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Preface

Does the world really need a new textbook on general relativity? I feel that my first
duty in presenting this book should be to provide a convincing affirmative answer
to this question.

There already exists a vast array of available books. I will not attempt here to
make an exhaustive list, but I will mention three of my favourites. For its unsur-
passed pedagogical presentation of the elementary aspects of general relativity, I
like Schutz’s A first course in general relativity. For its unsurpassed completeness,
I like Gravitation by Misner, Thorne, and Wheeler. And for its unsurpassed ele-
gance and rigour, I like Wald’s General Relativity. In my view, a serious student
could do no better than start with Schutz for an outstanding introductory course,
then move on to Misner, Thorne, and Wheeler to get a broad coverage of many
different topics and techniques, and then finish off with Wald to gain access to the
more modern topics and the mathematical standard that Wald has since imposed on
this field. This is a long route, but with this book I hope to help the student along.
I see my place as being somewhere between Schutz and Wald – more advanced
than Schutz but less sophisticated than Wald – and I cover some of the few topics
that are not handled by Misner, Thorne, and Wheeler.

In the winter of 1998 I was given the responsibility of creating an advanced
course in general relativity. The course was intended for graduate students working
in the Gravitation Group of the Guelph-Waterloo Physics Institute, a joint gradu-
ate programme in Physics shared by the Universities of Guelph and Waterloo. I
thought long and hard before giving the first offering of this course, in an effort
to round up the most useful and interesting topics, and to create the best possible
course. I came up with a few guiding principles. First, I wanted to let the students
in on a number of results and techniques that are part of every relativist’s arsenal,
but are not adequately covered in the popular texts. Second, I wanted the course
to be practical, in the sense that the students would learn how to compute things
instead of being subjected to a bunch of abstract concepts. And third, I wanted to

xi
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xii Preface

put these techniques to work in a really cool application of the theory, so that this
whole enterprise would seem to have purpose.

As I developed the course it became clear that it would not match the material
covered in any of the existing textbooks; to meet my requirements I would have to
form a synthesis of many texts, I would have to consult review articles, and I would
have to go to the technical literature. This was a long but enjoyable undertaking,
and I learned a lot. It gave me the opportunity to homogenize the various separate
treatments, consolidate the various different notations, and present this synthesis
as a unified whole. During this process I started to type up lecture notes that would
be distributed to the students. These have evolved into this book.

In the end, the course was designed around my choice of ‘really cool applica-
tion’. There was no contest: the immediate winner was the mathematical theory of
black holes, surely one of the most elegant, successful, and relevant applications
of general relativity. This is covered in Chapter 5 of this book, which offers a thor-
ough review of the solutions to the Einstein field equations that describe isolated
black holes, a description of the fundamental properties of black holes that are in-
dependent of the details of any particular solution, and an introduction to the four
laws of black-hole mechanics. In the next paragraphs I outline the material covered
in the other chapters, and describe the connections with the theory of black holes.

The most important aspect of black-hole spacetimes is that they contain an event
horizon, a null hypersurface that marks the boundary of the black hole and shields
external observers from events going on inside. On this hypersurface there runs a
network (or congruence) of non-intersecting null geodesics; these are called the
null generators of the event horizon. To understand the behaviour of the horizon as
a whole it proves necessary to understand how the generators themselves behave,
and in Chapter 2 of this book we develop the relevant techniques. The descrip-
tion of congruences is concerned with the motion of nearby geodesics relative to a
given reference geodesic; this motion is described by a deviation vector that lives
in a space orthogonal to the tangent vector of the reference geodesic. This trans-
verse space is easy to construct when the geodesics are timelike, but the case of
null geodesics is subtle. This has to do with the fact that the transverse space is then
two-dimensional – the null vector tangent to the generators is orthogonal to itself
and this direction must be explicitly removed from the transverse space. I show
how this is done in Chapter 2. While null congruences are treated in other text-
books (most notably in Wald), the student is likely to find my presentation (which
I have adapted from Carter (1979)) better suited for practical computations. While
Chapter 2 is concerned mostly with congruences of null geodesics, I present also
a complete treatment of the timelike case. There are two reasons for this. First,
this forms a necessary basis to understand the subtleties associated with the null
case. Second, and more importantly, the mathematical techniques involved in the
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Preface xiii

study of congruences of timelike geodesics are used widely in the general relativ-
ity literature, most notably in the field of mathematical cosmology. Another topic
covered in Chapter 2 is the standard energy conditions of general relativity; these
constraints on the stress-energy tensor ensure that under normal circumstances,
gravity acts as an attractive force – it tends to focus geodesics. Energy conditions
appear in most theorems governing the behaviour of black holes.

Many quantities of interest in black-hole physics are defined by integration over
the event horizon. An obvious example is the hole’s surface area. Another example
is the gain in mass of an accreting black hole; this is obtained by integrating a
certain component of the accreting material’s stress-energy tensor over the event
horizon. These integrations require techniques that are introduced in Chapter 3 of
this book. In particular, we shall need a notion of surface element on the event hori-
zon. If the horizon were a timelike or a spacelike hypersurface, the construction
of a surface element would pose no particular challenge, but once again there are
interesting subtleties associated with the null case. I provide a complete treatment
of these issues in Chapter 3. I believe that my presentation is more systematic,
and more practical, than what can be found in the popular textbooks. Other topics
covered in Chapter 3 include the initial-value problem of general relativity (which
involves the induced metric and extrinsic curvature of a spacelike hypersurface)
and the Darmois–Lanczos–Israel–Barrabès formalism for junction conditions and
thin shells (which constrains the possible discontinuities in the induced metric and
extrinsic curvature). The initial-value problem is discussed at a much deeper level
in Wald, but I felt it was important to include this material here: it provides a useful
illustration of the physical meaning of the extrinsic curvature, an object that plays
an important role in Chapter 4 of this book. Junction conditions and thin shells, on
the other hand, are not covered adequately in any textbook, in spite of the fact that
the Darmois–Lanczos–Israel–Barrabès formalism is used very widely in the litera-
ture. (Junction conditions and thin shells are touched upon in Misner, Thorne, and
Wheeler, but I find that their treatment is too brief to do justice to the formalism.)

Among the most important quantities characterizing black holes are their mass
and angular momentum, and the question arises as to how the mass and angular
momentum of an isolated body are to be defined in general relativity. I find that
the most compelling definitions come from the gravitational Hamiltonian, whose
value for a given solution to the Einstein field equations depends on a specifiable
vector field. If this vector corresponds to a time translation at spatial infinity, then
the Hamiltonian gives the total mass of the spacetime; if, on the other hand, the
vector corresponds to an asymptotic rotation about an axis, then the Hamiltonian
gives the spacetime’s total angular momentum in the direction of this axis. This
connection is both deep and beautiful, and in this book it forms the starting point
for defining black-hole mass and angular momentum. Chapter 4 is devoted to a
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xiv Preface

systematic treatment of the Lagrangian and Hamiltonian formulations of general
relativity, with the goal in mind of arriving at well-motivated notions of mass and
angular momentum. What sets my presentation apart from what can be found in
other texts, including Misner, Thorne, and Wheeler and Wald, is that I pay careful
attention to the ‘boundary terms’ that must be included in the gravitational action
to produce a well-posed variational principle. These boundary terms have been
around for a very long time, but it is only fairly recently that their importance has
been fully recognized. In particular, they are directly involved in defining the mass
and angular momentum of an asymptotically-flat spacetime.

To set the stage, I review the fundamentals of differential geometry in Chapter 1
of this book. The collection of topics is standard: vectors and tensors, covariant
differentiation, geodesics, Lie differentiation, Killing vectors, curvature tensors,
geodesic deviation, and some others. The goal here is not to provide an introduc-
tion to these topics; although some may be new, I assume that for the most part, the
student will have encountered them before (in an introductory course at the level
of Schutz, for example). Instead, my objective with this chapter is to refresh the
student’s memory and establish the style and notation that I adopt throughout the
book.

As I have indicated, I have tried to present this material as a unified whole,
using a consistent notation and maintaining a fairly uniform level of precision and
rigour. While I have tried to be somewhat precise and rigourous, I have deliberately
avoided putting too much emphasis on this. My attitude is that it is more important
to illustrate how a theorem works and can be used in a practical situation, than
it is to provide all the fine print that goes into a rigourous proof. The proofs that
I do provide are informal; they may sometimes be incomplete, but they should
suffice to convince the student that the theorems are true. They may, however,
leave the student wanting for more; in this case I shall have to refer her to a more
authoritative text such as Wald.

I have also indicated that I wanted this book to be practical – I hope that after
studying this book, the student will be able to use what she has learned to compute
things of direct relevance to her. To encourage this I have inserted a large number
of examples within the text. I also provide problem sets at the end of each chapter;
here the student’s understanding will be put to the test. The problems vary in dif-
ficulty, from the plug-and-grind type designed to increase the student’s familiarity
with a new technique, to the more challenging type that is supposed to make the
student think. Some of the problems require a large amount of tensor algebra, and
I strongly advise the student to let the computer perform the most routine oper-
ations. (My favourite package for tensor manipulations is GRTensorII, developed
by Peter Musgrave, Denis Pollney and Kayll Lake. It is available free of charge at
http://grtensor.phy.queensu.ca/.)
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Preface xv

Early versions of this book have been used by graduate students who took my
course over the years. A number of them have expressed great praise by involving
some of the techniques covered here in their own research. This is extraordinarily
gratifying, and it has convinced me that a wider release of this book might do more
than just service my vanity. A number of students have carefully checked through
the manuscript for errors (typographical or otherwise), and some have made useful
suggestions for improvements. For this I thank Daniel Bruni, Sean Crowe, Luis de
Menezes, Paul Kobak, Karl Martel, Peter Martin, Sanjeev Seahra and Katrin Rohlf.
Of course, I accept full responsibility for whatever errors remain. The reader is
invited to report any error she may find (poisson@physics.uoguelph.ca), and can
look up those already reported at http://www.physics.uoguelph.ca/poisson/toolkit/.

This book is dedicated to Werner Israel, my teacher, mentor, and friend, whose
influence on me, both as a relativist and as a human being, runs deep. His influence,
I trust, will be felt throughout the book. Each time I started the elaboration of a new
topic I would ask myself: ‘How would Werner approach this?’ I do not believe
that the answers I came up with would come even close to his level of pedagogical
excellence, but there is no doubt that to ask the question has made me try harder to
reach that level.
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Notation and conventions

I adopt the sign conventions of Misner, Thorne, and Wheeler (1973), with a metric
of signature (−1, 1, 1, 1), a Riemann tensor defined by Rα

βγ δ = �α
βδ,γ + · · ·, and

a Ricci tensor defined by Rαβ = Rµ
αµβ . Greek indices (α, β, . . . ) run from 0 to 3,

lower-case Latin indices (a, b, . . . ) run from 1 to 3, and upper-case Latin indices
(A, B, . . . ) run from 2 to 3. Geometrized units, in which G = c = 1, are employed.

Here’s a list of frequently occurring symbols:

Symbol Description

xα Arbitrary coordinates on manifold M
ya Arbitrary coordinates on hypersurface �

θ A Arbitrary coordinates on two-surface S
∗= Equals in specified coordinates
eα

a = ∂xα/∂ya , eα
A = ∂xα/∂θ A Holonomic basis vectors

êα
µ, êα

A Orthonormal basis vectors
gαβ Metric on M

hab = gαβeα
a eβ

b Induced metric on �

σAB = gαβeα
Aeβ

B Induced metric on S
g, h, σ Metric determinants
A(αβ) = 1

2 (Aαβ + Aβα) Symmetrization
A[αβ] = 1

2 (Aαβ − Aβα) Antisymmetrization
�α

βγ Christoffel symbols constructed from gαβ

�a
bc Christoffel symbols constructed from hab

Rαβγ δ , Rαβ , R As constructed from gαβ

Rabcd , Rab, 3R As constructed from hab
ψ,α = ∂αψ Partial differentiation with respect to xα

ψ,a = ∂aψ Partial differentiation with respect to ya

Aα
;β = ∇β Aα Covariant differentiation (gαβ -compatible)

Aa
|b = Db Aa Covariant differentiation (hab-compatible)

£u Aα Lie derivative of Aα along uα

[α β γ δ] Permutation symbol
εαβγ δ = √−g [α β γ δ] Levi-Civita tensor
d�µ = εµαβγ eα

1 eβ

2 eγ

3 d3 y Directed surface element on �

dSµν = εµναβ eα
2 eβ

3 d2θ Directed surface element on S
nα Unit normal on � (if timelike or spacelike)
ε = nαnα +1 if � is timelike, −1 if � is spacelike
Kab = nα;β eα

a eβ
b Extrinsic curvature of �

θ , σαβ , ωαβ Expansion, shear, and rotation
d�2 = dθ2 + sin2 θ dφ2 Line element on unit two-sphere

xvi
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1

Fundamentals

This first chapter is devoted to a brisk review of the fundamentals of differential
geometry. The collection of topics presented here is fairly standard, and most of
these topics should have been encountered in a previous introductory course on
general relativity. Some, however, may be new, or may be treated here from a
different point of view, or with an increased degree of completeness.

We begin in Section 1.1 by providing definitions for tensors on a differentiable
manifold. The point of view adopted here, and throughout the text, is entirely un-
sophisticated: We do without the abstract formulation of differential geometry and
define tensors in the old-fashioned way, in terms of how their components trans-
form under a coordinate transformation. While the abstract formulation (in which
tensors are defined as multilinear mappings of vectors and dual vectors into real
numbers) is decidedly more elegant and beautiful, and should be an integral part
of an education in general relativity, the old approach has the advantage of econ-
omy, and this motivated its adoption here. Also, the old-fashioned way of defin-
ing tensors produces an immediate distinction between tensor fields in spacetime
(four-tensors) and tensor fields on a hypersurface (three-tensors); this distinction
will be important in later chapters of this book.

Covariant differentiation is reviewed in Section 1.2, Lie differentiation in Sec-
tion 1.4, and Killing vectors are introduced in Section 1.5. In Section 1.3 we de-
velop the mathematical theory of geodesics. The theory is based on a variational
principle and employs an arbitrary parameterization of the curve. The advantage
of this approach (over one in which geodesics are defined by parallel transport
of the tangent vector) is that the limiting case of null geodesics can be treated
more naturally. Also, it is often convenient, especially with null geodesics, to use a
parameterization that is not affine; we will do so in later portions of this book.

In Section 1.6 we review a fundamental theorem of differential geometry, the
local flatness theorem. Here we prove the theorem in the standard way, by count-
ing the number of functions required to go from an arbitrary coordinate system

1
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2 Fundamentals

to a locally Lorentzian frame. In Section 1.11 we extend the theorem to an entire
geodesic, and we prove it by constructing Fermi normal coordinates in a neigh-
bourhood of this geodesic.

Useful results involving the determinant of the metric tensor are derived in Sec-
tion 1.7. The metric determinant is used in Section 1.8 to define the Levi-Civita ten-
sor, which will be put to use in later parts of this book (most notably in Chapter 3).
The Riemann curvature tensor and its contractions are introduced in Section 1.9,
along with the Einstein field equations. The geometrical meaning of the Riemann
tensor is explored in Section 1.10, in which we derive the equation of geodesic
deviation.

1.1 Vectors, dual vectors, and tensors

Consider a curve γ on a manifold. The curve is parameterized by λ and is described
in an arbitrary coordinate system by the relations xα(λ). We wish to calculate the
rate of change of a scalar function f (xα) along this curve:

d f

dλ
= ∂ f

∂xα

dxα

dλ
= f,αuα.

This procedure allows us to introduce two types of objects on the manifold: uα =
dxα/dλ is a vector that is everywhere tangent to γ , and f,α = ∂ f/∂xα is a dual
vector, the gradient of the function f . These objects transform as follows under an
arbitrary coordinate transformation from xα to xα′

:

f,α′ = ∂ f

∂xα′ = ∂ f

∂xα

∂xα

∂xα′ = ∂xα

∂xα′ f,α

and

uα′ = dxα′

dλ
= ∂xα′

∂xα

dxα

dλ
= ∂xα′

∂xα
uα.

From these equations we recover the fact that d f/dλ is an invariant: f,α′uα′ =
f,αuα .

Any object Aα which transforms as

Aα′ = ∂xα′

∂xα
Aα (1.1)

under a coordinate transformation will be called a vector. On the other hand, any
object pα which transforms as

pα′ = ∂xα

∂xα′ pα (1.2)
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1.1 Vectors, dual vectors, and tensors 3

Figure 1.1 A tensor at P lives in the manifold’s tangent plane at P .

uα

P

γ

under the same coordinate transformation will be called a dual vector. The con-
traction Aα pα between a vector and a dual vector is invariant under the coordinate
transformation, and is therefore a scalar.

Generalizing these definitions, a tensor of type (n, m) is an object T α···β
γ ···δ

which transforms as

T α′···β ′
γ ′···δ′ = ∂xα′

∂xα
· · · ∂xβ ′

∂xβ

∂xγ

∂xγ ′ · · · ∂xδ

∂xδ′ T α···β
γ ···δ (1.3)

under a coordinate transformation. The integer n is equal to the number of super-
scripts, while m is equal to the number of subscripts. It should be noted that the
order of the indices is important; in general, T β···α

γ ···δ �= T α···β
γ ···δ . By definition,

vectors are tensors of type (1, 0), and dual vectors are tensors of type (0, 1).
A very special tensor is the metric tensor gαβ , which is used to define the inner

product between two vectors. It is also the quantity that represents the gravitational
field in general relativity. The metric or its inverse gαβ can be used to lower or raise
indices. For example, Aα ≡ gαβ Aβ and pα ≡ gαβ pβ . The inverse metric is defined
by the relations gαµgµβ = δα

β . The metric and its inverse are symmetric tensors.
Tensors are not actually defined on the manifold itself. To illustrate this, con-

sider the vector uα tangent to the curve γ , as represented in Fig. 1.1. The diagram
makes it clear that the tangent vector actually ‘sticks out’ of the manifold. In fact, a
vector at a point P on the manifold is defined in a plane tangent to the manifold at
that point; this plane is called the tangent plane at P . Similarly, tensors at a point P
can be thought of as living in this tangent plane. Tensors at P can be added and con-
tracted, and the result is also a tensor. However, a tensor at P and another tensor at
Q cannot be combined in a tensorial way, because these tensors belong to different
tangent planes. For example, the operations Aα(P)Bβ(Q) and Aα(Q) − Aα(P)

are not defined as tensorial operations. This implies that differentiation is not a
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4 Fundamentals

straightforward operation on tensors. To define the derivative of a tensor, a rule
must be provided to carry the tensor from one point to another.

1.2 Covariant differentiation

One such rule is parallel transport. Consider a curve γ , its tangent vector uα , and
a vector field Aα defined in a neighbourhood of γ (Fig. 1.2). Let point P on the
curve have coordinates xα , and point Q have coordinates xα + dxα . As was stated
previously, the operation

dAα ≡ Aα(Q) − Aα(P)

= Aα(xβ + dxβ) − Aα(xβ)

= Aα
,β dxβ

is not tensorial. This is easily checked: under a coordinate transformation,

Aα′
,β ′ = ∂

∂xβ ′
∂xα′

∂xα
Aα = ∂xα′

∂xα

∂xβ

∂xβ ′ Aα
,β + ∂2xα′

∂xα∂xβ

∂xβ

∂xβ ′ Aα,

and this is not a tensorial transformation. To be properly tensorial the derivative
operator should have the form DAα = Aα

T(P) − Aα(P), where Aα
T(P) is the vec-

tor that is obtained by ‘transporting’ Aα from Q to P . We may write this as
DAα = dAα + δAα , where δAα ≡ Aα

T(P) − Aα(Q) is also not a tensorial oper-
ation. The precise rule for parallel transport must now be specified. We demand
that δAα be linear in both Aµ and dxβ , so that δAα = �α

µβ Aµ dxβ for some (non-
tensorial) field �α

µβ called the connection. A priori, this field is freely specifiable.

Figure 1.2 Differentiation of a tensor.

γ

P : xα

Q : xα + dxα

Aα(P)

Aα(Q)
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1.2 Covariant differentiation 5

We now have DAα = Aα
,β dxβ + �α

µβ Aµ dxβ , and dividing through by dλ, the
increment in the curve’s parameter, we obtain

DAα

dλ
= Aα

;βuβ, (1.4)

where uβ = dxβ/dλ is the tangent vector, and

Aα
;β ≡ Aα

,β + �α
µβ Aµ. (1.5)

This is the covariant derivative of the vector Aα . Other standard notations are
Aα

;β ≡ ∇β Aα and DAα/dλ ≡ ∇u Aα .
The fact that Aα

;β is a tensor allows us to deduce the transformation property of
the connection. Starting from �α

µβ Aµ = Aα
;β − Aα

,β it is easy to show that

�α′
µ′β ′ Aµ′ = ∂xα′

∂xα

∂xβ

∂xβ ′ �α
µβ Aµ − ∂2xα′

∂xµ∂xβ

∂xβ

∂xβ ′ Aµ.

Expressing Aµ′
in terms of Aµ on the left-hand side and using the fact that Aµ is

an arbitrary vector field, we obtain

�α′
µ′β ′

∂xµ′

∂xµ
= ∂xα′

∂xα

∂xβ

∂xβ ′ �α
µβ − ∂2xα′

∂xµ∂xβ

∂xβ

∂xβ ′ .

Multiplying through by ∂xµ/∂xγ ′
and rearranging the indices, we arrive at

�α′
µ′β ′ = ∂xα′

∂xα

∂xβ

∂xβ ′
∂xµ

∂xµ′ �α
µβ − ∂2xα′

∂xµ∂xβ

∂xβ

∂xβ ′
∂xµ

∂xµ′ . (1.6)

This is the transformation law for the connection; the second term prevents it from
transforming as a tensor.

Covariant differentiation can be extended to other types of tensors by demand-
ing that the operator D obeys the product rule of differential calculus. (For scalars,
it is understood that D ≡ d.) For example, we may derive an expression for the
covariant derivative of a dual vector from the requirement

d(Aα pα) ≡ D(Aα pα) = (DAα)pα + AαD(pα).

Writing the left-hand side as Aα
,β pα dxβ + Aα pα,β dxβ and using Eqs. (1.4) and

(1.5), we obtain

Dpα

dλ
= pα;βuβ, (1.7)

where

pα;β ≡ pα,β − �
µ
αβ pµ. (1.8)
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6 Fundamentals

This procedure generalizes to tensors of arbitrary type. For example, the covariant
derivative of a type-(1, 1) tensor is given by

T α
β;γ = T α

β,γ + �α
µγ T µ

β − �
µ
βγ T α

µ. (1.9)

The rule is that there is a connection term for each tensorial index; it comes with
a plus sign if the index is a superscript, and with a minus sign if the index is a
subscript.

Up to now the connection has been left completely arbitrary. A specific choice
is made by demanding that it be symmetric and metric compatible,

�α
γβ = �α

βγ , gαβ;γ = 0. (1.10)

In general relativity, these properties come as a consequence of Einstein’s principle
of equivalence. It is easy to show that Eqs. (1.10) imply

�α
βγ = 1

2
gαµ

(
gµβ,γ + gµγ,β − gβγ,µ

)
. (1.11)

Thus, the connection is fully determined by the metric. In this context �α
βγ are

called the Christoffel symbols.
We conclude this section by introducing some terminology. A tensor field

T α···
β··· is said to be parallel transported along a curve γ if its covariant deriva-

tive along the curve vanishes: DT α···
β···/dλ = T α···

β···;µuµ = 0.

1.3 Geodesics

A curve is a geodesic if it extremizes the distance between two fixed points.
Let a curve γ be described by the relations xα(λ), where λ is an arbitrary pa-

rameter, and let P and Q be two points on this curve. The distance between P and
Q along γ is given by

� =
∫ Q

P

√
±gαβ ẋα ẋβ dλ, (1.12)

where ẋα ≡ dxα/dλ. In the square root, the positive (negative) sign is chosen if
the curve is spacelike (timelike); it is assumed that γ is nowhere null. It should be
clear that � is invariant under a reparameterization of the curve, λ → λ′(λ).

The curve for which � is an extremum is determined by substituting the
‘Lagrangian’ L(ẋµ, xµ) = (±gµν ẋµ ẋν)1/2 into the Euler-Lagrange equations,

d

dλ

∂L

∂ ẋα
− ∂L

∂xα
= 0.
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1.3 Geodesics 7

A straightforward calculation shows that xα(λ) must satisfy the differential
equation

ẍα + �α
βγ ẋβ ẋγ = κ(λ)ẋα (arbitrary parameter), (1.13)

where κ ≡ d ln L/dλ. The geodesic equation can also be written as uα
;βuβ = κuα ,

in which uα = ẋα is tangent to the geodesic.
A particularly useful choice of parameter is proper time τ when the geodesic

is timelike, or proper distance s when the geodesic is spacelike. (It is impor-
tant that this choice be made after extremization, and not before.) Because
dτ 2 = −gαβ dxα dxβ for timelike geodesics and ds2 = gαβ dxα dxβ for spacelike
geodesics, we have that L = 1 in either case, and this implies κ = 0. The geodesic
equation becomes

ẍα + �α
βγ ẋβ ẋγ = 0 (affine parameter), (1.14)

or uα
;βuβ = 0, which states that the tangent vector is parallel transported along the

geodesic. These equations are invariant under reparameterizations of the form λ →
λ′ = aλ + b, where a and b are constants. Parameters related to s and τ by such
transformations are called affine parameters. It is useful to note that Eq. (1.14) can
be recovered by substituting L ′ = 1

2 gαβ ẋα ẋβ into the Euler-Lagrange equations;
this gives rise to practical method of computing the Christoffel symbols.

By continuity, the general form uα
;βuβ = κuα for the geodesic equation must

be valid also for null geodesics. For this to be true, the parameter λ cannot be
affine, because ds = dτ = 0 along a null geodesic, and the limit is then singular.
However, affine parameters can nevertheless be found for null geodesics. Starting
from Eq. (1.13) it is always possible to introduce a new parameter λ∗ such that
the geodesic equation will take the form of Eq. (1.14). It is easy to check that the
appropriate transformation is

dλ∗

dλ
= exp

[∫ λ

κ(λ′) dλ′
]
. (1.15)

(You will be asked to provide a proof of this statement in Section 1.13, Problem
2.) It should be noted that while the null version of Eq. (1.13) was obtained by a
limiting procedure, the null version of Eq. (1.14) cannot be considered to be a limit
of the same equation for timelike or spacelike geodesics: the parameterization is
highly discontinuous.

We conclude this section with the following remark: Along an affinely param-
eterized geodesic (timelike, spacelike, or null), the scalar quantity ε = uαuα is a
constant. The proof requires a single line:

dε

dλ
= (uαuα);βuβ = (uα

;βuβ)uα + uα(uα;βuβ) = 0.
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8 Fundamentals

If proper time or proper distance is chosen for λ, then ε = ∓1, respectively. For a
null geodesic, ε = 0.

1.4 Lie differentiation

In Section 1.2, covariant differentiation was defined by introducing a rule to trans-
port a tensor from a point Q to a neighbouring point P , at which the derivative
was to be evaluated. This rule involved the introduction of a new structure on the
manifold, the connection. In this section we define another type of derivative – the
Lie derivative – without introducing any additional structure.

Consider a curve γ , its tangent vector uα = dxα/dλ, and a vector field Aα de-
fined in a neighbourhood of γ (Fig. 1.2). As before, the point P shall have the
coordinates xα , while the point Q shall be at xα + dxα . The equation

x ′α ≡ xα + dxα = xα + uα dλ

can be interpreted as an infinitesimal coordinate transformation from the system x
to the system x ′. Under this transformation, the vector Aα becomes

A′α(x ′) = ∂x ′α

∂xβ
Aβ(x)

= (δα
β + uα

,β dλ)Aβ(x)

= Aα(x) + uα
,β Aβ(x) dλ.

In other words,

A′α(Q) = Aα(P) + uα
,β Aβ(P) dλ.

On the other hand, Aα(Q), the value of the original vector field at the point Q, can
be expressed as

Aα(Q) = Aα(x + dx)

= Aα(x) + Aα
,β(x) dxβ

= Aα(P) + uβ Aα
,β(P) dλ.

In general, A′α(Q) and Aα(Q) will not be equal. Their difference defines the Lie
derivative of the vector Aα along the curve γ :

£u Aα(P) ≡ Aα(Q) − A′α(Q)

dλ
.

Combining the previous three equations yields

£u Aα = Aα
,βuβ − uα

,β Aβ. (1.16)
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1.4 Lie differentiation 9

Despite an appearance to the contrary, £u Aα is a tensor: It is easy to check that
Eq. (1.16) is equivalent to

£u Aα = Aα
;βuβ − uα

;β Aβ, (1.17)

whose tensorial nature is evident. The fact that £u Aα can be defined without a con-
nection means that Lie differentiation is a more primitive operation than covariant
differentiation.

The definition of the Lie derivative extends to all types of tensors. For scalars,
£u f ≡ d f/dλ = f,αuα . For dual vectors, the same steps reveal that

£u pα = pα,βuβ + uβ
,α pβ

(1.18)= pα;βuβ + uβ

;α pβ.

As another example, the Lie derivative of a type-(1, 1) tensor is given by

£uT α
β = T α

β,µuµ − uα
,µT µ

β + uµ
,βT α

µ
(1.19)= T α

β;µuµ − uα
;µT µ

β + uµ

;βT α
µ.

Further generalizations are obvious. It may be verified that the Lie derivative obeys
the product rule of differential calculus. For example, the relation

£u(Aα pβ) = (£u Aα)pβ + Aα(£u pβ) (1.20)

is easily established.
A tensor field T α···

β··· is said to be Lie transported along a curve γ if its Lie
derivative along the curve vanishes: £uT α···

β··· = 0, where uα is the curve’s tan-
gent vector. Suppose that the coordinates are chosen so that x1, x2, and x3 are all
constant on γ , while x0 ≡ λ varies on γ . In such a coordinate system,

uα = dxα

dλ

∗= δα
0,

where the symbol ‘
∗=’ means ‘equals in the specified coordinate system’. It follows

that uα
,β

∗= 0, so that

£uT α···
β···

∗= T α···
β···,µuµ ∗= ∂

∂x0
T α···

β···.

If the tensor is Lie transported along γ , then the tensor’s components are all inde-
pendent of x0 in the specified coordinate system.

We have formulated the following theorem:
If £uT α···

β··· = 0, that is, if a tensor is Lie transported along a curve γ with
tangent vector uα , then a coordinate system can be constructed such that uα ∗= δα

0
and T α···

β···,0
∗= 0. Conversely, if in a given coordinate system the components of
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10 Fundamentals

a tensor do not depend on a particular coordinate x0, then the Lie derivative of the
tensor in the direction of uα vanishes.

