of this kind provide an excellent way of cautioning 
physicians to consider carefully the clinical basis of any prescription of an
tibiotics but do not attempt at all to provide an algorithmic or mechanical 
approach to clinical diagnosis. 

3. MODELS 

Although the merits of Bayesian and related methods of inference can be 
defended as practical tools that can be brought to bear on real problems 
of clinical judgment, it is important to emphasize that such methods are 
no panacea and do not provide in themselves a scientific foundation for 
medicine that is in any sense self-sufficient. It is quite true that there 
are areas of medicine that are clinically important and that do not at 
present have a thoroughly developed theory. My better informed friends 
tell me that this is true of more areas of clinical medicine than I would be 
naturally inclined to believe, but I certainly won't venture to give details 
on this point and simply take it as an assumption that it is easy to draw 
distinctions between various areas of clinical medicine. The distinction is 
concerned with those that have a practically applicable theory and those 
that do not. Those that do not, it seems to me, can especially benefit from 
the application of Bayesian methods, but this benefit should not obscure 
the need to continue the development of a more adequate scientific foun
dation. Moreover, the development of that better scientific foundation 
surely does not depend on any direct application of statistical methods, 
but rather on the creative development of new scientific concepts and 
theories. Explicit scientific models of the relevant biological phenomena 
must remain a goal, I would suppose, in every area of clinical medicine. 

As such models develop, we should be able to fold them into a general 
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framework of statistical inference and there should be no natural conflict 
between the use of newly developed models and the stable data-based 
inferences of the past. There will, of course, be the practical problem 
of assaying the relative weight to be given to past experience, on the 
one hand, and, on the other, the relative weight to be given to the new 
scientific models of the phenomena at hand. 

There is nothing about this situation that is distinctive and special 
to the problems of clinical medicine. A similar tension between past 
experience and the urge to develop deeper scientific models is to be found 
in every area of applied science. Salient examples that confront us every 
day and that are nearly as important as the problems of medicine are to 
be found in economics and meteorology. Moreover, we are all conscious 
of the difficulties of developing adequate scientific models either of the 
economy or of the weather, but the thrust to do so is deep and sustained, 
just as it is in modern medicine. 

The introduction of more general and more powerful scientific mod
els in various clinical areas seems to me to generate an interesting and 
important problem of differentiating the future possibilities. On the one 
hand, the scientific thrust is to make the clinical diagnosis of a patient 
ever more algorithmic. Although, as I have argued above, we shall never 
pass beyond the need for clinical judgment, it is still important to rec
ognize that what we can see in the reasonably near future for different 
parts of medicine presents quite a different picture. In the diagnosis of 
infectious diseases, for example, we might expect to get nearly algorithmic 
laboratory and computer-based procedures-at least I will venture that 
conjecture. On the other hand, in the diagnosis and treatment of psy
chiatric disorders we may anticipate in no reasonable future a scientific 
model of sufficient depth and generality to provide anything like algorith
mic diagnostic procedures. I wish that I were competent to give a survey 
of the various areas of medicine and to conjecture what we might expect 
along algorithmic lines. I would be enormously interested in hearing more 
informed opinion than my own about this matter. 

It is also not clear what we may expect from models that derive from 
work in artificial intelligence. The MYCIN program of Shortliffe (1976), 
for example, has many attractive features and is potentially a diagnostic 
aid of great power, but it is still rather far from being ready for practical 
daily use, even in the sophisticated setting of a teaching hospital. 

4. DATA ANALYSIS 

Let me begin my remarks about data analysis with a tale of my own. A 
couple of years ago we embarked on collecting a large corpus of spoken 



210 PART III. PROBABILITY AND MEASUREMENT 

speech of a young child. The mother of the child was hired as a half-time 
research assistant to spend twenty hours each week creating a properly 
edited computer file on which she transcribed an hour of the child's spoken 
speech for that week. In something over a year of effort on the part of the 
mother we obtained a corpus of more than a hundred thousand words of 
the young child from the age of approximately two years to three and a half 
years. We then engaged in elaborate computations regarding structural 
features of the speech, especially an elaborate test of a number of different 
generative grammars and model-theoretic semantics and of developmental 
models of grammatical usage. We estimated that at the conclusion of our 
elaborate computational analysis of a number of different grammatical 
models we had probably done more explicit computing than had been 
done by all the linguists of the 19th century working on all the languages 
examined. Even so, the piece of data analysis we did on a child's speech 
seems trivial compared to the overwhelming problems of data analysis in 
clinical medicine. In just one large clinic, consisting of, say, a hundred 
doctors and their support staff, the data flow is like a torrent and the 
problem of providing sensible analysis appears almost overwhelming. 

However, it seems to me that there is much that is constructive that 
can be done and that can provide important supporting analyses for those 
responsible for final clinical judgments. 

The first fallacy to avoid in attempting this is the philosopher's fal
lacy of certainty. There is no hope of getting matters exactly right and 
organizing a body of data that will lead to certain and completely reliable 
conclusions about any given patient. It is important to recognize from 
the start that the analysis must be schematic, approximate, and in many 
cases crude. 

Second, the penchant of many social scientists and applied statisticians 
for experimental designs must be recognized in this context as a romantic 
longing for a paradise that can never be gained. Just because it is not 
practical to impose experimental methods of design or parameter variation 
on the flow of patients through a standard medical clinic, it does not follow 
that any quantitative approach to causal analysis must be abandoned. 
Interestingly enough, some of the very best modern methodology has 
been developed and is being used by econometricians dealing with data 
that are totally inaccessible to experimental manipulation. Moreover, the 
statistical analysis of data was first used in a massive way in the least 
experimental of the physical sciences, namely, astronomy. We should 
no more despair of the severe limitation on experimentation in clinical 
medicine than astronomers of the 18th century despaired at the absence 
of the possibility of astronomical experiments. I want to make this point 
explicit because it is one that I have spent a good deal of time on in casual 
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argument with philosophers and statisticians whose opm10ns I respect 
but do not agree with. One of the most sophisticated and significant 
applications of probabilistic and statistical analysis to the identification 
of causes was Laplace's method of what he termed "constant" causes. He 
used these methods to attack the subtle problems involved in the effect 
of the motion of the moon on the motion of the earth, to analyze the 
irregularities in the motion of Jupiter and Saturn, and to identify and 
consequently to explain the mean movements of the first three satellites 
of Jupiter. These are classical results from the late 18th century, but one 
has to look far and wide in the entire history of science to find experimental 
results of comparable conceptual and quantitative sophistication. 

The third point amplifies some earlier remarks about joint probabil
ities. Even crude approximations to the joint distribution of causes or 
symptoms would, I would conjecture, be a definite methodological step 
forward in the analysis of clinical data. In this case I am returning to my 
earlier remarks about looking at large numbers of cases and applying the 
results as guidelines for considering individual patients. It is a first lesson 
in elementary probability theory that from the (marginal) distributions 
of single properties it is not possible to infer the joint distribution of the 
properties. The estimation of these joint distributions is a complex and 
subtle affair, but it is my belief that in many cases even relatively crude 
results would lead to clinical insights of considerable interest. 

The fourth point concerns the great importance of considering alterna
tive hypotheses or causes to provide a perspective on the identification of 
the most likely cause. Consideration of alternative hypotheses is natural 
within a Bayesian or a classical objective framework of statistical infer
ence and is a matter that is old hat to statisticians, but it is not only in 
medicine but in other parts of science as well that the explicit formulation 
and analysis of the data from the standpoint of alternative hypotheses are 
far too often not undertaken. I do not mean to suggest that good clin
icians do not range over a natural set of possibilities in diagnosing the 
illness of a patient, but rather that, in the kind of quantitative data anal
ysis based on many cases that I am advocating as a general intellectual 
support, analysis is often not adequately presented of the support the 
data give to alternative hypotheses or causes. 

To show that the philosophical thrust of this last remark is not new, 
as indeed is true of most of the other things I have had to say, let me 
close with a quotation from Epicurus's letter to Pythocles, written about 
300 B.C. soon after the very beginning of philosophy as we know it. Epi
curus's remarks are aimed at our knowledge of the heavens or, more gen
erally, of the universe around us but they apply as well to the focus of 
our present discussion. 
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For this is not so with the things above us: they admit of 
more than one cause of coming into being and more than one 
account of their nature which harmonizes with our sensations. 
For we must not conduct scientific investigation by means of 
empty assumptions and arbitrary principles, but follow the 
lead of phenomena: for our life has not now any place for 
irrational belief and groundless imaginings, but we must live 
free from trouble. Now all goes on without disturbance as 
far as regards each of those things which may be explained 
in several ways so as to harmonize with what we perceive, 
when one admits, as we are bound to do, probable theories 
about them. But when one accepts one theory and rejects 
another, which harmonizes just as well with the phenomenon, 
it is obvious that he altogether leaves the path of scientific 
inquiry and has recourse to myth (Oakes, 1940, p. 11). 
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ARGUMENTS FOR 

RANDOMIZING 

I have organized my remarks about randomizing under four headings: 
computation, communication, causal inference, and complexity. It is hard 
to think of a more controversial subject than that of randomization. My 
remarks are simpler and more extreme than they ought to be. I have put 
them in a rather bald and definite way in order to draw the lines more 
sharply and to make my message as clear as possible. I do not doubt 
that under extended debate it would be necessary to qualify some of the 
things I have to say, but I would insist on the point that I would be 
offering qualifications, not retractions. 

1. COMPUTATION 

It is often said by pure Bayesians that once the likelihood function is 
available knowledge of any randomization scheme used is superfluous in
formation. It seems to me that this argument misses an important point 
which I want to illustrate by a simple artificial example. 

Suppose I am presented with an urn in which I am told that there are 
fifty balls and the mixture of white and black balls satisfies one of two 
hypotheses. The first hypothesis is that there are fifteen black balls and 

•Reprinted from PSA 1982, Vol. 2 (ed. by P. D. Asquith and T. Nickles), 1983, 
464-475. East Lansing, MI: Philosophy of Science Association. 
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thirty-five white balls. The second hypothesis is a symmetric image of 
this one, namely, fifteen white balls and thirty-five black ones. I am now 
told that I can draw with replacement a dozen balls, and on the basis 
of the outcome of the twelve draws state which hypothesis I would bet a 
hundred dollars on at even odds. (I have to be willing to make the bet in 
order to participate in the experiment). 

I do not know about some Bayesians (I count myself a semi-Bayesian) 
but I certainly know what I would do in this situation. I would insist on 
a thorough mixing of the physical position of the balls in the urn. I would 
want to supervise this physical mixing myself and I would want it done 
in such a way that I believed I had approximated a uniform distribution 
(what I mean by uniform distribution here is clear enough from the com
pact character of the container) for the location of any ball in the urn. 
I find it hard to imagine a sophisticated bettor who would not insist on 
such physical randomization before entering into the experiment. With
out such randomization I would not be able to write down the standard 
likelihood function under each hypothesis for the twelve draws. Why? 
Because the likelihood function I believe would depend on the physical 
distribution of the balls in the urn. If I did not physically randomize 
the positions of the balls, I would use a prior with high variance over 
the possible physical distributions. I might feel that I could compute a 
likelihood function based on this prior but I would be uncomfortable do
ing so. Given that I could reduce the variance on my prior enormously 
by insisting on physical randomization, I would strongly insist on doing 
so. What I have proposed to do here is go from a prior to a posterior in 
terms of the physical distribution of the balls in the urn. This is a different 
posterior than my posterior based upon the likelihood function used to 
compute the posterior distribution after drawing the twelve balls. Note 
also that the posterior distribution concerning the physical distribution 
of the balls in the urn is one I achieved without going through the step 
of moving from a prior to a posterior via a likelihood function. Moreover, 
since I am sampling with replacement, this act of randomization takes 
place after each draw and is what justifies the independence assumption 
in the sampling that makes the likelihood hypothesis so direct and easy 
to compute. 

Because the main attack against randomization in experimentation 
has come from Bayesians and because I myself accept very much of the 
Bayesian viewpoint, it seem particularly desirable to justify randomiza
tion from a Bayesian viewpoint. I take it that it will be more or less 
accepted that statisticians of the Neyman-Pearson or Fisher type require 
little if any justification. For Bayesians, the physical randomization de
scribed has two principal virtues. First, it provides an alternative to 
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sampling, which is not available, for passing from a prior with a very 
high variance on possible distributions of physical location to what is es
sentially a single distribution. The importance for Bayesians of physical 
randomization to change distributions or, if you will, to reach a poste
rior distribution by other means than sampling has not been adequately 
recognized. I have pointed out elsewhere on several occasions that it is a 
paradox of Bayesian thought that random sampling with the computation 
of a posterior distribution via a standard likelihood function is the sin
gle most natural way of gaining information for Bayesians. It is difficult 
for Bayesians to incorporate changes in their own opinion or informa
tion in the form of opinion of others into their prior distributions. (For 
an extended example see Suppes, Macken, and Zanotti, 1978.) Physical 
randomization is a fundamental and important method for Bayesians for 
fixing the distribution used in computing the likelihood function. 

The second principal virtue for Bayesians of the process of physical 
randomization is that it is a method of introducing a distribution that 
makes possible simple computations. It is also possible to make a stronger 
claim. If physical randomization is not used it is not clear how to incor
porate into the likelihood function qualitative information that might be 
part of a Bayesian's beliefs about how the balls were put in the urn orig
inally. It is a common view of Bayesians that priors that incorporate 
some qualitative aspects of beliefs only rather crudely are not a problem, 
because extensive sampling will make such discrepancies unimportant, 
but when such beliefs center around the likelihood function the problem 
is potentially serious and cannot be ignored. Bayesians find it easy to 
disagree about prior distributions but troublesome to disagree strongly 
about likelihood functions because when likelihood functions are different 
it is not possible, in general, to get convergence of opinion with sampling. 
Bayesians can live with such a state of affairs but it is important to em
phasize how fundamental in practice an agreed-upon likelihood function 
is. This agreed-upon likelihood function is often due, as in the present 
case, to a process of physical randomization. Such physical randomization 
can be an important component of many kinds of experiments. 

The principles involved in this simple and artificial example apply, 
with the expected complications, to a wide variety of real examples where 
randomization is current standard practice. On the other hand, when a 
well-defined theoretical model is postulated, randomization is often not 
required. Thus I want to make clear that I do not think that randomiza
tion is an intensive feature of every possible kind of experimentation. Let 
us first consider an example in which it is not. 

An example in which randomization is not required is provided by an 
ergodic Markov chain whose transition probabilities depend upon a single 



216 PART III. PROBABILITY AND MEASUREMENT 

real parameter, say B. By saying that it is an ergodic Markov chain we 
mean the following things, intuitively speaking: ( 1) the trials are discrete 
rather than continuous in nature; (2) the probability of being in a given 
state on trial n depends only on the state on trial n- 1; (3) the number 
of states is finite; ( 4) the transition probabilities are independent of time 
or trial number; and (5) the probability of being in state k on trial n is in 
the limit as the number of trials increases independent of the initial state, 
i.e., the state on trial 1. 

It is often not difficult to obtain the maximum-likelihood estimate of 
B. Such an estimate then provides us all that we need to know in order 
to test the validity of the postulated Markov chain as the theory of the 
phenomenon being observed. The essential point is that randomization 
need not enter in any essential way in conducting the experiment that 
tests the theory. We can observe, as is often the case in many different 
kinds of experiments, a single sample path. Even the ergodic character of 
the chain, this single sample path is theoretically adequate as an empirical 
test of the theory. The theory itself then gives us the assumptions about 
the likelihood function needed to make actual computations and find the 
estimate of B. In particular, let a1,a2,···,an be the initial segment of 
n trials of a sample path of the process. Then the maximum-likelihood 
estimate of the learning parameter B is the number B (if it exists) such 
that for all B 

(1) 

Here f( a1, a2, · · · , an; B) is the probability o.! the sequence of responses 

a1,a2, ···,an when the learning parameter is B. 

By virtue of the fundamental Markov property of the process, we have 

(2) f(anlan-1; B)f(an-1lan-2;B) · · · J(a2ia1; B)j(a1;B) = 
f(an,an-1, · · · ,a1;B). 

Now as an approximation we ignore the probability of the state on the first 
trial and look only at the transitions. This is a reasonable approximation 
when the number of trials is large. So, summing over trials we want to 
maximize 

n 

(3) II f(amlam-1;B). 
m=2 

Let N be the number of states in the process; Pij (B) the probability of 
going from state i to state j with parameter value B; n;j the observed 
number of transitions from state i to state j aggregated over trials-and 
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so the nii are our experimental data. Substituting this notation in (3) we 
then replace (1) by (4). 

N N 

(4) IT p~ij(IJ)?. IT p~ij(O). 
i,j=l i,j=l 

A variety of psychophysical experiments exemplify the kind of application 
just discussed. It is characteristic of such experiments that usually more 
than one subject is used but often no more than five or six, and each of 
these subjects stays in the experiment for a very large number of trials, 
for example, 10,000 would not be unusual. Each subject is often treated 
as an independent realization of the theory and a separate parameter is 
estimated. In no essential way does randomization enter in the selection 
of subjects. (In other ways, randomization can enter, for example, if 
the presentation of stimuli is probabilistic in character, but I am not 
considering that aspect in the present discussion.) From the standpoint 
of concern at the moment, the point is that randomization is not needed 
in order to provide a well-defined basis for computation, because that is 
provided alreaay by the underlying theory being tested. For those who 
are unhappy with calling such a single Markov process a theory, I should 
mention that in the happiest of situations the transition probabilities of 
the process would be derived from general qualitative postulates of the 
theory and not simply be baldly assumed. This is especially true when 
the form of the transition probabilities as a mathematical function of 
the parameter is rather complex. We ordinarily are not satisfied if there 
is not some kind of intuitive derivation of such complex expressions from 
relatively simple and plausible assumptions about behavior of phenomena 
in the domain under investigation. Notice, of course, that if we want to 
make a strict inference about a given population then we would take the 
further step of random sampling. For example, if we were studying some 
psycho-acoustical phenomena and wanted to conclude with an inference 
about the population of adults with normal hearing we might very well 
want to concern ourselves with taking an appropriate random sample of 
such adults. In ordinary scientific practice in psycho-acoustical work such 
inferences are not made. Rather, detailed studies are made of individual 
subjects and the methodology is similar to that to be found in physics 
where one does not sample, for example, in any agreed-upon fashion from 
a population of particles, moving bodies, etc., according to an explicit 
sampling scheme. 

The second example is conceptually the opposite of the one just given. 
Instead of having one sample path extending over a large number of trials, 
a large number of individuals are sampled and parameters of the distribu-
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tion are estimated. Here the classical methodology both of Bayesians and 
non-Bayesians is to use random sampling, and the reason is straightfor
ward; the likelihood distribution is based upon the assumption of random 
sampling. I emphasize the following point in as explicit terms as possi
ble. The assumption of random sampling replaces and plays the role in 
the likelihood function that the theoretical assumption of a Markov chain 
played in the previous example. Let me give a simple example. Suppose 
my prior distribution is a Beta distribution on the presence or absence of 
a given property in a given environment. As a good Bayesian I want to 
draw a sample and obtain my posterior distribution. The absolutely stan
dard way to do this for Bayesians is to draw with replacement a random 
sequence of n objects and obtain thereby a posterior distribution that is 
also a Beta distribution. The details are as follows and are very similar to 
those given above but, as I continue to emphasize, the likelihood function 
depends upon the random sampling. 

Let B(a,b) be the prior Beta distribution. We now draw a random 
sample of size n with constant probability () of success, i.e., presence of 
the property. Let r be the number of successes. Then the posterior 
distribution of() is B(a + r, b + n- r). Here is a brief indication of the 
proof. The prior Beta distribution is: 

f(O)= (a:~;l)! oa(l-O)b, 

where a, b are nonnegative integers. The likelihood, when a1, ... , an IS 

the sample drawn is: 

f(ai, ... 'an, 0) = or(l- o)n-r 

and so the posterior is: 

/(Oia1, ... , an)::::::: oa+r(l- O)b+n-r, 

where the coefficient has been omitted. 
To replace this simple and straightforward scheme with nonrandom 

systematic sampling is not impossible by any means, but it is not obvious 
what is the most natural way to proceed, including construction of the 
likelihood function. The weakness of the alternatives is one of the best 
current arguments for randomization, especially weakness at the level of 
technical implementation. 

2. COMMUNICATION 

It can be conceded to "pure" Bayesians that in many situations the op
timal experimental design relative to the prior held by the Bayesian is a 
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deterministic rather than random design. The recent literature of mathe
matical statistics is full of examples-current working practice is another 
matter. In any case it is not irrational of statisticians to recommend to 
their scientific clients, or irrational on the part of the scientists to continue 
to use, random designs. One argument is that in designing an experiment 
one wants to present a design and results that are meant to be persua
sive, above all, to others. It is a favorite maxim of many philosophers of 
science that one of the most important things about science is the contin
ued critical review of results, both theoretical and experimental, by the 
community of interested and competent workers in a given domain. It is 
for this community that the scientist will use random designs rather than 
deterministic ones. In the case of more applied work the community is 
broader but the reasons for randomizing are the same. 

There is, it seems to me, lurking in the background of such discussions 
a skeptical view that is not often enough put on the table. If an exper
imenter uses a deterministic design that is optimal from the standpoint 
of his Bayesian distribution, it is not unlikely that some competitive or 
critical fellow worker will claim that the design was biased toward the 
desired experimental results. It is a favorite point in some experimental 
sciences to emphasize that well-designed experiments reporting null re
sults are seldom published. There is, it is claimed, a natural inclination 
to bias the design toward obtaining favorable results. It can even be said, 
as it often is, that the bias can be unconscious on the part of the exper
imenter. Now the skeptic may reply that an experimenter who will do 
this will also fudge on the application of a proper random design. Yet 
it seems to me that it is exactly the difference between these two cases 
that is important. An experimenter who announces that he has used in 
his design a particular random scheme must take a very deliberate and 
conscious step amounting to a form of scientific perjury to deliberately 
violate the scheme he has chosen in order to bias the design toward the 
experimental outcome he favors. Scientists who may have let their un
conscious biases go to work on a deterministic scheme will be stern with 
themselves and their coworkers in deliberately violating a random design 
that itself has been deliberately chosen. To put the matter in theological 
terms, permitting an unconscious bias to creep into a deterministic sam
pling scheme is a venial sin, but to deliberately violate a chosen random 
scheme is a mortal one. 

There is, apart from questions of unconscious bias, still another ar
gument from the standpoint of social communication for using random 
designs, namely, their universality and therefore ease of communication. 
Deterministic optimization of design with respect to a given prior distri
bution requires the elucidation of details that may, in fact, be tedious 
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and uninteresting to absorb. Selection of a standard random design com
municates at once to others the experimental design used and it is then 
possible to move quickly to the main substantive results in the ;tudy. It 
is also important in this connection to stress that if we use the criterion 
of minimizing least squares, for example, the difference between an op
timal deterministic design and a straightforward random design will in 
general be small and, compared to other parameters of importance in 
experimentation, scarcely something to worry about. This ease of com
munication and the relative robustness of many standard random designs 
are important social arguments for randomization. 

3. CAUSAL INFERENCES 

A classic claim about randomization in experimentation has been that 
it guarantees the statistical validity of causal inferences. Since Fisher's 
heyday in the 1920s this has been the raison d'etre of the use of random
ization in experimental design. It may be too strong to claim that ran
domization guarantees validity of a causal inference, but the safeguards 
randomization introduces are powerful ones and not easily replaced by 
Bayesian deterministic alternatives. My purpose is to amplify and de
fend this standard claim within an explicit causal framework and against 
some standard Bayesian criticisms. I use the concepts of prima facie, gen
uine and spurious causes introduced in Suppes (1970) and for simplicity 
restrict discussion to events rather than random variables, which are nec
essary for a probabilistic treatment of quantitative causal effects. I use 
capital letters for events and lower case t 's as subscripts to denote the 
time of occurrence of events. (The problem of events that occur over an 
extended period of time is ignored.) In these terms, the event Bt' IS a 
prima facie cause of event At if and only if 

(i) t' < t, 
(ii) P(Bt') > 0, 
(iii) P(At!Bt') > P(At). 

The occurrence of an event like Bt' that raises the probability of At oc
curring is sometimes said to be simply a predictive or diagnostic event 
in the absence of a more substantial causal structure. It seems to me 
that the term prima facie is better than either predictive or diagnostic; 
spurious and genuine causes become the important special cases of prima 
facie ones. 

An event Bt' is a spurious cause in sense one of At if and only if Bt 
is a prima facie cause of At and there is a t" < t' and an event Ct" such 
that 
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(i) P(Bt'Ct") > 0, 
(ii) P(AtiBt'Ct") = P(AtiCt")· 

A stronger definition is to require a partition of the sample space such 
that for all elements Ct" of the partition 

(i) P(Bt'Ct") > 0, 
(ii) P(At IBt'Ct") = P(AtiCt" ). 

For our purposes here the notion of spurious cause in sense one will be 
the easiest and most direct to apply. In using sense one I have relaxed 
the definition from the earlier formulation so as not to require an in
crease in the probability of A, that is, I have eliminated the condition 
that P(AtiBtCt") ~ P(AtiBt' ). The reason for this is that we are often 
interested in cases in which the probability is actually decreased. 

It is a familiar fact of statistical analysis that if I can look at the data 
after an experiment then I can always find an event Ct" that negates the 
effect of a prima facie cause unless that prima facie cause is a sufficient 
cause, namely, produces At with probability one. In classical statistical 
methodology such looking at the data after the fact is considered inap
propriate and even for Bayesians it is a procedure that must be handled 
with care. This is an important point and I want to be clear about my 
view of it. It is certainly not inappropriate to look at the data after an 
experiment or an observational study, and to use the data to conjecture 
new hypotheses. This is an important part of scientific methodology in 
moving from one hypothesis to another or from one theory to another, 
but the explicit and artificial construction of an event C by simply enu
merating favorable or unfavorable cases is not appropriate and certainly 
is not sanctioned by Bayesians. 

It is also obvious that randomization is no guard against the construc
tion of such an event C, if the probabilities in question are not one. We 
may construct a sample by looking at the data, which gives us a condi
tional probability that nullifies the prima facie cause and makes it spuri
ous. Randomization, on the other hand, does provide a strong safeguard 
in terms of selection of events prior to observing outcomes. It provides a 
means of averaging and thus guaranteeing that the conditional probabil
ity which we are examining is indeed the appropriate conditional mean. 
I want to expand on what I mean by the phrase "appropriate conditional 
mean". The first point is that we might be able to name an event prior 
to the experimentation such that if we conditionalize on it together with 
the prima facie cause then we would expect an effect, perhaps an effect 
of this additional conditionalization strong enough to nullify the prima 
facie cause. For example, in a medical experiment we might reasonably 
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conjecture that individuals who had no cases of the disease under inves
tigation in the three previous generations would show a null effect for the 
prima facie cause of prevention because the disease itself had such a low 
incidence in this sub-population. This is not surprising but is of course a 
result that deviates from our mean result. 

The second point is that deviations from the conditional mean can be 
expected in small samples, but not when the random samples are suffi
ciently large. Much of the instructive and entertaining dialogue in Basu 
(1980) depends on the random samples being relatively small. Basu's 
"scientist" confesses he did not randomize the allocation but rather tried 
hard to strike "a perfect balance between the treatment and the control 
groups." He would, I am sure, have found his intuitive balancing much 
more difficult if 200 or 500 pairs rather than 15 had been the sample size 
to deal with. 

This second point is also important for an issue in the theory of causal
ity: can causes be characterized by purely probabilistic concepts? The 
definitions given above would suggest a simple affirmative answer, but 
this would be mistaken-as mistaken as saying that a stochastic process 
has a purely probabilistic characterization. The derivation of the laws or 
equations of most if not all scientifically interesting stochastic processes 
will depend on a variety of substantive empirical assumptions that may 
be couched in probabilistic language but are evidently not definable in 
purely probabilistic terms. A Markov assumption for a physical process 
embodies, for example, rich hypotheses about the constitutive structure 
of matter. In other words, the concepts used to define events or random 
variables are not reducible, but must be brought in from the outside, so 
to speak. Given, however, the concepts we are prepared to consider, ran
dom sampling with sufficiently large sample sizes can guarantee within 
the given framework of concepts to test correctly for any hypothesized 
genuine causes as well as prima facie ones. 

It is sometimes maintained by certain methodologists holding an ex
treme position about the necessity of experimentation, that without ran
domization no causal effects can be discovered. Certainly I want to resist 
this claim, as the Markov chain example of the previous section makes 
evident. More generally, it seems patently false because we hold all kinds 
of causal beliefs about the world around us that have not been estab
lished by random experiments. Furthermore, in disciplines as distinct as 
astronomy, economics, and meteorology, valid causal claim are supported 
by evidence but without random sampling. 

It might be thought that what we really want is for randomization to 
lead us always to identify genuine causes rather than simply prima facie 
causes. But this is also too strong a claim. There is nothing special about 1 
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genuine causes from the standpoint of randomization. Randomization is 
as effective in identifying prima facie causes once they are hypothesized 
as in discovering genuine causes once they too are hypothesized. From 
the standpoint of experimentation and the role of randomization, the 
formation of hypotheses about prima facie or genuine causes must be 
a first step, itself independent of randomization. Then the machinery of 
randomization and well-designed experiments can be helpful in confirming 
or disconfirming hypotheses. 

It is also worth noting that randomization seems particularly impor
tant in highly empirical studies of causes. This is true, for example, of 
much experimentation in the medical and social sciences. In the case of 
physics it is often the case that the theoretical structure is so thoroughly 
developed and at the level of the experiments considered, the causal mech
anisms seem to be sufficiently detailed and well understood that random
ization as an essential component of experimental design is much less 
necessary. An essential role of randomization is to provide a method for 
dealing with unnoticed extraneous causal variables. In the case of physics 
we often feel much more confident that we can control extraneous causal 
variables than we do in the case of medical or psychological experiments. 

A skeptic, however, could certainly question the distinction I am mak
ing here. The complex maze of experimental equipment used in most 
modern physical experiments is enough to generate doubt about proper 
control of extraneous causal variables. As the saying goes in some physical 
laboratories, "if it works don't ask any questions but put a blue ribbon 
around it" in reference to a complex and fragile piece of equipment. A 
skeptic might also say that we do not sample particles or other bits of 
matter in conducting physical experiments because we really make use of 
the principle of indifference. We have no basis for thinking one particle 
is different from another. This is due to the fact that we do not have the 
detailed knowledge of particles or most other bits of matter that we do 
of human beings or other organisms where it is easy for us to distinguish 
between them on the basis of salient and readily perceived properties. 
This argument from ignorance as a basis for not being more careful in 
sampling in physical experiments has not often been made, and I do not 
intend to pursue it here. I am sure that some interesting historical cases 
of physical experiments could be collected in support of it. 

4. COMPLEXITY 

The definition of randomness in terms of high complexity, which originates 
in the work of Kolmogorov, Martin-Lof, Cheitin and others, suggests that 
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we c~mld replace random design schemes by complex ones. Suppose, for 
example, that in a medical experiment we have 200 pairs of blocked sub
jects. Our original design objective is randomly to assign one member to 
the experimental group. If we use a simple randomization procedure there 
are 2200 possible assignments. One of these possible assignments would 
place the first member of each pair in the experimental group for the first 
50 pairs, not so for the next 50, so for the next 50, and not so for the final 
50. Many experimental scientists would be unhappy with these simply 
described systematic results of a random procedure. My proposal is to 
change the method of constructing a sample. First we eliminate from 
consideration those results that, like the example just given, have low 
complexity. A Ia Kolmogorov and others, we measure complexity of a se
quence by the length of a program in some standard computer language 
for describing the sequence. I shall not enter into the technical details 
here, but note that for practical applications of the kind being discussed, 
complexity measures for large n are not enough. We would need to fix the 
language in advance on intuitive grounds of reasonableness-e.g., it did 
not encode in some bizarre and economical way sequences that in most 
programming languages would have long descriptions. Given the chosen 
language we could then throw out the 2100 , say, sequences with the lowest 
complexity measure. Since 2100 - 1 is approximately 2100 , we would still 
have approximately 2200 sequences. In any case we would then choose 
randomly from the remaining set of sequences, which we could do by con
structing the sample sequence from a table of random numbers, but then 
throwing out any constructed sequence whose complexity was below the 
agreed-upon complexity threshold. Robustness is evident here. The exact 
complexity number chosen as the threshold is not important. Elimination 
of the 2100 simplest sequences violates the initial distribution assumptions, 
but the violation leaves us with a reasonable approximation, and it is not 
worth the effort to compute with the new more complex distribution. 

The tension between randomness and complexity is easy to identify. 
The sampling procedure is random. Any sequence is as likely as any other, 
simple or complex. But the result of using the procedure is a given se
quence whose complexity can be measured. In the standard informal sta
tistical usage, randomness is a property of certain procedures, complexity 
a measure of the result. 

It may be desirable to modify random sampling procedures in the man
ner indicated to guarantee complexity of the result, which theoretically 
is guaranteed in the limit, but not for fixed finite samples. The virtues 
of random sampling argued for earlier remain if we restrict ourselves to 
complex results. 
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PROPENSITY 

REPRESENTATIONS OF 

PROBABILITY 

In recent years a propensity interpretation of probability, thought of pri
marily as an objective interpretation, has become popular with a number 
of philosophers, and there has developed a rather large philosophical lit
erature on it. The concept of propensity itself is not a new one. The 
Oxford English Dictionary cites clear and simple uses of propensity and 
its general meaning already in the seventeenth century, for example, from 
1660 'Why have those plants ... a propensity of sending forth roots?' So 
the idea of this interpretation of probability is to use the general phys
ical idea of objects having various physical propensities, for example, a 
propensity to dissolve when placed in water, and to extend this idea to 
that of probability. As is also clear from these discussions, propensities 
can be looked upon as dispositions (a rather detailed discussion of this 
point can be found in Chapter 4 of Mellor, 1971). 

The most prominent advocate of the propensity interpretation of prob
ability has been Popper, who set forth the main ideas in two influential 
articles (1957, 1959). Popper gives as one of his main motivations for 
developing a propensity interpretation the need to give objective inter
pretation of single-case probabilities in quantum mechanics, that is, an 

*Reprinted from Erkenntnis, 26 (1987), 335-358. 
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objective interpretation of the probabilities of individual events. Single
case probabilities, as they are called in the literature, are of course no 
problem for subjectivists, but they have been a torturous problem for 
relative-frequency theorists. A good detailed discussion of how we are to 
think of propensities in relation both to singular-case probabilities and to 
relative frequencies is to be found in Giere (1973). I agree with Giere that 
one of the real reasons to move away from the relative-frequency theory 
is the single-case problem and therefore we should regard as fundamental 
or primary the propensity interpretation of singular events. Giere gives a 
number of textual quotations to show that Popper wavers on this point. 

As I pointed out in Suppes (1974c), what is missing in these excel
lent intuitive discussions of the philosophical and scientific foundation of 
a propensity interpretation is any sense that there needs to be something 
proved about the propensity interpretation. Within the framework I pro
pose, this would amount to proving a representation theorem. In Popper's 
(1974) response to my criticisms he mentions his own ideas about con
ditional probability and how to handle the problem of evidence that has 
zero probability. There are some other fine points as well, but the real 
point of my criticism he misses in not giving a conceptually different anal
ysis of propensities, so that something of genuine interest can be proved 
about the interpretation. The request for such a proof is not an idle or 
merely formal request. In order for an interpretation of probability to be 
interesting, some clear concepts need to be added beyond those in the for
mal theory as axiomatized by Kolmogorov. The mere hortatory remark 
that we can interpret propensities as probabilities directly, which seems 
to be a strong propensity of some advocates, is to miss the point of giving 
a more thorough analysis. 

Because I think there are many good things about the propensity 
interpretation, as I indicated in my 1974 article on Popper, I want to 
prove three different representation theorems, each of which is intended 
to give an analysis for propensity that goes beyond the formal theory 
of probability, and to include as well, as a fourth example, a surprising 
theorem from classical mechanics. 

The first representation theorem is closest to probability itself and is 
for radioactive phenomena. The second is for psychological phenomena 
where propensity is represented in terms of strength of response. The 
probabilities are then derived explicitly from response strengths. The 
third example, the most important historically, is the derivation of the 
behavior of coins, roulette wheels and similar devices, purely on the basis 
of considerations that belong to classical mechanics. The fourth example 
shows how random phenomena can be produced by purely deterministic 
systems. 



PROPENSITY REPRESENTATIONS OF PROBABILITY 227 

These four different examples of propensity representation theorems 
do not in any direct sense force the issue between single-case and relative
frequency views of propensity. But I certainly see no general reason for 
not using them to compute single-case probabilities. It seems natural to 
do so whenever a relatively detailed account of the structure of a given 
propensity is given. 

1. PROPENSITY TO DECAY 

Before turning to technical developments, there are some general remarks 
to be made about the approach followed here, which are largely taken 
from Suppes (1973b). 

The first remark concerns the fact that in the axioms that follow, 
propensities as a means of expressing qualitative probabilities are prop
erties of events and not of objects. Thus, for example, the primitive no
tation is interpreted as asserting that the event A, given the occurrence 
of the event B, has a propensity to occur at least as great as the event 
C, given the occurrence of the event D. Moreover, the events B and D 
may not actually occur. What we are estimating is a tendency to occur 
or a propensity to occur, given the occurrence of some other event. If the 
use of the language of propensity seems awkward or unnatural in talking 
about the occurrence of events it is easy enough simply to use qualitative 
probability language and to reserve the language of propensity for talking 
about the properties of objects, although I am opposed to this move my
self. In any case, the issue is peripheral to the main problem addressed. 
The second remark concerns the clear distinction between the kind of 
representation theorem obtained here and the sort of theorem ordinarily 
proved for subjective theories. It is characteristic of subjective theories 
to prove that the structural axioms impose a unique probability measure 
on events. It is this uniqueness that is missing from the objective theory 
as formulated here, and in my own judgment this lack of uniqueness is a 
strength and not a weakness. Take the case of radioactive decay. From 
the probabilistic axioms without specific experimentation or identification 
of the physical substance that is decaying, we certainly do not anticipate 
being able to derive a priori the single parameter of the geometric distri
bution for decay. It is exactly such a parametric result, i.e., uniqueness 
up to a set of parameters, that is characteristic of objective theory, and, I 
would claim, characteristic of standard experimentation in broad areas of 
science ranging from physics to psychology. In other words, the structural 
axioms of probability, together with the necessary ones, fix the paramet
ric forms of the probability measure but do not determine it uniquely. 
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Specific experiments and specific methods of estimation of parameters on 
the basis of empirical data are needed to determine the numerical values 
of the parameters. Subjectivists often end up with a working procedure 
similar to the present one by assuming a probability distribution over 
the space of parameters. Such procedures are close to what is being dis
cussed here, and well they might be, because there is great agreement 
on how one proceeds in practice to estimate something like a parameter 
of a geometric distribution. The important point I want to emphasize is 
that, in the fundamental underpinnings of the theory, subjectivists have 
ordinarily insisted upon a unique probability measure, and this commit
ment to an underlying unique probability measure seems to me to be an 
unrealistic premise for most scientific applications. It is not that there 
is any inconsistency in the subjectivistic approach; it is simply that the 
present objectivistic viewpoint is a more natural one from the standpoint 
of ordinary scientific practice. 

I emphasize also that the intuitive meaning of the weaker structural 
axioms of objective theory is different from that of the stronger axioms 
of subjective theory. The objective structural axioms are used to ex
press specific qualitative hypotheses or laws about empirical phenomena. 
Their form varies from one kind of application to another. A specific 
structural axiom provides a means of sharply focusing on what funda
mental empirical idea is being applied in a given class of experiments. 
More is said about this point later for the particular case of radioactive 
decay. 

I turn now to the formal developments. First of all, in stating the 
necessary axioms I shall use qualitative probability language of the sort 
that is standard in subjective theories of probability. The real place for 
propensity comes in the discussion of the rather particular structural ax
ioms which reflect strong physical hypotheses about the phenomena of 
radioactive decay. 

The axioms given in the following definition will not be discussed 
because they are of a type quite familiar in the literature. The ones I 
give here represent only a minor modification of the first six axioms of 
Definition 8 of Krantz et al. (1971, p. 222), plus an alternative axiom 
that is Axiom 7 below. Note that ~ is equivalence, i.e., 

AlB~ CID iff AlB~ CID and CID ~AlB. 

DEFINITION 1. A structure X = (X,F,~) is a qualitative probability 
structure if and only if .1" is a u-algebra of sets on X and for every A, B, 
C, D, E, F, G, A;, B;, i = 1, 2, ... , in .1" with B, D, F, G >- 0 the following 
axioms hold: 
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Axiom 1. If AlB t CID and CID t ElF then AlB t ElF; 

Axiom 2. AlB t CID or CID t AlB; 

Axiom 3. X >- 0; 

Axiom 4- XIB t AID; 

Axiom 5. An BIB~ AlB; 

Axiom 6. If A; n Ai = B; n Bi = 0 fori ::J j and A;ID t B;IF for 
i = 1, 2, ... , then UA;ID t UB;IF; moreover, if for some i, A; ID >
B;IF, then UA;ID >- UB;IF; 

Axiom 7. If A ~ B ~ D, E ~ F ~ G, AlB t ElF and BID t FIG 
then AID t EIG; moreover, AID >- EIG unless A ~ 0 or both 
AlB ~ ElF and BID ~ FIG; 

Axiom 8. If A~ B ~ D, E ~ F ~ G, BID t ElF and AlB t FIG, then 
AID t EIG; moreover, if either hypothesis is>-, then the conclusion 
is >-. 

To say that the axioms of Definition 1 are "necessary" means, of 
course, that they are a mathematical consequence of the assumption that 
a standard probability measure P is defined on :F such that 

(1) AlB t CID iff P(AIB) ~ P(GID). 

Precisely which necessary axioms are needed in conjunction with the 
sufficient structural axioms to guarantee the existence of a probability 
measure satisfying (1) will vary from case to case. It is likely that most 
of the eight axioms of Definition 1 will ordinarily be needed. In many 
cases an Archimedean axiom will also be required; the formulation of this 
axiom in one of several forms is familiar in the literature. The following 
version is taken from Krantz et al. (1971, p. 223). 

DEFINITION 2. A qualitative conditional probability structure X = 
(X,:F,t) is Archimedean if and only if every standard sequence is finite, 
where (A1,A2, ... ) is a standard sequence iff for all i,A; >- 0,A; ~ Ai+l 
and XIX>- A;IAi+l ~ AdA2. 

I turn now to a theorem that seems to have been first stated in the 
literature of qualitative probability in Suppes (1974c). The reason it 
did not appear earlier seems to be that the solvability axioms ordinarily 
used in subjective theories of probability often do not hold in particular 
physical situations when the probabilistic considerations are restricted 
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just to that situation. Consequently the familiar .methods of proof of the 
existence of a representing probability measure must be changed. Without 
this change, the theorem is not needed. 

The theorem is about standard sequences. Alone, the theorem does 
not yield a probability measure, but it guarantees the existence of a 
numerical function that can be extended to all events, and thereby it 
becomes a measure when the physical hypotheses expressing structural, 
nonnecessary constraints are sufficiently strong. 

THEOREM 1. (Representation Theorem for Standard Sequences). Let 
(A1, ... , An) be a finite standard sequence, i.e., A; >- 0, A; ~ Ai+l, and 
XIX>- A;IAi+l ~ A1IA2. Then there is a function W such that 

(i) A; ~ Ai iff W(Ai) ~ W(Ai ), 

(ii) if Ai ~ Aj and Ak ~ A1 then 

A;IAi ~ AkiA1 ijJW(A;)/W(Aj) = W(Ak)/W(Al). 

Moreover, for any W satisfying (i) and (ii) there is a q with 0 < q < 1 
and a c > 0 such that 

W(A;) = cqn+l-i. 

Proof Let 0 < q < 1. Define W(A;) as 

(1) 

Then obviously (i) is satisfied, since the members of a standard sequence 
are distinct; otherwise there would be an i such that A; = A;+ 1 and thus 
A;IAH1 ~XIX, contrary to hypothesis. So we may turn at once to (ii). 
First, note the following. 

(2) 

The proof of (2) is by induction. Form= 1, it is just the hypothesis that 
for every i,A;IAH1 ~ A1IA2 • Assume now it holds form- 1; we then 
have 

A;IAH(m-1) ~ Ai+(m-1)• 

and also for any standard sequence 

A;+(m-l)IAi+m ~ Ai+(m-1)1Ai+m• 

whence by Axiom 7, A;IAi+m ~ Aj IAi+m, as desired. Next, we show that 
if A; ~ Aj , Ak ~ A1 and A; IAj ~ Ak IA1, then there is an m ~ 0 such 
that j = i + m and l = k + m. Since A;~ Aj and Ak ~ A1, there must 
be nonnegative integers m and m' such that j = i + m and l = k + m'. 
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Suppose m '# m', and without loss of generality suppose m + h = m', 
with h > 0. Then obviously 

In addition, 
Ai+m IAi+m ~ X IX >- Ak+m IAk+m+h, 

and so again by Axiom 7 

contrary to our hypothesis, and so we must have m = m'. 
With these results we can establish (ii). We have as a condition that 

A ~ Aj and Ak ~ A,. Assume first that A; IAj ~ Ak lAt. Then we know 
that there is an m such that j = i + m and l = k + m, whence 

W(A;)/W(Ai) = qn+l-i fqn+l-i-m 
= qn+l-k jqn+l-k-m 

= W(Ak)/W(At). 

Second, we assume that 

From the definition of W it is a matter of simple algebra to see that there 
must be an m' such that j = i + m' and l = k + m', whence by our 
previous result, A;IAj ~ AkiA1. 

Finally, we must prove the uniqueness of q as expressed in the theorem. 
Suppose there is a W' satisfying (i) and (ii) such that there is no c > 0 
and no q such that 0 < q < 1 and for all i 

Let 

Let 

Obviously, 

W'(A;) = cqn+l-i. 

W'(An) = q1 
W'(An-d = q2. 

W'(An) = cq 
W'(An-1) = cq2. 
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On our supposition about W', let i be the largest integer (of course i :::5 n) 
such that 

We have 

whence by (ii) 
W'(A;)jcqn-i = cq2 jcq, 

and so 
W(A;) = cqn+l-i, 

contrary to hypothesis, and the theorem is proved. 
I turn now to radioactive decay phenomena. One of the best-known 

physical examples of a probabilistic phenomenon for which no one pre
tends to have a deeper underlying deterministic theory is that of radioac
tive decay. Here I shall consider for simplicity a discrete-time version of 
the theory which leads to a geometric distribution of the probability of 
decay. Extension to continuous time is straightforward but will not be 
considered here. In the present context the important point is conceptual, 
and I want to minimize technical details. Of course, the axioms for decay 
have radically different interpretations in other domains of science, and 
some of these will be mentioned later. 

In a particular application of probability theory, the first step is to 
characterize the sample space, i.e., the set of possible experimental out
comes, or as an alternative, the random variables that are numerical
valued functions describing the phenomena at hand. Here I shall use the 
sample-space approach, but what is said can easily be converted to a 
random-variable viewpoint. 

From a formal standpoint, the sample space X can be taken to be 
the set of all infinite sequences of O's, and 1 's containing exactly one 1. 
The single 1 in each sequence occurs as the nth term of the sequence 
representing the decay of a particle on the nth trial or during the nth 
time period, with its being understood that every trial or period is of the 
same duration as every other. Let En be, then, the event of decay on trial 
n. Let Wn be the event of no decay on the first n trials, so that 

n 

Wn = -UE;. 
i=l 

The single structural axiom is embodied in the following definition. The 
axiom just asserts that the probability of decay on the nth trial, given 
that decay has not yet occurred, is equivalent to the probability of decay 
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on the first trial. It thus expresses in a simple way a qualitative principle 
of constancy or invariance of propensity to decay through time. 

DEFINITION 3. Let X be the set of all sequences of O's and 1 's containing 
exactly one 1, and let :F be the smallest (!-algebra on X which contains 
the algebra of cylinder sets. A structure X = (X ,:F,!:) is a qualitative 
waiting-time structure with independence of the past iff X is a qualitative 
conditional probability structure and in addition the following axiom is 
satisfied for every n, provided Wn-1 >- 0: 

Waiting-time Axiom. 

The structures characterized by Definition 3 are called waiting-time 
structures with independence of the past, because this descriptive phrase 
characterizes their general property abstracted from particular applica
tions like that of decay. 

The simplicity of this single structural axiom may be contrasted with 
the rather involved axioms characteristic of subjective theories of proba
bility. In addition, the natural form of the representation theorem is dif
ferent. The emphasis is on satisfying the structural axioms-in this case, 
the waiting-time axiom-and having a unique parametric form, rather 
than a unique distribution. 

THEOREM 2. (Representation Theorem for Decay). Let X = (X,:F,!:) 
be a qualitative waiting-time structure with independence of the past. Then 
there exists a probability measure on :F such that the waiting-time axiom 
is satisfied, z. e., 

(i) 

and there is a number p with 0 < p ::; 1 such that 

(ii) P(En) = p(1- p)n-1. 

Moreover, any probability measure satisfying ( i) is of the form ( ii). 

Proof The events En uniquely determine an atom or possible experi
mental outcome x of X, i.e., for each n, there is an x in X such that 

En= {x}, 

a situation which is quite unusual in sample spaces made up of infinite 
sequences, for usually the probability of any x is strictly zero. 

If E 1 ~ X, then P(E1) = 1, and the proof is trivial. On the other 
hand, if X >- E1, then for each n, (Wn, . .. , WI) is a standard sequence 
satisfying the hypotheses of the representation theorem for standard se
quences. The numbering is inverted, i.e., W;+l ~ W; and Wi+dW; ~ 
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W2IW1. (If (W1, ... , Wn) were a standard sequence, then so would be 
the infinite sequence (W1, ... , Wn, ... ) in violation of the necessary Arch
imedean axiom.) That Wi+l ~ W; is obvious from the definition of W;. 
By virtue of the waiting-time axiom 

E1 R: Ei+1IW; R: W;- W;+liW; 
R: -W;+dW;, 

and so by elementary manipulations 

Using the representation theorem for standard sequences, we know there 
is a numerical function P' and numbers c and q with 0 < q < 1 and c > 0 
such that 

P'(W;) = cqi. 

(Let i' be the numbering in the reverse order ( n, ... , 1 ); then i' = n- ( i-
1), and the exponent n+ 1-1 in the representation theorem becomes i'.) 
Starting with a fixed standard sequence of length n, P' can be extended 
to every i > n in an obvious fashion. 

The next step is to extend P' as an additive set function to all atoms 
E; by the equations 

P'(E;) = P'(Wt-1- W;) 

= P'(W;_l) - P(Wi) 

= c(qi-1 _ qi) 

= cqi-1(1- q). 

The consistency and uniqueness of this extension is easy to check. Now 

DO 

LP'(E;) = c, 
i=l 

so we set c = 1 to obtain a measure P normed on 1 from P' and let 
p = 1 - q. We then have 

P(E;) = p(1- p)i- 1 

P(W;) = (1- p)i. 
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The function P just defined is equivalent to a discrete density on X, since 
E; = { x} for some x in X, and thus P may be uniquely extended to the 
u-algebra of cylinder sets of X by well-known methods. 

Finally, the proof of (ii) is immediate. If we suppose there is an n such 
that P(En) f:. p(l-p)n- 1 , where p = P(El), we may use the waiting-time 
axiom to obtain a contradiction, for by hypothesis P(Wn-d = (1- p)n- 1 

and P(EniWn-d = p, whence P(En) = pP(Wn-1) = p(l- p)n- 1. 
I quite accept that a criticism of this particular representation theorem 

is that the analysis of propensity is too close to the analysis of probability 
from a formal standpoint, a complaint I made earlier about some of the 
literature on propensity. In general, propensities are not probabilities, but 
provide the ingredients out of which probabilities are constructed. I think 
the favorable positive argument for what I have done has got to be put on 
a more subtle and therefore more fragile basis. The point has been made, 
but I will make it again to emphasize how propensities enter. The waiting
time axiom is a structural axiom that would never be encountered in the 
standard theory of subjective probability as a fundamental axiom. It is an 
axiom special to certain physical phenomena. It represents, therefore, a 
qualitative expression of a propensity. Second, the probabilities we obtain 
from the representation theorem are not unique but are only unique up 
to fixing the decay parameter. Again, this is not a subjective concept 
but very much an objective one. Identifying and locating the number 
of physical parameters to be determined is a way of emphasizing that 
propensities have entered and that a purely probabilistic theory with a 
unique measure has not been given. 

2. PROPENSITY TO RESPOND 

There is a long history of various theoretical models being proposed in 
psychology to represent response strength, which in turn is the basis for 
choice probabilities. By a "choice probability" I mean the probability that 
a given item a will be selected from a set A in some given experimental 
or naturalistic setting. The fact that the choice is to be represented by a 
probability is a reflection that the standard algebraic model of expected 
utility does not adequately represent much actual behavior. Whatever one 
may think individuals should do, it is a fact of life, documented exten
sively both experimentally and in other settings, that individuals, when 
presented with what appears to be repetitions of the same set of alter
natives to choose from, do not repeatedly choose the same thing. The 
formal study of such situations has also been a matter of intensive work 
in the past several decades. One of the most simple and elegant models 
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is the choice model proposed by Luce (1959). In Luce's own development 
he proceeds from his choice axiom, which is stated in terms of observ
able probabilities, to the existence of response strengths. To illustrate 
the kind of idea we want here we shall begin the other way, that is, by 
postulating a response strength, and then showing how from this postu
late we easily derive his choice axiom. Second, an advantage of response 
strengths over response probabilities is to be seen in the formulation of 
Luce's alpha model of learning, where the transformations that represent 
learning from one trial to another are linear when formulated in terms 
of response strengths, but nonlinear when formulated in terms of choice 
probabilities. 

We turn now to the formal development of these ideas. In the intended 
interpretation T is a presented set of alternatives to choose from, and the 
numerical function v is the measure of response (or stimulus) strength. 

DEFINITION 4. Let T be a nonempty set, and let v be a nonnegative real
valued function defined on T such that for at least one x in T, v(x) > 0, 
and ExET v(x) is finite. Then T =(T, v) is a response-strength model 
(of choice). 

The general requirements on a response-strength model are obviously 
very weak, but we can already prove a representation theorem that is 
more special than earlier ones, in the sense that in addition to satisfying 
the axioms of finitely additive probability spaces, Luce's Choice Axiom 
is satisfied as well. Moreover, to get various learning models, we impose 
further conditions. 

THEOREM 3 (Representation Theorem). LetT = (T, v) be a response
strength model, and define for U in P(T), the power set ofT, 

PT(U) = L v(x)/ L v(x). 
xEU xET 

Then (T,P(T), PT) is a finitely additive probability space. Moreover, the 
probability measure PT satisfies Luce's choice axiom, i.e., for V in P(T), 
with ExEV v(x) ::P 0, and with v' being v restricted to V, V = (V, v') is a 
response-strength model such that for U ~ V 

Pv(U) = PT(UjV). 

Proof The general representation part of the theorem is obvious. To 
prove Luce's axiom, we note that because U ~ V 
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PT(UjV) = PT(U n V)/ PT(V) 

LxEU v(x) 

LxET v(x) I LxEV v(x) 

LxET v(x) 

= LxEU v(x) / LxEV v(x) 

= Pv(U). 

The notation used in the theorem is slightly subtle and can be initially 
confusing. Note that the set referred to by the subscript represents the full 
physical set of choice alternatives. The set conditioned on, V in the case of 
PT(UjV), is information about the choice actually occurring from among 
the elements of a subset ofT. It is not at all tautological that Luce's 
axiom should hold. In fact, there is a sizable statistical literature on 
how to best estimate response strengths for observed choice probabilities 
(Bradley and Terry, 1952; Bradley, 1954a, b, 1955; Abelson and Bradley, 
1954; Ford, 1957). 

To illustrate how the formulation of theory in terms of a propensity 
can simplify some analyses, we sketch the situation for Luce's alpha model 
of learning. Let f be the learning function mapping the finite vector of 
response strengths v = ( v1 , ... , Vr) from one trial to the next. Here 
we assume T is finite-in particular has cardinality r. We assume that 
response strengths are unbounded, i.e., for any real number a there is 
an n such lr(v)l > a, where r represents n iterations of the learning 
function. Secondly, superposition of learning holds, i.e., for any v, v* > 0 

f(v + v*) = f(v) + f(v*). 

Third, independence of scale or units holds, i.e., for v > 0 and any real 
number k > 0 

f(kv) = kf(v). 

But it is a well-known result in linear algebra that the assumed condi
tions imply that f is a linear operator on the given r-dimensional vector 
space. In contrast, under these assumptions but no stronger ones the 
behavior from trial-to-trial of the response probabilities PT(U) is compli
cated; in particular, they are not related by a linear transformation of the 
probabilities. 

Although the proof of Theorem 3 is very simple and in the development 
thus far little structure has been imposed on the response-strength func
tion, the intended interpretation fits in very nicely with the propensity 
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concept of probability-at least as I envisage the development of repre
sentation theorems for various propensities. In fact, a pluralistic aspect 
of propensities that I like is that there is no single natural representation 
theorem. Many different physical and psychological propensities should 
produce unique representation theorems. On the other hand, an obvious 
deficiency of Theorem 4, and other similarly "direct" representations of 
probability in terms of some propensity, is that no guarantee of random
ness is provided. This is also a deficiency of the radioactive decay example 
as well. In both cases, adding axioms to deal with randomness is difficult. 
In the decay case, what is naturally a real-time phenomenon has to be 
dealt with, rather than the typical multinomial case. In the response
strength models, one would immediately expect learning from repetition 
and thus the obvious sequences of trials would not represent stationary 
processes. In principle the standard machinery for defining finite random 
sequences could be used, but the technical problems of correct formulation 
seem too numerous to try to solve here. 

3. PROPENSITY FOR HEADS 

There is a tradition that begins at least with Poincare (1912) of analyzing 
physical systems that we ordinarily consider chance devices as classical 
mechanical systems. More detailed applications to chance devices were 
given by Smoluchowski (1918) and, in particular, by Hopf (1934). The 
history of these ideas has been nicely chronicled by von Plato (1983). The 
simple approach developed here, which requires only Riemann integration, 
is mainly due to Keller (1986). 

We shall analyze the mechanics of coin tossing, but, as might be ex
pected, under several simplifying assumptions that would be only partly 
satisfied in practice. First, we consider a circular coin of radius a whose 
thickness is negligible. Second, we assume perfect uniformity in the dis
tribution of the metal in the coin, so that its center of gravity is also its 
geometrical center. The different marking for a head and a tail is thus 
assumed to be negligible. Third, we neglect any friction arising from its 
spinning or falling. Fourth, we carry the analysis only to the first point 
of impact with the surface on which it lands. We assume it does not 
change the face up from this point on. We thereby ignore any problems 
of elasticity that might lead to bouncing off the surface, spinning and 
landing again before coming to rest. As Hopf points out, real systems are 
dissipative rather than conservative, but the mathematical analysis that 
replaces all of the above assumptions with the most realistic ones we can 
formulate is still not available in complete form. On the other hand, the 
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idealizations we make are not totally unrealistic; there are good physical 
reasons for believing that more realistic assumptions about dissipation 
due to friction, etc., would not affect at all the conceptual character of 
the analysis, but only the quantitative details, which are not critical for 
our purposes. 

It is also useful to ask whether the analysis to be given fits into the 
standard theory of particle mechanics. The answer is 'almost but not 
quite'. To take account of spin we treat the coin as a rigid body, not as a 
particle, although we could imitate the spin properties exactly by a finite 
collection of particles whose mutual distances remain constant. 

Now to the formal details. We use a Cartesian coordinate system with 
a: and z in the horizontal plane and with y being the measure of height, 
so that y(t) is the height of the center of gravity of the coin at time t. 
The only vertical force is the force of gravity, so the Newtonian equation 
of motion is 

(1) 
d?y(t) 
~=-g, 

where g is the constant acceleration of gravity. As initial conditions at 
time t = 0, we suppose the height is a and the toss gives the coin an 
upward velocity u, i.e., 

(2) y(O) = a, y(O) = u. 

Equations (I) and (2) uniquely determine y(t) up to the point of impact. 
As is easily shown 

(3) 
gt2 

y(t) = - 2 +ut+a. 

As for spin, we assume the coin is rotating about a horizontal axis which 
lies along a diameter of the coin; we fix the z-coordinate axis to be parallel 
to this rotation axis, and we measure angular position as follows. The 
angle 0(t) is the angle between the positive y-axis and a line perpendicular 
to the head-side of the coin-both these lines lie in the x-y plane as can 
be seen from Figure 1, taken from Keller (1986). We assume that initially 
the coin is horizontal with heads up, and the toss gives it positive angular 
velocity w. So that at t = 0, the initial spin conditions are: 

(4) 0(0) = 0, 0(0) = w. 

Moreover, assuming no dissipation, as we do, the equation governing the 
rotational motion of the coin is just that of constant velocity. 

(5) d?0(2t) = 0. 
dt 
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y 

0 X 

Figure 1. The x, y plane intersects the coin along a diameter of length 
2a. The normal to the side of the coin marked heads makes the angle 8 
with the positive y-axis. 

The unique solution of (4) and (5) is: 

(6) B(t) = wt. 

Let t 8 be the point in time at which the coin makes contact with the 
surface on which it lands, which surface we take to be the plane y = 0. 
Given the earlier stated assumption that the coin does not bounce at all, 
the coin will have a head up iff 

(7) 2mr- 7r/2 < B(t8 ) < 2n7r + 7r/2, n = 0, 1, 2, ... 

We now want to find t 8 • First, we note that at any time t, the lowest 
point of the coin is at y(t)- al sin B(t)l. So t 8 is the smallest positive root 
of the equation 

(8) y(t,)- alsinB(t,)l = 0. 

We next want to find what Keller calls the pre-image of heads, i.e., 
to find the set of initial values of velocity u and angular velocity w for 
which the coin ends with a head up. Let us call H this set of points in 
the u, w-plane. 

We look first at the endpoints defined by (7). These together with ( 6) 
yield - just for the endpoints, 

(9) wt. = (2n + ~1r), 
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and also at these endpoints sinB(t,) = ±1, so (8) in these cases simplifies 
to 

(10) y(t,)- a= 0, 

which combined with (5) yields 

(11) ut,- gt;/2 = 0. 

The importance of the endpoints is that they determine the boundaries 
of the region H. In particular, we examine solutions of ( 11) to determine 
t, and then (9) to determine the boundaries. Equation (11) has two 
solutions: 

t, = 0, t, = 2ujg. 

The first one yields only trivial results, so we use the second solution in 
(9) to obtain a relation in terms only of w and u: 

(2n ± ~ )1rg 
w = , n = 0, 1, 2, ... 

2u 
(12) 

The relationship (12) is graphed in Figure 2 (after Keller, 1986) for various 
values of n. As can be seen from (12), each curve is a hyperbola. On the 
axis w = 0, a head remains up throughout the toss, so the strip bordered 
by the axis belongs to H. The next strip is part ofT, the complement of 
H, and as is obvious the alternation of strips being either part of H or 
T continues. From (12) we can infer that the strips are of equal vertical 
separation, namely, 1rg /2u, except for n = 0 for the lowest one where the 
vertical distance from the axis is 1rg / 4u. 

The critical observation is that, as the initial velocity u of the toss 
increases, the vertical separation decreases and tends to zero. This means 
that the alternation between H and Tis generated by small changes in u. 

As we shall show, essentially any mathematically acceptable probabil
ity distribution of u and w, at time t = 0, will lead to the probability of 
heads being 0.5. The mechanical process of flipping dominates the out
come. Small initial variations in u and w, which are completely unavoid
able, lead to the standard chance outcome. Put explicitly, the standard 
mechanical process of flipping a coin has a strong propensity to produce 
a head as outcome with probability 0.5. 

