
H O W A R D  S T E I N  

E U D O X O S  A N D  D E D E K I N D :  O N  T H E  

A N C I E N T  G R E E K  T H E O R Y  O F  

R A T I O S  A N D  ITS  R E L A T I O N  

T O  M O D E R N  M A T H E M A T I C S *  

1. T H E  P H I L O S O P H I C A L  G R A M M A R  OF T H E  C A T E G O R Y  OF 

Q U A N T I T Y  

According to Aristotle, the objects studied by mathematics have no 
independent existence, but are separated in thought from the substrate 
in which they exist, and treated as separable - i.e., are "abstracted" by 
the mathematician. I In particular, numerical attributives or predicates 
(which answer the question 'how many?')  have for "substrate" multi- 
tudes with a designated unit. 'How many pairs of socks?' has a different 
answer from 'how many socks?'. (Cf. Metaph. XIV i 1088a5ff.: "One  la 
signifies that it is a measure of a multitude, and number lb that it is a 
measured multitude and a multitude of measures".)  It is reasonable to 
see in this notion of a "measured multi tude" or a "multi tude of mea- 
sures" just that of a (finite) set: the measures or units are what we 
should call the elements of the set; the requirement that such units 
be distinguished is precisely what differentiates a set from a mere 
accumulation or mass. There is perhaps some ambiguity in the quoted 
passage: the statement, "Number  signifies that it is a measured multi- 
tude",  might be taken either to identify numbers with finite sets, or to 
imply that the subjects numbers are predicated of are finite sets. Euclid's 
definition - "a number is a multitude composed of units" - points to 
the former reading (which implies, for example, that there are many 
two's - a particular knife and fork being one of them). Number-words, 
on this interpretation, would be strictly construed as denoting infimae 
species of numbers. It is clearly in accord with this conception that 
Aristotle says, for example (in illustrating the "discreteness", as op- 
posed to continuity, of number): "The  parts of a number have no 
common boundary at which they join together. For  example, if five is 
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a part of ten the two fives do not join together at any common boundary 
but are separate; nor do the three and the seven join together at any 
common boundary"  (Cat. vi 4628-9). The fundamental operation of the 
addition of numbers is then just that of the union of  finite sets - which 
sets must, however,  be supposed disjoint. This requirement,  and the 
corresponding one for subtraction (namely, that the number - i.e., set 
- subtracted must be contained in the one it is subtracted from), 
would lead to some awkwardness in the formulation of arithmetical 
relationships, and much awkwardness in the arrangement of proofs. 
Such requirements are never stated or accommodated in practice. One 
therefore has to conclude either that the requirements and the proce- 
dures for fulfilling them are tacitly understood, or, as seems more likely, 
that the strict distinction between number as substrate and number as 
species is ignored by the mathematicians. Perhaps, indeed, this is what 
Aristotle means when he says that the mathematicians consider their 
objects "qua separable from the substrate". 

Corresponding to the question 'how many?' ,  which asks about multi- 
tude, is the question 'how much?' ,  which asks about magnitude (distin- 
guished from number,  according to Aristotle, as "continuous",  in con- 
trast to "discrete",  quan t i ty ) )  But this question requires fuller 
specification: that of a "respect" ,  or a kind of magnitude - what one 
now calls, in the physicist's terminology, a dimension: 'how long?'; 
'how much area?';  'how capacious [or 'how much volume']? ' ;  'how 
heavy?' ,  etc. As in the case of number,  there is reason to think that 
the primary reference of magnitude terms is to the substrate - the 
bearer of magnitude. For  example, Aristotle remarks 3 that "some quan- 
tities consist of parts having position relative to one another,  others 
not of parts having position"; and he instances, as of the former kind, 
lines, planes, solids, and places - which latter, therefore,  are all by 
him taken to be "quantit ies",  and more specifically "magnitudes".  It 
is clear that in speaking of these as constituted of parts having position 
relative to one another,  he must have in mind particular spatial figures 
in each case. This is strikingly confirmed by another  passage (Metaph. 
V 13 1020a7--14): 

We call a quantity that which is divisible into constituent parts of which each is by nature 
a one and a "this". A quantity is a multitude if it is numerable, a magnitude if it is 
measurable. We call a multitude that which is divisible potentially into non-continuous 
parts, a magnitude that which is divisible into continuous parts; in magnitude, that which 
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is continuous in one dimension is length, in two breadth,  in three depth. Of these, limited 
multi tude is number,  limited length is a line, breadth a surface, depth a solid. 

We have here not only the same identification of specific magnitudes 
with actual spatial configurations, but the striking parallel of "multi- 
tude" (or "plurality") with "length, breadth, and depth" as genera, 
and of "number"  with "line, surface, and solid" as species within 
those respective genera - suggesting once again that if the particular 
magnitude of the kind length (the 'limited length') is a line (in the sense, 
of course, of line-segment), the corresponding particular 'numerable 
quantity' (the 'limited multitude') is a set. 

One more point seems worth calling attention to in connection with 
this primarily concrete notion of quantities. We are told by Aristotle 
(Cat. vi 6a27) that what is most characteristic of quantities is the attri- 
bution to them of equality and inequality - that these relations are 
predicated of quantities and of nothing else. And indeed one finds, in 
Euclid's arithmetic and geometry, that "sameness" is never predicated 
of numbers, lengths, areas, volumes, or angles: ratios, for example, of 
two areas on the one hand, two lengths on the other, are (in appropriate 
circumstances) said to be "the same" - but never "equal";  4 on the 
other hand, the areas of two figures are said to be "equal",  but never 
"the same" (indeed, most often it is simply said that "the two figures 
are equal" - that area is the appropriate magnitude-kind is taken to 
be understood). This difference is quite alien to our present way of 
thinking about such matters: for us, to say that two distinct triangles 
are equal in area is to say that they have "the same area". But on the 
suggested reading of the Greek terminology, it would be incorrect to 
speak of " the area of this triangle": a triangle does not have an area, 
it is an area - that is, a finite surface; this area means this figure, and 
the two distinct triangles are two different, but equal, areas. On exactly 
the same principle, then, two different "numbers" - that is, two differ- 
ent finite sets - may be "equal" (cf. Aristotle's reference, above cited, 
to the "two separate fives" that compose a ten). Thus, we may say that 
each species of quantity (whether discrete or continuous) is distin- 
guished in Greek mathematics by its own proper equivalence-relation, 
called in each case just "equality"; and that where our own practice is 
to proceed to the corresponding equivalence classes, regarding these 
as particulars (numbers, lengths, etc.), the Greeks did not, in principle, 
make this abstraction. (On the other hand, as already remarked in 
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connection with numbers, the exigencies of mathematical discourse 
tended to lead to compromises in practice.) 

2. Q U A N T I T I E S  A N D  T H E I R  R A T I O S :  E U D O X O S  

The Eudoxean-Euclidean theory of ratio and proportion involves three 
distinct (interrelated) notions: number, magnitude, and ratio. The 
notion of magnitude is just presupposed in Euclid's exposition: neither 
definitions nor explicit assumptions are formulated concerning it, and 
number, although it is made the subject of a definition, is also in effect 
simply taken to be understood (for the definition does not provide a 
basis for arithmetical reasoning); but ratio is defined in a remarkably 
precise and adequate way. The phrase "theory of proportion" is used 
because the notion of sameness of ratio is crucial (both to the develop- 
ment of the theory, and to the very definition of ratio); and two pairs 
of magnitudes that have the same ratio are said to be "proportional" 
(or "in proportion"). 

The notion of "kind (or genus) of magnitude" is explicitly invoked 
by Euclid (Bk. V, Def. 3). No definition and no postulates are given 
by him for this notion, but he seems to take it for granted that in each 
magnitude-kind there is an appropriate "combining" operation on the 
substrates - for length, e.g., on line-segments; for area, on figures; for 
volume, on sohds - analogous to the joining of (disjoint) multitudes, 
that leads to an "addition" of the magnitudes of that kind (this assump- 
tion characterizes the traditional philosophical notion of extensive mag- 
nitude). 5 (It seems quite in accord with this point of view that the 
word used for the operation of addition, whether of numbers or of 
magnitudes, is simply Ka~ - that is, the conjunction "and".) 

It is not difficult to extract from Euclid's procedures a statement of 
the properties that must be presupposed, for any given magnitude-kind, 
or, more generally, for any species of quantity (whether discrete or 
continuous), in order to apply to it the general Eudoxean theory of 
proportion. In doing this, it is convenient to take that step in abstraction 
which, as we have seen, the Greeks evidently did not take in principle, 
although in some degree they did in practice - to abstract upon the 
equivalence-relation called "equality" in any species of quantity, so 
that the "objects" of that species correspond to the equivalence-classes, 
and equality becomes identity. Accordingly, we postulate a combining 
operation to be called "addition", not upon the substrates (a notion 
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that is hard to axiomatize in a manageable way, and is problematic in 
any case for the theory of magnitude - e.g., how "combine"  two bodies 
whose masses are each equal to that of the galaxy?), but directly 
upon these more abstract objects. Any species of quantity Q, under 
its operation of addition, is required to be an ordered commutative 
semigroup, in which (moreover) subtraction (of the lesser from the 
greater) is always possible; that is, the following conditions must be 
satisfied: 

(1) a + (b + c) = (a + b) + c; 
(2) a + b = b + a; 
(3) for any a and b in Q, exactly one of the following alternatives 

holds: 
(a) for some c in Q, a = b + c; 
(b) for s o m e c i n Q ,  b = a + c ;  
(c) a --= b. 

It easily follows from these conditions that the cancellation law 
(uniqueness of the result of subtraction) holds: if a + b = a + c, then 
b =c. As to the ordering, we introduce it by defining: "a < b"  (or, 
equivalently, "b > a")  means that there is a c such that a + c = b. It is 
easily established from our stipulations that if a < b and b < c, then 
a < c (the relation < is transitive); that we never have both a < b and 
b < a (the relation < is asymmetric); and that for any elements a, b, 
of Q, exactly one of the following three conditions holds: a < b, a = b, 
or a > b ("law of tr ichotomy").  These properties characterize < as a 
strict total ordering of Q ("strict" because asymmetric - i.e., analogous 
to "strictly less than",  not to "less than or equal to";  " total"  because 
the relation < holds, in one direction or the other,  between any two 
distinct elements of Q). We also have the important proposition: if 
a < b, then a + c < b + c (the ordering is "compatible with the semi- 
group structure").  It is worth noting that the procedure of defining 
the ordering with the help of the relation of addition has a certain 
correspondence with the last of the "Common Notions" at the begin- 
ning of Book I of the received text of Euclid: "The  whole is greater 
than the part".  To be sure, the authenticity of this common notion has 
been questioned (for that matter,  Tannery challenged all of them); but 
even if the passage is an interpolation in the original text, it provides 
evidence that the traditional concept of the "greater"  was just this: that 
the greater is what is composed of the lesser and something besides. 
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Addition gives rise in an obvious way to the operation of multiplying 
a quantity of kind Q by a positive integer: na means "the sum of n 
terms, each equal to a".  This operation is central to the definition of 
the fundamental notion of ratio. 

Euclid's characterization of the concept of ratio is contained in 
Definitions 3, 4, and 5 of Book V of the Elements .  The contents of 
these definitions may be paraphrased as follows - clauses (a), (b), (c), 
corresponding roughly to Euclid's three "Definitions" (although (b) 
really contains more than does Def. 4): 

(a) A ratio p is a binary relation, of the following general 
character: 
if p is a ratio, then given any species of quantity, Q, and 
any pair (a, b) of elements of Q, it makes sense to affirm 
(or deny) that p "holds" between a and b (in that order) - 
which we may symbolize (tentatively)by: "p(a,  b, Q)": "a 
and b, taken in that order, as elements of Q, have the 
ratio p". 

(b) It is conceivable that a pair (a, b) of quantities of kind Q 
"have no ratio at all" - i.e., that all statements of the form 
p(a, b, Q) are false for this pair (a, b) and this kind Q. If a 
and b do "have a ratio", it is unique; and we shall symbolize 
it by "(a:b)Q" - "the ratio of a to b in Q".  (In fact, the 
context usually makes it clear what Q is, and we shall 
actually therefore drop the subscript and just write "a:b" . )  
The necessary and sufficient condition for a and b to have 
a ratio in Q is that for some positive integer m, ma > b, 
and for some positive integer n, n b >  a. (Note that this 
condition is symmetric as between a and b; it guarantees the 
existence of both ratios, a:b and b:a.) 6 

(c) If a and b are quantities of kind Q that have a ratio p = 
(a:b)Q, and if Q' is any species of quantity, and c, d, any 

elements of Q',  then p(c, d, Q ' )  is true if and only if the 
following holds: 

For each given pair of positive integers m, n: 

either both na > m b  and nc > rod, 
or both na = m b  and nc = md,  
or both na < m b  and nc < rod. 
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Under these conditions, we say that (a, b) and (c, d) are 
proportional, or have the same ratio: (a:b)o = (c:d)o,. 

Note, then, that clause (c) (or Euclid's Definition 5), which is the 
heart of Eudoxos's construction, characterizes the ratios by introducing 
the relation of sameness of ratio. It is of course crucial for such a 
characterization that the relation defining "sameness" be an equiva- 
lence. Reflexivity and symmetry of the Eudoxean relation are immedi- 
ately obvious from the definition. As for transitivity, Euclid takes the 
pains to prove explicitly that it holds (Book V, Proposition 11: "Ratios 
which are the same with the same ratio are also the same with one 
another"). It is quite remarkable that this step in abstraction (the 
analogue of which, as we have seen, appears not to have been made 
in the essentially simpler case of numbers and of magnitudes) here 
is taken explicitly and completely. The exigencies of the problem of 
characterizing ratios and proportions for not necessarily commensurable 
quantities led to the development of a technique of "mathematical 
abstraction", whose fully explicit general recognition and exploitation 
(if we make an exception of a remark of Leibniz's) was achieved 
only in the course of the great transformation of mathematics in the 
nineteenth century. 7 

3. P R E L I M I N A R Y  C O M P A R I S O N  W I T H  D E D E K I N D  

The relation of Eudoxos's explication of the notion of ratio to Dede- 
kind's well-known construction of the real numbers is easy to see. Let 
a and b be quantities (of some kind Q) that "have a ratio" in the sense 
laid down in Euclid's Definition V.4. Consider all pairs (m, n) of 
positive integers for which mb <~ na. For each of these pairs (m, n) 
consider the rational number m/n.  It is easy to show that if (m', n') is 
another pair of positive integers, and if m/n = m ' /n ' ,  then mb ~ na 

implies m'b  ~ n'a; therefore we may speak of a well-defined partition 

of the set of all positive rational numbers into two subsets, "upper" 
and "lower", S* and S,, characterized by: m/n belongs to S,  just in 
case mb <~ ha; otherwise - i.e., just in case m b >  na - m/n belongs to 
S*. Note that clause (b), or Euclid's Def. 4, guarantees that if a and 
b have a ratio, neither S, nor S* is empty. It is also easy to see that 
- still for a given pair, (a, b), of quantities of kind Q having a ratio 
- each rational number  in S ,  is smaller than each rational number  in 
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S*. Thus the partition into lower and upper sets determined by a given 
pair of quantities that have a ratio is precisely a "Dedekind cut" in the 
system of positive rational numbers; and therefore defines in its turn a 
positive real number in the sense of Dedekind. (That Dedekind himself 
considered cuts in the system of all rational numbers - positive, nega- 
tive, or zero - is obviously of no great importance.) 