The Lie derivative is therefore the natural construct to express, covariantly, the
invariance of a tensor under a change of position.

1.5 Killing vectors

If, in a given coordinate system, the components of the metric do not depend on
x0, then by the preceding theorem £ξ gαβ = 0, where ξα ∗= δα

0. The vector ξα is
then called a Killing vector. The condition for ξα to be a Killing vector is that

0 = £ξ gαβ = ξα;β + ξβ;α. (1.21)

Thus, the tensor ξα;β is antisymmetric if ξα is a Killing vector.
Killing vectors can be used to find constants associated with the motion along

a geodesic. Suppose that uα is tangent to a geodesic affinely parameterized by λ.
Then

d

dλ

(
uαξα

) = (uαξα);βuβ

= uα
;βuβξα + ξα;βuαuβ

= 0.

In the second line, the first term vanishes by virtue of the geodesic equation, and
the second term vanishes because ξα;β is an antisymmetric tensor while uαuβ is
symmetric. Thus, uαξα is constant along the geodesic.

As an example, consider a static, spherically symmetric spacetime with metric

ds2 = −A(r) dt2 + B(r) dr2 + r2 d�2,

where d�2 = dθ2 + sin2 θ dφ2. Because the metric does not depend on t nor φ,
the vectors

ξα
(t) = ∂xα

∂t
, ξα

(φ) = ∂xα

∂φ

are Killing vectors. The quantities

Ẽ = −uαξα
(t), L̃ = uαξα

(φ)

are then constant along a geodesic to which uα is tangent. If the geodesic is time-
like and uα is the four-velocity of a particle moving on that geodesic, then Ẽ
and L̃ can be interpreted as energy and angular momentum per unit mass, respec-
tively. It should also be noted that spherical symmetry implies the existence of two

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.003
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.003
https://www.cambridge.org/core


1.6 Local flatness 11

additional Killing vectors,

ξα
(1)∂α = sin φ ∂θ + cot θ cos φ ∂φ, ξα

(2)∂α = − cos φ ∂θ + cot θ sin φ ∂φ.

It is straightforward to show that these do indeed satisfy Killing’s equation (1.21).
(To prove this is the purpose of Section 1.13, Problem 5.)

1.6 Local flatness

For a given point P in spacetime, it is always possible to find a coordinate system
xα′

such that

gα′β ′(P) = ηα′β ′, �α′
β ′γ ′(P) = 0, (1.22)

where ηα′β ′ = diag(−1, 1, 1, 1) is the Minkowski metric. Such a coordinate sys-
tem will be called a local Lorentz frame at P . We note that it is not possible to
also set the derivatives of the connection to zero when the spacetime is curved.
The physical interpretation of the local-flatness theorem is that free-falling ob-
servers see no effect of gravity in their immediate vicinity, as required by Einstein’s
principle of equivalence.

We now prove the theorem. Let xα be an arbitrary coordinate system, and let
us assume, with no loss of generality, that P is at the origin of both coordinate
systems. Then the coordinates of a point near P are related by

xα′ = Aα′
β xβ + O(x2), xα = Aα

β ′ xβ ′ + O(x ′2),

where Aα′
β and Aα

β ′ are constant matrices. It is easy to check that one is in fact the
inverse of the other:

Aα′
µ Aµ

β ′ = δα′
β ′, Aα

µ′ A
µ′
β = δα

β.

Under this transformation, the metric becomes

gα′β ′(P) = Aα
α′ A

β

β ′ gαβ(P).

We demand that the left-hand side be equal to ηα′β ′ . This gives us 10 equations for
the 16 unknown components of the matrix Aα

α′ . A solution can always be found,
with 6 undetermined components. This corresponds to the freedom of performing
a Lorentz transformation (3 rotation parameters and 3 boost parameters) which
does not alter the form of the Minkowski metric.

Suppose that a particular choice has been made for Aα
α′ . Then Aα′

α is found by
inverting the matrix, and the coordinate transformation is known to first order. Let
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12 Fundamentals

us proceed to second order:

xα′ = Aα′
βxβ + 1

2
Bα′

βγ xβxγ + O(x3),

where the constant coefficients Bα′
βγ are symmetric in the lower indices. Recalling

Eq. (1.6), we have that the connection transforms as

�α′
β ′γ ′(P) = Aα′

α Aβ

β ′ A
γ

γ ′�α
βγ (P) − Bα′

βγ Aβ

β ′ A
γ

γ ′ .

To put the left-hand side to zero, it is sufficient to impose

Bα′
βγ = Aα′

α�α
βγ (P).

These equations determine Bα′
βγ uniquely, and the coordinate transformation is

now known to second order. Irrespective of the higher-order terms, it enforces
Eqs. (1.22).

We shall return in Section 1.11 with a more geometric proof of the local-flatness
theorem, and its extension from a single point P to an entire geodesic γ .

1.7 Metric determinant

The quantity
√−g, where g ≡ det[gαβ ], occurs frequently in differential geome-

try. We first note that
√

g′/g, where g′ = det[gα′β ′ ], is the Jacobian of the trans-
formation xα → xα′

(xα). To see this, recall from ordinary differential calculus
that under such a transformation, d4x = J d4x ′, where J = det[∂xα/∂xα′ ] is the
Jacobian. Now consider the transformation of the metric,

gα′β ′ = ∂xα

∂xα′
∂xβ

∂xβ ′ gαβ.

Because the determinant of a product of matrices is equal to the product of their
determinants, this equation implies g′ = g J 2, which proves the assertion.

As an important application, consider the transformation from xα′
, a local

Lorentz frame at P , to xα , an arbitrary coordinate system. The four-dimensional
volume element around P is d4x ′ = J−1 d4x = √

g/g′ d4x . But since g′ = −1 we
have that

√−g d4x (1.23)

is an invariant volume element around the arbitrary point P . This result gener-
alizes to a manifold of any dimension with a metric of any signature; in this
case, |g|1/2dnx is the invariant volume element, where n is the dimension of the
manifold.
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1.8 Levi-Civita tensor 13

We shall now derive another useful result,

�µ
µα = 1

2
gµνgµν,α = 1√−g

(√−g
)
,α

. (1.24)

Consider, for any matrix M, the variation of ln |detM| induced by a variation of
M’s elements. Using the product rule for determinants we have

δ ln |detM| ≡ ln |det(M + δM)| − ln |detM|
= ln

det(M + δM)

detM

= ln detM−1(M + δM)

= ln det(1 + M−1δM).

We now use the identity det(1 + ε) = 1 + Tr ε + O(ε2), valid for any ‘small’ ma-
trix ε. (Try proving this for 3 × 3 matrices.) This gives

δ ln |detM| = ln(1 + Tr M−1δM)

= Tr M−1δM.

Substituting the metric tensor in place of M gives δ ln |g| = gαβδgαβ , or

∂

∂xµ
ln |g| = gαβgαβ,µ.

This establishes Eq. (1.24).
Equation (1.24) gives rise to the divergence formula: For any vector field Aα ,

Aα
;α = 1√−g

(√−g Aα
)
,α

. (1.25)

A similar result holds for any antisymmetric tensor field Bαβ :

Bαβ

;β = 1√−g

(√−gBαβ
)
,β

. (1.26)

These formulae are useful for the efficient computation of covariant divergences.

1.8 Levi-Civita tensor

The permutation symbol [α β γ δ], defined by

[α β γ δ] =
⎧⎨
⎩

+1 if αβγ δ is an even permutation of 0123
−1 if αβγ δ is an odd permutation of 0123,

0 if any two indices are equal
(1.27)
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14 Fundamentals

is a very useful, non-tensorial quantity. For example, it can be used to give a defi-
nition for the determinant: For any 4 × 4 matrix Mαβ ,

det[Mαβ] = [α β γ δ]M0α M1β M2γ M3δ
(1.28)= [α β γ δ]Mα0 Mβ1 Mγ 2 Mδ3.

Either equality can be established by brute-force computation. The well-known
property that det[Mβα] = det[Mαβ] follows directly from Eq. (1.28).

We shall now show that the combination

εαβγ δ = √−g [α β γ δ] (1.29)

is a tensor, called the Levi-Civita tensor. Consider the quantity

[α β γ δ] ∂xα

∂xα′
∂xβ

∂xβ ′
∂xγ

∂xγ ′
∂xδ

∂xδ′ ,

which is completely antisymmetric in the primed indices. This must therefore be
proportional to [α′ β ′ γ ′ δ′]:

[α β γ δ] ∂xα

∂xα′
∂xβ

∂xβ ′
∂xγ

∂xγ ′
∂xδ

∂xδ′ = λ[α′ β ′ γ ′ δ′],
for some proportionality factor λ. Putting α′β ′γ ′δ′ = 0123 yields

λ = [α β γ δ] ∂xα

∂x0′
∂xβ

∂x1′
∂xγ

∂x2′
∂xδ

∂x3′ ,

which determines λ. But the right-hand side is just the determinant of the matrix
∂xα/∂xα′

, that is, the Jacobian of the transformation xα′
(xα). So λ = √

g′/g, and
we have

√−g [α β γ δ] ∂xα

∂xα′
∂xβ

∂xβ ′
∂xγ

∂xγ ′
∂xδ

∂xδ′ = √−g′ [α′ β ′ γ ′ δ′].
This establishes the fact that εαβγ δ does indeed transform as a type-(0, 4) tensor.

The proof could have started instead with the relation

[α β γ δ]∂xα′

∂xα

∂xβ ′

∂xβ

∂xγ ′

∂xγ

∂xδ′

∂xδ
= λ′[α′ β ′ γ ′ δ′],

implying λ′ = √
g/g′ and showing that

εαβγ δ = − 1√−g
[α β γ δ] (1.30)

transforms as a type-(4, 0) tensor. (The minus sign is important.) It is easy to check
that this is also the Levi-Civita tensor, obtained from εαβγ δ by raising all four in-
dices. Alternatively, we may show that εαβγ δ = gαµgβνgγ λgδρεµνλρ . This relation
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1.9 Curvature 15

implies

ε0123 = − 1√−g
[µ ν λ ρ]g0µg1νg2λg3ρ = − 1√−g

g = √−g,

which is evidently compatible with Eq. (1.29).
The Levi-Civita tensor is used in a variety of contexts in differential geometry.

We will meet it again in Chapter 3.

1.9 Curvature

The Riemann tensor Rα
βγ δ may be defined by the relation

Aµ

;αβ
− Aµ

;βα
= −Rµ

ναβ Aν, (1.31)

which holds for any vector field Aα . Evaluating the left-hand side explicitly yields

Rα
βγ δ = �α

βδ,γ − �α
βγ,δ + �α

µγ �
µ
βδ − �α

µδ�
µ
βγ . (1.32)

The Riemann tensor is obviously antisymmetric in the last two indices. Its other
symmetry properties can be established by evaluating Rα

βγ δ in a local Lorentz
frame at some point P . A straightforward computation gives

Rαβγ δ
∗= 1

2

(
gαδ,βγ − gαγ,βδ − gβδ,αγ + gβγ,αδ

)
,

and this implies the tensorial relations

Rαβγ δ = −Rβαγ δ = −Rαβδγ = Rγ δαβ (1.33)

and

Rµαβγ + Rµγαβ + Rµβγα = 0, (1.34)

which are valid in any coordinate system. A little more work along the same lines
reveals that the Riemann tensor satisfies the Bianchi identities,

Rµναβ;γ + Rµνγα;β + Rµνβγ ;α = 0. (1.35)

In addition to Eq. (1.31), the Riemann tensor satisfies the relations

pµ;αβ − pµ;βα = Rν
µαβ pν (1.36)

and

T µ

ν;αβ
− T µ

ν;βα
= −Rµ

λαβT λ
ν + Rλ

ναβT µ
λ, (1.37)
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16 Fundamentals

which hold for arbitrary tensors pα and T α
β . Generalization to tensors of higher

ranks is obvious: the number of Riemann-tensor terms on the right-hand side is
equal to the number of tensorial indices.

Contractions of the Riemann tensor produce the Ricci tensor Rαβ and the Ricci
scalar R. These are defined by

Rαβ = Rµ
αµβ, R = Rα

α. (1.38)

It is easy to show that Rαβ is a symmetric tensor. The Einstein tensor is defined by

Gαβ = Rαβ − 1

2
Rgαβ; (1.39)

this is also a symmetric tensor. By virtue of Eq. (1.35), the Einstein tensor satisfies

Gαβ

;β = 0, (1.40)

the contracted Bianchi identities.
The Einstein field equations,

Gαβ = 8π T αβ, (1.41)

relate the spacetime curvature (as represented by the Einstein tensor) to the distri-
bution of matter (as represented by T αβ , the stress–energy tensor). Equation (1.40)
implies that the stress–energy tensor must have a zero divergence: T αβ

;β = 0. This
is the tensorial expression for energy–momentum conservation. Equation (1.40)
implies also that of the ten equations (1.41), only six are independent. The met-
ric can therefore be determined up to four arbitrary functions, and this reflects
our complete freedom in choosing the coordinate system. We note that the field
equations can also be written in the form

Rαβ = 8π
(

T αβ − 1

2
T gαβ

)
, (1.42)

where T ≡ T α
α is the trace of the stress–energy tensor.

1.10 Geodesic deviation

The geometrical meaning of the Riemann tensor is best illustrated by examining
the behaviour of neighbouring geodesics. Consider two such geodesics, γ0 and γ1,
each described by relations xα(t) in which t is an affine parameter; the geodesics
can be either spacelike, timelike, or null. We want to develop the notion of a de-
viation vector between these two geodesics, and derive an evolution equation for
this vector.

For this purpose we introduce, in the space between γ0 and γ1, an entire family
of interpolating geodesics (Fig. 1.3). To each geodesic we assign a label s ∈ [0, 1],
such that γ0 comes with the label s = 0 and γ1 with s = 1. We collectively describe
these geodesics with relations xα(s, t), in which s serves to specify which geodesic
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1.10 Geodesic deviation 17

Figure 1.3 Deviation vector between two neighbouring geodesics.

t t

s

s

s

γ0 γ1

uα

ξα

and t is an affine parameter along the specified geodesic. The vector field uα =
∂xα/∂t is tangent to the geodesics, and it satisfies the equation uα

;βuβ = 0.
If we keep t fixed in the relations xα(s, t) and vary s instead, we obtain another

family of curves, labelled by t and parameterized by s; in general these curves will
not be geodesics. The family has ξα = ∂xα/∂s as its tangent vector field, and the
restriction of this vector to γ0, ξα|s=0, gives a meaningful notion of a deviation
vector between γ0 and γ1. We wish to derive an expression for its acceleration,

D2ξα

dt2
≡ (ξα

;βuβ);γ uγ , (1.43)

in which it is understood that all quantities are to be evaluated on γ0. In flat space-
time the geodesics γ0 and γ1 are straight, and although their separation may change
with t , this change is necessarily linear: D2ξα/dt2 = 0 in flat spacetime. A nonzero
result for D2ξα/dt2 will therefore reveal the presence of curvature, and indeed, this
vector will be found to be proportional to the Riemann tensor.

It follows at once from the relations uα = ∂xα/∂t and ξα = ∂xα/∂s that
∂uα/∂s = ∂ξα/∂t , which can be written in covariant form as

£uξα = £ξ uα = 0 ⇒ ξα
;βuβ = uα

;βξβ. (1.44)

We also have at our disposal the geodesic equation, uα
;βuβ = 0. These equations

can be combined to prove that ξαuα is constant along γ0:

d

dt

(
ξαuα

) = (ξαuα);βuβ

= ξα
;βuβuα + ξαuα;βuβ

= uα
;βξβuα

= 1

2
(uαuα);βξβ

= 0,
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18 Fundamentals

because uαuα ≡ ε is a constant. The parameterization of the geodesics can there-
fore be tuned so that on γ0, ξα is everywhere orthogonal to uα:

ξαuα = 0. (1.45)

This means that the curves t = constant cross γ0 orthogonally, and adds weight to
the interpretation of ξα as a deviation vector.

We may now calculate the relative acceleration of γ1 with respect to γ0. Starting
from Eq. (1.43) and using Eqs. (1.31) and (1.44), we obtain

D2ξα

dt2
= (ξα

;βuβ);γ uγ

= (uα
;βξβ);γ uγ

= uα
;βγ ξβuγ + uα

;βξ
β

;γ uγ

= (uα
;γβ − Rα

µβγ uµ)ξβuγ + uα
;βuβ

;γ ξγ

= (uα
;γ uγ );βξβ − uα

;γ uγ

;βξβ − Rα
µβγ uµξβuγ + uα

;βuβ

;γ ξγ .

The first term vanishes by virtue of the geodesic equation, while the second and
fourth terms cancel out, leaving

D2ξα

dt2
= −Rα

βγ δuβξγ uδ. (1.46)

This is the geodesic deviation equation. It shows that curvature produces a rela-
tive acceleration between two neighbouring geodesics; even if they start parallel,
curvature prevents the geodesics from remaining parallel.

1.11 Fermi normal coordinates

The proof of the local-flatness theorem presented in Section 1.6 gives very little
indication as to how one might construct a coordinate system that would enforce
Eqs. (1.22). Our purpose in this section is to return to this issue, and provide a
more geometric proof of the theorem. In fact, we will extend the theorem from a
single point P to an entire geodesic γ . For concreteness we will take the geodesic
to be timelike.

We will show that we can introduce coordinates xα = (t, xa) such that near γ ,
the metric can be expressed as

gtt = −1 − Rtatb(t)xaxb + O(x3),

gta = −2

3
Rtbac(t)xbxc + O(x3), (1.47)

gab = δab − 1

3
Racbd(t)xcxd + O(x3).
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1.11 Fermi normal coordinates 19

These coordinates are known as Fermi normal coordinates, and t is proper time
along the geodesic γ , on which the spatial coordinates xa are all zero. In Eq. (1.47),
the components of the Riemann tensor are evaluated on γ , and they depend on t
only. It is obvious that Eq. (1.47) enforces gαβ |γ = ηαβ and �

µ
αβ |γ = 0. The local-

flatness theorem therefore holds everywhere on the geodesic.
The reader who is not interested in following the derivation of Eq. (1.47) can

safely skip ahead to the end of this chapter. The material introduced in this section
will not be encountered in any subsequent portion of this book.

1.11.1 Geometric construction

We will use xα = (t, xa) to denote the Fermi normal coordinates, and xα′
will

refer to an arbitrary coordinate system. We imagine that we are given a spacetime
with a metric gα′β ′ expressed in these coordinates.

We consider a timelike geodesic γ in this spacetime. Its tangent vector is uα′
,

and we let t be proper time along γ . On this geodesic we select a point O at which
we set t = 0. At this point we erect an orthonormal basis êα′

µ (the subscript µ serves
to label the four basis vectors), and we identify êα′

t with the tangent vector uα′
at

O . From this we construct a basis everywhere on γ by parallel transporting êα′
µ

away from O . Our basis vectors therefore satisfy

êα′
µ;β ′uβ ′ = 0, êα′

t = uα′
, (1.48)

as well as

gα′β ′ êα′
µ êβ ′

ν = ηµν, (1.49)

everywhere on γ . Here, ηµν = diag(−1, 1, 1, 1) is the Minkowski metric.
Consider now a spacelike geodesic β originating at a point P on γ , at which

t = tP . This geodesic has a tangent vector vα′
, and we let s denote proper distance

along β; we set s = 0 at P . We assume that at P , vα′
is orthogonal to uα′

, so that
it admits the decomposition

vα′∣∣
γ

= �a êα′
a . (1.50)

To ensure that vα′
is properly normalized, the expansion coefficients must sat-

isfy δab�
a�b = 1. By choosing different coefficients �a we can construct new

geodesics β that are also orthogonal to γ at P . We shall denote this entire family
of spacelike geodesics by β(tP , �a).

The Fermi normal coordinates of a point Q located away from the geodesic γ

are constructed as follows (Fig. 1.4). First we find the unique geodesic that passes
through Q and intersects γ orthogonally. We label the intersection point P and
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20 Fundamentals

Figure 1.4 Geometric construction of the Fermi normal coordinates.

γ

P

uα

t

s

Q vα

β

we call this geodesic β(tP , �a
Q), with tP denoting proper time at the intersection

point and �a
Q the expansion coefficients of vα′

at that point. We then assign to Q
the new coordinates

x0 = tP , xa = �a
Q sQ, (1.51)

where sQ is proper distance from P to Q. These are the Fermi normal coordinates
of the point Q. Generically, therefore, xα = (t, �as), and we must now figure out
how these coordinates are related to xα′

, the original system.

1.11.2 Coordinate transformation

We note first that we can describe the family of geodesics β(t, �a) by relations of
the form xα′

(t, �a, s). In these, the parameters t and �a serve to specify which
geodesic, and s is proper distance along this geodesic. If we substitute s = 0 in
these relations, we recover the description of the timelike geodesic γ in terms of its
proper time t ; the parameters �a are then irrelevant. The tangent to the geodesics
β(t, �a) is

vα′ =
(

∂xα′

∂s

)
t,�a

; (1.52)

the notation indicates explicitly that the derivative with respect to s is taken while
keeping t and �a fixed. This vector is a solution to the geodesic equation subjected
to the initial condition vα′ |s=0 = �aêα′

a . But the geodesic equation is invariant
under a rescaling of the affine parameter, s → s/c, in which c is a constant. Under
this rescaling, vα′ → c vα′

and as a consequence we have that �a → c �a . We
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1.11 Fermi normal coordinates 21

have therefore established the identity xα′
(t, �a, s) = xα′

(t, c �a, s/c), and as a
special case we find

xα′
(t, �a, s) = xα′

(t, �as, 1) ≡ xα′
(xα). (1.53)

By virtue of Eqs. (1.51), this relation is the desired transformation between xα′
and

the Fermi normal coordinates.
Now, as a consequence of Eqs. (1.50), (1.52), and (1.53) we have

�aêα′
a = vα′∣∣

γ
= ∂xα′

∂s

∣∣∣∣
s = 0

= ∂xα′

∂xa

∣∣∣∣
s = 0

�a,

which shows that

∂xα′

∂xa

∣∣∣∣
γ

= êα′
a . (1.54)

From our previous observation that the relations xα′
(t, �a, 0) describe the

geodesic γ , we also have

∂xα′

∂t

∣∣∣∣
γ

= uα′ ≡ êα′
t . (1.55)

Equations (1.54) and (1.55) tell us that on γ , ∂xα′
/∂xµ = êα′

µ .

1.11.3 Deviation vectors

Suppose now that in the relations xα′
(t, �a, s), the parameters �a are varied while

keeping t and s fixed. This defines new curves that connect different geodesics β

at the same proper distance s from their common intersection point P on γ . This
is very similar to the construction described in Section 1.10, and the vectors

ξα′
a =

(
∂xα′

∂�a

)
t,s

(1.56)

are deviation vectors relating geodesics β(t, �a) with different coefficients �a .
Similarly,

ξα′
t =

(
∂xα′

∂t

)
s,�a

(1.57)

is a deviation vector relating geodesics β(t, �a) that start at different points on γ ,
but share the same coefficients �a . The four vectors defined by Eqs. (1.56) and
(1.57) satisfy the geodesic deviation equation, Eq. (1.46); it must be kept in mind
that in this equation, the tangent vector is vα′

, not uα′
, and the affine parameter is

s, not t .
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1.11.4 Metric on γ

The components of the metric in the Fermi normal coordinates are related to the
old components by the general relation

gαβ = ∂xα′

∂xα

∂xβ ′

∂xβ
gα′β ′ .

Evaluating this on γ yields gαβ |γ = êα′
α êβ ′

β gα′β ′ , after using Eqs. (1.54) and (1.55).
Substituting Eq. (1.49) we arrive at

gαβ

∣∣
γ

= ηαβ. (1.58)

This states that in the Fermi normal coordinates, the metric is Minkowski
everywhere on the geodesic γ .

1.11.5 First derivatives of the metric on γ

To evaluate the Christoffel symbols in the Fermi normal coordinates, we recall
from Eq. (1.51) that the curves x0 = t , xa = �as are geodesics, so that these rela-
tions must be solutions to the geodesic equation,

d2xα

ds2
+ �α

βγ

dxβ

ds

dxγ

ds
= 0.

This gives �α
bc(xα)�b�c = 0. On γ the Christoffel symbols are functions of t

only, and are therefore independent of �a . Since these coefficients are arbitrary,
we conclude that �α

bc|γ = 0. To obtain the remaining components we recall that
the basis vectors êα

µ are parallel transported along γ , so that

dêα
µ

dt
+ �α

βγ

∣∣
γ

êβ
µêγ

t = 0,

since êγ
t = uα . By virtue of Eqs. (1.54) and (1.55) we have that êα

µ = δα
µ in the

Fermi normal coordinates, and the parallel-transport equation implies �α
βt |γ = 0.

The Christoffel symbols are therefore all zero on γ . We shall write this as

gαβ,γ

∣∣
γ

= 0. (1.59)

This proves that the Fermi normal coordinates enforce the local-flatness theorem
everywhere on the geodesic γ .

1.11.6 Second derivatives of the metric on γ

We next turn to the second derivatives of the metric, or the first derivatives of
the connection. From the fact that �α

βγ is zero everywhere on γ , we obtain
immediately

�α
βγ,t

∣∣
γ

= 0. (1.60)
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1.11 Fermi normal coordinates 23

From the definition of the Riemann tensor, Eq. (1.32), we also get

�α
βt,γ

∣∣
γ

= Rα
βγ t

∣∣
γ
. (1.61)

The other components are harder to come by. For these we must involve the de-
viation vectors ξα

µ introduced in Eqs. (1.56) and (1.57). These vectors satisfy the
geodesic deviation equation, Eq. (1.46), which we write in full as

d2ξα

ds2
+ 2�α

βγ vβ dξγ

ds
+

(
Rα

βγ δ + �α
βγ,δ − �α

γµ�
µ
βδ + �α

δµ�
µ
βγ

)
vβξγ vδ = 0.

According to Eqs. (1.51), (1.52), (1.56), and (1.57) we have that vα = �aδα
a , ξα

t =
δα

t , and ξα
a = sδα

a in the Fermi normal coordinates. If we substitute ξα = ξα
t in the

geodesic deviation equation and evaluate it at s = 0, we find �α
bt,c|γ = Rα

bct |γ ,
which is just a special case of Eq. (1.61).

To learn something new, let us substitute ξα = ξα
a instead. In this case we find

2�α
ab�

b + s
(

Rα
bad + �α

ab,d − �α
aµ�

µ
bd + �α

dµ�
µ
ab

)
�b�d = 0.

Before evaluating this on γ (which would give 0 = 0), we expand the first term in
powers of s:

�α
ab = �α

ab

∣∣
γ

+ s�α
ab,µ

∣∣
γ
vµ + O(s2) = s�α

ab,d

∣∣
γ
�d + O(s2).

Dividing through by s and then evaluating on γ , we arrive at
(
Rα

bad + 3�α
ab,d

)∣∣
γ
�b�d = 0.

Because the coefficients �a are arbitrary, we conclude that the quantity within the
brackets, properly symmetrized in the indices b and d, must vanish. A little algebra
finally reveals that

�α
ab,c

∣∣
γ

= −1

3

(
Rα

abc + Rα
bac

)∣∣
γ
. (1.62)

Equations (1.60), (1.61), and (1.62) give the complete set of derivatives of the
Christoffel symbols on γ .

It is now a simple matter to turn these equations into statements regarding the
second derivatives of the metric at γ . Because the metric is Minkowski everywhere
on the geodesic, only the spatial derivatives are nonzero. These are given by

gtt,ab = −2Rtatb
∣∣
γ
,

gta,bc = −2

3

(
Rtbac + Rtcab

)∣∣
γ
, (1.63)

gab,cd = −1

3

(
Racbd + Radbc

)∣∣
γ
.
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24 Fundamentals

From Eqs. (1.58), (1.59), and (1.63) we recover Eqs. (1.47), the expansion of the
metric about γ , to second order in the spatial displacements xa .

1.11.7 Riemann tensor in Fermi normal coordinates

To express a given metric as an expansion in Fermi normal coordinates, it is nec-
essary to evaluate the Riemann tensor on the reference geodesic, and write it as a
function of t in this coordinate system. This is not as hard as it may seem. Because
the Riemann tensor is evaluated on γ , we need to know the coordinate transforma-
tion only at γ ; as was noted above, this is given by ∂xα′

/∂xµ = êα′
µ . We therefore

have, for example,

Rtabc(t) = Rµ′α′β ′γ ′ êµ′
t êα′

a êβ ′
b êγ ′

c .

The difficult part of the calculation is therefore the determination of the orthonor-
mal basis (which is parallel transported on the reference geodesic). Once this is
known, the Fermi components of the Riemann tensor are obtained by projection,
and these will naturally be expressed in terms of proper time t .

1.12 Bibliographical notes

Nothing in this text can be claimed to be entirely original, and the bibliographical
notes at the end of each chapter intend to give credit where credit is due. During
the preparation of this chapter I have relied on the following references: d’Inverno
(1992); Manasse and Misner (1963); Misner, Thorne, and Wheeler (1973); Wald
(1984); and Weinberg (1972).

More specifically:
Sections 1.2, 1.4, and 1.6 are based on Sections 6.3, 6.2, and 6.11 of d’Inverno,

respectively. Sections 1.7 and 1.8 are based on Sections 4.7 and 4.4 of Weinberg,
respectively. Section 1.10 is based on Section 3.3 of Wald. Finally, Section 1.11
and Problem 9 below are based on the paper by Manasse and Misner.

Suggestions for further reading:
In this Chapter I have presented a minimal account of differential geometry,

just enough for the reader to get by in the remaining four chapters. For a more
complete account, at a nice introductory level, I recommend the book Geometrical
methods of mathematical physics by Bernard F. Schutz. At a more advanced level I
recommend the book by Nakahara. For adanced topics that are of direct relevance
to general relativity (some of which covered here), the book by Hawking and Ellis
is a classic reference.

I have already listed some excellent textbooks on general relativity: d’Inverno;
Misner, Thorne, and Wheeler; Schutz; Weinberg; and Wald. At an introductory

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.003
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.003
https://www.cambridge.org/core
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level the book by Hartle is a superb alternative. At a more advanced level, Synge’s
book can be a very useful reference.

1.13 Problems

Warning: The results derived in Problem 9 are used in later portions of this book.

1. The surface of a two-dimensional cone is embedded in three-dimensional flat
space. The cone has an opening angle of 2α. Points on the cone which all have
the same distance r from the apex define a circle, and φ is the angle that runs
along the circle.
(a) Write down the metric of the cone, in terms of the coordinates r and φ.
(b) Find the coordinate transformation x(r, φ), y(r, φ) that brings the metric

into the form ds2 = dx2 + dy2. Do these coordinates cover the entire
two-dimensional plane?

