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Chapter One
INTRODUCTORY REMARKS

The title of this monograph needs explanation. It
certainly sounds too promising. A more adequate,
though more cumbersome one, would read: the logical
syntax and semantics of the language of empirical
theories. An excuse for adopting the original title
might be the common positivistic practice of identi-
fving the logic of science with the logical syntax and
semantics of scientific langnage. We are, however,
far from claiming that problems of the logical syntax
and semantics exhaust all problems in the logic of
empirical theories. There certainly are logical prob-
lems concerning empirical theories which cannot be
classified as questions about their syntax or semantics.
The most important of them would seem to be those
connected with validation of empirical theories, with
the scientific methods of confirmation and refutation,
explanation and prediction. The operation of measure-
ment, the role of experiment, the concept of natural
law, may serve as further examples of subjects studied
within the logic of empirical theories. None of them
will be examined in this monograph. The problems
which it is devoted to are of a more preliminary
nature than those mentioned above. The logical
svntax and semantics of the language of empirical
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Introductory Remarks

theories may be regarded as a necessary prerequisite
of any logical analysis of empirical science.

The treatment of this subject in the present mono-
graph needs further qualifications. It focusses on
what is characteristic of empirical theories as opposed
to others, viz. mathematical ones. Now the difference
between these two kinds of theories lies evidently,
not in their syntax, but semantics. The formalism of
both types of theories is essentially the same. What
distinguishes an empirical theory from a mathematical
one is the manner in which it is interpreted. This is
why our main concern here is going to be with the
problem of interpretation of empirical theories, in
other words, with their logical semantics. An outline
of their logical syntax will be sketched briefly in a
short preliminary chapter. We shall not, however,
restrict ourselves to semantical problems only.
Following the normal practice, we regard the logical
theory of language as having three components:
syntax, concerned with the linguistic expressions
alone, semantics, which deals also with whatever
these expressions are speaking about, and prag-
matics, which in addition, takes into consideration
the speakers—their thoughts, intentions, decisions.
Now, in presenting a semantical characteristic of
the language of empirical theories, we cannot com-
pletely abstract from any pragmatical factors. We
could not, without resorting to pragmatical con-
siderations, justify certain semantical assumptions,
or even make them sound intuitive and plausible.
That is the reason for our frequent pragmatical
digressions. The main objective of the present essay
remains, however, an account of the semantics of an
empirical theory, especially of its interpretation. The
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Introductory Remarks

fundamental problem here concerns the distinction
between the empirical and the a priori elements
inherent in any such theory. Accordingly, our final
task must include an explication of concepts such as:
meaning postulate, analytic, synthetic, empirically
meaningful sentence, and others related to them.
Any attempt to present in a short and coherent
way the main results established in this field of
inquiry encounters difficulties which do not arise in
other fields of logic such as, for example, the logic
of mathematical theories. The situation in the logic of
empirical theories seems characteristic of philosophy
rather than of logic proper. There are comparatively
few results generally agreed upon. There is a notorious
divergence of standpoints, proposals, solutions, with
regard to nearly all problems within this domain.
In consequence, most answers proposed by some
authors have seriously been questioned by others.
And what seems even more important is a difference
in the kind of general approach to the problems in
question. Different authors or different ‘schools of
thought’ existing in this field work within different
conceptual frameworks, often hardly translatable into
one another. In such a situation, if one is to give a
simple and consistent presentation of the subject,
couched in a uniform conceptual framework, one
has to make a choice between different kinds of
approach, different languages, different solutions. In
consequence, no such exposition can be purely
descriptive or wholly impartial. The same applies,
of course, to the presentation given in this mono-
graph, which necessarily reflects some of the author’s
preferences. Let us here mention one of them. It
concerns the choice of a particular conceptual
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framework within which our subject is to be discussed.
The one adopted in this monograph coincides with
the standard conceptual framework within which the
semantics of mathematical theories is presented;
namely, the conceptual apparatus of the theory of
models of formalized languages. The monograph
contains an attempt to apply some concepts, theorems,
and methods of model theory (rather simple and
clementary ones) to the semantical problems of
empirical theories. It follows, in this respect, some
other attempts of a similar nature known in the
recent literature. (See, e.g. [14] or [18].) This deter-
mines to some extent other features of our account
of the semantics of empirical theories. One of them
consists in restricting the analysis to elementary
(first order) theories only. And this is not the only
simplification of our exposition. It should be stated
clearly that what is presented in the monograph is
not a realistic picture, but a simplified and idealized
schema of the subject under investigation. The
theories considered are much too weak to be identified
with actual scientific theories and our treatment of
them is based on certain idealized assumptions. A
more realistic treatment would be, however, too
involved for the purpose of this monograph.

Our account of the semantics of empirical theories
has had to be based upon some body of previous
logical knowledge, but of a rather elementary
character. What is needed here is a first order logical
calculus and some elements of the general theory of
models. The first is assumed to be familiar to readers
of this monograph. In the case of the theory of
models, it would be safer not to rely on such assump-
tion. But it is clearly impossible to define within the
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Introductory Remarks

limits of this monograph the fundamental concepts of
this theory in a detailed and precise way; this is a
task for a separate monograph. To make the present
mounograph self-contained, however, we have intro-
duced some of those concepts in an informal and
intuitive way; this can easily be done, for their
intuitive content is exceedingly simple and clear. All
other concepts of model theory needed in our
considerations have been explicitly defined in the
text.

1A11 symbols used are explained as they occur in the text,

the only exception being the usual set-theoretic notation. Let
us recall it here. Thus, ‘x € A stands for “x is an element of 4°,
‘4 < B for ‘4 is a subset of B’; the union, intersection, and
difference of two sets of 4 and B are denoted by AU B,
AN B, and 4 — B respectively; the empty set is symbolized
by (J, the set containing x1, ..., xx as its only elements—by
{x1, ..., xx}, and the ordered k-tuple—by {(x31,...,xxy. We
adopt the usual abbreviations: ‘x ¢ A’ for ‘~ (x € 4), and
‘x 5= ¥’ for ‘~ (x = pY’. The use will be made of the quantifiers
with restricted range:

‘Yalx) (Btx)) abbreviating ‘Vx({a(x) —fB(x))’, and

‘Jalx) (B(x)) abbreviating *Ax(e(x) A LX) .



Chapter Two

FORMALISM OF EMPIRICAL
THEORIES

From a syntactical point of view there appears, as
we have seen, to be no essential difference between
an empirical theory and a mathematical one. Either
may be characterized syntactically in the same way:
as a formalized axiomatic system. This characteristic,
generally accepted in the case of mathematical
theories, is, however, sometimes questioned as applied
to empirical ones. We shall take it that the notion of a
formalized axiomatic system is already familiar to the
reader; it has been discussed in other monographs of
this series. We shall, therefore, restrict ourselves to
recalling its essential features in a sketchy and
informal way. A formalized axiomatic system may
be viewed as a result of two kinds of operations
performed on a given theory: its formalization and
axiomatization. Let us explain them in turn,

1. FORMALIZATION
Formalization of a theory consists in formalizing its
language and its logic. First, the language itself, and
then the underlying system of logic are characterized
in a syntactical, formal, way, i.e. in a way which
refers only to the form of the relevant expressions.

1. A formalized language is usually defined by

6



Formalism of Empirical Theories
enumerating its simple expressions, the primitive
signs, and by laying down rules of formation (or
construction) which tell us how its compound ex-
pressions, first of all sentences, are to be constructed
out of the simpler ones. Now, the language L we are
going to consider is to be a language of an empirical
theory 7. How then should it be characterized ? We
shall adopt here, as already mentioned, an important
assumption concerning the type of theories which
will be taken into account in present considerations.
All of them will belong to the so called elementary,
or first-order, theories: the first-order predicate
calculus (with identity) will be assumed as their only
logical basis. This determines the essential features
of our formalized language L. It may be roughly
characterized as follows.!

Its primitive signs comprise three kinds of ex-
pressions:
(i) individual variables: x,, x,, ... (setting x = x,,
y == Xx,, etc., for convenience);
(i) logical constants: (a) the sentential connectives:
~ (negation), A (conjunction), V (disjunction),
-» (implication), <> (equivalence); (b) the quanti-
fiers: ¥ (general), 3 (existential); (c) the sign of
identity: =;
(iii) descriptive constants: Py, Py, ..., P, (n k-place
predicates).?
L is thus, as far as the descriptive constants are
We are not giving an explicit characterization of the
metalanguage in which the object-language L is being des-
cribed, and we are not making use of any device for indicating
tllle use-mention distinction; the context will always make it
cicar.

*We do not mention here the usual auxiliary (punctuation)
signs, such as parentheses.
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Formalism of Empirical Theories

concerned, the simplest of first-order languages, as
it contains no individual constants and no functors
(operation symbols). But, as is well known, the latter
may always be dispensed with in favour of predicates,
and so are theoretically, though not practically,
superfluous. The notion of a well-formed formula
of L may now be defined in a usual, inductive, way.
The simplest well-formed formulas are of the form
Pfxq, ..., X)) Or x; == x,; all others are constructed
from them by means of sentential connectives and
quantifiers. The notions of free and bound variable
being defined in customary way, we are then able to
distinguish, among all well-formed formulas of L,
those which contain no free variables, i.e. the sentences
of L. These are certainly the most important type of
expressions, and in our further considerations
language L will simply be identified with the set of
all its sentences. Let us here call attention to the
fact that, so defined, the notion of sentence in L is
an effective concept. That is to say, there is an.
effective procedure for deciding, for an arbitrary
expression of L, whether it is a sentence in L. (In
nontechnical terms, an effective procedure is a set
of instructions that provides a ‘mechanical’ means
by which the answer to any one of a class of questions
can be obtained in a finite number of steps.) The
effectiveness of such notions as the notion of sentence
of a given language is the main objective of its for-
malization. In nonformalized languages the question
whether a given expression does or does not belong
to the class of well-formed sentences is often a matter
of intuitive, inconclusive considerations. :

2. Formalization of language L makes it possible
to codify the system of logic presupposed by theory T.
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Formalism of Empirical Theories

This amounts to a syntactical characterization of the
operation of logical consequence in L. The procedure
is well known; it consists of selecting a suitable set
of logical axioms and laying down a suitable set of
rules of transformation (or inference). As both sets
are normally infinite, they are specified by formulating,
not the axioms and rules themselves, but their general
schemata. Then the concept of proof—proof of a
formula « from a set of assumption formulas X—is
defined along the usual lines, and finally the operation
of consequence is characterized as follows: « is a
Iogical consequence of X (in symbols o € Cn (X)) if
and only if there is a proof of « from X. It should be
noticed here that the notion of proof referred to is
also an effective concept: there exists an effective
procedure for deciding, for an arbitrary finite sequence
of formulas, whether it is a proof. On the other hand,
there is no such procedure for the notion of con-
sequence: it is, in the case of the first-order predicate
calculus with identity, an ineffective concept. Now,
with the concept of logical consequence at our
disposal, we are able to introduce a number of other
important logical notions. We will here mention only
two of them: the set of logical theorems of the
language L and the set of their negations. The first
are called taurological or logically true sentences of L
{LV for short); they may be identified with the set of
sentences in L which follow from an empty set of
assumptions: LV = Cn(). Their negations are known
under the name of inconsistent or logically false
sentences of L (LF for short): e e LF«>(~a)eLV.
All these logical concepts admit, as we shall see later,
of an equivalent semantical characterization which
may be taken as a criterion of their adequacy.

9
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II. AXIOMATIZATION

Axiomatization of a formalized theory provides, as a
rule, the only means of its precise characterization.
By a theory T" we will here always understand the
set of all its theorems. So understood, theory T
cannot be identified with any set of statements that
have actually been formulated and asserted by the
scientist. For, clearly, if a certain sentence follows
logically from the latter, it will, according to the
scientist’s intention, belong to theory T as well. A
theory then comprises always all of its logical con-
sequences: Cn(T) < T'; it is thus what logicians call
a system. Which of its theorems are explicitly stated
and which only implicitly assumed is usually deter-
mined by some pragmatical—psychological, socio-
logical—factors, quite accidental from a logical point
of view. Being a system, theory T is always an infinite
set of statements. How then can it be defined? Two
cases should be distinguished here. In the first, there
is available an effective procedure enabling anyone to
decide in a finite number of predetermined steps
whether or not any given sentence in L is a theorem
of theory 7. In the other case there is no such pro-
cedure. The notion of theorem of 7" is, in the first
case, effective, in the second, an ineffective one. A
theory for which such a procedure, here called
usually a decision procedure, is available is said to be
decidable; that which does not satisfy this condition
—an undecidable one. Now any decidable theory can
be characterized by specifying the decision procedure,
and no undecidable theory admits, of course, of such
characterization. One of the main results of logical
research in the last decades is that only the most
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Formalism of Empirical Theories

rudimentary theories, e.g. the propositional calculus, _
are decidable. All others, and among them all actual
empirical theories, belong to undecidable systems.
For these, axiomatization remains the only means
of an adequate and precise characterization. A theory
T is said to be axiomatizable if all its theorems
follow from a decidable subset of them, that is, if
there is a decidable set A4, called the set of axioms,
such that 7' = Cn(4). If 4 is not only decidable, but
also finite, T is said to be finitely axiomatizable.
Now, while undecidable, the actual empirical theories
are certainly axiomatizable, for the most part—
finitely axiomatizable. They can then be presented as
axiomatic systems. This amounts to specifying, in
some effective way, a set of axioms, A (the operation
of consequence, Cn, is assumed to be already defined).
If A4 is finite, the axioms may be explicitly enumerated;
if A4 is infinite, it is usuvally specified by formulating,
instead of the actual axioms, their general schemata.
An axiomatizable theory admits normally of an
infinite number of different sets of axioms; a par-
ticular axiomatization of a given theory constitutes
therefore only one of its possible representations,
When treating empirical theories as certain axio-
matic systems, we do not claim, of course, that this
if just the form they assume in actual scientific
practice. In fact only few of these theories have been
put into axiomatic form so far (among them the most
fundamental physical theories, and certain isolated
theories of biology, psychology and economics).
What is important for our considerations is the fact
that all of them could be axiomatized, if needed, for
only as formalized axiomatic systems do they become
susceptible of a precise logical analysis. It has been

11
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argued sometimes that axiomatization of an empirical
theory, though logically possible, is, from a methodo-
logical point of view, an inadmissible procedure. It
is bound to result in an essential deformation of the
given theory. It has been pointed out that, whereas
mathematical theories are deductive in nature,
empirical theories are inductive theories. And an
axiomatic system is said to counstitute a proper form
of representation for deductive theories only. The
objection, however, seems to be based on a mis-
understanding. Without attempting an explication of
the differences between deductive and inductive
theories, we may certainly assume that they depend
on the kind of interpretation of the corresponding
theories and on the way in which the interpreted
theories are validated. Axiomatization of a theory
concerns only its formal presentation; it does not
presuppose anything with regard to its interpretation
and validation. Tt establishes, loosely speaking, within
a set of statements the relations of logical consequence
only: it says that one sentence follows from the other;
it does not tell us, however, which of them is to serve
as supporting evidence for the remaining. A formalized
axiomatic system may thus represent a mathematical
theory as well as an empirical one, a deductive as
well as an inductive one. The difference between
these kinds of theories seems to lie, not in their
syntax, but in their semantics.

12



Chapter Three

SEMANTICS OF FORMALIZED
LANGUAGES

Our formalized language L, characterized only
svntactically, cannot yet be identified with the
fanguage of an empirical theory 7. It is not really
any language at all. Its expressions do not refer to
any entities, do not mean anything. To become an
interpreted, meaningful language, L has to be given,
in addition to syntactical, a semantical characteriza-
tion. This may be done in a number of different ways.
We will here mention one of them for which the
concept of model constitutes a fundamental notion.

1. A model of a formalized language (referred to also
as: possible model, semi-model, possible interpreta-
ton, possible realization) is, intuitively speaking, any
fragment of reality about which this language can
speak. In technical terms, a model of our langnage
L, symbolized by I, may be identified with a
n + l-tuple:

9}k:""‘<l]7R1:~""Rr:>’

where U is a non-empty set of individuals, and
Ry,..., R, are relations on U (i.e. among the
elements of U) having the same number of arguments
as the corresponding predicates of L Py,..., P,
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Semantics of Formalized Languages
respectively; thus, if P; is a k-place predicate, R,
will be a k-ary relation. (Unary relations are here
identified with subsets of U.) Each model St of L
may be said to determine one of the possible inter-
pretations of L. It assigns set U to each individual
variable as its range, and relations Ry,..., R, to
predicates Py, ..., P, as their denotations. Set U is
called the universe of model M (in symbols U(IM)),
and relations Ry, ..., R,—the denotations in M of
predicates Py, ..., P, respectively (in symbols
D(P), ..., D(P)). There are, of course, as
many models of language L as there are distinct
ways of assigning universes to L and then inter-
preting the predicates of L within those universes.