It is clear that two pairs of quantities, each pair having a ratio in 
the sense of Euclid's Definition V.4, which moreover  have the same 
ratio in the sense of Definition V.5, determine by the above construc- 
tion the same Dedekind cut, and therefore the same positive real 
number. We have thus a well-defined mapping of the system of all 
Eudoxean ratios into the system of positive real numbers. 

However ,  it is not the case that the mapping we have constructed 
is (necessarily) one-to-one. In proceeding to the partition of the positive 
rationals, we have, in fact, discarded some Eudoxean information. 
Eudoxos's  criterion gives a partition into three sets of rationals, one 
of which (the "middle one")  may be empty, and (as one easily sees) 
contains at most a single element. (When the middle set is non-empty,  
our construction throws its element into the lower set). Let  us consider 
under what conditions this can lead to the assignment of the same real 
number  to more than one Eudoxean ratio. 

Suppose that we have quantities a, b, of kind Q, possessing a ratio, 
and quantities c, d, of kind Q' ,  possessing a ratio and determining 
the same upper set as the former pair; thus, for arbitrary positive 
integers m, n, we have: m b >  na ¢=~md > nc. Can it be that, at the 
same time, there are positive integers j, k, such that jb and /ca are 
unequal but jd  and kc equal? For  this to be so, in view of the former 
condition, we must have jb < ka. Let  the difference, k a - ] b ,  be 
called o. 

Now, since jd  = kc, for every positive integer N we have Njd = 
Nkc ,  hence (Nj + 1)d > Nkc,  hence (Nj + 1)b > Nka; and from this 
it follows that N (ka - jb) < b: every multiple o f  the quantity o is smaller 
than b - we may say that o is "infinitesimal" in relation to b. In 
particular, o and b do not have a ratio. 

Conversely, let us now suppose given two quantities, o and a, of 
the same kind Q, with the first infinitesimal in relation to the second; 
then it is easily seen that the phenomenon under consideration does 
actually occur within Q. For  suppose that m and n are positive integers 
with ma > na - which, of course, simply means that m > n. By the 
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infinitesimality of o in relation to b, we shall then have that 
( m  - n )a  > no ,  i.e., m a  > n(a  + o).  Since, on the other hand, the 
last inequality obviously entails m > n, we see that the ratios a:a and 
a + o:a determine the same upper  class, and therefore the same real 
number.  But these ratios are not the same in the sense of Eudoxos,  
because we have, for any positive integer n,  na = na but  not n(a  + o) = 

H a .  

We have therefore seen that a necessary and sufficient condition for 
the mapping we have defined, f rom the set of Eudoxean ratios into 
the set of real numbers ,  to be one-to-one,  is that every  pa i r  o f  quanti t ies  

o f  any  g iven  k i n d  have  a ratio. 

This result shows that the Eudoxean theory is in a sense stronger 
and more  refined than that of real numbers:  it allows the discrimination 
of ratios that are not distinguished by the real numbers  they determine. 
But in fact this refinement is of no use, and even clouds the theory. 
The trouble is this: I t  is of central importance to the theory of pro- 
port ion that the ratio of b to a determines b - more  precisely, that 
given a quantity a of  kind Q and a ratio p, there is at m o s t  one  

quantity b of the same kind such that b : a = p. Indeed,  Euclid proves a 
proposit ion to this effect (Book V, Proposition 9: "Magnitudes which 
have the same ratio to the same are equal to one another; and magni- 
tudes to which the same has the same ratio are equal .")  But Euclid's 
proposit ion is false in any domain in which infinitesimals exist; for if o 
is infinitesimal in relation to a - under which circumstance, as we have 
just seen, a : a and a + o : a are distinct but determine the same real 
number  - it is easy to show that, for any positive integer n, the 
Eudoxean ratios a + no  : a and a + o : a are the same. In fact, the 
argument  given above essentially shows this: it shows that for any o 
infinitesimal relative to a, the ratio a + o : a determines the same upper  
set as a : a but differs f rom the latter in having an empty "middle set";  
since the quantities no  are obviously all infinitesimal in relation to a, 
the ratios a + n o : a  all determine the same upper  set and, having 
empty  middle sets, determine also the same lower set. Thus, by the 
Eudoxean criterion, they are all the same. 

Conversely,  suppose the envisaged situation occurs - that a : c and 
b : c are the same, but a and b are unequal - say a > b. Since a and 
c have a ratio, there is an integer whose product  with a is >c;  let n 
be any such integer. Again, there is an integer (necessarily >1)  whose 
product  with c is >~na; let the smallest such be m + 1. Then 
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(m + 1)c I> n a  > m c ,  and, by the equality of the ratios, it follows that 
n b  satisfies the same double inequality; therefore n ( a  - b)  < c. Since n 
can be as large as one wants, this shows that a - b is infinitesimal in 
relation to c. 

We are thus led to the same necessary and sufficient condition as 
before: the non-existence of infinitesimals, in a given species of quantity 
Q, is necessary and sufficient for the non-existence in Q of different 
quantities having the same ratio to the same quantity. Clearly, Euclid's 
proof of Proposition V.9 must have made tacit use of the assumption 
that all pairs of magnitudes of a given kind have ratios; and indeed we 
find that his proof of Proposition V.8, upon which the proof of V.9 
depends, does do soft 

The need for this assumption was pointed out (presumably for the 
first time) by Archimedes, 9 in connection not with the theory of ratios, 
but with the closely related "method of exhaustion" - in effect, the 
method of limits: another great mathematical creation of Eudoxos. 
The assumption has come to be known as the Axiom of Archimedes; 
accordingly, we shall characterize as "Archimedean" any species of 
quantity each pair of whose elements has a ratio, and shall take the 
Eudoxean theory of proportion to deal in principle only with Archime- 
dean species. With this stipulation, we are in possession of a well- 
defined one-to-one mapping of the system of all possible Eudoxean 
ratios into the system of positive real numbers. 

4. D I S C R E T E  Q U A N T I T Y  A N D  M A G N I T U D E ;  O P E R A T I O N S  U P O N  

R A T I O S  

In the foregoing, the theory of proportion has been developed uni- 
forrnly for all Archimedean species of quantity, whether discrete or 
continuous; in particular, therefore, for numbers. Of course, it is 
clear that all our conditions, including the Archimedean condition, 
are satisfied by the positive integers (provided that we, unlike the 
Greeks, count 1 as a number - for otherwise condition (5) of Section 
2 above will not be met). 

Euclid does not in fact proceed in this way. After developing the 
Eudoxean theory for magnitudes in Book V, he gives an independent 
treatment for numbers, in terms of "multiples" and "parts" (i.e., 
submultiples), in Book VII (see Definition VII.20). It has often been 
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noted, however, that this leads to an incoherence in Euclid's expo- 
sition, when he speaks of the identity of some ratio of magnitudes with 
a ratio of numbers. And it is quite remarkable (this too is a well- 
known circumstance) that Aristotle already speaks of a unified theory of 
proport ion for all species of quantity; he says (Posterior Analytics I v 
74a18-25): 

That proportionals alternate [i.e., that a:b = c:d implies a:c = b:d  - assuming that all 
the quantities involved are of the same kind] might seem to hold for the terms qua 

numbers and qua lines and qua solids and qua times; since it used to be proved separately, 
although it is possible to prove it of all by a single demonstration. But because there was 
no one name for all these - numbers, lengths, times, solids - and they differ in species 
from one another,  they were taken up separately. But now it is proved universally; for 
the property indeed did not belong to them qua lines or qua numbers, but qua this 
[unnamed attribute] which is supposed to belong [to them universally]. 

If we consider an arbitrary Archimedean species of quantity Q, a 
number of interesting questions arise concerning the ratios of quantities 
of the kind Q. (Let us call these, for short, simply "ratios on Q" . )  
We may, for instance, ask: Onto what subset of the system of the 
real numbers are these ratios mapped by the correspondence we have 
defined? Again, we know that each ratio on Q is a one-to-one relation 
from some subset of Q to some subset of Q; we may ask, Is each of 
these subsets, for each such ratio, identical with Q? In other words: 
Does each ratio on Q define a function on Q? (For it is easy to see that 
if each ratio on Q does define a function on Q, these functions must 
map Q onto itself; indeed, each ratio on Q has an inverse that is also 
a ratio on Q.) A third question: Given quantities a, b, c, d, all in Q, 
do there exist quantities e, f,  g in Q, such that a : b = e : g and c : d = 
f :  g - i.e.: Do the ratios a : b and c : d admit a common denominator 
in Q? 

Of these three questions, the first and last may be asked "absolutely" 
as well - that is to say, may be asked of the system of all ratios that 
ever occur between quantities of any domain whatsoever. In other 
words, we may ask which real numbers correspond to Eudoxean ratios; 
and whether every pair of Eudoxean ratios can be expressed (in some 
species of quantity) with a common denominator.  

Now, questions of this "absolute" kind were never raised by the 
Greeks - the first obviously not, since the concept of real number was 
lacking, but  the last also not. The question can, as we have just seen, 
be posed in the terminology of Greek mathematics, but considerations 
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of "all possible species of quanti ty" were alien to the subject as far as 
the Greeks developed it. Aristotle offers an enumeration of species of 
quantity - discrete and continuous. The discrete are: number and lan- 
guage (the latter with reference to prosody). The continuous are: line, 
surface, solid, time, and place. He further remarks that these are, 
taken strictly, the only quantities - that whatever else is quantitative 
is so in some way "derivatively". 1° However,  one cannot assume that 
the exhaustiveness of this list was generally accepted, even by Aristotle 
himself. In the first place, there certainly are "derivative" magnitudes 
that Aristotle refers to elsewhere, namely velocity and density (cf. 
note 5). And in the second place, of these, although one - velocity 
- may be taken to be "derivative" from length and time (not, to be 
sure, in the sense of the term "derivative" that Aristotle indicates 
when discussing his enumeration),  the other - density - can only be 
referred back to volume and weight; which leaves weight itself as a 
presumed addendum to the list. But however this may be, the clear 
fact is that Greek  mathematics always presupposes, quite in the spirit 
of the Aristotelian view of the objects of mathematics as "existing in" 
things, that such kinds of quantity as there are are simply given in the 
natural world; that it is, one may say, the business of the mathemati- 
cian to study those he finds, not to speculate about what others are 
possible. More precisely: since certain conditions are assumed to hold 
of every kind of magnitude (or, more generally, of quantity), simple 
universal assertions about magnitude-kinds can be warranted; but no 
more complex sorts of generality than this - that is, than the generality 
expressible by free variables ranging over magnitude-kinds - are acces- 
sible. 

The issue of the "functionality" of the ratio-relations takes the form, 
in Greek mathematics, of the question of the existence of a "fourth 
proport ional"  to three given quantities: Given three quantities a, b, 
c, of which the first two are of the same kind, does there exist a 
quantity d, of the same kind as c, such that a : b = c : d? In Book IX, 
Proposition 19, Euclid discusses the question when this is and when it 
is not true in case the quantities involved are all numbers. 11 In Book 
VI, Proposition 12, he shows how to construct a fourth proportional 
to three given line-segments. But in the general theory of proportion 
in Book V (proof of Proposition 18), he makes tacit use of the assump- 
tion that a fourth proportional to three given magnitudes always exists. 
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It seems not unreasonable, in the light of this, to suppose that 
the existence of a fourth proportional was taken to be a property of 
magnitudes in general - that is, of "continuous",  as opposed to 
"discrete", quantity. 

It is easy to see that the functionality of ratios for a given species of 
quantity guarantees the existence of common denominators for that 
species. (The converse, of course, is false, as the example of the 
natural numbers shows.) This property is of particular interest in con- 
nection with what we may call (in the modern sense) the "algebra" of 
ratios: that is, ratios as a domain upon which operations are defined. 

Here what one finds in Euclid is quite interesting. He does indeed 
define six such operations: inversion, composition, separation, and 
conversion, which take a : b  to b : a ,  ( a + b ) : b ,  ( a - b ) : b ,  and 
a : (a - b), respectively (the last two, of course, under the assumption 
that a > b) (Defs. V.13-16); and duplication and triplication, which 
we should describe as the "square" and the "cube" of a ratio (Defs. 
V.9-10). In each of these cases, there is a theorem to be proved: 
namely, that if one substitutes for the quantities a, b, two others, c, 
d, having the same ratio, then the result of the operation expressed 
in terms of the second pair will be the same as the result expressed in 
terms of the first pair. In the case of inversion, this is immediately 
obvious from the definition of sameness of ratios; for composition and 
separation, Euclid proves what is required in Propositions V.17 and 
18. For conversion, the required theorem is not given by Euclid; but 
it is clear that this case is essentially like that of separation. 

For duplication and triplication, the situation is rather more com- 
plicated. In the first place, the theorem that these operations do indeed 
depend upon the given ratios, not upon the particular magnitudes by 
which they are represented, is not itself stated by Euclid. In the second 
place, however, he does state a much more general theorem, which 
concerns in effect a much more general operation - namely, the 
operation called "composition" in more modern terminology; but com- 
position of an arbitrary number of ratios (in a given order). 

First a point of terminological clarification: Euclid actually uses the 
same verb, o'vu~'[O~l~l, for the operation he defines as "composition", 
and for a second operation - the one we now call by that name; that 
is, if we think of ratios as functions, the operation that takes two or 
more functions in given order to the function that results from the 
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successive application of those functions in that order. In deference to 
what has become, since Heath, the custom among English-writing 
commentators on Euclid, I shall call the latter operation "compound- 
ing" rather than composition. 

Now, although Euclid does not formally define this second use of 
his term o-TJvOeo't~, he does define the operation of compounding an 
arbitrary sequence of ratios. He calls the result &' 'io'ov A6yoq - "a 
ratio ex aequali", in the standard rendering; and defines it as follows 
(Def. V.17): "A ratio ex aequali arises when, there being several 
magnitudes, and others equal to them in multitude, which taken two 
and two are in the same proportion, as the first is to the last among 
the first magnitudes, so is the first to the last among the second 
magnitudes; or, in other words, it means taking the extreme terms by 
virtue of the removal of the intermediate terms". 

