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Abstract In this article, I attempt to clarify certain misunderstandings that have
contributed to continuing controversy over the status of the concept of relative si-
multaneity in the special theory of relativity. I also correct a number of technical
errors in the literature of the subject, and present several new technical results that
may further serve to clarify matters.

Controversy over the status of the concept of relative simultaneity in the special
theory of relativity has proved remarkably durable. Very recently (within two days
of first writing these words), as a result of ruminations on a recent paper of Adolf
Grünbaum’s, I have come to believe that an important contributing factor to the per-
sistence of the dispute is the use of certain key words (or phrases) in quite different
senses by some of the disputants. One central aim of this paper, therefore, is to (try
to) clarify these misunderstandings, and thereby both to reduce the number of the
points of disagreement, and for the remaining points—for one can hardly expect all
disagreement to be thus dispelled—at least to help clarify what the disagreements
really are. A second aim is to correct some technical errors in the literature of the
subject, and to state and prove some new technical results that may help contribute
to clarity in the matter.

1 David Malament’s Contribution: (a) Remarks on Some
Technical Objections; (b) Refinements of the Theorem

In a recent “revisiting” of David Malament’s well-known discussion of this subject
[1], Mark Hogarth [2, p. 492] writes as follows, quoting a remark of mine from [3]:

Just how decisive is Malament’s result for the issue of conventionality of simultaneity?
Howard Stein echoes a common sentiment:
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The issue . . . has been dealt with—in my opinion, conclusively—by David Malament, who
pointed out that the Einstein–Minkowski conception of relative simultaneity is not only
characterizable in a direct geometrical way within the framework of Minkowski’s geom-
etry . . . but is the only possible such conception that satisfies certain very weak ‘natural’
constraints.

Hogarth then notes that Malament has made use of the assumption that change of
scale is an automorphism of the structure of space-time; objects that physics itself
is not invariant under change of scale; concludes that Malament’s result is after
all inconclusive; and offers an argument of his own to show that invariance under
change of scale can be replaced by another requirement, and the uniqueness of the
standard conception of simultaneity thereby rescued.1

In correspondence before his paper was published, I remarked to Hogarth that
there is a footnote to the statement he quotes from me—see [3, p. 153, n. 1]—
in view of which the statement cannot reasonably be interpreted to mean that—in
my view—Malament “had, as it were, dotted all the i’s and crossed all the t’s of
the subject”; that, rather, what I had meant was “that Malament had redirected the
discussion, away from the consideration of alternative ways of introducing ‘a time-
coordinate,’ to the consideration of what purely geometric notions are available in
Minkowski geometry.” The footnote in question reads:

There is one slightly delicate point to be noted: Malament’s discussion, which is concerned
with certain views of Grünbaum, follows the latter in treating space-time without a dis-
tinguished time-orientation. To obtain Malament’s conclusion for the (stronger) structure
of space-time with a time-orientation, one has to strengthen the constraints he imposes on
the relation of simultaneity: it suffices, for instance, to make that relation (as in the text
above) relative to a state of motion (i.e., a time-like direction), rather than—as in Mala-
ment’s paper—to an inertial observer (i.e., a time-like line).

I did not think it necessary to demonstrate the stated fact, taking it for granted that
anyone who cared to would easily see how a proof would go.

Some years after [3] appeared, a paper was published by Sahotra Sarkar and
John Stachel [4]—under the title, “Did Malament Prove the Non-Conventionality
of Simultaneity in the Special Theory of Relativity?” These authors criticize Mala-
ment’s argument on the very grounds mentioned in the footnote; but they elaborate
upon these grounds in a way that in my opinion is very defective, and is in serious

1 Malament, requiring invariance under change of scale, adds, besides the condition of invariance
under automorphisms of space-time, only the assumption that simultaneity relative to O (a) is an
equivalence relation, and (b) holds for at least one pair of points (p,q) with p on O and q not on
O, but does not hold for every pair of points.—Hogarth appeals to quantum field theory for the
fact that physics is not invariant under change of scale (this is indeed already clear in classical
physics, since the fundamental classical physical constants allow us, in more than one way, to de-
termine a unit of length; moreover, at the very beginning of the modern science of physics, Day 1
of Galileo’s Two New Sciences opens with this paradox: a scale model of, for instance, a ship, may
be perfectly stable, but the ship built from this model may collapse under its own weight—and
Galileo’s spokesman Salviati says that, although geometry is invariant under change of scale, this
non- scale-invariance of “machines” can be explained by geometry).

Hogarth, renouncing appeal to scale-invariance, strengthens Malament’s assumption (b) by re-
quiring that, for any “inertial observer world-line” O and any point p in space-time, there is one and
only one point q on O to which p is simultaneous relative to O. (See also Supplementary Note 1.)
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need of clarification. They also offer a proof of a result akin to that indicated in
the footnote; but their proof is fallacious, and the result therefore does demand the
explicit proof that I thought superfluous. Since Hogarth’s theorem is subject to the
same objection raised by Sarkar and Stachel—Hogarth, too, makes crucial use of
reflection-invariance—it is clearly desirable to establish a conclusion that depends
neither upon invariance under scale-change nor upon invariance under reflections.2

But first I wish to make it clear that Malament’s theorem itself—exactly as he
has formulated it—is entirely correct. This seems important to emphasize, because
Sarkar and Stachel have challenged the entire correctness of this theorem.3 A dis-
cussion of the point is especially desirable because it concerns the question, just
what is meant when one says that a notion is “definable from” something or other—
I shall say, definable from the elements of a given kind of structure, or from the
basic notions of a given mathematical theory (understood as being “the theory of
that kind of structure”); and it turns out that a misunderstanding on this score is also
relevant to points raised by Adolf Grünbaum, which we shall consider later.

Malament’s theorem explicitly refers to a relation “definable from κ and O,”
where κ is the binary relation, on the set of points of Minkowski space-time, “p
and q are such that one of them may causally influence the other,” and where O
is a given straight time-like world-line (what I shall henceforth refer to—and have
already referred to, in Supplementary Note 1—as an “observer-line”). (So strictly
speaking, if the phrasing of the end of the preceding paragraph is taken pedantically,
the “theory” concerned is “the theory of the relation κ in a Minkowski space-time
with a particular observer-line O singled out.”) Malament then says [1, p. 297],“If
an n-place relation is definable from κ and O, in any sense of ‘definable’ no matter
how weak, then it will certainly be preserved under all O causal automorphisms
[that is: mappings that preserve both O and κ].” It is this statement that Sarkar
and Stachel challenge: they acknowledge the correctness of Malament’s theorem
if “causal definability” (as they put it) is construed in Malament’s way; but they
deny that this is an appropriate way to construe such definability—and they give an
alleged counterexample.

Now, the issue this raises is simply one of logic. And the logical situation should
be altogether clear: for the logician—or the mathematician—to define a notion in
terms of certain basic concepts is in effect to introduce an abbreviated mode of ex-
pression; any statement phrased using the defined notion may be rephrased using
only those basic concepts: the “new” notion is simply eliminable. But that a state-
ment using only the basic notions of a theory is unaffected by automorphisms of the

2 Sarkar and Stachel mention in passing [4, p. 215 n. 11, and p. 217] that they do not use scale-
invariance in their proof; but, as remarked—and as will be shown below—the proof is invalid, so
this fact is irrelevant.
3 If this formulation seems odd, it should—it is designedly so; for although Sarkar and Stachel
say, “Clearly, something is amiss with Malament’s theorem,” they add, “A correct mathematical
result [emphasis added] seems to be contradicted by patently good counterexamples”; what they
challenge is, not the soundness of Malament’s argument, but “the interpretation of one of the condi-
tions that Malament imposes on simultaneity relations” [4, p. 214]. So the result is “correct”—but
not entirely so.
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object treated of by the theory is an immediate consequence of the very definition of
“automorphism.” So “in principle,” it is hard to see how a controversy can arise here.

“In practice,” however, one sees how confusion did occur. Sarkar and Stachel
point to the facts that “the distinction between the [two, oppositely directed,]4 half
null cones of [the full null cone of an event e] can be made using causal definability
alone” [4, p. 213], and that this distinction can be made “coherently” for all point-
events of the Minkowski space-time concerned. They conclude that the following
two relations, satisfying Malament’s other criteria, can be defined from the null-cone
structure of the space-time, and thus from the relation κ alone (O plays no role): (a)
p lies on the mantle of the backwards null-cone at q; (b) p lies on the mantle of
the forwards null-cone at q; and conclude therefore that both (a) and (b), applied
to point-pairs (p,q) with q on O, constitute relations definable from κ and O that
satisfy all Malament’s other conditions on a simultaneity relation. These examples,
they accordingly maintain, show that his theorem is incorrect when “definable from
κ and O” is rightly construed.

The error here turns on an ambiguity in the notion of “distinguishing” two
things—that is, “telling the difference between” them. A Minkowski space-time
has two possible “time-orientations.” This statement certainly implies that one can
“tell them apart”—enough, at least, to count them. And yet, one can’t “tell which
is which”—the two time-orientations are like two bosons in this respect.—Well,
to continue with amusing word-games in the vernacular (even the vernacular of
physics), would soon grow tiresome, and might amplify confusion; that is why logi-
cal pedantry has its legitimate place: One can define from κ and O a set of relations,
each of which satisfies Malament’s other requirements. The set I mean5 contains two
relations—the two described by Sarkar and Stachel. But one cannot “distinguish”—
“single out”—either one of those two relations in distinction from the other; that is,
one cannot do this in terms of κ and O alone. If only one could once “simply point
to” one of the two half null-cones at one space-time point, the structure of κ would
allow this choice to be “spread around” all through space-time, and we should have
one of Sarkar and Stachel’s examples; and why, indeed, should one not be able to
do so?—But that isn’t the question: the question is, What is definable from κ and
O? And Malament’s answer stands.

There remains the point that this may not be “the right question”; and I think
this may be argued from two different points of view. It could—it seems to me—be
claimed quite plausibly by an adherent of a “causal theory of time,” Grünbaum for
instance, that such a view of time is not restricted to what can be characterized in
terms of the symmetric relation κ—that, rather, the non-symmetric relation “causal
influence may be propagated from p to q′′ is part of the basic apparatus of that

4 Sarkar and Stachel say “backwards and forwards”; but they emphasize—rightly—that these ad-
jectives are mere labels, not to be taken as denoting the “past” and the “future”; so I have preferred
to substitute a neutral characterization, lest the reader suppose that they have overstepped at this
point.
5 This—a set that bears upon the Sarkar-Stachel examples—is by no means the only set of relations
(besides the one relation of Malament’s theorem) that can be defined from κ and O—there are
infinitely many others; but there is no need to consider them here.
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theory. (I am not sure whether Grünbaum himself would take this position; he has
not, so far as I know, actually done so; and we shall see presently that his real
disagreement with Malament has an entirely different basis.) And it could—can—
also be based, as in my remark in the cited footnote and in Sarkar and Stachel’s
further discussion [4, pp. 214 ff.], on the consideration that time-reversal (as well as
reversal of spatial orientation, and change of scale) cannot be considered as clearly
demanded by physics.6

Turning now to the theorem Sarkar and Stachel claim to prove that covers the
vulnerable points in that of Malament, their formulation reads as follows [4, p. 216]:

Standard simultaneity is the only non-vacuous simultaneity relation causally’ definable
from κ and O that depends only on an inertial frame, and not on the particular world line O
initially chosen to define that inertial frame.

By a “non-vacuous simultaneity relation” is here meant a relation S that satisfies
the following three conditions, borrowed from Malament: (1) S is an equivalence
relation; (2) there exists a point p on O and a point q not on O such that S(p,q); (3) S
does not hold for every pair of space-time points. By “the inertial frame defined by a
(straight, time-like) world-line O” is meant (of course) the family of all lines parallel
to O (I shall also use the term “inertial system” for such a family). And by “causally’
definable” is meant: invariant under all automorphisms of the Minkowski space-time
that preserve the inertial frame and that are continuously connectible to the identity
(“causal’ automorphisms,” as Sarkar and Stachel call them). This class of mappings
excludes time-reversals and “spatial” reflections—it is precisely the class of all those
automorphisms (in the standard sense) that preserve both time-orientation and the
orientation of the whole manifold. In particular, it includes changes of scale.

The last point deserves to be emphasized. With it, the theorem is true. But
Sarkar and Stachel say—rightly—that they actually do not make any use of scale-
invariance in their proof; and without the assumption of scale-invariance, the
theorem becomes false. There are infinitely many counterexamples, of which the
simplest is this: Let S(p,q) be the relation: “p and q belong to hyperplanes orthog-
onal to the direction of O, having, for some integer n, the orthogonal (time-like)
Minkowski distance nτ , where τ is a particular distance (given once for all)”.7 This
relation clearly satisfies the conditions on a “non-vacuous simultaneity relation,”

6 I should not wish to be taken as endorsing every aspect of the critical discussion of this point
in [4], but there is no need to argue the matter here: the general point, as I have here stated it,
suffices for our purposes.—Let me add that the fact that invariance under change of scale might
be challenged was likewise suggested in [3]—see p. 149, near the top—and that, accordingly (see
p. 250), an alternative proof was indicated for the theorem demonstrated on p. 249, avoiding appeal
to scale-invariance. Having mentioned this I must add to the criticisms I have made of passages by
others, one directed to a passage of my own: the argument [3. p. 149] leading up to the theorem
mentioned is sound, but the formulation of the theorem itself does not state correctly what the
argument has proved: the theorem as there stated is false!—On this, see Supplementary Note 2
below.
7 The other counterexamples are fairly obvious variants of this one, taking the coefficients of τ to
be, for instance, rational numbers, or elements of a given real algebraic number-field, or of any
given proper subfield of the real numbers, or indeed of any given additive proper subgroup of the
real numbers.
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and as clearly is invariant under all automorphisms (reflections too!) that preserve
the inertial frame to which O belongs, except scale-invariance.

If one wants to avoid reliance on scale-invariance, then, Malament’s conditions
on the relation S must be strengthened. (This is quite acceptable: Malament has
simply chosen a very weak set of conditions, not for any “ideological” reason, but
simply to show how restricted the class of “causally definable” relations in his sense
is.) A suitable condition is this: that, for a given point p, S(p,q) holds for exactly
one point q on each line of the given inertial system. But a far weaker condition suf-
fices: namely, that (a) for at least one observer-line O of the given inertial system, no
two distinct points p, q on O satisfy S(p,q), and (b) at least one pair of distinct points
(p,q) in space-time does satisfy S(p,q). (It is obvious, just from invariance under
translations—which ipso facto take the inertial system to itself—that condition (a)
entails that no two distinct points on any line of the system satisfy S.) To forestall any
possible ambiguity of terminology, I shall henceforth use the word “automorphism”
to refer to the full class of mappings normally considered by mathematicians to be
automorphisms of a Minkowski space-time (including, therefore, all reflections and
changes of scale); these coincide with the “causal automorphisms” of Malament;
I shall use the phrase “proper automorphisms” for those called “causal’ automor-
phisms” by Sarkar and Stachel (these still include changes of scale, but do not in-
clude reflections of any sort, “spatial” or “temporal”); and I shall use the phrase
“strict automorphisms” for proper automorphisms that preserve the scale.