(c) Prove that any vector parallel transported along a circle of constant r on
the surface of the cone ends up rotated by an angle β after a complete
trip. Express β in terms of α.

2. Show that if tα = dxα/dλ obeys the geodesic equation in the form Dtα/dλ =
κtα , then uα = dxα/dλ∗ satisfies Duα/dλ∗ = 0 if λ∗ and λ are related by
dλ∗/dλ = exp

∫
κ(λ) dλ.

3. (a) Let xα(λ) describe a timelike geodesic parameterized by a nonaffine
parameter λ, and let tα = dxα/dλ be the geodesic’s tangent vector.
Calculate how ε ≡ −tαtα changes as a function of λ.

(b) Let ξα be a Killing vector. Calculate how p ≡ ξαtα changes as a function
of λ on that same geodesic.

(c) Let bα be such that in a spacetime with metric gαβ , £bgαβ = 2c gαβ ,
where c is a constant. (Such a vector is called homothetic.) Let xα(τ )

describe a timelike geodesic parameterized by proper time τ , and let
uα = dxα/dτ be the four-velocity. Calculate how q ≡ bαuα changes
with τ .

4. Prove that the Lie derivative of a type-(0, 2) tensor is given by £uTαβ =
Tαβ;µuµ + uµ

;αTµβ + uµ

;βTαµ.
5. Prove that ξα

(1) and ξα
(2), as given in Section 1.5, are indeed Killing vectors of

spherically symmetric spacetimes.
6. A particle with electric charge e moves in a spacetime with metric gαβ in

the presence of a vector potential Aα . The equations of motion are uα;βuβ =
eFαβuβ , where uα is the four-velocity and Fαβ = Aβ;α − Aα;β . It is assumed
that the spacetime possesses a Killing vector ξα , so that £ξ gαβ = £ξ Aα = 0.
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26 Fundamentals

Prove that

(uα + eAα)ξα

is constant on the world line of the charged particle.
7. In flat spacetime, all Cartesian components of the Levi-Civita tensor can be

obtained from εt xyz = 1 by permutation of the indices. Using its tensorial
property under coordinate transformations, calculate εαβγ δ in the following
coordinate systems:

(a) spherical coordinates (t, r, θ, φ);
(b) spherical-null coordinates (u, v, θ, φ), where u = t − r and v = t + r .
Show that your results are compatible with the general relation εαβγ δ =√−g [α β γ δ] if [t r θ φ] = 1 in spherical coordinates, while [u v θ φ] = 1
in spherical-null coordinates.

8. In a manifold of dimension n, the Weyl curvature tensor is defined by

Cαβγ δ = Rαβγ δ − 2

n − 2

(
gα[γ Rδ]β − gβ[γ Rδ]α

)

+ 2

(n − 1)(n − 2)
R gα[γ gδ]β.

Show that it possesses the same symmetries as the Riemann tensor. Also,
prove that any contracted form of the Weyl tensor vanishes identically. This
shows that the Riemann tensor can be decomposed into a tracefree part given
by the Weyl tensor, and a trace part given by the Ricci tensor. The Einstein
field equations imply that the trace part of the Riemann tensor is algebraically
related to the distribution of matter in spacetime; the tracefree part, on the
other hand, is algebraically independent of the matter. Thus, it can be said
that the Weyl tensor represents the true gravitational degrees of freedom of
the Riemann tensor.

9. Prove that the relations

ξα
;µν = Rα

µνβξβ, �ξα = −Rα
βξβ

are satisfied by any Killing vector ξα . Here, � ≡ ∇α∇α is the curved-
spacetime d’Alembertian operator. [Hint: Use the cyclic identity for the
Riemann tensor, Rµαβγ + Rµγαβ + Rµβγα = 0.]

10. Express the Schwarzschild metric as an expansion in Fermi normal coordi-
nates about a radially infalling, timelike geodesic.

11. Construct a coordinate system in a neighbourhood of a point P in spacetime,
such that gαβ |P = ηαβ , gαβ,µ|P = 0, and

gαβ,µν

∣∣
P = −1

3

(
Rαµβν + Rανβµ

)∣∣
P .

Such coordinates are called Riemann normal coordinates.
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12. A particle moving on a circular orbit in a stationary, axially symmetric space-
time is subjected to a dissipative force which drives it to another, slightly
smaller, circular orbit. During the transition, the particle loses an amount δ Ẽ
of orbital energy (per unit rest-mass), and an amount δ L̃ of orbital angular
momentum (per unit rest-mass). You are asked to prove that these quantities
are related by δ Ẽ = �δ L̃ , where � is the particle’s original angular velocity.
By ‘circular orbit’ we mean that the particle has a four-velocity given by

uα = γ
(
ξα
(t) + �ξα

(φ)

)
,

where ξα
(t) and ξα

(φ) are the spacetime’s timelike and rotational Killing vectors,
respectively; � and γ are constants.

You may proceed along the following lines: First, express γ in terms of Ẽ
and L̃ . Second, find an expression for δuα , the change in four-velocity as the
particle goes from its original orbit to its final orbit. Third, prove the relation

uαδuα = γ (δ Ẽ − �δ L̃),

from which the theorem follows.

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.003
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.003
https://www.cambridge.org/core


2

Geodesic congruences

Our purpose in this chapter is to develop the mathematical techniques required in
the description of congruences, the term designating an entire system of nonin-
tersecting geodesics. We will consider separately the cases of timelike geodesics
and null geodesics. (The case of spacelike geodesics does not require a separate
treatment, as it is virtually identical to the timelike case; it is also less interesting
from a physical point of view.) We will introduce the expansion scalar, as well
as the shear and rotation tensors, as a means of describing the congruence’s be-
haviour. We will derive a useful evolution equation for the expansion, known as
Raychaudhuri’s equation. On the basis of this equation we will show that grav-
ity tends to focus geodesics, in the sense that an initially diverging congruence
(geodesics flying apart) will be found to diverge less rapidly in the future, and
that an initially converging congruence (geodesics coming together) will con-
verge more rapidly in the future. And we will present Frobenius’ theorem, which
states that a congruence is hypersurface orthogonal – the geodesics are every-
where orthogonal to a family of hypersurfaces – if and only if its rotation tensor
vanishes.

The chapter begins (in Section 2.1) with a review of the standard energy condi-
tions of general relativity, because some of these are required in the proof of the
focusing theorem. It continues (in Section 2.2) with a pedagogical introduction to
the expansion scalar, shear tensor, and rotation tensor, based on the kinematics of
a deformable medium. Congruences of timelike geodesics are then presented in
Section 2.3, and the case of null geodesics is treated in Section 2.4.

The techniques introduced in this chapter are used in many different areas of
gravitational physics. Most notably, they are part of the mathematical description
of event horizons, a topic covered in Chapter 5. They also play a key role in the
formulation of the singularity theorems of general relativity, a topic that (unfortu-
nately) is not covered in this book.

28
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2.1 Energy conditions 29

Table 2.1 Energy conditions.

Name Statement Conditions

Weak Tαβvαvβ ≥ 0 ρ ≥ 0, ρ + pi > 0
Null Tαβkαkβ ≥ 0 ρ + pi ≥ 0

Strong
(
Tαβ − 1

2 T gαβ

)
vαvβ ≥ 0 ρ + ∑

i pi ≥ 0, ρ + pi ≥ 0
Dominant −T α

βvβ future directed ρ ≥ 0, ρ ≥ |pi |

2.1 Energy conditions

2.1.1 Introduction and summary

In the context of classical general relativity, it is reasonable to expect that the
stress-energy tensor will satisfy certain conditions, such as positivity of the en-
ergy density and dominance of the energy density over the pressure. Such re-
quirements are embodied in the energy conditions, which are summarized in
Table 2.1.

To put the energy conditions in concrete form it is useful to assume that the
stress-energy tensor admits the decomposition

T αβ = ρ êα
0 êβ

0 + p1 êα
1 êβ

1 + p2 êα
2 êβ

2 + p3 êα
3 êβ

3 , (2.1)

in which the vectors êα
µ form an orthonormal basis; they satisfy the relations

gαβ êα
µêβ

ν = ηµν, (2.2)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. (It goes without saying
that the basis vectors are functions of the coordinates.) Equations (2.1) and (2.2)
imply that the quantities ρ (energy density) and pi (principal pressures) are eigen-
values of the stress-energy tensor, and êα

µ are the normalized eigenvectors.
The inverse metric can neatly be expressed in terms of the basis vectors. It is

easy to check that the relation

gαβ = ηµν êα
µêβ

ν , (2.3)

where ηµν = diag(−1, 1, 1, 1) is the inverse of ηµν , is compatible with Eq. (2.2).
Equations such as (2.3) are called completeness relations.
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30 Geodesic congruences

If the stress-energy tensor is that of a perfect fluid, then p1 = p2 = p3 ≡ p.
Substituting this into Eq. (2.1) and using Eq. (2.3) yields

T αβ = ρ êα
0 êβ

0 + p
(
êα

1 êβ

1 + êα
2 êβ

2 + êα
3 êβ

3

)
= ρ êα

0 êβ

0 + p
(
gαβ + êα

0 êβ

0

)
= (ρ + p) êα

0 êβ

0 + p gαβ.

The vector êα
0 is identified with the four-velocity of the perfect fluid.

Some of the energy conditions are formulated in terms of a normalized, future-
directed, but otherwise arbitrary timelike vector vα; this represents the four-
velocity of an arbitrary observer in spacetime. Such a vector can be decomposed
as

vα = γ
(
êα

0 + a êα
1 + b êα

2 + c êα
3

)
, γ = (1 − a2 − b2 − c2)−1/2, (2.4)

where a, b, and c are arbitrary functions of the coordinates, restricted by a2 +
b2 + c2 < 1. We will also need an arbitrary, future-directed null vector kα . This
we shall express as

kα = êα
0 + a′ êα

1 + b′ êα
2 + c′ êα

3 , (2.5)

where a′, b′, and c′ are arbitrary functions of the coordinates, restricted by a′2 +
b′2 + c′2 = 1. Recall that the normalization of a null vector is always arbitrary.

2.1.2 Weak energy condition

The weak energy condition states that the energy density of any matter distribu-
tion, as measured by any observer in spacetime, must be nonnegative. Because an
observer with four-velocity vα measures the energy density to be Tαβvαvβ , we
must have

Tαβvαvβ ≥ 0 (2.6)

for any future-directed timelike vector vα . To put this in concrete form we substi-
tute Eqs. (2.1) and (2.4), which gives

ρ + a2 p1 + b2 p2 + c2 p3 ≥ 0.

Because a, b, c, are arbitrary, we may choose a = b = c = 0, and this gives ρ ≥ 0.
Alternatively, we may choose b = c = 0, which gives ρ + a2 p1 ≥ 0. Recalling
that a2 must be smaller than unity, we obtain 0 ≤ ρ + a2 p1 < ρ + p1. So ρ +
p1 > 0, and similar expressions hold for p2 and p3. The weak energy condition
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therefore implies

ρ ≥ 0, ρ + pi > 0. (2.7)

2.1.3 Null energy condition

The null energy condition makes the same statement as the weak form, except that
vα is replaced by an arbitrary, future-directed null vector kα . Thus,

Tαβkαkβ ≥ 0 (2.8)

is the statement of the null energy condition. Substituting Eqs. (2.1) and (2.5) gives

ρ + a′2 p1 + b′2 p2 + c′2 p3 ≥ 0.

Choosing b′ = c′ = 0 enforces a′ = 1, and we obtain ρ + p1 ≥ 0, with similar
expressions holding for p2 and p3. The null energy condition therefore implies

ρ + pi ≥ 0. (2.9)

Notice that the weak energy condition implies the null form.

2.1.4 Strong energy condition

The statement of the strong energy condition is
(

Tαβ − 1

2
T gαβ

)
vαvβ ≥ 0, (2.10)

or Tαβvαvβ ≥ −1
2 T , where vα is any future-directed, normalized, timelike vector.

Because Tαβ − 1
2 T gαβ = Rαβ/8π by virtue of the Einstein field equations, the

strong energy condition is really a statement about the Ricci tensor. Substituting
Eqs. (2.1) and (2.4) gives

γ 2(ρ + a2 p1 + b2 p2 + c2 p3) ≥ 1

2
(ρ − p1 − p2 − p3).

Choosing a = b = c = 0 enforces γ = 1, and we obtain ρ + p1 + p2 + p3 ≥ 0.
Alternatively, choosing b = c = 0 implies γ 2 = 1/(1 − a2), and after some sim-
ple algebra we obtain ρ + p1 + p2 + p3 ≥ a2(p2 + p3 − ρ − p1). Because this
must hold for any a2 < 1, we have ρ + p1 ≥ 0, with similar relations holding for
p2 and p3. The strong energy condition therefore implies

ρ + p1 + p2 + p3 ≥ 0, ρ + pi ≥ 0. (2.11)

It should be noted that the strong energy condition does not imply the weak form.
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32 Geodesic congruences

2.1.5 Dominant energy condition

The dominant energy condition embodies the notion that matter should flow along
timelike or null world lines. Its precise statement is that if vα is an arbitrary, future-
directed, timelike vector field, then

−T α
βvβ is a future-directed, timelike or null, vector field. (2.12)

The quantity −T α
βvβ is the matter’s momentum density as measured by an ob-

server with four-velocity vα , and this is required to be timelike or null. Substituting
Eqs. (2.1) and (2.4) and demanding that −T α

βvβ not be spacelike gives

ρ2 − a2 p1
2 − b2 p2

2 − c2 p3
2 ≥ 0.

Choosing a = b = c = 0 gives ρ2 ≥ 0, and demanding that −T α
βvβ be future di-

rected selects the positive branch: ρ ≥ 0. Alternatively, choosing b = c = 0 gives
ρ2 ≥ a2 p1

2. Because this must hold for any a2 < 1, we have ρ ≥ |p1|, having
taken the future direction for −T α

βvβ . Similar relations hold for p2 and p3. The
dominant energy condition therefore implies

ρ ≥ 0, ρ ≥ |pi |. (2.13)

2.1.6 Violations of the energy conditions

While the energy conditions typically hold for classical matter, they can be violated
by quantized matter fields. A well-known example is the Casimir vacuum energy
between two conducting plates separated by a distance d:

ρ = − π2

720

h̄

d4
.

Although quantum effects allow for a localized violation of the energy conditions,
recent work suggests that there is a limit to the extent by which the energy con-
ditions can be violated globally. In this context it is useful to formulate averaged
versions of the energy conditions. For example, the averaged null energy condition
states that the integral of Tαβkαkβ along a null geodesic γ must be nonnegative:∫

γ

Tαβkαkβ dλ ≥ 0.

Such averaged energy conditions play a central role in the theory of traversable
wormholes (see Section 2.6, Problem 1). The averaged null energy condition is
known to always hold in flat spacetime, for noninteracting scalar and electromag-
netic fields in arbitrary quantum states; this is true in spite of the fact that Tαβkαkβ

can be negative somewhere along the geodesic. Its status in curved spacetimes
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2.2 Kinematics of a deformable medium 33

is not yet fully settled. A complete discussion, as of 1994, can be found in Matt
Visser’s book.

2.2 Kinematics of a deformable medium

2.2.1 Two-dimensional medium

As a warm-up for what is to follow, consider, in a purely Newtonian context, the
internal motion of a two-dimensional deformable medium. (Picture this as a thin
sheet of rubber; see Fig. 2.1.) How the medium actually moves depends on its in-
ternal dynamics, which will remain unspecified for the purpose of this discussion.
From a purely kinematical point of view, however, we may always write that for a
sufficiently small displacement ξa about a reference point O ,

dξa

dt
= Ba

b(t)ξ
b + O(ξ2),

for some tensor Ba
b. The time dependence of this tensor is determined by the

medium’s dynamics. For short time intervals,

ξa(t1) = ξa(t0) + 
ξa(t0),

where


ξa = Ba
b(t0)ξ

b(t0) 
t + O
(

t2),

and 
t = t1 − t0. To describe the action of Ba
b we will consider the simple figure

described by ξa(t0) = r0(cos φ, sin φ); this is a circle of radius r0 drawn in the
two-dimensional medium.

Figure 2.1 Two-dimensional deformable medium.

O
ξα

P
t = t0

O P

t = t1
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34 Geodesic congruences

2.2.2 Expansion

Suppose first that Ba
b is proportional to the identity matrix, so that

Ba
b =

(1
2θ 0
0 1

2θ

)
,

where θ ≡ Ba
a . Then 
ξa = 1

2θr0
t (cos φ, sin φ), which corresponds to a
change in the circle’s radius: r1 = r0 + 1

2θr0
t . The corresponding change in area
is then 
A ≡ A1 − A0 = πr0

2θ
t , so that

θ = 1

A0


A


t
.

The quantity θ is therefore the fractional change of area per unit time; we shall call
it the expansion parameter. This is actually a function, because θ may depend on
time and on the choice of reference point O .

2.2.3 Shear

Suppose next that Ba
b is symmetric and tracefree, so that

Ba
b =

(
σ+ σ×
σ× −σ+

)
.

Then 
ξa = r0
t (σ+ cos φ + σ× sin φ,−σ+ sin φ + σ× cos φ). The paramet-
ric equation describing the new figure is r1(φ) = r0(1 + σ+
t cos 2φ +
σ×
t sin 2φ). If σ× = 0, this represents an ellipse with major axis oriented along
the φ = 0 direction (Fig. 2.2). If, on the other hand, σ+ = 0, then the ellipse’s ma-
jor axis is oriented along φ = π/4. The general situation is an ellipse oriented at
an arbitrary angle. It is easy to check that the area of the figure is not affected by
the transformation. What we have, therefore, is a shearing of the figure, and σ+
and σ× are called the shear parameters. These may also vary over the medium.

Figure 2.2 Effect of the shear tensor.

σ× = 0 σ+ = 0
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2.2 Kinematics of a deformable medium 35

2.2.4 Rotation

Finally, we suppose that Ba
b is antisymmetric, so that

Ba
b =

(
0 ω

−ω 0

)
.

Then 
ξa = r0ω
t (sin φ,− cos φ), and the new displacement vector is ξa(t1) =
r0(cos φ′, sin φ′), where φ′ = φ − ω
t . This clearly represents an overall rotation
of the original figure, and this operation also leaves the area unchanged; ω is called
the rotation parameter.

2.2.5 General case

The most general matrix Ba
b has 2 × 2 = 4 components, and it may be expressed

as

Ba
b =

(
1
2θ 0

0 1
2θ

)
+

(
σ+ σ×
σ× −σ+

)
+

(
0 ω

−ω 0

)
.

The action of this most general tensor is a linear combination of expansion, shear,
and rotation. The tensor can also be expressed as

Bab = 1

2
θ δab + σab + ωab,

where θ = Ba
a (the expansion scalar) is the trace part of Bab, σab = B(ab) − 1

2θδab

(the shear tensor) is the symmetric-tracefree part of Bab, and ωab = B[ab] (the
rotation tensor) is the antisymmetric part of Bab.

2.2.6 Three-dimensional medium

In three dimensions the tensor Bab would be decomposed as

Bab = 1

3
θ δab + σab + ωab,

where θ = Ba
a is the expansion scalar, σab = B(ab) − 1

3θδab the shear tensor, and
ωab = B[ab] the rotation tensor. In the three-dimensional case, the expansion is the
fractional change of volume per unit time:

θ = 1

V


V


t
.

To see this, treat the three-dimensional relation

ξa(t1) = (δa
b + Ba

b
t)ξb(t0)
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36 Geodesic congruences

as a coordinate transformation from ξa(t0) to ξa(t1). The Jacobian of this transfor-
mation is

J = det[δa
b + Ba

b
t]
= 1 + Tr[Ba

b
t]
= 1 + θ
t.

This implies that volumes at t0 and t1 are related by V1 = (1 + θ
t)V0, so that
V0θ = (V1 − V0)/
t . This argument shows also that the volume is not affected
by the shear and rotation tensors.

2.3 Congruence of timelike geodesics

Let O be an open region in spacetime. A congruence in O is a family of curves
such that through each point in O there passes one and only one curve from this
family. (The curves do not intersect; picture this as a tight bundle of copper wires.)
In this section we will be interested in congruences of timelike geodesics, which
means that each curve in the family is a timelike geodesic; congruences of null
geodesics will be considered in the following section. We wish to determine how
such a congruence evolves with time. More precisely stated, we want to determine
the behaviour of the deviation vector ξα between two neighbouring geodesics
in the congruence (Fig. 2.3), as a function of proper time τ along the reference
geodesic. The geometric setup is the same as in Section 1.10, and the relations

uαuα = −1, uα
;βuβ = 0, uα

;βξβ = ξα
;βuβ, uαξα = 0,

where uα is tangent to the geodesics, will be assumed to hold. Notice in particular
that ξα is orthogonal to uα: the deviation vector points in the directions transverse
to the flow of the congruence.

Figure 2.3 Deviation vector between two neighbouring members of a
congruence.

τ0
τ0

ξα

τ1

τ1
ξα
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2.3 Congruence of timelike geodesics 37

2.3.1 Transverse metric

Given the congruence and the associated timelike vector field uα , the spacetime
metric gαβ can be decomposed into a longitudinal part −uαuβ and a transverse
part hαβ given by

hαβ = gαβ + uαuβ. (2.14)

The transverse metric is purely ‘spatial’, in the sense that it is orthogonal
to uα: uαhαβ = 0 = hαβuβ . It is effectively three-dimensional: in a comoving
Lorentz frame at some point P within the congruence, uα

∗= (−1, 0, 0, 0), gαβ
∗=

diag(−1, 1, 1, 1), and hαβ
∗= diag(0, 1, 1, 1). We may also note the relations hα

α =
3 and hα

µhµ
β = hα

β .

2.3.2 Kinematics

We now introduce the tensor field

Bαβ = uα;β. (2.15)

Like hαβ , this tensor is purely transverse, as uα Bαβ = uαuα;β = 1
2(uαuα);β = 0

and Bαβuβ = uα;βuβ = 0. It determines the evolution of the deviation vector:
from ξα

;βuβ = uα
;βξβ we immediately obtain

ξα
;βuβ = Bα

βξβ, (2.16)

and we see that Bα
β measures the failure of ξα to be parallel transported along the

congruence.
Equation (2.16) is directly analogous to the first equation of Section 2.2. We

may decompose Bαβ into trace, symmetric-tracefree, and antisymmetric parts.
This gives

Bαβ = 1

3
θ hαβ + σαβ + ωαβ, (2.17)

where θ = Bα
α = uα

;α is the expansion scalar, σαβ = B(αβ) − 1
3θ hαβ the shear

tensor, and ωαβ = B[αβ] the rotation tensor. These quantities come with the same
interpretation as in Section 2.2. In particular, the congruence will be diverging
(geodesics flying apart) if θ > 0, and it will be converging (geodesics coming
together) if θ < 0.
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38 Geodesic congruences

Figure 2.4 Family of hypersurfaces orthogonal to a congruence of timelike
geodesics.

γ1 γ2
γ3

�1

�2

�3

2.3.3 Frobenius’ theorem

Some congruences have a vanishing rotation tensor, ωαβ = 0. These are said to be
hypersurface orthogonal, meaning that the congruence is everywhere orthogonal
to a family of spacelike hypersurfaces foliating O (Fig. 2.4). We now provide a
partial proof of this statement.

The congruence will be hypersurface orthogonal if uα is everywhere propor-
tional to nα , the normal to the hypersurfaces. Supposing that these are described
by equations of the form �(xα) = c, where c is a constant specific to each hyper-
surface, then nα ∝ �,α and

uα = −µ�,α,

for some proportionality factor µ. (We suppose that � increases toward the future,
and the positive quantity µ can be determined from the normalization condition
uαuα = −1.) Differentiating this equation gives uα;β = −µ�;αβ − �,αµ,β . Con-
sider now the completely antisymmetric tensor

u[α;βuγ ] ≡ 1

3!
(
uα;βuγ + uγ ;αuβ + uβ;γ uα − uβ;αuγ − uα;γ uβ − uγ ;βuα

)
.

Direct evaluation of the right-hand side, using �;βα = �;αβ , returns zero. We
therefore have

hypersurface orthogonal ⇒ u[α;βuγ ] = 0. (2.18)

The converse of this statement, that u[α;βuγ ] = 0 implies the existence of a scalar
field � such that uα ∝ �,α , is also true (but harder to prove).
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2.3 Congruence of timelike geodesics 39

Equation (2.18) is a useful result, because whether or not uα is hypersurface
orthogonal can be decided on the basis of the vector field alone, without having to
find � explicitly. We note that the geodesic equation uα

;βuβ = 0 was never used
in the derivation of Eq. (2.18). We also never used the fact that uα was normal-
ized. Equation (2.18) is therefore quite general: A congruence of curves (timelike,
spacelike, or null) is hypersurface orthogonal if and only if u[α;βuγ ] = 0, where
uα is tangent to the curves. This statement is known as Frobenius’ theorem.

We now return to our geodesic congruence, and use Eqs. (2.15) and (2.17) to
calculate

3! u[α;βuγ ] = 2(u[α;β]uγ + u[γ ;α]uβ + u[β;γ ]uα)

= 2(B[αβ]uγ + B[γα]uβ + B[βγ ]uα)

= 2(ωαβuγ + ωγαuβ + ωβγ uα).

If we put the left-hand side to zero and multiply the right-hand side by uγ , we ob-
tain ωαβ = 0, because ωγαuγ = 0 = ωβγ uγ . (Recall the purely transverse prop-
erty of Bαβ .) Therefore,

hypersurface orthogonal ⇒ ωαβ = 0. (2.19)

This concludes the proof of our initial statement.
Notice that Eq. (2.19) holds for timelike geodesics only, whereas Eq. (2.18)

is general. In fact, Eq. (2.19) could have been derived much more directly, but
in doing so we would have bypassed the more general formulation of Frobenius’
theorem. The direct proof goes as follows.

If uα is hypersurface orthogonal, then uα = −µ�,α for some scalars µ and �.
It follows from ωαβ = u[α;β] and the symmetry of �;αβ that

ωαβ = −�[,αµ,β] = 1

µ
u[αµ,β].

But we know that ωαβ must be orthogonal to uα , and the relation ωαβuβ = 0 im-
plies µ,α = −(µ,βuβ)uα . This, in turn, establishes that the rotation tensor vanishes
identically: ωαβ = 0.

We have learned that µ must be constant on each hypersurface, because it varies
only in the direction normal to the hypersurfaces. Thus, µ can be expressed as a
function of �, and defining a new scalar � = ∫

µ(�) d� we find that uα is not
only proportional to a gradient, it is equal to one: uα = −�,α . Notice that if uα

can be expressed in this form, then it automatically satisfies the geodesic equation:
uα;βuβ = �;αβ�,β = �;βα�,β = 1

2(�,β�,β);α = 1
2(uβuβ);α = 0.
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40 Geodesic congruences

In summary:
A vector field uα (timelike, spacelike, or null, and not necessarily geodesic) is

hypersurface orthogonal if there exists a scalar field � such that uα ∝ �,α , which
implies u[α;βuγ ] = 0. If the vector field is timelike and geodesic, then it is hy-
persurface orthogonal if there exists a scalar field � such that uα = −�,α , which
implies ωαβ = u[α;β] = 0.

2.3.4 Raychaudhuri’s equation

We now want to derive an evolution equation for θ , the expansion scalar. We begin
by developing an equation for Bαβ itself:

Bαβ;µuµ = uα;βµuµ

= (uα;µβ − Rανβµuν)uµ

= (uα;µuµ);β − uα;µuµ

;β − Rανβµuνuµ

= −BαµBµ
β − Rαµβνuµuν.

The equation for θ is obtained by taking the trace:

dθ

dτ
= −Bαβ Bβα − Rαβuαuβ.

It is then easy to check that Bαβ Bβα = 1
3θ2 + σαβσαβ − ωαβωαβ . Making the sub-

stitution, we arrive at

dθ

dτ
= −1

3
θ2 − σαβσαβ + ωαβωαβ − Rαβuαuβ. (2.20)

This is Raychaudhuri’s equation for a congruence of timelike geodesics. We
note that since the shear and rotation tensors are purely spatial, σαβσαβ ≥ 0 and
ωαβωαβ ≥ 0, with the equality sign holding if and only if the tensor is identically
zero.

2.3.5 Focusing theorem

The importance of Eq. (2.20) for general relativity is revealed by the follow-
ing theorem: Let a congruence of timelike geodesics be hypersurface orthogo-
nal, so that ωαβ = 0, and let the strong energy condition hold, so that (by virtue
of the Einstein field equations) Rαβuαuβ ≥ 0. Then the Raychaudhuri equation
implies

dθ

dτ
= −1

3
θ2 − σαβσαβ − Rαβuαuβ ≤ 0.
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2.3 Congruence of timelike geodesics 41

Figure 2.5 Geodesics converge into a caustic of the congruence.

caustic

The expansion must therefore decrease during the congruence’s evolution. Thus,
an initially diverging (θ > 0) congruence will diverge less rapidly in the future,
while an initially converging (θ < 0) congruence will converge more rapidly in the
future. This is the statement of the focusing theorem. Its physical interpretation is
that gravitation is an attractive force when the strong energy condition holds, and
the geodesics get focused as a result of this attraction.

It also follows from Raychaudhuri’s equation that under the conditions of the
focusing theorem, dθ/dτ ≤ −1

3θ2. This can be integrated at once, giving

θ−1(τ ) ≥ θ0
−1 + τ

3
,

where θ0 ≡ θ(0). This shows that if the congruence is initially converging (θ0 <

0), then θ(τ ) → −∞ within a proper time τ ≤ 3/|θ0|. The interpretation of this
result is that the congruence will develop a caustic, a point at which some of the
geodesics come together (Fig. 2.5). Obviously, a caustic is a singularity of the
congruence, and equations such as (2.20) lose their meaning at such points.

2.3.6 Example

As an illustrative example, let us consider the congruence of comoving world lines
in an expanding universe with metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2),

where a(t) is the scale factor. The tangent vector field is uα = −∂αt , and a quick
calculation reveals that

Bαβ = uα;β = ȧ

a
hαβ,

where an overdot indicates differentiation with respect to t . This shows that the
shear and rotation tensors are both zero for this congruence. The expansion, on the
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42 Geodesic congruences

other hand, is given by

θ = 3
ȧ

a
= 1

a3

d

dt
a3.

This illustrates rather well the general statement (made in Section 2.3.8 below) that
the expansion is the fractional rate of change of the congruence’s cross-sectional
volume (which is here proportional to a3).