This, it should be noted, is a bit odd. It seems almost to confuse 
the notions of ratio and of proportion; for no "ratio ex aequali" is 
actually defined. The definition in fact introduces a term that serves 
Euclid essentially as an abbreviated reference to a theorem - namely 
to Proposition V.22: "If there be any number of magnitudes whatever, 
and others equal to them in multitude, which taken two and two 
together are in the same ratio, they will also be in the same ratio ex 
aequali". (The term "ex aequali" in the enunciation of the theorem 
itself plainly serves no purpose, except as an abbreviation or tag to 
describe the situation considered.) But the ratio that plays the central 
role here - that of the first to the last of the magnitudes - is just the 
ratio compounded of the ratios of the successive terms in each series, 
and the asserted result, "sameness of the ratio ex aequali", is nothing 
but the required independence of the operation of compounding from 
the particular magnitudes in terms of which the compounded ratios are 
presented. Finally, it should be noted that for the existence, in general, 
within a given magnitude-kind, of compounds of arbitrary ratios in 
that kind, what is required is the existence of common denominators; 12 
thus, if we proceed on the view that discrete quantity is represented 
just by number, and continuous quantity by magnitude-kinds for which 
fourth proportionals always exist, compounding of arbitrary ratios will 
always be possible within a given species of quantity. (The possibility 
has not so far been ruled out that there are pairs of ratios that never 
hold respectively for two pairs of magnitudes all of the same kind; the 
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result of compounding two such ratios would then be undefined.) It 
should be noted, in connection with the operation of compounding, 
that Proposition V.23 establishes the commutativity of this operation 
(a result that is by no means trivial; it is of course not true in general 
for the composition of relations or functions). 

The compounding of ratios corresponds, of course, to what we call 
multiplication of real numbers. The question arises, did the Greeks 
have an operation upon ratios that corresponds to our "addit ion"? 

The answer to this is a little ambiguous. The standard answer would 
be a simple negative. Now, it is certainly true that the Greek mathema- 
ticians never speak of adding ratios: quantities are added; and ratios 
are not, for them, quantities (see, however, the remark just below 
on Archimedes). But it is equally true that these mathematicians never 
speak of "multiplying" ratios; yet they do have the operation we call 
by that name, and they have a name for it. (The terminology of 
Archimedes here deviates from Euclid's; he avoids the ambiguity of 
using the same verb and its derivatives for two operations. Archimedes 
has more than one term for "compounding".  It is somewhat curious to 
note that one of his expressions for " the ratio compounded of that of 
a to b and that of b to c" is simply " the ratio of a to b and [in Greek: 
Kol(] that of b to c" - which tempts one to think of compounding as 
a kind of "addit ion" of ratios. This notion fits with the terms "duplicate, 
triplicate, [etc.], ratio",  and also with that, still current for us, of 
the "mean proport ional" .)  13 

For  the addition of ratios in our sense, the Greeks have no name 
at all, and this justifies what I have called the standard negative answer 
to our question. Nevertheless, the operation of taking the ratio, to a 
given magnitude as "denominator" ,  of a sum of magnitudes taken as 
"numera tor" ,  is of frequent occurrence; and one finds in Euclid just 
the theorem required to establish that the result depends only upon the 
respective ratios, to the common denominator,  of the magnitudes 
summed to form the numerator  - Proposition V.24: "If  a first magni- 
tude have to a second the same ratio that a third has to a fourth, and 
also a fifth have to the second the same ratio as a sixth to the fourth, 
the first and fifth added together will have to the second the same ratio 
that the third and sixth have to the fourth".  In this not unimportant 
sense, then, the Greeks did have available the operation on ratios 
that we know as addition. 
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5 .  D E D E K I N D  O N C E  A G A I N ;  T H E  C O N T I N U I T Y  OF T H E  

S T R A I G H T  L I N E  

To be able to answer the remaining question raised in the preceding 
section, we need something new. 

It is possible to argue - I think convincingly - that one way to arrive 
at a definite answer is already implicit in Greek mathematics. I have 
suggested that 'continuous quantity' or 'magnitude' may be charac- 
terized for the Greeks by the existence of the fourth proportional; but 
although it is plausible to regard this as a distinguishing mark, for 
them, of magnitude in contrast to number, it cannot be considered 
as expressing what they meant by the "continuity" of magnitude (as 
opposed to the "discreteness" of number). It will be convenient, before 
considering the Greek conception further, to digress briefly to the 
modern conception. 

In the year 1872 there appeared both the well-known little mono- 
graph of Dedekind on continuity and irrational numbers, 14 and a work, 
perhaps less well known to a philosophical audience, in which Georg 
Cantor sketched a treatment of essentially the same subject from a 
different point of view but with equivalent results. 15 In particular, both 
Cantor and Dedekind pointed out the necessity, for a complete theory 
of classical geometry, of introducing an axiom to assert what Dedekind 
called "the continuity of the straight line ''~6 - namely, taking the line 
as ordered by the relation "to the left of" ,  the principle that if the 
line is in any way divided into two parts, of which each point of one 
is to the left of each point of the other, then either the "leffhand" 
part has a rightmost point, or the "righthand" part has a leftmost 
point. 

Now, such an axiom is by no means necessary for the geometry 
contained in Euclid's Elements - a fact already emphasized by Dede- 
kind himself in the preface to the first edition of his monograph on the 
natural numbers. ~7 Indeed, if E is the smallest subfield of the field of 
real numbers that is closed under the operation of taking the positive 
square root of a positive quantity, then analytic geometry over the 
field E admits all Euclidean constructions, and in it all the theorems 
of the Elements are true; but (of course) this geometry does not satisfy 
Dedekind's axiom of continuity. E itself, one should note, cannot be 
the subset of the reals corresponding to the full domain of ratios for 
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Euclid's geometry (even if it be taken to correspond to the full domain 
of ratios of straight line-segments) - for the ratio of the area of a circle 
to that of the square on its radius can be proved to exist (strictly on 
Euclid's principles); and this ratio does not belong to E, as Lindemann 
demonstrated in 1882. If, furthermore, we admit the existence of the 
straight line-segments aimed at (or implied by) the famous construction 
problems of classical geometry - implied, that is, by the existence of 
a cube double in volume to a given cube; an angle one-third of a given 
angle; (or more generally, an angle equal to an arbitrary "part"  of a 
given angle); a square equal in area to a given circle (or, equivalently, 
a line whose length is equal to the circumference of a given circle) - 
one gets, in the first two cases, new ratios altogether, and in the 
third, new ratios of straight line-segments. It is unclear where this 
process should end. 

On the other hand, there are reasons - suggestive, and, I think, 
plausible, even if not conclusive - for believing that the Greek geome- 
ters would have accepted Dedekind's axiom, just as they did that of 
Archimedes, once it had been stated. For instance, in the treatise 
Measure of  the Circle, Archimedes admits the existence of a straight 
line-segment equal to the circumference of a given circle; and in the 
treatise On Spirals, he proves the existence of such a line. Namely, 
he proves the beautiful theorem (Proposition 18) that the tangent to 
his spiral at the endpoint A of its first turn meets the line through the 
origin O of the spiral and perpendicular to OA in a point whose distance 
from O is equal to the circumference of the circle of radius OA. But 
such a line does not exist in the geometry based upon the field E; so 
it is clear that Archimedes must make use, in his proof, of some mode 
of argument that transgresses the framework of the Elements. Now, 
the only point in the proof that can possibly be challenged is the 
assumption that the tangent in question exists. And it is hard to think 
of a natural principle upon which the proof of its existence can be based 
that is not equivalent to Dedekind's principle of continuity. 

This geometrical consideration can be supplemented by a philosoph- 
ical one, if we are willing to take Aristotle as authoritative here. 
Aristotle offers the following definition of the "continuous": la First, 
he defines "contiguous" as "next in succession, and touching". Then 
he declares continuity to be a kind of contiguity: "I  call [contiguous 
things] continuous when the extremes that touch and hold them together 



180 H O W A R D  S T E I N  

become one and the same". This is undeniably a little vague, but it 
does suggest a warrant for arguments of the following type: "Let  a half- 
line with origin O be divided into two parts, so that all the points of 
the first have a distance from O no greater than the circumference of 
a given circle, and all the points of the second have a distance from 
O no smaller than that circumference. Clearly, nothing stands between 
these parts; therefore they are contiguous. But the line is a continuous 
magnitude; therefore these parts have a common extremity". 

To be sure, there is a weak point in this argument if we base it upon 
Aristotle's very words: one might object that the fact that "nothing 
stands between" the two parts does not establish their contiguity, since 
it does not establish that the two "touch".  But it is hard to believe 
that Aristotle would countenance this objection. (On another count, 
Aristotle does reject the argument: in Phys. VII iv 248a18-b7, he 
contends that a circular arc cannot be greater or smaller than a line 
segment, on the grounds that if it could be greater or smaller, it could 
also be equal. This, however, denies, not the validity of arguments 
of the type suggested above, but the truth of the premises in the 
example. Moreover, Aristotle's intimation that the possibility of 
"greater" and "less" implies that of "equal"  can even be taken to 
support the view that the reasoning in the example is sound: that if the 
premises were correct, the conclusion would follow.) 

It is worth putting on record here an ingenious argument, suggested 
to me orally by W. Tait, for Dedekind's principle as implicit in Greek 
geometry - an argument drawn after all from the Elements itself, 
namely from Definition 3 of Book I: "The extremities of a line are 
points". Clearly, this in no sense defines anything; but on Tait's read- 
ing, the "definition" is in effect a formulation of Dedekind's principle. 
In the argument given above, for instance, one considers the part of 
the line that is "closer" to O, and reasons thus: "That  part is a finite 
line" (this is Euclid's only term for a "line-segment"; indeed, he 
ordinarily refers to such simply as a "line"); "therefore its extremities 
are points: namely, O, and a second point which can only be at a 
distance from O equal to the circumference of the circle". 

I do not offer any of the foregoing considerations as more than 
plausible; but if the conclusion from any of them is accepted, it does 
follow that every real number corresponds to a Eudoxean ratio, indeed 
to a ratio of straight line-segments. 
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6. M A G N I T U D E  R E C O N S I D E R E D :  F R O M  T H E  A N C I E N T  T O  T H E  

M O D E R N  M O D E  

Dedekind, of course, aimed to make the theory of the real numbers, 
and of continuity and limits, fully independent of geometric intuition 
(or "geometric evidence"). ~9 It seems of interest to examine how far 
the Eudoxean theory itself can be made to serve this end. 2° 

If it is to do so, it is absolutely necessary that the concept of 
magnitude be freed from dependence upon anything empirically given. 
Thus, in the spirit of modern mathematics (with explicit acknowledg- 
ment that we here take a step that is foreign to the Greek view), we 
make of the conditions earlier laid down for a species of quantity a 
definition of the notion of such a species. By a species of quantity, 
then, we henceforth understand any domain and binary operation on 
that domain satisfying the conditions (1)-(5) of Section 2 above to- 
gether with the Axiom of Archimedes. 

It has already been pointed out that the Eudoxean ratios instantiated 
in any species of quantity for which common denominators exist allow 
the mode of composition we now call "addition"; and even that this 
mode of composition was known (in effect) by the Greek mathemati- 
cians. It is trivial to verify that this operation on any such ratio-domain 
satisfies all our conditions for a species of quantity. (Once again it 
should be emphasized that the Greeks did not regard ratios as quanti- 
ties. Nevertheless, their ratios formed, in the indicated sense, a 
domain - or domains, when we consider various classes of ratios - of 
quantities, in our present sense of the term.) 

In particular, then, the ratios of numbers form (with the indicated 
operation) a species of quantity; and in accordance with modern usage, 
we call this the domain of "positive rational numbers". The ratios of 
such rational numbers are of course themselves already ratios of whole 
numbers, hence are themselves rational numbers. 

Now we may, following Dedekind (lightly modified), consider the 
domain of all cuts in the system of positive rational numbers. This 
domain can be given the structure of a species of quantity (indeed, of 
magnitude in the strongest possible sense of the term), by introducing 
a suitable operation of "addition of cuts": the "upper set" of the sum 
of two cuts is, by definition, the set of sums of elements belonging 
respectively to the upper sets of the summands. It is easy to see that 
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this procedure does indeed define a new Dedekind cut (in the sense of 
the discussion in Section 3 above, including the provision that the 
upper set contain no smallest element); and further, that the system 
of all these cuts, under this operation, constitutes an Archimedean 
species of quantity or magnitude-kind. Let us call this magnitude- 
domain D + (the 'positive Dedekind domain'). If, now, we consider a 
particular magnitude d in D ÷, and we let 1 be the Dedekind cut whose 
lower set consists of all the positive rational numbers ~< 1, then it turns 
out that the Dedekind cut that corresponds (in the sense of Section 3 
above) to the ratio d : l  is just d itself; so indeed every cut in the 
system of positive rational numbers "is" (that is, corresponds to, or 
"determines") a ratio - and beyond this, corresponds to a ratio of 
elements of one particular magnitude-kind, fixed once for all: the 
domain D +. On the other hand, because the elements of D ÷, by virtue 
of what we have now established, correspond one-to-one to the system 
of all Eudoxean ratios, and by a correspondence that is easily seen to 
take sums to sums, we are led to the conclusion that the domain of 
all Eudoxean ratios, with its "natural"  operation of addition, itself 
constitutes an Archimedean magnitude-kind possessing Dedekindian 
continuity; all Eudoxean ratios of quantities of any Archimedean spe- 
cies occur as ratios of magnitudes of this one kind. 

In effect, therefore, with the help both of our more abstract and 
general notion of a species of quantity, and of Dedekind's construction 
applied to the rational numbers, we have established the identity of 
the system of Eudoxean ratios with the system R + of the positive real 
numbers; for since the operation of "compounding" is available for 
the ratios, alongside the operation of addition, the structure obtained 
is not only that of a positive ordered semigroup, as required for a 
species of quantity, but that of a positive ordered "semifield": that is, 
it is the structure of the positive elements of an ordered field, and 
moreover of a "complete" ordered field in the modern algebraic 
sense, m 

7 .  R E F L E C T I O N S  ON T H E  D E C L I N E  OF G R E E K  M A T H E M A T I C S  

Certain comments about the gap between Greek and modern mathe- 
matics - in particular, about aspects of the Greek point of view that 
made developments like those that took place in the seventeenth cen- 
tury essentially impossible for the Greeks - occur in the literature 
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frequently enough to have become clich6s. It seems worthwhile here 
to reconsider some of these. 