To calculate PH, the probability of heads, we assume an initial contin
uous probability distribution p( u, w ), with, of course, u > 0 and w > 0. It 
is important to note that no features of symmetry of any kind are assumed 
for p(u,w). We have at once 

(13) 
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Figure 2. The curves which separate the sets H and T, the pre-images 
of heads and tails in the u, w plane of initial conditions, are shown for 
various values of n, with the abscissa being ufg. 

It is obvious that (13) imposes no restriction on PH. Given any value of 
PH desired, i.e., any probability of heads, we can find a distribution of 
p(u,w) that will produce it in accordance with (13). 

What can be proved is that as the velocity u increases we can prove 
that in the limit PH = ~. The actual rate of convergence will be sensitive 
to the given distribution p(u,w). 

THEOREM 4 (Representation Theorem). 

lim P(Hiu > U) = ~-u-oo 2 

Proof We first write the conditional probability without taking the 
limit: 

(14) 

roo 00 1(2n+(l/2))7rg/2u 
JL L p(u,w)dwdu 

P(Hiu > U) = _u __ n=_o_(_2n_-_(_1/_2_))_1fD_/_2u ____ _ 

ioo 100 p(u,w)dwdu 
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(What has been done in the numerator is to integrate over each "slice" 
of H, given by (12).) The set T is the complement of H, and so the 
boundaries of slices ofT are: 

(15) t/J _ (2n + 1 ± !)1rg 
- 2u ' 

and we can write the denominator of (14) as: 

oo 1(2n+(l/2))w:g/2u 1oo 00 

L p(u,w)c~MJ du + L 
n=O (2n-(1/2))w:gf2u U n=O 

1(2n+(3/2) )w: g f2u 

x p(u,w)dw du. 
(2n+(l/2))w:g/2u 

(16) 

We next want to evaluate the numerator of the right-hand side of (14) as 
U ~ oo. From the definition of the Riemann integral, we can approximate 
each integral inside the summation side by the length of the interval, which 
is Ilg f2u, and the value of the integral at the midpoint of the interval, 
which is p(u, n1rgju). 

(17) 

loo oo 1(2n+(l/2))w:g/2u 
limu-+oo L p(u,w)dw du 

U n=O (2n-(1/2))w:gf2u 

. 1oo ~ ( n7rg) 7rg = hmu-+oo L...J p u, -- -du. 
u n=O u 2u 

And it is straightforward to show that as U ~ oo the integral on the right 
converges to ~P(u > U). From this result, (14), (16), and (17), we have 
as desired: 

l. P(Hi U) _ limu-oo ~P(u > U) _ ~ 
1m u> - 1 1 - · 

U-+oo limu-+oo 2P(u > U) + limu-+oo 2P(u > U) 2 

4. PROPENSITY FOR RANDOMNESS 

This fourth example is a special case of the three-body problem, certainly 
the most extensively studied problem in the history of mechanics. Our 
special case is this. There are two particles of equal mass m1 and m2 
moving according to Newton's inverse-square law of gravitation in an 
elliptic orbit relative to their common center of mass which is at rest. 
The third particle has a nearly negligible mass, so it does not affect the 
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motion of the other two particles, but they affect its motion. This third 
particle is moving along a line perpendicular to the plane of motion of 
the first two particles and intersecting the plane at the center of their 
mass-let this be the z axis. From symmetry considerations, we can see 
that the third particle will not move off the line. The restricted problem 
is to describe the motion of the third particle. 

To obtain a differential equation in simple form, we normalize the unit 
of time so that the temporal period of rotation of the two masses in the 
x, y-plane is 21r, we take the unit of length to be such that the gravitational 
constant is one, and finally m1 = m2 = ~, so that m1 + m2 = 1. The force 
on particle m 3 , the particle of interest, from the mass of particle 1 is: 

where r is the distance in the x, y-plane of particle 1 from the center of 
mass of the two-particle system m1 and m2, and this center is, of course, 
just the point z = 0 in the x, y plane. Note that (z, r)/vz2 + r 2 is the 
unit vector of direction of the force F1 . Similarly, 

m2 (z, -r) 
F2 = - -z2_+_r_2 . -v-7:z~2=+==r'i<2 

So, simplifying, we obtain as the ordinary differential equation of the third 
particle 

d2 z z 
dt2 (z2 + r2)3/2 · 

The analysis of this easily described situation is quite complicated and 
technical, but some of the results are simple to state in informal terms. 
Near the escape velocity for the third particle-the velocity at which it 
leaves and does not periodically return, the periodic motion is very irreg
ular. In particular, the following remarkable theorem can be proved. Let 
t 1 , t 2 , ... be the times at which the particle intersects the plane of motion 
of the other two particles. Let sk be the largest integer equal to or less 
than the difference between tk+l and tk times a constant.1 Variation in 
the Sk 's obviously measures the irregularity in the periodic motion. The 
theorem, due to the Russian mathematicians Sitnikov (1960) and Alek
seev (1969a, b), as formulated in Moser (1973), is this. 

THEOREM 5. Given that the eccentricity of the elliptic orbits is positive 
but not too large, there exists an integer, say a, such that any infinite 

1The constant is the reciprocal of the period of the motion of the two particles in 
the plane. 
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sequence of terms sk with sk ~ a, corresponds to a solution of the deter
ministic differential equation governing the motion of the third particle. 2 

A corollary about random sequences immediately follows. Let s be any 
random sequence of heads and tails-for this purpose we can use any 
of the several variant definitions-Church, Kolmogorov, Martin-Lof, etc. 
We pick two integers greater than a to represent the random sequence
the lesser of the two representing heads, say, and the other tails. We then 
have: 

COROLLARY. Any random sequence of heads and tails corresponds to a 
solution of the deterministic differential equation governing the motion of 
the third particle. 

In other words, for each random sequence there exists a set of initial 
conditions that determines the corresponding solution. Notice that in 
essential ways the motion of the particle is completely unpredictable even 
though deterministic. This is a consequence at once of the associated 
sequence being random. It is important to notice the difference from the 
earlier coin-flipping case, for no distribution over initial conditions and 
thus no uncertainty about them is present in this three-body problem. No 
single trajectory in the coin-flipping case exhibits in itself such random 
behavior. 

In this fourth case, propensity may be expressed as the tendency of 
the third particle to behave with great irregularity just below its escape 
velocity. In ordinary terms, we might want to say that the propensity is 
one for irregularity, but of course we can say more for certain solutions, 
namely, certain initial conditions lead to a propensity to produce random 
behavior. 

2 The correspondence between a solution of the differential equation and a sequence 
of integers is the source of the term symbolic dynamics. The idea of such a correspon
dence originated with G. D. Birkhoff in the 1930s. 
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INDETERMINISM OR 

INSTABILITY, DOES IT 

MATTER? 

1. SKEPTICISM ABOUT DETERMINISM 

In my recent book, Probabilistic Metaphysics (1984), I have argued at 
some length against determinism as a viable philosophical or scientific 
thesis. I want first to review those arguments and then go on to look at 
an alternative way of viewing phenomena. Instead of the dichotomy de
terministic or indeterministic, perhaps the right one is stable or unstable. 

In expressing my skepticism about determinism I shall not linger over 
a technically precise definition. It seems to me that the intuitive notion 
that phenomena are deterministic when their past uniquely determines 
their future will serve quite adequately in the present context. 

The natural basis of skepticism is our remarkable inability to predict 
almost any complete phenomenon of interest, and even more, our inability 
to write down adequate difference or differential equations. Consider, for 

*Reprinted from .Causality, method and modality (ed. by G. G. Brittan, Jr.), 1991, 
pp. 5-22. Dordrecht, Netherlands: Kluwer Academic Publishers. The first draft of this 
paper was read at a symposium on indeterminism at the annual meeting of the Pacific 
Division of the American Philosophical Association, March 23, 1985. A later draft was 
the basis of a lecture at the College de France at the invitation of Jules Vuillemin on 
May 12, 1986. It is a pleasure to dedicate this paper to him. Our many conversations 
on a variety of philosophical topics have both enlightened and delighted me. 

247 
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example, a gust of wind and its effect on leaves of grass, the branches of 
a tree, the particles of dust agitated in various ways. It seems utterly out 
of the question to predict these effects in any detail. Moreover, it seems 
hopeless even to think of writing down the equations, let alone solving 
them. It might be noted the particles of dust, at least, would be within 
the range of the phenomena of Brownian motion, and the hopelessness 
of actually predicting such motion has been recognized for a long time. 
Of course, this example of Brownian motion raises a problem that needs 
remarking. One standard view of classical physics is that all phenomena 
are deterministic-we are just unable to analyze some phenomena in ad
equate detail. But even here there is reason for skepticism. The standard 
result of the standard theory of Brownian motion is that because of the 
high incidence of collisions the path of a particle is continuous but dif
ferentiable almost nowhere (only on a set of measure zero). Given that 
the path is this kind of trajectory, it becomes obvious that determinism 
is out of the question just because of the many collisions. It is a familiar 
fact of classical mechanics that collisions in general cause great difficulty 
for deterministic theorems. The kind of result that we have in the case 
of Brownian motion is not just a matter of difficulty, it is a matter of 
principled hopelessness. So I take it that insofar as the phenomena I have 
just described fall within the purview of the theory of Brownian motion, 
determinism is ruled out. 

For many familiar human phenomena we do not even have the ele
ments of schematic analysis given by the probabilistic theory of Brownian 
motion. Examples are easy to think of. A favorite of mine is the babble 
of speech. The idea of ever being able to determine the flow of talk even 
between just one set of persons, not to speak of a billion, given whatever 
knowledge you might hope to have seems ridiculous and absurd. There 
is no reason whatsoever to think we will ever have theories that lead to 
deterministic results. It is certainly true that in occasional high states 
of deliberation we formulate very carefully the words we are going to ut
ter, but this is not the standard condition of speech. Moreover, even in 
such states of high deliberation we do not and are not able consciously 
to control the prosodic contours of the utterance. In fact, as we descend 
from the abstract talk of grammarians and inodel theorists concerned 
with semantics to the intricate details of the actual sound-pressure waves 
emitted by speakers and received by listeners, the problem of having a 
.d~terministic theory of speech lopms ever more hopeless. 

I have the same skepticism toward deterministic theories of vision. 
Such a ·theory for any serious .level of detail seems out of the question. 
The reasons for thinking this are many in number. The long history 
·of theories of vision and the difficulties we still have in giving detailed 
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partial descriptions of what the visual system is sensing provide some 
evidence. Detailed physiological studies showing that the human eye is 
sensitive to even a single photon provide other kinds of evidence, as do 
quantitative studies of eye and head movements. The extraordinarily 
complicated nature of the transduction that takes place in the optical 
system in order to send messages to the central nervous system is another 
case in point. Someone might want to claim that we could have a gross 
deterministic theory of vision, but such a theory would be superficial 
and uninteresting. The actual mechanisms seem intrinsically subtle and 
complex. Of course, there are some kinds of complex problems that we feel 
confident in tackling, but anyone who has taken a serious look at problems 
of vision will back away rather rapidly from optimistic claims about having 
within the framework of contemporary science, or science as we can foresee 
it to be in the future, a workable, detailed deterministic theory. 

What I have had to say about speech and vision applies also to the 
sense of smell. The evidence seems pretty good that this sense is sensitive 
down to the presence of a substance at the molecular level. Moreover, 
what theories there are of the activities of single recognition cells are 
probabilistic in character. As far as I know, no one has attempted to 
propose a serious deterministic theory of smell. 

These familiar phenomena I am using to buttress my reasons for skep
ticism about determinism are easily matched by a dozen others. Given the 
extraordinarily small number of phenomena about which we can have a 
deterministic phenomena, there is cause for psychological and philosoph
ical speculation as to why the concept of determinism has ever achieved 
the importance it has in our thinking about the world around us. To 
adopt a broad deterministic view toward the world does require not quite 
the extreme faith of the early Christians, but at least that of such diverse 
eighteenth-century optimists as Kant and Laplace.1 

Surely one psychological root of the faith in determinism is its con
fiation with prediction. Hegel (1899, p. 278) reports that Napoleon in a 
conversation with Goethe remarked that the conceptual role of fate in the 
ancient world has been replaced by that of bureaucratic policy in modern 
times-with the implication that uniform predictability of individual be
havior subject to the bureaucracy is, in principle, what we can now have. 
The search for methods of prediction has ranged from zodiacs to chicken 
gizzards and is found in every land. The primitive urge to know the fu
ture has in no way been stilled by modern science, but only rechanneled 
into more austere forms. The new skepticism, so I am arguing, should be 
about the omnipresence of determinism, not the omniscience of God. 

1 Historically we probably need to think of Kant as a cryptodeterminist. 



250 PART III. PROBABILITY AND MEASUREMENT 

2. HOW TO SAVE DETERMINISM 

Before making some direct comparisons with indeterminism in terms of 
instability there are some preliminary points to be made about unsta
ble systems. The intuitive idea of instability in mechanics is this. Wide 
divergence in the behavior of two systems identical except for initial con
ditions is observed even when the initial conditions are extremely close. 
There are two aspects of unstable systems that make prediction of their 
behavior difficult, and therefore make difficult the realization of the de
terministic program, even if the systems are, in fact, deterministic. One 
source of difficulty is that the initial conditions can be measured only ap
proximately. If a system is not stable in the appropriate sense~! omit a 
technical definition here but it is straightforward to give one~, it will be 
impossible to predict its behavior for any but short intervals of time with 
any accuracy. In this case, we attribute predictive failures to a possibly 
small uncertainty in the initial conditions. We shall leave aside in the 
present discussion whether this uncertainty should be treated epistemo
logically or ontologically. Some later remarks will have something more 
to say about this issue. 

A second aspect of an unstable system can be that the solutions are not 
given in closed form, and calculations based on various methods of series 
expansion, etc., will not give accurate predictions. In other words, we 
cannot count on numerical methods to give us a detailed result for periods 
of prediction of any length. If the system is unstable, the accumulation 
of small errors in numerical methods of approximation, which may be the 
only ones available, can lead to unavoidable problems of accuracy. This 
last problem is especially true of systems that are governed by nonlinear 
differential equations. 

What I have said thus far applies to very simple systems of differential 
equations as well as complex ones. The solutions of the equations may be 
unstable but they do not seem to exhibit the kind of behavior we so di
rectly associate with indeterministic or probabilistic behavior. It might be 
argued that the simplest systems of linear differential equations that are 
unstable do not represent something comparable to indeterminism. Yet 
it is true that for such unstable linear systems the accuracy of predictions 
will be poor, given, as is always the case in real situations, any errors in the 
measurement of initial conditions. In other words, unstable deterministic 
linear systems capture an important aspect of indeterminism, namely, our 
inability to predict future behavior on the basis of knowledge of present 
behavior. There is another aspect also of such linear systems that needs 
to be noted. In most applications, the linearity of the real system that 
is being modeled by the linear differential equations is only approximate. 
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Almost always, deviations from linearity in the real system J -the fact 
that the linear differential equations are only approximations-will make 
our ability to predict actual phenomena even more limited. 

3. CHAOS AND SYMBOLIC DYNAMICS 

We now get down to essentials. Those special unstable solutions of dif
ferential equations that exhibit chaotic behavior provide the intended al
ternative to indeterminism. It would have been more accurate in certain 
ways to entitle this lecture 'Indeterminism or Chaos, Does it Matter?,' 
but the meaning of chaos is too special, and so it is the central concept 
of instability that should be kept to the fore. 

So, what do we mean by chaos? A brief but not quite technically 
correct definition is the following. A solution of a deterministic system 
of differential equations is chaotic if and only if it exhibits some aspect 
of randomness-or, as an alternative, sufficient complexity. To some, 
this definition would seem to embody a contradiction, and therefore no 
solutions would satisfy it. On the left-hand side we refer to a deterministic 
system of equations and on the right-hand side to the random character 
of its solution. How can a deterministic system have a random solution? 
This is what chaos is all about, and the discovery of the new phenomena 
of chaos is certainly a watershed change in the history of determinism. 

Before turning to the recent discussions of chaos, it will be useful to go 
back over the earlier history of developing the theory of random processes 
within classical mechanics. The origin of the approach, usually called the 
method of arbitrary functions for a reason to be explained in a moment, 
originates with Poincare, but has been developed in detail by a num
ber of mathematicians in the first half of this century. Already a rather 
short qualitative sketch of the ideas in very accessible form is given by 
Poincare in Science and Hypothesis (1913). (The history of developments 
since Poincare has been chronicled in some detail by von Plato (1983).) 
Here I shall just give a sketch of the analysis of coin flipping, one of the 
most natural cases to consider. To a large extent I shall follow the re
cent treatment due to Keller (1986), but as somewhat modified in Suppes 
(1987). Without going into details, we shall assume a circular coin that is 
symmetric in all the ways you would imagine; second, dissipating forces 
of friction are entirely neglected; third, it is assumed that the coin does 
not bounce but on its initial point of impact flattens out to a horizontal 
position. In other words, from the initial point of impact the face up 
does not change. With this idealized model, the physical analysis is sim
ple. Newton's ordinary law of gravity governs the vertical motion of the 
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particle-we assume there is no horizontal motion. Second, we assume 
that the rotational motion is that of constant angular velocity so there 
is no angular acceleration to the rotation. Now with this situation, if we 
knew the exact initial conditions, we could predict exactly how the coin 
would land, with either heads or tails face up. In fact, the classical anal
ysis of this case assumes rightly enough that we do not know the exact 
value of the initial conditions. The method of arbitrary functions refers 
to the fact that we assume an arbitrary probability distribution of initial 
vertical velocity and initial rotational velocity. Then as the initial velocity 
tends to infinity, whatever the arbitrary distribution we begin with, the 
probability of a head will be one-half. In other words, the symmetry in the 
mechanical behavior of the system dominates completely as we approach 
the asymptotic solution. Of course, in real coin-flipping situations we are 
not imparting an arbitrarily large vertical velocity to the coin, but the 
variation in the way that we flip will lead to a very good approximation 
to one-half. The point is that in this typical analysis, the randomness 
enters only through the absence of knowledge of initial conditions. It is 
an important example of randomness in mechanical systems, one that has 
only recently begun to be recognized again as an important example, but 
it is not the kind of example on which I want to concentrate here. 

To show that the conventional philosophical dichotomy between deter
minism and randomness is mistaken, I consider two important and much 
discussed examples. 

The first is a special case of the three-body problem, certainly the 
most extensively studied problem in the history of mechanics. Our special 
case is this. There are two particles of equal mass moving according to 
Newton's inverse-square law of gravitation in an elliptic orbit relative to 
their common center of mass which is at rest. The third particle has 
a nearly negligible mass, so it does not affect the motion of the other 
two particles, but they affect its motion. This third particle is moving 
along a line perpendicular to the plane of motion of the first two particles 
and intersecting the plane at the center of their mass. From symmetry 
considerations, we can see that the third particle will not move off the line. 
The restricted problem is to describe the motion of the third particle. 
The analysis of this easily described situation is quite complicated and 
technical, but some of the results are simple to state in informal terms 
and directly relevant to my focus on determinism and randomness. (A 
more detailed discussion is given in the preceding article on propensity in 
this volume.) 

What can be shown is that any random sequence of heads and tails 
corresponds to a solution of the deterministic differential equation gov
erning the motion of the third particle. In other words, for each random 
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sequence there exists a set of initial conditions that determines the corre
sponding solution. Notice that in essential ways the motion of the particle 
is completely unpredictable even though deterministic. This is a conse
quence at once of the associated sequence being random. It is important 
to notice the difference from the earlier coin flipping case, for no distribu
tion over initial conditions and thus no uncertainty about them is present 
in this three-body problem. No single trajectory in the coin-flipping case 
exhibits in itself such random behavior. 

This example demonstrates the startling fact that the same phenom
ena can be both deterministic and random. The underlying explanation 
is the extraordinary instability of the deterministic phenomena. 

Before. remarking further on the significance of this result, I turn to the 
second example which is an abstract discrete model of period doubling. 
Because the mathematics is more manageable it is a simple example of a 
type much studied now in the theory of chaos. The example also illustrates 
how a really simple case can still go a long way toward illustrating the 
basic ideas. Let f be the doubling function mapping the unit interval into 
itself. 

(1) 

where mod 1 means taking away the integer part so that Xn+l lies in the 
unit interval. So if x 1 = 2/3, x2 = 1/3, X3 = 2/3, x4 = 1/3 and so on 
periodically. The explicit solution of equation (1) is immediate: 

(2) 

With random sequences in mind, let us represent x1 in binary decimal 
notation, i.e., as a sequence of 1's and O's. Equation (1) now can be 
expressed as the rule: for each iteration from n to n + 1 move the decimal 
point one position to the right, and drop whatever is to the left of the 
decimal point: 

.1011... ---+ .011... . 

We think of each Xn as a point in the discrete trajectory of this appar
ently simple system. The remarks just made show immediately that the 
distance between successive discrete points of the trajectory cannot be 
predicted in general without complete knowledge of x1. If x1 is a random 
number, i.e., a number between 0 and 1 whose binary decimal expansion is 
a random sequence, then such prediction will be out ofthe question unless 
x1 is known. Moreover, any error in knowing x 1 spreads exponentially
the doubling system defined by equation (1) is highly unstable. Finally, 
it is a well-known result that almost all numbers are random numbers in 
the sense defined. 
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Although the exact technical details are rather complicated for almost 
all chaotic systems, the first example of a restricted three-body problem 
was meant to illustrate orbital complexity and the second complexity of 
initial conditions. In any case, randomness can be an essential part of the 
behavior of what seem to be quite simple deterministic systems. 

4. THE TROUBLESOME CASE OF QUANTUM MECHANICS 

From what I have just said, the elements of a rejoinder to my earlier skepti
cism about determinism are apparent. The phenomena cited as examples 
of indeterminism are in fact just examples of highly complex, unstable 
deterministic systems whose future behavior cannot be predicted. 

The strongest argument against such a view comes from quantum me
chanics. Beginning in the 1930s there has been a series of proofs that de
terministic theories are in principle inconsistent with quantum mechanics. 
The first proof of the impossibility of deterministic hidden variables was 
by von Neumann. The latest arguments have centered on the inequalities 
first formulated in 1964 by John Bell. Moreover, the associated experi
ments that have been performed have almost uniformly favored quantum 
mechanics over any deterministic theory satisfying the Bell inequalities. 
To those who accept the standard formulation of quantum mechanics, 
the various proofs about the nonexistence of hidden variables answer de
cisively the question in the title of this lecture. Indeterminism or instabil
ity, does it matter? For these folk the answer is affirmative. The negative 
results show chaotic unstable deterministic mechanical systems cannot 
be constructed to be consistent with standard quantum mechanics. The 
conclusion of this line of argument is that standard quantum mechanics is 
the most outstanding example of an intrinsically indeterministic theory. 

There is, however, a still live option for those of us who are not entirely 
happy with the orthodox theory of quantum mechanics and its many pecu
liar features. The option left open is to account for quantum phenomena 
in terms of something like the theory of Brownian motion, which is, of 
course, part of classical mechanics broadly construed. Nelson (1967, 1985) 
has provided thus far the best defense of this approach. He has, for ex
ample, derived the Schroedinger equation, the most important equation 
of nonrelativistic quantum mechanics, from the assumptions of Newto
nian mechanics. However, his recent analysis (1985) ends up with Bell's 
theorem and the relevant experiments as a serious problem. The most 
feasible way out seems to be to develop a non-Markovian stochastic me
chanics, which in itself represents a departure from classical nonlocality. 
The central problems of current physics are not much concerned with this 
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alternative, but mathematicians and philosophers will continue to puzzle 
over the foundations of this century's most successful scientific theory. As 
long as the stochastic view in the sense of Brownian motion remains a vi
able option, the question posed in the title can be answered by a skeptical 
"Perhaps not." Consistent with this view, Laplace's concept of probabil
ity and thus of indeterminism also remains a viable option-probability 
is the expression of ignorance of deterministic causes. 

5. RANDOMNESS AS A LIMITING CASE OF UNSTABLE DETERMINISM 

The existence of deep-seated randomness inside deterministic systems can 
be attributed to their great instability, and this suggests the road of rap
prochement between determinism and randomness. A striking feature of 
randomness and instability is complexity. Moreover, recent definitions of 
randomness are in terms of complexity. The complexity of a sequence of 
finite symbols is measured by the length of a minimal computer program 
that will generate the sequence. (For asymptotic purposes, the particular 
computer or computer language does not matter.) A simple alternating 
sequence of 1 's and O's can be generated by a very short program. More in
tricate sequences require longer programs and are therefore more complex. 
Where this argument is going should be apparent. Random sequences are 
of maximal complexity. In fact, the programs required to generate them 
would have to be infinitely long. So what are random sequences? They are 
the limiting case of increasingly complex deterministic sequences. Ran
domness is just a feature of the most complex deterministic systems. And 
what of particular importance follows from this? The separation of de
terminism and predictability. The most complex deterministic systems 
are completely unpredictable in their behavior. Laplace's "higher intel
ligence" must be transfinite. He must be able to do arbitrarily complex 
computations arbitrarily fast. To give a modern ring to Laplace's basic 
idea, I propose this. Randomness is the expression of maximally complex 
deterministic causes. 

6. DOES IT MATTER? 

Setting aside, for the moment, the problem of hidden variables in quan
tum mechanics, we may argue that the philosophically most interesting 
conclusion to be drawn from the analysis outlined in this paper is that 
we cannot distinguish between determinism and indeterminism. 

The true-blue determinist can hold, without fear of contradiction, that 
all processes are determined. Confronted with the myriad examples of 
natural phenomena that cannot be predicted and that seem hopeless to 
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try to predict, he can reply with serenity that even these processes are 
deterministic, but they are also unstable. The determinist can agree ami
ably enough that there are processes yet to be analyzed and that his belief 
that they too will turn out to be deterministic is only based on past expe
rience. This last remark is meant to ring a Bayesian bell. Pure Bayesians 
are natural true-blue determinists. After all, de Finetti begins his two
volume treatise on probability by printing in capital letters: PROBABILITY 

DOES NOT EXIST, a thesis Laplace would have heartily endorsed. 
The indeterminist, for his part, can just as firmly hold on to his beliefs, 

directly supported as they are by the phenomenological data in so many 
areas of experience. 

Moreover, with the possible exception of quantum mechanics, there 
seems to be no current possibility of giving a knock-down argument for 
either determinism or indeterminism. Under either theoretical view of the 
world, most natural phenomena cannot be analyzed in detail, and even 
less can be predicted. How drastic and serious these limitations are is not 
sufficiently appreciated. I gave a number of obvious examples in the first 
section, but even in that presumed citadel of mathematically developed 
science, classical mechanics, it is beyond our current capabilities to an
alyze a general system of one particle having a potential with just two 
degrees of freedom. 2 

Whichever philosophical view of the world is adopted, the impact on 
theoretical or experimental science will be slight. Probability has a fun
damental role no matter what, and statistical practice is complacently 
consistent with either determinism or indeterminism. (The assumption 
of determinism plays no systematic role in Bayesian statistics, for exam
ple.) 

There remains the question of whether proofs of no hidden variables 
in quantum mechanics make a decisive argument against classical deter
minism. I have mentioned already some reasons for not accepting these 
results as the last word. I want to conclude with a more general argu
ment. The essential point is the exceedingly thin probabilistic character 
of quantum mechanics. Roughly speaking, no correlations or other inter
active measures can be computed in quantum mechanics. Perhaps most 
important, if we are examining the trajectory of a particle, no autocorre
lations can be compl!-ted, i.e., correlations of position at different times, 
but such a statistic is a most natural measure of probabilistic fluctuation 
in the temporal behavior of a particle. The probabilistic gruel dished 

2 A system of one particle with two degrees of freedom is a system defined by the 
differential equations !i; = f(x), where xis a vector in the plane and f is a vector field 
on the plane. The system has a potential if there is a function U from the plane to the 
real numbers such that f = -8U/8x. 
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out by the wave function of a quantum-mechanical system is too thin to 
nourish any really hearty indeterminist. Paradoxically enough, the re
construction carried out so far of quantum phenomena within classical 
mechanics is probabilistically much richer. It would be ironical indeed if 
the deepest probabilistic analyses of natural phenomena turn out to be 
within a deterministic rather than indeterministic framework. 
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DESCARTES AND THE PROBLEM 

OF ACTION AT A DISTANCE 

1. INTRODUCTION 

My aim in this Note is to examine Descartes' position on the problem of 
action at a distance. Since the time of ancient Greece philosophers and 
physicists have puzzled over the phenomena which seem to show that one 
body can act upon another at a distance. Many have proposed to solve 
the problem by introducing sufficient kinds and quantities of unobservable 
matter to reduce every appearance of action at a distance to a series of 
contiguous actions; but they have been unable to silence the skepticism 
of those who could find no independent evidence for the existence of this 
new matter. On the other hand, those who have erected action at a 
distance itself as an ultimate principle have been unable to convince their 
fellow-investigators that it cannot be eventually explained away by more 
satisfactory modes of contact action. The result has been an interminable 
controversy still unsettled in our own time.1 

Descartes' handling of the problem is particularly interesting because 
of the enormous influence of his general ideas on the history of physics, 
particularly in the seventeenth century (Mouy, 1934; Bouillier, 1968; 
Whewell, 1857, II, 102-108, 151-57). 

*Reprinted from Journal of the History of Ideas, 15 (1954), 146-152. 
1 For example, in the area of electromagnetic phenomena, where contact-action the

ories have long held sway, action at a distance has been revived by J. A. Wheeler and 
R. P. Feynman, (1945). 

261 
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His most systematic statement on physics is his Principia Philoso
phiae2, first published in 1644. Although the main outlines of this work 
are too familiar to require re-statement here, it is appropriate briefly to 
examine Descartes' attempt to reduce the whole of physics to kinematics. 
He thought that this reduction was effected by his reduction of the concept 
of body to that of geometrical solid and by his purely relational definition 
of motion. The clear and distinct notions of size, figure and motion are 
adequate for explaining everything concerning physical bodies, provided 
that the principles of mathematics and geometry are accepted.3 

The quantity of motion is then defined as the product of the size 
( magnitudo) of a body and its velocity (as a scalar only). 4 Within this 
framework, a kinematical concept of force is defined. Force is simply 
the quantity of motion. This definition is not given explicitly and for
mally, but is easily deduced from repeated uses of the word in certain 
contexts.5 

"After having examined the nature of motion, it is necessary that 
we consider the cause of it."(Principia, II, Art. 36). At this point the 
kinematical program is abandoned and dynamics is introduced. It is to 
be noted in this connection that the concept of cause is not analyzed. 
Descartes explicitly requires that the particular causes of motion be clear 
and distinct, but he apparently tacitly assumes that the concept of cause 
itself has these two characteristics. This is also true of the more particular 
dynamical concepts of force and action. Particular forces must be clear 
and distinct, but the dynamical concept of force as the cause of motion 
is not formally considered. This second use of the word ''force" may, 
however, like the kinematical use, be easily deduced from the contexts in 
which it occurs. (Principia, II, Art. 25, Art. 26, Art. 37, Art. 43, Art. 
57-61, Art. 63.) In this sense, ''force" is synonymous with "physical cause 
of motion." (Descartes' restriction of the physical causes of non-uniform 
motion to impact forces is discussed below.) Like" force," "action" is also 
used informally and with its ordinary, commonsense physical meaning. 

2 Descartes, R. Oeuvres, Adam and Tannery Ed. (Paris, 1897), VIII. 
3 Principia, IV, Art. 203; see also II, Art. 64, IV, Art. 199. For comment on this 

point, seeK. Lasswitz, Geschichte der Atomistik (Hamburg, 1890), II, p. 97. 
4 It is sometimes held that Descartes defined what is ordinarily considered as mo

mentum, but this is a definite error, for he had no proper notion of mass. That by 
"magnitude" Descartes simply meant size or volume and not mass is supported by 
passages in the following articles of Principia, II, Art. 36, Art. 40, Art. 43, Art. 
47-52, IV, 199, 203. The quantity he does define is nearly useless. It does have two 
virtues: it is consistent with Descartes' kinematical viewpoint, and it pointed the way 
toward a correct definition of momentum. 

5 Principia., II, Art. 47-52. Cf. Spinoza, The Principles of Descartes' Philosophy, 
(1943), p. 88, "It should be noted here, that by force (vis) we understand the quantity 
of motion." 
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(Principia, II, Art. 25, Art. 26, Art. 29, Art. 49, Art. 53, Art. 56, IV, 
Art. 15-28.) 

If the actual development of Descartes' theory had been limited to 
kinematics, the problem of action at a distance would have assumed a 
peculiar meaning. However, since he does use the dynamical concepts 
of force and action with their ordinary physical meaning, the problem 
assumes its traditional significance. His answer to the problem is well
known, but in order to see its full import we want to make clear the 
fundamental epistemological distinction between Parts II and III of the 
Principia. 

2. THE A PRIORI AND THE HYPOTHETICAL FOR DESCARTES 

By contrasting the principles of Parts II and III, and their epistemological 
status, we are quickly led to a decision as to whether Descartes met the 
problem of action at a distance on a priori or a posteriori grounds. The 
general principles of material things, which comprise Part II, are all a 
priori, and the list of these principles is surprisingly large: they range from 
a denial of the existence of atoms to a statement of the law of inertia. For 
the validation of these many principles no appeal to experience is required. 
In fact, we must be careful not to be deceived by our senses, for our senses 
do not teach us the true nature of things but only that things are useful 
or hurtful. The procedure is to "rely upon the understanding alone, by 
reflecting carefully on the ideas implanted therein by nature." (Principia, 
II, Art. 3). The results of Part II rest upon clear and distinct ideas and 
are therefore certain. No evidence of our senses could be used to disprove 
them; no experiments could be performed to refute them. (Principia, III, 
Art. 4). 

On the other hand, in Part III, when Descartes turns to considera
tion of the visible world, he admits that pure deduction from the certain, 
a priori principles developed in Part II is not sufficient to account for 
the actual phenomena of experience, in this case especially the motion of 
the heavens. The principles of Part II are necessary but not sufficient to 
account for these phenomena. (Principia, III, Art. 4). The explicit con
sideration of phenomena or experiments, a switch from pure rationalism 
to at least a partial empiricism, is thus necessary to account for the details 
of the natural world. We are able to know by force of pure reason neither 
the size of the parts into which matter has been divided, the velocity of 
these parts, nor their paths. These things could have been ordained by 
God in an infinite number of different ways.6 In order to account for the 

6 In other words, the system of a priori principles of Pa.rt II is non-categorical, in the 
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world as it now appears to us, we are thus free to make hypotheses about 
how God originally ordered the various parts. We merely require of any 
such hypothesis that its consequences must be in accord with experience. 
(Principia, III, Art. 46). We may in fact know that our hypotheses are 
false, because of some revealed truth of religion for example, but that does 
not prevent their being useful and functioning as if true to permit the ar
rangement of natural causes to produce desired effects. (Principia, III, 
Art. 44, Art. 47). As the particular fundamental hypothesis to account 
for the phenomena of the visible world Descartes introduces his famous 
vortex theory.7 The fundamental assumptions of this theory are: I) there 
is order rather than chaos at the beginning; 2) the parts of matter are all 
equal and moderate in size and velocity; 3) each part has two motions, 
rotation around its own center and movement with other parts around 
some fixed center. The motion around the fixed centers provides the only 
macroscopic inequality in an otherwise isotropic universe (Principia III, 
Art. 46, Art. 47). 

We may now ask: if Descartes' general theory of matter and motion 
is irrefutable by experience, and if, on the other hand, the vortex theory 
and its consequences are refutable, at what point is action at a distance 
rejected? The answer must be that the principle of contact action is 
part of the a priori knowledge that is independent of the evidence of the 
senses. The phrase "actio in distans" does not, I believe, occur anywhere 
in the Principia.8 The result is that the explicit rejection of action at a 

sense that these principles may hold in two different worlds which are not isomorphic. 
7Stock (1931) emphasizes the role of hypothesis in Descartes' physical thought. 

Kahn (1918) has a similar thesis. Kahn argues that Descartes began his work as a 
naturalist, demanding that we go to experience to get answers and that we examine 
empirical evidence rather than the dicta of authority as a basis for reaching conclusions. 
However, due to the religious conservatism of his time, Kahn argues, Descartes was 
forced by extemal pressure to introduce deductive, a priori methods and to integrate 
God into physics. Most commentators, such as Lasswitz, would question this thesis, I 
believe. Descartes' deductive procedures are too thoroughly a part of his method to 
have been completely put upon him by Church pressure (Lasswitz, 1890, IT, pp. 55-
57). On the other hand, it is no doubt true that the strong rationalistic tendency of 
Descartes' thought has been traditionally overly emphasized. 

8 References to action at a distance can be found scattered throughout his other 
writings. Descartes was particularly concemed to give an explanation of gravity which 
would avoid any reference to occult forces, i.e., forces which either assume an inherent 
attraction between distant bodies or act in a manner similar to the action of the soul. 
A few examples are the following. In a letter to Mersenne, 13 July 1638, he examines 
three possible explanations of gravity and explicitly rejects attraction as admissible. 
(Oeuvres, Adam and Tannery Ed., II, pp. 223-224). In a letter to Princess Elizabeth, 
(III, p. 667), he asserts that gravity, heat, etc., are not substances distinct from body 
and he does not see how attraction would work as a mechanism (Ill, p. 667). In 
another letter to an unknown correspondent he asserts the cause of gravity is neither 
a real quality nor some attraction of the earth, (I, p. 324). In yet another passage he 
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distance must be constructed as an inference by the reader. However, this 
inference is not a difficult one, and I imagine no serious reader has ever 
misunderstood Descartes' position on this matter. In stating the three 
"laws of nature," which are a priori, Descartes commits himself entirely 
to impact forces and thus to a clear, although tacit, rejection of action at 
a distance. The first law asserts that every body continues in the same 
state as long as possible and that it is changed only by colliding with 
other bodies (Principia, II, Art. 37). Any kind of effective action at 
a distance is rejected by the use of "only." This law is known a priori 
because God is immutable and always acts in the same way. The second 
law of nature is that all bodies which are moved tend to continue their 
movements in a straight line. This is only violated when they meet other 
bodies (Principia, II, Art. 39). This law, like the first, is deduced from 
the immutability of God and the fact that He conserves the motion of 
matter in the simplest possible way. It also entails the a priori rejection 
of all attractive or repulsive forces acting at a distance and causing a 
body to deviate from a state of uniform motion, for such forces are not 
a case of collision as required by the law. The third law asserts that if a 
body meets another which has a greater quantity of motion, it loses none 
of its motion, but if it encounters one having less quantity of motion, it 
loses as much motion as it transmits to the latter (Principia, II, Art. 40). 
Descartes goes on to say that all the particular corporeal causes changing 
the state of a body are comprised in this rule, and thus again any action 
at a distance is ruled out, for such action would not be a case of bodies 
colliding and could not, therefore, be subsumed under this rule. 

Moreover, after the proof of the third law Descartes declares that the 
force of each body simply consists in the inertia of each body to remain 
in the same state of motion (Principia, II, Art. 43). Through this force 
of inertia a body may act on another by impact, and may in turn resist 
the impact of another body. Descartes emphasizes that the force of a 
body consists only in this inertial property; it has no active attractive or 
repulsive powers of any kind. Thus we see that to his a priori kinematics, 
Descartes added but one kind of dynamical force, that of impact.9 Every 

says that to endow particles with the power of acting at a distance would make them 
"vraiment divines;'' (IV, p. 396) .. 

9 It shoUld be noted that Descartes has traditionally been severely criticized for his 
inadequate account of how a body possessing only the property of extension could have 
resistance to impact. In the Principia this is an untouched mystery. In correspondence . 
with Henry More, Descartes states the following view: "It cannot be understood that 
one part of an extended thing penetrate another equal to it without the middle part 
of that extension being, by that fact, destroyed, or annihilated; but what is destroyed 
does not penetrate the other; and, so, in my judgment, it is demonstrated that impen
etrability belongs to the essence of extension, and not of any other thing." Oeuvres, 
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change in the state of motion of a body is to be accounted for by the 
impact of other bodies upon it, or, what amounts to the same thing, by its 
impact on them. The contact action of impact is the only mode of action 
between material things which is clear and distinct. Descartes' a priori 
mechanics is nearly faithful to his program, for this single dynamical cause 
of motion is conceived in terms of the figure, size and motion of bodies. 
Descartes emphasizes this by asserting that the quantity of inertial force 
of a body is a function of the size of the body, the surface which separates 
it from other bodies, and the speed of its motion. 

Other a priori arguments of Descartes which logically entail the re
jection of action at a distance can easily be given, but these centering 
around the three laws of motion are sufficient to show how completely 
he accepted the principle of contact action on a priori grounds. The 
consequence is that the explanation of every phenomenon must, without 
exception, be given in terms of a mechanism of contact action. As E. T. 
Whittaker has remarked (Whittaker, 1910, p. 3), this places a heavy bur
den upon Descartes' system. The explanation of gravitation, light, heat, 
fire, magnetism and the motion of the planets must in each case involve a 
mechanism of impact or pressure. Every hypothesis which is made to ac
count for any of these phenomena must use contact action, and the often 
disastrous results of adopting such a priori principles of natural knowledge 
are nowhere better illustrated than in Descartes' detailed explanations in 
Parts III and IV of the physical phenomena mentioned above. 

3. CRITICAL REMARKS 

This analysis of Descartes' position on action at a distance leads to at 
least three major criticisms of his physical theory as expounded in the 
Principia. 

1. A mechanics based on a priori principles seems doomed to failure, 
for principles which are above experience, unalterable and irrefutable, can 
never be abandoned for principles more in conformity with empirical ob
servations. Historically, there is an interesting parallel between Descartes 
and Kant. Kant's solution of the problem of action at a distance was 
different from Descartes', for he made both a principle of contact action 
and a principle of action at a distance a priori synthetic.10 Method
ologically, however, the two philosophers stand together, for they both 
offered a solution of this fundamental physical puzzle on a priori grounds. 

Adam and Tannery ed., V, p. 378. 
10 Metaphysische Anfangsgrunde der Naturwissenschajt (Riga, 1786), Zweites 

Hauptstiick. 
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Kant's analysis is, of course, more sophisticated than Descartes', but it 
suffered the same fate: incompatibility with the later development of 
physics. 

It has been argued that if it had not been for the historical accident of 
Newton and the relative weakness of contemporary Cartesian physicists, 
the Cartesian physics might have been corrected and further developed 
(Mouy, pp. 321-322). This is a defensible speculation if only the results of 
the Cartesian physics are considered. If, however, the methods by which 
these results were validated are also considered, it does not seem defen
sible. It is true that the hypothetical, refutable vortex theory could have 
been changed without violating basic Cartesian tenets, and thereby some 
of the detailed explanations of particular phenomena could have been 
considerably improved. However, the same kind of tampering with the 
fundamental mechanical principles set forth in Part II of the Principia 
could not have been tolerated. From Descartes' standpoint, to deny se
riously the truth of any principle stated in Part II would have been as 
absurd as to deny the truth of a theorem of Euclid, for every one of these 
principles belongs to the domain of mathematics and geometry ( Prin
cipia, II, Art. 64). Since the principles of Part II are noncategorical, 
that is, do not uniquely determine the complete structure of the physi
cal world, there exists the logical possibility of supplementing them by 
new hypotheses replacing the vortex theory. Nevertheless, it is unlikely 
that a set of hypotheses could have been found which would have been 
both empirically adequate and logically consistent with the a priori prin
ciples. 

2. Although in a general sense the hypothetical methods of Parts 
III and IV of the Principia are acceptable, the actual analyses of par
ticular physical phenomena are almost completely unsatisfactory. What 
is the main reason why the developments in these parts of the treatise 
now seem so ridiculous, particularly when compared with the physical 
treatises of Galileo and Newton? The central weakness, it seems to me, 
is the wholesale postulation of unobservable particles which are assigned 
complicated, yet purely qualitative, imprecisely defined structures. The 
various microscopic particles introduced by Descartes are all slavishly 
modeled after the macroscopic bodies observed and encountered in or
dinary experience. This obviously inadequate method of analogy is the 
main technique employed in passing from the general vortex theory to 
particular phenomena. 

A second, closely related weakness of Parts III and IV is that the 
logical consequences of the many subsidiary hypotheses are not pursued 
in any detail. This failing led to the early downfall of Descartes' system 
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in the most important and precise branch of seventeenth-century science, 
namely, the mechanics of the solar system. The vortical explanation of 
the motion of the planets was demolished by Newton. 11 

3. Descartes' use of an ideal fluid on the one hand, and of shaped 
particles on the other, to constitute the plenum is one of his most seri
ous and fundamental confusions. There seems to be a clear reason why 
this or some other comparable inconsistency was inevitable in his system. 
The hydrodynamics of an ideal, non-viscous fluid seems to be the natural 
physics of contact action, and this is the physics dominating Part II. A 
particle of such a fluid is essentially a point without figure or size; it can
not have definite shape, size or rigidity. Consonant with this physics of 
fluids, Descartes denied on a priori grounds the existence of atoms ( Prin
cipia, II, Art. 34,35) and the existence of attractive and repulsive forces 
acting at a distance. In thus limiting his physics so severely, he effec
tively eliminated any device for explaining the specific variety of bodies 
encountered in experience. The result was that when he turned from the 
general theory to the explanation of particular phenomena, he was forced 
to introduce surreptitiously either shaped particles, i.e., atoms, or dynam
ical forces of attraction and repulsion. The course that he does adopt is 
the one least inconsistent with his position on action at a distance. The 
shaped particles are made to explain observed phenomena by their actual 
motions, which can only be changed by impact with other particles. Dy
namical forces of attraction and repulsion, existing independently of the 
actual motions of the particles, are rejected as thoroughly in Parts III and 
IV as in Part 11.12 

This general mechanical ideal of reducing the particular causes of all 
changes in nature to simple cases of contiguous forces of impact has exer
cised an enormous hold on the development of physics even until recent 
years. Yet from a systematic philosophical standpoint, Cartesian physical 
theory is an example of reductionism at its worst. This reductionism is 
probably the source of the paradoxical historical position of Descartes' 
physics: his simplifying general ideas had great influence, yet his positive 
technical contributions were slight. A physics based on a very few clear 
ideas is perennially appealing, but it can be empirically sound and tech
nically interesting only if provided with a powerful mathematical frame-

11 Newton simply pursued the logical consequences of Descartes' hypotheses far 
enough to show that they were inconsistent with Kepler's second and third laws, 
and could not account for the observed motions of comet or planetary satellites. 
Philosophiae Natura/is Principia Mathematica, Cajori translation pp. 395, 396, 543. 

12It is interesting to note that Boscovich and Kant took the opposite course: they 
denied the existence of atoms and affirmed the existence of dynamical forces. In the 
working out of details, neither was as inconsistent as Descartes. 
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work, which is precisely what Descartes did not provide for his theory. 
Indeed, from the standpoint of physics, we may say of Descartes what 
Locke said of himself: that he served "as an under-labourer in clearing 
the ground a little, and removing some of the rubbish that lies in the way 
to knowledge." 



20 

SOME OPEN PROBLEMS IN THE 

PHILOSOPHY OF SPACE AND 

TIME 

Philosophical analysis and speculation about the concepts of space and 
time are as old as philosophy itself. Concurrent with the astounding 
technical development of greek mathematical and observational astron
omy, a polished and carefully articulated theory of space and time was 
set forth early in the Hellenistic period by Aristotle, especially in the 
Physics. Aristotle's Physics, Euclid's Elements and Ptolemy's Almagest 
form a triad that elaborate the philosophical, mathematical and physical 
foundations of space and time in ancient philosophy. Although Ptolemy 
was Aristotelian in his philosophical attitudes, a clear divergence between 
Aristotle on the one hand and Euclid and Ptolemy on the other is obvi
ous. These two quite distinct traditions, one Aristotelian and philosoph
ical, and the other mathematical and Euclidean or Ptolemaic, continued 
in the succeeding millennium and a half leading up to the outburst of 
modern science in the seventeenth century. 

The separate life of the two traditions did not stop even there. Des
cartes' Principles of Philosophy, for example, is much closer in spirit to 
Aristotle's Physics than to Euclid's Elements or Ptolemy's Almagest. 
In spite of the fact that in other domains Descartes was a creator of new 

*Reprinted From, Synthese, 24 (1972), 298-316. 
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mathematical concepts, in his Principles there is no genuine mathematical 
organization or development of ideas. From a philosophical standpoint, 
it is evident that the closeness of argument characteristic of Aristotle's 
Physics is not matched, and there is a general degradation of intellectual 
standard. 

The continuation of the Euclidean-Ptolemaic tradition is quite other
wise. Newton's Principles, first published in 1687, is very much in the 
spirit of Ptolemy's Almagest and satisfies a standard of intellectual rigor 
and clarity that would have been acceptable in Alexandria in Ptolemy's 
time. In Newton's Principles there is no sharp separation of mathematics 
and physics, or of mathematics and astronomy. To a large extent this 
fusion of mathematical and astronomical investigations was continued a 
hundred years later in Laplace's Celestial Mechanics. 

The separation of mathematical investigations on the one hand, and 
physical or astronomical investigations on the other, did not really occur 
until the nineteenth century. By the latter half of that century there were 
very few examples of individuals making original contributions both to 
mathematics and to physics. Separation of the intellectual traditions was 
nearly complete by the beginning of this century. I perhaps need to be 
more explicit in defining this separation. Certainly physicists continued 
to use mathematics and to use it with great power and sophistication, but 
original contributions to the foundations of mathematics and original con
tributions to the conceptual foundations of physics were not made by the 
same people. Of course a small number of individuals like von Neumann 
and Hermann Weyl made significant contributions to both domains, but 
still the generalization is, I think, a sound one, and midway through the 
last half of the twentieth century it is more valid than earlier. 

This scientific separation has given rise to a separation within philos
ophy, so that to a large extent the philosophical foundations of mathe
matics, including the foundations of geometry, are now an almost totally 
separate subject from the philosophy of space and time. In this article I 
would like to describe some open problems in the philosophy of space and 
time that require the methods characteristic of mathematical traditions in 
the foundations of geometry for their solution, and thereby to encourage 
within philosophy a fusion of the two traditions. 

I have organized the analysis of problems under two main headings. 
In the first section I am concerned with the geometry of space and de
liberately deal with classical questions that do not take into account the 
theory of relativity. In the second section I turn to physical space and 
space-time, including such 'Classical problems as the formulation of an 
adequate theory of bodies. 
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1. GEOMETRY OF SPACE 

Because of extensive development, the foundations of geometry are a nat
ural proving ground for more general philosophical concepts in the philos
ophy of science, but surprisingly little has been done to use this proving 
ground. I restrict myself to two classes of problems. The first class deals 
with the attempt to give operationalism a sharp foundation in the case 
of the measurement of spatial relations or, more generally, in terms of 
the geometry of space. The second class deals with combining measure
ment and error to yield some systematic theory of approximation. The 
idea of such approximations is familiar both in physics and in psychology. 
What is not familiar in either discipline is the development of geometrical 
foundations of such approximations. 

Operational foundations. Compared with the notion of constructivity in 
the foundations of mathematics, there have been few attempts to give a 
sharp formulation of the concept of an operational definition, or of op
erationalism, in the philosophy of science. The foundations of geometry 
provide an excellent place to give such a formulation. In the first place, 
perhaps the oldest issues concerning constructivity in mathematics are 
to be found in the foundations of geometry. Certainly the three classical 
problems of Greek elementary geometry-squaring a circle, duplicating 
a cube and trisecting an angle-are examples of constructive problems. 
The beautiful thing about these problems is that we can approach the 
foundations of geometry in a qualitative way, but with the objective of 
providing a precise solution to the problems. Such a solution, of course, 
is negative for elementary operations. Problems of a comparable sort 
have not been formulated in the foundations of physics, but I do not ex
plore that aspect of the problem in this section. In the present context, I 
want to concentrate only on the purely geometrical aspects of construc
tivity. 

Reflection on the three classical problems or, at a more mundane level, 
examination of the propositions in the early books of Euclid's Elements 
suggests that existential statements are always backed up by a highly 
constructive sequence of operations. From a mathematical standpoint, 
especially from an algebraic one, the natural idea then is to formulate the 
qualitative foundations of geometry in terms of operations rather than in 
terms of relations and existential statements about these relations. From a 
general philosophical standpoint the problem can be expressed as follows: 
Characterize operations that can be performed on spatial points so that 
from the known properties of the operations, the usual properties of space 
can be derived. 
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A first thought might be that these operational problems are already 
solved by the standard formulations of axioms for vector spaces, but this 
is not the case for two reasons. First, the vector spaces themselves are not 
the same in structure as the ordinary Euclidean spaces, because of the 
distinguished point of origin. Second, the operations in the vector spaces 
do not correspond to the operations needed, for example, to solve the 
problems formulated in Book 1 of Euclid's Elements, and it is clear that 
from a geometrical standpoint operations that are closer to the Euclidean 
constructions are available with many alternative possibilities open. 

Put another way, an operationally satisfactory formulation of the con
structive part of Euclidean geometry should be a theory in standard for
mulation, that is, a theory that is formulated within first-order logic with 
identity and that is also quantifier-free. The reason for the quantifier
free requirement should be apparent from what has already been said. 
An existential statement in constructive parts of geometry is misleading, 
because a specific and definite constructive method of finding the point ex
istentially postulated is known. A conceptual discrepancy exists between 
the axioms and the methods of construction when a general existential 
statement rather than a specific sequence of constructive operations is 
postulated. A reason for insisting on such a viewpoint in geometry is that 
it is possible to get a thorough understanding of the operational situation 
in a way that is not at present possible in physics. We can realistically 
hope to give a theory with standard formalization that fully characterizes 
constructive Euclidean geometry and that does so in an elementary way. 
It is not yet clear that we understand how to do this in any thoroughgoing 
fashion for substantial parts of physics, although this is a topic on which 
I shall have more to say later. 

In an earlier paper (Moler and Suppes, 1968), a constructive formu
lation of geometry in the sense just defined was given. This formulation 
depends on two primitive operations: one the operation of finding the 
point of intersection of two line segments; and the other, the operation 
of laying off one line segment on another. Both of these operations are 
discussed in some detail in Hilbert's Foundations of Geometry, but our 
task was to give an explicit axiomatic formulation in terms of just these 
two operations and in quantifier-free form. The axioms turn out to be 
complicated, and a simpler and more elegant quantifier-free formulation 
in terms of other primitive operations is needed. For example, let I be 
the intersection operation and S the laying-off operation so that I ( xyuv) 
is the point of intersection of the line determined by x and y with the line 
determined by u and v, and S(xyuv) is the point as distant from u in the 
direction of v as y is from x. Then betweenness is defined by: 



PROBLEMS IN THE PHILOSOPHY OF SPACE AND TIME 275 

B(xyz) iff [if x =f z then S(xyxz) = y = S(zyzx)] &[x = z-+ x = y], 

collinearity is defined by: 

L(xyz) iff S(xyxz) = y or S(zyzx) = y or x = z, 

and noncollinearity of four points is defined by: 

NL(xyuv) iff not(L(xyu) or L(yuv) or L(xuv) or L(xyv)). 

Euclid's axiom, the most complicated of the 18 axioms of the system, 
then has the following formulation: 

if N L (xyuv) & B(x, I(x, S(xyuv), y, u), S(xyuv)) & 

S(y, S(xyuv), x, u) =f u then L (x, y, I(xyuv)), 

which is far from transparent in its content, although we know an axiom 
of approximately this sort is necessary. 

One conjecture is that it is a mistake to take points as the primi
tive objects. The difficulty with the intersection and laying-off operations 
formulated in terms of points is that these are quaternary operations, 
and the properties of quaternary operations as opposed to binary oper
ations are inevitably somewhat complex. In subsequent thinking about 
the problem, I have looked at axioms based upon the primitive objects' 
being directed line segments with an operation of addition for such seg
ments. An additional unary operation is that of taking the inverse of a 
directed line segment. Thus, for example, a line segment plus its inverse 
yields simply the point of origin of the first line segment. The natural 
axioms here on addition and the inverse operation are close to those for 
an additive group as in the case of vector addition, but in the present 
instance they do not actually satisfy all the axioms. For example, the 
addition of a directed line segment and its inverse yields not the identity 
of the group, but the particular point of origin of the first segment. (In 
fact, we do not even get a Brandt groupoid, because the left-cancellation 
axiom is not satisfied.) In such a geometry it is also natural to add an 
operation of a qualitative comparison of length, easily represented by a 
binary ordering relation. Additional constructive operations, like that of 
one directed line segment being perpendicular to another, are also easily 
added. However, I am not satisfied with the full set of axioms I have put 
together-they are too complicated and again too awkward as in the case 
of the earlier work. 

I am persuaded that with additional effort and insight natural and 
quantifier-free axioms on simple geometric operations can provide an ad
equate formulation of constructive Euclidean geometry. 
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Geometry of approximations and errors. The theory of error in astronomi
cal observations, and more generally in any sort of numerical observations, 
dates from the work of Simpson, Lagrange and Laplace in the eighteenth 
century. Their efforts were aimed at problems that arise especially in 
astronomical observations. Dating from the latter part of the nineteenth 
century there is also a tradition in psychology concerned with the phe
nomenon that it is easy to judge, for example, tone A to be just as loud 
as tone B, tone B to be just as loud as tone C, but tone A to be strictly 
louder than tone C. This phenomenon of just noticeable differences and 
the related phenomenon of the nontransitivity of judgments of indifference 
has received considerable attention, and there is much that is common to 
the formal theory as applicable to both physics and psychology. However, 
the extension of the formal theory to spatial concepts, and thereby to 
geometry, has as yet been inadequately developed, in spite of the consid
erable conceptual interest in understanding what it is like to have directly 
a qualitative geometrical theory of error or approximation. About the 
only qualitative part of the theory that is thoroughly understood is the 
theory of order. Even then, until the relatively recent discussion by Luce 
(1956) the problem of formulating the theory of order was not properly 
considered in explicit fashion. Luce's axioms for semiorders were modified 
and simplified in Scott and Suppes (1958). The theory is developed for 
a binary relation in one dimension. In the following definition, I call a 
binary structure an ordered pair Ql = {A, R) such that A is a nonempty 
set and R is a binary relation on A. The definition of semiorders is then 
easily given in elementary form. 

DEFINITION 1. A binary structure Ql = {A, R) is a semiorder if and 
only if the following axioms are satisfied for every x, y, z and w in A: 

1. Not xRx; 
2. If xRy and yRz then either xRw or wRz; 
3. If xRy and zRw then either xRw or zRy. 

The following representation theorem for such semiorders can then be 
proved. 

THEOREM 1. If Ql = {A, R) is a finite semiorder, that is, A is a finite 
set, then there is a real-valued function <p such that for every x and y in 
A, 

<p(x) > <p(y) + 1 iff xRy. 

The closely related binary relation I of indistinguishability has been thor
oughly investigated by Roberts (1970). (We define I as follows in terms 
of R: xiy iff not xRy and not yRx.) The surprising thing Roberts shows 
is that indistinguishability, unlike semiorders, is not axiomatizable in an 
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elementary fashion by a finite set of open sentences. It is of course clear 
that a semiorder is not a natural relation in geometry because a direction 
on the line is assumed, and clearly the binary relation of indistinguisha
bility by itself does not have very much geometrical content, although its 
topological properties have been developed in a thorough way by Zeeman 
(1962). 

The next natural thing is to ask for order on the line. Classical axioms 
for betweenness on the line may be stated in terms of a ternary structure 
that is a nonempty set A and a ternary relation B, interpreted as be
tweenness. A variant of axioms that may be found in the literature is 
given in the following definition: 

DEFINITION 2. A ternary structure ~ = (A, B) is a one-dimensional 
betweenness structure if and only if the following five axioms are satisfied 
for every x, y, z and w in A: 

1. yB(xyx) then x = y; 

2. If B(xyz) then B(zyx); 

3. If B(xyz) and B(ywz) then B(xyw); 

4. If B(xyz) and B(yzw) andy# z then B(xyw); 
5. B(xyz) or B(yzx) or B(zxy). 

On the basis of these axioms, it is straightforward to prove the following 
theorem. 

THEOREM 2. Let ~ = (A, B) be a one-dimensional betweenness struc
ture and let A be a finite set. Then there is a real-valued function r.p such 
that for all x, y and z in A 

[r.p(x) :S r.p(y) :S r.p(z) or r.p(z) :S r.p(y) :S r.p(x)] iff B(xyz). 

To express the idea of approximation, we can use the notion of f
betweenness, following the developments in Roberts (1973). The intuitive 
idea is that the relation of betweenness holds to within a small physical 
or perceptual error. Formally this is caught in the following condition, 
which replaces the equivalence of the preceding theorem. 

(1) lr.p(x)- r.p(y)l + lr.p(y)- r.p(z)l < lr.p(x)- r.p(z)l + f iff B(xyz). 

For the formulation of Roberts' axioms we need the additional notion 
of an indistinguishability relation as discussed above, defined in terms 
of betweenness: xiy iff B(xyx). Of a number of different formulations 
of indifference graphs given in Roberts (1970), perhaps the simplest one 
is this. A binary structure ~ = (A, I) is an indifference graph iff any 
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subgraph, that is, any subset of A, call it A1 , is connected, that is any two 
points in A1 are related by some power of the relation I; more precisely, for 
any x andy in A1, there is ann such that xiny, and any such connected 
subgraph has at most two extreme points that are not equivalent. (Two 
points are said to be equivalent if they stand in the relation I to exactly 
the same points in a graph, and an element e of A is an extreme point if 
whenever x andy are in A, and both stand in relation I toe, but are not 
equivalent to e, then x stands in relation I to y, and moreover, there is 
another element in A that stands in relation I to x and y but not to e.) 

The axioms for f-betweenness are then embodied in the following def
inition. 

DEFINITION 3. A ternary structure l2l. = (A, B) is a one-dimensional 
f-betweenness structure iff the following axioms are satisfied for every 
x, y, z, u and v in A: 

1. (A, I} an indifference graph; 

2. If B(xyz) then B(zyx); 

3. If B(xyz) and B(ywz) and not (yiz and wiz} then B(xyw); 

4. If B(xyz) and B(yzw) and not yiz then B(xyw); 

5. If B(wyz) and B(yxz) then xiy or {zlx and ziy); 

6. If xiy then B(xyz); 

7. B(xyz) or B(xzy) or B(yxz). 

On the basis of this definition Roberts proves the following theorem: 

THEOREM 3. Let Ql. = (A, B) be a one-dimensional (-betweenness struc
ture, let A be a finite set, and let f > 0 be given. Then there is a real-valued 
function <p on A satisfying (1) above. 

Unfortunately, as is evident from the above axioms, even the the
ory of f-betweenness is relatively complicated. The axioms in terms of 
£-betweenness and what we can call f-equidistance, corresponding to the 
two primitive relations used by Tarski (1959), seem to lead to an extremely 
complicated set of axioms in order to characterize the 'approximation ver
sion' of the Euclidean plane. The problem is open of finding a reasonable 
set of axioms for the Euclidean plane in terms of f-approximations to 
standard geometric relations or operations. 

2. PHYSICAL SPACE AND SPACE-TIME 

In this section I discuss open problems connected with the following topics: 
the theory of bodies, the operational foundations of special relativity and 
the conceptual foundations of elementary physics. 
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Theory of bodies. One program of research investigated from a number 
of perspectives over many years is that ofreplacing the classical notion 
of point or line as primitive concepts in geometry and constructing three
dimensional geometry from the concept of a solid object or body. Fairly 
extensive efforts in this direction were made, for example, by Whitehead 
(1919, 1920), who regarded his efforts as a significant application of his 
method of extensive abstraction. 

A brief, but classical, article on this subject is Tarski's 'Approach to 
the Foundations ofthe Geometry of Solids,' which takes only Lesniewski's 
relation of part and the geometrical concept of sphere as primitive. A 
translation of this work from the twenties may be found in Tarski (1956, 
pp. 24-29). 

The classical tendency has been to impose increasingly strong axioms 
on bodies in order to obtain ordinary three-dimensional Euclidean space. 
In Tarski's axiomatization, for example, axioms in terms of the primitive 
concepts of part and sphere actually play a minor role, for in terms of 
these concepts he defines the concept of point and the ordinary geometric 
relations between points. 