2.3.7 Another example

As a second example we consider a congruence of radial, marginally bound, time-
like geodesics of the Schwarzschild spacetime. The metric is

ds2 = − f dt2 + f −1 dr2 + r2 d�2,

where f = 1 − 2M/r and d�2 = dθ2 + sin2 θ dφ2. For radial geodesics, uθ =
uφ = 0, and the geodesics are marginally bound if 1 = Ẽ ≡ −uαξα

(t) = −ut . This
means that the conserved energy is precisely equal to the rest-mass energy, and this
gives us the equation ut = 1/ f . From the normalization condition gαβuαuβ = −1
we also get ur = ±√

2M/r ; the upper sign applies to outgoing geodesics, and the
lower sign applies to ingoing geodesics.

The four-velocity is therefore given by

uα ∂α = f −1 ∂t ± √
2M/r ∂r , uα dxα = −dt ± f −1

√
2M/r dr.

It follows that uα is equal to a gradient: uα = −�,α , where

� = t ∓ 4M

[√
r/2M + 1

2
ln

(√
r/2M − 1√
r/2M + 1

)]
.

This means that the congruence is everywhere orthogonal to the spacelike hyper-
surfaces � = constant.

The expansion is calculated as

θ = uα
;α = 1√−g

(√−g uα
)
,α

= 1

r2
(r2ur )′,

where a prime indicates differentiation with respect to r . Completing the calcula-
tion gives

θ = ±3

2

√
2M

r3
.

Not surprisingly, the congruence is diverging (θ > 0) if the geodesics are outgoing,
and converging (θ < 0) if the geodesics are ingoing. The rate of change of the
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2.3 Congruence of timelike geodesics 43

expansion is calculated as dθ/dτ = (dθ/dr)(dr/dτ) = θ ′ur , and the result is

dθ

dτ
= −9M

2r3
.

As dictated by the focusing theorem, dθ/dτ is negative in both cases.

2.3.8 Interpretation of θ

We now prove that θ is equal to the fractional rate of change of δV , the congru-
ence’s cross-sectional volume:

θ = 1

δV

d

dτ
δV . (2.21)

Although this may already be obvious from Eqs. (2.16) and (2.17), it is still in-
structive to go through a formal proof. The first step is to introduce the notions of
cross-section, and cross-sectional volume.

Select a particular geodesic γ from the congruence, and on this geodesic, pick a
point P at which τ = τP . Construct, in a small neighbourhood around P , a small
set δ�(τP) of points P ′ such that (i) through each of these points there passes
another geodesic from the congruence, and (ii) at each point P ′, τ is also equal to
τP . This set forms a three-dimensional region, a small segment of the hypersurface
τ = τP (Fig. 2.6). We assume that the parameterization has been adjusted so that
γ intersects δ�(τP) orthogonally. (There is no requirement that other geodesics
do, as the congruence may not be hypersurface orthogonal.) We shall call δ�(τP)

the congruence’s cross section around the geodesic γ , at proper time τ = τP . We
want to calculate the volume of this hypersurface segment, and compare it with the
volume of δ�(τQ), where Q is a neighbouring point on γ .

Figure 2.6 Congruence’s cross section about a reference geodesic.

γ

P P ′δ�(τP)

Q Q′δ�(τQ)
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44 Geodesic congruences

We introduce coordinates on δ�(τP) by assigning a label ya (a = 1, 2, 3) to
each point P ′ in the set. Recalling that through each of these points there passes a
geodesic from the congruence, we see that we may use ya to label the geodesics
themselves. By demanding that each geodesic keep its label as it moves away from
δ�(τP), we simultaneously obtain a coordinate system ya in δ�(τQ) or any other
cross section. This construction therefore defines a coordinate system (τ, ya) in a
neighbourhood of the geodesic γ , and there exists a transformation between this
system and the one originally in use: xα = xα(τ, ya). Because ya is constant along
the geodesics, we have

uα =
(

∂xα

∂τ

)
ya

. (2.22)

On the other hand, the vectors

eα
a =

(
∂xα

∂ya

)
τ

(2.23)

are tangent to the cross sections. These relations imply £ueα
a = 0, and we also have

uα eα
a = 0 holding on γ (and only γ ).

We now introduce a three-tensor hab defined by

hab = gαβ eα
a eβ

b . (2.24)

(A three-tensor is a tensor with respect to coordinate transformations ya → ya′
,

but a scalar with respect to transformations xα → xα′
.) This acts as a metric tensor

on δ�(τ): For displacements confined to the cross section (so that dτ = 0), xα =
xα(ya) and

ds2 = gαβ dxα dxβ

= gαβ

(
∂xα

∂ya
dya

)(
∂xβ

∂yb
dyb

)

= (
gαβ eα

a eβ
b

)
dyadyb

= hab dyadyb.

Thus, hab is the three-dimensional metric on the congruence’s cross sections.
Because γ is orthogonal to its cross sections (uα eα

a = 0), we have that hab =
hαβ eα

a eβ
b on γ , where hαβ = gαβ + uαuβ is the transverse metric. If we define hab

to be the inverse of hab, then it is easy to check that

hαβ = hab eα
a eβ

b (2.25)

on γ .
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2.4 Congruence of null geodesics 45

The three-dimensional volume element on the cross sections, or cross-sectional
volume, is δV = √

h d3y, where h ≡ det[hab]. Because the coordinates ya are co-
moving (since each geodesic moves with a constant value of its coordinates), d3y
does not change as the cross section δ�(τ) evolves from τ = τP to τ = τQ . A
change in δV therefore comes entirely from a change in

√
h:

1

δV

d

dτ
δV = 1√

h

d

dτ

√
h = 1

2
hab dhab

dτ
.

We must now calculate the rate of change of the three-metric:

dhab

dτ
≡ (

gαβ eα
a eβ

b

)
;µuµ

= gαβ

(
eα

a;µuµ
)
eβ

b + gαβ eα
a

(
eβ

b;µuµ
)

= gαβ

(
uα

;µeµ
a

)
eβ

b + gαβ eα
a

(
uβ

;µeµ
b

)
= uβ;α eα

a eβ
b + uα;β eα

a eβ
b

= (Bαβ + Bβα)eα
a eβ

b . (2.26)

Multiplying by hab and evaluating on γ , so that Eq. (2.25) may be used, we obtain

hab dhab

dτ
= (Bαβ + Bβα)

(
hab eα

a eβ
b

)
= 2Bαβhαβ

= 2Bαβgαβ

= 2θ.

This establishes that

θ = 1√
h

d

dτ

√
h, (2.27)

which is the same statement as in Eq. (2.21).

2.4 Congruence of null geodesics

We now turn to the case of null geodesics. The geometric setup is the same as in
the preceding section, except that the tangent vector field, denoted kα , is null. We
assume that the geodesics are affinely parameterized by λ, so that a displacement
along a member of the congruence is described by dxα = kα dλ. The deviation
vector will again be denoted ξα , and we again take it to be orthogonal to, and Lie
transported along, the geodesics. The following equations therefore hold:

kαkα = 0, kα
;βkβ = 0, kα

;βξβ = ξα
;βkβ, kαξα = 0.
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46 Geodesic congruences

As we were in the preceding section, we will be interested in the transverse prop-
erties of the congruence, which are determined by the deviation vector ξα . We can,
however, anticipate some difficulties, because here the condition kαξα = 0 fails to
remove an eventual component of ξα in the direction of kα . One of our first tasks,
therefore, will be to isolate the purely transverse part of the deviation vector. This
we will do with the help of hαβ , the transverse metric.

2.4.1 Transverse metric

To isolate the part of the metric that is transverse to kα is not entirely straightfor-
ward when kα is null. The expression h′

αβ = gαβ + kαkβ does not work, because
h′

αβkβ = kα �= 0. To see what must be done, let us go to a local Lorentz frame at
some point P , and let us introduce the null coordinates u = t − x and v = t + x .
The line element can then be expressed as ds2 ∗= −du dv + dy2 + dz2. Supposing
that kα is tangent to the curves u = constant, we see that the transverse line el-
ement is ds̃2 ∗= dy2 + dz2: the transverse metric is two-dimensional. This clearly
has to do with the fact that ds2 = 0 for displacements along the v direction.

To isolate the transverse part of the metric we need to introduce another null
vector field Nα , such that Nαkα �= 0. Because the normalization of a null vec-
tor is arbitrary, we may always impose kα Nα = −1. If kα

∗= −∂αu in the lo-
cal Lorentz frame, then we might choose Nα

∗= −1
2∂αv. Now consider the ob-

ject hαβ = gαβ + kα Nβ + Nαkβ . This is clearly orthogonal to both kα and Nα:

hαβkβ = hαβ Nβ = 0. Furthermore, hαβ
∗= diag(0, 0, 1, 1) in the local Lorentz

frame, and hαβ is properly transverse and two-dimensional. This, then, is the object
we seek.

The transverse metric is therefore obtained as follows: Given the null vector
field kα , select an auxiliary null vector field Nα and choose its normalization to be
such that kα Nα = −1. Then the transverse metric is given by

hαβ = gαβ + kα Nβ + Nαkβ. (2.28)

It satisfies the relations

hαβkβ = hαβ Nβ = 0, hα
α = 2, hα

µhµ
β = hα

β, (2.29)

which confirm that hαβ is purely transverse (orthogonal to both kα and Nα) and
effectively two-dimensional.

Evidently, the conditions Nα Nα = 0 and kα Nα = −1 do not determine Nα

uniquely. This implies that the transverse metric is not unique. As we shall see,
however, quantities such as the expansion of the congruence will turn out to be the
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2.4 Congruence of null geodesics 47

same for all choices of auxiliary null vector. Further aspects of this non-uniqueness
are explored in Section 2.6, Problem 6.

2.4.2 Kinematics

As before, we introduce the tensor field

Bαβ = kα;β (2.30)

as a measure of the failure of ξα to be parallel transported along the congruence:

ξα
;βkβ = Bα

βξβ. (2.31)

As before, Bαβ is orthogonal to the tangent vector field: kα Bαβ = 0 = Bαβkβ .
However, Bαβ is not orthogonal to Nα , and Eq. (2.31) has a non-transverse com-
ponent that should be removed.

We begin by isolating the purely transverse part of the deviation vector, which
we denote ξ̃ α . Because hαβ is itself purely transverse, it is easy to see that

ξ̃ α ≡ hα
µξµ = ξα + (

Nµξµ)kα (2.32)

is the desired object. Its covariant derivative in the direction of kα represents the
relative velocity of two neighbouring geodesics. This is given by

ξ̃
µ

;βkβ = hµ
ν Bν

βξβ + hµ

ν;βξνkβ,

where we have inserted Eq. (2.31) in the first term of the right-hand side. Calcu-
lating the second term gives

ξ̃
µ

;βkβ = hµ
ν Bν

βξβ + (
Nν;βξνkβ

)
kµ,

and we see that the vector ξ̃
µ

;βkβ has a component along kµ. Once again we remove
this by projecting with hα

µ. Using the last of Eqs. (2.29) we obtain
(
ξ̃ α

;βkβ
)̃ ≡ hα

µ

(
ξ̃

µ

;βkβ
) = hα

µBµ
νξ

ν

= hα
µBµ

νξ̃
ν

= hα
µhν

β Bµ
νξ̃

β

for the transverse components of the relative velocity. In the first line we have
replaced ξν with ξ̃ ν because Bµ

νkν = 0. In the third line we have inserted the
relation ξ̃ ν = hν

β ξ̃ β ; this holds because ξ̃ ν is already purely transverse.
We have obtained (

ξ̃ α
;βkβ

)̃ = B̃α
β ξ̃β, (2.33)
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48 Geodesic congruences

where

B̃αβ = hµ
αhν

β Bµν (2.34)

is the purely transverse part of Bµν = kµ;ν . This can be expressed in a more ex-
plicit form by using Eq. (2.28):

B̃αβ = (g µ
α + kα Nµ + Nαkµ)(g ν

β + kβ N ν + Nβkν) Bµν

= (g µ
α + kα Nµ + Nαkµ)(Bµβ + kβ Bµν N ν)

= Bαβ + kα NµBµβ + kβ BαµNµ + kαkβ Bµν NµN ν. (2.35)

Equation (2.33) governs the purely transverse behaviour of the null congruence,
and the vector B̃α

β ξ̃β can be interpreted as the transverse relative velocity between
two neighbouring geodesics.

As we did before, we decompose the evolution tensor B̃αβ into its irreducible
parts:

B̃αβ = 1

2
θ hαβ + σαβ + ωαβ, (2.36)

where θ = B̃α
α is the expansion scalar, σαβ = B̃(αβ) − 1

2θ hαβ the shear tensor, and
ωαβ = B̃[αβ] the rotation tensor. The expansion is given more explicitly by

θ = gαβ B̃αβ

= gαβ Bαβ,

which follows from Eq. (2.35) and the fact that Bαβ is orthogonal to kα . From this
we obtain

θ = kα
;α. (2.37)

We see explicitly that θ does not depend on the choice of auxiliary null vector
Nα: the expansion is unique. The geometric meaning of the expansion will be
considered in detail below; we will show that θ is the fractional rate of change – per
unit affine-parameter distance – of the congruence’s cross-sectional area. (Recall
that here, the transverse space is two-dimensional.)

2.4.3 Frobenius’ theorem

We now show that if the vector field kα is such that ωαβ = 0, then the congru-
ence is hypersurface orthogonal, in the sense that kα must be proportional to the
normal �,α of a family of hypersurfaces described by �(xα) = c. These hyper-
surfaces must clearly be null: gαβ�,α�,β ∝ gαβkαkβ = 0. Furthermore, because
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2.4 Congruence of null geodesics 49

Figure 2.7 Family of hypersurfaces orthogonal to a congruence of null
geodesics.

� = constant

kα

kα is at once parallel and orthogonal to �,α (kα�,α = 0), the vector kα is also tan-
gent to the hypersurfaces. The null geodesics therefore lie within the hypersurfaces
(Fig. 2.7); they are called the null generators of the hypersurfaces �(xα) = c.

We begin with the general statement of Frobenius’ theorem derived in Sec-
tion 2.3.3: The congruence is hypersurface orthogonal if and only if k[α;βkγ ] = 0.
This condition implies B[αβ]kγ + B[γα]kβ + B[βγ ]kα = 0, and transvecting with
N γ gives

B[αβ] = B[γα]kβ N γ + B[βγ ]kα N γ

= 1
2

(
Bγαkβ − Bαγ kβ + Bβγ kα − Bγβkα

)
N γ

= Bγ [αkβ]N γ + k[α Bβ]γ N γ .

But from Eq. (2.35) we also have

B̃[αβ] = B[αβ] − Bµ[αkβ]Nµ − k[α Bβ]µNµ,

and it follows immediately that B̃[αβ] = 0. We therefore can say

hypersurface orthogonal ⇒ ωαβ = 0, (2.38)

and this concludes the proof. (In Section 2.6, Problem 6 you will show that if
ωαβ = 0 for a specific choice of auxiliary null vector Nα , then ωαβ = 0 for all
possible choices.)

The congruence is hypersurface orthogonal if there exists a scalar field �(xα)

which is constant on the hypersurfaces and kα = −µ�,α for some scalar µ. A
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50 Geodesic congruences

vector of this form automatically satisfies the geodesic equation:

kα;βkβ = −(µ�;αβ + �,αµ,β)kβ

= −(
µ,β�,β

)
kα,

where we have used �;αβ�,β = �;βα�,β = 1
2(�,β�,β),α = 0. This is the gen-

eral form of the geodesic equation, corresponding to a parameterization that is not
affine. Affine parameterization is recovered when µ,αkα = 0, that is, when µ does
not vary along the geodesics.

2.4.4 Raychaudhuri’s equation

The derivation of the null version of Raychaudhuri’s equation proceeds much as in
Section 2.3.4. In particular, the equation

dθ

dλ
= −Bαβ Bβα − Rαβkαkβ

follows from the same series of steps. It is then easy to check that Bαβ Bβα =
B̃αβ B̃βα = 1

2θ2 + σαβσαβ − ωαβωαβ , which gives

dθ

dλ
= −1

2
θ2 − σαβσαβ + ωαβωαβ − Rαβkαkβ. (2.39)

This is Raychaudhuri’s equation for a congruence of null geodesics. It should be
noted that this equation is invariant under a change of auxiliary null vector Nα;
this is established in Section 2.6, Problem 6. We also note that because the shear
and rotation tensors are purely transverse, σαβσαβ ≥ 0 and ωαβωαβ ≥ 0, with the
equality sign holding if and only if the tensor vanishes.

2.4.5 Focusing theorem

The null version of the focusing theorem goes as follows: Let a congruence of null
geodesics be hypersurface orthogonal, so that ωαβ = 0, and let the null energy
condition hold, so that (by virtue of the Einstein field equations) Rαβkαkβ ≥ 0.
Then the Raychaudhuri equation implies

dθ

dλ
= −1

2
θ2 − σαβσαβ − Rαβkαkβ ≤ 0,

which means that the geodesics are focused during the evolution of the congruence.
Integrating dθ/dλ ≤ −1

2θ2 yields

θ−1(λ) ≥ θ0
−1 + λ

2
,
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2.4 Congruence of null geodesics 51

where θ0 ≡ θ(0). This shows that if the congruence is initially converging (θ0 <

0), then θ(λ) → −∞ within an affine parameter λ ≤ 2/|θ0|. As in the case of a
timelike congruence, this generally signals the occurrence of a caustic.

2.4.6 Example

As an illustrative example, let us consider the congruence formed by the generators
of a null cone in flat spacetime. The geodesics emanate from a single point P
(which we place at the origin of the coordinate system) and they radiate in all
directions; note that P is a caustic of the congruence. In spherical coordinates,
the geodesics are described by the relations t = λ, r = λ, θ = constant, and φ =
constant, in which λ is the affine parameter. The tangent vector field is

kα = −∂α(t − r).

We must find an auxiliary null vector field Nα that satisfies kα Nα = −1.
If we choose Nα to lie in the (t, r) plane, the unique solution is Nα =
−1

2∂α(t + r). With this choice we find that the transverse metric is given by
hαβ = diag(0, 0, r2, r2 sin2 θ). A straightforward calculation gives Bαβ = kα;β =
diag(0, 0, r, r sin2 θ), and we see that Bαβ is already transverse for this choice of
Nα . We have found

B̃αβ = 1

r
hαβ,

and this shows that the shear and rotation tensors are both zero for this congruence.
The expansion, on the other hand, is given by

θ = 2

r
= 1

4πr2

d

dλ
(4πr2).

This verifies the general statement (made in Section 2.4.8 below) that the expan-
sion is the fractional rate of change of the congruence’s cross-sectional area.

We might ask how making a different choice for Nα would affect our results. It
is easy to check that the vector Nα dxα = −dt + r sin θ dφ satisfies both Nα Nα =
0 and Nαkα = −1. It is therefore an acceptable choice of auxiliary null vector field.
This choice leads to a complicated expression for the transverse metric, which
now has components along t and r . And while the expression for Bαβ does not
change, we find that B̃αβ is no longer equal to Bαβ , and is much more complicated
than the expression given previously. You may check, however, that the relation
B̃αβ = hαβ/r is not affected by the change of auxiliary null vector. Our results for
θ , σαβ , and ωαβ are therefore preserved.
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52 Geodesic congruences

2.4.7 Another example

As a second example we consider the radial null geodesics of Schwarzschild space-
time. For dθ = dφ = 0 the Schwarzschild line element reduces to

ds2 = − f dt2 + f −1 dr2 = − f (dt − f −1 dr)(dt + f −1 dr),

where f = 1 − 2M/r . The displacements will be null if ds2 = 0. If we define

u = t − r∗, v = t + r∗,

where r∗ = ∫
f −1 dr = r + 2M ln(r/2M − 1), we find that u = constant on out-

going null geodesics, while v = constant on ingoing null geodesics. The vector
fields

kout
α = −∂αu, kin

α = −∂αv

are null, and they both satisfy the geodesic equation, with +r as an affine parameter
for kα

out and −r as an affine parameter for kα
in. (Check this.) As their labels indi-

cate, kout
α is tangent to the outgoing geodesics, while kin

α is tangent to the ingoing
geodesics. The congruences are clearly hypersurface orthogonal. Their expansions
are easily calculated:

θ = ±2

r
,

where the positive (negative) sign refers to the outgoing (ingoing) congruence. We
also have

dθ

dλ
= − 2

r2
,

which is properly negative.

2.4.8 Interpretation of θ

We shall now give a formal proof of the statement that θ is the fractional rate of
change of the congruence’s cross-sectional area:

θ = 1

δA

d

dλ
δA, (2.40)

where δA is measured in the purely transverse directions. The proof is very similar
to what was presented in Section 2.3.8; the only crucial difference concerns the
dimensionality of the transverse space.

We pick a particular geodesic γ from the congruence, and on this geodesic we
select a point P at which λ = λP . We then consider the null curves to which Nα

is tangent, and we let µ be the parameter on these auxiliary curves; we adjust the
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2.4 Congruence of null geodesics 53

parameterization so that µ is constant on the null geodesics. The auxiliary curve
that passes through P is called β, and we have that µ = µγ at P . The cross section
δS(λP) is defined to be a small set of points P ′ in a neighbourhood of P such that
(i) through each of these points there passes another geodesic from the congruence
and another auxiliary curve, and (ii) at each point P ′, λ is also equal to λP and µ

is equal to µγ . This set forms a two-dimensional region, the intersection of small
segments of the hypersurfaces λ = λP and µ = µγ . We assume that the parame-
terization has been adjusted so that both γ and β intersect δS(λP) orthogonally.
(There is no requirement that other curves do.)

We introduce coordinates in δS(λP) by assigning a label θ A (A = 2, 3) to each
point in the set. Recalling that through each of these points there passes a geodesic
from the congruence, we see that we may use θ A to label the geodesics themselves.
By demanding that each geodesic keep its label as it moves away from δS(λP), we
simultaneously obtain a coordinate system θ A in any other cross-section δS(λ).
This construction therefore produces a coordinate system (λ, µ, θ A) in a neigh-
bourhood of the geodesic γ , and there exists a transformation between this system
and the one originally in use: xα = xα(λ, µ, θ A). Because µ and θ A are constant
along the geodesics, we have

kα =
(

∂xα

∂λ

)
µ,θ A

.

On the other hand, the vectors

eα
A =

(
∂xα

∂θ A

)
λ,µ

are tangent to the cross sections. These relations imply £keα
A = 0 and we have also

that on γ (and only γ ), kα eα
A = Nα eα

A = 0.
The remaining steps are very similar to those carried out in Section 2.3.8, and it

will suffice to present a brief outline. The two-tensor

σAB = gαβ eα
Aeβ

B

acts as a metric on δS(λ). The cross-sectional area is therefore defined by δA =√
σ d2θ , where σ = det[σAB]. The inverse σ AB of the two-metric is such that

hαβ = σ AB eα
Aeβ

B on γ , where hαβ = gαβ + kα Nβ + Nαkβ is the transverse met-
ric. The relation

dσAB

dλ
= (Bαβ + Bβα) eα

Aeβ
B
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54 Geodesic congruences

follows, and taking its trace yields

θ = 1√
σ

d

dλ

√
σ .

This statement is equivalent to Eq. (2.40).

2.5 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Carter (1979); Visser (1995); and Wald (1984).

More specifically:
Section 2.1 is based on Section 9.2 of Wald and Chapter 12 of Visser. Sections

2.3 and 2.4 are based partially on Section 9.2 and Appendix B of Wald, as well as
Section 6.2.1 of Carter.

Suggestions for further reading:
The book by Matt Visser offers a complete account of the theory of traversible

wormholes and a review of the known violations of the standard energy condi-
tions. The 1988 article that started this whole field, by Morris and Thorne, is very
accessible and well worth reading.

Congruence of timelike curves play a central role in the field of mathematical
cosmology, the study of exact solutions to the Einstein field equations that de-
scribe expanding universes. This active area of research is reviewed in the book by
Wainwright and Ellis.

2.6 Problems

Warning: The results derived in Problem 8 are used in later portions of this book.

1. Consider a curved spacetime with metric

ds2 = −dt2 + d�2 + r2(�) d�2,

where the function r(�) is such that (i) it is minimum at � = 0, with a value r0,
and (ii) it asymptotically becomes equal to |�| as � → ±∞.
(a) Argue that this spacetime contains a traversable wormhole between two

asymptotically-flat regions, with a throat of radius r0.
(b) Find which energy conditions are violated at � = 0.

2. We examine the congruence of comoving world lines of a Friedmann–
Robertson–Walker spacetime. The metric is

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2 d�2

)
,
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where a(t) is the scale factor and k a constant normalized to either ±1 or zero.
The vector tangent to the congruence is uα = ∂xα/∂t .
(a) Show that the congruence is geodesic.
(b) Calculate the expansion, shear, and rotation of this congruence.
(c) Use the Raychaudhuri equation to deduce

ä

a
= −4π

3
(ρ + 3p),

where ρ is the energy density of a perfect fluid with four-velocity uα ,
and p is the pressure.

3. In this problem we consider the vector field

uα∂α = 1√
1 − 3M/r

(
∂t +

√
M/r3 ∂θ

)

in Schwarzschild spacetime; the vector is expressed in terms of the usual
Schwarzschild coordinates, and M is the mass of the black hole.
(a) Show that the vector field is timelike and geodesic. Describe the

geodesics to which uα is tangent.
(b) Calculate the expansion of the congruence. Explain why the expansion

is positive in the northern hemisphere and negative in the southern
hemisphere. Explain also why the expansion is singular at the north
and south poles.

(c) Compute the rotation tensor for this congruence. Check that its square is
given by

ωαβωαβ = M

8r3

(
1 − 6M/r

1 − 3M/r

)2

.

(d) Calculate dθ/dτ and check that Raychaudhuri’s equation is satisfied.
4. Derive the following evolution equations for the shear and rotation tensors of

a congruence of timelike geodesics:

σαβ;µuµ = −2

3
θ σαβ − σαµσ

µ
β − ωαµω

µ
β + 1

3

(
σµνσµν − ωµνωµν

)
hαβ

− Cαµβν uµuν + 1

2
RTT

αβ ,

ωαβ;µuµ = −2

3
θ ωαβ − σαµω

µ
β − ωαµσ

µ
β.

Here, Cαµβν is the Weyl tensor (Section 1.13, Problem 8), and RTT
αβ ≡ RT

αβ −
1
3(hµν RT

µν)hαβ is the ‘transverse-tracefree’ part of the Ricci tensor; its trans-
verse part is RT

αβ ≡ h µ
α h ν

β Rµν .
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56 Geodesic congruences

5. In this problem we consider a spacetime with metric

ds2 = −dt2 + r2 + a2 cos2 θ

r2 + a2
dr2 + (

r2 + a2 cos2 θ
)

dθ2

+ (
r2 + a2) sin2 θ dφ2,

where a is a constant, together with a congruence of null geodesics with tan-
gent vector field

kα ∂α = ∂t + ∂r + a

r2 + a2
∂φ.

(a) Check that kα is null, that it satisfies the geodesic equation, and that r is
an affine parameter.

(b) Find a suitable auxiliary null vector Nα and calculate the congruence’s
expansion, shear, and rotation. In particular, verify the following re-
sults:

θ = 2r

r2 + a2 cos2 θ
, σαβ = 0, ωαβωαβ = 2a2 cos2 θ

(r2 + a2 cos2 θ)2
.

These reveal that the congruence is diverging, shear-free, and not hy-
persurface orthogonal.

(c) Show that the coordinate transformation

x =
√

r2 + a2 sin θ cos φ, y =
√

r2 + a2 sin θ sin φ, z = r cos θ

brings the metric to the standard Minkowski form for flat spacetime.
Express kα in this coordinate system.

6. The auxiliary null vector Nα introduced in Section 2.4 is not unique, and in this
problem we examine various consequences of this fact. For the purpose of this
discussion we introduce vectors êα

A (A = 2, 3) that point in the two directions
orthogonal to both kα and Nα , and we choose them to be orthonormal, so that
they satisfy gαβ êα

Aêβ
B = δAB . We also introduce the 2 × 2 matrix

BAB = Bαβ êα
Aêβ

B,

the projection of the tensor Bαβ = kα;β in the transverse space spanned by
the vectors êα

A. In the following we shall use δAB and δAB to lower and raise
uppercase Latin indices; for example, B AB = δAMδB N BM N .
(a) Derive the following relations:

hαβ = δAB êα
Aêβ

B, B̃αβ = B AB êα
Aêβ

B,

θ = δAB B AB, σαβ = σ AB êα
Aêβ

B, ωαβ = ωAB êα
Aêβ

B,
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2.6 Problems 57

where σ AB = 1
2(B AB + B B A − θδAB) and ωAB = 1

2(B AB − B B A).
These confirm that the tensors hαβ , B̃αβ , σαβ , and ωαβ are all orthog-
onal to both kα and Nα . We now must determine how a change of
auxiliary null vector affects these results.

(b) The vector Nα must satisfy the relations Nα Nα = 0 and kα Nα = −1.
Prove that the transformation

Nα → N ′α = Nα + c kα + cA êα
A,

where c = 1
2cAcA, is the only one that preserves the defining relations

for the auxiliary null vector. (The coefficients cA are arbitrary.)
(c) Calculate how hαβ changes under this transformation.
(d) Calculate how B̃αβ changes.
(e) Show that θ is invariant under the transformation.
(f) Prove that σαβ changes according to

σ ′αβ = (
cAcBσAB

)
kαkβ + (

cAσ B
A

)
kα êβ

B

+ (
cBσ A

B

)
êα

Akβ + σ AB êα
Aêβ

B .

This shows that if σαβ = 0 for one choice of Nα , then σαβ = 0 for any
other choice. Prove that σαβσαβ is invariant under the transformation.

(g) Prove that ωαβ changes according to

ω′αβ = (
cAω B

A

)
kα êβ

B − (
cBω A

B

)
êα

Akβ + ωABêα
A êβ

B .

This shows that if ωαβ = 0 for one choice of Nα , then ωαβ = 0 for any
other choice. Prove that ωαβωαβ is invariant under the transformation.

These results imply that the Raychaudhuri equation is invariant under a change
of auxiliary null vector field. They also show that ωαβ = 0 implies hypersur-
face orthogonality for any choice of Nα .

7. We want to derive evolution equations for the shear and rotation tensors of
a congruence of null geodesics. For this purpose it is useful to refer back to
the basis kα , Nα , êα

A, and the 2 × 2 matrix BAB = Bαβ êα
Aêβ

B , introduced in
Problem 6. We shall also need

RAB = Rαµβν êα
Akµêβ

Bkν, �AB = êBµêµ

A;νkν.