Given a model I of language L we can introduce
the main semantical notions relativized to M. The
most important of them is the notion of a formula’s
being frue (holding) in M. We cannot here present
its full definition, as this is technically involved and
requires a number of preliminary explanations. Yet
the concept itself is intuitively clear and may easily
be explained by means of some examples. We shall
apply it here to sentences of L only, trying thus to
explain what it means to say that a sentence « is
true in a model M. Intuitively speaking, « is true in
M if, and only if, things are such as described by «
when interpreted by 9. Let « be the following
sentence of language L:

Vx[Py(x) = 3p(~ P1(y) A Py(x.3))]

Now, « is true in I if, and only if, every object in
the universe of M which belongs to the set denoted
in M by P, bears the relation denoted in IR by P,

14
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to some object in the universe of I which does not
belong to the set denoted in 9 by P,; symbolically:

Vx € UMM)[x € D, (P,) —> 3y € (W)

(r € Du(P1) A x Dyl(P2)1)]-

IL e.g. the universe of M is identical with the set
of all human beings, the denotation in 9 of P,—

ith the set of all logicians, and the denotation in
IR of P,—with the relation of one man being wiser
than other, then our sentence « will be true in I if,
znd only if, every logician is wiser than some non-
kogician. The set of all sentences of L true in model
I’ will be symbolized by Ver(3). Sentences of L
false in model M will be identified with negations of
the former and symbolized by Fls(3):

« € FIs(MR) <> (~ a) € Ver(I).!

Now that we have a concept of ‘true in IR’ at
hand, we are in a position to define a number of
other important semantical concepts. In particular,
we are able to provide semantical counterparts of
sach syntactical concepts as ‘consequence’, ‘logically
rue’, ‘logically false’ and the like, known usually

IAs it is seen from the above example, the definition of
¥Fer (M) determines an interpretation of the logical constants
of L. It endows them with their standard, classical, inter-
preiation. We assume two possible values of sentences: truth
and falsehood, which may be identified with the universe
of 3} and with the empty set, respectively. Sentential connectives
may be taken to denote the known functions defined by the
corresponding  truth-tables. The denotation of the general
guantifier may be the unit set containing the universe as its
only element, that of the existential quantifier—the set of all
won-empty subsets of the universe, The identity sign denotes
Zw relation of identity between the elements of the universe.

15



Semantics of Formalized Languages
under the name of ‘L-concepts’. All of them will
here be implicitly relativized to our language L.
They are as follows:
o« is a consequence of X if, and only if, « is true
in all models of L in which all sentences of X are
true:

o € Cr(X)e>» YVI(X < Ver(M) — « € Ver(M)).

If « is true in model 9K, M is said to be a model of «.
The same applies to a set of sentences X. The notions
of a model of language L and a model of a sentence
(set of sentences) of L are thus different and must not
be confused. We can state now that

« is a consequence of X if, and only if, every model
of X is a model of a.

a is logically true if, and only if, « is true in all
models of L:

o € LV YM(a € Ver(IM));
o is logically false if, and only if, « is false in all
models of L:
o € LF <> YI(o & Fls(IN)).
If M is a family (i.e. a set) of models of L, we shall

denote by VER(M) the set of sentences of L which
are true in all models in M:

« € VER(M)«> VI € M(x € Ver(M)),

and by FLS(M) the set of sentences of L false in all
models in M:

o € FLS(M) <« YR € M(x € FlIs(IR)).
Let M be the family of all the models of L. We have

thus:
LV = VER(M), LF = FLS(M).

16
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One of the main results of contemporary logical
research, the so called completeness theorem due to
Goedel, states that, as far as a first-order logic is
concerned, the concept Cn defined as above is
coextensive with the syntactical concept Cr defined
zarlier (and so are LV and LF). This may be taken
2s evidence of the intuitive adequacy of the syntactical
L—concepts.

II. The concept of truth discussed by us thus far
may be called a ‘relative’ one; it is relativized, namely,
0 a given model M of language L, in other words, to
a possible interpretation of this formalized language.
I L is to be an interpreted, meaningful language, we
must define, with respect to it, an ‘absolute’ concept
of truth: say what it is to mean for a sentence of L
10 be simply ‘true’. This may be realized by choosing
from all possible interpretations of L the actual, or
intended, one, that is, from all models of L (all
fragments of reality which L can speak about) its
proper, or intended, model (that fragment of reality
which L does speak about). It is thus assumed that
for any meaningful language such a unique model
zxists. This proper model of L will be symbolized
by M*. Now, with respect to L, the ‘absolute’ concept
of truth may be identified just with truth in model
IR*. A sentence « is said to be frue, if it is true in
IR*; false, if it is false in M*. Symbolizing the set of
true sentences in L by Ver and the set of false by
Fis, we have thus:

Ver = Ver(Mh*), Fls = FIs(IN¥).

The proper model of L plays an analogous role in
determining ‘absolute’ concepts of universe and

17
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denotation. The wniverse of L (the universe of dis-
course) is identified with the universe of model I*,
U(IR*), and denotations of predicates Py, ..., P, (in
symbols D(Py), ..., D(P)y—with denotations in
model M*: Du(Py)s . « s Dus(P). Let us illustrate
these concepts using the example discussed above.
If the model described there were the proper model
of L, the sentence « quoted above would be simply
true if, and only if, every logician were wiser than
some non-logician. The class of men would constitute
the universe of discourse, and the class of logicians
and the relation of being wiser than—the denotations
of P, and P,, respectively.

This account of the ‘absolute’ semantical concepts
seems quite intuitive in the case of any language
whose proper model has actually been determined
in a unique way. Languages satisfying this require-
ment are called semantically determinate. But do all
actual languages belong to this class? The problem
of determining what a given language speaks about
is a difficult one; it will be examined later, with
regard to language of some empirical theories. Now
we can state in advance that with respect to a large
class of languages (including all empirical ones) that
requirement does not seem to be satisfied. The factors,
pragmatical in nature, which decide what a given
language actually speaks about do not determine its
proper model in a unique way. What is determined
by them is not a single model 9R*, but rather a
certain family of models, M*, containing more than
one member. If that family fulfils certain conditions
—if it is a non-empty proper subset of the set of all
models of L: & # M* # M, language L may be,
and usually is, regarded as an interpreted, meaningful

18



Semantics of Formalized Languages
language, though, of course, a semantically indeter-
minate one. Might we then define the ‘absolute’
semantical concepts with respect to such a language
exactly as before? The question has been answered
in different ways. There can be distinguished at least
three main kinds of its solution.

(A) It has been maintained that we may here
proceed similarly as before. We may assume, namely,
that there is exactly one proper model S* of language
L and define, with regard to all sentences of L, ‘true’
as ‘true in IN*. The only difference, in comparison
to a semantically determinate language, lies in the
fact that the proper model of L is here determined
not uniquely, but ambiguously: as some member of
family M*. We define this concept of truth by
stipulating that among all models of family M* there
is exactly one model 9% such that

Ver = Ver(MM), Fls = FIs(M).

The ambiguous characterization of the proper model
of L brings, however, some consequences which to
certain logicians seem hardly acceptable. Let us point
out that in langnage L interpreted by family AM*
there may be distinguished three kinds of sentences:

() true in all models of M*—VER(M*);
(i) false in all models of M*—FLS(M*);
(iii) true in some models of M* and false in others.

Class (iii) may well be, and in most cases actually is,
non-empty. Sentences belonging to it are called
indeterminate, in contrast to determinate sentences
from class (i) and (ii). With regard to an indeter-
minate sentence o, we can never know whether it is
true or false: among its intended interpretations are
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always such as will make it true, and such as will
make it false. Yet, according to the definition of truth
just proposed, « is ascribed a definite truth-value: it
is assumed to be a true or false statement. And this
is just what appears objectionable. It has been argued
that ascribing to a sentence a definite though intrin-
sically unknowable truth-value makes an occult
quality out of truth. (See [13].) To avoid this conse-
sequence, the concept of truth has been redefined,
as far as semantically indeterminate languages are
concerned. We will here mention briefly two ways in
which this has been done.

(B) Truth and falsehood in L are here defined as

follows:

Ver = VER(M*), Fls = FLS(M¥*).

The definitions ascribe ‘a definite truth-value to
determinate sentences of L only: those which are
true in all models of M* are assumed to be simply
true, those which are false in all models of M* are
simply false. Indeterminate sentences of L are here
devoid of any truth-value whatever: they are neither
true nor false. Thus the troublesome consequences
mentioned above have obviously been avoided, but
at a rather high price: abandoning some classical
semantic assumptions such as the metalogical Law
of Excluded Middle.

(C) The proposal now to be considered consists in
replacing an explicit definition of Ver and Fls by a
partial one. The only assumptions concerning these
concepts read as follows:

VER(M*) < Ver, FLS(M*) < Fis.

They qualify all determinate sentences of L in exactly
the same manner as all the former definitions. But,
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in contrast to them, they presuppose nothing as far
as the indeterminate sentences of L are concerned.
They do not ascribe to them any truth-value, but
they do not deny it either. The question is here left
open. There are no criteria of application of Ver
{or Flis) for sentences of the kind (iii). This procedure
corresponds to a general assumption concerning all
semantically indeterminate languages: the concept of
truth cannot be defined for them explicitly; it is
bound to remain an ‘open’, partially defined, concept.

Analogous considerations apply to other ‘absolute’
concepts referring to semantically indeterminate
languages. The concept of universe need not be
discussed here, for, in the case of all languages to
be considered, family M* providing their interpreta-
tion seems to be such that all its members possess a
common universe. The concept of denotation has
been defined along lines strictly analogous to those
pursued in the case of the concept of truth. The
following are the main conceptions, formulated, for
simplicity’s sake, for one-place predicates only. (In
formulations for k-place predicates, we shall have
everywhere, instead of one individual x, A—tuple of
individuals {x,, ..., x>.)

(A) The denotation of P; is here identified with its
denotation in the proper model of L characterized
as before; we assume thus that among all models of
family M* there is exactly one model I such that

Ver = Ver(W), Fls = FIs(M), D(P) = D,(P).

(B) The denotation of P; is here identified with the
set of those objects which belong to the denotation
of P; in all models of family M*:

Vx[x € D(P)«> YIR € M* (x € D (P))]
21
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(C) We adopt here a partial definition of D(P))
only; it amounts to including into D(P;) those objects
which belong to the denotation of P; in all models
of M*, and excluding from D(P;) those which do not
belong to the denotation of P; in any model of M*:

V[V € M* (x € D, (P)) —+ x € D(P)]},
Vx[VIR € M* (x ¢ D,(P)) — x ¢ D(P)].

Those two sets of objects form jointly the so called
area of determinateness {or precision) of the predicate
P;; all the remaining objects belong to its area of
indeterminateness (or vagueness). Some comments
made in connexion with the concept of truth will
apply with a suitable modification to the conceptions
presented above.

There are, as we have seen, some arguments for
and against each of those proposals; none of them,
however, seems absolutely conclusive. The problem
of defining the ‘absolute’ concepts of truth and
denotation for semantically indeterminate languages
remains still open. The conception discussed under
(C) appears, as the least restrictive one, the least
objectionable. And so, whenever in our further con-
siderations we have to assume some solution to the
problem, we shall assume this one. For the most part,
however, these considerations will not presuppose
any particular solution; they will be quite neutral
with regard to any of the considered proposals. Let
us note in conclusion that the concept of interpretation
determined by a family of models M*, may be treated
as a generalization of the concept of unique inter-
pretation. When M™* turns out to be a set containing
only one model, we get a unique interpretation of
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language L. In this case, concepts considered under
(A), (B), and (C) become, of course, identical. In
what follows, an (intended) interpretation of language
L will always be thought of as determined by a
family of models M*, referred to as an intended
family of models; its members will be called intended
models too.
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Chapter Four

INTERPRETATION OF
EMPIRICAL THEORIES

Interpreting a theory 7 amounts to interpreting its
language L, and this, as we have seen, consists in
determining a family M* of its intended models. If
T is to be an empirical theory, it must be de-
pendent on experience: experience must decide on
the truth-value of some, at least, of its theorems.
This characteristic of T seems to impose certain
restrictions on the kind of its interpretation. We
may, in general, distinguish two ways of interpreting
a language: a verbal and a non-verbal one. A verbal
interpretation of language L consists in defining its
intended models as models of a certain set of sen-
tences of L, i.e. as models in which these sentences
are true. This set of sentences will be called the set
of meaning postulates for L and symbolized by MP.
Any other way of interpreting language L will be
referred to as a non-verbal interpretation, Now, if
T is to be an empirical theory, its language L cannot
be interpreted in a verbal way only. Let us consider
this point in some detail. Suppose the family M* of
intended models of L be defined as follows:

M e M*<s> MP < Ver(IM).
Let us examine some consequences of such an inter-
24
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pretation. Certain theorems in the theory of models
bear immediately on the problem. A theorem due to
Goedel states that every consistent set of statements
has a model. So, unless the set MP of meaning
postulates for L is an inconsistent one, there exists
a model of langnage L in which all sentences of the
set MP are true. Family M* is then certainly non-
empty. On the other hand, it is not identical with
the family M of all models of L, provided the set MP
does not consist of mere tautologies. Family M*
may thus be regarded as providing an interpretation
of language L. But what kind of models will actually
belong to family M* thus defined? Now, M* will
certainly contain more than one model of L. The
Isomorphism Theorem is decisive here. No set of
statements can have only one model. If a model M
is a model of a given set, then every model %’ which
is isomorphic with 9 will be its model as well. Thus
the most that can be expected from a set of statements
is that any two models of it are isomorphic. A set
fulfilling this condition is called categorical. Accord-
ingly, if some model M of language L is a model of
the set of its meaning postulates MP, any model I’
which is isomorphic with M will be a model of set
MP, too. Thus every model isomorphic with a model
belonging to family M* will belong to it as well;
at best, i.e. in the case of categoricity of set MP, all
models belonging to M* turn out to be isomorphic.

Let us realize some consequences which follow from
this fact with regard to the problem of interpretation
of an empirical theory. We shall, for this purpose,
recall briefly the concept of isomorphism between
two models of language L. Let them be models:
M=<URy,..., R> and M’ = U, R'"y,...,R'»D.
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We say that these models are isomorphic if there
exists a one-one function f which maps U on U’ in
such a way that

Vx,eees X, € ULR(x . o) RO f (RODD,

i.e. relation R; holds between the elements of the
universe U if, and only if, relation R’; holds between
the elements of the universe U’ corresponding to
the former in virtue of mapping f. What this require-
ment of isomorphism amounts to may be seen easily
in the case of a simple language L with one-place
predicate P; as its only specific term. Let MP be the
set of meaning postulates for P, and M = (U,R,>—
a model of this set. Now every model I’ = (U",R’;>
isomorphic with 9 (and on the assumption that the
set MP is categorical—only such model) will likewise
be a model of MP. The set of meaning postulates
for the predicate P, assigns therefore to it, as its
denotations in the intended models of L, all sets of
objects isomorphic with R. But isomorphism of sets
reduces simply to their being equinumerous. The
denotations of predicate P; in models of M* are
thus all sets equinumerous with set R. We may say
that the meaning postulates for P; determine the
set denoted by it only as far as concerns the number
of its elements. We do not know at all which objects
fall under predicate P,; we know only, at best, their
number. The meaning postulates for P, characterize
its interpretation in a ‘formal’ respect only. In the
case of languages with other kinds of specific terms,
the situation is analogous. Let these terms be, as it
has been assumed, k-place predicates denoting k-ary
relations. We say that two relations have the same
structure if, and only if, they are isomorphic. So, in
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the extreme case, that is in the case of a categorical
set of meaning postulates, what turns out to be
specified through that set is merely the structure of
denotations of the descriptive terms. Such structure
of a unary relation (or set) is just its cardinal number.
An example of the structure of a binary relation might
be, say, a progression. Properties of a relation which
constitute its structure possess a ‘formal’ character.
Such structural properties of relations are, for
example, symmetry or transitivity. If the set MP of
meaning postulates for the descriptive terms is a
categorical one, all (and only) these structural pro-
perties of their denotations may be said to be
determined by set MP. It is worth noting, however,
that, as a rule, set MP fails to fulfil even this condition.
It is a well-known fact that every set of (elementary)
statements which has an infinite model has models
that are not isomorphic with each other. A categorical
set can therefore be only a set which has exclusively
finite models. Such a set of statements must assume
the existence of a finite (i.e. not greater than n)
number of objects belonging to the universe. Its
consequences will have to include a ‘condition of
finiteness’ limiting to »n the number of individuals
which statements of the set speak about. A set of
meaning postulates for an empirical theory does not
seem likely to fulfil this condition. It cannot then be
categorical. And as a non-categorical set it is unable
to determine even all the structural properties of
relations denoted by the descriptive terms: it can
determine only some of them. Let us therefore
conclude that no set of meaning postulates can
apply to a single fragment of reality, i.e. to a single
model of a given language, and to no other. No
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fragment of reality is uniquely determined by the
fact that a certain set of meaning postulates applies
to it; the same set will apply to any other fragment
of reality provided the latter be isomorphic with the
former. The ability of a set of meaning postulates to
restrict the range of its models is even more limited.
Any such set will, as a rule, apply to fragments of
reality that are not isomorphic to each other. Conse-
quently, it even fails to determine the relational
structure of the fragments of reality to which it
applies. The unavoidable multiplicity of possible
interpretations of a consistent set of meaning postu-
lates may be well illustrated by the fact that any such
set has models whose universe consists of natural
numbers and models whose universe consists of
expressions belonging to the given language. In
consequence, a theory whose language has been
interpreted merely by meaning postulates may be
thought of as a theory about natural numbers as
well as a theory about some of its own expressions!