Let us proceed to the proof of two theorems: the one stated by Sarkar and Stachel
for a “non-vacuous” simultaneity relation and requiring invariance under change of
scale, and one using our strengthened condition on the relation but not requiring
scale-change invariance (both, however, relativize simultaneity to an inertial sys-
tem, not just to a “single observer”). For convenience, the two theorems will be
formulated as a single one with two “cases”:

Theorem 1. In a Minkowski space-time of three or more dimensions let there be
singled out an inertial system I, and let S be an equivalence relation on the space-
time points satisfying one of the following two sets of conditions:8

(a)(1) S is invariant under all strict automorphisms of the space-time that preserve
I;

(2) S(p,q) does not hold if p and q are distinct points on a single world-line of I;
(3) S(p,q) holds for at least one pair of distinct points;

(b)(1) S is invariant under all proper automorphisms of the space-time that preserve
I;

(2) S(p,q) does not hold for every pair of points;
(3) S(p,q) holds for at least one pair of points not on the same world-line of I;

—then for any distinct points p, q, S(p,q) holds if and only if the line pq is orthogonal
to the lines of I.

8 S(p,q) will also be expressed by saying “p and q are simultaneous for I,” or “p and q are
I-simultaneous”; and that a line, or vector, or direction, is perpendicular to the lines of I will
also be expressed by saying that it is “perpendicular—or orthogonal—to I.”
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Proof. Let p, p′, be any points on different lines of I—O and O′ respectively—
that are simultaneous for I (such points exist in both cases, (a) and (b)); let s be
the orthogonal (space-like) distance of p′ from O; and let M be a three-dimensional
subspace of our space-time that contains the plane spanned by the parallel time-
like lines O and O′. Under all rotations of M about O as axis, the images of the
point p′ are all the points of the circle through p′, in the (space-like) plane of M
orthogonal to I, having its center at the intersection of that plane with O. Since
each such rotation can be extended to a strict automorphism of the entire space-time
preserving I and leaving p fixed (just allow it to act as the identity on any orthogonal
complement to M in the space-time), all the points of that circle are simultaneous
with p, and therefore also with one another; and the vectors p′p′′ from p′ to the other
points of that circle (i) are all orthogonal to I and (ii) have lengths that fill the half-
open interval of real numbers (0,2s]. We therefore have established the following.

Lemma 1. If p′ has space-like orthogonal distance s from the I-line through a point
p with which it is I-simultaneous, then for every real number s′′ with 0 < s′′ ≤ 2s
there is a point p′′, I-simultaneous with p′, such that (i) p′p′′ is orthogonal to I and
(ii) the space-like length of p′p′′ is s′′. (This holds, be it also noted, for both cases,
(a) and (b).)

But this has the following as an almost immediate corollary: Any two dis-
tinct space-time points q, q′ such that the vector qq′ is orthogonal to I are
I-simultaneous.—Indeed, for our special point p′ above, the lemma shows that
the property possessed by the real number s is also possessed by (among others) 2s
(for if p1 is the point diametrically opposite p′ in the circle, the space-like orthogo-
nal distance of p′ from the I-line through p1 is just the space-like distance of p′ from
p1 itself, namely 2s); therefore, by successive doubling, that property is possessed
by arbitrarily large real numbers;9 and then, by the full conclusion of the lemma,
it is possessed by every positive real number smaller than some “arbitrarily large”
one—i.e., by all real numbers. Now let r be the space-like distance between our
points q and q′. There is a point p′′, by what has already been shown, I-simultaneous
with p′, such that p′p′′ is orthogonal to I and has space-like length r. The translation
taking p′ to q is a strict automorphism of the space-time that preserves I, so the
image q′′ of p′′ by that translation is I-simultaneous with q, and the vector qq′′ is
orthogonal to I and has space-like length r. Moreover, there is a rotation that leaves
q fixed, preserves I, and takes q′′ to q′; therefore q′ is I-simultaneous with q.

We now know that any two points satisfying the “standard” condition for simul-
taneity relative to I are I-simultaneous. But to establish the converse is trivial: For
case (a), we have only to remark that if Σ is a hyperplane orthogonal to I, p any
point of Σ, and q any point I-simultaneous with p, the line of I through q meets Σ in
a point q′ that is I-simultaneous with q by the preceding result, and therefore is also
simultaneous with q. So in case (a), q′ must coincide with q—i.e., q must belong to
Σ—since we cannot have distinct I-simultaneous points on a time-like line. As for
case (b), the argument just given shows that if Σ is not the complete class of points

9 Formally, an argument by mathematical induction is of course required.
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I-simultaneous with p, there must be two distinct points q, q′, that belong to the
same line of I and that are I-simultaneous with p and therefore with one another.
By changes of scale, the vectors qq′ and q′q can be transformed to vectors of arbi-
trary time-like length, and of both senses, all pointing in the direction of I. But such
vectors, starting from all the points of Σ, reach all the points of the space-time; and
since their end-points are simultaneous, we shall have that every point of the space-
time is I-simultaneous with a point of Σ; so, since all the points of Σ are themselves
I-simultaneous, all the points of space-time will be I-simultaneous, contradicting
(b)(2): the proof is complete.10

The main point of these results is, as I have intimated, rather obvious; if the
proofs are a bit lengthy and a little intricate, that is the result of making the con-
ditions posited very Spartan. Thinking of the matter more broadly, it is easy to
see—and to prove—that a relation, satisfying conditions one would surely ask of
simultaneity, that is invariant under (a) every rotation about a line of the inertial sys-
tem I and (b) every translation of space-time can have no other equivalence-classes
than the hyperplanes orthogonal to the lines of I. Relativizing simultaneity to an
inertial system is of course in consonance with the original procedure of Einstein,
who envisaged, as coordinating their spatio-temporal observations, a “community of
observers,” in a shared “inertial state.” But it has occurred to me to ask whether one
can reach any sort of result from a weaker assumption—one that does not require
ab initio that the “observers” of this community be at rest relative to one another;
and indeed—in a certain sense—one can. I do not think that the results I shall now
present are of great philosophical interest (this I shall discuss later); but I think they
are of some—although again I should not say of “great”—mathematical interest;
they are not “obvious.”

Let us, then, make the following assumptions, for a Minkowski space-time of
at least three dimensions (as we shall see, the two-dimensional case is notably
different):

With each observer-line O there is associated an equivalence relation SO on the
whole space-time, in such a way that:

(S1) any strict automorphism that maps O to O′ transforms SO to SO′ ;
(S2) if Σ is an equivalence-class of SO then:

(a) every observer-line O′ has one and only one point in common with Σ, and
(b) for every point p′ of Σ there is an observer-line O′ containing p′ such that Σ is

an equivalence-class of SO′ (as well as of SO).

—From these assumptions it does not follow that SO is the standard Einstein–
Minkowski11 relation; let us examine what does follow.

10 The counterexamples already given to the Sarkar-Stachel theorem with scale-changes excluded
make it plain that the inference from the assumption that an I-line contains two simultaneous points
to the conclusion that all its points are simultaneous could not be made without the condition
of scale-change invariance. (For further discussion, locating the particular fallacy in the Sarkar–
Stachel proof, see Supplementary Note 3.)
11 I continue to use this designation, rather than “Poincaré–Einstein” as in [4], because I think
it historically far more justified. Poincaré’s treatment of what we now call “the special theory of
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Let Σ be the equivalence-class of the relation SO (for a given O), let p be the point
of O in Σ, and let p′ be any other point of Σ (note that p, as well as p′, is an arbitrary
point of Σ—for, by (S2)(b), every point of Σ is the point, in Σ, of some observer-line
having Σ as an equivalence-class). A key lemma in our discussion will be this: If O′

is the observer-line containing p′ for which Σ is an equivalence-class, then O′ and
O are coplanar (that is, if we call an observer-line having Σ as an equivalence-class
an “axis” of Σ, then every pair of axes of Σ is a pair of coplanar world-lines).

In any event, O and O′ can be embedded in a three-dimensional Minkowskian
subspace M of our space-time; for if they are not coplanar, then there is a unique
three-dimensional affine subspace M containing them (and this is necessarily
Minkowskian, since it contains time-like lines), whereas if they are coplanar the
two-dimensional subspace that they span can be extended to a three-dimensional
subspace M. Any strict automorphism of M can be extended to the entire space-time
(e.g., by making it act trivially on an orthogonal complement of M); therefore any
such automorphism maps the intersection of Σ and M to itself (this follows obvi-
ously from (S1)). Consider, first, the family of all rotations of M about O as fixed
axis. Under these rotations, p′ generates a circle C, whose plane is orthogonal to O,
and all of whose points are in Σ (since for any such point p′′ we have SO(p′′, p)—p
itself being fixed under all these rotations). Let l be the tangent-line to C at p′; I
claim that O′ must be orthogonal to l. Suppose it is not so. Then the plane through
p′ orthogonal to O′ does not contain l. Now, that plane is space-like, and it separates
M into two connected components—call them A and B. Since l meets, but does not
lie entirely in, this plane, it contains—arbitrarily close to the point p′ in which it
meets the plane—points of a and points of B. The same must then be true of the
circle C, to which l is tangent: in fact, any arc of C which contains p′ in its interior
and which does not extend as far as the point diametrically opposite to p′ is divided
by p′ into a part that lies in A and one that lies in B; and each of these contains
points arbitrarily close to p, and therefore points whose perpendicular distances
from O′ are arbitrarily small. In particular, C contains a pair of points, say q in A
and q′ in B, that are of equal orthogonal distance from O′. Under rotation of M
about O′, therefore, q and q′ describe circles, in planes orthogonal to O′, one in A
and one in B, lying on a single cylinder having O′ as axis; and all the points one
both these circles, together, are in Σ, since q and q′—as points of C—lie in Σ, and
Σ is invariant under rotations about O′. And this leads to a contradiction of (S2)(a):
for the generating lines of our cylinder, which are parallel to O′ and thus time-like,

relativity” is quite wonderful; but (a) although he had previously discussed the lack of clarity of
the notion of simultaneity for distant events, there is not a single word about distant simultaneity
in his great essay [5], except for what is implicit in the spatio-temporal transformation equations
(represented as changes of coordinates)—and equations, which Poincaré attributes to Lorentz, are
indeed those introduced by Lorentz [6]. Further, Poincaré expresses in the introduction to this
essay deep reservations about the theory he is presenting, as one that seems artificial and might
perhaps some day be simplified by a critical consideration of measurement (so far is he from
offering such a consideration here!). So (a) there is something to be said for “Lorentz-Einstein,”
rather than “Poincaré-Einstein,” but (b) on the other hand, it was Einstein who made a clarification
of simultaneity a central theme, and it was Minkowski who geometrized that clarification; hence
my preference.
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each meet both the circle generated by q and that generated by q′, whereas these
two circles do not meet (since one lies in A and the other in B). So it is established
that O′ is orthogonal to l, as claimed.

But this result means that O′ and O are coplanar—that is, it establishes our
lemma: for l, as the tangent-line to C, lies in the plane of C—i.e., the plane orthog-
onal to O; so any plane orthogonal to l is parallel to O; but the plane orthogonal to
l at the point p′, since it contains the center of C, meets O, and so must contain O;
and since this plane, as we have just seen, also contains O′, O and O′ are indeed
coplanar.

There are now two possibilities: O and O′ intersect, or they are parallel.12 Let O′′

be any axis of the same equivalence-class Σ that does not lie in the same plane as O
and O′ (there are such, of course: take an axis at any point of Σ outside that plane—
that such points exist is guaranteed, in the light of our assumption that the space-time
is at least three-dimensional, by condition (S2)(a)). If O and O′ are parallel, then
since O′′ cannot meet both of them it must be parallel to one—but, then, to both;
any other axis is non-coplanar with either O and O′ or O and O′′, and is therefore
parallel to O: in other words, in this case all the axes of Σ are parallel; and by the
invariance of SO under translations in the direction of O, the same must be true of
all the equivalence-classes of SO; and then, since there is a strict automorphism that
takes O to any other observer-line, for all the equivalence-classes of any observer
at all. But this puts us in the situation of Theorem 1 above (either (a) or (b)—the
conditions of either are satisfied); so for this case it does follow that SO is Einstein–
Minkowski simultaneity: the equivalence-classes of simultaneity are hyperplanes
orthogonal to the axes of simultaneity.

Suppose, then, that O and O′ intersect. Then O′′ (chosen as above) cannot be
parallel to either—say, to O—by the immediately preceding result (putting O′′ for
O′ and O′ for O′′). So we have three non-coplanar lines that intersect in pairs; from
which it follows that all three intersect in one common point p0. It follows by an
obvious argument13 (appealing to the fact that if, of three non-coplanar lines, every
two intersect, then all three have a point in common) that all axes of Σ meet in p0.
(Note that at this point we have established—we have not assumed—that through
each point q of Σ there passes exactly one axis of Σ: in the previous case, the line
parallel to O; in this case, the line p0q [that p0 is distinct from q, so that there is a
determinate line p0q, is clear, since p0 is not in Σ].)

To complete the analysis of this case, we must note that any strict automorphism
that maps Σ onto itself must also take the set of axes of Σ one-to-one onto itself. For
let φ be such an automorphism, let p be any point of Σ, let the axis of Σ at p be O,
let φ(p) be p′, and let φ(O) be O′. By the invariance assumption (S1), φ transforms
SO to SO′ ; so, since Σ is invariant under φ , Σ is an equivalence-class of SO′ ; in other
words, O′ is an axis of Σ—and therefore, since there is only one axis of Σ at each
point of Σ, it is the axis of Σ at p′; and this shows that φ does indeed map the set of
axes of Σ one-to-one onto itself.