Of particular philosophical interest is a more restricted theory of bod
ies. A useful beginning in this direction is provided by Noll (1966). I 
shall not follow through all of Noll's work, because he extends his ax
ioms to obtain a foundation of mechanics and introduces thereby spatial 
concepts in an interesting indirect way in terms of representing the force 
exerted on a body at a given instance by a vector, that is, an element of 
an ordinary vector space. The initial elementary axioms are close to the 
ideas of Lesniewski, but almost certainly the theory has been constructed 
independent of Lesniewski. Noll begins with the relation part of There 
seem to be good philosophical reasons for substantially changing some of 
Noll's approach, but the spirit of what I give below draws directly on his 
work. Although I begin with modified versions of Lesniewski's and Noll's 
axioms, I add other axioms and concepts that are not at all in the spirit 
of their developments. What is given here is incomplete and thus perhaps 
suggestive of some interesting open problems. 

Let 1r be the relation of part; in other words, in the intended interpre
tation A1rB iff A is a part of B. If B1rA and C1rA, then A is an envelope 
of {B, C}. Moreover, A is the least envelope of {B, C} iff A is an envelope 
of {B,C} and for any D that is an envelope of {B,C}, A1rD. 

Some additional definitions are useful. Their intuitive content is ob
vious. A is a common part of {B,C} iff A1rB and A1rC. Bodies A and 
B are separate iff they have no common part. Body A is a least part 
of B iff A1rB and there is no body C such that C1rA and C ::ft A. (The 
clause that C ::ft A is required because 1r is taken to be reflexive and thus 
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every body is a part of itself.) Body A is the greatest common part of 
{ B, C} iff A is a common part of { B, C} and for every body D if D is a 
common part of { B, C}, D1r A. 

We also define partial operations of join and meet. If A is the least 
envelope of { B, C}, then B U C = A, and we say that A is the join of 
Band C. If A is the greatest common part of {B, C}, then B n C = A, 
and we say that A is the meet of B and C. The operations are partial, 
because separated bodies do not have joins and meets. 

Finally, let A1, ... , An be parts of B, let A1 U ... U An exist, and let 
A1 U ... U An = B, then we say that {A1, ... , An} is a finite dissection of B. 

My incomplete set of axioms for bodies is embodied in two definitions. 
The first six axioms of Definition 4 are a weakened version of Lesniewski's 
axioms for mereology as formulated in Grzegorczyk (1955), although I use 
some of the rather natural terminology introduced by Noll (1966). The 
axioms are weaker than Lesniewski's in that products, sums and differ
ences are not necessarily defined for any two bodies. Stronger conditions 
are imposed by my axioms for products, sums and differences to exist. 
These conditions, which seem physically natural, are similar to ones im
posed by Noll. For example, for the product or greatest common part of 
two bodies to exist they must, according to the axioms given here, have a 
common part. On the other hand, the axioms diverge from Noll's in not 
postulating the body that is exterior to a given body. The existence of 
this possibly unlimited exterior seems dubious, and for many intuitive ex
amples, it is not a natural physical object. For instance, the body that is 
the exterior of the earth or sun is not conceptually well defined in celestial 
mechanics. The import of the remaining axioms is discussed below. 

DEFINITION 4. A binary structure X= (X, 1r,) is a structure of bodies 
if and only if the following axioms are satisfied for every A, B, C and D 
in X: 

1. A1rA; 

2. If A1rB and B1rA then A = B; 

3. If A1rB and B1rC then A1rC; 

4. If A and B have a common part, then they have a greatest common 
part; 

5. If A and B have an envelope, then they have a least envelope; 

6. If A is a part of B and A f= B, then there is a body C in X such 
that B is the least envelope of {A, C}; 

7. Every body has a least part; 

8. Every body has a finite dissection of least parts. 
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It should be apparent that it is easy to formulate all but the last of these 
eight axioms as first-order axioms. For example, Axiom 5 would read: 

Axioms 7 and 8 are much stronger and restrictive in character than 
the first six axioms. They may be regarded as general axioms of abstract 
atomism. Thus, Axiom 7 might be interpreted as saying that every body 
contains at least one atom, and Axiom 8 that every body is made up of 
a finite number of atoms. 

There are a number of different ways to extend the axioms of Defini
tion 4, and by heavy-handed methods, we can reach ordinary Euclidean 
geometry fairly rapidly. We simply have to postulate enough bodies and 
atoms. We would not of course expect to get the full Euclidean space 
because of the finite dissection property, but we would want to be able 
to imbed in three-dimensional space, and to get a representation of this 
imbedding technique up to the standard group of rigid motions. 

There is no doubt that this program can be carried through. The 
techniques for the one-dimensional case of measurement exploited in many 
different directions in Krantz et a/. (1971) provide more than adequate 
tools, but yet I do not see how to pursue it in a simple and elegant fashion. 
At the same time I am beginning to see a philosophically interesting aspect 
of this program if it can be satisfactorily carried through. Properly carried 
out, it should provide a new way of looking at the nature of space. 

For many technical reasons that were clear already in Greek geometry, 
it is much easier to start with points and to deal with the abstractions that 
follow not only from consideration of points, but also from consideration 
of points filling space. It is extremely hard to escape from this way of 
looking at things. The approaches to geometry that begin with a concept 
of body or solid, as, for example, those of Whitehead, Tarski, Lesniewski, 
Grzegorczyk or Noll, end up with a richness of structure that is essentially 
exactly equivalent to Euclidean three-dimensional space. On the other 
hand, this is not an idle fact; it must be recognized that we have to come 
to terms with Euclidean geometry in some form. A theory that does not 
is obviously too weak to be of serious conceptual interest. 

To begin with and to put it baldly, I propose looking at the intuitive 
concept of space as just a set of possible worlds. Of course, it is a rather 
special set of possible worlds. It is the set of all possible relative positions 
of bodies. But insisting on this viewpoint seems to me to clarify a num
ber of problems. Certainly, it strikes down the container theory of space 
which, in spite of criticisms that go back to Aristotle, continues to be 
a perennially popular view of space. This viewpoint also gives a deeper 
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analysis of relational theories of space. The difficulty with relational theo
ries is that it is too easy to cast them in terms of actual relations. Rather, 
we need to think of the set of all possible relations between bodies, and 
this characterizes space. Where we get in trouble epistemologically is in 
beginning with points rather than with bodies. It is somewhat like the 
problem of constructing a sample space in probability theory. We under
stand the construction of the sample space best when we start with the 
method of generating the possible sequence of events and use this method 
of generation to describe the possible experimental outcomes, the set of 
which constitutes the sample space. 

In constructing space as a set of possible relative positions, it is not the 
concept of point as such that creates difficulties. Rather it is the classical 
concept of there being so many points. The points ordinarily postulated 
as existing in space have no more reality under the view advocated here 
than do the possible sequences in a large number of flips of a coin. The 
various sequences represent nicely possible experimental outcomes, but in 
themselves they have no concrete existence. Only one of them will come 
to represent the actual sequence, and I say the same is true of points. 
It is not possible here to develop this view thoroughly, but I do think 
that beginning with the kind of theory of bodies discussed above it is 
feasible to develop a theory of space from the theory of bodies and to get 
the concept of space itself out as a construction derived from the set of 
possible relative positions of bodies. 

Moving from positions to trajectories we may obtain a characterization 
of space-time as the set of all possible trajectories of bodies, and this is 
probably more fundamental than the separate concept of space. 

Special relativity. On several past occasions I have stressed the significance 
of Robb's axiomatization (1936) of space-time in the sense of special rel
ativity. His axiomatization is important, because of its completeness and 
the simplicity of its single primitive-the binary relation of after holding 
between space-time events. Robb's important work has been repeatedly 
ignored by philosophers, but I am happy to say that the long article 
by Domotor in this volume includes a detailed discussion of Robb's work. 
The article by Latzer also provides an axiomatic treatment different from, 
but very close to that of Robb. 

As I have remarked in earlier discussions of Robb's axiomatization, 
the complexity of the axioms stands in marked contrast to the simplic
ity of his single primitive concept. The point I want to emphasize is the 
desirability of quantifier-free axioms of the sort discussed above for Eu
clidean geometry. It is almost paradoxical that no such axiomatizations 
have yet been given for special relativity. Given the enormous literature 
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on operationalism, its relations to Mach and Einstein, and the extensive 
discussions of physicists like Bridgman, without knowing the literature 
one would anticipate that a number of different rigorous treatments of an 
operational approach to special relativity could be found. 

One thing is evident. The kind of primitive operations I discussed 
earlier for Euclidean geometry do not seem intuitively appropriate for 
operations in a space-time manifold-! mean the operations of finding 
the intersection of two line segments and of laying off one line segment on 
another. 

From the results in Suppes ( 1959b) we should be able to establish a 
sufficient axiomatic base by considering just segments of inertial paths, 
because of the invariance of the relativistic measure of such segments. 
Moreover, as also shown in that article, we use in a natural way parallelo
gram constructions to get at the relativistic invariance of other segments 
that are not segments of inertial paths. The explicit proof in Suppes 
(1959b) of the invariance of such inertial path segments being an ade
quate basis for deriving the Lorentz transformations requires the use of 
various elementary geometrical operations, like that of finding a midpoint 
that could be used in an operational, quantifier-free geometry of special 
relativity. However, I have been unable to find a transparent way to build 
up an adequate axiomatic construction from this approach. 

The approach begun by Walker several years ago (1948, 1959) may 
possibly lead to more satisfactory results. Walker takes a richer set of 
primitives than Robb's, but one's that are related. In addition to events 
he also has particles, an ordering relation of beforeness on events, and 
most importantly, a one-one signal-mapping from one particle onto an
other. With this apparatus, he gives one of the few formal definitions 
of observables to be found anywhere in the literature of special relativ
ity; namely, an observable is a mapping from the distinguished particle 
called the observer on to the observer, that is, from that particle on 
to itself, resulting from a chain of signal-mappings and inverse signal
mappings. My central reservation about Walker's approach is that the 
signal-mappings are in fact complex functions that do all the work at 
once that should be done by a painstaking buildup of more elementary 
operations. At least that is my perspective on the intuitively correct ap
proach. Another remark is that several of his axioms are very powerful; 
for example, his notion of a particle's being dense makes each particle 
ordinally equivalent to the continuum of real numbers. All the same, 
Walker's work, which conceptually derives from the earlier intuitive ideas 
of Milne, is a clear conceptual alternative to Robb's and marks a dis
tinct advance over the level of rigor and explicitness found in most of the 
literature. 
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As the discussion in Latzer's paper in this volume shows, the math
ematical problems of finding an adequate qualitative axiomatic basis for 
the general theory of relativity are complex and formidable. But this is 
certainly not the case for the special theory of relativity, and it is sur
prising that so few axiomatic results of a definite nature have as yet been 
achieved. The absence of such explicit work indicates how poorly we 
understand in any deep conceptual way the ideas of operationalism that 
have been current for almost a hundred years. I shall say more about 
special relativity in the next section on elementary physics. 

Elementary physics. Talk about some parts of physics being elementary is 
fairly frequent, and presumably there is an effort on the part of textbook 
writers to restrict themselves to that part of physics that is elementary. 
Actually, the situation is not clear. While a modern secondary-school 
textbook will probably contain a chapter on quantum mechanics, its dis
cussion is purely qualitative and no actual numerical exercises are worked 
out. 

It is my conviction, reinforced by a number of conversations with Sey
mour Papert, that the concept of elementary physics can be made an in
tellectually respectable one, with a precise formulation of what its range 
of subject matter is. I should make it clear at once that I do not think 
there is any unique approach to elementary physics; several different ways 
of formulating the domain are possible. I do think a kind of representation 
result can be given prominence, and that I want to describe. However, I 
want to approach that representation theorem somewhat indirectly and 
begin with a characterization that is natural in the context of the great 
emphasis on first-order logic in the philosophy of mathematics and sci
ence. 

One natural approach would be to say that a part of physics is ele
mentary if it can be expressed as a theory with standard formalization in 
first order logic. Several of the problems discussed earlier in this article 
have that character, and it is certainly a framework familiar enough in 
the philosophy of science. Although organizing much of geometry in the 
first-order framework is easy, it is hard to point to significant examples of 
physics that have been axiomatized with this restriction. To some extent, 
this may be due to a lack of sustained effort, and I have the conviction 
that much real physics can be put within a first-order framework. 

Another approach that is closely related but that can get us more 
quickly into a formulation of several parts of physics, and that is proba
bly at the present time considerably more practical as an actual way of 
marking off in some systematic fashion elementary parts of physics, is to 
restrict ourselves to an elementary algebraic approach, in particular, to 
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restrict our field of numbers to an ordered Euclidean field. (An ordered 
field in the sense of modern algebra is Euclidean if whenever a positive 
element a is in the field then there is an element b such that b2 = a, 
i.e., we can take square roots.) We get all the vector space apparatus we 
need by considering vector spaces over such Euclidean fields, and we then 
introduce elementary laws of physics by means of special functions which 
take values either in the field or in a three-dimensional vector space over 
the field. Simple formulations of the conservation laws of momentum, for 
example, can easily be made within such a framework. 

A second example may be found in the foundations of special relativity 
as discussed above. It is clear that an elementary geometric foundation 
can be given for special relativity that has as its representation theorem 
isomorphism to a four-dimensional vector space over a Euclidean field. 
The proof in Suppes ( 1 959b) that in variance of relativistic distance along 
inertial paths is sufficient to derive the Lorentz transformations can be 
carried through over such a Euclidean field. Such a field can of course 
be denumerable, and consequently, the results are also interesting from 
the standpoint of the large philosophical literature on the problems of a 
metric or a measure in relativity. The intuitive reason that the proof can 
be carried through with just the apparatus of a Euclidean field available 
is that all the assumptions needed are macroscopic in character, and the 
algebraic methods of argument, although complicated in spots, are ele
mentary, for example, familiar facts needed in the argument about affine 
spaces holding for affine spaces over Euclidean fields and not just over the 
field of the real numbers. From a pedagogical standpoint, this means that 
we should be able to teach the central mathematics of special relativity to 
students who have a good background in linear algebra, but who do not 
necessarily have any knowledge of the differential and integral calculus. 
However, I shall not push this point further here. 

A third example is the algebra of physical quantities. By physical 
quantities I mean things such as lengths, times and masses; for instance 5 
meters, 10 seconds and 15 grams are all examples of physical quantities. A 
detailed study of the algebra of such quantities is to be found in Chapter 
10 of Krantz et al. (1971). Restricting ourselves only to square roots, for 
elementary purposes, we can easily give elementary axioms for physical 
quantities over an ordered Euclidean field. In these axioms, which are 
modifications of those given in Krantz eta/. (1971), the set A is the set of 
physical quantities, in which fall the different dimensions of physical quan
tities that ordinarily occur in physics. We also include in the primitive 
notions the set A+ for the positive physical quantities, a binary operation 
* of multiplication of physical quantities, a unary operation - 1 for find
ing inverses and a unary operation 112 for finding square roots. Also, in 
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stating the axioms the elements 0 and 1 of the given field are referred to. 
For more elaborate applications we will want to extend ourselves beyond 
a Euclidean field, but for elementary applications, this apparatus is suffi
cient. Consequently, I refer to the structures characterized in the axioms 
as elementary structures of physical quantities. 

DEFINITION 5. A structure m. = (A,A+,*,- 1 ,1/2 ) is an elementary 
structure of physical quantities (relative to an ordered Euclidean field £) 
iff, for all x, y, z in A: 

1. X*Y=Y*X; 

2. X*(Y*Z)=(X*Y)*z; 

3. If a E £ then a E A ; 
4. If a E £ and a E A+ then a E £+ 

5. 0 *X= 0; 

6. 1 *X= 1 ; 
7. If x f. 0 then exactly one of x and (-- 1) * x is in A+ 

8. If x,y are in A+ then X*Y is in A+ 

9. Ifxf.O,x*x- 1 =1; 

10. x 112 * x 112 = x. 

We may introduce the physical concept of dimension for such structures 
in the following way. If x f. 0, the dimension of x is defined as: 

[x] = {a* xia E £}. 

In other words, the dimension of x is just the set of physical quantities 
obtainable from x by multiplying x by a number, i.e., an element of the 
field £. Of course, if we do not want to escalate the type of objects con
sidered in elementary physics, we can introduce an equivalence relation 
instead of the set [x]. Physical quantities x and y have the same dimen
sion, e.g., length, time, mass, force, etc., if there is a number a such that 
a* x = y. 

It is shown in Krantz et a/. (1971) that an arbitrary structure of phys
ical quantities can be represented as a multiplicative vector space over 
the rationals, or more exactly, a set of dimensions of such a structure is a 
multiplicative vector space over the rationals. Given this apparatus, we 
can then go on to elementary dimensional analysis, and more importantly, 
develop the elementary theory of the laws of similitude and exchange de
veloped in Krantz et al. (1971). 

I emphasize of course that I have given only a few samples of elemen
tary physics in this brief discussion. It is, I think, worth finding out just 
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exactly how much can be done within such a framework. One possibility, 
however, needs to be mentioned for enlarging the framework. If we want 
to make an exact connection with first-order logic on the one hand, and 
the usual background of real numbers on the other, it is natural to ex
tend ourselves from Euclidean fields to real closed fields. Such fields are 
Euclidean, but they also have the property that every polynomial of an 
odd degree with coefficients in the field also has a zero in the field. A 
fundamental result of Tarski's decision procedure for elementary algebra 
and geometry is that any first-order sentence that holds for the field of 
real numbers also holds for real closed fields. By this extension, which 
takes us somewhat deeper into algebraic methods, we can get an exact 
correspondence between the two senses of elementary physics introduced 
at the beginning of this discussion. 



21 

ARISTOTLE'S CONCEPT OF 

MATTER AND ITS RELATION TO 

MODERN CONCEPTS OF 

MATTER 

In this paper I want to analyze in some detail Aristotle's concept of mat
ter. I do so not simply as a matter of historical scholarship, but in the 
interest of defending the correctness both scientifically and philosophically 
of what I would call the central doctrine. The elusiveness of Aristotle's 
detailed remarks on the concept of matter is notorious, and I shall not 
take it as my task to attempt to square my account with every passage 
that can be cited in the major works. I shall give references where they 
are obvious and appropriate. In some cases I shall assert features of his 
doctrine that are not properly documented in the text, but that I think 
are features of his concept of matter that are pretty generally accepted. 

I also am not concerned to defend the details of all of his explicit 
beliefs. For example, what he has to say about the sun and the earth 
and the nature of circular motion is dearly false in detail. I am sure 
that if he had been presented modern astronomical evidence, especially 
astrophysical evidence about the swirling chaos of low density matter in 
outer space, he would have changed his views. Errors in detail of this 

*Reprinted from Synthese, 28 (1974), 27-50. 
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kind seem to me to be of no importance. The basic doctrine, I argue, is 
correct. Moreover, I want to claim that it is correct in a strong sense: 
it can be used as a basis for interpreting the results of modern science. 
Defenders of Aristotle's concept of matter have been too defensive about 
the place of his concept in modern physics. I shall at the end of the 
paper attempt to put the case as strongly as I can for the correctness 
of Aristotle's view in the light of the best current knowledge about the 
nature of matter, as that term is ordinarily used by physicists. I am of 
course not suggesting that modern physicists talk about Aristotle or use 
in any obvious way an Aristotelian concept of matter. I do want to argue 
that they would often be better off if they did. Certain tendencies of 
research might indeed be improved if more heed were paid to Aristotle's 
doctrine than to the atomic theory we all tend so naturally and naively 
to accept. I think that it is very much a part of educated common sense 
at the present time to accept the building-block theory of matter in terms 
of atoms and molecules. We think of the spatial array of a molecule in 
terms of atoms, and we think of atoms as small planetary systems made 
up of simpler elements, such as electrons and protons. This building
block theory of matter is in detail obviously wrong. More importantly, it 
is conceptually wrong, and I want to argue that in spite of the importance 
for the history of science of the development of atomic views of matter in 
the nineteenth century and in the first part of this century, this aberration, 
like the aberration of universal determinism derived from classical particle 
mechanics, is mistaken. 

I have organized my analysis in the following way. In the next section 
I state the central features of Aristotle's doctrine. After that, I compare 
this doctrine with modern scientific concepts of matter. Next I compare 
Aristotle's doctrine of matter with that of Descartes, Boscovich and Kant, 
in order to get a perspective on the philosophical thinking that parallels 
the development of modern science. In the final section I reexamine how 
Aristotle's concept of matter can be related to specific scientific theories 
of matter. I end with the strong claim that Aristotle's basic ideas are 
appropriate and proper for modern science. 

1. CENTRAL FEATURES OF ARISTOTLE'S DOCTRINE 

I have organized the features I want to emphasize under ten headings. 
I have not given under these headings a thorough account of Aristotle's 
doctrine of substance or his doctrine of motion, both of which are closely 
related to his concept of matter. I have tried to concentrate only on those 
features that are in my judgment most essential to his concept of matter. 
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(1) Matter is the substratum of change. "For my definition of matter is 
just this-the primary substratum of each thing, from which it comes 
to be without qualification, and which persists in the result" (Physics, 
192a31; see also l90a15, 226a10, Metaphysics, 999b5, 104a32). 

Matter as the substratum of change is perhaps the most characteristic 
aspect of Aristotle's doctrine of matter. It is important to keep in mind 
the relative concept as well as the ultimate one. In one sense the matter 
of the statue is the bronze from which it is made, yet the bronze itself is 
not ultimate matter but has itself various qualities such as heaviness and 
color. The rather delicate problem of how to talk about ultimate matter 
is discussed below in greater detail. 

By putting Principle (1) first I also mean to emphasize the central 
physical character of Aristotle's concept of matter. Uses of the concept 
of matter as in talk about the matter of an argument or the matter of a 
geometrical line are taken to be clearly derivative and are not considered 
in any detail here. 

(2) A substance has both form and matter. The nature of a substance 
is complex. It is neither simply the form nor the matter (Physics, 
191a10, Metaphysics, 1043a15, and many other possible citations). 

The distinction between substance and matter is critical for Aristotle. A 
substance is never pure matter. There are cases apparently in which the 
principle stated here is contravened in the other direction, however. It is 
possible to argue that according to his view the stars, for example, are 
substances that have no matter. I refer to this below, but for sensible 
substances of the kind that form the subject of the analysis of change, 
both form and matter are required. 

(3) Matter qua matter is purely potential and without attributes (Meta
physics, 1029a19). It is realized or 'actualized' only by some form. 
Consequently, matter as such cannot be properly defined (Metaphys
ics, 1043b30, Physics, 194b8). 

Principle (3) is fundamental for Aristotle's theory of matter. It is wrong
headed from his standpoint to ask of a substance what is its form and 
what is its ultimate matter and then to ask for properties of the matter. 
This view of matter seems contrary to that of contemporary physics with 
its talk about the quantity of matter or mass as an invariant property 
of matter. It must be realized that in talking about matter in this way 
physicists are not talking about matter in the way that Aristotle does. 
In abstract classical dynamics, for example, the only property of matter 
that is admitted is its mass, but even this admission is not consistent with 
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Aristotle's doctrine of matter as pure potentiality. The evident contradic
tion between these two ways of talking about matter does not mean that 
one is wrong and the other is correct-it means that the word matter, or 
its translation in various natural languages, is being used in more than 
one sense. 

More importantly, Aristotle's own views divide naturally into state
ments about relative matter and statements about ultimate or prime mat
ter. Contrary to Principle (3) it would be appropriate for Aristotle to ask 
about the properties of the relative matter of a bronze statue, for this is 
just to ask about the properties of bronze. It must also be conceded that 
many, if not most, of Aristotle's own remarks about matter are about 
relative matter not prime matter. The reasons for this should also be 
obvious. If we simply plunge from questions about the bronze statue to 
questions about its ultimate or prime matter, there is not much we can 
say that is appropriate, but this incongruity is no different from plunging 
into a modern analysis of the molecular structure of bronze. 

The next two principles I want to discuss together. 

( 4) There is no principle of individuation for matter qua matter. 

(5) The principle of individuation for substances does not require same-
ness of matter for sameness of substance. 

Because matter qua matter is pure potentiality there are no attributes 
that can be used to characterize a principle of individuation for matter. 
(Note that in referring to matter qua matter here and earlier, I have in 
mind ultimate or prime matter, and thus an essentially equivalent for
mulation of Principle (4) is that there is no principle of individuation for 
prime matter.) On the other hand, we can use matter in differentiating 
some substances; for example, I can be holding two rocks and differen
tiate them by the fact that though their attributes seem to be the same 
they are composed of different matter. On the other hand, sameness of 
substance does not require sameness of matter. We talk about a physical 
body's being the same even though its matter may have changed; for ex
ample, a human body is both intaking and excreting substance, but we 
still speak of the identity of that human body through time. 

There is a close parallel between the absence of a principle of indi
viduation for matter and the problems of individuating points in space. 
One schematic way of describing the situation is in terms of observing in 
space the occurrence of some physical process or act. An example will 
suffice. Suppose we want to predict the height of the tide on the Pacific 
side of the Panama Canal two weeks from now at 0400 hr. Following a 
standard methodology we can represent the height of the tide measured 
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by a vertical rod as a random variable with a given continuous probabil
ity distribution. For present purposes, it is useful to think of a 'question' 
with a yes-no answer as any interval on the measuring rod (technically 
we want not just intervals but any Borel set generated from intervals). 
If the tide falls within a given interval, the answer to the question posed 
by choosing that interval is yes, otherwise, no. Now suppose we consider 
two intervals, one being the closed interval [2m, 3m], and the other being 
the open interval (2m, 3m), the difference being that the first includes 
the two end points, 2 meters and 3 meters, and the other does not. Then 
our probability prediction will be the same for both intervals, and so will 
our claim that the observed tide falls within each interval. Our methodol
ogy of observation is not even in principle refined enough to discriminate 
between these two intervals, and this means our methodology does not 
permit us to individuate individual points, but only intervals of points. 
In this case points thus play a role analogous to that of prime matter. 

Still another example of such a lack of a principle of individuation can 
be found in classical Zermelo-Fraenkel set theory with individuals. In a 
set theory of this sort, there is no satisfactory principle of individuation 
for individuals. It might seem appropriate to say that two individuals 
are identical if and only if they belong to exactly the same sets, but the 
identity of sets as formulated in the axiom of extensionality just depends 
upon two sets being identical if and only if they have the same members. 
So in such a set theory, as might be expected, we have no principles for 
asserting a principle of individuation for individuals. This of course is not 
surprising, because we have not built any structure that deals directly 
with individuals into the fundamental axioms. Indeed, with certain reser
vations, such a set theory with individuals constitutes a model for a fair 
number of the principles being stated in this section. 

(6) Substance has no contrary, but rather contraries like hot and cold 
are attributes of substance, and contraries can be attributes of the 
same substance at different times. 

For example, I may say that this pot is now hot, but it was cold when 
I started the fire a few moments ago. The pot itself does not have a 
contrary but each of its attributes can range from the attribute it now 
has to the contrary of this attribute, for example, from cold to hot. I 
shall have more to say about contraries after the statement of the next 
principle. 

(7) Only things or substances that change have matter (Metaphysics, 
1044b27). Change is connected with the potentiality of opposites 
(Metaphysics, 1050b26). 



294 PART IV. PHYSICS 

The contraries occupy a central role in Aristotle's theory of matter and 
of substance. What he has to say about these matters seems to me quite 
sensible, even though much of the talk on the surface seems very old
fashioned and far from talk of modern physics. The reason for this is not 
so much that the idea of contraries is now of no use but rather the kinds 
of examples he uses are not of great importance in physics itself; i.e., 
the concepts of hot and cold, for example, are replaced by the quantified 
concepts of heat and temperature, and more generally, the contraries rep
resent a kind of qualitative theory of measurement that in most instances 
is replaced by a quantitative theory. In the subsequent analysis I shall not 
have much to say about the contraries, but it should be recognized that 
the doctrine of contraries is intimately related with the doctrine of matter 
as substratum, and it is not coherent to have a doctrine of matter as a 
substratum without something like a doctrine of contraries. The essential 
correctness of Aristotle's theory of contraries is represented by their con
tinual use in ordinary talk. The scientific task has been not to establish 
the incorrectness of the contraries, but rather to provide a deeper-running 
quantified theory of the phenomena they describe. 

I have avoided here the difficult problem of the generation and de
struction of substances, and the analysis of contraries that is attached to 
the four elementary substances (e.g., in Physics, 189b). The last chap
ter of Book I of the Physics does seem to yield a relatively straightfor
ward argument for the conservation of prime matter, but since an explicit 
conservation law seems contrary to the spirit of Aristotle's view, I have 
omitted a separate statement of such a principle. It does seem needed in 
any attempt to make explicit the theory of generation and destruction of 
primary substances. 

(8) The matter of a body or substance is not the place of the body or 
substance, and is not therefore that which contains the body or sub
stance. Put another way, the matter of a body or substance cannot 
be identified as the container of that body or substance (Physics, 
209b22 and 211b30). 

This principle is a clear enunciation that matter is not space and a con
tainer theory of matter is not part of Aristotle's doctrine. I highlight it 
here because it is, under one interpretation, in direct contradiction with 
Descartes's theory of matter as extension, which I discuss in Section 3. 

(9) The void does not exist as a separate thing or substance. The most 
that can be said is that ''the matter of the heavy and the light, qua 
matter of them, would be the void "(Physics, 217b22). 
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This principle I include to separate Aristotle from the classical atom
istic tradition and, for example, from the theory of matter advocated by 
Boscovich. More importantly, the idea of empty space has been central 
to atomic doctrines, both ancient and modern, but it is also true that 
since the discovery that light and other electromagnetic phenomena are 
propagated with finite velocity there has been little tendency to accept 
the void as a serious physical concept. It is also part of this principle that 
Aristotle does not accept that matter is made up of indivisible homoge
neous simple elements that exist in a void. In other words, the atomic 
theory of matter is inconsistent with Aristotle's. 

(10) The sun and stars have no matter; their motion does not involve 
the potentiality of opposites; circular motion has no contrary (On 
the Heavens, 270a12; Metaphysics, 1050b22). 

As indicated earlier, this principle of Aristotle seems mistaken, but I do 
not take the mistake to be a serious one. 1 On the basis of modern evidence 
I am sure it is the one principle of the ten that he would have changed. 
It seems to me that the remaining ten can stand essentially unaltered. I 
do not mean that there are no other statements of Aristotle about matter 
that need correction, but of the features that I consider characteristic 
of his doctrine, it is only this last that seems to me to be clearly and 
unequivocally in error. The error is in a major application of the general 
theory, not in the general theory itself. 

2. MODERN SCIENTIFIC CONCEPTS OF MATTER 

Before examining in more detail Aristotle's concept of matter it may be 
of some value to relate it in a general way to modern concepts of matter. 
There are two great traditions to be examined. One is the philosophical 
tradition and the other is the scientific. In the earlier period, of course, 
these traditions were not sharply separated. I take as prime examples of 
the philosophical tradition Descartes, Boscovich and Kant. Descartes and 
Boscovich both thought of their contributions as being part of science as 
well, insofar as there was any clear separation between philosophy and 
science in the seventeenth century and in the framework of the eighteenth 
century within which Boscovich operated. Kant clearly separated his own 
contribution, especially the metaphysical foundations of natural science 
as set forth in the work of that title. The scientific tradition, on the other 
hand, is associated with the development of atomic theories of matter 

1 Aquinas, in the Treatise on Separate Substances, takes the firm position that the 
heavenly bodies have both form and matter. 
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in the nineteenth century and the deep development of particle physics 
and quantum mechanics in the twentieth century. It is characteristic of 
the scientific tradition that it is difficult to find explicit and categorical 
answers to the question, what is matter? The view of matter that may 
be inferred from the scientific tradition is, however, often fairly obvious. 
It would take us too far afield to try to examine the history of that 
development in detail. It may be useful to say something about it before 
turning back to the philosophical tradition. 

Certainly one conclusion that can be drawn is that even implicitly 
there seems to be nothing close to Aristotle's concept of prime matter in 
the scientific developments since the end of the eighteenth century. Much 
of the initial thrust was to revive and actually develop a very viable theory 
of atoms, a theory that certainly is closer to the ideas of Democritus and 
Epicurus than of Aristotle. In the latter part of the nineteenth century 
electromagnetic theory and the experiments connected with the develop
ment of special relativity create an atmosphere that is more congenial to 
Aristotle's ideas, but the remoteness of these developments from Aristotle 
is exemplified by the fact that in E. T. Whittaker's exhaustive History 
of the Theories of Aether and Electricity {1910) there is no mention of 
Aristotle whatsoever. Of course, it is possible to attribute this to igno
rance on the part of the scientists responsible for the theories of the ether 
and electricity, and it is even possible to attempt to claim that the con
cept of the ether is itself closely related to Aristotle's concept of prime 
matter. However, a little reflection indicates that this is a futile hope. 
Certainly it is completely inconsistent with Aristotle's characterization of 
matter to attempt to build the kind of mechanical model of the ether for 
which Lord Kelvin and Maxwell are famous. The definite attribution of 
mechanical and electrical properties to the ether is inconsistent with Aris
totle's conception of prime matter as pure potentiality. In fact, the main 
thrust of the nineteenth-century models of the ether was to apply the rel
atively deep mathematical and conceptual developments of the mechanics 
of fluids to the construction of mechanical models of the ether, with the 
addition possibly of separate and independent electromagnetic properties. 

It must also be recognized that from the end of the nineteenth century 
and through the development of quantum mechanics, the acceptance of 
the electron as a fundamental particle of an indivisible and fixed character 
with definite mass and charge is very much in the spirit of Democritus 
and atomism, rather than in the spirit of Aristotle's physics, just as was 
the case a hundred years earlier in the development of the atomic theory 
of matter. I know of no serious discussion that relates Aristotle's concept 
of matter to the theory of fundamental particles running from, say, 1890 
to 1930. 
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There are two further remarks I want to make about Aristotle's con
cept of matter in connection with modern scientific theories of matter. 
The first concerns axiomatic foundations of modern theories. It might 
be thought that even though the formulations of theories of matter by 
physicists do not invoke a concept at all close to Aristotle's this is simply 
due to their leaving implicit major assumptions. It is well known, for ex
ample, that foundational discussions of physics do not in general satisfy 
the most rudimentary mathematical standards of explicitness from an ax
iomatic standpoint. It might be felt that an explicit axiomatic theory of 
mechanics or electromagnetic theory would bring out closer connections 
between Aristotle's theory of matter and contemporary scientific theories. 
The contrary seems to be the case. 

If we consider, for example, axiomatizations of particle mechanics, we 
take as undefined or primitive the set of particles but immediately at
tribute properties to these particles, especially mass. As we move on to 
more complicated objects like rigid bodies we attribute additional fixed 
properties like those of moment of inertia. When we turn to electro
magnetic theory we encounter attribution of charge or, in the case of 
electromagnetic fields, measures of intensity of the field that are meant 
to be in principle observable. Nowhere in such discussions is there a hint 
of something corresponding to Aristotle's distinction between form and 
matter. 

There is one possible exception to these remarks; it is the case of 
classical continuum mechanics, to which I return in Section 4. 

The second remark concerns the apparent instability of current con
cepts about elementary particles and the general chaos of theory in high 
energy physics. When it was thought that there were a few fundamen
tal particles out of which everything else in the universe was composed 
and that these particles were themselves indestructible and in some clear 
sense elementary simples, then the atomic theory of matter seemed to 
have won the battle, even if the elementary particles did not possess all 
the properties we expect of macroscopic bodies. Research in physics of 
the last couple of decades has shown that this picture is not at all the 
correct one. The number of particles has been shown to be very large, and 
there is now some skepticism that any simple account in terms of a few 
fundamental particles will ever be made to work. Certainly it would seem 
that the present situation in high energy physics is much more congenial 
to an Aristotelian theory of matter than the situation that obtained even 
30 years ago. I shall have something more to say about these matters in 
Section 4. 
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3. SOME COMPARATIVE PHILOSOPHICAL CONCEPTS OF MATTER: 

DESCARTES, BOSCOVICH AND KANT 

If philosophical developments closely followed the scientific developments 
just sketched, then little sign of Aristotle's influence on modern philo
sophical concepts of matter would be expected to be found. If we look 
at the most influential concept of matter in the seventeenth century, the 
century that ushers in modern science, then all traces of Aristotle seem to 
have disappeared. I refer of course to Descartes's concept of matter. This 
also seems to be true when we look at Boscovich's influential views in the 
eighteenth century, but the situation is quite different when we come to 
Kant. 

To provide a broader framework for analyzing Aristotle's concept of 
matter, I shall briefly examine the concept of matter advanced by each of 
these three philosophers. 

The most systematic exposition of Descartes's physical theory is to 
be found in his Principia Philosophiae (1644). Part II of this treatise 
is concerned with the general principles of material things that can be 
known clearly and distinctly. In this part are established a large number 
of general propositions concerning the nature of matter, the existence of 
atoms, the laws of motion, etc. As is well known, Descartes attempts to 
describe and explain the physical world in terms of nothing but exten
sion and motion. The fundamental characteristic of matter or body is 
extension (I, Art. 53, II, Art. 4).2 This property of extension is the only 
clear and distinct idea of body that we can have (I, Art. 54, Art. 63, 
II, Art. 1). On the other hand, matter qua extension is obviously undif
ferentiated, so there is a difficulty to explain the variety and diversity of 
bodies. Descartes's answer is given in terms of motion, "All the variation 
in matter, or diversity in its forms, depends on motion" (II, Art. 23). The 
only kind of motion admitted is of course local motion, and the proper 
definition of motion is "the transference of one part of matter or one body 
from the vicinity of those bodies that are in immediate contact with it, 
and which we regard in repose, into the vicinity of others" (II, Art. 25). 

Descartes gives a succinct summary of his theory in the following pas
sage (IV, Art. 203). 

Having considered in general all the clear and distinct notions 
that can be in our understanding concerning material things, 
and not having found any of these other than those of fig
ure, size, and motion, and the rules according to which these 
things can be diversified by one another, which rules are the 

2 References refer to Parts and Articles of Descartes's Principia. 
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principles of geometry and mechanics I judged that all the 
knowledge that men could have of nature had necessarily to 
be derived from this only; because all the other notions that 
we have of sensible things being confused and obscure, cannot 
serve to give us knowledge of anything outside us. 
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There is a great deal of additional detail in the Principia, but it is inor
dinately tedious to read, and we can well believe Gassendi's remark that 
he knew no one who had read the work in its entirety. The features of 
Descartes's theory that I have presented here are sufficient to recognize 
its conceptual inadequacy. Descartes's reduction of the concept of body 
to that of geometrical solid and his use of a purely relational definition 
of motion made it impossible for him to give a consistent extension of 
these ideas from kinematics to dynamics. His own account of forces is a 
shambles and is simply a reflection of the inadequacy of Descartes's ideas 
for the development of any serious conceptual framework for physics. 

The greater subtlety and empirical adequacy of Aristotle's ideas are 
evident, and it may seem something of a puzzle to understand why Des
cartes's ideas had the enormous influence they did in the seventeenth 
century. (This influence has been well documented in the classic work of 
Mouy (1934).) 

Of course, the simplicity and surface clarity of Descartes's prose is 
enormously appealing in contrast to the Proustian quality of the commen
tators on Aristotle. In any case, the change from one set of philosophical 
ideas to another is not a process that we understand very well or have as 
yet studied with any thoroughness. It is still astounding to find Descartes 
taken so seriously, but not nearly as astounding as other philosophical 
examples that could easily be cited. 

Boscovich, operating almost a hundred years later, adopted a method
ology very similar to Descartes's but in many respects stood Descartes's 
theory on its head, though he remained as far from Aristotle as did 
Descartes. The analysis of his concept of matter I give here is restricted 
to his major work, the Theoria Philosophiae Natura/is, which was first 
published in Vienna in 1758 and then in a revised form in Venice in 1763. 
(References are to articles of this work.) 

In the first six articles, Boscovich states what he has in common with 
Newton and Leibniz, and how his own theory differs from theirs. His 
nonextended points are similar to Leibniz's monads, and the mutual forces 
acting between them are extensions of Newton's ideas about forces. He 
differs from Leibniz in making his points homogeneous and denying the 
principle of indiscernibles and the doctrine of sufficient reason. He differs 
from Newton, he says, by using repulsive forces as well as attractive ones. 
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Boscovich thinks that his greatest achievement was to improve on Newton 
and reduce phenomena to one principle, his single law of forces. He felt 
that his chief intellectual debts were to Leibniz and Newton, and in his 
own mind his relation to the Cartesians is primarily negative. Aristotle 
plays little part in the explicit discussion of his theory. 

The kernel of Boscovich's theory of matter is easily summarized. The 
matter of the universe is composed of a finite number of nonextended 
points: attractive and repulsive forces, which are a function of distance 
only, act between these points according to a single law of forces. All 
the observed phenomena of nature are to be explained solely in terms of 
the distribution and motion of these points and the forces acting between 
them. In his own picturesque phrase, "matter is interspersed in a vacuum 
and floats in it." (Art. 7) 

The principle of the nonextension of matter and the law of forces are 
the two fundamental hypotheses of Boscovich's theory, but they are not 
presented as axioms from which verifiable consequences are deduced. In
stead, a plausible derivation of them from the more familiar and generally 
accepted laws of impenetrability and continuity is given. I shall not enter 
into these details here, but Boscovich's arguments provide indirectly an 
excellent critique of the Cartesian ideas and bring out inconsistencies in 
the Cartesian notions. 

Boscovich reaches four main conclusions about the primary elements 
of matter. The first one is that the parts of matter are not contiguous, 
and the second is that the primary elements are simple, for if they were 
composite, the indefinitely large repulsive forces would drive the pieces 
asunder. Boscovich states his view very clearly: 

Now, because the repulsive force is indefinitely increased when 
the distances are indefinitely diminished, it is quite easy to see 
clearly that no part of matter can be contiguous to any other 
part; for the repulsive force would at once separate one from 
the other. Therefore it necessarily follows that the primary 
elements of matter are perfectly simple, and that they are not 
composed of any parts contiguous to one another. This is 
an immediate and necessary deduction from the constitution 
of the forces, which are repulsive at very small distances and 
increase indefinitely. (Art. 81) 

The third conclusion about the primary elements of matter is more 
uniquely Boscovich's own than the first two. It is that the elements are 
nonextended. The direct argument runs as follows. Since the elements are 
simple, they cannot have extension of the ordinary sort, but the question 
arises: can they have what the Scholastics called "virtual extension"? 
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Virtual extension compared with actual extension can for our purposes 
probably best be understood by giving an example or two. God, who is 
perfectly simple, is yet everywhere. In the same way, some have argued 
that the soul is simple and yet (virtually) extended throughout the whole 
body. 3 Boscovich is willing to admit that it is metaphysically possible 
that the primary elements of matter possess such virtual extension, that 
is, that it cannot be proved on metaphysical grounds that they do not 
(Art. 83). However, on empirical grounds he argues it can be shown 
that they do not possess virtual extension. If virtual extension were a 
property of bodies of sensible size, we would be able to observe it. No 
such observations have ever been made. "Further, this property by its 
very nature is of the sort for which it is equally probable that it happens 
in magnitudes that we can detect by the senses and in magnitudes which 
are below the limits of our senses." Thus, since it is not observed in 
the one case, we may infer by induction that it does not occur for the 
primary elements of matter that cannot be directly observed (Art. 84). 
This discussion of virtual extension is one of the less satisfactory aspects 
of Boscovich 's analysis. It is simply part of his argument to stand fast on 
the view that the primary elements of matter are nonextended. A good 
many additional arguments about nonextension are given, especially in 
Articles 88-90. 

The fourth conclusion about the primary elements of matter is that 
they are homogeneous. Boscovich offers several arguments in support of 
this conclusion. One argument depends on the law offorces. The curve of 
forces is the same in its two asymptotic branches for all elements, since all 
are equally impenetrable and subject to gravitational action. Now there 
are infinitely many more curves "which, when they differ in the remaining 
parts, also differ to the greatest extent in the extremes, than there are 
curves, which agree so closely only in these extremes" (Art. 92). Hence, 
Boscovich asserts, it is infinitely more probable that the curves agree 
in all their parts than that they differ between their identical extremes. 
(Another and rather similar argument is adduced from the similarity of 
bodies (Art. 96, Art. 97).) The Leibnizian objections to homogeneity 
on the grounds of the principles of sufficient reason and indiscernibles are 
rejected with supporting arguments. A vivid analogy using books, letters 
and dots is used to complete the arguments for this fourth conclusion. 
Assume a method of printing that prints each letter as a dense series of 
small, similar black dots (rather like many modern computer printers). 

3 This Scholastic notion of virtualness is hard to give empirical content. Typical 
examples of another sort help illustrate its meaning: a pentagon virtually contains 
a quadrangle and a quadrangle virtually contains a triangle; a man is virtually an 
animal, and an animal is virtually a plant. 
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From the letters of the alphabet all words used in books are formed. Thus 
the enormous diversity actually to be found in books can be accounted 
for by the distribution of many similar black dots. The analogy runs this 
way. Books correspond to gross bodies. The different substances found by 
chemical analysis correspond to words. Further chemical analysis discloses 
a few fundamental particles that correspond to the letters. And finally 
the dots composing the letters correspond to the simple, homogeneous 
primary elements of matter (Art. 98, Art. 99). 

It seems fair to say that Boscovich's theory represents the thorough 
working out of the ancient atomistic tradition, and he represents the car
rying of this tradition to its finest point. He has, like Descartes, the virtue 
of offering an extraordinarily simple and clear theory. It is unfortunate 
that it just turns out to be so thoroughly unworkable and inadequate. It 
seems to me that in many ways Boscovich's theory represents the fan
tasies of many physicists, who would like to find that matter is made up 
of ultimate simples that have exactly the properties predicated of them 
by Boscovich. 

We can see that Boscovich is the opposite of Descartes in affirming that 
matter is nonextended and that empty space is everywhere, but in the 
simplicity of his basic conceptions there lies strong affinity to Descartes. 
Given the great simplicity of Descartes's or Boscovich's ideas, it might 
seem that there would be little hope of reviving the subtler and more 
difficult Aristotelian ideas, even if the ideas of Descartes and Boscovich 
turned out to be wholly inadequate in providing a framework for actual 
physics. 

Kant provides a counterexample. His ideas about substance are much 
closer to Aristotle's than to Descartes's or Boscovich's. Aristotle's basic 
argument about substratum, i.e., there must always be something un
derlying that which is in the process of becoming, is essentially Kant's 
argument for the existence of substance. It will be worthwhile to look at 
some of the details. 

I shall mainly deal with Kant's views on the nature of matter as set 
forth in the Metaphysical Foundations of Natural Science, but I shall 
also make reference to significant passages about substance in The Cri
tique of Pure Reason. Kant's use of the categories to find the specific 
determinations of matter is another Aristotelian aspect of his theory of 
matter. There are some difficult problems about the relationship between 
the concepts of matter and motion for Kant, and I do not want to en
ter into these problems in detail here. I have discussed them elsewhere 
(Suppes, 1967). For the purposes of our discussion here I think we may 
claim that Kant held that the concept of matter includes the concept of 
an object of the external sense and that this latter concept includes the 
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concept of motion. Whether this is exactly the correct story, Kant does 
assert unequivocally that we may reduce all proper natural science to a 
pure or applied theory of motion. It is then as the doctrine or theory 
of motion (Bewegungslehre) that the metaphysical foundations of natural 
science are brought under the four divisions of the table of the categories. 
In the first division, matter is considered purely according to its quantity 
of motion, abstracted from all its qualities. This gives us the theory of 
phoronomy or kinematics. In the second division, motion is considered as 
belonging to the quality of matter, "unter dem N amen einer urspruenglich 
bewegenden Kraft". This yields dynamics. The third division is mechan
ics; here, motion as quality is considered in relation to other reciprocal 
motions, or, more exactly, matter with this dynamical quality of possess
ing an original moving force is considered in reciprocal motion. In the 
fourth division, entitled phenomenology, matter in motion or at rest is 
considered according to its modality; that is, whether in its determination 
as a phenomenon of the external sense it is determined as possible, real 
or necessary. 

If we left matters at this level of generality, it might seem that there 
was an enormous similarity between Kant's and Aristotle's theory of mat
ter. However, the special role that Kant assigned to fundamental forces 
of repulsion and attraction moved the development of his ideas away from 
a purely Aristotelian framework. Kant emphasizes that the fundamental 
forces of repulsion and attraction cannot themselves be constructed; their 
possibility cannot be demonstrated. These fundamental forces are not de
rived from experience, nor can they be mathematically constructed from 
other concepts, which would be necessary to demonstrate their possibil
ity. They are jointly the ultimate ground for the possibility of matter. 
If one asks why matter fills its space by these original forces, the only 
answer is that they are necessary conditions for the construction of the 
concept of matter. Reason can do no more than reduce the diverse forces 
appearing in nature to these two fundamental ones, "beyond which our 
reason cannot go". 

If the fundamental forces cannot themselves be comprehended or ex
plained, if they are each the source of an ultimate explanatory principle, 
and if the concept of them is used to construct the concept of matter, 
then the delicate problem arises: of what are these forces predicated? Is 
it a vicious circle to say they are forces of matter? Would it be more 
nearly correct to say that these forces are matter? This is not the same 
as asking for an explanation of the forces. Rather, accepting them as 
ultimate, we are asking the different question: to what do they belong, 
if anything? Boscovich answered this question by making forces ultimate 
in nature, but retaining as carriers of the forces a finite set of points of 
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singularity. For Boscovich, forces are predicated of these points, which for 
him solves the question that we are now asking Kant. Kant eliminates all 
points of singularity in space that might serve as ultimate subjects of the 
forces. Empty space cannot be an object of experience, and every part, 
i.e., every point, of filled space possesses forces of attraction and repulsion. 
Now it is tempting to say that in abolishing all points of singularity and 
predicating forces of every point of space that can be experienced, Kant 
has unequivocally adopted a complete dynamical theory of matter and 
has asserted that forces are matter. There are passages in the Dynamics 
that lend definite support to this view. For instance, the General Re
mark on the Dynamics begins: "The universal principle of the dynamics 
of material nature is: that all reality of the objects of the external sense, 
which is not mere determination of space (place, extension and figure), 
must be regarded as moving force .... " However, there does not seem to 
be a fully adequate case for this view. The discussion of substance in the 
Critique forms one of the chief difficulties for such an interpretation. The 
first analogy of experience states the principle of the permanence of sub
stance. This analogy is the rule corresponding to the category of inherence 
and subsistence. The principle states that in all changes of phenomena, 
substance is permanent and is neither decreased nor increased (Critique, 
B224). Substance is simply the substratum of all determinations in time, 
i.e., of all changing phenomena. Kant's argument is that the bare suc
cession of phenomena must have a permanent substratum as a necessary 
condition, for this substratum is "the condition of the possibility of all 
synthetical unity of perceptions, that is, of experience" (Critique, A183, 
B226-27). Without this substratum, the manifold of phenomena given in 
time could not be determined according to any rules, and could not be 
connected as objects enduring in time. 

The second analogy of experience, which corresponds to the category 
of causality, is that all changes take place according to the law of causal
ity. For the moment, the important point of this is that changes must 
be changes in the determinations or states of the permanent substance, 
one state following another according to a given rule. The permanent 
substance provides the ground for the connection of successive states; in 
fact, if substance were created or destroyed, the universality of the law of 
causality would be violated (Critique, B232-33). 

But what is the empirical criterion of substance? "Action ... is a suffi
cient empirical criterion to prove substantiality, nor is it necessary that I 
should first establish its permanency by means of compared perceptions, 
which indeed would hardly be possible in this way, at least with that 
completeness which is required by the magnitude and strict universal
ity of the concept" (Critique, A205, B250-51). Action directly implies 
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the relation of the subject of causality (substance) to the effect. But 
for action there is needed the permanent substratum, for "actions are 
always the first ground of all change of phenomena, and cannot exist 
therefore in a subject that itself changes, because in that case other ac
tions and another subject would be required to determine that change" 
(Critique, A205, B250). Actions, forces, cannot subsist by themselves but 
must be determinations of a permanent substratum. On the other hand, 
Kant says, substance "appearing in space," that is, matter, can only be 
known to us through the two fundamental forces of attraction and re
pulsion. Other properties of matter are unknown to us (Critique, A265, 
B321). 

Without going further into the systematic discussion of substance in 
the Critique, I believe we may now answer the question we asked about the 
fundamental forces. Matter, as spatial substance, as the ultimate subject 
of the science of physics, is not simply the two fundamental forces. It is 
true that the concepts of these two forces are precisely those that permit 
us to construct the concept of matter, i.e., represent it in intuition; and 
simply as an object of intuition, matter is equivalent with them. How
ever, matter as substance is also the permanent substratum of all spatial 
phenomena. The fundamental forces are not this permanent substratum, 
but rather it is "the amount of the fundamental forces" possessed by a 
given part of this substratum that determines its particular state. The 
mathematician or physicist, dealing as he does only with pure or em
pirical intuitions, might successfully equate the fundamental forces and 
matter; but the philosopher, probing at the foundations of the data of 
intuition, knows that the fundamental forces are not the ultimate subject 
in space, but are the specific determinations of that subject (the perma
nent substratum). And this conclusion is supported in the third division 
of the Metaphysical Foundations, where Kant specifically states that the 
quantity of substance in a matter, that is, the quantity of the permanent 
substratum, is not a function of the amount of the fundamental forces in 
that matter, but must be estimated mechanically, that is, by the amount 
of its motion. 

It seems to me that this discussion of force and matter in Kant
the delicate effort he makes to assign a fundamental place to force, and 
yet not eliminate an independent concept of matter-is still pertinent 
today. It is particularly relevant to the tangled problems of thinking 
about force, matter and energy, in any conceptually clear way, in the 
context of contemporary nuclear physics. I do not mean to suggest that 
detailed answers for today's puzzles are to be found in reading Kant. I do 
think that some of the too-simple models we associate with the Cartesian 
and Newtonian tradition would be more easily rejected as inadequate 
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on general philosophical grounds if we took seriously Kant's careful and 
discriminating analysis. 

Kant's dynamical forces are certainly not a part of Aristotle's theory 
of matter, but the discussion of substance as substratum is very much in 
the Aristotelian spirit, and shows clearly enough that Aristotle's funda
mental ideas were restored to the mainstream of philosophical discussions 
of matter by Kant. 

4. SCIENTIFIC RECONSTRUCTION OF ARISTOTLE'S CONCEPT OF 

MATTER 

As I promised earlier, I want to end by making a case for the scientific 
relevance of Aristotle's concept of matter to contemporary physics. There 
are three directions of attack I think can be successfully taken. One is in 
terms of the modern evidence on elementary particles, the second concerns 
modern work on the foundations of classical mechanics and the theory of 
bodies in classical mechanics, and the third is the attitude toward the use 
of random variables in probability theory. I shall only discuss the first 
two lines of attack in this paper, and reserve the random-variable analysis 
for another occasion. 

As the atomic theory of matter became a workable empirical theory 
at the beginning of the nineteenth century, it looked certain at that time 
that the ancient atomic theories of matter were the conceptually correct 
ones, and all that was left was to work out the details of the interactions 
of the fundamental atomic parts of matter. 

By the end of the nineteenth century it was recognized that atoms 
have structure, and aspects of this structure were clearly identified. The 
concept of a nucleus with electrons "in orbit" around the nucleus was de
veloped, and everything seemed once again quite satisfactory. The atom 
was thought of on the lines of a small-scale solar system, and the funda
mental particles were now not atoms, as atoms had been identified earlier 
in the century, but electrons and protons. It also seemed clear that these 
elementary particles had fundamental constant properties, for example, a 
fixed mass (rest mass as the theory of relativity developed), a fixed charge 
and a negligible but definite size. 

As quantum mechanics developed and the many experimental anoma
lies in the classical picture of the structure of the atom were identified, it 
became apparent that the particles that make up an atom were not simply 
little balls bounding around in a small-scale world very much like the one 
we observe. The properties were peculiar and the theory was tantalizingly 
elusive. It was also recognized that matter was not indestructible, con-
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trary to ancient ideas of an atomic sort, but that it could be converted into 
energy. Still, the case for the atomic theory in some form seemed strong, 
and most physicists probably felt that some version of the atomic theory 
was basically the correct theory of how the universe was put together. 
Even if electromagnetic and possibly gravitational fields were admitted, 
the atomic theory together with some kind of theory of the ether seemed 
to create a plausible picture. 

The pursuit of particles continued and as the energy levels became 
higher it became apparent that the world is full of particles that are con
tinually undergoing processes of generation and corruption, as Aristotle 
would put it. Methods for observing this generation and corruption were 
brought to a fine point by bubble-chamber apparatus and other related 
methods. 

It does not seem to me necessary to fill in the details of this picture in 
order to describe in qualitative terms how Aristotle's theory of matter fits 
in. From Aristotle's standpoint, the search on the basis of the evidence 
available for fundamental building blocks is a clear mistake. The empirical 
evidence from macroscopic bodies and also from high energy particles is 
that the forms of matter continually change. There is no reason to think 
that there is a spatial buildup of electrons, for example, from some more 
elementary objects. The collisions of electrons and other particles to 
produce new particles as observed, for example, in cloud-chamber and 
other experiments is simply good Aristotelian evidence of the change of 
form of matter. The cloud-chamber data especially support Aristotle's 
definition of matter. As we observe change there must be a substratum 
underlying that which is changing. What is the substratum underlying the 
conversion of particles into other particles, or the conversion of particles 
into energy? The answer seems to me clear. We can adopt an Aristotelian 
theory of matter as pure potentiality. The search for elementary particles 
that are simple and homogeneous and that are the building blocks in some 
spatial sense of the remaining elements of the universe is a mistake. There 
is a continual conversion of the forms of matter into each other; there 
is no reason to think that one form is more fundamental than another. 
The proper search at a theoretical level is for the laws that describe these 
changes of form, and not for the identification of elementary particles that 
are in some fundamental and ultimate sense simple and homogeneous. 

In summary, the case seems good for Aristotle's theory of matter pro
viding an excellent way of looking at the phenomena of high energy physics 
as well as at the rrl.acroscopic kind of phenomena Aristotle himself had 
available. I do not mean to suggest that we can pull any detailed wide 
scientific laws from Aristotle. What is valuable in his concept is its wide 
applicability as a way of thinking about physical phenomena. 
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Kant was right in his criticism of the Cartesian mechanical method, 
but he was wrong in a way that Aristotle was not in attempting too simple 
an account of the fundamental forces of nature. 

This sketch I have given of the way in which Aristotle's theory of 
matter can be used to provide a sound interpretation of the proliferation 
of particles and processes in high energy physics needs of course to be 
spelled out in greater detail, but it seems to me that its essential soundness 
is easy to recognize in spite of the broadness of the strokes I have used. 

Classical mechanics of bodies. It will be useful to end with a more de
tailed and technical treatment. The reader who is unfamiliar with the 
manifold problems encountered in the exact statement of the foundations 
of classical mechanics may think that there is little new to be said about 
this subject, and that there is scarcely a proper place for the Aristotelian 
concept of matter. The point I wish to emphasize is that the mathemat
ical and conceptual difficulties of classical mechanics are severe. We are 
still far from a completely satisfactory general theory. There is, on the 
other hand, a very substantial gain in clarity and understanding that has 
taken place in the last decade or two, especially due to the work of Walter 
Noll, Clifford Truesdell and others. It is fair to say that there has been a 
renaissance of classical mechanics. 

I shall end with a sketch of Noll's (1959) axioms for bodies and their 
kinematic motion. I shall omit some of the technical mathematical details 
required for formulating smoothness conditions. 

DEFINITION. A body is a set B endowed with a structure defined by a 
set <I> of mappings of B into a three-dimensional Euclidean space E, and 
a real-valued set function M defined for all Borel subsets of B, subject to 
the following axioms: 

( 1) Every mapping ¢ in <I> is one to one. 

(2) For each ¢ in <I> the image of B under¢ is a region in the space E, 
a region being defined as a compact set with smooth boundaries. 

(3) The mass function m is a nonnegative measure. 

( 4) For each ¢ in <I> the measure induced by m on the region that is the 
image of B under ¢ is a mass-density function that is positive and 
bounded. 

Following Noll, we may refer to the elements of B as the particles of 
the body, the mappings ¢ in <I> are the configurations of the body. If a is 
in B, and ¢ is a configuration, then ¢(a) is the position of the particle a 
in the configuration ¢. The set function m is the mass distribution of the 
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body and the density under the mapping pq, is the mass density of B in 
the configuration ¢. 

A motion of a body B is a one-parameter family { 8t} of configurations 
8t in <I> of B such that the derivative (djdt)8t(a) exists for all a in Band 
all times t. The derivative is a continuous function of a and t jointly, 
and is a smooth function of a. Moreover, the second derivative also exists 
and is piecewise continuous in a and t jointly. (The first derivative is 
the velocity of the particle a at time t, and the second derivative is the 
acceleration of a at timet.) 

From these definitions, we can go on to develop a comprehensive 
though not completely adequate theory of bodies in classical mechanics, 
where bodies are not just rigid bodies but the sorts of configurations to be 
encountered in continuum mechanics. They would be covered grammat
ically, for example, by mass nouns. To complete the development of the 
present theory we need to add appropriate definitions of body forces and 
contact forces, and to define the general concept of a dynamical process, 
but these matters will be omitted here. 

Instead, I want to turn to some closing remarks about how Aristotle's 
ideas of matter may be fitted into this framework, and also to indicate 
what some of the difficulties are. At one level, the situation seems clear. 
We simply identify the prime matter of the body as the set B without 
structure. The introduction of structure corresponds to Aristotle's intro
duction of forms. The configurations provide the geometrical shapes of 
the body through time, and the mass function the distribution of density 
through time. It should also be evident that the particles talked about 
here are of course not atomic particles or elementary particles in the sense 
of physics. These are idealized particles that make up a continuum and for 
this reason they come reasonably close to Aristotle's idea of matter, even 
though we do use the particles themselves as arguments of functions and 
thereby in one sense endow them with attributes in a way that he would 
consider incorrect. I think however that we can take the attitude that 
the configurations change and therefore we are not endowing a particle, 
as such, with an attribute, but this is the way of introducing forms. 

The important point is that the set B is not like a set of persons or a 
set of individuals with structure, as for example a set of bronze statues, 
but is indeed a set that, taken without structure, seems very close to 
what Aristotle had in mind. I shall close by modifying the first part of 
the definition of bodies. 

A body is matter endowed with a structure. We represent the 
matter by an abstract set B and the structure by a set ¢ of 
mappings of B into a three-dimensional Euclidean point space 
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E and a real-valued set function m defined on the Borel subsets 
of B, subject to the axioms stated above. 

This definition satisfies fairly well the ten Aristotelian 'principles' of 
matter stated in Section 2, but, of course, Principle (10) concerning the 
heavenly bodies does not really apply. I say "satisfies fairly well", because 
the principles are not stated in a sufficiently formal manner to make sat
isfaction of them a completely objective affair. For example, Principle ( 4) 
concerning individuation of matter qua matter needs detailed analysis, 
but very much along the lines already given in Section 2. 

Reconstruction of the concept of matter along the lines of the formal 
definition just given does not, however, do justice to what is probably 
the most important insight of Aristotle concerning the concept of matter. 
This is the relative sense in which bricks, for example, are the matter of 
a house, and clay, the matter of bricks. As things have turned out the 
relative sense of matter has not become a fundamental concept in modern 
science, but its practical importance in science as well as in ordinary 
affairs is easily recognized. Biologists, for instance, almost always use 
such a relative concept of matter, even if it is not so labeled. A more 
systematic and explicit analysis of the way in which the relative concept 
of matter can or does enter in various modern theories of science would 
seem desirable. 
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POPPER'S ANALYSIS OF 

PROBABILITY IN QUANTUM 

MECHANICS 

Since the early 1930s, Popper has been publishing articles about the foun
dations of quantum mechanics. and he has had many useful things to say 
in a number of books and articles. With some hesitation, I have nar
rowed the scope of what I shall discuss to two topics: the propensity 
interpretation of probability and quantum mechanics as a statistical the
ory. Throughout his writings, but especially in The Logic of Scientific 
Discovery, Popper has a great deal to say also about measurement in 
quantum mechanics. I shall not discuss these matters except as they bear 
upon his conception of the role of probability in quantum mechanics. 