Perhaps the central issue is whether the Greek distinction between 
number and magnitude, and the associated fact that whereas numbers 
can be both added and multiplied, magnitudes can only be added, 
constituted an essential handicap - overcome in the late Renaissance 
by the more casual, one might say more "Babylonian" attitude that 
then prevailed. 

Now it is important, in discussing a matter of this kind, to keep 
clearly in mind a certain peculiarity of the question. It is a peculiarity 
related to the topic of anachronism - itself one on which I believe that 
historians of science and mathematics often make too hasty judgments. 
In respect of anachronism, the issue becomes joined when the sugges- 
tion that some investigator possessed a certain conception or arrived at 
a certain result (characterized, perhaps, in the terminology of a later 
period) is dismissed with the argument that that is impossible, because 
that conception or result was unknown at the time. I hope it is clear 
to the reader, when it is stated thus baldly and abstractly, that to 
argue so is just to beg the question: if, for instance (as I happen to 
have argued myself, and to believe firmly), Newton possessed a 
conception that can be characterized in our own terms as that of a 
"field of force", then the objection that that is impossible because such 
a conception was unknown at the time will be simply false. An analogue 
in the present case is presented by the question whether the Greeks 
possessed a notion equivalent to the concept of a certain subsystem of 
the positive reals that contains the positive integers and is closed under 
addition, multiplication, and extraction of square roots. (This is, of 
course, not the same as possessing the conception of such a system as 

a subsystem of the positive real numbers: the latter, but not the former, 
presupposes the conception of the totality of positive real numbers.) 
This question, it seems to me, can be answered decisively in the 
affirmative: for the considerations already presented show that the 
Eudoxean ratios, with the operations on such ratios known to (although 
not always emphasized, or even named, by) the Greek mathemati- 
cians, constitute such a system. 

But suppose we now raise the question, "Could  Greek mathematics 
possibly have attained to the conception of the full system of real 
numbers (or of positive real numbers)?" In this case, there is no 
doubt that Greek mathematics did not in fact attain to that conception. 
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Therefore, in this case, the objection of anachronism does not beg 
the question, but is quasi-irrelevant to it - this is the peculiarity, and 
the somewhat delicate point. What we are interested in here is some- 
thing like "accessibility": an estimate of how far the Greeks were from 
a certain conception, how much they would have had to do to attain 
it. And here the negative argument that one encounters, related to 
that against anachronism, is an appeal to what may be called the 
"spirit" of Greek mathematics: e.g., that the allegedly anti-calcu- 
lational bias of the Greek mathematicians, in contrast to that of the 
Babylonians or that of the Renaissance, makes such a step impossible 
for them. 

The point is a genuinely delicate one, and in its nature not susceptible 
of definitive factual resolution, on the basis of either empirical or 
logical evidence. I am concerned at this point to urge the view that 
such an issue is to be treated deliberately as delicate, not as simple; 
to plead therefore on behalf of caution with regard to judgments either 
way, and of openminded willingness to reflect upon alternatives; bear- 
ing always in mind that we are speaking of possibilities, not of what 
may have been, but only of what might have been. 

The question of the possibilities inherent in the Greek mathematical 
tradition is closely tied to the question of the reasons for the decline 
of that tradition. The reigning view, since the great work of Zeuthen 
on Greek mathematics, has been that that decline was in part the 
consequence of inherent limitations, which Zeuthen himself summa- 
rizes as follows: (1) The care for unassailable rigor tended to conceal 
"whatever might facilitate the initial approach to questions, permit 
them to be grasped at a glance, or make clearer the aim of each 
operation". (2) (a) The ingenious geometrical form in which the Greek 
mathematicians represented what we describe as algebraic relationships 
was limited to relationships of at most the third degree; moreover, (b) 
although this "geometric algebra" is (within its limits) a perfectly clear 

-~nd convenient instrument for anyone who has mastered it, the peda- 
gogical problem of communicating its principles to a pupil is very 
difficult except in face-to-face oral presentation - its written representa- 
tion is very difficult for the neophyte to follow. (3) Besides these two 
"defects that chiefly concern the form [of exposition]", there was 
another "related to the very foundation"; namely, "the Greek mathe- 
maticians had so high an idea of their scientific dignity that they ex- 
cluded from their classic works whatever did not seem to them perfectly 
rigorous", and "in consequence actual numerical calculations that 
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could not regularly furnish more than an approximation were excluded, 
and relegated to a less esteemed science, logistic". 22 Heath does no 
more than echo Zeuthen's view, with less subtlety: 

IT]he further progress of geometry on general lines was practically barred by the restric- 
tions of method and form which were inseparable from the classical Greek geometry . . . .  
[T]he Greeks could not get very f a r . . . i n  the absence of some system of coordinates 
and without freer means of manipulation such as are afforded by modern algebra, in 
contrast to the geometrical algebra, which could only deal with equations connecting 
lines, areas, and volumes, but involving no higher dimensions than three, except in 
so far as the use of proportions allowed a very partial exemption from this limitation . . . .  
The restriction then of the algebra employed by geometers to the geometrical form of 
algebra operated as an insuperable obstacle to any really new departure in theoretical 
geometry. 23 

We have already seen, however, that the Greek theory of proportion 
in fact contained the means by which quite arbitrary algebraic relation- 
ships could have been represented: for products and powers could be 
(and were) represented by compounding of ratios, and sums could 
equally have been represented by an operation on ratios (whatever 
terminology might have been introduced for this operation). Moreover, 
that such operations stood in clear correspondence with those of the 
geometric algebra, and also with those of ordinary arithmetic, was 
certainly not unknown to the Greeks. It is true that they distinguished 
the operations of multiplication of numbers, of forming the rectangle 
of two lines, and of compounding two ratios; but they knew perfectly 
well the connections among these operations. This is even reflected in 
their numerical terminology: for a product of two numbers is called a 
"plane" number, and its factors are called its "sides". 24 It is true, as 
Zeuthen remarks, 25 that the terminology of the theory of proportion 
makes the general representation of algebraic relationships awkward; 
but he adds, with his usual good sense, that this was in itself no 
"insuperable obstacle": what would have been required was a suitable 
symbolism (or possibly some perspicuous alternative), and there was 
no objection in principle by the Greek mathematicians to the use of 
symbols. 26 Zeuthen concludes that "to understand why no such exten- 
sion of the Greek algebra occurred, we must envisage what the Greeks 
had gained in respect of theory by attaching algebra to a geometric 
representation and to the theory of proportion"; and goes on to discuss 
the fundamental difference, for the Greeks, between numerical - 
which is to say, rational - relationships, and operations upon incom- 
mensurable quantities. But this seems to me off the point. The issue is 
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not whether one ought to confuse numerical (that is to say, integral 
or rational) operations and relations, on the one hand, with those 
involving incommensurable magnitudes, on the other - of course, one 
should not! - but whether the Greeks were in a position to develop a 
general theory that would subsume all such relations and operations. 
As I have tried to make clear, the Eudoxean theory of proportion, 
with the Archimedean complement, is in fact such a theory. What has 
to be explained is why the Greeks failed to exploit this potentiality of 
a theory they actually possessed. 

As to Zeuthen's remark that "actual numerical calculations that could 
not regularly furnish more than an approximation" were excluded, by 
the Greek mathematicians, "from their classic works", it has to be 
taken with some caution. In the first place, construed quite literally, 
it is simply not true. Among the "classic works" of Greek geometry at 
least two concern themselves explicitly with approximations: Archi- 
medes' Sand-reckoner and his Measure of  the Circle. If the approxi- 
mation in question in the former work is fanciful, and has moreover 
the character of a tour de force (the problem Archimedes claims to 
solve being that of actually naming a number greater than the number 
of grains of sand that would fill the universe), the work nevertheless 
contains not only an explicit treatment of the problem of devising a 
systematic notation capable of representing extremely large numbers 
in a modest space, but also a discussion of an experimental, instrumen- 
tal method of determining upper and lower estimates of a quantity of 
great astronomical importance - namely, the apparent diameter of the 
sun. As to the Measure of  the Circle, its whole aim is to give a 
serviceable rational approximation, again in the form of upper and 
lower estimates, to the ratio of the circumference of a circle to its 
diameter; thus it consists precisely in "numerical calculations", leading 
to a result useful in further calculations, that "could not furn ish . . .  
more than an approximation". Moreover, the calculations carried out 
proceed by using analogous (upper and lower, rational) estimates of 
the square roots of integers (including rather large integers). 

The one sense in which Zeuthen's statement may be regarded as 
correct is that, although Archimedes uses numerical approximations, 
and with the help of a geometrical construction and argument derives 
from them the approximation he is seeking to a fundamental geometric 
ratio, he does not explain the methods by which the estimates employed 
along the way - the approximations to square roots - were actually 
obtained. In other words, it may fairly be claimed, not that numerical 
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calculations or approximations do not occur in the"classical" mathema- 
tical works, but that those works do not systematically discuss numeri- 
cal methods. This, however, serves to prove the weakness of the 
point; for what decayed, after the great age that terminated with 
Apollonios, was the creative tradition of Greek g e o m e t r y  - the com- 
mand of numerical methods was not in fact lost, as the work of the 
great Greek astronomers down through Ptolemy shows conclusively. 

Of the considerations adduced by Zeuthen, the one that seems 
most convincing as an obstacle to the continuation of the mathematical 
tradition is the difficulty confronting any student who attempts to master 
the Greek "algebra" on the basis of the written expositions alone, 
without the direct guidance of a teacher who is himself a master of the 
subject. 27 There are two reasons, however, why this cannot be re- 
garded as a primary explanation for the decline of the tradition - one, 
so to speak, intrinsic, and one a matter of historical fact. The first is 
implicit in a statement of Zeuthen's own. Speaking of the limitation of 
the geometric algebra to representation of small exponents, he re- 
marks: 28 "We cannot rest upon the fact that this limit did exist and 
that there was no particular prospect of surmounting it, a f t e r  the time 
of decline had begun: we require positive grounds to explain why that 
limit was not surmounted already in the flourishing time, whether by 
the development of a symbolism (even a rudimentary one), or perhaps 
in some other way". Clearly the difficulty of learning without a master 
became a fundamental problem only when masters were no longer 
available: while the tradition flourished, it did so in spite of that 
difficulty. 

The second reason why the explanation cannot be regarded as a basic 
one lies in the simple fact that for centuries after Apollonios of Perga 
- called "the Great Geometer", and by common consent the last of 
the truly great Greek geometers - the geometric algebra was quite 
competently handled by generation after generation of "epigones". a9 
On the other hand, the great new flourishing of mathematics and its 
application to the physical sciences that eventually occurred in Europe 
after a long period of total eclipse of the tradition, was closely con- 
nected with the recovery and mastery of the great documents of Greek 
geometry: the texts of Euclid, Archimedes, and Apollonios) ° Thus 
neither the actual historical circumstances of the decline nor those of 
the subsequent renascence of the creative development of mathematics 
support the view that the sheer technical difficulty of the Greek methods 
was of primary importance. 
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I should like, however, to suggest another  aspect of the point about 
personal contact with a master that I think has some claim to be 
considered as an essential factor in this connection - not, to be sure, 
as a "cause"  of the decline, but as a condition that contributed to the 
likelihood of such a thing, Even in the post-Renaissance period - even 
in our own time, with its unprecedented flourishing of mathematics - 
it has been extremely rare for a creative mathematical talent to develop 
without the stimulus of first-rate teachers, and of teachers who them- 
selves are productive mathematicians: we have not had many Ramanu- 
jans. One ought to consider how much more this would have been so 
in a period when there was not only nothing like the system of university 
careers we now have, but when written treatises themselves could have 
been available only to very few. And then one should consider the 
question, What are the conditions required for the stable, reliable 
propagation through time of a productive mathematical tradition? It 
seems clear enough that a necessary condition for this is the existence 
of a mathematical community - by which term I mean a sufficient 
number  (I do not say how many is sufficient) of creative mathemati- 
cians, in communication with one another and interested in one an- 
other 's work; and a considerably larger audience, also interested in 
the subject, who will provide, in some way or other,  a base of 
economic support for the enterprise and a pool of students large enough 
to make probable a community of the same complexion in the next 
generation. 

Now, it is evident that these conditions were realized for a period 
of perhaps two and a half, perhaps as long as nearly four centuries, 
among the Greeks. 31 That in itself is very remarkable - the develop- 
ment ab ovo of such a mathematical culture is, indeed, a unique 
occurrence in human history, and stands in the development of human 
knowledge in something like the position of the appearance of a new 
species in biological evolution. (This claim may seem to ignore the fact 
that mathematical knowledge existed in other,  and earlier, cultures - 

for instance, in that of Mesopotamia, whose direct influence upon 
the Greeks in stimulating their mathematics now seems highly probable. 
I shall return to this point presently.) But it is well known to evolution- 
ary biologists that the ordinary fate of a species is extinction. So - to 
pursue the analogy - we have to ask both how substantial was the 
breeding population (the mathematical community I have referred to 
above), and how stable was its ecological niche. 
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Having suggested a series of questions about both the historical and 
the theoretical sociology of mathematics - What are the conditions for 
a stable creative community, and to what extent were these conditions 
realized among the Greeks? - I have to confess myself unqualified to 
offer expert answers to them (although I shall offer a tentative guess). 
But I wish now to present some reflections, first upon the mathematics 
of the Babylonians, and then upon the works of Archimedes, that 
bear upon these questions. 