12 If we adopt the point of view of projective geometry, introducing the “projective completion” of
our space-time, these alternatives merge into one.
13 From the projective point of view, the same argument as in the former case.
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But from this it follows that any strict automorphism that maps Σ onto itself
leaves fixed the point p0 in which all the axes of Σ meet. Now, if p and p′ are any
two points of Σ, there is a strict automorphism taking p to p′ and taking the axis of Σ
at p to that at p′ (for, given any points p and p′, and any time-like lines l and l′ con-
taining p and p′ respectively, there is a strict automorphism of the space-time taking
p to p′ and l to l′). That automorphism maps Σ to itself, and therefore leaves p0
fixed. Since a strict automorphism preserves the length and the time-orientation of a
time-like vector, the vectors p0 p and p0 p′ have the same length and the same time-
orientation. Let us call any class of all the time-like vectors that agree in length and
time-orientation with a given one v the temporally oriented radius [v] determined
by v. Then what we have just established is that, for any point p on an observer-
line O, and any point p′, if SO(p, p′) holds then the vector p0 p′ is time-like and the
temporally oriented radius [p0 p′] is the same as [p0 p]. We may describe this situa-
tion by saying that the equivalence-class Σ of SO that contains p is contained in the
“Minkowski hemisphere” with temporally oriented radius [p0 p]; but it must then be
the entire hemisphere, since otherwise it will not be the case that every observer-
line meets Σ (i.e., assumption (S2)(a) will be violated).—However, this formulation
is elliptical: it does not identify the point p0. The answer to that objection is that
what must be given (once for all) to determine the function S that assigns to every
observer-line its “simultaneity-relation” SO is a temporally oriented radius r. Then,
given p, and O containing p, the point p0 in the foregoing statement—the “center”
of the Minkowski hemisphere containing p and having O as an axis—is the unique
point on O such that [p0 p] = r.—It is of course in singling out a particular (time-
like) distance and time-orientation that we make essential use of the fact that we
have not postulated invariance under change of time-orientation or change of scale.

To sum up, we have established the following:

Theorem 2. In a Minkowski space-time of three or more dimensions let there be
given an assignment, to each observer-line O, of an equivalence relation SO on the
whole space-time, in such a way that:

(S1) any strict automorphism that maps O to O′ transforms SO to SO′ ;
(S2) if Σ is an equivalence-class of SO then:

(a) every observer-line O′ has one and only one point in common with Σ, and
(b) for every point p′ of Σ there is an observer-line O′ containing p′ such that Σ

is an equivalence-class of SO′ (as well as of SO);

—then EITHER (1) for every O, p, and q, we have that SO (p,q) holds if and only
if the line pq is orthogonal to O, OR (2) there is a temporally oriented radius r
such that for every O, every p on O, and every point q, we have that SO (p,q) holds
if and only if [p0q] = r, where p0 is the (unique) point on O for which [p0 p] = r.
(Equivalently we may say, in case (2), that for every O, p, and q, SO (p,q) holds if
and only if, for some p0 on O, [p0 p] = [p0q] = r.)

Two ways suggest themselves to strengthen the hypotheses of this theorem so as
to eliminate the alternative (2) and leave standard Einstein–Minkowski simultaneity
as the only possibility: we may replace (S2)(b) either by:
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(S2) (b′) for every pair of space-time points p, p′, and every observer-line O con-
taining p, there is an observer-line O′ containing p′ such that SO′ coincides
with SO;

or by:

(S2) (b′′) for every observer-line O, every equivalence-class Σ of SO and every
space-time point p, there is an observer-line O′ containing p such that Σ is an
equivalence-class of SO′ (as well as of SO).

—The first of these alternative assumptions obviously rules out the alternative con-
clusion (2), since in the latter the families of equivalence-classes of any two distinct
observer-lines have, ipso facto, their “moving centers” on different lines (the centers
coincide only where the lines intersect). The second rules out conclusion (2) because
for Σ to be an equivalence-class of SO′ it is necessary that O′ pass through the cen-
ter p0 of the “Minkowski hemisphere” Σ,14 and of course not every observer-line
does so.

Let us now consider a two-dimensional Minkowski space-time. This case differs,
as has been intimated, in important ways from that of any higher dimension, and I
think the difference is worth noting. (One point is obvious from the outset: namely,
that the lemma we have exploited in the proof of Theorem 2 holds trivially in two
dimensions—all the axes of a simultaneity-class are coplanar, because everything
is coplanar; but this fact, in just this case, is of no help at all, and a quite different
line of attack is required.) I shall begin by reviewing a few basic facts about the
geometry of a Minkowski space-time of two dimensions:

(1) In two dimensions, there is complete symmetry in the geometry as between
space and time, since the fundamental quadratic form has, in diagonal form,
one positive and one negative coefficient.15 It would, indeed, be possible in
this case to extend the notion of an “automorphism” of the space so as to in-
clude an interchange of “space” and “time.”16 One aspect of this (as it were)

14 This condition is also sufficient.
15 There is in the literature some variation in the choice of signs: in the older convention, introduced
by Minkowski (the “time-coordinate” as an imaginary number), the negative sign is assigned to
the one temporal dimension, the positive sign to the n (for physics, 3) spatial ones; but the reverse
choice is often made. This is, in the clearest sense, a pure matter of “convention”: which of them
one adopts makes no real difference. Accordingly, in the above discussion, I have never indicated
a preference on this point: I have referred to vectors and subspaces as “time-like” or “space-like,”
without assigning an algebraic sign to the one or the other. I shall continue to do this in what
follows.
16 As we know, the wider sense of “automorphism” usual in mathematics for Minkowski space-
times includes change of scale; this is tantamount to regarding, as characterizing the geometry, not
a given non-degenerate quadratic form of appropriate signature, but a class of such forms, arising
from one another through multiplication by arbitrary positive real factors. Nothing prevents one
from admitting instead multiplication by arbitrary nonzero real factors. This, in the general case, of
n+1 dimensions with n > 1, would make no difference at all to the theory; but in the case n = 1, it
would automatically allow as automorphisms maps that preserve the linear (more exactly, affine)
structure, preserve the relation of orthogonality, but take “time-like” vectors to “space-like” ones
and vice versa.
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“time-likeness of space” in a two-dimensional space-time is that, just as it
is possible to divide time-like vectors into two classes that are topologically
separated from each other, so this is also possible for space-like vectors. In
fact, under “proper automorphisms,” the non-zero vectors of a two-dimensional
Minkowski space-time fall into eight distinct classes: two of time-like vectors
(we may call them “future-pointing” and “past-pointing”), two of space-like
vectors (“right-pointing” and “left-pointing”), and four classes of null vectors
(“right-and-future pointing,” “left-and-future pointing,” “left-and-past point-
ing,” “right-and-past pointing”): one non-zero vector can be taken to another
by a proper automorphism if and only if the two belong to the same class.17 I
shall call two non-zero vectors—or two lines—“like,” or “of the same charac-
ter,” if they are both time-like, both space-like, or both null; and shall call (as
above) two like vectors “of the same class” if they are similarly oriented—i.e.,
if they are “equivalent” under proper automorphisms.—Two vectors are like if
and only if their inner products with themselves have like signs (here zero is
to be counted as a sign in its own right, distinct from plus and minus); two
non-null like vectors are of the same class if and only if their inner product has
the same sign as the inner product of each with itself.18—The fact that proper
automorphisms—and, a fortiori, strict automorphisms—preserve spatial as well
as temporal orientation of individual vectors will prove to be important in the
following.

(2) We shall have occasion to make use of the following facts about triangles—
equivalently, about three vectors of which one is the sum of the other two—in a
Minkowski plane:

(a) Let two vectorial sides—AB, BC—of a triangle be space-like and of the
same class; then the side AC (their vector-sum) is also space-like and of the
same class with them.
—This is perhaps obvious; to prove it, we have—representing the inner
product by angle brackets—that, since AC = AB + BC, < AC, AC >=
< AB, AB > +2 < AB, BC > + < BC, BC >. By the criterion stated in
(1) above, all three terms have the same sign; therefore the inner product of
AC with itself has the same sign as those of AB and of BC with themselves:
AC is space-like. And < AC, AB >=< AB, AB > + < BC, AB >—again a
sum of terms of like sign—so it, too, has the same sign as the inner product
of AB with itself, which shows that AC and AB are of the same class.

(b) If A, B, C are non-collinear points and D is a point on the space-like line BC
such that AD is orthogonal to BC, then:

17 To avoid a possible misunderstanding: “automorphism” is not here used in the extended sense
mentioned in the previous note; and indeed, even if it were, since “proper” automorphisms are those
that belong to the connected component of the identity in the Lie group of all automorphisms, the
ones “interchanging time and space” would be excluded.
18 Although it will be of no importance in what follows, it perhaps ought to be noted explicitly that
this criterion fails for null vectors: two null-vectors directed along the same line have inner product
zero whether their “senses” are the same or opposite.
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(1) the vectors AB and AC are of like character and equal in length if and
only if D is the midpoint of the segment BC (i.e., if and only if A is on
the perpendicular bisector of BC);

(2) if this is indeed the case—i.e., if D is the midpoint of BC—then:
(i) if AB and AC are space-like, then BA, AC, and BC are all of the

same class, and the lengths of BA and of AC are less than half that
of BC;

(ii) if AB and AC are time-like, then AB, AD, and AC are all of the
same class.

—For, setting for convenience x = AD, y = BD, z = DC (all as vectors),
and noting that AB = x− y and AC = x + z, the necessary and sufficient
condition for AB and AC to be of like character and equal in length is that
< x− y, x− y >=< x + z, x + z >; i.e., in view of the orthogonality of x
to y and to z, that < x, x > + < y, y >=< x, x > + < z, z >; i.e., that
< y, y >=< z, z >; and since y and z are in the same line, this means that
y = ±z. But y = −z is impossible, because that would mean BD+DC = 0,
i.e., C = B, whereas our assumption that A, B, and C are non-collinear im-
plies that these are three distinct points. So the condition for AB and AC to
be of like character reduces to y = z, i.e., BD = DC, which is to say: D is
the midpoint of BC; so (1) is proved.—Proceeding to (2)(i), we are now to
assume that z = y and, further, that AB and AC are space-like, which is to
say that < x− y, x− y > and < x + y, x + y > (which of course are both
equal to < x, x > + < y, y >) have the same sign as < y, y > (this in view
of the fact that y is space-like). What has to be proved is that y− x, x + z
(i.e., x+ y), and y+ z (i.e., 2y) are of the same class. It suffices to show that
each of the first two is of the same class with the third; which is to say, that
the inner products < y−x, 2y > and < y+x, 2y > have each the same sign
as that of the inner product of a space-like vector with itself. But—again,
since x and y are orthogonal—these are both equal to 2 < y, y > and, y being
space-like, the point is established. The claim about the lengths of BA and
of AC—that is, of y− x and of x+ y—follows almost immediately from the
expression for both of them, < y, y > + < x, x >: since the terms of this sum
are of opposite sign and the sum, by hypothesis, has the sign of < y, y >, it
is smaller in absolute value than < y, y >; so the (common) length of y− x
and of y+x is less than that of y—i.e., than half the length of BC.—Finally,
as for (2)(ii), we now have to suppose that < x, x > + < y, y > has the same
sign as < x, x >, and to show that x− y, x, and x + y are of the same class.
Analogously to the case of (i), it suffices to show that the inner product with
x of each of the other two has the same sign as that of x with itself; but this
is even more obvious than in the other case: each of these inner products is
equal to < x, x >. The proof of (b) is complete.

(c) In an isosceles triangle ABC with the two vectorial sides AB, AC space-like,
equal in length, and of the same class, the “base” BC is time-like.
—This is most easily seen by considering the sum AB+AC, which by (a) is
space-like. Its inner product with BC—since the latter is AC−AB [for AB+
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BC = AC]—is < AB, AC >−< AB, AB > + < AC, AC >−< AC, AB >.
The first and last terms of this sum cancel, by the commutativity of the inner
product, and so do the middle two terms, since AB and AC are like and of
equal length; so the whole is zero—i.e., BC is orthogonal to the space-like
vector AB+AC.

(3) Finally, some facts about the strict automorphisms of a Minkowski plane (or the
connected component of the identity in its Poincaré group):

(a) There are two kinds of automorphisms besides the identity: the translations,
which have no fixed points and which leave invariant one complete family
of parallel lines; and the “Minkowski rotations” (“Lorentz transformations,”
“boosts”), each of which has a unique fixed-point and leaves invariant only
the two null-lines through the fixed-point. If p and p′ are any two points,
there is a unique translation that maps p to p′. If p and p′ are any two points,
and if l and l′ are any two non-null lines of the same character through p
and p′ respectively, there is a unique strict automorphism that takes p to p′

and l to l′.19 For there is a translation that takes p to p′, and this may be
followed by a “boost” that leaves p′ fixed and takes the image of l under the
translation to l′. (That the resulting automorphism is unique follows from
the fact that the identity is the only automorphism that leaves a point fixed
and a non-null line through that point invariant; this—which is not hard to
prove—I here simply take for granted.)

(b) If one considers all the strict automorphisms having a given fixed-point
(here including the identity), they constitute a one-parameter subgroup of
the Poincaré group. Unlike the case of Euclidean rotations, a one-parameter
group of “Minkowski rotations” is non-compact—as the parameter varies
from −∞ to +∞, the mapping from parameter values to group elements
is one-to-one. In spite of this fact, one can—as in the Euclidean case—
make a “natural” choice of parameter, which in the Euclidean case is the
angle of rotation (the “natural” choice—there is not a unique one!—may
be the radian-measure, or the measure by fractions of a full rotation).20

In any event, the correspondence of the parameters to the rotations they
parametrize is of such a kind that multiplying the parameter by, say, a posi-
tive integer n corresponds to “composing a rotation with itself” n−1 times
(the “minus one” comes from the fact that, e.g., “composing an operation
with itself” once means “performing that operation” twice). Multiplication

19 Although, once again, it is of no importance for us, let it be remarked that this is not the case if
L and L′ are both null: in this case, these lines must also be, let me say, “similarly inclined” (either
they must both go from past and left to future and right, or both from past and right to future and
left, for there to be any automorphism that takes one to the other; and then there will be infinitely
many automorphisms that take p to p′ and L to L′).
20 It is striking that in spite of the fact that in the Minkowski case there is no such thing as a
“full rotation,” there is nevertheless a “natural” analogue to the angle; but this is just one more
manifestation of the marvelous interconnection of the trigonometric functions and the exponential
function. (I trust the reader will forgive this gratuitous advertisement of the splendors of [even the
rather elementary part of] mathematics.)
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of the parameter by −1 amounts to taking the inverse of the given rotation
(from which follows the interpretation of multiplying by any negative inte-
ger). Analogously—but this actually gives us something new—multiplying
the parameter corresponding to a given rotation φ by the reciprocal of an
integer n, we obtain a rotation which, “performed n times,” results in the
original rotation φ . Since the nth iterate is indicated by n as an exponent,
the procedure just described yields what one might call the “nth root” of
φ ; but I shall call this instead—bearing in mind the parameter (the “quasi-
angle”) of the rotation—the result of dividing the rotation by n; and by an
obvious extension, we obtain the interpretation of multiplication by any ra-
tional number.—Multiplication by irrational real numbers is an entirely new
generalization of the simple idea of “composition of an operator with itself.”
(As will be seen below, what we shall have to consider is primarily the case
n = 2 or a power of 2, and then multiplication by any rational number whose
denominator is a power of 2; and I shall speak of “halving” the rotation, or of
its “successive halving,” etc., rather than of “taking square roots,” or “taking
to a rational power,” etc.)