1. PROPENSITY INTERPRETATION OF PROBABILITY 

Popper has spent considerable effort in elaborating and defending his 
propensity interpretation of probability, and the term itself has become 
a widely used one for a certain conception about probability. More than 
anyone else, he has been responsible for making this view of the founda
tions of probability well known, and he says in several places that he was 

*Reprinted from The philosophy of Karl Popper, Volume 2 (ed. by P. A. Schilpp), 
1974, pp. 76Q-774. La Salle, IL: Open Court. 
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led to the propensity interpretation as part of his reflections on the role 
of probability in quantum mechanics. 

I shall concentrate on comparing the propensity interpretation with 
the other major views of the foundations of probability: the classical 
Laplacean definition, the relative-frequency interpretation, and the sub
jective interpretation. Only after a fairly detailed scrutiny of the propen
sity interpretation as an alternative to one of these three positions will 
I have anything to say about the particular case of quantum mechanics. 
I shall not discuss confirmation or corroboration as an additional way of 
looking at the foundations of probability. I think a case can be made for 
considering confirmation theory as a fourth alternative; but Popper has 
rather different views of this matter, and some rather special views of his 
own about corroboration. I believe the issues surrounding the propensity 
interpretation can be discussed by restricting the frame of reference to 
the three major views mentioned. 

To begin with, I think Popper has brought to the surface some in
tuitions that many of us share about the foundations of probability. He 
has had the insight to recognize that there is something misleading about 
each of the main classical views of the foundations of probability in at 
least some applications. The propensity viewpoint or what we might also 
call the dispositional viewpoint toward probability is very appealing, not 
only when we deal with the physics of atomic and subatomic particles, 
but also with many straightforward applications in medicine, psychology, 
sociology, etc. Moreover, Popper has properly emphasized that we cannot 
simply think of the propensity or disposition as inhering in the object in
dependent of the circumstances surrounding the object. In other words, 
propensity, as Popper remarks, like the concept of force "is a relational 
concept." 1 

Although I am sympathetic with these intuitions and with the insight 
that Popper has verbalized for all of us, a central issue about the propen
sity interpretation dominates all other issues for me, and I would like to 
concentrate on it in this discussion. In broad terms, the issue is that 
of characterizing the explicit meaning of the propensity interpretation. 
To ask for the meaning of the interpretation without making any more 
definite statement of the methodology to be used or the approach to be 
taken is to ask in philosophers' jargon the ordinary question, What is the 
propensity interpretation? However, in the case of probability, a strong 
intellectual tradition of analysis can be used. 

The matter can be formulated this way. With an important excep
tion in quantum mechanics to be discussed below but not an exception 

1 K. R. Popper (1959). Hereinafter cited as PI. 
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that affects the conceptual point being made at this stage, the scientific 
applications of probability all rest on the acceptance of Kolmogorov's ax
iomatization, and the formal properties of probability that flow from that 
axiomatization. On occasion, Popper has indicated some reservations 
about that axiomatization (PI, p. 40), but those reservations are minor 
and not a serious issue here. The mathematical applications of probabil
ity in sciences as diverse as sociology and statistical mechanics all use the 
standard properties of probability, and the theorems asserted or claimed 
about probabilistic phenomena depend upon the formal properties that 
flow from the Kolmogorov axiomatization, plus possibly other special as
sumptions needed in particular applications. For example, the theory of 
stochastic processes is of increasingly great importance. 

Because of the significance I shall attach to the relation of any interpre
tation of probability to the Kolmogorov axiomatization, it will probably 
be worthwhile to formulate the Kolmogorov approach. The axioms are 
based on three primitive concepts: a nonempty set X of possible out
comes, a family :F of subsets of X representing possible events, and a 
real-valued function P on :F; for event A in :F; P(A) is interpreted as the 
probability of A. It is important to note in this connection that events 
are always formally represented as subsets of the basic sample space X. 
(It is assumed throughout that X is nonempty.) The notion of an algebra 
of events is caught in the following definition. 

DEFINITION 1. :F is an algebra of events on X if and only if :F is a 
nonempty family of subsets of X and for every A and B in :F: 

1. ...... A E :F; 

2. A UB E :F. 

Moreover, if :F is closed under countable unions, that is, if for 

then :F is a u-algebra on X. 
Assuming the set-theoretical structure of X, :F, and P already de

scribed, we may now turn to the definition of probability spaces. 

DEFINITION 2. A structure X = {X, :F, P) is a finitely additive proba
bility space if and only if for every A and B in :F: 

P 1. :F is an algebra of events on X; 
P2. P(A) ~ 0; 
P3. P(X) = 1; 
P4. If An B = 0, then P(A U B) = P(A) + P(B). 
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Moreover, X is a probability space (without restriction to finite additiv
ity) if the following two axioms are also satisfied: 

P5. :F is a u-algebra of events on X; 
P6. If A1, A2, ... , is a sequence of pairwise incompatible events 

in :F, i.e., Ai n Aj = 0 fori i= j, then 

Some more special probabilistic notions will be needed in later parts 
of this paper, but I shall defer until then their formal definition. Also, 
although I have included the countable cases for the sake of completeness 
in Definitions 1 and 2, I shall mainly ignore them in the sequel. These 
concepts are of central importance in advanced applications, but explicit 
consideration of them here does not add much of conceptual interest, 
and the notation and theorems will remain simpler if they are ignored. 
We can, if we desire, think of the sequel as being restricted to finite 
probability spaces, that is, to spaces in which the basic set X is finite. 
But, I would emphasize that the conceptual remarks are not at all bound 
by this imposition of finiteness. 

On the assumption that any interpretation of probability must come 
to terms with the Kolmogorov set-theoretical approach as embodied in 
Definitions 1 and 2, we can ask ourselves how is that "coming to terms" 
to be expressed. There is a classical mathematical way of formulating 
the matter. We must be able to prove that the set-theoretical entities 
defined under the particular interpretation of probability are themselves 
either objects that satisfy Definition 2 or lead in a completely explicit 
way to the construction of objects that satisfy Definition 2. This rather 
abstract formulation of the representation problem is made more concrete 
by consideration of the classical interpretations of probability. 

The place to begin is with Laplacean or classical probability. Laplace 
begins this way. "The first of these principles is the definition itself of 
probability, which, as has been seen, is the ratio of the number offavorable 
cases to that of all the cases possible." There are severe difficulties with the 
application of this definition; but it is clear how it leads to a representation 
in terms of probability spaces. We may incorporate the idea of Laplace's 
first principle in the following formal definition. (In the statement of this 
definition I use K(A) for the cardinality of the set A.) 
DEFINITION 3. A structure X = (X, :F, P) is a finite Laplacean prob
ability space if and only if 

Pl. X is a finite set; 
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P2. :F is an algebra of events on X; 
P3. For A in :F, 

P(A) = K(A) . 
K(X) 

It is apparent that the following theorem is a trivial consequence of this 
definition, but the theorem does express the way in which the Laplacean 
definition provides a strict interpretation of the set-theoretical formaliza
tion of probability. 

THEOREM 1. Any finite Laplacean probability space X = (X, :F, P) is 
a finitely additive probability space in the sense of Definition 2. 

Almost everybody recognizes criticisms that can be leveled at the clas
sical Laplacean definition. It is only when very strong principles of sym
metry are satisfied that the definition in a strict sense can be applied. 
Most of Laplace's own work in probability did not use the principle. I 
mean by this that the detailed applications in astronomy and other com
plicated phenomena did not proceed from a strict application of the clas
sical definition. 

However, I find myself unable to agree with some of Popper's criticisms 
of the classical definition. These criticisms are expressed in PI (p. 36) . 

. . . mere possibilities could never give rise to any prediction. 
It is possible, for example, that an earthquake will destroy 
tomorrow all the houses between the 13th parallels north and 
south (and no other houses). Nobody can calculate this possi
bility, but most people would estimate it as exceedingly small; 
and while the sheer possibility as such does not give rise to 
any prediction, the estimate that it is exceedingly small may 
be made the basis of the prediction that the event described 
will not take place ("in all probability"). 

Thus the estimate of the measure of a possibility-that is, 
the estimate of the probability attached to it-has always a 
predictive function, while we should hardly predict an event 
upon being told no more than that this event is possible. In 
other words, we do not assume that a possibility as such has 
any tendency to realise itself; but we do interpret probability 
measures, or "weights" attributed to the possibility, as mea
suring its disposition, or tendency, or propensity to realise 
itself ... 

It seems to me that in this discussion there is an abuse of the Laplacean 
notion of possibility. It is precisely the point that it is simply the enumer
ation of possibilities that are used in the definition of probability. I think 



316 PART IV. PHYSICS 

Popper can rightly object, as he does, that in many instances this is not 
what we do, or we do not know how to enumerate the possibilities. On 
the other hand, in the examples given by Laplace as paradigm cases of his 
definition, namely, games of chance, we do agree on the enumeration of 
possibilities, and we can claim that it is the enumeration of possibilities 
that provides the basis for the definition of probability. It is not a case, as 
Popper puts it, of assuming "that a possibility as such has any tendency 
to realise itself." It is just that the computation of probabilities is based 
upon the enumeration of possibilities. As we look deeper into the mat
ter, we are willing to accept these enumerations in cases where certain 
implicit principles of symmetry are satisfied and not in other cases. My 
quarrel with Popper here is not a large one. I do think that the notion 
ofpossible outcomes or possible cases is a fundamental aspect of think
ing about probability. It is also a fundamental aspect to tend to impose 
a uniform distribution on the set of possible outcomes. We do not do 
this because of any ideas about propensity itself or probability weights, 
but because we see no reason to treat one possible outcome in a manner 
different from another. I want to be perfectly clear on this point. I am 
not trying to defend the classical definition as a workable interpretation 
of probability. I am taking exception to Popper's remarks about the way 
in which possibility does enter in the classical definition. The important 
point for our discussion here is that a well-defined formal relation be
tween the classical interpretation of probability and the set-theoretical 
approach is embodied in Definition 2. This formal relation is caught by 
Theorem 1. 

Let us now take a quick look at the relative-frequency interpretation 
of probability. I shall first state several formal notions and a theorem, but 
then indicate how the models brought under the framework of probability 
spaces by the theorem are not fully satisfactory. However, I shall not en
ter into the formal details of how the definitions are to be more restricted. 
These are standard matters in the discussion of relative-frequency theory. 
The point is to show how one is led from the relative-frequency interpre
tation in a formal way to models of Definition 2. 

An (infinite) sequence is a function whose domain of definition is the 
set of positive integers. If s is a sequence then s(n) (or in a common 
notation: sn) is the nth term of the sequence s. A sequence of positive 
integers is a sequence all of whose terms are positive integers. 

Let s be a sequence of real numbers. Then the limn-oo sn = k if and 
only if for every E> 0, there is an integer N such that for all integers n if 
n > N then 

lsn- kl <E. 
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DEFINITION 4. Let s be a sequence and let :F be the family of all subsets 
of R(s), the range of s. Let t be the function defined on :Fxw where w is 
the set of all positive integers, such that for all A in :F, 

t(A, n) = K {i: i ~ n & Si E A}. 

The number t(A,n)/n is the relative frequency of A in the first n terms 
of s. If the limit of the function t(A, n )/n exists, then this limit is the 
limiting relative frequency of A in s. 

THEOREM 2. Lets be a sequence and let :F an algebra of events on R(s) 
such that if A E :F then the limiting relative frequency of A in s exists. 
Let P be the function defined on :F such that for every A in :F 

P(A) = lim t(A, n). 
n-+00 n 

Then (R( s), :F,P) is a finitely additive probability space. 
The proof of Theorem 2 requires more argument than the proof of 

Theorem 1, but it is straightforward in terms of standard facts about the 
limits of sequences and will be omitted here. 

I emphasize that to have a realistic relative-frequency theory, the con
ditions of Theorem 2 need to be strengthened. Many sequences satisfy the 
hypothesis of Theorem 2 and thus generate a finitely additive probability 
space, but we would not at all be willing to accept them as falling within 
the framework of what we intuitively consider to be probabilistic phenom
ena. For example, the deterministic sequence consisting of alternating 1 's 
and O's would satisfy Theorem 2 and the event of a 1 occurring would 
be 1/2, and the event of a 0 occurring, 1/2; but, clearly, no reasonable 
notion of probability in an intuitive sense would admit such a sequence. 
The point of the present discussion, however, is not disturbed by this as
pect of things. I am interested only in how we formulate a formal relation 
between a relative-frequency theory and the notion of probability space 
embodied in Definition 2. 

I turn now to a brief exposition of the subjective theory of probability 
and the way in which it formally provides an interpretation of Definition 
2. I shall restrict my analysis of the subjective theory to a simple exam
ple to avoid technical complexities. The spirit of the axioms embodied 
in the definition given below places restraints on qualitative judgments 
of probability, which on the one hand seem intuitively sensible and on 
the other hand seem sufficient to guarantee the existence of a numerical 
probability measure in the sense of Definition 2. The subjective aspect 
enters directly in the sense that the qualitative relation is meant to reflect 
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the qualitative judgments of subjective probability: A t B if and only if 
A is judged subjectively at least as probable as B. 

DEFINITION 5. A structure X = (X, F, t) is a finite qualitative proba
bility structure with equivalent atoms if and only if X is a finite set, F is 
an algebra of events on X, t is a binary relation on F, and the following 
axioms are satisfied for every A, B, and C in F: 

1. The relation t is a weak ordering ofF; 
2. If An C = 0 and B n C = 0, then At B if and only if 

AUCt BUG; 
3. At 0; 
4. Not 0 t X; 
5. If A t B then there is a C in F such that A t B U C and 

BUCtA. 

The first four axioms are standard axioms that originate with de Finetti 
(the symbol 0 stands for the empty set); the fifth axiom is the structural 
axiom that implies the equivalence of the atoms; the exact theorem that 
can be proved is the following: 

THEOREM 3. Let X = (X, F, t) be a finite qualitative subjective 
probability structure with equivalent atoms. Then there exists a probability 
measure P in the sense of Definition 2 such that for every A and B in F 

P(A) 2: P(B) if and only if At B. 

Moreover, there are at most two equivalence classes of atomic events 
in F; and if there are two rather than one, one of these contains the empty 
event. 

The proof of this theorem I shall omit.2 

It is not my purpose in this paper to defend any one of the three views 
of probability I have sketched above. Rather, in the present context I 
want to distinguish the three classical views sketched above from the 
propensity interpretation advocated by Popper on the grounds that I do 
not see what the corresponding theorem for the propensity interpretation 
is. I have gone to some length to make this point, because I think it is 
an important one about the propensity interpretation. I very much agree 
with Popper that there is much that is attractive in the idea of probability 
as propensity. What I find difficult to envisage, and what I find missing in 
his own discussions of the propensity interpretation, is the more explicit 
formal characterization of the propensity interpretation that permits us 
to prove a theorem like Theorem 1, 2 or 3. Until an interpretation of 

2The elementary proof is to be found in Suppes (1969a), pp. 7-8. 
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probability is given sufficient systematic definiteness to permit the proof 
of such a theorem, it seems fair to say that it is still at a presystematic 
level, and no clear concept has as yet been explicated. 

Popper tells us in PI that he was especially led to the propensity 
concept by the problem of interpreting the use of probability in quantum 
theory. He felt that the Bohr-Heisenberg interpretation was inextricably 
bound up with the subjectivistic interpretation of probability. On the 
other hand, the difficulty of the relative-frequency theory lay in providing 
an appropriate straightforward interpretation of the probability of sin
gular events. A number of his remarks in this connection seem to me 
sensible, as for example, his insistence that the so-called "problem of the 
reduction of the wave packet" is a problem inherent in every probabilistic 
theory, and not special to any particular interpretation. 

There are a number of tantalizing remarks about the propensity view 
in PI. In several places Popper compares propensities to forces in New
tonian physics. As he puts it, "there is an analogy between the idea of 
propensities and that of forces." However, I would again raise the same 
question I have been raising. Already in the case of Newtonian forces 
there are explicit formal laws that these forces are required to obey: the 
laws of addition of forces and also the more special laws for internal forces 
in a system of particle mechanics; namely, the law that the force exerted 
by one particle on another be equal and opposite, and also the law that 
the direction of these two internal forces be along the line connecting 
the position of the two particles. I find no systematic laws whatsoever 
that the propensity interpretation is to satisfy, except the formal laws of 
probability already embodied in Definition 2. 

In other passages, Popper indicates the close relation between the 
propensity interpretation and the relative-frequency interpretation, but 
again I would want to press the point and ask if there is indeed a formal 
difference between the two and, if so, what it is. 

Of the three views I have sketched above, the relative-frequency and 
subjective views each provide a sharply defined formal theory that does 
lead to an interpretation in the formal sense of the axioms of Definition 2. 
The classical theory also provides such an interpretation, but it is weaker 
and less interesting. 

Toward the close of PI, Popper says the following: 

... what I propose is a new physical hypothesis (or perhaps a 
metaphysical hypothesis) analogous to the hypothesis of New
tonian forces. It is the hypothesis that every experimental ar
rangement (and therefore every state of a system) generates 
physical propensities which can be tested by frequencies. This 
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hypothesis is testable, and it is corroborated by certain quan
tum experiments. The two-slit experiment, for example, may 
be said to be something like a crucial experiment between the 
purely statistical and the propensity interpretation of prob
ability, and to decide the issue against the purely statistical 
interpretation. 

What troubles me about this passage is the vagueness of his new physical 
hypothesis in contrast to the sharpness offormulation of the hypothesis of 
Newtonian forces. From what he says it is also not clear how the two-slit 
experiment provides a crucial experiment between the relative-frequency 
and propensity interpretations. Indeed, I have found it difficult to try to 
infer what formal properties the propensity interpretation is supposed to 
have from consideration of the two-slit experiment. 

Let me sum up the situation as I see it in three points. 
1. Much of what Popper says about the use of probability in quantum 

mechanics and the way he has used the idea of propensity to say these 
things seem eminently sensible to me. 

2. I find the systematic case for the propensity interpretation badly 
worked out and not at all in a state comparable to that of the classical, 
relative-frequency or subjective interpretations. 

3. I recognize at the same time that the subjective theory, especially 
in its simply providing a qualitative ordering relation, has not provided 
an interpretation at a very deep level. I do not wish to defend the ad
equacy of the subjective interpretation in any fundamental way. It does 
stand in sharp contrast, however, to the propensity interpretation because 
there does exist a systematic body of analysis and resulting theorems that 
can be proved about the subjective view. Until such an analysis and re
sulting theorems are produced for the propensity interpretation, I find it 
impossible to embark upon a more thoroughgoing critique. 

2. QUANTUM MECHANICS AS A STATISTICAL THEORY 

Popper has written extensively on the conceptual nature of quantum me
chanics. I shall not cite here the many references, for these are available 
in the general bibliography. I agree with much of what he has had to 
say about quantum mechanics as a statistical theory. He has had many 
sane and sensible things to say in his analyses and criticisms of the doc
trines advanced by physicists. Our points of agreement are too many to 
enumerate, although I cannot help mentioning my pleasure in his recent 
article on Birkhoff and von Neumann's interpretation of quantum me
chanics (Popper, 1968). He points out the conceptual inadequacy of the 
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argument given in Birkhoff and von Neumann's famous article in a way 
that is perhaps the clearest of anything I have seen in print. I shall not 
review the details of the argument here, but note that he shows how un
satisfactory is their claim that quantum mechanics uses a nondistributive 
lattice. It is not the result that is so unsatisfactory, but the total lack of 
serious argument for their position. 

I could list other points of agreement, but the more constructive and 
useful thing is to focus on the major issues where I find myself in disagree
ment with Popper, or where I do not think he has pushed hard enough 
or dealt as yet sufficiently explicitly with matters of central importance. 

The central theme of what I want to say can be posed as a question. 
Is indeed quantum mechanics a genuinely statistical theory? By this, I 
do not question whether there are many statistical aspects of quantum 
mechanics, but rather, can quantum mechanics as a theory be regarded 
as a statistical theory in the way that classical statistical mechanics, pop
ulation genetics or theories of mental testing are statistical theories? It 
seems to me that much in Popper's writings indicates that he would want 
to make this claim. I shall not try to document the many places where 
he discusses these matters, but I would refer the reader especially to his 
recent article, "Quantum Mechanics Without 'The Observer'." 3 In this 
article Popper sets forth 13 theses about quantum mechanics. It is not 
possible to examine each of these theses and to comment on them, espe
cially as to how each thesis relates to the view of quantum mechanics as 
a statistical theory. I shall begin by concentrating on the interpretation 
of the Heisenberg uncertainty relations, and then go on from there to 
problems about probability that are not explicitly treated by Popper. 

To begin with, if one starts from the idea that quantum mechanics is 
a statistical theory, as Popper evidently does, a first point of peculiarity 
about the Heisenberg principle needs to be mentioned. The principle as
serts that the product of the standard deviations of two noncommuting 
variables is always greater than some positive constant. In the particular 
example of position and momentum it is asserted that the products of the 
standard deviations of the position and momentum of a particle at a given 
time are always greater than a certain fixed constant, which is positive. 
A statement of this kind can be derived in many classical theories. In 
fact, it will be true in any classical theory in which we are dealing with a 
nondegenerate joint distribution of at least two random variables. Nearly 
the first thing we would want to do is ask about a closer relation between 
the two variables. We would want information about the covariation of 
the two random variables and their possible causal relation-that causal 

3 K. R. Popper (1967). Hereinafter cited as QM. 
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relation either being between the variables or due to a common cause. 
The standard statistical way in which these matters are studied would be 
in terms of looking at the covariance or the correlation of the two vari
ables. (Because the notion of correlation is familiar in a wide range of 
scientific disciplines, let us deal with the correlation and recall that the 
correlation of two random variables is defined as the covariance divided 
by the product of the standard deviations.) Given that the product of 
the standard deviations is greater than some fixed constant, we can still 
produce examples in which the correlation has the entire range from -1 
to 1; in particular, examples for which the correlation between the val
ues of the random variables is 1, and also cases for which the correlation 
of the random variables is 0. From a general statistical viewpoint, it is 
often more important and almost always at least as important to know 
whether the random variables are independent or highly correlated, as it 
is to know that the product of their standard deviations is greater than 
some constant. When Popper talks about quantum mechanics as a sta
tistical theory, he is talking, it seems to me, with that surprise evinced 
by those who look at quantum mechanics from the standpoint of classical 
physics-surprise that the theory brings within its purview certain sta
tistical relations and denies at the theoretical level the determinism so 
characteristic of classical physics. Looked at from the standpoint of stan
dard statistical theories, the surprise about quantum mechanics is rather 
different. The first glance would be something like the one I have sketched. 
The surprise is that natural questions are not asked or discussed. Pop
per's own neglect of these standard questions of covariation or correlation 
is a reflection that he has not really taken seriously as yet the rethinking 
of quantum mechanics as a statistical theory. What Heisenberg, for ex
ample, has had to say about these matters would make the hair of any 
right-thinking statistician stand on end. 

I emphasize the importance of these questions of correlation. If, for 
example, the Heisenberg uncertainty relation is satisfied by position and 
momentum in a given direction at a given time, we would be enormously 
surprised if the correlation between position and momentum were one. 
This would indicate a deterministic relation between the two that would 
be most disturbing to most physicists. I stress, however, that such a 
model is mathematically consistent with the Heisenberg relations. This is 
an obvious and elementary fact of statistics. It is of course not my claim 
that such an interpretation is consistent with the actual empirical data of 
quantum mechanics or with the theory taken in a larger framework than 
that of the simple statement of the Heisenberg principle. 

That physicists and Popper as well do not really take seriously their 
claim that quantum mechanics is a statistical theory is evident from the 
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complete absence of discussion of the problems of correlation just raised. 
In Popper's case, I suspect that he has simply been caught up in the 
discussions of physicists and has tried to respond in a direct way to the 
many kinds of things they have had to say; he has not looked at the 
problems from the standpoint of a genuine statistical theory. 

Let me now turn to the second part of my remarks in this connec
tion. There are good reasons why the questions I have raised are not 
raised. There are many ways of explaining what the reason for failure 
is. The essential idea, however, is that quantum mechanics is not a stan
dard statistical theory-it is a peculiar, mystifying, and as yet, poorly 
understood radical departure from the standard methodology of proba
bility and statistics. There is as yet no uniform agreement on how the 
probabilistic aspects or statistical aspects of quantum mechanics should 
be formulated. But it is widely agreed that there are unusual problems 
that must be dealt with and that do not arise in standard statistical the
ories of the sort I mentioned earlier. In fact, the kind of problems I now 
want to raise do not, so far as I know, exist in any other scientific theories 
of any scientific discipline. 

The difficulty is that when the standard formalism of quantum me
chanics is used, the joint distribution of noncommuting random variables 
turns out not to be a proper joint distribution in the classical sense of 
probability. These ideas have been discussed now by a good many peo
ple, and I shall not quote chapter and verse here. I am sure that Popper 
is familiar with several of these discussions, although I have been a little 
surprised not to find more explicit comment on these matters in his own 
writings. I do think the difficulties raised by the nonexistence of joint dis
tributions within the framework of the standard formalism are the most 
direct challenge to a straightforward interpretation of quantum mechanics 
as a standard statistical theory. 

To have a concrete instance in front of us, I give an example that I com
puted some years ago (Suppes, 1961), but I emphasize that these matters 
have been discussed by many people and general proofs of the impossi
bility of having proper joint distributions within the classical framework 
have been given by several people. 

Consider the momentum and position random variables P and Q. The 
characteristic function cp(t, u) is defined by: 

(1) 

Using the Hilbert space formulation, let (,P,,P) be the inner product of 
a state with itself. Following the usual formalism, the expectation E( R) 
of an operator R when the quantum mechanical system is in state '1/J is 
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simply ('!f;,R'!f;). In view of(1) the characteristic function !f'(u,v) for the 
joint distribution of P and Q is given by: 

(2) lf'(u, v) = ('!f;, ei(up+vq)'lj;). 

We then have from (1) and (2) by Fourier inversion: 

For canonically conjugate operators P and Q, i.e., PQ- QP = n/i, it 
may be shown that (2) simplifies to4 

and so by Fourier inversion 

( 4) f(p, q) =- '!f;*(q- -nu)e-•uP'!f;(q + -nu)du. 1 J 1 ° 1 
271' 2 2 

As is well known in probability theory not every characteristic function 
determines a proper probability distribution, and this is the difficulty with 
( 4). (The expression given by ( 4) for the joint density was first proposed 
by Wigner (1932) and the derivation just sketched follows Moyal (1949).) 

Let us now look at a simple example, the harmonic oscillator in the 
ground state and also in the first excited state. 

Ground state. The potential energy is given by 

1 2 
V(x) = 2Kx , 

and the time-independent wave equation is 

h2 d2 '!f;(x) 1 , 2 ----- + -1\.x '!f;(x) = E'!f;(x). 
2m dx2 2 

The solution of this equation in terms of Hermite polynomials is familiar 
from the literature. In the lowest energy state Ho 

(5) 

4 Henceforth the range of integration is understood to be ( -oo, oo) and notation for 
it is omitted. 
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where 

Thus 

(6) 

which is a normal density with mean zero and variance () 2 = 1/2a2 = 
h /2-..[i(m. 

We now apply ( 4) and (5) to obtain the joint distribution of momen
tum and position. For convenience of calculation, we replace p by the 
propagation vector k = pfh. We have at once: 

f(k, x) = 2~ J 1/1* (x- ~) e-iku1j; (x + ~) du 

= 2~ (Jr:/2) J exp [a2 (x2 + (%)2)] e-ikudu 

1 ( ()( ) -Oi2X2 11"1/2 [ k2 ] = 211" 11"172 e Oi/2 exp - 4( Oi/2)2 

First excited state. We have from the literature 

whence 

'
.t.( ) 12 - 4a3 2 -()(2"'2 
'P x - fox e . 

Applying now ( 4) and (5), and again replacing p by the propagation vector 
k = pjh, we have: 

(7) f(k, x) = ( 2~)( ~) J(x 2 - (%) 2 ) exp [-a2 ( x2 + (%) 2)] e-ikudu. 

Integrating (7) we obtain 

f(k, x) = ~ [exp ( -a2x2 - !~)] ( a2x2 + ~ _!) , 
and the function /( k, x) is negative for those values of k and x such that 

which means that f(k, x) is not a proper joint density. 
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To my mind the problems posed by this elementary example and oth
ers like it, as well as general results about the impossibility of having a 
joint distribution, constitute the really central question of how to treat 
quantum mechanics as a statistical theory. This is not the proper place to 
examine possible viewpoints or to review some of the few proposals that 
have been made; for example, that by Margenau and his collaborators 
to adopt the special joint distribution that makes non commuting random 
variables independent. What I consider important in the present context 
is to bring to the surface the deep-running nature of the difficulties of 
interpreting quantum mechanics as a standard statistical theory. 

The thirteenth and last thesis of QM is "the peculiarity of quantum 
mechanics is the principle of the superposition of wave amplitudes-a kind 
of probabilistic dependence ... that apparently has no parallel in classical 
probability theory." It is also part of this last thesis to say that both 
classical physics and quantum physics are indeterministic. What I would 
urge upon Popper is not the view of the peculiarity of quantum mechan
ics in terms of the principle of the superposition of wave amplitudes, but 
rather, the peculiarity of quantum mechanics as a nonstandard statistical 
theory. Given the wide applicability in all ordinary domains of science of 
the standard statistical theory and methodology, it is surprising and in
tellectually unsettling to encounter the fundamental difficulties that seem 
to be present in quantum mechanics. These difficulties disturb a much 
deeper level of scientific methodology than do any mere issues of deter
mmism. 

In my judgment, these formal difficulties of interpreting quantum me
chanics as a standard statistical theory will turn out to be the most rev
olutionary aspect of the theory. My own historical sense is that these 
difficulties will come to play the same fundamental role in the founda
tions of physics and probability that the three classical problems of the 
Greeks have played in the foundations of mathematics. We now all accept 
that we cannot trisect an angle or find a square whose area is equivalent 
to that of a given circle by elementary means. I do not think we have as 
yet digested in any deep and serious way the profound ramifications of 
the nonstandard statistical character of quantum mechanics. 
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PROBABILISTIC CAUSALITY IN 

QUANTUM MECHANICS 

I want to begin by expressing my pleasure at being able to contribute to 
a symposium in honor of Jack Good. We have known each other more 
years now than I care to remember. Over this long period I have learned 
much from his papers and from conversations about many different but 
related subjects. To make the point more precise for the present talk, 
about two decades ago when I became seriously interested in probabilistic 
causality and committed myself to developing a series of lectures on the 
subject, which were given in the summer of 1966 in Vaasa, Finland, among 
the few serious publications on the topic I found were Jack's important 
earlier papers (Good, 1961/1962). Recently I have commented on some of 
our points of disagreement about probabilistic causality (Suppes, 1988). 
On the other hand, our areas of agreement about probabilistic causality 
certainly exceed the filigree of differences. 

What I want to do in this lecture is to explore what I regard as the 
absence of probabilistic causality in quantum mechanics. 

1. OVERVIEW 

The minor fact to be stressed is that if we avoid non commuting variables 
in quantum mechanics, then probability is classical. In other words, any 

*Reprinted from, Journal of Statistical Planning and Inference, 25 (1990), 293-302. 
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finite family of commuting variables, for example, the 3n position coor
dinates of n particles at a given time have a classical joint probability 
distribution. 

A fact that has been much emphasized in the literature is that non
commuting variables in general do not have joint probability distributions, 
and thus a straightforward classical probabilistic theory of quantum phe
nomena is not possible. A typical example of two noncommuting observ
ables that do not have a proper joint probability distribution is provided 
by the case of position and momentum for the one-dimensional harmonic 
oscillator in the first excited state (Suppes, 1961). It may be shown by 
standard methods that when we replace momentum p by the propagation 
vector k = pfTi then the joint 'density' we obtain is: 

Performing the integration of (1) we obtain 

(2) f(k,x) =: [exp ( -a2x2- !~)] ( a2x2 + !~- ~). 

We note at once that the function f(k, x) is negative for those values of 
k and x such that 

2 2 k2 1 
ax + a2 < 2' 

and thus we see that f ( k, x) is not a proper joint probability density. Such 
examples are easily multiplied, but our main concern here is of another 
sort. 

The important fact, in many ways, is not the difficulty about non
commuting variables not having joint probability distributions but rather 
that the use of probability in quantum mechanics is very limited. The ter
minology for describing the situation is not standard. My own preference 
is to say that quantum mechanics provides only a theory of the mean. 
Let me explain more precisely what I mean by this. There are, of course, 
many different marginal distributions that can be computed in quantum 
mechanics, but when we follow the Schrodinger equation and obtain in 
the time-dependent case a 1/J function for each time t, then the square of 
this 1/J function properly normalized gives us the distribution of the posi
tion variables, for example, at a given timet. This marginal distribution 
I call the mean distribution because it reflects the distribution of position 
at time t without any consideration of the sample paths or prior positions 
of the particles. Intuitively, we may think of the mean distribution as 
resulting from averaging over all possible sample paths up to time t. I 
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shall restrict myself primarily to position variables just because the over
lap with ordinary probability theory here is quite straightforward but also 
because, as is often remarked, all measurements in quantum mechanics 
can be reduced to measurements of position at a given time. 

Thus from the standpoint of stochastic processes, not quantum me
chanics, what we get in quantum mechanics is just the mean distributions 
at a given time. We get no autocorrelations or other features relating the 
positions of a given particle at different times. The absence of such au
tocorrelations or other information about the behavior of a particle at 
different times means that in the ordinary sense there is no probabilistic 
causality in quantum mechanics, for the essence of probabilistic causality 
is to relate behavior at one time to behavior at another time. 

2. SOME EXAMPLES 

The method for computing mean distributions is in principle straightfor
ward, though difficult in particular examples. First, to get the expectation 
of an operator A in the standard approach 

E(A) = (,P,A,P) 

where ('¢;,'¢;)is in the usual Hilbert space formulation the inner product 
of a state with itself. 

To get the distribution of an observable A rather than just the expec
tation of A, we replace A by eiuA and obtain the characteristic function: 

We then obtain the distribution of :c in the form of the density f(:c) by 
taking the Fourier transform of cp. 

Free particle. A classic simple example is that of the free particle acted 
upon by no forces. In the case of the free particle, by using the time
dependent Schrodinger equation we just obtain the following expression, 
which shows that for each t, X is a normally distributed random variable: 

f(:c,t) = (27r (u~ + 4~;;5)) -1/2 exp ( 2(u5 + h~:/4m2u5)) 
where 

u~ = Var(X) at t = 0. 

Notice that it is a feature of f(:c, t) that the variance increases in either 
direction of time. 
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From a stochastic standpoint it is natural to ask immediately addi
tional questions about the process that would ordinarily be thought to 
be underlying the mean density f(:c, t). We would ordinarily ask such 
questions as: (1) Is the process Markovian, that is, for 

IS 

The answer is clearly that it is not determined by the axioms of quantum 
mechanics alone. 

(2) Is the process Gaussian, i.e., does any finite sequence of position 
random variables have a multivariate normal distribution? Again the 
answer in no sense is determined by the standard axioms of quantum 
mechanics. 

(3) Even when the answers are negative to questions (1) and (2), we 
may still ask, can we compute the autocorrelation function 

But again we have the same answer: no determination from the standard 
axioms of quantum mechanics. 

We return to the point that only the mean density f(:c, t) is given 
by quantum mechanics, but it is also important not to think of quan
tum mechanics as just the mean distribution. There is important phase 
information given in the tf; function and we can use the tf; function also 
to compute the mean distribution f(p, t) of the momentum. What we 
cannot do is get beyond these mean distributions. 

Harmonic oscillator. We get the same kind of results for the one-di
mensional linear harmonic oscillator already mentioned in the previous 
section. We obtain by standard methods the following mean density for 
position: 

!(3: t) = ~e-a2(x-acoswt)2 
' 7rl/2 . 

We can ask the same questions about the extension of this mean density. 
Is the process Markovian? Is it Gaussian? Can we compute the auto
correlation functions? And again we get the same answers. Nothing is 
determined directly by quantum mechanics. 
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3. STOCHASTIC EXTENSIONS OF QUANTUM MECHANICS 

My central thesis, as is already perhaps evident, is that quantum mechan
ics is consistent with various stochastic extensions if we ignore computa
tions on noncommuting variables. 

Much of the view I am advocating is derived from the work of Edward 
Nelson (see particularly Nelson, 1967), but on one central point I do 
disagree with Nelson. His assumption of a detailed Brownian motion to 
provide a full dynamics for the free particle leads him to claim that the 
stochastic process view of the free particle is mathematically inconsistent 
with quantum mechanics, although there are no observable differences. 

In my view his mistake is to compare the Xt of quantum mechanics 
with x(t) of Brownian motion. Nelson says (1967, p. 39) that in quantum 
mechanics for the free particle 

X(h + t2) = X(t!) + X(t 2) 
2 2 , 

but of course nothing so simple holds for x(t) of Brownian motion. My 
rejoinder is that in quantum mechanics, adding X(t!) and X(t 2 ) does not 
make any real sense, for we are not talking about the same particle, we 
are only dealing with the mean distribution with no particle identification 
across time possible. Thus, the equation given above is not a correct 
analysis of the free particle from a quantum mechanical standpoint, quite 
apart from any problems of measurement. 

The view of quantum mechanics as giving only a theory of the mean is 
also a way of explaining why noncommuting variables are noncommuting. 
If position and momentum, for example, had a joint distribution, then we 
would, as in ordinary probability theory, anticipate we would be able to 
compute the covariance Cov(Xt,Pt). But in quantum mechanics we get 
instead the Heisenberg Uncertainty Principle: 

Var(Xt)Var(Pt) 2:: constant> 0, 

and we are able to say nothing about the covariance, the natural quantity 
we would expect to study and the one we would expect to lead to a causal 
relation. 

On the other hand, the quantum mechanical theory of the mean is at 
the right level. We are able to compute just about all that we can observe. 
A complete theory in the sense of Brownian motion does not seem to lead 
to any new and testable predictions. 

On the other hand, because the theory of Brownian motion supplies 
a classical physical interpretation of quantum mechanics, it is surprising 
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that the efforts have been as insubstantial as they have to extend this 
theory to quantum mechanical phenomena. Nelson's work almost stands 
alone. (In a moment I shall examine some deeper reasons why such a 
program in the framework of continuous-time Markov processes is not 
likely to be successful.) 

I want to emphasize that the efforts of Nelson (1967, 1985) and oth
ers to extend quantum mechanics to stochastic mechanics by adding as
sumptions that extend quantum mechanics to being a Markovian diffusion 
process are philosophically important, because they provide a clear dy
namical interpretation of quantum mechanics. As indicated in the earlier 
discussion, this extension has not necessarily always been looked upon 
by Nelson as an extension, but I think that that is the appropriate way 
to look at it from the conceptual standpoint of this paper. Earlier, Nel
son (1966) derived the Schrodinger equation from Newtonian mechanics. 
More generally, what can be done is to characterize a classical diffusion 
process in the sense of stochastic mechanics that is compatible with the 
Schrodinger equation. 

A good recent analysis of these matters is to be found in Yasue (1981). 
The line of argument in more detail goes as follows: Let t/J(x, t) be a so
lution of the one-dimensional Schrodinger equation. This solution admits 
a polar decomposition 

t/J(x, t) = exp(R(x, t) + iS(x, t)). 

Then the Markov diffusion process generated by the infinitesimal genera
tor 

g = b(x, t) ·grad+ 2~ div grad 

satisfies the classical Euler equation for classical dynamics generalized to 
stochastic processes. In the above equation the drift b is given by 

1i 
b =-(grad R +gradS). 

m 

There is nothing unique about this associated Markov diffusion pro
cess. In particular, as we shall see later, there are arguments against the 
process even being Markovian. On the other hand, as a first approxima
tion it seems like an excellent move, and, above all, it provides a detailed 
dynamical interpretation of the behavior of particles through time, in a 
way that quantum mechanics by itself does not. Also, from the stand
point of a central aspect of the present paper, this extension to a Markov 
diffusion process is a way of providing a full-blown causal framework for 
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the motion of particles, even if the sample paths are unobservable. In 
contrast, quantum mechanics by itself does not provide a causal frame
work in any direct sense. The only weak sense of causality is that derived 
from the Schrodinger equation, namely, the law of change of the mean 
distribution with time. 

4. LOCALITY 

It seems to be the fate of the questions surrounding quantum mechanics 
that straightforward approaches run into trouble. From the standpoint 
of the development of stochastic processes in the past four decades, it 
seems completely natural to think of providing a physical interpretation 
of quantum mechanics in terms of Markov diffusion processes on the in
tuitive idea that particles are in continual Brownian motion. There are 
some physical problems with the interpretation of Brownian motion, for 
example, the standard mathematical result that the sample paths of par
ticles are continuous but nowhere differentiable. But this kind of technical 
result, which might be treated as a kind of idealization for the purposes 
of simplifying the theory, does not present an insurmountable barrier
at least not without some new kind of experimental evidence that shows 
these ideas are in error. This would mean showing that predictions of 
Brownian motion clearly violated experimental data. 

But this is just what has happened. The work deals with causal ques
tions concerned with locality. From a broad philosophical standpoint, the 
arguments concern the traditional problem of action at a distance, but 
the special twists and turns of locality in quantum mechanics are new. 

The classical striking results in this arena are due to Bell (1964). The 
idea is to test the existence of a causal structure-what are called in 
quantum mechanics hidden variables-along the following lines. If there 
is a causal structure to quantum mechanics, that is, an appropriate causal 
hidden variable A-the cause is called hidden because it is not in any 
direct sense observable, then there are classical results about A from a 
causal standpoint that we would expect to hold. Figure 1 shows in the 
usual one-dimensional diagram of special relativity the space-time region 
from which A would have to be operating. It is the intersection of the 
back light cones of particles A and B-1 am thinking here of course of A 
being a cause influencing the behavior of particles A and B. We can also 
think of a Bell-type experiment here in which we are measuring spin for 
particle A and for particle B. More generally we would think of A and 
B being the location of measuring equipment and we observe individual 
particles or a flux of particles at each of the sites. We would still think 
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Figure 1. Physically possible location of hidden variable ..\. 

here of individual particles because the analysis is conceptually simpler, 
even though some of the experiments would produce in fact collections 
of particles. We think of the measuring apparatus being such that along 
the axis connecting A and B we have axial symmetry and therefore we 
can describe the position of the measuring apparatus just by the angle 
of the apparatus A in the plane perpendicular to the axis. We shall use 
the notation WA and WB for these angles. I shall not attempt here a full 
technical analysis but only enough to give a sense of Bell's results and 
an informal description of their dire consequences for Markov diffusion 
processes. The basic form of the locality assumption is shown in terms of 
the following expectation: 

(1) 

What this means is the expectation of the measurement M A of spin of 
a particle in the apparatus in position A, given the two angles of mea
surement for apparatus A and B as well as ..\, is equal to the expectation 
without any knowledge of the apparatus angle w8 of B. This is a rea
sonable causal assumption and is a way of saying, looked at from the 
standpoint of special relativity, that what happens at B should have no 
direct causal influence on what happens at A because B is not in the 
back light cone of A. It violates strongly not only action at a distance in 
classical terms but even more in terms of special relativity. On the other 
hand, we have the following theoretical result for spin well confirmed in 
principle, for the case of when the measuring apparatuses are both set at 
the same angle: 

(2) P(MA = -1 I WA = WB =a & MB = 1) = 1. 

Note what is going on here. If the angles of the apparatus are set the 
same we have a deterministic result in the sense that the observation 
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of spin at B will be the opposite at A, and conversely. Here we are 
letting 1 correspond to spin ! and -1 correspond to spin -!. There is 
a natural tension immediately observable between equations (1) and (2). 
The problem then is how to get a more specific test of whether or not 
locality is violated in quantum mechanics. 

What Bell showed is that on the assumption there exists a hidden 
variable, four related inequalities can be derived for settings A and A' and 
B and B' for the measuring apparatus. I have reduced the notation here 
in the following way in writing the inequalities. First, instead of writing 
WA I write simply A, and second, instead of writing Cov(MA, MB) for 
the covariance, which in this case will be the same as the correlation, of 
the measurement at A and the measurement at B, I write simply AB. 
With this understanding about the conventions of the notation we then 
have as a consequence of the assumption of a hidden variable the following 
set of inequalities, which in the exact form given here are due to Clauser, 
Horne, Shimony and Holt (1969): 

-2 ~ AB + AB' + A' B - A' B' ~ 2, 
-2 ~ AB + AB' - A' B + A' B' ~ 2, 
-2 ~ AB- AB' + A'B + A'B' ~ 2, 
-2 ~ -AB + AB' + A'B + A'B' ~ 2. 

What Bell showed is that quantum mechanics does not satisfy these in
equalities, so they thus provide a clear test of the existence of local hidden 
variables, that is, causes that act in the appropriate local fashion. There 
have been a number of experimental tests in the past two decades, and it 
is fair to say that all of the experiments that have been accepted as valid 
have supported quantum mechanics. 

Thus the theoretical and experimental results together present another 
and different body of evidence, very precisely focused against there being 
a standard causal structure which we may use to obtain a classical causal 
theory in the sense of hidden variables. 

From the standpoint, though, of probabilistic causality in quantum 
mechanics, it is worth while to pursue a bit more these negative results 
about hidden variables. Fine (1982) proved that the Bell inequalities 
hold if and only if there exists a joint distribution of the random variables 
A, A', B, B'. (As expected, the Bell inequalities are not sufficient for 
N>4.) This means that there is not a joint distribution in quantum 
mechanics because the inequalities are not satisfied. This is a familiar 
quantum mechanical story. In the present case the random variables A 
and A' are noncommuting, as are also the random variables B and B'. 
From a conceptual standpoint, though, the noncommuting character of 
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these pairs of variables is not in some sense quite the right result for, as 
we ordinarily think of the experiments, the random variables are random 
variables that are observed at different times. There is more to be said 
on this point but I am not going to do it here. Suppes and Zanotti 
(1981) proved that for the kind of random variables we are discussing 
here, namely, ones with values ±1, there exists a joint distribution of 
such random variables if and only if there exists a hidden variable such 
that 

So the absence of joint distributions in quantum mechanics, a familiar 
result in the Bell kind of structure, implies according to this theorem 
that there can be no hidden variable ..\ and therefore, in the sense of local 
hidden variables, no causal theory. 

This seems to contradict the earlier statement about extending quan
tum mechanics to Markov diffusion processes. Nelson (1985) shows in fact 
that the Markov stochastic mechanics does violate locality in the sense of 
Bell. 

But all the possibilities are not lost with this result. As Nelson says, 
in principle a non-Markovian stochastic mechanics can be constructed 
that is consistent with locality. Such a construction has not been carried 
through in detail yet and certainly presents formidable difficulties, but 
there is certainly nothing in principle against such a construction. If such 
a construction can be carried through, probabilistic causality is restored 
for quantum phenomena, again by an appropriate extension of the mean 
theory of classical quantum mechanics. In principle there is also the 
possibility of introducing new concepts with respect to which the enlarged 
diffusion process is Markov, but this move takes us into uncharted waters 
searching for a fundamental conceptual extension of quantum mechanics 
distinct from hidden variable approaches. 

I just want to conclude with one philosophical remark about non
Markovian processes. It is of course true that we are very used to thinking 
about the world in Markovian fashion. We find it hard to imagine that 
there is another kind of action at a distance operating, namely, action at a 
distance through time. Yet we all recognize that for many kinds of limited 
theories such action at a distance in time is absolutely essential. No one 
would propose today or consider it feasible in any sense whatsoever to be 
able to look at the structure of the brain of a person and give an account 
of the impact of past experience on that individual. Knowledge of actual 
events of the past is essential for a detailed understanding of the behavior 
of individuals. This does not just apply to the psychology of individuals
it is true for all kinds of other phenomena. Certainly we can improve our 
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understanding of many complex phenomena, from the stock market to 
the weather, by taking account not just of the instantaneous state but of 
the past history as well. It is only when we think we have a final and 
fundamental theory of phenomena that we might be persuaded to say 
that the process must be Markov. Once we do not believe we have the 
fundamental theory then it is very natural to look for a theory that is non
Markovian in character. The concepts that we have formulated explicitly 
in a given theory we believe are not rich enough to catch all of the structure 
actually present in the entities being studied. We may indeed believe that 
it is not feasible in any foreseeable future to understand that structure 
completely but that we can make headway by looking at the history of the 
entity. Certainly we have that attitude in large-scale cosmology now. It 
seems to me that it is not philosophically surprising or upsetting to have 
to recognize that our best hope of providing a causal account of quantum 
phenomena may very well have to be non-Markovian in character. 



PARTV 

PSYCHOLOGY 



24 

FROM BEHAVIORISM TO 

NEOBEHAVIORISM 

1. DEFINITION OF NEOBEHAVIORISM 

Nelson's (1975) detailed article on behaviorism and stimulus-response the
ory provides an opportunity for me to reformulate my own viewpoint and 
to clarify certain confusions in the informal discussion I gave of my for
mal results on the stimulus-response theory of finite automata (Suppes, 
1969b ). 

The classical popular view of behaviorism is that it is strictly an op
erational theory, stated wholly in terms of observables. However, this is 
already not strictly true of detailed formal statements of the theory that 
go back as far as the late fifties (Estes and Suppes, 1959a; Suppes and 
Atkinson, 1960). In these mathematical formulations of behaviorism it 
was already apparent that the notion of stimulus was not directly ob
servable and neither was the concept of conditioning. For example, in 
the experimental situations to which the theory was applied by a large 
number of investigators in the heyday of mathematical models of learn
ing some fifteen years ago, it was even a standard trick to estimate the 
number of stimuli from the observed data but not to pretend to be able 
to identify the stimuli. If the stimuli were identified and if there was more 
than one stimulus in a presentation, then it was not possible in general 

*Reprinted from Theory and Decision, 6 (1975), 269-285. 
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to identify precisely what stimuli were conditioned to what responses, 
and consequently to treat as an observable the relation of conditioning 
between stimuli and responses. 

To clarify this situation in somewhat more detail, it is worth noting 
that the theories that were stated in terms of observables-for exam
ple, the stochastic models of Bush and Mosteller (1955) and the linear 
models of Estes and Suppes (1959a)-did not involve explicitly the con
cept of stimulus but only the two concepts of response and reinforce
ment. Even here, it was possible to insist on treating the concept of 
reinforcement as not being identifiable and there was some discussion of 
this matter in the work that Estes and I did in the late fifties. How
ever, the canonical form of a stochastic model of learning that did not 
involve the concept of stimulus and that was applied to a wide variety 
of experiments was to treat the responses and reinforcements as observ
able, and to record the occurrence of each on a given trial. It is pos
sible to insist that this model was not entirely observable because the 
probability of a response as opposed to the actual response was the the
oretical entity of greatest importance, and this probability itself was not 
observable but could only be estimated approximately from experimental 
data. 

Still, there is a point to the criticisms of the form of stimulus-response 
theory that was fashionable in the period I have just been discussing. 1 

What came to be felt as the appropriate criticism within psychology of 
the work of those days was the absence of sufficient internal structure, 
the absence of anything of the complexity we intuitively associate with 
human mental abilities, especially the complex and subtle processes of 
memory and of language comprehension and production. 

We are now in the era of neobehaviorism, which I would define in infor
mal terms along the following lines. A theory of psychological phenomena 
is neobehavioristic if it recognizes as the essential observable data only 
stimulus conditions and responses, with both stimulus conditions and re
sponses described in terms that are recognized as properly psychological. 
It is apparent that this is not meant to be a serious definition and I do 
not want here to attempt a serious definition. I am not even sure it is a 
worthwhile enterprise to do so. What I have in mind is excluding phys
iological or neurological observations and data, or biological data as, for 
example, gene structure. It is not that I think that psychology can be in 

1 In analyzing the observability of the various concepts or relations, I am not 
trying to split any hairs in a philosophical sense\ or to challenge the possibility 
of distinguishing between theoretical and observatidnal terms. I am intending to 
give an analysis that is rather straightforward and not meant to be controversial in 
character. 
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any scientific sense properly and wholly autonomous from physiology or 
biology but rather that the most important psychological theories are to a 
large degree independent of physiology and biology. This independence is 
a thesis to which I shall return at the end of this article. For the present, 
I want to make the essential behavioral feature of neobehaviorism the 
retention of stimuli and responses as central on the one hand, and the 
introduction of unobservable internal structure as the 'neo' component 
on the other. Thus,. in neobehaviorism as opposed to classical behavior
ism it is quite appropriate to postulate a full range of internal structures, 
ranging from memory hierarchies to language production and language 
comprehension devices that cannot be, from the standpoint of the theory, 
directly observed. 

2. THE REAL ISSUE: REINFORCEMENT 

Nelson (1975) gives a detailed discussion of finite acceptors and finite 
transducers, and properly insists that the theory I set forth in Suppes 
(1969b) was a theory of finite acceptors. His central point is that my 
handling of responses in the earlier article does not permit an appropriate 
concept of internal state. He also points out that in my own informal 
discussion I moved too quickly to an identification of internal states and 
outputs. In his article he also emphasizes the possibility of having internal 
responses, and this is not really an issue between us. In fact, it seems to 
me there is no real issue between us. I agree with what he has to say 
about these matters and my intention is to focus on some of the central 
issues that he does not cover. 

Surprisingly enough, perhaps the central omission from the standpoint 
of what I want to say in the present context is his absence of discussion 
of reinforcement. In my 1969 article I used a concept of determinate 
reinforcement. A reinforcement is determinate when the correct response 
is indicated after the actual response has occurred. For example, if I ask a 
child the sum of 7 + 5, then a determinate reinforcement would be giving 
the correct answer, 12, when he gave an incorrect answer. An example 
of nondeterminate reinforcement would be simply to tell him that the 
answer was incorrect and to ask him to try again. When determinate 
reinforcement is used, it is clear that in some sense the responses have to 
be observable in order to correct each incorrect response. The theorem 
that I stated about finite automata in my 1969 paper used an assumption 
of determinate reinforcement. It seems to me that it is this assumption of 
determinate reinforcement rather than any of the informal remarks I made 
about responses being observable or internal states being identifiable with 
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outputs that is really the central feature and the central limitation of the 
main theorem of that paper. 

From the standpoint of giving an account of complex learning, espe
cially in natural settings as opposed to simple laboratory situations, it was 
clear to me before the 1969 paper was published that the most essential 
extension was to obtain similar results with nondeterminate reinforce
ment. This problem was tackled in conjunction with my former student, 
William Rottmayer, and detailed results are embodied in his 1970 dis
sertation. An informal and rather brief statement of the results appears 
in a survey article we published on automata (Suppes and Rottmayer, 
1974). 

Because the formal statement of stimulus-response theory with non
determinate reinforcement is rather complicated, I shall give only a brief 
informal statement similar to that in Suppes and Rottmayer (1974). Be
fore doing so, let me formulate a canonical class of problems that can 
be used for intuitive reference in digesting the content of the individual 
axioms. The organism is presented with a potentially infinite class of stim
ulus displays, for example, line drawings. A subclass of the entire class 
is characterizable by a finite automaton. The problem for the learner is 
to learn the concept characterized by the finite automaton, given on each 
trial only the information of whether or not his classification of a given 
stimulus display is correct. I have mentioned line drawings here because I 
do not want to concentrate entirely on language, but it would also be pos
sible to think of the learning in terms of recognizing grammatical strings 
of some regular language. Because I do not like to think of language 
learning wholly in terms of grammar, I prefer in the present context a 
geometrical example. Let us suppose that each line drawing consists of a 
finite number of line segments. A typical example might be a line drawing 
consisting of three segments forming a triangle but with one of the line 
segments, and only one, extending beyond the triangle. On each trial the 
learner is asked to say whether the particular line drawing shown is an 
instance of the display and after he has given this information he is told 
simply that his answer is correct or incorrect. 

What the theory postulates is a sequence of implicit responses or, if 
you prefer, internal responses by the learner prior to giving the answer of 
'yes' or 'no' to classify the display. Informally it is assumed that the im
plicit or internal responses are not available for observation and cannot be 
directly reinforced. The theory does not require this as an assumption, 
but it is implicit in any experimental application of the theory. Rein
forcement takes place not after each internal response occurs, which is 
considered a subtrial, but only after a trial consisting of a sequence of 
sub trials. 
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In other words, putting the matter in standard experimental terms, a 
subtrial corresponds to what we usually think of as a trial, but no rein
forcement or conditioning takes place and we cannot observe the response 
that was actually made. Conditioning occurs only after a sequence of sub
trials, and the whole sequence of subtrials is called a trial. In automaton 
terms, a subtrial corresponds to an automaton making one transition, 
that is, from one internal state to another, and a trial to processing an 
entire tape or input string. 

The characterization of the theory requires seven primitive concepts. 
To begin with, there is the set S of stimuli and the set R of responses. 
The set E of reinforcements contains only two elements, e1 and e2 ; e1 is 
the positive reinforcer, e2 the negative one. In the interpretation intended 
here, e1 is the giving of information to the learner that his response has 
been correct and e2 is the giving of information that the response is in
correct. It is clear that exactly how this information is given can vary 
widely from one experiment to another and there is a variety of proce
dures for doing so. What is important is that the reinforcers have this 
information interpretation. The fifth primitive concept is a measure p 
of saliency defined on the set of stimuli. I will not have much more to 
say about the saliency of stimuli, and exactly how it is handled is not 
too important in the present context. In many simple experiments it is 
often taken to be the cardinality of the number of stimuli presented. The 
concept of sub trial requires the introduction of M, which is a sequence of 
positive integers fin· Each fin indicates the number of subtrials on trial 
n. This notion is necessary to define the next primitive concept, the sixth 
one, that of the sample space X. Each element of X represents a possible 
experiment, i.e., an infinite sequence of trials where each trial n has fin 

subtrials. Each trial is an (fin + 2)-tuple consisting of three things: (a) 
the conditioning function at the beginning of the trial which is a partial 
function from S into R, where C( u) = r means that stimulus u is condi
tioned to response rand C(u) undefined means that u is unconditioned; 
(b) fin triples of the form (T, s, r) where Tis the set of presented stimuli, 
s is the set of sampled stimuli, and r is the response on a subtrial; and 
(c) the reinforcement which occurred at the end of the trial. The final 
primitive concept is the probability measure P on the appropriate algebra 
of events (subsets) of X. All probabilities are defined in terms of P. For 
simplicity of formulation, in the following axioms it is assumed that all 
events on which probabilities are conditioned have positive probability. 
There are three kinds of axioms: sampling axioms, conditioning axioms, 
and response axioms. The nondeterminate reinforcement is especially 
relevant to the conditioning axioms. 
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Sampling Axioms 

(Sl) On every subtrial a set of stimuli of positive measure is sampled with 
probability 1. 

(S2) If the same presentation set occurs on two different subtrials, then 
the probability of a given sample is independent of the subtrial num
ber. 

(S3) Samples of equal measure that are subsets of the presentation set 
have an equal probability of being sampled on a given subtrial. 

(S4) The probability of a particular sample on trial n, subtrial m, given 
the presentation set of stimuli, is independent of any preceding sub
sequence of events. 

Conditioning Axioms 

(Cl) On every trial with probability 1 each stimulus element is conditioned 
to at most one response. 

( C2) If e1 occurs on trial n, the probability is c that any previously un
conditioned stimulus sampled on a subtrial will become conditioned 
to the response given on that subtrial, and this probability is inde
pendent of the particular subtrial and any preceding subsequence of 
events. 

(C3) If e1 occurs on trial n, the probability is 0 that any previously un
conditioned stimulus sampled on a subtrial will become conditioned 
to a response different from the one given on that subtrial, and this 
probability is independent of the particular subtrial and any preced
ing subsequence of events. 

(C4) If e1 occurs on trial n, the conditioning of previously conditioned 
sampled states remains unchanged. 

( C5) If e2 occurs on trial n, the probability is 0 that a previously uncon
ditioned stimulus sampled on a subtrial will become conditioned. 

(C6) If e2 occurs on trial n, the probability is d that any previously con
ditioned stimulus sampled on a subtrial will become unconditioned, 
and this probability is independent of the particular subtrial and any 
preceding subsequence of events. 

( C7) With probability 1, the conditioning of unsampled stimuli does not 
change. 
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Response Axioms 

(R1) If at least one sampled stimulus is conditioned to some response, 
then the probability of any response is the ratio of the measure of 
sampled stimuli conditioned to this response to the measure of all 
the sampled conditioned stimuli, and this probability is independent 
of any preceding subsequence of events. 

(R2) If no sampled stimulus is conditioned to any response, then the prob
ability of any response r is a constant guessing probability Pr, that 
is independent of n and any preceding subseque-q,ce of events. 

Note that the conditioning method used is simple. Conditioning oc
curs on trials that have a correct response, and deconditioning occurs on 
trials that have an incorrect response. Thus learning occurs on all tri
als, regardless of whether the response is correct or not. On the basis 
of these axioms, the following theorem, which represents a considerable 
improvement of the basic theorem in my 1969 article, can be proved. The 
improvement is due to the weakening of the methods of reinforcement. 

THEOREM. If V is any set of perceptual displays and G is a subset of 
V that can be recognized by a finite automaton, then there is a stimulus
response model that can also learn to recognize G, with performance at 
asymptote matching that of the automaton. 

One important point to note is that with nondeterminate reinforce
ment the theorem is, as one would expect, weaker. In the 1969 article the 
stimulus-response model at asymptote became isomorphic to the given 
finite automaton. In the present case, the result can only be one of be
havioral equivalence or, in the ordinary language of automaton theory, the 
result is one of weak equivalence. On the other hand, it is exactly the re
sult of weak equivalence as opposed to isomorphism that is characteristic 
of neobehaviorism. 

It is clear that the nondeterminate reinforcement used in the theory I 
have just formulated is about the weakest version of reinforcement that 
is interesting, with the possible exception of giving only partial reinforce
ment, that is, reinforcement on certain trials. In actual learning, for 
example, in the learning of mathematics or in the learning of language, 
there are many situations in which much more decisive and informative 
reinforcement is given. It is not difficult to show that the more determi
nate the reinforcement, the faster learning will be in general for organisms 
of a given capacity. In the long and tangled history of the concept of re
inforcement it has not been sufficiently emphasized that reinforcement is 
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delivery of information, and a particular structure of information is im
plicit in any particular scheme of reinforcement. An exhausting but not 
exhaustive analysis of different structures of reinforcement is to be found 
in Jamison et al. (1970). (So many detailed theoretical computations 
were made in this article that it has scarcely been read by anyone; it does 
provide a good sense of how complex things rapidly become when rein
forcement schemes that have even mildly complex information structures 
are used.) 

It is important for the present discussion to consider one of the weakest 
structures of nondeterminate reinforcement and to emphasize the point 
that it is the nondeterminate character of the reinforcement that moves 
us out of the arena of classical observability of responses and permits 
the introduction of a repertoire of implicit or internal responses that are 
not in general observable. The reinforcement does not create the implicit 
responses, but when we have determinate reinforcement the theory is not 
applicable to situations in which implicit or internal responses occur. 

It is also important to note that it is really a matter of terminology 
and not of substantive theory whether these implicit responses are called 
responses as such or are called internal states. It would be easy enough 
to reformulate the axioms given above and to replace responses with in
ternal states except for the response that occurs at the end of a trial. 
This terminological change would not affect the axioms in any way and 
might be a useful change for the purposes of emphasizing the move from 
behaviorism to neobehaviorism. 

It is worth mentioning that the implicit responses that we might want 
to baptize as internal states are often observed as taking place even when 
we do not know their exact form. A good example occurs in the case of 
subvocalized articulatory responses that are characteristic of most silent 
adult readers. Self-awareness of such subvocal responses is unusual, and 
I hasten to add that it is not possible to 'read off' from the subvocal 
responses the words being read. In any case, to keep the behaviorist flavor 
of neobehaviorism I shall continue to talk about implicit responses rather 
than internal states or at least will not restrict myself to the terminology 
of internal states. 