There seems considerable likelihood, as I have remarked above, 
that the interest of the Greeks in mathematics was stimulated by contact 
with the Mesopotamian tradition, which, as we now know, included 
not only a quite remarkable mastery of algebraic techniques, but also 
a fund of geometrical knowledge - including, for instance, knowledge 
of what we call the "Pythagorean Theorem". 32 There are, in point of 
our present concerns, three salient features of that tradition. First, the 
literature of the tradition gives us no information whatever concerning 
the methods by which this knowledge was obtained. Neugebauer divides 
this literature into two classes - "table texts" (e.g., multiplication 
tables and tables of reciprocals) and "problem texts" (containing either 
lists of numerically posed problems alone, or also instruction in the 
procedures for solving those problems). The problem texts in particular, 
insofar as they contain methods for solving the problems, are purely 
prescriptive - "recipe" or "cookbook" methods. Thus, for instance, 
we do not know whether the Pythagorean Theorem was known on the 
basis of an argument from more evident principles, or whether it was 
inferred empirically from the measurement of simple right triangles; 
we do know, on the other hand, that at least those pedagogical 
materials that have been preserved and studied by our historians reveal 
no interest at all in communicating the evidence for the correctness of 
the procedures inculcated. Second, the knowledge itself seems to have 
been cultivated entirely for some sort or other of practical application 
(priestly, commercial, agricultural). Theoretical notions such as from 
very early times fascinated the Greeks - e.g., the distinction of prime 
and composite numbers, or that of commensurable and incommensur- 
able magnitudes - are entirely lacking. The Babylonians possessed a 
very good approximation to the value of the square root of 2; for ~" 
they ordinarily used the very crude value 3, but they also had the 
better one 25/8; in neither case, however, is there shown any interest 
in the nature of the precise value that is thus "approximated". 
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T h e  th i rd  sa l ien t  f ea tu re  of  the  B a b y l o n i a n  t r ad i t i on  has ,  I th ink ,  
an ev iden t  connec t ion  with the  p r eced ing  two.  I quo te  N e u g e b a u e r :  33 

. . .  [T]he texts on which our study is based belong to two sharply limited and widely 
separated periods. The great majority of mathematical texts are "Old-Babylonian"; that 
is to say, they are contemporary with the Hammurapi dynasty, thus roughly belonging 
to the period from 1800 to 1600 B.C. The second, and much smaller, group is "Seleucid", 
i.e. datable to the last three centuries B.C . . . .  The more than one thousand intervening 
years influenced the form of signs and the language to such a degree that one is safe in 
assigning a text to either one of the two periods. 

So far as the contents are concerned, little change can be observed from one group 
to the other. The only essential progress which was made consists in the use of the "zero" 
sign in the Seleucid texts . . . .  It is further noticeable that numerical tables. . .were 
computed to a much larger extent than known from the earlier period, though no new 
principle is involved which would not have been fully available to the Old-Babylonian 
scribes. It seems plausible that the expansion of numerical procedures is related to the 
development of a mathematical astronomy in this latest phase of Mesopotamian science. 

These  charac te r i s t i cs  of  B a b y l o n i a n  m a t h e m a t i c s  m a y  be  s u m m e d  up 
in the  s t a t e m e n t  tha t ,  for  the  B a b y l o n i a n s ,  m a t h e m a t i c s  was no t  an 
enterprise, bu t  a lo re  and  a skill  possessed  b y  the  pr ies t ly  or  scr ibal  
class,  for  use  in essen t ia l ly  admin i s t r a t ive  funct ions ,  and  pa s sed  on 
f rom g e n e r a t i o n  to  g e n e r a t i o n  much  as were  the  t echn iques  of  the  craf t  
gui lds  in the  m i d d l e  ages.  O f  course ,  the  t echn iques  had  to have  been  
d i scovered ;  and  innova t ions  migh t  occur  f rom t ime  to t ime;  but  
i nven t ion  o r  d i scovery  was no  m o r e  the  bus iness  o f  those  t r a ined  in the  
lore ,  t han  it was the  bus iness  o f  the  m e d i e v a l  m a s t e r  of  a craft .  Tha t  
the  t r ad i t i on  p r e s e r v e d  no  h is tor ica l  r e c o r d  of  d i scover ies  should ,  I 
th ink ,  be  seen  as a co r r e l a t e  of  the  fact  tha t  it  showed  no  in te res t  in 
new discover ies .  34 

I t  is suff iciently ev iden t  tha t  the  s i tua t ion  of  G r e e k  m a t h e m a t i c s  was 
rad ica l ly  d i f ferent .  I t  is this u n p r e c e d e n t e d  d i f fe rence  tha t  I have  ea r l i e r  
cha rac t e r i zed  as a un ique  occu r rence  in h u m a n  h is tory  (for  of  course  the  
m a t h e m a t i c a l  t r ad i t i on  of  the  m o d e r n  p e r i o d  bui l t  u p o n  the  r e c o v e r e d  
k n o w l e d g e  of  tha t  of  the  G r e e k s ) .  Bu t  to see  vividly jus t  how di f fe ren t  
it  was ,  some  cons ide r a t i on  o f  the  works  of  A r c h i m e d e s  will  be  useful.  
I t  is a b o v e  all the  p r e f a t o r y  epis t les  to A r c h i m e d e s ' s  t rea t i ses  tha t  a re  
mos t  ins t ruc t ive  here .  These  p re faces  s eem to m e  to have  r ece ived  less 
a t t en t ion  than  they  dese rve  in the  h is tor ica l  l i t e r a tu re  - and ,  when  
a t t e n d e d  to ,  to  have  b e e n  i n a d e q u a t e l y  a p p r e c i a t e d ,  even  mi sunde r -  
s tood .  I be l i eve  tha t  t hey  p r o v i d e  p rec ious  i n fo rma t ion  abou t  the  na tu r e  
of  the  c o m m u n i t y  of  G r e e k  g e o m e t e r s  at  the  p e a k  o f  its ach i evemen t s ,  
jus t  be fo re  the  dec l ine  set in. 
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Note first that, of the great original documents of Greek mathematics 
preserved to us - the Elements of Euclid, the works of Archimedes, 
and the Conics of Apollonios - the works of Archimedes alone are 
primarily expositions of original investigations (for although Apollonios 
was unquestionably a geometer of great originality, who contributed 
profoundly to the subject he expounds, the intention of his treatise is 
encyclopedic: it is a summa of conics, incorporating the results of more 
than a century of research). 

Most of the works of Archimedes that have been preserved take the 
form of epistles to other mathematicians, introduced by general re- 
marks about their contents; remarks that relate those contents in some 
way to the wider context of inquiry. 3s A most striking characteristic 
of these introductory remarks is the strong desire they manifest on 
Archimedes's part not merely to contribute to mathematical knowledge, 
but to stimulate investigation by others. This is evident above all in the 
famous Method, whose whole purpose is to explain a heuristic tech- 
nique which Archimedes has found valuable in his own researches. It 
is worth quoting at some length from the introduction to that work, 
addressed to Eratosthenes (I use here the version of T. L. Heath; 
passages in brackets correspond to restorations of the Greek text by 
Heiberg, its discoverer, in places where, the palimpsest manuscript 
was illegible): 36 

Seeing . . .  in y o u . . ,  an earnest student, a man of considerable eminence in philosophy, 
and an admirer [of mathematical inquiry], I thought fit to write out for you and explain 
in de ta i l . . ,  the peculiarity of a certain method, by which it will be possible for you to 
get a start to enable you to investigate some of the problems in mathematics by means 
of mechanics. This procedure is, I am persuaded, no less useful even for the proof of 
the theorems themselves; for certain things first became clear to me by a mechanical 
method, although they had to be investigated by geometry afterwards because their 
investigation by the said method did not furnish an actual demonstration. But it is of 
course easier, when we have previously acquired, by the method, some knowledge of 
the questions, to supply the proof than it is to find it without any previous knowledge. 
This is the reason why, in the case of the theorems the proof of which Eudoxus was the 
first to discover, namely that the cone is a third part of the cylinder, and the pyramid 
of the prism, having the same base and equal height, we should give no small share of 
the credit to Democritus who was the first to make the assertion with regard to the said 
figure though he did not prove it. I am myself in the position of having first made the 
discovery of the theorem now to be published [by the method indicated], and I deem it 
necessary to expound the method partly because ! have already spoken of it and I do 
not want to be thought to have uttered vain words, but equally because I am persuaded 
that it will be of no little service to mathematics; for I apprehend that some, either of 
my contemporaries or of my successors , will, by means of the method when once 
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established, be able to discover other theorems in addition, which have not yet occurred 
to me. 

This passage beautifully illustrates the counterpart of a point made 
above concerning the absence of any interest in the history of the 
subject in the Babylonian literature: Archimedes, clearly, is interested 
in the past b e c a u s e  he is interested in the future - the relation of 
Demokritos's contributions to those of Eudoxos illustrates, he says, 
an important feature of mathematical progress. The passage shows, 
moreover, that Zeuthen (writing before the discovery of this treatise) 
was not entirely right when he spoke of the Greeks' concern for rigor 
as leading them "to conceal whatever might facilitate the initial ap- 
proach to questions". Of course, Zeuthen's  comment remains true, 
insofar as the main body of Greek mathematical exposition does not 
address heuristic concerns. But the existence of Archimedes's treatise 
not only constitutes an exception to that general rule - it also shows 
that the Greek spirit of rigor was not incompatible with an impulse 
toward heuristic exposition; so that (one may say) if we had only had 
another Archimedes, we might have had more such works. And when 
one considers that the method of Archimedes involved not only con- 
siderations about centers of gravity (which is what makes it "mechan- 
ical"), but also the analysis of areas into "sums" of l ines  and volumes 
into "sums" of p l a n e s  - in short, the techniques codified in the seven- 
teenth century by Cavaliere as the "method of indivisibles" - the 
potential fruits of the systematic elaboration of these ideas can be seen 
to be rich indeed. 

The compatibility between the heuristic and the rigorous, clear 
enough in the passage quoted, is expressed again, rather poignantly, 
after the "mechanical" discussion of the first proposition, where Arch- 
imedes comments 37 that the proposition "is not actually demonstrated 
by what has been said; but [the latter] has created a certain impression 
[or "appearance"] that the conclusion is true. We, therefore, seeing 
that it has not been demonstrated, but surmising the conclusion to be 
true, shall arrange 38 the geometrical demonstration that we ourselves 
have discovered and published". This surely displays a very clear - 
and sophisticated - appreciation, on the one hand of the power and 
importance of heuristic procedures, and on the other of the difference 
between a well-motivated conjecture and a proof. 

Both that awareness, and the concern to stimulate mathematical 
investigation (most especially the latter), are shown not only in the 
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Method, but in a number of the epistles already mentioned. In these 
epistles, the name of Konon several times occurs: Archimedes laments 
his early death, and pays repeated tribute to his mathematical talent 
in general, and in particular to the progress that might have been 
expected if he had lived. It seems worthwhile to quote from two of 
these; and first, from the introduction to On the Sphere and the Cylin- 
der: 39 

Archimedes to Dositheos greeting. 
I have previously sent you, of the propositions that had been examined by me, the 

following, written down together with its proof: that any segment bounded by a straight 
line and a section of a right-angled cone 4° is four-thirds of the triangle which has the same 
base with the segment and equal height. Subsequently, certain important 41 theorems have 
occurred to me, and I have worked out their proofs... [Here follows a statement o f  the 
principal results o f  the present treatise - author.] These properties pre-existed by nature 
in the figures mentioned, but remained unknown to those who before us were occupied 
with the study of geometry - none of them having perceived that these figures have a 
common measure; I therefore have not hesitated to place [my results] side by side with 
those which have been treated by other geometers, and with those that appear by far 
the more important of the ones concerning solids examined by Eudoxos, namely, that 
any pyramid is the third part of the prism which has the same base with the pyramid and 
equal height, and that any cone is the third part of the cylinder which has the same base 
with the cone and equal height. For these properties having pre-existed by nature in 
these figures, it yet happened that they were unknown to all the many geometers worthy 
of mention who lived before Eudoxos, nor had been perceived by one of them. Now, 
however, it will be open to those with ability to examine these [propositions of mine]. 
They ought to have been published while Konon was still alive, for I should conceive 
that he would best have been able to grasp them and to pronounce upon them the 
appropriate verdict; but, as I judge it well to communicate them to those who are 
conversant with mathematics, I send you the proofs I have written, which it will be 
open to those versed in mathematics to examine. Farewell. 

I want to call attention to two features of this passage. First, it 
makes evident the importance to Archimedes of the existence of a 
community of mathematicians, competent to study his results and to 
judge them; a judgment he seeks with wonderful simplicity and open- 
ness. (A student in one of my classes commented, I think very justly, 
when I read this passage aloud, "But that's amazing - he's asking for 
peer review!") Second, there is the striking, reiterated phrase about 
properties that "pre-existed by nature in the figures" but that remained 
long unknown. Dijksterhuis, commenting on this phrase, says: 42 

Archimedes here seems to voice his astonishment that geometrical figures may have 
remarkable properties inherent in them, i.e. without their being stated in the definition 
we give of them, which properties may long remain unnoticed, in spite of their simplicity. 
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It is the typical mathematician's astonishment at the unsuspected intrinsic wealth of his 
own definition which is being expressed here. 

It seems to me that Dijksterhuis has this almost upside down. In the 
first place, there is no indication on Archimedes's part that the figures 
themselves depend, in some way, upon their definition; on the con- 
trary, he takes their own objective existence for granted: the properties 
pre-existed in the figures by nature. And in the second place, it seems 
evident to me that what Archimedes is calling attention to is not how 
astonishing it is that these properties could ever have been unknown, 
but is, on the contrary, the remarkable fact that such properties, not 
immediately evident, can be (have been) made evident (and open to 
public scrutiny and judgment) by mathematical demonstration. Thus, 
although the passage does not explicitly repeat the reference to discov- 
eries yet to be made (by "some, either of my contemporaries or my 
successors") that we have seen in the Method, I think the same idea 
is implicit in the passage: "the properties have always been there; some 
that were hidden were made manifest by our forebears; some were 
previously made manifest by me; since then I have succeeded in dis- 
covering m o r e . . . "  - the implication for the future seems clear. 

That implication is explicit, together with Archimedes's characteristic 
desire to stimulate research, in the remaining passage I wish to quote, 
which is taken from the opening of the treatise On Spirals (again 
addressed to Dositheos):43 

Archimedes to Dositheos greeting. 
Of the theorems which I sent to Konon, of which you continually ask me to send you 

the proofs, most are already before you in the books brought to you by Herakleides; I 
send you certain others written out in the present book. Do not be surprised at my having 
long delayed to publish the proofs of these theorems; this has been owing to my wish to 
present them first to persons engaged in mathematical studies who prefer to investigate 
them for themselves. In fact, how many theorems in geometry which have at first seemed 
inaccessible are in time successfully worked out! Now Konon died before he had sufficient 
time to investigate the theorems referred to; otherwise he would have discovered and 
made evident all of them, and would have advanced geometry by many other discoveries 
besides. For we know that it was no common ability that he brought to bear on mathemat- 
ics, and that his industry was extraordinary. But, though many years have elapsed since 
Konon's death, I do not find that any one of the problems has been attacked by a single 
person. I wish now to put them in review one by one, for it happens that there are two 
included among them that I myself have been unable to bring to a satisfactory conclusion; 
so that those who claim to discover everything but produce no proofs of the same may 
be confuted as having actually pretended to discover the impossible. 
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What is most fascinating here is the remark about the false proposi- 
tions included among those originally, and long since, communicated. 
Those commentators I have encountered who discuss this point take 
the view that these propositions were deliberately circulated by Archim- 
edes as a trap to catch pretenders. Thus Zeuthen refers to these proposi- 
tions as Vexieraufgaben (that is, "trick questions"). 44 Again, Dijkster- 
huis, after noting Archimedes's statement that he "preferred to leave 
it to mathematicians to find out things for themselves", adds: "There 
was also some malignant design in this, for on the same occasion he 
reveals that two of the propositions on the sphere formerly enunciated 
by him are incorrect, and that he had added them in order to entice 
those who are always saying of everything that they have found it, 
without ever giving proofs, into saying that they had discovered some- 
thing impossible". 45 In the same vein, van der Waerden tells us that 
Archimedes, "in order to trip up his conceited Alexandrian colleagues 
["um seinen eingebildeten alexandrinischen Kollegen ein Bein zu steUen" 
- literally, "to put a leg out" to them] would intersperse false theorems 
here and there, 'so that those who claim to have discovered everything 
themselves, but without supplying the proofs, might for once be 
caught in a trap, by claiming to have found something impossible'" 46 

Now, it seems to me that this interpretation of the passage is by no 
means the only possible one; and indeed, if we accept Heiberg's 
reading of the text itself, it even seems an impossible one. For on that 
reading, Archimedes calls the false propositions ones that he himself 
was unable to bring to a satisfactory conclusion (i.e., to prove) - 
pointing out in the sequel that they can in fact be refuted by appeal to 
other results of his own. But this seems, on the face of it, to mean 
that Archimedes had circulated propositions, at least some of which 
were as yet uncertain conjectures; that he had later discovered the 
incorrectness of some of these; and that he wants this to serve as an 
object lesson that rigorous proofs alone can establish mathematical 
results, and that those who make assertions without supplying proofs 
run the risk of being exposed as charlatans. 

