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INTRODUCTION

In Einstein’s theory of gravitation matter and its dynamical inter-
action are based on the notion of an intrinsic geometric structure
of the space-time continuum. The ideal aspiration, the ultimate
aim, of the theory is not more and not less than this: A four-dimen-
sional continuum endowed with a certain intrinsic geometric struc-
ture, a structure that is subject to certain inherent purely geometrical
laws, is to be an adequate model or picture of the ‘real world around
us in space and time’ with all that it contains and including its total
behaviour, the display of all events going on in it.

Indeed the conception Einstein put forward in 1915 embraced
from the outset (and not only by the numerous subsequent attempts
to generalize it) every kind of dynamical interaction, not just gravita-
tion only. That the latter is usually in the foreground of our mind—
that we usually call the theory of 1915 a theory of gravitation—is
due to two facts. First, its early great successes, the new phe-
nomena it predicted correctly, were deemed to refer essentially to
gravitation, though that is, strictly speaking, true only for the
precession of the perihelion of Mercury. The deflexion of light
rays that pass near the sun is not a purely gravitational phenomenon,
it is due to the fact that an electromagnetic field possesses energy
and momentum, hence also mass. And also the displacement of
spectral lines on the sun and on very dense stars (‘white dwarfs’)
is obviously an interplay between electromagnetic phenomena and
gravitation.

At any rate the very foundation of the theory, viz. the basic
principle of equivalence of acceleration and a gravitational field,
clearly means that there is no room for any kind of ‘force’ to
produce acceleration save gravitation, which however is not to be
regarded as a force but resides on the geometry of space-time. Thus
in fact, though not always in the wording, the mystic concept of
force is wholly abandoned. Any ‘agent’ whatsoever, producing
ostensible accelerations, does so qui amounting to an energy-
momentum tensor and via the gravitational field connected with the
latter. The case of ‘ pure gravitational interaction’ is distinguished
only by being the simplest of its kind, inasmuch as the energy-
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2 SPACE-TIME STRUCTURE

momentum- (or matter-) tensor can here be regarded as located
in minute specks of matter (the particles or mass-points) and as
having a particularly simple form, while, for example, an electrically
charged particle is connected with a matter-tensor spread through-
out the space around it and of a rather complicated form even when
the particle is at rest. This has, of course, the consequence that in
such a case we are in patent need of field-laws for the matter-tensor
(e.g. for the electromagnetic field), laws that one would also like to
conceive as purely geometrical restrictions on the structure of
space-time. These laws the theory of 1915 does not yield, except in
the simple case of purely gravitational interaction. Here the defect
can at least be camouflaged or provisionally supplemented by simple
additional assumptions such as: the particle shall keep together,
there shall be no negative mass, etc. But in other cases, such as
electromagnetism, a further development of the geometrical con-
ceptions about space-time is called for, to yield the field-laws of
the matter-tensor in a natural fashion. This was the second reason
for looking upon the theory of 1915 as referring to pure gravitation
only.

The geometric structure of the space-time model envisaged in
the 1915 theory is embodied in the following two principles:

(i) equivalence of all four-dimensional systems of coordinates
obtained from any one of them by arbitrary (point-) transformation;

(ii) the continuum has a metrical connexion impressed on it:
that is, at every point a certain quadratic form of the coordinate-
differentials, gipdridr,,
called the ‘square of the interval’ between the two points in ques-
tion, has a fundamental meaning, invariant in the aforesaid trans-
formations.

These two principles are of very different standing. The first,
the principle of general invariance, incarnates the idea of General
Relativity. I will not commit myself to calling it unshakable. One
has occasionally tried to generalize it, and it is difficult to say
whether quantum physics might not at some time seriously dictate
its generalization. However, the principle as it stands appears to
be simpler than any generalization we might contemplate, and there
seems to be no reason to depart from it at the outset.
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INTRODUCTION 3

On the other hand, to adopt a metrical connexion straight away
does not seem to be the simplest way of getting at it eventually,
even if nothing more were intended than an exposition of the 1915
theory. The reason is that the conceptions on which this theory
hinges (as invariant differentiation, Riemann-Christoffel-tensor,
curvature, variational principles, etc.) are not at all peculiar to the
metrical connexion. They come in in a much simpler, more natural
and surveyable fashion when you first only introduce as much of
a connexion as, and precisely that kind of connexion for which,
the idea of ‘differentiation’ calls out peremptorily in view of the
general invariance you have admitted. That is the so-called affine
connexion. It is then easy, if desired, to specialize it so as to
engender a metric.

An important group of attempts to generalize the 1915 theory
(inaugurated by H. Weyl as early as 1918) is based on this more
general type of connexion.

We shall therefore investigate the geometry of our continuum in
three steps or stages, viz.

(1) when only general invariance is imposed;

(2) when in addition an affine connexion is imposed;

(3) when this is specialized to carry a metric.

And we shall find it useful to keep account of which notions are
peculiar to each stage, I mean to say which are accessible and
meaningful at that stage without our having to go to the next one,
but have 7o meaning in the previous one.

Many of the statements and propositions worked out in the
following apply to any number 7 of dimensions. But since we are
not dealing with pure mathematics but only intend to show the
simplest access to possible geometrical models of space-time, we
have at the back of our mind always the case n = 4. It would be
tedious to repeat again and again: this theorem applies to any
number of dimensions. Of more interest and importance is the
case when a theorem s restricted to n = 4; therefore this fact will
usually be stressed explicitly.
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PART I
THE UNCONNECTED MANIFOLD

CHAPTER I
INVARIANCE; VECTORS AND TENSORS

We envisage a (four-dimensional) continuum whose points are
distinguished from each other by allotting a quadruplet of con-
tinuous labels x,, x,, x;, ¥, to each of them. However, this first
labelling shall have no prerogative over any other one

x; = x1(%y...%,), x3=2x(%... x,,),} (t.1)

2= iy ), = (), ‘
where the x;, are four continuous, differentiable functions of the x,,
such that their functional determinant vanishes nowhere.t

But, of course, if such a transformation is made, it must be
announced and the functions must be indicated, lest the labelling
go to the dogs and the points be ‘lost’.

Now we are looking out for mathematical entities, numbers or
sets of numbers to which a meaning can be attached in such a mani-
fold.

The numerical values of the coordinates are not of that kind, since
they change on transformation, and so would any given mathematical
function of them, e.g. the sum of their squares. But on the other
hand, if there shall be any meaning in safeguarding the individuality
of every point even on transformation, we must allow that attached
to a point may be some property that remains, of course, unchanged
on transformation. For unless we intend to enunciate some fact
concerning that particular point of space-time, what would be the
good of labelling it carefully so as to find it again in any frame?
Our list of labels would amount to a list of (grammatical) subjects
without predicates; or to writing out an elaborate list of addresses
without any intention ever to bother who or what is to be found
at these addresses.

In the simplest case such a property will be expressed by one
number, attached to the point and, by definition, not changing on

4 This is necessary in order to secure a one-to-one correspondence between

the two sets of labels. But it is well known that exceptions are quite often put
up with, as, for example, in the transition from Cartesian to polat coordinates.
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TENSOR ALGEBRA 5

transformation. In the way of illustration you may think, for
example, of the temperature at a given point of a body at a given
time. A property expressed by a number that ‘by order’ is not to
be changed on transformation of the frame is called an invariant
or a scalar. We speak of an invariant field or scalar field, if not only
to one particular point but to every point within a certain region
a number is attached, all these numbers referring to the same
invariant property. Thus a scalar field will be given by a function

of the coordinates
& (%1, %3, X3, Xy),

but not by a definite mathematical function. After the trans-
formation (1.1) the same field will be described by substituting for
the x; their values (functions) obtained from the equations (1.1)
by solving them; thus if we call these solutions x;(x;, x3, x5, %),
the field will now, in the new frame, be given by
Olxy(xy, x5, %3, X3),  Xa(x]... %), Xg(xp...x8), Xa(x]...x)];

and this is, of course, an entirely different function of the x;, from
what ¢ was of the x;. Strictly speaking, we should indicate it by
a different letter, say ¥ (x,, x,, X3, x,). The physicist, however, has
taken to regarding a definite letter (¢ in our case) as referring to
a particular field in any frame. His most important general con-
siderations usually refer to ‘the general frame’, which he does
not specialize and therefore has not actually to change very often,
though the principle of invariance on transformation is continually
at the back of his mind. Whenever he has to contemplate two or
more frames simultaneously, say xy, x;, &7, ..., he would choose
for the functions describing the same scalar field in these various
frames the letters 6 &, 8", s

so that, for example, in the notation used above,

Bl 2D, wowho ), mleh. %), x(w ... x)]
= ¢'(x}, %3, X3, %)
For brevity we shall in future write ¢(x,) instead of ¢(x,, x, x5, x,),
if it is at all necessary to indicate the arguments. Usually they can
be inferred. Also, the dash in ¢’ would indicate that we mean the
field-function expressed in the x;-frame, without it being necessary
to write ¢’(xy).
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6 SPACE-TIME STRUCTURE

Given (in one frame) two points, P, with coordinates x,, and P,
with coordinates X, the difference

P(Fe) — H(x)
is also invariant on transformation. Hence also (taking P in-
finitesimally near to P)

0 .
2 dx;. = invariant. (1.2)
ox,,
(Throughout these lectures we use the convention that the sum
from 1 to 4 is to be understood, whenever the same index appears

twice in a product.) Indeed since, on transformation,

2.9 (13)

Ox; Ox; ox;,
, 0y
and dx; = 3_.7::: dx,,, (1.4)

op ., o on 0w, _0g
ox;, dw = ox, oxj, ox,, dityy = oy day.

we get

The latter (which proves the statement (1.2)) is obtained by

. . 0Oxy Oxy, . . _
summing over k, since — ——~ is the partial derivative of x, (re-

oxy, 0%,
garded as a function of the undashed x’s) with respect to x,,. And
that is 1 or o according to whether / is the same index as m or
different from it.

The array of the four quantities 0¢)/dx; is itself a mathematical
entity with a definite meaning, provided you subject it to the trans-
formation rule (1.3), just as the scalar ¢ was subject to being not
transformed but simply ‘substituted’ (German: wumgerechnet).
The meaning of o¢/éx,, is that, in any frame, it gives you the
increment of ¢ (on proceeding to a neighbouring point) as the sum
of products, indicated in (1.2), the increments of the coordinates
to be taken, of course, in that frame. The entity described by these
four partial derivatives is called the gradient of ¢ and is the first
example of a property referring to a definite point and given not
by one number only, as a scalar is, but by an array of numbers,
four in this case. It is the prototype of a covariant vector. More
especially, it is a covariant vector field.
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TENSOR ALGEBRA i

The general conception of a covariant vector is an array of four
quantities 4, which ‘by order’ is to be transformed according to
1.3), thus: .
. (=2, (x5

ox,

The nature of the entity may (as in the case of the gradient) be
such that there is a quadruplet of numbers attached to every point,
varying from point to point. Then we speak of a field. Or the
particular vector might refer just to one point. But at all events
every vector must refer to one definite point, otherwise the pre-
scription (1.5) would be meaningless, we should not know what
coefficients to use in it. (What has just been said will refer in the
same way and for the same reasons to all the other vectors and tensors
to be introduced presently.)

The way in which, according to (1.4) the differentials of the
coordinates transform is a sort of counterpart to (1.3). We define
a contravariant vector as an array of four quantities B* which
transform in the same fashion as the dx,:

A

ox;,
'k — 27k pm
B e Bm™, (1.6)

m
By general convention the writing of the index as subscript or as
superscript respectively serves to distinguish the ‘covariant’ and
‘contravariant’ behaviour. The dx, themselves are thus an
(infinitesimal) contravariant vector, indeed its prototype. With
regard to our convention some people write ¥* instead of x; for
the coordinates. I do not think this makes for consistency since
(i) the x; themselves are no vector at all and (ii) the symbols o/ox,
can in many respects be regarded as a (symbolic) covariant entity.
So it is better to remember that in all these cases the position of
the whole differential (whether it stands in the numerator or in the
denominator) replaces, as it were, the position of the index.
From (1.5) and (1.6) follows immediately
A B = A, B = invariant. (1.7)
It is called the inner or scalar product. When it is zero, the two
vectors are by some people called pseudo-orthogonal.
Given several (s) vectors at the same point, partly covariant,
partly contravariant, the array of 4° quantities
A BIC™...G,H, ... (1.8)
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8 SPACE-TIME STRUCTURE

follows a linear transformation law that can easily be made out from
(1.5) and (1.6), but we need not write it out explicitly. An array of
4® quantities which follow this transformation law is called a tensor
of rank s and indicated by a symbol like

Tk‘mmpq...’ (I 9)

where, of course, the number of superscripts and the number of
subscripts must be given separately, fully to characterize the nature
of the entity 7. The product (1.8) is a special case of such a tensor,
but not the most general tensor of this kind, since it depends only
on 4s independent numbers and

4s<4
for s>1. The order of the superscripts in the notation (1.9) is
relevant, indeed 7%m--  would in the particular case (1.8) mean

A'B¥C™...G,H, ..., which is different from (1.8).

It is not the same tensor, but it is a tensor of the same type. Itis
worth showing that it really has exactly the same transformation
rule. An example will suffice. Take a contravariant tensor of the
third rank T#®m, It transforms thus:

' klm
T ox, ox, dx,

Exchange kand /and at the same time the notation of the summation

indices r, s
’ Oxp Oy, oxy,

Hiem —
T Ox, Ox, Ox,

M.

The coefficient is unchanged, but in the T-arrays the first two
indices have been exchanged. The point is that you may regard
the 772 component as the (213)-component etc. of another tensor.
The same would hold for any permutation, provided you make the
same permutation in all components.

The same holds, of course, for subscripts. But at the moment
there is no relevant order between subscripts and superscripts.

The two types of vectors are clearly special cases of tensors, viz.
the tensors of rank 1. A scalar may be called a tensor of rank zero.

By multiplying the components of any two tensors in all com-
binations:

'abe...
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TENSOR ALGEBRA 9

you get again a tensor. That is clear from the transformation rules.
It is called the outer or direct product of the two.

If in (1.9) you execute a summation with respect to an upper and
a lower index, as for example,

Kim...
Tkm kgq...»

it is again easy to show from the transformation rule (which we
have indicated, but not written out) that this is a tensor with rank
two less than the original one. It could be indicated by a symbol

like
N (1.11)

This process of forming from a given tensor which has at least one
index of each kind a tensor of lower rank is called contraction
(German: Verjiingung). Observe that (1.9) admits of various con-
tractions. The tensor, e.g.

(1.10)

Tklmmpk...’ (1’12)

is distinctively different from (1.10), though of the same general
type, i.e. the same rank and the same number of superscripts and
subscripts.

Tensors can be added or subtracted or, more generally, linearly
combined with either constant or invariant (scalar) coefficients,
if and only if they are of exactly the same type and refer to exactly
the same point of the continuum. By ‘can be’ we mean that in
this and only in this case, the result will again have a simple trans-
formation formula, to wit it is a tensor of the same type and referring
to the same point.

The most important number in mathematics is the zero. Our
present sign for it as well as the word zero comes from the Arabs.
(It is, by the way etymologically the same as English cipher,
French chiffre, German Ziffer, which have, however, acquired
a different meaning.) But the notion is older, it turns up in Baby-
lonian Mathematics soon after 1000 B.c.t and may have been
received from India. Let me dwell for a moment on the importance
of this concept. A great many of our propositions and statements
in mathematics take the form of an equation. The essential enuncia-
tion of an equation is always this: that a certain number is zero.
Zero is the only number with a charter, a sort of royal privilege.

+ V. Gordon Childe, Man Makes Himself (London: Watts and Co., 1936),
pp. 222 and 255.

2 s
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10 SPACE-TIME STRUCTURE

While with any other number any of the elementary operations may
be executed, it is prohibited to divide by zero—just as, for example,
in many houses of parliament any subject may be discussed, only
the person of the sovereign is excluded. If you divide by zero,
nonsense is usually the result. This prerogative is essential, you have
to think of it every minute; whenever you divide, you must satisfy
yourself that the divisor is not ‘of royal blood’, that it is not zero.
Another consequence is that royal blood cannot (by multiplication)
be obtained otherwise than from royal blood. A product cannot
vanish unless at least one of its factors vanish. It is not accidental
that more often than not the conclusion of a proof runs thus:
AB =o0,B%+o0, . A=o0.

In the same way the most important tensor of any type is the
zero tensor of that type, that is, the one whose components all
vanish. It is a numerically invariant tensor, since the transformation
formulae are linear and homogeneous. That is the reason why
tensors play the all-important part they play. For it has the con-
sequence that an equation of the following kind between two tensors

Sand T
SHe = THe

Pq...
is independent of the frame (for it means that S~ — T is the
zero tensor)—provided, of course, that S and T are of the same
type and refer to the same point. If they did not, this would not
hold, the above equation would be meaningless, and therefore we
shall never contemplate that sort of thing.

Perhaps this is the place to mention a convention, which is
always made tacitly, though it would deserve to be mentioned
explicitly, just as the ‘summation convention’, of which it is the
counterpart. According to the latter an index that appears twice
in the same product is to include summation from 1 to 4. Now an
index that appears only once, but then, of course, in every term
of an equation, implies that the equation holds for any value 1 to 4
of that index. By the first convention we shove many terms of an
equation into one, by the second we shove many equations into one.
For example, if you write

Sklmm — Rkl’
this represents in general 16 equations, each of which has four
terms on the left.
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TENSOR ALGEBRA 11

An important application of the invariance of tensor equations
is to the symmetry of tensors. If for a tensor S one of the following

two equations K. k...
S pa.. = % S pq...

holds in one frame, it holds in every frame. We then call S symmetric
or antisymmetric, respectively, with respect to its first pair of super-
scripts. The same could happen for the pair p and g, but not, for
example, for the pair k and g. (Symmetry might happen to obtain
in one particular frame, but it would be of no interest, just a chance
event). Later we shall come to know more complicated symmetry
properties. As a corollary we note that a general tensor can
always be decomposed into a sum of two tensors, one of which is
symmetric, the other one skew with respect to a certain pair of
indices of the same character. Similar theorems hold also for more
complicated forms of symmetry.

Given a tensor with £ contravariant and r covariant indices,
contemplate any ¢ covariant and r contravariant vectors and form
the contracted product

Sk AyBy.. FPGU. ., (1.13)

Then from the rules for outer and inner multiplication, this product
(which is just one number, all the indices being ‘killed’ by contrac-
tion) is an invariant.

It is interesting and useful to know that the converse is also
true: if you know nothing about the array of numbers S but
that the ‘product’ (1.13) is an invariant for any set of vectors
A...G..., then the S are the components of a tensor of the type
defined by its indices. This inverse theorem (which we shall prove
forthwith) might serve as an alternative definition of a tensor; but
more important is that it is frequently used to establish the tensor-
property of an array of numbers, for which it is not yet secured.

To prove this inverse theorem, envisage a particular transforma-
tion, call 8" the components of .S transformed as if S~ were
a tensor, and S”-__any set of numbers sharing with the 5" _the
property that they make (1.13) invariant on this particular trans-
formation for any set of vectors 4... G .... By subtracting the two
equations which express that both §"  and S”-  make (1.13) an
invariant, you get

(SMepy — 8™ VALB,.. . FPG... = o.
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12 SPACE-TIME STRUCTURE

Now since the original components of the vector 4... G were
quite arbitrary, the same holds for the primed components, since
the transformation-formulae (1.5) and (1.6) have non-vanishing
determinants. Hence you can choose the vectors so that of 4’
only the kth, of B’ only the /th... of G’ only the gth component
is different from zero. Then you get

"i... — QK. -
A | 2e... = O,

saying that these particular two numbers of the arrays S’ and S”
are equal. Obviously by suitably different choices of the vectors
the same can be shown for any pair out of the $’ and S” and thus

our assertion is proved.
Simple corollaries of our theorem are illustrated by the following
example. If we know that

S® A, = contravariant vector

for any choice of the covariant vector 4, then S* is a contravariant
tensor of second rank. Naturally. For if the above is a contravariant
vector for any choice of the vector 4, then

S 4, B, = invariant
for any choice of the vectors 4 and B.
As can be seen from our proof, it is vital that the invariance of
the product be warranted for arbitrary vectors. However, a certain

remission can be granted if something more is known about the
array of the S. To give an example, if it is only warranted that

S A4, A, = invariant
for any choice of the vector 4, but if in addition it is known that in
any frame SH = Sk

(symmetry), the tensor property of .S can be proved along the lines
followed above. (Without the symmetry one could only show that
SHM 4+ S* is a tensor.)

Asan example of the general method we prove the tensor property
of the mixed unity tensor, which in itself is an important entity.
Envisage the array of 16 numbers

%,

with numerical value o or 1 according to whether i+k or 7 = k.
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TENSOR ALGEBRA 13
"Then for any pair of vectors at any point of the continuum
01 A;B* = A, B* = invariant,

according to (1.7). Hence 8} is a mixed tensor and is correctly
written with one superscript and one subscript. It is one of the
(very few) numerically invariant tensorial entities, that is to say
even its components are the same in every frame. One feels tempted
to call it a symmetrical tensor. However, this would not be
appropriate. For symmetry with respect to two indices of different
character is in general not preserved on transformation. That it is
so here is an exceptional occurrence.
Notice, by the way, that even the more trivial statement, that

i B; = B,

is a vector for any B;, would suffice to infer the tensor-property
of 8.
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PART I
THE UNCONNECTED MANIFOLD

CHAPTER I
INVARIANCE; VECTORS AND TENSORS

We envisage a (four-dimensional) continuum whose points are
distinguished from each other by allotting a quadruplet of con-
tinuous labels x,, x,, x;, ¥, to each of them. However, this first
labelling shall have no prerogative over any other one

x; = x1(%y...%,), x3=2x(%... x,,),} (t.1)

2= iy ), = (), ‘
where the x;, are four continuous, differentiable functions of the x,,
such that their functional determinant vanishes nowhere.t

But, of course, if such a transformation is made, it must be
announced and the functions must be indicated, lest the labelling
go to the dogs and the points be ‘lost’.

Now we are looking out for mathematical entities, numbers or
sets of numbers to which a meaning can be attached in such a mani-
fold.

The numerical values of the coordinates are not of that kind, since
they change on transformation, and so would any given mathematical
function of them, e.g. the sum of their squares. But on the other
hand, if there shall be any meaning in safeguarding the individuality
of every point even on transformation, we must allow that attached
to a point may be some property that remains, of course, unchanged
on transformation. For unless we intend to enunciate some fact
concerning that particular point of space-time, what would be the
good of labelling it carefully so as to find it again in any frame?
Our list of labels would amount to a list of (grammatical) subjects
without predicates; or to writing out an elaborate list of addresses
without any intention ever to bother who or what is to be found
at these addresses.

In the simplest case such a property will be expressed by one
number, attached to the point and, by definition, not changing on

4 This is necessary in order to secure a one-to-one correspondence between

the two sets of labels. But it is well known that exceptions are quite often put
up with, as, for example, in the transition from Cartesian to polat coordinates.

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:27, subject to the Cambridge
Core terms of use, availalesmbridge/Books nljiner@Cambridgeddniversity Rress 2043 0511586446.002


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.002
https://www.cambridge.org/core

TENSOR ALGEBRA 5

transformation. In the way of illustration you may think, for
example, of the temperature at a given point of a body at a given
time. A property expressed by a number that ‘by order’ is not to
be changed on transformation of the frame is called an invariant
or a scalar. We speak of an invariant field or scalar field, if not only
to one particular point but to every point within a certain region
a number is attached, all these numbers referring to the same
invariant property. Thus a scalar field will be given by a function

of the coordinates
& (%1, %3, X3, Xy),

but not by a definite mathematical function. After the trans-
formation (1.1) the same field will be described by substituting for
the x; their values (functions) obtained from the equations (1.1)
by solving them; thus if we call these solutions x;(x;, x3, x5, %),
the field will now, in the new frame, be given by
Olxy(xy, x5, %3, X3),  Xa(x]... %), Xg(xp...x8), Xa(x]...x)];

and this is, of course, an entirely different function of the x;, from
what ¢ was of the x;. Strictly speaking, we should indicate it by
a different letter, say ¥ (x,, x,, X3, x,). The physicist, however, has
taken to regarding a definite letter (¢ in our case) as referring to
a particular field in any frame. His most important general con-
siderations usually refer to ‘the general frame’, which he does
not specialize and therefore has not actually to change very often,
though the principle of invariance on transformation is continually
at the back of his mind. Whenever he has to contemplate two or
more frames simultaneously, say xy, x;, &7, ..., he would choose
for the functions describing the same scalar field in these various
frames the letters 6 &, 8", s

so that, for example, in the notation used above,

Bl 2D, wowho ), mleh. %), x(w ... x)]
= ¢'(x}, %3, X3, %)
For brevity we shall in future write ¢(x,) instead of ¢(x,, x, x5, x,),
if it is at all necessary to indicate the arguments. Usually they can
be inferred. Also, the dash in ¢’ would indicate that we mean the
field-function expressed in the x;-frame, without it being necessary
to write ¢’(xy).
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6 SPACE-TIME STRUCTURE

Given (in one frame) two points, P, with coordinates x,, and P,
with coordinates X, the difference

P(Fe) — H(x)
is also invariant on transformation. Hence also (taking P in-
finitesimally near to P)

0 .
2 dx;. = invariant. (1.2)
ox,,
(Throughout these lectures we use the convention that the sum
from 1 to 4 is to be understood, whenever the same index appears

twice in a product.) Indeed since, on transformation,

2.9 (13)

Ox; Ox; ox;,
, 0y
and dx; = 3_.7::: dx,,, (1.4)

op ., o on 0w, _0g
3x,’cd k™ ox, ox;, ox,, dityy = oy day.

we get

The latter (which proves the statement (1.2)) is obtained by

. . 0Oxy Oxy, . . _
summing over k, since — ——~ is the partial derivative of x, (re-

ox;, dx,,
garded as a function of the undashed x’s) with respect to x,,. And
that is 1 or o according to whether / is the same index as m or
different from it.

The array of the four quantities 0¢)/dx; is itself a mathematical
entity with a definite meaning, provided you subject it to the trans-
formation rule (1.3), just as the scalar ¢ was subject to being not
transformed but simply ‘substituted’ (German: wumgerechnet).
The meaning of o¢/éx,, is that, in any frame, it gives you the
increment of ¢ (on proceeding to a neighbouring point) as the sum
of products, indicated in (1.2), the increments of the coordinates
to be taken, of course, in that frame. The entity described by these
four partial derivatives is called the gradient of ¢ and is the first
example of a property referring to a definite point and given not
by one number only, as a scalar is, but by an array of numbers,
four in this case. It is the prototype of a covariant vector. More
especially, it is a covariant vector field.

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:27, subject to the Cambridge
Core terms of use, availalesmbridge/Books nljiner@Cambridgeddniversity Rress 2043 0511586446.002


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.002
https://www.cambridge.org/core

TENSOR ALGEBRA i

The general conception of a covariant vector is an array of four
quantities 4, which ‘by order’ is to be transformed according to
1.3), thus: .
. (=2, (x5

ox,

The nature of the entity may (as in the case of the gradient) be
such that there is a quadruplet of numbers attached to every point,
varying from point to point. Then we speak of a field. Or the
particular vector might refer just to one point. But at all events
every vector must refer to one definite point, otherwise the pre-
scription (1.5) would be meaningless, we should not know what
coefficients to use in it. (What has just been said will refer in the
same way and for the same reasons to all the other vectors and tensors
to be introduced presently.)

The way in which, according to (1.4) the differentials of the
coordinates transform is a sort of counterpart to (1.3). We define
a contravariant vector as an array of four quantities B* which
transform in the same fashion as the dx,:

A

ox;,
'k — 27k pm
B e Bm™, (1.6)

m
By general convention the writing of the index as subscript or as
superscript respectively serves to distinguish the ‘covariant’ and
‘contravariant’ behaviour. The dx, themselves are thus an
(infinitesimal) contravariant vector, indeed its prototype. With
regard to our convention some people write ¥* instead of x; for
the coordinates. I do not think this makes for consistency since
(i) the x; themselves are no vector at all and (ii) the symbols o/ox,
can in many respects be regarded as a (symbolic) covariant entity.
So it is better to remember that in all these cases the position of
the whole differential (whether it stands in the numerator or in the
denominator) replaces, as it were, the position of the index.
From (1.5) and (1.6) follows immediately
A B = A, B = invariant. (1.7)
It is called the inner or scalar product. When it is zero, the two
vectors are by some people called pseudo-orthogonal.
Given several (s) vectors at the same point, partly covariant,
partly contravariant, the array of 4° quantities
A BIC™...G,H, ... (1.8)
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8 SPACE-TIME STRUCTURE

follows a linear transformation law that can easily be made out from
(1.5) and (1.6), but we need not write it out explicitly. An array of
4® quantities which follow this transformation law is called a tensor
of rank s and indicated by a symbol like

Tk‘mmpq...’ (I 9)

where, of course, the number of superscripts and the number of
subscripts must be given separately, fully to characterize the nature
of the entity 7. The product (1.8) is a special case of such a tensor,
but not the most general tensor of this kind, since it depends only
on 4s independent numbers and

4s<4
for s>1. The order of the superscripts in the notation (1.9) is
relevant, indeed 7%m--  would in the particular case (1.8) mean

A'B¥C™...G,H, ..., which is different from (1.8).

It is not the same tensor, but it is a tensor of the same type. Itis
worth showing that it really has exactly the same transformation
rule. An example will suffice. Take a contravariant tensor of the
third rank T#®m, It transforms thus:

' klm
T ox, ox, dx,

Exchange kand /and at the same time the notation of the summation

indices r, s
’ Oxp Oy, oxy,

Hiem —
T Ox, Ox, Ox,

M.

The coefficient is unchanged, but in the T-arrays the first two
indices have been exchanged. The point is that you may regard
the 772 component as the (213)-component etc. of another tensor.
The same would hold for any permutation, provided you make the
same permutation in all components.

The same holds, of course, for subscripts. But at the moment
there is no relevant order between subscripts and superscripts.