In the light of these observations it seems obvious
that a theory interpreted in that way cannot be
identified with any theory in empirical science. Its
language cannot be said to be an empirical one.
This conclusion can be stated somewhat more
explicitly,. We may say, namely, that all predicates
of language L, which has been interpreted exclusively
through meaning postulates, are completely vague
(except those which in all intended models denote
empty relations). We shall explain this characteristic
with regard to one-place predicates of L. Let P; be
such a predicate. The question whether P; applies
to an object x is here essentially undecidable—for
any object x. As the Isomorphism Theorem obviously
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shows, among all models of family M*, there always
will be some model of L in which x will belong to
the denotation of P; and some other in which x will
not belong to the denotation of P;:

Vx[AM e M* (x € D (P)) A IM e M* (x ¢ D (P))].

This is true of all one-place predicates of L, with the
one exception of those which, in all models of family
M*, denote an empty set. The situation is strictly
analogous in the case of any k-place predicate of
language L. Now, a language which, besides empty,
contains only completely vague predicates cannot be
acknowledged to be an empirical one—in whatever
way we may define the latter. The question whether
an object falls under a predicate must be decidable
(viz. decidable on the basis of experience)—at least
for some objects and some predicates of an empirical
language L. L must thus be interpreted in such a
way that some of its non-empty predicates P; fulfil
the following requirement:

Ix[V M e M*(xe D, (P)) V VIR € M*(x ¢ D, (P)]

Let us then conclude that an empirical language L
cannot be interpreted in a verbal way only: its in-
tended models cannot be defined as all models of L
in which some sentences of L—its meaning postulates
—are true. They have to be determined by some
non-verbal means as well. It has often been suggested
that what certainly should be determined in that way
is the universe of discourse of the given language.
It has been assumed that all intended models of
language L must have the same universe, and that
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this universe must be fixed in advance. ‘The...
restriction is motivated by the idea that a formal
system is the formalization of the abstract structure
of a given set of individuals’. (See [10].) The assump-
tion seems acceptable, as far as the theories to be
considered are concerned. We will adopt it here,
without analysing the way in which that common
universe could be fixed. The assumption, however,
is clearly not sufficient to guarantee empirical
character to language L so interpreted. To show
this, let us assume that the family M* of intended
models of L is now defined as follows:

M e M* UIR) = U A MP < Ver(I).

Thus, every model of L which has the universe U
and is a model of the set MP belongs to the family
of intended models. It is easily seen that language
L thus interpreted still cannot be called an empirical
one. To state this in more precise terms, we shall
introduce the concept of a logical relation. (See e.g.
[18].) Let U be a non-empty set, f a one-one function
mapping the set U on to itself, and R a k-ary relation
on the set U. By Rf we shall denote the relation on
U defined by the following condition:

R(xh sers xk)H-Rf(f (xl)a L sf(xk))'

Now, R is a logical relation on U if, and only if,
whenever f is a one-one mapping of U on to itself,
then R = R’. A logical relation on a set U is thus
identified with a relation which remains the same
under all possible mappings of the set U on to itself.
The following are examples. The logical unary
relations on U (or subsets of U) are: the empty set,
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and the universal set U. The logical binary relations
on U are the following: the empty relation, the
universal relation on U, the identity on U, and the
non-identity on U. We may state now what follows.
Every predicate of L will either denote in all models
of M* a logical relation on U or be completely vague
within the universe U. The Isomorphism Theorem is
decisive here, as before. Let P; be a one-place predicate
of L that does not denote in all models of M* a
logical relation on U, and let x be an element of U.
The Isomorphism Theorem assures that, among all
models of family M* defined as above, there always
will be some model of L in which x will be a member
of the denotation of P,, and some other in which x
will not be a member of the denotation of P;:

Vx e U[IM € M* (x € D(P)) A
AIM € M* (x ¢ D(P))]-

Thus, again, the question whether an object x falls
under such predicate P, is essentially undecidable—
for any individual x belonging to our universe of
discourse U, The same is true of any k—place predicate
of L. We must conclude then that interpretation of
language L of the kind described above cannot ensure
it an empirical character. If L is to be an empirical
language, it must contain predicates which are
neither logical nor completely vague within its
universe of discourse; for some at least among the
objects of the universe U, the question whether they
fall under such predicate must be essentially decidable.
In consequence, the family M* of intended models
of L must, for some non-logical predicate P;, meet
the following requirement: there is in the universe
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U an object x which belongs to the denotation of P;
either in all models of M* or in none of them:

Ix e U e M*(x e D (P)) V
VVIR € M* (x ¢ D (P)]

This is a necessary, though certainly not sufficient,
condition for being an empirical language.

In order to meet such requirement, interpretation
of L must be given by determining in a non-verbal
way not only the universe of discourse, but also
denotations of some predicates. The question arises
as to what kind of non-verbal interpretation is meant
here. If L is to be a language of empirical theory,
the question whether an object x falls under a
predicate P; must—at least for some objects and
predicates—be decidable on the basis of experience.
This seems to determine the character of the non-
verbal interpretation of P,. P; has to be interpreted
ostensively, that is, roughly speaking, by pointing out
the objects it applies to. Such a procedure, called an
ostensive definition, seems to be indispensable in order
to ‘pin down’ a predicate to an object given in
experience. We shall, accordingly, assume that,
among the predicates Py,...,P, of language L,
there are predicates which have been interpreted
ostensively. Moreover, we shall suppose that they
have been interpreted in that way only. Ostensive
definition is assumed to constitute the only inter-
pretative procedure applied to these predicates.
There are no meaning postulates, esp. no proper
definitions, for them. They are interpreted in a
non-verbal way only., On this assumption, these
predicates may be identified with observational
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terms, in certain rigorous sense of this ambiguous
expression. The assumption conforms to a widely
held view according to which language of an empirical
theory must always contain some observation state-
ments, understood in an analogous, rigorous way.
One argument in support of this point proceeds
briefly as follows, An inferential, or indirect, method
of validating a sentence consists in inferring it from
other sentences which have already been validated.
So, all inferential methods of validation presuppose
some non-inferential, or direct, method of validation.
It must be possible for the scientist to find out the
truth-value of at least some sentences without having
first to determine the truth-value of any other sentence.
Direct observation presents the basic non-inferential
method of validation in empirical science. Observa-
tion statements are just sentences which are capable
of being validated by direct observation. One can
validate such a statement without resorting to any
inference—by simply observing the objects this
statement is about. Thus the observational statements
iie at the foundation of the whole of scientific know-
ledge; whatever is asserted by the scientist is either
expressed in observation statements, or has been
validated by being inferred from observation state-
ments, Taking this for granted we have to say that,
if L is to be a language of an empirical theory, the
question whether a predicate P, applies to an object x
must—for some predicates and objects—be decidable
on the basis of direct observation. But then P; has
to be an observational predicate in the sense assumed
above. It has to be interpreted ostensively, without
any definitional procedures. If P; were interpreted
by means of some meaning postulates, it would be
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impossible to apply it to an object on the basis of
direct observation, without resorting to any other
sentence; we should first ascertain whether that
application satisfies the conditions formulated in the
given meaning postulates, and so to validate some
other sentence. The assumption that every empirical
theory employs some observational terms of the kind
described is by no means indisputable, and, in fact,
will be questioned by us later. In this context, however,
we shall, for simplicity’s sake, accept this assumption
without any further discussion. We shall, then, take
it that the language L we are examining contains
some purely ostensive predicates: O,,...,0, We
shall call them the observational, or simply O-terms,
and the sublanguage L, of language L which contains
these predicates as its only descriptive terms—the
observational, or O-language. We shall now examine
the interpretation of language L, somewhat more
closely.
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Chapter Five

INTERPRETATION OF
OBSERVATIONAL TERMS

All the descriptive terms of language L,, i.e. predicates
0y,...,0, are, according to our assumption,
interpreted by means of an ostensive definition. This
appears to be a somewhat enigmatic procedure,
which is certainly in need of a thorough examination.
As we are here concerned mainly with formal aspects
of the interpretation of empirical language, we shall
not attempt such examination. We shall confine
ourselves to some loose remarks which are only
intended to make some of our formal postulates
more intuitive and plausible. An ostensive definition
of a given term is usually thought of as a procedure
which determines its denotation, not by describing
the object which the term is to denote, but simply
by pointing it out. For the procedure to be effective,
this object, clearly, must be an observable one. But,
.in a literal sense, we can only observe concrete,
physical things. If x is to be perceived by a person,
it has to stimulate his sense-organs; so it must be
some concrete object, It cannot be an abstract one,
such as a set or relation. But this is just what any
predicate denotes. Consequently, the denotation of a
predicate cannot be observed or pointed out. An
ostensive definition of a predicate P; (let it be a
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one-place predicate, as before) cannot, therefore,
consist in indicating its denotation. When ostensively
defining predicate P;, all we indicate are some concrete
objects which are members of its denotation, and,
usually, some other concrete objects which do not
belong to it. We point out the former as typical
instances of P; (the positive standards), and the latter
as typical instances of non-P; (the negative standards).
Now, the effectiveness of such an interpretative
procedure would be evident, were it possible to
indicate either all members of P; or all members of
non~P;. But this is clearly impossible—for all typical
kinds of ostensive predicates. If T were to point out
all the things which are P; (or non-P;), they would
have to be not only finite in number, but also acces-
sible to me and to all those to whom my interpretative
procedure has been addressed. No ostensive predicate
of any importance for empirical theory fulfils this
condition. Take the predicate ‘red’—a classic example
of that kind of term. We define it ostensively by
pointing at some red objects and calling them ‘red’
and, in addition, by pointing at some non-red ones
and calling them ‘non-red’. But surely we cannot in
that way exhaust either the set of all red things, or
the set of all non-red ones. And this is hardly our
intention. We indicate the chosen objects, not in
order to enumerate all instances of the predicate
‘red’, but in order to exhibit some typical examples
of that kind of things, which are to help the person
to whom the procedure is addressed to grasp the
intended interpretation of the predicate. Such a
procedure usually proves successful. Its effectiveness,
however, is only of a ‘factual’, and not of a ‘logical’
character. An ostensive definition of the predicate
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‘red’ may be, as an interpretative operation, ‘factually’
effective in the sense that it will cause the addressee
to understand that predicate just as a predicate
denoting the class of red things, and thus will enable
him to use that term in the intended way. But that
definition does not supply a sufficient reason for
such a conclusion. The predicate ‘red’ interpreted
in that way might just as well be understood as a
predicate denoting any other class which includes all
positive standards and excludes all negative ones.
Any such conclusion would be justified as well—or
rather as badly—as the ‘proper’ one. If one chooses
the ‘right’ class as the denotation of the predicate,
one is not compelled to this choice by purely logical
reasons. This conclusion is arrived at in some process
of abstraction whose analysis presents a problem
for a psychologist rather than for a logician. Let us
conclude then that ostensive definition is an efficacious
mental training rather than a cogent logical operation;
provided, of course, that it is conceived as above:
as a purely ostensive, non-definitional procedure. If
in ostensively defining the predicate ‘red’ we were
allowed to make use of some other predicates already
interpreted, we could, clearly, determine its denotation
in a logically forcible manner. It would be sufficient
to postulate that that denotation be a ‘colour’, i.e.
a set of things indistinguishable in this respect from
one another. But then our ostensive definition would
cease to be a kind of a non-verbal interpretation—
in the sense explained before; it would become a
true definition. In what follows, we shall take the
ostensive definition in its previous meaning: as a
non-verbal interpretative procedure—with all its
logical problems. What is important for our con-
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siderations is that this procedure does, after all,
effect an interpretation of certain predicates. We will
assume that all O-predicates are interpreted in this
way, and we will examine some consequences of
this interpretation.

A characteristic feature of any predicate defined
ostensively is its vagueness. There are always things
such that the question whether they belong to the
denotation of the predicate is essentially undecidable.
The denotation may be identified with a set including
those things just as well as with a set which excludes
them. If the area of determinateness of an ostensive
predicate were simply confined to the class the objects
indicated, this characteristic would be evident. But
even if this area, as we have assumed, extends beyond
the class of standards, it will never cover the whole
universe of discourse. Let us here consider two cases:
one, of a universe consisting of observable objects
only, and the other, of a universe including some
unobservable things as well. Some explanation of the
concept of observability is needed for the sake of
this discussion as the concept is a highly ambiguous
one. We shall call an object observable, if the possi-
bility of its being observed is guaranteed by some
natural law. In other words, x is observable if x has
a property P such that the following statement:
whoever (in suitable conditions) looks at an object
possessing property P will perceive the object—is a
statement of a natural law. This loose explication is
not meant to serve as a definition of observability.
It is only intended to point out some of its charac-
teristic features. As we have seen before, only physical
things may be called observable—in any literal sense
of this word. According to the present explanation,
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the converse, however, is not true: not all physical
objects are observable. Notice that their position in
space and time is of no relevance here. Some things
so remote in space or time that nobody has perceived
them till now and nobody will do it in the future are
observable, while some others are not. Thus a dinosaur
is certainly an observable thing, and a gene in its
organism an unobservable one. The distinction
‘between observable and unobservable objects co-
incides roughly with that between macro- and
micro-objects. An observable object is an object big
enough, an unobservable one too small, to be seen.
This is, of course, a vague distinction. But for our
further considerations it is not important where the
boundary-line will be drawn. What is important is
the indisputable existence of unobservable physical
things. They include, among others, such typical
scientific objects as elementary particles, atoms, or
molecules.

Let us now return to our main problem. If we
consider an observational language L, for its own
sake, it seems natural to assume that its universe of
discourse, i.e. the common universe of its intended
models, consists of observable things only. Let it
be the set U,. It seems clear that even in this case
an ostensively defined predicate P,—for instance, the
predicate ‘red’—must remain vague, It is, of course,
a partial vagueness only. There are elements of U,
which definitely belong to the denotation of P;, and
others which definitely do not belong to it. Every
subset of U, which may be denoted by P; must
include the former and exclude the latter. They
jointly form the area of determinateness of predicate
P, As we have assumed before, this area contains
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not only the positive and negative standards, but
also some other objects, viz. objects which look like
any of the given standards. Anything which is similar
in appearance to a certain positive standard will be
P,, any object which looks like a negative one will be
non-P;. The trouble is that there always will exist
objects such that the question whether they resemble
a positive standard or rather a negative one is
essentially undecidable. This resemblance in appear-
ance, which is the only criterion of membership in
the denotation of P, is given by means of a few
examples. The qualities in question form a continuous
series; we can pass by imperceptible stages from one
to the other. So, sooner or later, we are bound to
encounter things possessing the given guality in a
degree that will not permit any decision. These things
may be said to resemble the positive standards just
as well as the negative ones. Hence, they may just
as well be included in the denotation of P; as excluded
from it. Both decisions will be equally arbitrary.
Things such as these belong to the area of indeter-
minateness of the given predicate. We shall then
assume that, for any O-predicate, this area is never
empty. The assumption expresses a fundamental
feature of any observational language.