Notice that RAB is a symmetric matrix, while �AB is antisymmetric. Notice
also that it is possible to set �AB = 0 by choosing êα

A to be parallel transported
along the congruence.
(a) First, derive the main evolution equation,

dBAB

dλ
= −BAC BC

B − RAB + � C
A BC B + � C

B BAC .
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58 Geodesic congruences

(b) Second, decompose the various matrices into their irreducible parts, as

BAB = 1

2
θ δAB + σAB + ωAB, RAB = 1

2
R δAB + CAB,

where σAB and CAB are both symmetric and tracefree, while ωAB

is antisymmetric. Prove that R = Rαβkαkβ and CAB = Cαµβν êα
A

kµêβ
Bkν , where Cαµβν is the Weyl tensor (Section 1.13, Problem 8).

Then introduce the parameterization

σAB =
(

σ+ σ×
σ× −σ+

)
, CAB =

(
C+ C×
C× −C+

)

for the symmetric-tracefree matrices, and

ωAB =
(

0 ω

−ω 0

)
, �AB =

(
0 �

−� 0

)

for the antisymmetric matrices.
(c) Third, and finally, derive the following explicit forms for the evolution

equations,

dθ

dλ
= −1

2
θ2 − 2

(
σ+2 + σ×2) + 2ω2 − R,

dσ+
dλ

= −θ σ+ − C+ + 2� σ×,

dσ×
dλ

= −θ σ× − C× − 2� σ+,

dω

dλ
= −θ ω.

Check that the equation for θ agrees with the form of Raychaudhuri’s
equation given in the text. Recall that we can always set � = 0 by tak-
ing êα

A to be parallel transported along the congruence; this eliminates
the coupling between the shear parameters.

8. Retrace the steps of Section 2.4, but without the assumption that the null
geodesics are affinely parameterized. Show that:
(a) equation (2.35) stays unchanged;
(b) the expansion is now given by θ = kα

;α − κ , where κ is defined by the

relation kα
;βkβ = κ kα .

(c) Raychaudhuri’s equation now takes the form

dθ

dλ
= κ θ − 1

2
θ2 − σαβσαβ + ωαβωαβ − Rαβkαkβ.
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3

Hypersurfaces

This chapter covers three main topics that can all be grouped under the rubric of
hypersurfaces, the term designating a three-dimensional submanifold in a four-
dimensional spacetime.

The first part of the chapter (Sections 3.1 to 3.3) is concerned with the intrinsic
geometry of a hypersurface, and it examines the following questions: Given that
the spacetime is endowed with a metric tensor gαβ , how does one define an
induced, three-dimensional metric hab on a specified hypersurface? And once
this three-metric has been introduced, how does one define a vectorial surface
element that allows vector fields to be integrated over the hypersurface? While
these questions admit straightforward answers when the hypersurface is either
timelike or spacelike, we will see that the null case requires special care.

The second part of the chapter (Sections 3.4 to 3.6) is concerned with the
extrinsic geometry of a hypersurface, or how the hypersurface is embedded in
the enveloping spacetime manifold. We will see how the spacetime curvature ten-
sor can be decomposed into a purely intrinsic part – the curvature tensor of the
hypersurface – and an extrinsic part that measures the bending of the hypersurface
in spacetime; this bending is described by a three-dimensional tensor Kab known
as the extrinsic curvature. We will see what constraints the Einstein field equations
place on the induced metric and extrinsic curvature of a hypersurface.

The third part of the chapter (Sections 3.7 to 3.11) is concerned with possible
discontinuities of the metric and its derivatives across a hypersurface. We will con-
sider the following question: Suppose that a hypersurface partitions spacetime into
two regions, and that we are given a distinct metric tensor in each region; does the
union of the two metrics form a valid solution to the Einstein field equations? We
will see that the conditions for an affirmative answer are that the induced metric
and the extrinsic curvature must be the same on both sides of the hypersurface.
Failing this, we will see that a discontinuity in the extrinsic curvature can be ex-
plained by the presence of a thin distribution of matter – a surface layer – at the

59
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60 Hypersurfaces

hypersurface. (The induced metric can never be discontinuous: The hypersurface
would not have a well-defined intrinsic geometry.) We will first develop the math-
ematical formalism of junction conditions and surface layers, and then consider
some applications.

3.1 Description of hypersurfaces

3.1.1 Defining equations

In a four-dimensional spacetime manifold, a hypersurface is a three-dimensional
submanifold that can be either timelike, spacelike, or null. A particular hypersur-
face � is selected either by putting a restriction on the coordinates,

�(xα) = 0, (3.1)

or by giving parametric equations of the form

xα = xα(ya), (3.2)

where ya (a = 1, 2, 3) are coordinates intrinsic to the hypersurface. For exam-
ple, a two-sphere in a three-dimensional flat space can be described either by
�(x, y, z) = x2 + y2 + z2 − R2 = 0, where R is the sphere’s radius, or by x =
R sin θ cos φ, y = R sin θ sin φ, and z = R cos θ , where θ and φ are the intrinsic
coordinates. Notice that the relations xα(ya) describe curves contained entirely in
� (Fig. 3.1).

3.1.2 Normal vector

The vector �,α is normal to the hypersurface, because the value of � changes
only in the direction orthogonal to �. A unit normal nα can be introduced if the

Figure 3.1 A three-dimensional hypersurface in spacetime.

� = 0
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3.1 Description of hypersurfaces 61

hypersurface is not null. This is defined so that

nαnα = ε ≡
{−1 if � is spacelike
+1 if � is timelike

, (3.3)

and we demand that nα point in the direction of increasing �: nα�,α > 0. It is
easy to check that nα is given by

nα = ε�,α∣∣gµν�,µ�,ν

∣∣1/2
(3.4)

if the hypersurface is either spacelike or timelike.
The unit normal is not defined when � is null, because gµν�,µ�,ν is then equal

to zero. In this case we let

kα = −�,α (3.5)

be the normal vector; the sign is chosen so that kα is future-directed when �

increases toward the future. Because kα is orthogonal to itself (kαkα = 0), this
vector is also tangent to the null hypersurface � (Fig. 3.2). In fact, by comput-
ing kα

;βkβ and showing that it is proportional to kα , we can prove that kα is tan-

gent to null geodesics contained in �. We have kα;βkβ = �;αβ�,β = �;βα�,β =
1
2(�,β�,β);α; because �,β�,β is zero everywhere on �, its gradient must be di-
rected along kα , and we have that (�,β�,β);α = 2κkα for some scalar κ . We have
found that the normal vector satisfies

kα
;βkβ = κkα,

the general form of the geodesic equation. The hypersurface is therefore gener-
ated by null geodesics, and kα is tangent to the generators. The geodesics are
parameterized by λ, so that a displacement along each generator is described by
dxα = kα dλ. In general λ is not an affine parameter, but in special situations in

Figure 3.2 A null hypersurface and its generators.

kα

� = 0
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62 Hypersurfaces

which the relations �(xα) = constant describe a whole family of null hypersur-
faces (so that �,β�,β is zero not only on � but also in a neighbourhood around
�), κ = 0 and λ is an affine parameter.

When the hypersurface is null, it is advantageous to install on � a coordinate
system that is well adapted to the behaviour of the generators. We therefore let the
parameter λ be one of the coordinates, and we introduce two additional coordinates
θ A (A = 2, 3) to label the generators; these are constant on each generator, and
they span the two-dimensional space transverse to the generators. Thus, we shall
set

ya = (
λ, θ A)

(3.6)

when � is null; varying λ while keeping θ A constant produces a displacement
along a single generator, and varying θ A produces a displacement across genera-
tors.

3.1.3 Induced metric

The metric intrinsic to the hypersurface � is obtained by restricting the line el-
ement to displacements confined to the hypersurface. Recalling the parametric
equations xα = xα(ya), we have that the vectors

eα
a = ∂xα

∂ya
(3.7)

are tangent to curves contained in �. (This implies that eα
a nα = 0 in the non-null

case, and eα
a kα = 0 in the null case.) Now, for displacements within � we have

ds2
� = gαβ dxα dxβ

= gαβ

(
∂xα

∂ya
dya

)(
∂xβ

∂yb
dyb

)

= hab dya dyb, (3.8)

where

hab = gαβ eα
a eβ

b (3.9)

is the induced metric, or first fundamental form, of the hypersurface. It is a scalar
with respect to transformations xα → xα′

of the spacetime coordinates, but it be-
haves as a tensor under transformations ya → ya′

of the hypersurface coordinates.
We will refer to such objects as three-tensors.

These relations simplify when the hypersurface is null and we use the
coordinates of Eq. (3.6). Then eα

1 = (∂xα/∂λ)θ A ≡ kα and it follows that
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h11 = gαβkαkβ = 0 and h1A = gαβkαeβ
A = 0, because by construction eα

A ≡
(∂xα/∂θ A)λ is orthogonal to kα . In the null case, therefore,

ds2
� = σAB dθ A dθ B, (3.10)

where

σAB = gαβ eα
Aeβ

B, eα
A =

(
∂xα

∂θ A

)
λ

. (3.11)

Here the induced metric is a two-tensor.
We conclude by writing down completeness relations for the inverse metric. In

the non-null case,

gαβ = εnαnβ + habeα
a eβ

b , (3.12)

where hab is the inverse of the induced metric. Equation (3.12) is verified by com-
puting all inner products between nα and eα

a and recovering the expected results.
In the null case we must introduce, everywhere on �, an auxiliary null vector
field Nα satisfying Nαkα = −1 and Nαeα

A = 0 (see Section 2.4). Then the inverse
metric can be expressed as

gαβ = −kα Nβ − Nαkβ + σ ABeα
Aeβ

B, (3.13)

where σ AB is the inverse of σAB . Equation (3.13) is verified by computing all inner
products between kα , Nα , and eα

A.

3.1.4 Light cone in flat spacetime

An example of a null hypersurface in flat spacetime is the future light cone
of an event P , which we place at the origin of a Cartesian coordinate sys-
tem xα . The defining relation for this hypersurface is � ≡ t − r = 0, where
r2 = x2 + y2 + z2. The normal vector is kα = −∂α(t − r) = (−1, x/r, y/r, z/r).
A suitable set of parametric equations is t = λ, x = λ sin θ cos φ, y = λ sin θ sin φ,
and z = λ cos θ , in which ya = (λ, θ, φ) are the intrinsic coordinates; λ is an
affine parameter on the light cone’s null generators, which move with constant
values of θ A = (θ, φ).

From the parametric equations we compute the hypersurface’s tangent vectors,

eα
λ = ∂xα

∂λ
= (1, sin θ cos φ, sin θ sin φ, cos θ) = kα,

eα
θ = ∂xα

∂θ
= (0, λ cos θ cos φ, λ cos θ sin φ,−λ sin θ),

eα
φ = ∂xα

∂φ
= (0, −λ sin θ sin φ, λ sin θ cos φ, 0).
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64 Hypersurfaces

You may check that these vectors are all orthogonal to kα . Inner products between
eα
θ and eα

φ define the two-metric σAB , and we find

σAB dθ A dθ B = λ2(dθ2 + sin2 θ dφ2).

Not surprisingly, the hypersurface has a spherical geometry, and λ is the areal
radius of the two-spheres.

It is easy to check that the unique null vector Nα that satisfies the relations
Nαkα = −1 and Nαeα

A = 0 is Nα = 1
2(1, − sin θ cos φ,− sin θ sin φ,− cos θ).

You may also verify that the vectors kα , Nα , and eα
A combine as in Eq. (3.13)

to form the inverse Minkowski metric.

3.2 Integration on hypersurfaces

3.2.1 Surface element (non-null case)

If � is not null, then

d� ≡ |h|1/2 d3y, (3.14)

where h ≡ det[hab], is an invariant three-dimensional volume element on the hy-
persurface. To avoid confusing this with the four-dimensional volume element√−g d4x , we shall refer to d� as a surface element. The combination nαd� is
a directed surface element that points in the direction of increasing �. In the null
case these quantities are not defined, because h = 0 and nα does not exist.

To see how Eq. (3.14) must be generalized so as to incorporate also the null
case, we consider the infinitesimal vector field

d�µ = εµαβγ eα
1 eβ

2 eγ

3 d3y, (3.15)

where εµαβγ = √−g[µα β γ ] is the Levi-Civita tensor of Section 1.8. We will
show below that

d�α = εnαd� (3.16)

when the hypersurface is not null. Thus, apart from a factor ε = ±1, d�α is a di-
rected surface element on �. Notice that when � is spacelike, the factor ε = −1
makes d�α a past-directed vector; this is unfortunately a potential source of confu-
sion. Notice also that Eq. (3.15) remains meaningful even when the hypersurface
is null. By continuity, therefore, d�α is also a directed surface element on a null
hypersurface.

Because d�α is proportional to the completely antisymmetric Levi-Civita ten-
sor, its sign depends on the ordering of the coordinates y1, y2, and y3. But this or-
dering is a priori arbitrary, and we need a convention to remove the sign ambiguity.
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3.2 Integration on hypersurfaces 65

We shall choose an ordering that makes the scalar f ≡ εµαβγ nµeα
1 eβ

2 eγ

3 a positive
quantity. Notice that this convention was already in force when we went from
Eq. (3.15) to Eq. (3.16): nα d�α = d� > 0.

As a first example of how this works, consider a hypersurface of constant t
in Minkowski spacetime. If � = t , then nα = −∂αt is the future-directed normal
vector. If we choose the ordering ya = (x, y, z) we find that f = εt xyz = 1 has the
correct sign. Equation (3.15) implies d�µ = δt

µ dx dy dz = −nµ dx dy dz, which
is compatible with Eq. (3.16).

For our second example we choose a surface of constant x in Minkowski space-
time. We take � = x , and nα = ∂αx points in the direction of increasing �. We im-
pose the ordering ya = (y, t, z) because f = εxytz = −εxtyz = εt xyz = 1 has then
the correct sign. [Notice that the more tempting ordering ya = (t, y, z) would pro-
duce the wrong sign.] With this choice, Eq. (3.15) implies d�µ = δx

µ dt dy dz =
nµ dt dy dz, which is compatible with Eq. (3.16).

We now turn to a derivation of Eq. (3.16). It is clear that d�µ must be propor-
tional to nµ, because eµ

a εµαβγ eα
1 eβ

2 eγ

3 = 0 by virtue of the antisymmetric property
of the Levi-Civita tensor. So we may write

εµαβγ eα
1 eβ

2 eγ

3 = ε f nµ,

where f = εµαβγ nµeα
1 eβ

2 eγ

3 . Because f is a scalar, we can evaluate it in any con-
venient coordinate system xα . We choose our coordinates so that x0 ≡ �, and on
� we identify xa with the intrinsic coordinates ya . Then f

∗= √−g n�. In these
coordinates g�� ∗= gαβ�,α�,β , and n�

∗= ε |g��|−1/2 is the only nonvanishing

component of the normal. It follows that n� ∗= g�αnα
∗= g��n�

∗= |g��|1/2, and
we have that f

∗= |gg��|1/2. We now use the definition of the matrix inverse to
write g�� ∗= cofactor(g��)/g, where the cofactor of a matrix element is the de-
terminant obtained after eliminating the row and column to which the element
belongs. This determinant is h and we conclude that

f = |h|1/2.

While this result was obtained in the special coordinates xα , it is valid in all co-
ordinate systems because h, like hab, is a scalar with respect to four-dimensional
coordinate transformations. This result shows that when � is not null, Eq. (3.16)
is indeed equivalent to Eq. (3.15).

3.2.2 Surface element (null case)

As we have seen in Section 3.1.2, when � is null we identify y1 with λ, the param-
eter on the hypersurface’s null generators, and the remaining coordinates, denoted
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66 Hypersurfaces

θ A, are constant on the generators. Then eα
1 = kα , d3y = dλ d2θ , and we may write

the directed surface element as

d�µ = kν dSµν dλ, (3.17)

where

dSµν = εµνβγ eβ

2 eγ

3 d2θ (3.18)

is interpreted as an element of two-dimensional surface area. We will show below
that this can also be expressed as

dSαβ = 2k[α Nβ]
√

σ d2θ, (3.19)

where Nα is the auxiliary null vector field introduced in Eq. (3.13), and σ =
det[σAB], with σAB the two-metric defined by Eq. (3.11). Combining Eq. (3.19)
with Eq. (3.17) yields

d�α = −kα

√
σ d2θ dλ. (3.20)

The interpretation of this result is clear: Apart from a minus sign, the surface ele-
ment is directed along kα , the normal to the null hypersurface; the factor dλ rep-
resents an element of parameter-distance along the null generators, and

√
σ d2θ is

an element of cross-sectional area – an element of two-dimensional surface area
in the directions transverse to the generators.

There is also an ordering issue with the coordinates θ A, and our convention shall
be that the scalar f ≡ εµνβγ Nµkνeβ

2 eγ

3 must be a positive quantity. Notice that
this convention was already in force when we went from Eq. (3.18) to Eq. (3.19):
Nαkβ dSαβ = √

σ d2θ > 0.
As an example, consider a surface u = constant in Minkowski spacetime, where

u = t − x . The normal vector is kα = −∂α(t − x) and we may choose the ordering
θ A = (y, z). Then Nα = −1

2∂α(t + x) satisfies all the requirements for an auxil-
iary null vector field. It is easy to check that with these choices, f = 1 (which is
properly positive). We obtain dStx = dy dz = −dSxt , and since t can be identified
with the affine parameter λ, Eq. (3.17) implies d�t = dt dy dz = −d�x . These
results are compatible with Eq. (3.20).

Let us consider a more complicated example: the light cone of Section 3.1.4.
The vectors kα , Nα , and eα

A are displayed in that section, and the cone’s intrinsic
coordinates are ya = (λ, θ, φ). We want to compute d�µ for this hypersurface,
starting with the definition of Eq. (3.15). We know that d�µ must point in the direc-

tion of the normal, so that d�µ = − f kµ dθ dφ dλ, where f = εµνβγ Nµkνeβ

2 eγ

3 .

If we let Nµ ≡ eµ
0 and kν ≡ eν

1 we can write this as f = [µ ν β γ ]eµ
0 eν

1eβ

2 eγ

3 ≡
det E, where E is the matrix constructed by lining up the four basis vectors. Its
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3.2 Integration on hypersurfaces 67

determinant is easy to compute and we obtain f = λ2 sin θ = √
σ . We therefore

have d�µ = −kµ

√
σ d2θ dλ, which is just the same statement as in Eq. (3.20).

We must now give a proper derivation of Eq. (3.19). The steps are some-
what similar to those leading to Eq. (3.16). We begin by noting that the tensor
εµνβγ eβ

2 eγ

3 is orthogonal to eα
A and antisymmetric in the indices µ and ν. It may

be expressed as

εµνβγ eβ

2 eγ

3 = 2 f k[µNν] = f (kµNν − Nµkν),

where f = εµνβγ Nµkνeβ

2 eγ

3 > 0. To evaluate f we choose our coordinates such

that x0 ≡ � and xa ≡ ya = (λ, θ A) on �. In these coordinates, k�
∗= −1 and

kλ ∗= 1 are the only nonvanishing components of the normal vector, N� ∗= 1
comes as a consequence of the normalization condition Nαkα = −1, and g�� ∗= 0
follows from the fact that kα is null. Using this information we deduce that
f

∗= √−g, and we must now compute the metric determinant in the specified co-
ordinates. For this purpose we note that the completeness relations of Eq. (3.13)
imply the following structure for the inverse metric:

g−1 =
⎛
⎝0 1 0

1 −2Nλ −N A

0 −N A σ AB

⎞
⎠ ;

this immediately implies det g−1 = −det[σ AB], or
√−g

∗= √
σ . We therefore

have

f = √
σ ,

which holds in any coordinate system xα . This establishes that Eq. (3.19) is in-
deed equivalent to Eq. (3.18). This, in turn, implies that Eq. (3.20) is equivalent to
Eq. (3.15) when � is null and coordinates ya = (λ, θ A) are placed on the hyper-
surface.

3.2.3 Element of two-surface

The interpretation of

dSµν = εµνβγ eβ

2 eγ

3 d2θ

as a directed element of two-dimensional surface area is not limited to the con-
sideration of null hypersurfaces. Here we consider a typical situation in which a
two-dimensional surface S is imagined to be embedded in a three-dimensional,
spacelike hypersurface �.

The hypersurface � is described by an equation of the form �(xα) = 0, and
by parametric relations xα(ya); nα ∝ ∂α� is the future-directed unit normal, and
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68 Hypersurfaces

the vectors eα
a = ∂xα/∂ya are tangent to the hypersurface. The metric on �,

induced from gαβ , is hab = gαβ eα
a eβ

b , and we have the completeness relations

gαβ = −nαnβ + hab eα
a eβ

b .
The two-surface S is introduced as a submanifold of �. It is described by an

equation of the form ψ(ya) = 0, and by parametric relations ya(θ A) in which
θ A are coordinates intrinsic to S; ra ∝ ∂aψ is the outward unit normal, and the
three-vectors ea

A = ∂ya/∂θ A are tangent to the two-surface. The metric on S,
induced from hab, is σAB = hab ea

Aeb
B , and we have the completeness relations

hab = rarb + σ AB ea
Aeb

B .
The parametric relations ya(θ A) and xα(ya) can be combined to give the rela-

tions xα(θ A), which describe how S is embedded in the four-dimensional space-
time. The vectors

eα
A = ∂xα

∂θ A
= ∂xα

∂ya

∂ya

∂θ A
= eα

a ea
A

are tangent to S, and

rα ≡ ra eα
a , rαnα = 0

is normal to S. The vector nα is also normal to S, and we have that the two-
surface admits two normal vectors: a timelike normal nα and a spacelike normal
rα . We note that the spacelike normal can be related to a gradient, rα ∝ ∂α�, if we
introduce, in a neighbourhood of �, a function �(xα) such that �|� ≡ ψ . In this
description the induced metric on S is still

σAB = hab ea
Aeb

B

= (
gαβ eα

a eβ
b

)
ea

Aeb
B

= gαβ

(
eα

a ea
A

)(
eβ

b eb
B

)
= gαβ eα

Aeβ
B,

and the completeness relations

gαβ = −nαnβ + rαrβ + σ AB eα
Aeβ

B

are easily established from our preceding results.
We want to show that dSαβ can be expressed neatly in terms of the timelike

normal nα , the spacelike normal rα , and
√

σ d2θ , the induced surface element on
S. The expression is

dSαβ = −2n[αrβ]
√

σ d2θ, (3.21)

where σ = det[σAB]. The derivation of this result involves familiar steps. We first
note that because εµνβγ eβ

2 eγ

3 is orthogonal to eα
A and antisymmetric in µ and ν, it
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3.3 Gauss–Stokes theorem 69

may be expressed as

εµνβγ eβ

2 eγ

3 = −2 f n[µrν] = − f (nµrν − rµnν),

where f = εµνβγ nµrνeβ

2 eγ

3 > 0. To evaluate f we adopt coordinates x0 ≡
�, x1 ≡ �, and on S we identify x A with θ A. In these coordinates n�

∗=
−(−g��)−1/2 is the only nonvanishing component of the timelike normal, r�

∗=
(g��)−1/2 is the only nonvanishing component of the spacelike normal, and from
the fact that these vectors are orthogonal we infer g�� ∗= 0. From all this we find
that f 2 ∗= gg��g�� , which we rewrite as f 2 ∗= cofactor(g��) cofactor(g��)/g.
We also have cofactor(g��)

∗= 0, and these two equations give us enough infor-
mation to deduce

f = √
σ .

This result is true in any coordinate system xα .
As a final remark we note that the vectors nα and rα can be combined to form

null vectors kα and Nα . The appropriate relations are

kα = 1√
2

(
nα + rα

)
, Nα = 1√

2

(
nα − rα

)
,

and these vectors are the null normals of the two-surface S. It is easy to check that
after these substitutions, Eq. (3.21) takes the form of Eq. (3.19).

3.3 Gauss–Stokes theorem

3.3.1 First version

We consider a finite region V of the spacetime manifold, bounded by a closed
hypersurface ∂V (Fig. 3.3). The signature of the hypersurface is not restricted; it
may have segments that are timelike, spacelike, or null. We will show that for any
vector field Aα defined within V ,∫

V
Aα

;α
√−g d4x =

∮
∂V

Aα d�α, (3.22)

where d�α is the surface element defined by Eq. (3.15).
To derive this result, known as Gauss’ theorem, we construct the following co-

ordinate system in V . We imagine a nest of closed hypersurfaces foliating V ,
with the boundary ∂V forming the outer layer of the nest. (Picture this as the
many layers of an onion.) We let x0 be a constant on each one of these hypersur-
faces, with x0 = 1 designating ∂V and x0 = 0 the zero-volume hypersurface at
the ‘centre’ of V . While x0 grows ‘radially outward’ from this ‘centre,’ we take the
remaining coordinates xa to be angular coordinates on the closed hypersurfaces
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70 Hypersurfaces

Figure 3.3 Proof of the Gauss–Stokes theorem.

V

∂V

x0 = const

x0 = 1

x0 = constant. The coordinates ya on ∂V are then identified with these angular
coordinates.

Using such coordinates, the left-hand side of Eq. (3.22) becomes∫
V

Aα
;α

√−g d4x =
∫

V
(
√−g Aα),α d4x

∗=
∫

dx0
∮

(
√−g A0),0 d3x +

∫
dx0

∮
(
√−g Aa),a d3x

∗=
∫

dx0 d

dx0

∮ √−g A0 d3x

∗=
∮ √−g A0 d3x

∣∣∣∣
x0=1

x0=0

∗=
∮

∂V

√−g A0 d3y.

In the first line we have used the divergence formula for the vector field Aα . The
second integral of the second line vanishes because xa are angular coordinates
and the integration is over a closed three-dimensional surface. (Understanding this
statement requires some thought. Try working through a three-dimensional version
of the proof, using spherical coordinates in flat space.) In the fourth line, the con-
tribution at x0 = 0 vanishes because the ‘hypersurface’ x0 = 0 has zero volume.

It is easy to check that d�α
∗= δ0

α

√−g d3y in the specified coordinates, giving∮
∂V

Aα d�α
∗=

∮
∂V

A0√−g d3y

for the right-hand side of Eq. (3.22). The two sides are therefore equal in the spec-
ified coordinate system; because Eq. (3.22) is a tensorial equation, this suffices to
establish the validity of the theorem.

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.005
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.005
https://www.cambridge.org/core


3.3 Gauss–Stokes theorem 71

Figure 3.4 Two spacelike surfaces and their normal vectors.

�1

nα
1

�2

nα
2

3.3.2 Conservation

Gauss’ theorem has many useful applications. An example is the following con-
servation statement.

Suppose that a vector field jα has a vanishing divergence,

jα;α = 0.

Then
∮
�

jα d�α = 0 for any closed hypersurface �. Supposing now that jα van-
ishes at spatial infinity, we can choose � to be composed of two spacelike hyper-
surfaces, �1 and �2, extending all the way to infinity (Fig. 3.4), and of a three-
cylinder at infinity, on which jα = 0. Then

∫
�1

jα d�α +
∫

�2

jα d�α = 0.

On each of the spacelike hypersurfaces, d�α = −nα

√
h d3y, where nα is the out-

ward normal to the closed surface � and h is the determinant of the induced metric
on the spacelike hypersurfaces. Letting nα ≡ n2α on �2 and nα ≡ −n1α on �1,
where n1α and n2α are both future directed, we finally obtain

jα;α = 0 ⇒
∫

�1

jαn1α

√
h d3y =

∫
�2

jαn2α

√
h d3y. (3.23)

The interpretation of this result is clear: If jα is a divergence-free vector, then
the ‘total charge’

∫
jαnα d� is independent of the hypersurface on which it is

evaluated. This is obviously a statement of ‘charge’ conservation.
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72 Hypersurfaces

3.3.3 Second version

Another version of Gauss’ theorem (usually called Stokes’ theorem) involves a
three-dimensional region � bounded by a closed two-surface ∂�. It states that for
any antisymmetric tensor field Bαβ in �,∫

�

Bαβ

;β d�α = 1

2

∮
∂�

Bαβ dSαβ, (3.24)

where dSαβ is the two-surface element defined by Eq. (3.18).
The derivation of this identity proceeds along familiar lines. We construct a

coordinate system such that (i) x0 is constant on the hypersurface �, (ii) x1 =
constant describes a nest of closed two-surfaces in � (with x1 = 1 representing
∂� and x1 = 0 the zero-area surface at the ‘centre’ of �), and (iii) x A are angular
coordinates on the closed surfaces (with θ A = x A on ∂�).

It is easy to check that with such coordinates, d�α
∗= δ0

α

√−g dx1 dx2 dx3. The
left-hand side of Eq. (3.24) becomes∫

�

Bαβ

;β d�α =
∫

�

1√−g
(
√−g Bαβ),β d�α

∗=
∫

�

(
√−g B0β),β dx1 dx2 dx3

∗=
∫

dx1
∮

(
√−g B01),1 dx2 dx3+

∫
dx1

∮
(
√−g B0A),A dx2 dx3

∗=
∮ √−g B01 dx2 dx3

∣∣∣∣
x1=1

x1=0

∗=
∮

∂�

√−g B01 d2θ.

In the first line we have used the divergence formula for an antisymmetric tensor
field. The explicit expression for d�α was substituted in the second line. The sec-
ond integral of the third line vanishes because x A are angular coordinates and the
domain of integration is a closed two-surface. In the fourth line, the lower limit of
integration does not contribute because the ‘surface’ x1 = 0 has zero area.

It is easy to check that in the specified coordinate system, Bαβ dSαβ
∗=

(B01 − B10)
√−g d2θ = 2B01√−g d2θ . The right-hand side of Eq. (3.24) there-

fore reads

1

2

∮
∂�

Bαβ dSαβ
∗=

∮
∂�

B01√−g d2θ,

and Eq. (3.24) follows from the equality of both sides in the specified coordinate
system.
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3.4 Differentiation of tangent vector fields 73

3.4 Differentiation of tangent vector fields

(For the remainder of Chapter 3, except for Section 3.11, we shall assume that the
hypersurface � is either spacelike or timelike. In Section 3.11 we shall return to
the case of a null hypersurface.)

3.4.1 Tangent tensor fields

Once we are presented with a hypersurface �, it is a common situation to have
tensor fields Aαβ··· that are defined only on � and which are purely tangent to the
hypersurface. Such tensors admit the decomposition

Aαβ··· = Aab··· eα
a eβ

b · · · , (3.25)

where eα
a = ∂xα/∂ya are basis vectors on �. Equation (3.25) implies that

Aαβ···nα = Aαβ···nβ = · · · = 0, which confirms that Aαβ··· is tangent to the hy-
persurface. We note that an arbitrary tensor T αβ··· can always be projected down
to the hypersurface, so that only its tangential components survive. The quantity
that effects the projection is hαβ ≡ habeα

a eβ
b = gαβ − εnαnβ , and hα

µhβ
ν · · · T µν···

is evidently tangent to the hypersurface.
The projections

Aαβ··· eα
a eβ

b · · · = Aab··· ≡ hamhbn · · · Amn··· (3.26)

give the three-tensor Aab··· associated with Aαβ···; Latin indices are lowered and
raised with hab and hab, respectively. Equations (3.25) and (3.26) show that one
can easily go back and forth between a tangent tensor field Aαβ··· and its equivalent
three-tensor Aab···. We emphasize that while Aab··· behaves as a tensor under a
transformation ya → ya′

of the coordinates intrinsic to �, it is a scalar under a
transformation xα → xα′

of the spacetime coordinates.