The two types of vectors are clearly special cases of tensors, viz.
the tensors of rank 1. A scalar may be called a tensor of rank zero.

By multiplying the components of any two tensors in all com-
binations:

'abe...
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TENSOR ALGEBRA 9

you get again a tensor. That is clear from the transformation rules.
It is called the outer or direct product of the two.

If in (1.9) you execute a summation with respect to an upper and
a lower index, as for example,

Kim...
Tkm kgq...»

it is again easy to show from the transformation rule (which we
have indicated, but not written out) that this is a tensor with rank
two less than the original one. It could be indicated by a symbol

like
N (1.11)

This process of forming from a given tensor which has at least one
index of each kind a tensor of lower rank is called contraction
(German: Verjiingung). Observe that (1.9) admits of various con-
tractions. The tensor, e.g.

(1.10)

Tklmmpk...’ (1’12)

is distinctively different from (1.10), though of the same general
type, i.e. the same rank and the same number of superscripts and
subscripts.

Tensors can be added or subtracted or, more generally, linearly
combined with either constant or invariant (scalar) coefficients,
if and only if they are of exactly the same type and refer to exactly
the same point of the continuum. By ‘can be’ we mean that in
this and only in this case, the result will again have a simple trans-
formation formula, to wit it is a tensor of the same type and referring
to the same point.

The most important number in mathematics is the zero. Our
present sign for it as well as the word zero comes from the Arabs.
(It is, by the way etymologically the same as English cipher,
French chiffre, German Ziffer, which have, however, acquired
a different meaning.) But the notion is older, it turns up in Baby-
lonian Mathematics soon after 1000 B.c.t and may have been
received from India. Let me dwell for a moment on the importance
of this concept. A great many of our propositions and statements
in mathematics take the form of an equation. The essential enuncia-
tion of an equation is always this: that a certain number is zero.
Zero is the only number with a charter, a sort of royal privilege.

+ V. Gordon Childe, Man Makes Himself (London: Watts and Co., 1936),
pp. 222 and 255.

2 s
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10 SPACE-TIME STRUCTURE

While with any other number any of the elementary operations may
be executed, it is prohibited to divide by zero—just as, for example,
in many houses of parliament any subject may be discussed, only
the person of the sovereign is excluded. If you divide by zero,
nonsense is usually the result. This prerogative is essential, you have
to think of it every minute; whenever you divide, you must satisfy
yourself that the divisor is not ‘of royal blood’, that it is not zero.
Another consequence is that royal blood cannot (by multiplication)
be obtained otherwise than from royal blood. A product cannot
vanish unless at least one of its factors vanish. It is not accidental
that more often than not the conclusion of a proof runs thus:
AB =o0,B%+o0, . A=o0.

In the same way the most important tensor of any type is the
zero tensor of that type, that is, the one whose components all
vanish. It is a numerically invariant tensor, since the transformation
formulae are linear and homogeneous. That is the reason why
tensors play the all-important part they play. For it has the con-
sequence that an equation of the following kind between two tensors

Sand T
SHe = THe

Pq...
is independent of the frame (for it means that S~ — T is the
zero tensor)—provided, of course, that S and T are of the same
type and refer to the same point. If they did not, this would not
hold, the above equation would be meaningless, and therefore we
shall never contemplate that sort of thing.

Perhaps this is the place to mention a convention, which is
always made tacitly, though it would deserve to be mentioned
explicitly, just as the ‘summation convention’, of which it is the
counterpart. According to the latter an index that appears twice
in the same product is to include summation from 1 to 4. Now an
index that appears only once, but then, of course, in every term
of an equation, implies that the equation holds for any value 1 to 4
of that index. By the first convention we shove many terms of an
equation into one, by the second we shove many equations into one.
For example, if you write

Sklmm — Rkl’
this represents in general 16 equations, each of which has four
terms on the left.
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TENSOR ALGEBRA 11

An important application of the invariance of tensor equations
is to the symmetry of tensors. If for a tensor S one of the following

two equations K. k...
S pa.. = % S pq...

holds in one frame, it holds in every frame. We then call S symmetric
or antisymmetric, respectively, with respect to its first pair of super-
scripts. The same could happen for the pair p and g, but not, for
example, for the pair k and g. (Symmetry might happen to obtain
in one particular frame, but it would be of no interest, just a chance
event). Later we shall come to know more complicated symmetry
properties. As a corollary we note that a general tensor can
always be decomposed into a sum of two tensors, one of which is
symmetric, the other one skew with respect to a certain pair of
indices of the same character. Similar theorems hold also for more
complicated forms of symmetry.

Given a tensor with £ contravariant and r covariant indices,
contemplate any ¢ covariant and r contravariant vectors and form
the contracted product

Sk AyBy.. FPGU. ., (1.13)

Then from the rules for outer and inner multiplication, this product
(which is just one number, all the indices being ‘killed’ by contrac-
tion) is an invariant.

It is interesting and useful to know that the converse is also
true: if you know nothing about the array of numbers S but
that the ‘product’ (1.13) is an invariant for any set of vectors
A...G..., then the S are the components of a tensor of the type
defined by its indices. This inverse theorem (which we shall prove
forthwith) might serve as an alternative definition of a tensor; but
more important is that it is frequently used to establish the tensor-
property of an array of numbers, for which it is not yet secured.

To prove this inverse theorem, envisage a particular transforma-
tion, call 8" the components of .S transformed as if S~ were
a tensor, and S”-__any set of numbers sharing with the 5" _the
property that they make (1.13) invariant on this particular trans-
formation for any set of vectors 4... G .... By subtracting the two
equations which express that both §"  and S”-  make (1.13) an
invariant, you get

(SMepy — 8™ VALB,.. . FPG... = o.
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12 SPACE-TIME STRUCTURE

Now since the original components of the vector 4... G were
quite arbitrary, the same holds for the primed components, since
the transformation-formulae (1.5) and (1.6) have non-vanishing
determinants. Hence you can choose the vectors so that of 4’
only the kth, of B’ only the /th... of G’ only the gth component
is different from zero. Then you get

"i... — QK. -
A | 2e... = O,

saying that these particular two numbers of the arrays S’ and S”
are equal. Obviously by suitably different choices of the vectors
the same can be shown for any pair out of the $’ and S” and thus

our assertion is proved.
Simple corollaries of our theorem are illustrated by the following
example. If we know that

S® A, = contravariant vector

for any choice of the covariant vector 4, then S* is a contravariant
tensor of second rank. Naturally. For if the above is a contravariant
vector for any choice of the vector 4, then

S 4, B, = invariant
for any choice of the vectors 4 and B.
As can be seen from our proof, it is vital that the invariance of
the product be warranted for arbitrary vectors. However, a certain

remission can be granted if something more is known about the
array of the S. To give an example, if it is only warranted that

S A4, A, = invariant
for any choice of the vector 4, but if in addition it is known that in
any frame SH = Sk

(symmetry), the tensor property of .S can be proved along the lines
followed above. (Without the symmetry one could only show that
SHM 4+ S* is a tensor.)

Asan example of the general method we prove the tensor property
of the mixed unity tensor, which in itself is an important entity.
Envisage the array of 16 numbers

%,

with numerical value o or 1 according to whether i+k or 7 = k.
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TENSOR ALGEBRA 13
"Then for any pair of vectors at any point of the continuum
01 A;B* = A, B* = invariant,

according to (1.7). Hence 8} is a mixed tensor and is correctly
written with one superscript and one subscript. It is one of the
(very few) numerically invariant tensorial entities, that is to say
even its components are the same in every frame. One feels tempted
to call it a symmetrical tensor. However, this would not be
appropriate. For symmetry with respect to two indices of different
character is in general not preserved on transformation. That it is
so here is an exceptional occurrence.
Notice, by the way, that even the more trivial statement, that

i B; = B,

is a vector for any B;, would suffice to infer the tensor-property
of 8.
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CHAPTER II
INTEGRALS. DENSITIES. DERIVATIVES

INTEGRALS. DENSITIES

The subject-matter of the previous chapter is called tensor algebra.
It is characterized by the fact that only relations between invariants,
vectors or tensors referring to the same point of the continuum are
contemplated. From the point of view taken here,} algebraic
relations between vectors and tensors referring to different points
are meaningless.

Remember, however, that we based the notion of tensors on that
of vectors, and the latter on the notion of the gradient, and there
is hardly any simple and natural alternative to this procedure.
Now in forming the gradient we actually had to compare the values
of an invariant at different points, and at the same time we made
the first step at introducing analysis into our continuum. In this
and the following chapters we shall have to extend it. Analysis
will involve derivatives and integrals. We shall have to study both
from the point of view of general invariance. However, this does
not mean to look out only for invariants, but also for entities with
tensorial character, because, as we have seen, an equation between
them (or in other words a system of equations saying that a tensor
vanishes) is conserved on transformation. We begin with space-time-
integrals. That leads to a certain extension of the notion of tensors,
viz. to tensor densities.

We had emphasized that there is no point in adding (or, more
generally, in forming linear aggregates of) tensors or vectors
referring to different points. This would have no simple meaning.
For instance, an equation stating that a vector 4 at a point P equals
a vector B at a different point Q, even if it happens to obtain in one
frame, is entirely uninteresting, because it is destroyed by trans-

+ Only quite recently an attempt has been made to envisage a connexion
that involves algebraic relations between tensors at different points. See
A. Einstein and V. Bargmann, Ann. Math. XLv, pp. 1 and 15, 1944. See also
E. Schrédinger and F. Mautner, Proc. R. Irish Acad. L, 143 and 223, 1945.
These attempts are not included in the present exposition.
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INTEGRALS. DENSITIES 15

formation. Or again, let 4% be a contravariant vector field and
contemplate the four integrals

f f J Akdx, dx,dx,dx,,

taken over a given region of space-time, and, of course, over the
exactly corresponding region in any other frame. (Integrals of this

type will in future be abbreviated thus: fAkdx“.) Now the above

integrals are neither invariants nor are they the components of
a contravariant vector—they are devoid of sense and interest.
But if A4 were an invariant (scalar) and we formed in the same way

f Adxh

(always over an invariantly fixed domain), would that be an in-
variant? Obviously not. Though there is no objection to adding
invariants that refer to different points, yet we know that on trans-

forming |
L Oy,
j Adxt = fA a,

thus =+ fAdx"‘

14
dx's,

in general.} For the equation

f Adit = j A'dx't

to hold, in other words for the integral to be an invariant, the
‘transformation law’ for A would have to be not

A =4,
0y
0x;

1

but A = A,

that is, it would by definition have to take on as a factor the functional
determinant appearing in the transformed integral in consequence
of the transformation of the ‘product of the differentials’.
We give a quantity behaving in that way the name of scalar
density. It has become customary to denote a density by a Gothic
1 To make the integral invariant, one would have to restrict the allowed

transformations by the condition that their functional determinants be 1. This
would be inconvenient.
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16 SPACE-TIME STRUCTURE

letter. It will prove convenient to extend the notion of ‘density’
to more-component entities} which bear to tensors the same rela-
tion as the scalar density to a scalar, namely just to have their trans-
formation formulae enhanced by a factor, the determinant | 2x;/dx; |
—always this one, irrespective of the character of the other indices.
To make the point quite clear let us write out in extenso the trans-
formation formula for a general tensor-density

Ut pg.. (2.1)
It reads e
I i i s S
Pa | 0ny| Oty Ox, " B Oy et

Densities obviously share with ordinary tensors the property that
they (i.e. all their components) vanish in every frame, when they
do so in one frame. For this vital property resided only on the
homogeneous linear character of the transformation. Hence they
are equally useful; equations between such as refer to the same point
are independent of the frame, they persist on transformation.

In order to get hold of a scalar or tensor density, we need not
snatch it from the sky; such entities can be constructed from the
tensors we have introduced previously.

Envisage a covariant antisymmetric tensor of the fourth rank

Tklmw

By antisymmetric we mean that an exchange of any two subscripts
should just merely produce a change of sign of the component.
If we denote the numerical value of Ty, by a capital Gothic T
(why Gothic, will appear forthwith) any other component T,
is thus + %, according to whether the permutation klmn is odd or
even, while components with not all their subscripts different from
one another vanish, of course. Now write out the transformation
formula for the component Ty,

, ox;, 0x; 0x,, 0%, T
= Dl Al Al At kimn*

Considering the values of the T, this gives

<.

ox ke

ox;

T

o,
ox;,

v

’

1234 = le:u =

1 Do not infer, please, that the integral of the component of a tensor density
(other than scalar density) has a meaning! It has not.
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INTEGRALS. DENSITIES 17

Or, if we use the consistent notation T for Ty, then
g = | %
| o2
Thus an alternative way of looking upon our covariant antisym-
metric tensor of the fourth rank is to regard it as an entity with only
one component, though not as a scalar, but as a scalar density.
The theorem can be sort of reversed. Let 4 beascalar. Envisage
an entityE*™» (why we choose a Gothic letter will appear forthwith)
defined in any frame by ™ being + A according to the sign of
the permutation (klmn), but zero if the four superscripts are not
all different. A queer but correct way of expressing that 4 is an
invariant (4" = A) is then

T.

ad
ox;

Oxy, Oxy Oxyy, O,

tklmn
¢ ox, 0x, Ox; 0x,

@rstu.

Indeed, the prescribed summations yield a functional determinant
which just cancels the one in front and we are left with E'4mn = Ekimn,
But this ‘ queer but correct’ formula tells us that € is a contravariant
antisymmetric tensor density of rank 4. Itis customary to denote it,
in the particular case 4 = 1, by
glimn,

This e-density is a valuable acquisition, a very often used tool.
It is, by the way, a further numerically invariant entity that we
encounter.

You can, for instance, from ¢ and a covariant antisymmetric
tensor of the second rank ¢;, form the following entity which is,
clearly, a scalar density

%ddmn¢kl ¢mm (2-2)

that in plain writing reads
P12 Pas+ Pos Pra+ Po1 Paa- (2.3)
Also Jetimn g, = frn (2.4)

is a contravariant antisymmetric density of the second rank. In
plain words: given an (antisymmetric) tensor ¢,, you may regard
¢,2 as the (34)-component, @,y as the (14)-component... @y, as
the (12)-component of another entity, but this other entity is contra-
variant and not a simple tensor but a density. These simple facts
alone, if you consider the big part antisymmetric second-rank tensors
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18 SPACE~-TIME STRUCTURE

play, would suffice to show that it is useful to extend the notion of
density to others than just scalar densities.

That (2.2) or (2.3) is a scalar density, forms a special case of
a more general theorem, about forming a scalar density from any
covariant second-rank tensor. Let g;. be such a one, so that, on
transformation,

,  Ox ox,

i = ax! ox, 8im- (2:5)
Here the right-hand side can, for the moment, be regarded as
a ‘matrix product’ of the matrices dx,/dx;, g, and 0x,,/dx;, (in this
order!) Thus from a well-known theorem about the determinant of
a product-matrix you get, if you call g’ the determinant of g;; and
g that of g;.:

Ty
£ =|a| o (26)
, 0%
hence g = 6x}~ Je. (2.7)
7

In words: the square root of the determinant of any covariant
second-rank tensor is a scalar density. The case of a symmetrical
tensor g, will be of importance in metrical geometry (Einstein’s
1915 theory). In the case of a skew-symmetrical tensor, the square
root can be extracted and leads precisely to (2.2) or (2.3), as is easy
to verify directly.

We use the occasion to demonstrate another important fact.
Take g to be 0. The minor of g;;, in the determinant g we denote
by M, without prejudice as to its tensorial character. Then by
a well-known theorem about determinants

GmicM¥ = 8%, 8. (2.8)

This holds, of course, in any frame, thus also for the primed

quantities, provided M always means the minors in that frame.
But since from (2.8) or, say, from
M

P

the quantities M*/g are determined uniquely and since (in virtue

of the tensor property of ¢%,) the preceding equation will also hold

in any frame for those quantities which are obtained from the
M*/g by transforming them as a contravariant tensor of the second

Emk ym (29)
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INTEGRALS. DENSITIES 19

rank, it follows that they actually form such a tensor. The
‘normalized minors’ of any covariant tensor of the second rank form
a contravariant tensor of the second rank. It is easy to prove that
in this statement the terms covariant and contravariant can be
exchanged. Moreover, if from the tensor

e
B () (2.10)
you again form the normalized minors, you fall back on the
tensor gy.
If instead of (2.10) you contemplate the array

ME .
&8 (say),

they form, of course, a contravariant tensor density of the second
rank.

It is noteworthy that in the case of a skew-symmetric tensor ¢,
this tensor density is the same as the one arrived at in (2.4) in
a different way, as is easy to show by directly computing the
minors in this case.

We mentioned above that g is in this case the square of the scalar
density (2.3), for which we introduce the notation J,:

3G Gn = Gr2Paat Pos Prat bu b = Jp.  (2.11)
Hence by applying (2.9) to this case, we get

flk¢mlc = 8lm'82' (2.12)
From (2.4) this can also be written
3%y i = - e (2.13)

By contracting with respect to / and m you fall back on (2.11),
since 0™, = 4. But, of course, (2.12) or (2.13) contain more than
(2.11). In matrix language it tells you that the matrix product of
the matrices {%* and ¢,; is a multiple of the unity matrix, which
cannot be grasped directly from the definition (2.4).

As last examples for constructing densities from tensors, let us
first envisage a covariant antisymmetric tensor of the third rank
Ay, Disregarding the sign, it has only four non-vanishing
numerically different components, according to which of the four
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20 SPACE-TIME STRUCTURE

subscripts 1, 2, 3, 4 is absent. Now, with the help of the tensor
density € you can form from 4 the contravariant vector density
3 Ay = A (s2y).

The correlation is very simple, you can formulate it thus: a covariant
antisymmetric tensor of third rank can always be regarded as
a contravariant vector density of which the nth component is the
klm-component of the tensor, khmn forming an even permutation
of 1234.

Vice versa, from a covariant vector B, you can form the anti-

symmetric contravariant density of the third rank, thus

gkimn Bn = gklm’
where the first member comprises only one term, because # has to
be the fourth index with respect to &, /, m.

Comprehensively, the relationship between totally skew tensors
and tensor densities is the following. From the following covariant
skew tensors}

A4, A, Ag Asy Aim
contravariant skew densities of complementary rank can be derived
by multiplying them with the e-density and contracting with respect
to all the original subscripts

Q[iklm’ gﬂdm, g{lm, Q[m, A.
If the factors , 1, 3 % &

are included, the derived density has the same components as the
tensor, only in different labelling.

There is no corresponding theorem about covariant densities
and contravariant vectors, simply because we are practically not
interested in tensorial entities that take on another than the first
power of the functional determinant on transformation. (Such
a thing as, for example, e¥™9[, = would take on the second power
of this determinant.)

For practical purposes it may be useful to record the following
rules.

1+ An invariant may range with co- or contravariant tensors, and both an in-
variant and a vector may be ranged with skew tensors, provided you define (as you
may) a covariant/contravariant tensor as one that has no contravariant/covariant

index, and define totally ‘ skew or antisymmetric’ by: changing sign on exchange
of an index (if any) with any other one (if there is another one) of the same kind.
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INTEGRALS., DENSITIES 21

Any ‘juxtaposition’ of tensors is again a tensor, whose nature
is to be seen from the total array of upper and lower indices,
disregarding such as appear twice, in both positions (summation
or dummy indices). Take care never to use a letter twice ‘by
accident’, let alone using it more than twice!

Only entities of exactly the same type can be added or subtracted
or put equal. Hence an index must either appear in every term of
the equation in the same position or twice in the same term in
different positions (summation index).

One (but only one) of the entities ‘juxtaposed’ in a term is
allowed to be a density; then the term is a density and all the terms
of the equation must be of this type.

The rule of not using a letter again ‘by accident’ does not refer
to summation indices in different terms. Here no confusion can
be caused in this way.

A statement which we might have made earlier about outer
products and which, in all its simplicity, is quite important is this.
If the product is a purely ‘outer’ product, i.e. if the juxtaposition
involves no further contraction, it can only vanish if at least one of
its factors is a zero tensor. In other words, there are no ‘divisors
of zero’ in the algebra of tensors and tensor densities.

DERIVATIVES

For shortness we shall henceforth occasionally indicate the
derivative with respect to x;, by a lower index k, preceded by
a comma.

Except in the case of an invariant, the derivative of a tensor-
component, as for example,

Ak.i
has no proper meaning, because it results from subtracting tensors
referring to different points, viz. the 4, in the point x, from the
A, in a certain neighbouring point. (One must not think that this
small shift ‘does not matter’, for in the derivative we contemplate
precisely the change in 4, produced by this small shift.)

If we compute, for example, from
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22 SPACE~-TIME STRUCTURE

the transformation formula for the second derivatives

32¢ - _aﬁ Q‘E!'_' ﬂ_ +ﬂ_ _?9 (2.14)

Oxy, 0x,  Oxj, Ox Oxy0x,,  dx;, Ox O,

we see that not only do they not form a tensor, but they do not
even share the feature, that their vanishing is an invariant property.
The same holds, of course, for any covariant vector field. From its

transformation formula
A = ___ax,
k T oot
oxy,

4, (2.15)
you get by differentiation

04y _ Om 0xy 04, | &%
ox — Oxj, Ox} Ox,, 0Ox;0x;,

A, (2.16)

which is exactly the same as (2.14), only for an arbitrary 4, (not
just, as there, a gradient). Again we see that A4, behaves like
a covariant second-rank tensor, except for the additional term,
containing the non-differentiated A, and the second derivatives of
the transformation. This again has the effect that our array of
derivatives would not necessarily vanish in the primed system, as
a consequence of their vanishing in the unprimed.

A very similar state of affairs obtains, as one easily realizes, for
any tensor or tensor density.

There are, however, certain linear combinations of derivatives
of tensor-components in which the terms containing the second
derivatives of the coordinates together with undifferentiated com-
ponents of the original tensor cancel. These linear combinations
are then tensors, the index of derivation always playing the role of
a covariant index (subscript). They are easily remembered. They
are all completely antisymmetric. We begin with tensors. The first
one we know already.t

(1) The gradient of an invariant: ¢ ;. This is a covariant vector.
If from it you form what one calls (new definition!) the curl

P i~ P ik=0

you get zero. This shows that the additional terms must cancel in
this difference, as you can see by direct inspection of (2.14). But

1 There is no harm in reckoning a scalar among the antisymmetric tensors!
See the footnote on page 20.
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DERIVATIVES 23

we can also see that they must cancel in the curl of any covariant
vector. Hence:

aAk aAi . .
— ——*1is a covarnant
ox;  Ox

(2) The curl of a covariant vector 4;:

antisymmetric tensor of second rank.
Now the game goes on. If you form of it what is called (new
definition!) the cyclical divergence:
o (04, oA,

(I ki) o (a - W) + the two cyclical terms = o.
s i %

Hence, here too, the terms containing the non-differentiated
second-rank tensor must cancel. And they must do so for any
covariant skew tensor of the second rank. Hence

(3) The cyclical divergence of a covariant skew second-rank

tensor ¢ik a¢ik+ ?ﬁl_{_%
ox, Ox; Ox,

is a totally antisymmetric covariant third-rank tensor. In con-
tinuing you must be careful. If you formed 8/dx,, of this tensor
and added the cyclical permutation it would not vanish. You must
introduce a (— ) sign whenever the permutation is odd. Hence also

(4) From an antisymmetric covariant third-rank tensor 4, the
following sum of four derivativest

Fj
2(“1)'5‘;‘411:4

is an antisymmetric tensor of fourth rank.

That is all. You cannot continue, because there are only four
indices. (In more dimensions you could.)

Now, on account of the correspondence between antisymmetric
tensors and densities, four similar statements about densities follow,
I will label them (1), (2"), (3"), (4).

(4') The divergence (new definition!) of a contravariant vector
density A* to wit oA*/x, is an invariant density.

(3’) The divergence (‘tensor divergence’, new definition!) of an
antisymmetric contravariant tensor density of second rank Y%
to wit 9U*/ox, is a contravariant vector density.

+ The symbolic exponent (!) is to remind you of what has just been said about
the sign.
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24 SPACE-TIME STRUCTURE

(2’) The tensor divergence (new definition! though the same
word is used) of a skew third-rank contravariant tensor-density
Wem to wit OAX™/ox,, is a second-rank density of the same descrip-
tion. And finally

(1') The tensor divergence (see above bracket) of a skew contra-
variant fourth-rank tensor density A¥m" to wit dUM™n/ox, is a
third-rank density of the same description.

To the best of my knowledge these are all the linear aggregates
of first derivatives of tensors or tensor densities that have tensor
character. The most relevant ones are (1), (2), (3), (4), (3').

The vanishing of one of the above-derived tensors has in all cases
a good meaning, viz. for (1) that the scalar ¢ is constant, (2) that the
vector A, is a gradient. (3) and (3’) are exemplified by Maxwell’s
vacuum-equations and (4') indicates (or is usually expressed by
saying) that the current U* is source-free.

Yet theyare notsufficient toestablish an exhaustive tensor analysis
in our continuum. Not even such a simple question as this has
any meaning: When is a vector field 4, to be considered as constant
throughout a certain region? For the vanishing of all the derivatives
A, ;is (as we have seen) not a frame-independent property, because
A, ; is not a tensor.

The geometrical concept for removing this difficulty will be
introduced in Part II. Before doing so, let us dwell more closely
on the interesting fact alluded to just above, that the analytical
means developed up to here suffice to establish the principal state-
ments of Maxwell’s theory, which may duly be called the spiritual
ancestor of all field theories that were to follow it. The elementary
form of Maxwell’s equations reads in the familiar notation of three-
dimensional vector calculus:

curlH-D =1

divD = p} (A4)
curlE+ B=o

divB = o} (B)

(the units to be chosen so as to remove factors 47 or ¢). The behaviour
usually, and naturally, attributed to current and charge (1,p) on
an elementary change of the scale of length prompts us to regard
them as densities, and thus to look upon the quadruplet (4) as
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DERIVATIVES 25

equations between densities. We must then unite the elementary
vector quantities i and D into a contravariant antisymmetric tensor
density of the 2nd rank {* in such a way that the

components of H correspond to {2, {3, {12;
components of D correspond to f4t, 42, 43,

Then equations (A) read gf;i: = &, (A"
where the four-current 3* replaces (1, p). In the case of the second
quadruplet (B) no preference suggests itself as to their character
(tensors or densities), indeed the choice is irrelevant. It is only
a question of nomenclature, since the e-density allows a simple
transition from one to the other. (So it does in the first set. But if
there we choose a covariant tensor in lieu of {¥*, we have to take
a covariant antisymmetric tensor of the third rank in lieu of 3*;
as Einstein has once suggested, and for very good reasons.)

Keeping to the usual nomenclature, we unite £, B to a covariant
skew tensor ¢, in such a way that the

components of B -correspond to @3, P31, G193
components of E correspond t0 @4, Pag, Pg4.

Then equations (B) read

¢"‘ — 4 two cyclical terms = o, (B)

By (A’) and (B) we have established Maxwell’s fundamental
equations invariantly in an arbitrary frame, using nothing but the
means developed hitherto in these lectures; that is, for an uncon-
nected space-time-manifold (neither affinity nor metric has been
introduced). What we cannot establish in this manner is the relation-
ship between the density (H, D) or {* on the one side and the
tensor (B, E) or ¢,; on the other side. (It is what in elementary
theory is called the material equations.) For, the only relationship
one could think of, to wit j& = }ei¥m¢, = makes the equations (A’),
at least in the absence of current and charge (8% = 0), a consequence
of (B’) by identifying H with E and D with — B; which is entirely
wrong and could not be avoided by a different nomenclature.

An alternative manner of getting at the required relationship
would suggest itself in the light of later general developments.

3 s
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26 SPACE-TIME STRUCTURE

We can easily explain it here directly. The quantity J,, eqn. (2.11)
is a scalar density. Hence the integral

I= fﬁ}zdx“,

taken over an invariantly fixed region, is an invariant. Now con-
template together with the original field ¢,; an ‘infinitesimally
neighbouring’ field @, +38¢,;. The 8¢, being, each of them, the
difference of two tensors referring to the same point, are also a tensor
field of the same character. Moreover

032
0l = | %0, dxt
f3¢tk buds

is also aninvariant, since it is the difference of the invariant I formed
of ¢+ 0¢,; and that formed of ¢, From this it is easy to infer
that the integrand is itself a scalar density; and since this holds
for an arbitrary tensor 8¢,,, we have that

o3

O
But a glance at (2.11) shows that it is the same as we got before by
‘raising the subscripts with the help of the e-density’. So this
procedure is also of no avail.

= contravariant skew tensor density of second rank.
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PART II
AFFINELY CONNECTED MANIFOLD

CHAPTER III
INVARIANT DERIVATIVES

In order to find out (or, perhaps better, to agree upon) some
natural way, by which to decide in an invariant manner whether
and how a tensor varies from one point to the next, let us return to

2.16). ,
(219 oAy _ o, bxy 04 B -

Suppose we had some reason to stipulate that 4, is to be regarded
as ‘really’ constant, if all its 16 derivatives vanish in the original,
the unprimed, frame (we thereby distinguish this frame pro-
visionally). We will examine carefully what this statement amounts
to in any other frame. In any other (the primed) frame it is,
according to (3.1) expressed by
o4,  &x

imirworwrc
Ox;  Ox;0x

= Q.

But in order to express it consistently in the primed frame, we had
better replace the A4, by the A4, according to (2.15) (used the other

way round). Thus
o4, oxn P 4
ox, Ox oxiox ™
Let us put, for abbreviation,
ox, O%x, m
ox, Oxl0x, T (32)
. (% [
Then the equations T, ' A, =0 (3.3)

express in an arbitrary frame the fact that the array of derivatives
vanishes in the original, the unprimed, frame. Since the arbitrary
transformation leading from the original to the primed frame may
be specialized to be the identity, we have to say that the unprimed
I'»;, areall zero. And, by the way, the same holds obviously for all

frames which result from the original frame by a purely hnear
3-2
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28 SPACE-TIME STRUCTURE

transformation of the x;, since then the second derivatives in (3.2)
all vanish.