The alternative I have just proposed is, however, far from certain; 
for Heiberg's reading of the crucial words is itself conjectural. 47 None- 
theless, and even if Archimedes did set a deliberate trap, the impli- 
cation of malice or spite seems to me quite out of keeping with the 
whole spirit of the remarks in all the passages I have quoted expressing 
Archimedes's interest in encouraging others to new discoveries. And a 
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further suggestion of van der Waerden's  on this point appears quite 
astonishing. He asks, immediately after the passage quoted at the end 
of the paragraph before last, "Might this gibe [that is, about being 
tripped up, or caught in a trap] be aimed at Eratosthenes? One 
would be inclined to believe so, when one reads the ironic-admiring 
introduction to the Method, which is addressed to Eratosthenes."  I 
myself see no evidence of irony in the words quoted earlier from the 
introduction to the Method: in the first place, the words do not of 
themselves betray irony (so that if such were intended, it would have 
somehow to be inferred from the circumstances of the communication); 
and beyond this absence o f  positive evidence for van der Waerden's  
interpretation, it is very hard to understand why Archimedes would 
take the trouble to write out a whole treatise on methods of discovery, 
and then send it to a man he did not in fact regard as a capable 
investigator. (The mathematicians of the seventeenth century, by con- 
trast, when they wished to score off their  competitors, would conceal 
not only their methods of discovery, but their very theorems, by 
communicating only counts of the letters occurring in the formulation 
of their solutions to problems, and leaving it to their correspondents 
to solve these strange anagrams.) 

Let  me summarize the main point of what has grown to a rather 
lengthy discussion of texts. Not  only does Archimedes's actual work 
disclose mathematical inventiveness of the highest order; the way in 
which he presents that work, the way in which he distributes it, shows 
an intense interest in soliciting both the judgment of a mathematical 
community, and the participation of that community in a continuing 
endeavor to advance the subject. His attitude is the very opposite of 
one that seeks to complete - to round off and put an end to - the 
subject. To make this point even clearer, it would be tempting to 
discuss in some detail the kind of new invention that Archimedes's 
works display; but that would be the subject of another paper. Let  
me, however,  at least mention that in his t reatment of the area of 
curved surfaces, in the treatise On the Sphere and the Cylinder, Arch- 
imedes introduces a set of new postulates, which serve in effect - for 
the first time - to define a notion of area for a class of such surfaces 
(namely such as are "concave always toward the same side" - or, put 
in fairly modern terms, such as have everywhere non-negative Gaussian 
curvature). In fact, it is also in this place that there are introduced - 
again for the first time - principles that determine a concept of length 
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for a class of curved lines (once more,  such as are concave towards 
the same side). 48 It clearly follows that Archimedes did not regard the 
foundations of geometry as having been closed by Euclid's codification 
of the "elements" ,  but saw both new conceptions and new assumptions 
as within the competence of mathematical investigators to propose. 

Now, this intense spirit of research, and the desire to communicate 
that spirit, is just what I have earlier noted as in all ages of creative 
mathematics that we know of, an essential influence - and one that 
operates preponderantly through personal contact. But how rare this 
must have been in the time of Archimedes himself is clear from the 
fact that so few names occur as eligible correspondents or members of 
his audience; and from the fact, mentioned by him, that none of the 
problems he had circulated had, to his knowledge, even been attacked 
by anyone else. (This last circumstance, by the way, seems to tell 
against the assumption that there was a flock of braggarts who always 
claimed to have solved every problem, and whom, personally, Ar- 
himedes aimed to trip up: for if there had been,  one would surely 
expect that some of these would have taken the bait.) Thus, finally, 
I return to the point that the stability of an environment conducive to 
the flourishing of mathematics in antiquity must perforce have been 
slight; that one need not seek - and has not in fact found - " internal"  
causes of the decline of the tradition. The wonder is rather that such 
a spark was once struck, that the flame burned with great splendor 
through several generations - and that, having died down, it was 
never fully extinguished, but was rekindled again after more than a 
millennium and a half. 

8 .  O N  T H E  T R E A T M E N T  O F  R A T I O  A N D  P R O P O R T I O N  

B Y  A R C H I M E D E S  

While ruminating upon the subject of the last section - originally in- 
tended as a set of brief concluding remarks - I happened upon an 
instance both of scholarly failure, and of what seems to me a character- 
istic and fundamental misunderstanding of the relation between ancient 
Greek and modern mathematical conceptions; between, so to speak, 
Eudoxos and Dedekind. Since the author of the mistake in question is 
the eminent scholar E. J. Dijksterhuis, and its subject is Archimedes, 
the point calls for some detailed attention. 
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In the course of a chapter  on 'The Elements  of the Work  of Archime- 
des' ,  Dijksterhuis discusses in a single section a series of  lemmas f rom 
several of  Archimedes 's  treatises; and, in particular, the following - 
Proposit ion 1 of O n  C o n o i d s  a n d  S p h e r o i d s :  49 

Given four series of  magnitudes,  all equal in number  - e.g.: 

A,  B, F, A, E,  Z 
H,  O, I, K, A, M 
N, ~ ,  O, I I ,  P, ~ 
T, Y, ~ ,  X, ~ ,  ~ 

- if the magnitudes of the first series have among themselves, two 
by two, the same ratios as do the correspondingly placed magnitudes 
of the second series; and if the magnitudes of the first series have, 
to the correspondingly placed magnitudes of the third, the same 
ratios as do those of the second, respectively, to those of the fourth; 
then the sum of the magnitudes of the first series will have to the 
sum of those of  the third the same ratio as the sum of the magnitudes 
of the second series to the sum of those of the fourth. 

In other words: given the series of magnitudes named  above, if A:B = 
H:O ,  B:F  = O:I ,  etc.; and if A :N  = H:T,  B : ,  = = O:Y, etc.; then the 
sum of the magnitudes of the first row has to the sum of those of the 
third the same ratio as the sum of the magnitudes of  the second row 
to the sum of those of the fourth. 

The argument  of Archimedes  runs thus: By reasoning e x  a e q u a l i  - 

i.e., by compounding of ratios - we have N:N = (N:A)(A:B)(B:N)  = 
(T :H) (H :O ) (O: Y)  = T:Y, and similarly N:O = Y ; ~ ,  etc. Then we 

have the following: the ratio of  the sum of the magnitudes of the first 
row to its first member ,  A,  is the same as that  of the sum of the 
magnitudes of the second row to its first m e m b e r  H (Archimedes states 
this conclusion without citing any grounds); whereas the ratio of A to 
N is the same as that  of H to T and the ratio of N to the sum of the 
magnitudes of the third row is the same as that of  T to the sum of the 
magnitudes of the fourth row. (Note that this last assertion stands in the 
same relation to the conclusion of the first step above - the argument  ex  

a e q u a l i  - as the conclusion about  the ratio of  the sum of the first row 
to its first m e m b e r  stands to the first series of proportionalities posited 
by the hypothesis of the proposit ion.)  The conclusion Of the proposit ion 
now follows directly, e x  a e q u a l i .  
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Tha t  is the  a r g u m e n t ,  exac t ly  as A r c h i m e d e s  gives it. 5° Di jks te rhu i s ,  
howeve r ,  gives us some th ing  signif icantly d i f ferent .  I shall  quo te  the  
ma in  pa r t  d i rec t ly  f rom his b o o k .  To fol low this ,  one  mus t  know tha t  
he  uses the  no t a t i on  " (x ,  y ) "  - r a the r  than  " x : y "  - for  the  ra t io  of  
magn i tudes  x and  y; and  tha t  he has l ab e l e d  " ( 1 ) "  the  first pa r t  of  the  
hypo thes i s  of  the  p r o p o s i t i o n  - name ly ,  tha t  (in his no t a t i on )  ( A ,  B) = 
(H,  O) ,  (B,  F )  = (O,  I ) ,  etc; by  " ( 2 ) "  the  second  pa r t  of  the  hypo thes i s  

- tha t  (A ,  N) = (U,  T) ,  (B,  N) -- (O,  Y) ,  e tc . ;  and  by  " ( 3 ) "  the  first 
conclus ion  d r a w n  ex aequali - tha t  (N,  ,N) = (T, Y) ,  etc.  

A f t e r  s ta t ing the  first of  the  a rgumen t s  ex aequali in the  p r o o f  given 
by  A r c h i m e d e s ,  D i jks t e rhu i s  p r o c e e d s  as fol lows:  

We therefore have on the one hand, by (1): 

(A,H) = (B,O) = ( I ' , I ) . . .  = (A + B + . . .  Z, H + O + . . . .  M) 

on the other hand, by (2) and (3): 

(A,H) = (N,T) = (N,Y) = ( 0 , ~ ) . . .  = (N + . . .  X, T + . . .  + •), 

from which follows that which it was required to prove. 

T h e n ,  a f te r  t r ea t ing  the  second  ( m o r e  genera l )  case o f  the  p ropos i t i on ,  
which  I have  he re  o m i t t e d ,  D i jks t e rhu i s  m a k e s  this c o m m e n t :  

In the proof it has been assumed that the magnitudes of the four series are all homogene- 
ous; in fact, reference is made to the ratios (A, N), (A, H), and (N, T), and this 
implies that A is homogeneous with N and with H, N with T, and consequently also A 
with T. 

Of this restriction, however, Archimedes does not take the slightest notice in the 
applications. We shall find him using the proposition in the case where the magnitudes 
of the series I and III are volumes, those of the series II and IV lengths, in which case 
the ratio (A, H) makes no sense. It seems probable that this is a sign of slackening in 
the strictness of the Euclidean theory of proportions, due to the fact that in applying 
the propositions of the theory of proportions it was never necessary to take account of 
the definition of proportion (which explicitly stipulates homogeneity as condition for two 
magnitudes being in any ratio to each other) and of the way in which these propositions 
had been derived from the definition. In addition, the custom of representing any 
magnitudes, of whatever nature, diagrammatically by line segments was bound to 
conduce to an increasing neglect of the difference in dimension between volumes, areas, 
and lengths, and to the gradual reaching of a conception which was equivalent to that 
of positive real numbers. 

I t  is ve ry  ha rd  to u n d e r s t a n d  how Di jks t e rhu i s  can have  so mis rep-  
r e s e n t e d  the  a r g u m e n t  ac tual ly  given by  A r c h i m e d e s .  The  p r o o f  Di jk-  
s terhuis  gives is the  same  (up  to no ta t i on )  as tha t  in H e a t h .  51 But  in the  
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preface to his book, Dijksterhuis remarks as a fundamental difference 
between his versions of Archimedes's arguments and those of Heath 
that the latter "represents Archimedes' argument in modern notation" 
- a proceeding in which "it is often the most characteristic qualities of 
the classical argument which are lost" - whereas in his own exposition 
"the proofs are set forth in a symbolical notation specially devised for 
the purpose, which makes it possible to follow the line of reasoning 
step by step". 52 One would surely expect him to have taken particular 
care about a passage that leads him to attribute to Archimedes a lapse 
from Euclidean standards of rigor. 

I was so surprised to read that Archimedes treated a fundamental 
point in this loose way that in spite of my own lack of schooling in 
Greek, I made it my business to check the original (with the aid of 
primer, lexicon, and grammar), and to compare it with other transla- 
tions. Those of Ver Eecke and Mugler are entirely accurate here. The 
former is cited by Dijksterhuis as a "very reliable, absolutely literal 
translation ''53 (Mugler's version, which appears to be strongly indebted 
to Ver Eecke's, was published later than the book of Dijksterhuis). It 
is plain from the text that the only homogeneity assumptions required 
by the argument as Archimedes gives it are: homogeneity within each 
of the four series; between the first series and the third; and between 
the second series and the fourth. These assumptions are never violated 
in the applications Archimedes makes. 

What further complicates the puzzle of how Dijksterhuis could have 
made such an error is that he proceeds to give substantially the argu- 
ment of Archimedes himself, as an alternative that Archimedes could 
have used. His words are as follows: 

For the rest it is easy to see that according to the strict conception of the theory of 
proportions the proposition remains true for the case where the magnitudes of series I 
are homogeneous only with those of series III, those of series II only with those of series 
IV. 

In fact, from (A, B) = (H, O); (B, F) = (Y, I) etc. it follows, by application of the 
definition of proportion, that 

(A + B . . .  + Z ,  A) = ( H + . . . M ,  H). 

From (3) it follows likewise that 

(N, N + -  = + . . . ' 2 )  = (T, T + Y +  . . . l ~ ) ,  

from which via 
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(A, N) = (H, T), 

it follows ex aequali that 

(A + B . . .  +Z, N + ~ . . .  + Z)= ( H + . . . M ,  T+ . . .~ ) .  