3.4.2 Intrinsic covariant derivative

We wish to examine how tangent tensor fields are differentiated. We want to relate
the covariant derivative of Aαβ··· (with respect to a connection that is compatible
with the spacetime metric gαβ) to the covariant derivative of Aab···, defined in terms
of a connection that is compatible with the induced metric hab. For simplicity we
shall restrict our attention to the case of a tangent vector field Aα , such that

Aα = Aaeα
a , Aαnα = 0, Aa = Aα eα

a .

Generalization to three-tensors of higher ranks will be obvious.
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74 Hypersurfaces

We define the intrinsic covariant derivative of a three-vector Aa to be the pro-
jection of Aα;β onto the hypersurface:

Aa|b ≡ Aα;β eα
a eβ

b . (3.27)

We will show that Aa|b, as defined here, is nothing but the covariant derivative of
Aa defined in the usual way in terms of a connection �a

bc that is compatible with
hab.

To get started, let us express the right-hand side of Eq. (3.27) as

Aα;βeα
a eβ

b = (Aαeα
a );βeβ

b − Aαeα
a;βeβ

b

= Aa,βeβ
b − eaγ ;βeβ

b Aceγ
c

= ∂ Aa

∂xβ

∂xβ

∂yb
− eγ

c eaγ ;βeβ
b Ac

= Aa,b − �cab Ac,

where we have defined

�cab = eγ
c eaγ ;βeβ

b . (3.28)

Equation (3.27) then reads

Aa|b = Aa,b − �c
ab Ac, (3.29)

and this is the familiar expression for the covariant derivative.
The connection used here is the one defined by Eq. (3.28), and we would like to

show that it is compatible with the induced metric. In other words, we would like
to prove that �cab, as defined by Eq. (3.28), can also be expressed as

�cab = 1

2

(
hca,b + hcb,a − hab,c

)
. (3.30)

This could be done directly by working out the right-hand side of Eq. (3.28). It is
easier, however, to show that the connection is such that hab|c ≡ hαβ;γ eα

a eβ
b eγ

c =
0. Indeed,

hαβ;γ eα
a eβ

b eγ
c = (gαβ − εnαnβ);γ eα

a eβ
b eγ

c

= −ε(nα;γ nβ + nαnβ;γ ) eα
a eβ

b eγ
c

= 0,

because nα eα
a = 0. Intrinsic covariant differentiation is therefore the same opera-

tion as straightforward covariant differentiation of a three-tensor.
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3.4.3 Extrinsic curvature

The quantities Aa|b = Aα;βeα
a eβ

b are the tangential components of the vector
Aα

;βeβ
b . The question we would like to investigate now is whether this vector pos-

sesses also a normal component.
To answer this we re-express Aα

;βeβ
b as gα

µ Aµ

;βeβ
b and decompose the metric

into its normal and tangential parts, as in Eq. (3.12). This gives

Aα
;βeβ

b = (
εnαnµ + hameα

a emµ

)
Aµ

;βeβ
b

= ε
(
nµ Aµ

;βeβ
b

)
nα + ham(

Aµ;βeµ
meβ

b

)
eα

a ,

and we see that while the second term is tangent to the hypersurface, the first term
is normal to it. We now use Eq. (3.27) and the fact that Aµ is orthogonal to nµ:

Aα
;βeβ

b = −ε
(
nµ;β Aµeβ

b

)
nα + ham Am|beα

a

= Aa|b eα
a − εAa(nµ;βeµ

a eβ
b

)
nα.

At this point we introduce the three-tensor

Kab ≡ nα;β eα
a eβ

b , (3.31)

called the extrinsic curvature, or second fundamental form, of the hypersurface �.
In terms of this we have

Aα
;βeβ

b = Aa|b eα
a − εAa Kabnα, (3.32)

and we see that Aa|b gives the purely tangential part of the vector field, while
−εAa Kab represents the normal component. This answers our question: The nor-
mal component vanishes if and only if the extrinsic curvature vanishes.

We note that if eα
a is substituted in place of Aα , then Ac = δc

a and Eqs. (3.29),
(3.32) imply

eα
a;βeβ

b = �c
ab eα

c − εKabnα. (3.33)

This is known as the Gauss–Weingarten equation.
The extrinsic curvature is a very important quantity; we will encounter it often

in the remaining sections of this book. We may prove that it is a symmetric tensor:

Kba = Kab. (3.34)

The proof is based on the properties that (i) the vectors eα
a and nα are orthog-

onal, and (ii) the basis vectors are Lie transported along one another, so that

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.005
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.005
https://www.cambridge.org/core


76 Hypersurfaces

eα
a;βeβ

b = eα
b;βeβ

a . We have

nα;βeα
a eβ

b = −nαeα
a;βeβ

b

= −nαeα
b;βeβ

a

= nα;βeα
b eβ

a ,

and Eq. (3.34) follows. The symmetric property of the extrinsic curvature gives
rise to the relations

Kab = n(α;β)e
α
a eβ

b = 1

2

(
£ngαβ

)
eα

a eβ
b , (3.35)

and Kab is therefore intimately related to the normal derivative of the metric tensor.
We also note the relation

K ≡ hab Kab = nα
;α, (3.36)

which shows that K is equal to the expansion of a congruence of geodesics that
intersect the hypersurface orthogonally (so that their tangent vector is equal to nα

on the hypersurface). From this result we conclude that the hypersurface is convex
if K > 0 (the congruence is diverging), or concave if K < 0 (the congruence is
converging).

We see that while hab is concerned with the purely intrinsic aspects of a hy-
persurface’s geometry, Kab is concerned with the extrinsic aspects – the way in
which the hypersurface is embedded in the enveloping spacetime manifold. Taken
together, these tensors provide a virtually complete characterization of the hyper-
surface.

3.5 Gauss–Codazzi equations

3.5.1 General form

We have introduced the induced metric hab and its associated intrinsic covariant
derivative. A purely intrinsic curvature tensor can now be defined by the relation

Ac|ab − Ac|ba = −Rc
dab Ad , (3.37)

which of course implies

Rc
dab = �c

db,a − �c
da,b + �c

ma�
m
db − �c

mb�
m
da. (3.38)

The question we now examine is whether this three-dimensional Riemann tensor
can be expressed in terms of Rγ

δαβ – the four-dimensional version – evaluated
on �.
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3.5 Gauss–Codazzi equations 77

To answer this we start with the identity

(
eα

a;βeβ
b

)
;γ eγ

c = (
�d

abeα
d − εKabnα

)
;γ eγ

c

which follows immediately from Eq. (3.33). We first develop the left-hand side:

LHS = (
eα

a;βeβ
b

)
;γ eγ

c

= eα
a;βγ eβ

b eγ
c + eα

a;βeβ

b;γ eγ
c

= eα
a;βγ eβ

b eγ
c + eα

a;β
(
�d

bceβ
d − εKbcnβ

)
= eα

a;βγ eβ
b eγ

c + �d
bc

(
�e

adeα
e − εKadnα

) − εKbceα
a;βnβ.

Next we turn to the right-hand side:

RHS = (
�d

abeα
d − εKabnα

)
;γ eγ

c

= �d
ab,ceα

d + �d
abeα

d;γ eγ
c − εKab,cnα − εKabnα

;γ eγ
c

= �d
ab,ceα

d + �d
ab

(
�e

dceα
e − εKdcnα

) − εKab,cnα − εKabnα
;γ eγ

c .

We now equate the two sides and solve for eα
a;βγ

eβ
b eγ

c . Subtracting a similar expres-
sion for eα

a;γβ
eγ

c eβ
b gives −Rα

µβγ eµ
a eβ

b eγ
c , the quantity in which we are interested.

After some algebra we find

Rµ
αβγ eα

a eβ
b eγ

c = Rm
abceµ

m + ε
(
Kab|c − Kac|b

)
nµ + εKabnµ

;γ eγ
c − εKacnµ

;βeβ
b .

Projecting along edµ gives

Rαβγ δ eα
a eβ

b eγ
c eδ

d = Rabcd + ε(Kad Kbc − Kac Kbd), (3.39)

and this is the desired relation between Rabcd and the full Riemann tensor. Pro-
jecting instead along nµ gives

Rµαβγ nµeα
a eβ

b eγ
c = Kab|c − Kac|b. (3.40)

Equations (3.39) and (3.40) are known as the Gauss–Codazzi equations. They re-
veal that some components of the spacetime curvature tensor can be expressed in
terms of the intrinsic and extrinsic curvatures of a hypersurface. The missing com-
ponents are Rµανβnµeα

a nνeβ
b , and these cannot be expressed solely in terms of hab,

Kab, and related quantities.
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78 Hypersurfaces

3.5.2 Contracted form

The Gauss–Codazzi equations can also be written in contracted form, in terms of
the Einstein tensor Gαβ = Rαβ − 1

2 Rgαβ . The spacetime Ricci tensor is given by

Rαβ = gµν Rµανβ

= (
εnµnν + hmneµ

meν
n

)
Rµανβ

= εRµανβnµnν + hmn Rµανβeµ
meν

n,

and the Ricci scalar is

R = gαβ Rαβ

= (
εnαnβ + habeα

a eβ
b

)(
εRµανβnµnν + hmn Rµανβeµ

meν
n

)
= 2εhab Rµανβnµeα

a nνeβ
b + habhmn Rµανβeµ

meα
a eν

neβ
b .

A little algebra then reveals the relations

−2εGαβnαnβ = 3R + ε
(
K ab Kab − K 2) (3.41)

and

Gαβ eα
a nβ = K b

a|b − K,a. (3.42)

Here, 3R = hab Rm
amb is the three-dimensional Ricci scalar. The importance of

Eqs. (3.41) and (3.42) lies with the fact that they form part of the Einstein field
equations on a hypersurface �; this observation will be elaborated in the next sec-
tion. We note that Gαβ eα

a eβ
b , the remaining components of the Einstein tensor,

cannot be expressed solely in terms of hab, Kab, and related quantities.

3.5.3 Ricci scalar

We now complete the computation of the four-dimensional Ricci scalar. Our start-
ing point is the relation

R = 2εhab Rµανβnµeα
a nνeβ

b + habhmn Rµανβeµ
meα

a eν
neβ

b ,

which was derived previously. The first term is simplified by using the com-
pleteness relations (3.12) and the fact that Rµανβnµnαnνnβ = 0; it becomes
2εRαβnαnβ . Using the definition of the Riemann tensor, we rewrite this as

Rαβnαnβ = −nα
;αβnβ + nα

;βαnβ

= −(nα
;αnβ);β + nα

;αnβ

;β + (nα
;βnβ);α − nα

;βnβ

;α.
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3.6 Initial-value problem 79

In the second term of this last expression we recognize K 2, where K = nα
;α is

the trace of the extrinsic curvature. The fourth term, on the other hand, can be
expressed as

nα
;βnβ

;α = gβµgανnα;βnµ;ν
= (εnβnµ + hβµ)(εnαnν + hαν)nα;βnµ;ν
= (εnβnµ + hβµ)hανnα;βnµ;ν
= hβµhανnα;βnµ;ν
= hbmhannα;βeα

a eβ
b nµ;νeµ

meν
n

= hbmhan Kab Kmn

= Kab K ba

= K ab Kab.

In the second line we have inserted the completeness relations (3.12) and recalled
the notation hαβ = habeα

a eβ
b . In the third and fourth lines we have used the fact

that nαnα;β = 1
2(nαnα);β = 0. In the sixth line we have substituted the definition

(3.31) for the extrinsic curvature. Finally, in the last line we have used the fact that
Kab is a symmetric three-tensor.

The previous manipulations take care of the first term in our starting expres-
sion for the Ricci scalar. The second term is simplified by substituting the Gauss–
Codazzi equations (3.39),

habhmn Rµανβeµ
meα

a eν
neβ

b = habhmn
[

Rmanb + ε(Kmb Kan − Kmn Kab)
]

= 3R + ε(K ab Kab − K 2).

Putting all this together, we arrive at

R = 3R + ε
(
K 2 − K ab Kab

) + 2ε
(
nα

;βnβ − nαnβ

;β
)
;α. (3.43)

This is the four-dimensional Ricci scalar evaluated on the hypersurface �. This
result will be put to good use in Chapter 4.

3.6 Initial-value problem

3.6.1 Constraints

In Newtonian mechanics, a complete solution to the equations of motion requires
the specification of initial values for the position and velocity of each moving body.
In field theories, a complete solution to the field equations requires the specifica-
tion of the field and its time derivative at one instant of time.
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80 Hypersurfaces

A similar statement can be made for general relativity. Because the Einstein
field equations are second-order partial differential equations, we would expect
that a complete solution requires the specification of gαβ and gαβ,t at one instant
of time. While this is essentially correct, it is desirable to convert this decidedly
noncovariant statement into something more geometrical.

The initial-value problem of general relativity starts with the selection of a
spacelike hypersurface � which represents an ‘instant of time.’ This hypersurface
can be chosen freely. On this hypersurface we place arbitrary coordinates ya .

The spacetime metric gαβ , when evaluated on �, has components that character-
ize displacements away from the hypersurface. (For example, gtt is such a compo-
nent if � is a surface of constant t .) These components cannot be given meaning in
terms of the geometric properties of � alone. To provide meaningful initial values
for the spacetime metric, we must consider displacements within the hypersurface
only. In other words, the initial values for gαβ can only be the six components of

the induced metric hab = gαβ eα
a eβ

b ; the remaining four components are arbitrary,
and this reflects the complete freedom in choosing the spacetime coordinates xα .

Similarly, the initial values for the ‘time derivative’ of the metric must be de-
scribed by a three-tensor that carries information about the derivative of the metric
in the direction normal to the hypersurface. Because Kab = 1

2(£ngαβ) eα
a eβ

b , the
extrinsic curvature is clearly an appropriate choice.

The initial-value problem of general relativity therefore consists in specifying
two symmetric tensor fields, hab and Kab, on a spacelike hypersurface �. In the
complete spacetime, hab is recognized as the induced metric on the hypersur-
face, while Kab is the extrinsic curvature. These tensors cannot be chosen freely:
They must satisfy the constraint equations of general relativity. These are given by
Eqs. (3.41) and (3.42), together with the Einstein field equations Gαβ = 8πTαβ :

3R + K 2 − K ab Kab = 16πTαβnαnβ ≡ 16πρ (3.44)

and

K b
a|b − K,a = 8πTαβeα

a nβ ≡ 8π ja. (3.45)

The remaining components of the Einstein field equations provide evolution equa-
tions for hab and Kab; these will be considered in Chapter 4.

3.6.2 Cosmological initial values

As an example, let us solve the constraint equations for a spatially flat, isotropic,
and homogeneous cosmology. To satisfy these requirements the three-metric must
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3.6 Initial-value problem 81

take the form

ds2 = a2(dx2 + dy2 + dz2),

where a is the scale factor, which is a constant on the hypersurface. Isotropy and
homogeneity also imply ρ = constant, ja = 0, and

Kab = 1

3
K hab,

where K is a constant. The second constraint equation is therefore trivially satis-
fied. The first one implies

16πρ = K 2 − K ab Kab = 2

3
K 2,

and this provides the complete solution to the initial-value problem.
To recognize the physical meaning of this last equation, we use the fact that

in the complete spacetime, K = nα
;α , where nα is the unit normal to surfaces of

constant t . The full metric is given by the Friedmann–Robertson–Walker form

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2),

so that nα = −∂αt and K = 3ȧ/a, where an overdot indicates differentiation with
respect to t . The first constraint equation is therefore equivalent to

3(ȧ/a)2 = 8πρ,

which is one of the Friedmann equations governing the evolution of the scale
factor.

3.6.3 Moment of time symmetry

We notice from the previous example that Kab = 0 when ȧ = 0, that is, the extrin-
sic curvature vanishes when the scale factor reaches a turning point of its evolution.
Because the dynamical history of the scale factor is time-symmetric about the time
t = t0 at which the turning point occurs, we may call this time a moment of time
symmetry in the dynamical evolution of the spacetime. Thus, Kab = 0 at this mo-
ment of time symmetry.

Generalizing, we shall call any hypersurface � on which Kab = 0 a moment
of time symmetry in spacetime. Because Kab is essentially the ‘time derivative’
of the metric, a moment of time symmetry corresponds to a turning point of the
metric’s evolution, at which its ‘time derivative’ vanishes. The dynamical history
of the metric is then ‘time-symmetric’ about �. From Eq. (3.45) we see that a
moment of time symmetry can occur only if ja = 0 on that hypersurface.
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82 Hypersurfaces

3.6.4 Stationary and static spacetimes

A spacetime is said to be stationary if it admits a timelike Killing vector tα . This
means that in a coordinate system (t, xa) in which tα

∗= δα
t , the metric does not

depend on the time coordinate t : gαβ,t
∗= 0 (see Section 1.5). For example, a rotat-

ing star gives rise to a stationary spacetime if its mass and angular velocity do not
change with time.

A stationary spacetime is also static if the metric does not change under a time
reversal, t → −t . For example, the spacetime of a rotating star is not static because
a time reversal changes the direction of rotation. In the specified coordinate system,
invariance of the metric under a time reversal implies gta

∗= 0. This, in turn, implies
that the Killing vector is proportional to a gradient: tα

∗= gtt∂αt . Thus, a spacetime
is static if the timelike Killing vector field is hypersurface orthogonal.

We may show that if a spacetime is static, then Kab = 0 on those hypersurfaces
� that are orthogonal to the Killing vector; these hypersurfaces therefore represent
moments of time symmetry. If � is orthogonal to tα , then its unit normal must
be given by nα = µ tα , where 1/µ2 = −tαtα . This implies that nα;β = µ tα;β +
tαµ,β , and n(α;β) = t(αµ,β) because tα is a Killing vector. That Kab = 0 follows
immediately from Eq. (3.35) and the fact that tα is orthogonal to eα

a .

3.6.5 Spherical space, moment of time symmetry

As a second example, we solve the constraint equations for a spherically symmetric
spacetime at a moment of time symmetry. The three-metric can be expressed as

ds2 = [
1 − 2m(r)/r

]−1 dr2 + r2d�2,

for some function m(r); to enforce regularity of the metric at r = 0 we must im-
pose m(0) = m′(0) = 0, with a prime denoting differentiation with respect to r .
For this metric the Ricci scalar is given by 3R = 4m′/r2. Because Kab = 0 at
a moment of time symmetry, Eq. (3.44) implies 16πρ = 3R. Solving for m(r)

returns

m(r) =
∫ r

0
4πr ′2ρ(r ′) dr ′.

This states, loosely speaking, that m(r) is the mass-energy contained inside a
sphere of radius r , at the selected moment of time symmetry.

3.6.6 Spherical space, empty and flat

We now solve the constraint equations for a spherically symmetric space empty of
matter (so that ρ = 0 = ja). We assume that we can endow this space with a flat
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3.6 Initial-value problem 83

metric, so that

hab dya dyb = dr2 + r2 d�2.

We also assume that the hypersurface does not represent a moment of time sym-
metry. While the flat metric and Kab = 0 make a valid solution to the constraints,
this is a trivial configuration – a flat hypersurface in a flat spacetime.

Let na = ∂ar be a unit vector that points radially outward on the hypersurface.
The fact that Kab is a spherically symmetric tensor means that it can be decom-
posed as

Kab = K1(r)nanb + K2(r)(hab − nanb),

with K1 representing the radial component of the extrinsic curvature, and K2

the angular components. In the usual spherical coordinates (r, θ, φ) we have
K a

b = diag(K1, K2, K2), which is the most general expression admissible under
the assumption of spherical symmetry.

Because the space is empty and flat, the first constraint equation reduces to
K 2 − K ab Kab = 0, an algebraic equation for K1 and K2. This gives us the con-
dition (2K1 + K2)K2 = 0. Choosing K2 = 0 would eventually return the trivial
solution Kab = 0. We choose instead K2 = −2K1 and re-express the extrinsic cur-
vature as

Kab = K (r)

(
2

3
hab − nanb

)
,

where K = −3K1 is the sole remaining function to be determined.
To find K (r) we turn to the second constraint equation, K b

a|b − K,a = 0, which
becomes

1

3
K,a + (

K nb|b + K,bnb)na + K na|bnb = 0.

With K,a = K ′na (with a prime denoting differentiation with respect to r ), nb|b =
2/r , and na|bnb = 0 (because the radial curves are geodesics of the hypersurface),
we arrive at 2r K ′ + 3K = 0. Integration yields

K (r) = K0
(
r0/r

)3/2
,

with K0 denoting the value of K at the arbitrary radius r0.
We have found a nontrivial solution to the constraint equations for a spherical

space that is both empty and flat. The physical meaning of this configuration will
be revealed in Section 3.13, Problem 1.
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84 Hypersurfaces

3.6.7 Conformally-flat space

A powerful technique for generating solutions to the constraint equations consists
of writing the three-metric as

hab = ψ4δab,

where ψ(ya) is a scalar field on the hypersurface. Such a metric is said to be
conformally related to the flat metric, and the space is said to be conformally flat.
For this metric the Ricci scalar is 3R = −8ψ−5∇2ψ , and Eq. (3.44) takes the form
of Poisson’s equation,

∇2ψ = −2πρeff,

where

ρeff = ψ5
[
ρ + 1

16π

(
K ab Kab − K 2

)]

is an effective mass density on the hypersurface. At a moment of time symmetry
this simplifies to ρeff = ψ5ρ, and one possible strategy for solving the constraint
is to specify ρeff, solve for ψ , and then see what this produces for the actual mass
density ρ. If ρ = 0 at the moment of time symmetry, then the constraint becomes
Laplace’s equation ∇2ψ = 0, and this admits many interesting solutions. A well-
known example is Misner’s (1960) solution, which describes two black holes about
to undergo a head-on collision. This initial data set has been vigourously studied
by numerical relativists.

3.7 Junction conditions and thin shells

The following situation sometimes presents itself: A hypersurface � partitions
spacetime into two regions V + and V − (Fig. 3.5). In V + the metric is g+

αβ , and
it is expressed in a system of coordinates xα+. In V − the metric is g−

αβ , and it is
expressed in coordinates xα−. We ask: What conditions must be put on the metrics to
ensure that V + and V − are joined smoothly at �, so that the union of g+

αβ and g−
αβ

forms a valid solution to the Einstein field equations? To answer this question is not
entirely straightforward because in practical situations, the coordinate systems xα±
will often be different, and it may not be possible to compare the metrics directly.
To circumvent this difficulty we will endeavour to formulate junction conditions
that involve only three-tensors on �. In this section we will assume that � is
either timelike or spacelike; we will return to the case of a null hypersurface in
Section 3.11.
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3.7 Junction conditions and thin shells 85

3.7.1 Notation and assumptions

We assume that the same coordinates ya can be installed on both sides of the
hypersurface, and we choose nα , the unit normal to �, to point from V − to
V +. We suppose that a continuous coordinate system xα , distinct from xα±, can
be introduced on both sides of the hypersurface. These coordinates overlap with
xα+ in an open region of V + that contains �, and they also overlap with xα− in
an open region of V − that contains �. (We introduce these coordinates for our
short-term convenience only; the final formulation of the junction conditions will
not involve them.)

We imagine � to be pierced by a congruence of geodesics that intersect it
orthogonally. We take � to denote proper distance (or proper time) along the
geodesics, and we adjust the parameterization so that � = 0 when the geodesics
cross the hypersurface; our convention is that � is negative in V − and positive in
V +. We can think of � as a scalar field: The point P identified by the coordinates
xα is linked to � by a member of the congruence, and �(xα) is the proper distance
(or proper time) from � to P along this geodesic. Our construction implies that a
displacement away from the hypersurface along one of the geodesics is described
by dxα = nα d�, and that

nα = ε∂α�; (3.46)

we also have nαnα = ε.
We will use the language of distributions. We introduce the Heaviside distribu-

tion �(�), equal to +1 if � > 0, 0 if � < 0, and indeterminate if � = 0. We note
the following properties:

�2(�) = �(�), �(�)�(−�) = 0,
d

d�
�(�) = δ(�),

where δ(�) is the Dirac distribution. We also note that the product �(�)δ(�) is not
defined as a distribution.

The following notation will be useful:

[A] ≡ A(V +)
∣∣
�

− A(V −)
∣∣
�
,

Figure 3.5 Two regions of spacetime joined at a common boundary.

V − : xα−
� : ya

V + : xα+
nα
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86 Hypersurfaces

where A is any tensorial quantity defined on both sides of the hypersurface; [A] is
therefore the jump of A across �. We note the relations

[
nα

] = [
eα

a

] = 0, (3.47)

where eα
a = ∂xα/∂ya . The first follows from the relation dxα = nα d� and the con-

tinuity of both � and xα across �; the second follows from the fact that the coor-
dinates ya are the same on both sides of the hypersurface.

3.7.2 First junction condition

We begin by expressing the metric gαβ , in the coordinates xα , as a distribution-
valued tensor:

gαβ = �(�) g+
αβ + �(−�) g−

αβ, (3.48)

where g±
αβ is the metric in V ± expressed in the coordinates xα . We want to know

if the metric of Eq. (3.48) makes a valid distributional solution to the Einstein field
equations. To decide we must verify that geometrical quantities constructed from
gαβ , such as the Riemann tensor, are properly defined as distributions. We must
then try to eliminate, or at least give an interpretation to, singular terms that might
arise in these geometric quantities.

Differentiating Eq. (3.48) yields

gαβ,γ = �(�) g+
αβ,γ + �(−�) g−

αβ,γ + εδ(�)
[
gαβ

]
nγ ,

where Eq. (3.46) was used. The last term is singular and it causes problems when
we compute the Christoffel symbols, because it generates terms proportional to
�(�)δ(�). If the last term were allowed to survive, the connection would not be
defined as a distribution and our program would fail. To eliminate this term we
impose continuity of the metric across the hypersurface: [gαβ ] = 0. This statement
holds in the coordinate system xα only. However, we can easily turn this into a
coordinate-invariant statement: 0 = [gαβ]eα

a eβ
b = [gαβeα

a eβ
b ]; this last step follows

by virtue of Eq. (3.47). We have obtained
[
hab

] = 0, (3.49)

the statement that the induced metric must be the same on both sides of �. This
is clearly required if the hypersurface is to have a well-defined geometry. Equa-
tion (3.49) will be our first junction condition, and it is expressed independently
of the coordinates xα or xα±. Coordinate independence explains why Eq. (3.49)
produces only six conditions while the original statement [gαβ ] = 0 contained ten:
The mismatch corresponds to the four coordinate conditions [xα] = 0.
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3.7 Junction conditions and thin shells 87

3.7.3 Riemann tensor

To find the second junction condition requires more work: we must calculate the
distribution-valued Riemann tensor. Using the results obtained thus far, we have
that the Christoffel symbols are

�α
βγ = �(�) �+α

βγ + �(−�) �−α
βγ ,

where �±α
βγ are the Christoffel symbols constructed from g±

αβ . A straightforward
calculation then reveals

�α
βγ,δ = �(�) �+α

βγ,δ + �(−�) �−α
βγ,δ + εδ(�)

[
�α

βγ

]
nδ,

and from this follows the Riemann tensor:

Rα
βγ δ = �(�) R+α

βγ δ + �(−�) R−α
βγ δ + δ(�)Aα

βγ δ, (3.50)

where

Aα
βγ δ = ε

([
�α

βδ

]
nγ − [

�α
βγ

]
nδ

)
. (3.51)

We see that the Riemann tensor is properly defined as a distribution, but the δ-
function term represents a curvature singularity at �. Our second junction con-
dition will seek to eliminate this term. Failing this, we will see that a physical
interpretation can nevertheless be given to the singularity. This is our next topic.

3.7.4 Surface stress-energy tensor

Although they are constructed from Christoffel symbols, the quantities Aα
βγ δ form

a tensor because the difference between two sets of Christoffel symbols is a tenso-
rial quantity (see Section 1.2). We would like to find an explicit expression for this
tensor.

The fact that the metric is continuous across � in the coordinates xα implies
that its tangential derivatives also must be continuous. This means that if gαβ,γ is
to be discontinuous, the discontinuity must be directed along the normal vector nα .
There must therefore exist a tensor field καβ such that[

gαβ,γ

] = καβ nγ ; (3.52)

this tensor is given explicitly by

καβ = ε
[
gαβ,γ

]
nγ . (3.53)

Equation (3.52) implies

[
�α

βγ

] = 1

2

(
κα

βnγ + κα
γ nβ − κβγ nα

)
,
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88 Hypersurfaces

and we obtain

Aα
βγ δ = ε

2

(
κα

δnβnγ − κα
γ nβnδ − κβδnαnγ + κβγ nαnδ

)
.

This is the δ-function part of the Riemann tensor.
Contracting over the first and third indices gives the δ-function part of the Ricci

tensor:

Aαβ ≡ Aµ
αµβ = ε

2

(
κµαnµnβ + κµβnµnα − κnαnβ − εκαβ

)
,

where κ ≡ κα
α . After an additional contraction we obtain the δ-function part of the

Ricci scalar,

A ≡ Aα
α = ε

(
κµνnµnν − εκ

)
.

With this we form the δ-function part of the Einstein tensor, and after using the
Einstein field equations we obtain an expression for the stress-energy tensor:

Tαβ = �(�) T +
αβ + �(−�) T −

αβ + δ(�)Sαβ, (3.54)

where 8π Sαβ ≡ Aαβ − 1
2 Agαβ . On the right-hand side of Eq. (3.54) the first and

second terms represent the stress-energy tensors of regions V + and V −, respec-
tively. The δ-function term, on the other hand, comes with a clear interpretation:
It is associated with the presence of a thin distribution of matter – a surface layer,
or a thin shell – at �; this thin shell has a surface stress-energy tensor equal
to Sαβ .

3.7.5 Second junction condition

Explicitly, the surface stress-energy tensor is given by

16πεSαβ = κµαnµnβ + κµβnµnα − κnαnβ − εκαβ − (
κµνnµnν − εκ

)
gαβ.