And this is the only snag that remains and militates against the
idea of general invariance: that one frame, or rather a set of frames,
is distinguished by the assumption that in it, or in them, the Is
all vanish. But this snag is very simply overcome: we just drop
that assumption. This is a very important step which immediately
leads to the concept of affine connexion.

So we now and hereafter do not define the I"s by stipulating
that they vanish in one particular frame and are given by (3.2)
in any other one. We regard them as something of the general kind
of a tensor field or a tensor-density field, but actually different
from either—an array of functions which

(a) may be allotted arbitrary values in one particular frame, and

(b) aresubjecttoalaw of transformation that makes the following
expression a tensor:

- AT = Ay (34)
The sign A4, ; is 2 new notation introduced as an abbreviation for
the expression on the left. We call the array of I'’s an affine connexion
or, shorter, an affinity which we have by (a4) imposed on our
continuum. The 4,.; is called the invariant derivative of 4, (with
respect to the affinity I'*;;), in contradistinction to the ordinary
derivative A4, ;. Our previous consideration is to be regarded as
a special case, viz. when sub (a) we choose the values zero for all the
[’s. From it we can easily infer that the requirement sub (b) will be
satisfied, if we adopt for the I, the following law of transformation:
otherwise like a tensor corresponding to its three indices, but with
an extra additional term, the expression on the left of (3.2). Thus

ox;, 0x, ox o Rx
4 J— ' T T8 _”____L
r ik 3x, ax; ax;c I‘lrs+ c’?x, 3x{3x,’c' (3.5)

The additional term is independent of the I'’s. It is thus the same
for any affinity; it depends only on the relation between the two
frames. It is responsible for the fact that the I”s do not vanish
in every frame even if they do so in one. An affinity is not a tensor.
Its transformation formulae are linear, but not homogeneous.

The additional term is symmetrical with respect to the covariant
indices & and ¢ of I', and so is the whole transformation formula.
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INVARIANT DERIVATIVES 29

Symmetry with respect to the subscripts is therefore an invariant
property of an affinity. (Antisymmetry is not!) If an affinity is
non-symmetric, then in the transformation formula of its skew
part, $(I'n;,—I'%,), the non-homogeneous part drops out; this
skew part therefore is a tensor. More generally, the fact that the
non-homogeneous term is the same for any affinity has the following
relevant consequences. .

If we envisage two affine connexions I'%,, and I'%,, in the same
continuum (as we may and very often do), then their difference

&, — fk,m is always a tensor. In particular, if we have occasion
to envisage an infinitesimal variation I'!,, + 6T'%,, of a given affinity
I'%,, (as we sometimes do), then the 8T, are a tensor. Inversely,
of course, the sum of an affinity and a tensor T%,, is always an
affinity.

The sum of two affinities is not an affinity, because in its trans-
formation formula the critical term would have the factor 2. How-
ever, a linear aggregate of two affinities

A 1-‘klm +u I"klm
is an affinity, if A and g are either fixed constants or invariants and
Atpu=1

Hence a non-symmetric affinity is always the sum of a symmetric
affinity and a skew symmetric tensor of third rank, thus
D = H(T¥n + Tomt) + (T — M) (3.6)

The notion of a skew affinity is futile, because this property would
not be independent of the frame.

Affinities are a second, or, if you like, a third, kind of relevant
entities besides tensors and tensor densities. The notion of invariant
derivative which we have introduced in (3.4) is not an absolute
concept but refers to a certain affinity, which must be indicated.
If more than one has been introduced and abbreviations (like the
semicolon-notation used in (3.4)) are desirable, one must dis-
tinguish them by using various signs instead of the semicolon, as
a colon, a vertical bar, etc., for the derivatives taken with respect
to the several affinities.

We now want to extend the notion of invariant derivative to
other tensors, first to the contravariant vector. A generalization
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30 SPACE-TIME STRUCTURE

is never compulsory, it is suggested by some simple guiding prin-
ciple. In the present case it seems natural to demand
(1) that the ordinary rule of differentiating a product

0 9 )
2 =Lors2
should apply also to the invariant differentiation of products of
tensors;
(2) thatin the case of an invariant the invariant derivative should
be the ordinary derivative (since, after all, the gradient is a tensor—
without supplementation!)

G =Pu
To begin with a rather trivial remark, which however must be
stated once and for all: since
Ay =84 4,

the product rule alone tells us, that

Aym = O Apm+ Om A = A+ 8 Ay
And since this must hold for any vector, we must have

.m =o.

So the mixed unity tensor, regarded as a field, has the invariant

derivative zero with respect to any affinity.
Now envisage the invariant product

A, B¢
of two arbitrary vector-fields. According to the two guiding prin-
ciples laid down we want

(4 B¥),; = (4, B*),;,
thus

Ay B+ Ay ;B*= A, B*,;+ Ay, B¥ = A, B*,; + (4, . — A, T") B
By cancelling the terms A, ; B¥, we get
A,B* ;= A.B* ;+ 4,BT'",,.
This we write exchanging the dummies %, 7 in the last term
A(B¥;;— B* ;~B"T%,;) = o.
Since A4, is an arbitrary vector:
B, = B* ;+ B"I',;, (3.7)
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INVARIANT DERIVATIVES 31

This is the expression for the invariant derivative of a contravariant
vector, the counterpart of (3.4) only in a slightly different notation,
the comma indicating the ordinary derivative 0B%/dx;.

If you have any doubt whether this B¥, ; is a tensor, go back to an
earlier equation from which (3.7) is derived, viz.

(AkBk)’i = AkBk; i +Ak;in'

Here A4, is arbitrary and all terms save the first on the right are
known to be vectors, hence B¥,, is a tensor.
One further remark: envisage

Bt + B T%,,. (3-79)

(‘We have made a mistake with the subscripts!’) What is that?
If T is symmetric, it is irrelevant. But what if it is not?

Well, this is a tensor all right, and it is an invariant derivative
of Bk all right, only not just the one with respect to the affine
connexion that we had envisaged, but with respect to another one,
that results from it by exchanging the subscripts.

This is trivial. But it is worth while to observe also that no
logical inconsistency would be involved, if we chose to adopt (3.74)
rather than (3.7) as defining the invariant derivative of a contra-
variant vector with respect to the same affinity, for which (3.4)
is adopted in the covariant case. But, of course, with this choice the
product rule would not hold for the semicolon-differentiation !
However, this is only a side-remark, to which we give no conse-
quence. That is we do adopt (3.7).

In the case of a general tensor

TH...
we apply similar considerations to the invariant
PPy
Tkl... ...AkBImeGq.,.’

with A4, ... G?... arbitrary vectors; we thus get a result for the
invariant derivative of T which we shall first describe in words,
then write out. To the ordinary derivative there are additional
supplementary terms, one for each index of 7. Each such term
consists of a (contracted) product of a component of T and a com-
ponent of I', which product is formed exactly after the pattern of
(3-4) or (3.7) respectively, whereby T is treated as though it had

mn...

pq

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:28, subject to the Cambridge
Core terms of use, availaflesmbridge/Books Dnljiner@Cambridgeddniversiy Bressc043 0511586446


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446
https://www.cambridge.org/core

32 SPACE-TIME STRUCTURE

only that one index, all the others being disregarded, i.e. they are
left unchanged in forming this particular product. Thus:

Tklmpq‘..;i = Tkl"'pq...,i + T’d"'pq... ka'. + Tlm"'pq... I-‘lm'
e THe T TH.  Tn . .. (38)

Notice that the differentiation index is always the second covariant
index of T, the remaining two places being used for allocating the
dummy and the one that is missing in T, where it has been replaced
by the dummy. If this and the sign be remembered, the formula
is easily memorized in the teeth of the bewildering dance of indices!

In order to extend invariant differentiation to densities, we
supplement our guiding principle in the most natural way, viz.

(1) The product rule shall apply also if one factor is a density.

(2) The numerically invariant density ™™, regarded as a field,
shall have the derivative zero.

Let, for a scalar density &,

@;4 = @,i"'X’

where X is to be determined (we do not yet know what &, ; means;
we are about to define it!)

Now envisage any density -+ . If you divide it by an arbitrary
scalar density & you get a tensor, so you may put

where T (apart from being a tensor, not a density) is of the same
character as T . Now we postulate

T i=6.T +€; T =6.T ;;+8 T +XT .

A brief consideration shows that the first and the second terms on
the right together constitute just the ‘ordinary terms’, formed as
if T were a tensor. So we may write

T+, = ordinary terms + (X/S) T~ .

Now, since & was quite arbitrary and X depends on it alone, the
factor X/& must be independent of T~ and can be determined
from any special case. We determine it from the demand

0= eklmn:i =0+ grimn Fkn, + ekrmnl"lri
+edrnm 4 ehdmr a4+ (X[ ehimn,
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INVARIANT DERIVATIVES 33

In the summations over r only one term survives in each case, viz.
the terms r = &, I, m, n respectively. So we draw

o = ekmn(I 4 X/[@),
and thus X/€=-1I7,

Hence finally the extra additional term in the invariant derivative
of any density I reads

- T, (3.9)
the indices on ¥ being all unchanged.

It is easy to show that not only do the guiding postulates we used
lead to this unique determination of the invariant derivatives of
tensors and densities, but inversely, with these definitions accepted,
all those demands are actually fulfilled.
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PART II
AFFINELY CONNECTED MANIFOLD

CHAPTER III
INVARIANT DERIVATIVES

In order to find out (or, perhaps better, to agree upon) some
natural way, by which to decide in an invariant manner whether
and how a tensor varies from one point to the next, let us return to

2.16). ,
(219 oAy _ o, bxy 04 B -

Suppose we had some reason to stipulate that 4, is to be regarded
as ‘really’ constant, if all its 16 derivatives vanish in the original,
the unprimed, frame (we thereby distinguish this frame pro-
visionally). We will examine carefully what this statement amounts
to in any other frame. In any other (the primed) frame it is,
according to (3.1) expressed by
o4,  &x

imirworwrc
Ox;  Ox;0x

= Q.

But in order to express it consistently in the primed frame, we had
better replace the A4, by the A4, according to (2.15) (used the other

way round). Thus
o4, oxn P 4
ox, Ox oxiox ™
Let us put, for abbreviation,
ox, O%x, m
ox, Oxl0x, T (32)
. (% [
Then the equations T, ' A, =0 (3.3)

express in an arbitrary frame the fact that the array of derivatives
vanishes in the original, the unprimed, frame. Since the arbitrary
transformation leading from the original to the primed frame may
be specialized to be the identity, we have to say that the unprimed
I'»;, areall zero. And, by the way, the same holds obviously for all

frames which result from the original frame by a purely hnear
3-2

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:27, subject to the Cambridge
Core terms of use, availaflesmbridge/Books nliner@Cambridgeddniversiy RresscR0430511586446.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.004
https://www.cambridge.org/core

28 SPACE-TIME STRUCTURE

transformation of the x;, since then the second derivatives in (3.2)
all vanish.

And this is the only snag that remains and militates against the
idea of general invariance: that one frame, or rather a set of frames,
is distinguished by the assumption that in it, or in them, the Is
all vanish. But this snag is very simply overcome: we just drop
that assumption. This is a very important step which immediately
leads to the concept of affine connexion.

So we now and hereafter do not define the I"s by stipulating
that they vanish in one particular frame and are given by (3.2)
in any other one. We regard them as something of the general kind
of a tensor field or a tensor-density field, but actually different
from either—an array of functions which

(a) may be allotted arbitrary values in one particular frame, and

(b) aresubjecttoalaw of transformation that makes the following
expression a tensor:

- AT = Ay (34)
The sign A4, ; is 2 new notation introduced as an abbreviation for
the expression on the left. We call the array of I'’s an affine connexion
or, shorter, an affinity which we have by (a4) imposed on our
continuum. The 4,.; is called the invariant derivative of 4, (with
respect to the affinity I'*;;), in contradistinction to the ordinary
derivative A4, ;. Our previous consideration is to be regarded as
a special case, viz. when sub (a) we choose the values zero for all the
[’s. From it we can easily infer that the requirement sub (b) will be
satisfied, if we adopt for the I, the following law of transformation:
otherwise like a tensor corresponding to its three indices, but with
an extra additional term, the expression on the left of (3.2). Thus

ox;, 0x, ox o Rx
4 J— ' T T8 _”____L
r ik 3x, ax; ax;c I‘lrs+ c’?x, 3x{3x,’c' (3.5)

The additional term is independent of the I'’s. It is thus the same
for any affinity; it depends only on the relation between the two
frames. It is responsible for the fact that the I”s do not vanish
in every frame even if they do so in one. An affinity is not a tensor.
Its transformation formulae are linear, but not homogeneous.

The additional term is symmetrical with respect to the covariant
indices & and ¢ of I', and so is the whole transformation formula.
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INVARIANT DERIVATIVES 29

Symmetry with respect to the subscripts is therefore an invariant
property of an affinity. (Antisymmetry is not!) If an affinity is
non-symmetric, then in the transformation formula of its skew
part, $(I'n;,—I'%,), the non-homogeneous part drops out; this
skew part therefore is a tensor. More generally, the fact that the
non-homogeneous term is the same for any affinity has the following
relevant consequences. .

If we envisage two affine connexions I'%,, and I'%,, in the same
continuum (as we may and very often do), then their difference

&, — fk,m is always a tensor. In particular, if we have occasion
to envisage an infinitesimal variation I'!,, + 6T'%,, of a given affinity
I'%,, (as we sometimes do), then the 8T, are a tensor. Inversely,
of course, the sum of an affinity and a tensor T%,, is always an
affinity.

The sum of two affinities is not an affinity, because in its trans-
formation formula the critical term would have the factor 2. How-
ever, a linear aggregate of two affinities

A 1-‘klm +u I"klm
is an affinity, if A and g are either fixed constants or invariants and
Atpu=1

Hence a non-symmetric affinity is always the sum of a symmetric
affinity and a skew symmetric tensor of third rank, thus
D = H(T¥n + Tomt) + (T — M) (3.6)

The notion of a skew affinity is futile, because this property would
not be independent of the frame.

Affinities are a second, or, if you like, a third, kind of relevant
entities besides tensors and tensor densities. The notion of invariant
derivative which we have introduced in (3.4) is not an absolute
concept but refers to a certain affinity, which must be indicated.
If more than one has been introduced and abbreviations (like the
semicolon-notation used in (3.4)) are desirable, one must dis-
tinguish them by using various signs instead of the semicolon, as
a colon, a vertical bar, etc., for the derivatives taken with respect
to the several affinities.

We now want to extend the notion of invariant derivative to
other tensors, first to the contravariant vector. A generalization
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30 SPACE-TIME STRUCTURE

is never compulsory, it is suggested by some simple guiding prin-
ciple. In the present case it seems natural to demand
(1) that the ordinary rule of differentiating a product

0 9 )
2 =Lors2
should apply also to the invariant differentiation of products of
tensors;
(2) thatin the case of an invariant the invariant derivative should
be the ordinary derivative (since, after all, the gradient is a tensor—
without supplementation!)

G =Pu
To begin with a rather trivial remark, which however must be
stated once and for all: since
Ay =84 4,

the product rule alone tells us, that

Aym = O Apm+ Om A = A+ 8 Ay
And since this must hold for any vector, we must have

.m =o.

So the mixed unity tensor, regarded as a field, has the invariant

derivative zero with respect to any affinity.
Now envisage the invariant product

A, B¢
of two arbitrary vector-fields. According to the two guiding prin-
ciples laid down we want

(4 B¥),; = (4, B*),;,
thus

Ay B+ Ay ;B*= A, B*,;+ Ay, B¥ = A, B*,; + (4, . — A, T") B
By cancelling the terms A, ; B¥, we get
A,B* ;= A.B* ;+ 4,BT'",,.
This we write exchanging the dummies %, 7 in the last term
A(B¥;;— B* ;~B"T%,;) = o.
Since A4, is an arbitrary vector:
B, = B* ;+ B"I',;, (3.7)
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INVARIANT DERIVATIVES 31

This is the expression for the invariant derivative of a contravariant
vector, the counterpart of (3.4) only in a slightly different notation,
the comma indicating the ordinary derivative 0B%/dx;.

If you have any doubt whether this B¥, ; is a tensor, go back to an
earlier equation from which (3.7) is derived, viz.

(AkBk)’i = AkBk; i +Ak;in'

Here A4, is arbitrary and all terms save the first on the right are
known to be vectors, hence B¥,, is a tensor.
One further remark: envisage

Bt + B T%,,. (3-79)

(‘We have made a mistake with the subscripts!’) What is that?
If T is symmetric, it is irrelevant. But what if it is not?

Well, this is a tensor all right, and it is an invariant derivative
of Bk all right, only not just the one with respect to the affine
connexion that we had envisaged, but with respect to another one,
that results from it by exchanging the subscripts.

This is trivial. But it is worth while to observe also that no
logical inconsistency would be involved, if we chose to adopt (3.74)
rather than (3.7) as defining the invariant derivative of a contra-
variant vector with respect to the same affinity, for which (3.4)
is adopted in the covariant case. But, of course, with this choice the
product rule would not hold for the semicolon-differentiation !
However, this is only a side-remark, to which we give no conse-
quence. That is we do adopt (3.7).

In the case of a general tensor

TH...
we apply similar considerations to the invariant
PPy
Tkl... ...AkBImeGq.,.’

with A4, ... G?... arbitrary vectors; we thus get a result for the
invariant derivative of T which we shall first describe in words,
then write out. To the ordinary derivative there are additional
supplementary terms, one for each index of 7. Each such term
consists of a (contracted) product of a component of T and a com-
ponent of I', which product is formed exactly after the pattern of
(3-4) or (3.7) respectively, whereby T is treated as though it had

mn...

pq
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only that one index, all the others being disregarded, i.e. they are
left unchanged in forming this particular product. Thus:

Tklmpq‘..;i = Tkl"'pq...,i + T’d"'pq... ka'. + Tlm"'pq... I-‘lm'
e THe T TH.  Tn . .. (38)

Notice that the differentiation index is always the second covariant
index of T, the remaining two places being used for allocating the
dummy and the one that is missing in T, where it has been replaced
by the dummy. If this and the sign be remembered, the formula
is easily memorized in the teeth of the bewildering dance of indices!

In order to extend invariant differentiation to densities, we
supplement our guiding principle in the most natural way, viz.

(1) The product rule shall apply also if one factor is a density.

(2) The numerically invariant density ™™, regarded as a field,
shall have the derivative zero.

Let, for a scalar density &,

@;4 = @,i"'X’

where X is to be determined (we do not yet know what &, ; means;
we are about to define it!)

Now envisage any density -+ . If you divide it by an arbitrary
scalar density & you get a tensor, so you may put

where T (apart from being a tensor, not a density) is of the same
character as T . Now we postulate

T i=6.T +€; T =6.T ;;+8 T +XT .

A brief consideration shows that the first and the second terms on
the right together constitute just the ‘ordinary terms’, formed as
if T were a tensor. So we may write

T+, = ordinary terms + (X/S) T~ .

Now, since & was quite arbitrary and X depends on it alone, the
factor X/& must be independent of T~ and can be determined
from any special case. We determine it from the demand

0= eklmn:i =0+ grimn Fkn, + ekrmnl"lri
+edrnm 4 ehdmr a4+ (X[ ehimn,
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INVARIANT DERIVATIVES 33

In the summations over r only one term survives in each case, viz.
the terms r = &, I, m, n respectively. So we draw

o = ekmn(I 4 X/[@),
and thus X/€=-1I7,

Hence finally the extra additional term in the invariant derivative
of any density I reads

- T, (3.9)
the indices on ¥ being all unchanged.

It is easy to show that not only do the guiding postulates we used
lead to this unique determination of the invariant derivatives of
tensors and densities, but inversely, with these definitions accepted,
all those demands are actually fulfilled.

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:27, subject to the Cambridge
Core terms of use, availaflesmbridge/Books nliner@Cambridgeddniversiy RresscR0430511586446.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.004
https://www.cambridge.org/core

CHAPTER IV

SOME RELATIONS BETWEEN ORDINARY
AND INVARIANT DERIVATIVES

Before we had introduced the notion of an affine connexion, we
had learnt at the end of Chapter 111 that certain linear combinations
of ordinary derivatives are tensors anyhow. They cannot, of course,
lose this property by our imposing a connexion and introducing
the notion of invariant derivatives with respect to it. However,
the corresponding linear combinations of the invariant derivatives
are tensors too—a fortiort, since the invariant derivatives are teénsors
even severally. We ask whether they are the same tensors or not.

We first study the cases labelled 1—4 in Chapter 11.

In the case of the gradient of an invariant, there is no question:
it was one of our guiding principles that for an invariant ¢

Pi= ;i
What about the curl of a covariant vector? From (3.4)
Apsi— Aijre = A i— Ay i — Ap(T~ Ty). (4.1)

Thus the ‘covariant curl’ is the same as the ordinary curl, if and
only if the affinity is symmetric.

To deduce and to remember general statements (unless you have
to pass an exam, when you are frequently expected to memorize
all sorts of stuff that nobody else knows by heart) is only useful if
they have a frequent application. If the case does not arise very
often, it is ‘cheaper’ to investigate it only as it arises. Non-sym-
metric affinities are rarely used. Hence, in order not to encumber
the reader with gratuitous dead-weight, we restrict the further
investigation #n this section to symmetric affinities, with a strong
emphasis, however, that our statements are definitely restricted
to them.

It is not difficult to satisfy oneself by direct computation that the
two cyclical divergences contemplated under (3) and (4), too, are
the same, whether formed of the ordinary or of the invariant
derivatives. That is to say (just as with the curl), if these formations
turn up with ‘semicolons’, the simpler ‘ commas’ may be substituted
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RELATIONS BETWEEN DERIVATIVES 35

instead. The cases (4')—(1') referring to densitites do not require
further investigation, for they are virtually the same as (4)-(1) on
account of the general connexion between antisymmetric tensors
and tensor densities of complementary rank. Indeed, after having
ascertained, for example, that

Apesrt Api+ A = A1+ Aie i+ Ao (4-2)
we need only put WYim = Lemik g, .
oN™ . 04,
Then —3%; = Jemitk ‘év:k =+ (A i+ Ap, i+ A x)
and A,y = de™* Ay, = + (A + Aigso+ i)
so that A, = A,

(The sign is in both cases that of the permutation mlik: we have
used the fact thate™*, & = o, which, it will be remembered, was one
of our ‘guiding principles’.)

So we may take it that we have ascertained by direct inspection
the equivalence of ‘semicolon’ and ‘comma’ in all eight cases.
But these computations could be spared by an alternative proof
which is shorter, is even more illuminating and applies to any of
the eight cases severally. We illustrate it by the example of equa-
tion (4.2). To prove this equation directly, observe that both its
first and its second member are known to be tensors. Moreover,
from the general feature of the invariant derivative, their difference
is a linear aggregate of components of I'%,,. As a difference of two
tensors it must be a tensor. But there is no non-vanishing tensor,
Jformed linearly from a symmetric connexion alone. (This may seem
a sweeping statement, of which the simple reason will be given
in the last paragraph of this chapter.)

With a non-symmetric connexion there is; to wit its skew part
(%, —T'%,). That is the reason why our statements do not hold
in this case.

The equality that arises from (4')

U = U (43)
entails a valuable rule for ‘partial integration with respect to the
invariant derivative’ in four-dimensional, i.e. in space-time in-
tegrals. The rule is very simple. For the purpose of partial integra-
tion the semicolon can be treated as though it meant an ordinary
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36 SPACE-TIME STRUCTURE

derivative, provided one keeps sternly to the injunction that only
an invariant density may figure as an integrand. This is proved as
follows.

Suppose you had an integral of the following type

1= (4 )B-. ) uds 40

where 4 and B are tensorial entities (tensors or densities) whose
indices we have only indicated by dots. Now it is easy to see that
since the integrand is to be a scalar density, the thing that arises
from suppressing the covariant index k (i.e. the invariant dif-
ferentiation) must be a contravariant vector density,t say %*:

A+ B =9k,
Moreover, from the rule for differentiating a product (one of our
‘guiding principles’!)
(A B )= (A ) (B )+ (A ) (BL)

Thercfore 1= j (9% — (A_), (B )] da

On account of (4.3), the first part can be reduced to an integral over
the (three-dimensional) ‘surface’. This establishes our theorem.

In many applications (particularly to variational calculus) the
first part vanishes and we have

-~ [ )@ )an

This rule is not trivial. In A4 or B alone the (;) need not at all be
equivalent to a simple (,). For instance {(4.4) might read

I=- f ()., (BT, dic,

where neither the tensor 4 nor the density B need have any index
symmetry.

If, as has sometimes been done with the idea of simplifying
matters, the injunction of admitting only an invariant integrand
is waived, the rule does not apply—with the sad effect of complicating
the calculus enormously.

+ Proof: AB;, is a scalar density. But ABF, (with F; an arbitrary vector)
transforms exactly alike and is therefore also a scalar density. Hence 4B is
a contravariant vector density.
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RELATIONS BETWEEN DERIVATIVES 37

It is convenient to join here a further.instance in which the
invariant derivatives can—though in an entirely different order of
ideas—be replaced by ordinary derivatives. One can always intro-
duce a frame of coordinates so that the two kinds of derivatives
coincide at any one particular point of the continuum. One can
choose a frame for which all the I'%;; vanish at that point. This can
be shown as follows.

We mentioned in Chapter 111 that these components transform
like those of a tensor, but with the first member of equation (3.2)
added on to the familiar formula. Thus

5 O%y Oxg Ox ox; %x,

W= oy oxl 0w, T o, OxL o) (4-5)

We wish, by a suitable choice of the transformation, to make all
the IV vanish at one point—say for simplicity at the point x;, = o.
We choose the transformation so that at this point the inverse
transformation has the analytical development

’ 4
Xy = Xy, + ya¥ x4+ ..

where we assume ak,,; = a¥,,, because obviously nothing would
be gained if we did not. We get from (4.5), at the point x; = x;, = o,

F,ikl — Fikl+ aiki =0,
provided that we choose
@y = —(T)at xp=0°

Such a choice of coordinates is called a geodesic frame (or
geodesic coordinates). The full verbal description is, of course,
a frame geodesic at a certain point for a certain symmetric
affinity.

Clearly, if the I''s are not symmetric, they cannot be ‘ transformed
away’, not even at one point. That is small wonder, because the
skew part is a tensor, which you cannot make vanish in any frame,
unless it vanishes in every frame. On the other hand, it is not
required for this purpose that I' be symmetric at large, that it be
‘a symmetric affinity’. It must only be symmetric at the point in
question. (This, if it happens, is obviously an invariant feature.
It means that the skew tensor happens to vanish at the point in
question.)
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38 SPACE-TIME STRUCTURE

A geodesic system is often very convenient for computations,
but one must always keep in mind that it simplifies matters only
at one point, nowhere else, not even in the neighbouring points.
I mean to say, the derivatives of the I'’s do not vanish, and one
must be careful in the course of a computation not to drop a I' which
would afterwards come in for being differentiated with respect to
a coordinate.

A further consequence is the truth of our ‘sweeping statement’
on p. 3§, that there is no non-vanishing tensor with components
that are linear aggregates of the components of a symmetric affinity.
Indeed such linear aggregates, no matter what the coeflicients are,
must all vanish in a geodesic frame, and therefore, if they form
a tensor, in every frame. Since this consideration applies to every
point of the continuum, a tensor of the said description would
vanish identically.
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CHAPTER V
THE NOTION OF PARALLEL TRANSFER

There is an alternative way of introducing the notion of affine
connexion and invariant derivative. In view of the fundamental
character of these notions in all our considerations we shall indicate
this alternative.

The array of derivatives A4%/éx; does not con- °Owitdzy
stitute an invariant entity, because they are formed
by the ‘inadmissible’ procedure of subtracting the fz(z‘)v
vector A% at P from the vector A¥+dA*¥ at
another point, namely at the neighbouring point Q with coordinates
x;+ dx; (x; being those of P). Their difference dA* is not a vector.
Hence according to the correct formula

oA
ko 25
dA o, dx,,

0A¥|dx; cannot be a tensor, since dx; is a vector.

To remedy this defect you must, for the purpose of forming
a derivative, subtract from A%+ dA* not the vector A% at P, but
some vector at (, which for this purpose so to speak takes the place
of A%, i.e. it plays the part of the ‘unchanged’ or ‘original’ value of
the function in ordinary differentiation. In other words, you must
stipulate by definition what change in the components of 4%, on
proceeding from P to Q, you regard as ‘no change’. (The simple
suggestion that just no change in the numerical values of the com-
ponents should represent ‘no change’ of the geometrical entity is
not good enough, because this stipulation is not independent of
the frame.)

Let this ‘substitute at Q for A* at P’ or this ‘by definition un-
changed entity at Q, corresponding to the entity A* at P’, be called
A¥+3A*. Naturally 84%, being the difference of a vector at Q
(viz. A*¥+8A%) and a vector at P (viz. A¥), is also not a vector, just
as and for the same reasons as dA* is not; but dA* — 8A4* is one.

dA4* must be made to depend on the two vectors A% and dx;
and cannot depend on anything else. Moreover, it must be made
to vanish with either of these two vectors. A homogeneous linear
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40 SPACE-TIME STRUCTURE

dependence on both 4* and dx; suggests itself as being the simplest
ruling. Hence we contemplate a bilinear form of these two vectors

0Ak = - Tk, A'dx;, (5.1)
the I’s being an array of 64 coefficients, functions of the coordinates,
newly introduced from the point of view taken in this chapter
(but, of course, we have conformed the notation to that of
Chapter ).

Since A* and dx; are vectors, but 8A4* is not, the I'’s do not con-
stitute a tensor. They follow the linear but non-homogeneous
transformation law that was already indicated in Chapter 111, equa-
tion (3.5). That can easily be shown, by demanding that the
association of the vectors A% in P and A% + 84 in Q should subsist
on coordinate transformation. We skip the proof here.

The vector Ak + §A* = A% — Tk, A dx, (5-2)
is called the parallel-displaced (or parallel-transferred) vector. The
invariant derivative 4*,; is now defined thus:

_ (A*+dA¥*— A - 54%) oniy aaing

]
A dx;,

— (dAk - 8Ak) only dzi+0

= ™

=A% + Tk, A4 (5-3)

which conforms exactly with (3.7).