This feature becomes still more remarkable in the
second of the above mentioned cases. Here, the
universe of discourse of language L, extends beyond
the set U, of the observable things and contains
some unobservable objects too. It may be identified,
for instance, with the set of all physical objects, U.
Such an assumption seems quite plausible, if the
observational language L, is treated as a part of a
theoretical language L, which certainly must deal
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with unobservable physical things. The extension of
the universe of discourse from set U, to set U seems
to increase the vagueness of all O-predicates in a
considerable way. Let us here advance the following
hypothesis on this point. The denotation of any
predicate P; which has been interpreted ostensively,
without resorting to other descriptive predicates,
remains completely vague in the domain of all
“unobservable objects, i.e. in the set U—U,. The only
criterion of membership in the denotation of P; is
a resemblance in the appearance of the given thing
to some of the positive, or negative standards. But
an unobservable thing can hardly be said to be
similar in appearance to any of the indicated objects.
It is impossible not only to perceive, but even to
imagine such a thing. All we can imagine is a thing
which, surely, must be bigger than the given one and,
thus, different from it. There are, in consequence, no
criteria of application of predicate P; to any un-
observable object. Any object of this kind may freely
be included in the denotation of P; or excluded from
it. Any such object will therefore belong to the area
of indeterminateness of predicate P;. The same is
true of all k-place O-predicates. Any k-tuple of
objects which contains at least one element of set
U—U, will belong to the area of indeterminateness
of the given predicate. The unobservable elements of
U form a class of ‘indeterminate’ objects of a kind
different from ‘indeterminate’ elements of U, men-
tioned earlier. The former may be said to ‘lie between’
the members and the non-members of P,, the latter,
as it were, to ‘lie outside’. Their logical status seems,
however, the same.

The main issues of the above discussion may be
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presented as certain formal assumptions concerning

the interpretation of observational language L,.
Models of L, i.e. I + 1-tuples of the kind:
<U’Rl’ vev Rl>s

will be symbolized by I,. Let U, be, as above, the
set of all observable objects, and U-—the set of all
physical things. The interpretation of L, as a pure
observational language is given by a family of models
M,. The family M, is determined in a non-verbal
way; predicates Oy, ..., O, are defined ostensively.
M, contains more than one model of L,; this charac-
teristic reflects the vagueness of O-predicates. All
models belonging to M, have as their common
universe set U,. The interpretation of L, as a sub-
language of the theoretical language L is given by a
family of models M *. The family M * is thus taken
as providing the intended interpretation of language
L,. It can be defined with the help of a model theoretic
concept of extension. We shall here introduce the
concept with regard to models of language L.
Model M, =U,R,,..., R is an extension of
model M, =<UR',...,R'> (and M, is a
submodel of M) if, and only if, U < U and
VXgseoos X €U [Ri(xy, oo x ) R (21, . . oy X))
for any i =1,..., 1 We say then that a model I,
is an extension of M’, (in symbols M, Ext W) if
(i) the universe U’ of M’, is a subset of the universe
U of M,; (ii) the relations of W', are obtained from
those of 2, by restricting them to U’. Now, family
M, * may be defined as containing all models of L,
which (i) have as their common universe set U;
(ii) are extensions of models belonging to family M,,:

M, e MH* UM,)=U A IM’, e M, (M, ExtIN’).
)
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As, according to our assumption, set U, is a proper
subset of U, family M,* will contain more elements
than family M,; and so will always contain more
than one model of L,. It is easily seen that under the
interpretation provided by M,* the denotations of
O-predicates remain completely undetermined in the
domain U—U,. For every object x from this domain,
there are models in M * in which x belongs to the
denotation of the given one-place predicate, and
models in which x does not belong to it. The same
applies to any k-place predicate. For every k-tuple
of objects which include at least one object from set
U—U.,, there are models in M ,* of the kinds described
above. This characteristic reflects the complete
vagueness of O-predicates in the field of all un-
observable things.

There are two fundamental features of the inter-
pretation of L, which are especially important from
a logical point of view. These are: (i) non-verbal
character of the interpretation, and (ii) its ambiguity.
The interpretation of L, is called non-verbal in the
sense previously explained: family M,* has been
determined without stipulating that in its models
certain sentences of L, be true. There are, accordingly,
no sentences of L, whose truth would be gnaranteed
by the characterization of M, * alone, with the
exception, of course, of all logically true sentences
of L,. These, as we know, are true in all models of
L,, and hence, in all models belonging to family
M *. Their negations, the logically false sentences
of L, are, in turn, false in all models of L,, and so,
in all models of M, *. But the truth-value of all
remaining sentences of L,, ie. all non-tautological
and consistent observation statements, is not deter-
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mined by the characterization of family M, * alone.
Whether they are true or false in models belonging
to M * depends on what the models are like. Their
truth-value might be said to be a matter of experience.
These observations suggest certain assumptions con-
cerning the notions of analytic and synthetic sentences
of L,. The analytic sentences of a given language are
usually identified with its meaning postulates and
their logical consequences. As there are no meaning
postulates for language L, the definition of its
analytic sentences, AN,, amounts to the following
statement:

AN, = Cn(J).

But sentences of L, which follow from the empty
set of sentences are nothing but tautologies of L,;
and so, the class of analytic sentences of L, coincides
simply with the class of its tautologies:

AN, =LV,

The negation of an analytic sentence is called a
contradictory one. The class of contradictory sentences
of L,, CN,, will then be identical with the class of
inconsistent sentences of L,:

CN, = LF,.

A sentence which is neither analytic nor contra-
dictory is called a synthetic one. In the case of L,
the class of synthetic sentences, SN,, will include all
non-tautological and consistent sentences of L,:

SN, =L,—(LV, ULF).

All these conclusions seem to be in agreement with
what has been said before about the truth-value of
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sentences of L, and its dependence on experience.
The truth of AN, and the falsehood of CN, are
known ‘a priori’, while the truth-value of SN, may
be known only ‘a posteriori’—in the sense explained.

The interpretation of L, as we have often em-
phasized, is highly ambiguous. What language L,
speaks about is not determined uniquely. The inter-
pretation of L, is given, not by a single model of
L,, but by a family M * which contains a number of
models of L, (if their universe U is infinite, their
number will be infinite too). This is due to the
inescapable vagueness of observational predicates and
constitutes a fundamental characteristic of any
observational language. In consequence, L, is a
semantically indeterminate language. All that has
been said about this type of languages in the pre-
ceding chapters applies to L, as well. In particular,
there are the same possibilities of defining for L,
the ‘absolute’ concept of truth and denotation as
have been distinguished before. We shall not recall
them now. Let us only call attention to the distinction
between determinate and indeterminate sentences of
L,. The class of determinate sentences of L, DT,
includes sentences which are either true in all models
of M * or false in all of them:

DT, = VER(M,*) U FLS(M,*).

A sentence of L, which is true in some models of
M * and false in others will be an indeterminate one.
The existence of indeterminate sentences is a charac-
teristic feature of any semantically indeterminate
language. These sentences scem to be rather useless
in any scientific inquiry as they are essentially un-
decidable. They can be neither validated nor falsified.
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To validate a sentence is, loosely speaking, to show
it to be true; to falsify it—to show it to be false.
But this is just what is impossible with regard to a
sentence which under one intended interpretation
becomes a true statement, and under another—a
false one. Thus the distinction between determinate
and indeterminate sentences proves to be quite
important for a logical analysis of an empirical
language. The observational language L, is no
exception in this respect. Let us note that all analytic
and contradictory sentences of L, will certainly
belong to determinate sentences of L,:

AN, U CN, < DT,.

This is evident since any analytic sentence is true in
all models of M_* and any contradictory one is false
in all these models. Indeterminate sentences of L,
will include all synthetic sentences which, roughly
speaking, refer to some unobservable objects, whereas
synthetic sentences, referring to observable objects
only, may belong to determinate sentences of L,.
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Chapter Six

INTERPRETATION OF
THEORETICAL TERMS

We have assumed that among the predicates of
language L there are predicates interpreted in a non-
verbal, viz. ostensive, way; these are the O—predicates
O ..., 0. They do not, however, exhaust the
extralogical vocabulary of language L. Being a
language of an empirical theory 7, L cannot be
identified with any observational language like L,.
In addition to observational predicates, L must
contain some non-observational ones, i.e. predicates
interpreted in a verbal, non-ostensive, way; let them
be the predicates T,,...,7,. They will be called
theoretical, or simply T—terms, and language L, which
contains such predicates—a theoretical language. We
assume then that the extralogical vocabulary of L
(predicates P,,...,P,) may be divided into two
parts: the observational vocabulary (O-predicates
04,...,0) and the theoretical vocabulary (7-
predicates T, ..., T,). The assumption is based on
the fact that any typical theory in empirical science
employs terms which obviously cannot be interpreted
in an ostensive way. Here, first of all, belong predicates
that refer to unobservable objects only: ‘electron’,
‘atom’, ‘gene’, and the like. They clearly cannot be
defined by pointing out objects to which they apply.
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But some predicates which refer to unobservable
objects as well as to observable ones, and even
predicates which refer to observable objects only,
cannot be defined ostensively either. Take, for
instance, predicates like ‘magnetic’, or ‘intelligent’.
They do apply to some observable objects, but they
ascribe to them some ‘unobservable properties’, or,
in other words, they classify them into such sets as
cannot be determined by pointing out some of their
members (or non-members).

Now, the question arises in what way, exactly, are
the T-predicates to be interpreted. The interpretation
of O-predicates which assigns to them their denota-
tions by simply pointing out certain individuals may
be said to be a non-verbal and direct interpretation.
The interpretation of T—predicates, on the other hand,
will have to be classified as a verbal and indirect
interpretation. It is determined exclusively by a set
of statements which connect the T-predicates with
the already interpreted O-predicates. This set is
called a set of meaning postulates, MP, for T-predicates
(or for language L). The elements of MP are sentences
of language L which, taken jointly, contain all
T-predicates and all, or some, O-predicates. Their
being meaning postulates for T-terms consists in the
following requirement being imposed on the inter-
pretation of language L: 7-terms- should be inter-
preted in such a way that the meaning postulates
MP, in which O-terms retain their usual interpreta-
tion, be true. The interpretation of language L is
assumed to be given by family M* of models of L.
The definition of M* will thus have to embody
the above requirement. This definition may be
formulated with the help of a model theoretic concept

48



Interpretation of Theoretical Terms

of prolongation. The concept will here be defined
for models of the languages L, and L. Let us say
that language L is a (proper) extension of language
L, (and L, is a (proper) sublanguage of L) as the
set of extralogical terms of L,: {O;,...,0;} is a
(proper) subset of the set of extralogical terms of
L:{0y...,0, Ty,...,T,}; and, in consequence,
every sentence of L, is a sentence of L: L, = L (but
not conversely). Models of L, i.e. I 4 m -+ I-tuples
(n + 1-tuples) of the type:

<U3R19 LY Rb Sla LR ] Sm>3

will be symbolized by 9. Now, a model M = (U,R,,
s Ry Sy, ..., S, is called a prolongation of a
model M, =<U",R'y,....,R')> if, and only if,
U=Uand R;=R',foranyi=1,...,L In other
words, MM is a prolongation of M, (in symbols
MProlM,) if UMM) = UM,) and D, (0)) = D, (0O),
forany i=1,..., 1 So, if we prolong a model 9%,
of language L, to a model M of language L, we retain
the same universe and the same interpretations of
O-predicates as in model M, and interpret 7-
predicates in any way whatsoever. It is clear that
every model 9, of L, has a number of prolongations
(an infinite number indeed in the case of an infinite
universe of 9%,); but for every model M of L there is
exactly one model of L, such that 9t is its prolonga-
tion. We shall denote this unique model of L, by I%],:

M, = M|, <> MProlIN,.

I, is, thus, the fragment of model I corresponding
to language L,. Returning now to the definition of
family M*, we shall formulate it as follows:

M e M*— M|, e M,* A\ MP < Ver(M),
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or in an equivalent, slightly expanded form:

M e M*«IM, € M ,* (MProlk,) A MP = Ver(I).

Notice that in order to belong to family M*, a
model M of language L must fulfil two conditions:
(i) M must be a prolongation of a certain model I,
of family M *; (ii) the meaning postulates MP must
be true in M. Condition (i) guarantees that in any
model of M* O-terms will be interpreted as before:
they will retain their former interpretation given by
family M *. Condition (ii), in turn, ensures that
T-terms will be interpreted according to postulates
MP, ie. so that these postulates be true. All this
seems to be in agreement with what has been said
above about the interpretation of a theoretical
language L.

The question now arises as to the nature of set
MP. What is it like ? Can an arbitrary set of sentences
of L be chosen for that purpose, or must the set MP
fulfil certain special conditions? An answer to the
latter question depends on some general assumptions
concerning the semantic properties of language L.
Is it always an interpreted, i.e. meaningful, language?
And, is its being interpreted guaranteed in advance,
‘a priori’, or is it dependent on experience? There
seems to be no decisive answer to these questions.
We shall here adopt a view which seems to accord,
better than any other, with normal practice in
empirical science, namely we shall assume that
language L is always an interpreted language, and
that this fact is independent of experience. The
language of any empirical theory always seems to be
treated by the scientist as an interpreted, meaningful
language, and not as a mere formal, meaningless
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calculus. And it seems to be treated so independently
of any empirical findings. Experience may decide
only whether an empirical theory is true or false,
not whether it is meaningful or meaningless. An
empirical theory always speaks about some fragment
of reality—truly or falsely, as the matter may be.
These observations imply important consequences
concerning the logical character of the set of meaning
postulates MP. As we have seen, family M* may be
said to provide an interpretation of language L only
if it is non-empty. If M* did not contain any models
of L, L would remain uninterpreted, in spite of the
existence of a definition of M*. We must then assume
that M* # &, or in an explicit formulation:

(@) 3IMWM, € M * IM(MProlIR, A MP < Ver(I)).

Only if condition (a) is fulfilled, L may be considered
as an interpreted language. We should, in fact, make
a requirement somewhat stronger than the above.
We have demanded that the interpretation of L
preserve the interpretation of O-predicates given by
family M,*. Consequently, family M* must not
exclude any models belonging to family M *. If it
excluded some of them, it would alter the inter-
pretation of O-predicates by making them more
determinate than they were before. That requirement
may be expressed by the following formal assumption:

(b) VIR, € M,* IM(MProl, A MP < Ver(M)).

It ensures that every interpretation of O-predicates
which has been admitted by M * will be admitted
by M*, too. Condition (b) obviously implies con-
dition (a). We shall then require that the meaning
postulates MP meet condition (b). Moreover, we
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shall require that the truth of (b) be known a priori,
independently of any empirical findings. In other
words, the truth of (b) must be provable on the basis
of the syntactical and semantical definitions and
theorems of the metalanguage of L alone. This can
be done only if set MP satisfies a rather strict con-
dition which may be called the semantic condition of
non-creativity:

(© VI, AM (WMProlt, N\ MP < Ver(IM)).

Otherwise, the truth of (b) and (a) is bound to be a
matter of experience. It then clearly depends on what
the models of M, * are like. And, as family M * has
been determined by non-verbal means, viz. ostensively,
only, we cannot be sure in advance that its members
will just comply with condition (b) or (a). This can
be guaranteed only if all models of L, satisfy a
corresponding condition, that is, if (c) is true.

Let us note here that the semantic condition of
non-creativity entails the so called syntactic condition
of non-creativity, which is usually rendered as follows:

(d) L, N Cn(MP) = Cn(D).

It states that the sentences of language L, which follow
from set MP are mere tautologies. Now, every set
MP which satisfies (c) satisfies (d) as well. The proof
is quite obvious. If the sentences: L, N Cn(MP) were
not tautologies, there would be a model of L, in which
they are not true:

IM, ~ (L, N Cn(MP) < Ver(IN,).

In consequence, there would exist a model of L,
which cannot be prolonged to any model of set MP:

IM, ~ AM (MProlIk, N MP < Ver(IM)).
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And this is nothing else but the negation of (c). It
should be noted also that the converse is not true:
condition (¢) does not follow from condition (d).
There are sets MP which fulfil (d) but not (c). The
proof is rather involved and will not be presented
here.! Thus, the semantic condition of non-creativity
is essentially stronger than the syntactic one, and
cannot be replaced by the latter.

A requirement of the semantic non-creativity seems
quite natural with regard to any meaning postulate.
The most typical example of a meaning postulate for
a predicate is its explicit definition (equivalence
definition). As it is well known, any such definition
satisfies the condition of non-creativity, the syntactic
as well as the semantic one. The notion of meaning
postulate may be thought of as a generalization of
the concept of definition. We shall examine the main
types of meaning postulates later on. We shall see
then what this generalization consists in. Let us now
state in advance what follows. Any explicit definition,
in addition to the condition of non-creativity, meets
a requirement of translatability: any such definition
enables us, namely, to translate a sentence containing
the term defined into a sentence free of it. Now, the
transition from definitions to other types of meaning
postulates involves abandoning that requirement.
Meaning postulates, as a rule, do not satisfy the
condition of translatability. Butf, as our arguments
have tried to show, they still must satisfy the con-
dition of non-creativity. This seems to be a charac-
teristic trait of any meaning postulate—whether
definitional or not.