From this we notice that Sαβ is tangent to the hypersurface: Sαβnβ = 0. It therefore
admits the decomposition

Sαβ = Sabeα
a eβ

b , (3.55)

where Sab = Sαβeα
a eβ

b is a symmetric three-tensor. This is evaluated as follows:

16π Sab = −καβeα
a eβ

b − ε
(
κµνnµnν − εκ

)
hab

= −καβeα
a eβ

b − κµν

(
gµν − hmneµ

meν
n

)
hab + κhab

= −καβeα
a eβ

b + hmnκµνeµ
meν

n hab.
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3.7 Junction conditions and thin shells 89

On the other hand we have[
nα;β

] = −[
�

γ
αβ

]
nγ

= −1

2

(
κγαnβ + κγβnα − καβnγ

)
nγ

= 1

2

(
εκαβ − κγαnβnγ − κγβnαnγ

)
,

which allows us to write[
Kab

] = [
nα;β

]
eα

a eβ
b = ε

2
καβeα

a eβ
b .

Collecting these results we obtain

Sab = − ε

8π

([
Kab

] − [
K

]
hab

)
, (3.56)

which relates the surface stress-energy tensor to the jump in extrinsic curvature
from one side of � to the other. The complete stress-energy tensor of the surface
layer is

T αβ
� = δ(�) Sabeα

a eβ
b . (3.57)

We conclude that a smooth transition across � requires [Kab] = 0 – the extrinsic
curvature must be the same on both sides of the hypersurface. This requirement
does more than just remove the δ-function term from the Einstein tensor: In Sec-
tion 3.13, Problem 4 you will be asked to prove that [Kab] = 0 implies Aα

βγ δ = 0,
which means that the full Riemann tensor is then nonsingular at �.

The condition [Kab] = 0 is our second junction condition, and it is expressed
independently of the coordinates xα and xα±. If this condition is violated, then
the spacetime is singular at �, but the singularity comes with a sound physical
interpretation: a surface layer with stress-energy tensor T αβ

� is present at the hy-
persurface.

3.7.6 Summary

The junction conditions for a smooth joining of two metrics at a hypersurface �

(assumed not to be null) are [
hab

] = [
Kab

] = 0.

If the extrinsic curvature is not the same on both sides of �, then a thin shell with
surface stress-energy tensor

Sab = − ε

8π

([
Kab

] − [
K

]
hab

)
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90 Hypersurfaces

is present at �. The complete stress-energy tensor of the surface layer is given
by Eq. (3.57) in the continuous coordinates xα . In the coordinate system xα± used
originally in V ±, it is

T αβ
� = Sab

(
∂xα±
∂ya

)(
∂xβ

±
∂yb

)
δ(�).

This follows from Eq. (3.57) by a simple coordinate transformation from xα to xα±;
such a transformation leaves both � and Sab unchanged.

This formulation of the junction conditions is due to Darmois (1927) and Israel
(1966). The thin-shell formalism is due to Lanczos (1922 and 1924) and Israel
(1966). An extension to null hypersurfaces will be presented in Section 3.11.

3.8 Oppenheimer–Snyder collapse

In 1939, J. Robert Oppenheimer and his student Hartland Snyder published the first
solution to the Einstein field equations that describes the process of gravitational
collapse to a black hole. For simplicity they modelled the collapsing star as a spher-
ical ball of pressureless matter with a uniform density. (A perfect fluid with neg-
ligible pressure is usually called dust.) The metric inside the dust is a Friedmann–
Robertson–Walker (FRW) solution, while the metric outside is the Schwarzschild
solution (Fig. 3.6). The question considered here is whether these metrics can be
joined smoothly at their common boundary, the surface of the collapsing star.

The metric inside the collapsing dust (which occupies the region V −) is given
by

ds2− = −dτ 2 + a2(τ )
(
dχ2 + sin2 χ d�2), (3.58)

Figure 3.6 The Oppenheimer–Snyder spacetime.

�

V − : FRW

V + : Schwarzschild

nα

uα
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3.8 Oppenheimer–Snyder collapse 91

where τ is proper time on comoving world lines (along which χ , θ , and φ are all
constant), and a(τ ) is the scale factor. By virtue of the Einstein field equations,
this satisfies

ȧ2 + 1 = 8π

3
ρa2, (3.59)

where an overdot denotes differentiation with respect to τ . By virtue of energy-
momentum conservation in the absence of pressure, the dust’s mass density ρ

satisfies

ρa3 = constant ≡ 3

8π
amax, (3.60)

where amax is the maximum value of the scale factor. The solution to Eqs. (3.59)
and (3.60) has the parametric form

a(η) = 1
2amax(1 + cos η), τ (η) = 1

2amax(η + sin η);
the collapse begins at η = 0 when a = amax, and it ends at η = π when a = 0. The
hypersurface � coincides with the surface of the collapsing star, which is located
at χ = χ0 in our comoving coordinates.

The metric outside the dust (in the region V +) is given by

ds2+ = − f dt2 + f −1 dr2 + r2 d�2, f = 1 − 2M/r, (3.61)

where M is the gravitational mass of the collapsing star. As seen from the out-
side, � is described by the parametric equations r = R(τ ), t = T (τ ), where τ is
proper time for observers comoving with the surface. Clearly, this is the same τ

that appears in the metric of Eq. (3.58).
It is convenient to choose ya = (τ, θ, φ) as coordinates on �. It follows that

eα
τ = uα , where uα is the four-velocity of an observer comoving with the surface

of the collapsing star.
We now calculate the induced metric. As seen from V − the metric on � is

ds2
� = −dτ 2 + a2(τ ) sin2 χ0 d�2.

As seen from V +, on the other hand,

ds2
� = −(

FṪ 2 − F−1 Ṙ2) dτ 2 + R2(τ ) d�2,

where F = 1 − 2M/R. Because the induced metric must be the same on both
sides of the hypersurface, we have

R(τ ) = a(τ ) sin χ0, FṪ 2 − F−1 Ṙ2 = 1. (3.62)
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92 Hypersurfaces

The first equation determines R(τ ) and the second equation can be solved for Ṫ :

FṪ =
√

Ṙ2 + F ≡ β(R, Ṙ). (3.63)

This equation can be integrated for T (τ ) and the motion of the boundary in V + is
completely determined.

The unit normal to � can be obtained from the relations nαuα = 0, nαnα =
1. As seen from V −, uα− ∂α = ∂τ and n−

α dxα = a dχ ; we have chosen nχ > 0
so that nα is directed toward V +. As seen from V +, uα+ ∂α = Ṫ ∂t + Ṙ ∂r and
n+

α dxα = −Ṙ dt + Ṫ dr , with a consistent choice for the sign.
The extrinsic curvature is defined on either side of � by Kab = nα;βeα

a eβ
b . The

nonvanishing components are Kττ = nα;βuαuβ = −nαuα
;βuβ = −aαnα (where

aα is the acceleration of an observer comoving with the surface), Kθθ = nθ;θ , and
Kφφ = nφ;φ . A straightforward calculation reveals that as seen from V −,

K τ−τ = 0, K θ−θ = K φ
−φ = a−1 cot χ0; (3.64)

the first result follows immediately from the fact that the comoving world lines of
a FRW spacetime are geodesics. As seen from V +,

K τ+τ = β̇/Ṙ, K θ+θ = K φ
+φ = β/R, (3.65)

where β(R, Ṙ) is defined by Eq. (3.63).
To have a smooth transition at the surface of the collapsing star, we demand that

Kab be the same on both sides of the hypersurface. It is therefore necessary for
uα+ to satisfy the geodesic equation (aα+ = 0) in V +. It is easy to check that the
geodesic equation produces Ṙ2 + F = Ẽ2, where Ẽ = −ut is the (conserved) en-
ergy parameter of the comoving observer. This relation implies β = Ẽ , and the fact
that β is a constant enforces K τ+τ = 0, as required. On the other hand, [K θ

θ ] = 0
gives cot χ0/a = β/R = Ẽ/(a sin χ0), or

β = Ẽ = cos χ0. (3.66)

We have found that the requirement for a smooth transition at � is that the hy-
persurface be generated by geodesics of both V − and V +, and that the parameters
Ẽ and χ0 be related by Eq. (3.66). With the help of Eqs. (3.59), (3.62), and (3.63)
we may turn Eq. (3.66) into

M = 4π

3
ρR3, (3.67)

which equates the gravitational mass of the collapsing star to the product of its
density and volume. This relation has an immediate intuitive meaning, and it neatly
summarizes the complete solution to the Oppenheimer–Snyder problem.
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3.9 Thin-shell collapse 93

3.9 Thin-shell collapse

As an application of the thin-shell formalism, we consider the gravitational col-
lapse of a thin spherical shell. We assume that spacetime is flat inside the shell
(in V −). Outside (in V +), the metric is necessarily a Schwarzschild solution (by
virtue of the spherical symmetry of the matter distribution). We assume also that
the shell is made of pressureless matter, in the sense that its surface stress-energy
tensor is constrained to have the form

Sab = σ uaub, (3.68)

in which σ is the surface density and ua the shell’s velocity field. Our goal is to
derive the shell’s equations of motion under the stated conditions.

Using the results derived in the preceding section, we have

K τ±τ = β̇±/Ṙ,

K θ±θ = K φ
±φ = β±/R,

β+ =
√

Ṙ2 + 1 − 2M/R,

β− =
√

Ṙ2 + 1,

where R(τ ) is the shell’s radius, and M its gravitational mass. As we did before,
we use (τ, θ, φ) as coordinates on �; in these coordinates ua = ∂ya/∂τ . Equation
(3.56) allows us to calculate the components of the surface stress-energy tensor,
and we find

−σ = Sτ
τ = β+ − β−

4π R
, 0 = Sθ

θ = β+ − β−
8π R

+ β̇+ − β̇−
8π Ṙ

.

The second equation can be integrated immediately, giving (β+ − β−)R =
constant. Substituting this into the first equation yields 4π R2σ = −constant.

We have obtained

4π R2σ ≡ m = constant (3.69)

and β− − β+ = m/R. The first equation states that m, the shell’s rest mass, stays
constant during the evolution. Squaring the second equation converts it to

M = m
√

1 + Ṙ2 − m2

2R
, (3.70)

which comes with a nice physical interpretation. The first term on the right-hand
side is the shell’s relativistic kinetic energy, including rest mass. The second term
is the shell’s binding energy, the work required to assemble the shell from its dis-
persed constituents. The sum of these is the total (conserved) energy, and this is

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.005
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.005
https://www.cambridge.org/core


94 Hypersurfaces

equal to the shell’s gravitational mass M . Equation (3.70) provides a vivid illus-
tration of the general statement that all forms of energy contribute to the total
gravitational mass of an isolated body.

Equations (3.69) and (3.70) are the shell’s equations of motion. It is interesting
to note that when M < m, the motion exhibits a turning point at R = Rmax ≡
m2/[2(m − M)]: An expanding shell with M < m cannot escape from its own
gravitational pull.

3.10 Slowly rotating shell

Our next application of the thin-shell formalism is concerned with the spacetime
of a slowly rotating, spherical shell. We take the exterior metric to be the slow-
rotation limit of the Kerr solution,

ds2+ = − f dt2 + f −1 dr2 + r2 d�2 − 4Ma

r
sin2 θ dt dφ. (3.71)

Here, f = 1 − 2M/r with M denoting the shell’s gravitational mass, and a =
J/M 	 M , where J is the shell’s angular momentum. Throughout this section
we will work consistently to first order in a.

The metric of Eq. (3.71) is cut off at r = R, which is where the shell is located.
As viewed from the exterior, the shell’s induced metric is

ds2
� = −(1 − 2M/R) dt2 + R2 d�2 − 4Ma

R
sin2 θ dt dφ.

It is possible to remove the off-diagonal term by going to a rotating frame of ref-
erence. We therefore introduce a new angular coordinate ψ related to φ by

ψ = φ − �t, (3.72)

where � is the angular velocity of the new frame with respect to the inertial frame
of Eq. (3.71). We anticipate that � will be proportional to a, and this allows us to
approximate dφ2 by dψ2 + 2� dt dψ . Substituting this into ds2

� returns a diagonal
metric if � is chosen to be

� = 2Ma

R3
. (3.73)

The induced metric then becomes

hab dya dyb = −(1 − 2M/R) dt2 + R2(dθ2 + sin2 θ dψ2). (3.74)

It is now clear that the shell has a spherical geometry. As Eq. (3.74) indicates, we
will use the coordinates ya = (t, θ, ψ) on the shell.
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3.10 Slowly rotating shell 95

We take spacetime to be flat inside the shell, and we write the Minkowski metric
in the form

ds2− = −(1 − 2M/R) dt2 + dρ2 + ρ2(dθ2 + sin2 θ dψ2), (3.75)

where ρ is a radial coordinate. This metric must be cut off at ρ = R and joined
to the exterior metric of Eq. (3.71). The shell’s intrinsic metric, as computed from
the interior, agrees with Eq. (3.74). Continuity of the induced metric is therefore
established, and we must now turn to the extrinsic curvature.

We first compute the extrinsic curvature as seen from the shell’s exterior. In
the metric of Eq. (3.71), the shell’s unit normal is nα = f −1/2∂αr . The parametric
equations of the hypersurface are t = t , θ = θ , and φ = ψ + �t , and they have
the generic form xα = xα(ya). These allow us to compute the tangent vectors
eα

a = ∂xα/∂ya and we obtain eα
t ∂α = ∂t + �∂φ , eα

θ ∂α = ∂θ , and eα
ψ∂α = ∂φ . From

all this we find that the nonvanishing components of the extrinsic curvature are

K t
t = M

R2
√

1 − 2M/R
,

K t
ψ = − 3Ma sin2 θ

R2
√

1 − 2M/R
,

K ψ
t = 3Ma

R4

√
1 − 2M/R,

K θ
θ = 1

R

√
1 − 2M/R = K ψ

ψ.

As now seen from the shell’s interior, the unit normal is nα = ∂αρ and the tangent
vectors are eα

t ∂α = ∂t , eα
θ ∂α = ∂θ , and eα

ψ∂α = ∂ψ . From this we find that K θ
θ =

1/R = K ψ
ψ are the only two nonvanishing components of the extrinsic curvature.

This could have been obtained directly by setting M = 0 in our previous results.
We have a discontinuity in the extrinsic curvature, and Eq. (3.56) allows us to

calculate Sab, the shell’s surface stress-energy tensor. After a few lines of algebra
we obtain

St
t = − 1

4π R

(
1 − √

1 − 2M/R
)
,

St
ψ = 3Ma sin2 θ

8π R2
√

1 − 2M/R
,

Sψ
t = − 3Ma

8π R4

√
1 − 2M/R,

Sθ
θ = 1 − M/R − √

1 − 2M/R

8π R
√

1 − 2M/R
= Sψ

ψ.
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96 Hypersurfaces

These results give us a complete description of the surface stress-energy tensor,
but they are not terribly illuminating. Can we make sense of this mess?

We will attempt to cast Sab in a perfect-fluid form,

Sab = σuaub + p(hab + uaub), (3.76)

in terms of a velocity field ua , a surface density σ , and a surface pressure p. How
do we find these quantities? First we notice that Eq. (3.76) implies Sa

bub = −σua ,
which shows that ua is a normalized eigenvector of the surface stress-energy ten-
sor, with eigenvalue −σ . This gives us three equations for three unknowns, the
density and the two independent components of the velocity field. Once those have
been obtained, the pressure is found by projecting Sab in the directions orthogonal
to ua . The rest is just a matter of algebra.

We can save ourselves some work if we recognize that the shell must move
rigidly in the ψ direction, with a uniform angular velocity ω. Its velocity vector
can then be expressed as

ua = γ (ta + ωψa), (3.77)

where ta = ∂ya/∂t and ψa = ∂ya/∂ψ are Killing vectors of the induced metric
hab. In Eq. (3.77), ω = dψ/dt is the shell’s angular velocity in the rotating frame
of Eq. (3.72), and γ is determined by the normalization condition habuaub = −1.
We can simplify things further if we anticipate that ω will be proportional to a. For
example, neglecting O(ω2) terms when normalizing ua gives

γ = 1√
1 − 2M/R

. (3.78)

With these assumptions, we find that the eigenvalue equation produces ω =
−Sψ

t /(−St
t + Sψ

ψ) and σ = −St
t . After simplification the first equation becomes

ω = 6Ma

R3

1 − 2M/R(
1 − √

1 − 2M/R
)(

1 + 3
√

1 − 2M/R
) , (3.79)

and the second is

σ = 1

4π R

(
1 − √

1 − 2M/R
)
. (3.80)

We now have the surface density and the velocity field. The surface pressure
can easily be obtained by projecting Sab in the directions orthogonal to ua:
p = 1

2(hab + uaub)Sab = 1
2(S + σ), where S = hab Sab. This gives p = Sθ

θ , and

p = 1 − M/R − √
1 − 2M/R

8π R
√

1 − 2M/R
. (3.81)
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3.10 Slowly rotating shell 97

The shell’s material is therefore a perfect fluid of density σ , pressure p, and angular
velocity ω. When R is much larger than 2M , Eqs. (3.79)–(3.81) reduce to ω 

3a/(2R2), σ 
 M/(4π R2), and p 
 M2/(16π R3), respectively.

The spacetime of a slowly rotating shell offers us a unique opportunity to ex-
plore the rather strange relativistic effects associated with rotation. We conclude
this section with a brief description of these effects.

The metric of Eq. (3.71) is the metric outside the shell, and it is expressed in
a coordinate system that goes easily into a Cartesian frame at infinity. This is the
frame of the ‘fixed stars,’ and it is this frame which sets the standard of no rotation.
The metric of Eq. (3.75), on the other hand, is the metric inside the shell, and
it is expressed in a coordinate system that is rotating with respect to the frame
of the fixed stars. The transformation is given by Eq. (3.72), and it shows that
an observer at constant ψ moves with an angular velocity dφ/dt = �. Inertial
observers inside the shell are therefore rotating with respect to the fixed stars, with
an angular velocity �in ≡ �. According to Eq. (3.73), this is

�in = 2Ma

R3
. (3.82)

This angular motion is induced by the rotation of the shell, and the effect is known
as the dragging of inertial frames. It was first discovered in 1918 by Thirring and
Lense.

The shell’s angular velocity ω, as computed in Eq. (3.79), is measured in the
rotating frame. As measured in the nonrotating frame, the shell’s angular velocity
is �shell = dφ/dt = dψ/dt + � = ω + �in. According to Eqs. (3.79) and (3.82),
this is

�shell = 2Ma

R3

1 + 2
√

1 − 2M/R(
1 − √

1 − 2M/R
)(

1 + 3
√

1 − 2M/R
) . (3.83)

When R is much larger than 2M , �in/�shell 
 4M/(3R), and the internal ob-
servers rotate at a small fraction of the shell’s angular velocity. As R approaches
2M , however, the ratio approaches unity, and the internal observers find them-
selves corotating with the shell. This is a rather striking manifestation of frame
dragging. (The phrase ‘Mach’s principle’ is often attached to this phenomenon.)
This spacetime, admittedly, is highly idealized, and you may wonder whether coro-
tation could ever occur in a realistic situation. You will see in Chapter 5 that the
answer is yes: A very similar phenomenon occurs in the vicinity of a rotating black
hole.
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98 Hypersurfaces

3.11 Null shells

We saw in Sections 3.1 and 3.2 that the description of null hypersurfaces involves
interesting subtleties, and we should not be surprised to find that the same is true
of the description of null surface layers. Our purpose here, in the last section of
Chapter 3, is to face these subtleties and extend the formalism of thin shells, as
developed in Section 3.7, to the case of a null hypersurface. The presentation given
here is adapted from Barrabès and Israel (1991).

3.11.1 Geometry

As we did in Section 3.7, we consider a hypersurface � that partitions spacetime
into two regions V ± in which the metric is g±

αβ when expressed in coordinates xα±.

Here we assume that the hypersurface is null, and our convention is such that V −
is in the past of �, and V + in its future. We assume also that the hypersurface is
singular, in the sense that the Riemann tensor possesses a δ-function singularity at
�. We will characterize the Ricci part of this singular curvature tensor, and relate
it to the surface stress-energy tensor of the shell. (We shall have nothing to say
about the interesting physical effects associated with the Weyl part of the singular
curvature tensor.)

As we did in Section 3.1.2, we install coordinates

ya = (λ, θ A)

on the hypersurface, and we assume that these coordinates are the same on both
sides of �. We take λ to be an arbitrary parameter on the null generators of the
hypersurface, and we use θ A to label the generators. It is possible to choose λ to
be an affine parameter on one side of the hypersurface. But as we shall see below,
in general it is not possible to make λ an affine parameter on both sides of �.

As seen from V ±, � is described by the parametric relations xα±(ya), and using
these we can introduce tangent vectors eα±a = ∂xα±/∂ya on each side of the hyper-
surface. These are naturally segregated into a null vector kα± that is tangent to the
generators, and two spacelike vectors eα±A that point in the directions transverse to
the generators. Explicitly,

kα =
(

∂xα

∂λ

)
θ A

= eα
λ , eα

A =
(

∂xα

∂θ A

)
λ

. (3.84)

(Here and below, in order to keep the notation simple, we refrain from using the
‘±’ label in displayed equations; this should not create any confusion.) By con-
struction, these vectors satisfy

kαkα = 0 = kαeα
A. (3.85)
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3.11 Null shells 99

The remaining inner products

σAB(λ, θC) ≡ gαβ eα
Aeβ

B (3.86)

do not vanish, and we assume that they are the same on both sides of �:
[
σAB

] = 0. (3.87)

We recall from Section 3.1.3 that the two-tensor σAB acts as a metric on �,

ds2
� = σAB dθ A dθ B,

and the condition (3.87) ensures that the hypersurface possesses a well-defined
intrinsic geometry.

As we did in Section 3.1.3, we complete the basis by adding an auxiliary null
vector Nα± that satisfies

Nα Nα = 0, Nαkα = −1, Nαeα
A = 0. (3.88)

The completed basis gives us the completeness relations

gαβ = −kα Nβ − Nαkβ + σ ABeα
Aeβ

B (3.89)

for the inverse metric on either side of � (in the coordinates xα±); σ AB is the inverse
of σAB , and it is the same on both sides.

To complete the geometric setup we introduce a congruence of geodesics that
cross the hypersurface. In Section 3.7, in which � was either timelike or space-
like, the congruence was selected by demanding that the geodesics intersect the
hypersurface orthogonally: The vector field uα± tangent to the congruence was set
equal (on �) to the normal vector nα±. When the hypersurface is null, however, this
requirement does not produce a unique congruence, because a vector orthogonal
to kα can still possess an arbitrary component along kα .

We shall have to give up on the idea of adopting a unique congruence. An im-
portant aspect of our description of null shells is therefore that it involves an ar-
bitrary congruence of timelike geodesics intersecting �. This arbitrariness comes
with the lightlike nature of the singular hypersurface, and it cannot be removed.
It can, however, be physically motivated: The arbitrary vector field uα± that enters
our description of null shells can be identified with the four-velocity of a family
of observers making measurements on the shell; since many different families of
observers could be introduced to make such measurements, there is no reason to
demand that the vector field be uniquely specified.

We therefore introduce a congruence of timelike geodesics γ that arbitrarily in-
tersect the hypersurface. The geodesics are parameterized by proper time τ , which
is adjusted so that τ = 0 when a geodesic crosses �; thus, τ < 0 in V − and τ > 0
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100 Hypersurfaces

in V +. The vector tangent to the geodesics is uα±, and a displacement along a
member of the congruence is described by

dxα = uα dτ. (3.90)

To ensure that the congruence is smooth at the hypersurface, we demand that uα± be
‘the same’ on both sides of �. This means that uαeα

a , the tangential projections of
the vector field, must be equal when evaluated on either side of the hypersurface:[−uαkα

] = 0 = [
uαeα

A

]
. (3.91)

If, for example, uα− is specified in V −, then the three conditions (3.91) are suf-
ficient (together with the geodesic equation) to determine the three independent
components of uα+ in V +. We note that −uα Nα , the transverse projection of the
four-velocity, is allowed to be discontinuous at �.

The proper-time parameter on the timelike geodesics can be viewed as a scalar
field τ(xα±) defined in a neighbourhood of �: Select a point xα± off the hypersurface
and locate the unique geodesic γ that connects this point to �; the value of the
scalar field at xα± is equal to the proper-time parameter of this geodesic at that
point. The hypersurface � can then be described by the statement

τ(xα) = 0,

and its normal vector k±
α will be proportional to the gradient of τ(xα±) evaluated at

�. It is easy to check that the expression

kα = −(−kµuµ
) ∂τ

∂xα
(3.92)

is compatible with Eq. (3.90). We recall that the factor −kµuµ in Eq. (3.92) is
continuous across �.

3.11.2 Surface stress-energy tensor

As we did in Section 3.7, we introduce for our short-term convenience a continu-
ous coordinate system xα , distinct from xα±, in a neighbourhood of the hypersur-
face; the final formulation of our null-shell formalism will be independent of these
coordinates. We express the metric as a distribution-valued tensor:

gαβ = �(τ) g+
αβ + �(−τ) g−

αβ,

where g±
αβ(xµ) is the metric in V ±. We assume that in these coordinates, the met-

ric is continuous at �: [gαβ] = 0; Eq. (3.87) is compatible with this requirement.
We also have [kα] = [eα

A] = [Nα] = [uα] = 0. Differentiation of the metric pro-
ceeds as in Sections 3.7.2 and 3.7.3, except that we now write τ instead of �, and
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3.11 Null shells 101

we use Eq. (3.92) to relate the gradient of τ to the null vector kα . We arrive at a
Riemann tensor that contains a singular part given by

R α
� βγ δ = −(−kµuµ

)−1([
�α

βδ

]
kγ − [

�α
βγ

]
kδ

)
δ(τ ), (3.93)

where [�α
βγ ] is the jump in the Christoffel symbols across �.

In order to make Eq. (3.93) more explicit we must characterize the discontin-
uous behaviour of gαβ,γ . The condition [gαβ] = 0 guarantees that the tangential
derivatives of the metric are continuous:

[gαβ,γ ]kγ = 0 = [gαβ,γ ] eγ

C .

The only possible discontinuity is therefore in gαβ,γ N γ , the transverse derivative
of the metric. In view of Eq. (3.88) we conclude that there exists a tensor field γαβ

such that
[
gαβ,γ

] = −γαβkγ . (3.94)

This tensor is given explicitly by γαβ = [gαβ,γ ]N γ , and it is now easy to check
that

[
�α

βγ

] = −1

2

(
γ α

βkγ + γ α
γ kβ − γβγ kα

)
. (3.95)

Substituting this into Eq. (3.93) gives

R α
� βγ δ = 1

2

(−kµuµ
)−1(

γ α
δkβkγ − γβδkαkγ − γ α

γ kβkδ + γβγ kαkδ

)
δ(τ ),

(3.96)

and we see that kα and γαβ give a complete characterization of the singular part of
the Riemann tensor.

From Eq. (3.96) it is easy to form the singular part of the Einstein tensor, and the
Einstein field equations then give us the singular part of the stress-energy tensor:

T αβ
� = (−kµuµ

)−1
Sαβ δ(τ ), (3.97)

where

Sαβ = 1

16π

(
kαγ β

µkµ + kβγ α
µkµ − γ µ

µkαkβ − γµνkµkνgαβ
)

is the surface stress-energy tensor of the null shell – up to a factor −kµuµ that de-
pends on the choice of observers making measurements on the shell. Its expression
can be simplified if we decompose Sαβ in the basis (kα, eα

A, Nα). For this purpose
we introduce the projections

γA ≡ γαβ eα
Akβ, γAB ≡ γαβ eα

Aeβ
B, (3.98)
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102 Hypersurfaces

and we use the completeness relations (3.89) to find that the vector γ α
µkµ admits

the decomposition

γ α
µkµ = 1

2

(
γ µ

µ − σ ABγAB
)
kα + (

σ ABγB
)

eα
A − (

γµνkµkν
)
Nα.

Substituting this into our previous expression for Sαβ and involving once more
the completeness relations, we arrive at our final expression for the surface stress-
energy tensor:

Sαβ = µkαkβ + j A(
kαeβ

A + eα
Akβ

) + p σ ABeα
Aeβ

B . (3.99)

Here,

µ ≡ − 1

16π

(
σ ABγAB

)
can be interpreted as the shell’s surface density,

j A ≡ 1

16π

(
σ ABγB

)
as a surface current, and

p ≡ − 1

16π

(
γαβkαkβ

)
as an isotropic surface pressure.

The surface stress-energy tensor of Eq. (3.99) is expressed in the continuous co-
ordinates xα . As a matter of fact, the derivation of Eq. (3.99) relies heavily on these
coordinates: The introduction of γαβ rests on the fact that in these coordinates, gαβ

is continuous at �, so that an eventual discontinuity in the metric derivative must
be directed along kα . In the next subsection we will remove the need to involve the
coordinates xα in practical applications of the null-shell formalism. For the time
being we simply note that while Eq. (3.99) is indeed expressed in the coordinates
xα , it is a tensorial equation involving vectors (kα and eα

A) and scalars (µ, j A, and
p). This equation can therefore be expressed in any coordinate system; in partic-
ular, when viewed from V ± the surface stress-energy tensor can be expressed in
the original coordinates xα±.

3.11.3 Intrinsic formulation

In Section 3.7, the surface stress-energy tensor of a timelike or spacelike shell was
expressed in terms of intrinsic three-tensors – quantities that can be defined on
the hypersurface only. The most important ingredients in this formulation were
hab, the (continuous) induced metric, and [Kab], the discontinuity in the extrinsic
curvature. We would like to achieve something similar here, and remove the need
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3.11 Null shells 103

to involve a continuous coordinate system xα to calculate the surface quantities µ,
j A, and p.

We can expect that the intrinsic description of the surface stress-energy ten-
sor of a null shell will involve σAB , the nonvanishing components of the induced
metric. We might also expect that it should involve the jump in the extrinsic cur-
vature of the null hypersurface, which would be defined by Kab = kα;β eα

a eβ
b =

1
2(£k gαβ) eα

a eβ
b . Not so. The reason is that there is nothing ‘transverse’ about this

object: In the case of a timelike or spacelike hypersurface, the normal nα points
away from the surface, and £ngαβ truly represents the transverse derivative of the
metric; when the hypersurface is null, on the other hand, kα is tangent to the sur-
face, and £k gαβ is a tangential derivative. Thus, the extrinsic curvature is necessar-
ily continuous when the hypersurface is null, and it cannot be related to the tensor
γαβ defined by Eq. (3.94).