(c) The analogous situation for a translation is simpler: a translation (different
from the identity) is represented by a (non-zero) vector, and when transla-
tions are considered separately, their composition is represented as addition
of vectors (but when they are considered together with the other elements of
the Poincaré group their composition with any group-element—translations
themselves included—is represented multiplicatively). So, treating a trans-
lation and its compositions with itself (and iterations thereof), these amount
to multiplications by a positive integer; the extension to positive and nega-
tive rational (or, for that matter, irrational) numbers remains in the domain
familiar from the ordinary treatment of vectors, and the structure of the one-
parameter group “generated by” a given non-zero translation is obvious.
(Let it be noted that every non-zero multiple of a Minkowski rotation is a
rotation and every non-zero multiple of a translation is a translation.)

In treating the higher-dimensional case, we excluded from the start (via condition
(S2)(a)) the possibility that a simultaneity equivalence-class contains two distinct
points with time-like separation, but we did not exclude in advance the possibility
that such a class contains two distinct points with null separation—this emerged
as a consequence of our hypotheses. In the two-dimensional case, if we wish to
avoid this possibility in the end, we have to strengthen the assumptions (this will
emerge clearly when the analysis is complete). Therefore, for the following dis-
cussion, I wish to strengthen condition (S2), replacing clause (a) by the following:
(a′)(i) every observer-line O′ meets Σ; (ii) any two distinct points of Σ have space-
like separation. The remaining hypotheses of Theorem 2 remain unaltered—except,
of course, that we are now to consider a Minkowski space-time of two dimensions.

Let Σ again be an equivalence-class, containing the point p, of the “simultaneity”
relation SO, where p belongs to the axis O. It will be useful in the present case to
begin by proving that there is no other axis of Σ at p. Suppose there were an axis
O′, distinct from O, containing p. Let q be a point of Σ with space-like separation
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from p (that there are such points follows immediately from condition (S2)(a′)(i)
and (ii), and from the fact that there are observer-lines that do not pass through p).
Consider, now, the Minkowski rotation about p that takes O to O′. The image q′ of
q under this rotation belongs to Σ: for q, as a point of Σ, satisfies SO(p,q); therefore,
by the invariance condition (S1), q′ satisfies SO′(p,q)—and since O′ is (assumed
to be) an axis of Σ, q′ belongs to Σ. On the other hand, the rotation about p that
took q to q′ took the vector pq to pq′; and since a rotation preserves the character,
the length, and the class of a vector, pq′ is space-like, equal in length to pq, and of
the same character as pq. Therefore, by (2)(c) in the foregoing discussion, if there
is at p an axis O′ distinct from O—which implies that q′ is distinct from q—there
is a time-like line qq′ containing two distinct points of Σ; and since this violates
condition (S2)(a′)(ii), there cannot be an axis at p distinct from O.

Next we shall see that any strict automorphism that maps Σ into itself must (a)
take the set of axes of Σ into itself, and must (b) take both the set of points, and the
set of axes, of Σ, one-to-one onto themselves. For let φ be such an automorphism,
let p be a point of Σ, let O be the axis of Σ at p, let p′ be φ(p) and let O′ be the image
φ(O) of O under φ . We must first show that O′ is an axis of Σ; so let q be any point
such that SO′(p′,q) holds. Since φ−1, the inverse of φ , is (of course) also a strict
automorphism, we have by invariance that SO(p,φ−1(q)) holds; therefore φ−1(q)
belongs to Σ, so since φ maps Σ into itself φ(φ−1(q))—which is to say, q—belongs
to Σ; and this means that O′ is indeed an axis of Σ. Now let q be any point of Σ, and
let φ , p, O, and O′ be as in the discussion of clause (a). We have just seen that O′ is
an axis of Σ, so SO′(p′,q) holds (as was assumed of q in that discussion); therefore
it follows again (or still!) that φ−1(q) belongs to Σ, and accordingly that q is the
image under φ of a point of Σ, which shows that φ maps Σ onto itself. Further, φ
(as we already know) takes axes of Σ to axes of Σ; therefore it takes the axis of Σ at
φ−1(q) to that at q; and since q was an arbitrary point of Σ—and so the axis of Σ at
q is an arbitrary axis of Σ—every axis of Σ is the image under φ of some axis of Σ,
so the mapping by φ of the set of all such axes is onto that same set. Finally, as an
automorphism of the space-time, φ is automatically one-to-one on any set of space-
time points; and although an automorphism is not necessarily one-to-one on the set
of time-like lines (“observer-lines”), an automorphism of Σ is one-to-one on its axes
because the axes correspond one-to-one with their points of intersection with Σ, and
the automorphism is one-to-one on that set of points. Thus clause (b) too has been
fully demonstrated.

With all these perhaps tedious but comparatively trivial points now established,
the main conclusion of the present an analysis could be rather quickly reached, on
the basis of the discussion of one-parameter groups under (3)(b) and (c) above.
But since just that part of the preliminary discussion contented itself with a vague
indication of the proofs of its claims—by means, namely, in (3)(b), of the notion of
“quasi-angles” (which is to say, the “hyperbolic trigonometry” of the Minkowskian
plane), it seems preferable to base the results instead on more elementary geometric
constructions.

Let, then, Σ still be an equivalence-class of a “simultaneity-relation,” let p and
p′ be points of Σ, let O and O′ be its axes at p and p′ respectively, and let φ be the
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strict automorphism that takes p to p′ and O to O′. Then φ maps Σ into itself (and
therefore, by the preceding result, onto itself), because if q is in Σ if q′ = φ(q), we
have SO(p,q); therefore SO′(p′,q′); therefore q′ is in Σ. We mean now to “halve” φ .
To this end, consider the perpendicular bisector of the space-like line-segment pp′.
This is a time-like line (cf. n. 21 above), and therefore contains a (unique) point p′′

of Σ; let the axis of Σ at p′′ be O′′, and let the strict automorphism that takes p to p′′

and O to O′′ be ψ .21 I maintain that ψ “halves” φ .—Proof: First, if q = ψ p′′) then
q is a point of Σ, and p′′q, as the image under ψ of pp′′, is of the same character
and length as the latter; but therefore, by (2)(b) of the preliminary discussion, of the
same character and length as p′′p′ as well. From this in turn, by (2)(c),22 it follows
that unless q = p′, qp′ will be a time-like line containing two distinct points of Σ.
Since this last is impossible, we must have q = p′; but then also the image under
ψ of O′′ must be O′; so since ψ takes p to p′′ and p′′ to p′, and takes O to O′′

and O′′ to O′, its “double” ψ2 takes p to p′ and O to O′; but these are the defining
characteristics of φ , so the point is established.

Now observe that if we allow φ to “act iteratively on p,” a countable set of points
will be generated—all on Σ, equally spaced—proceeding from p on the one side;
that φ−1 will similarly generate such a set proceeding from p on the opposite side;
and that allowing ψ and its inverse to act similarly, we shall obtain another such
pair of sets, which include all the points of the first pair, with new points inter-
polated between every two adjacent points of the first sets. The (equal) distances
between successive points of the “refined” system will be no more than half that be-
tween successive points of the first system: namely, if three successive points such
as p, p′′, p′ above form a triangle, the distances |pp′′| and |p′′p′| are less than half
|pp′| (see (2)(b) of the preliminary discussion), whereas if these points are on a sin-
gle straight line then p′′ is the midpoint of pp′, so the former distances are exactly
half the latter one.

We next conceive this process of “bisection” of the automorphism and the gen-
eration of new points on Σ to be iterated without bound. The result is a system of
points “densely” distributed on Σ, in the sense that any one point has, on each “spa-
tial side” of itself, others whose (space-like) distances from it are arbitrarily small.23

We must now consider the geometric nature of the locus of these points.

21 Note, by the way, that in light of what we now know we could characterize ψ equivalently as
the strict automorphism that takes p to p′′ and maps Σ into (or: onto) itself. By the same token, φ
can be characterized as the strict automorphism that takes p to p′ and maps Σ into (or: onto) itself.
22 Here the reader may (should!) have a sense of déjà vu.
23 Caution!—We cannot immediately conclude that these points are “dense in the topology induced
on Σ by that of the Minkowski plane. For the space-like distance is not a metric in the standard sense
of the theory of metric spaces—this because the triangle inequality is, as we have seen, “the wrong
one.” Indeed, it is quite possible for a sequence of points to be (as it were) a “Cauchy sequence in
the space-like distance,” but not to converge; or for the distances of those points from a given point
p to converge to zero, but the points not to converge to p. (This last is especially easy to see: let
the “Cauchy sequence” converge to a point q, distinct from p, with null separation from p; then
the “distances” from p will go to zero, but the sequence will not converge to p.) We shall have to
(and we shall be able to) circumvent this difficulty eventually.
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With Σ, p, p′, p′′, O, O′, O′′, φ , and ψ as above, suppose first that p, p′′, and p′

are collinear—so that p′′ is the midpoint of pp′. Then the vectors pp′′ and p′′p′ are
the same; so φ , mapping p to p′′ and p′′ to p′, and therefore taking the vector pp′′

to p′′p′, leaves that vector fixed.24 But a strict automorphism that leaves a non-null
vector fixed also (a) leaves fixed all its multiples by scalars, and (b) leaves fixed any
vector orthogonal to the given one (since strict automorphisms preserve the relation
of orthogonality and preserve the length, character, and class of any vector).25 But
given a non-null vector, every vector can be represented as a sum of a multiple
of that vector and a vector orthogonal to it; and automorphisms preserve sums; so
we conclude that a strict automorphism that leaves a non-nulll vector fixed leaves
every vector fixed. However, it is easy to see that an automorphism that leaves every
vector fixed is a translation. So—in the case in which p, p′, and p′′ are collinear—
the automorphism ψ is a translation—and, in consequence, all its powers, and also
its inverse and all the powers of its inverse are translations.

Before we draw the (almost obvious) conclusion from this about the geometric
character of the set Σ, it will prove best to consider the other case—that, namely, in
which the points in question are not collinear, so that the segments—and the vectors
(we have been using the same notation for both)—pp′, pp′′, and p′′p′ are distinct,
and the segments are the (space-like) sides of a (n isosceles) triangle. Consider, then,
the perpendicular bisectors of the equal sides pp′′ and p′′p′. These meet (since the
lines pp′′ and p′′p′ are not parallel, lines orthogonal to them are also not parallel)
in a point p0 that is equidistant from the end-points of both—i.e., from p, p′′, and
p′—and that therefore lies on the perpendicular bisector of pp′ (see (2)(b) of the
preliminary discussion). Since that perpendicular bisector is time-like, the vector
p0 p′′ is time-like; I claim that the vectors p0 p and p0 p′ must then also be time-like,
and of the same class as p0 p′′. Indeed, we know already, by (2)(b) of the prelimi-
nary discussion applied to the triangle whose vertices are p0, p, and p′′, that p0 p
and p0 p′′ are of the same character, since p0 lies on the perpendicular bisector of
the space-like pp′′; so p0 p must be time-like, because p0 p′′ is so; and analogously
for p0 p′. But then we know —again by (2)(b), now applied to the triangle whose
vertices are p0, p, and p′, and in which p′′ is the midpoint of pp′—that p0 p, p0 p′,
and p0 p′′ are indeed of the same class.

Now, the strict automorphism ψ takes p to p′′ and p′′ to p′. It therefore takes
the perpendicular bisector of pp′′ to that of p′′p′. Let r be the temporally oriented

24 Lest there be confusion: an automorphism of a Minkowski space is to be regarded as acting both
on the space of points and on the associated vector space (thus, in a more precise sense, as a pair
of maps [which we nonetheless designate by the same symbol])—the connection between the two
actions (or the two maps) being that if the points A and B are taken to A′ and B′ respectively, then
the vector AB is taken to A′B′.
25 Two points of clarification: (1) strictness is required only for the preservation of “class”: without
that, vectors orthogonal to a fixed one need not themselves be fixed, they may be “reversed”—i.e.,
multiplied by −1; (2) “non-null” is important here because a vector orthogonal to a null-vector
in a Minkowski plane is a multiple of that null-vector: it is not true that every vector is a linear
combination of the first vector and the second. (It does remain true for a non-zero null-vector—
in two dimensions—that a strict automorphism that leaves one fixed leaves all vectors fixed; but
another argument would be required to prove this, and we have no need of the fact.)
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radius [p0 p]; then the point p0 may be characterized as the unique point q on the
perpendicular bisector of pp′′ for which [qp] = r; it may also be characterized as
the unique point q on that perpendicular bisector for which [qp′′] = r. And by the
same token, p0 may be characterized as the unique point q′ on the perpendicular
bisector of p′′p′ for which [q′p′′] = r. But ψ takes any point q on the perpendicular
bisector of pp′′ for which [qp] = r to a point q′ on the perpendicular bisector of
p′′p′ for which [q′p′′] = r; that is, ψ takes p0 to p0 : p0 is a fixed-point of ψ (and,
as we know, there cannot be more than one such: p0 is the fixed-point of ψ (which,
incidentally, by this very argument possesses a fixed point: i.e., ψ is a Minkowski
rotation.

This conclusion leads to a far-reaching consequence for our other case—that in
which p, p′, and p′′ are collinear. We saw that in that case ψ is a translation. We
can now infer that the result of halving ψ is again a translation. For we saw, in our
previous analysis, that if, starting from p, p′, and the strict automorphism φ that
takes p to p′ and maps Σ into itself (cf. n. 22 above), we construct the point p′′ and
the automorphism ψ that halves φ , then if p, p′, p′′ are collinear, ψ is a translation,
and has no fixed-point; we have now seen that if those points are not collinear, ψ
is a rotation, and does have a fixed-point. Applying this to the halving of ψ (with
p′′ playing the role that p′ did previously, and with a new “third point” for p′′), we
see that unless the new triad of points is collinear, the result of halving ψ will be
a rotation—a transformation that has a fixed-point. But this is impossible; for if a
transformation has a fixed-point, so does the result of “doubling” it. Therefore, as
claimed, the result of halving ψ will in that first case be again a translation; and
so on ad infinitum. And it follows immediately that not only the “backwards and
forwards sequences of points” that we constructed from φ and refined using ψ , but
all the points of the subsequently constructed “dense” system in Σ lie on a single
straight line.