We shall then assume that the set MP of meaning

] am indebted for it to Mr. C. C. Chang.
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postulates for 7-terms is always to be a non-creative
(in the sense (c)) set of sentences of language L.
But which one? How is it determined ? In answering
this question, we clearly have to resort to some
pragmatic factors, in particular, intentions and
decisions of scientists who have been constructing
a given language and theory. It is their intentions
and decisions that ultimately determine the way
T-terms are to be understood and, consequently, the
set of meaning postulates for them. A set Z of
sentences of language L may be regarded as a set of
meaning postulates for 7-terms only if the users of
language L decide to understand 7-terms in such a
way that the sentences of Z be true—as far, of course,
as this proves possible. This does not mean, however,
that the whole set Z is to be taken straightforwardly
as a set of meaning postulates in the sense adopted
by us thus far, i.e. as a set of sentences such that any
intended model of language L is defined as a model
of all these sentences. As we have just seen, any such
set of sentences should fulfil the condition of non-
creativity. And so, set Z, characterized as above,
may be regarded as a set of meaning postulates for
T—terms only if it is a non-creative set of sentences.
And if it does not satisfy this condition? Then,
accordingly, the whole set Z cannot be identified
with the set of meaning postulates MP. It is too
strong for that. It appears to contain, besides meaning
postulates, some factual statements as well. The set
of meaning postulates must thus be essentially weaker
than Z. Let us call set Z determined by the decision
of the users of language L described above a set of
postulates for T-terms (or for language L), P for
short. We are faced then with a task of isolating
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the set of meaning postulates MP from the whole
set of postulates P.

How might the set MP be determined? On the one
hand, it must, as we know, be sufficiently weak to
fulfil the semantic condition of non-creativity:

(i) VIR, IM (WProlM, A MP < Ver(MM)).

~ On the other hand, however, it must be sufficiently
strong to include all of the meaning postulates
contained in set P: it must be a set of meaning
postulates ‘corresponding’ to set P. This is a rather
vague notion, which surely can be made precise in
more than one way. The explication which will be
given here seems adequate enough and, at the same
time, possibly non-restrictive.! Let us state it in a
formal way before commenting on it. The set MP
of meaning postulates will then be said to ‘correspond’
to the set of postulates P if it fulfils the following
condition:

Gy VIR QW[ Prol], A P < Ver(IN)] —
— [MP < Ver(I)«> P = Ver(P)]}.
What is the intuitive meaning of the above require-~

ment? It may be presented as a conjunction of two
conditions. The first of them reads as follows:

VIR {II M Proldf|, A P < Ver(I')] —
—[P < Ver(IR) - MP < Ver(M}}.
This is clearly equivalent to the following simpler
formulation:
Y [P = Ver() > MP < Ver(IM)],

1t corresponds to a condition put forward by R. Wojcicki
in the article: *Analytic components of arbitrary definitions’
(in Polish), Studia Logica 14, 1963.
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which states that every model of P is a model of MP,
or, in other words, that the meaning postulates MP
belong to the logical consequences of the set of
postulates P: MP < Cn{P). They are thus obviously
meaning postulates ‘contained’ in set P. But do they
exhaust all of such meaning postulates? The second
of the conditions involved in (ii) states the following:

VI {3 Prolif]|, A P < Ver(IR)] —
~» [MP = Ver(M) — P < Ver(3)]1}.

It does not, of course, require that every model of
MP be a model of P; set MP would then be logically
equivalent to set P, and this is impossible if P is a
creative set of sentences. What it does require is,
roughly speaking, that every model of MP which
‘can be’ a model of P be a model of P. The clause
which states that a model 9% ‘can be’ a model of P
is here expressed by the following formula:

M’ [’ Proldt), A P < Ver(W')).

Literally: a model 9 is a prolongation of such a
model M, that in some of its prolongations set P
is true. Notice that if P is non-creative the above
condition is fulfilled by any model 9; if P is incon-
sistent it is fulfilled by none. But if P is a creative
and consistent set of sentences, some models of
language L satisfy this condition and some others do
not. Now, our second component of (ii) demands
that every model of MP be a model of P provided
it satisfies the condition just described. A model of
MP which does not satisfy that condition may be, as
far as this component is concerned, quite arbitrary.
We might thus say that set MP ‘corresponds’ to set
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P in the following intuitive meaning: if only it is
possible to interpret T-terms in accordance with P,
then the interpretation determined by MP is identical
with that determined by P.

Let us conclude: a set of meaning postulates MP
contained in a pragmatically given set of postulates
P is a set satisfying conditions (i) and (ii). This, of
course, is not a definition of set MP. First, we have
no guarantee that for every set P there will be a set
of sentences of language L satisfying both the con-
ditions. There is no general method of constructing
a set MP for any given set P. There might indeed
be no such sets in certain special cases. Then we
should have to replace condition (ii) by some weaker
one. But, as will be seen later, a set MP, characterized
by conditions (i) and (ii), can easily be constructed
for all typical kinds of set P, employed in scientific
practice. Second, conditions (i) and (ii) do not
determine set MP uniquely. If for a given set P
there exists a set fulfilling these conditions, there
will always be some other sets which fulfil them too.
First of all, it is easily seen that if a set X satisfies
conditions (i) and (ii), a set of its logical consequences,
Cn(X) satisfies them as well. Moreover, two sets
satisfying conditions (i) and (ii) need not be logically
equivalent. As we shall see later, there may be, for
a given set P, sets X, and X, satisfying the above
conditions which are non-equivalent ones, i.e. such
that: Cn(X,) # Cn(X,). The differences between such
sets do not, however, seem of much importance as
far as the interpretation of languages L is concerned.
Any set satisfying, for a given set P, conditions (i)
and (ii) seems suitable for that purpose and so, any
such set may be regarded as a set of meaning postu-
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lates for T-terms. If we choose one of those sets as
the ‘proper’ set of meaning postulates for 7-terms,
our choice must be governed by some additional
reasons. It seems to effect the interpretation of L in
a way which may be of some relevance from a
pragmatic point of view. We are going to examine
such a situation in detail in the next chapter. For
the moment we shall merely consider its general
characteristic. The family of models M*, providing
the interpretation of langnage L, might contain,
besides models in which the set of postulates P
‘can be’ true, models in which it ‘cannot be’ true—
in the sense explained. In the former, the interpreta-
tion of T-terms is fixed: it is an interpretation
determined by P—independently of the choice of a
particular set MP from all those satisfying conditions
(1) and (ii). In the latter, however, the interpretation
of T-terms may be quite arbitrary: it depends on
which particular set MP has been chosen from all
the admissible ones. And this is precisely the point
which may be not neutral with regard to some
intentions of the scientist engaged in constructing
the given language and theory.

Let us turn now to the problem of further charac-
terizing the set of postulates P. It is, as we know, a
set determined by a decision of the users of language
L, viz. by their decision to understand 7-terms so
that the sentences of set P be true, as far as this
proves possible. But what is the set like? Is there
anything general to be said about its content? There
is only one characteristic that will be ascribed to P
in all our further discussions. Set P will be assumed
to be a subset of set 4 of axioms of theory 7™

Pc A
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In consequence, the set of meaning postulates MP
corresponding to P will always be included in the
set Cn(A) of logical consequences of 4 : MP < Cn(4),
i.e. in the set of theorems of theory 7T : MP c T.
The axioms of theory T" will thus contain all meaning
postulates for 7-terms, in particular, all definitions
of these terms (if there are any postulates in the
form of definitions). This assumption seems natural,
provided a theory is always identified with a sufficiently
comprehensive set of statements. It is sometimes
maintained that some (or even all) theoretical terms
of a theory T are defined not within theory T itself
but within a different logically prior theory 7". In
all such cdbes, what will be regarded by us as a
" given theory is not 7 alone but rather the sum of
T and T'. A theory will always be understood to
include all theories upon which it is logically based,
esp. all theories in which some of its theoretical
terms have been defined and interpreted. If so con-
ceived, it surely can be said to contain among its
axioms all meaning postulates for its 7-terms.
Usually we may accept a stronger assumption charac-
terizing the set of postulates P: we may identify it
with the whole set of axioms of theory T':

P=A.

A normal presentation of an empirical theory contains
no explicit statements concerning the logical status
of any of its axioms. What is more, no such statements
can usually be inferred from what we know about
the scientist’s intention and decisions. So there seems
to be no reason for regarding some of the given
axioms as postulates and some others as factual
hypotheses. All of them seem to be treated in exactly
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the same way. In situations like these, the meaning of
T-terms seems to be dependent on the whole set of
axioms of theory T. These terms are to be understood
as denoting those objects which satisfy all the axioms.
Theory T is then often said to be a theory of just
those objects—a theory of ‘elementary particles’, or
‘gravity’, or ‘utility’.

In all such cases it becomes particularly clear that
the set of postulates, here 4, cannot be identified
with the set of meaning postulates in the sense here
adopted. A4 evidently is a creative set of sentences
of language L. Being the axiom set of an empirical
theory 7, it must entail some non-tautological
observation statements:

L, N Cn(A) # Cn().

Otherwise, an observational test of theory T would
be impossible, and T could hardly be called an
empirical theory. But implying such observational
statements, 4 does not fulfil the semantic condition
of non-creativity (i). So it cannot be taken to be the
set of meaning postulates. Suppose we do treat it
this way. Family M* providing the interpretation of
language L would then be defined as follows:

MeM* M|, e M* A A < Ver(I).

Now it is clear that, so interpreted, theory 7 could
not be false. If some of its observational statements
turned out to be false, that is, false in all models of
family M, *, M* would be empty and language L
would be devoid of any interpretation whatsoever.
In consequence, theory T° would be either true or
meaningless. But it seems that an empirical theory
should certainly be meaningful as well as falsifiable.
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So, its whole axiom set cannot be taken as a set of
meaning postulates. Even when it is treated by the
scientist as a set of postulates for 7-terms, it still
retains its ‘hybrid’ nature. It assigns a meaning to
theoretical terms and, at the same time, it expresses
some factual knowledge. It may be said to be com-
posed of a ‘definitional’ and a ‘factual’ component.
Only the former can be identified with the set of
meaning postulates. We have already suggesied a
way of isolating the ‘definitional’ component. The
set of meaning postulates contained in 4 may be
any set MP which satisfies the conditions corres-
ponding to (i) and (ii) (where P = A). So, family
M*, which is to provide interpretation of language
L, has to be defined according to our general schema:

MeM*—M|, e M,* A MP < Ver(M).

We have tried to show that this definition ensures
for L the desired interpretation. Loosely speaking,
it is an interpretation: (a) independent of experience,
(b) consistent with the interpretation of L, and
(c)—as far as possible—with the axiom set 4. So
interpreted, T is a meaningful and falsifiable theory.

The situation just described, though typical, is
certainly not the only possible one. Undoubtedly,
there are theories whose axioms, A4, can be divided
in advance into postulates, say 4’, and factual
hypotheses, 4"'. Sometimes we find explicit declara-
tions to the effect that certain axioms are to be
regarded as definitions and others as hypotheses. In
other cases, while we do not find any explicit state-
ments of this kind, we can infer such statements
from what we know about behaviour of the scientist,
esp. the way he handles different axioms when
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putting the theory to the test. His behaviour may
reveal his intentions and decisions as regards the
logical status of particular axioms. Such conclusions,
however, are usually far from being unquestionable.
Hence—long and inconclusive discussions on the
subject. Let us here recall the known controversy
between conventionalists and their critics concerning,
e.g. the logical status of the laws of Newtonian
mechanics. These laws, undoubtedly, perform a
double function: they endow such theoretical terms
as ‘mass’ with meaning and, at the same time, convey
some empirical knowledge. But which of them fulfil
the first task, and which the second ? Which of them
are postulates, and which factual hypotheses? There
does not seem to be available any definite answer
to these questions. In other situations, where such
answer is available, we take, of course, as the set P
of postulates for T-terms, not the whole set of
axioms, A, but only the distinguished subset, A’. It
should be noticed here again that A" is a set of
postulates only, and the set of meaning postulates
MP must be determined as before. In some cases,
MP will prove identical with A’, in others it will
not. We are going now to examine in detail the main
types of meaning postulates for T-terms and to
illustrate thereby these general and abstract con-
siderations.
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Chapter Seven

MAIN TYPES OF MEANING
POSTULATES FOR
THEORETICAL TERMS

In what follows we shall give a brief survey of those
kinds of statements of language L which usually
function as postulates for 7-terms in an empirical
theory 7. The most important of them seem to be:
explicit definitions (or equivalence definitions), con-
ditional definitions (or bilateral reduction sentences),
and partial definitions (or reduction sentences). We
shall examine each of them in turn, but in a slightly
simplified manner so as to avoid some inessential
complications. We shall thus assume that language
L. contains only one theoretical term: one-place
predicate 7,. A generalization to a language with
m k-place theoretical predicates will be quite obvious.
Let us begin with the strictest of all types of postulates:
explicit definitions.

I. ExprIicIT DEFINITIONS OF 7-TERMS

An explicit definition (or simply definition) of one-
place predicate 7, assumes the form of so called
equivalence definition:

» Vx [Ty(x) > «(x)],
63



Main Types of Meaning Postulates

where o(x) is a formula with one free variable x,
not involving T;. So, according to our assumption,
it is a formula of language L,, i.e. a formula which
contains O-predicates as its only descriptive terms.
If the set P of postulates for T entails an explicit
definition 8 of predicate T, i.e. 8 € Cu(P), T, is said
to be explicitly definable by means of observational
vocabulary. Being so definable, this theoretical term
is, in a sense, unnecessary. It can always be avoided
in favour of an observational expression, viz. its
definiens. As we have seen already, any explicit
definition 8 of predicate T, meets the requirement of
translatability: For every sentence ¢ of language L
which contains 7', there exists a sentence ¢ of language
L, (which, of course, does not contain T) such that
the equivalence: @« is a logical consequence of
definition 8§, i.e. (p<> 1) € Cn({8}).

Although always replaceable, in the sense explained,
by an observational expression, 7; may be linked
with experience in different, more or less direct, ways.
This characteristic of T; depends on the logical
structure of its definiens. Two main cases must be
distinguished here: «(x) may be a molecular or a
quantified formula. In the first case, it does not contain
any quantifiers at all, or contains them only vacuously,
ie. is logically equivalent to a formula without
quantifiers; in the second case, it does contain at
least one quantifier non-vacuously. We may now
say that all and only definitions with molecular
definiens provide finite observational criteria of
application for the predicates they define; in the case
of a quantified definiens, the application of the
defined predicate to a given object cannot be con-
clusively based on a finite number of observations.
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Take, e.g., the following definition of T, with a
molecular definiens:

(1.D Vx [Ty(x)e> 01(x) A O(x)].

In order to apply I'; to an object x we have simply
to ascertain by direct observation whether or not x is
0, and O,, and this is obviously a finite procedure.
If the definition of T assumes a form involving
universal quantification:

1.2) Vx [Ty(x)¢> ¥y O5(x.p)],

an application of T, to an object x calls for a more
intricate procedure: we have to decide whether or
not the object x bears relation Q5 to every object
in our universe of discourse. If the universe is infinite
(as, in fact, it usually is), the positive decision
involves an infinite procedure; for the negative, one
observation may, of course, be sufficient. The converse
holds for a definition with purely existential quantifi-
cation:

(1.3) Vx [T (x)¢> 3y 0.(x, 0]

Here, an application of T, needs a finite number of
observations, while an application of non-T; an
infinite one. Both kinds of application of T;—positive
as well as negative—involve an infinite observational
procedure in the case of definitions with mixed
quantification:

(1.9 Yx [T(x)¢> Yy 3z O5(x,,2)].

Now, it seems that all kinds of definitions mentioned
above play an important part in actual empirical
theories. This, in particular, is true of definitions
with quantified definiens. There have been adduced
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convincing arguments to the effect that the empirical
theories cannot dispense with definitions involving
quantifiers. A definition of the concept of ‘perfect
liquid® may serve as a typical example of definitions
of kind (1.2): ‘A perfect liquid is a liquid which
keeps its volume unchanged under any pressure’.!

There are two points concerning any postulate
which are of special importance for our considerations
and which are going to be discussed for each type of
postulates under investigation. They pertain to the
semantic characteristic of the given postulate and
thus have an effect on the interpretation of language
L. The first of them is the problem of ron-creativity
of the given postulate, discussed already in general
terms; the second is the question of wnigueness of
interpretation determined by the given postulate. In
the case of explicit definitions, both problems can
be answered in a straightforward manner.

1. Every explicit definition & of predicate T, (i.e.
every definition of type (1)) fulfils the scmantic
condition of non-creativity (i):

VIR, AMEIRProlM, A 8 € Ver(IM)).