The I's establish a linear one-to-one mapping of the *vector-
hedgehogs’ in neighbouring points on each other. A linear mapping
between two sets of four functions requires 16 arbitrary coefficients,
but since there are co? neighbouring points, we have 64 of them.
In elementary geometry a linear transformation of the coordinates
is called an affine transformation. Geometrical figures that are
turned into each other by such a transformation are called affinely
related—e.g. a sphere and a concentric ellipsoid in three dimensions.
The geometry ‘under this group’ is called ‘affine geometry’: it
contemplates only such properties as are invariant under affine
transformation and are thus the same for any two affinely related
geometrical figures, e.g. all ellipsoids, including the sphere, are
considered as the same figure.

That is how the name affine connexion or affinity has arisen.
It is not a good name. For two reasons. First, already in a non-
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PARALLEL TRANSFER 41

connected manifold the general coordinate transformation entails
an arbitrary affine transformation at any point. On the other hand,
the I'M's indicate just not an arbitrary affine relationship between
neighbouring points, but they distinguish once and for all a par-
ticular one.

So much for explaining and criticizing the terminology.

Along the ideas of the present chapter we should now proceed
to define analogously to (5.1) the parallel-displacement of any
tensor or tensor density, using as guiding principles (1) that a pro-
duct is displaced by displacing all its factors, (2) that an invariant is
not to change on displacement, (3) that the e-density is not to change
on displacement. In this way one easily deduces that the change
8Tk, of any tensor on displacement must be given by the
additional terms of (3.8), multiplied by (—dx;). In the case of
a tensor density of any type the term (3.9), multiplied by ( —dx;),
has to be added. The invariant derivatives are then defined in
exact analogy with (5.3) and are, of course, those given in (3.8),
with the ‘amendment’ (3.9) in the case of a tensor density.

Along the line of thought of the present chapter there is nothing
to suggest that I'*,, should be symmetric in / and m. And since
also in the previous chapters there was nothing to enforce this
assumption, we shall not make it in general, but regard the sym-
metric affinity as a special (though very frequent and important)
case, to be indicated every time we deal with #t, and not with the
general case.

The aspect of an affinity as constituting a system of parallel-
transfer is the more fundamental one. Thus the approach which
puts it in the first place and the notion of invariant derivation in
the second place is more fundamental than that followed in
Chapter 1.

Simple and obvious as it is, we ought yet to stress the fact that
the parallel-transfer of a zero tensor or zero tensor density is always
again zero. This has the consequence that any tensor equation is
always preserved on parallel-transfer, just as it is on coordinate
transformation. Indeed it can always be reduced to the statement
that a certain linear aggregate of products of tensors is equal to
the zero tensor of the same character (i.e. the same as regards
co- and contravariant indices and whether it is a density or a tensor).

4 $
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42 SPACE-TIME STRUCTURE

But please take care! The equation holds at the other point for
the parallel-transferred tensors. But the tensors may be field-
tensors. And their actual values at the other point need not and,
as a rule, will not be those obtained by parallel-transfer. So the
equation need not hold for the field-tensors at the neighbouring
point!

That is the more necessary to underline, because in point of fact
they very often do hold there—and everywhere; namely when they
are field-equations which have been explicitly established or de-
clared to hold at every point.
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CHAPTER VI
THE CURVATURE TENSOR

THE QUESTION OF INTEGRABILITY

Easily the most interesting and vital point that occurs in the study
of affine connexion and parallel-transfer is this. If you envisage
a tensorial entity, e.g. a contravariant vector
A* at a point P (not necessarily a member
of a ‘field’), and carry it by continual parallel-
transfer around a closed circuit C back to
P, the entity does not in general (i.e. for an
arbitrary affinity) return to its original value, 4
but you arrive at P with a different entity, say p

with a vector A%+ AF,

It is only a different way of expressing the same fact to say that
the result of transferring A* from P to any other point Q will, as
a rule, depend on the path. For ex- AKR)
ample, if the transfer of 4* over S to
Q yields A*(S) (say), transfer via R will Q
lead to something else, say 4¥(R) in O,

+ A¥(S). For obviously the transfer g
there and back along the same curve is
reversible; so if A¥R) = A*(S), then
/fk = A¥, and vice versa.

If the transfer is independent of the
path for any vector A* (and then, as
we shall see, for any tensorial entity), we call the affine connexion
integrable—or, possibly, integrable within a certain region, if
path-independence holds only for points and paths within a
certain region. Whether an affinity is integrable or not is decided,
as we shall see presently, by the vanishing or otherwise of a certain
tensor of the fourth rank, which is called the curvature tensor or
the Riemann-Christoffel tensor and plays the central réle in all
theories of the structure of space-time, so that we shall be dealing
with it incessantly in all the considerations to follow. And, of course,

4-2

C,

AXS)
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44 SPACE-TIME STRUCTURE

it is the non-integrable case when this tensor does not vanish
(curved manifold) that presents the greater interest.

For the moment, however, we shall gather information on the
integrable case by a more direct method. In this case let #* be
a single vector (not a field) at a point P. Since, now, the parallel-
transfer does not depend on the path, we can ‘spread’ A’ into
a field by parallel-transfer from P, defining the field vector A*
by the condition that its actual change on proceeding from one
point to the next shall be equal to the change on parallel-transfer.
Using our former notation, this is expressed by

aw = éhv
or written more elaborately

ohv
a—‘xA dxl = - I"’a,\h“dx,\.

Since that is to hold for any dx,, it amounts to subjecting #” to the

differential equations
o

ox)
together with the initial condition that at P the A* are to take the
values given there. The slight inconsistency that we have first
used /* to indicate the vector at P, and now use it for the field-vector
obtained by integrating (6.1), does not matter. Indeed, after
‘spreading’, the point P is no longer distinguished; the field-vector
at any point is obtained by parallel-transfer from any other point
along any path connecting the two points. This state of affairs (and
similar ones in the case of other tensor-fields) is suitably expressed
by saying: the affinity I' carries (viz. by parallel-transfer) the field-
vector & over into itself. Notice by the way that according to
(3.4) the equations (6.1) simply state that 4 has a vanishing in-
variant derivative.

Now let us do the same thing with four linearly independent
vectors at P, which we label by a subscript a, thus k’,, with
a=1,2,3,4. We might just as well use four different letters,
as I, ¢, f*,j* to indicate our four vectors, instead of that subscript,
which must not be confused with a tensor-index. 'The numbering is
more convenient, because it is convenient for the purpose of the
present investigation to extend the summation convention to this

=— IV, h% (6.1)
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INTEGRABILITY 45

subscript, when it appears twice (though it will always be written
as a subscript, being a mere label).

We have chosen the four vectors #”, linearly independent at P.
This linear independence will obviously hold for the field-vectors
at any point, simply because a linear relation

Gl +cshy+ ey +c by =o0 (6.2)

(the ¢; being numerical constants, not all = o) would be conserved
by parallel-transfer and can therefore, not hold at any point of the
field, since it shall not hold at P.
So we have now four vector-fields governed by the relations
o= =Dk (63)
Theseare 64 linear non-homogeneous equations with non-vanishing
determinant,t from which the 64 quantities I" can be determined
everywhere. We do this in the usual way. The normalized minors
in the determinant 4*, we call 4, (by normalized we mean divided
by the determinant). Then

Bty =, (6.4)

(To justify the notation: &, for a fixed a is a covariant vector-field.
This follows from the consideration that

(i) the preceding equations are to hold in every frame of
reference, the &, always meaning the normalized minors;

(ii) the k,, are uniquely determined by these equations;

(ili) the equations are preserved, if the &, are transformed as
vector components.)

We still note the fact that, inversely, the 4*, are the normalized
minors of the determinant /4,,. Now ‘multiply’ (i.e. multiply and
sum over a) the equation (6.3) by 4,,, then you get by (6.4)
ok,

P 0%y

IV = —h (6.5)
This shows that integrability is a severe restriction on an affinity.
It makes it possible to express the 64 functions I" by the components
of four vector-fields, i.e. by only 16 functions.

+ It is not difficult to show that the determinant could vanish at a point if,
and only if, a relation like (6.2) would hold at this point.
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46 SPACE-TIME STRUCTURE

The preceding representation of an integrable affinity has a par-
ticularly simple consequence, if I' is symmetric in its two covariant
indices. So let us now assume also

Yo =1, (6.6)
Now from (6.4) the equations (6.5) can be written equivalently
oh
a=nr, ax’;". 6.7)

Hence, from the assumption (6.6)

hv (%_%) =0
N\ow, o,

and thus, since the determinant does not vanish,

Orpa_ Oy _
Ox), ox,

o, (6.8)

in words: the four covariant vector-fields 4, are curl-free.

This enables us to introduce a new frame of coordinates in the
following way. To a fixed point P we assign the coordinates o, 0, 0, 0.
To any other point O we assign the coordinates

Q
Ya= fP kpadxp (@a=1,2,3,4) (69)

Indeed from general analysis it is known that (6.8) are the necessary
and sufficient conditions for this line integral to be independent
of the path. Moreover, the derivatives of the y’s with respect to

the x’s are obviously oy
De_p .
ox, Boa

Forming the normalized minors on both sides, you get
ox
—f
. he,.

Hence (6.7) can be expressed thus:

ox, o
y =Y _TJa
P 0y, 0x,0%,° (6.10)
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INTEGRABILITY 47

Comparing this with (3.2) and considering the context there, we
infer: ,

Our integrable symmetric -affinity can be regarded as the result
of transforming the affinity with vanishing components in the
y-frame from the y-frame to the x-frame. Or, putting it the other
way round: all the components of our affinity vanish when trans-
formed to the y-frame.

Thus a symmetric integrable affinity is a very simple thing, it can
always be ‘transformed to zero’.

It is small wonder that this theorem is restricted to the symmetric
case. For remember that the general non-symmetric affinity can
be split up into the sum of a symmetric one and a skew-sym-
metric tensor of the third rank. These two entities keep cleanly
separated on transformation. And, of course, the skew part, being
a tensor, can never be annihilated by transformation, unless it
vanishes at the outset. All we can say in general is that the injunc-
tion of being integrable entails in every case that the components
of the affinity are expressible by the 16 components of four vector-
fields. This is even a greater reduction in the case of 2 non-sym-
metric affinity (which has otherwise 64 independent components)
than for a symmetrical one, which in general has 40.

THE CURVATURE TENSOR

Given the 64 functions I”,, that constitute an affine connexion,
it would be difficult to decide directly whether or not they can be
expressed in the form (6.5). We are therefore out for a criterion of
integrability that can be applied straight away to the I'-field when
it is given.

To derive a necessary condition is very easy. For integrability
to obtain, the equations (6.1) must admit of a solution for the
vector-field #” with arbitrary initial values. Then surely the mixed
second derivatives of the field-components, formed in two different
ways, must agree. Hence we must have

o= (F" Ah)+ 5~ (F k)
V) AR A W O
_(——axl‘ + - ax/\)h al\b;/‘-i_P“”_é;; (6.11)
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Using equation (6.1) to express the first derivatives, we get (mind
the notation for the dummy indices!)
orv,, orv,
= B,k (6.12)

where we have abbreviated the bracket expression by the B symbol.
Since this holds for arbitrary A%, we must have

Byu=0 (6.13)
in every frame of reference (which justifies the presumption that
the B’s form a tensor). So this is a necessary condition for inte-
grability.

To comprehend that it is also sufficient, notice that our demand

(6.11) would amount exactly to the well-known necessary and
sufficient condition for the Pfaff-differential

— Dpheds, (6.14)

(which is the dA” on parallel transfer along dx,) to be a complete
differential, if the 2> were given functions of the coordinates. This
they are not, and it would be a vicious circle to anticipate it, for that
is just what we want to prove.

However, in the small vicinity of any point the equations (6.1)
together with (6.11) do suffice to determine the first and second
derivatives of the A% uniquely and without contradiction. Hence,
given the initial values at a point, we can determine the field A*
in a small neighbourhood of this point, including quantities of the
second order with respect to the differences of coordinates. If you
take in (6.14) these functions A*, it becomes a Pfaff-differential
whose integrability conditions (6.11) are fulfilled including the
first order (only the first, because they contain the derivatives of
the A%). The integral of (6.14) taken around any small circuit con-
tained in that neighbourhood will therefore vanish with an accuracy
including the second order, that is to say it can at most reach the
third order.

Now envisage two infinitely neighbouring curves leading from
Pto a distant point Q. From the initial values 4= given at P we first
build up the field A% in the vicinity of P, choose a neighbouring
point on C well within this vicinity, do the same there and so on,
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until we reach Q. In all this we take care that the sum-total of our
small regions should cover also the curve C'. Then, first, the A*
reached at Q can be ‘wrong’ (as compared with exact transfer)
only by quantities of the first order. Secondly, if you dissect the
strip between C and C’ into small surface-elements, the circuit
integral around such a one will not exceed the third order, from
which you easily deduce that the line-integral along C and that along
C’ cannot differ by more than the second order.

P

In the same way you can distort the curve C in small steps into
any other curve joining P and Q. The line-integrals will then only
differ by a quantity of the first order.

By making the subdivisions and the steps of distortion smaller
and smaller, you arrive in the end at proving that (6.13) is also
sufficient for the transfer of a contravariant vector to be integrable.
To prove this was our aim.

The path-independence of the transfer for a covariant vector
follows from that for the contravariant one because the invariant
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50 SPACE-TIME STRUCTURE

B, A* remains unchanged, for a fixed B, and any 4*. In a similar
way you show the same for higher tensors, and tensor densities.

If (6.13) is not fulfilled, any vector 4* can still be ‘spread’
according to (6.1) in the neighbourhood of a point, but only
including quantities of the first order. Using this in (6.14), the
integral of this differential around an infinitesimal circuit can easily
be indicated from the mathematical theorem of Stokes. For the
infinitesimal quadrangle with corners xy, x; +dx;, x;+ dx;, + 6x;,

%3+ Ox,, one obtains B, hodx, 0%, (6.15)

arp
as the quantities by which the components #” change by parallel-
transfer around that quadrangle. But this theorem cannot be extended
to a finite circuit—simply because in this case there is in a finite
region no field 4= to which it would apply!

Since (6.15), being the difference of two vectors at the point x;,
is itself a vector, and that for arbitrary vectors A%, dx,, 0x,, it follows
that B is a tensor of fourth rank. An alternative proof of this
important fact results from producing the B-components in a
different way, that is in itself of interest, viz. by commuting two
invariant differentiations in any tensor. For example, for a contra-
variant vector-field you get by straightforward computation:

AV;:\;/: - A":,u;/\ == Bva/l,uAa - (Fﬂ)t/t— Fﬁ/u\) Av; A (616)
The second term on the right vanishes when I’ is a symmetric
affinity, for it depends only on its skew part. The latter, however,
is a tensor in any case, and so, since the A4-field is arbitrary, the
tensor property of B follows immediately.

In the most general case (non-symmetric affinity) the B-tensor
has only the one obvious symmetry of being skew in the last two
subscripts, A and g in our present notation. It is easily seen that it
then has 4 x 4 x 6 = g6 independent components.

If I' is symmetric, we gather from the explicit expression (6.12)
that B has in addition the cyclical symmetry

Byt Bryut B yp = 0. (6.164)
To count the independent components in this case, first give »
afixed value. Then take for the subscripts a definite tripleta & A # .
Of the three independent components, which the plain skewness
in the last couple leaves in this case, one can be expressed by the
other two in virtue of the afore-standing relation. That leaves two

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:28, subject to the Cambridge
Core terms of use, availalesmbridge/Books nljiner@Cambridgeddniversity Rress 043 0511586446.007


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.007
https://www.cambridge.org/core

CURVATURE 51

for every triplet o + A = xt, thus ezght for the four different triplets.
In the event of two out of the three a, A, x being equal (for which
there are 2 x 6 = 12 possibilities), already the plain skewness leaves
only one independent component in every case (for example
By, = — B¥55, and By, = 0). Moreover, the cyclical condition
is in this case automatically fulfilled; it only restates the plain
skewness. Hence we have twelve further components—and that
is all. So we have 8412 = 20, for fixed v, and thus 80 on the
whole; the Riemann-Christoffel-tensor of a symmetric affinity has
eighty independent components. We shall later come to know a case
of still higher symmetry and special importance, when the number
reduces to twenty only.

The B-tensor can be contracted with respect to (v,a), or (v, A)
or (v, ), but the latter two, on account of the skew symmetry,
are not essentially different. We collect from (6.12) the expression
of the B-tensor and add those of its two contractions, using a
different (more customary) labelling from the one at which we had
arrived by chance:

. ory, ory,
By = — T, T am
or, oo«
Bx:l + 3x:m
(Einstein-tensor) C(6.17)
0Ty, 0T,
ox,, Ox,
(Second contraction) J

+ Iy T2 — T T,

Rkl=Bﬂkl = - +Pﬂdpakp—PﬂaﬂFa,d,

Spn = Bﬁﬂlm = -

In the last formula it is remarkable that the simple ‘curl’ of the
four components I'*, (which are not a covariant vector) turns out
to be a tensor.

R, 1s not in general symmetric, not even when I' is (the second
term is in the way even then). In any case, of course, its symmetric
and its skew parts are tensors, too. Moreover, its skew part reduces
to —Sy if I' is symmetric. Hence in the case of a symmetric
affine connexion there is virtually only one relevant contraction of
the B-tensor, viz. the Einstein-tensor.

Having the rather complicated formulae for B and R at hand,
we should like to add a very useful simple theorem concerning the
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52 SPACE-TIME STRUCTURE

changes these tensors undergo when the connexion is slightly
varied: I'%,, - I'*, +0T%,,. It will be remembered that 6T'%,, (in
contradistinction to I'%,, itself) #s a tensor. The following formula
can be made good by straightforward computation

OBy = — (0T %), i + (0T %n) 1+ (D% — T'%) 6T, (6.18)

and, by contraction
ORyy = —(0T%), o + (BT %)+ (T2 — T%p) T4y, (6.19)
These expressions are particularly convenient in the case of

a symmetric connexion, where the last term in each of them
vanishes.
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CHAPTER VII
THE GEODESICS OF AN AFFINE CONNEXION

Given an affinity I'%,,, let us envisage at a point P(x;) a line element
dxy, leading from P to the point P'(x, + dx;). Transfer dx; (being
a vector in P) according to the connexion I' from P to P’, and let
the result be d’x;, (being a vector in P’).

Transfer this vector from P’ to P"(x; +dx;+d'x;). The result,
d"x,, transfer to P”(x; + dx; + d'x;+ d"x;)) and so on.

P P”

P
d’s,
P m
d

Xy

In this way you obtain a polygonal track that in the limit of ‘true
infinitesimals’ and an infinitely increasing number of steps ap-
proaches a curve, which, by the way, could also be traced ‘back-
wards’ from P in the direction — dx;, and which obviously has the
following properties:

(i) If we transfer a finite contravariant vector indicating the
direction of the curve at any of its points P, from P along the
curve to any other point Q, we obtain a vector indicating the direc-
tion of the curve at Q. (By indicating the direction, we mean:
being tangential to the curve or having components proportional
to the increments dx;, along the curve.)

(if) Our construction affords a natural standard for comparing
the lengths of any two sections of this curve (natural with respect
to the connexion I'), namely the ratio of the ‘number of steps’
involved in each of them, or, to be accurate, the limiting value of
this ratio.

One such curve issues from every one of the 0! points in every
(o0?®) direction, so there are c0® such curves in all (since a curve
contains co! points). Generally speaking, the oo curves issuing
from a given point cover a certain finite neighbourhood of the
point just once and there will be just one curve connecting two
given points Pand Q. These curves are called geodesics. We proceed
to study them analytically.
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54 SPACE-TIME STRUCTURE

Any curve can in many ways be represented by giving its four
coordinates as functions of a continuous parameter A. (‘In many
ways’ means only that instead of A we may choose any continuous
monotonical function of A.) If we do that, the vector dx,/dA
indicates at every point the direction of the curve in the way
explained above.

To comply with (i) above, we demand that this vector, when
parallel-transferred to x,+dx;, shall be proportional to the value
of the vector that you encounter at the neighbouring point:

dxy 4% dx,  d*x,
dx =T d/\d M(d/\ dxz d/\)
where M is some number. Dividing by dA we have
Md N T dx, dx,, —M dx,

et imaan = d/\ dax”

In order that this should make sense, M must differ from unity
only by the order of dA, which is pretty understandable. It can
therefore be replaced by 1 on the left. On the right we must allow
1 — M to depend on A and so we write ¢(A) dA for it. Thus

o Dhy B B _ g2 (7-1)
This incorporates our first demand. But is A the natural measure
of the length along the curve, to which we pointed in (ii) above?
Hardly, for its choice was to a large extent arbitrary. Let us see
what (7.1) becomes, if we alter our choice, taking s(A) instead.
We easily obtain

d2x dx; dx s'—s" dx

T TR, (7:2)
where §', s” mean the derivatives with respect to A.

We can make the second member vanish altogether and give

our equation the form

d2x dx, dx
—ds_;c+ I-'klm7s‘ d_;n =0, (73)

le

if, and only if, we demand that ¢s’—s" = o, of which the general

solution is N A
$ =f exp D. @(u) du |dA. (7.4)
Thus for the simplified form (7.3) of the differential equation of
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GEODESICS 55

the geodesic to obtain, the choice of the variable s is determined
up to a linear transformation with constant coefficients of the type
§ = as+b, aliberty embodied in the lower limits of the two integra-
tions in (7.4)-

Equation (7.3) clearly enunciates that dx; /ds is parallel-transferred

along the geodesic. The vector (%‘) is the parallel displaced of
at Q

dx,,
(&
and (dx;)at @» tf ds s given the same infinitesimal value at both
points. Hence ds is a measure of the length of an infinitesimal

) . The same holds for the infinitesimal vectors (dx;)as p
at P

section and fds a measure of a finite section of the geodesic in the

sense explained above under (ii).

It is quite remarkable that a purely affine connexion makes
a comparison of lengths (which is a metrical concept) possible
albeit only along a geodesic. Indeed, no natural comparison of
length is afforded between different geodesics, even if they happen
to cross each other, for the linear transformation of s alluded to
above is free severally on every geodesic.

We ought to draw attention to the fact that according to (7.3)
and (7.1) the skew part of I'*,, is irrelevant both for the geodesics
and for the ‘metric’ on any geodesic, for it is obliterated by
symmetry already in (7.1). Any skew tensor 0%, (= —@% ) can
be added to I'*,, without changing either.

The experience that any skew addition is irrelevant elicits the
question: are there also symmetric additions to an affinity which
do not change its system of geodesics? The answer is that an
addition of the form BV L8k T,

to '), (where V,is an arbitrary vector field) is the only symmetric
addition not to change the geodesics of I'*,,. It does, however,
change the ‘metric’ on some of the (actually most of the) geodesics,
however the field ¥, be chosen. This includes that no change in
the symmetric part of an affinity is possible, if both all the geodesms
and the metric on all of them is to be preserved.

I leave it to the reader to prove the last statements,
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CHAPTER VIII

THE GENERAL GEOMETRICAL HYPOTHESIS
ABOUT GRAVITATION

THE UNDERLYING IDEA

It is far beyond the scope of these lectures to report on the develop-
ment of the ideas, first of Restricted, then of General, Relativity
and to show how they are logically built on the outcome of a number
of crucial experiments, as the aberration of the light of fixed stars,
the Michelson-Morley experiment, certain facts regarding the light
from visual binary stars, the E6tvis-experiments which ascertained
to a marvellously high degree of accuracy the universal character
of the gravitational acceleration—that is to say that in a given field
it is the same for any test-body of whatever material.

Yet before going into details about the metrical (or Riemannian)
continuum, I wish to point out the main trend of thought that
suggests choosing such a one as a model of space-time in order to
account for gravitation in a purely geometrical way. In this I shall
not follow the historical evolution of thought as it actually took
place, but rather what it might have been, had the idea of affine
connexion already been familiar to the physicist at that time.
Actually the general idea of it emerged gradually (in the work of
H. Weyl, A. S. Eddington and Einstein) from the special sample of
an affinity that springs from a metrical (Riemannian) connexion—
emerged only after the latter had gained the widest publicity by
the great success of Einstein’s 1915 theory. Today, however, it
seems simpler and more natural to put the affine connexion, now
we are familiar with it, in the foreground, and to arrive at a metric
by a very simple specialization thereof.

We have learnt that in the particularly simple case of a symmetric
integrable affinity a frame of coordinates can be found in which the
geodesics are straight lines.} Moreover, we know from ordinary

+ For in this case the I"s can be transformed to zero everywhere, so that
(7.3) defines straight lines. The restriction to symmetrical integrable affinities
is required, even though the skew part does not affect the shape of the geodesics.

For the symmetrical part of an integrable affinity need not (and as a rule will not)
be integrable and therefore cannot be transformed away.
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GENERAL RELATIVITY 57

mechanics that the path of a particle, not acted on by any force,
is a straight line, both in space and in space-time (since the motion
is in this case uniform). Putting it more cautiously and much
more significantly for our present purpose: it is a straight line in
a suitably chosen frame of reference, the same for all particles
not subject to a force, a so-called inertial frame. But the path would
not be straight in space-time, that is, the spatial path would not be
straight and the motion not uniform, when referred to a system of
coordinates that has itself an accelerated or a rotational motion
with respect to an inertial frame, as, for example, the spatial frame
fixed rigidly to the rotating Earth has.

Now from Eo6tvos’ experiments we infer that in a given field of
gravitation any particle of whatever nature, when starting from
a given point in space-time (i.e. from a given point in space at
a given time) in a given direction in space-time (i.e. in a given
direction in space with a given velocity), follows a curve (we shall
callit a ‘world-line’) that depends only on the said initial conditions
and on the gravitational field, not on the nature of the particle.
Moreover, this curve is not a straight line when referred to an
inertial frame. Or better, since it may be doubtful what an inertial
frame means in this case because there are no particles exempt from
gravitation: these curves are not straight lines in any frame; there
is no frame in which they are all straight, with one not notable,
because rather fictitious, exception.}

This state of affairs suggests tentatively extending the analogy
between the geodesics of an integrable affinity and the paths (or
‘world-lines’) of particles not subject to any force to the geodesics
of a general, non-integrable affinity and the paths of particles subject
to the action of a gravitational field. The temptation is particularly
strong, because the geodesic, by its definition, may patently be
called the ‘straightest’ line, so that we would have the simple law:
a particle follows in all cases the straightest line—a law that is not
without precedent. It is strongly reminiscent of the well-known
result of ordinary, classical mechanics, viz. that a particle con-
strained to remain on a given surface, but otherwise not subject to

+ It is the case of a strictly uniform field of gravitation, which does not exist.
Unfortunately this fictitious case has become the stock example in all popular
or semi-popular treatments.

5 S
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any force, moves with uniform velocity along a geodesic of this
surface.

In other words, we assume that a gravitational field can be
pictured as a purely geometrical property of space-time, namely
as an affinity imposed upon it, and that it amounts to a geometrical
constraint on the motion of particles. This affine connexion is to
be regarded as an inherent property of the space-time continuum,
not as something that is created only when there is a gravitational
field. The case where there is none is simply the case where the
affinity is integrable.

In these considerations we have tacitly adopted a very relevant
generalization of the classical idea of a ‘frame’ which must not be
passed over in silence on this occasion, though it has become familiar
to us from the preceding chapters. It is not only that we include
time in a quite general way in the transformation of coordinates.
But a classical physicist, when speaking of the inertial frame or
any other frame, had only in mind that the Cartesian coordinates
of a point could be referred to either of two rigid systems of axes
which move with respect to each other as a thrown stone moves
with respect to the Earth or the Earth with respect to an inertial
system. In this case the coordinates in one frame are special linear
functions of those in another frame, with coeflicients that are some
functions of the time. We, however, have inadvertently switched
over to contemplate our completely general transformations, which
are linear only in the near vicinity of a point; and the coefficients
(the ox;/0x;) are arbitrary functions of all four coordinates and
change from point to point. To justify this generalization we may
say that without it the general idea of affine connexion would not
come in at all and so could not be used to picture the gravitational
field.

Another remark is useful. Having adopted this general idea of
a frame of reference, we do not wish to grant a prerogative to any
special frame. Hence whenever, in the particular frame we are
using, the components of the affine connexion are not all zero
everywhere, we are obliged to regard them as representing a gravita-
tional field from the point of view of this frame, even though we
might be inclined to call it a sham field in the case of an integrable
affinity, when a frame can be found in which they all vanish. But if,

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:28, subject to the Cambridge
Core terms of use, availaflesmbridge/Books Dnljiner@Cambridgeddniversity Rressc 2043 0511586446.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.009
https://www.cambridge.org/core

GENERAL RELATIVITY 59

on account of that, we disregarded them in the original frame where
they do not vanish, we should not draw the geodesics correctly.
Also, we do not want to make exceptions in that special case, we do
not wish to impose the rule that we must always bother whether
or not the affine connexion as a whole can be reduced to nothing
and, if so, bother to adopt the frame where it is so reduced.

Perhaps it would be interesting to know whether at least in the
n.eighbourhood of a particular point the gravitational field can be
‘transformed away’. The answer to this is simple: it always can.
But we will come to this later.

THE LAW OF GRAVITATION

In Newton’s theory gravitation is described by a potential ¢,
the gradient of which, taken negative, is the acceleration imparted
to a small test-body. The law governing the ¢-field reads

¢ = const., where there is no field; (8.1)
V¢ = o, (8.2)

where there is a field, but no gravitating matter; and
Vig = 4nkp, (8:3)

where there is gravitating matter of density p, k being the constant
of gravitation, 6-67 x 1078 g.7! cm.3 sec.~2,

Obviously and of necessity, (8.1) is included as a special case in
(8.2), and the latter as a special case in (8.3). Or, putting it the other
way round, (8.2) is a generalization of (8.1), and (8.3) a generalization
of (8.2).

Since we wish to represent the field by an affine connexion I'%,
the cardinal question is, what are the corresponding laws governing
the I'Y,; in these three cases?