The conclusion for the second case—in which the first three points of the con-
struction, p, p′, p are non-collinear—is obviously analogous: If ψ has a fixed-point
p0, all the subsequent results of halving must likewise have, not only a fixed-point,
but the same fixed-point p0—the result of doubling a rotation has the same fixed-
point—or “center”—as the original rotation, and therefore the result of halving a
rotation must have the same fixed point as the original rotation. It follows that the
points of the “dense” array in Σ in this case all lie on a “Minkowski semicircle”
having the temporally oriented radius [p0 p].

Two matters remain to be treated. First, we are obviously led to think that Σ
itself just is the straight line or “semicircle” concerned; but this has to be proved.
And then, we have so far determined nothing about the axes of Σ: in the higher-
dimensional case, the fact that these axes (in the “hemispherical” case) have all
a single point of intersection was crucial to our whole argument; but in the two-
dimensional case, we have made very limited use of arguments involving the axes,
and have so far draw no conclusion whatever about their geometrical configuration.

In order to deal with the first problem, there is one obstruction we have to
remove. We have indeed seen that the range of points that lie on, in the one
case a straight line, in the other a circle, extends “infinitely” in both directions,
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and has “everywhere” points as close together as one wants; but “infinitely” and
“everywhere” here are in an important respect misleading: we have shown that there
are infinitely many points, in each direction, in our array; we have not shown—now
taking advantage of the possibility of using the geometric loci, the straight line or
the “semicircle,” as a sort of standard—that our range of points extends from the
initial point p, in both directions, past any given point of the line or “semicircle”
that we care to name.

In the case of the straight line, this is trivial to deal with: at the very first stage,
when we iterate the translation φ or ψ , we do obtain points arbitrarily far from p
along the line in either direction; and of course this continues to be true at every stage
of the subdivision. In the case of the “semicircle,” the situation is quite analogous:
the iteration of a rotation leads to points, in both directions from p along the curve,
that extend (in point of the natural ordering of points on an “open” curve) past any
given point. To prove this is not hard, but going into the details of a proof would not
afford any new insight into the matter—any reader who is unfamiliar with the fact
stated and who cares to have a proof should be able to find one—so I shall now take
this for granted. More precisely, I shall make use of the fact that if one is given any
positive real number a, and any point q of the straight line or “semicircle,” we can
find a sequence of points of our array, starting from p and continuing past q, such
that the space-like separation between any two successive points of the sequence is
less than a. Then, from this sequence, one can select two points, say q′ and q′′, one
on each side of q, and with space-like separation less than a.

If this is granted, the question of the full geometric locus can be settled at once.
Let q be any point on our line or “semicircle” that contains our “generated” array
(q is not assumed to belong to the array); it is to be shown that q belongs to Σ. To
this end, let l be any time-like line through q. By condition (S2)(a′)(i), l contains a
point of Σ. By the fact stated just above, there are points q′,q′′ of our constructed
point-array—points belonging both to Σ and to the line or “semicircle”—on both
sides of the point of l in Σ and “arbitrarily close” to one another. Both q′ and q′′

have space-like separation from the point of l in Σ (since all points of Σ have space-
like separation, by (2)(a′)(ii)). But it is obvious that a point x that has space-like
separation from points on the line or “semicircle” lying arbitrarily close to one an-
other and on both spatial sides of x can only be a point that itself lies on the line or
“semicircle”. Therefore the point of l in Σ must be the point q in which l meets that
geometric locus—as was to be shown.

Now that we know that every point of our line or “semicircle” belongs to Σ,
we can easily show that these are the only points of Σ—i.e., that Σ is the line or
“semicircle”: for every point q of Σ belongs to some time-like world-line; and every
time-like world-line meets the line or “semicircle” in some point q′; that point of
intersection q′ belongs to Σ (as we have just seen); but l has only one point in
common with Σ. So the point q of Σ through which L passes is the same as the point
q′ in which l meets the line or “semicircle”: the analysis of the geometrical nature
of Σ is complete.

As to the axes of Σ—and this is the only point on which we shall find a difference
in the end result from the higher dimensions—one can choose the axis at a given
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point q of Σ arbitrarily; that is, it can be any time-like line l through p. For the
choice of such a line as axis can be specified in the following “objectively geomet-
rical” way: Choose—“in advance” and once for all—a spatially oriented radius s,
of absolute length less than unity. (It is obvious how “spatially oriented radius” is
to be defined, except for the new proviso that here we allow the vector 0 to count as
“space-like” and “oriented”; it therefore constitutes a class by itself—the spatially
oriented radius 0. By the “absolute length” of a spatially or temporally oriented ra-
dius r we of course mean the absolute value of the length of any vector in the class r).
Then let u be the time-like, “future-pointing,” unit vector normal to the surface Σ at
the point p; let v be the unique vector orthogonal to u such that [v] = s (of course,
if s = 0, v is the zero vector); and let l be the line through p in the direction of the
vector u + v (any time-like line through p—and only such lines—can be described
in this way). Now, it can be seen without great difficulty (I forgo details here) that
if we start with one particular locus Σ of the kind already determined; if we then,
having chosen the spatially oriented radius s once for all, assign to every point p of
Σ the corresponding line l as “axis of simultaneity” for Σ at p; and if, finally, we
apply to this configuration all possible strict automorphisms of the two-dimensional
Minkowski space-time; then the resulting configuration determines an assignment
to every time-like line l of a relation Sl satisfying all our conditions.26

If one equivalence-class of our system is a straight (necessarily space-like) world-
line, then they all are; all those that belong to some one axis are parallel; and all
the axes of any one equivalence-class are parallel. The axes of different systems
of equivalence-classes—that is, the observer-lines O with different associated rela-
tions SO—are “inclined at the same angle” to the lines normal to their equivalence-
classes: this can be taken to mean simply that there is a strict automorphism taking
the one normal line to the other, and at the same time taking the one axis to the other.

If one of the equivalence-classes is a “Minkowski semicircle,” then they all
are—and, moreover, they all have the same temporally oriented radius r. No two
equivalence-classes have the same set of axes: as in the higher-dimensional case,
each observer-line has its own family of equivalence-classes. And just as in the case
of the straight-line equivalence-classes, each axis of an equivalence-class is “in-
clined at a given angle”—the same for all axes and for all equivalence-classes—to
the line normal to the equivalence-class at its point of intersection with the axis.

It is worth noting that whereas the possibility of “Minkowski-semicircular”
equivalence-classes is tied to the fact that we are not requiring scale-invariance—so
that we are free to choose a temporally oriented radius r �= 0—the possibility, in the

26 More precisely, for any observer-line l and any point p, there will be one and only one set Σ′ that
is an image of (the original) Σ under a strict automorphism such that p belongs to Σ′, l is an axis of
Σ′ at its point of intersection with Σ′, and for any points q, Sl(p,q) holds if and only if q belongs
to Σ′.—There are of course many details to check to justify the statement that this S satisfies all
our conditions; the only matter that may seem doubtful is whether, for any given time-like line l
and associated equivalence-class Σ with l oblique to the normal to Σ′ at their point of intersection,
the system of all translates of Σ′ in the direction of l constitutes a foliation of the space—i.e.,
whether every point belongs to one and only one such translate. This can be made transparently
so, in the usual Euclidean picture of the Minkowskian plane, through a judicious transformation of
coordinates.
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case of straight-line equivalence-classes, of “inclined axes,” does not depend upon
that weakening of the invariance requirement (although it does depend on giving
up invariance under spatial or temporal reflections); for the construction of the axis
described above may be modified as follows: instead of taking for u the unit future-
pointing normal vector, take for it any future-pointing normal vector; and then take
(as a preliminary step) a vector u′ orthogonal to u, having as inner product with it-
self the negative of the inner product of u with itself and pointing “right,” and then,
having chosen (once for all) a non-zero (signed) real number s, let v = su′.

Either of the strengthened conditions (S2)(b′) or (S2)(b′′) will again restrict the
equivalence-classes to the “straight” ones only—i.e., to the same classes given by
the Einstein–Minkowski relative simultaneity relations. But the relations of simul-
taneity relative to an observer are not necessarily those of Einstein–Minkowski: for
the axes retain their degree of arbitrariness: they can be “inclined at any given angle”
(given once for all, that is) to the lines normal to the equivalence-classes.

One further fact seems worth pointing out, regarding the contrast with the higher-
dimensional case: There, when the simultaneity set was a “hemisphere,” all its
axes of simultaneity (which of course were just the diameters of the correspond-
ing “sphere”) had a common point of intersection: the center of the “sphere.” But in
two dimensions, for an s different from zero, the axes of simultaneity of a “semicir-
cle” do not all meet in a single point.—What particular geometrical configuration
the set of axes form for r different from zero is a question that may here be left for
the entertainment of Platonic philosophers.27

Summing up, our results for the case of a two-dimensional Minkowski space-
time are as follows:

Theorem 3. In a two-dimensional Minkowski space let there be given an assign-
ment, to each observer-line O, of an equivalence relation SO on the whole space-
time, in such a way that:

(S1) any strict automorphism that maps O to O′ transforms SO to SO′ ;
(S2) if Σ is an equivalence-class of SO then:

(a′) (i) every observer-line O′ meets Σ;
(ii) any two distinct points of Σ have space-like separation, and

(b) for every point p′ of Σ there is an observer-line O′ containing p′ such that
Σ is an equivalence-class of SO′ (as well as of SO);

—then (1) the system of equivalence-classes for one observer-line is either (a) a
family of parallel space-like straight lines, or (b) a family of “Minkowski semicir-
cles” of given temporally oriented radius r; (2) these alternatives hold “uniformly”
for all observer-lines—that is, either (a) holds for all, or (b) holds for all—and then
with the same time-oriented radius r for all the observers; and (3) in either case,
there is a fixed spatially oriented radius s of absolute length less than unity (it may
be zero), such that for any point p of any equivalence-class Σ, if u is the unit normal
vector to Σ at p, and if v is a spatially oriented vector orthogonal to u such that the

27 That is, lovers of geometry. (I have stated the result in Supplementary Note 4.)
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oriented radius [v] is s, the axis of Σ at p is the line through p in the direction of the
vector u + v.—If condition (S2)(b) is replaced by either (S2)(b′) or (S2)(b′′)—(for
which see the discussion following Theorem 2 above)—then the alternative (b) is
excluded: all the equivalence-classes are straight lines.

Addendum: In the case of straight-line equivalence classes, invariance holds
under the wider class of all “proper” automorphisms; for this wider class, modify
clause (3) as follows: (3′) there is a fixed non-zero (signed) real number s such that
for any point p of any equivalence-class Σ, if u is any future-pointing normal vector
and u′ is a right-pointing vector orthogonal to u, the absolute value of whose inner
product with itself is equal to the absolute vale of the inner product of u with itself,
the axis of Σ at p is the line through p in the direction of the vector u+ v.28

2 Remarks on the Controversy

It is certainly no new observation that philosophical controversy is often vitiated
by the fact that the disputants argue at cross-purposes; in particular, that they use
the same words with different meanings. Locke was far from the first, Wittgenstein,
Carnap, and Quine far from the last to see in a lack of clarity in linguistic use a
prime source of the apparent intransigence of philosophical problems.29 Nor, con-
sidering that the pointing out of this (in principle after all fairly obvious) fact has
not so far notably lessened the evil, is it at all likely—to compare a minor writer
with major ones—that I shall be the last one to do so either. Nonetheless, as I have
indicated in the opening paragraph, I have some hope of helping a little to clarify
this particular issue.

The most crucial notion that cries out here for clarification is that of the “conven-
tional.” Poincaré, whose emphasis upon this notion is the beginning of its latter-day
philosophical prominence, argued that the great organizing principles of geome-
try and mechanics—and in part, of pure mathematics—are “conventions, or def-
initions in disguise.” Now, it is clear that definitions are “conventions”: they are
stipulations—or agreements, since one assumes that the stipulation will be accepted
at least within a given discussion by all the discussants—concerning how a word
or phrase is to be used. But this does not help us, because Adolf Grünbaum has
always been quite explicit that his claims concerning conventionality are not about
the “trivial semantic conception” of conventionality (and of course, if they were, the
claims themselves would be trivial, and there would be no need for discussion).

Now, I do not know how to characterize “conventional” and its contrary in a gen-
eral sense that particularizes to the one that Grünbaum has in mind in this context, in
a clear way.30 It does not follow that it is impossible to give such a characterization;

28 Of course this slightly modified construction could have been used in Theorem 3 itself.
29 Or: the intransigence of apparent philosophical problems.
30 The notion of a distinction between a “merely conventional” definition and one that is not so—
i.e., that is “conventional” only in the “trivial semantical sense”—seems closely related to the dis-
tinction, in traditional philosophy, between (merely) “nominal,” and “real definitions”—ones that
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but since I am unable to give one, I shall content myself—a little later—with sug-
gesting what I think is a helpful explanation of what, just in this particular context,
would count for Grünbaum (and, I suppose, for his supporters) as not conventional
(in the non-trivial sense of “convention”). I have some hope that my explanation
will be acceptable to Grünbaum, because (I say a little shamefacedly) I shall there
merely copy, or paraphrase, part of what I have read in his recent paper. If I de-
serve any credit for this, it is only that of having at last realized that Grünbaum’s
claim has all along been misunderstood by those—among whom I count myself—
who have objected that the Einstein–Minkowski concept of simultaneity is not just
a “convention.”

And I continue to hold this latter position; but—I now hope—in a sense that
does not conflict with Grünbaum’s main contention, because I am using the word
“convention” with a different meaning from his.

Before I offer my new understanding of what Grünbaum has contended for all
along, I shall suggest a few corrections of detail to some of his adversarial remarks,
and shall try to explain the sense in which I—and, I believe, Malament and others
who have disagreed with Grünbaum—have understood the issue about simultaneity.

I pointed out in [3, p. 153] that the question of “conventionality” is a different
one for the procedure of Einstein in 1905 from what it is for that of Minkowski in
1907–8: Einstein was seeking a theory that should satisfy certain requirements—a
theory that did not yet exist; whereas Minkowski was seeking the most cogent and
instructive formulation of a theory already in existence. We, of course, are not at
all in the situation of Einstein;31 but it seems worthwhile to discuss briefly how the
issue looks from the perspective of that situation—all the more, in view of the fact
that Grünbaum has cited some words of Einstein in support of the conventionality
thesis.