This well-known fact is considered to be fundamental
for all kinds of explicit definitions. It guarantees the
existence of an interpretation as determined by any
such definition. For any interpretation of O-predicates,
there is always an interpretation of predicate T,

1This definition, of course, has not been couched in obser-
vational vocabulary. It would be rather difficult to quote an
actual scientific definition satisfying this condition. We will
comment on this point later on. In the present considerations
we will simply abandon that requirement where it does not
seem essential for the argument in guestion,

66



Main Types of Meaning Postulates

which satisfies definition 8. In consequence, any
explicit definition of T'; may be treated as a meaning
postulate for this predicate.

2. Does an explicit definition & determine interpreta-
tion of T in a unique way? The answer is: it does,
and in a very strong sense indeed. For any given
interpretation of O-predicates, there is always only
one interpretation of predicate 7; which satisfies
definition 8. The following statement formulates this
characteristic feature of any explicit definition 8 of
predicate T :

VIR, VIR VIR [MProlM, A ' Prolit, A
A 8 Ver(M) A 6 € Ver(M) - P = M'].

What is more, the explicit definitions are, in a sense,
the only meaning postulates which share the charac-
teristic expressed in the above statement. The known
theorem on definability asserts the following: Let P
be a set of postulates for predicate 7,. If

Y, VIR VIR [ MProlt, A M Proldk, A
AP S Ver() AP < Ver(I) — I =MWM’),

then there is an explicit definition & of predicate T,
such that & € Ca(P). It has been stated only that
interpretation of an explicitly defined predicate T,
is determined uniquely by any interpretation of the
O-predicates (and, of course, the range of variables).
This does not mean, however, that there will be only
one interpretation of 7; under the intended interpre-
tation of our language L. This would be true only if
the intended interpretation of the sublanguage L,
were unique too, ie. if family M,* contained only
one model of language L,. Since, according to our
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assumptions, it always contains more than one
model, the models of language L belonging to family
M* may, and usually do, interpret 7, in different
ways, i.e. as denoting different subsets of the uni-
verse {J.

We turn now to a type of postulates looser than
explicit definitions, but certainly not less important
for the scientific practice: the so called conditional
definitions.

II. CoNDITIONAL DEFINITIONS OF T-TERMS

A conditional definition of one-place predicate T, is
usually rendered as follows:

() Vx [B0x) = (T1(x) > «(x))],

where «(x) and B(x) represent formulas of language
L, of one free variable x. So conceived, a conditional
definition may be regarded as a generalization of
explicit definition. (1) is simply a special case of (2).
(2) is logically equivalent to (1) provided the condition
VxB(x) is logically true: VxB(x) e LV. If ¥xB(x) is
not tautological, (2) is essentially weaker than (1):
it is a logical consequence of (1), but not conversely.
Only such cases of conditional definitions will be
considered in the following. It is quite clear that they
do not fulfil the condition of translatability. There
are always sentences of L containing 7, which are
not equivalent to any sentences of L, in virtue of
such conditional definition. The class of sentences of
L containing T, which are translatable into sentences
of L, may be characterized as follows. Let & be a
conditional definition of T, of type (2), ¢(T}) a
sentence of L containing 7, and (B A T',) a sentence
obtained from ¢(T) by replacing in it each expression
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of the kind T;(x) by an expression of the kind
B(x) A Ty(x). Now, for every o(T;) there exists a
sentence ¢ of L, such that: (p(T)<>¢) € Cn({8}) if,
and only if, (p(T,) <> (B A T,)) € Cr{{3}). Thus, e.g,
Ix (B(x) A Ty(x)) will be, in virtue of 3, translatable
into a sentence of L,, viz. 3x(B(x) A =(x)), while
dx T,(x) will be not.

In consequence, a theoretical predicate 7, which
has been defined only conditionally cannot generally
be eliminated in favour of an observational expression.
In explicit definitions (1), the equivalence between the
defined term 7, and the defining expression « is not
conceived of as subject to any empirical condition
which may or may not materialize in any individual
case. In conditional definitions (2), the definitional
equivalence between 7, and « holds only for those
objects which happen to satisfy condition 8. If an
object x does not satisfy this condition, conditional
definition (2) does not allow us either to infer that
x is T, or that it is not. Just this feature of conditional
definitions makes them a suitable tool for defining
some theoretical terms by means of observational
vocabulary. These theoretical terms may be said to
denote certain unobservable entities which ‘reveal’
themselves as observable phenomena under certain
observable circumstances. Where no such circum-
stances exist, the entities do not manifest their
presence at all. Thus, on the observational level,
they acquire the character of dispositions. That is
why theoretical terms which denote such entities can,
by means of observational vocabulary, be defined only
conditionally. Let us illustrate this point of a now-
classic example of the term ‘magnetic’. It denotes,
not a directly observable characteristic, but rather a

69



Main Types of Meaning Postulates

disposition, on the part of some physical objects, to
display specific reactions {such as attracting small
iron bodies) under certain specifiable conditions (such
as the presence of small iron bodies in the vicinity).
The term, thus, seems to be definable by the following
conditional definition (oversimplified in matters of
physical detail): ‘If a small iron object is close to x,
then x is magnetic if, and only if, that object moves
toward x’. It determines the meaning of ‘magnetic’
only in reference to objects which meet the condition
of being close to some small iron body. If no small
iron object is close to x, we can never tell, on the
ground of the above definition, whether x is magnetic
or not. The definition thus seems to specify the
meaning of the term ‘magnetic’ just to the proper
extent. The question whether there are theoretical
terms that cannot be defined explicitly by means of
observational ones has been widely discussed in
recent philosophy of science, yet still cannot be
regarded as definitely solved. We shall not enter into
this controversy. There certainly are theoretical terms
which in actual empirical theories are not defined
explicitly by means of observational vocabulary.
Some of them are defined conditionally, and this
seems to justify a concern with that kind of potulate.
Let us characterize some of their semantic properties.

1. Every conditional definition of predicate 7'y (i.e.
every definition of type (2)) fulfils the semantic
condition of non-creativity (i). This follows from the
fact that any conditional definition (2) is a logical
consequence of an explicit definition (1); and, as is
readily seen, any logical consequence of some non-
creative set of sentences of L must be a non-creative
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sentence itself. So, any conditional definition of
predicate T; may function as a meaning postulate
for this term.

2. From what has been said about explicit definitions
it follows that no conditional definition determines
the interpretation of 7, in a unique way, unless it
is logically equivalent to an explicit one. Unless
VxB(x) is logically true, there always are some models
M, in which VxB(x) is false; and in such cases
predicate T; defined by (2) may clearly be interpreted
in different ways. What is more, all models belonging
to family M, * seem to be just of this kind. Under
the intended interpretation of language L,, B seems
to be always a condition which is satisfied by only
some objects from the universe U. Only some physical
things meet the condition of being close to a small
iron body. This is just the reason for using a con-
ditional definition, instead of an explicit one. But if
so, for any intended interpretation of O-predicates
there will be more than one interpretation of T
determined by a conditional definition (2). We shall
show this for the simplest kind of such a definition,
ie.:
Vx [04(x) = (T1(x) > Ox(x))].

Let 9%, be one of the models belonging to family
M* and let D.,(0,) =0, and D, (0,)=0,.
According to what has been said above, U — O, # .
Now, in any model % which is a prolongation of I,
and in which the above definition is true, i.e. which
belongs to family M*, the denotation of T, is deter-
mined as follows:

0, NnN0,c D(T) s U - (0, ~0,).
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D(T)) would thus be determined uniquely only
if Oy NO,=U—(0, —0,), that is, only if
U—-0, =¢. And this is just contrary to our
assumption. So, in different models M of the kind
just described T'; will denote different sets of objects,
ranging from O; N0, to U—(0; — 0,). The
interpretation of T, may be said to be determined
only in subset O, of the universe U; in the rest of it,
U — Oy, it remains undetermined. This indeter-
minateness of interpretation of Ty, called sometimes
the ‘openness’ of its meaning, is regarded as an
intrinsic feature of typical theoretical terms. All such
terms are, in this respect, like 7,: all are ‘open’
terms.

Let us turn now to the kind of postulates which
might be thought of as generalized conditional
definitions. These are the so called partial definitions,
or, in a different terminology, reduction sentences.

III. PARTIAL DEFINITIONS OF T-TERMS

A partial definition of one-place predicate T is usually
formulated as a pair of following statements:

Vx [alx) > T1(x)], Vx [B(x) > ~ Ty(x)],
or simply, as their conjunction:

@) Vx[ex) = Ti(x) A BE) = ~Ti(x)],

where, as before, «(x) and B(x) represent formulas
of L, with x as the only free variable. A conditional
definition (2) might be viewed as a special case of
partial definition (3). If in the latter «(x) takes the
form of B(x) A «(x), and B(x) the form of B(x) A ~ «(x),
we get a statement logically equivalent to (2). (Hence
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(2) has sometimes been called a ‘bilateral reduction
sentence’.) But (3) clearly comprises such cases as do
not fall under schema (2). (3) seems to represent a
form of postulates which is very common in actual
scientific practice. Because of their semantic pro-
perties, however, statements of type (3) cannot
generally qualify as meaning postulates for 7-
predicates.

1. A partial definition, in contrast to conditional,
does not generally meet the semantic condition of
non-creativity, (i). (3) entails a sentence of langunage

@ Vx ~ («(x) A B(x))

which may well be a non-tautological observation
statement. In such case, (3) is obviously creative and
cannot be identified with meaning postulate for 7).
If (4) turns out to be logically true, a partial definition
(3) becomes logically equivalent to a conditional one,
e.g.:

) Vx [(dx) V B(x)) > (Ty(x) > o(x))],
and meets the requirements of non-creativity. It may
then itself be taken as meaning postulate for T.
Otherwise, we have to take as such postulate a
‘definitional’ component of (3), that is, a sentence
of L which fulfils conditions (i) and (ii) stated before.
Now, on the assumption that (4) is logically true,
(3) is logically equivalent to a number of statements,
one of which is the conditional definition (5) quoted
above. Two others are:

6)  Vx[~(x) ABO) > («(x) V B(x)) —
> (Ty(x) > a(x))],
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(N Vx ~(ax) A Bx)) = Vx [(«(x) V B(x)) >

= (Ty(x) > a(x))]-

If (4) is not logically true, any of these statements
may be regarded as a ‘definitional’ component of
(3) and treated as a meaning postulate for T;. They
all satisfy the non-creativity requirement (i): (5) is a
conditional definition and (6) and (7) its logical
consequences. And it can easily be proved that they
all fulfil condition (ii).

Let us now call attention to the fact that, when (4)
is not logically true, the statements (5), (6), and (7)
are not logically equivalent to each other. (6) is a
logical consequence of (5), but (5) is not a consequence
of (6); (7) follows from (6), but not conversely. So
(5) is logically stronger than (6) and (6) stronger
than (7). It may be shown that (7) is, in fact, the
weakest form of meaning postulate contained in (3):
it is a consequence of every statement which satisfies
conditions (i) and (ii). Thus, we have here a situation
described in general terms in the preceding chapter.
There are, namely, various meaning postulates which
correspond, in the sense explained, to the same
postulate, but differ in other respects. The question
arises how these differences effect the interpretation
of language L, viz. the interpretation of its theoretical
term 7. In examining this question, we will restrict
ourselves to the simplest case of a partial definition
3), ie.:

(3)  Vx[0.(x) > Ty(x) A (05(x) > ~Ti(x))],

and will present corresponding to it meaning postu-
lates (5), (6), and (7), in slightly modified, more
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intuitive and conspicuous, though, of course, logically
equivalent forms:

() Vx [(0:(x) ~ Ti(x)) A
ANO(x) N ~ O4(x) > ~ Ty(x))],

6" Vx [(01(x) A ~ O0x(x) > T (x)) A
AOx(x) A ~ 04(x) = ~ Ty (x))],

(7)) ¥Yx~(0:(x) A 0(x)) > Vx [(04(x) -
= T(x)) A (O2(x) = ~ Ty (x)].

Let M, be a model of family M, ¥, and let

Dmo(ol) =3 Ol and Dmo(OZ) =3 Oz. We Shall djstin-
guish two cases, according to whether the statement:

“) Vx ~(0(x) A Oy(x))

is true in M, or not, i.e. whether O, N O, = & or
not. In the first case, any model of language L which
is a prolongation of I, ‘can be’ a model of definition
(3", and so all the postulates (3"), (6"), and (7'),
according to condition (ii), determine the interpreta-
tion of Ty in exactly the same way: in accordance
with definition (3"). The denotation of T, is here
defined as follows:

O, =D0,(T)cU—0,.

It is thus determined for all elements of the set
0, V0, (it is, in this set, identical with O,) and
undetermined for all other objects from the universe
U:U~—(0; V0O,). In the second case, no model
of language L which is a prolongation of 9, ‘can be’
a model of definition (3'). In these models, i.e. in
models in which O; N Q, # &, different postulates
—(5"), (6"), (7" y—determine different interpretations
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of T;. According to (5°), the interpretation of 77 is,
as before, undetermined only for elements of the set
U — (0, v 0,); for objects from the set O, U O,
it is determined and identical with O,. But as now the
latter include elements of O, N O,, these will also
belong to the denotation of T, in contrast to the
former case. According to (6"), the interpretation of
T, is undetermined not only for elements of the set
U — (0, v 0,) but also for elements of O; N O,;
for the remaining objects from U it is determined
and identical with O, — O,. According to (7°), the
interpretation of 7 is, in the case under consideration,
completely undetermined: D, (7;) may be any subset
of U whatsoever. All these differences in interpreta-
tion of 7, might seem, in a sense, inessential. If in
models of M * sentence (4") turns out to be false,
the partial definition (3’) will be false too (or, at
least, indeterminate, provided (4') is false in some
only models of M *). It should then be rejected, or
altered so as not to imply such consequences. It
must be admitted, however, that there might be some
additional reasons for preferring one of the above
possibilities. The intentions of the scientist seem here
decisive.

2. As the preceding analysis has clearly shown, the
interpretation of predicate 7', as introduced by a
partial definition (3), could be determined uniquely
by a model M, of language L, only if the sentence
Vx{e{x) V B(x)) were true in M,. But, in fact, models
of family M ,* hardly satisfy this condition. A partial
definition is really needed only when the condition
is not satisfied.. Otherwise, we could manage with
explicit definitions alone.
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A few words still need to be added about some
other kinds of postulates which, on a closer scrutiny,
turn out to be reducibls to the ones already con-
sidered. It has sometimes been maintained that the
meaning postulate for a predicate 7', may be identical
with one only of the statements constituting a partial
definition. It may state criteria of application either
for T, or for non-T,; only. Such ‘unilateral reduction
sentences’, as they are sometimes called, are clearly
equivalent to certain ‘degenerate’ cases of conditional
definition. Yx{a(x) — T;(x)] is logically equivalent to
Vix[a(x) = (Ty(x)<> «(x))], and Vx[B(x) = ~ T(x)]
to Vx[B(x) — (T(x)«<> ~ B(x))]. On the other hand,
the postulate for a predicate T, may consist of two
and more conditional definitions. This kind of
postulate undoubtedly plays an important role in
defining theoretical terms in actual empirical theories.
Every term defined only conditionally remains, as we
have seen, partly undetermined. This indeterminacy
may be, and usually is, decreased by laying down
additional conditional definitions which refer to
different criteria of application. Thus, e.g. the con-
ditional definition of predicate ‘magnetic’ quoted
above might be supplemented by the following one:
‘If x moves through a closed wire loop, then x is
magnetic if and only if an electric current flows in
the loop’. The definitions together provide criteria
of application for the term ‘magnetic’ with reference
to any object that satisfies the condition of at least
one of them. Now, these two conditional definitions
for predicate Ty, amount jointly to a partial definition
of type (3). Let them read as follows:

Vx[B(x) = (T1(x) > (x))],
Vx[8(x) = (Ty(x) > y(D]
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Their conjunction is logically equivalent to a partial
definition:
VE{[(B&) A «(x) V 3(x) A ¢(x)) = T1(x)] A
ATBG) A ~ox) V 8(x) A ~p(x)) ~ ~ Ty(x)]}

Thus, all that has been said about partial definitions
in general applies to this particular case. One point
here calls for special attention: in contrast to one
conditional definition, a set of two (or more) such
definitions for one theoretical term is, as a rule, a
creative set of postulates.
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Chapter Eight

SOME OTHER KINDS OF
MEANING POSTULATES FOR
THEORETICAL TERMS

The types of postulates examined in the preceding
chapter do not exhaust all kinds of statements which
function as meaning postulates in existing empirical
theories. Space does not permit a comprehensive
treatment of all the remaining kinds. (Indeed the
problems that arise in this connection are far from
being solved as yet.) So, we are going to present only
some of them: first of all, those which have been
suggested by recent writings on the subject. (See [16].)
We shall characterize them in outline only and by
means of schematic examples rather than in general
terms. As previously, we shall, for the most part,
confine our analysis to one-place theoretical pre-
dicates, but without restricting ourselves to one
predicate only.