There is no doubt about the analogue of (8.1). Where there is
no field, the connexion must be integrable and the geodesics
straight lines. We learnt in Chapter vi that the necessary and
sufficient condition for this to be so is

By, = 0; iy = Iy 8.4)
(80 equations) (24 equations)
So this must be fulfilled where there is no field (and no matter).
The condition to impose on the I'’s where there is a field but no
52

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:28, subject to the Cambridge
Core terms of use, availaflesmbridge/Books Dnljiner@Cambridgeddniversity Rressc 2043 0511586446.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.009
https://www.cambridge.org/core

6o SPACE-TIME STRUCTURE

matter must be expressed by one (or more) tensor-equations, which
must be fulfilled inter alia in the limiting case of no field, that is to
say, they must be a mathematical consequence of (8.4), demanding,
however, less than (8.4). That leaves us still with a wide choice,
as an attempted generalization usually does. For example, the
tensor-equations

By B* e = 0,

B Idekpqi =0,

Ry R, +aB",, B, =0, (a=some constant)

and many others fulfil the requirement. So let us be guided by the
principle of simplicity, which suggests that it is worth while trying
an equation or equations which are linear at least with respect to
the derivatives of the Is (as equation (8.4) actually is) if such
there are. (Notice that the classical equations (8.1)—(8.3) are
altogether linear.) If we add this demand, then products of B’s
are excluded, and the only wayt of deducing from (8.4) anything
less exigent than (8.4) itself is to contract it. Thus we get

Ry=0, (Spm=0) (85)

Now remember, on the one hand, that if I'!;; is a symmetric affinity,
the second equation is contained in the first and can be scratched;
on the other hand, it seems very much worth while to try whether
we can do with symmetric I's, because the skew part would have
no influence whatever on the geodesics, which, after all, inspired
our whole attempt. We do that, and henceforth until further notice
take the affinity to be symmetric

| ES (8.6)
Then we are left with Ry =o, CX))

as the general equation to impose on the Is where there is no matter.

This is in one respect very satisfactory, in another respect not
quite so. Let us first speak of the satisfactory point. It is, that the
vanishing of a tensor of the second rank in empty space is just what
we would expect as the mathematical description of the concept
‘empty’, i.e. devoid of matter. For, according to the famous

+ Merely to drop the 24 conditions leads to Einstein’s ‘ Fernparallelismus’.
It did not work.
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identification of mass and energy, which Einstein inferred from
a simple thought-experiment on the pressure of light and which
was so strikingly confirmed by actual experiments on the dis-
integration of matter by nuclear collisions that its fatal large-scale
confirmation by the ‘atomic bomb’ was quite gratuitous—I say,
according to this famous discovery of Einstein, matter is not repre-
sented by a scalar but by a tensor of the second rank, because
energy is not a scalar; it is the time-time component of the stress-
energy-momentum (or flux-energy-momentum) tensor.t Using
the terminology of the Restricted Theory of Relativity, though we
cannot explain it in detail at the moment, we have that for a particle
of rest-mass m this tensor is
dx, dx,

mz d_s s (8.8)
where ds is the differential of proper time (an invariant).

So we may take it that our Ry, is essentially the matter-tensor,
that (8.7) expresses the fact that it vanishes (empty space) and
that the generalization of (8.7) inside matter, corresponding in
Newton’s theory to the transition from (8.2) to (8.3), will be of

the form Ry =CTy, 8.9)

where C is a constant and T, is the matter tensor. This interpreta-
tion will prove to be not yet quite correct; it will require a slight
readjustment.

Pending a detailed investigation, this is satisfactory as far as it
goes. It is slightly disturbing that the tensor (8.8) is contravariant,
while in (8.9) a covariant tensor is required. It is much more
disturbing that the tensor (8.8), as well as any elementary energy
tensor, e.g. the Maxwellian, is symmetric, while R, is not, not
even with our symmetric affinity—we had drawn attention to this
fact in Chapter vi. But the most disconcerting fact is that there
are 40 functions 'y, which cannot be sufficiently controlled by
the equations (8.7) or more generally speaking (8.9), which number
only 16 and will have to be reduced to 10, since we will have to get
rid of the asymmetry in R, anyhow.

4+ That the energy is not an invariant can be seen from the elementary

consideration that the kinetic energy of a particlg vanishes in some inertial
frames but not in all of them.
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Both the disturbing asymmetry in R;; and the shortcoming of
the number of equations seem to indicate that for representing
a pure gravitational field something much less general than a sym-
metric I'Y, with 40 independent components must be contemplated,
in other words that some further general restriction must be imposed
on the connexion. Now this necessity is supported from an entirely
different side that will show us the way.
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PART I1I
METRICALLY CONNECTED MANIFOLD

CHAPTER IX
METRICAL AFFINITIES

GENERAL INVESTIGATION

Two circumstances combine to let us think that with the basic
affine connexion there must in some way be associated another
geometric entity of fundamental significance, viz. a Riemannian
metric. Actually it was from this side that Einstein first attacked
the problem of the structure of space-time. The notion of affinity
was brought in later by H. Weyl.+

The first circumstance is that, as we saw, an affine connexion
already gives rise to an invariant ds along every geodesic. Com-
parison of ‘length’ or ‘interval’ (it is not really just length, remember
we are in four dimensions) becomes possible.

The idea suggests itself that this comparison of intervals should
not be restricted just to one and the same geodesic.

The second circumstance is that such an invariant ds is actually
known in the so-called Restricted Theory of Relativity. We shall
enter into the details later. It is not the sum of squares, but
dt?—do? (= ds® say), where do means the spatial element of
distance. A generalization thereof is the general line-element that

we will have to consider: d
&idx;dxy,

(where it is sufficient to take g;. = g;;). What is the connexion
between the two ‘ds’? We will obviously have to demand that the
primitive I"-metric forms part of this g,;-metric.

We turn to a more thorough investigation of these relationships.
If x,, x5, x5 are interpreted as spatial coordinates and x, as the

time, the components of the velocity of a particle at the point x;, are

dx, dx, dx,

dx,’ dx,’ dx,’ (9-3)
where x;+dx,, is a neighbouring point on the world-line of the
particle. The transformation formulae of the three quantities (9.1)
are easily derived from (1.4), but they are extremely unwieldy,

+ Raum, Zeit, Materie (Berlin, Springer, 1918).
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namely linear but non-homogeneous, and fractional. Now since,
after all, dx;, #s a vector, it is reasonable to envisage instead of (9.1)
a definite vector with components proportional to dx, (not dx,
itself, because it is not a definite vector) from which the quantities
(9.1), if ever desirable, can be obtained as quotients. Moreover, it is
reasonable to demand that such a vector should be always available.

For this purpose we need an infinitesimal invariant proportional
to the dx;. In the chapter on geodesics we have learnt that the
affine connexion itself procures such an invariant, viz. the differential
ds of the parameter s that is distinguished on every geodesic in that
it gives to its equation the simple form (7.3). And we have learnt
that the vector dx,/ds is parallel-transferred along the geodesic.
Yet it is again not a quite definite vector, because the distinguished
variable is not quite unique, it is only determined up to a linear
transformation with arbitrary constant coefficients (s’ = as+¥b).
Thus ds is only determined up to a constant multiplier (@) and so is
dx,/ds. This multiplier is still free on every one of the co® geodesics.

Can this lack of definiteness be removed, so that dx;/ds becomes
a definite vector on every geodesic and thus for every line-element?
In principle that seems easy: just take an arbitrary definite choice
of 5, independently on every geodesic.

Well, we shall see how that works. After we have taken our choice,
ds will for every line-element dx;, be a definite homogeneous in-
variant function of the first degree of the dx;. We shall not set to
explore all the vast possibilities which that leaves, but only the
one suggested by the elementary way distance is measured in a skew
Cartesian system of coordinates—essentially by the Pythagorean
theorem. That is, we assume

ds® = g dx,dxy, (9-2)

where g, is a symmetrical tensor, varying from point to point.
This very special assumption is reasonably justified by the appre-
hension that no other one would make our model join to the more
elementary concepts of physics. Yet we must be aware that we thus
impose a considerable restriction which is not likely to be com-
patible with an arbitrary affinity.

We wish to know the necessary and sufficient condition for (9.2)
to be in accordance with the affine measure of distance along every
geodesic. The answer we have to expect is a relationship between
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the tensor g;; and the connexion I'!,,. The task is not quite easy.
We shall first explore at some length a sufficient condition, which is
not necessary, but will lead us by itself to the less restrictive
necessary and sufficient condition.

I maintain, a sufficient condition is that the invariant

La A 4%, (9:3)
where A¥ is any vector (not vector-field) at any point, be conserved
on any parallel displacement of the vector 4k,

Indeed let § (to distinguish it for the moment from the s in (9.2))
be the affine parameter chosen on a given geodesic. The invariant
g B ¢ (say)
will then be conserved on parallel transfer of dx;/ds along this
geodesic. Hence if you replace, as you may, the parameter § on this
geodesic by §4/C and call that s, (9.2) is fulfilled. Since you can do

the same on every geodesic, the sufficiency is proved.

Since an invariant product is certainly conserved on parallel-
transfer when all its factors are parallel-transferred (see Chapter v),
the condition is certainly fulfilled if the affinity I', transfers the
field g,; into itself, that is, if the invariant derivative of g, taken
with respect to I'%y, vanishes:

ik = %%:f — &k T4 —&im T = 0. (9-4)
Moreover, you easily realize, that none but the parallel-transferred
g can conserve the invariant (9.3) for an arbitrary 4*. Indeed
with A4F arbitrary its parallel-transferred is also arbitrary. Hence
the (transferred) invariant is known for an arbitrary (transferred)
vector, and by this the g, in the new place is determined uniquely.

Thus (9.4) is the mathematical expression of our sufficient con-
dition. We write the three equations that result from a cyclic
permutation of the subscripts zkl:

B _
ox,
%8

T Em T —&m i = 0 +3
1

.
gk U~ 8 Mg =0 -3

6 Al
aL;:"gmi ™ e~ Eim I ™1 = O +4%
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and combine them with the factors indicated beyond the bar. In
doing so we take into account the symmetry of g, but not that of
I'™,. In other words, for the moment we proceed to determine
the most general non-symmetric affinity that complies with our
sufficient condition. (The reason will appear later. We are not
really out for the non-symmetric affinities. But this procedure will
facilitate the finding of the sufficient and necessary condition.)
We get:
(B BT}y (Do T

+ 3 8im(T™ = T} + 381 L™y — I™y) = 0. (9.5)
We can solve these equations with respect to the symmetric part
of T, with the help of the tensor g? derived from the tensor g;;
in the way described in Chapter 11 (see equations (2.8)—(2.10)) and
uniquely determined by

&%gn = &%
In the present case it is obviously also symmetric.
We ‘multiply’ (9.5) by g% and put for abbreviation

(I™y+I™y) =T it |

- .6
}(Img— D) = T | ©:6)
agkl %y agik) - { 5}
oo (0 ) (). (ot
We obtain (adding I™® 4% O both sides):
Doy = {i k} +&8m ™+ 8 8m Iy + Dy (98)

This formula gives the complete answer to the question which
affinities transfer a given g, -field into itself. Observe that both
the curly bracket and the sum of the second and third terms on the
right are symmetric in ¢ and k. Hence the skew part I“’g‘ can be

chosen arbitrarily, the even part I'®;, (viz. the first three terms on

the right) is then uniquely determined by the skew part and the
ga-field. From (9.8) follows that the Christoffel-brackets
=[5
T = {5 99

+ These are called the Christoffel brackets. They do not constitute a tensor,
but according to (9.9) an affinity.
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form the only symmetric connexion that complies with (9.4) for
given g -field. But we learn from (9.8) something more, even if
we are interested in symmetric connexions only. We have seen in
Chapter viI that neither the geodesics nor their ‘affine-metrical’
parameter depends on the skew part of the affinity. So let us just
scrap it; then we are left with

§
Psik = {1 k} +gslgz'm leg +gslgkm Fm;i'l' (9'10)

This family of symmetric affinities, in which I', is an arbitrary
skew tensor, is equally well ‘ compatible’ with the metric Zae though
it has, of course, other geodesics than (9.9) and does not comply
with (9.4), showing that the latter condition, while sufficient, is
not necessary. It is now easy to derive the necessary and sufficient
condition.

On the one hand the tensor, added on to the Christoffel brackets
in (9.10), may be written—or rather (9.10) may be written

)
ey = {i k} +8%T sy (9.11)

Tyr = T, (9-12)
and it is easy to satisfy oneself
(i) that the T-tensor in addition to its symmetry in ¢ and  fulfils
the peculiar symmetry-condition

Tlik+ T.ﬂd‘l' Tkli =0, (9.12“)
(ii) thatitisotherwisearbitrary,since I'*,,isso. Indeed by taking
Iy = = 3™(Tia— Tiar)

in (9.10) and observing (9.12) and (9.124), you obtain (9.11). The
last three relations are thus equivalent to (9.10), and the whole
family of affinities described by them is what we may call ‘com-
patible’ with the metric g;;. (Let this be a short expression for—
not a hard and fast postulate of—the kind of agreement between
them which we spoke of in detail.)

In reviewing our findings concerning this compatibility we shall
now speak of symmetrical affinities only, to which, as we know, any
skew part may be added without changing the geodesics and their
affine metric, thus without interfering with compatibility. The
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sufficient compatibility condition (9.4) singles out (9.9) as the only
symmetric affinity that fulfils it with a given g,;; but we have just
now found a whole class of symmetric affinities compatible with
a given g,;, namely (9.11) cum (9.12) and (9.124). We proceed to
show that this is already the widest class, in other words that the
last three relations together represent the sufficient and necessary
conditions of compatibility.

Observe first that even with a fixed g;; only (9.124) represents
any restriction at all on the symmetric affinity (g.11), since the
difference of two symmetric affinities, the I'- and the Christoffel
affinity, is a symmetric tensor anyhow, and that is just what the
equations (9.11) and (9.12) say about it. Therefore it only remains
to be shown that (g.124), in addition to being sufficient, is also
necessary.

Compatibility demands that the invariant (9.3) should be unity,
if the affine dx;/ds is taken for A¥. This must hold everywhere along
a geodesic, and since here the direction-vector is parallel-displaced,
the invariant (9.3) must not change, when the vector A* is parallel-
displaced according to the affinity (9.11) along a line-element 5 4%
(with # an infinitesimal constant), while the g,; change to their
values in the neighbouring point. Now this latter change is known
to cancel exactly those terms that would originate from displacing
A* by the Christoffel affinity alone. Hence in the whole operation
the majority of terms are known to cancel; only those containing the
tensor T survive and must vanish by themselves. This leaves us with
the following conditions, which must be imposed on the com-
ponents of the tensor T':

0= — 28, A'g" Ty, A'A™,
that is to say = —2nAAA™T,,,.
Now remember that 4% is arbitrary. By taking first only one of its
components different from zero, then two of them, finally three of
them, and by using (9.12) you easily prove (9.12a); the latter
represent twenty independent conditions in addition to the former,
and reduce T to twenty independent components.

This completes the proof, that (9.11)~(9.124) are the necessary

and sufficient conditions for a symmetric affinity I'!;; and a metrical
tensor g;,. to agree in the sense that the complete g,,-metric accords
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with the incomplete TI'-metric, defined only along each affine
geodesic. And, to repeat this, an arbitrary skew-symmetric tensor,
added to our T, interferes with nothing, because it changes neither
the affine geodesics nor their affine metric.

On how many independent functions does our general ‘metric
affinity’ (as we may suitably call it) depend? There are 10 inde-
pendent g,,.. The tensor T}, is restricted to 40 independent com-
ponents by the symmetry in / and m. A careful count shows that
(9.12a) amounts to 20 independent conditions. Our tensor has thus
20 independent components and our I' seems therefore to depend
on 30 arbitrary functions.

At the end of the previous section the desire was felt to restrict
I" so as to depend on 10 functions only. That suggests envisaging
after all only the simplest case, viz. T},,, = o. This ruling also meets
another desire that was felt, viz. to get the Einstein-tensor Ry
symmetric. With a symmetric I" the only term that disturbs the
symmetry is, from (6.17) or=

ka
et (9-13)
We shall see presently that for the Christoffel affinity (9.9) it is
indeed symmetric in k and L

By accepting (9.9) and thereby (9.4) we have now reached exactly
the geometrical point of view underlying Einstein’s 1915 theory,
known as the General Theory of Relativity, which is going to occupy
us for several chapters. Even before entering into any details about
it, we have become aware that it represents, from the affine stand-
point, a very special case, capable of generalization in more than
one direction.

SOME IMPORTANT FACTS AND RELATIONS

Let us right away become familiar with a few simple facts and
conventions, all turning on the fact (9.4), that the invariant deriva-
tive of the metrical tensor g;,—often called the fundamental tensor
of this theory—vanishes.

First, it follows that also

g%, =o.

For, from gaft =0/
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by invariant differentiation:

GikimE +8ikg%m = 8l im = 0.
Multiplying this by g*¢, you find

&% m=—8"¢"u;m = 0.

As stated, a fundamental scalar density is the square-root of the
determinant ,jg. What about its semicolon derivative? A deter-
minant is a polynomial of all its n*(= 16) components. Dif-
ferentiating it with respect to every single component g, and
remembering that the ‘co-factor’ is gg'*, we get

ox, =g “ox,
We replace the derivative on the right by its value drawn from (9.4):

= 88 (&mi T+ 8im T™n
=2gT*,;
for this we can write Jg —\gle, =

or g =0
Incidentally we have now supplied the proof that the metrical
Einstein-tensor #s symmetric. For the ostensibly disturbing term
(9.13) may now be written

I, &log.g

R
which is symmetric. Summarizing g, g%, g have vanishing
semicolon derivatives.

This fact makes a certain convention about ‘drawing’ (or

‘raising’ and ‘lowering’) of indices a particularly convenient tool.
We associate with any tensor of a definite description,

kim...
T Pg..

many (to be precise, 2°—1, if s is its rank) others, which differ
from it in character by one or more of the superscripts being
‘lowered’ and/or one or more of the subscripts being ‘raised’.
The procedure for obtaining these tensors is illustrated by

Tklm..., - gksTsIm...
Tldm _ gquklm

Pq...
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Raising and subsequent lowering of the same index (or vice versa)
leads back to the original tensor. It is immediately clear that, with
this convention introduced, one has to establish and carefully to
observe a definite order between all indices, not only between those
of the same character as before, since they can change their cha-
racter. One has taken to the habit of regarding all these different
associated tensors as the same tensor. This is quite legitimate, but
of course it refers to a definite fundamental tensor g,; given once
and for all.

In very much the same way one can also associate with any
tensor a tensor density and vice versa, by multiplying or dividing
it by /—g. (Apart from rare and odd exceptions at isolated points,
g is assumed to be always different from zero and negative.)

It is easy to prove, but it deserves special mention, that a couple
of dummy indices can be raised and lowered simultaneously without
any further effect. For instance, we have identically (according to

our conventions) Thm... = T.im.k
kg

etk a...*
Now these conventions are particularly convenient on account of
the fact that the fundamental tensors g, g%, Jjg are their own
parallel-transfers or, what is the same, have zero derivatives.
From the first way of expressing this fact it follows immediately
that the associations in question are conserved on parallel displace-
ment. Of even greater practical use is the consequence that drawing
of indices can be effected ‘inside the semicolon’. It will suffice
to make the point clear by an example. Say you are given the

equation
B k it = tki.

Then you can infer that By ; = #,.
The reason is that

By,s = (guB)is = gu;i B'+gu B i = gu B, 1.
Similarly and for the same reasons ‘latinizing’ and ‘gothicizing’,
i.e. dividing or multiplying by /g, may be effected under the
semicolon.
It deserves to be mentioned that g*, though it was originally
defined in a different way, actually is the fundamental tensor g;;,
with both its subscripts raised, exactly after our convention. If only

one index is raised is 5
878k = O0'ps
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the result is the mixed unity tensor, independent of the special
metric.

In contrast to what has just been said about the relationship
between g;; and g%, the following is remarkable. One sometimes
has to contemplate an arbitrary variation of the fundamental tensor
Ziks 52y 0g;.. This entails automatically corresponding increments
dg*. Now, if you vary in this way the preceding equation you get

08 g +8°08 = ©,
or, multiplying by g¥, ' .
0¥ = —ghg¥igy.
One might have expected the + sign. Anyhow, it turns out that
not dg** and dg;;, but —Jdg%* and dg,,. are associated.

GEODESIC COORDINATES

We have in Chapter vI proved that a frame always exists in which
all the components of a given symmetric affinity vanish at a given
point. We call this geodesic coordinates at that point.

From (9.4) this means, in the present case, that all the derivatives
&ir,; vanish at that point or that the g, are stationary there. It is
sometimes very convenient to specialize for a moment in a geodesic
frame, because some frame-independent relations may by this great
simplification be discoverable at a glance, while they are not so
patent in the general frame. To give an example, we envisage the
Riemann-Christoffel-tensor of the Christoffel-bracket-affinity:

: 7 ! i)\fa 1)

Bym = = {kz},m”” {km}_,+ {al} {km} "!am} {kl}'
From Chapter vi we are acquainted with some of the symmetry
properties of the general R.Ch.-tensor. It is always antisymmetric
in its last pair of subscripts and enjoys for any symmetric affinity
the cyclic symmetry expressed in (6.164). Let us now replace the
brackets according to (9.7) and use a geodesic frame, which makes
all first derivatives vanish. One obtains

Biyim = 38— 815, kym + Brt,5m + Lums, k,1 = Llom, 1,5)-
The associated totally covariant tensor

Bsklm = %( —8ls, ke;m +gkl.s;m+gm,k,l_gkm.l.s)
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now exhibits two further symmetry properties, in addition to those
mentioned just before. Namely, in addition to
(i) being antisymmetric in the second pair (I, m),
(it) and having according to (6.16a)
Bsklm + lemk + Bsmkl =0
it is also

(iit) antisymmetric in the first pair (s, k), and

(iv) symmetric with regard to the exchange of the inner couple
(k,1) among them, accompanied by an exchange of the outer couple
(s,m) among them; or in other words (with a view to (i) and (iii))
an exchange of the first and second subscripts with the third and
fourth.

No other symmetries independent of these can be found, and hence
there are none. For in the simplified form they cannot be concealed,
they would have to shew up, since the four second derivatives that
appear are quite obviously capable of any arbitrary values. This
negative conclusion is easily as important as the previous positive
ones, though text-books usually fail to emphasize it.

Let us count the number of independent components of our
tensor. By (i) and (iii) we must have s = kand / & m, if the component
is not to vanish. Since there are 6 such pairs of numbers, we first
get 6 x 6 = 36 components. Among them are just 6 where the two
pairs are identical, so that (iv) becomes trivial for them. For the
remaining 30 components it is not trivial and reduces their number
virtually to 15. So we are left now with 15+ 6 = 21 components.
Careful consideration of the only remaining cyclical property (ii)
shows that it reduces this number just by one, leaving us with 20
independent components.
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PART I1I
METRICALLY CONNECTED MANIFOLD

CHAPTER IX
METRICAL AFFINITIES

GENERAL INVESTIGATION

Two circumstances combine to let us think that with the basic
affine connexion there must in some way be associated another
geometric entity of fundamental significance, viz. a Riemannian
metric. Actually it was from this side that Einstein first attacked
the problem of the structure of space-time. The notion of affinity
was brought in later by H. Weyl.+

The first circumstance is that, as we saw, an affine connexion
already gives rise to an invariant ds along every geodesic. Com-
parison of ‘length’ or ‘interval’ (it is not really just length, remember
we are in four dimensions) becomes possible.

The idea suggests itself that this comparison of intervals should
not be restricted just to one and the same geodesic.

The second circumstance is that such an invariant ds is actually
known in the so-called Restricted Theory of Relativity. We shall
enter into the details later. It is not the sum of squares, but
dt?—do? (= ds® say), where do means the spatial element of
distance. A generalization thereof is the general line-element that

we will have to consider: d
&idx;dxy,

(where it is sufficient to take g;. = g;;). What is the connexion
between the two ‘ds’? We will obviously have to demand that the
primitive I"-metric forms part of this g,;-metric.

We turn to a more thorough investigation of these relationships.
If x,, x5, x5 are interpreted as spatial coordinates and x, as the

time, the components of the velocity of a particle at the point x;, are

dx, dx, dx,

dx,’ dx,’ dx,’ (9-3)
where x;+dx,, is a neighbouring point on the world-line of the
particle. The transformation formulae of the three quantities (9.1)
are easily derived from (1.4), but they are extremely unwieldy,

+ Raum, Zeit, Materie (Berlin, Springer, 1918).
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64 SPACE-TIME STRUCTURE

namely linear but non-homogeneous, and fractional. Now since,
after all, dx;, #s a vector, it is reasonable to envisage instead of (9.1)
a definite vector with components proportional to dx, (not dx,
itself, because it is not a definite vector) from which the quantities
(9.1), if ever desirable, can be obtained as quotients. Moreover, it is
reasonable to demand that such a vector should be always available.

For this purpose we need an infinitesimal invariant proportional
to the dx;. In the chapter on geodesics we have learnt that the
affine connexion itself procures such an invariant, viz. the differential
ds of the parameter s that is distinguished on every geodesic in that
it gives to its equation the simple form (7.3). And we have learnt
that the vector dx,/ds is parallel-transferred along the geodesic.
Yet it is again not a quite definite vector, because the distinguished
variable is not quite unique, it is only determined up to a linear
transformation with arbitrary constant coefficients (s’ = as+¥b).
Thus ds is only determined up to a constant multiplier (@) and so is
dx,/ds. This multiplier is still free on every one of the co® geodesics.

Can this lack of definiteness be removed, so that dx;/ds becomes
a definite vector on every geodesic and thus for every line-element?
In principle that seems easy: just take an arbitrary definite choice
of 5, independently on every geodesic.

Well, we shall see how that works. After we have taken our choice,
ds will for every line-element dx;, be a definite homogeneous in-
variant function of the first degree of the dx;. We shall not set to
explore all the vast possibilities which that leaves, but only the
one suggested by the elementary way distance is measured in a skew
Cartesian system of coordinates—essentially by the Pythagorean
theorem. That is, we assume

ds® = g dx,dxy, (9-2)

where g, is a symmetrical tensor, varying from point to point.
This very special assumption is reasonably justified by the appre-
hension that no other one would make our model join to the more
elementary concepts of physics. Yet we must be aware that we thus
impose a considerable restriction which is not likely to be com-
patible with an arbitrary affinity.

We wish to know the necessary and sufficient condition for (9.2)
to be in accordance with the affine measure of distance along every
geodesic. The answer we have to expect is a relationship between
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METRICAL AFFINITIES 65

the tensor g;; and the connexion I'!,,. The task is not quite easy.
We shall first explore at some length a sufficient condition, which is
not necessary, but will lead us by itself to the less restrictive
necessary and sufficient condition.

I maintain, a sufficient condition is that the invariant

La A 4%, (9:3)
where A¥ is any vector (not vector-field) at any point, be conserved
on any parallel displacement of the vector 4k,

Indeed let § (to distinguish it for the moment from the s in (9.2))
be the affine parameter chosen on a given geodesic. The invariant
g B ¢ (say)
will then be conserved on parallel transfer of dx;/ds along this
geodesic. Hence if you replace, as you may, the parameter § on this
geodesic by §4/C and call that s, (9.2) is fulfilled. Since you can do

the same on every geodesic, the sufficiency is proved.

Since an invariant product is certainly conserved on parallel-
transfer when all its factors are parallel-transferred (see Chapter v),
the condition is certainly fulfilled if the affinity I', transfers the
field g,; into itself, that is, if the invariant derivative of g, taken
with respect to I'%y, vanishes:

ik = %%:f — &k T4 —&im T = 0. (9-4)
Moreover, you easily realize, that none but the parallel-transferred
g can conserve the invariant (9.3) for an arbitrary 4*. Indeed
with A4F arbitrary its parallel-transferred is also arbitrary. Hence
the (transferred) invariant is known for an arbitrary (transferred)
vector, and by this the g, in the new place is determined uniquely.

Thus (9.4) is the mathematical expression of our sufficient con-
dition. We write the three equations that result from a cyclic
permutation of the subscripts zkl:

B _
ox,
%8

T Em T —&m i = 0 +3
1

.
gk U~ 8 Mg =0 -3

6 Al
aL;:"gmi ™ e~ Eim I ™1 = O +4%
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66 SPACE-TIME STRUCTURE

and combine them with the factors indicated beyond the bar. In
doing so we take into account the symmetry of g, but not that of
I'™,. In other words, for the moment we proceed to determine
the most general non-symmetric affinity that complies with our
sufficient condition. (The reason will appear later. We are not
really out for the non-symmetric affinities. But this procedure will
facilitate the finding of the sufficient and necessary condition.)
We get:
(B BT}y (Do T

+ 3 8im(T™ = T} + 381 L™y — I™y) = 0. (9.5)
We can solve these equations with respect to the symmetric part
of T, with the help of the tensor g? derived from the tensor g;;
in the way described in Chapter 11 (see equations (2.8)—(2.10)) and
uniquely determined by

&%gn = &%
In the present case it is obviously also symmetric.
We ‘multiply’ (9.5) by g% and put for abbreviation

(I™y+I™y) =T it |

- .6
}(Img— D) = T | ©:6)
agkl %y agik) - { 5}
oo (0 ) (). (ot
We obtain (adding I™® 4% O both sides):
Doy = {i k} +&8m ™+ 8 8m Iy + Dy (98)

This formula gives the complete answer to the question which
affinities transfer a given g, -field into itself. Observe that both
the curly bracket and the sum of the second and third terms on the
right are symmetric in ¢ and k. Hence the skew part I“’g‘ can be

chosen arbitrarily, the even part I'®;, (viz. the first three terms on

the right) is then uniquely determined by the skew part and the
ga-field. From (9.8) follows that the Christoffel-brackets
=[5
T = {5 99

+ These are called the Christoffel brackets. They do not constitute a tensor,
but according to (9.9) an affinity.
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METRICAL AFFINITIES 67

form the only symmetric connexion that complies with (9.4) for
given g -field. But we learn from (9.8) something more, even if
we are interested in symmetric connexions only. We have seen in
Chapter viI that neither the geodesics nor their ‘affine-metrical’
parameter depends on the skew part of the affinity. So let us just
scrap it; then we are left with

§
Psik = {1 k} +gslgz'm leg +gslgkm Fm;i'l' (9'10)

This family of symmetric affinities, in which I', is an arbitrary
skew tensor, is equally well ‘ compatible’ with the metric Zae though
it has, of course, other geodesics than (9.9) and does not comply
with (9.4), showing that the latter condition, while sufficient, is
not necessary. It is now easy to derive the necessary and sufficient
condition.