3. LEARNING PARTIAL RECURSIVE FUNCTIONS 

Even in the case of nondeterminate reinforcement it is not difficult to 
extend the learning theorems for stimulus-response models beyond the 
theory of finite automata. We can, in fact, set our sights on the full set of 
computable objects, of what is known in the literature as the set of partial 
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recursive functions. There are many equivalent definitions of this set of 
functions: functions computable by a universal Turing machine, partial 
recursive functions defined by partial recursive schemata, functions that 
are >.-definable, functions that satisfy a normal algorithm in the sense of 
Markov, and so on. Because of the extensional equivalence of all these 
definitions, there is good general agreement that the intuitive notion of 
computable can be characterized in a number of different ways, all of 
which are intuitively correct. 

Classically, the computable functions, or partial recursive functions, 
have been defined as arithmetic functions from n-tuples of natural num
bers to natural numbers, but it is easy to consider instead the partial re
cursive functions defined for a fixed finite vocabulary, and thus to consider 
functions that are more closely related to problems of language learning. 

More than ten years ago, Shepherdson and Sturgis (1963) showed that 
one can use a quite simple set of instructions for register machines to 
write programs to compute any partial recursive function over a fixed 
finite vocabulary. 

Let me recall how simple a register machine is. All we have is a 
potentially infinite list or sequence of registers, but any given program 
uses only a finite number. Exactly three simple kinds of instructions are 
required for each register. The first is to place any element of the finite 
vocabulary at the top of the content of register n; the second is to delete 
the bottommost letter of the content of register n if the register is non
empty; because any computation takes place in a finite number of steps, 
the content of any register must always be finite in length. The third 
instruction is a jump instruction to another line of the program, if the 
content of register n is such that the bottommost or beginning letter is ai; 
in other words, this is a conditional jump instruction. Thus, if we think 
of the contents of registers as being strings reading from left to right we 
can also describe the instructions as placing new symbols on the right, 
deleting old symbols on the left, and using a conditional jump instruction 
in the program when required. 

It is straightforward to give a formal definition of programs for such an 
unlimited register machine, but I shall not do so here; it is clear that a pro
gram is simply made up of lines of instructions of the sort just described. 
The important point is that it may be proved that given any partial re
cursive function computable over a finite vocabulary then a program that 
computes exactly that function for any given input string can be written 
in terms of the instructions stated above. The potentially infinite memory 
of an unlimited register machine both in terms of the number of registers 
and of the size of each register is a natural mathematical idealization. It 
is also possible to define a single register machine with instructions of the 
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kind just stated and to show that a single register is also adequate. The 
use of such a single register moves the concept of a register machine close 
to that of a Thring machine. 

In the present context the details are not important. What does seem 
intuitively desirable is the move from abstract machines with abstract in
ternal states to programs written in terms of instructions each of which 
has an intuitive meaning. It is much easier to think about particular prob
lems, especially problems of some complexity, in this fashion. Looked at 
in this way, the learning problem becomes one of writing internal pro
grams to produce appropriate outputs for any given input. Thus, in the 
case of the kind of geometric problem discussed earlier, the input would 
again be a description in a finite vocabulary of a line drawing and the 
output of the program should be a classification response. 

In extending learning theory to arbitrary partial recursive functions 
and using the concept of unlimited register machine just described, there 
are certain difficulties we have to be careful of theoretically. It would be 
easy to set the problem up so that, with the infinite set of registers and 
the unbounded length of possible programs, we would not get asymptotic 
convergence. There are various ways to bound the situation or to arrange 
the order of development so as to get the appropriate asymptotic theorem. 
I shall not enter into details, because it seems to me that there is a problem 
of an entirely different sort that is more critical and needs to be brought 
under scrutiny. 

The weakness of asymptotic theorems of the kind given in the preced
ing section and of the kind hinted at for the present context of partial 
recursive functions is exactly the weakness of the theory of partial recur
sive functions itself as a theory of actual computers. Ignoring learning, 
for example, we may want to say that because we have a theory of com
putable functions we have a theory of computers. Nothing could be much 
further from the case. 

For people involved in actual complex problems of programming, this 
seems like a ludicrous claim. The reason is that there is an enormous gap 
between the theory of computable functions and most of the questions 
we want to answer about computers. To a large extent the same thing is 
true about learning. It has sometimes been the claim of psycholinguists 
that in principle no stimulus-response theory could give an account of 
language learning. This claim is false, but proving it false is not nearly 
as important as developing an adequate positive theory. 

There are many ways of saying what the important initial features 
of the positive theory should be. One way of formulating the matter is 
that we should be able to compute approximately the expected trial of last 
error for a given problem and for a learner with a given history of mastery 
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of previous problems. If the theory is to match human performance, then 
the expected trial of last error must match approximately the performance 
of humans. If the theory is one for computer learning, then to make the 
situation interesting the expected trial of last error must be small enough 
to be testable for problems that seem appropriately simple. 

If we find, for example, that the theoretical expected trial of last er
ror is orders of magnitude larger than what we obtain in actual human 
learning or what we might expect or hope to obtain in computer learning, 
to take simply these two classes of learners, then clearly the theory is not 
yet thoroughly worked out as a satisfactory empirical theory to provide a 
theoretical basis for neobehaviorism. 

Cognitive psychologists are properly impatient if all that can be of
fered them is the kind of general theory I have sketched. It is my view 
that the approach of cognitive psychologists or of psychologists interested 
in complex problem solving or information processing {Newell and Simon, 
1972, is a good example) could be fit within a neobehaviorist framework if 
a proper amount of structure is assumed and not mastered from scratch. 
Cognitive psychologists are interested in studying complex problem solv
ing or complex aspects of memory, for example. In general they are 
currently not very much interested in learning in the fundamental sense 
characteristic of the kind of theory I am describing in this article. There 
is not a formal inconsistency in the two viewpoints. There is currently a 
focus on different matters, but I think it is important for the future that 
a stronger convergence between the two viewpoints be attempted. 

If we begin from the kind of neobehavioristic theory of learning I am 
sketching, then the general line of how to reach that convergence is clear 
in broad outline, and I turn to the analysis of that problem in the next 
section. 

4. CHOOSING THE HIERARCHY OF PROBLEMS 

The theoretical results for the learning of partial recursive functions dis
cussed in the last section show that with extremely meager apparatus 
we can, even with nondeterminate reinforcement procedures, ultimately 
learn how to compute such functions, or in the terminology of the section 
before that, can learn to recognize a class of objects recognizable by a fi
nite automaton. Humans, of course, are already endowed with a very rich 
structure for learning, but the theory emphasizes that this rich structure 
need not be there a priori. If, for example, one has in mind the develop
ment of a theory of learning for computers, then one might in principle 
not want to assume much structure at the beginning. 
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It is also easy enough to place human learners in a situation that is in 
practical terms too difficult for them. No one, for example, would consider 
teaching advanced mathematics to a child or an adult who did not have an 
appropriate prior background in mathematics. Many complex technical 
skills that take a long time to learn have a similar character. One would, 
for example, not hire an untrained person, no matter how bright and 
experienced in other areas, to do under a definite time pressure a large 
set of architectural drawings. 

In every area of specialized knowledge or skill the learner is expected 
to work his way through a hierarchy of problems. Although the argument 
is usually not put in explicit terms, it is understood that the external 
organization of such a hierarchy is essential for almost all learners to 
make any reasonable progress. 

Organizing the hierarchy of tasks or problems that the learner must 
master is a typical traditional problem in the organization of curriculum. 
A great deal of practical experience and wisdom is embodied in the major 
areas of curriculum in the schools and universities, but the theory of such 
matters is still in quite an elementary state. 

Perhaps the central reason for the elementary state of the theory is 
that, in regard to the deeper principles for organizing the hierarchy of 
concepts or skills to be learned, we have as yet rather poor ideas of how 
the hierarchy is internally absorbed by the learner. It is probably agreed 
by everyone that development of an internal hierarchy is as essential as 
the presentation of problems in an external hierarchy. 

From the standpoint of asymptotic arguments, neither the internal 
nor the external hierarchy is required, but once we turn from asymptotic 
questions to questions of actual learning and concern with the efficiency 
of learning then it is obvious that detailed attention must be given to 
both internal and external hierarchies. 

It seems to me also important to recognize that to a reasonable degree 
the internal hierarchy is as much subject to control and variation as is the 
external hierarchy. 

Certainly we are not conscious of how our memories work, but we are 
conscious of various ways of improving memories or facilitating the ways 
in which we remember things. A good example would be the traditional 
method of associating memories with places as a method of facilitation. 

I take it that a central goal of cognitive psychology is to character
ize the variety of internal structures and their functions. As already re
marked, it is characteristic of contemporary cognitive psychology to be 
not much concerned with the kind of internal hierarchies that can be 
learned but rather to study that which is already there on the basis of 
prior experience and learning, but not prior experience and learning that 



FROM BEHAVIORISM TO NEOBEHAVIORISM 353 

has itself been a subject of experimental or analytical study. I see the con
vergence of cognitive psychology and the neobehaviorist kind of learning 
theory I have been sketching in the study of the kinds of internal hierar
chies that can be learned and that will prove useful to learn in order to 
master complex concepts and skills. 

An example with considerable practical implications is the learning 
of skills for giving mathematical proofs. Students all over the world are 
taught the elements of proof-making skills, as we might call them, but the 
psychological study of mathematical proofs is as yet in its infancy. Neither 
the theory of learning nor the current theories of cognitive psychology 
has yet much to offer to provide a deeper insight into the development 
or use of proof-making skills. As far as I know, there is not one single 
psychological study of a systematic kind about mathematical proofs at 
the level of difficulty, say, of a first-year graduate course in mathematics. 

For definiteness let us return to the classification of line drawings men
tioned earlier. As each new problem, that is, each new classification, is 
learned, the appropriate internal structure is that a subroutine is added 
to the programs being written by the internal register machine. These 
new subroutines are named; indeed, they might well be named with the 
appropriate English words. Moreover, a new predicate is added to the in
ternal language for scanning objects and this new predicate will, if things 
work out right, be used in the near future in the analysis of new classes of 
problems. I am under no illusion that the creation of subroutines that can 
be called and the creation of new predicates for approximate classification 
of objects when faced with new problems constitute a sufficient appara
tus. Not only will additional structures be needed, but the articulation of 
relations between the structures is at least as important and as delicate 
a problem. My only point in the present discussion is that it is my firm 
conviction that when we talk about learning beginning from scratch, the 
hierarchy of problems solved will itself have a determining effect on the 
creation of the internal hierarchy that will be used in solving subsequent 
problems. In advanced and difficult areas of problem solving the exact 
hierarchy that is internalized probably has a great deal to do with the 
ability to solve new problems. In areas of science that have received a 
considerable development, breaking through the highly developed current 
hierarchy of concepts and ideas is often the most important single step in 
solving an open problem. 

I believe that computer-learning experiments can play the same in
sightful role in understanding how an internal hierarchy is created as 
have the experiments of biochemists with the chemical conditions for cre
ating the first lifelike molecules (Calvin, 1975). One does not expect in 
these biochemical experiments to move at any rapid pace from the ere-
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ation of lifelike molecules to the synthetic creation of complicated living 
organisms. It is the objective of such investigations to gain fundamen
tal insight into how the complex molecules essential to our forms of life 
evolved from much simpler structures. In the same way, experiments on 
computer learning provide an opportunity to gain insight into the way 
that internal hierarchies are formed in the solving of a hierarchy of prob
lems. Such experiments have as yet only begun, because we still need 
the detailed articulation of a learning theory that will make such matters 
practical, but there is currently a great deal of work going on relevant to 
these matters in many different intellectual centers throughout the world 
and I am mildly optimistic about progress in the near future. 

5. PROBLEMS OF PREDICTION 

I find myself very much in agreement with what Nelson has to say about 
psychology being possibly quite a different subject from physics. We can 
expect to need a theory of individual prediction rather than a theory of 
how most organisms work most of the time in the same way. 

I shall not try to summarize his arguments but to state my own views 
from a slightly different viewpoint. From inspection of computer hard
ware it is clearly ludicrous to think that one can predict the kinds of 
computer programs that will be written for the computer system. Of 
course, certain very gross and uninteresting statements can be made, but 
statements that predict in any detail the actual programs that will be 
written are obviously out of the question. In ordinary scientific terms, 
knowledge of the hardware in no sense determines knowledge of the soft
ware. It seems to me that there is good evidence that the same situation 
is approximately true for human beings. Knowledge of how the physical 
hardware of the brain works will not necessarily tell us very much at all 
about the psychological aspects of human activities, especially the more 
complex ones. For example, it is nice to know that language activity is 
ordinarily centered in the left hemisphere of the brain, but it seems quite 
evident that in no foreseeable future will dissection of the left hemisphere 
of an unknown person be able to identify the language he actually spoke, 
whether it be English, Russian, Chinese, or what not. Location and iden
tification of more particular skills or memories on the part of particular 
humans is clearly an even more impossible task. The software of the 
brain will not be reduced to the hardware in any way that seems feasible 
at the present time, and in this sense it seems to me a strong claim can 
be made that psychology is not going to be reduced to physiology and 
biology. 
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It is this line of argument that makes psychology as fundamental a 
science as physics. On various occasions mistaken views have been held 
about the reduction of psychology to physiology or, in even more bold 
terms, the reduction of psychology to physics. Nothing, it seems to me, 
is further from being the case, and it is because of this absence of any 
evidence that any reduction can take place that theses about behaviorism 
remain important. Psychological concepts, complex skills, and, in a still 
more traditional terminology, mental events as occurring at least in other 
persons and other animals can be known only from behavioristic evidence. 
We will not obtain that evidence from chemical or physical examination 
of the cells of the body. We will not obtain it by rationalistic methods 
of knowing. Behaviorism as a fundamental methodology of psychology is 
here to stay, but the room that it occupies is sufficiently large to admit a 
dazzling array of mental furniture. Clear recognition that there is mental 
furniture inside the room is why the sign over the door should now be 
changed from behaviorism to neobehaviorism. 
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LEARNING THEORY FOR 

PROBABILISTIC AUTOMATA 

AND REGISTER MACHINES, 

WITH APPLICATIONS TO 

EDUCATIONAL RESEARCH 

The first part of this article reviews my work and that of my collaborators 
in the learning theory of probabilistic automata and register machines. 
The second part is concerned with specific applications to educational 
research, especially to the learning of elementary mathematics. 

1. THEORY 

Asymptotic theory. The current asymptotic theory is in reasonable shape. 
One can give an asymptotic theory having the following intuitive content. 
Given any classification problem that can be characterized by a finite au
tomaton, there exists a stimulus-response model that under nondetermi
nate reinforcement will asymptotically be equivalent to the classification 
behavior of the automaton. What is important about this theorem is that 

*Reprinted from Structural models of thinking and learning (ed. by H. Spada and 
W. F. Kempf), 1977, pp. 57-79. Bern: Hans Huber. 
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the reinforcement is nondeterminate, that is, the stimulus-response model 
can learn from only "yes-no" reinforcements regarding the correctness of 
classification. This theorem is in contrast to that obtained in Suppes 
(1969b ), which depended upon determinate reinforcement. The earlier 
theorem is, of course, stronger, because with determinate reinforcement 
it is possible to obtain isomorphism asymptotically between the stimulus
response model and the given finite automaton. With nondeterminate re
inforcement the best one can expect to get is behavioral equivalence. The 
theory of stimulus-response models with nondeterminate reinforcement 
developed by William Rottmayer and myself is outlined in the preceding 
article in this volume. The basic theorem is this. 

THEOREM 1. If(} is any set of perceptual displays and G is a subset of 
(} that can be recognized by a finite automaton, then there is a stimulus
response model that can also learn to recognize G, with performance at 
asymptote matching that of the automation. 

I now turn to a comparable development for register machines. In the 
formal characterization of such machines I follow Shepherdson and Sturgis 
(1963). First, let me recall how simple a classical register machine is. All 
we have is a potentially infinite list or sequence of registers, but any 
given program uses only a finite number. Exactly three simple kinds of 
instructions are required for each register. The first is to place any element 
of the finite vocabulary at the top of the content of register n; the second 
is to delete the bottommost letter of the content of register n if the register 
is nonempty; because any computation takes place in a finite number of 
steps, the content of any register must always be finite in length. The 
third instruction is a jump instruction to another line of the program, if 
the content of register n is such that the bottommost or beginning letter 
is a;; in other words, this is a conditional jump instruction. Thus, if we 
think of the contents of registers as being strings reading from left to right 
we can also describe the instructions as placing new symbols on the right, 
deleting old symbols on the left, and using a conditional jump instruction 
in the program when required. 

It is straightforward to give a formal definition of programs for such 
an unlimited register machine, but I delay this for the moment. It is 
clear that a program is simply made up of lines of instructions of the 
sort just described. The important point is that it may be proved that, 
given any partial recursive function computable over a finite vocabu
lary, a program that computes exactly that function for any given input 
string can be written in terms of the instructions stated above. The 
potentially infinite memory of an unlimited register machine both in 
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terms of the number of registers and the size of each register is a nat
ural mathematical idealization. It is also possible to define a single
register machine with instructions of the kind just stated and to show 
that a single register is also adequate. The use of such a single regis
ter moves the concept of a register machine close to that of a Turing 
machine. 

Before looking at the details of register machines as we shall want to 
construct them for learning purposes, it will be useful to review the seven 
primitive concepts used in the nondeterminate stimulus-response theory 
formulated in the previous article. The set S of stimuli, the set R of re
sponses, the set E of reinforcements, and the measure of saliency on the 
set of stimuli all remain unchanged, in principle if not in practice. The 
concept of a subtrial of the sample space n and the probability measure 
P will change somewhat, but only in their details. We must also intro
duce as a new primitive concept the set of internal instructions of the 
register machine, as well as the registers themselves. To make the theory 
as simple as possible in general formulation, I shall first assume that the 
set of registers is unbounded in number but that in a given program only 
a finite number are used, and then later assume only a fixed finite num
ber is available at all. Still another general primitive concept is that of 
the internal language used for encoding stimulus displays. In the present 
formulation of the theory I shall, in fact, not enter into the relation be
tween the set of stimuli and the encoding language but deal only with the 
already encoded representation of the display. This level of abstraction 
seems appropriate for the present discussion. It is a matter of a detailed 
theory of perception to work out the relationship between stimulus pre
sentations and internal encodings. Thus, as the theory is presented here, 
the concept of stimulus is actually nonfunctional, but this is not because 
of any fundamental belief that it should be nonfunctional but only due 
to a drastic abstract simplification of the theory. I comment on this issue 
again in the discussion of applications in part II. 

The concept of a program internally constructed replaces that of sub
trial. For purposes of the general theory I shall leave matters as stated 
above; namely, there are three kinds of instructions and the input alpha
bet of the register machine is a finite nonempty set V. 

To make matters more explicit and formal but without attempting a 
complete formalization, I introduce the following definitions. First, {n) 
is the content of register n before carrying out an instruction; (n') is the 
content of register ,n after carrying out an instruction. Second, a register 
machine has 1) a denumerable sequence of registers numbered 1, 2, 3, ... , 
each of which can store any finite sequence of symbols from the basic 
alphabet V, and 2) three basic kinds of instructions: 
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(a') pW(n): Place a; on the right-hand end of (n). 

(b') DN(n): Delete the left-most letter of (n) if (n) f; 0. 

(c') Jt)(n)[E1]: Jump to exit 1 if (n)begins with a;. 

The notation E1 is a variable for the line number to jump to. If the 
jump is to a nonexistent line, then the machine stops. The parameter N 
shown as a subscript in the instructions refers to the set of registers left 
unchanged when the program is completed. (This point is made more 
explicitly in the definition given below.) 

A line of a program of a register machine is either an ordered couple 
consisting of a natural number n ~ 1 (the line number) and one of the 
instructions (a) or (b), or an ordered triple consisting of a natural number 
n ~ 1, one of the instructions (c), and a natural number m ~ 1. The 
formal interpretation of this definition is obvious and will not be given. 

A program (of a register machine) is a finite sequence of k lines such 
that 1) the first member of the ith line is i, and 2) the numbers m that 
are third members of lines are such that 1 :::; m :::; k + 1. The parameter 
k is, of course, the number of lines of the program. I shall also refer to 
programs as routines. How a register machine follows a program or routine 
is intuitively obvious and will not be formally defined. Subroutines are 
defined like programs except 1) subroutines may have several exits, and 
2) third members of triples may range over E1, ... , Ek, these variables 
being assigned values in a given program. 

I shall not give the formal definition of a partial recursive function 
defined over the alphabet V. It is any intuitively computable function. 
Given V, the finite vocabulary, then, as usual in such matters, V* is the 
set of finite sequences of elements of V; in the present context, I shall call 
the elements of V* 'codings'. Let f be a function of n arguments from 
V* X · · · X V* ( n times) to V*. The basic definition is that f is computable 
by a register machine if and only if for every set of natural numbers 
{xl, ... ,Xn,y,N} withy f; x; fori= 1, ... ,n and Xl,···,Xn,Y:::; N 
there exists a routine RN(Y = f(xl, ... ,xn)) such that if (x1), ... ,(xn) 
are the initial contents of registers x1, ... , Xn then 

1) iff( (x1), ... , (xn)) is undefined the machine will not stop, 

2) if f((x1), ... ,(xn)) is defined, the machine will, stop with (y), the 
final content of register y, equal to /((xl), ... ,(xn)), and with the 
final contents of all registers 1, 2, ... , N, except y, the same as ini
tially. 
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I turn now to the axioms for register-machine learning that roughly 
parallel those given in the previous article for stimulus-response models 
with nondeterminate reinforcement. Register 1 is reserved for the re
sponse. In the present case, if the register is cleared, the response is 
that the stimulus display is an instance of the concept in question and if 
the register is not empty, the answer is negative. Moreover, if the pro
gram stops before completion, the answer also is negative. The program 
constructed is stored in a program stack, which is just a special register 
designated for this purpose. 

In addition to this notion of a register stack, the register machine will 
be restricted to a nonempty finite set M of registers, numbered 1, ... , IMI, 
where IMI is the cardinality of M. Three other primitive concepts are 
needed: the function k from V* to the real numbers-for each x in V*, 
k(x) is the upper bound on the running time or length of program for 
computing on x; the real number c is the parameter of the geometric 
distribution on the number of lines of program constructed; and the real 
number g is the parameter of the geometric distribution needed for condi
tional jump instructions (see Axiom I2 below). The concepts and axioms 
apply only to learning partial recursive functions of a single argument. 
Moreover, only classificatory functions are treated; in particular, func
tions that have only two values, 0 and 1. Thus the theory is restricted 
to parallel the earlier treatment of stimulus-response models. The techni
cal details mentioned in the axioms and following theorem should be still 
more explicit and formal than they are, but because the asymptotic the
ory as such is of only limited practical interest, I have made the treatment 
rather brief. 

Initial data axiom 

(D1) At the start of each trial, there is an x in V* such that (1} = x. 

Program construction axioms 

(Il) If the program stack is nonempty, no new program is constructed 
(because the one already there will be used). 

(I2) Given that the program stack is empty at the beginning of a trial: 

1) the probability of constructing a program of n lines is c(1- c)n-l 
with 0 < c < 1, independent of the trial number and any preceding 
subsequence of events; 

2) given that a line is constructed, the probability of sampling an in
struction is uniformly distributed over M, V, and the three types 
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of instruction, independent of the trial number and any preceding 
subsequence of events; 

3) if a conditional jump instruction is sampled, the line ( m) ''jumped 
to" is sampled geometrically with parameter g, 0 < g < 1, indepen
dent of the trial number and any preceding subsequence of events. 

Program erasure axioms 

(E1) If e1 occurs at the end of a trial, the program stack remains un
changed. 

(E2) If e2 occurs at the end of a trial, the program stack is cleared. 

Response axioms 

(R1) If the program halts and (1) is empty, the response is "yes." 

(R2) If the program halts and (1) is nonempty, the response is "no." 

(R3) If the program does not halt by elapsed time k(x) for input data x 

in V*, the response is "no.", and the next trial is begun. 

On the basis of these axioms we may prove an asymptotic theorem 
corresponding to Theorem 1 for stimulus-response models. 

THEOREM 2. Let f be any 0-1 partial recursive function of one argument 

over the alphabet V such that a program for f exists with running time 

less than k(x) for x in V on register machine 9J1 = (M, V, k, c,g). Then 

f is asymptotically learnable with probability one by 9R. 

Proof Let P be a program for 9J1 that computes f for argument x in 
V* in running time less than k( x). Let C ~ V* be the set of instances of 
the concepts and -.C its complement, i.e., -.C = V* -C. Then we shall 
impose as a stimulus-display sampling distribution 

1 
P(x E C)= P(x E -.C)= 2. 

If C or -.C is finite, a uniform sampling distribution is used; if C or -.C 
is infinite, a geometrical distribution on the length-with uniform distri
bution on a given length-is used. (The exact nature of this distribution 
is unimportant.) 

Let P' be a constructed program which is incorrect for at least one x 

in V*. Then because P (sampling x) > 0, with probability one P' will be 
erased. On the other hand, the probability that P will be constructed on 
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any trial for which the program stack is cleared is positive and independent 
of the trial number. Thus asymptotically P or an equivalent correct 
program will be constructed with probability one. Details are omitted 
but are similar to those given in Suppes (1969b). 

Asymptotic theorems of the kind just proved are of limited application 
when no bounds on the expected last error are given, or when a lower 
bound is given that is (ar too high to account for any actual learning that 
is of interest. 

The nonasymptotic role of hierarchies. In the remainder of this section 
I examine some of the consequences of building a hierarchy of internal 
subroutines to match, i.e., to solve, a hierarchy of external problems. 
As a first example, made much too simple in order to make some explicit 
computations, I consider a disjunctive concept made up of n disjoint cases. 
Only one register is required, the alphabet is the set {0, 1}, and there is 
no jump instruction, but only the four instructions for deleting letters 
on the left or adding them on the right. Let the program be at most 10 
lines for each case. Then assuming a uniform distribution on sampling of 
instructions and of the number of lines (1 to 10), the probability of each 
program of at most 10 lines can be directly computed. More importantly 
in the present instance, we can easily compute the possible number of 
programs: 4 of length 1, 16 of length 2, and in general 4n of length n, 
with 1 ~ n ~ 10, for a total of (411 - 4)/3, which is approximately 410 . 

If now at the second stage programs are put together using only original 
instructions and then subroutines from individual cases, with programs of 
length at most 2n permitted, then there are [(n +4) 2n+l_ (n+4)]/(n+ 3) 
possible programs, which is approximately ( n + 4)2n. On the other hand, 
if a single program is developed in one step with 10n lines, the number of 
possible programs is approximately 410n. Consider, for example, the case 
n = 3. Then 430 is order of magnitudes larger than 76 + 410 • 

The details of this example are not important. I have not attempted 
to fix them sufficiently to determine in each of the two approaches the 
number of the possible programs that are correct. Ordinarily in both the 
hierarchical and nonhierarchical approach this number would be a very 
small percentage of the total. The gain from the hierarchical approach is 
evident enough already in this example. But even a simple hierarchical 
approach seems to lead to learning that is too slow. What this suggests 
is that the degree of hierarchical structure must be even more extensive. 

There are two additional important conceptual matters that should 
be enlarged upon, independent of any particular applications. 

The first is that the learning theory outlined here is not in any sense 
restricted to the learning of algorithms, as Theorem 1 about concepts 
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recognizable by finite automata might suggest. Theorem 2 already in 
principle applies to concepts whose extensions are recursively enumerable 
but not recursive, and thus not algorithmic in character. The probabilis
tic approach to learning or problem-solving characteristic of the theory 
applies in principle just as well to tasks that do not have any obvious 
algorithmic characterization. The learning of strategies for finding math
ematical proofs is an example of considerable pedagogical importance. 
Note that even in a domain for which an "obvious" solution algorithm ex
ists, it may be totally impractical to use it, and thus a "creative" approach 
is needed. A good example would be proofs of theorems in elementary 
algebra or elementary Euclidean geometry for which there exists an al
gorithmic decision procedure by well-known results ofTarski (1951), but 
for good theoretical reasons there is no hope of a general application of 
his procedures, because it may be shown that the lower bound on the 
number of steps, as a function of the length of a formula, is in general 
large enough to make practical use of the decision procedure out of the 
question. 

Consequently, future students as well as present ones will need to con
tinue to learn how to solve elementary algebraic and geometrical problems 
in a nonalgorithmic, creative fashion. On the other hand, the learning 
goals we set for students differ widely when the task, or set of tasks, is 
algorithmically solvable in a practical manner and when it is not. Thus 
we expect students to be able to solve correctly an indefinitely large num
ber of algorithmic arithmetic exercises, but we have much more limited 
expectations for their "proof-making" skills. 

The other conceptual matter is the clear recognition of the great gains 
to be obtained from using methods of reinforcement that are stronger than 
the weakest nondeterminate ones. This fact is recognized in all ordinary 
teaching. It is the purpose of explanations, of didactic lectures, of verbal 
corrections of students, of attempts at explaining to them why they have 
made a mistake, and of a variety of other diagnostic approaches that lead 
to explicit verbal communication to students. I have discussed earlier 
the reasons for not going all the way in the other direction to completely 
determinate reinforcement. In this case, we end up with methods that 
are too strong and that cannot be practically realized. 

The conceptual subtlety of the reinforcement-information problem is 
the difficulty of giving an explicit account of how the student processes the 
complex verbal information that is given to him. It is easy enough to have 
a theory of that when the information given to him is simply the weak 
nondeterminate reinforcement concerning the correctness or incorrectness 
of his answer. When a complex verbal description of his difficulty or of his 
mistake is communicated, the understanding of the process that is taking 
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place is another matter. It is clear that the framework I have presented 
here, although in principle it may be strong enough to account for such 
complex communications to the student, in practice is much too unde
veloped to do so. The full complexities of the theory of natural-language 
processing required to take account of these matters is awe-inspiring, but 
we can make various approximations and I attempt to do that in the 
next part of this paper dealing with some applications. I want to close 
this theoretical section, however, with a statement on the great impor
tance of developing the systematic theory of such complex information 
transfer in the form of semideterminate reinforcement from instructor to 
student. Until we have a deeper theory of the natural-language processing 
involved, we shall, I fear, be inevitably limited in our theory of instruc
tion. 

2. APPLICATIONS 

In this part I examine ways in which probabilistic automata and register 
machines can be applied to specific problems of educational research. I 
begin with a survey of the empirical and theoretical results that have been 
obtained thus far. On the one hand, the theory is fairly well developed and 
has been tested in simple cases rather extensively. Moreover, the theory 
has a certain fundamental property I consider essential: The theory is 
rich enough to process the problems of elementary arithmetic beginning 
with a schematic form of visual perception. It is my view that any serious 
theory of elementary mathematics learning at the present time should 
satisfy such a minimal requirement of processing. On the other hand, it 
is also important to emphasize how schematic the present theory is. The 
conception, for example, of visual perception and the processing of visual 
stimuli by students is extremely rudimentary. This also applies to the 
processing of auditory stimuli. 

The theoretical and empirical work on probabilistic automata is to be 
found in Suppes (1969b), Suppes and Morningstar (1972), and Suppes 
(1973). I shall not survey the details here, but the theoretical objective of 
these studies is to introduce meaningful probabilistic parameters for state 
transitions for probabilistic automata that are informationally adequate 
to the algorithms of elementary arithmetic. The empirical objective is to 
use data to estimate the numerical values of the parameters and to test 
the goodness of fit of the models with respect to the data. The analysis 
given in the publications referred to deals mainly with performance data 
and not with learning. It is especially for this reason that a review of the 
results obtained has been omitted. 
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I turn now to register machines. The theoretical approach is to assume 
that the structure of the student for the learning of elementary arithmetic 
may be represented by a register machine with a small finite number of 
registers and a small number of elementary instructions. Using the small 
number of registers, which are distinguished on psychological grounds as 
registers with stimulus support and those without, algorithms for solving 
elementary arithmetic problems can be built up, and the realism of these 
algorithms in relation to the actual learning and performance of students 
can be studied. The central problem, of course, is to give a reasonable 
account of the kinds of errors that students make. 

To provide a concrete illustration of a register machine for elementary 
mathematics, I characterize here in schematic form a register machine ad
equate for column addition and similar tasks. For column addition, three 
registers suffice in our scheme of analysis. First there is the stimulus
supported register (SS) that holds an encoded representation of a printed 
symbol to which the student is perceptually attending. In the present case 
the alphabet of such symbols consists of the 10 digits and the underline 
symbol '_'. As a new symbol is attended to, previously stored symbols 
are lost unless they are transferred to a non-stimulus-supported regis
ter. The second register is the non-stimulus-supported register (NSS). 
It provides long-term storage for computational results. The third regis
ter is the operations register (OP) that acts as a short-term store, both 
for encodings of external stimuli and for results of calculations carried 
out on the contents of other registers. It is also primarily non-stimulus
supported. 

It is important to note that in the case of the algorithms of elementary 
mathematics the number of registers is quite small and the amount that 
the student is expected to hold in a register is also severely restricted. In 
contrast to the way computers are expected to perform algorithms, the 
student makes extensive use of stimulus-supported registers and is able 
continually to refresh by perception his memory of the main data in front 
of him. In many respects this is the most single striking conceptual dif
ference between the way human beings perform elementary mathematical 
algorithms and the way they are performed in electronic computers. 

We drastically simplify the perceptual situation by conceiving each 
exercise as being presented on a grid with at most one symbol in each 
square of the grid. For column addition we number the coordinates of the 
grid from the upper right-hand corner. Thus, in the exercise 

18 
32 

+ 46 
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the coordinates of the digit 8 are (1,1), the coordinates of 2 are (2,1), the 
coordinates of 6 are (3,1), the coordinates of 1 are (1,2), and so forth, 
with the first coordinate being the row number and the second being the 
column number. 

The restricted set of instructions we need for column addition are the 
following 10. 

Attend (a, b): 

(+a,+b): 

Read in (SS): 

Lookup 
(R1) + (R2): 

Copy 
(R1) in (R2): 

Deleteright (R): 

Jump L: 

Jump (val)R,L: 

Outright (R): 

End: 

Exit: 

Direct attention to grid position (a, b). 

Shift attention on the grid by (+a, +b). 

Read into the stimulus-supported register the 
physical symbol in the grid position addressed 
by Attend. 

Look up table of basic addition facts .for adding 
contents of register (R1) and (R2) and store the 
result in (R). 

Copy the content of register (Rl) in register 
(R2). 

Delete the rightmost symbol of register (R). 

Jump to line labeled L. 

Jump to line labeled L if content of register (R) 
is val. 

Write (output) the rightmost symbol of register 
(R) at grid position addressed by Attend. 

Terminate processing of current exercise. 

Terminate s1,1broutine processing and return to 
next line of main program. 

Of the 10 instructions, only Lookup does not have an elementary char
acter. In the complete analysis it has the status of a subroutine built 
up from more primitive operations such as those of counting. It is, of 
course, more than a problem of constructing the table of basic addition 
facts from counting subroutines; it is also a matter of being able to add a 
single digit to any number stored in the non-stimulus-supported register 
(NSS) or (OP), as, for example, in adding many rows of digits in a given 
column. I omit the details of building up this subroutine. 

It should also be obvious that the remaining nine instructions are not 
a minimal set; for example, the unconditional jump instruction is easily 
eliminated. 
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To illustrate in a simple way the use of subroutines, I consider the 
simple one for outputting all the digits in a register with, of course, the 
outputting of the digits from right to left as in the standard algorithm of 
column addition. 

Output (R) 
Put 

Fin 

Outright (R) 
Deleteright (R) 
Attend (0,+1) 
Jump (Blank) R, Fin 
Jump Put 
Exit 

I turn now to problems of learning, and, as in the case of the analyses 
in Suppes (1973), I restrict myself to the case of single-column addition, 
but with an indefinite number of rows. This means that in general the 
output subroutine just described will need to be used. 

Let me reproduce here the internal program shown on the left and 
the verbal instructions used for instruction on the right. This material is 
shown in Figure 1. 

Internal Progmm Verbal Instructions 
Attend (1,1) ] C1 Start here (pointing) Readin 

Transfer (SS) to (OP) 

] Attend(+ 1,0) 
C2 

Add first two digits 
Readin (pointing) 

Opr. Lookup (OP)+(SS) 

Now add again (pointing) (if 

Attend (+1,0) l 
conditional jump satisfied) 

Readin or 
C3 

Notice end of column (point-Jump (0-9) SS, Opr 
ing at _) (if conditional 
jump not satisfied) 

Attend (+1,0) l Output (OP) C4 Write answer here (pointing) 
End 

Figure 1. Single-column addition. 
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In Figure 1, learning parameters c1, c2, c3 and C4 are shown for the 
four segments of the program. These learning parameters have an ab
stract quality not directly related to the detailed axioms for program 
construction given in the preceding section. They permit us to develop 
at an abstract level simple learning models familiar from the literature 
of mathematical psychology. The simplest such model is the one that 
assumes independence of the four parts. If we treat the probability of 
successive errors combining to yield a correct response as having proba
bility zero, then the mean probability for a correct response on trial n for 
the independence model is simply: 

At the other extreme, a hierarchical model, also at the same general level 
of abstraction, postulates that the ith segment of the program cannot 
be learned until the i - l 8 t segment is learned. This simple abstract 
hierarchical model leads to the following transition matrix, where state 0 
represents all segments as unlearned, state 1 represents the first segment 
only as learned, etc. 

4 3 2 1 0 
4 1 0 0 0 0 
3 c4 1- c4 0 0 0 
2 0 C3 1- C3 0 0 
1 0 0 C2 1- c 2 0 
0 0 0 0 C1 1- C1 

It is clear that neither one of these simple models, the independence model 
or the hierarchical model, gives an informationally adequate account of 
what is taking place in the sense characterized earlier. 

Let us therefore examine to what extent a more adequate detailed 
model can be developed for the simple problem of column addition. The 
difficulties we face in doing so is evidence of the general difficulty of de
veloping informationally adequate learning models that can at the same 
time be systematically compared to quantitative data. 

Consider the learning parameter c2. Suppose the possible instructions 
for the subroutine "Add first two digits" as shown in Figure 1 are sampled 
independently and with equal probability. These two simplifying assump
tions make explicit computations manageable. Suppose further, and still 
more unrealistically, that the subroutine will be exactly four lines and 
will be constructed by sampling only the four instructions actually used. 
Then if the sampling is with replacement, c2 is approximately .0039, which 
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seems unrealistically small. If eight of the instructions are available, with 
(equal) probability .125 of being sampled with replacement, then c2 = 
.00024. (These calculations assume there is exactly one correct program 
of four lines.) Almost any data taken from actual student performance 
will show that either of these estimates of c2 is far too small. 

The moral of this tally is that learning proceeds by smaller steps than 
naive intuition is inclined to surmise. The schematic computations just 
made raise interesting problems about past controversies in learning con
cerning the aU-or-none versus incremental character of simple concept 
formation. Although most of the simple concept-formation experiments 
I have in mind are at heart algorithmic in character, the concept is not 
explicitly taught in an algorithmic fashion. It is characteristic of the ex
perimental instructions not even to give a hint of there being an algorithm 
for identifying the presence or absence of the property exemplifying the 
concept. A number of experiments that support the aU-or-none hypothe
sis are reported in Suppes (1965). I consider here the simple experiment 
in which five-year-old children were asked to discriminate between line 
drawings of triangles, quadrilaterals, and pentagons. The algorithm, ob
viously, is simply to count the number of sides, but the algorithm was 
not explicitly taught to the children as part of the experiment and they 
were not asked to verbalize their procedure at any stage. Because they 
found triangles easy to discriminate from quadrilaterals and pentagons 
but found it a good deal more difficult to separate quadrilaterals from 
pentagons, there is rather good evidence that they were not using a count
ing algorithm but rather a perceptual response of a different character. 
The strong support for ali-or-none learning in this experiment does, how
ever, indicate that the instructions for the experiment essentially put the 
children in a "frame" (to use the term made popular by Marvin Minsky 
in artificial intelligence). In the language being developed in this paper, 
being put within a particular frame would mean that most of the subrou
tines needed for giving the correct response were already called up and 
put in place by the experimental instructions. On this view, ali-or-none 
learning is obtained because only a single instruction or, at most, only 
a very small number need to be added to the frame in order to give the 
correct response. 

In experiments either with children or with adult human subjects, the 
instruction with which the experiment begins has the effect of a subject 
in the experiment constructing a frame within which he proceeds to work. 
Of course, in many cases the subject constructs a frame that has to be 
modified because he has a misunderstanding of what the experiment is 
about. It is considered the mark of a good experiment that the subject 
understands the instructions and this means that the general frame he 
establishes is the intended one, or nearly so, very early in the experiment-
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I refer here of course to "direct" cognitive experiments, not to the kind of 
"misleading" frameworks intentionally established in many experiments 
in social psychology. 

In the case of instruction in the schools, good organization of the cur
riculum as it is presented to students should lead naturally from one frame 
to another, so that the additional subroutines that must be organized are 
small in number as the student undertakes to master a new concept or 
skill. The kind of elementary computations exhibited in this paper tend 
to show why the steps in moving from one part of the curriculum to the 
next must be small and well organized in order for the curriculum to be 
successful with most of the students. This careful articulation of the cur
riculum is as important in the teaching of mathematics and science at the 
university level as at the beginning school level. It is in fact unfortunate 
that we have as yet very unsatisfactory empirical traditions of analyzing 
the learning that is involved in mastering more advanced topics in math
ematics and science. The psychological investigation of these matters is 
almost untouched. 



26 

IS VISUAL SPACE EUCLIDEAN? 

Philosophers of past times have claimed that the answer to the question, 
Is visual space Euclidean?, can be answered by a priori or purely philo
sophical methods. Today such a view is presumably held only in remote 
philosophical backwaters. It would be generally agreed that one way or 
another the answer is surely empirical, but the answer might be empirical 
for indirect reasons. It could be decided by physical arguments that physi
cal space is Euclidean and then by conceptual arguments about perception 
that necessarily the visual space must be Euclidean. To some extent this 
must be the view of many laymen who accept that to a high degree of 
approximation physical space is Euclidean, and therefore automatically 
hold the view that visual space is Euclidean. 

I begin with the question, How do we test the proposition that vi
sual space is Euclidean? The first section is devoted to this problem of 
methodology. The second section provides a brief overview of the hierar
chy of geometries relevant to visual phenomena. The third section reviews 
a number of answers that have been given to the question of the Euclidean 
character of visual space. I examine both philosophical and psychological 
claims. The final section is devoted to central issues raised by the variety 
of answers that have been given. 

1. HOW TO APPROACH THE QUESTION 

What would seem to be, in many ways, the most natural mathematical 
approach to the question has also been the method most used experimen-

*Reprinted from Synthese, 35 (1977), 397-421. 
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tally. It consists of considering a finite set of points. Experimentally, the 
points are approximated by small point sources of light of low illumination 
intensity, displayed in a darkened room. The intuitive idea of the setting 
is to make only a finite number of point-light sources visible and to make 
these light sources of sufficiently low intensity to exclude illumination of 
the surroundings. The second step is to ask the person making visual 
judgments to state whether certain geometrical relations hold between 
the points. For example, are points a and b the same distance from each 
other as points c and d? {Hereafter in this discussion I shall refer to points 
but it should be understood that I have in mind the physical realization 
in terms of point-light sources.) Another kind of question might be, Is 
the angle formed by points a b c congruent or equal in measure to the 
angle formed by points d e f? 

Another approach to such judgments is not to ask whether given points 
have a certain relation but rather to permit the individual making the 
judgments to manipulate some of the points. For example, first fix points 
a, band c and then ask him to adjust d so that the distance between c and 
dis the same as the distance between a and b. Although the formulation 
I am giving of these questions sounds as if they might be metric in char
acter, they are ordinarily of a qualitative nature-for example, that of 
congruence of segments, which I formulated as same distance. No metric 
requirements are imposed upon the individuals making such judgments. 
For instance, no one would naturally ask subjects in the experiments 
relevant to our question to set the distance between two points to be 
approximately 1.3 meters or to determine an angle of, say, 21 degrees. 

Once such judgments are obtained, whether on the basis of fixed rela
tions or by adjusting the position of points, the formal or mathematical 
question to ask is whether the finite relational structure can be embed
ded in a two- or three-dimensional Euclidean space. The dimensionality 
depends upon the character of the experiment. In many cases the points 
will be restricted to a plane and therefore embedding in two dimensions 
is required; in other cases embedding in three dimensions is appropriate. 
By a finite relational structure I mean a relational structure whose do
main is finite. To give a simple example, suppose that A is the finite set 
of points and the judgments we have asked for are judgments of equidis
tance of points. Let E be the quaternary relation of equidistance. Then 
to say that the finite relational structure U = (A, E) can be embedded in 
three-dimensional Euclidean space is to say that there exists a function <p 

defined on A such that <p maps A into the set of triples of real numbers 
and such that for every a, b, c, and din A the following relation holds: 
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where <p;(a) is the ith coordinate of <p(a). Note that the mapping into 
triples of real numbers is just mapping visual points into a Cartesian 
representation of three-dimensional Euclidean space. 

In principle, it is straightforward to answer the question raised by this 
embedding procedure. So that, given a set of data from an individual's 
visual judgments of equidistance between points, we can determine in a 
definite and constructive mathematical manner whether such embedding 
is possible. 

Immediately, however, a problem arises. This problem can be grasped 
by considering the analogous physical situation. Suppose we are making 
observations of the stars and want to test a similar proposition, or some 
more complex proposition of celestial mechanics. We are faced with the 
problem recognized early in the history of astronomy, and also in the his
tory of geodetic surveys, that the data are bound not to fit the theoretical 
model exactly. The classical way of putting this is that errors of measure
ment arise, and our problem is to determine if the model fits the data 
within the limits of the error of measurement. In examining data on the 
advancement of the perihelion of Mercury, which is one of the important 
tests of Einstein's general theory of relativity, the most tedious and diffi
cult aspect of the data analysis is to determine whether the theory and the 
observations are in agreement within the estimated error of measurement. 

Laplace, for example, used such methods with unparalleled success. 
He would examine data from some particular aspect of the solar system, 
for example, irregularities in the motion of Jupiter and Saturn, and would 
then raise the question of whether these observed irregularities were due to 
errors of measurement or to the existence of 'constant' causes. When the 
irregularities were too great to be accounted for by errors of measurement, 
he then searched for a constant cause to explain the deviations from the 
simpler model of the phenomena. In the case mentioned, the irregularities 
in the motion of Jupiter and Saturn, he was able to explain them as being 
due to the mutual gravitational attraction of the two planets. which had 
been ignored in the simple theory oftheir motion. But Laplace's situation 
is different from the present one in the following important respect. The 
data he was examining were already rendered in quantitative form and 
there was no question of having a numerical representation. Our problem 
is that we start from qualitative judgments and we are faced with the 
problem of simultaneously assigning a measurement and determining the 
error of that measurement. Because of the complexity and subtlety of 
the statistical questions concerning errors of measurement in the present 
setting, for purposes of simplification I shall ignore them, but it is abso
lutely essential to recognize that they must be dealt with in any detailed 
analysis of experimental data. 
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Returning to the formal problem of embedding qualitative relations 
among a finite set of points into a given space, it is surprising to find 
that the results of the kinds that are needed in the present context are 
not really present in the enormous mathematical literature ori. geometry. 
There is a very large literature on finite geometries; for example, Dem
bowski (1968) contains over 1200 references. Moreover, the tradition of 
considering finite geometries goes back at least to the beginning of this 
century. Construction of such geometries by Veblen and others was a 
fruitful source of models for proving independence of axioms, etc. On the 
other hand, the literature that culminates in Dembowski's magisterial 
survey consists almost entirely of projective and affine geometries that 
have a relatively weak structure. From a mathematical standpoint, such 
structures have been of considerable interest in connection with a variety 
of problems in abstract algebra. The corresponding theory of finite ge
ometries of a stronger type, for example, finite Euclidean, finite elliptic, or 
finite hyperbolic geometries, is scarcely developed at all. As a result, the 
experimental literature does not deal directly with such finite geometries, 
although they are a natural extension of the weaker finite geometries on 
the one hand and finite measurement structures on the other. 

A second basic methodological approach to the geometrical character 
of visual space is to assume that a standard metric representation already 
exists and then to examine which kind of space best fits the data. An ex
cellent example of this methodology is to be found in various publications 
of Foley (1965, 1972). Foley shows experimentally that the size-distance 
invariance hypothesis, which asserts that the perceived size-distance ra
tio is equal to the physical size-distance ratio, is grossly incorrect At the 
same time he also shows that perceived visual angles are about ten per
cent greater than physical angles. These studies are conducted on the 
assumption that a variety of more primitive and elementary axioms are 
satisfied. In contrast, Luneburg (1948) assumes that the perceived visual 
angle equals the physical angle, that is, that the transformation between 
the two is conformal, but what is back of the use of this assumption is 
a whole variety of assumptions that both physical space and visual space 
are homogeneous spaces of constant curvature, that is, are Riemannian 
spaces, and essentially Luneburg does not propose to test in any seri
ous way the many consequences implied by this very rich assumption of 
having a homogeneous space with constant curvature. In other words, 
in this second approach there is no serious attempt to provide tests that 
will show if all of the axioms that hold for a given type of space are 
satisfied. 

A third approach is to go back to the well-known Helmholtz-Lie prob
lem on the nature of space and to replace finiteness by questions of con-
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tinuity and motion. In a famous lecture of 1854, Riemann (1866/1867) 
discussed the hypotheses on which the foundations of geometry lie. More 
than a decade later, Helmholtz (1868) responded in a paper entitled 'Uber 
die Tatsachen, die der Geometrie zu Grunde liegen'. The basic argument 
of Helmholtz's paper was that, although arbitrary Riemannian spaces are 
conceivable, actual physical space has as an essential feature the free mo
bility of rigid bodies. From a mathematical standpoint, such motions are 
characterized in metric geometry as transformations of a space onto itself 
that preserve distances. Such transformations are called isometries. Be
cause of the extensive mathematical development of the topic (for mod
ern review, see Busemann, 1955, Section 48, or Freudenthal, 1965), an 
excellent body of formal results is available to use in the investigation 
of the character of visual space. Under various axiomatizations of the 
Helmholtz-Lie approach it can be proved that the only spaces satisfying 
the axioms are the following three kinds of elementary spaces: Euclidean, 
hyperbolic, and spherical. 

From a philosophical standpoint, it is important to recognize that 
considerations of continuity and motion are probably more fundamental 
in the analysis of the nature of visual space than the mathematically more 
elementary properties of finite spaces. Unfortunately, I am not able to 
report any experimental literature that uses the Helmholtz-Lie approach 
as a way of investigating the nature of visual space, although it is implicit 
in some of the results reported below that it would be difficult to interpret 
the experimental results as satisfying an axiom of free mobility. Let me 
be clear on this point. Some of the experimental investigations lead to the 
result that visual space cannot be elementary in the sense just defined, but 
these investigations do not explicitly use the kind of approach to motion 
suggested by the rich mathematical developments that have followed in 
response to the Helmholtz-Lie problem. 

A fourth approach that lies outside the main body of the literature 
to be considered in this paper is the recent approach through picture 
grammars and the analysis of perceptual scenes. Its growing literature 
has been in response especially to problems of pattern recognition that 
center on construction of computer programs and peripheral devices that 
have rudimentary perceptual capacities. Although this approach has a 
formal character quite different from the others considered and it has not 
been used to address directly the question about the Euclidean character 
of space, it should be mentioned because it does provide an approach 
that in many respects is very natural psychologically and that is in certain 
aspects more closely connected to the psychology of perception than most 
of the classical geometric approaches that have been used thus far in 
the analysis of visual space. (An elementary introduction and references 
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Projective Ordered 

--------- ---------Elliptic Affine Absolute 

---- ---------Euclidean Hyperbolic 

Figure 1. Hierarchy of geometries. 

to the literature are to be found in Suppes and Rottmayer, 1974; an 
encyclopedic review is given by Fu, 1974.) 

A typical picture grammar has the following character. Finite line 
segments or finite curves of a given length and with a given orientation 
are concatenated together as basic elements to form geometrical figures of 
greater complexity. A typical problem in the literature of pattern recogni
tion is to provide such a concatenation (not necessarily one dimensional) 
so as to construct handwritten characters, or, as a specialized example 
that has received a fair amount of attention, to recognize handwritten 
mathematical symbols. These approaches are often labelled picture gram
mars because they adopt the approach used in mathematical linguistics 
for writing phrase-structure grammars to generate linguistic utterances. 
Picture grammars can in fact be characterized as context free, context 
sensitive, etc., depending upon the exact character of the rules of produc
tion. What is missing is the question, Can the set of figures generated by 
the picture grammars be embedded in Euclidean space or other metric 
spaces of an elementary character? This question would seem to have 
some conceptual interest from the standpoint of the theory of perception. 
It is clearly not of the same importance for the theory of pattern recog
nition. Picture grammars base perception on a set of primitive concepts 
that seem much more natural than the more abstract concepts familiar in 
classical geometry. They would seem to represent an excellent approach 
for exploration of the character of visual space but I am unable to cite 
references that test these ideas experimentally. 

2. THE HIERARCHY OF GEOMETRIES 

Those who have declared that visual space is not Euclidean have usually 
had a well-defined alternative in mind. The most popular candidates have 
been claims that visual space is either elliptic or hyperbolic, although some 
more radical theses are implicit in some of the experimental work. 
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How the various geometries are to be related hierarchically is not en
tirely a simple matter, for by different methods of specialization one may 
be obtained from another. A reasonably natural hierarchy for purposes 
of talking about visual space is shown in Figure 1. In the figure, I have 
also referred to geometries rather than to spaces, although from a certain 
conceptual standpoint the latter is preferable. I have held to the lan
guage of geometries in deference to tradition in the literature on visual 
space. The weakest geometry considered here is either projective geom
etry on the left-hand side at the top of the figure or ordered geometry 
at the right. There are various natural primitive concepts for projective 
geometry. Fundamental in any case is the concept of incidence and, once 
order is introduced, the concept of separation. In contrast, ordered geom
etry is based upon the single ternary relation of betweenness holding for 
three points in the fashion standard for Euclidean geometry, but of course 
axioms based only upon betweenness are weaker than those required for 
Euclidean geometry. Without entering into technical details, elliptic ge
ometry of the plane is obtained from projective geometry by defining it as 
the geometry corresponding to the group of projective collineations that 
leave an imaginary ellipse invariant in the projective plane. Although el
liptic geometry has been important in the consideration of visual space, 
as we shall see later, the details of elliptic geometry are complicated and 
subtle, and as far as I know have not actually been adequately studied in 
detail in relation to any serious body of experimental data. 

Turning now to the right-hand side of Figure 1, affine geometry is 
obtained from ordered geometry by adding Euclid's axiom that, given a 
line and a point external to the line, there is at most one line (i) through 
the point, (ii) in the plane formed by the point and the line, and (iii) 
that does not meet the line. Going in the other direction from ordered 
geometry in Figure 1, we obtain absolute geometry by adding the con
cept of congruence of segments, which is just the notion of equidistance 
mentioned earlier. We add Euclid's axiom to absolute geometry to ob
tain Euclidean geometry and we add the negation of Euclid's axiom to 
absolute geometry to obtain hyperbolic geometry. These are the only two 
extensions of absolute geometry. Given the fundamental character of ab
solute geometry in relation to the claims often made that visual space is 
either Euclidean or hyperbolic, it is somewhat surprising that there has 
been no more detailed investigation experimentally of whether the axioms 
of absolute geometry hold for visual space. 

There is another way of organizing the hierarchy of geometries in terms 
of metric spaces. Recall that a metric space is a pair (A, d) such that A 
is a nonempty set, d is a real-valued function defined on the Cartesian 
product A x A, and for all a, b, c in A, 
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Axiom 1. d(a,a) = 0 and if a f. b,d(a,b) > 0; 

Axiom 2. d(a,b) = d(b,a); 

Axiom 3. d(a,b) + d(b, c)~ d(a,c). 

The elements of the set A are called points. The first axiom asserts that 
distances are positive, except for the distance between identical points, 
which is zero. The second axiom asserts that distance is symmetric; that 
is, it is a function only of the unordered pair of points, not a function 
of their order. The third axiom is the triangle inequality. Most of the 
metric spaces important for the theory of perception have the property 
that any two points can be joined by a segment. Such spaces are called 
metric spaces with additive segments. These spaces are naturally divided 
into two broad subclasses, affine metrics and coordinate-free metrics. By 
further specialization of each of these subclasses we are led naturally to the 
Euclidean, hyperbolic, and spherical spaces, as well as to generalizations 
of the Euclidean metric in terms of what are called Minkowski metrics. 
An important subclass of the coordinate-free metrics is the Riemannian 
metrics. It may be shown that the only spaces that are Riemannian and 
affine metric are either Euclidean or hyperbolic. We shall not use these 
concepts in detail, but it is to mention that this alternative hierarchy of 
metric spaces is as natural to use as the more classical hierarchy exhibited 
in Figure 1. 

All of the concepts I have introduced in this brief survey of the hierar
chy of geometries are familiar in the mathematical literature of geometry. 

3. EXPERIMENTAL AND PHILOSOPHICAL ANSWERS 

My main purpose in this section is to provide a survey of the answers that 
have been given. A summary is provided in Table 1. 

The natural place to begin is with Euclid's Optics, the oldest extant 
treatise on mathematical optics. It is important to emphasize that Eu
clid's Optics is really a theory of vision and not a treatise on physical op
tics. A large number of the propositions are concerned with seeing from 
the standpoint of perspective in monocular vision. Indeed, Euclid's Op
tics could be characterized as a treatise on perspective within Euclidean 
geometry. The tone of Euclid's treatise can be seen from quoting the 
initial part, which consists of seven 'definitions'. 

1. Let it be assumed that lines drawn directly from the eye pass through 
a space of great extent; 
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Name 

Euclid (300 B.C.) 

Reid (1764), Dan
iels (1972), Angell 
(1974) 
Blumenfeld (1913) 

Luneburg (1917, 
1948, 1950) 
Blank (1953, 1957, 
1958a, 1958b, 1961) 
Hardy et a/. (1953) 

Zajaczkowska 
(1956) 

Schelling (1956) 

Gogel ( 1 956a, 
1956b, 1963, 1964a, 
1964b, 1965) 
Foley (1964, 1965, 
1966, 1969, 1972) 
Indow (1967, 1968, 
1974a, 1974b, 1975) 
Indow et al. (1962a, 
1962b, 1963) 
Nishikawa (1967) 

Matsushima and 
Noguchi (1967) 
Griinbaum (1963) 

Strawson (1966) 

Claim 

Theory of perspective 

Geometry of visibles IS 

spherical 

Parallel alleys not equal 
to equidistance alleys 
Visual space is hyperbol
IC 

Essentially the same as 
Luneburg 
Essentially the same as 
Luneburg 
Positive results on exper
imental test of Luneburg 
theory 
Hyperbolic relative to 
given fixation point 
Equidistance tenden
cy evidence for context
ual geometry 
Visual space is nonhomo
geneous 
MDS methods yield good 
Euclidean fit 
Close to Indow 

Close to lndow 

Close to lndow 

Questions the theory of 
Luneburg 
Phenomenal geometry is 
Euclidean 

Table 26.1. Is Visual Space Euclidean? 

Answer 

Yes 

No 

No 

No 

No 

No 

No 

No 

No 

No but 

Not sure 

Not sure 

Not sure 

Not sure 

Yes 

Yes 
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2. and that the form of the space included within our vision is a cone, 
with its apex in the eye and its base at the limits of our vision; 

3. and that those things upon which the vision falls are seen, and that 
those things upon which the vision does not fall are not seen; 

4. and that those things seen within a larger angle appear larger, and 
those seen within a smaller angle appear smaller, and those seen 
within equal angles appear to be of the same size; 

5. and that those things seen within the higher visual range appear 
higher, while those within the lower range appear lower; 

6. and, similarly, that those seen within the visual range on the right 
appear on the right, while those within that on the left appear on 
the left 

7. but that things seen within several angles appear to be more clear. 

(The translation is taken from that given by Burton in 1945.) 

The development of Euclid's Optics is mathematical in character, but it is 
not axiomatic in the same way that the Elements are. For example, later 
Euclid proves two propositions, 'to know how great is a given elevation 
when the sun is shining' and 'to know how great is a given elevation 
when the sun is not shining'. As would be expected, there is no serious 
introduction of the concept of the sun or of shining but they are treated 
in an informal, commonsense, physical way with the essential thing for 
the proof being rays from the sun falling upon the end of a line. Visual 
space is of course treated by Euclid as Euclidean in character. 

The restriction to monocular vision is one that we shall meet repeat
edly in this survey. However, it should be noted that Euclid proves several 
propositions involving more than one eye; for example, 'If the distance be
tween the eyes is greater than the diameter of the sphere, more than the 
hemispheres will be seen'. Euclid is not restricted to some simple geomet
ric optics but is indeed concerned with the theory of vision, as is evident 
from the proposition that 'if an arc of a circle is placed on the same plane 
as the eye, the arc appears to be a straight line'. This kind of proposition 
is a precursor of later theories-for example, that of Thomas Reid-which 
emphasize the non-Euclidean character of visual space. 

I skip rapidly through the period after Euclid to the eighteenth cen
tury, not because there are not matters of interest in this long intervening 
period but because there do not seem to be salient changes of opinion 
about the character of visual space, or at least if there are they are not 
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known to me. I looked, for example, at the recent translation by David 
C. Lindberg (1970) of the thirteenth-century treatise Perspectiva Commu
nis of John Pecham and found nothing to report in the present context, 
although the treatise itself and Lindberg's comments on it are full of in
teresting matter of great importance concerning other questions in optics, 
as, for example, theories about the causes of light. 

Newton's Opticks (1704/1931) is in marked contrast to Euclid's. The 
initial definitions do not make any mention of the eye until Axiom VIII, 
and then in very restrained fashion. Almost without exception, the propo
sitions of Newton's optics are concerned with geometrical and especially 
physical properties of light. Only really in several of the Queries at the 
end are there any conjectures about the mechanisms of the eye, and these 
conjectures do not bear on the topic at hand. 

Five years after the publication ofthe first edition of Newton's Opticks, 
Berkeley's An Essay Towards a New Theory of Vision (1709/1901) ap
peared in 1709. Berkeley does not really have much of interest to say 
about the geometry of visual space, except in a negative way. He makes 
the point that distance cannot be seen directly and, in fact, seems to cat
egorize the perception of distance as a matter of tactile rather than visual 
sensation because the muscular convergence of the eyes is tactile in charac
ter. He emphatically makes the point that we are not able geometrically to 
observe or compute the optical angle generated by a remote point as aver
tex with sides pointing toward the centers of the two eyes. Here is what he 
says about the perception of optical angles. "Since therefore those angles 
and lines are not themselves perceived by sight, it follows, ... that the mind 
does not by them judge the distance of objects" (# 13). What he says 
about distance he also says about magnitude not being directly perceived 
visually. In this passage(# 53), he is especially negative about trying to 
use the geometry of the visual world as a basis for visual perception. 

It is clear from these and other passages that for Berkeley visual space 
is not Euclidean because there is no proper perception of distance or 
magnitude; at least, visual space is not a three-dimensional Euclidean 
space. What he seems to say is sufficiently ambiguous as to whether 
one should argue that it is at least a two-dimensional Euclidean space. 
My own inclination is to judge that his views on this are more negative 
than positive. Perhaps a sound negative argument can be made up from 
his insistence on there being a minimum visible. As he puts it, "It is 
certain sensible extension is not infinitely divisible. There is a minimum 
tangible, and a minimum visible, beyond which sense cannot perceive. 
This everyone's experience will inform him" (#54). 