One kind of statement functioning as a meaning
postulate, not so far considered, can be regarded as
a generalization, in turn, of reduction sentences
(partial definitions) for T-terms and called generalized
reduction sentences.

I. GENERALIZED REDUCTION SENTENCES
FOR T-TERMS

This kind of postulate differs from all those we have
so far considered in one important respect. All
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previous postulates provided observational criteria of
application for single theoretical terms, e.g. for T}.
In contrast to this, a generalized reduction sentence
provides such criteria for a truth-function of a
number of theoretical terms, and not for the single
ones. It is, in a sense, a much looser kind of postulate
than any of the former. We shall illustrate it by the
simplest case of generalized reduction sentences for
two theoretical terms: one-place predicates T, and
T,. A generalized reduction sentence for T, and T,
may be identified with any of the following statements
or a conjunction of any number of them:

(1.1) Vixla(x) = (Ty(x) V T2(x)],
(1.2) Vx[B(x) - (T1(x) V ~ Ta(x)],
(1.3) Vx[y(x) = (~ Ty(x) V T,(x))],
(14 Vx[8(x) > (~Ty(x) V ~ T(x)]
Here, as before, the antecedents a(x), B(x), ¥(x), and 8(x)
are formulas of L, of one free variable x. Let us
notice that by means of statements of the types
(1.1)(1.4) it is possible to formulate observational
criteria of application for any truth-function of T}
and T, whatever, since any such truth-function can
be expressed in conjunctive normal form as a con-
junction of some of the disjunctions contained in
(1.1)~(1.4). Thus, e.g. criteria of application for an
equivalence of T and T,:
Vx[a(x) — (Ty(x) > T5(x))]

may be formulated as a conjunction of two statements
of kind (1.2) and (1.3):

Vx[a(x) = (T1(x) V ~ To(x))],

Vx[a(x) = (~ Ty(x) V To(x)]
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It should also be noticed that conjunctions of certain
statements from the list (1.1)~(1.4) provide observa-
tional criteria of application for the single terms T,
or T,: they entail, that is, one of the proper reduction
sentences for T, or T,. Thus, a conjunction (1.1) A (1.2)
yields criteria of application for T3, (1.3) A (1.4) for
non-T,, (1.1) A (1.3) for T, (1.2) A (1.4) for non-T,.
But conjunctions of certain other statements from
the list and, especially, all single statements (1.1),
(1.2), (1.3), and (1.4) do not provide any criteria of
that kind. Take, e.g. a generalized reduction sentence
of type (1.1). It does not formulate any observational
criteria of application for T, (or T,) taken separately.
What it does state may be rendered as follows: Any
object which has an observable property « must be
Ty, unless it is T’.

The question might arise what is the use, if any, of
theoretical predicates, like T, in actual scientific
practice. Now, it has been argued that theoretical
terms introduced by meaning postulates of the kind
just described play a significant part in empirical
science. According to all preceding types of meaning
postulates, some observational results are absolutely
conclusive evidence for certain sentences applying
T-terms. In virtue of a proper reduction sentence
for T;, e.g. any object which turns out to be « must
certainly be T. Yet this does not seem in accordance
with scientific practice concerning an important class
of theoretical terms. For those terms no observational
findings seem to constitute absolutely reliable criteria
of application. All purely observational criteria should
here be taken with the tacit understanding ‘unless
there are disturbing factors’. The description of these
criteria must admit of exceptions in case of any
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disturbing factors, and the inclusion of such escape
clauses cannot be carried out within a purely obser-
vational language. It seems thus that postulates
which are to introduce the terms in question will
have to assume the form of certain generalized reduc-
tion sentences. What a statement of type (1.1) amounts
to is, as we have seen, a postulate for, say, T; of the
kind just required. It allows us to apply predicate T
to an object x which bears an observable characteristic
« only under the condition that x is not in a theoretical
state 7,. The term °‘magnetic’, considered by us
previously, appears, on a closer scrutiny, to be just
of this kind. A postulate for it, when formulated
strictly, should assume the form of a generalized
reduction sentence rather than a conditional definition.
Some semantic properties of generalized reduction
sentences deserve attention:
1. All generalized reduction sentences corresponding
to (1.1)-(1.4), that is, all the statements (1.1)-(1.4)
and all their conjunctions, fulfil the semantic condition
of non-creativity (i)—except the conjunction of all
the statements listed: (1.1) A (1.2) A (1.3) A (1.9).
This conjunction entails the following sentence of
language L,:

(1.5)  Vx~(adx) ABK) A y(x) A &x)).

Unless (1.5) is logically true, the conjunction is a
creative sentence of langnage L. We must then take
some weaker sentence of L, fulfilling conditions (i)
and (ii), as the meaning postulate contained in this
conjunction, e.g. the following one:

1.5 = (1.1) A (1.2) A (1.3) A (1.4).
2. The admission of generalized reduction sentences
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as meaning postulates for 7-terms means a con-
siderable liberalization of the concept of interpreta-
tion. Some of the generalized reduction sentences
determine the interpretation of the given T-terms
not only ambiguously, but to a very slight extent
indeed. A statement of kind (1.1), e.g. imposes a
restriction only on the joint interpretation of terms
T, and T,, and, in addition, it does not determine
it uniquely, for any intended interpretation of
O-predicates. Interpretations of the single terms
remain completely undetermined. 7, e.g. may
denote any subset of the universe U, unless it is
governed by some other meaning postulates besides
-(1.1). It is thus, in a sense, completely vague. Hence
the empirical meaningfulness of such terms has
sometimes been questioned. We cannot enter into
this discussion in the present context.

The statements (1.1)~(1.4) present the simplest case
of generalized reduction sentences. Statements yielding
generalized reduction sentences in their most general
form might be characterized by bringing out the
main differences between them and the simple state-
ments quoted above. The differences could, roughly,
be stated as follows:

(1) the observational antecedents may be any
formulas of L, whatsoever;

(2) the consequents may contain m k-place T-
predicates;

(3) any k-place (k > 1) T-predicate may appear
with different variables in place of its different
arguments;

- (4) any T-predicate may appear more than once
in a given statement.
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We might also count as generalized reduction sen-
tences certain ‘degenerate’ cases of statements just
characterized: sentences without any observational
antecedent and sentences without any theoretical
consequent altogether. If the concept of a generalized
reduction sentence is understood in such a broad
manner, all other kinds of meaning postulates for
T-predicates in language L will fall into a class of
statements which may be called meaning postulates
with T-terms ‘controlled’ by an existential quantifier.
A theorem due to Stopes-Roe states that all sentences
of L which are not logically equivalent to generalized
reduction sentences (‘degenerate’ cases included)
contain T-terms ‘controlled’ by an existential quan-
tifier.

II. MEANING POSTULATES WITH T-TERMS
‘CONTROLLED’ BY AN EXISTENTIAL
QUANTIFIER

A general characteristic of this class of statements
is too involved to be given here. Besides, the class
clearly comprises many kinds of statements which
do not seem likely to occur as meaning postulates
for theoretical terms in any actual empirical theory.
We shall thus restrict ourselves to some schematic
examples and a few general comments. The most
important kind of the statements under consideration
seems to consist of sentences which might be charac-
terized as follows: when the sentence is reduced to
prenex normal form, it contains at least once ocur-
rence of a T-predicate such that an argument of it is
bound by an existential quantifier. The simplest cases
of such statements are:
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@1y Vx[e(x) — 3y T,()],
or
(2.2) Vx[e(x) = 3y To(x,9)],

but they do not seem to represent any useful meaning
postulates. A type which appears more suitable for
that purpose may be rendered as follows:

23 Vx[a(x) -3y (T2(0.x) A Ty(m)}

Here, as usual, «(x) is a formula of L, with x as its
only free variable. It seems that a statement of type
(2.3) can really function as a meaning postulate for
T, provided T, has already been interpreted by means
of other meaning postulates besides (2.3).

What kind of theoretical terms can a predicate,
like T, stand for? Let us here recall a distinction
made between two kinds of theoretical terms. One

~of them contains predicates which refer to unob-
servable objects only; the other those which also (or
exclusively) refer to some observable things, Predicates
of the first kind (theoretical terms in the strict
meaning) may be exemplified by predicates, like
‘electron’, ‘atom’, ‘gene’. Now, statement (2.3) seems
't0 be suitable for introducing just those kinds of
theoretical terms. Notice that they cannot be intro-
duced by a reduction sentence of the type:

Vx[a(x) — T1(x)],

nor by any similar generalized reduction sentence.
As Ty is to refer to unobservable objects only, «
cannot refer to any observable ones. Yet «, as an
expression of language L,, contains as its descriptive
terms exclusively O-predicates, which, it has been
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assumed, are completely undetermined in the set of
all unobservable objects, U — U,. In effect, « does
not, in a sense, refer to any unobservable objects
either: it may be shown that under some intended
interpretation of language L, i.e. in some model of
family M,*, no object from the set U — U, satisfies
the condition «. It seems thus quite intuitive (and so
we omit here any formal proof) that in such a case
the above reduction sentence fails to put any intrinsic
restriction on the interpretation of 7. So, it cannot
function as a meaning postulate for this kind of
term. As such a postulate can, of course, serve a
reduction sentence formulating observational criteria
of application for non-T}:

Vx[a(x) - ~ Ty(x)],

for, if T, refers to unobservable objects only, those
to which it does not refer comprise clearly all ob-
servable ones. It is evident, however, that such
negative criteria do not exhaust all meaning postulates
for the theoretical terms in question. It surcly does
not suffice to say what objects are not electrons,
when we are to specify the meaning of the term.
Now it seems that for the terms in question certain
positive criteria, though of a rather special nature,
may be stated by means of postulates of the form
(2.3). If the two-place predicate T,, which occurs in
all of them, is interpreted as the ‘part-whole’ relation,
the postulates correspond to a very common type of
statements about some theoretical objects, and may
be regarded as meaning postulates for the given
terms. A frequently quoted statement about electrons
(highly oversimplified from a physical point of view)
might serve as an example: ‘If there appears a vapour
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trail in a cloud chamber x, then x contains (free)
electrons’; or in a pedantic formulation:

‘For every x: if there appears a vapour trail in a
cloud chamber x, then there is an object y such that
yis a part of x and y is a (free) electron’.

The postulate does not, of course, allow us to
decide, on the basis of direct observation, whether
an object is or is not an electron; it does allow us,
however, to decide whether an object contains (free)
electrons, and, in consequence, whether there exist
any electrons, and so on.

A statement of form (2.3) represents a very weak
type of meaning postulate. As the sole meaning
postulate for T; and T, it is clearly non-creative,
and determines the interpretations of 7; and 7, in a
very slight degree only. But, as we have already
mentioned, it never occurs, in scientific practice, as
the single meaning postulate for both terms. Not
only predicate T,, but also T are always governed
by some other meaning postulates, which put addi-
tional restrictions on their interpretation.

Besides the simple type (2.3), there certainly occur,
within actual empirical theories, some other, more
complicated, types of meaning postulates with
T-terms ‘controlled’ by an existential quantifier. We
cannot, however, attempt their examination in this
monograph.
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Chapter Nine

MAIN TYPES OF STATEMENTS
IN AN EMPIRICAL THEORY

One of the main problems in the logic of empirical
theories concerns a distinction to be drawn between
two kinds of components of any such theory: the
‘a priori’ and the empirical ones. There arises with
regard to any statement belonging to empirical theory
a fundamental question: is its truth-value dependent
on experience, or not? An account of the interpreta-
tion of an empirical theory T (or rather of its language
L) as given in the preceding chapters makes it possible
to distinguish between certain types of sentences of
language L which differ just in the above mentioned
respect. The main distinction here to be made is that
between analytic, contradictory, and synthetic sen-
tences of L.

I. ANALYTIC VERSUS SYNTHETIC
SENTENCES OF L

The analytic sentences of language L, AN, may be
identified, according to the usual procedure, with the
logical consequences of the set MP of meaning
postulates for T-terms of language L:

AN = Cn(MP).
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It is easily seen that the truth of sentences AN is, in
a sense, independent of experience. As, according to
our assumption, set MP is always non-creative in the
sense of condition (i), it is guaranteed in advance that
family M* defined with its help is a non-empty one
and thus provides an interpretation for language L.
Now, it can be shown that AN < VER(M*), and,
consequently, that AN = Ver, on the basis of the
definition of M* alone (with the help, of course, of
other syntactical and semantical definitions and
theorems belonging to the metalanguage of L), and
so independently of any empirical findings, in par-
ticular, of what the models of M * might turn out
to be. On the other hand, AN are clearly the only
sentences of L whose truth can be established in such
a way. If a sentence « is to be true in all models of
M* independently of whatever family of models M *
may happen to be, then « must be a logical conse-
quence of MP. Otherwise, it would be false in some
model of MP which might well prove a prolongation
of a model from M ¥, and thus a member of M*.
So, AN represents the set of all sentences in L whose
truth is, in certain sense, independent of experience.
Let us notice that

LV < AN,

though not conversely, for in all actual theories the
set MP pever consists of mere tautologies: it would
then be simply superfluous. The negation of an
analytic sentence of L will be called a contradictory
one. The set of contradictory sentences of L, CN,
will thus be defined as follows:

o € CN<> (~ a) € AN.
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In a similar way, as before, we have: CN € FLS(M?*),
and CN < Fis. It may then be maintained that the
falsity of sentences CN is independent of experience.
Notice that

LF < CN,

but not conversely: not all contradictory sentences
of L must be logically false. Any sentence of L which
is neither analytic nor contradictory will be included
into the class SN of synthetic sentences of L:

SN =L — (AN U CN).

Now, with regard to any sentence of the class SN it
certainly cannot be claimed that its truth-value is
independent of experience: that it is true (or false)
‘come what may’. But are we then entitled to say it
has a truth-value that does depend on experience?
In the case of certain kinds of synthetic sentences
such an assumption does not seem to be justified.
A distinction between determinate and indeterminate
sentences of L proves to be decisive here.

II. DETERMINATE VERSUS INDETERMINATE
SENTENCES OF L

The existence of these two kinds of sentences in L
results from a fundamental feature of the interpreta-
tion of language L: its ambiguity. The interpretation
of L given by family M* is never unique. This is
partly due to a similar character of the interpretation
of its sublanguage L, given by family M *, and
partly due to the character of meaning postulates
for language L itself. Owing to the notorious vague-
ness of all O-terms, family M,* contains always
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more than one model of L,. Now, since the meaning
postulates for T-terms fulfil the semantic condition
of non-creativity, family M* will contain at least as
many models of L as family M *. But, as a rule,
the meaning postulates do not determine the inter-
pretation of T-terms (for a given interpretation of
O-terms) uniquely; so family M* will, in fact, contain
more elements than family M *. The interpretation
of L is, thus, ‘doubly’ ambiguous: to every model
from the numerous family M, * there correspond a
number of models in family M*. L, a language of an
empirical theory T, belongs, just as a purely observa-
tional language L, to the class of semantically
indeterminate languages. All that has been said about
this class of languages in previous chapters is thus true
of language L. In particular, there may be distinguished
in L three kinds of sentences mentioned before:

(i) true in all models of M*, VER(M™*),
(i) false in all models of M*, FLS(M*),
(iii) true in some models of M* and false in others.

The first two make up the class DT of determinate
sentences of L:
DT = VER(M*) U FLS(M*).

All the remaining sentences of L are indeterminate.
This is, undoubtedly, an important distinction. The
role played by indeterminate statements in actual
scientific inquiry seems highly problematic. It has
even been questioned, as we have mentioned before,
whether they possess any ‘absolute’ truth-value, i.e.
whether they might be said to be simply true or false,
and in what sense, if any. Be that as it may, they
certainly may be said to be undecidable statements.
One cannot validate or falsify a sentence which under
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one intended interpretation turns out to be true and
under another false. So, it seems rather doubtful
whether an indeterminate sentence might qualify as a
sentence whose truth-value depends on experience.

It is now clear what kind of sentences of language
L do, in fact, belong to the class DT. Its definition
may be expanded as follows:

o« € DT+
<> VIR[IM, & M *(MProlM,) A MP < Ver(I) —
— a € Ver(M)] V YIR[EAM, € M *(MMProldk,) A
A MP < Ver(M) — o € FIs(M)].

Now, it is easy to see that all analytic and contra-
dictory sentences of L are included into DT

AN UCN ¢ DT.

All synthetic sentences of L which belong to language
L, will also be included into DT provided they belong
to the class DT,, ie. to determinate observation

sentences:
DT, < DT.