On the one hand the tensor, added on to the Christoffel brackets
in (9.10), may be written—or rather (9.10) may be written

)
ey = {i k} +8%T sy (9.11)

Tyr = T, (9-12)
and it is easy to satisfy oneself
(i) that the T-tensor in addition to its symmetry in ¢ and  fulfils
the peculiar symmetry-condition

Tlik+ T.ﬂd‘l' Tkli =0, (9.12“)
(ii) thatitisotherwisearbitrary,since I'*,,isso. Indeed by taking
Iy = = 3™(Tia— Tiar)

in (9.10) and observing (9.12) and (9.124), you obtain (9.11). The
last three relations are thus equivalent to (9.10), and the whole
family of affinities described by them is what we may call ‘com-
patible’ with the metric g;;. (Let this be a short expression for—
not a hard and fast postulate of—the kind of agreement between
them which we spoke of in detail.)

In reviewing our findings concerning this compatibility we shall
now speak of symmetrical affinities only, to which, as we know, any
skew part may be added without changing the geodesics and their
affine metric, thus without interfering with compatibility. The
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68 SPACE-TIME STRUCTURE

sufficient compatibility condition (9.4) singles out (9.9) as the only
symmetric affinity that fulfils it with a given g,;; but we have just
now found a whole class of symmetric affinities compatible with
a given g,;, namely (9.11) cum (9.12) and (9.124). We proceed to
show that this is already the widest class, in other words that the
last three relations together represent the sufficient and necessary
conditions of compatibility.

Observe first that even with a fixed g;; only (9.124) represents
any restriction at all on the symmetric affinity (g.11), since the
difference of two symmetric affinities, the I'- and the Christoffel
affinity, is a symmetric tensor anyhow, and that is just what the
equations (9.11) and (9.12) say about it. Therefore it only remains
to be shown that (g.124), in addition to being sufficient, is also
necessary.

Compatibility demands that the invariant (9.3) should be unity,
if the affine dx;/ds is taken for A¥. This must hold everywhere along
a geodesic, and since here the direction-vector is parallel-displaced,
the invariant (9.3) must not change, when the vector A* is parallel-
displaced according to the affinity (9.11) along a line-element 5 4%
(with # an infinitesimal constant), while the g,; change to their
values in the neighbouring point. Now this latter change is known
to cancel exactly those terms that would originate from displacing
A* by the Christoffel affinity alone. Hence in the whole operation
the majority of terms are known to cancel; only those containing the
tensor T survive and must vanish by themselves. This leaves us with
the following conditions, which must be imposed on the com-
ponents of the tensor T':

0= — 28, A'g" Ty, A'A™,
that is to say = —2nAAA™T,,,.
Now remember that 4% is arbitrary. By taking first only one of its
components different from zero, then two of them, finally three of
them, and by using (9.12) you easily prove (9.12a); the latter
represent twenty independent conditions in addition to the former,
and reduce T to twenty independent components.

This completes the proof, that (9.11)~(9.124) are the necessary

and sufficient conditions for a symmetric affinity I'!;; and a metrical
tensor g;,. to agree in the sense that the complete g,,-metric accords
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with the incomplete TI'-metric, defined only along each affine
geodesic. And, to repeat this, an arbitrary skew-symmetric tensor,
added to our T, interferes with nothing, because it changes neither
the affine geodesics nor their affine metric.

On how many independent functions does our general ‘metric
affinity’ (as we may suitably call it) depend? There are 10 inde-
pendent g,,.. The tensor T}, is restricted to 40 independent com-
ponents by the symmetry in / and m. A careful count shows that
(9.12a) amounts to 20 independent conditions. Our tensor has thus
20 independent components and our I' seems therefore to depend
on 30 arbitrary functions.

At the end of the previous section the desire was felt to restrict
I" so as to depend on 10 functions only. That suggests envisaging
after all only the simplest case, viz. T},,, = o. This ruling also meets
another desire that was felt, viz. to get the Einstein-tensor Ry
symmetric. With a symmetric I" the only term that disturbs the
symmetry is, from (6.17) or=

ka
et (9-13)
We shall see presently that for the Christoffel affinity (9.9) it is
indeed symmetric in k and L

By accepting (9.9) and thereby (9.4) we have now reached exactly
the geometrical point of view underlying Einstein’s 1915 theory,
known as the General Theory of Relativity, which is going to occupy
us for several chapters. Even before entering into any details about
it, we have become aware that it represents, from the affine stand-
point, a very special case, capable of generalization in more than
one direction.

SOME IMPORTANT FACTS AND RELATIONS

Let us right away become familiar with a few simple facts and
conventions, all turning on the fact (9.4), that the invariant deriva-
tive of the metrical tensor g;,—often called the fundamental tensor
of this theory—vanishes.

First, it follows that also

g%, =o.

For, from gaft =0/
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70 SPACE-TIME STRUCTURE
by invariant differentiation:

GikimE +8ikg%m = 8l im = 0.
Multiplying this by g*¢, you find

&% m=—8"¢"u;m = 0.

As stated, a fundamental scalar density is the square-root of the
determinant ,jg. What about its semicolon derivative? A deter-
minant is a polynomial of all its n*(= 16) components. Dif-
ferentiating it with respect to every single component g, and
remembering that the ‘co-factor’ is gg'*, we get

ox, =g “ox,
We replace the derivative on the right by its value drawn from (9.4):

= 88 (&mi T+ 8im T™n
=2gT*,;
for this we can write Jg —\gle, =

or g =0
Incidentally we have now supplied the proof that the metrical
Einstein-tensor #s symmetric. For the ostensibly disturbing term
(9.13) may now be written

I, &log.g

R
which is symmetric. Summarizing g, g%, g have vanishing
semicolon derivatives.

This fact makes a certain convention about ‘drawing’ (or

‘raising’ and ‘lowering’) of indices a particularly convenient tool.
We associate with any tensor of a definite description,

kim...
T Pg..

many (to be precise, 2°—1, if s is its rank) others, which differ
from it in character by one or more of the superscripts being
‘lowered’ and/or one or more of the subscripts being ‘raised’.
The procedure for obtaining these tensors is illustrated by

Tklm..., - gksTsIm...
Tldm _ gquklm

Pq...
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METRICAL AFFINITIES !

Raising and subsequent lowering of the same index (or vice versa)
leads back to the original tensor. It is immediately clear that, with
this convention introduced, one has to establish and carefully to
observe a definite order between all indices, not only between those
of the same character as before, since they can change their cha-
racter. One has taken to the habit of regarding all these different
associated tensors as the same tensor. This is quite legitimate, but
of course it refers to a definite fundamental tensor g,; given once
and for all.

In very much the same way one can also associate with any
tensor a tensor density and vice versa, by multiplying or dividing
it by /—g. (Apart from rare and odd exceptions at isolated points,
g is assumed to be always different from zero and negative.)

It is easy to prove, but it deserves special mention, that a couple
of dummy indices can be raised and lowered simultaneously without
any further effect. For instance, we have identically (according to

our conventions) Thm... = T.im.k
kg

etk a...*
Now these conventions are particularly convenient on account of
the fact that the fundamental tensors g, g%, Jjg are their own
parallel-transfers or, what is the same, have zero derivatives.
From the first way of expressing this fact it follows immediately
that the associations in question are conserved on parallel displace-
ment. Of even greater practical use is the consequence that drawing
of indices can be effected ‘inside the semicolon’. It will suffice
to make the point clear by an example. Say you are given the

equation
B k it = tki.

Then you can infer that By ; = #,.
The reason is that

By,s = (guB)is = gu;i B'+gu B i = gu B, 1.
Similarly and for the same reasons ‘latinizing’ and ‘gothicizing’,
i.e. dividing or multiplying by /g, may be effected under the
semicolon.
It deserves to be mentioned that g*, though it was originally
defined in a different way, actually is the fundamental tensor g;;,
with both its subscripts raised, exactly after our convention. If only

one index is raised is 5
878k = O0'ps
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the result is the mixed unity tensor, independent of the special
metric.

In contrast to what has just been said about the relationship
between g;; and g%, the following is remarkable. One sometimes
has to contemplate an arbitrary variation of the fundamental tensor
Ziks 52y 0g;.. This entails automatically corresponding increments
dg*. Now, if you vary in this way the preceding equation you get

08 g +8°08 = ©,
or, multiplying by g¥, ' .
0¥ = —ghg¥igy.
One might have expected the + sign. Anyhow, it turns out that
not dg** and dg;;, but —Jdg%* and dg,,. are associated.

GEODESIC COORDINATES

We have in Chapter vI proved that a frame always exists in which
all the components of a given symmetric affinity vanish at a given
point. We call this geodesic coordinates at that point.

From (9.4) this means, in the present case, that all the derivatives
&ir,; vanish at that point or that the g, are stationary there. It is
sometimes very convenient to specialize for a moment in a geodesic
frame, because some frame-independent relations may by this great
simplification be discoverable at a glance, while they are not so
patent in the general frame. To give an example, we envisage the
Riemann-Christoffel-tensor of the Christoffel-bracket-affinity:

: 7 ! i)\fa 1)

Bym = = {kz},m”” {km}_,+ {al} {km} "!am} {kl}'
From Chapter vi we are acquainted with some of the symmetry
properties of the general R.Ch.-tensor. It is always antisymmetric
in its last pair of subscripts and enjoys for any symmetric affinity
the cyclic symmetry expressed in (6.164). Let us now replace the
brackets according to (9.7) and use a geodesic frame, which makes
all first derivatives vanish. One obtains

Biyim = 38— 815, kym + Brt,5m + Lums, k,1 = Llom, 1,5)-
The associated totally covariant tensor

Bsklm = %( —8ls, ke;m +gkl.s;m+gm,k,l_gkm.l.s)
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now exhibits two further symmetry properties, in addition to those
mentioned just before. Namely, in addition to
(i) being antisymmetric in the second pair (I, m),
(it) and having according to (6.16a)
Bsklm + lemk + Bsmkl =0
it is also

(iit) antisymmetric in the first pair (s, k), and

(iv) symmetric with regard to the exchange of the inner couple
(k,1) among them, accompanied by an exchange of the outer couple
(s,m) among them; or in other words (with a view to (i) and (iii))
an exchange of the first and second subscripts with the third and
fourth.

No other symmetries independent of these can be found, and hence
there are none. For in the simplified form they cannot be concealed,
they would have to shew up, since the four second derivatives that
appear are quite obviously capable of any arbitrary values. This
negative conclusion is easily as important as the previous positive
ones, though text-books usually fail to emphasize it.

Let us count the number of independent components of our
tensor. By (i) and (iii) we must have s = kand / & m, if the component
is not to vanish. Since there are 6 such pairs of numbers, we first
get 6 x 6 = 36 components. Among them are just 6 where the two
pairs are identical, so that (iv) becomes trivial for them. For the
remaining 30 components it is not trivial and reduces their number
virtually to 15. So we are left now with 15+ 6 = 21 components.
Careful consideration of the only remaining cyclical property (ii)
shows that it reduces this number just by one, leaving us with 20
independent components.
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CHAPTER X

THE MEANING OF THE METRIC ACCORDING
TO THE SPECIAL THEORY OF RELATIVITY

Our geometrical construction—a four-dimensional continuum with
affine and metrical connexion—is to serve as a model of the real
physical world. What physical interpretation are we to give to the
‘line-element’ ds—the infinitesimal invariant determined by every
pair of infinitely neighbouring points x; and x; + dx, ?

In the beginning of Chapter 1x the request for the invariant ds was
prompted by the formal desire to obtain for the important notion
of three-dimensional velocity a handier representation amenable to
tensor calculus. Its elementary definition by the components

d, dn  dn

dx,’ dx,’ dx,
is unwieldy, since this is not a tensor. It does not vanish in every
frame if it vanishes in one frame, and has pretty complicated, viz.
fractional, linear transformation formulae.

Clearly ds must be related to some kind of ‘distance’ between
the two points, which, however, be it remembered, are not two
points in space, but two world-points, i.e. two neighbouring points
in space, envisaged at two infinitely neighbouring moments in time
(dx,). According to a well-known algebraic theorem the original
metrical definition of ds, viz.

ds® = g, dx,dx, (10.1)
can, by a linear transformation of the dx; with constant coefficients
and a non-vanishing determinant,

dx), = aldx;, (r0.2)
always be turned into an aggregate of squares only
4
ds? = Y (1)dx? (10.3)
k=1

And, of course, a general coordinate transformation can always be
indicated which produces this form at any particular point. (E.g. at
the point x,, = o, take the transformation so that at that point it has
the development x;, = a,%;+ higher powers of the x;.) From
Euler’s famous theorem on the ‘inertia of quadratic forms’ it is
known that if the coefficients @, in (10.2) are confined to reality,
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the number of (— )-signs in (10.3) is not at our choice, it is invariably
determined by the original coefficients g,;,. We can say more.
Remember that the determinant of the g,;, which we have called g,
is on transformation multiplied by the square of the determinant
of the a,*. So if these are real, the parity of the number of (- )-signs
in (10.3) is determined by the sign of g, the number of (—)-signs
being even for g > 0 and odd for g < 0. Now, since we have excluded
g = o (save, quite exceptionally, at some zsolated points), the sign
of g can never change and therefore the parity in question, and
therefore the exact number of ( —)-signs can never change, because
it could obviously do so only where g = o (isolated points do not
matter, they can be avoided). So the number of (—)-signs is the
same in the whole world and it is a matter of importance to make
the appropriate choice for our model once and for all.

The clue to this number and to the meaning of ds is given by the
Special Theory of Relativity. This theory starts from some every-
day system of Cartesian space-coordinates (an inertial system, to
be quite definite, that is to say one for which the ordinary laws of
mechanics hold at least in the limit of small velocities of the moving
bodies) plus a linear time-parameter, read from a good old grand-
father’s clock. The theory then contemplates a group of certain
homogeneous, linear transformations with constant coefficients,
transformations which involve all four coordinates and which there
is reason to interpret as: going over to another inertial system, that
moves with constant translational velocity with respect to the first.
In calling it again an inertial system, we make the (well-founded)
assumption that in it too the ordinary laws of mechanics hold in the
limit of velocities that are small in 1. (That, by the way, is the
manner in which the theory extends the ordinary laws of mechanics
to large velocities. For the relative velocity of the two spatial frames
need not be small, though it is, by the nature of the transformation,
limited to be smaller than the velocity of light.) In fact the very
backbone of the theory is that all laws of Nature shall be the same
for every frame reached in this way, including, of course, the original
one from which we started; there should be no difference or
distinction in principle between all these inertial frames, any one
of which can be reached from any other one by a transformation of
that group—a so-called Lorentz-transformation. In short, all laws
of Nature are assumed to be invariant to Lorentz-transformation.
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Now, since these linear transformations of special relativity (just
as our more general ones) involve all four ‘coordinates’ x,, x,, X3, X,
you can, of course, identify the same world-point after the trans-
formation, but there is no good meaning (just as little as in our more
general case) in speaking of the same point in space after the trans-
formation unless you also refer to the moment of time in which it is
contemplated; neither is there a meaning in speaking of the same
moment of time after the transformation without reference to the
point in space where it is contemplated. What in one frame is the
same point in space, envisaged at different moments of time, will
in general turn out to be two different points in space in the other
frame, envisaged at two different moments. Again, what in one
frame is the same moment at two different points, will in general be
mapped in the other frame as different moments referring to
different points in space. It is this state of affairs which has given
birth to all the much discussed ‘paradoxes’ in the Special Theory
of Relativity—so difficult to explain to the non-mathematician,
while the mathematician is prepared to encounter some clashes with
customary views from the mere fact that all four coordinates are
involved in the transformation.

From what has been said it is to be anticipated that neither
the distance between two points in space (say, the distance of two
points at which two well-defined momentary events happen) nor
the tzme interval between the happening of the two events are in-
variant to Lorentz-transformation; either of them may even vanish
in one frame, but not vanish in another frame. If we take for con-
venience one of the two events to happen at the origin at time zero,
the other one at the point x,, x,, x5 at time x,, the square of their
distance in that frame will be given by the Pythagorean theorem,
thus

x%+ x} + x3
and their time interval by Xy.

Since all frames are to be of equal right, the same expressions will
hold in any other frame, only with the x;’s for the x,. But neither
is invariant. We shall have in general

X324 292 + 2032 = 2 + 22 + x%,
X3 xg.
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However—and this is the cardinal point—the Lorentz-transforma-
tion is characterized by the fact that the following expression (which
could equally well be quoted with the opposite sign) #s invariant

’
—xf—xd—ad4ad = —a— w2 — x4 a2 (10.4)

I said the transformations are characterized by this invariance.
Indeed it is well-nigh an exhaustive definition distinguishing
Lorentz-transformations among all possible homogeneous linear
transformations of the four coordinates. The state of affairs bears
formal analogy to the case of orthogonal transformations (rotations
of the Cartesian system) in three dimensions, which are charac-
terized among al! linear transformations by the invariance of the
distance x3+ x5+ «3.

I have still to comment on the ‘well-nigh’. First, among the
group of transformations delimited by the invariance (10.4) are
such with transformation determinant +1 and such with —1.
One usually excludes the latter on the ground that they cannot
be reached from the ‘identical transformation’ (x;, = x;) by con-
tinuous change of the coefficients. Moreover, one usually demands
that the coefficient which gives 8x,/0x, shall be positive, for obvious
reasons: one does not wish the time to increase in opposite directions
in different frames.

A formal description of the injunction (10.4) can be given in the
following terms. If you write down the four linear transformation
formulae and transcribe every term containing x, or ¥ thus:

axy = (—ia)(ixy), xy = (—1)(ixy),
in other words if you regard it as a transformation between the
variables xy, x,, x5, #x,, and x7, x3, x3, 7x, then this is an orthogonal
transformation (or a ‘rotation’) in four dimensions but with some
relevant injunctions on the coefficients as to being either real or
purely imaginary.

The invariant (10.4) of two world-points or ‘point-events’, one
of which was for simplicity taken to happen at the origin of the
four-dimensional frame, is the square of the time-interval minus
the square of the distance. It can be positive or negative. In the
first case xj can never vanish, and thus, in virtue of our conventions
about the determinant and the coefficient dxj3/dx,, it cannot change
its sign on Lorentz-transformation. The second event (the one with
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coordinates x;) is then called later or earlier with respect to the
first (the one at the four-dimensional origin) according to whether
%42 0. The term ‘eigentime’ (more generally, eigentime-interval
between the two events) has been adopted for the absolute value
of the square root of the invariant (10.4) in this case. There is namely
in this case a frame (to be reached by a particular Lorentz-trans-
formation) in which the distance in space between the two events
vanishes, in other words in which the two events are considered to
happen at the same place. It is that frame in which a material
point that in the original frame moves straight with uniform velocity
in the time interval o— x, from the space point (o, 0, 0) to the space
point (x,, X,, x3) is considered to be at rest all the time. The eigentime
is the time-interval between the two events which a ‘Lilliput
observer’ moving in this way would read off his Lilliput stop-watch.
In view of the invariance of (10.4) it is the shortest time-interval
recorded between them in any frame.

We turn to the case when the invariant is negative. In this case
the time-interval x; can vanish and change sign on Lorentz-trans-
formation in spite of our convention about the determinant and the
coefficient dxy/0x,. The time order between the two events is not
settled in an invariant way. The meaning of the invariant is:
negative square of their distance in a frame in which the two events
are simultaneous. It is the smallest distance they can acquire in
any frame. Iam notaware that the absolute value of the square root
of the invariant has received in this case a name nearly as popular
as the term of eigentime in the previous case. One might call it the
distance of simultaneity or, shorter, the simultaneous distance.
But these are not established terms. A slightly more involved notion
has been given prominence. If a straight rod of suitable length is
placed with its ends at space-points (0, 0, 0) and (x,, x,, ¥3) and kept
at rest in the original frame, you can find out its length, viz.
(%2 + 22 + x3), by inspecting the space coordinates of its extremities,
and it is immaterial whether you do this simultaneously or not,
since the rod is at rest. We choose to do it at the times o and x,
respectively, where x, is selected so that in a certain other frame,
with respect to which the rod is in uniform translational motion,
%) = o. In this frame it is essential that the two inspections should
be simultaneous in it, if \/(x;?+x;2+ x;2) is to mean the length of
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the rod iz it. Our invariant, applied to these two events (the two
inspections), gives

—x3—a3— i+ a} = —x2—a— g2
Hence in general

Vot + 28+ 05) > (" + g 4+ 25%).

The rod has maximum length in the frame in which it is at rest.
This is called its rest-length (German: Ruhlinge). The fore-
shortening in another frame (or also: when having Leen set in
motion) is the famous Lorentz-Fitzgerald contraction. Though
intimately connected with what I called ‘simultaneous distance’
of two given point-events with negative invariant, the notions of
rest-length and Lorentz-contraction are, as I said, slightly more
involved. For the concept of length of a rod does not refer to a pair
of given point-events, the same in every frame. It refers to a pair
of point-events of which one at least changes from frame to frame;
viz. to two inspections (simultaneous in that frame) of the spatial
coordinates of the two extremities of the rod.

We continue to investigate the two events (or world-points)
with coordinates 0,0,0,0 and xy, x,, 3, x, respectively. We have
still to consider the limiting case when their invariant (10.4) is
neither positive nor negative, but vanishes. In this case neither can
the time-interval be reduced to zero with the distance remaining
finite nor vice versa. That both should be made zero simultaneously
would not militate against the invariance of (10.4), but against the
fact that the transformation is a one-to-one correspondence of
world-points. On the other hand, by regarding this case as the limit
of either of the other two, we anticipate the actual situation: there
is now no lower limit, neither for the time-interval nor for the
distance in space. By a suitable Lorentz-transformation both can
be made as small as we choose—and that simultaneously, since they
must always remain equal—without, however, reaching zero. (By
a suitable Lorentz-transformation the time between emission and
absorption of a quantum can be made as small as you choose.)

Hence now, as in the first case and unlike the second case, the
sign of x, is invariant and we know which event is earlier. All the
point-events which bear to the origin (o,0,0,0) the relation of
vanishing invariant lie on the manifold

—x}-xi-xi+xi=o0 (10.5)
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which is the (three-dimensional) surface of a ‘spherical’ (in one
dimension less we would say ‘circular’) hyper-cone with its apex
at the origin. It has literally the same equation in every frame.
That half on which x,> o is called the cone of future (in German:
‘ Nachkegel’), the other the cone of past (‘ Vorkegel’); all that with
respect to the origin, which however represents any world-point and
was chosen as one of our two point-events only for convenience.

The physical characteristic of any point-event on the cone of
future is that it coincides in space and time with the arrival of
a light-signal emitted from the origin, i.e. from space-point (o, 0, 0)
at time zero. The physical characteristic of any point-event on the
cone of past is that the origin (o, 0,0, 0) lies on its cone of future;
in other words that the ‘origin-event’ is simultaneous with the
arrival of a light-signal emitted ‘from that point-event’, supposing
it consisted in the emission of a light-signal.

These are simple consequences of (1) the earlier-later relation,
depending on x, < 0; (2) the equality of time-interval and distance;
(3) a remark which we might have made earlier, namely that all our
statements have been tacitly simplified by assuming that our co-
ordinates shall measure length and time in such units as to make the
velocity of light equal to 1. For instance, when using for time the
second, we have to measure length in ‘light seconds’ (1 light
second = 3 x 101°cm.). Or, and that is usually preferred, if we keep
to the cm. for length, we must use for time the ‘light centimetre’, the
time light takes to cover the distance of 1 cm., i.e.  x 10719 sec.
(I believe some authors call the latter unit a light second. But that
is in flat contradiction with what we call a light year, which is
ameasure of distance, not of time.) The light-cone neatly separates
the region where our invariant (10.4) is positive or where

J(x2+x3+x3)<|x,| (interior of the light-cone)
from the one where it is negative or where

JE3+ag+a)>|x,| (exterior of the light-cone).
The latter is also called the region of simultaneity or of virtual
simultaneity (all that with respect to our four-dimensional origin).
The terminology is clear from our previous discussion. A direction

pointing from the origin into the interior is called time-like; when
pointing to a point in the region of simultaneity space-like, because
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the former can be chosen as x,-axis in a Lorentz-frame, the latter,
for example, as x,-axis. A signal of any kind (including a moving
particle, a ‘messenger-particle’) which issues from or passes
through the origin can only reach points inside the cone of future
or on its hyper-surface. That it cannot reach points which are
definitely earlier (inside or on the cone of past) stands to reason.
But also the region of virtual simultaneity is excluded, for in some
frames they are earlier than the origin. There the message would
arrive before it was sent out. That suffices to exclude the possibility
in view of the principle of equal right to every Lorentz-frame.
The necessary and sufficient condition is that no signal and no
particle can ever move with a velocity greater than that of light.

I need hardly say, these consequences reached here rather dog-
matically in our brief exposé formed in actual fact part of the basis
on which the theory was built and they are amply sustained and
corroborated by vast experimental evidence.

Considering the, to a certain degree, equal standing with the
space coordinates that the time-coordinate is given already in the
Special Theory of Relativity, the desire referred to in the beginning
of this section crops up already in the Special Theory: to obtain
a description of the velocity of a moving particle that is more in
keeping with this attitude than are its three spatial components

dx, dx, dx,
ey dxy dxy
Now, if we call ds? the invariant (10.4) for two neighbouring world-
points x;, and x; + dx;, of the path,
ds? = —dx} —dx} — dx} + dx3, (10.7)
and decide to give to ds (which is always real!) the sign of dx,,
then the four components

(10.6)

dx, dx, dx, dx,

—‘25—, E, E—, —dT (10.8)
are well qualified for the purpose. First, they transform in
Lorentz-transformation exactly like the coordinates themselves,
since this obviously holds for the dx;, and ds is an invariant. They

have an invariant of the same build, which trivially equals 1:
dx} dxj dx} dx}

d? def de Tdz - b (109)
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Secondly, if we call the three components of the spatial velocity
(10.6), for the moment, v,, v,, v,, and v its absolute value, then
ds
dx,

and the four components (10.8) read

= J(1-v%) (10.10)

v, v, v, I

Ja=0) Ja—-o8) J1-v%)’ J(1-o%)

Hence in the very frequent case of the velocity being small com-

pared with the velocity of light (v< 1), the first three components

differ very little, only by second-order terms, from the components
of the spatial velocity, and the fourth very little from unity.

In Special Relativity an array of four numbers which transforms
like the coordinates is called a four-vector, and the four-vector (10.8)
is referred to as the four-velocity. However the qualifying ‘four-’
is often dropped, if it can be understood from the context. From
(10.11) it is seen that its components are not restricted to be <1.
Except for the condition (10.9), they can have any real values.

In making use of the notions of Special or Restricted Relativity
for interpreting physically the mathematical scheme of General
Relativity that we have been treating hitherto on these pages—
treating it, to be sure, in a rather formal manner only—it cannot
be emphasized too strongly that the latter is from a certain point of
view not at all what its name seems to indicate; it is indeed from
a certain point of view not a generalization but rather a restriction
of the so-called Restricted Theory.

It restricts its validity to the infinitesimal neighbourhood of
any—and that means, of course, of every—world-point. Practically
the ‘infinitesimal’ region may often be taken fairly large, if the
gravitational field in it is fairly weak and perceptibly constant, as,
for example, within our laboratory for any length of time.

Nevertheless it is important to state that in principle we take over
the scheme of Special Relativity only for a four-dimensional element
of volume around a world-point, which may for that region play the
part the ‘origin’ played in our foregoing deliberations. Coordinates,
distances, time-intervals are the coordinate differentials or are
formed of the coordinate differentials within that small region
only.

(10.11)
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A general transformation of the coordinates (x;, = four arbitrary
functions of the x;) amounts to a linear transformation of the dx;
in each world-point, and thus amounts, as we shall see immediately,
inter alia to a Lorentz-transformation of the dx; at each point,
varying continuously from point to point so that it can be regarded
as constant within a small region. That is why we can take over
the Special Theory for a small region.

Now in point of fact the transformation of the dx; at any
point
ox;,

o, dx (r0.12)

dx;, =
is not really a Lorentz-transformation, it is something slightly more
general. A Lorentz-transformation, as regards the number of
constants or of freedoms involved, is equivalent to a rotation in four
dimensions. A rotation in # dimensions depends on n(n—1)/1-2
constants (giving 3 for n = 3, correctly as we know). For n =4
we get 6 as the number of constants free in a Lorentz-transformation.
(Another way of counting is: a Lorentz-transformation amounts
to a rotation in space (3) plus an arbitrary velocity (3) of the new
spatial frame with respect to the old one.)

But in (10.12) all the 16 coefficients ox;/dx, are arbitrary. What
do the ten additional degrees of freedom amount to? Nothing very
interesting from the point of view of this one world-point or world-
element-of-volume. We would fain avoid them if we could. The
general linear transformation—and that is what (10.12) is—
includes four independent changes of the units in which the
coordinates are measured in certain four mutually orthogonal direc-
tions;t it amounts to this plus an arbitrary ‘rotation’ (we defer
the question whether or when the latter actually is a Lorentz-
transformation).

That accounts for the ten additional degrees of freedom. Indeed
we can choose the first of those four mutually orthogonal directions
quite arbitrarily (3), then the second orthogonal to it (2), then the
third orthogonal to both of them (1), then choose the four changes
of measure (4), giving 10.

1 Take here, for the moment, orthogonal in an elementary meaning, Dis-
cussion follows. For the counting of the constants it is immaterial.
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We have to allow for these ten additional degrees of freedom in
our world-point, simply because the general coordinate transforma-
tion seizes upon all world-points, and its differential form (10.12)
could not possibly conform to a more special guise with only
6 constants at every world-point. And we do allow for this precisely
by the fact that our invariant ds? has not the unchangeable form
(10.7) in every frame

ds® = —dx3 — dx3 — dx3 +dx3, (10.13)
but the more general form
ds® = g, dx,dxy, (10.14)

the ten functions g;;, changing with the frame.