It is indeed true, as Grünbaum remarks, that Einstein [7, p. 279]32 characterizes
his conception of simultaneity as the result of a Festsetzung, or “stipulation” by
means of a definition: a definition according to which, for an observer at rest in “a
coordinate system in which the Newtonian mechanical equations are valid” (ibid.,
p. 277), the time that light takes to get from A to B is the same as the time it takes
to get from B to A. This is very clearly a convention, then—but it is “clearly” so
only in the “trivial semantical sense”: it is a definition. Should one conclude that it
is a convention in a nontrivial sense? It seems to me difficult to draw this conclusion
simply from Einstein’s own words in this passage.

Grünbaum takes Michael Friedman to task for saying that the theory that resulted
from Einstein’s investigation “postulates” metrical relations that include the notion
of “relative simultaneity” for distant events; Grünbaum’s comment [8, p. 14] is:

in some sense define the “essence” of something; it is well known that many traditional philoso-
phers have rejected such a notion entirely: this is the “nominalist” position.
31 Not in that of Minkowski either, since Minkowski has performed his task; nonetheless our sit-
uation more nearly resembles Minkowski’s, in that we are concerned with a critical discussion of
the theory.
32 The page reference is to the Collected Papers.
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But, as we saw, Einstein stated emphatically that assertions of metrical simultaneity in the
STR are not “hypotheses” which are “postulated” in Friedman’s sense, ontologically on a
par with, say, the postulate that light is the fastest causal chain. Why then does Friedman
feel entitled to gloss over that important ontological difference by using the same term
“postulate” for both?

But this ignores something else that Einstein says, before the passage about
“stipulating” equal speeds of light in opposite directions: in the second para-
graph of the introductory section of the paper, after speaking of empirical evidence
that leads to the “conjecture”—Vermutung—that not only in mechanics but also
in electrodynamics “no properties of the phenomena correspond to the concept of
absolute rest, but that rather [—vielmehr—] for all coordinate systems for which
the mechanical equations are valid the same electromagnetic and optical laws are
also valid,” Einstein has written (and I quote his words in German first, to make
sure that no distortion is introduced by translation):

Wir wollen diese Vermutung (deren Inhalt im folgenden “Prinzip der Relativität” genannt
werden wird) zur Voraussetzung erheben und außerdem die mit ihm nur scheinbar un-
verträgliche Voraussetzung einführen, daß sich das Licht im leeren Raume stets mit
einer bestimmten, vom Bewegungszustände des emittierenden Körpers unabhängigen
Geschwindigkeit V fortpflanze.

We intend to elevate this conjecture (whose content in the following will be called “Princi-
ple of Relativity”) to a presupposition, and, besides, to introduce the presupposition—only
in appearance incompatible with [the former one]—that light in empty space is always
propagated with a determinate speed V , which is independent of the state of motion of the
emitting body.

It would seem, then, that we have Einstein’s authority after all for characterizing as
a “postulate” (or “presupposition” or “hypothesis”) the principle that the “speed of
light is the same” in one direction as in the other. This of course does not decide the
issue as to whether these postulates themselves should be regarded as “conventions”
(as Poincaré did regard the axioms of geometry); it bears only on the particular
appeal to Einstein’s statements made by Grünbaum.

The situation, then, for Einstein’s investigation was this: he did have reasons to
want a theory that satisfies the two “presuppositions” he formulated. The urgent
desirability of such a theory had been emphasized in 1900 by Poincaré [9]. When
Poincaré himself solved this problem in 1905, he regarded the solution as a mere
tour de force (and in subsequent writings, after the publication of his great paper
[5] [see, e.g., Part 3 of Science and Method, which reproduces a review article of
1908], he never referred to his own work but only to the not quite satisfactory “new
dynamics” of Lorentz). Whether or not he had read the 1900 report by Poincaré.
Einstein was motivated by the same considerations as Poincaré; and if, both having
found essentially the same theory, Einstein’s view of it was radically different from
Poincaré’s, this rests to no small degree upon the fact that Einstein had subjected
the concept of time to a much deeper criticism than had Poincaré, for whom the
“transformed time-coordinate t ′′′ was no more than a mathematical trick to make the
theory work. (I believe that this is not something that Grünbaum will disagree with.)

So: the problem lay precisely in the “apparent contradiction” referred to by
Einstein between his two “presuppositions.” The resolution he found of this appar-
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ent contradiction consisted precisely in his realization—and it evidently cost him
considerable intellectual struggle (cf. [9])—that the discrepancy in synchronization
between the time t and the transformed time t ′ in the Lorentz transformation—a
discrepancy that had led Lorentz to call t ′ the “local time”—corresponds to a con-
ceptual gap concerning the concept of “simultaneity” or “synchronization”: that, as
Einstein says [11, p. 61], in a passage also cited by Grünbaum [8, p. 14], “There
is no such thing as simultaneity of distant events.”33—This recognition opened the
way to the introduction of a suitable definition to close that conceptual gap; and it
is not at all surprising, therefore, that Einstein was concerned to emphasize to his
readers that a definition was here (a) needed and (b) (therefore) legitimate.

In the light of all this—considering the fact that it was essential for the success
of Einstein’s project to find a systematization of spatiotemporal relations and mea-
sures that would satisfy two requirements: (1) that for investigators who use these
measures, the laws of classical mechanics and of classical electrodynamics (includ-
ing optics) hold (at least to high approximation) for the results of measurement, and
(2) that this should be true for a system of teams of investigators, the investigators
of each single team being mutually at rest, the investigators of different teams in
arbitrary states of uniform motion relative to one another; the fact that the classical
laws presuppose, for any single such team of observers, a standard of synchroniza-
tion; and the fact that any standard of synchronization that meets these requirements
must agree, in application, with the criterion proposed by Einstein’s Festsetzung—it
seems somewhat misleading to call the latter a “convention” in a deeper sense than
the one applicable to all matters of linguistic usage.

Just one further turn regarding this aspect of the matter—i.e., Einstein’s own
procedure: Einstein could perfectly well have contented himself with the Vorausset-
zungen he formulates in his introductory section, and instead of “defining” simul-
taneity, have deduced from these two assumptions that light that travels back and
forth (or vice versa!) between two “inertial” observers A and B at relative rest must
take equal times both ways, and therefore can serve as a signal to synchronize clocks
in precisely the way the “definition” prescribes.—I do not think this alternate expos-
itory mode changes anything essential: an upholder of the view of “conventionality”
could just say that the Voraussetzungen themselves have to be counted as “conven-
tions,” rather as Poincaré did with respect to the axioms of geometry and mechanics.
And I remind my readers (and myself!) that I do not here claim to “settle” the issue
of conventionality—on the contrary, I have already said that for me the very notion
(in general) of what is or is not a “convention” is distressingly unclear; I should
really prefer to say the sort of things I have already said about the role played by

33 Grünbaum urges the fact that, according to Einstein, this is one of the “insights of definitive
character that physics owes to special relativity,” as showing again that Einstein is on Grünbaum’s
side on the question of the “conventionality” of simultaneity. But what Einstein says in the passage
cited, in the very next clause, is: “thus there is no unmediated distance action in the sense of
Newtonian mechanics.” The point—the “definitive insight”—is that there is no such thing in nature
as simultaneity schlechthin of distant events: no absolute, but only (at most) relative simultaneity.
At any rate, simultaneity “relative to” either an observer or an inertial system is not mentioned by
Einstein in this passage at all!
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Einstein’s concept of simultaneity, and leave the word “convention” out of the dis-
cussion entirely.

Let us then proceed to the other point of view: that of the finished theory. The
theorems of the first part of this paper—together, of course, with that of Malament—
are for me the main text for this point of view; but they do require some comment.

First, then, I have already said that the generalization contained in Theorem 2
does not seem to me of much philosophical interest. The reason is that the “com-
munities” of observers who share a simultaneity equivalence-class, in the “new”
case—where the classes are “Minkowski hemispheres”—are, as noted, constantly
changing; it is therefore impossible to refer any sort of stable measurements to them:
the purpose for which Einstein’s systems of inertial observers were introduced has
been entirely lost.

But some remarks about that purpose also need to be made. These systems of
inertial observers play, for the theory, the role of a kind of Platonic myth. In actual
fact there are no such observers: first because the real world is not characterized by a
Minkowski space-time, and second because “even if it were,” it would be very hard
to see how even one such system of inertial observers could be created.—What on
earth can the meaning of “even if it were” be here?—Well, I should say (in the spirit
still of “Platonic myth-making”), we might just envisage the possibility that a theory
of gravitation (such as Poincaré and Minkowski independently did attempt to formu-
late) could be envisaged within the Einstein–Minkowski framework. If for a moment
we consider that as a possibility, the first observation to make concerning our prob-
lem is that we certainly are not (would not be) inertial observers, since we live on a
body that is not in a state of inertial motion. In order to produce an inertial environ-
ment, we should have to embark upon a program of space-travel expressly designed
for that purpose: that is, to devise space vehicles whose navigational systems were
designed to compensate exactly for gravitational forces.—I shall not continue with
this fantasy; I am not good enough at science fiction. But I hope the point will be
clear—how far from “reality” these envisaged inertial observers are. They are none
the less useful, however, as vivid embodiments of the relationships expressed by the
“congruence transformations” of Minkowskian geometry—i.e., of the Lorentz trans-
formations (both homogeneous and inhomogeneous—in other words, the Poincaré
group). But there are two corollaries of these elementary remarks: (1) that Einstein’s
“definition” of simultaneity, and analogous considerations, are best thought of, not
as quasi-“operational” definitions, but as depicting” something like “thought experi-
ments” to make vivid the situation in this theory; (2) that it is indeed the situation “in
this theory” that is concerned—not that “in the real world”: any insight provided into
“the real world” comes only through the fact that the theory can claim to give “par-
tial,” or “approximate,” information—or, perhaps, information of an “infinitesimal”
kind—about the real world. To put it simply: any conclusions we are inclined to
draw about such things as “conventionality” or the opposite should in principle re-
fer, in the first instance, to how things stand, conceptually, within the theory.

With this understood, I have one remark to make that may be surprising: it is
that unlike Theorem 2, I think there is a point of (mild) “philosophical interest”
in Theorem 3—which deals with a space-time of two dimensions, hence a space
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of only one dimension, which is extremely far from the “real world.” This interest
attaches to the easier and more familiar branch of the theorem—the case where the
simultaneity equivalence-classes are straight lines. The point is that just here we
find a “possible system of inertial observers” with a deviant concept of “relative
simultaneity”; I hope it will be a little instructive to examine this case.

But just what is this deviant concept (or what are these deviant concepts)?—
The answer is that they are very close to the ε-relations of Reichenbach, for whose
viability Grünbaum has long contended; and they coincide—but under the drastic
dimensional restriction—with a conception put forward by Allen Janis (cited by
Grünbaum [7, pp. 9–10]). For if we choose a system of relative simultaneity rela-
tions in the way described in Theorem 3, the axes determined by the spatially ori-
ented radius s (represented by a real number of absolute value less than 1, positive
if “to the right,” negative if “to the left”), then our “observers” are taking the ratio of
“the speed of light to the right” to “the speed of light to the left” to be (1−s)/(1+s);
and this amounts, for a Reichenbachian observer, to choosing ε = (1+s)/2 for light
sent, from his position, to the right, and ε = (1− s)/2 for light sent, from his po-
sition, to the left. (This differs from Reichenbach’s principal example [12, p. 127]
in that Reichenbach supposes one “central” observer who uses the same value of ε
for all directions;34 but he also gives an example [12, p. 162] in which ε depends on
the direction, so our present situation does fall under the class of those he at least
implicitly envisages.)

There are two reasons why this possibility does emerge in two dimensions but
(from the point of view under discussion) does not in higher dimensions. One simple
point that rules this out in higher dimensions is that such a choice of the relation
violates the relativistic invariance principle. It would do so in two dimensions also,
if (as in Malament’s theorem) we required invariance under reflections. In higher
dimensions it violates even the narrower invariance requirement, because any spatial
direction can be transformed to any other by rotation (whereas when there is only
one dimension of space, there is no room to turn around: we can distinguish left and
right, and make the axes lean, or the speeds differ). The second reason is in a way
more interesting: in higher dimensions, there is no “intrinsic,” or “objective,” way
to INSTRUCT an observer as to how to make the choice of a preferred direction.35

This does not mean that such a choice could not be made; it only means
that it could not be made according to a “universal” rule: a “team” of inertial
(imaginary!—science-fictional!) observers, at rest with respect to one another, who
wished to carry out systematic measurements and to determine (for instance) veloc-
ities and accelerations using a “Janis-simultaneity relation” would have to come to
a special agreement with one another as to how to determine the direction of the

34 This is not really clear from Reichenbach’s text at this point; at least, it has not been clear to me:
I had until recently always supposed that Reichenbach wanted the speed of light to be constant in a
given direction—and this would obviously necessitate, for ε �= 1/2, that ε be different in different
directions.
35 It might be argued that this “more interesting” point is really the same one as the first point; this
bears on the question of the connection of “invariance with respect to” and “definable from”—on
which there will be a little more below.
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world-line that is to be their axis of simultaneity; and this agreement would have
to use some special features of the “geography”—or, rather, the “cosmography” of
their universe. This would in general not be an easy thing to do; its possibility would
depend on the existence of recognizable, and stable, features of their cosmos to
serve as (the analogue of) landmarks for determining and redetermining directions
that “are the same” for all the observers and “remain the same” over time. In the
alternative choice of a simultaneity relation described by Janis [8], the person who
chooses this alternative notion does so “by specifying a set of three parameters,” and
thereby singling out a time-like direction that is inclined to the investigator’s own.
The three parameters required are the coordinates—in the projective space associ-
ated with space-time—of a time-like direction: three are needed because the projec-
tive space of the directions in a two-dimensional affine space is three-dimensional.
But one can single out a direction in that way only if coordinates have been laid
down for that space of directions. Since this is itself a task at least as complicated
as that of determining a relation of simultaneity, to speak so cursorily of “speci-
fying three parameters” partially masks the problem.—Note that the problem lies,
not in the need to specify the values of the parameters, which, as real numbers,
are available as “individual concepts” belonging to the logico-mathematical appa-
ratus, but in the need to choose a way of relating parameters to directions (i.e., a
“coordinatization” of the projective space). That is why the problem does not arise
for a two-dimensional Minkowski space-time: the “space of directions” of such a
space-time is one-dimensional, which means that there is an “intrinsic” association
of directions with real numbers.