In fact, toward the end of the essay, Berkeley makes it clear that 
even two-dimensional geometry is not a proper part of visual space or, as 
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we might say, the visual field. As he says in the final paragraph of the 
essay, "By this time, I suppose, it is clear that neither abstract nor visible 
extension makes the object of geometry." 

Of much greater interest here is Thomas Reid's Inquiry into the Hu
man Mind, first published in 1764 {1764/1967). Chapter 6 deals with 
seeing, and Section 9 is the celebrated one entitled 'Of the geometry of 
visibles'. It is sometimes said that this section is a proper precursor of 
non-Euclidean geometry, but if so, it must be regarded as an implicit pre
cursor because the geometry explicitly discussed by Reid as the geometry 
of visibles is wholly formulated in terms of spherical geometry, which had 
of course been recognized as a proper part of geometry since ancient times. 
The viewpoint of Reid's development is clearly set forth at the beginning 
of the section: "Supposing the eye placed in the centre of a sphere, every 
great circle of the sphere will have the same appearance to the eye as if 
it was a straight line; for the curvature of the circle being turned directly 
toward the eye, is not perceived by it. And, for the same reason, any line 
which is drawn in the plane of a great circle of the sphere, whether it be 
in reality straight or curve, will appear to the eye." It is important to 
note that Reid's geometry of visibles is a geometry of monocular vision. 
He mentions in other places binocular vision, but the detailed geometrical 
development is restricted to the geometry of a single eye. The important 
contrast between Berkeley and Reid is that Reid develops in some detail 
the geometry in a straightforward, informal, mathematical fashion. No 
such comparable development occurs in Berkeley. 

Daniels {1972) has argued vigorously that Reid's geometry of visibles 
is not simply a use of spherical geometry but is an introduction by Reid 
of a double elliptic space. A similar argument is made by Angell {1974). I 
am sympathetic with these arguments, but it seems to me that they go too 
far and for a fairly straightforward reason not discussed by either Daniels 
or Angell. Let us recall how elliptic geometry was created by Felix Klein 
at the end of the nineteenth century. He recognized that a natural ge
ometry, very similar to Euclidean geometry or hyperbolic geometry could 
be obtained from spherical geometry by identifying antipodal points as a 
single point. The difficulty with spherical geometry as a geometry having 
a development closely parallel to that of Euclidean geometry is that two 
great circles, which correspond to lines, have two points, not one point, of 
intersection. However, by identifying the two antipodal points as a single 
point, a fair number of standard Euclidean postulates remain valid. It is 
quite clear that no such identification of antipodal points was made by 
Reid, for he says quite clearly in the fifth of his propositions, 'Any two 
right lines being produced will meet in two points, and mutually bisect 
each other'. This property of meeting in two points rather than one is 
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what keeps his geometry of visibles from being a proper elliptic geometry 
and forces us to continue to think of it in terms of the spherical model 
used directly by Reid himself. 

In spite of the extensive empirical and theoretical work of Helmholtz 
on vision, he does not have a great deal to say that directly bears on this 
question, and I move along to experiments and relevant psychological 
theory in the twentieth century. The first stopping point is Blumenfeld 
(1913). 

Blumenfeld was among the first to perform a specific experiment to 
show that, in one sense, phenomenological visual judgments do not sat
isfy all Euclidean properties. Blumenfeld performed experiments with 
so-called parallel and equidistance alleys. In a darkened room the subject 
sits at a table, looking straight ahead, and he is asked to adjust two rows 
of point sources of light placed on either side of the normal plane, i.e., 
the vertical plane that bisects the horizontal segment joining the centers 
of the two eyes. The two furthest lights are fixed and are placed symmet
rically and equidistant from the normal plane. The subject is then asked 
to arrange the other lights so that they form a parallel alley extending 
toward him from the fixed lights. His task is to arrange the lights so 
that he perceives them as being straight and parallel to each other in his 
visual space. This is the task for construction of a parallel alley. The 
second task is to construct a distance alley. In this case, all the lights 
except the two fixed lights are turned off and a pair of lights is presented, 
which are adjusted as being at the same physical distance apart as the 
fixed lights-the kind of equidistance judgments discussed earlier. That 
pair of lights is then turned off and another pair of lights closer to him 
is presented for adjustment, and so forth. The physical configurations do 
not coincide, but in Euclidean geometry straight lines are parallel if and 
only if they are equidistant from each other along any mutual perpendicu
lars. The discrepancies observed in Blumenfeld's experiment are taken to 
be evidence that visual space is not Euclidean. In both the parallel-alley 
and equidistance-alley judgments the lines diverge as you move away from 
the subject, but the angle of divergence tends to be greater in the case 
of parallel than in the case of equidistance alleys. The divergence of the 
alleys as one moves away from the subject has been taken by Luneburg 
to support his hypothesis that visual space is hyperbolic. 

In fact, Luneburg, in several publications in the late forties, has been 
by far the strongest supporter of the view that visual space is hyperbolic. 
He, in conjunction with his collaborators, has set forth a detailed math
ematical theory of binocular vision and at the same time has generated 
a series of experimental investigations to test the basic tenants of the 
theory. 
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In many respects, Luneburg's article (1947) remains the best detailed 
mathematical treatment of the theory of binocular vision. Without exten
sive discussion, Luneburg restricts himself to Riemannian geometries of 
constant curvature in order to preserve rigid motions, that is, free mobil
ity of rigid bodies. Luneburg develops in a coordinate system natural for 
binocular vision the theory of Riemannian spaces of constant curvature 
in a quite satisfactory form, although an explicit axiomatic treatment is 
missing. On the other hand, he nowhere examines with any care or explic
itness the more general and primitive assumptions that lead to assuming 
that visual space is a Riemannian space of constant curvature. After these 
general developments he turns to the detailed arguments for the view that 
the appropriate space of constant curvature for visual space is hyperbolic. 
It is not possible to enter into the details of Luneburg's argument here, 
but he bases it on three main lines of considerations, all of which have 
had a great deal of attention in the theory of vision: first, the data arising 
from the frontal-plane horopter where curves which appear as straight are 
physically curved (data on these phenomena go back to the time before 
Helmholtz); second, the kind of alley phenomena concerning judgments of 
parallelness mentioned earlier; and, third, accounting for judgments of dis
torted rooms in which appropriate perspective lines are drawn and which 
consequently appear as rectangular or regular (here, Luneburg draws on 
some classic and spectacular demonstrations by A. Ames, Jr.). One of 
the difficulties of this field is that the kind of detailed mathematical and 
quantitative arguments presented by Luneburg in connection with these 
three typical kinds of problems are not satisfactorily analyzed in the later 
literature. Rather, new data of a different sort are presented to show 
that different phenomena argue against Luneburg's hypothesis that vi
sual space is hyperbolic. 

Luneburg died in 1949, but a number of his former students and col
laborators have continued his work and provided additional experimental 
support as well as additional mathematically based arguments in favor of 
his views. I refer especially to Blank (1953, 1957, 1958a, 1958b, 1961) 
and Hardy, Rand, Rittler, Blank, and Boeder (1953), although this is 
by no means an exhaustive list. Another positive experimental test was 
provided by Zajaczkowska (1956). 

Schelling (1956) agrees with Luneburg but makes an important point 
of modification, namely, the metrics of negative curvature-that is, of the 
hyperbolic spaces that Luneburg argues for-are essentially momentary 
metrics. At a given instant the eye has a certain fixation point, and rel
ative to this fixation point Luneburg's theory is, according to Schelling. 
probably approximately correct, but the applicability of the theory is 
severely restricted because the eyes are normally moving about contin-
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uously and the points of fixation are continually changing. This funda
mental fact of change must he taken account of in any fully adequate 
theory. 

Gogel (1956a, 1956b, 1963, 1964a, 1964b, 1965) has studied what is 
called the equidistance tendency, or what in the context of this paper we 
might term the Berkeley tendency. Remember that Berkeley held that 
distance was not a visual idea at all but derived from the tactile sense. 
Without entering into a precise analysis of Berkeley's views, Gogel has 
provided an important body of evidence that when other cues are missing 
there is a strong tendency to view objects as being at the same distance 
from the observer. These careful and meticulous studies of Gogel are 
important for establishing not only the equidistance tendency but also its 
sensitivity to individual variation, on the one hand, and to the presence of 
additional visual cues on the other. The equidistance tendency is certainly 
present as a central effect. but any detailed theory of visual space has a 
bewildering complexity of contextual and individual differences to account 
for, and it seems to me that Gogel's experiments are essentially decisive 
on this point. In the papers referred to, Gogel does not really give a 
sharp answer to the question about the character of visual space, but I 
have listed him in Table 1 because it seems to me that the impact of his 
studies is to argue strongly for skepticism about fixing the geometry of 
visual space very far up in the standard hierarchy and, rather, to insist on 
the point that the full geometry is strongly contextual in character and 
therefore quite deviant from the classical hierarchy. 

A number of interesting experimental studies of the geometry of visual 
space have been conducted by John Foley. In Foley (1964) an experiment 
using finite configurations of small point sources of light was conducted 
to test the Desarguesian property of visual space. (Of course, the prop
erty was tested on the assumption that a number of other axioms were 
valid for visual space.) The results confirmed the Desarguesian property 
for most observers but not for all. In Foley (1966), perceived equidis
tance was studied as a function of viewing distance. Like most of Foley's 
experiments, this was conducted in the horizontal eye-level plane. The 
locus of perceived equidistance was determined at distances of 1.2, 2.2, 
3.2, and 4.2 meters from the observer. As in other Foley experiments, the 
stimuli were small, point-like light sources viewed in complete darkness. 
The observer's head was held fixed but his eyes were permitted to move 
freely. There were five lights, one in the normal plane, which was fixed, 
and two variable lights on each side of the normal plane at angles of 12 
degrees and 24 degrees with respect to the normal plane. The locus of 
perceived equidistance was found to be concave toward the observer at all 
distances. Perhaps most importantly the locus was found to vary with 
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viewing distance, which indicates that the visual space does not depend 
on the spatial distribution of retinal stimulation alone. Again, there is 
here a direct argument for a contextual geometry and results are not con
sistent with Luneburg's theory. The equidistance judgments were of the 
following sort: A subject was instructed to set each of the lights, except 
the fixed light, in the normal plane to be at the same distance from him
self as the fixed light. Thus, it should appear to him that the lights lie 
on a circle, with himself as observer at the center. The important point 
is that for none of the ten subjects in the experiment did the judgments 
of the locus for equidistance lie on the Vieth-Mueller horopter or circle 
mentioned earlier as one of the supporting arguments for Luneburg's the
ory. Also important for the fundamental geometry of visual space is the 
fact that the loci determined by the observers were not symmetric about 
the normal plane. 

Foley's (1972) study shows experimentally that, on the one hand, the 
size-distance invariance hypothesis is incorrect, and that in fact the ratio 
of perceived frontal extent to perceived egocentric distance greatly exceeds 
the physical ratio, while, on the other hand, perceived visual angles are 
quite close to physical ones. These results, together with other standard 
assumptions, are inconsistent with the Luneburg theory that visual space 
is hyperbolic. Foley describes the third experiment in this paper in the 
following way: 

How can it be that in the primary visual space reports of 
perceived size-distance ratio are not related to reports of per
ceived visual angle in a Euclidean way? One possibility is that 
the two kinds of judgments are in part the product of different 
and independent perceptual processes .... The results are con
sistent with the hypothesis that the two kinds of judgments 
are the product of independent processes. They also show that 
no one geometrical model can be appropriate to all stimulus 
situations, and they suggest that the geometry may approach 
Euclidean geometry with the introduction of cues to distance. 

Again, there is in Foley's detailed analysis a strong case for a contextual 
geometry. A number of other detailed experimental studies of Foley that 
have not been referenced here build a case for the same general contextual 
view, which I discuss in more detail below. 

A number of detailed investigations on the geometry of visual space 
have been conducted by Tarow lndow (1967, 1968, 1974a, 1974b, 1975) 
and other Japanese investigators closely associated with him (Indow et al., 
1962a, 1962b, 1963; Matsushima and Noguchi, 1967; Nishikawa, 1967). 
They have found, for example, that multidimensional scaling methods 
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(MDS), which have been intensively developed in psychology over the past 
decade and a half, in many cases yield extremely good fits to Euclidean 
space. Indow has experimentally tested the Luneburg theory based upon 
the kind of alley experiments that go back to Blumenfeld (1913). As 
might be expected, he duplicates the result that the equidistance alleys 
always lie outside the parallel alleys, which under the other assumptions 
that are standard implies that the curvature of the space is negative and 
therefore it must be hyperbolic. But Indow (1974a,b) properly challenges 
the simplicity of the Luneburg assumptions, especially the constancy of 
curvature. It is in this context that he has also tried the alternative ap
proach of determining how well multidimensional scaling will work to fit a 
Euclidean metric. As he emphasizes also, the Luneburg approach is fun
damentally based upon differential geometry as a method of characteriz
ing Riemannian spaces with constant curvature, but for visual judgments 
it is probably more appropriate to depend upon the judgments in the 
large and therefore upon a different conceptual basis for visual geometry. 
Throughout his writings, Indow recognizes the complexity and difficulty 
of reaching for any simple answer to give the proper characterization of 
visual space. The wealth of detail in his articles and those of his collabo
rators is commended to the reader who wants to pursue these matters in 
greater depth. 

In his important book on the philosophy of space and time, Griinbaum 
(1963) rejects the Luneburg theory and affirms that, in order to yield the 
right kinds of perceptual judgments, visual space must be Euclidean. His 
argument is rather brief and I shall not examine it in any detail. It would 
be my own view that he has not given proper weight to the detailed 
experimental studies or to the details of the various theoretical proposals 
that have been made. 

I close this survey by returning to a philosophical response to the 
question, that of Strawson (1966) in his book on Kant's Critique of Pure 

Reason. From the standpoint of the large psychological literature I have 
surveyed, it is astounding to find Strawson asserting as a necessary propo
sition that phenomenal geometry is Euclidean. The following quotation 
states the matter bluntly: 

With certain reservations and qualifications, to be considered 
later, it seems that Euclidean geometry may also be inter
preted as a body of unfalsifiable propositions about phenom
enal straight lines, triangles, circles, etc.; as a body of a pri
ori propositions about spatial appearances of these kinds and 
hence, of course, as a theory whose application is restricted to 
such appearances. (p. 286) 
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The astounding feature of Strawson's view is the absence of any consider
ation that phenomenal geometry could be other than Euclidean and that 
it surely must be a matter, one way or another, of empirical investigation 
to determine what is the case. The qualifications he gives later do not 
bear on this matter but pertain rather to questions of idealization and 
of the nature of constructions, etc. The absence of any attempt to deal 
in any fashion whatsoever with the large theoretical and experimental 
literature on the nature of visual space is hard to understand. 

4. SOME REMARKS ON THE ISSUES 

In this final section, I center my remarks around three clusters of issues. 
The first is concerned with the contextual character of visual geometry, 
the second with problems of distance perception and motion, and the 
third with the problem of characterizing the nature of the objects of visual 
space. 

Contextual geometry. A wide variety of experiments and ordinary experi
ence as well testify to the highly contextual character of visual space. The 
presence or absence of 'extraneous' points can sharply affect perceptual 
judgments. The whole range of visual illusions, which I have not dis
cussed here, provides a broad body of evidence for the surprising strength 
of these contextual effects. 

As far as I can tell, no one has tried seriously to take account of these 
contextual effects from the standpoint of the axiomatic foundations of 
visual geometry. In a way it is not surprising, for the implications for 
the axiomatic foundations are, from the ordinary standpoint, horrendous. 
Let us take a simple example to illustrate the point. 

In ordinary Euclidean geometry, three points form an isosceles trian
gle just when two sides of the triangle are of the same length. Suppose 
now that Euclidean geometry had the much more complicated aspect that 
whether a triangle were isosceles or not depended not simply on the config
uration of the three points but also on whether there was a distinguished 
point lying just outside the triangle alongside one of the dual sides. This 
asymmetry may well make the visual triangle no longer isosceles. This 
is but one simple instance of a combinatorial nightmare of contextual 
effects that can easily be imagined and, without much imagination or 
experimental skill, verified as being real. 

What are we to say about such effects? It seems to me the most im
portant thing is to recognize that perceptual geometry is not really the 
same as classical geometry at all, but in terms of the kinds of judgments 
we are making it is much closer to physics. Consider, for example, the 
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corresponding situation with bodies that attract each other by gravita

tion. The introduction of a third body makes all the difference to the 

motions of the two original bodies and it would be considered bizarre for 

the situation to be otherwise. This also applies to electromagnetic forces, 

mechanical forces of impact, etc. Contextual effects are the order of the 

day in physics, and the relevant physical theories are built to take account 

of such effects. 
Note that physical theories depend upon distinguished objects located 

in particular places in space and time. Space-time itself is a continuum 

of undistinguished points, and it is characteristic of the axiomatic foun

dations of classical geometry that there are no distinguished points in the 

space. But it is just a feature of perception that we are always dealing 

with distinguished points which are analogous to physical objects, not ge

ometrical points. Given this viewpoint, we are as free to say that we have 

contextual effects in visual geometry as we are to make a similar claim in 

general relativity due to the presence of large masses in a given region. 
Interestingly enough, there is some evidence that as we increase the 

visual cues, that is, we fill up the visual field with an increasingly com

plex context of visual imagery, the visual space becomes more and more 

Euclidean. It is possible that we have here the exact opposite of the sit

uation that exists in general relativity. In the case of perception it may 

be that spaces consisting of a very small number of visible points may be 

easily made to deviate from any standard geometry. 
The geometric viewpoint can be brought into close alignment with 

the physical one, when the embedding of finite sets of points in some 

standard geometry is taken as the appropriate analysis of the nature of 

visual space. This approach was mentioned earlier and is implicit in 

some of the experimental literature discussed. It has not sufficiently been 

brought to the surface, and the full range of qualitative axioms that must 

be satisfied for the embedding of a finite collection of points in a unique 

way in a given space, whether Euclidean, hyperbolic, elliptic, or what not, 

needs more explicit and detailed attention. 
It also seems satisfactory to avoid the problems of contextual effects in 

initial study of this kind by deliberately introducing symmetries and also 

certain special additional assumptions such as quite special relations of a 

fixed kind to the observer. The many different experimental studies and 

the kind of mathematical analysis that has arisen out of the Luneburg 

tradition suggest that a good many positive and almost definitive results 

could be achieved under special restrictive assumptions. It seems to me 

that making these results as definitive as possible, admitting at the same 

time their specialized character and accepting the fact that the general 

situation is contextual in character, is an appropriate research strategy. 
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It also seems to me likely that for these special situations one can give 
a definitely negative answer to the question, Is visual space Euclidean?, 
and respond that, to high approximations, in many special situations it 
is hyperbolic and possibly in certain others elliptic in character. This 
restricted answer is certainly negative. A general answer at the present 
time does not seem available as to how to characterize the geometry in 
a fully satisfactory way that takes account of the contextual effects that 
are characteristic of visual illusions, equidistance tendencies, etc. 

Distance perception and motion. As indicated earlier in the brief dis
cussion of the Helmholtz-Lie problem, most of the work surveyed in the 
preceding section has not taken sufficient account of problems of motion. 
There is an excellent survey article of Foley (1978) on distance perception 
which indicates that eye motion during the initial stage of focusing on 
an object is especially critical in obtaining information about perceptual 
distance. In spite of the views of Berkeley, philosophical traditions in 
perception have tended to ignore the complicated problems of motion of 
the eyes or head as an integral part of visual perception, but the most 
elementary considerations are sufficient to demonstrate their fundamental 
importance. It was a fundamental insight of Luneburg to recognize that 
it is important to characterize in variance properties of motions of the eyes 
and head that compensate each other. The deeper aspects of scanning as 
determining the character of the visual field have not really been studied 
in a thoroughly mathematical and quantitative fashion, and there is little 
doubt in my mind that this is the area most important for future develop
ments in the theory of visual perception. We should, I would assume, end 
up with a kinematics of visual perception replacing the geometry of visual 
perception. For example, Lamb (1919) proves that under Donders' law, 
which asserts that the position of the eyeball is completely determined 
by the primary position and the visual axis aligned to the fixation point, 
it is not possible for every physically straight line segment to be seen as 
straight. This kinematical theorem of Lamb's, which is set forth in detail 
in Roberts and Suppes (1967), provides a strong kinematical argument 
against the Euclidean character of visual space. I cite it here simply as 
an example of the kind of results that one should expect to obtain in a 
more thoroughly developed kinematics of visual perception. 

Objects of visual space. Throughout the analysis given in this paper the 
exact characterization of what are to be considered as the objects of visual 
space has not been settled in any precise or definitive way. This ambiguity 
has been deliberate because the wide range of literature to which I have 
referred does not have a settled account of what are to be regarded as the 
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objects of visual space. The range of views is extreme-from Berkeley, 
who scarcely even wants to admit a geometry of pure visual space, to 
those who hold that visual space is simply a standard Euclidean space and 
there is little real distinction between visual objects and physical objects. 
In building up the subject axiomatically and systematically, clearly some 
commitments are needed, and yet it seems that one can have an intelligible 
discussion of the range of literature considered here without having to 
fix upon a precise characterization, because there is broad agreement on 
the look of things in the field of vision. From the standpoint of the 
geometry of visual space, we can even permit such wide disagreement as 
to whether the objects are two dimensional or three dimensional in order 
to discuss the character of the geometry. Thomas Reid would lean strongly 
toward the two-dimensional character of visual space. Foley would hold 
that visual space is three dimensional; note, however, that most of his 
experiments have been restricted to two dimensions. At the very least, 
under several different natural characterizations of the objects of visual 
space it is apparent that strong claims can be made that visual space is 
not Euclidean, and this is a conclusion of some philosophical interest. 
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DAVIDSON'S VIEWS ON 

PSYCHOLOGY AS A SCIENCE 

More than two decades ago Davidson and I together conducted several 
experiments on decision making. We have not talked much about psychol
ogy for many years and, as will be apparent from my remarks in this short 
article, our views about psychology as a science and, indeed, our views 
about science in general, diverge. All the same, I find what Davidson 
has to say about psychology enormously interesting and stimulating. I 
have confined my comments to three articles, 'The Material Mind' (MM), 
'Thought and Talk' (TT), and 'Psychology as Philosophy' (PP). 1 Cer
tainly other articles of Davidson's are relevant to the themes advanced 
in these three, but the limitation is not unreasonable for the restricted 
purposes of my analysis. 

I regard M M as a classic that should be required reading for a variety 
of folk, and I strongly agree with its final sentence: 'There is no important 
sense in which psychology can be reduced to the physical sciences.' 

On the other hand, I do not agree with many of Davidson's more 
detailed arguments and conclusions. I have selected five theses that I 

*Reprinted from Essays on Davidson: Actions and events (ed. by V. Vermazen 
and M.B. Hintikka), 1985, pp. 183-194. Oxford, England: Clarendon Press. I have 
benefited from a variety of critical remarks on an earlier draft by Philip Staines and 
my wife, Christine. 

1 Reprinted in Davidson (1980), pp. 245-259, Davidson (1984), pp. 155-170, and 
Davidson (1980), pp. 229-239. 
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think are defensible and that more or less contradict views that Davidson 
has advanced in one place or another in one of the three articles, including 
the printed discussion of P P. 

Before turning to the first thesis, there is a general methodological 
point I want to make about the three articles and my comments. Nothing 
is proved in detail. The arguments are not complete. In arguing that 
psychological concepts are not connected in a lawlike way with physical 
concepts, Davidson likes to take as a parallel example the semantic impos
sibility of giving within a fairly rich language a definition of truth for that 
language (MM, pp. 249-50). But there is an important methodological 
difference about this example. Circa 1980 it can be confidently described 
in a few sentences because the underlying semantic theory was given such 
a satisfactory and explicit form much earlier by Tarski and others. David
son's arguments (or mine) are not cast out of the same mold, and I miss 
in his arguments and analysis the formulation of problems and issues he 
cannot solve. It is hard to believe he regards his arguments as definitive 
for fixing, as Kant might put it, the possible limits of any future psychol
ogy. On the other hand, he gives few if any hints about how he thinks 
the arguments can be made more formal and explicit. I hope that he and 
I may agree that this is work yet to be done. 

I turn now to the five theses. 

(1) It is common in physics as well as in psychology to study systems 
that are not closed, that are not deterministic, and that are holistic 
in character. 

I have mentioned in this first thesis three properties that Davidson 
(PP, pp. 229-30) gives to discriminate physics from psychology. A casual 
perusal of the Physical Review would substantiate the claim that deter
minism is as dead in physics as it is in psychology. (Even Einstein never 
really seemed to believe in determinism.) The present strong interest 
in astrophysics-some physicists regard it as the most promising current 
area of research-and the widespread renewed interest in theories of space 
provide evidence enough that physicists do not deal primarily with closed 
systems. A concern with holistic theory is found in current views on the 
beginnings of the universe or, to take a less exotic example, in the great 
emphasis on field theories in physics for the past quarter of a century. 2 

2 Following is a quotation from a currently fashionable book (Hawking & Ellis 
(1973)): 'In fact it may not be possible to isolate a system from extemal matter 
fields. Thus for example in the Brans-Dicke theory there is a scalar field which is 
non-zero everywhere' (p. 64). Here is C. Truesdell (1968) on the rather small impor
tance of experiments for the development of rational mechanics. This passage says 
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In MM (p. 245), Davidson sets aside the indeterminism of quantum 
mechanics (but not of astrophysics) as part of a fanciful tale about com
plete physical specification of a person, but in P P (p. 231) he declares as 
irrelevant the possibly irreducible probabilistic character of microphysics. 
In another passage (MM, p. 246), he says that the assumption of deter
minism for macrophysics is not essential to his argument. I hope that in 
the future he will elaborate on this point, for it seems to me that from 
today's perspective it is only potted physics, of the sort taught under
graduates, that is deterministic. There is even a substantial literature on 
the indeterminism of classical mechanics.3 From a purely psychological 
standpoint, microphysics does seem relevant because of the enormous sen
sitivity of the visual and olfactory senses to essentially a quantum of light 
in the one case and a few molecules in the other. These two examples are 
easily multiplied because of the near-molecular level of many physiological 
phenomena that obviously interact with psychological states. 

For these and other reasons I shall in the sequel discuss quantum 
mechanics as a relevant physical theory. 

Perhaps the best argument against closed systems in physics is the 
prominent place in quantum mechanics given to disturbances of a system 
due to measurement. To put the case in most extreme form, it might be 
said that there may well be closed systems in physics but we shall never 
be able to observe them. Moreover, parallel to what Davidson says about 
psychological phenomena (PP, p. 230), quantum phenomena are observed 
in terms of macroscopic concepts that are foreign to microconcepts. To use 
G. E. Moore's concept of supervenience (as Davidson does in MM, pp. 253-
4), we might argue for the supervenience, from a human standpoint, of 
the microphysical with respect to the macrophysical. One of the benefits 

some of the things about mechanics that Davidson says about psychology. I cite it as 
part of my general argument that Davidson tends to separate physics and psychology 
methodologically and theoretically more than I think is warranted. 'Without experi
ence there would be no rational mechanics, but I should mislead you if I claimed that 
experiment, either now or 200 years ago, had greatly influenced those who study ratio
nal mechanics. In this connection experiment, like alcohol, is a stimulant to be taken 
with caution. To consult the oracle of a fine vintage at decent intervals exhilarates, 
but excess of the common stock brings stupor. Students of rational mechanics spend 
much effort thinking how materials might possibly behave. These thoughts have not 
been fruitless of information on how some materials do behave. Real materials are not 
naive; neither are they irrational' (p. 357). 

3 For a beautiful instance, see Gale (1952). King Oscar of Sweden's prize was given 
to Henri Poincare for his work on the n-body problem in classical mechanics, in so far as 
it solved Laplace's problem of the stability of the solar system. What Poincare's and 
subsequent results showed is that the necessarily infinite series methods of solution 
prevent us from having a satisfactory deterministic solution of even the three-body 
problem. 
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of having a more formal version of Davidson's arguments on these matters 
would be being able to examine the extent to which a structurally similar 
argument could be made for the relation between quantum mechanics and 
classical physics. 

It is a favorite theme of mine-I do not have time to expand upon 
it here-that physics is becoming like psychology. In this sense, some 
of the pessimism Davidson expresses about psychology I would extend 
to contemporary physical theory, but this is not the point he wants to 
make. His grounds for differentiation of physics and psychology in terms 
of closed systems, determinism, and holistic properties are, I believe, hard 
to make a case for in detail. In his wide-ranging criticism of the possibility 
offundamental psychological theory, or at least fundamental theory about 
propositional attitudes, Davidson has thrown out the physical baby with 
the psychological bath water. He seems to want to impose a standard for 
fundamental scientific theory that is satisfied neither by physics nor by 
psychology. 

(2) Much of modern physical theory is intensional in expression and the 
reports of physical experiments are intensional accounts of human 
activity that cannot properly be expressed in extensional form. 

Thus, once again I accept much of Davidson's thesis about psychology, 
but it is not a thesis that strongly differentiates psychology from physics. 
I certainly grant that the concepts that are intensional in psychology are 
often different at the theoretical level from those in physics. Thus there 
is no natural place in physical theory for concepts of purpose and de
sire, but there is a natural place for a concept closely related to belief, 
that of probability, and if we adopt a thoroughly subjective view toward 
probability, the same concept would apply to belief that applies to the 
expression of probability in physics. The important point, however, is 
that the use of probability concepts in physics is essential to almost all 
modern theory and is at the same time, thoroughly intensional in char
acter. Many familiar examples show that probability statements create 
intensional contexts. We may calculate in a given theory that the prob
ability of two events A and B being identical is some number between 0 
and 1/2, but without calculation the probability that A is identical to A 
is 1. 4 Moreover, so distinguished a physicist as Eugene Wigner traces the 
problem of measurement in quantum mechanics all the way back to the 
(intentional) consciousness of the observer. 

Perhaps the more important point is that in the standard accounts of 
physical experiments the use of intensional language is widespread and, in 

4 1 have expanded upon this point in Suppes (1974d). 
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my view, uneliminable. Philosophers of science have generally neglected 
the details of actual experiments or the language in which experiments 
are reported. Let me give a couple of examples of such intensionality. 

Here is Henri Becquerel in 1896 (1964 translation): 

I then attempted to transmit a new activity to these sub
stances by various known procedures. I heated them in the 
presence of the photographic plate without heating the latter, 
and I obtained no impression (p. 17). 

Becquerel is perhaps especially apposite to quote because his classic ex
periments on establishing the existence of radioactivity constituted a ma
jor step in building the current edifice that has destroyed the classical 
deterministic view of physics. 

Here is Ernest Rutherford in 1900 using the plain man's concept of 
expectation (reprinted in 1964): 'If the radiation is of one kind, we should 
expect the rate of discharge (which is proportional to the intensity of the 
radiation) to diminish in geometrical progression with the addition of 
equal thicknesses of paper. The above figures show this is approximately 
the case' (p. 27). 

I can see little difference between the theoretical status of trying to 
infer something about the probabilistic structure of beliefs of an individual 
and the probabilistic structure of decay in radioactive atoms. Neither 
structure is amenable to direct observation; both require elaborate and 
subtle experimental procedures of an intentional kind to test significant 
aspects of theoretical claims. 

(3) Animals have beliefs. 

In TT Davidson gives several different arguments why dogs and other 
mammals that do not talk cannot have beliefs. On page 170, he suc
cinctly summarizes his main points: ( 1) The idea of belief comes from the 
interpretation or understanding of language; (2) a creature that has be
liefs must have the concept of belief; (3) a creature that has beliefs must 
also have the concept of error of belief and thus the concepts of truth 
and falsity. I find these arguments unpersuasive and I shall try to say 
why. There is, however, a more general issue I want to comment on first. 
Certainly most plain men believe that dogs, monkeys, and other primates 
have beliefs and are capable of thinking about a certain range of prob
lems. As some philosophers in the recent past might put it, it is analytic 
that animals have beliefs because of this widespread common opinion and 
common acceptance of the 'fact' in casual conversation and the like. I 
certainly do not oppose going against the grain of the plain man when 



400 PART V. PSYCHOLOGY 

scientific theory demands it. There are plenty of examples of importance 
to be cited that require it. But to go against the grain requires a detailed 
theory with an articulation of concepts in a systematic structure. This, 
it seems to me, Davidson has not provided. 

A dog waits at the door. We say that he expects his mistress to arrive, 
or we may say that he believes that his mistress will arrive soon. A cat 
meows at the door. We say that he thinks it is time to be fed. The 
monkey grabs a stick in order to reach a banana outside the cage. We 
may say that he grabs the stick and uses it because he expects to be able 
to reach the banana, or, put another way, he believes that he can reach 
the banana. It seems to me that we can stipulate, in order to agree with 
Davidson (not that I do), that the concept of belief arose in connection 
with the interpretation of language, but that does not mean at all that 
its use is now restricted to a linguistic context. We could, on the same 
principles, say that there can be no proper non-human physical concept 
of force, because we can maintain with Jammer {1957) and others that 
the initial primitive concept of force is that of muscular force. There have 
been occasional attempts in the history of physics to exclude the concept 
of force and to reduce mechanics to pure kinematics, but these attempts 
at elimination seem to me as unsuccessful as those aimed at a similar 
elimination of the concept of belief for animals. 

It simply is the case that people talk about beliefs, thoughts, and 
expectations of animals in the style of my simple examples, and it seems 
to· me there is a natural and straightforward interpretation of these uses 
that places them outside the restrictive framework that Davidson would 
like to impose on the concept of belief. 

Let me now try to deal more directly with Davidson's main points cited 
above. The analysis just given, favored by animal-lovers everywhere, he 
may set aside as being mistaken and in need of a fundamental revision, 
for which he has written the prolegomena. That his own views require 
revision, in order to be viable as a relevant theory, seems to me to be 
most directly seen by considering an array of data from developmental 
psychology, including those on language acquisition. A variety of data 
shows indisputably that only gradually does a child master either lan
guage comprehension or language production, but his intentional motor 
behavior is well developed much sooner. I would say that as the child 
learns to crawl about, he early develops beliefs concerning what is and 
is not feasible, what can be ventured and what not. If we turn to his 
language productions of single-word utterances around 22 months, it is 
difficult to hold that at this stage his beliefs have the properties Davidson 
alleges are necessary for belief. It is even difficult for me to believe that 
these properties are there when he is 36 months and babbles away in two-, 
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three-, and four-word utterances. What general concept of belief does he 
have? What concept of truth? On the holistic theory of language, mean
ing, and interpretation advanced in MM (pp. 256-7), it is not easy to see 
how a child could acquire beliefs at all. Short of his giving us the details of 
an actual theory of language acquisition and cognitive development, it is 
hard not to be skeptical of Davidson's views about the necessary relation 
between belief and language. 

( 4) There are theoretically derived statistical laws of behavior. 

I have already argued that it is not just psychology but physics as 
well that at a fundamental level is based only on statistical laws. If there 
were more space, I would expand upon my argument to include the case 
of classical physics, once errors of observation are included in the theoret
ical analysis. But the real point is that fundamental physics in the latter 
half of the twentieth century, as opposed to the first half of the nine
teenth century, is almost wholly statistical in character at a fundamental 
level. Sometimes, however, Davidson goes further, as, for example, in 
PP (p. 233) and in the subsequent discussion of his paper (pp. 239-44), to 
suggest that the kind of statistical laws that are characteristic of quantum 
mechanics cannot be achieved in psychology. As he puts it, 'The statistical 
laws of physics are serious because they give sharply fixed probabilities, 
which spring from the nature of the theory.' (A similar passage is found 
in MM, p. 250.) It is my claim that there are many examples of such 
serious statistical laws in psychology. Some of the best are to be found 
in mathematical theories of learning. This is not the place to present a 
detailed axiomatic formulation with derivation of theoretical statistical 
laws and accompanying evidence of their empirical correctness. However, 
I do want to make the point that the number of both theoretical and 
experimental papers on these matters is enormous, even though there is 
much that is still lacking to have the theory as adequate as we would like. 

Although the subject-matter here is different from that of physics, 
the techniques of theoretical derivation of results and the use of general 
probabilistic tools of analysis are very similar. As an example, a simple 
model of aU-or-none learning that may be thought of in terms of either 
conditioning or insight is easily described informally. Learning is a two
state Markov process depending on a single learning parameter c; if we 
call the states U for unlearned and L for learned, the transition matrix is 

L U 
L 1 0 
u c 1- c. 
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The probability of a correct response in the state L is 1, and the 
probability of a correct response in the state U is p. It is also assumed 
that the initial state is U with probability 1. The mean learning equation 
giving the mean probability of a correct response Pn on trial n is then 
easily derived: 

Pn = (1- c)Pn-1 + c, 

whence 
Pn = 1- (1- p)(1- ct-1 . 

All probabilities, for example, the distribution of last error, not just the 
mean learning curve, are a function of the two parameters of the model, 
c and p. Let E be the random variable for the trial of last error. Then 
the distribution of E is: 

{ 
bp 

P(E = n) = b(l- p)(l- c)n-1 

where 

b= c 5 
1-p(l- c) 

for n = 0 
for n > 0 

It is possible that Davidson will argue that this example falls outside 
of that part of psychology with which he is concerned, the part that 
makes essential use of intentional (and therefore intensional) concepts. 
The explicit classification is only hinted at in various passages by Davidson 
(for example, PP pp. 229-30, and discussion of PP, p. 240), and general 
reservations are not stated in MM, which was published before PP and 
TT. As I classify matters, the applications of the ali-or-none learning 
model to concept learning of children fall within an intentional framework. 
In the first place, the concepts learned were elementary mathematical 
concepts that are a part of the curriculum the child is taught intentionally 
to learn and remember and that come to be a part of his beliefs about the 
world. Secondly, the experiments referred to were concept experiments 
in the following sense: no stimulus displays of sets, isosceles triangles, or 
the like were repeated, and thus no reductive theory of fixed stimulus
response connections could explain the learning. Thirdly, the theory does 
not postulate an observable point at which learning or insight occurs; only 
the pattern of responses is observable. The expected trial of learning, as 
opposed to trial of last (observable) error, is easily computed in theory 

5 Detailed application of this model, and more complicated extensions to the learning 
of elementary mathematical concepts by children, is given in Suppes & Ginsberg (1963), 
and Suppes (1965). 



DAVIDSON'S VIEWS ON PSYCHOLOGY AS A SCIENCE 403 

but it cannot be directly observed. Obviously this simple example does 
not postulate a very complex internal pattern in the learner, but it IS 

easily extended to models that do (see, for example, Suppes, 1973). 

(5) Experimental tests of decision theory do not require an interpreta
tion of speech. 

From the standpoint of quantitative theory in psychology, I find David
son's remarks about decision theory puzzling. He mentions Ramsey's 
early work, casually describes an experiment of his own with Carlsmith 
(PP, pp. 235-6), and discusses briefly the transitivity of preference. The 
number of theoretical and experimental papers on these matters is very 
large. It is hard to think of a matter that has been more thoroughly 
investigated in various ways than the putative transitivity of indifference 
of preference. It is easy enough to agree with his remarks that we could 
improve decision theory by incorporating into it a theory of communi
cation, but remarks of this kind about improvement can be made for 
almost any physical theory as well. The question is, rather, how he wants 
to evaluate scientifically the massive psychological literature on decision 
theory. It will be useful to focus on a single issue-Davidson's claim in 
TT (pp. 162-3)-that we cannot properly understand the choices an indi
vidual makes in expressing his preferences without relying on talk about 
these choices. Here is what Davidson has to say on the matter: 

What is certain is that all the standard ways of testing theories 
of decision or preference under uncertainty rely on the use of 
language. It is relatively simple to eliminate the necessity for 
verbal responses on the part of the subject: he can be taken 
to have expressed a preference by taking action, by moving 
directly to achieve his end, rather than by saying what he 
wants. But this cannot settle the question of what he has 
chosen. A man who takes an apple rather than a pear when 
offered both may be expressing a preference for what is on his 
left rather than his right, what is red rather than yellow, what 
is seen first, or judged more expensive. Repeated tests may 
make some readings of his actions more plausible than others, 
but the problem will remain how to tell what he judges to 
be a repetition of the same alternative. Tests that involve 
uncertain events-choices between gambles-are even harder 
to present without using words. The psychologist, skeptical 
of his ability to be certain how a subject is interpreting his 
instructions, must add a theory of verbal interpretation to the 
theory to be tested. If we think of all choices as revealing 
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a preference that one sentence rather than another be true, 
the resulting total theory should provide an interpretation of 
sentences, and at the same time assign beliefs and desires, both 
of the latter conceived as relating the agent to sentences or 
utterances. This composite theory would explain all behavior, 
verbal and otherwise. (TT, pp. 162-3). 

Davidson's claims in this passage raise important issues. To begin with, 
they seem to challenge the scientific methodology of a wide variety of 
psychological experiments. Concerning experiments involving human sub
jects, Davidson is certainly right in noting the extensive reliance on the 
use of verbal instructions. Does this mean that we must add a theory 
of verbal interpretation to each of the theories to be tested? In strictest 
terms, we could insist on such a theory, but exactly the same holistic 
problem arises in other sciences, such as physics. In the same spirit, we 
could insist on a theory of the actions of the physicist in performing an 
experiment. In this case, the actions the experimenter takes in preparing 
and using experimental apparatus correspond to the giving of verbal in
structions to human subjects. It is part of the radical incompleteness of 
science that neither in physics nor in psychology do we ever satisfy the 
demands for the kind of composite theory including a full interpretation 
of instructions given to subjects or of actions taken with physical appa
ratus that Davidson seems to want. It is easy enough to agree with him 
that having such theories would be most desirable. But this will be a case 
of science made in heaven and not on earth. 

Davidson also argues for the necessity of a theory able to interpret 
a subject's utterances about his preferences. He gives the example of a 
man who has taken an apple rather than a pear, but we cannot really tell, 
Davidson says, whether he is expressing a preference for what is on his 
left or what is on his right, what is red rather than yellow, or what. This 
problem is not in the least special to agency or psychological experiments. 
It is a standard problem of experimental design. If I have a hypothesis 
that a certain force is moving particles that are to be observed in a Wil
son cloud chamber, I have exactly the same problem of eliminating other 
causes in order to give a univocal interpretation to the experimental re
sults. I see nothing special about the case of preference. This is exactly 
what the subject of experimental design is about, and it is one of the 
marks of scientific progress in the twentieth century to recognize the need 
for and to have developed a theory of experimental design to disentangle 
the ambiguities of interpretation that Davidson poses, although I would 
not, of course, claim that we are always successful. We can bring the 
matter closer to psychology by examining the very extensive literature 
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on preference in animals. If we took Davidson's arguments literally, we 
would not be able to make inferences of a definite kind about the pref
erences of animals (for example, for kinds of food, various solutions of 
sugar, etc.) because we are not able to relate the agent or subject to ut
terances, potential or actual. I certainly agree with Davidson about the 
importance of speech Citlld its central role in understanding many kinds 
of decisions. What I cannot accept and do not believe is correct is his 
insistence on the necessity of tying the theory of decision and the theory 
of interpretation so closely together. It may be that he wants to make 
the more reasonable claim that for a certain important class of decisions 
a theory of interpretation of speech is necessary. In the passage cited and 
in other places he does not put such qualifications, and in his discussion of 
the question of whether animals can have beliefs, he clearly moves in the 
other direction. I am puzzled by how he would therefore want to interpret 
the vast literature on learning and preference in animals. 

Finally, there is another, quite different point I want to make. Even 
in the case of complex and highly significant decisions, I am skeptical 
of an individual's ability to verbalize the basis for his choices. It seems 
to me that decisions we make about a variety of important matters are 
marked just by our inability to give anything like adequate explanations 
of why we have made the choices that we have made. To hold otherwise 
is a fantasy of rationality. If I am at all near the mark on this point, it 
is another reason for separating the theory of decision and the theory of 
how we talk. 

I have been critical of various arguments of Davidson's that seem to 
raise important issues and yet have not been given by him in sufficient 
detail to be considered conclusive. Indeed, in some cases it seems to me 
his arguments move in a direction that is philosophically or scientifically 
mistaken. On the other hand, I want to stress my agreement with much 
of what Davidson says. His focus on the need for a general theory of 
desires, beliefs, and actions, and for a general theory of how we talk, 
rightly emphasizes matters that should be central to psychology but do 
not yet have a proper scientific foundation. 
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CURRENT DIRECTIONS IN 

MATHEMATICAL LEARNING 

THEORY 

I have organized this article into two parts. In the first part I survey a 
number of different current trends in mathematical learning theory, with 
some attempt also to give some background of the developments leading 
up to them. In this part the main topics that I cover are stimulus-response 
theory, language learning, formal learning theory, and a group of related 
approaches I have entitled perceptrons, cellular automata, and neural 
networks. (The survey given here extends considerably the one given in 
Suppes, 1977a.) 

In the second part I return to some of my own earlier work on stimulus
response theory of finite automata and give an extension to universal 
computation via register machines, rather than Turing machines. In this 
context I also discuss the feasibility of applying these theoretical ideas 
directly to actual learning situations. 

1. GENERAL SURVEY 

Stimulus-response theory. For the period running from the late 1930s to 
the late 1960s, that is, roughly a period of 30 years, the dominant theo-

*Reprinted from, Mathematical psychology in progress (ed. by E. E. Roskam), 1989, 
pp. 3-28. Berlin, Heidelberg: Springer Verlag. 
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retical view of learning was some variant of stimulus-response theory. We 
could, of course, begin earlier with the work of Thorndike, but for the 
period to which I am referring we can start with the papers of Clark Hull, 
and especially his Principles of Behavior (1943). On the other hand, 
Hull's theory does not have a genuine mathematical feel about it. It 
is impossible to make nontrivial derivations leading to new quantitative 
predictions of behavior. This is so in spite of the valiant attempts to 
formalize Hullian theory (Hull et al., 1940). In my judgment the first 
serious paper that had an impact in the history of mathematical learn
ing theory was William K. Estes' article ''Toward a Statistical Theory of 
Learning" (1950). Estes presented in statistical learning theory a theory 
that has the kind of formulation that we expect of theories in physics. 
Nontrivial quantitative predictions can be made, and especially we can 
vary experimental conditions and derive new predictions. Another early 
and important publication was the 1955 book of Robert Bush and Fred
erick Mosteller, Stochastic Models for Learning. In the period roughly 
from 1955 to 1970, a large number of additional theoretical and empirical 
studies appeared and I will not attempt to survey them here. I do want to 
mention my own 1969 article, "Stimulus-Response Theory of Finite Au
tomata," because in the second part I will return to the framework of this 
article and extend it to register machines, thereby establishing connection 
with some of the other directions characteristic of mathematical learning 
theory in the last several decades. The main theorem of the 1969 article 
is the following: 

THEOREM 1. Given any finite automaton, there is a stimulus-response 
model that under appropriate learning conditions asymptotically becomes 
isomorphic to the finite automaton. 

There are one or two features of stimulus-response theory as devel
oped in the period I have described that have not been really satisfacto
rily replicated in the two decades since. It is important to recognize that 
progress has not been uniform in this respect. The most important of 
these features is the one mentioned above, the ability to make new predic
tions based upon change in experimental parameters. What is important 
about these predictions, moreover, is that the predictions of stochastic 
learning models derived from stimulus-response theory were detailed in 
character compared to the often qualitative or single predictions made 
from learning theories derived from the current fashion in cognitive psy
chology. To give some sense of this, I cannot resist showing some results 
on stimulus-response theory for a continuum of responses. Figure 1 shows 
a comparison between an observed response histogram conditioned upon 
a preceding reinforcement with a corresponding predicted density for a 
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Figure 1. Observed response histogram conditional upon preceding re
inforcement with corresponding predicted density. 

continuum of responses with non contingent bimodal reinforcement distri
bution. Details can be found in Suppes, Rouanet, Levine, and Frankmann 
(1964). (For a recent application of these ideas to learning by robots, see 
Crangle and Suppes, 1989b.) The derivation of this highly nonsymmet
ric curve is very much in the spirit of the kinds of derivations which one 
makes in physics and which work so well in stochastic learning models. 
The weakness of such models is that they work well in narrowly defined 
experimental settings, which I must say, by the way, is true of very many 
physical theories as well. The moral of the story is that in learning theory 
as in other subjects one cannot have one's cake and eat it too. If one wants 
precise mathematically derived predictions, then the experimental situ
ations will probably be relatively narrowly circumscribed. On the other 
hand, if one wants to deal with a wide range of significant phenomena the 
predictions will not be nearly as satisfactory. 
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Mathematical models of language learning. Although the theory of lan
guage learning in general form has a long history, we can date the math
ematical theory in the modern period from an important paper of Gold 
(1967). He established the following important theorem. 

THEOREM 2 (Gold). Regular or context-free classes of grammars are 
not text-learnable. 

By text-learnable is meant that just by being presented instances of text 
the grammar as such can be learned, that is, asymptotically identified. 
Note that the sense of learnable in this theorem is a very weak sense. One 
has in mind that the grammar cannot be learned even with an infinite 
number of trials. On the other hand, on the assumption that one could 
ask an informant whether something were grammatical in the language 
being spoken and therefore according to the grammar which was to be 
learned, Gold proved the following theorem. 

THEOREM 3 (Gold). Regular or context-free classes of grammars are 
informant-learnable. 

It is important to note, of course, that Gold's framework is completely 
nonpsychological and is based really just on formal properties of regular 
and context-free grammars. 

The most notable effort to develop a mathematical but psychological 
theory of language learning is to be found in the various publications of 
Kenneth Wexler and his associates. Perhaps the first article to be men
tioned is Hamburger and Wexler (1973), in which they study the identifia
bility of a class of transformational grammars, and their 1975 article on a 
mathematical theory of learning transformational grammar. Here I shall 
refer especially to the large book of Wexler and Culicover (1980), entitled 
Formal Principles of Language Acquisition. The general idea of their the
ory is that when one is given surface data, for example, spoken sentences, 
then each surface sentence is paired with a base phrase marker and this 
structure is then passed to a learning mechanism. The intuitive idea is 
that every pair (b, s) in a certain range has a fixed probability greater 
than zero of appearing at time t, and that this probability of appearing 
at time t is bounded away from zero independent of the past history of 
the system. Exactly which pairs do show up, that is, what the theory 
permits as possible transformations, is a matter for linguistic analysis, 
to which we turn in a moment. The learning mechanism is a hypothesis 
formation procedure that is familiar from many other contexts. At any 
particular time t, the state of the learner is represented by a finite set of 
transformations, and on each "trial" the learner is presented with a pair 
(b, s). In response to the pairing, that is, the given phrase structure of 
grammars is used to decide if it is correct and thereby make no change, 
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or if it is incorrect try another hypothesis. Such learning only from errors 
is a familiar mathematical model of learning. So the learning mechanism 
itself is simple, easy to describe, and very much in the tradition of earlier 
mathematical models of learning. 

Notice that knowledge of the base structure is assumed in Wexler and 
Culicover's theory of learnability. Moreover, this base structure is the car
rier of meaning. This assumption is certainly psychologically unrealistic 
but can be accepted in the context of their theory in order to permit con
centration on the problem of learning a transformational grammar. But 
what is actually going on in a young child is undoubtedly very much more 
complicated than such a simple theory postulates. What is complicated, 
and I shall not attempt to describe in detail here, is the set of transfor
mations derived from the theory of transformational grammars. Wexler 
and Culicover impose five important structural restrictions on transfor
mations, which can be justified linguistically. The five basic restrictions 
that they impose on the class of transformational grammars can be de
scribed in the intuitive terms I used in my original review of the book 
(Suppes, 1983). 

1. The freezing principle asserts that if a transformation changes the 
structure of a node so that that part of the base structure is no 
longer a base structure (i.e., able to be generated by the context
free grammar of the base), then no transformations may be applied 
to subparts of the structure of the node. (The intuitive picture 
here is of a grammatical tree structure, and the "structure" of a 
node refers to that part of the tree lying below the node.) For 
example, if we applied a passive transformation (I am not claiming 
such transformations are psychologically or linguistically sound) to 
John who loved Mary loved Jane to obtain Jane was loved by John 
who loved Mary, we could not then apply a transformation to the 
subordinate relative clause. 

2. The binary principle restricts transformations to applying to con
stituents that cut across more than two embedded sentences in the 
base structure. Primarily because of this principle, Wexler and 
Culicover are able to prove that the learner need never encounter 
base sentences more complex than having two stages of embedding. 
Thus, base sentences of the complexity of the familiar nursery rhyme 
This is the dog that worried the cat that killed the rat that ate the 
malt that lay in the house that Jack built need not be encountered. 

3. The raising principle asserts that if a node is raised, a transforma
tion cannot be applied to a node beneath this node. For example, 
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consider the sentence John believes that the man who shot Bill loves 
Mary. By raising we obtain John believes the man who shot Bill to 
love Mary, the noun phrase the man who shot Bill has been raised 
from subject of the complement clause to object of the main verb, 
and by the raising principle no transformation can be applied to the 
relative clause of this noun phrase. 

4. The principle of no bottom context is rather technical, and I shall 
not try to illustrate it here. What it does is rule out lower structures 
that overly determine whether a transformation at a higher level fits 
exactly and is thus applicable. 

5. The principle of the transparency of untransformable base struc
tures is also technical. It asserts that base structures that cannot 
be transformed must turn up in the surface structure and thus be 
transparent. 

THEOREM 4 (Wexler and Culicover). With restriction of input to sen
tences satisfying the binary principle stated above, a transformational 
grammar also satisfying the other four principles listed above may be 
asymptotically learned with probability one. 

I have already remarked in several places on criticisms of the theory of 
the kind that are standard of mathematical theories of learning, namely, 
simplifications that all recognize are simplifications. There is another 
point of the Wexler and Culicover work that needs remarking of a different 
sort. They do not offer any evidence about the rate of learning. It could 
very well be that, on the assumption that sentences appear once a minute, 
it would still take several hundred years to learn a working grammar. In 
fact, the amount of time required could really be astronomical. It is 
an important aspect of theories of this kind to get, even if necessary by 
simulation, some idea of the rate of learning. Without doubt, the detailed 
features of the transformational grammar will have by far the largest 
impact on the rate of learning. Of course, by putting in hierarchical 
principles restricting in a given situation the transformations available, 
one can see how it would speed up very much the rate of learning and 
it may be by efforts of this kind a reasonable rate of learning could be 
achieved. What is probably needed in the tradition of this work at the 
present time is to get closer to some actual experiments-or actual data 
perhaps even better-of children's language learning, but the difficulties 
of testing quantitative theories in this fashion are also well known. 

To some extent, this moving closer to the data is characteristic of the 
theory set forth in Pinker (1984). Also of interest is the fact that Pinker 
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builds his theory around lexical functional grammars (Kaplan and Bres
nan, 1982). Lexical functional grammars represent one of the new gener
alized phrase-structure grammars, which currently seem very promising 
from a linguistic standpoint and therefore represent a better target choice 
than the transformational grammars used by Wexler and Culicover. On 
the other hand, as Pinker explicitly states, he has not attempted to give a 
formal theory of language learning, so that consequently his main efforts 
fall outside the framework of this paper. His book is full of interest
ing remarks about problems of theorizing in this area and also about a 
great variety of psycholinguistic experimental and naturalistic data. But 
it would at the present time be extremely difficult to formalize his ideas as 
formulated in the book, and the standard questions we would want to ask 
of such a theory, as, for example, computations about rates of learning, 
etc., to show practical feasibility, are simply out of the question. 

Forma/learning theory. Based on the kind of idea characteristic of Gold's 
important early work (1967), a discipline known as formal learning the
ory has developed. The mathematical tools are essentially ideas of com
putability and recursion. There is no use of probabilistic notions and no 
appeal to actual empirical data. Thus, for example, the processes being 
modeled are not really actual learning processes, as exhibited in animals, 
persons, or even practical computer programs. The theorems mainly con
sist of possibility and impossibility theorems of the kind already exempli
fied in Theorems 2 and 3, due to Gold. The most recent summary of work 
in this field is the 1986 book Systems That Learn of Osherson, Stob, and 
Weinstein. Various combinations of these three authors have published a 
number papers as well. I will not try to summarize the variety of results 
that are proved but will state only one typical theorem that I think gives 
a sense of the kinds of results established. It is important to remember 
that this theorem is typical-it is not some conclusion of a large buildup. 

THEOREM 5 (Osherson, Stob and Weinstein). A learning strategy with 
limited memory restricts the set of languages that can be learned. 

Sketch of Proof Let the memory for sentences of the strategy cp be 
only for the sentence currently being processed. Let L be the set of 
languages consisting of 

L = {(0, i)li EN}, 
Lj = {(O,i)li EN} U {(l,j)}, 
Lj = {(0, i)li # j, i EN} U {(1,j)}. 

When cp first sees (1,j) for some j, cp cannot remember whether it 
previously saw (0, j) or not, and so cannot distinguish between Lj and 
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Lj. This argument may easily be extended to a 1p having any fixed finite 
memory. 

Osherson, Stob, and Weinstein have a lot of informal remarks about 
human learners and language learning as well as about children's learning 
of first language, but it is obvious enough that their approach could not 
possibly supply anything like an empirically adequate theory of language 
learning. They establish within the framework of recursion theory a va
riety of positive and negative results but they do not move from general 
theorems of a recursive sort even to theorems about feasibility. Typically 
it has been important in the recent literature on complexity in computer 
science, for example, to distinguish a recursive result from special cases 
that are also feasible. The typical case is that a decision procedure that 
is exponential in terms of some essential parameter is recursive but not 
feasible. In order to be feasible it must be no more than polynomial 
in number of steps in the parameter. A typical example of this would 
be Tarski's well-known decision procedure for elementary algebra. It is 
known to be strongly exponential in the length of the algebraic formula 
whose validity is being decided. Feasible procedures can be given only for 
special subsets. 

In spite of the general references to children, for example, and other 
aspects of human learning, there is no direct analysis of data of any kind 
and it would not seem appropriate with the self-imposed restrictions of 
the authors. Along with their absence of any detailed complexity results 
there are also no concrete or numerical results on the rate of learning 
of the various learning strategies they investigate. The results are ei
ther negative, for example, something cannot be learned, or the results 
are asymptotic. The concrete and positive study of learning must lie else
where, even though the kinds of results given can be useful in establishing 
the boundaries of substantive learning theories. 

Also to be mentioned is the sophisticated independent work of Ehren
feucht and Mycielski (1973a, 1973b, and 1977). The general framework 
is similar to that of Osherson, Stab, and Weinstein, but Ehrenfeucht and 
Mycielski introduce different conceptual ideas in order to characterize 
asymptotically learnable functions. Equally important in this connection 
is the independent work of Pentti Kanerva (1988), who goes further than 
Ehrenfeucht and Mycielski on the difficult problems of the organization of 
memory for formal learning theories or for related computing performance 
ISSUeS. 

Perceptrons. I have grouped under this heading a great variety of work 
that I cannot attempt to survey in any depth but all of which needs at 
least some mention. The work on perceptrons goes through a line begin-
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ning with McCulloch and Pitts (1943), Rosenblatt (1959), and Minsky 
and Papert (1969). Minsky and Papert were quite successful in setting 
perceptron theory in a mathematical framework in which useful results 
could be proved. Their most important results were negative, showing 
that simple perceptrons of the kind mainly discussed in the prior litera
ture were not capable of learning some quite simple geometrical concepts. 
I will not enter into the details of these negative results but define the 
concepts necessary to state the main positive result, the perceptron con
vergence theorem, particularly in the form given by Minsky and Papert. 

The conceptual apparatus is of the following sort. There is a set D of 
perceptual displays and a subset G that we want the device to learn to se
lect correctly, that is, to identify correctly membership or nonmembership 
in G. More particularly, on each trial the device responds yes to the pre
sented display d if it classifies d as a member of G; otherwise it responds 
no. If the answer is correct, the device receives positive reinforcement 
(e 1 ), and, if the answer is incorrect, it receives negative reinforcement 
( e2 ). Notice that the reinforcement is symmetric with respect to yes-no 
responses and depends only on the correctness or incorrectness of the 
response. This type of reinforcement is what I shall term standard non
determinate reinforcement. Later on I shall discuss more complex and 
more informative reinforcement structures. The heart of the idea of the 
perceptron is that there is a set <jJ of elementary predicates. Each of these 
predicates is assigned a weight, and the perceptron combines in linear 
fashion the weighted 'answers' of the predicates to answer more complex 
questions. We can state the basic definition and the basic theorem with
out specifying more exactly the character of the elementary predicates 
because the results are relative to the set </J of predicates. For notational 
purposes, let A be a k-dimensional vector of real numbers that gives the 
weights assigned to each of the k-elementary predicates with a; being the 
weight assigned to elementary predicate </J;. The set <jJ can also most easily 
be represented as a k-dimensional vector of the k-elementary predicates. 
For each perceptual display din D, </J;(d) has the value 1 if d has the prop
erty expressed by </J; and 0 otherwise. We can thus use standard inner 
product notation for vectors so that in place of L a;</J;(d) we can write 
A· </J(d). It is understood that the response ~f the perceptron learning 
model is yes if this inner product is greater than 0 and no otherwise. To 
refer to a particular trial, the vector An of coefficients can also be referred 
to as the state of conditioning of the perceptron learning model at the 
beginning of trial n, and dn is the object presented on trial n. 

In the present context, finally the sample space X consists of all pos
sible experiments, with each experiment, of course, being a sequence of 
trials. A trial in the present case is simply a triple (A, d, e), where A is 
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the state of conditioning as described already, d is a perceptual display 
that is a member of D, and e is a reinforcement. 

We thus have the following definition. 

DEFINITION 1. A structure A = (V, 4>, £,X) is a perceptron learning 
model if and only if the following axioms are satisfied for every sequence 
of trials in X. 

(i) If e1 occurs on trial n, then An+l = An . 

(ii) If e2 occurs on trial n and An· 4>(dn) :50, then An+l =An+ 4>(dn)· 

(iii) If e2 occurs on trial nand An· 1/>(dn) > 0, then An+l =An- 1/>(dn)· 

Note that the main feature of the learning of perceptrons is that learn
ing occurs only when an error is made, that is, when an e2 reinforcement 
occurs. The vector expressing the state of conditioning changes in one of 
two directions, depending upon the type of error. 

In terms of these concepts we can then state the standard theorem. 

THEOREM 6 (Perceptron Convergence Theorem). For any set D and 
any subset G of D, if there is a vector A such that A· 4>(d) > 0 if and only 
if dE G, then in any perceptron learning model there will only be a finite 
number of trials on which the conditioning vector changes. 

What is particularly important to note about this theorem is the er
godic property of convergence independent of the particular choice of 
weights A1 at the beginning of the experiment. The finite number of 
changes also implies that the perceptron learning model will make only 
a finite number of mistakes. The hypothesis about G expressed in the 
theorem is equivalent to saying that G and its complement with respect 
to D are linearly separable. 

The perceptron convergence theorem is asymptotic in character. The 
more important question of rate of learning is not settled by the theorem, 
although there exist some results in the literature that are of some interest. 
I say no more about perceptrons here because work on them in many ways 
converges into other work to be mentioned. 

Cellular automata. To illustrate ideas, here is a simple example of a 
one-dimensional cellular automaton. In the initial state, only the discrete 
position represented by the coordinate 0 has the value 1. All other integer 
coordinates, positive or negative, have the value 0. The automaton can 
in successive 'moves' or steps produce only the values 0 or 1 at any given 
location. The rule of change is given by a function that depends on 
the value of the given position and the values for the simple case to be 
considered here of the adjacent values on either side. Thus, using a~ as the 
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value at site i, after applying the function for change, we can represent 
the rule of change as follows: 

(1) 

Note that because of the restriction in the values at any site this function 
takes just eight arguments, the eight possibilities for strings of O's and 
1's. The automata being discussed here are at the very lowest rank on 
the number k of possible values: k = 2 is the number of possible values 
and r = 1 is the distance away. Updating may depend on adjacent values. 
The characterization here in terms of the infinite line can be replaced by 
a finite characterization, for example, in terms of a discrete set of points 
on a circle. The same kind of function as given in equation (1) applies. 