It cannot be denied that this is a great inconvenience. For from
this general form we cannot even within this small region, and not
even with respect to the frame we are using, tell the spatial distance
and the time-interval between two point-events. General world-
coordinates are not fit for being interpreted directly. If we wish to
do that, we must reduce (10.14) by a local transformation to the
form (10.13).

Let local coordinates for which ds? takes this standard form be
called dy,, the ‘d’ meaning only that they are infinitesimals, not
necessarily that they are differentials of functions y,(x). For
another system of world-coordinates x;, let dy; have the same
meaning. Then the dyj, are, via the dx;, and dx;, linear functions of
the dyy, and this linear connexion is bound to be a Lorentz-trans-
formation at least in the sense that

—dyP-dy? - dy P+ dyd = —dyi-dyi - dyi+ i

Can we be sure that it is a Lorentz-transformation also in the
restricted sense that its determinant | dy;/dy,| is +1 and that the
coefficient 9y;/dy,>o0?

The first can easily be guaranteed, if we agree once and for all that
only world-transformations with positive determinant | éx;/éx;|
“shall be allowed—a small sacrifice, since the sign is constant any-
how—and if you use the same precaution for the transformation
dx;,— dy, that produces the standard form. The second, the positive
sign of dy;/2y,, would be guaranteed, if we could be sure that also
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in every general world-frame and at every world-point three of
the four line-elements
(1) (@n o o o),
(2) (o dx, o 0),
(3) (o o dx; o ),J
(4) (e o o adx)
are space-like and one—moreover the same one throughout the
world—time-like.

I am not aware that a world-frame has ever been used which does
not comply with this demand. But I can see no general ground for,
nor indeed a simple way of, excluding such a frame. It is not
the case that the condition when complied with at one world-point
must hold throughout the world. It is true that a coordinate-line-
elementt can change its character only by passing through the
light-cone. But, unfortunately, that causes no singularity. The

form ds® = — dx} — dx} — 2dx,dx,

is just as regular and well-behaved as the standard form, into which
it is readily turned by

(10.15)

1 I
dy, = dx, dy,=dx, dy, =$(dx3+dx4) dy, = \—/é(dxa_dxﬂ-

Yet in the first form both (o, 0, dx;, 0) and (o, 0,0, dx,) lie on the
light-cone.

At some world-point near-by, dx, might be time-like, dx; space-
like, at some other point the other way round. In the first we
might feel inclined to interpret x, as the time, in the second x;,.
Neither would be correct: the standard form must be produced for
correct interpretation. This entails inter alia that the local velocity
of light is everywhere the same in the whole world, viz. 1 in our
units. But again we must not seriously regard this as a result of
pure reason: the theory has been built inter alia on this demand.

We ought not to conclude this Chapter without indicating the
point in which the General Theory actually is more general than
the Restricted one. By a Lorentz-transformation we can ‘transform
away’ any velocity. Can the general theory do more, since for
interpretation we eventually have to fall back on a frame of restricted

+ We mean one of the type (10.15).
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relativity, from which the local g, have, so to speak, disappeared ?
Are not they supposed to depict the gravitational field ?

Not they but, as we shall soon see, their first derivatives. And
we shall also see that they too can be made zero at any given point
by a suitable general transformation. We thus ‘transform away’
the local gravitational field. Not by a conjuring trick: the physical
meaning is that we adopt locally a spatial coordinate system which
shares the acceleration a test-body would experience in the local
gravitational field.

Note added in proof. In explaining on p. 85 that there is no necessity
for just three of the four line-elements (10.15) being space-like, one time-
like, I added that I was not aware of anybody ever using a frame in which
this was not so. Since this was written, an example to the contrary was
furnished by Kurt Gédel, Reviews of Modern Physics, 21, 447, 1949.
Godel communicates a fascinating, entirely novel type of cosmological
solution of Einstein’s 1915 theory. This solution acquires its simplest
form with two of the coordinate-line-elements time-like (the other two
space-like). As far as I can see, it is in this case not possible to find a frame
such that the customary distribution (3+1) holds everywhere. The
signature of G&del’s line-element is, of course, (— — — +), as required!
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CHAPTER XI

CONSERVATION LAWS AND VARIATIONAL
PRINCIPLES

THE ELEMENTARY NOTION
OF CONSERVATION LAWS

We have proposed as the field-laws of gravitation
Ry, =0  in empty space-time, }
Ry = T,, where there is ‘matter’,

(r1.1)

Ty, being the stress-energy-momentum tensor of matter. (What
it means exactly will be discussed forthwith.)

One must be very careful in adopting field equations at pleasure,
just as much as, or even more than, when writing down a set of
algebraic equations to determine some unknown quantities. For
they need not be compatible. For instance, if you demand of x, y

x+y=1,
2x+2y =35,
this is just not possible.

A second, equally important, but quite different, point is that
matter has to fulfil the four conservation laws of energy and linear
momentum. That means, as I shall explain forthwith, a certain
condition which T}, has to fulfil, namely that its divergence must
vanish. We must not demand it to equal another tensor for which
this is not the case. (The second of the equations (11.1) will
actually have to be modified on this account.)

Both requirements—the compatibility and the conservation laws
—are automatically fulfilled if we do not accept our field equations
straight away, but base them on a variational principle. This is
a programme the consummation of which will ocupy us for some
time. I do not mean the question of compatibility ; we shall take it
for a granted mathematical theorem that the so-called Euler-
equations, the variational equations deriving from a variational
principle, are always compatible. But we have to go to some length
about the conservation laws. I shall first speak of elementary cases,
quite apart from General Relativity.
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88 SPACE-TIME STRUCTURE

The prototype of a conservation law is the so-called equation
of continuity in the motion of a fluid. If p is the density and vy, vy, v,
the components of the velocity, this equation reads

o

9 7 o
P 20, Gy vy

+ ox, = Ox, Oxg

0. (11.2)

By integrating it over some volume of the fluid, a2 volume fixed in
space, and using Gauss’s theorem you get

d
-7 fpdr = f[pvl cos (n, 1)+ pv, cos (n, 2) + pv, cos (n, 3)] df.

The three-dimensional vector pv is the density of flux; the equation
states that the amount of fluid con-

tained in that space diminishes by / d
the amount that flows out. Itis thus

a very trivial but none-the-less

valuable statement of a purely

geometrical nature; it has nothing

to do with the dynamical interac-

tion between the parts of the fluid

or what not.

In several elementary theories, to wit in the motion of an ideal
fluid or of an ideal elastic body or in Maxwell’s theory, a similar
consideration applies to the dynamical quantities of density of
energy and density of momentum. Each of the four quantities,
density of energy and x-, y-, z-component of the density of
momentum, can take the réle of our p above, and so we have four
dynamical equations of conservation of similar build to equation
(11.2). With each of the four quantities is associated a triplet of
components indicating the flux of that quantity, so that we have
16 quantities all in all. The three components giving the flux of
a component of the 3-vector of momentum can, of course, not
form a 3-vector. The 3 x 3 components of momentum flux form
a single entity, the three-dimensional stress-tensor. Let us call
M, (k=1, 2, 3) the components of momentum and T, (5, k=1, 2, 3)
this stress-tensor, then the conservation equation for M, reads

oM, 9Ty 0Ty Ty
T o, | omy | ok O
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CONSERVATION LAWS 89

which gives by integration over a volume
% M,dr = j[ Ty, cos(n, 1)+ Ty, cos (n, 2) + Tygcos (n, 3)] df.

The second integrand is the x-component of the force, F,, exerted

from the immediate neighbourhood outside on the immediate

neighbourhood inside df. The equation says that this force con-

tributes to—and the totality of

these forces make up—the in- n

crease of the total x-component f F,

of momentum inside the surface.

That need not necessarily result

in motion, because it is possible

thatallthese stresses balance and

that there is equilibrium. But

one regards this force in any case

as a flux of momentum. More-

over, there may be an intrinsic hidden motion going on and pro-

ducing a convective transfer of momentum across the element of

surface. It is sometimes convenient to include this in the stress.

For instance, in the interior of a gas we always do that. There are

all the time molecules crossing over in the

direction 1—2 and carrying, on the whole, @

momentum of this directionin this direction, &

And this is by no means counter-balanced by

the opposite events; on the contrary, it is

doubled. For the particles crossing over

from (2) to (1) carry, on the whole, momentum of the opposite

sign in the opposite direction. We are wont to refer to the

phenomenon as the internal pressure of the gas.

We must now take a pretty wide leap, to avoid which would lead
us to great length, for it would really mean building up Maxwell’s
theory of the electromagnetic field from its experimental founda-
tions. So I must ask the reader to believe me that there are strong
grounds from our four-dimensional standpoint for comprising the
four conservation equations into one statement about one four-
dimensional tensor of the second rank. Its 16 components are,
broadly speaking, the 16 quantities mentioned just before, but
they are not really 16, only 10, because the tensor is symmetric.

7 s
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Q0 SPACE-TIME STRUCTURE

(With the g stress-components it is a well-known fact, turning up
for the first time in the theory of elasticity, that they form a sym-
metrical tensor and thus amount only to 6.) We have to use the so-
called Galilean metric of Special Relativity (g, = —1, =1, =1, +1
on the diagonal, otherwise zero). Then the most uniform shape is
obtained by using the mixed tensor, because that avoids minus
signs. We then have
ox,  Oxy  Oxg  Ox,
Ox, ' Oxy  Oxg  Oxy
Ox,  Oxy ' Oxy  Oxy
Ty  oTF  oTy oTy

Ty oy oy Gy )

y

% (11.3)t

The most spectacular new event is that the three components of
momentum are at the same time those of the flux of energy. This
became clear for the first time in Maxwell’s theory, where these
three components form the so-called Poynting-three-vector. The
deeper significance is that energy and mass is the same thing.
Momentum, in its original conception mass x velocity, is a stream
of mass, and thus of energy. So the last of our four equations is
really at the same time the equation of continuity of mass-density
and brings us back to the point from which we started.

What form those equations will have to take in a general metric,
that is, in a general gravitational field, must be left open for the
moment. We note that we shall have to have something like the
vanishing of the divergence of a tensor (or probably tensor density)
of the second rank. This we shall have to interpret as the conservation
laws in a gravitational field.

4+ Or briefly —=o0.
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CONSERVATION LAWS 91

HOW CONSERVATION LAWS FOLLOW FROM
A VARIATIONAL PRINCIPLE IN CLASSICAL
(PRE-RELATIVISTIC) THEORIES

We shall now make a mathematical study of the way in which
a set of equations of this kind emerge from a variational principle.
Thereis one old and well-known way-—you find it in every text-book
of variational calculus.

We begin by sketching this elementary method, not so much for
the purpose of using it later as, inversely, for contrasting it with
the method used in General Relativity ; this is intrinsically different,
yet bears some outward resemblance to the elementary one, so that
the reader might easily confuse it with the latter. The elementary
connexion runs as follows.

Let f[&h...
be a set of undetermined functions of the coordinates x; (in the
most relevant application it will be the field-variables g;;. or some-
thing like that). Write for abbreviation

of
5&7‘ —fk, etc.

We envisage the variation 6/ of the four-dimensional integral

I=fH(f,g,h,...;fk,gk,hk,...; x;,) dad,

taken over any fixed region. H is to be a grven function of its many
arguments (5s+ 4, if there are s functions f,g,4,...). By variation
we mean that f,g,4,... are given small increments df,dg, %, ...,
which vanish at the boundary.

For convenience, partial derivatives of H as a function of its
58+ 4 arguments will be indicated by subscripts thus:

oH oH oH
—aj:‘ = Hf"‘ 5}: = ka... 5‘;"‘ = Hk'

The summation sign X, preceding an expression in which the
letter f occurs, will mean: plus the same expression for g, for 4, etc.
Our wusual summation rule is retained! Thent

8l = f S(H, 8f + H,, 8f,) dxt = f > (H,-EZ; H,k) 5fdst,

1 We use that df,=9/0x; (8f), perform a partial integration in the term
containing this quantity, and remember df=o0 at the boundary, so that the
surface integral vanishes.

7-2
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92 SPACE-TIME STRUCTURE

The bracket is sometimes called the Hamzltonian derivative of H
with respect to f, and sometimes abbreviated §H/df or similarly.
For 61 to vanish under our conditions of variation all these Hamil-
tonian derivatives must vanish. The system of these equations is
called the Euler equations:

0H 0
'gEHf“a—kafk=°: fe
éH F
TgEHa o, T =0 | &

...........................

Now if you multiply the first equation by f;, the second by g,, etc.
and add them up, you get (remember the meaning of Z):

o= Z(fiH,~fi e Hy) = [ £+ L~ L (1) |
o o _oh

Now since f; = -2, = , the T over the first two terms will
ox;’ ox  ox;’

give simply 0H/ox; provided H does not contain x; explicitly.

(We have assumed this explicit dependence only in order to drop

it now: to show that the whole argument turns on this non-

dependence!) So our equation can be written

_OH 3
3 (fl Hf/c)
Using Kronnecker’s symbol §;;, (= 1 for i = k, otherwise 0) we may

write 3
7, (OuH—Zf;Hy) = o.

These are four equations of the ‘conservation-type’. Note three
things:

(1) They are consequences of the Euler-equations; they hold if
and only if 67 = o.

(ii) They require severally that H shall not explicitly depend
on the x; in question.

(iii) Thebrackets are not necessarily symmetricinz, k. Ingeneral
they are not.

In non-relativistic or pre-relativistic theories this was the usual
way of accounting for the conservation laws. That they hinge on H
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CONSERVATION LAWS 93

not depending directly on the x;, was very significant. The Hamil-
tonian function (often called Lagrange-function) H dictates the
laws of our field. The independence on x;, means that these laws
are not affected by a displacement in space or time, that they are
the same on Monday as on Tuesday, the same in Paris as in London.
This independence is (according to pre-relativistic physics) at the
basis of the conservation of energy and momentum,

CONSERVATION LAWS IN GENERAL RELATIVITY

In General Relativity things are changed. General Relativity
itself entails conservation laws—and that not as consequences of
field equations, but as identities. What happens is simply this:
If you contemplate an integral

I=f.@dx4

in which ® is now definitely assumed to be an invariant density
(and therefore written in Gothic), then from the mere fact of the
general invariance of this integral follow four identical relations
between the Hamiltonian derivatives of &, relations of the type of
conservation laws; identities, as I said; not, as before, equations
which result from putting the Hamiltonian derivatives equal to
zero; four relations between the Hamiltonian derivatives will be
shown to hold whether or not these derivatives themselves are zero;
indeed if they are, the relations become trivial.

The existence of four identities is not astonishing. For the
following reason. If you did adopt the variational principle 87 = o
to determine the functions f,g,4,... (on which and on whose
derivatives & shall depend), you would get the differential equations

oR
e 0, etc.

as many as there are functions f,g,/%,.... And that is, in General
Relativity, just by four too many; because here the functions
f.8,h, ... are bound to be tensor-components and are thus amenable
to change under a general transformation of the frame. Such
a transformation contains four arbitrary functions. Hence our
s functions cannot be fully controlled by those s equations.
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94 SPACE-TIME STRUCTURR

Hence the latter cannot be quite independent of each other.
The dependence is constituted precisely by those four identities
between their first members.

We proceed to derive them in the case of a metric g;;. That is to
say we take the scalar density § now to depend only on the ten g;;
(which now take the part of f,g,4,...), their derivatives g ; and
possibly also on higher derivatives. (This involves no complication
and will be required later.) Thus we contemplate

K(&ak Bite,t> Biktm> ++)-

We compute 81 and perform, after the pattern indicated before,
the partial integrations needed to put it into the form

o .
&l = j(szk 0g . dxt. (11.4)

For our present purpose—which is not to demand &1 = o but to
derive identities between the §®/0g,,—it is not necessary actually
to compute the latter, it suffices to know that they can easily be
determined. For shortness we put

R .
= S‘{\tk’
0.k

thus oI = {Rkdg,, dxt. (11.5)

01 is an invariant, being the difference of two invariants. Hence the
integrand is a scalar density. Moreover, dg;, is a tensor, being the
difference of two tensors, and is entirely arbitrary. Hence R%% is
a symmetrical contravariant density of the second rank.t Our
notation has been chosen accordingly.

We now apply (11.5) to a variation g, for which 47 must be
identically zero, on the strength of I being an invariant. To wit,
we bring about a ‘variation’ of the g,; merely by a change of
frame (which cannot alter the value of the invariant I). We let

+ There would be no point in distinguishing in (11.4) between d8/0g,; and
88/3g,.,, because they coalesce in view of the symmetry of 8g;.. Hence K is of
necessity symmetric, and that is why the arbitrariness of the symmetrical factor
3g4 suffices to prove the tensor-property of 8. Our general consideration on
p. 12 was based on an arbitrary co-factor of the form 4;A,, with 4; arbitrary.
For an arbitrary tensor Ay, (as 8gy; is) they hold a fortior:.
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CONSERVATION LAWS 95

the transformation depend on a parameter A so that for Ao it
approaches to identity:

xp = x,(x}, A) = 2]+ AP, (%) + A2y (2)) + ...

Our invariant integral then takes the form
I [2(5% Er (e, ) s

where & is, of course, the same function of the

. ox; ox,,
g‘ik(xs) = 3—x£ axr glm( r)

and of their derivatives with respect to the x’, as it was before of
the g, and their derivatives w.r.t. the x. The limits of integration
in &" will also be the same as they were in x, if we now stipulate
that at the boundary the transformation shall approach to identity
for any A. Since the notation for the integration variable is
irrelevant, the only formal change is that the argument is now not
Zar(x,) but g, (x;). Now, you easily compute, by expanding with
respect to A, that

’ 7’ 4 a a m a 3
()= s () = A (g1 550+ 8m 3o + 5 80 + O,

all functions to be written with the x’. Since this must vanish at
the border for any A, we may use (11.5) with the first order terms
in A for dg;.. Dropping the now superfluous dashes we get

3l = fﬁk( —¢~‘+g,md¢'" gfk¢n)dx4—o

We use the abbreviation of index-pulling by the g;;, and perform the
suggested partial integrations

o=f(—5, g '"¢m+®@k“"k¢,,)

= R ik le_k) "
_J‘(—Z—@x_k'-i-ﬁ ox,, D, dx?,
Now ¢, is quite arbitrary, hence

oRk,, -1 Qik égL’f

ox Te ﬁxm

= 0,
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96 SPACE-TIME STRUCTURE

These are the four identities. They must, of course, be tensor-
equations. We can shew this directly by turning them into our
semicolon notation. Indeed (the two terms we add are skew in
(¢, k) and thus vanish on summation over the symmetrical &%%):

9g %im , Ofin 3gkm)
ik 2otk __ ik zm k _ “Skm
i® = i® ( ox;, 3xm Ox;

- )
oR*,,
Thus we get T, 2~ Rk Ty, = 8%, = 0.
(From the general formula for 8%,,., which has three supplementary
I'-terms; but two of them cancel on contraction (&, 1).)

Of course, from the rule of pulling under the semicolon you may
also write @km = o,
So the simple fact is: the invariant divergence vanishes for the tensor
density that is constituted by the Hamiltonian derivatives of any
scalar density R that depends only on the g, and their derivatives with
respect to the coordinates up to any finite order.

That is, of course, very nice, because the invariant derivative is
doubtless the counterpart, the only invariant counterpart, of the
ordinary divergence in elementary theory. And so we have good
hope that some suitable scalar density will yield us the conservation
laws as identities in the general theory. Yet a few remarks must be
made to damp our enthusiasm. The fairy gift we are presented
with contains a little too much and a little too little.

First, these identities are not unique. Ewvery scalar density pro-
duces a set. We might perhaps have preferred to get a statement
about one particular & only, even if it were not an identity. We are
not really so keen on getting identities, while on the other hand
the conservation laws are one individual fact, not a class of facts.

Secondly, there appears to be the following alternative. Either
the & from which the ‘true’ conservation laws arise is the same as
the one that will yield our field equations, or it is not the same.
In the first case, the conservation laws become trivial, because the
f%m vanish separately, not only their divergence; in the second
case, when there are two different &’s for the two purposes, it would
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CONSERVATION LAWS 97

seem that the conservation laws have nothing to do with the field
equations at all, they would stand quite aloof.

A third somewhat disparaging remark is this. Though the in-
variant divergence is the only possible truly invariant counterpart
of the elementary one, it is not a true divergence in the mathematical
sense. You cannot by integrating over a three-dimensional volume
derive the integrated conservation laws, which are really those to
appeal immediately to imagination.

A merely formal remark, that is quite useful, is this. We had put

ﬁ\ik 8g[k dxr,

What if we had preferred to use the functions g rather than the
Zga.? That is simple enough. Both factors are tensors and so we
can raise and lower any pair of dummies simultaneously. Moreover,
we know that by raising both indices in dg;;, we get —dg®%. Hence

oI = - f R 0™ dxh.

In other words gf—k =—8,.

EINSTEIN’S VARIATIONAL PRINCIPLE

The simplest scalar density you can make up of the g;;’s is \/— g.
So let us just look for a moment at

I= fJ—gdx‘. (11.6)
Now
% _ o(~-g dJ-g
—_ = 1‘8‘.7‘_—. =61 -_ = 81 — = _,
g ~ &%= g(—g) =201g/~-¢ 2
So 8l =} f V=gg™ o, dxt.

Therefore the Hamiltonian derivative

8~
28 _ gen = g,
ik
But g% = ocannotserve asafield equation. Moreover the identities
gt., = o are trivial understatements. For we know that even
g%, =o.
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98 SPACE-TIME STRUCTURE

The next complicated scalar density is already very much more
complicated, it is formed of the curvature scalar

R =g*Ry,
by multiplying it by ,/—g. Thus we now contemplate
1 =fRJ—gdx4 = fg""Rikdx“. (11.7)

It is indeed much more complicated, because the R;, depend on
second derivatives of the g,;. You would expect the Hamiltonian
derivatives to reach the fourth order. In actual fact the variation
is very simple to perform, and the Hamiltonian derivatives are only
of the second order. We first get

oI = ~f(Sg""’ Ry + g% 0R,;,) dxt.

Now remember the Palatini equation (6.19)
ORy = —(0T%), 0+ (0T%),
If you insert this and perform the partial integrations with respect

to the semicolons the terms with 8R;;, give nothing, because g%, ,=o.
So we are left with

oI = fRikagikdx4. (11.8)
Since we may, of course, regard the g as independent variables
(just as well as the g, or g%*) the Euler equations are Ry, = o.
These are just our proposed field equations. What about the four
identities? Well, they hold for the Hamiltonian derivatives with

respect to the g, or g%. We must therefore express 61 by them.
That is easily done:

8g* = 64/ —ggi = V—gdg+g*8 g,
oy-g= %‘/:Egikagik = ‘%\/_:ggikagik,
8g™ = V=g g — 1g* g g,, 0p~.

Hence oI = fRzk \/-g (8gik - %gikg,uv 8g‘1“’) dxt
= [V-g (Radg™~ tReuog%) dst

= J\/ -8Ry — g R) dgi* dxt.
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EINSTEIN'S VARIATIONAL PRINCIPLE 99

So RS = Vg (Ru= 43R (11.9)

And the identities read

V=g (Ri~13%R));; =,
or (R —40%R),; = o, (11.10)
or (R~ 4gR), = o
all that meaning the same thing.

This shows us that we must certainly not regard R;; as the matter
tensor, but R;,—4g,R. There will, of course, be some constant
factor, essentially the constant of gravitation. We leave it out at the
moment, except that for reasons I cannot explain at the moment
the factor is negative. Thus in places where there is matter we shall

have to put —(Ry—3gsR) = Ty (11.11)

I'would rather you did not regard these equations as field equations,
but as a definition of T, the matter tensor. Just in the same way
as Laplace’s equation divE = p (or V2V = —47p) says nothing
but: wherever the divergence of E is not zero we say there is
a charge and call divE the density of charge. Charge does not
cause the electric vector to have a non-vanishing divergence, it is
this non-vanishing divergence. In the same way, matter does not
cause the geometrical quantity which forms the first member of the
above equation to be different from zero, it s this non-vanishing
tensor, it is described by it.

NON-INVARIANT FORM OF THE
CONSERVATION LAWS

We make an explicit note of the following Hamiltonian deriva-

tives:
0R ./~
3;/1 £ = Ry (11.12)
O0R .- —
(;g%kg = ‘/—g(Rik‘igikR) =—=N—gTy=-Tyu (11.13)
SRV-£ _ qu
% T, (11.14)
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The first is drawn from (11.7) and (11.8), the second from (11.9)
with the notation (11.11), the third from dgi* being the associate of
—0g. (see p. 72). T, is the tensor Ty, ‘gothicized’ in the ordinary
way. The first form of the identities (11.10) can then be written

T =o. (11.15)
We shall also use it in the more explicit form
33;’:,‘ Im 6glm —-
o, — 3T ag—o, (11.16)

actually the first we had obtained in subsect. 3, where we dealt with
an arbitrary invariant density & (see the equation at the bottom of
P- 95)-

The conservation identities (11.15), while extremely satisfactory
from the point of view of general invariance, lack the simple
visualizable meaning we had explained in the elementary cases:
three-dimensional volume integrals of their first members cannot
immediately by partial integration be transformed in such a way
as to allow us to interpret, for example, T}, T}, T} as the flux of the
quantity of which T} is the density, etc. The second term in (11.16)
is in the way. One might object—or rather acquiesce by the
excuse—that the three-dimensional volume integral of the com-
ponent of a vector density or tensor density has no invariant meaning
anyhow. Still we should welcome a visualizable interpretation con-
forming to the elementary way of thinking, albeit only ina particular
frame and perhaps for a not too extended region. Our main
objective in the following is to remove the obstacle by turning also
the second term in (11.16) into a sum of derivatives with respect to
the coordinates—what is sometimes called a ‘plain divergence’.

We begin by exhibiting the reason why the Hamiltonian deriva-
tives (H.D., for brevity) collected in (11.12)~(11.14) do not depend
on higher than second derivatives of the fundamental tensor, while
from elementary variational calculus we should expect them to
reach the fourth order, viz. twice the order they reach in the
integrand R,/—g itself. The reason is that the latter is in a certain
sense equivalent to another integrand, to be called —& in the
following, which contains no higher than first derivatives of the
g The equivalence rests on this, that the difference R\/—g+8
is what we just before called a ‘plain divergence’. The (four-
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EINSTEIN'S VARIATIONAL PRINCIPLE 101

dimensional) integral of a plain divergence, since it can be turned
into a (hyper-) surface integral, suffers no change under variations
such as served us to define the H.D., viz. variations that vanish at
the boundary. Hence the H.D. of a plain divergence vanishes.
Applying this to our case we see that any H.D. of R,/—g is equal to
the corresponding one of &, taken with the negative sign. This is
what we really mean by calling the integrands R,/—g and —
equivalent. We proceed to fill in the details.
Envisage the explicit expression

Ry-g=g"*Ry = g""( - 35;'“ 9;;

Let me introduce the abbreviations

ks Fﬂak I« i Fﬂaﬂ T zk)

@

Pl T~ TP s T = i (11.17)
ikgik = 2
Thus R-g=—gi* oT= ’k+g"‘ 35;:4_8'

By adding to this a certain plam dlvergence you get the equivalent

integrand g% , Toy—gi* T, + Q.

Express the factors g* , and g% , by those linear aggregates of I"’s
to which they are equal in virtue of the fact that g%, , vanishes
identically. Of the six terms you thus obtain two cancel, the
remaining four give —2&:

g% o o — g% I, = —28. (11.18)
So the equivalent integrand reduces to — &, as announced.

It is not an invariant density. Its advantage is precisely that it
contains no higher than first derivatives. You may regard it as
a function of either the g,; or the g% or the g% or the g,; and of their
coordinate-derivatives respectively, that is of either g, , or g%, or
g™ , or g, according to your first choice. In each case its H.D.’s
can be written down straight away along the lines explained in
the subsect., pp. 91 f. They are alternative expressions, whose
merits will appear forthwith, of the H.D.’s of R,/— g indicated above,
to which they are respectively equal.

We have for instance
o8 _ ( o8 ) o

agtm a aglm.
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Let us use this in the second term of (11.16)

g, e o, o2 (2]
lem im _ m _ ( ) o~
o, 5gzm o %1m, a B 3gtmg'm’k
__° ( (2Y ) o8 o8
B Eim, %, glm,ka % 2o, Simk
8 o8
Thus the ‘obstreperous’ term is turned into a plain divergence.
If we put 20
88— ) 11.20
( Ladar ‘glm k ( )
(11.16) reads (T +th) =0, (11.21)

This goes to shew that the elementary ideas of ‘density’ and ‘flux’
apply, if at all, not to the components T¢, but to T¢, +t%,. However,
té, is not a tensor-density. But we will come back to this.

For computing its components explicitly (11.20) is not very
convenient, because the partial derivatives of & regarded as a
function of the g, and g;; ; are not the most readily accessible. But
we are not bound to these variables. We wish to use g* and g% ,
instead. Consider that

8f8a’x‘ f 8g,, dt
6lm

oL og ogim .
but also f 5qm dgimdxt = f 5o 2. g, dx
since the g are functions of the g;,.. It follows

&2 0% ogm

S 30™ %m
mBm 0% 007 O O% 07
and i Pl T Pl PRl i
By continuing exactly according to the pattern of (11.19) you
obtain an alternative expression for our pseudotensor, viz.

tt ——(Nks——g—g‘m ) (11.204)

To obtain the partial derivatives in the ‘gothic, superscript’
variables, form the complete differential of the identity (11.18)

g% ,dTey — g% pdTey, + Doy d(g™ ) — T2, d(g i) = —2d8
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EINSTEIN’S VARIATIONAL PRINCIPLE 103

and replace the explicit derivatives in the first two terms (just as
we did for establishing (11.18)) by those linear aggregates of the
Is to which they are equal in virtue of the vanishing of g*,;. Then
those two terms turn out to be

= — g8y = —d2+ 8y dg’.
Thus = D2 d(g* o) + T d(8%, 1) — S dg™ = 2. (11.22)
This exhibits the partial derivatives we require; but since they

must be symmetrical with regard to the superscripts, the second
term has to be handled with care. It is best to rewrite it thus

Do d(@® 1) = (36% TP 35+ 367, T7) d(g ).