An analogy may help to make the main point clear. When temperature was first
introduced into physics, and first measured, the quantity so named was not a sin-
gle one at all—there were as many such “quantities” as there were types of ther-
mometer, and the choice among them was nothing but “conventional.” Indeed, for
various investigators—or the same investigator in various experiments—who were
concerned with temperature, whether the quantities they referred had simple rela-
tions to one another depended entirely upon stability in this respect; the quantities
could “in principle” vary with the thermometric material, with the material in which
(if the thermometric material was a gas or liquid) that material was contained, in
the proportions of the containing vessel and of its cavity, etc. The situation became
radically different after the development of the second law of thermodynamics: now
a theoretical definition of temperature was available, that determined the quantity
“temperature” precisely, leaving open only the choice of a unit for the temperature
scale: the notion of ratios of temperatures—which, initially, would have seemed
least likely to have any significance at all (since the zero-point of a temperature
scale was at first entirely arbitrary)—had now received an “absolute” theoretical
meaning.

It was perhaps—it is perhaps—still open to a disputant to argue that the so-called
“absolute temperature” itself remains a matter of convention, chosen in the interest
of “merely descriptive simplicity.” I should not care to debate that point. But I do
maintain, and think it important to recognize, that the difference, within the special
theory of relativity, between the “simultaneity relative to a state of inertial motion”
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of Einstein and Minkowski, and the simultaneity relations described by Janis or by
Reichenbach, resembles in an important way the difference between the “material”
conceptions of temperature as a quantity, and the “absolute” conception offered by
developed thermodynamics.

Before coming specifically to Grünbaum’s claims and the misunderstandings—
on both sides—that I now believe to have muddied the issue, I want to mention
one interesting point raised by Sarkar and Stachel. They speak of the possibility
of “formulat[ing] the basic structure of the special theory of relativity without the
use of any simultaneity convention” [4, p. 219]. This is certainly possible—there is
more than one way to interpret their words; but in the strongest way of all, namely
taking them to mean “without the use of any conception whatever of “distant simul-
taneity,” it is surely possible. Indeed, the general theory of relativity, in its “most
general case,” altogether lacks any such notion as distant simultaneity; and this does
not prevent the theory from being formulated. But: (1) A formulation that dispenses
with any use notion of relative simultaneity must also dispense with any notion of
relative velocity, and with the notion of acceleration in its usual form. Therefore, (2)
such a formulation is not adapted to the comparison of the theory with Newtonian
mechanics. On the other hand, (3) such a comparison is instructive; and since, as we
know, it can be made, it must follow that (4) the formulation of special relativity that
does not use a notion of relative simultaneity must nonetheless include the means
of formulating such a notion whenever it is desired to do so. The reason a notion of
distant simultaneity is not needed to formulate physical laws is that physical inter-
actions, in this theory, are “infinitesimally near-by” interactions, governed entirely
by partial differential equations. There is an “infinitesimal counterpart” of “simul-
taneity equivalence-class,” relative, not to an “inertial observer,” but to any state of
(smooth) motion, inertial or not: it is the space-like hyperplane, in the tangent space
to space-time, that is orthogonal to the tangent-line of the world-line of that motion.
This infinitesimal (or “differential”) notion is quite indispensable, both in the spe-
cial and in the general theory. In the special theory, for the special case of “inertial
motions that constitute, together, a state of relative rest,” this “infinitesimal” notion
is (uniquely) integrable; and that is the description of the Einstein–Minkowski rel-
ative simultaneity concept that, in my own view, presents the best case for its “true
standing”36 in the theory.

Turning, then (at last!) to Grünbaum’s views as I now understand them, I have
first to complement my earlier discussion of the notion “definable from” or “defin-
able in terms of”; for this is one of the phrases in which it seems clear that peo-
ple on each side of the debate have misunderstood their opponents’ statements. For
Grünbaum’s part, he has certainly used that phrase in a sense very different from that
of its customary use in logic and mathematics. This is not an intellectual crime—
but it is a misfortune for all parties, when one of them uses a term in an unusual
way without taking pains to explain this fact (of course, such an occurrence is not
deliberate: it results from the fact that the party in question does not realize what
the customary usage is). I was mystified to read that Grünbaum [7, p. 3] rejected

36 Do I mean its “non-conventional” standing?—I have said that I should really prefer to express
my opinions without using the word “conventional” at all.
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Malament’s condition, on a relation “definable in terms of the relation of causal
connectibility,” that it be invariant under all “causal automorphisms”—that is, one-
to-one mappings of space-time to itself that preserve the relation κ of causal con-
nectibility. I have explained above, in discussing the paper of Sarkar and Stachel,
the grounds for this condition (although not long ago I should have thought this
something too well known to require “explanation”). But part of the clarification
of Grünbaum’s use of the term appears when he attributes to Bas van Fraassen the
remark that Malament defines the notion he is defending “in terms of κ alone” [8,
p. 11, emphasis in the original]. I call this “part of” the clarification, because it
shows that Grünbaum does not mean the same thing by “definable from. . .” as by
“definable from. . . alone”; this still leaves us with the question, which for some time
seemed to me hard to answer, what he does mean by the former expression. If, for
example, one asks a geometer whether the concept of “the vertical direction” can
be defined “from” the basic concepts of Euclidean geometry, the geometer would
surely say no: “vertical” is, first of all, a concept of physics, not of geometry; and
second, it is only defined for points near the earth’s surface—or, in a more sophis-
ticated view, for points at which there is a non-vanishing gravitational field. But it
seems that in Grünbaum’s usage the answer to that question must be yes: “vertical”
means “in the direction of the gravitational field,” and the notion of “direction” used
here can be—ordinarily is—that based upon Euclidean geometry.—I may be wrong
here in my interpretation of Grünbaum; if so, I am willing to be corrected. This
of course still does not answer the question that I have said remains open; I shall
try—again, under correction—to give at least a partial answer presently.

At any rate, Grünbaum has surely misread Malament when he writes of the lat-
ter as follows: “But before giving [[the]] proof, [[Malament]] declared: ‘To be sure,
there are other two-place relations [of relative simultaneity] which are definable
from κ and O [i.e., relative simultaneity relations corresponding to non-standard
synchrony, for example, some fixed ε �= 1/2]. But all these are ruled out if min-
imal seeming innocuous conditions are imposed.”’ The words in double brackets
are substitutes by me for Grünbaum’s words—substitutions made only to adapt the
passage from its context in Grünbaum to the context here; the passages in single
brackets are bracketed in Grünbaum’s own text, and are interpretations offered by
him of Malament’s words. They are serious misinterpretations: (1) The other two-
place relations Malament means are ones that are quite unsuited to serve as relative
simultaneity relations—they are the relations that are ruled out by his conditions that
a simultaneity relation S relative to an observer O be an equivalence relation; that it
hold between some point on the world-line of O and some point not on that line; and
that it not be the universal relation. (2) In particular, not only (as stated in (1)) are the
excluded relations not relative simultaneity relations at all, but the Reichenbachian
ε �= 1/2 relations are not examples of relations “which are definable from κ and O.”
This strange misconception must have arisen from the fact that after discussing the
matter of “definability from κ and O,” Malament lists invariance as the first of his
conditions on S: Grünbaum has failed to realize that Malament has done so for the
sake of the exact mathematical formulation of his result, not because invariance is
a special condition added to “definability from κ and O”; on the contrary, it is rela-
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tions that satisfy this invariance condition, and only these, that Malament has called
“definable from κ and O.”

All this is pedantry; necessary, I think, but not edifying. Let us now consider
what, in my present opinion, is the sound core of Grünbaum’s view. In discussing
this, I am going to have to dissent (still) from some of Grünbaum’s particular
expressions of that view; and to begin with, from this one, which initially puz-
zled me as much or more as did the one concerning definability: Grünbaum asks
whether—and clearly means to deny that—“the facts of causal connectibility and
non-connectibility mandate (dictate)” the standard (Einstein–Minkowski) relation
of simultaneity relative to an inertial frame [8, p. 2; cf. pp. 3 and 5 for the explicit
denial that this relation is “mandated” by those facts]. I was, and remain, still more
puzzled by his claim that the standard relation of relative simultaneity, unlike the
relation of causal connectibility, lacks a fundamentum in re: a “foundation in the
thing,” or “in nature” (pp. 12–13); and that “there is no fact to the matter” in as-
criptions of this relation (pp. 1, 9, 12, 13)—that they lack “facticity”37 (pp. 2, 3,
12). What is very strange here, in point of the “foundation in nature” especially,
is this: we know that the whole metric structure of Minkowski space-time (with-
out a distinguished spatio-temporal unit) is definable from the one basic relation
of causal connectibility (the symmetric one if a time-orientation is not presupposed,
the asymmetric one if such an orientation is presupposed). Therefore this structure—
and in particular, the relation of orthogonality, which gives the Einstein–Minkowski
relative-simultaneity relation—has a “foundation” in the relation κ of causal con-
nectibility (again: symmetric or asymmetric). So if this relation has a “foundation
in the thing,” the standard relation of simultaneity relative to an inertial state has
one also—assuming that the relation “A has a foundation in B” is transitive; which
seems hard to deny. By the same token, it would seem that the ascription of the re-
lation of relative simultaneity has “factual content.” And as to being “mandated”: a
relation “founded on” κ would seem to derive whatever is meant by a “mandate”
from that fact itself, as long as κ is regarded as “founded in things.”

Of these puzzles, the one about having a foundation seems to me irresoluble: I
may be wrong, but I think that Grünbaum has simply overlooked what I just referred
to as the transitivity of “foundedness” (probably because he has not quite seen the
importance, and the strength, of “definable from” in what I have called the usual
sense). But the other two puzzles seem to me to have a solution. It is easiest to
see with the question of factual content. Suppose I say that the space-time vector
pq is orthogonal to the time-like straight world-line O. I maintain—since I have
argued that the relation of orthogonality (and also the properties of linearity and
time-like-ness, since they belong to the geometry that is derivable from the relation
κ) is (are) “founded in things”—that that statement conveys factual content (always,
of coursed, assuming, contrary to fact, that the world is Einstein–Minkowskian).
I hope that I have said enough to persuade Grünbaum that this is so. What I think
he will deny is that this admitted factual content is about simultaneity; so if I say
that p and q are simultaneous relative to O, Grünbaum will deny that this statement

37 Linguistic point: this word seems like the nominalization of the adjective “factitious,” whose
meaning is opposite to the one desired; I should suggest “factuality.”
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has factual content—even though I myself have defined “simultaneity relative to
O” to be just the relation expressed by the former statement. In other words, what—
according to Grünbaum—what the theory, or the facts of causal connectedness, does
not “mandate” is how the word simultaneity is to be used.

Now, if this is all there is to it, it looks as if Grünbaum is after all defending
nothing more than the “trivial semantic conventionality” of the use of the words
“simultaneous” and “simultaneity.” But I think that is not quite all there is to it.
There is a certain traditional baggage carried by the word “simultaneous”; and I
think Grünbaum is rightly maintaining that that baggage has no place in the special
theory of relativity. But this statement is crudely metaphorical; is it possible to say
clearly what this “baggage” is?—Probably not; but I think it was a mistake on the
part of Wittgenstein when he produced his celebrated aphorism that whatever can
be said at all can be said clearly: my own motto is that whatever one thinks is worth
saying, one should try to say as clearly as one can. An exact statement is possible,
and I shall make it; it is the one about which I expressed “some hope” that Grünbaum
will accept it (as far as it goes). This exact statement, however, will not express what
the “baggage” is, but only clarify something about the source of the latter. I shall
then try to indicate—but only by indirection and example—something about what
baggage the relativistic notion of simultaneity does not carry.

The exact statement is based upon Grünbaum’s own very clear depiction of the
state of affairs in pre-relativistic theory and in the special theory of relativity—that
is, in the Newtonian world and that of Einstein [7] and Minkowski. I paraphrase
what he has said thus: In each of these theories of physics, there is an “objective”
division of the world, viewed from any point p, into the class of points that are
past for p, those that are future for p, and those that are neither.38 An admissible
time-function39 is a function τ on the entire space-time of the theory such that for
any pair of points p, q, if p is in the past of q then τ(p) < τ(q). If τ is a time-
function, then the relation between p and q expressed by τ(p) = τ(q) is an admis-
sible simultaneity-relation. In the Newtonian theory there is a great abundance of
admissible time-functions, but there is a unique admissible simultaneity-relation; in
the Einstein–Minkowski theory, this is very far from true. In so far as any admissible
time-function, and correspondingly any admissible simultaneity-relation, is compat-
ible with the structure of the Einstein–Minkowski theory, the choice among them is
a matter of “convention” (or, for that matter, “convenience”); in Grünbaum’s termi-
nology, all these functions, and all these relations, are “definable in terms of” the
structure of Einstein–Minkowski space-time. An example of a space-time structure

38 It is crucial, in Grünbaum’s opinion, that this classification is grounded in facts about “causal
connection.” I am a skeptic in this matter (not a disbeliever, an agnostic). I agree that the notions
of “causal past” and “causal future” are deeply important in the theories—perhaps especially so in
the theory of relativity; but, on the other hand, (1) I think the notion of “cause” itself is in some
degree problematic, so that what [if anything!] we “know” about this notion is derived from the
knowledge we have gained in physics, and is not the “foundation” of the latter; (2) in assessing
the knowledge we have from physics we cannot ignore quantum physics; and (3) how quantum
physics ultimately affects the framework notions of relativity theory seems to remain a problem.
39 My own term—this is intended as my own paraphrase, or formulation of what I believe follows
from what Grünbaum has said.
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“in terms of which” there is no “definable” simultaneity-relation is that of Gödel: in
the original Gödel “rotating universe,” there is in fact no admissible time-function
whatever.40

But why should we accept this very liberal notion of what is “admissible,” not
alongside of, but instead of, the narrower—stronger!—notion of what is (in the usual
sense) “definable from” the structure of Newtonian space-time on the one hand,
Einstein–Minkowski space-time on the other?—Indeed, I do not think we should
“accept [the former]. . . instead of [the latter]”; that is what most of this paper
has been about. I think we should acknowledge, side by side, the points made by
Grünbaum and the points made by Malament et al.