And what about synthetic sentences of L which do
not belong to L, i.e. which contain some of the
T-predicates ? We shall illustrate this case for a simple
language L with a one-place theoretical predicate T,
introduced by the following conditional definition as
its only meaning postulate:

6] Vx[0,(x) = (T, (x)<> O,(x))].
Here, all sentences containing 7', which by virtue of
postulate (1) are translatable into a determinate

observation sentence will clearly belong to DT. Take,
e.g. sentence IAx(0,(x) A Ty(x)). It is equivalent, on
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the basis of (1), to the following sentence of L,:
3x(0:(x) A O,(x)); if the latter is included in DT,
the former will belong to DT. But sentences of L
which do not meet that requirement can, under
certain conditions, also belong to the class of deter-
minate sentences of L. The sentence Jx Ty(x), not
translatable into any sentence of L, by virtue of (1)
alone, will belong to DT if, and only if, either
3x(0,(x) A O0,(x)) or ¥x(O(x) A ~ 0x(x)) is true
in all models of M *, i.e. belongs to VER(M *).

The last example exhibits a peculiar feature of the
concept of determinateness as defined above. It shows
that membership in the class DT may be a matter
of experience. Whether a sentence, like Ix T,(x), is
or is not determinate clearly depends on experience,
viz. on what the models of family M,* are like. This
is the reason why the set DT (or rather SN n DT)
can hardly be identified with the set of empirically
meaningful sentences of language L, in spite of the
apparent plausibility of such a suggestion. It seems,
in short, that the question of empirical meaningfulness,
in contrast to the question of truth, should never be
a matter of experience. In consequence, there arises
a need for some concept of determinateness which
will not be dependent on experience in the way in
which the concept of DT is. It must then be a concept
which does not refer to any particular family M, *.
This may be done in at least two different ways.
We arrive thus at two new concepts of a determinate
sentence, DT and DT, a stronger and a weaker one.

« € DTy > VIRIVIR[MProlIN, A MP < Ver(IR) —
> o € Ver(M)] V VIR[MProl, A
A MP < Ver(M) — a € FIs(M)1};
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x € DT, > M AVIR[IMProlR, A MP < Ver(IN) —

— a € Ver(M)] vV VIR[IMProlIk, A
A MP < Ver(I®) — o € FIs(M)]%.

Let us compare them briefly. We have of course:
DT, € DT,,and DT < DT, (as M * is never empty);
it should be noticed, however, that DTy < DT is not
generally true. According to both concepts DT and
DT,, all analytic and contradictory sentences of L
will belong, as before, to determinate sentences of L:

AN U CN < DT,, AN UCN < DT,.

In contrast, however, to D7, both DT; and DT,
will include all sentences of the sublanguage L,:

L,c DT, and L, € DT,;

all observation statements become determinate sen-
tences of L, in the meanings being now considered.
And how are we to classify synthetic sentences of L
which do not belong to L,? There appears to be a
considerable difference between DT; and DT, in
this respect. Let us illustrate it in the simple case
of language L described above. According to the
definition of DT, a sentence of L containing predicate
T, will belong to DT, if, and only if, it is translatable,
by virtue of postulate (1), into a sentence of language
L,. Thus 3x(0,(x) A T,(x)) will have to be qualified
as DTy, and 3IxT;(x) as non-DT;. According to
the definition of DT, all sentences of L which contain
the predicate 7, introduced by (1), and thus all
sentences of language L whatsoever, will belong to
DT,; so here, not only 3x(0(x) A Ty(x)), but also
Ix Ty(x) are reckoned among determinate sentences.
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It is evident from these observations that neither
DT, nor DT, depend on experience in the way in
which DT does. Whether a sentence of L does or
does not belong to DT, (or DT,) can be decided
‘a priori’, without any empirical investigation. The
intuyitive content of all these concepts might be
rendered roughly as follows. « is DT, if, and only if,
« is determinate under the intended interpretation of
the observational language L, (given by family M *);
« is DTy, if, and only if, « is determinate whatever
the interpretation of L, (given by a single model,
not a family of models!) may be; « is DT, if, and
only if, there exists at least one interpretation of L,
under which « is determinate. The last concept seems
to capture the idea of empirical meaningfulness fairly
well. If « is a sentence of L determinate in the sense
of DT,, « may not, in fact, possess any definite
truth-value; but it has got ‘a chance’ to acquire it:
to be true in all models of M* or false in all of them.
This depends on what the models of M, * turn out
to be like. If, on the other hand, « is not DT, it
does not even possess that chance. Whatever the
models of M * prove to be, « will be devoid of any
definite truth-value; it is irremediably indeterminate.
It seems thus that the class of empirically meaningful
sentences of language L, in at least one meaning of
this undoubtedly ambiguous notion, might be
identified with the class SN N DT,. Qur example
of language L discussed above confirms this sugges-
tion. A language whose only theoretical predicate has
been defined conditionally by means of observational
vocabulary can hardly contain, besides analytic and
contradictory statements, any empirically meaningless
sentences.
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Chapter Ten

TOWARDS A MORE
REALISTIC ACCOUNT

The theories we have considered thus far cannot
be taken straightforwardly as representing actual
empirical theories. They are far too simple to be
identified with any such theory. They correspond
rather to certain extreme cases of what might be
called a basic empirical theory, cases which hardly
could be found in actual scientific practice. In the
present chapter we will try to give an account, very
condensed and cursory indeed, of theories which
come somewhat nearer to actual empirical ones,
though which still cannot be identified with the most
typical of them.

1. The language L of an empirical theory T discussed
by us thus far may be thought of as a result of one
extension of the observational language L,: it has
been constructed from the latter by introducing into
it one series of theoretical terms by means of one
set of postulates. Now there certainly are empirical
theories whose language cannot be conceived in this
way. It must be considered rather as a resuit of
several successive extensions of the initial language
L,. In explaining this situation, we shall here deal
with the simplest case involving two such extensions
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only. A generalization to n extensions will be quite
obvious. Let the languages L, and L be the same as
before. L, is an observational langnage with predicates
O,,..., 0, and L a theoretical one which has been
constructed from L, by introducing into it predicates
T ..., T, with the help of postulates P. Interpre-
tations of L, and L are conceived as before. The
former is given by family M ¥, the latter by family
M*, which has been defined with the help of meaning
postulates MP ‘isolated” from P in accordance
with conditions (i) and (ii). Now we are extending
language L to a richer theoretical language L, by
introducing into it a new series of theoretical predi-
cates T,%,...,T,! with the help of a new set of
postulates P,. The extralogical vocabulary of L,
consists thus of predicates Oy, ..., 0, Ty, ..., T,
T.%, ..., T, and models of L, symbolized by 9t,,
are I 4+ m 4+ r 4 1—tuples of the type:

CURy ... Ry Spy ey Sw Sty oot, SO

Now the question arises how the intended interpre-
tation of language L, is to be determined. Our
answer to it will be based on two assumptions,
which in the situation being considered sound quite
convincing. We shall assume, namely, that the
intended interpretation of L, (a) preserves the existing
interpretation of all terms belonging to language L,
i.e. all O- and T-predicates, as given by family M*;
(b) determines the interpretation of all terms being
introduced, i.e. all T -predicates, in accordance with
postulates P,. So, any model of L; which is to belong
to (providing the interpretation for L,) family M *
must meet these two conditions: it must be a pro-
Jongation of some model of family M*, and, at the
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same time, it must be a model of the set of meaning
postulates for T,-predicates, MP;, ‘contained’ in
set Py.

The task of isolating the set of meaning postulates
MP, from the whole set of postulates P; may be
accomplished along the lines followed previously
with regard to language L. Set MP; must fulfil
conditions strictly analogous to conditions (i) and
(ii) laid down for set MP. There is only one important
difference. It results from the fact that, in contrast
to M, *, family M* has been determined by certain
verbal means: every model of M¥* is to be a model
of set MP. So we know here in advance that, whatever
the models of M* may turn out to be, all statements
of set MP must certainly be true in them. Thus, in
formulating the corresponding conditions (i) and (ii)
for set MP,, we need not refer to all models of
langnage L, wherever in the original formulations
we have referred to all models of language L,. It is
possible to restrict these conditions to those models
of L only in which the set MP is true. The semantic
condition of non-creativity for set MP; will then
read as follows:

() VIRIMP < Ver(IM) — 3, (M, Prolk A MP, =
< Ver(M )}

It entails, as before, the corresponding syntactic
condition:
L N Cn(MP,) < Cu(MP),

but, again, is not equivalent to it. The condition (ii)
will here assume a somewhat involved form, but its
intuitive content seems quite clear and might be
explained similarly as before. In its formulation given
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below, symbol Mt,| denotes the fragment of model
M, corresponding to language L:

?IR == 5)3?1|<——>%1Prol§m.
(i) VIR{MP < (Ver(IR,)) A 3, '(M, "ProlI,| A
APy & Ver(M) — [MP, < Ver(I)
HPI < Ver(?)ﬁ;)]}.
It might be argued now (we shall not repeat the
arguments adduced earlier) that any set MP; of
sentences of L, which satisfies the above conditions
may be regarded as the set of meaning postulates
‘contained’ in the set of postulates P,, determined
by a pragmatic decision.
A family M * which is to provide the interpretation
of L; can thus be defined as follows:

M, e M *er M| e M*¥ A MP, = Ver(IR)).

The analytic sentences of language L, will clearly
“include all logical consequences of both sets of
meaning postulates:

AN, = Cn(MP U MP)).

Other types of sentences in L, might be defined
accordingly. Let us illustrate some points of the
above exposition by means of a simple schematic
example. Let L contain one T—predicate introduced
by an explicit definition:

VX(Ty(x) > ~ Oy(x)),

and let it be extended to L, by introducing into it, in
turn, one T'-predicate with the help of the following
partial definition:

Vx[(Ty(x) — T, (x)) A (04(x) = ~ T, ()]
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Now it is easy to see that the set containing the
above partial definition as the only postulate for T;*
fulfils the semantic condition of non-creativity just
defined (in spite of entailing some non-tautological
sentences of L) and, consequently, may be taken as
the set MP, of meaning postulates for language L;.
Situations like this seem to be typical for the actual
practice of constructing an empirical theory. Such
theory is seldom created ‘from nothing’; it is usually
built on the basis of some other theories. Hence, the
procedure of constructing its language often starts,
not from a purely observational language like L,
but rather from a theoretical one, like L. When
building, say, some chemical theory, we base it
normally on a physical one. We introduce its specific
chemical terms, not into a purely observational
language, but into a theoretical one, which employs
a number of specific physical terms. These terms
have already been interpreted, and we want to respect
that interpretation. We take them then in their
established meanings and with their help determine
the meaning of our chemical terms. The situation
falls, thus, clearly under the schema outlined above.

II. That schema, however, has been criticized as
being unrealistic. It has been questioned, namely,
whether in actual scientific practice we ever start
from a purely observational language, when con-
structing a theoretical one. Convincing arguments
have been adduced to the effect that no scientific
language contains a part that might be identified
with our language L,. Let us recall that L, is an
observational language in a rather strict meaning.
All its extralogical terms, all QO-predicates, are
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assumed to be interpreted in a non-verbal, ostensive,
way. They are governed by no meaning postulates
so that a direct observation may suffice for their
application. But there are no such terms, it is argued,
within actual empirical theories. Every term in science
is governed by some meaning postulates. Whether or
not it applies in a given case cannot be decided on
the sole basis of direct observation. Now, we must
admit that it is, in fact, difficult to find a clear case of
a purely observational term employed by an actual
scientific theory. All scientific terms appear to be
theoretical in nature. We could do justice to this
situation in the following way. We retain our obser-
vational language L, unchanged, with its O-terms
interpreted in purely ostensive way. But now we shall
not include them into the vocabulary of an empirical
theory 7. Its language will contain T-terms only.
The role of O-terms will be played here by some
‘elementary’ or ‘basic’ T-terms. This basic language,
Ly, may be identified, not with the observational part
of language L, but rather with its theoretical part,
that is, with L from which all O-terms have been
deleted. The vocabulary of Ly consists thus of
predicates Ty, ..., T,, and models, M, of Ly are
the corresponding fragments of models I of L, i.e.
m + 1-tuples of the type:

<U>Sb s Sm>'

The former interpretation of language L, given by
family M¥*, remains unchanged. It determines the
interpretation of language L, given by family Mg*
defined as follows:

My e Mg* > IM € M*(MProlIp).
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There appear now, in contrast to L,, non-tautological
analytic sentences of Lp—logical consequences of
MP expressible in language Lg:

ANy = L, 0 Cn(MP).

The basic language Ly may then be extended to a
theoretical language in the proper sense along the
lines pursued in transition from L to L, as described
above. On this conception, the observational language
L, which remains outside any scientific discourse,
might be treated as a part of a prescientific, everyday
discourse, or, perhaps, only as a useful epistemological
fiction, which helps us to account for the kind of
interpretation characteristic of an empirical language.
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Chapter Eleven
CONCLUDING REMARKS

The picture of empirical theory and its interpretation
as outlined in the preceding chapters is admittedly
unrealistic. It has been considerably oversimplified
to bring out more easily some of its essential features.
Certain of the simplifications have been removed
in the last chapter. But certain others, and very
important too, have remained: they cannot be
removed without greatly complicating our exposition.
And they prevent us, in consequence, from giving a
fair account of the most typical and important
- empirical theories. One of those simplifications will
now be indicated briefly. It amounts to a rather
astonishing fact: the theories considered do not
include any mathematics, do not employ any mathe-
matical apparatus. By the latter we do not only
mean a certain set of terms and a certain set of
theorems characterized in a purely syntactical way.
As no special restrictions have been placed on the
set of theoretical terms and the set of axioms of our
theory 7, they might well include any mathematical
terms and theorems that are needed. But these terms
and theorems become mathematical in nature only
when suitably interpreted; to be mathematical, they
must be assigned their standard mathematical inter-
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pretation. The only terms in theory T which, according
to our assumption, are given a fixed interpretation in
advance are the logical ones. The first-order predicate
calculus with identity endowed with its standard
interpretation constitutes the only common basis on
which the theories considered have been founded.
No mathematical theory has been presupposed by
them. And so, they are not equipped with mathe-
matical tools needed in science. In consequence, the
language of empirical theories under comsideration
does not contain any quantitative terms. No measure-
able properties are expressible in it, and thus no
guantitative laws, no statistical hypotheses. Such
language is certainly too poor to be identified with
any language of typical scientific theory, for instance,
a physical one. And it cannot be enriched to the
desired extent without abandoning some of our
simplifying assumptions. First of all, we should have
to extend our universe of discourse beyond the set of
physical objects. It must, in addition, include some
mathematical entities, e.g. the set of all real numbers.
This is a comparatively harmless modification which
would not involve any essential changes in our
exposition; and it has actually been realized to some
extent in recent literature. (See [14].) But it does not
appear to be sufficient in order to supply a theory
with mathematical tools needed in science like physics.
If the tools are to be powerful enough, the theory
cannot remain an elementary one. It has to employ
the general concept of set, relation, function, etc.,
and so, independently of the type of its formalization,
it must, in fact, belong to non-elementary (or higher
order) theories. And this would complicate our
exposition considerably. This is why, in this mono-
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graph, we have had to restrict our attention to
elementary theories only. But it must be admitted
that in doing so we have deprived ourselves of the
possibility of doing justice to the most important
empirical theories.

In conclusion, there remains one point which
should be clarified. It pertains to a feature which
our approach to empirical theories shares with a
broad class of investigations usually classified under
the name of ‘logical analysis’ or ‘logical reconstruc-
tion’ of scientific theories. The feature may be said
to consist of abstracting from any processes of change
and development. Actual scientific theories are
certainly not timeless entities. They constantly change
with time. First of all, a set of theorems of a given
theory changes as a whole. At any time it includes
statements which did not belong to it earlier, and
which will cease to be theorems later. But what is
even more important, and less conspicuous and hence
sometimes overlooked, are changes within a given
set of theorems, i.e. changes concerning the logical
status of different theorems. What was previously
treated as a factual hypothesis becomes a meaning
postulate; an analytic statement turns into a synthetic
one, and so on. These changes characterize, not only
different stages in development of a given theory,
but also different contexts, or situations, in which
the theory is employed. In consequence, what is
treated as one theory in scientific practice, cannot be
treated so in logical considerations; it must be
identified with a certain family of theories in our
sense, rather than with a single one. A theory as
considered by the logician is a fairly definite set of
statements. Its language, its set of theorems are
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explicitly defined. There is assumed a clear-cut
division of all theorems into analytic and synthetic,
determinate and indeterminate. Such a theory can be
identified with a ‘cross-section’ of an actual scientific
theory only. And so, if we want to investigate the
latter in its entirety—and this is necessary if we are
to account for logical problems of its development—
we must deal with the whole series of its logical
‘cross-sections’. The logical technique resembles here
a biological one. Logical reconstruction of a scientific
theory is like making ‘slices’ of a living organism.
This certainly distorts our original object of inquiry.
But only then can it be put under a logical microscope.
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