Q
Hence -339_:]: = —sik == (Fﬂak Faiﬂ— Fﬁaﬂ Faik),
o8 " . Ty —
ag* = — D%+ 36% T+ 36%, Ty (11.23)

These are the explicit expressions for the derivatives of which the
second would be needed to make (11.204) explicit.

For the sake of completeness let me insert a remark on the
homogeneity of &, first with regard to the g;; and g, ;. Of the latter
alone it clearly is a quadratic form, from (11.17), since our I’s are the
Christoffel brackets. Of both groups together the Christoffel brackets
are—since the g% are functions of degree —1 of the g;,—homo-
geneous functions of degree zero. From (11.17) the same holds
for the &,,. Moreover, the gi* (= ¥/—gg™*) are obviously of degree
+1 in the g;;. Hence € is homogeneous of degree +1 in the g;,
and g, , together, and therefore—since it is a quadratic form of
the latter—it must be homogeneous of degree —1 in the former.
All the statements of the last sentence remain true (on account of
the one that precedes it), when g,; and gy, are replaced by g*
and g* ;. This entails, for example, the Euler-relations

. 0%
a9
ogk %
. 0%
i 9 _
8%, ot 28,

which can easily be verified by direct computation from (11.23)
(you must use g, = o).
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104 SPACE-TIME STRUCTURE

We proceed to discuss briefly the pseudotensor t?, and the con-
servation law (11.21). That the former is not a tensor has already
been stated. It has the further deficiency that the array of com-
ponents obtained from it by lowering the superscript with the help
of the fundamental tensor is not symmetric (nor is, of course, the
one you get by raising the subscript). Yet (11.21) holds in every
frame provided that the pseudotensor is defined in that frame in
the way we did define it. At first sight it is astonishing to find
a relation holding in every frame though it does not treat of tensors
only. But first we must not forget that ours is after all the tensor
equation (11.15), only put into another form; secondly it exhibits
two ‘not properly covariant’ features, namely in addition to the
sham tensor a sham divergence, to wit the elementary one instead
of the invariant one. These two features obviously compensate
each other.

The components of the pseudotensor are sometimes spoken of
as the gravitational energy-momentum-stress. In a way, they
supersede the classical notion of gravitational potential energy,
which has no other counterpart in Einstein’s theory. They are not
a very proper counterpart. It has, for example, been objected that
in the field of an isolated mass-point you may make them vanish
everywhere by a suitable choice of the frame. But, of course, for
one tsolated particle the notion of potential energy does not arise
in classical theory either.

The most relevant aspect of the non-invariant shape (11.21) of
the conservation laws is perhaps this: it throws particularly well
into relief that in the present theory we must not expect conservation
laws in the elementary sense to hold at large for ¥?, in any frame.
The change of the amount of T, contained within a closed three-
dimensional surface (i.e. the volume integral of T4, extended over
the interior) is not controlled by the flux &1, T2, T3, through the
boundary. There is a famous and singularly striking example of
this, to wit: the total amount of T’} (i.e. of energy or mass) contained
in a closed expanding universe decreases. In simple models the
loss can be computed and equals the amount of work the pressure
would have to do to increase the volume, if a piston had to be
pushed back as in the case of an adiabatically expanding volume of
gas. Yet there is nothing like a piston nor any boundary at all
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EINSTEIN'S VARIATIONAL PRINCIPLE 105

through which energy could escape. To the pre-relativistic view
(which might perfectly well endorse the idea of a closed expanding
universe without surmising any connexion between the g,; and the
gravitational field) the energy is not lost, but stored as potential
energy of the gravitating masses, which recede from each other.

Another example is that energy—and angular momentum—is
‘carried away’ through empty space (¥%, = o) from a system by
the gravitational waves it emits when it has an inner motion such
as to let its moments of inertia vary with time, say oscillate. The
radiated energy need never turn up elsewhere asa T§; but it can and
will do so when those waves hit another system capable of partly
absorbing them. The whole process is very similar to what we know
so well from the classical theory of emission and absorption of
electromagnetic radiation, except for the true energy tensor T%,
being zero inside the waves as long as they travel through empty
space.

In such cases the exact conservation law for T, +t%, can serve
to compute the energy-loss—or -gain, but to fix the ideas we shall
speak of emission. The flux t}, 13, ] through a closed surface sur-
rounding the system, but being itself situated in empty space, will
give you the loss of T4 + ¢4 inside the surface. If the internal motions
of the system are approximately periodical; if the frame is suitably
chosen; and if the type of secular change due to the radiation can
be qualitatively anticipated—as, for example, with a rotating rigid
rod, which can clearly only change its angular velocity: then the
amount of damping can be quantitatively inferred from that surface
integral of the t*;-flux.
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CHAPTER XII
GENERALIZATIONS OF EINSTEIN'S THEORY

AN ALTERNATIVE DERIVATION OF
EINSTEIN’S FIELD EQUATIONS

The dynamical interaction of material bodies does not consist in
their gravitational attraction alone. Electric and magnetic forces
between them have been known for a very long time and have by
Faraday and Maxwell been reduced to the notion of the electro-
magnetic field. In ordinary circumstances electromagnetic forces
are, whenever they are observed at all, very much stronger than the
gravitational pull, which is exceedingly weak unless at least one of
the interacting pieces of matter is very large, of the size of a celestial
body. Of late, one has been induced to admit that between the
elementary particles (nucleons) which go to build up the nucleus
of an atom there is a force (called the nuclear force) which is
perceptible only at very small distances, but outweighs there even
the strong electric repulsion between some of those particles. The
field of this force is usually referred to as the meson field, for reasons
on which we will not enter at the moment.

Ever since Finstein discovered his theory of the gravitational
field in 19135, there have been unceasing attempts to generalize it
s0 as to account in the same natural way for the electromagnetic
field as well. Since the latter is in empty space described by an
antisymmetric tensor of the second rank, the idea suggests itself
at once that one should take the fundamental tensor g, to be
non-symmetric, hoping that its skew part 3(g;, —g;) should have
something to do with electromagnetism. But this plan meets with
a certain difficulty. We had established Einstein’s field equations
in two steps. First we singled out the Christoffel-bracket affinity
(9.9) cum (9.7) as the one that as it were ‘naturally belongs’ to the
metric g;;. This was done virtually by postulating the momentous
identity (9.4), and deciding for a symmetric affinity. Only then
could the Einstein tensor R;; of this affinity be formed and the
variational principle adopted,

6fg""Ri,,dx‘ =0, (12.1)
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which was the second step, leading at once to Einstein’s field
equation for the vacuum, R;; = o, as explained on p. 98 to which
we refer the reader.

The investigation in subsect. 1 of Chapter x goes to shew
that even in the case of a metric properly speaking, I mean of
a symmetric fundamental tensor g;;, the Christoffel brackets quite
obviously are not the one and only affinity which belongs to it in
a natural way. However, this choice can at least be framed in the
two postulates mentioned just before, or in words: a symmetric
affinity which transfers the fundamental tensor into itself. There
is no obvious suggestion by what (9.4) should be replaced if g, is not
symmetric. ‘This is the difficulty alluded to above, quite apart from
the question whether in this case the symmetry postulate ought to
be maintained for the I"’s or dropped. It might seem a very natural
plan to admit also for non-symmetric g;; the relation (9.4) as it
stands. This has been tried but has failed. It is hardly worth while
to shew it here in extenso. The failure will become understandable,
when the truly natural generalization of (9.4) will emerge auto-
matically, as it were.

The way out of this dilemma is shewn by a very important
improvement on the derivation of Einstein’s field equations. It is
due to Palatini and avoids the ‘first step’: you have not to decide
on the affinity beforehand, you get it together with the field equa-
tions from the variational principle at one go. It runs thus.

In (12.1) let g** mean what it meant before, but R;; the Einstein-
tensor of an unspecified symmetric affinity I'%;,. Take the g, and
the I',; as the independent functions, to be varied arbitrarily, only
retaining their respective symmetries on variation. You get anyhow

f(&gi"Rik +@g%*0R,;) dx* = o. (12.2)
But now the two parts of this integral must vanish separately:
f&g"kRikdx“ =0, (12.3)
J‘g‘kaRi,c dxt = o, (12.4)
in the second line use (6.19), to wit
ORy = —(0T4);0 + (OT%,); 1 (12.5)
82
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Integrating (12.4) by parts with respect to the semicolons (which
is allowed since the affinity I' to which the semicolons refer was
assumed to be symmetric) you obtain

f (g%, 0T — g%, 0T, ) dxt = 0 (12.6)

or f(gi";,—a"agfﬂ;ﬂ) 0T, dxt = o. (12.7)

The part of the bracket symmetric in 7, 2 must vanish. That is
easily seen to entail g, = o, (12.8)
This is, of course, equivalent to (9.4) and entails (9.9), that is,
our I'’s have to be the Christoffel brackets. Their Einstein-tensor
is symmetric, and so (12.3) demands

Ry =o, (12.9)
which, now that the I's are the brackets, are Einstein’s equations
for the vacuum.

THE EINSTEIN-STRAUS-THEORY

The singular merit of Palatini’s derivation is that it can be
extended straight away without ambiguity to a non-symmetric g;;.
The only decision to take in advance is, whether to uphold the
symmetry demand for the affinity or to drop it. If you try to
uphold it you fail. You get nothing new, only an absurdly arbitrary
and useless supplement to the equations of pure gravitation. Again,
we shall not trouble the reader by expounding this here, but go
over to the case where the symmetry in both g;,. and ', is dropped.

Apart from this we follow exactly the pattern of the preceding
section, from (12.2) to the end. There is even a slight simplification
inasmuch as the independent variations are now no longer restricted
to symmetry, but entirely free; so we can now, for example, from
(12.3) immediately infer (12.9), no matter whether or no R;; may
turn out to be always symmetric (of course it is not). On the other
hand, there are two purely technical intricacies which require care.
In the first place, for a non-symmetric affinity there is one further
addition to (12.5), as indicated in (6.19). In the second place, the
simple ‘integration by parts with respect to the semicolon’, by which
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(12.6) was obtained from (12.4) cum (12.5), is equally restricted to
symmetric affinities, for which it was proved in Chapter 1v; in the
non-symmmetric case there is an additional term which has to be
made out. Lest the conformity with the symmetric case be obscured
by irrelevant details and the relevant results spread over too wide
a space, we shall here once or twice give only the result of a trans-
formation, relegating its technical complexities to an Appendix
(p. 116), where the reader will find them if he thinks he needs them.

As regards the notation, we uphold the familiar relations between
the four forms of the fundamental tensor, e.g.

gt = \/:g g,

where g is again the determinant of the g,;, (not perhaps of their
symmetric part). But, of course, in the relation defining the g

from the g, viz.
S 8"8km = 8"%gmi = &' (12.10)

the order of the indices is now relevant, and we adopt the afore-
standing one. No general scheme for raising and lowering indices is
adopted now. It is not needed and would be apt to cause confusion.
We introduce the very convenient notation of Einstein and Straus,
viz. we indicate the symmetric or skew-symmetric constituents of
anything by underlining the couple of indices in question or putting
a hook under them, respectively. For example,
g = Heaut8r) |
Iy = $(Ty— T'%,). J (r2.11)
¢
Now we turn to our variational equations (12.3) and (12.4). We
have already pointed out that the first gives straight away (12.9),
which we herewith register as the first set of our field equations.
From (12.4) you obtain, by regular routine treatment} an un-
expected result in lieu of (12.8). The simplest way of expressing
it is in terms of another aflinity, to be distinguished by an asterisk,
and connected with the original one thus:

*iy = T+ 56% Ty, }
[y = 3(I7 — Ig).
For the star-affinity *¥[ap, = *Tey,, (12.13)

(12.12)

1 See Appendix.
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as you can verify at once. Then the result reads
gkl‘a + gtrl* Pkda + gktﬂ# Flatr - %gkl(% Faa'a + *F”aa' = 0. (12'14)

Our generalized field equations are (12.9) and (12.14) cum (12.12).

The spectacular event is (12.14). As was to be expected, it goes
over into (12.8) in the symmetrical case, when the starred affinity
coincides with the original one. But it is not the generalization of
(12.8) anybody could have anticipated; for two reasons. First,
and most momentously, the first member of (12.14) is not the
invariant derivative of g with respect to the star affinity, for, as
you see, the order of subscripts is reversed in the third term. It is
a tensor density all right and you may call it a kind of invariant
derivative, but not the ordinary one (see our comment on equa-
tion (3.7a) in Chapter 111). Only thanks to this reversed order do
the equations (12.14) determine at least the starred affimity uniquely,
as in the symmetric case.t Otherwise they would not, and this was
the principal cause of the failure, mentioned above, of the naive
generalization of (12.8).

The second unexpected feature is, of course, that the star affinity
intervenes at all. It takes the role of the affine connexion in this
theory, and it would be appropriate to drop the asterisk, if this
were not apt to cause confusion. The vector I'; remains unspecified,
it is not determined by the variational principle; but the star
affinity is reduced by the injunction (12.13) from 64 to 60 inde-
pendent components.

By contracting equation (12.14) once with respect to (/, ), then
with respect to (k,a), and subtracting the resulting equations
member by member, one gets

g%+ 40" (* I —*T%,,) = o. (12.15)

Hence, on account of (12.13)
gk, =o. (12.16)
Conversely (12.13) follows from (12.14) and (12.16), apart from

singular cases. One may prefer to replace the injunction (12.13)
by the set (12.16), interesting in itself since it has the general form

of a Maxwellian set.
+ See Appendix.
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In much the same way as in the symmetrical case equations
(12.14) can be turned into the equivalent but rather simpler form+

gkl,a_gal*rdka -gkv*rva,l =0, (12.17)

again with that peculiar order of subscripts in the last factor. Finally,
by introducing the star affinity into (12.9) you easily get}

*Ry+4(L ,~Tr) =0, (12.18)

where the first term means the Einstein-tensor of the star affinity.

Equations (12.16)~(12.18) can be regarded as the field equations of
this theory, equal in number to the number of unknown functions,
to wit 64+ 4+ 16 = 84. There is the following comment.

The 64 equations (12.17) are ordinary linear (non-differential)
equations for the 64 components of the star affinity. They have
a unique solution, corresponding to the Christoffel brackets of the
symmetric case. It would mean a great reduction in the number
of field equations if this solution could be written explicitly and
inserted in (12.18). However, the attempt to follow this plan raises
the suspicion that the explicit solution is much too complex for
reaching a surveyable result in this manner.

A second, less relevant, remark is this. The equations (12.18)
can be split into their symmetric and skew-symmetric parts:

*Ry = o, (12.184)
*R@"'%(Ft.k—rk,z) =o. (12.18b)

The second set entails
*ng.i+*R@,k+ *Ri]/c,t =0 (12.19)

and could be replaced by it, since from (12.19) our skew tensor must
be the curl of some covariant vector, and I'; appears nowhere else
in our field equations. However, this seems rather a step backwards.
For, when faced with an equation of the type (12.19), you imme-
diately infer that this tensor is a curl, and you write down something
like (12.185), which is simpler. The procedure is very familiar from
one set of Maxwell’s equations, which is precisely of this type.

A third remark concerns an interesting consequence of the set
(12.17) alone. If you multiply it by g¥, the first term is, according

t See Appendix. 1 See Appendix.
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to (12.10) the logarithmic derivative of g. The whole result may be

writt
e dlogy-g _,

o [, (12.20)
a

a relation very familiar from the symmetric case. We infer

o*Te,, *L,
= = =0, (12.21)

oxg ox,

The underlining of the subscripts can be spared, if (12.13) or its
equivalent (12.16) is taken into account. It is noteworthy that
(12.21) holds, as a consequence of (12.17), in every frame, though
the four quantities *I'7,, do not constitute a vector.

The further discussion is better postponed until the purely affine
version of the theory has been expounded in the next section.

THE PURELY AFFINE THEORY

Can we not avoid introducing, with Palatini, fzvo basic connexions
of the space-time manifold, a quasi-metrical one by the g,; and an
affinity I'?,;? Can one not go a step beyond Palatini and base
a theory on affine connexion alone, which is after all the first and
only one needed to obtain a basis for mathematical analysis (see
Chapter 111)?

But how are we to get an integrand for our variational principle?
We can form the Einstein tensor of our affinity all right. But we
cannot contract it with respect to its couple of covariant indices,
to obtain a scalar density; nor have we any means of raising one
of them.

A. S. Eddington pointed out as early as 1921 that the simplest
invariant density you can build of the Einstein tensor alone is the
square root of the determinant of its components (see our general
remark Chapter 11, p. 18). Both he and Einstein, in the following
years, endeavoured to found on this basis a purely affine theory,
unsuccessful for the reason, so I believe, that the affinity was from
the outset taken to be symmetric (see Eddington’s book Mathe-
matical Theory of Relativity, whose later editions report compre-
hensively on Einstein’s work as well). By dropping the symmetry
demand one reaches a theory very similar to the one we outlined
in the previous section, as we shall see forthwith.
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AFFINE THEORY 113

So we take as our Lagrange functiont

o= %J(—Det. Ry, (12.22)
29
and demand 6 |Ddxt = | /=R, dx? = o. (12.23)

From general considerations—or immediately from the facts that
the last integral is an invariant, and that dR;;, is an arbitrary tensor
field—the array of partial derivatives constitute a contravariant
density of the second rank. It is very convenient, if nothing more,
to call this tensor density %

R, g% (12.24)

and to supplement it by defining ‘Latin’ contra- and co-variant
g-tensors in exactly the same way as before. For thus (12.23) comes
to coincide in shape with (12.4), and all the consequences we drew
in the preceding section from this ‘second half’ of the variational
principle remain unchanged, we need not deduce them afresh.
The “first half’, (12.3) and its consequence (12.9) are absent here.
Instead, the set (12.24) posits a direct relation between the affinity
and the ‘metric’ in addition to the one set by (12.14) or the equivalent
(12.17). Formally the complete set of field equations of the present
theory can be written down at once, in two ways: either we may
insert, according to (12.24), the partial derivatives for g** in (12.14)
and (12.16), thus eliminating all the g’s and leaving us with the
components of the affinity as the only unknown functions; or we
may insert into (12.24) the star affinity drawn from equations (12.17)
and supplemented according to (12.12), in order to ‘remove the
asterisk’; in this case (12.16) would have to be joined as it stands
and we would be left with the ‘metric’, i.e. with the g’s, as the only
unknown functions (virtually 16 in number). However, the second
plan is practically ruled out by the complexity of the solution of
(12.17), mentioned before.

Observe that in these considerations we have not yet drawn on
the special form proposed for § in (12.22). They would hold for
any Lagrange function that depends on the R;; alone. If this is not

t+ The constant A and the minus sign are conventional and do not influence
the result.
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the case, they are modified. One might, for example, think of
letting  depend also on the ‘second contraction’ of the B-tensor,
mentioned in Chapter 1v, p. 51, and called S;;, there. In this case
we should have
5 f Dt = f 99 5Rdrt+ f %D 55y dt
ik aSzk
These two integrals would not have to vanish separately since the
second depends ultimately on the same variation 81"%, as the first.
This, as I said, would modify and, indeed, complicate the field
equations greatly, quite apart from the fact that there is no longer
such an obvious suggestion what to take for . We keep here to
the choice taken at the outset.
I maintain that (12.24) is equivalent to

Rik = Ay (12.25)
Indeed, then =21,-g, (12.26)
9 1 &i) g* .
and = ik 12.2
aR?k /\ cgtk “/ 4 - ( 7)

So even (12.9) suffers only a slight modification, it is superseded
by (12.25). This is a very well-known set; in the symmetric case
it goes over into what s called ‘ Einstein’s equation with cosmological
term’. We have not mentioned it in these lectures before. On any
‘human’ scale A must be a very small constant, and the additional
‘cosmological term’ is practically irrelevant except in considerations
concerning the structure of the universe. The purely affine theory is
the only one that produces this term in a natural, non-premeditated
way. It demands definitely Aso.

We can now, if we choose to, carry out our plan of eliminating
the g-quantities altogether. Taking g, from (12.25) and inserting
it into (12.17) we get the following self-contained set of field
equations of this theory:

Ry o — R *Iy — Ry, * I, = 0. (12.28)
If we regard the starred components as abbreviations, explained by
(12.12), our set contains only the original field-variables I'%;; and
nothing else. Itis of the second order, as you would expect, and the
‘irrelevant’ constant A has disappeared, as one must demand. Yet
in the symmetric case it does embody Einstein’s field equations
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AFFINE THEORY 11§

with cosmological term! For a moment one might think that we
have forgotten to include equations (12.16) in our set. But they—
with the g¢’s replaced by their expressions in the R;—are conse-
quences of (12.28), if our *I"s are just short for (12.12).

A slightly different attitude is to regard the *Is with the
injunction (12.13) and the vector I'}, as the unknown functions.
Then one has (compare the transition from (12.9) to (12.18)) to
regard the R, as abbreviations for

Ry = *Ryy+3(T) 1. — Tr)- (12.29)
Again, and in the same sense as before, (12.16) is a consequence.
It need not be included, unless for some reason or other one wished
to avoid imposing (12.13) as an a priori injunction on the *I's.
The set (12.28) has no analogue in the Einstein-Straus-theory.

DISCUSSION OF THE PRECEDING THEORIES

For both theories—or versions—conservation identities (and
a few others intimately connected with them) can be derived very
much on the same lines as was done in Chapter X1 for Einstein’s
theory. I will not deal with them here, but refer the reader to my
paper in Proc. R. Irish Acad. 52, A, p. 1, 1948.

For all that I know, no special solution has yet been found which
suggests an application to anything that might interest us, save,
of course, the well-known solutions in the symmetric case. It is
known that even the latter are very limited in number. Itistherefore
not very astonishing that the much more intricate non-symmetric
case should be obstreperous to the degree it is. Thus it is as yet
undecided what interpretation of the various tensors and densities
is most likely to let the theory meet observed facts. This holds not
only for the skew-symmetric tensors, as for example, g%, etc.,
which, it is hoped, should have something to do with the electro-
magnetic field, and possibly with the nuclear field. We cannot even
feel sure whether in the non-symmetric case the g, or the g
(or, less likely, the gy or the g¥) play the part of the corresponding
tensorial entities describing the gravitational field in Einstein’s
theory. All four possibilities are distinctly different, but coincide,
of course, in the limit, when all the tensors are symmetric. One
must, so I believe, even be prepared to find that in general no quite
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clear-cut separation of the various fields exists; that they partly
merge into one another in some manner that is difficult to foresee.

I do not think that the difficulty of finding exaci solutions ought
to deter us from thinking further about these theories. To my mind,
they are the only ones to offer themselves as natural generalizations
of an eminently successful predecessor. Suppose, for example,
we were lucky and actually attained a lovely exact solution with
cylindrical symmetry corresponding, in some admissible interpreta-
tion, to a localized electric charge surrounded also by a magnetic
dipole field. What could we do with it? Could we consider it as
a model of the spinning electron or proton? We could not. For we
know that the classical interaction of such dainty little toys is
altogether not competent to describe the actual electromagnetic
interaction of the ultimate constituents of matter, and still less
their interaction in the nucleus. In so far as any progress in the
more complex features of this interaction (emission and absorption,
particle creation and annihilation) has been made at all, it rests not
on very complex classical solutions of the type alluded to just above,
but on much simpler ones, to wit plane sinusoidal waves, which are
just simple enough to be subjected to certain quantum-mechanical
considerations. I suppose nobody deems this an ideal approach;
but it will, so we hope, show us the way to better ones. This way is
not likely to lead over very complicated ‘particle-like’ solutions.
We may therefore, perhaps, console ourselves that such ones seem
to be practically inaccessible in our case.

MATHEMATICAL APPENDIX TO CHAPTER XII

p. 109. We begin by extending to a non-symmetric affinity the
rule for ‘partial integration with respect to a semicolon’, deduced
in Chapter 1v for a symmetric one. From the general expression for
the invariant derivative of a contravariant vector density, to wit

Wk, ;= Wk ;+ Tk, A7 — T, Ak,
one obtains by contraction
Ak, ;= Ak + 2T, A~
(T') is the abbreviation explained in (12.12), 2nd line.) This is the
required modification of equation (4.3) in Chapter 1v. If in the
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APPENDIX 117

considerations that follow there, the supplementary term is taken
into account, the general formula for partial integration is reached,
viz.

Ja- ) E et = [ o 2T 1Bt

where we have, however, suppressed a contribution from the
boundary, since it will vanish in our case as in most applications.
After this preparatory movement we attend to (12.4), where we
insert from (6.19)
ORy, = ‘(3P“ik);a+(3raia);k+2P“@3Fﬂia-

By the ordinary routine of partial integration, using the rule we had
just derived, we free the variations from the semicolons. The pro-
cedure is straightforward; but some deliberation is required to
write the result in the simplest form. You will find no difficulty in
verifying that

J'QikaRik dT = f(@ika - 8ka@iﬂﬂ) 3F“ikdx4,
where @kla = gkl;a - 2gklrla + %‘slagkﬂpﬂ + 29,"3 Plaﬂ‘

(This way of putting, it is suggested by equation (12.7), to which
everything must reduce, and does reduce, in the symmetric case.)
Now you need only make the semicolon explicit to recognize that
the-vanishing of the last expression is precisely rendered by equa-
tion (12.14) cum (12.12) and (12.13).

p. 110. We prefer to deal with (12.17) and split it according
to symmetry:
Sua— gﬂ*P"zﬂ - gzg*f“’g — g&’}*Pa’{:" — g@*pay =0
8kt ‘gg*P"k_a -gl&a*rda_l_ga_l*rdk\g “gkl*r‘”g =0.
We must assume the determinant of the gy, not to vanish, and we

use them for index pulling. Take first the symmetric case,
& =8, =0. Then from the second equation *I, =*I,,
v v v v

hence it vanishes. The first equation then gives *I'*, = { ks l} by

the procedure indicated at the bottom of p. 65. In the general
(non-symmetric) case the same procedure, applied to the first

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 31 Jul 2020 at 19:51:27, subject to the Cambridge
Core terms of use, availalesmbridge/Books Dnljiner@Cambridgeddniversity Rressc 043 0511586446.013


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511586446.013
https://www.cambridge.org/core

118 SPACE-TIME STRUCTURE

equation, yields *I'%,; as a linear function of the *I'%,, while

applied to the second equation it gives *I'%,, as a linear function
v

of the *I'%;;. By substituting alternately between the two you get

for *I'¢, — { ks l} and ""1"‘,5, two series in ascending powers of &u and

its derivatives; for not too large values of these arguments these
series are bound to converge. Since they represent rational
functions, the solution could fail to exist only in exceptional cases.

p. 111. The relations (12.14) and (12.17) are equivalent without
any prejudice, as (12.13), about the affinity. We have here to
deduce the second set from the first. As in the familiar symmetrical
case, it follows from (12.10) (which stipulates the g* as the norma-
lized minors in the determinant g of the g,;) that

%2 _aa__,, %"
ax, 88 oy, T 88y
dgJ-g _ g4
Thus 2 axa =—fu axa ’

and also
. — —
gt .= gkl( ;/x gg"‘+~/—gg"',a)

94— alg - alg -
=4~——Z/ g—zsl—g———%;/ g=2«/—g———g“/ £,

ox,

After this preparatory movement we attend to (12.14) and first
multiply it by g,,. The afore-standing equatior. gives us precisely
the first term, and we easily get

olgN=8 _ upo -
2 _ax‘—_ —(*P ,¢+‘Fa¢0) =0,

Next we return to (12.14) and multiply it by gi.g,. We first
obtain, always using (12.10),

— —
Ereln (_g/rggﬂ + J_ggm,a)
+ J—g [gks* Fkrd +g1'l* FI“S - %gfs(* FVUG + * PUGU)] =0,
The first term of this equation—according to the preceding one—

amounts to o

8ks8ni J_gg’d = %grs(* 70+ *Pdw)

0%,
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and thus cancels the last couple of terms. The second term, viz.

gksgrl‘/———ggk‘,a =—N—88&rs,a
It will be realized that we are thus left virtually with equation
(12.17) which we set out to derive.

p- 115. We are to prove the relation (12.29) between the Einstein-
tensors of the two aflinities connected by (12.12)—the starred and
the non-starred one. It is hardly necessary to print this proof.
One uses the expression (6.17) of the Einstein-tensor and inserts
the values of the non-starred I'’s in terms of the starred, drawn from
(12.12). Itso happens that the quadratic part of the Einstein-tensor
is the same for the two affinities, since the additional terms all cancel.
The result is (12.29).

p. 110. (Note added on reprint in 1954.) In the middle of that page we
stated that the vector I'; remains unspecified, it is not determined by the
variational principle. May one perhaps simplify the theory by adding to
the field equations, as obtained from the variational principle, the demand
T'i=0? From (12.12) this would abolish the cumbersome distinction
between the starred and the non-starred affinities, they would coincide.
The question remained open for several years. It has recently been
decided in the negative by A. Einstein and B. Kaufman (Volume in
honour of Louis de Broglie, Paris, 1952, p. 321). The additional demand
I",=o0 would imply (as these authors show by a careful and subtle investi-
gation of weak fields) that the presence of a gravitational field, however
weak, restricts the electromagnetic field, e.g. waves of light, in a perfectly
inadmissible, nay, ludicrous fashion.

I wish to use this occasion for warning the reader, not to regard the
interesting generalizations, briefly reviewed in Chapter x11, as anything
like a well-established theory. It must be confessed that we have as yet
no glimpse of how to represent electrodynamic interaction, say Coulomb’s
law. This is a serious desideratum. On the other hand we ought not to be
disheartened by proofs, offered recently by L. Infeld, M. Ikeda and
others, to the effect, that this theory cannot possibly account for the known
facts about electrodynamic interaction. Some of these attempts are
ingenious, but none of them is really conclusive.
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