Cellular automata have the following obvious characteristics: 

Discrete in space 

Discrete in time 

Discrete state values 

Homogeneous-in the sense all cells are identical 

Synchronous updating 

Deterministic rule of change corresponding to a deterministic differ
ential equation of motion in the case of classical mechanics 

Locality of change rule: the rule of change at a site depends only 
on a local neighborhood of the site 

Temporal locality: the rule of change depends only on values for a 
fixed number of preceding steps-in the present example just one 
step. 

The study of cellular automata by physicists has to a large extent been 
concerned with their usefulness as discrete idealizations of partial differ
ential equations. Both computer simulation and mathematical analysis 
by use of cellular automata are simplifications of the difficult problems of 
the behavior of fluids and other complicated phenomena that in principle 
are governed by nonlinear differential equations. 

The learning aspects of cellular automata have not been a real focus of 
study, but the closely related topic of self organization has been. The in
vestigation of simple self-organizing phenomena goes back at least to the 
early work on chemical systems by Turing (1952). Even before that von 
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Neumann began lecturing and talking about cellular automata. It seems 
that the idea of cellular automata originated in conversations between 
von Neumann and Stanislaus Ulam (von Neumann, 1966) as idealized 
mathematical models of biological systems capable of self-reproduction. 
Von Neumann's construction of a self-reproducing automaton was one of 
the early conceptual successes. Von Neumann's two-dimensional cellular 
automaton construction consisted of a universal Turing machine embed
ded in a cellular array using 29 states per cell with 5-cell neighborhoods. 
Moreover, his automaton can construct in the cellular array any configu
ration of machine which can be described on its input tape. For this rea
son von Neumann's cellular automaton is called a universal constructor. 
Also important is the fact that transcription takes place: von Neumann's 
automaton also makes a copy of the input tape and attaches it to the 
constructed automaton. 

THEOREM 7 (von Neumann). There exists a self-reproducing finite cel
lular automaton. 

As would be expected, there are a large number of subsequent results 
about self-reproduction. A good review is given in Langton (1984), which 
includes a description of Codd's substantial simplification of von Neu
mann's construction (Codd, 1968), as well as his simplification of Codd. 
The earlier articles on self-reproduction are well represented in the vol
ume edited by Burks (1970). The abstract theory of self-reproduction is 
especially well set forth in Myhill (1964), reprinted in Burks' volume. 

Although there has been almost no literature on cellular automata 
directly focused on learning, there has been considerable interest in adap
tive automata as models of biological systems. For general theory, see 
Holland (1975); for a review of what is known about emergent proper
ties of random cellular automata, see Kauffman (1984) and references 
therein. Especially suggestive is the work of Burks and Farmer (1984) 
on the modeling of DNA sequences as automata. A recent encyclopedic 
review of automata and computer models in biology is Baianu (1986). 

Because of their great definitional simplicity, cellular automata pro
vide a good framework for contrasting determinism and predictability. 
Clearly, the nonprobabilistic cellular automata are deterministic in char
acter, but predictability of their behavior is another matter. Knowing the 
transition rule for a cellular automaton and given an initial configuration, 
can one predict in closed form the configuration after n steps? In general, 
this is certainly not the case. Of course, we can get predictability in an
other way by directly simulating the automaton but this is not what we 
ordinarily mean by predictability. There is in fact a concept that is useful 
to introduce at this point. This is the concept of being computationally 
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irreducible (Wolfram, 1985). A system is computationally irreducible if a 
prediction about the system cannot be made by essentially shorter meth
ods than simulating the system or running the system itself. Wolfram 
(1986) has shown that the following k = 2, r = 1 cellular automaton gen
erates highly complex sequences that pass many tests for randomness, in 
spite of its totally elementary character. The automaton is defined by 
equivalent equations, one in terms of exclusive or and the other in terms 
of mod 2 arithmetic. 

a~ = a;-1XOR(a;ORai+l) 
ai =(ai-l+ a;+ ai+l + a;a;+l) mod 2 

Another good example of a physical process that is computationally irre
ducible is the addition of a column of numbers on the fastest computer 
available. For numbers randomly chosen but that do not have some spe
cial tricky features, there is no shorter way to compute their sum than 
simply to run the algorithm of addition itself. Because of our great in
terest in predictability we often forget how many processes are not pre
dictable in the sense that they can be predicted in advance of their actual 
running or direct simulation of running. Of course, we can learn many 
things about the behavior of a system, including the asymptotic behavior 
of a learning system, without having it be computationally reducible. A 
tantalizing conjecture is that the network of neurons in a human brain 
constitute in their complete computational capability a computationally 
irreducible system. The implications of this conjecture for having theo
ries of learning or performance as detailed as one might ask for are quite 
pessimistic. 

Neural networks. Just as cellular automata and perceptrons grow out of 
a common background, so do neural networks arise from the same back
ground. Above all, neural networks are close to perceptrons in general 
conception. Neural networks differ from cellular automata in two essential 
respects. One is that updating is asynchronous, and, secondly, connec
tions can be continually changed. (Cellular automata have been studied 
with these two changes in mind, but not extensively.) 

Among the early work on neural networks we mention especially the 
voluminous research in various forms by Grossberg and his colleagues. 
Simply for reference I mention here Grossberg (1974, 1978, 1980, 1982). 
Grossberg's and his colleagues' research is concentrated on a psychophysi
ological theory of sensory processing and development. He gives an excel
lent overview of the theory in Grossberg (1978). As he puts it there, the 
theory is organized into four stages. The first stage is concerned with the 
question how fluctuating patterns of data are processed in cellular tissues 
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so that problems of noise and dynamic range are solved. In particular, 
what are the mechanisms that keep the patterns of data from either being 
saturated or hopelessly confounded with noise? Stage two concentrates on 
the question how do persistently correlated presentations of two or more 
events yield an enduring reorganization of system dynamics. Grossberg's 
intention is to discuss problems at this stage, for example, classical con
ditioning, in a way that is fundamental in terms of schematic analysis of 
chemical and electrical properties of cellular structures. I emphasize the 
word schematic. It would be misleading to give a sense that he is dealing 
with the complete details of cellular dynamics. 

The third stage concerns the question how sensory codes reorganize 
themselves or develop in response to environmental pressures. The the
ory at this stage particularly deals with the hierarchical organization of 
feature detectors, and in particular their interaction. Stage four deals 
with the fundamental question of how the information code can be held 
stable in an environment that is changing both internally and exter
nally. 

To give a sense of how Grossberg attacks these matters, a familiar and 
typical instance would be his analysis of adaptation and automatic gain 
control in on-center and off-surround networks which are hypothesized as 
schematic models of important aspects of the visual system. The models 
proposed are meant to account for psychologically known facts about 
perception of overlapping colored patches of light. Models are formulated 
in terms of population of cells which themselves have schematic properties 
in terms of activation decay. I hope it is clear that I am quite positive 
about the level of schematization that Grossberg is attempting. It is 
certainly out of range at the present time to try to use all the detailed 
information that is known about cell structure and, in particular, about 
the structure and function of neurons. How complicated the details are 
and how little we still know about function are well brought out in the 
chapter on the cerebral cortex by Crick and Asanuma in McClelland, 
Rumelhart, et al. (1986). 

On the other hand, I will not try to review Grossberg's work in detail 
for another reason. He has concentrated on problems that are rather 
different from my focus here, namely, the computational power of learning 
models. There are certainly remarks in various publications that bear on 
this but he has mainly concentrated on specific network models of vision 
that account for visual illusions, on the development offeature detectors in 
the visual cortex, adaptive pattern classification, networks that account 
for psychological facts of olfaction, and especially the excellent recent 
monograph on the neural dynamics of ballistic eye movements (Grossberg 
& Kuperstein, 1986). 
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The surprising ability of neural networks to self-organize themselves 
to have emerging computational properties has recently been studied in 
simulations by Hopfield (1982) and Hopfield and Tank (1985). In the 
latter article it is shown how a neural network can be constructed to 
compute a surprisingly good solution of the traveling salesman problem, 
which is the hard combinatorial problem of finding the minimum-distance 
route a salesman should take in visiting n cities exactly once. 

Within psychology the recent surge of interest in neural networks 
has been led by Rumelhardt, McClelland and the PDP Research Group 
(1986). Their massive and discursive two-volume treatise summarizes in 
one form or another most of the work done to date. What is especially 
interesting is the intellectual conflict that has already surfaced and is cer
tain to continue between cognitive psychologists who are devoted to rule 
learning, and learning psychologists like Rumelhardt who do not believe 
that explicit rules, e.g., grammatical rules, play an important part in lan
guage learning or other cognitive domains. Chapter 18 of the work cited 
above-this chapter is by Rumelhardt and McClelland-provides a good 
example in its application of neural networks to learning the past tense 
of English verbs. Nothing like a complete sample of verbs is presented 
but enough is done to show what is a practical conceptual approach to 
developing a more extensive and detailed theory. 

For an essentially negative critique of this work on verbs and related 
developments, see Pinker and Mehler (1988). The negative arguments by 
various cognitive psychologists in this volume are by no means conclusive, 
even though some excellent criticisms of neural networks, or connection
ism as the theory is often called, are given. The important point from the 
standpoint of the present paper is that none of the criticisms by Pinker 
and others are precisely formulated from a mathematical standpoint. In 
other words, unlike other work cited here, no impossibility results are 
proved or even explicitly formulated. 

There is a considerable development of formal theory in various other 
chapters of the work, with many of the ideas derived more from physics 
than psychology, even though some of the theorems state learnability re
sults. An example is Chapter 6 by Smolensky on the foundations of har
mony theory, a particular approach to information processing in dynam
ical systems, a topic close to some of the extensive work done by others 
on cellular automata. Smolensky contrasts his "subsymbolic" paradigm 
using concepts of activation, relaxation, and statistical correlation to the 
symbolic paradigm forcefully presented by Newell {1980), which empha
sizes the central role of symbolic computation in cognitive science. This is 
the conflict mentioned above under another guise. The main characteris
tics of harmony theory, which is in its way a new descendant of older per-
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ceptron theories, are these: inference is through activation of schemata, 
stored knowledge atoms are dynamically assembled into context-sensitive 
schemata, schemata are coherent assemblies of knowledge atoms, harmony 
derives from making inferences that are consistent with the knowledge 
represented by the activated atoms, and the self-consistency of a possi
ble state is assigned a quantitative value by a harmony function. What 
I have said here is only meant to be suggestive, and many of Smolen
sky's remarks are of the same sort. However, and I emphasize this point, 
in the appendix to the chapter he gives a straightforward mathemati
cal development of harmony theory. It is just not feasible to state here 
in technical detail the three theorems on competence, realizability, and 
learnability. 

2. LEARNING THEORY FOR UNIVERSAL COMPUTATION 

Finite automata again. The main purpose of this section is to straighten 
out confusions that have been the sources of criticisms of Theorem 1 
(Suppes, 1969b) on stimulus-response models of finite automata. I begin 
with a brief summary of this earlier work. 

The central idea is quite simple-it is to show how by applying ac
cepted principles of conditioning, an organism may theoretically be taught 
by an appropriate reinforcement schedule to respond as a finite automa
ton. When an automaton is presented with one of a finite number of 
letters from an input alphabet, as a function of this letter of the alphabet 
and its current internal state, it moves to another one of its internal states. 
In order to show that an organism obeying general laws of stimulus con
ditioning and sampling can be conditioned to become an automaton, it 
is necessary first of all to interpret, within the usual run of psychological 
concepts, the notion of a letter of an alphabet and the notion of an internal 
state. In my own thinking about these matters, I was first misled by the 
perhaps natural attempt to identify the internal state of the automaton 
with the state of conditioning of the organism. This idea, however, turned 
out to be clearly wrong. In the first place, the various possible states of 
conditioning of the organism correspond to various possible automata that 
the organism can be conditioned to become. Roughly speaking, to each 
state of conditioning there corresponds a different automaton. Probably 
the next most natural idea is to look at a given conditioning state and 
use the conditioning of individual stimuli to represent the internal states 
of the automaton. In very restricted cases this correspondence works, but 
in general it does not. The correspondence that turns out to work is the 
following: the internal states of the automaton are identified with certain 
responses of the organism. 
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I now turn to the discussion of Theorem 1. The most technically 
detailed and in many ways the most interesting criticism of this represen
tation theorem has been by Kieras (1976). The intuitive source of Kieras' 
confusion in his claim that the theorem as stated is too strong is easy 
to identify. Because I identified the internal states of a given automaton 
with the responses of the representing stimulus-response model, Kieras 
inferred I had unwittingly restricted my analysis to automata that have a 
one-one correspondence between their internal states and responses. On 
the basis of this confusion on his part he asserts that the representation 
theorem is not correct as it stands. 

My purpose now is to lay out this dispute in an explicit and formal 
way in order to show unequivocally that Kieras is mistaken and the rep
resentation theorem is correct as originally stated. 

From a mathematical standpoint Kieras' mistake rests on a misun
derstanding of representation theorems. The isomorphism of a represen
tation theorem is a formal one. In the case of Theorem 1 above, the 
isomorphism is between the internal states of the automaton and the re
sponses of the representing stimulus-response model. The Rabin-Scott 
definition of automata used in the 1969 article does not have an explicit 
response mechanism, but that this is a trivial addition to their definition 
is shown by the general definition of a sequential machine with output 
given by Harrison (1965, p. 294), who is referenced by Kieras and who 
acknowledges he is mainly following the terminology of Rabin and Scott 
(see p. 292). An automaton or sequential machine with output is for 
Harrison just an automaton in the sense of Rabin and Scott with the 
additional condition that the set F of final states are those "giving a one 
output." As Harrison and others have remarked, a restriction of output 
to 1 's and O's is no restriction on the generality of the sequential ma
chine. 

The addition of this output apparatus to the formal definitions I gave 
in the original article is trivial. We just pick two responses ro and r1 not 
used to represent internal states, but one of them, say r0 , represents 0 
and the other 1. Whenever the machine is in an internal state that is not 
a final state but a response is required, it outputs r 0 . When it is in a final 
state it outputs r 1 . To modify Definition 1 to take account ofthese output 
responses is easy. I note once again that the two output responses are in 
no way intended to correspond to internal states of the automata being 
represented. Other responses of the stimulus-response model represent the 
internal states. I emphasize, also, that this modification of adding output 
responses would not be correcting an error in Theorem 1 but would only 
be providing an additional closely related result. 
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Register machines. Another misconception in the literature is that stim
ulus-response theory can only deal with machines that have the power 
of finite automata. The purpose of this section is to show that this is 
not the case by giving the construction of ·register machines, which are 
equivalent to Thring machines, corresponding to that for finite automata. 
The development here extends and modifies substantially that in Sup
pes (1977b ). To give the results formal definiteness, we shall develop a 
learning theory for any partial recursive function. Such functions can be 
defined explicitly in a fairly direct way but we shall not do so here. I 
shall rely upon the fact that partial recursive functions are computable 
functions. We then use the basic theorem in the literature, whose tech
nical framework we shall expand upon somewhat later, that any function 
is partially recursive if and only if it is computable by a register machine 
or, equivalently, by a Thring machine. The concept of a register machine 
used here was introduced by Shepherdson and Sturgis (1963). The reason 
for using register machines rather than Thring machines is that their for
mal structure is simpler. For example, the proof of equivalence between 
a function being a partial recursive function and being computable by a 
register machine is much simpler than the corresponding proof for Turing 
machines. First, let me recall how simple a classical register machine for 
a finite vocabulary is. All we have is a potentially infinite list or sequence 
of registers, but any given program uses only a finite number. Exactly 
three simple kinds of instructions are required for each register. The first 
is to place any element of the finite vocabulary at the top of the content 
of register n; the second is to delete the bottommost letter of the content 
of register n if the register is nonempty; because any computation takes 
place in a finite number of steps, the content of any register must always 
be finite in length. The third instruction is a jump instruction to another 
line of the program, if the content of register n is such that the bottom
most or beginning letter is ai; in other words, this is a conditional jump 
instruction. Thus, if we think of the contents of registers as being strings 
reading from left to right we can also describe the instructions as placing 
new symbols on the right, deleting old symbols on the left, and using a 
conditional jump instruction in the program when required. 

It is straightforward to give a formal definition of programs for such 
an unlimited register machine, but I delay this for the moment. It is 
clear that a program is simply made up of lines of instructions of the sort 
just described. The potentially infinite memory of an unlimited register 
machine both in terms of the number of registers and the size of each 
register is a natural mathematical idealization. It is also possible to define 
a single-register machine with instructions of the kind just stated and to 
show that a single register is also adequate. 
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An important point about the revision of stimulus-response theory 
given here is that the internal language used for encoding stimulus dis
plays is all that is dealt with. In other words, in the present formulation 
of the register-machine theory I shall not enter into the relation between 
the set of external stimuli and the encoding language, but deal only with 
the already encoded representation of the display. This level of abstrac
tion seems appropriate for the present discussion but of course is not 
appropriate for a fully worked out theory. It is a proper division of labor, 
however, with the proper modularity. I am assuming that the sensory sys
tem passes to the central nervous system such encoded information, with 
the first level of encoding taking place well outside the central nervous 
system. Thus, in one sense the concept of stimulus becomes nonfunctional 
as such, but only because the encoding is already assumed. It is obvious 
enough that no serious assumptions about the actual perceptual charac
ter of stimuli is a part of classical S-R theory. Secondly, the concept of a 
program internally constructed replaces the direct language of responses 
being conditioned to stimuli. A natural question would be why not try 
to give a more neural network or hardware version of this construction. 
Given how little we know about the actual way in which information is 
transduced to the central nervous system and then used for encoding and 
programming, it seems premature, and in fact may well be premature 
for much longer than many of us hope, to try to move to any hardware 
details. Certainly what does seem to be the case is that there is internal 
programming. I am not suggesting that the abstract simple theory of a 
register machine catches the details of that internal programming-it is 
only a way of representing it-, and it is a matter for detailed additional 
theory to modify the abstract representation to make it more realistic. 

On the other hand, without giving anything like a detailed neural anal
ysis, the register-machine programs can be replaced by computationally 
equivalent stimulus-response connections, but without further specifica
tion such postulated S-R conditioning connections are no more concrete, 
i.e., closer to empirical realization, than the register-machine programs. 
It seems to me that it is therefore better to think of the programs as 
being realized by neural "hardware" we cannot presently specify. What 
is presented in the remainder of this section is formally adequate, but can 
surely be improved upon in many ways either to more closely imitate the 
learning of different organisms or to make machine learning more efficient. 
Moreover, given some feature coding of presented stimuli, there is every 
reason to think that to any software program there is a corresponding 
neural net, and vice versa, for solving a particular class of problems with 
essentially the same rate of learning. But this likely equivalence cannot 
be pursued further here. 
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To make matters more explicit and formal but without attempting a 
complete formalization, I introduce the following definitions. First, (n) 
is the content of register n before carrying out an instruction; (n') is the 
content of register n after carrying out an instruction. Second, a register 
machine has (1) a denumerable sequence of registers numbered 1, 2, 3, ... , 
each of which can store any finite sequence of symbols from the basic 
alphabet V, and (2) three basic kinds of instructions: 

(a) P~P(n): 
(b) DN(n): 

(c) Jt)(n)[q]: 

Place ai on the right-hand end of (n). 
Delete the leftmost letter of(n) if (n) =J 0. 

Jump to line q if (n) begins with ai 

If the jump is to a nonexistent line, then the machine stops. The pa
rameter N shown as a subscript in the instructions refers to the set of 
feature registers holding sensory data and not used as working computa
tion registers. (This point is made more explicitly in the definition given 
below.) 

A line of a program of a register machine is either an ordered couple 
consisting of a natural number m ~ 1 (the line number) and one of the 
instructions (a) or (b), or an ordered triple consisting of a natural number 
m ~ 1, one of the instructions (c), and a natural number q ~ 1. The 
intuitive interpretation of this definition is obvious and will not be given. 

A program (of a register machine) is a finite sequence of k lines such 
that (1) the first number of the ith line is i, and (2) the numbers q that 
are third members of lines are such that 1 ~ q ~ k + 1. The parameter 
k is, of course, the number of lines of the program. I shall also refer 
to programs as routines. How a register machine follows a program or 
routine is intuitively obvious and will not be formally defined. Subroutines 
are defined like programs except (1) subroutines may have several exits, 
and (2) third members of triples may range over q1 , ... , qk, these variables 
being assigned values in a given program. 

I shall not give the formal definition of a partial recursive function 
defined over the alphabet V. It is any intuitively computable function. 
Given V, the finite vocabulary, then, as usual in such matters, V * is the 
set of finite sequences of elements of V; in the present context, I shall call 
the elements of V * feature codings. Let f be a function of n arguments 
from V * x · · · x V * ( n times) to V *. The basic definition is that f is 
computable by a register machine if and only if for every register Xi, y 

and N withy =J Xi fori= 1, ... ,n and Xi, ... ,xn,Y ~ N there exists a 
routine RN(Y = f(xl, ... , Xn)) such that if (x1), ... , (xn) are the initial 
contents of registers Xt, ... , Xn then 
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(1) if f((x1}, ... , (xn)) is undefined the machine will not stop, 
(2) if f((xl), ... ,(xn)) is defined, the machine will stop with (y}, the 

final content of register y, equal to f( (x1}, ... , (xn} ), and with the 
final contents of all registers 1, 2, ... , N, except y, the same as ini
tially. 

I turn now to the axioms for register learning models that in a very 
general way parallel those given for stimulus-response models with non
determinate reinforcement in Suppes and Rottmayer (1974). I axiomatize 
only the model, and not the full probability space that serves as a formal 
framework for the learning trials. Extension to the latter, possibly via 
random variables and leaving the probability space implicit, is straight
forward but tedious. 

The axioms are based on the following structural concepts: 

(i) the set R of registers, 
(ii) the vocabulary V of the model, 

(iii) the subset F of feature registers, 
(iv) the subset C of computation registers, 
( v) the subset Rp of response registers, 

(vi) the working memory WM, 
vii) the long-term memory LTM, 

(viii) the responses ro and r1 , 

(ix) the real parameters p and c. 

It will perhaps be useful to say something briefly and informally about 
each of the primitive concepts. The feature registers in F just encode 
the features of the presented stimulus. This encoding and computation 
as well is done by using the vocabulary V. The computer registers in C 
are working registers available as needed for computation. The working 
memory WM stores programs being constructed. For simplicity here 
I shall assume there is only one such memory, but clearly this is too 
restrictive for general purposes. The long-term memory LTM is where 
programs that are found by repeated trials to be correct are stored. 

One distinction is essential between the two memories and the reg
isters. The memories store the program, so to the feature vocabulary 
v1, ... , Vn in V is added notation for the three types of instruction: P 
for placing or adding on the right, D for deleting on the left, and J for a 
jump instruction. V must also include notation for referring to registers 
used and to program lines. For the purpose I add the digit 1 (thus 2 = 
11, 3 = 111, etc.), the most rudimentary counting notation. 

The set Rp of response registers is also here for simplicity assumed 
to be a singleton set. This register corresponds in the general register 
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machine characterized earlier to be the register that holds the value of the 
partial recursive function being computed. Here also I make an inessential 
simplifying assumption, namely, that learning will be restricted to concept 
learning, which is in principle no restriction on the set of computable 
functions. In the present case, given that the program is completed, if 
the register is cleared, the response is r0 , which means that the stimulus 
displayed-whose features are encoded in F-is an instance of the concept 
being learned, and if the register is not empty the response is r1 , which 
means the stimulus presented is not an instance of the concept. Moreover, 
if the program at any step is halted before completion, the response is ro 
with guessing probability p, and r1 with probability 1 - p. 

The two real parameters p and c enter in the axioms in quite different 
ways. As just indicated, p is the response guessing probability, and c is 
the constant probability of stopping construction of a program. These 
parameters, and others introduced implicitly in the axioms, are surely 
context dependent, and will naturally vary from task to task. 

As formulated here, each line of a program is run as it is selected for the 
program construction and placed in working memory (W M). A program 
is transferred to long-term memory (LT M) only when it is completed 
and is successful in correctly identifying an instance of the concept being 
learned. The mechanism of completely erasing a constructed program 
that is in error is too severe, but is a simplifying assumption that holds 
for some animal learning, e.g., the ali-or-none elimination of habituation 
in aplysia by sensitiving stimuli (Kandel, 1985). 

The three types of register-machine instructions-adding on the right, 
deleting on the left, or conditional jump-mentioned earlier are modified 
in one respect. To jump to a nonexistent line and thereby halt the pro
gram, rather than jumping to m + 1 where m is the number of lines, 
the jump is to 0, which is a possible number for no line. The reason for 
this change should be apparent. As the program is probabilistically con
structed line by line by the learning model, there is no way of knowing 
in advance how long the program will be. So it is convenient to have in 
advance a fixed "place" to jump to in order to halt the program. 

DEFINITION 2. A structure~= (R, V,F, C, Rp, WM, LTM, r0 , r1 ,p,c) 
is a register learning model for concept formation if and only if the fol
lowing axioms are satisfied: 

Register Structure Axioms 

Rl. The subsets F, C, and Rp of registers are nonempty and pairwise 
disjoint. 

R2. Subsets F and Rp, and the set V are finite and nonempty. 
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R3. Each register in R can hold any word of Vt, i.e., any finite string 
of elements of V1 = V- {1, P, D, J}. 

Stimulus Encoding Axiom 

Dl. At the start of each trial, the stimulus presented is encoded as having 
features (!) in the registers f of F. 

Program Construction Axioms 

Pl. If at the start of the trial, the LTM is nonempty, no program con
struction occurs. 

P2. Given that LTM is empty: 

(i) With probability c, 0 < c < 1, construction of the program in 
WM terminates after each line, independent of the trial num
ber and any preceding subsequence of events; 

(ii) Given that a line is to be added to the program, the probabil
ity of sampling an instruction of any type with any argument 
is positive, independent of the trial number and any preceding 
subsequence of events; in the case of the line numbern to which 
a jump is to be made the probability is geometrically distributed. 

Program Execution Axioms 

El. If LTM is nonempty, the contents are copied into WM, and then 
the program is executed. 

E2. If LTM is empty, then a program is constructed probabilistically, 
line by line according to Construction Axioms P1 and P2, and is 
executed as each line is constructed. 

E3. When a jump instruction is executed, there is a fixed positive proba
bility the program is halted after one step, with this probability being 
independent of the trial number and any preceding subsequence of 
events. 

Response Axioms 

Rpl. If when the program is complete, register Rp is empty, the response 
zs r0 . 

Rp2. If when the program is complete, register Rp is nonempty, the re
sponse zs r1 . 



430 PART V. PSYCHOLOGY 

Rp3. If the program is halted by Axiom E3, response r0 is made with 
guessing probability p, and response r1 with probability 1 - p, the 
probability p is independent of the trial number and any preceding 
subsequence of events. 

Program Erasure Axioms 

Erl. If positive reinforcement occurs at the end of a trial, the program in 
WM is copied in LTM if LTM is empty. 

Er2. If negative reinforcement occurs at the end of a trial, the program 
in WM is erased and so is the program in LTM if it is nonempty. 

A few of the axioms require comments that were not made earlier in 
the informal discussion. The probabilistic program construction axiom 
P2 is similar to a stimulus sampling axiom which guarantees accessibility 
for conditioning of all relevant stimuli. Axiom P2 is obviously formulated 
in such a way as to bound sampling probabilities away from asymptot
ically approaching zero except in the case of the geometric distribution 
for sampling line numbers. The stopping probability required in program 
execution axiom E3 is required in order to prevent staying with programs 
that generate infinite loops. Finally, the informal concept of reinforce
ment used in the program erasure axioms has an obvious meaning and is 
easily formalized. Positive reinforcement here just means that the con
cept classification of a stimulus by the response r 0 or r 1 is correct, and 
negative reinforcement that it is incorrect. Obviously, more informative 
reinforcement methods can and are widely used in learning and without 
question facilitate the speed of learning. More is said on this point in the 
final remarks on hierarchical learning. 

On the basis of the axioms stated above we may prove an asymp
totic learning theorem corresponding in a general way to Theorem 1 for 
stimulus-response models. 

THEOREM 8. Let f be any partial function ofn arguments over the finite 
alphabet V and having just two values in V. Then f is a partial recursive 
function if and only iff is asymptotically learnable with probability one 
by a register learning model !R of concept formation. 

Proof Let p be a program for !R that computes f. We know there 
must be such a program by virtue of the fact that a function f over a finite 
alphabet is partial recursive if and only if it is computable by a register 
machine. Furthermore, given a definition of f we have a constructive 
method for producing p. Our objective is to show that in the learning 
environment described by the axioms there is a positive probability of 
constructing p on each trial. 
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Let C ~ V* X · • • X V* ( n times) be the set of encoded stimulus 
instances of the /-computable concept C-without loss of generality in 
this context I identify the concept with its set of instances, and let -.C be 
the complement of C. We take as a presentation distribution of stimuli, 
where ((!1)), ... , (fn)) is the encoding representation of a stimulus, 

1 
P(({!l), ... , (fn)) E C)= P(({!l), ... , (fn)) E -.C)= 2· 

Moreover, we design the experiment to sample from C and -.C in the 
following geometric fashion. Let /; be the coding in V* of feature i of 
stimulus u and let I/; I be the number of symbols in /;. Then L: IIi I is 
the total number of symbols used to encode u. We use a geometric dis
tribution for the total number of symbols, and a uniform distribution for 
selecting among those of the same total number of symbols. (In a com
pletely formalized theory, these assumptions about probabilistic selection 
of presented stimuli would be part of the axioms, which I have restricted 
here just to the register learning model, and have not included axioms on 
stimulus presentation or reinforcement procedures in any detail.) 

Suppose now that initially LTM is nonempty. If the program stored 
in LTM correctly computes f, we are done. If the program does not 
for some stimulus u, then by the assumptions just stated there is a fixed 
positive probability that u will be presented on every trial and hence with 
probability one asymptotically LTM will be cleared by virtue of Axiom 
Er2. 

The probability of then constructing p is positive on every trial. The 
detailed calculation is this. First, let p have m lines. By Axiom P2(i), 
the probability of constructing a program of exactly m lines is equal to 
c(1-c)m-l. If line i is not ajump instruction, then by Axiom P2(ii), the 
probability of line i being of the desired form is greater than some f 1 > 0. 
And if line i is a conditional jump instruction, where the jump is to line 
n; , then also by Axiom P2(ii), the probability of line i being exactly line 
i of program p is equal to f~(1- f2)n;-l for some f2 > 0. 

So, independent of trial number, the finite product of these probabil
ities is positive on every trial. Explicitly, let i1 , ... , im 1 be the lines that 
are not jump instructions and let h, ... , im, be the lines that are, with 
m = m1 +m2. Then 

(I) Prob of p > E;_" 1 Il~~~~· f~(1- f2t;-l · c(1- cr-l > 0. 

From this inequality, we infer at once that asymptotically p will be learned 
with probability one, which completes the proof, except to remark that to 
prove the constructed program characterizes a partial recursive function 
is straightforward. 
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Criticisms of the purely asymptotic character of this theorem are as ap
propriate as they were in criticisms ofthe perceptron convergence theorem 
(Theorem 6) or the language-learning theorem of Wexler and Culicover 
(Theorem 4). The next section addresses these problems. 

Role of hierarchies and more determinate reinforcement. For the theory of 
register-model concept learning, as formulated in Definition 2, we cannot 
improve on inequality (I). Treating it as an equality it is evident that for 
programs p of any length learning will be very slow, much slower than we 
observe in most human learning and even much animal learning. 

Within the framework of the present theory, the only practical hope 
for learning to occur in a reasonable time is to organize learning into a 
hierarchy of relatively small tasks to be mastered. It might be thought 
that this conclusion could be avoided by making the reinforcement more 
informative or determinate than what was assumed in Axioms Er1 and 
Er2 above. There is something correct and important about this view, 
and it can be supported by detailed computations on significant examples. 
On the other hand, there is also a question of interpretation. For the 
completely deterministic reinforcement used in the proof of Theorem 1, 
we could regard conditioning of each internal state of the finite automaton 
as a task-here task is defined by what gets reinforced, and in this view, 
the most fine-grained hierarchy is created by completely deterministic 
reinforcement. 

It will be useful to end with application of the theory to a small, 
familiar task, to show that the theory can be brought down to earth 
and applied to data. Of course, in the present context I shall not try to 
be serious about actual parameter estimation. The task selected is that 
of 5-year-old children learning the concept of a triangle by recognizing 
triangles when presented with triangles, quadrilaterals and pentagons. 

I make the following assumptions about the register model being used 
by the children. (It has the sort of simplifications necessary in such mat
ters.) 

(i) The language V1 has a single element, a, which is used for counting. 

(ii) There are two feature registers, #1 for number of segments and #2 
for size, with a = small, aa = medium and aaa = large. 

(iii) The conditional jump is either to a previous line or to 0 (for a 
nonexistent line and stop). 

(iv) To simplify formulation, computations are made directly on the fea
ture registers rather than first copying their contents to a working 
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register. (Characterizing copying from one register to another in 
terms of the three types of primitive instructions is straightforward.) 

( v) Rp is the single response register. 

(vi) Let a be the probability of selecting the delete instruction, b the 
probability for the jump instruction, and 1 - a - b the probability 
of the place or add instruction. 

(vii) Let p be the probability of selecting feature register 1, and 1- p 
that of selecting feature register 2 for reference in a line of program. 

A simple correct program is: 
1. D( 1) Delete a from register 1. 
2. D(1) Delete a from register 1. 
3. D( 1) Delete a from register 1. 
4. Copy(1,Rp) Copy the contents of register 1 

in the response register Rp. 

All programs, in the short form used here, must end in copying the 
contents of a feature or working register to the response register. A re
sponse is then made. So the probability oflines 1-3 is: p3a3c(1-c)2 , where 
c is the parameter for the distribution of number of lines introduced in 
Axiom P2(i). 

It is important to recognize that many different programs will pro
duce the correct response, and so the probability of a correct response is 
considerably greater than p3 a3c(1- c)2 • The complexity of a full analysis 
even for the simple experimental situation considered is much greater if 
the task is recognition of quadrilaterals rather than triangles. Still, under 
reasonable assumptions, the probabilities of the correct programs that are 
near the minimum length should dominate the theoretical computation 
of a correct response. 

The learning setup defined axiomatically here is in terms of its scope 
comparable to the definition of partial recursive functions or the definition 
of register machines for computing such functions-namely, the definitions 
apply to each function considered individually. But for extended learning 
of a hierarchy of concepts, the structure must be enriched to draw upon 
concepts that have been previously learned in order to reach a practical 
rate of learning. Here is a very simple example to illustrate the point. 
Consider a disjunctive concept made up of n disjoint cases. Only one 
register is required, the alphabet vl is the set {a,,B}, and there is no 
jump instruction, but only the four instructions for deleting letters on 
the left or adding them on the right. Let the program be at most 10 
lines for each case. Then assuming a uniform distribution on sampling of 
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instructions and of the number of lines (1 to 10), the probability of each 
program of at most 10 lines can be directly computed. More importantly 
in the present instance, we can easily compute the possible number of 
programs: 4 of length 1, 16 of length 2, and in general 4n of length n, 

with 1 :S n :S 10, for a total of ( 411 - 4)/3, which is approximately 410 . 

If now at the second stage programs are put together using only original 
instructions and then subroutines from individual cases, with programs of 
length at most 2n permitted, then there are [(n+4)2n+l_ (n+4)]/(n+3) 
possible programs, which is approximately ( n + 4) 2n. On the other hand, 
if a single program is developed in one step with 10n lines, the number of 
possible programs is approximately 410n. Consider, for example, the case 
n = 3. Then 430 is many orders of magnitude larger than 76 + 3(410 ). 

The details of this example are not important, and I have not attempted 
to fix them sufficiently to determine in each of the two approaches the 
number of possible programs that are correct. Ordinarily in both the 
hierarchical and nonhierarchical approach this number would be a very 
small percentage of the total. The gain from the hierarchical approach is 
evident enough. 

More generally, clever ways of dynamically changing the probability 
of using a previously defined concept, i.e., its recognition program, are 
critical to actual machine learning, for example, and sound hypotheses 
about such methods seem essential to any sophisticated study of human or 
animal learning of an extended hierarchy of concepts. Of equal importance 
is the introduction of forms of information feedback richer than the simple 
sort postulated in Definition 2, but the mathematical study of alternatives 
seems still to be in its infancy-only the extreme cases are relatively 
well understood. Much human learning depends upon verbal instruction 
and correction, but an approximately adequate theory of this process of 
feedback is as yet out of reach from a fundamental standpoint. Various 
gross simplifying assumptions, as used, for example, in protocol analysis, 
seem uneliminable at the present time. This is one measure of how much 
remains to be done. 
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ON DERIVING MODELS IN THE 

SOCIAL SCIENCES 

There is a long tradition in the physical sciences of deriving from qual
itative or quantitative empirical assumptions differential equations that 
govern, at least in approximation, a great variety of physical phenomena. 
The derivations of some of these equations, for example, the N avier-Stokes 
equations for hydrodynamical fluids, are among the most important con
ceptual analyses in the history of physics. The derivation of classical 
differential equations in the physical sciences is also of great importance 
in a workaday environment, where particular equations are derived to 
model particular circumstances, which in themselves may be of consid
erable practical importance, but are not of universal scientific interest. 
What is central and important to the applications of physical theories 
to empirical phenomena is the long and robust tradition of such deriva
tions. 

Corresponding methods are not as well developed for the social sci
ences, and it is evident enough by a glance at principal publications in 
the social sciences in which models are proposed and tested, that the 
derivation of differential equations does not dominate in any sense the 
derivation of models in the social sciences. 

In this paper I examine five different kinds of derivation. The first 
are measurement representations, the second are regression-type models, 

*Reprinted from Journal of Mathematical Cl Computer Modelling, 14 (1990), 21-28. 
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and the third are non-Markov observable models with process assump
tions. The fourth are discrete Markov models with unobservable vari
ables playing a theoretical role, and finally, the fifth exemplifies the clas
sical derivation of a differential equation, so characteristic of the physical 
sciences. 

At the end of the paper I will also discuss some of the general issues 
raised by these various methods of derivation. I touch at least briefly 
on questions of axiomatization, the use of theoretical or unobservable 
variables, and the relative importance of measurement procedures. 

1. MEASUREMENT REPRESENTATIONS 

In almost all scientific disciplines, it is understood that there can be nei
ther precise control nor prediction of phenomena without measurement. 
In disciplines, especially in the social sciences, that do not have a long tra
dition of quantitative theory, the formulation of a theory of measurement 
can play a central role in scientific investigation. We can describe this gen
eral activity as a derivation of measurement models where, when it is done 
from a fundamental standpoint, it has the following character. Qualita
tive empirical relations and operations that can be handled in an explicit 
way experimentally form the basis of a qualitative axiomatic theory of 
measurement procedures. From an experimental or empirical standpoint 
the problem is to show to what extent the axioms postulated can actually 
be tested experimentally. From a formal standpoint on the other hand, 
the central task is to show that the axioms are formally adequate, that 
is, that a numerical measurement representation can be derived for any 
realization of the qualitative relations and functions that are the basis of 
the empirical axioms. The general subject has a long history and devel
opment which I shall not attempt to describe here. I shall concentrate 
rather on a simple but significant example, namely, the efforts to under
stand qualitative probability orderings. Both for reasons of psychological 
interest as reflected in the empirical study of beliefs and decisions, and 
for normative reasons connected with Bayesian approaches to statistics, 
the theory of qualitative probability relations has now a rather sophisti
cated development. To give a sense of how measurement representations 
are set up and studied I consider this one example, which sets aside any 
question of the measurement of utility and concentrates entirely on the 
measurement of subjective probability. 

Let Q be a nonempty set and let ~ be an algebra of events on Q, 

i.e., an algebra of sets on Q. Let !:: be a qualitative ordering on ~. The 
interpretation of A !:: B for two events A and B is that A is at least as 
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probable as B. A (finitely additive) probability measure P on ~is strictly 
agreeing with the relation !: if and only if, for any two events A and B in 
~. 

P(A) ?: P(B) iff A!: B. 

A variety of conditions that guarantee the existence of a strictly agreeing 
measure is known. Without attempting a precise classification, the sets 
of conditions are of the following sorts: (i) sufficient but not necessary 
conditions for existence of a unique measure when the algebra of events 
is infinite (Koopman, 1940; Savage, 1954; Suppes, 1956); (ii) sufficient 
but not necessary conditions for uniqueness when the algebra of events 
is finite or infinite (Luce, 1967); sufficient but not necessary conditions 
for uniqueness when the algebra of events is finite (Suppes, 1969); (iv) 
necessary and sufficient conditions for existence of a not necessarily unique 
measure when the algebra of events is finite (Kraft, Pratt, & Seidenberg, 
1959; Scott, 1964; Tversky, 1967). A rather detailed discussion of these 
various sets of conditions is to be found in Chapters 5 and 9 of Krantz, 
Luce, Suppes, and Tversky (1971). 

A large literature which still continues shows that it is difficult to 
give simple necessary and sufficient qualitative conditions just in terms of 
events. On the other hand, simplification is relatively easy if we introduce 
some auxiliary concepts. In the present case the move is from an algebra 
of events to an algebra of extended indicator functions for the events. By 
this latter concept we mean the following. As before, let n be the set 
of possible outcomes and let <;.} be an algebra of events on n, i.e., <;.} is a 
nonempty family of subsets of n, and is closed under complementation 
and union, i.e., if A is in c;:r, -,A, the complement of A with respect ton, is 
in <;.}, and if A and B are in ~ then AU B is in ~. Let A c be the indicator 
function (or characteristic function) of event A. This means that Ac is a 
function defined on n such that for any w in n, 

Ac( ) _ { 1 if w E A 
w - 0 if w ¢A. 

The algebra <;.}* of extended indicator functions relative to ~ is then just 
the smallest semigroup (under function addition) containing the indicator 
functions of all events in ~. In other words, <;.}* is the intersection of all 
sets with the property that if A is in <;.} then A c is in ~·, and if A* and 
B* are in ~·, then A* + B* is in ~*. It is easy to show that any function 
A* in ~· is an integer-valued ·function defined on n. It is the extension 
from indicator functions to integer-valued functions that justifies calling 
the elements of ~· extended indicator functions. 

The qualitative probability ordering must be extended from <;.} to <;.}*, 

and the intuitive justification of this extension must be considered. Let 
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A* and B* be two extended indicator functions in <;}*. Then, to have 
A* ~ B* is to have the expected value of A* equal to or greater than the 
expected value of B*. As should be clear, extended indicator functions 
are just random variables of a restricted sort. The qualitative comparison 
is now not one about the probable occurrences of events, but about the 
expected value of certain restricted random variables. The indicator func
tions themselves form, of course, a still more restricted class of r~dom 
variables, but qualitative comparison of their expected values is concep
tually identical to qualitative comparison of the probable occurrences of 
events. 

The axioms are embodied in the definition of a qualitative algebra of 
extended indicator functions. Several points of notation need to be noted. 
First, nc and 0c are the indicator or characteristic functions of the set 0 of 
possible outcomes and the empty set 0, respectively. Second, the notation 
nA * for a function in <;}* is just the standard notation for the (functional) 
sum of A* with itself n times. Third, the same notation is used for the 
ordering relation <;} and <;}*, because the one on <;}* is an extension of the 
one on <;}: for A and B in <;}, 

Finally, the strict ordering relation>- is defined in the usual way: A* >- B* 
iff A*~ B* and not B* ~A*. 

DEFINITION. Let n be a non empty set, let <;S be an algebra of sets on 
n, and let ~ be a binary relation on 8'*, the algebra of extended indicator 
functions relative to 8'. Then the qualitative algebra (0, 8'*, ~) is quali
tatively satisfactory if and only if the following axioms are satisfied for 
every A*, B*, and G* in 8'*: 

1. The relation~ is a weak ordering of8'*; 

2. nc >- 0c; 
3. A*~ 0c; 
4. A*~ B* iff A*+ G* ~ B* + G*; 

5. If A* >- B* then for every G* and D* in <;S* there is a 
positive integer n such that 

nA * + G* ~ nB* + D*. 

These axioms should seem familiar from the literature on qualitative prob
ability. Note that Axiom 4 is the additivity axiom that closely resembles 
de Finetti's additivity axiom for events: If AnG = BnG = 0, then A~ B 
iff AUG ~ BUG. As we move from events to extended indicator functions, 
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functional addition replaces union of sets. What is formally of importance 
about this move is seen already in the exact formulation of Axiom 4. The 
additivity of the extended indicator functions is unconditional-there is 
no restriction corresponding to An C = B n C = 0. The absence of 
this restriction has far-reaching formal consequences in permitting us to 
apply without any real modification the general theory of extensive mea
surement. 

THEOREM. Let n be a nonempty set, let <s be an algebra of sets on 0, 
and let!:: be a binary relation on~. Then a necessary and sufficient con
dition that there exist a strictly agreeing probability measure on ~ is that 
there is an extension of !:: from <s to <;}* such that the qualitative alge
bra of extended indicator functions (0, ~*, !::) is qualitatively satisfactory. 
Moreover, the expectation function on~* is unique. 

There is not room to give the proof here, which is given in Suppes 
and Zanotti (1976) where much of the preceding discussion also is formu
lated. The important thing about the theorem is that its proof uses in 
a straightforward way standard results in the general theory of extensive 
measurement. Extension to the case of conditional probability is to be 
found in Suppes and Zanotti (1982). 

Once the theorem is available we then have reduced the qualitative 
probability ordering of events to the familiar theory of what are often 
called elementary or simple random variables. 

2. REGRESSION-TYPE MODELS 

To illustrate the ideas, I examine an analysis of the causes of the levels 
of consumption in terms of individual disposable income in a given pop
ulation. In this kind of analysis, typical of regression analysis, there is 
no claim that the amount of disposable income is the only cause of the 
level of consumption, but almost everyone would expect it to be a prin
cipal cause. The interesting question is whether present consumption is 
influenced by past disposable income. 

To examine some models, let 
Cit = consumption in time period t, by individual or household i 
dit = disposable income of i in period t, 

and for aggregation of n individuals, let 

and 
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(For a good discussion of such aggregation and other methodological as
pects ofthe models considered in this section, see Malinvaud {1966, Chap
ter 4).) 

In terms of the notation defined, an obvious linear model is 

T 

(1) Ct = ao L b(t- r)Dt-T + e + Et 

T=l 

where a0 and e are constants, b(t- r) is a constant for period t- r and 
Et is the error term for period t. In the usual probabilistic formulation it 
is assumed that the expectation of Et is zero. 

A classic study by Friedman (1957) of annual data on consumption 
and disposable income for heads of household in the United States for 
the period 1905-1951 but excluding the war years yields the following 
numerical version of ( 1): 

(2) Ct = 0.29Dt + 0.19Dt-t + 0.13Dt-2 + 0.09Dt-3 

+0.06Dt-4 + 0.04Dt-5 - 4 

The point in the present context is that much empirical economics natu
rally uses as models the obvious sort of linear regression model exemplified 
by equations (1) and (2). It is almost never claimed that such models are 
an exact account of the phenomena in question. The point is to sustain 
the argument that a fair amount of the variation in the phenomena is 
accounted for by such a linear regression model. 

The right way to think about regression models in my view is that 
they are the beginning point of an analysis, not the end. On the other 
hand, they are often successful in accounting for a high percentage of the 
variation in the phenomena and therefore the search for more detailed 
models is for many purposes not as important as it might appear to be. 

3. NON-MARKOVIAN OBSERVABLE MODELS WITH PROCESS 

ASSUMPTIONS 

The linear learning model that I actually use as an example here is one 
that has been widely used in mathematical psychology and also in the 
development of control processes in engineering. I will describe the model 
from a conceptual standpoint in terms of the learning of an organism. 
Also it is assumed that the situation is one of discrete trials rather than 
continuous time but the generalization to continuous time is also of inter
est. 
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For simplicity, let us assume that on every trial the organism can make 
exactly one of two responses, A1 or A2 , and after each response it receives 
a reinforcement, E1 or E2 of one of the two possible responses. A learning 
parameter 0, which is a real number such that 0 < 0 ~ 1, describes 
the rate of learning in a manner to be made definite in a moment. A 
possible realization of the theory is an ordered triple X = (X, P, 0) of 
the following sort. X is the set of all sequences or ordered pairs such 
that the first member of each pair is an element of some set A and the 
second member an element of some set B, where A and B each have two 
elements. Intuitively, the set A represents the two possible responses and 
the set B the two possible reinforcements. P is a probability measure 
on the u-algebra of cylinder sets of X, and 0 is a real number as already 
described. To define the models of the theory, we need a certain amount 
of notation. Let A;,n be the event of response A; on trial n; Ej,n the 
event of reinforcement Ej on trial n, where i, j = 1, 2; and for x in X let 
Xn be the equivalence class of all sequences in X which are identical with 
x through trial n. We may then characterize the theory by the following 
set-theoretical definition. 

A triple X = (X, P, 0) is a linear learning model if and only if the 
following two axioms are satisfied: 

A1 If P(E;,nA;•,nXn-1) > 0 then 
P(Ai,n+1IE;,nA;•,nXn-d = (1- O)P(A;,n!Xn-d + 0. 

A2 If P(Ej,nAi•,nXn-1) > 0 and i ::j:. j then 
P(Ai,n+dEJ,nAi',nXn-d = (1- O)P(A;,nlxn-d· 

As is clear from the two axioms, this linear response theory is intuitively 
very simple. The first axiom just says that when a response is reinforced, 
the probability of making that response on the next trial is increased by 
a simple linear transformation. The second axiom says that if some other 
response is reinforced, the probability of making the response is decreased 
by a second linear transformation. These linear learning models are ex
amples of chains of infinite order, so called because the dependence on the 
past does not terminate after some fixed time or fixed number of trials. 
Still, we find it very natural for a variety of reasons to think in terms of 
Markov processes, with the present state absorbing all needed informa
tion about the past, and so a definite effort has been made to redefine 
the concept of state for such chains of infinite order as linear learning 
models. When the reinforcement occurring on trial n is probabilistically 
dependent at most on the immediately preceding response on that trial, 
then the response probabilities can be taken as the states, and it is easy 
to show-under the restriction stated-that the process is Markov. Ex
tensive examples of this Markovian approach are developed, as well as the 
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general theory, in Norman (1972). However, even for the following simple 
Markov reinforcement schedule, this approach will not work. 

Let P(E1,I) = /, and 

Then the Markovian approach of Norman will not work, as is easy to 
show. To get to a Markov model we must enlarge the set of psychological 
concepts. This kind of model is discussed in the next section. The prop
erties of this linear learning model are studied extensively in Estes and 
Suppes (1959a). The model is generalized to a continuum of responses in 
Suppes (1959). 

Here is a simple asymptotic result taken from Estes and Suppes (1959a) 
to illustrate the sort of testable quantities that are derived for a given 
schedule of reinforcement or feedback. Let 11"j,k(11) be the probability that 
reinforcing event Ek will occur on trial n given that response Aj occurred 
11 trials earlier. Then 

lim P(A1 n) = 7r2l(ll) 
n-.clO ' 1- 11"11(11) + 11"21(11) 

4. MARKOV MODELS WITH UNOBSERVABLE THEORETICAL VARIABLES 

The fundamental theory of conditioning I develop briefly is a variant of 
stimulus-sampling theory first formulated by Estes (1950). The axioms 
are stated formally in Estes and Suppes (1959b, 1974). Here I give only 
an informal statement. 

Conditioning axioms. 

Cl. On every trial each stimulus element is conditioned to at most one 
response. 

C2. If a stimulus element is sampled on a trial, it becomes conditioned 
with probability c to the response (if any) that is reinforced on that 
trial; if it is already conditioned to that response, it remains so. 

C3. If no reinforcement occurs on a trial, there is no change in condi
tioning on that trial 

C4. Stimulus elements that are not sampled on a gzven trial do not 
change their conditioning on that trial. 
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C5. The probability c that a sampled stimulus element will be conditioned 
to a reinforced response is independent of the trial number and the 
preceding pattern of events. 

Sampling axioms. 

Sl. Each available stimulus element is sampled with a probability that is 
independent of the sampling of any other available element. 

S2. Given the set of stimulus elements available for sampling on a trial, 
the probability of sampling a given element is independent of the 
trial number and the preceding pattern of events. 

Response axioms. 

Rl. The probability of a given response is the proportion of sampled stim
ulus elements conditioned to that response, given that at least one 
such conditioned element is sampled. 

R2. If no sample stimulus element is conditioned, then there is a proba
bility Pi that response i will occur. 

R3. The guessing probability Pi of response i, when the sampled stimulus 
element is not conditioned, is independent of the trial number and 
the preceding pattern of events. 

There are two important remarks in the present context to make about 
these axioms. Particular models that are derived from these axioms have 
two essential features. First is the Markov character of the sequence of 
state of conditioning random variables. We can represent the state of 
conditioning by an appropriate random variable or in many_ instances, 
we can do this by a random variable that simply represents the number 
of stimuli conditioned to each response. In either case these random 
variables will satisfy Markov assumptions which can be rigorously derived 
from the explicit formulation of the theory. 

The second feature is that the observation of the actual stimulus ele
ments sampled or the observation of the conditioning relations that obtain 
is not possible. Both of these concepts are theoretical in the ordinary ap
plications of the theory, and play throughout the analysis of experiments a 
theoretical role. This is not to say that in a more enlarged theory and in a 
more physiological setting one might attempt to make direct observations. 
This is to some extent the main business of many neurophysiologists. But 
as such a theory is ordinarily applied in psychology these concepts do not 
represent observable variables. 
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Qualitative Process 

State of :::} Stimuli :::} Stimuli :::} I Response I 
Conditioning presented sampled 

:::} I Reinforcement :::} New State of Conditioning 

Current 
strategy 

Hypothesis Model 

:::} Situation 
presented 

:::} Hypothesis :::} I Response I 
sampled 

:::} Reinforcement :::} New Strategy 
Information 

Figure 1. Similar structure of conditioning and hypothesis models of 
learning 

Another important remark of a different sort is that the kind of theory 
just formulated in terms of conditioning-a language especially sympa
thetic to current work in neurophysiology, can be replaced by language 
more sympathetic to the interests and concepts of many cognitive scien
tists. In this case we replace the concept of conditioning by that of a 
strategy where a strategy consists of a class of hypotheses. I shall not 
work out that correspondence here but it is a familiar one and the real 
question is which kind of language a given scientist finds most suggestive 
for use in experimental investigations. Without spelling things out explic
itly, the parallel analysis in Figure 1 of the conditioning model and of the 
hypothesis model shows how congruent they are in representing the same 
sequence of events. Of course we can no more observe the hypothesis be
ing used by a subject than we can observe the state of conditioning. (It is 
also important to recognize that subjects' abilities to verbalize strategies 
of any complexity or subtlety are rather limited.) 

The general theorem that is proved in Estes and Suppes (1974) is this. 

THEOREM. If a stimulus sampling model has an experimenter's schedule 
of reinforcement that is dependent only on a fixed finite number of pre
ceding trials, then there is a sequence of random variables combining the 
reinforcement schedule and state of conditioning such that this sequence 
of random variables is a finite-state Markov chain. 
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(In stating the theorem I have omitted the technical notation which 
has a rather direct intuitive meaning. The reader is referred to Estes and 
Suppes (1974) for details.) 

5. CONTINUOUS MODELS 

I mentioned at the beginning the importance of the derivation of differen
tial equations in the physical sciences and in a wide range of applications 
in engineering. Such derivations of differential equations also play a role 
in the social sciences, more in economics than elsewhere, but there are 
a variety of examples of differential equations, and their derivation from 
empirical assumptions or principles, in psychology and sociology. I want 
to give one example here from my own work in educational psychology. 
The example also exhibits several features characteristic of the use of dif
ferential equations in the physical sciences. For example, the underlying 
phenomena are discrete but for purposes of analysis it is reasonable to 
derive a differential equation for the continuous approximation. 

Underlying the particular application considered here is the desire to 
be able to predict student progress in a course, particularly a course that 
is computer-based, and in addition individualized. Classic evaluation of 
a new curriculum in the schools has an important unsatisfactory feature. 
This is the evaluation by comparing pretests and posttests with an anal
ysis of post-test grade placement distributions as a function of pretest 
distribution and exposure to the new curriculum. The unsatisfactory 
part is the wait-and-see approach required. In contrast, it is a character
istic feature of the physical sciences to continually seek for models that 
predict phenomena and that can be used for control purposes as in en
gineering. It is such an approach to analysis of student progress in a 
curriculum that I want to consider here. I summarize research that has 
taken place over many years beginning with Suppes, Fletcher, and Zanotti 
(1976). 

Let us assume as already indicated that the student is progressing indi
vidually through a course, and let I(t) be the total information presented 
to the student up to time t. I say here total information but we could 
also give a formulation in terms of skills and think of the development 
procedurally rather than declaratively. Let y(t) be the student's course 
position at timet. Note that for simplification of notation I have omitted 
a subscript for a particular student. It is understood that the notation 
used here applies only to an individual student not to averages of students. 
The stochastic averaging involved is averaging over the variety of skills 
or information presented to the student to refer to his mean position and 
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mean information. I shall not make these stochastic assumptions explicit 
any further, because only the mean theory for the individual student will 
be developed here. 

The first assumption is that the process is additive using for simplicity 
of concept a discrete variable n. We may write the additivity assumption 
as follows: 

(1) Additive: I(n)- I(n- 1) =a, 

which we can then express in terms of a derivative as in (2) 

(2) i..f!D_ - ..!L - l 
I(n)-na-n' 

with the proper expression for continuous time shown as equation (3) 

(3) liD.-! 
I(t) - t' 

We then make the second strong assumption that the position in the 
course is proportional to the information introduced, that is 

( 4) y(t) ~ I(t). 

Combining (3) and (4) we have equation (5) 

(5) 

which we then integrate to obtain equation (6) 

(6) In y(t) = k In t +In b, 

which we may express as equation (7), so that y(t) is a power function of 
t: 

(7) y(t) = btk. 

We have extensively applied this power function to the analysis of 
student data from courses in elementary mathematics and reading that 
are computer based. This analysis has been going on for a number of 
years at Computer Curriculum Corporation. I show here in Figure 2 the 
data for a student in elementary mathematics and the theoretical power 
function where only the coefficient b and the exponent k are estimated, 
and similarly for another student as shown in Figure 3 for an elementary 
course in reading. The grade placement shown on the ordinate of each 
figure gives a sense of the achievement level of the student. On the ab
scissa is shown the amount of time spent at the computer by the student. 
An interesting fact about these curves is that they extend over a very 
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Figure 2. Comparison of observed and theoretical individual student 
trajectory in computer-based elementary-school mathematics course. 

considerable amount of time both in terms of computer time but also in 
terms of calendar time, which is for a major part of the school year. 

We have gone on to use this analysis to estimate individual student 
trajectories on the basis of the first several months of the school year 
and to predict what the students will gain in grade placement in a given 
subject during the school year. On the basis of this prediction intervention 
can be made as necessary. I shall not try to describe the character of that 
intervention here, but just emphasize it is important to pass from data 
analysis to prediction in order to take full advantage of the opportunities, 
and to fulfill the original intention for which the theory was developed, 
namely to give a predictive-control feature to the introduction of a new 
curriculum. 

6. SOME GENERAL ISSUES 

Axiomatics. It has been remarked on a variety of occasions that use 
of axiomatic methods is more common in the social sciences than in the 
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Figure 3. Comparison of observed and theoretical individual student 
trajectory in computer-based elementary-school reading course. 

physical sciences. This remark has usually been mildly pejorative in spirit. 
What I have tried to emphasize here is the derivation and formulation of 
a variety of models rather than the pure use of axiomatic methods as 
reflected in the explicit and precise statement of general theories. The ex
ample I gave for measurement exemplifies of course the axiomatic method 
in pure form. In contrast, the last example, in which a power function 
is derived for predicting student progress in a course, is not really ax
iomatic in form but is in the spirit of classical derivations of differential 
equations where some particular assumptions are made that form the ba
sis for the derivation. The point here is that the empirical assumptions 
from which the differential equations are derived are not elevated to the 
status of axioms of a general theory. The distinction I have in mind is 
not one that is important to make completely precise but it is familiar 
enough in the physical sciences. Presented with a new physical situation, 
as for example the motion of a robotic arm, it is important to derive the 
equations of motion from the given physical constraints, but we do not 
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ordinarily think of the statement of the physical assumptions peculiar to 
the particular robot arm being studied as having the status of axioms. 
I think the same thing is true of several of the models I have discussed 
here. We would not want to think of the kind of derivations I have talked 
about as exemplifying the axiomatic method in any pure form. Above 
all, there is really no process of actual derivation from axioms in the case 
of the linear regression model discussed and this is characteristic of many 
applications of linear regression though by no means all. 

It is also important to recognize there is a long tradition of begin
ning with something fairly close to the surface, fairly phenomenological 
in spirit, and then later attempting to derive the phenomenological equa
tions from some more fundamental assumptions. This is done in Estes 
and Suppes (1959b) for the linear learning models discussed above by 
assuming that the sampled stimuli asymptotically approach infinity with 
some restrictive assumptions on how this approach takes place. The lin
ear learning model can then be derived in the limit from the stimulus 
sampling model. But this kind of foundational investigation, important 
as it is, is not the focus here and is not as important probably for most 
scientific purposes as having available a variety of methods for deriving 
models that can be fairly directly tested. 

Use of unobservable theoretical variables. In contrast to the last remark 
about axiomatics, I also want to emphasize the importance I attach to 
getting theory below the phenomenological surface. A long history of 
developments in physics indicates the importance of this. The same would 
seem to be true of models in the social sciences. In terms of the kind 
of examples I have discussed drawn from learning and cognition, it is 
evident that our scientific thinking will go beyond just observable data 
almost naturally. It also seems very likely that the internal mechanisms 
and the associated theoretical concepts that characterize the mechanisms 
will be unobservable in detail for the indefinite future if not forever in 
the case of most human learning and cognition. Any program for the 
elimination of unobservable theoretical variables would seem to me to be 
completely mistaken, and contrary to almost all the deeper developments 
in present-day scientific psychology, not to speak of the important role 
of assumptions about the unverified and often unverifiable assumptions 
about individual choices and preferences in neo-classical economic theory. 

Importance of measurement. On the other hand, it is important to stress 
the importance of measurement in the social sciences where procedures 
do not have the long history of development they have had in the physical 
sciences. I gave at the beginning just one example, the measurement of 
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subjective degree of belief, or subjective probability. But in all of the so
cial sciences problems of measurement are present and the theory needs 
continual development. It is also important to realize that often these 
developments are not simply in terms of phenomenological variables but 
are in terms of theoretical concepts as well. Perhaps the most salient 
one is the concept of utility in decision making, which is widely used in 
economics and psychology. The axioms of utility, or of expected utility, 
as usually stated, are not directly observable and the concept of an indi
vidual's utility function must be assigned a theoretical status. This does 
not mean that the measurement of this theoretical concept is not of great 
importance, for from the theory of its measurement many observable con
sequences can be derived. 

Just because of the relatively recent development of methods of mea
surement in the social sciences, the theory of measurement continues to 
be of great importance and will undoubtedly continue to flourish, and 
especially, be the source of the derivation of many models in the social 
sciences. On the other hand, I would not want to give a sense that the 
derivation of models in the social sciences can in any sense be reduced sim
ply to problems of measurement. Theories of measurement are important, 
but they are in no sense the whole story. 

What I have tried to give a sense of in this paper is the plurality of 
methods that should be used and should be available to the social scientist 
deriving models. It would seem to me to be a piece of folly to argue that 
one method is better than another, for the contexts of use are sufficiently 
varied and rich in differentiation. 



30 

THE PRINCIPLE OF 

INVARIANCE WITH SPECIAL 

REFERENCE TO PERCEPTION 

The principle of in variance is now a familiar one in psychology, especially 
because of its prominent role in the theory of measurement. The relation 
of invariance to the meaningfulness of various statistics for various scales 
of measurement is a particularly salient example that has received much 
discussion in the literature for over thirty years. Perhaps the most noto
rious case is that of whether standard intelligence tests have more than 
ordinal properties. 