But this is exactly the argument of  Archimedes - except that Dijkster- 
huis supplies, cryptically, the reason omitted by Archimedes for the 
asserted identity of the ratios of the sums of the first and second rows 
to their respective first members. There is, however, a very interesting 
point to be made here. Archimedes often fails to cite grounds for 
inferences based upon well-known principles. In the present case, the 
argument ab ovo, from "the definition of proport ion",  is unnecessary, 
because the conclusion follows from elementary considerations: (i) from 
the data of the proposition, by inversion (which, it may be noted, 
Archimedes has performed at one point of his explicit argument without 
mentioning the fact) and compounding of ratios, we have B : A  = 
® : H,  F : A = I : H,  etc.; therefore (if) by Proposition 24 of Book V 
of Euclid - i.e., by what we have already seen, at the end of Section 
4 above, to amount  to the addition of ratios (only generalizing Euclid's 
statement to arbitrarily many ratios) - the ratio of the sum of the 
second through the last members of the first row to its first member  is 
the same as the corresponding ratio for the second row; and, finally, 
(iii) by "composit ion" of ratios - i.e., by what we should call addition 
of I (or more exactly: of the ratio 1:1) - the ratio of the sum of all the 
members of the first row to its first member is the same as the corre- 
sponding ratio for the second row. (The extra step of composition is 
of course required only because of the Greek reluctance to assert such 
a proportionality as A:A -- H:H. )  

This can be put in a slightly different way. What Archimedes in effect 
does is to take, for each magnitude in a given row, its ratio to the 
first member: i.e.,  he expresses those magnitudes in terms of the first 
of them, as what we should call a "unit  of measure";  and then - again 
in our own terminology - he adds those representative ratios. That  is, 
given the identification of Eudoxean ratios with real numbers that I 
have argued for in this paper, he adds the real numbers that represent 
the magnitudes when that unit o f  measure is specified. This is of course 
precisely what we do when we represent magnitudes by real numbers. 

In short, Dijksterhuis is in the first place demonstrably wrong in 
attributing to Archimedes a slackening of Euclidean rigor here; and in 
the second place he is wrong in associating such a slackening of rigor 
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with a move towards modern conceptions - in connecting "an increasing 
neglect of the difference in dimension between volumes, areas, and 
lengths" with "the gradual reaching of a conception which was equiva- 
lent to that of positive real numbers". This latter conception in no way 
entails a neglect of differences in the dimensions of magnitudes; on the 
contrary, attention to such differences is quite essential for the coher- 
ence of arguments in our own mathematics and physics. And - as I 
hope we have now amply seen - the rigorous conceptions of Greek 
mathematics were no bar, in principle, to reasoning about ratios fully 
equivalent to our own reasoning about real numbers. 

There is one more point of at least incidental interest to be made 
here about Archimedes in particular. We have seen that in the state- 
ment and proof of the proposition under discussion Archimedes speaks 
always in terms of ratios and identity of ratios, in preference to the 
language of "proportion". It is tempting to see in this choice of lan- 
guage, which seems to emphasize the ratios themselves as objects of 
mathematical consideration, what Dijksterhuis thought he saw in the 
(illusory) lapse from rigor: namely, a move in the direction of our own 
point of view toward the real numbers. That such a tendency may 
indeed have characterized Archimedes's mathematical outlook is sug- 
gested by another peculiarity of his style. In his work on the ancient 
theory of the conic sections, Zeuthen remarks as a distinctive stylistic 
contrast between Archimedes and Apollonios that, where the latter 
generally employs the terms and conceptions of the so-called "appli- 
cation of areas", and the "geometric algebra" associated therewith, the 
former prefers to deal with proportions. 54 In other words: Apollonios 
represents geometrically what we call algebraic operations - products 
by an operation that associates to a pair of lines an area, quotients by 
one that associates to an area and a line a second line; Archimedes 
prefers to represent the corresponding relations as ones between ratios. 
And Zeuthen concludes his chapter on the treatment of conics by 
Archimedes with these words: 55 

If moreover, as in the example just cited, Archimedes by preference employs the theory 
of proportion in investigations, in which Apollonios prefers the area-operations that are 
more closely related to our algebra, I am most inclined to believe that the one who here 
manifests his personal peculiarities is rather Archimedes than Apollonios, who is gen- 
erally the more exactly adherent to his Alexandrian predecessors. For this assumption 
there speaks the circumstance, that the use of the application of areas in the second 
Book of Euclid is appreciably older "than the Euclidean theory of proportion, and 
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therefore was to a greater extent at the command of the geometers who were responsible 
for the first development of the theory of the conic sections. 

N o t e  t h a t  Z e u t h e n  is h e r e  c o n c e r n e d  to  e s t ab l i sh  t h e  c lose  a f f i l i a t ion  

o f  A p o l l o n i o s  to  t h e  o l d e r  t r e a t m e n t  o f  c o n i c  sec t ions .  H e  r e g a r d s  

A r c h i m e d e s ' s  p e c u l i a r i t y  o f  s ty le  as s i m p l y  an  eccen t r i c i t y ;  i n d e e d ,  h e  

t a k e s  t h e  a l g e b r a  o f  l ines  and  a r e a s  to  b e  m o r e  c lose ly  r e l a t e d  to  o u r  

o w n  t h a n  t h e  r e a s o n i n g  in t e r m s  o f  p r o p o r t i o n s  - i . e . ,  r a t i o s  - o f  

A r c h i m e d e s .  I t  is o f  c o u r s e  t h e  thes i s  o f  t h e  p r e s e n t  p a p e r  t h a t  exac t l y  

t h e  r e v e r s e  is t h e  case ;  and  t h e  e v i d e n c e  p r e s e n t e d  in this  s ec t i on  m a y  

b e  s u m m e d  up  as t e n d i n g  to  show,  in m y  o w n  o p i n i o n ,  t ha t  i f  w e  h a d  

o n l y  b e e n  b l e s s e d  by  a n o t h e r  A r c h i m e d e s  o r  t w o  in a n t i q u i t y ,  t h e  

m a t h e m a t i c s  o f  t h e  s e v e n t e e n t h  c e n t u r y  m i g h t  h a v e  b e g u n  - a n d  o n  

f i r m e r  a n d  c l e a r e r  f o u n d a t i o n s  t h a n  w h e n  it  d id  in fac t  b e g i n  - m o r e  

t h a n  a m i l l e n n i u m  a n d  a h a l f  e a r l i e r .  

NOTES 
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Aristotle, Metaph. VI i 1026aB-12, 15; XI iii 1061a28-b4, iv 10618 22-3, vii 1064a33-4; 
Nich. Eth. V I  viii 1142a17. 
la TO 'E/]: literally, "the one". 
18 'o etptOixds: literally, "the number". Cf. also Euclid VII, Defs. i and 2. 
z Aristotle, Cat. vi 4620ff. 
3 Aristotle, Cat. vi 4b20ff. 
4 But it is extraordinary, in the light of this, that in one passage (Nich. Eth. V vi 
1131~31) Aristotle himself says that "proportion is equality of ratios [ ~q ydp &vc~AoTfc~ 
~o-6rr/q ~o'Ti h67wv ]". 
5 Two points are worth noting, however: (1) Aristotle asserts a relation of proportionality 
for magnitudes - namely, speeds and densities - that are not 'extensive'. (2) Euclid 
treats angles as magnitudes; but since he does not admit any angles greater than or equal 
to two right angles, he cannot in fact join or compose arbitrary angles - i.e., arbitrary 
substrates for this genus of magnitude. It was suggested, rather persuasively, by C. L. 
Dodgson (Lewis Carroll) that Euclid would regard values of this magnitude-kind exceed- 
ing (or equal to) two right angles not as themselves 'angles', but in effect as what we 
should now describe as 'formal sums' of angles; see Dodgson (1879, pp. 192-93). To 
carry out this idea explicitly would go some distance in the direction of the abstract 
structural notion to be developed in the text immediately below. 
6 The wording of Euclid's Definition V.4 is susceptible of two different literal interpreta- 
tions. The definition reads: "Magnitudes are said to have a ratio to one another which 
are capable, when multiplied, of exceeding one another." The defining clause can be 
taken to mean either, as in the text above, that some multiple of each exceeds the 
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other,  or that some multiple of each exceeds some multiple of the other. Since each of 
these conditions follows trivially from the other, however, the difference is of no 
mathematical importance. 
v Cf. Hermann Weyl, (1949, pp. 9-11). 
8 T. L. Heath,  in his edition of Euclid, cites Definition V.4 as justifying the step in 
question; see Heath (1925, vol. III, p. 14). But this is inconsequent: the definition merely 
States the condition for two magnitudes of the same kind to have a ratio; what is required 
is assurance that that condition is always satisfied. 
9 See Heath (1912, pp. 233-34) (the introduction to 'Quadrature of the Parabola' ,  which 
contains what is presumably the first explicit occurrence of the assumption); p. 155 (in 
the introduction to 'On Spirals'); and pp. 1-2 (the introduction to 'On the Sphere and 
Cylinder',  Book I: this passage does not mention the assumption - or " lemma",  as 
Archimedes calls it - in question; but it is here that Archimedes attributes to Eudoxos 
the first rigorous proofs of those propositions which, in the first cited passage, he says 
have been established by his predecessors with the help of that lemma). 
10 Aristotle, Cat. vi 4623-26, 5a39-b10. 
n The discussion itself is, in fact, defective; but (whether this is a fault in the original, 
or - as T. L. Heath assumes in his comment on the proposition - results from a corruption 
of the text) the defect is of no importance here. 
12 More precisely: to compose the ratios a:b and c:d, taken in that order, one needs to 
represent them respectively in the forms e:f and f:g; but this is just to represent the ratios 
a:b and d:c with a common denominator  f.  
13 See Heath (1912, p. clxxix). (Heath actually renders Archimedes 's  terms Kcd [hi 
and ~rpocrAat3~bv [r0v] as 'multiplied by'; but this has no linguistic justification, as the 
first means simply 'and' ,  the second ' taken besides'. 
14 Dedekind (1872, pp. 315-34); English translation, Dedekind (1872a, pp. 1-27). 
15 Cantor 's considerations bearing on our subject appeared in one of his papers on the 
theory of trigonometric series; see Cantor (1872, pp. 92-102). 
16 See Section III of Dedekind's  monograph (1872, 1872a). The property that Dedekind 
called "continuity" is formally identical with what, in current topological terminology, is 
called the connectedness of the line. Cantor 's construction, which relies upon the metric 
structure of the line (whereas Dedekind's  makes use only of its ordering), leads formally 
to the property now called (metric, or, more generally, 'uniform') completeness; but for 
a uniform space with a dense subset isomorphic to the rational numbers, the two concepts 
are equivalent. 
17 Dedekind (1888, pp. 339-40; 1888a, pp. 3%38). 
i8 Phys. V iii 227a9-13; Metaph. XI xii 1069a2-8. 
19 See the introductory remarks to Dedekind (1872, 1872a); and, for some reflections on 
the motivation of Dedekind's  concern, Stein (1988, pp. 242-49). 
20 The discussion that follows is to a certain extent adumbrated by Frege, in the second 
volume of his Grundgesetze der Arithmetik. Just as Frege based his theory of the natural 
numbers on the demand that the intrinsic structure of such a number reflects its use in 
the representation of the sizes of sets, he wanted to construct a logical concept of the 
real numbers to reflect their use in representing the measures of magnitudes; and, in his 
characteristically ponderous and thorough way, he moves toward such a construction 
through most of the course of that volume (without actually attaining its formal corn- 
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pletion - this was to have been given in the third volume, which was never written). See 
Frege (1903), pp. 69-162 (in which Frege criticizes numerous attempts at a foundation 
of the theory of the real numbers,  and finds a clue to the way he proposes to follow); 
and pp. 163-243 (in which he begins his own construction). 
21 In his very careful examination of the deductive structure of Euclid's Elements, Ian 
Mueller makes two remarks bearing upon the notions of magnitude and ratio that conflict 
with the discussion I have given; these deserve comment.  The first is concerned with the 
relationship of the ' lemma' whose necessity for the theory of Proportion was pointed out 
by Archimedes - that is, of the Axiom of Archimedes, in the form in which the latter 
states it - to Proposition I of Book X of Euclid, and to the assumption tacitly made by 
Euclid in its proof. The assumption required by Euclid is formulated thus by Mueller 
(1981, p. 139, assumption Vd; I render Mueller's symbolic statement into prose like that 
of Euclid): Of two magnitudes of a given kind, the larger is exceeded by some multiple of 
the smaller. The assumption of Archimedes he quotes as follows: Of unequal areas, the 
excess by which the greater exceeds the less, if added to itself, can exceed any given finite 
area (Mueller, p. 142, principle QP; and cf. Mueller, principle SCI,L5, which generalizes 
this assumption to 'lines' and 'solids' in addition to areas - so that one may plausibly 
extend it to magnitudes in general). Mueller's comment on the relation of these two 
assumptions is: "Archimedes '  l~mma is equivalent to the form of X,1 which Euclid uses 
in proving the results referred to by Archimedes; but unless one assumes y - x < y, it is 
weaker than the principle explicitly proved by Euclid, X,1, and the assumption he uses 
in proving this principle, Vd"  - for "if x is infinitesimal, no multiple of x will exceed y 
even though a multiple of y - x  does" (MueUer, p. 143). But on my reading, that 
y - x < y follows immediately from the definition of the ordering (or from the principle 
that ' the whole is greater than the part ').  From this it follows that Archimedes'  assumption 
is equivalent to that required by Euclid, and suffices to exclude infinitesimals. Explicitly: 
i fy  exceeds x, then y also exceeds y - x; hence, since x is the amount by which y exceeds 
y - x, Archimedes'  ' lemma' gives us that y exceeds some multiple of x, i.e., Archimedes'  
assumption entails Euclid's. Perhaps it is worth adding that, even aside from the 'common 
notion' concerning whole and part, it appears odd to argue that if x is infinitesimal, y 
will not exceed y - x; surely it is more natural to say, in this case, that y exceeds y - x 
by an infinitesimal magnitude. And in fact Heath (1925, vol. I, p. 182) cites Proklos to 
the effect that the 'angle of a semicircle' - that is, the angle between a semicircular arc 
and its diameter (which, in the Greek terminology, differs from a right angle by the 
'hornlike' angle between the arc and the tangent) - although itself not an acute angle, 
is less than a right angle. 