As to the matter of “baggage”: I have already stated my objection to Grünbaum’s
claim that the Einstein–Minkowski notion lacks a fundamentum in re; but the bag-
gage I have referred to is “metaphysical baggage.” I suspect—I confess that I hope—
that at least part of what Grünbaum means in rejecting any “metaphysical founda-
tion” for relative simultaneity is what I myself meant, long ago, when I wrote the
following, in criticizing metaphysical arguments of C. W. Rietdijk and of Hilary
Putnam:

[W]hat Einstein’s arguments showed was that a certain procedure of measurement singles
out a time axis and gives numerical time differences dependent upon that distinguished
axis; not that an observer’s state of motion imposes upon him a special view of the world’s
structure. This illegitimate metaphysical interpretation of the time-coordinate appears per-
haps most plainly in Rietdijk’s phrase describing C and A, when at rest with respect to one
another, as “experiencing the same ‘present”’; there is of course no such “experience”: the
fact that there is no experience of the presentness of remote events was one of Einstein’s
basic starting points [13, p. 16, n. 15].

The “baggage,” then, can be said to be the carrying around of a special relation
of simultaneity, as it were “in one’s head.” I believe that A. N. Whitehead thought
something like this, when he contrasted, among “actual entities,” the relation of
“causal efficacy” and that of “presentational immediacy”: in the latter, the mode of
perceptual space, what we perceive is the entire present simultaneity slice “relative
to us,” as if it were characterized by the perceptual qualities that we experience.
Perhaps I am wrong about Whitehead; at any rate, it is an impossible conception.
If there were no other trouble with it, what are we to say about an observer who
is not in a state of uniform motion? For such an observer, it is entirely possible—
indeed, it is certain!—that “his or her” simultaneity-slice at one moment will contain
“events” that are in the future of “his or her” simultaneity slice at a later moment;
a perfect muddle! It is, then, certainly not the case that the special theory of rel-
ativity “mandates” that a sentient being carry such a relation around through that
being’s career. A paradigm of what I think of as the poignancy of the “old” notion
of simultaneity that is quite lost to the new one is the old sentimental song-line, “I
wonder who’s kissing her now!”—In fact, for events that are within normal human
spatio-temporal range of one another, the special (or the general) theory of relativity

40 This, then, clarifies, at least to some extent, what Grünbaum’s notion of “definable in terms of”
can exclude.
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provides a perfectly intelligible notion of “now” to carry that kind of poignancy;
and it is not the geometrical notion of the “instantaneous now” relative to a state of
inertial motion.41

The moral that I draw, then, is that although Grünbaum is (in my opinion) wrong
to believe that, in so far as the causal theory of time has real—or factual—or fun-
damental content, the Einstein–Minkowski notion of relative simultaneity does not
have such content, he is right to deny that this notion has content entirely compara-
ble to that of the old Newtonian relation of absolute simultaneity. I do not believe
that Malament, for one, would differ with Grünbaum on this point any more than
I do.

3 Supplementary Notes

1. Hogarth’s proof is far more complicated than the theorem requires; here is a
simpler one: What is to be proved is:

If to every “inertial observer world-line” (more briefly: “observer-line”) O there is as-
signed an equivalence relation between space-time points, “p and q are simultaneous for
O,” (a) invariant under all maps of Minkowski space onto itself that preserve the Minkowski
quadratic form, and such that (b) for every point p there is a unique point q on O that is
simultaneous with p for O, then points p, q, are simultaneous for O if and only if they lie in
a hyperplane orthogonal to O.

Proof. First, let p and q be simultaneous for O. Let p0 be the point on O that is si-
multaneous with p—and so also with q—for O, and let h be the hyperplane through
p orthogonal to O. Reflection of space-time in the (space-like) hyperplane h is a map
satisfying the conditions laid down; under it, p is fixed and O is mapped to itself;
so, by the invariance condition (a), the image p′0 of p0 is simultaneous with p for
O. Unless p′0 and p0 coincide—i.e., unless p0 is in the hyperplane h—this implies
that two distinct points, p0 and p′0, both on O, are simultaneous with p for O. Since
this violates condition (b), p0 must lie in h. But q satisfies the same conditions as
p, vis-à-vis O and p0; p0 therefore lies also in the hyperplane through q orthogonal
to O. Since p0 lies in only only one hyperplane orthogonal to O, and this is h, q
too must lie in h. This establishes the “only if” clause of the theorem. Second, if
h is a hyperplane orthogonal to O, and if p and q lie in h, let p0 be the point of O
simultaneous, for O, with p; then by what we have already seen, p and p0 lie in
a hyperplane orthogonal to O—and this can only be h. By the same token, q must
be simultaneous, for O, with a point of O that lies in h—and this can only be p0.
It follows that p and q, since each is simultaneous for O with p0, are themselves
simultaneous for O; and this completes the proof.

2. As stated above (end of n. 6), the formulation of the theorem on p. 149 of [3] not
only fails to state accurately what the argument preceding it has established, but
is simply false. A correct statement is:

41 What it is, is discussed, implicitly, in Stein [3, p. 159].
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If R is a reflexive, transitive relation on a Minkowski space (of any number of dimensions—
of course at least two), invariant under automorphisms that preserve the time-orientation,
and if Rxy does not hold for every pair of points (x, y) of the space, but does hold whenever
xy is a past-pointing (time-like or null) nonzero vector, then Rxy holds if and only if xy is a
past-pointing vector.

If the dimension is greater than two, the automorphisms considered may be re-
stricted further to such as preserve the spatial orientation as well the time-orientation
[equivalently: that preserve the orientation of the whole manifold as well as the time-
orientation], and also preserve the scale.

3. In the proof—or proof sketch—they give for their Theorem 1 (which is essen-
tially the same as case (b) of Theorem 1 above), the exposition of Sarkar and
Stachel is not at all points quite clear: for instance, they refer, near the beginning
of part (ii) of their argument [4, p. 217], to “the family of hypersurfaces of simul-
taneity,” although they have not given any reason to suppose that the equivalence-
classes of the simultaneity relation are hypersurfaces (the counterexamples given
above show that in the absence of a requirement of scale-invariance this need not
be the case), or even that the equivalence-classes contain hypersurfaces; so one
cannot be entirely sure exactly what they may be assuming tacitly. Nevertheless,
there is in their proof one passage containing a clearly identifiable and crucial
paralogism. They have (almost) correctly remarked, at the beginning of (ii), that
“[a]ccording to our definition, any simultaneity relation causally’ definable from
κ and O must be invariant under any transformation belong to the group of O
causal’ automorphisms. This implies that it must take the family of hypersur-
faces of simultaneity onto itself under any such automorphism” (sic; but read, of
course, “that any such automorphism must take [etc.]”). Some lines below this,
however, they say of translations orthogonal to the world-lines of the inertial sys-
tem, “If they are not to affect the simultaneity relation (which amounts to our
assumption that the simultaneity relation is independent of the initially-chosen
world line O), these translations must take each simultaneity hypersurface onto
itself.” This simply does not follow: what does, is just that each translation must
take each equivalence-class to some equivalence-class, not necessarily to itself.
The point is crucial, because it is only from the premise that each equivalence-
class (a) is a hypersurface, and (b) is mapped to itself by translations orthog-
onal to the inertial system, that they conclude that the classes are hyperplanes
orthogonal to the inertial system. Indeed, the mere assumption of translation-
invariance, if one did not also postulate invariance under rotations that take the
inertial system to itself, would allow the possibility of simultaneity hyperplanes
“inclined at a fixed angle” to the world-lines of the inertial system; the system
of such hyperplanes would, then, be invariant under translations orthogonal to
the inertial-system’s world-lines; but the individual hyperplanes would not be in-
variant under these translations. And Sarkar and Stachel—as they seem not to
have noticed!—not only make no appeal to scale-change-invariance, they like-
wise make no appeal to rotation-invariance in their proof-sketch.

I have not discussed Theorem 2 of Sarkar and Stachel. It is fairly clear what
this theorem is intended to say, and that what it is intended to say is true. But its
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formulation [4, p. 218] is, when one looks at it closely, very obscure; and the proof
given for it there is garbled. As to the obscurity: in this theorem, the authors impose
the condition—condition (ii)—that “no event is simultaneous with one in its causal
future (past)”; the parenthesis is intended to imply an alternative: one of the two
simultaneity relations they arrive at has as its equivalence-classes the “backwards”
mantle of a null-cone, the other the “forwards” mantle; the former contains “no
event in the causal future” of the vertex of the cone, the latter “no event in its causal
past.” But the condition as formulated certainly does not do what it is meant to:
simultaneity is—not just usually, but explicitly for Sarkar and Stachel—an equiv-
alence relation. If event e is simultaneous with e′, and if e′ is on the backwards
mantle of the cone of e and thus “not in the causal future of e,” then ipso facto e′ is
simultaneous with e; but e is in the causal future of e′; so the condition as the au-
thors have stated it rules out the mantles of the null-cone (forwards or backwards)
as simultaneity-classes. As to the proof: The theorem requires that simultaneity be
relativized to an inertial observer-line O, and that it be invariant, for every point e of
O, under “boosts” at O; this is condition (i) of the theorem. The proof sketch begins:
“Let p be any event not on O that is simultaneous with e. Consider the vector ep.
By condition (i) of the theorem, under boosts at e, the length of this vector must
remain invariant.”—This, I say, is garbled: the conclusion has nothing to do with
condition (i) of the theorem; “boosts,” which are among the transformations in the
Poincaré group, ipso facto preserve the lengths of vectors.—The proof continues:
“Thus, the locus of p under all such boosts is either the forward or backward null
cone or a time-like hyperboloid within the null cone.”42—Again, this is just a fact
about the geometry of boosts; so far, none of the conditions of the theorem has been
actually used. The remainder of the proof is: “Now, e does not belong to any such
hyperboloid. Therefore, if such a hyperboloid were used to define the simultaneity
relation, e would not be simultaneous with itself violating the reflexivity condition
of an equivalence relation. Thus, only the two half null cones remain as potential
hypersurfaces of simultaneity. Condition (ii) restricts us to one of the two.”

Well, we have already seen that condition (ii) cannot be helpful as it stands.
But as to the connection with condition (i): the conclusion that the locus of the
point p under boosts is either a half-cone or a lobe of a “hyperboloid,” as already
remarked, is independent of condition (i); what that condition does now imply is
that this locus consists entirely of points simultaneous with e. However, what we
need for the conclusion drawn by Sarkar and Stachel is that these are the only points
simultaneous with e; and condition (i) does not imply this, without some further
stipulation.

Perhaps it was overstating the matter to say that it is “fairly clear” what the theo-
rem is intended to say. Here is an attempt at it: If we require of a simultaneity relation
relative to an observer-line O (a) that for every point e on O, simultaneity is invariant
under boosts at O and (b) that no observer-line meet any of the equivalence-classes
of this relation in more than one point, then the only possibilities are the two Sarkar

42 “Hyperboloid,” of course, in the usual Euclidean model of a Minkowskian space-time. “Time-
like” is perhaps misleading: this is a hyperboloid of two branches; vectors from one to another
point of one branch are space-like; it is the separation between the two branches that is time-like.
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and Stachel describe.—This is true; and it follows by a straightened-out redaction of
their argument (as shown just above, one concludes that the class of events simulta-
neous with a given e on O is either one mantle of the null-cone at O, or a “branch
of a hyperboloid” [the full cone or hyperboloid is ruled out by the fact that there
are observer-lines that meet them in two points]; but this class must contain e—by
reflexivity—whereas O meets the hyperboloid-branches in points other than e, and
it must also contain e; but meeting an equivalence-class in more than one point has
been excluded).

Second thoughts (or afterthought)—an alternative reconstruction of the intent of
Theorem 2: it may be that condition (ii) was intended to mean that no event on O is
simultaneous with an event in its causal future (alternatively: its causal past). This
would do the trick (although the part of the proof invoking this condition would
need a little rewriting).

4. In the two-dimensional case, if the equivalence-classes are “Minkowski semicir-
cles” and if the axes are not normal to these curves, the configuration of a given
equivalence-class Σ and its axes may be described as follows: The equivalence-
class, as we know, has a given temporally oriented radius r. Let us represent
this simply by a real number (positive or negative, denoting “future-pointing”
or “past-pointing”—zero is not a possibility). In the usual Euclidean model of a
Minkowski plane, Σ is a connected branch of a hyperbola whose principal semi-
axis is r—understanding the sign of r to mean (taking the time-axis to be vertical)
the “upper branch” if r is positive, the “lower branch” if r is negative. We may,
as usual, take the center of the hyperbola—which represents the center of the
“Minkowski semicircle”—to be at the origin of the system of coordinates. Now
let there be given also a spatially oriented non-zero radius d (also representable
as a real number—with an analogous convention about the sign: e.g., positive “to
the right,” negative “to the left”. Consider a second “Minkowski semicircle,” or
hyperbolic branch, Ω, having the same center as Σ, but with the space-like ori-
ented radius d; and take the axis of the equivalence-class Σ, at any given point
p, to be the line through p that is tangent to Ω; so the family of all axes of Σ
is just the family of all lines tangent to Ω: it is this that takes the place of the
family of all lines through the center (which may indeed be considered as the
limiting—degenerate—case of our “hyperbolic” construction when the spatial
radius d goes to zero).—The radius d of the auxiliary hyperbola Ω is not the
same as the spatially oriented radius s used in the construction described in The-
orem 3 of the text above; r being given, the connection between the s and d (this
is the one point that does necessitate a little calculation to determine), if we rep-
resent s, d, and r by real numbers, is given by the pair of equations, inverse to
one another: d =−sr/

√
(1− s2), s =−d/

√
(d2 + r2). (Note that s must, as pre-

viously specified, be chosen with absolute value less than 1; this is guaranteed
by the second equation. On the other hand, d is entirely arbitrary.—Note too that
these equations also hold in the “degenerate” case (or perhaps, rather, the normal
case!) s = d = 0.
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9. Poincaré, Henri (1900). “Les théories de la physique moderne.” Rapports du Congrés de
Physique de 1900 vol. 1; reprinted as Ch. X of La Science et l’Hypothese. An English trans-
lation by G. B. Halsted can be found in the collection The Foundations of Science (Lancaster,
PA: The Science Press, 1913); this translation is superior to that found in the Dover edition of
Science and Hypothesis.

10. Pais, Abraham (1982). ‘Subtle is the Lord. . .’; The Science and the Life of Albert Einstein.
Oxford University Press, New York.

11. Einstein, Albert (1949). “Autobiographical Notes” in Albert Einstein: Philosopher-Scientist,
ed. P.A. Schilpp, Open Court Press, Evanston, IL.

12. Reichenbach, Hans (1958). The Philosophy of Space and Time. Dover, New York.
13. Stein, Howard (1968). “On Einstein–Minkowski Space-Time.” The Journal of Philosophy

65, 5–23.