The concept of invariance has an older history in geometry. It came 
to prominence in the nineteenth century with the work of Felix Klein and 
his view that the transformations themselves could be taken as primitive 
geometrical concepts. For example, Euclidean geometrical properties are 
characterized by their invariance under the group of Euclidean motions. 
There is, however, a lot more to geometry than Kleinian-type transfor
mations, but the principle of invariance remains an important one. 

The principle has also achieved importance in physics, and in many 
ways has had a more prominent role in the twentieth century in physics 
than in geometry. Both invariance under the Galilean transformations of 
classical physics, the Lorentz transformations of special relativity, and the 

*Reprinted from Mathematical psychology: Current developments, J. Doignon and 
J. Falmagne (Eds.), 1991, pp. 35-53. New York: Springer-Verlag. 
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transformations of general relativity have been central ideas in modern 
physics. But the central role of in variance does not stop there. Of almost 
equal importance is the relation between a given invariance or symmetry 
property of a physical system and a corresponding conservation law. Such 
relations were first studied by Emmy Noether, and now many Noetherian 
theorems play an important role in physical theories, for example, theo
rems on the conservation of energy, momentum and angular momentum 
in both classical and quantum mechanics. 

My purpose in this lecture is to examine the role of the principle of 
invariance in perception, which moves away from the concerns of invari
ance in measurement, as do the Noetherian theorems in physics. On the 
other hand, I shall not attempt anything like a systematic survey, for the 
ways in which concepts of in variance enter into perception are many and 
varied. Rather, I shall focus on two main areas, both concerned primar
ily with visual perception. The first is the kind of invariance related to 
ordinary experience and the use of ordinary language. Here I shall be 
especially concerned with the relation between perception and geometry, 
less so with the ways in which physical concepts also influence, or are part 
of the meaning of, ordinary perceptual descriptions. In the second part 
I examine in some detail whether anything like the invariance character
istic of the physical concepts of space or space and time, as reflected in 
Galilean or Lorentz invariance, can be expected to hold for the percep
tion of visual space. And if not, are there other, perhaps more limited, 
principles of symmetry that are salient. 

A preliminary remark is needed about the way the principle of invari
ance enters the analyses I am concerned with. In most of the literature 
in psychology or physics on invariance, a given theory is held fixed and 
unchanged, and the invariance of some relation, function or proposition 
with respect to the theory is examined. For example, in a purely ordinal 
theory of measurement the mean of a set of numerical data is not invariant 
with respect to the theory, for arbitrary monotone transformations of the 
numerical data are permitted by a purely ordinal theory, and the mean 
is obviously not invariant under an arbitrary monotone transformation. 
Here I pursue a different path. In Part I various ordinary spatial expres
sions are introduced with their ordinary meaning, and the question asked 
is this. What is the natural geometrical theory with respect to which each 
expression is invariant? In Part II, similar questions are asked about the 
results of various experiments on visual space which challenge the thesis 
that visual space is Euclidean. As already hinted at, I also shall follow 
the practice in geometry and physics of relating invariance under a given 
group of transformations to a principle of symmetry. lnvariance implies 
symmetry and symmetry implies invariance. 
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1. GEOMETRY OF QUALITATIVE VISUAL PERCEPTIONS AS EXPRESSED 

IN ORDINARY LANGUAGE 

The concepts, results and problems that fall under the general heading of 
this part of the lecture have not been studied very intensely in the past 
but have received more attention in the last ten years or so. I mention in 
this connection especially Bowerman (1989), Crangle and Suppes (1989a), 
and Levelt (1982, 1984). The references in these publications provide 
good leads back into the older literature. A typical problem that I have 
in mind here is the sort of thing that Levelt has investigated thoroughly. 
For example, the way language is used to give spatial directions, and the 
limitations of our ability to give such directions or describe visual scenes 
with accuracy. In the case of my own earlier work with Crangle, we were 
concerned especially to analyze the geometry underlying the use of various 
common prepositions in English. 

The results of that analysis can be easily summarized in Table 1 which 
is reproduced with some modifications from Crangle and Suppes (1989a). 
The kinds of geometry referred to are standard, with the exception per- · 
haps of the geometry of oriented physical space. For example, in the case 
of the sentence The pencil is in the box (where it is assumed the box is 
closed), it is clear that only a purely topological notion of invariance is 
needed. On the other hand, in the sentence Mary is sitting between Jose 
and Maria, it is easy to see that the geometry needs to be affine. And 
once the idea of a metric is introduced, as in the sentence The pencil is 
near the box, we must go from affine geometry to some underlying notion 
of congruence as reflected in Euclidean geometry. Although we may be 
more refined in the analysis, note that in this sentence it is quite satis
factory to use absolute geometry which is Euclidean geometry minus the 
standard Euclidean axiom. This axiom asserts that given a point a and a 
line L on which the point does not lie, then there exists at most one line 
through a in the plane formed by aL which does not meet the line. We get 
hyperbolic rather than Euclidean geometry by adding the negation of this 
axiom to absolute geometry. It seems to me that the notion of nearness 
used in ordinary talk is satisfied well enough by the congruence relation 
of absolute geometry-a still weaker geometry of rigid bodies is consid
ered later. In fact, relatively technical geometrical results are required 
to move us from absolute to Euclidean geometry, the sort of technical 
facts required, for example, in architecture and construction. Another 
way of noting the adequacy of absolute geometry to express many of the 
elementary results of Euclidean geometry is that the first 26 propositions 
of Book I of Euclid's Elements are provable in absolute geometry. On 
the other hand, in the case of the preposition on, it is clear that a notion 
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Topology The pencil is in the box. (box closed) 
One piece of rope goes over and 
under the other. 

Affine geometry The pencil is in the box. (box open) 
Mary is sitting between Jose and 
Maria. 

The geometry of oriented The book is on the table. 
physical space Adjust the lamp over the table. 

Projective geometry The post office is over the hill. 
The cup is to the left of the plate. 

Geometries that include The dog is in front of the house. 
figures and shapes with The pencil is behind the chair. 
orienting axes 

Geometry of She peeled apples in the kitchen. 
classical space-time 

Table 30.1. Kinds of geometry and examples of prepositional use. 

of vertical orientation is required, a notion completely absent from Eu
clidean geometry, and in fact not definable within Euclidean geometry. A 
different kind of orientation is required in the case of objects that have 
a natural intrinsic orientation. Consider for instance, the sentence given 
in Table 1, The dog is in front of the house. Finally, in the case of many 
processes it is not sufficient to talk about static spatial geometry but for 
a full discussion one needs the assumption of space-time. An example is 
given at the end of Table 1. 

What I now want to look at are the kinds of axioms needed to deal 
with the cases of geometry that are not standard. It would not be appro
priate simply to repeat standard axioms for topological, projective, affine, 
absolute, and Euclidean geometry. A rather thorough recent presentation 
of these geometries is to be found in Suppes, et. al., (1989, Ch. 13). 
What I shall do is make reference to the primitive notions on which these 
various axioms are based as given in the above reference. 

Oriented physical space. Undoubtedly, the aspect of absolute or Euclidean 
geometry which most obviously does not satisfy ordinary talk about spa
tial relations is that there is no concept of vertical orientation. Moreover, 
on the basis of well-known results of Tarski concerning the fact that no 
nontrivial binary relations can be defined in Euclidean geometry, the con-
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cept is not even definable in Euclidean geometry. For definiteness I have 
in mind as the primitive concepts of Euclidean geometry the affine ternary 
relation of betweenness for points on a line and the concept of congruence 
for line segments. In many ways I should mention however, it is more 
convenient to use the notion of parallelism and perpendicularity, and in 
any case I shall assume these latter two notions are defined. There are 
many different ways, of course, of axiomatizing as an extension of Eu
clidean geometry the concept of verticality. One simple approach is to 
add as a primitive the set V of vertical lines, and then to add axioms of 
the following sort to three-dimensional Euclidean geometry. Given any 
point a there is a vertical line through a. If K is a vertical line and L 
is parallel to K, then L is a vertical line. 

There are however, difficulties with this approach of two different 
kinds. The first and conceptually the most fundamental is that our nat
ural notion of oriented physical space as we move around in our ordinary 
environment is that the orientation of the space, both vertically and hori
zontally, is fixed uniquely. We do not have arbitrary directional transfor
mations of verticality nor of horizontal orientation. We naturally have a 
notion of north, east, south, and west, with corresponding degrees. Sec
ondly, and closely related to this, very early in the discussion of the nature 
of physical space, it was recognized that we have difficulties with treating 
the surface of the earth as a plane with horizontal lines being in this plane 
and vertical lines being perpendicular to them. The natural geometry of 
oriented physical space in terms of ordinary experience-a point to be 
expanded upon in a moment-is in terms of spherical geometry, with the 
center of the earth being an important concept, as it was for Aristotle 
and Ptolemy in ancient times, who in many ways most clearly expressed 
ideas about the nature of physical space. 

Aristotle directly uses perceptual evidence as part of his argument for 
the conclusion that the earth is spherical On the heavens, Book II, Ch. 
14, 297b ): if the earth were not spherical, eclipses of the moon would not 
exhibit the shapes they do, and observation of the stars would not show 
the variation they do as we move to the north or south. 

Ptolemy's argument in the Almagest is even better and because it will 
not be familiar to many readers, I quote in full, for the arguments are 
perceptual throughout. This passage occurs in Book I, Section 4 of the 
Almagest, written more than four hundred years later than Aristotle's 
work. 

That the earth, too, taken as a whole, is sensibly spherical 
can best be grasped from the following considerations. We 
can see, again, that the sun, moon and other stars do not rise 
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and set simultaneously for everyone on earth, but do so ear
lier for those more towards the east, later for those towards 
the west. For we find that the phenomena at eclipses, espe
cially lunar eclipses, which take place at the same time [for 
all observers], are nevertheless not recorded as occurring at 
the same hour (that is at an equal distance from noon) by 
all observers. Rather, the hour recorded by the more east
erly observers is always later than that recorded by the more 
westerly. We find that the differences in the hour are pro
portional to the distances between the places [of observation]. 
Hence one can reasonably conclude that the earth's surface is 
spherical, because its evenly curving surface (for so it is when 
considered as a whole) cuts off [the heavenly bodies] for each 
set of observers in turn in a regular fashion. 

If the earth's shape were any other, this would not happen, as 
one can see from the following arguments. If it were concave, 
the stars would be seen rising first by those more towards the 
west; if it were a plane, they would rise and set simultaneously 
for everyone on earth; if it were triangular or square or any 
other polygonal shape, by a similar argument, they would rise 
and set simultaneously for all those living on the same plane 
surface. Yet it is apparent that nothing like this takes place. 
Nor could it be cylindrical, with the curved surface in the 
east-west direction, and the flat sides towards the poles of the 
universe, which some might suppose more plausible. This is 
clear from the following: for those living on the curved surface 
none of the stars would be ever-visible, but either all stars 
would rise and set for all observers, or the same stars, for an 
equal [celestial] distance from each of the poles, would always 
be invisible for all observers. In fact, the further we travel 
toward the north, the more of the southern stars disappear 
and the more of the northern stars appear. Hence it is clear 
that here too the curvature of the earth cuts off [the heavenly 
bodies] in a regular fashion in a north-south direction, and 
proves the sphericity [of the earth] in all directions. 

There is the further consideration that if we sail towards moun
tains or elevated places from and to any direction whatever, 
they are observed to increase gradually in size as if rising up 
from the sea itself in which they had previously been sub
merged: this is due to the curvature of the surface of the 
water. (pp. 40-41) 
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Aristotle's concept of natural motion, which means that heavy bodies 
fall toward the center of the earth, is well argued for again by Ptolemy in 
Section 7 of Book I. 

... the direction and path of the motion (I mean the proper, 
[natural] motion) of all bodies possessing weight is always and 
everywhere at right angles to the rigid plane drawn tangent 
to the point of impact. It is clear from this fact that, if [these 
falling objects] were not arrested by the surface of the earth, 
they would certainly reach the center of the earth itself, since 
the straight line to the center is also always at right angles to 
the plane tangent to the sphere at the point of intersection [of 
that radius] and the tangent. (pp. 43-44) 

What is important to notice about this argument and similar but less 
clear arguments of Aristotle is that the notion of vertical or up is along 
radii extended beyond the surface of the earth, and not in terms of lines 
perpendicular to one given horizontal plane. Thus the proper perceptual 
notion of verticality is in terms of a line segment that passes through the 
center of the earth. The notion of horizontal is that of a plane perpendic
ular to a vertical line at the surface of the earth. What is also important 
here is that the strongest argument for this viewpoint is the perceptual 
evidence of the nature of natural falling motion of heavy bodies. 

Ptolemy also uses observations of the motion of the stars and the 
planets to fix the direction of east and west, and also the poles of north 
and south. We use in ordinary experience such arguments as the rising 
and setting of the sun to fix the direction of east and west, and in a similar 
vein we fix the north and south poles. 

Looked at from the standpoint of the symmetries or invariance of 
the standard group of Euclidean motions, these perceptual arguments 
about physical space-including of course perceptual arguments about 
gravity-reduce the group of Euclidean motions to the trivial automor
phism of identity. This means that from a global standpoint the concept 
of invariance is not of any real significance in considering the perceptual 
aspects of oriented physical space. On the other hand the strong sense of 
the concept of global that is being used here must be emphasized. From 
the standpoint of the way the term global is used in general, there remain 
many symmetries of a less sweeping sort that are important and that 
are continually used in perceptual or physical analysis of actual space. 
Indeed this is a very intuitive outcome from the standpoint of ordinary 
perception. Combining both our visual sense of space and our sense of 
space arising from gravitational effects, it is wholly unnatural to think 
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of anything like the group of Euclidean motions being the fundamental 
group for physical space in the sense of direct experience or perception. 
It is in fact a remarkable abstraction of the Greeks that orientation was 
not made a part of the original axioms of Euclid. 

On the other hand, the notion of invariance in perception arises con
tinually in a less global fashion in considering the symmetry of perceived 
figures or perceived phenomena arising from not just visual but also au
ditory or haptic data. A thorough development of symmetry in regular 
figures, especially two-dimensional ones, is given in Toth {1964). This is 
a subject with a rich history in both mathematics and arts, but I turn 
aside from it here to consider from a similar but different viewpoint the 
concept of invariance for what is expressed by a spatial preposition. 

The classification of geometries for such prepositions given in Table 1 
may be regarded as an external view from the standpoint of space as a 
whole. Perceptually, however, this is not the way we deal with the matter. 
In ordinary experience, we begin with the framework of a fixed oriented 
physical space as described above. Within this framework we can develop 
an internal view of spatial relations as expressed in ordinary language. 

I first examine the invariance of the preposition in. In this and sub
sequent analysis the relation expressed by in shall be restricted to pairs 
of rigid bodies. Even though it is ultimately important to character
ize invariance for other situations-e.g., the sugar being in the water-a 
good sense of the fundamental approach to invariance being advocated 
can be conveyed with consideration only of familiar situations with rigid 
bodies. 

Let a and b be rigid bodies with a in b. As in Table 1 there are two cases 
of body b to consider. The first is when b has a closed hollow interior and 
a is in this interior. For simplicity of notation and analysis, I introduce 
the restrictive assumption that a is a spherical ball, so that the orientation 
of a can be ignored. Define I( a, b) = the set of points in the closed hollow 
interior of b that the center of a can occupy. Let ll>{a, b) be the set of 
all transformations of I( a, b) onto itself that represent possible changes in 
the position of a relative to b. For example, if the position of the center 
of a is on one side of the hollow interior of bit could be transformed, i.e., 
moved, to the other side of the interior without affecting the truth of the 
assertion that a is in b. 

The set ll>{a, b) is the symmetry group (under the operation offunction 
composition) of the position of a inside b, but because the hollow inte
rior of b can be quite irregular in shape ll>{ a, b) may not have standard 
properties of Euclidean isometries. It does have the expected invariance 
properties, namely, if <p Ell>{ a, b), then a with center c at point p is in b if 
and only if a with center c at point <p(p) is in b. 
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Body b is itself subject to rigid motion in the fixed physical space. If 
b is closed, rotations around a horizontal axis are permitted, but if b is 
open, possible rigid motions of b must be restricted to those that preserve 
vertical orientation. And, of course, when b is subject to a rigid motion 
'1/J, body a must be subject to the same transformation '1/J, in order to 
preserve the invariance of the relation of being inside. Obviously, a may 
also be transformed by <p £<)(a, b), so that its full transformation could be 
the composition <p o 'ljJ with invariance of in preserved. 

I turn now to a more extended analysis of the preposition near. Unfor
tunately, the only part of geometry that seems able to deal directly with 
natural objects taken as primitives is topology. Threads, knots, mazes 
and holes, for example, can be analyzed from a topological standpoint 
with considerable thoroughness, but as illustrated in Table 1, topology 
will not suffice even for the external analysis of many of the most com
mon spatial prepositions such as near. As the sample sentences in Table 
1 make plain, what at first seems to be most needed is the development 
of geometry based on the primitive concept of an approximately rigid 
body, but, as we shall see, difficulties lie in wait for this approach as well. 
A very preliminary and far from adequate analysis is given in Suppes 
(1972). It is easy to add to this earlier analysis a qualitative relation of 
distance between rigid bodies. The relation ab t cd is interpreted as the 
(qualitative) distance between bodies a and b being at least as great as 
the distance between bodies c and d. This distance is more specifically 
interpreted as being the minimum distance between two bodies, not the 
distance between their geometrical centers, which would be an alterna
tive. 

It is also feasible to introduce the affine relation of betweenness, 
B(a,b,c). Here our intuitive qualitative judgment of body b being be
tween bodies a and c is that something like the affine-point relation of 
betweenness holds for the centers of the bodies. Of course, the technical 
notion of the geometrical or gravitational center is not formally intro
duced. It is rather that we do seem to have an intuitive notion of the 
center of a body. Finally, the notion of one body being near another is 
relativized to context by introducing a pair of bodies a0 and b0 that serve 
as a standard in a given context. To say that two automobiles are near 
each other is in metric terms very different from saying that two books are 
near each other on the table. It is obvious that the standard for nearness 
changes from one context to another. Introducing the pair a0 and b0 is a 
formal device for dealing with this contextual change. 

A couple of formal definitions are useful. First a touches b iff ab ::5 aa 
and a =/= b. (I use both t and ::5 in the standard way, as well as :- and 
-<.) Second, a is near b iff ab ::5 a0b0 and a does not touch b. 
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DEFINITION. A weak geometrical structure of rigid bodies Qt = (A, B, 
t, ao, bo) satisfies the following axioms for all a, b, c, d, e and f in A: 

Al. The set A is nonempty and finite; 
A2. If B(a,b,a) then a= b; 
A3. If B(a,b,c) then B(c,b,a); 
A4. If B(a,b,c) and B(b,d,c) then B(a,b,d); 
A5. If ab t cd and cd t ef then ab t ef; 
A6. ab t cd or cd t ab; 

A7. ab t ba; 
A8. a0 b0 >- aa; 
A9. If B(a,b,c) then act ab. 

The intuitive meaning of these weak axioms is, I think, obvious. That the 
present setup will not lead to a metric representation without substantial 
modification is apparent by the failure of the qualitative additivity axiom 
If B(a,b,c), B(a',b',c'), abta'b' and bc~b'c' then ac~a'c'. 

A counterexample to this axiom is easily constructed by the case of 
body b' being much longer along the segment joining a' and c' than is b 
along the segment joining a and c. The most direct way out of this prob
lem seems to be to introduce the qualitative length of a body along the 
line joining two other bodies. The notation b(ac) could convey this idea, 
i.e., b(ac) is the qualitative length of body b along the segment joining a 
and c. ·we would then add such axioms as If b(ac) t de then a-=/: c, 
and b(ac) >- aa. But there are other problems to be dealt with, so I have 
not attempted to go further in this lecture. For example, further coun
terexamples can easily be constructed to the modified additivity axiom 
given just above even with b(ac) t b'(a'c') added to the hypothesis. The 
simplest counterexample arises from consideration of concave bodies, but 
without further conditions convex bodies also can be used. 

But the difficulties with weak geometrical structures of rigid bodies 
as axiomatized is more fundamental. They do not provide the proper 
setting for analyzing the spatial relation of nearness or other spatial re
lations. The automorphisms of such a structure do not provide anything 
like the intuitively correct answer. What is missing is a way of expressing 
the many potential spatial positions of two bodies a and b, all of which 
potential positions satisfy the relation of nearness. We need an analysis 
similar to that given for in. Let c)( a, b; a0 , b0 ) be the set of rigid motion 
transformations of a relative to b such that if cp c c)( a, b; a0 , b0 ) then with 
respect to the nearness standard a0 , b0 , cp(a) is near to b if and only if 
a is near to b. As before c) is the symmetry group, but without addi
tional geometrical assumptions, not much can be said about its structure. 
Moreover, without any restrictions a and b can be subject to an arbitrary 
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rigid motion in physical space. But in many cases it is natural to restrict 
a and b to a given horizontal surface, such as a table top or the floor of 
a room. Then the set ell is simplified by restricting the potential changes 
of relative position of a to that surface. This leads on to a familiar kind 
of result: by considering not just one but several nearness relations of a 
to a number of objects we restrict dramatically the -symmetry group ell, 
even in extreme cases, to the identity group. But it is also clear that such 
exact extreme results are not part of our natural concept of nearness. 

Similar analyses can be given of the internal invariance properties of 
the other prepositions listed in Table 1. They all have different symmetry 
groups, but the exact nature of each group is determined by the particular 
shape and size of the relevant bodies, which may vary drastically from one 
context to another. It is not surprising that no computationally simple 
theory of invariance works for ordinary spatial relations as expressed in 
natural language, for the robust range of applicability of such relations is 
far too complex to have a simple uniform geometry. 

Further applications. In addition to providing an analysis of spatial 
terms, the kind of approach outlined above can be used in a comparison 
of different languages. A natural question is whether there is a universal 
semantics of spatial perception or do different languages have intrinsically 
different semantics. Certainly there are subtle differences in the range of 
prepositions. Bowerman (1989) points out, for example, that whereas we 
can say in English both The cup is on the table and The fly is on the 
window, in German we use the preposition auf for being on the table, 
but an for being on the vertical window. 

Such differences are to be expected, although it is a matter of consider
able interest to study how the prepositions of different languages overlap 
in their semantic coverage. It is a well-known fact that learning the cor
rect use of prepositions is one of the most difficult aspects of learning a 
second language within the family of Indo-European languages. 

One hope might be that there is a kind of universal spatial perception, 
so we might search for geometrical invariance across languages. But if we 
fit the geometries closely to individual languages, the primitives but not 
the theorems may be different in the sense of having a different geomet
rical meaning. A related set of questions can be asked about the order 
of developmental use of spatial prepositions by children. This seems to 
be a particularly good case for careful examination of what happens in 
different languages, because of the relatively concrete and definite rules 
of usage that govern spatial prepositions in each language in their literal 
use. Bowerman (1989) has an excellent discussion of many details, but 
does not focus on systematic geometrical aspects. 



462 PART V. PSYCHOLOGY 

2. GEOMETRY OF VISUAL SPACE 

Let me begin by reminding you of the classical alley experiments of Hillen
brand (1902) and Blumenfeld (1913). Almost all students of psychology 
at least know something about these classical experiments. I shall mainly 
refer to Blumenfeld's work because it was an improvement on that of Hil
lenbrand. As you will perhaps recall, Blumenfeld performed experiments 
with so-called parallel and equidistance alleys. The subject sits at a ta
ble in a darkened room. Looking straight ahead, he is asked to adjust 
two rows of points sources of light placed on either side of the normal 
plane, i.e., the vertical plane that bisects the horizontal segment joining 
the centers of the two eyes. The two furthest lights are fixed and are 
placed symmetrically and equidistant from the normal plane. In the case 
of the task being the construction of a parallel alley, the subject is asked 
to arrange the other lights so that they form two parallel lines extending 
toward him from the fixed lights. The subject's task is to arrange the 
lights so that they are perceived as lying on parallel lines in the subject's 
visual space. The other task is to construct an equidistance alley. In 
this experiment, all the lights except the two fixed lights are turned off 
and in sequence a pair of lights is presented, which are adjusted to be at 
the same perceptual distance apart as the fixed lights. Here the subject 
is making a clear judgment of equidistance, not of lines being parallel. 
When one pair of lights is turned off, another pair closer to the subject 
is presented for adjustment, etc. The important point now is that the 
physical configurations arising from the two experiments do not coincide, 
but in Euclidean geometry straight lines are parallel if and only if they 
are equidistant from each other along any mutual perpendiculars. Classi
cally, the discrepancies observed in the Blumenfeld experiment are taken 
to be evidence that visual space is not Euclidean. The results are shown 
graphically and thereby most easily in Figure 1. In both the parallel alley 
and equidistance alley experiments, the lines are found to diverge as the 
adjusted pairs of points lie further away from the subject. But the angle 
of divergence tends to be greater in the case of parallel than in the case of 
equidistance alleys, as is clear in Figure 1. Since the most distant pair of 
points is the same for both alleys, this means that the equidistance alley 
lies outside the parallel alley. These results have been taken by Luneburg 
and others to support the hypothesis that visual space is hyperbolic, for 
this qualitative result is a property of hyperbolic space, even though there 
is some ambiguity in the fact that to a given line there is not a unique 
parallel line in hyperbolic space. Luneburg essentially used orthogonality 
to characterize being parallel, a matter that is discussed with some care 
in Indow (1979). 
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Figure 1. Diagram of classical alley experiments. 

Although the experiments and Luneburg's conclusions are well known, 
the situation is not conceptually as clean as it might be for, as you will 
remember, the alternative to the space being Euclidean or hyperbolic is 
that it is elliptic-the restriction to these three choices will be discussed 
more in a moment. However, no two lines can be parallel in elliptic space, 
so again a compromise must be struck in how the notion of parallel is to 
be handled. However, it must be said that for the local concept of two 
lines being parallel, it can be shown that in elliptic spaces the parallel 
alley lies outside the equidistance alley. 

If matters were simply to be left with the classical alley experiments, 
which have been duplicated many times and have practically become 
a standard demonstration experiment, then we could settle the issue 
quickly, by concluding the evidence was excellent that if we must choose 
between the Riemannian surfaces of constant curvature in characterizing 
visual space, hyperbolic space is obviously the correct choice. However, 
as in most such matters in perception, the subsequent history of new and 
different experiments has ruled out any simple conclusion. 

Before looking more systematically at some parametric experiments, 
it is important to note that the experiment that meets the criticisms 
given above of the notion of parallel is that of Blank (1961) who asked 
subjects to compare line segment be and line segment efin Figure 2. I am 
not describing the exact experimental protocol, but the point was to get 
judgments from subjects as to whether efwas half of be (Euclidean space), 
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b 

a c 
Figure 2. Illustration of comparisons required in Blank experiment. 

less than half of be (hyperbolic space), or more than half of be (elliptic 
space). A majority, but not all, of the subjects supported the hyperbolic 
hypothesis. From a methodological standpoint this is in my judgment a 
very nice experiment, even though there are some natural qualms about 
judgments of one segment being twice another, as compared with a more 
direct qualitative judgment of equidistance or parallelness, or, to put the 
matter another way, in some fundamental geometrical sense the notion of 
parallel or equidistance is more fundamental than that of being half the 
length. This is a minor objection however, and I think it is overridden by 
the elegant way in which the problems of parallelness for hyperbolic and 
elliptic spaces are avoided. 

Luneburg has been the central theorist of the hyperbolic conception 
of visual space and he has well worked out theoretical ideas that have 
led to a number of experiments (see for example his publications of 1947, 
1948, and 1950). His central idea was to develop a parametric theory 
based on the general assumption that in order to have free mobility of 
rigid bodies the space must be a Riemannian space of constant curvature. 
Luneburg used a somewhat unsatisfactory differential argument to get 
the space of constant curvature and did not refer in a detailed way to the 
classical Helmholtz-Lie space problem which concerns the characterization 
of spaces that satisfy free mobility. I shall not review that history here 
but only recall for purposes of present reference that the results came 
out as Luneburg had hoped. The only spaces tolerating free mobility of 
rigid bodies are Riemannian spaces of constant curvature if we demand 
satisfaction of certain other natural properties such as smoothness. 

Luneburg showed that the line element ds can be expressed in terms 
of orthogonal sensory coordinates e, TJ and ( by: 

de2 + dTJ2 + d(2 ds2 = ---::'-----=--__:. __ 

[1 + tK(e2 + T/2 + (2)J2 
(1) 



where for: 
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Euclidean space : 
hyperbolic space : 
elliptic space : 

!{ = 0, 
!{ < 0, 
!{ > 0. 
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By introducing certain relatively natural but restrictive psychophysical 
assumptions, Luneburg shows that in physical coordinates Equation (1) 
becomes in polar coordinates 

4 
ds 2 = (a2d12 + d<p 2 + cos2 <pdB2 ) 

( e"l' + !{ e-u-y )2 (2) 

where on the basis of the psychophysical assumptions the relation to the 
sensory coordinates is postulated to be the following: 

~ = 2e-" cos <p cos() 

'fJ = 2e" sin <p 
( =2e-"cos<psinB. 

The parameter 1 has a physical definition, but the parameters a and 
!{ are estimated for each subject individually. The individual subject 
estimates for these two parameters, especially for K, is a reflection of the 
fact that the specific curvature observed by any two subjects, even if both 
observe hyperbolic space, will in general be different. 

Many experiments have been done within this Luneburg framework. 
An early study is Hardy, et.al. (1953), but by far the most sustained 
experimental program has been that of Tarow In dow and his collaborators 
beginning in 1962 (Indow 1967, 1968, 1974a, 1975, 1979, 1982; lndow, 
Inoue and Matsushima, 1962a, 1962b, 1963; Matsushima and Noguchi, 
1967; and Nishikawa, 1967). 

I shall not attempt to summarize these many carefully performed ex
periments in any detail. (For more detailed summary, see Suppes, et.al., 
1989, pp. 145-153.) The most relevant three conclusions are these: (i) 
For most subjects !{ < 0, (ii) the estimates of K and a were very unsta
ble for many subjects even when the same experimental conditions were 
repeated, (iii) values of K and a did not transfer well from one experi
mental setup to a different one. In particular, attempts to transfer K and 
a from one set of experiments to the alley experiments did not work well 
at all. 

The experiments I am summarizing in cursory form are in my judg
ment among the most careful of any psychological experiments involving 
parametric estimation that I can think of. The inference is rather about 
the unsatisfactory character of the theory rather than of the nature of the 
experiments. The great instability of the estimated parameters, especially 
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for conceptual purposes the great instability of I<., is in marked contrast 
to the precision with which the parameters of physical space are mea
sured, with uniform values holding over a great range of circumstances. 
The instability and lack of generalizability naturally generate skepticism 
that it is the right scientific move to think of visual space in the same 
kinds of terms and within the kind of conceptual framework so common 
in examining the nature of physical space. 

Moreover, there are several experiments that raise further doubts, be
yond any question of instability of parameters, because they take the 
results for the nature of visual space outside the Luneburg framework. 
The first experiment to be mentioned is that of Wagner (1985). The 
methodological approach of this experiment is notable for two reasons. 
First, unlike the standard Luneburg experiments, the experiment was 
conducted outdoors in full daylight in a large field with subjects making 
judgments about the geometrical relations of 13 white stakes. Differ
ent procedures were used for measuring distances, angles, and areas. In 
particular magnitude estimation, category estimation, and constructing a 
simple scale map were used for judging distances, the only results to be 
considered here. 

The results are extremely interesting and are contrary in important 
ways to essentially all of the Luneburg-type experiments. The important 
result is that there was spectacular foreshortening in depth perception. 
Let the x axis be the horizontal depth axis, that is, the axis perpendicular 
to the vertical plane through the eyes, and let the y axis be the horizontal 
frontal axis passing through the two eyes. Let two physical distances be 
such that x = y, that is, one distance is taken along the depth axis and 
the other along the frontal axis. Then in perceptual estimates (indicated 
by primes) of depth x' = 0.5y' with of course some variation around 0.5 
for individual subjects. The coefficient 0.5 is not some minor variation 
on standard physical Euclidean space but a major deviation in the form 
of an affine transformation of Euclidean space. It would be extremely 
interesting to determine if perceptual physics suffers such a large affine 
transformation as perceptual geometry. There have been other experi
ments reporting such depth foreshortening, for example, Battro, Netto, 
and Rozestraten (1976) but none as striking as the experiment I now turn 
to. 

This is an elegant older experiment by Foley (1972) which leads to 
even stronger results, results that require the conception of visual space 
to lie outside any of the Riemannian spaces of constant curvature. In fact 
outside of any of the geometries ordinarily used in the study of perception. 
In Foley's 1972 experiment, the subject sat in a dark room with both eyes 
open, and a light a was fixed in the subject's visual field in the horizontal 
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0 

Figure 3. Illustration of comparisons required in Foley Experiment. 

plane at the eye level. The subject was asked to set light b so that the 
line ob (o is the position of the subject) was perceptually perpendicular 
to line ab, and segment ob was apparently equal in length to segment ab 
(see Figure 3). Notice that this kind of task is very similar to the sort 
of task arising in the classical alley experiments, as far as the judgments 
required from the subject are concerned. The subject was next asked 
to set light e so that oe was perceived to be perpendicular to ob with 
oe equal in length to ob. The subject was then, as a final task, asked 
to judge the relative lengths of oa and be. The important point is that 
for homogeneous Riemannian space, whether it be Euclidean, hyperbolic, 
or elliptic, by construction the right-angled isosceles triangles oba and 
boe should be congruent, and so oa and be should be judged equal in 
length. The experimental results were quite different, however. Twenty
four subjects in 48 trials judged be to be significantly longer than oa. It 
is important to note about Foley's experiment that this is not a question 
of various symmetrical, contextual features being present that lead to 
distortion. The general experimental environment is essentially that of 
the standard Luneburg experiments, or the standard alley experiments. 
The results however, are disastrous for any simple geometrical theory 
of visual space, for it requires us to move outside the framework of the 
standard elementary homogeneous spaces. I want to turn now to what 
these various results suggest for our study of visual space. I have organized 
the remarks under several different headings. 

Study of qualitative axioms. Foley's experiment as well as other experi
ments he has conducted on the verification of Desargues' theorem, point 
toward a more intensive program of experimentally testing which individ
ual qualitative axioms are satisfied. I say "which" with the understanding 
that such investigations could well begin with the standard classical prim
itives of geometry. For example, the linear relation of betweenness, stan-
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dard qualitative relation of congruence, standard perpendicularity and 
parallel relations, etc. On the other hand, given the complicated and 
subtle nature of the results it may be that different primitive concepts 
will turn out to have better invariant properties. For example, if it is 
hard to get coherent congruence results as we rotate 90 degrees from the 
frontal to the depth axis, it is natural to think that a different and more 
complex notion of congruence is needed than the standard one, which is 
independent of orientation-! return to this idea in a moment. 

Space has not permitted me to say anything about projective geometry 
here, but the recent book of Cutting (1986) provides an excellent overview 
of projective questions that are natural to ask about visual space. The 
point of mentioning projective geometry here, however, is to remark that 
it may be that the kind of finite geometry characteristic of earlier work 
in projective geometry and still used for counterexamples and for other 
purposes, may turn out to be something that needs to be studied in the 
present context, for it may be that we would be able to satisfy certain 
qualitative axioms for a finite set of points as in the Foley experiments, 
but not their extension to a larger number. There is good reason why 
experimenters have been reluctant to move in this direction, for the pos
sibilities of finding finite spaces that will satisfy a given fixed set of points 
are many, and it would be easy to get some extraordinarily ad hoc results 
which would not be of much interest. It seems to me, however, there are 
certain principled lines of inquiry that could be used and that might pro
duce some very interesting conceptual results about the visual space of 
these particular experimental configurations that produce results that are 
so difficult to interpret. I also want to emphasize another way of thinking 
about these finite spaces that is different from the way finite projective 
spaces were thought about in the past. It seems to me the right way to 
think about them is in terms of geometrical constructions. In this case we 
can of course think of satisfying a much larger set of points by conceiving 
of the experimental configurations as being the first steps in constructing 
an ever larger configuration of points. 

In the Foley experiments, for example, the subject has two fixed points 
(see Figure 3), namely points a and o. The other points are generated by 
construction. For the constructions involved, the line segments cut the 
depth axis and frontal axis all at a 45° angle, and this could be a quali
tative restriction on constructions leading to congruence. The observant 
reader will have noted that Foley's experiments satisfy the foreshorten
ing result of Wagner's experiments. What Foley's results in conjunc
tion with Wagner's show is that we cannot have some simple concept 
of congruence resulting from an affine transformation of the Euclidean 
space. We need something like a "directional" concept of congruence. 
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Figure 4. Illustration of comparisons permitted by restricted axiom of 
congruence 

Construction of a small number of points, with direction a part of the 
primitive concept, and also a part of the primitive concept of congruence, 
could lead to qualitative axioms producing both Foley's and Wagner's 
results. > 

Here is a sketch of one approach that might work. Firs(, we use 
some standard qualitative primitives for affine spaces, e.g.,,.ASetweenness 
or parallelness. Second, we develop in this framework ~fie congruence, 
i.e. congruence restricted to parallel segments. Third, add a restricted 
congruence axiom of the following sort that takes account of direction 
by requiring symmetry about the depth axis. (Here, as before o is the 
position of the observer.) 

AXIOM. If B(a, o, c), ao ~ oc, ab and cd are parallel to the depth axis, 
and ab ~ cd, then ob ~ od. 

Note that the congruences postulated in the hypothesis of the axiom 
are affine, but the congruence of the conclusion is not. Figure 4 shows the 
simple construction. Other standard axioms of congruence that would be 
assumed are the following: 

1. If aa ~ be then b = c. 

2. ab ~ ba. 

3. If ab ~ cd and ab ~ ef, then cd ~ ef. 

4. Ifb is between a and c, b' is between a' and c', ab ~ a'b' and be~ b'c', 
then ac ~ a'c'. 

The axioms of congruence given are not enough to prove a representation 
theorem for the kind of space suggested by the Foley and Wagner ex
periments, but they do provide a variety of testable consequences about 
congruence that are not falsified by the Foley and Wagner results. 
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Context effects. Unfortunately, too energetic an effort to give a very de
tailed qualitative theory of the Foley and Wagner type of experiments 
could be misplaced, because already different results in a not too dissim
ilar arrangement are obtained in the classical alley experiments, which, 
at least in the obvious interpretation of the constructions made by the 
subjects in the experiments, do not satisfy the affine properties postu
lated for the Foley and Wagner experiments. This is perhaps one of the 
most disturbing aspects of experiments on visual space, namely, different 
experimental configurations can produce different geometrical results. I 
have made the point on several occasions that it may be the case that 
classical geometry is the wrong model for visual space. The kind of con
textual effects to be seen in different arrangements is something much 
more characteristic of physics than geometry. In classical geometry there 
are no context effects. The properties of a configuration are not affected 
by properties of neighboring configurations. But in physics it is quite the 
opposite. When we study the interaction of two bodies we expect some
thing very different to happen if we change the context by introducing a 
third body. Essentially every significant theory in physics has this kind 
of contextual property. What is disturbing, however, is the apparent dif
ficulty of analyzing context in visual experiments in a way that would 
lead to interesting systematic results. To put the matter another way, in 
the framework of a central thrust of this lecture, we have not yet been 
successful in finding general principles of visual perception that have the 
appropriate invariance properties. It is in fact an open question whether 
satisfactory general principles exist. Our perceptual apparatus may be a 
pluralistic assembly of systems without strong unifying principles. 
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CAN PSYCHOLOGICAL 

SOFTWARE BE REDUCED TO 

PHYSIOLOGICAL HARDWARE? 

The question of the title I answer in the negative. There are four strands 
to my argument. The first, which corresponds to the first section of the 
paper, analyzes the nature of computation. The second concerns the 
nature of goal-oriented behavior. The third uses an argument that the 
mind is computationally irreducible. The fourth asserts the irrelevancy 
of the standard attempts to provide a reduction via general ideas about 
determinism. 

1. NATURE OF COMPUTATION 

We may stipulate, I believe, for this paper that the mind is among other 
things a computational device. This means that matters of computation 
are of central importance in any arguments about the reduction of psy
chological concepts to physiological ones. Part of my argument about 
the irreducibility of computational concepts of the mind to physiologi
cal concepts is from the much simpler case of digital computers. In the 
case of digital computers, we understand to a very much more thorough 

*Reprinted from The problem of reductionism in science (ed. by E. Agazzi), 1991, 
pp. 183-198. The Netherlands, Dordrecht: Kluwer. 
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degree exactly the physical basis of computation and at what level the 
computational concepts interface the physical concepts. In spite of this 
great precision of knowledge of interface, we do not at all attempt in the 
standard theory of computation for digital computers to replace computa
tional concepts by physical ones, which corresponds to replacing psycho
logical concepts by physiological ones. In fact, I am skeptical that even 
in the case of relatively simple digital computers we could make direct 
physical observations on the computer from which we could infer in detail 
and without any high degree of error what from a software standpoint was 
actually being computed. The situation is very much more complicated 
and difficult, and less likely ever to be understood thoroughly, in the case 
of our own mental computations, because there is no evidence we will 
make much headway on the detailed physiological or physical identifica
tion of the neurons that are doing any particular computation. Notice of 
course that this lack of clear identification of physical location, quite apart 
from understanding the details of that physical location is characteristic 
of computation in a digital computer. It is a day dream to think that we 
can easily identify where a particular computation is taking place. Com
putations in a modern computer move around dynamically. Where they 
are even placed initially is not a static concept but a dynamic one depend
ing upon what is present and what else is being computed at the time 
computation is started. It would be a great surprise if something similar 
is not true of the computations in the brain. Location of mental compu
tations in terms of individual neurons seems totally out of reach. Global 
location of computations of a particular kind being done in a particular 
region of the brain is sometimes feasible. 

It is also important that physically very different computers compute 
the same function even by different software programs. Only isomorphism 
at a high level is usually of interest, and really never in terms of concepts 
of computation at the level of individual transistors, or to be even more 
reductionist, at the level of individual elementary particles which make 
up the many different microscopic parts of a transistor. 

Still another concept that seems likely to hold for the brain is that 
neurons compute statistically, unlike most of the current digital comput
ers. With a statistical computation it is especially unfeasible to think 
about a reduction from the software to the hardware. Each neuron is 
making a statistical contribution, but the physical performance of a par
ticular neuron is not of any decisive importance. The feeling is rather here 
that we have something like the standard result for random variables in 
probability theory. Given the random variables, which roughly speak
ing are meant to correspond here to the software concepts, we only have 
requirements of consistency for there to exist a common sample space. 
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The sample space is never unique. The basic consistency theorems, for 
example, Kolmogorov's theorem, deal with the existence of an underlying 
sample space. Without a very large number of assumptions that are not 
part of the standard theory, there is no unique sample space. The same 
is surely the situation with the statistical computation of neurons. The 
underlying neurons actually making the computation can in all likelihood 
never be observed and certainly not with present concepts for observation 
of neurons. A given computation in the brain may be located in different 
neurons depending upon the dessert one had for lunch or the last green 
perception that passed through the system. There is such intensive con
textualism that a reasonable conjecture is that identifiability for purposes 
of reduction is out of the question. 

In order to eliminate fairy tales, it is important to tighten the argu
ment here and to say that the formal claim of reduction not being possible 
is relative to a set of observational variables and observational techniques. 
I will not in this paper attempt such a formalization but I certainly think 
it is possible and can be done in a straightforward way for simple exam
ples. Obviously, I am not intending to give an a priori argument that 
will hold for all time regardless of what scientific methods are in place 
a thousand years from now. I am concerned to give at a foundational 
level an argument in terms of current science and relevant philosophical 
concepts, an argument that is meant to be a strong one from a computa
tional standpoint, against any possibility of reduction relative to any set 
of currently observable concepts. 

There is one point that might seem elusive in making the distinction 
between software and hardware in the case of biological organisms as op
posed to digital computers. Of course, even in the case of computers, the 
distinction is not as sharp as it might seem, for in some sense the software 
program must become a part of the hardware, i.e., a part of the physical 
organization of the computer. Where, it might be asked, does hardware 
stop and software begin. Once the software is embodied in the computer, 
as it is in a different way in the brain, this is not an easy question to 
answer from purely physical considerations in the case of the computer 
or physiological ones in the case of the brain. We are able to make the 
separation in the case of digital computers only in terms of knowledge of 
what has been done in a deliberate fashion to program the computer, and 
how the computer hardware has been organized to embody programs. 
Even this formulation for digital computers is much too simple. First, 
as already pointed out, the physical location of particular pieces of the 
program in the memory and processors of the computer is a matter of 
dynamic allocation and not something we can physically easily directly 
describe. More importantly, with the current emphasis on digital com-
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puters acquiring the capability of learning, the details of the program will 
not necessarily always be possible to identify. 

At least at present our main way of thinking about the brain's soft
ware is just in terms of the kind of mental or behavioral concepts psy
chologists have been developing for a long time and the language of com
mon experience for a much longer time. Moreover, it is undoubtedly 
these concepts that are the significant targets of any reductionist pro
gram. There is no doubt a more detailed and extended sense of software 
that could be defined. We could include the structural and functional 
computational changes to be attributed to learning rather than genetic 
inheritance. Whichever view is taken, reduction to the brain's hardware 
has no present hope of being carried out in detail. 

2. GOAL-ORIENTED BEHAVIOR 

A second strong argument against reduction of psychology to physiology 
is to be found in goal-orie12ted behavior in humans and other animals. If 
I ask my well-trained d:>g to fetch the newspaper, which has just been 
delivered, no amount of physiological or physical observation of the dog 
would be able to either predict the trajectory of his motion as he goes in 
search of the paper, or infer what task he was attempting to carry out. 
I am not suggesting that the activity of the mind operates without use 
of the brain, it is just that psychological concepts cannot be reduced to 
physiological ones. In other words, we need psychological concepts and 
the theories that embodies these concepts as theories that can be proved 
independent from a logical standpoint of purely physiological theories. 
It is a scientific fantasy to think we shall ever be able to make within 
our present scientific framework sufficient observations on my dog or on 
any other to determine what task it is engaged in, if those observations 
are restricted to purely physiological, including neurological, methods of 
observation and analysis. 

To draw a drastic parallel-perhaps too drastic for some-, consider 
the use of logic in formulating physical theories. No one would be so fool
ish as to say that we can reduce physics or physical concepts to a matter 
of logic or logical concepts, just because we need logic in the formulation 
of physical theories. This is how I see the relation of psychology and 
physiology. 

To talk about the brain as a machine that we can understand mechan
ically, which is familiar talk among physiologists and even neurologists, is 
to talk in a mistaken way. Think how absurd it would be to hear physi
cists talking about physics as a logical subject and meaning by that that 
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only logic was needed to formulate physical theories. (It is as if logical 
methods for rigorously proving the independence of axioms or concepts 
had not been developed for the past hundred years.) 

There is another point to be made about goal-oriented behavior. It 
is easy enough for almost everyone to accept the fact that from purely 
physical or physiological observations no one can predict where I am go
ing as I leave the house on a complicated physical trajectory to my office, 
to another house, to a store, or to a restaurant. However, it could be 
claimed and would be by some die-hard reductionists, that this is simply 
a case of unpredictable behavior, also to be found in purely physical sys
tems, but unpredictable behavior that can be explained by purely physical 
concepts. The separation of explanation from prediction is an important 
matter scientifically but doesn't really bear on the present case, in the 
following sense. No matter how many observations or how much informa
tion of a purely physiological or physical sort is to be collected prior to or 
after I execute my chosen route to restaurant, store, or whatever, it will 
be impossible on purely physiological or physical grounds to explain the 
complicated path I followed. The man in the street recognizes such an 
enterprise as nonsense. It is important to recognize that from the most 
fundamental scientific standpoint it is nonsense as well to think in terms 
of being able to make such a purely physiological or physical analysis of 
my or any other higher organism's complicated movements. 

Physiologists sometimes talk about goal-oriented behavior in cells. 
Without attempting to judge the scientific merit of this line of analysis, 
it is evident that we do not have the faintest idea of how to reduce the 
goal-oriented behavior of a higher organism to goal-oriented behavior of 
its individual cells. In other words, global goal-oriented behavior cannot 
be successfully analyzed in terms of goal-oriented behavior of cells. There 
is a seductive analogue here that could lead to mistaken conclusions. The 
analogue is that of the reduction of thermodynamics to statistical me
chanics. In this case, the behavior of macroscopic parts of matter is 
reduced at a physical level for certain concepts to the behavior of micro
scopic particles. Moreover, the relation, as suggested above for neurons 
in mental computation, is statistical. However, the enormous difficulty of 
making this reduction a rigorous one, even under the simplest conditions, 
shows how improbable it is that at any time in the foreseeable future of 
science we would have the faintest idea of how to carry through a serious 
reduction of global goal-oriented behavior of an organism to behavior of 
the organism's individual cells. There is something enormously seductive 
about this analogue. It is natural to think that we should somehow be 
able to push through a program of reducing our ordinary behavior as per
sons to the structure and function of the many billions of cells that make 
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up our bodies. It is a metaphysical dogma that is hard to dislodge. My 
point is not to say that I can prove it as false, but just to say that the 
evidence for it is negligible. A way of putting the point is that it is very 
unlikely that the concepts needed to describe the global behavior of an 
organism can be reduced to concepts applicable only to individual cells. 

It is important to block one mistaken conclusion from the argument I 
have just given. What I have said is not meant to suggest that we cannot 
identify at a level even below that of individual cells, for example, at the 
level of DNA or at the level of genes, microscopic features that predict 
major features of behavior. The triumph of genetic analysis of many 
different sorts of diseases is a major triumph, and something very special 
about science in this century. It is, on the other hand, idle to think that we 
have even begun to touch the problem of being able to infer goal-oriented 
movement of an organism from cellular observations. The usual scientific 
pluralism is at work here. We can do some things well, but not others, in 
terms of reducing global aspects of behavior to molecular ones. It is a form 
of metaphysical imperialism-in my view a scientific mistake-to think 
that we can generalize the successes of molecular biology to carrying out 
anything like a reduction of all major aspects of goal-oriented behavior. I 
mention again the difficulties that have been encountered in the last two 
decades in carrying through in a rigorous way the program of reduction 
of thermodynamical systems to statistical mechanical ones. It is easy to 
give from the current literature examples of thermodynamical systems 
that we do not know how to reduce to statistical mechanical systems. 
The incomparably more subtle and difficult problem of reduction of the 
theory of movements of higher organisms seems scientifically totally out 
of reach. 

3. COMPUTATIONAL IRREDUCIBILITY 

A familiar and important, but not always remarked upon, property of 
classical physical systems that have been the object of much attention in 
the history of physics is the property of being computationally reducible. 
Here is the simplest and most important example. Newton's solution of 
the two-body problem, i.e., the problem of motion of two bodies acted 
upon only by the forces of their mutual gravitational attraction, permits 
us to predict the motion in the future or the past, or the position at any 
future or past time, given appropriate data on initial conditions at a given 
time. Moreover, this model has the important property of being appli
cable in first approximation to two-body systems for the planets, with 
the sun as one of the bodies. The fact that we can solve the equation of 
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motion in closed form and thereby compute quite directly the future path 
of the bodies is of fundamental importance. Unfortunately, there was for 
a long time the feeling that this would be the norm for physical systems, 
i.e., that most of them were computationally reducible. We would be able 
to solve the equations of motions to determine the paths of the particles 
for any indefinite time into the future. However, already in the nineteenth 
century, the intractable problem of moving from two bodies to three bod
ies gave plenty of evidence that our ability to computationally reduce 
most physical systems was probably extraordinarily limited. Moreover, 
even when we cannot solve the equations of motion in closed form, we 
often feel that we can do a very good job of a numerical approximation. 
Already, however, in the case of the three-body problem, as was essen
tially shown by Poincare, this was not possible. Now we understand the 
phenomena very thoroughly for systems that are drastically unstable, as 
is the situation for some initial conditions in the three-body problem. The 
numerical methods of computation, necessarily approximate in character, 
provide a very limited horizon of practical computation concerning the 
behavior of the system or, to put it in other terms, a very limited horizon 
of predictability for the behavior of the system. Many other systems of 
a similar simple physical character have now been identified. With the 
modern intense interest in chaotic systems we have a sense of limitations 
in principle about predictability and about computational reducibility of 
physical systems that did not exist until rather recently, even in so well
established an arena as that of classical mechanics. 

There are many reasons to think the mental computations of the mind 
are also computationally irreducible. One consequence of this is that we 
shall not be successful in simulating artificially the behavior of the brain. 
We shall not be successful in the sense that important aspects of human 
behavior will be missed in any such simulation. Even a model of ten 
billion artificial neurons will be deficient in providing anything like pre
dictive or computational models. Notice that what we would like is really 
hopeless: speed up the computations of the brain by four or five orders 
of magnitude with a model of three or four orders of magnitude less neu
rons and thereby predict rather well by such computational reducibility 
future behavior. An unlikely story if ever there was one. To argue that 
the mind is computationally reducible, as in the case of arguments about 
physical systems, does not mean that we cannot find subsystems or as
pects of behavior that can be computationally reduced. In other words, 
we can make certain theoretical computations about the behavior of the 
system that can be verified, and the computation is much simpler and 
faster than the behavior of the system itself. For example in the case of 
the three-body problem we can compute for restricted cases the escape 
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velocity of one body, and we can make predictions about the behavior 
of a qualitative sort without being able to make computations about the 
detailed behavior. But just as in the case of such physical systems, the 
brain cannot be computationally simulated in simpler fashion, i.e., be re
duced to the computations of the simpler system, when we are concerned 
with its full behavior. It is a piece of unrealizable scientific fantasy to 
think that we can move our minds to simulated brains and preserve our 
psychological identities. There is no reason whatsoever to think such a 
computational transfer will ever be possible. Above all, the physiologists 
and neurologists will never make a computational reduction to formulas 
that lead from individual cell behavior to the mental computations of a 
fully functioning brain. I am not proposing to offer a metaphysical proof 
that such a neurological reduction is impossible, it is just that there is 
no serious scientific evidence whatsoever that it ever will be achievable 
within the framework of science as we now conceive it. 

If I am right in this last claim, it means that in any serious formal or 
scientific sense reduction of psychological concepts to physiological ones 
will not be possible. Here what I state informally I mean in a more formal 
way. Given a formally and empirically adequate psychological theory of 
psychological phenomena, it will not be possible to prove a representation 
theorem in terms of a formally and empirically adequate physiological 
or neurological theory. A certain kind of handwaving may be indulged 
in by reductionist-minded philosophers, but no serious demonstration of 
reduction will be given, and it will not be given for substantial reasons. 
There is no scientific eviden~e that such a reduction can be carried out at 
a satisfactory level of detail. 

There is still another and different point to be made about computa
tional irreducibility. If we think of having a uniform theory of neurons
meaning that neurons act in the same way from one individual to another 
and their interaction with software is the same, reduction seems unfeasi
ble. The hopelessness of the situation increases even more when we in
troduce the hypothesis, which seems likely to have considerable support, 
that the way in which individual neurons in a given individual interact 
with software is different from person to person. This would be a natural 
consequence of biological development occurring in a partially random 
fashion at the level of dendritic formation and the learning experience in 
terms of which some of that development is influenced also occurring with 
random variation from one individual to another. This would mean that 
the hardware of the neurons is connected to the software of thought in 
quite different ways in different individuals. If this conjectured variation 
from individual to individual holds, then reduction is all the more impos
sible. The detailed structure of computations in one individual, taking 
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the hardware and software together, would differ in quite significant ways 
from the corresponding structure in any other individual. 

4. IRRELEVANCE OF PHYSICAL DETERMINISM 

The argument for reduction of psychology to physiology, as a byproduct of 
the reduction of physiology to physics, as a consequence of determinism, is 
usually not put in as direct and simple a way as I will put it here. I think, 
however, the force of the argument is as follows. The physical universe is 
deterministic because as some analytic philosophers, untrained in physics, 
would put it, it is analytic that like events must have like causes. Given 
that there is a deterministic account of the physical universe, it then 
follows that everything that takes place in that physical universe is equally 
determined. If we know all there is to know about the physical world, that 
will fix uniquely all the other phenomena including, of course, the mental 
activities of higher organisms. 

Philosophers have been ringing the changes on this argument with dif
ferent degrees of explicitness and different degrees of emphasis for a long 
time, at least since the appearance of Kant's Critique of Pure Reason in 
the latter part of the eighteenth century. Kant doesn't discuss explicitly 
the concept of determinism, for it had not really surfaced in a completely 
clear way, even though there is a famous passage about the deterministic 
nature of the universe in Laplace's introduction to his treatise on prob
ability which appeared not long after the publication of Kant's Critique. 
But there is no doubt that Kant implicitly adopted a deterministic view 
in his using classical physics in generalized form as the metaphysical foun
dation of natural science and in his treatment of the category of causality 
in the Critique of Pure Reason. 

Of course, Kant was not for a moment prepared to adopt the view that 
psychology could be reduced simpliciter to physical determinism. As in his 
treatment of the antinomy of free will, he was quite prepared to bite the 
bullet and remove psychology entirely from the domain of science, or as 
he would put it, more restrictively, natural science. The radical character 
of Kant's solution to the acceptance of physical determinism, as I would 
put it, has not always been properly recognized when it comes to working 
out what one could then hope to do with the science of psychology, but 
he certainly lays out his views in as explicit a way as could be asked for 
in the following passage in the preface to the Metaphysical Foundations 
of Natural Science: 

But the empirical doctrine of the soul must always remain yet 
even further removed than chemistry from the rank of what 
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may be called a natural science proper. This is because math
ematics is inapplicable to the phenomena of the internal sense 
and their laws, unless one might want to take into consider
ation merely the law of continuity in the flow of this sense's 
internal changes. But the extension of cognition so attained 
would bear much the same relation to the extension of cogni
tion which mathematics provides for the doctrine of body, as 
the doctrine of the properties of the straight line bears to the 
whole of geometry. The reason for the limitation on this exten
sion of cognition lies in the fact that the pure internal intuition 
in which the soul's phenomena are to be constructed is time, 
which has only one dimension. But not even as a systematic 
art of analysis or as an experimental doctrine can the empir
ical doctrine of the soul ever approach chemistry, because in 
it the manifold of internal observation is separated only by 
mere thought, but cannot be kept separate and be connected 
again at will; still less does another thinking subject submit 
to our investigations in such a way as to be conformable to 
our purposes, and even the observation itself alters and dis
torts the state of the object observed. It can, therefore, never 
become anything more than a historical (and as such, as much 
as possible) systematic natural doctrine of the internal sense, 
i.e., a natural description of the soul, but not a science of the 
soul, nor even a psychological experimental doctrine. This 
is the reason why in the title of this work, which, properly 
speaking, contains the principles of the doctrine of body, we 
have employed, in accordance with the usual practice, the gen
eral name of natural science; for this designation in the strict 
sense belongs to the doctrine of body alone and hence causes 
no ambiguity (Kant, 1970, pp. 8-9). 

Unfortunately, not many philosophers, and I would say almost no scientific 
psychologists, would be prepared today to follow Kant's way out of the 
dilemma of determinism. 

Of course one immediate response to what I have called the dilemma 
of determinism is the modern one of saying that quantum mechanics has 
shown that the microscopic world of physics is not deterministic. I am not 
going to take that line of argument here because I don't believe it. My own 
view about quantum mechanics, expressed in several places, is that quan
tum mechanics is a weak probabilistic theory of the mean (Suppes, 1990). 
In this view, quantum mechanics is compatible with both deterministic 
and indeterministic hidden-variable theories, of which perhaps the best 
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example of the latter is stochastic mechanics as developed by Edward 
Nelson and others, with the understanding that classical Markovian as
sumptions of Brownian motion must be relaxed to deal with problems 
of locality. But also as a viable possibility is the kind of deterministic 
hidden-variable theory outlined by David Bohm and various colleagues. 
I do not claim fully to understand Bohm's ideas and they are yet to be 
given an articulated and detailed development, but there is no reason 
to think that they cannot in principle be elaborated. The difficulty, of 
course, with any of these extensions of quantum mechanics, in the sense 
of providing a hidden-variable theory,-one that takes proper account of 
locality problems-, is being able to make an experimental determination 
as to whether or not the theory is correct. Such theories may get defeated 
in the second round by their attempts to go beyond the phenomena of 
classical quantum mechanics to relativistic particle phenomena, quantum 
electrodynamics, and more generally to the wide range of experimental 
findings in elementary particle physics. 

What I want to argue is that whoever is right about the proper hidden
variable theory for quantum mechanics, which may turn out to be a purely 
metaphysical choice, determinism as a general thesis is irrelevant to the 
question of the reducibility of psychology to physiology. The reason for 
my holding this view is easy to state. Determinism is too capacious and 
general a theory to help any such issue to be settled in an interesting 
way. Why is this? Because the collection of theories that are determin
istic is able to accommodate any sort of behavior. Perhaps the way to 
illustrate this without too many complications and reservations is to con
sider again the physically simple case of the three-body problem that I 
have discussed elsewhere with reference to propensity theories of proba
bility (Suppes, 1987). As we move from two-bodies to three-bodies, our 
detailed understanding of the motions of the three bodies disappears, a 
fact, which I pointed out earlier, has been well-known since the nineteenth 
century. What has not been well-known since the nineteenth century is the 
proof that for rather simple restricted cases of the three-body problem
meaning a reduction of the problem to the motion of a single-body where 
the motion of that body is determined by the other two bodies-the fol
lowing sorts of results hold. First, there exist initial conditions, which in 
this case are just the initial position in one-dimension and the velocity in 
one-dimension of the body, such that the sequence of the largest integer 
values contained in the temporal half-cycles of passing through the plane 
of the other two bodies has the following property. The sequence of in
tegers so generated, the so-called symbolic dynamics, can represent any 
random sequence of integers, where the integers are greater than a certain 
constant. We can therefore represent in terms of the symbolic dynamics 
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of this simple deterministic system-simple in terms of understanding its 
causes and the derivation of the differential equation governing its motion, 
not simple in terms of its actual motion-, any random sequence of heads 
and tails. Second, in contrast there exist initial conditions, in this case 
just a single number, the velocity in one-dimension of the body, such that 
the symbolic dynamics encodes the contents of the books in the Library 
of Congress. One example is purely random, the other is as intentional as 
you wish, but the richness of this simple, deterministic system is capable 
of generating either phenomena. 

As I have argued in another paper we can develop the same line of 
attack with purely indeterministic systems (Suppes, 199la). If you don't 
like determinism choose indeterminism. This choice corresponds to the 
two choices of hidden-variable theories for quantum mechanics I men
tioned above. 

So does one choose between indeterministic structures of some general 
probabilistic theory or unstable structures of some deterministic theory? 
Put in very broad terms the choice seems to be a matter of taste in meta
physics. At the present stage of science there seems no likelihood of any 
sequence of crucial experiments that will force one of the two positions 
to the wall. Indeterminism and determinism are here to stay. Exercise 
your metaphysical choice as you will. There is no inconsistency between 
determinism and randomness. We can use unstable deterministic systems 
to generate any probabilistic phenomena desired, or we can take a system 
that is indeterministic and not known to be deterministic, if that is your 
metaphysical bent. There are, in fact, some beautiful theorems by Don
ald Ornstein and his colleagues that make the metaphysical point in still 
stronger fashion: there are physical systems on which we can make an 
infinite number of observations--or if you want more precision, there are 
mathematical models of certain physical phenomena-, such that on the 
basis of an infinite number of observations it is impossible to distinguish 
between a deterministic mechanical model governing the phenomena and 
a stochastic process governing them. This line of argument, the last line 
of argument I consider here, can be summed up in this way. The classical 
attempt to reduce psychology or our mental concepts to physical theories 
and physical concepts by general deterministic arguments is to try to re
duce the rich facts of our mental activity to an unverifiable metaphysics of 
determinism. Kant had the story upside down: our mental life is empiri
cally a rich phenomena which we can study scientifically and successfully. 
In contrast, the general theory of determinism as a view of the universe 
represents a metaphysics empty of content. 
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