The second remark of Mueller's that calls for comment is the following (Mueller, p. 
121): "If  my account of Euclidean arithmetic is correct, there can be no doubt that the 
Elements do not contain the basis for the development of real number theory. For 
numerical ratios do not form a system of objects ordered by a relation of being less than; 
indeed, ratios are not objects at all." Now, that ratios are not 'objects' is a somewhat 
delicate point, for it might be argued that quantities themselves (for Aristotle, e.g.) are 
not 'objects' - if by that term one means what is capable (in Aristotle's terminology) of 
'separate existence'. But quantities are, for the mathematician, 'objects of study'; and 
so, one may plausibly contend, are ratios. To be sure, as I have been concerned to 
emphasize, for the Greek mathematicians, ratios are not themselves quantities. Neverthe- 
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less, and in some degree contradicting what Mueller's statement seems to imply (or at 
least suggest), ratios - in Euclid, Book V - do form a singlesystem (whether or not 'of 
objects') among whose members relations not only of sameness and difference, but also 
of greater and less obtain (see Euclid V Definition 7); and (as we have seen) they are 
subject to a number of well-defined operations. What is most directly pertinent, of course, 
is that an operation analogous to addition can be defined on ratios - in effect, as again 
we have seen (or, at least, as I have argued; cf. also the further discussion in the Appendix 
below) an operation that was known to, and employed by, the Greek geometers - 
satisfying all the conditions needed both to allow the application of Eudoxean ratios to 
Eudoxean ratios, and to support the construction made by Dedekind. In this sense, 
therefore, I believe that Mueller is mistaken, and that Euclid's Elements do "contain the 
basis for the development of real number theory". 
22 The quoted passages are from Zeuthen (1902, pp. 201-3). The original (Danish) 
version of this work appeared in 1893. Zeuthen had earlier discussed the reasons for the 
decay of Greek mathematics in his seminal work, Die Lehre yon den Kegelschnitten im 
Altertum; see Zeuthen (1886, pp. 469-75). It is in this earlier discussion that the limitation 
of the geometric algebra to relationships of lower than the fourth degree is mentioned 
explicitly; the later summary omits this point. B. L. van der Waerden, in the first volume 
of his Erwachende Wissenschafl, claims in his introduction (see van der Waerden (1966, 
pp. 19-20) to give a new analysis of the causes of the decline of Greek mathematics; 
however, at the relevant place (pp. 439-41), he cites Zeuthen - and mentions no cause 
that Zeuthen had not already discussed. 
23 Heath (1921, vol. II, pp. 198-99). 
24 Euclid, Bk. VII, Def. 16. 
25 Zeuthen (1886, p. 471). 
26 Zeuthen (1886, p. 472-3). 
27 Cf. Zeuthen (1902, p. 202): "[W]hoever is familiar with this mode of representation, 
and understands the signification of the figures, can manipulate them as easily as one 
does nowadays with literal expressions; he can, moreover, in pointing to these figures, 
explain orally to his pupils the operations effected. And, in time of peace, as long as oral 
instruction was practiced at Alexandria, the result was that mathematical intelligence 
could be perfectly maintained; but as soon as the peace was disturbed, and the tradition 
conserved by that instruction was lost, one could only have recourse to the study of 
meticulously elaborated treatises - and a fatal regression became evident." 
2s Zeuthen (1886, p. 472). 
29 Cf. Zeuthen (1886, p. 470). Apollonios wrote in the second half of the second century 
B.C.; Pappos of Alexandria in the early fourth century A.D. - thus about five and a 
half centuries later. (For Pappos's date, somewhat later than that given by Heath, cf. 
van der Waerden, 1966, p. 470.) 
30 Cf., e.g., Zeuthen (1903, pp. 1-2). When Galileo comes to demonstrate his theorem 
that the path of a projectile is a parabolic arc, not only does he refer to Apollonios for 
the crucial properties of the parabola, but he makes a particular point of the handicap 
faced by a student who has not "gone so deeply into geometry as to make a study of" 
that author - see Galileo (1638; 1974 trans., pp. 217-19, corresponding to pp. 269-70 
of the standard Italian edition of 1898). 
31 Two and a half centuries from the generation before Hippokrates of Chios, Demo- 
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kritos, and Theodoros, to the time of Appolonios of Perga; nearly four centuries if we 
date the origin of the tradition as early as Thales. But it ought to be noted that even if 
the later tradition of the Greeks is correct in attributing interest in (and contributions 
to) mathematics to Thales and his immediate successors, and to the earliest of the 
Pythagoreans (a generation after Thales), one would be dealing at this early date with 
at most the tentative beginnings of a tradition of research - to employ the biological 
analogy suggested in the main text below: with the first mutant potential ancestors of a 
new species, rather than with an actually established species, 
32 A very instructive brief sketch is to be found in Otto Neugebauer, (1969, ch. ii). 
33 Neugebauer, (1969, p. 29). 
34 It is perhaps worth noting that in point of the features that Zeuthen has identified as 
contributing to the vulnerability of the Greek tradition, that of the Babylonians is almost 
precisely contrary: no "care for unassailable rigor"; algebra rather than geometry as the 
characteristic mode of procedure; great attention to numerical calculation. (Of course, 
the stagnation of the Babylonian tradition despite these facts does not of itself refute 
Zeuthen's contention, since he has not argued that the features he finds lacking among 
the Greeks are sufficient conditions for a flourishing Creative mathematics, but only 
that they are necessary - or rather, one should probably say, crucially facilitating - 
conditions.) 
35 The chief exceptions are the two physical treatises - On the Equilibrium of Planes and 
On Floating Bodies. The Measure of the Circle is also an exception; but what we possess 
of this work is clearly only an extract (and a somewhat garbled one) from the original. The 
(so-called) Sand-reckoner (in the Greek, simply Sand) is a partial exception, inasmuch as 
it is addressed not to a mathematician, but a king. 
36 Heath (1912). The passage quoted occurs shortly after the beginning of the treatise, 
which starts on p.12 of the Supplement; it is to be found on pp. 13-14 of the latter. 
(Note that the Supplement appears at the end of the volume, with pagination starting 
over.) 
37 Heath (1912, pp. 17-18). I have here deviated from Heath's words, guided by several 
other translations (the German of Heiberg, the French of Mugler, the English of Dijkster- 
huis) and by the Greek text. In particular, I have preferred, in place of Heath's phrase 
"a sort of indication" (that the conclusion is true), the one I have used - "a certain 
impression" - both as closer to the Greek (g/z~bao-Cu ~-~va) and as more expressive of 
the subjective state implied. (See also n. 38 below.) 
38 Heath remarks that the word "rd~olzev, which I have rendered as "shall arrange", is 
a doubtful reading and difficult to translate. I take the meaning to be, not (as Heath puts 
it) "shall have recourse to", nor (as Heiberg, Dijksterhuis, and the French translators 
understand it) "shall give below" or "shall mention", but rather this: that "having formed 
a certain impression that the conclusion is true, we shall [seek to] institute [or "arrange"] 
the geometrical demonstration [which in fact] we ourselves have discovered and publi- 
shed". In other words, I take Archimedes' " w e . . .  ourselves" to mean, on the one hand, 
the inquirer(s) in process of searching for the proof, and on the other Archimedes himself 
who has already discovered and previously published that proof. (The proposition in 
question is that giving the area of a parabolic segment, published in the Quadrature of 
the Parabola.) 
39 I am guided here by the French versions of Ver Eecke (1921, pp. 3-4) and Mugler 
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(1970, pp. 8-9), both of whom use the revised Greek text of Heiberg's second edition 
(1910); and by the Greek text itself, as Mugler prints it, in preference to the translation 
of Heath (1912, pp, 1-2), which is based upon Heiberg's edition of 1880 (Heath's version 
was published originally in 1897); cf. n. 41 below. 
40 That is, a parabola. Archimedes' phrase - the standard designation of the parabola 
before Apollonios - derives from the fact that the conic sections were originally defined 
as sections of a cone by a plane perpendicular to a generator of the cone. If the vertex 
angle of the cone is acute, of course, such a Section will be an ellipse; if the angle is 
right, a parabola; if the angle is obtuse, a hyperbola. 
41 Heath reads "not yet demonstrated", and places in parentheses the Greek word 
(&vehgyKrwv). But the Greek text (as given by Mugler) has 'a~go)v AOTov. Mugler's 
French translation agrees with his reading of the Greek, and so does the generally very 
accurate and reliable one of Ver Eecke. This proves to reflect a difference between 
Heiberg's first edition of Archimedes (1880) and his second (1910). The reading of the 
former was a conjectural emendation of avrtheyo~, which occurs in the only Greek 
manuscript of the beginning of this treatise then available; that of the latter is based 
upon the agreement of the medieval Latin version of Moerbeke with the then newly 
discovered palimpsest - the one that has given us the only known text of the Method. 
(Oddly enough, the Latin translation in Heiberg's 1910 edition continues to reflect his 
earlier version of the Greek.) Although the matter is of no importance for us, I have 
preferred to follow what seems to be the better, and now standard, reading (see n. 39 
above). 
42 Dijksterhuis (1956, p. 143). 
43 Mugler, (1971, pp. 8-9); Ver Eecke (1921, p. 239); Heath (1912, pp. 151-52). 
44 See Zeuthen's commentary, attached to Heiberg's first report on and translation of 
the Method of Archimedes: J. L. Heiberg and H. G. Zeuthen (1906-7, p. 419). 
4s Dijksterhuis (1956, p. 34). 
46 Van der Waerden (1966, p. 345). 
47 Heiberg in his second edition proposes, for a collection of divergent readings of the 
various manuscripts, the emendation ~tzavr~ Ix~rro) zrezrepeeo'tzgvwv && rgAov¢; 
zror~reO'~Ixev - literally: "[there happen] to have been added [a certain two] not yet 
accomplished thoroughly by me" (~rorL~EO~lxev is the Doric form of the aorist passive 
infinitive of zrorLr(O~7tx~, itself Doric for zrpocrr(O~Tlz~, "adjoin to"); see Heiberg 
(1913, p. 3, notes to 1.23 of p. 2). 
48 A typical example of the misunderstanding prevalent among recent commentators 
about the relation of the ancient to the modern theories, and especially about the role 
of the concept of real number, is connected with this point. In a discussion of Galileo as 
a mathematician, Carl B. Boyer mentions Galileo's scorn for the doctrine of Aristotle 
that "a straight line does not bear any ratio to a curve"; mentions also "Archimedes' 
theorem in the work On Spirals, in which a straight line is found which is equal in length 
to the circumference of a circle"; and proceeds to explain a sense in which, taking account 
of "the finer points in the comparisons of straight and curved", Aristotle was in the right: 
"In the first place, there was as yet no definition of what is meant by the length of a 
curve - nor even of a prime requisite for that definition, real number. More importantly, 
in the ancient comparisons of straight and curved, the problem had been to construct 
with Euclidean tools alone a straight line equal to the circumference of a circle (or other 
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given curve)" (Boyer 1967, p. 239). Now, the second of these points is arguable; but 
there is good reason to think it incorrect: thus Zeuthen (1886, p. 262) expresses the view 
"that  a more exact investigation would lead to the result, that the mechanical execution of 
[what Zeuthen calls "Einschiebungen" - "insertions"; namely the class of "mechanical" 
constructions called in Greek vegcre~] was not only employed practically, in the earlier 
time, but was also acknowledged theoretically as a device that one might properly use, i f  
a problem could not  be solved by means o f  circle and straight-edge, and that only in a 
later time did one feel obliged, whenever it was possible, to use conic sections to effect 
those insertions that could not be transformed into constructions by means of circle and 
straight-edge" (emphases in the original). (The issue here becomes a little involved: 
Zeuthen implies (a) that constructions by means other than those with "Euclidean tools" 
were always admitted as theoretically justified, but (b) that in the "later t ime" a stricter 
principle had developed of using only the simplest means that would suffice to resolve a 
problem. In any event, "constructions" with the help of conic sections - themselves not 
attainable by "Euclidean tools" - were certainly allowed; and Euclid's own restriction 
to circle and straight line can be seen as characterizing the "elements",  in contrast with 
the higher branches of the subject.) 

But it is Boyer's first remark that more directly concerns us - that there was available 
no definition of the length of a curve, "nor even of a prime requisite for that definition, 
real number".  I have said that what Archimedes postulates serves in effect as such a 
definition: what we should now describe as an axiomatic characterization of a concept. 
An explicit definition, to be sure, was not given until well into the nineteenth century; 
and the conditions of legitimacy for an "axiomatic characterization" were certainly not 
investigated until even later. But that comment applies to a great deal that is central in 
Greek geometry; for instance, the definition of ratio itself, with which we have been 
primarily concerned, is not explicit in Euclid: as we have seen, he defines "having 
a ratio" and "having the same ratio" - and this can be regarded as an "axiomatic 
characterization" of a certain relation, to be justified by a series of theorems that establish 
the existence of a unique relation satisfying the conditions laid down. 

The crucial point, however, is simply that Boyer is wrong in claiming that the concept 
of real number - in contrast with concepts already available in Greek mathematics - is 
a prerequisite for the definition of the length of a curve. The characterization given by 
Archimedes can easily be transformed into an explicit definition of the relation of equality 
("of length") between a straight line, and a curved line concave toward one side (namely, 
such equality holds if and only if the given straight line exceeds in length all simple 
polygonal paths inscribed in the curve, and is exceeded by all such paths circumscribed 
about the curve); and that is all one needs. 
49 In what follows, all quotations are from Dijksterhuis (1956, ch. iii, 7.20). For the sake 
of greater clarity, I have here taken the liberty to paraphrase the lemma of Archimedes, 
instead of giving it in the form of a verbally exact translation. I have also restricted myself 
to the first case of the lemma, whose treatment contains all that is essential for us. (On 
the other hand, in order that my notation fit with that of Dijksterhuis, I have followed 
him in using the same Greek letters to designate the magnitudes in the example as 
Archimedes himself does.) 
50 As in the formulation of the proposition, I have allowed myself to paraphrase, rather 
than  translate, the words of Archimedes, but I have followed exactly the steps of his 
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proof. I have also been faithful to his terminology. In particular - a point that will come 
up subsequently - I have phrased the entire argument in terms of ratios, and sameness 
of ratios; and so does Archimedes. The word "proportional" occurs nowhere in his 
exposition of this proposition or its proof. 
51 Heath (1912, p. 106). 
52 Dijksterhuis (1956, pp. 7-8). 
53 Dijksterhuis (1956, p. 7). 
s4 Zeuthen (1886, p. 55): "[O]bwohl Archimedes in der Regel seine Bestimmung der 
Kegelschnitte nicht an die bei der Fl~ichenanlegung gebrauchten Kunstausdrttcke an- 
schliesst, ist der praktische geometrische Gebrauch der Fl~ichenanlegung ebenso genau 
mit dieser letzteren Bestimmung, die vermutlich auch diejenige Euklids ist, verbunden 
gewesen wie mit der des Apollonius"; p. 61: "Bei Apollonius werden wir in der Regel 
nicht wie hier [viz., in Archimedes] die Gleichungen der Kegelschnitte als Proportionen 
dargestellt finden, sondern als Gleichungen ersten Grades zwischen Fl~icheu." 
55 Zeuthen (1886, p. 63) - I have been constrained by the difference between German and 
English syntax to render somewhat freely the phrase, "der sich and die alexandrinischen 
Vorg~tnger genauer anschliessende Apollonius". 
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