There is, fortunately, an easy solution to this problem: We can introduce a trans-
verse curvature Cab that properly represents the transverse derivative of the metric.
This shall be defined by Cab = 1

2(£N gαβ) eα
a eβ

b = 1
2(Nα;β + Nβ;α)eα

a eβ
b , or

Cab = −Nα eα
a;βeβ

b . (3.100)

To arrive at Eq. (3.100) we have used the fact that Nαeα
a is a constant, and the iden-

tity eα
a;βeβ

b = eα
b;βeβ

a , which states that each basis vector eα
a is Lie transported along

any other basis vector; this property ensures that Cab, as defined by Eq. (3.100), is
a symmetric three-tensor.

In the continuous coordinates xα , the jump in the transverse curvature is given
by

[
Cab

] = [
Nα;β

]
eα

a eα
b

= −[
�

γ
αβ

]
Nγ eα

a eα
b

= 1

2
γαβ eα

a eα
b ,

where we have used Eq. (3.95) and the fact that kα is orthogonal to eα
a . We therefore

have [Cλλ] = 1
2γαβkαkβ , [CAλ] = 1

2γαβeα
Akβ ≡ 1

2γA, and [CAB] = 1
2γαβeα

Aeβ
B ≡

1
2γAB , where we have involved Eq. (3.98). Finally, we find that the surface quanti-
ties can be expressed as

µ = − 1

8π
σ AB[

CAB
]
, j A = 1

8π
σ AB[

CλB
]
, p = − 1

8π

[
Cλλ

]
. (3.101)

We have established that the shell’s surface quantities can all be related to the
induced metric σAB and the jump of the transverse curvature Cab. This completes
the intrinsic formulation of our null-shell formalism.
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104 Hypersurfaces

3.11.4 Summary

A singular null hypersurface � possesses a surface stress-energy tensor charac-
terized by tangent vectors kα± and eα±A, as well as a surface density µ, a surface
current j A, and an isotropic surface pressure p. The surface quantities can all be
related to a discontinuity in the surface’s transverse curvature,

Cab = −Nα eα
a;β eβ

b ,

which is defined on either side of � in the appropriate coordinate system xα±. The
relations are

µ = − 1

8π
σ AB[

CAB
]
, j A = 1

8π
σ AB[

CλB
]
, p = − 1

8π

[
Cλλ

]
.

The surface stress-energy tensor is given by

Sαβ = µkαkβ + j A(
kαeβ

A + eα
Akβ

) + p σ ABeα
Aeβ

B,

and the complete stress-energy tensor of the surface layer is

T αβ
� = (−kµuµ

)−1
Sαβ δ(τ ).

In this expression, the factor (−kµuµ)−1 is continuous at �, and the vector field
uα± is tangent to an arbitrary congruence of timelike geodesics parameterized by
proper time τ (the congruence represents a family of observers making measure-
ments on the shell). The presence of this factor implies that µ, j A, and p are
not truly the surface quantities that would be measured by the observers. The
physically-measured surface quantities are given instead by

µphysical = (−kµuµ
)−1

µ, j A
physical = (−kµuµ

)−1
j A,

pphysical = (−kµuµ
)−1

p.

The arbitrariness associated with the choice of congruence is thus limited to a
single multiplicative factor. The ‘bare’ quantities µ, j A, and p are independent of
this choice, and it is often more convenient to work in terms of those.

3.11.5 Parameterization of the null generators

Our null-shell formalism is now complete, and it is ready to be involved in appli-
cations. We will consider a few in the following subsections, but we first return to
a statement made earlier, that in general λ cannot be an affine parameter on both
sides of the hypersurface. We shall justify this here, and also consider what hap-
pens to µ, j A, and p when the parameterization of the null generators is altered.
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3.11 Null shells 105

Whether or not λ is an affine parameter can be decided by computing κ±,
the ‘acceleration’ of the null vector kα±. This is defined on either side of the
hypersurface by (Section 1.3)

kα
;βkβ = κkα,

and λ will be an affine parameter on the V ± side of � if κ± = 0. According
to Eq. (3.88), κ = −Nαkα

;βkβ = −Nαeα
λ;βeβ

λ = Cλλ, where we have also used
Eqs. (3.85) and (3.100). Equation (3.101) then relates the discontinuity in the ac-
celeration to the surface pressure:

[κ] = −8π p. (3.102)

We conclude that λ can be an affine parameter on both sides of � only when the
null shell has a vanishing surface pressure. When p �= 0, λ can be chosen to be
an affine parameter on one side of the hypersurface, but it will not be an affine
parameter on the other side.

Additional insight into this matter can be gained from Raychaudhuri’s equa-
tion, which describes the transverse evolution of a congruence of null geodesics
(Section 2.4). In Section 2.6, Problem 8, Raychaudhuri’s equation was written in
terms of an arbitrary parameterization of the null geodesics. When the congruence
is hypersurface orthogonal, it reads

dθ

dλ
+ 1

2
θ2 + σαβσαβ = κ θ − 8πTαβkαkβ,

where θ and σαβ are the expansion and shear of the congruence, respectively; the
equation holds on either side of �. Because it depends only on the intrinsic geom-
etry of the hypersurface, the left-hand side of Raychaudhuri’s equation is guaran-
teed to be continuous across the shell. Continuity of the right-hand side therefore
implies

[κ]θ = 8π
[
Tαβkαkβ

]
. (3.103)

This relation shows that [κ] �= 0 (and therefore p �= 0) whenever the component
Tαβkαkβ of the stress-energy tensor is discontinuous at the shell. We conclude that
λ cannot be an affine parameter on both sides of � when [Tαβkαkβ] �= 0. (Notice
that this conclusion breaks down when θ = 0, that is, when the shell is stationary.)

Recalling (Section 2.4.8) that the expansion θ is equal to the fractional rate
of change of the congruence’s cross-sectional area, we find that with the help of
Eq. (3.102), Eq. (3.103) can be expressed as

p
d

dλ
dS + [

Tαβkαkβ
]
dS = 0, (3.104)
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106 Hypersurfaces

where dS = √
σ d2θ is an element of cross-sectional area on the shell (Sec-

tion 3.2.2). This equation has a simple interpretation: The first term represents
the work done by the shell as it expands or contracts, while the second term is the
energy absorbed by the shell from its surroundings; Eq. (3.104) therefore states
that all of the absorbed energy goes into work.

Having established that λ cannot, in general, be an affine parameter on both
sides of the hypersurface, let us now investigate how a change of parameterization
might affect the surface density µ, surface current j A, and surface pressure p of
the null shell. Because each generator can be reparameterized independently of
any other generator, we must consider transformations of the form

λ → λ̄(λ, θ A). (3.105)

The question before us is: How do the surface quantities change under such a
transformation?

To answer this we need to work out how the transformation of Eq. (3.105)
affects the vectors kα , eα

A, and Nα . We first note that the differential form of
Eq. (3.105) is

dλ̄ = eβ dλ + cA dθ A, (3.106)

where

eβ ≡
(

∂λ̄

∂λ

)
θ A

, cA ≡
(

∂λ̄

∂θ A

)
λ

; (3.107)

both eβ and cA depend on ya = (λ, θ A), but because they depend on the intrinsic
coordinates only, we have that [eβ] = 0 = [cA]. A displacement within the hyper-
surface can then be described either by

dxα = kα dλ + eα
A dθ A,

where kα = (∂xα/∂λ)θA and eα
A = (∂xα/∂θ A)λ, or by

dxα = k̄α dλ̄ + ēα
A dθ A,

where k̄α = (∂xα/∂λ̄)θA and ēα
A = (∂xα/∂θ A)λ̄; these relations hold on either side

of �, in the relevant coordinate system xα±. Using Eq. (3.106), it is easy to see that
the tangent vectors transform as

k̄α = e−β kα, ēα
A = eα

A − cAe−β kα (3.108)

under the reparameterization of Eq. (3.105). It may be checked that the new ba-
sis vectors satisfy the orthogonality relations (3.85), and that the induced metric
σAB is invariant under this transformation: σ̄AB ≡ gαβ ēα

Aēβ
B = gαβeα

Aeβ
B ≡ σAB .
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3.11 Null shells 107

To preserve the relations (3.88) we let the new auxiliary null vector be

N̄α = eβ Nα + 1

2
cAcAe−β kα − cAeα

A, (3.109)

where cA = σ ABcB . This ensures that the completeness relations (3.89) take the
same form in the new basis.

It is a straightforward (but slightly tedious) task to compute how the transverse
curvature Cab changes under a reparameterization of the generators, and to then
compute how the surface quantities transform. You will be asked to go through
this calculation in Section 3.13, Problem 8. The answer is that under the reparam-
eterization of Eq. (3.105), the surface quantities transform as

µ̄ = eβµ + 2cA j A + cAcAe−β p,

j̄ A = j A + cAe−β p, (3.110)

p̄ = e−β p.

These transformations, together with Eq. (3.108), imply that the surface stress-
energy tensor becomes S̄αβ = e−β Sαβ . We also have (−k̄µuµ)−1 = eβ(−kµuµ

)
,

and these results reveal that the combination (−kµuµ)−1Sαβ is invariant under the
reparameterization. This, finally, establishes the invariance of T αβ

� , the full stress-
energy tensor of the surface layer.

As a final remark, we note that under the reparameterization of Eq. (3.105), the
physically-measured surface quantities transform as

µ̄physical = e2βµphysical + 2cAeβ j A
physical + cAcA pphysical,

j̄ A
physical = eβ j A

physical + cA pphysical, (3.111)

p̄physical = pphysical;
we see in particular that the physically-measured surface pressure is an invariant.

3.11.6 Imploding spherical shell

For our first application of the null-shell formalism, we take another look at the
gravitational collapse of a thin spherical shell, a problem that was first formulated
in Section 3.9. Here we imagine that the collapse proceeds at the speed of light,
and that the thin shell lies on a null hypersurface �. We take spacetime to be flat
inside the shell (in V −), and write the metric there as

ds2− = −dt2− + dr2 + r2 d�2,

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.005
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.005
https://www.cambridge.org/core


108 Hypersurfaces

in terms of spatial coordinates (r, θ, φ) and a time coordinate t−. The metric out-
side the shell (in V +) is the Schwarzschild solution,

ds2+ = − f dt2+ + f −1 dr2 + r2 d�2,

which is expressed in the same spatial coordinates but in terms of a distinct time
t+; here, f = 1 − 2M/r and M denotes the gravitational mass of the collapsing
shell.

As seen from V −, the null hypersurface � is described by the equation t− +
r ≡ v− = constant, which means that the induced metric on � is given by ds2

� =
r2 d�2. As seen from V +, on the other hand, the hypersurface is described by
t+ + r∗(r) ≡ v+ = constant, where r∗(r) = ∫

f −1 dr = r + 2M ln(r/2M − 1),
and this gives rise to the same induced metric. From these considerations we see
that it was permissible to express the metrics of V ± in terms of the same spatial
coordinates (r, θ, φ), but that t+ cannot be equal to t−. The induced metric on the
shell is

σAB dθ Adθ B = λ2(dθ2 + sin2 θ dφ2),
where we have set θ A = (θ, φ) and identified −r with the parameter λ on the null
generators of the hypersurface; we shall see that here, λ is an affine parameter on
both sides of �.

As seen from V −, the parametric equations xα− = xα−(λ, θ A) that describe the
hypersurface have the explicit form t− = v− + λ, r = −λ, θ = θ , and φ = φ.
These give us the tangent vectors kα∂α = ∂t − ∂r , eα

θ ∂α = ∂θ , and eα
φ∂α = ∂φ , and

the basis is completed by Nα dxα = −1
2(dt − dr). From all this and Eq. (3.100)

we find that the nonvanishing components of the transverse curvature are

C−
AB = 1

2r
σAB .

The fact that C−
λλ = 0 confirms that λ ≡ −r is an affine parameter on the V − side

of �.
As seen from V +, the parametric equations are t+ = v+ − r∗(−λ), r = −λ,

θ = θ , and φ = φ. The basis vectors are kα∂α = f −1∂t − ∂r , eα
θ ∂α = ∂θ , eα

φ∂α =
∂φ , and Nα dxα = −1

2( f dt − dr). The nonvanishing components of the transverse
curvature are now

C+
AB = f

2r
σAB .

The fact that C+
λλ = 0 confirms that λ ≡ −r is an affine parameter on the V + side

of �; λ is therefore an affine parameter on both sides.
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3.11 Null shells 109

The angular components of the transverse curvature are discontinuous across
the shell: [CAB] = −(M/r2)σAB . According to Eq. (3.101), this means that the
shell has a vanishing surface current j A and a vanishing surface pressure p, but
that its surface density is

µ = M

4πr2
.

We have obtained the very sensible result that the surface density of a collapsing
null shell is equal to its gravitational mass divided by its (ever decreasing) sur-
face area. Notice that µphysical = µ for observers at rest in V −. Because of the
focusing action of the null shell, however, these observers do not remain at rest
after crossing over to the V + side: A simple calculation, based on Eq. (3.91),
reveals that an observer at rest before crossing the shell will move according to
dr/dτ = −(Ẽ2 − f )1/2 after crossing the shell; the energy parameter Ẽ varies
from observer to observer, and is related by Ẽ = 1 − M/r� to the radius r� at
which a given observer crosses the hypersurface.

3.11.7 Accreting black hole

Our second application of the null-shell formalism features a nonrotating black
hole of mass (M − m) which suddenly acquires additional material of mass m and
angular momentum J ≡ aM . We suppose that the accretion process is virtually
instantaneous, that the material falls in with the speed of light, and that J 	 M2.
We idealize the accreting material as a singular matter distribution supported on a
null hypersurface �.

The spacetime in the future of � (in V +) is that of a slowly rotating black hole
of mass M and (small) angular momentum aM . We write the metric in V + as in
Eq. (3.71),

ds2+ = − f dt2 + f −1 dr2 + r2 d�2 − 4Ma

r
sin2 θ dt dφ,

where f = 1 − 2M/r ; this is the slow-rotation limit of the Kerr metric, and
throughout this subsection we will work consistently to first order in the small
parameter a.

As seen from V +, the null hypersurface � is described by v ≡ t + r∗ = 0,
where r∗ = ∫

f −1 dr = r + 2M ln(r/2M − 1); you may check that in the slow-
rotation limit, every surface v = constant is null. It follows that the vector kα =
gαβ(−∂βv) is normal to � and tangent to its null generators. We have

kα∂α = 1

f
∂t − ∂r + 2Ma

r3 f
∂φ,
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110 Hypersurfaces

and from this expression we deduce four important properties of the generators.
First, the generators are affinely parameterized by λ ≡ −r . Second, as measured by
inertial observers at infinity, the generators move with an (ever increasing) angular
velocity

dφ

dt
≡ �generators = 2Ma

r3
.

Third, θ is constant on each generator. And fourth, integration of dφ/(−dr) =
2Ma/(r3 f ) reveals that

ψ ≡ φ + a

r

(
1 + r

2M
ln f

)

also is constant on the generators.
We shall use ya = (λ ≡ −r, θ, ψ) as coordinates on �; as we have just seen,

these coordinates are well adapted to the generators, and this property is re-
quired by the null-shell formalism. Remembering that dt = −dr/ f and dφ =
dψ − (2Ma/r3 f ) dr on �, we find that the induced metric is

σAB dθ Adθ B = r2(dθ2 + sin2 θ dψ2),
and that the hypersurface is intrinsically spherical.

The parametric description of �, as seen from V +, is xα(−r, θ, ψ), and from
this we form the tangent vectors eα

λ = kα , eα
θ = δα

θ , and eα
ψ = δα

φ . The basis is

completed by Nα dxα = 1
2(− f dt + dr). From Eq. (3.100) we obtain

C+
λψ = 3Ma

r2
sin2 θ, C+

AB = f

2r
σAB

for the nonvanishing components of the transverse curvature.
The spacetime in the past of � (in V −) is that of a nonrotating black hole of

mass (M − m). Here we write the metric as

ds2− = −F dt̄ 2 + F−1 dr2 + r2(dθ2 + sin2 θ dψ2),
in terms of a distinct time coordinate t̄ and the angles θ and ψ ; we also have
F ≡ 1 − 2(M − m)/r . This choice of angular coordinates implies that inertial ob-
servers within V − corotate with the shell’s null generators; this is another mani-
festation of the dragging of inertial frames, a phenomenon already encountered in
Section 3.10. As we shall see presently, this choice of coordinates is dictated by
continuity of the induced metric at �.

The mathematical description of the hypersurface, as seen from V −, is identical
to its external description provided that we make the substitutions t → t̄ , φ → ψ ,
M → M − m, and a → 0. According to this, the induced metric on � is still given
by ds2

� = r2(dθ2 + sin2 θ dψ2), as required. The basis vectors are now kα∂α =
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3.11 Null shells 111

F−1∂t̄ − ∂r , eα
θ ∂α = ∂θ , eα

ψ∂α = ∂ψ , and Nα dxα = 1
2(−F dt̄ + dr). This gives us

C−
AB = F

2r
σAB

for the nonvanishing components of the transverse curvature.
The transverse curvature is discontinuous at �, and Eqs. (3.101) allow us to

compute the shell’s surface quantities. Because the generators are affinely param-
eterized by −r on both sides of the shell, we have that p = 0 – the shell has a
vanishing surface pressure. On the other hand, its surface density is given by

µ = m

4πr2
,

the ratio of the shell’s gravitational mass m to its (ever decreasing) surface area
4πr2. Thus far our results are virtually identical to those obtained in the preceding
subsection. What is new in this context is the presence of a surface current j A,
whose sole component is

jψ = 3Ma

8πr4
.

This comes from the shell’s rotation, and the fact that the situation is not entirely
spherically symmetric.

To better understand the physical significance of the surface current, we express
the shell’s surface stress-energy tensor,

Sαβ = µkαkβ + jψ
(
kαeβ

ψ + eα
ψkβ

)
,

in terms of the vector �α ≡ kα + ( jψ/µ) eα
ψ . This vector is null (when we appro-

priately discard terms of order a2 in the calculation of gαβ�α�β), and it has the
components

�α∂α = 1

f
∂t − ∂r + 1

f
�fluid∂φ

in the coordinates xα = (t, r, θ, φ) used in V +; we have set

�fluid ≡ 2Ma

r3
+ 3Ma

2mr
f.

The shell’s surface stress-energy tensor is now given by the simple expression

Sαβ = µ�α�β,

which corresponds to a pressureless fluid of density µ moving with a four-velocity
�α . We see that the fluid is moving along null curves (not geodesics!) that do not
coincide with the shell’s null generators. The motion across generators is created
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112 Hypersurfaces

by a mismatch between �fluid, the fluid’s angular velocity, and �generators, the an-
gular velocity of the generators. The mismatch is directly related to j A:

�relative ≡ �fluid − �generators = jψ

µ
= 3Ma

2mr
f.

Notice that the fluid rotates faster than the generators, which share their angular
velocity with inertial observers within V −; such a phenomenon was encountered
before, in the context of the stationary rotating shell of Section 3.10. But notice also
that �relative decreases to zero as r approaches 2M : The fluid ends up corotating
with the generators when the shell crosses the black-hole horizon.

3.11.8 Cosmological phase transition

In this third (and final) application of the formalism, we consider an intriguing (but
entirely artificial) cosmological scenario according to which the universe was ini-
tially expanding in two directions only, but was then made to expand isotropically
by a sudden explosive event.

The V − region of spacetime is the one in which the universe is expanding in
the x and y directions only. Its metric is

ds2− = −dt2 + a2(t)
(
dx2 + dy2) + dz2−,

and the scale factor is assumed to be given by a(t) ∝ t1/2. The cosmological fluid
moves with a four-velocity uα = ∂xα/∂t , and it has a density and (isotropic) pres-
sure given by ρ− = p− = 1/(32π t2), respectively.

In the V + region of spacetime, the universe expands uniformly in all three
directions. Here the metric is

ds2+ = −dt2 + a2(t)
(
dx2 + dy2 + dz2+

)
,

with the same scale factor a(t) as in V −, and the cosmological fluid has a density
and pressure given by ρ+ = 3p+ = 3/(32π t2), respectively; this corresponds to a
radiation-dominated universe.

The history of the explosive event that changes the metric from g−
αβ to g+

αβ traces
a null hypersurface � in spacetime. This surface moves in the positive z± direction
and as we shall see, it supports a singular stress-energy tensor. The ‘agent’ that
alters the course of the universe’s expansion is therefore a null shell.

As seen from V −, the hypersurface is described by t = z− + constant, and the
vector kα∂α = ∂t + ∂z is tangent to the null generators, which are parameterized
by t . In fact, because kα

;βkβ = 0 we have that t is an affine parameter on this side
of the hypersurface. The coordinates x and y are constant on the generators, and
we use them, together with t , as intrinsic coordinates on �. We therefore have
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3.11 Null shells 113

ya = (t, θ A), θ A = (x, y), and the shell’s induced metric is

σAB dθ A dθ B = a2(t)(dx2 + dy2).

The remaining basis vectors are eα
x ∂α = ∂x , eα

y ∂α = ∂y , and Nα dxα =
−1

2(dt + dz−). The nonvanishing components of the transverse curvature are

C−
AB = 1

4t
σAB .

We note that on the V − side of �, the null generators have an expansion given
by θ = kα

;α = 1/t , and that Tαβkαkβ = ρ− + p− = 1/(16π t2), where T αβ is the
stress-energy tensor of the cosmological fluid.

As seen from V +, the description of the hypersurface is obtained by integrat-
ing dt = a(t) dz+, and kα∂α = ∂t + a−1∂z is tangent to the null generators. We
note that t is not an affine parameter on this side of the hypersurface: we have
that kα

;βkβ = (2t)−1kα . The remaining basis vectors are eα
x ∂α = ∂x , eα

y ∂α = ∂y ,
Nα dxα = −1

2(dt + a dz+), and the nonvanishing components of the transverse
curvature are now

C+
t t = 1

2t
, C+

AB = 1

4t
σAB .

On this side of �, the generators have an expansion also given by θ = 1/t (since
continuity of θ is implied by continuity of the induced metric), and Tαβkαkβ =
ρ+ + p+ = 1/(8π t2).

The fact that t is an affine parameter on one side of the hypersurface only tells
us that the shell must possess a surface pressure. In fact, continuity of CAB across
the shell implies that p is the only nonvanishing surface quantity. It is given by

p = − 1

16π t
,

the negative sign indicating that this surface quantity would be better described
as a tension, not a pressure. The shell’s surface stress-energy tensor is Sαβ =
p σ AB eα

Aeα
B . If we select observers comoving with the cosmological fluid as our

preferred observers to make measurements on the shell, then −kαuα = 1 and the
full stress-energy tensor of the singular hypersurface is T αβ

� = Sαβδ(t − t�), with
t� denoting the time at which a given observer crosses the shell. We see that for
these observers, −p is the physically-measured surface tension.

Finally, we note that the expressions −p = 1/(16π t), θ = 1/t , and
[Tαβkαkβ] = 1/(16π t2) are compatible with the general relation −p θ =
[Tαβkαkβ] derived in Section 3.11.5. This shows that the energy released by the
shell as it expands is absorbed by the cosmological fluid, whose density increases
by a factor of ρ+/ρ− = 3; this energy is provided by the shell’s surface tension.
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114 Hypersurfaces

3.12 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Barrabès and Israel (1991); Barrabès and Hogan (1998); de la Cruz and Israel
(1968); Israel (1966); Misner, Thorne, and Wheeler (1973); Musgrave and Lake
(1997); and Wald (1984).

More specifically:
Sections 3.1, 3.2, and 3.3 are based partially on unpublished lecture notes by

Werner Israel. Sections 3.4, 3.5, and 3.9 are based on Israel’s paper. Section 3.6 is
based on Section 10.2 of Wald. Sections 3.7 and 3.11 (as well as Problem 9 below)
are based on Barrabès and Israel. Section 3.8 is based on Exercise 32.4 of Misner,
Thorne, and Wheeler. Section 3.10 is based on de la Cruz and Israel. Finally, the
examples of Sections 3.11.7 and 3.11.8 are adapted from Musgrave and Lake, and
Barrabès and Hogan, respectively.

Suggestions for further reading:
Solving the initial-value problem of general relativity is an important aspect of

numerical relativity, and a lot of effort is currently devoted to finding initial data
that involve compact bodies in astrophysically realistic situations. The situation is
reviewed by Greg Cook in his 2000 Living Reviews article.

Could our four-dimensional universe be a singular hypersurface in an extended
five-dimensional world? This intriguing idea, a variation on the old Kaluza–Klein
scenario, was proposed recently by Randall and Sundrum (1999a and 1999b). The
intense scientific activity that followed the publication of their papers is reviewed
by Brax and van de Bruck (2003).

3.13 Problems

Warning: The results derived in Problem 1 are used in later portions of this book.

1. We consider a hypersurface T = constant in Schwarzschild spacetime, where

T = t + 4M

[√
r/2M + 1

2
ln

(√
r/2M − 1√
r/2M + 1

)]
.

We use (r, θ, φ) as coordinates on the hypersurface.
(a) Calculate the unit normal nα and find parametric equations that describe

the hypersurface.
(b) Calculate the induced metric hab.
(c) Calculate the extrinsic curvature Kab. Verify that your results agree with

those of Section 3.6.6, and show that K is equal to the expansion of
the congruence considered in Section 2.3.7.
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3.13 Problems 115

(d) Prove that when it is expressed in terms of the coordinates (T, r, θ, φ),
the Schwarzschild metric takes the form

ds2 = −dT 2 + (
dr + √

2M/r dT
)2 + r2 d�2.

This shows very clearly that the sections T = constant are intrinsi-
cally flat. [This coordinate system was discovered independently by
Painlevé (1921) and Gullstrand (1922). It is presented in some detail
in a 2001 paper by Martel and Poisson.]

2. A four-dimensional hypersurface is embedded in a flat, five-dimensional
spacetime. We use coordinates z A in the five-dimensional world, and express
the metric as

ds2 = ηAB dz A dzB = −(dz0)2 + (dz1)2 + (dz2)2 + (dz3)2 + (dz4)2;
we let uppercase Latin indices run from 0 to 4. In the four-dimensional world
we use coordinates xα = (t, χ, θ, φ). The hypersurface is defined by paramet-
ric relations z A(xα). Explicitly,

z0 = a sinh(t/a), z1 = a cosh(t/a) cos χ, z2 = a cosh(t/a) sin χ cos θ,

z3 = a cosh(t/a) sin χ sin θ cos φ, z4 = a cosh(t/a) sin χ sin θ sin φ,

where a is a constant.
(a) Compute the unit normal n A and the tangent vectors eA

α = ∂z A/∂xα to
the hypersurface.

(b) Compute the induced metric gαβ . What is the physical significance of this
four-dimensional metric? Does it satisfy the Einstein field equations?

(c) Compute the extrinsic curvature Kαβ . Use the Gauss–Codazzi equations
to prove that the induced Riemann tensor can be expressed as

Rαβγ δ = 1

a2

(
gαγ gβδ − gαδgβγ

)
.

This implies that the four-dimensional hypersurface is a spacetime of
constant Ricci curvature.

3. In this problem we consider a spherically symmetric space at a moment of
time symmetry. We write the three-metric as

ds2 = d�2 + r2(�) d�2,

where � is proper distance from the centre.
(a) Show that in these coordinates, the mass function introduced in Sec-

tion 3.6.5 is given by

m(r) = r

2

[
1 − (dr/d�)2

]
.
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116 Hypersurfaces

(b) Solve the constraint equations for a uniform mass density ρ on the hyper-
surface. Make sure to impose the asymptotic condition r(� → 0) → �

to force the three-metric to be regular at the centre.
(c) Prove that r(�) can be no larger than rmax = √

3/(8πρ).
(d) Prove that 2m(rmax) = rmax, and that m(rmax) is the maximum value of

the mass function.
(e) What happens when � → πrmax?

4. Prove the statement made near the end of Section 3.7.5, that [Kab] = 0 is a
sufficient condition for the regularity of the full Riemann tensor at the hyper-
surface �.

5. Prove that the surface stress-energy tensor of a thin shell satisfies the conser-
vation equation

Sab|b = −ε
[

ja],
where ja ≡ Tαβeα

a nβ . Interpret this equation physically. (Consider the case
where the shell is timelike.)

6. The metric

ds2 = −dt2 + d�2 + r2(�) d�2,

where r(�) = � when 0 < � < �0 and r(�) = 2�0 − � when �0 < � < 2�0, de-
scribes a spacetime with closed spatial sections. (What is the volume of a hy-
persurface t = constant?) The spacetime is flat in both V − (� < �0) and V +
(� > �0), but it contains a surface layer at � = �0.
(a) Calculate the surface stress-energy tensor of the thin shell. Express this

in terms of a velocity field ua , a density σ , and a surface pressure p.
(b) Consider a congruence of outgoing null geodesics in this spacetime, with

its tangent vector kα = −∂α(t − �). Calculate θ , the expansion of this
congruence. Show that it abruptly changes sign (from positive to nega-
tive) at � = �0. The surface layer therefore produces a strong focusing
of the null geodesics.

(c) Use Raychaudhuri’s equation to prove that the discontinuity in dθ/d� is
precisely accounted for by the surface stress-energy tensor.

7. Two Schwarzschild solutions, one with mass parameter m−, the other with
mass parameter m+, are joined at a radius r = R(τ ) by means of a spherical
thin shell; τ denotes proper time for an observer comoving with the shell. It is
assumed that m− is the interior mass (m+ is the exterior mass), that m+ > m−,
and that R(τ ) > 2m+ for all values of τ . The shell’s surface stress-energy
tensor is given by

Sab = (σ + p)uaub + phab,
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3.13 Problems 117

where ua is the fluid’s velocity field, σ(τ) the surface density, p(τ ) the surface
pressure, and hab the induced metric.
(a) Derive, and interpret physically, the equation

d

dτ
(σ R2) + p

d

dτ
(R2) = 0.

(b) Find the values of σ and p which produce a static configuration: R(τ ) =
R0 = constant. Verify that both σ and p are positive. [The stability
of these static configurations was examined by Brady, Louko, and
Poisson (1991).]

8. Derive the relations (3.109).
9. Let spacetime be partitioned into two regions V ± with metrics

ds2± = − f± dv2 + 2 dvdr + r2 d�2.

We assume that the coordinate system (v, r, θ, φ) is common to both V −
and V +. (In each region we could introduce a conventional time coordinate
t± defined by dt± = dv − dr/ f±, but it is much more convenient to work
with the original system.) In V − we set f− = 1 − r0/r , so that the metric
is a Schwarzschild solution with mass parameter M ≡ 1

2r0. In V + we set
f+ = 1 − (r/r0)

2, so that the metric is a de Sitter solution with cosmological
constant � ≡ 3/r0

2. (This metric is a solution to the modified Einstein field
equations, Gαβ + �gαβ = 0.) The boundary � between the two regions is the
null surface r = r0, the common horizon of the Schwarzschild and de Sitter
spacetimes.

Using ya = (v, θ, φ) as coordinates on �, calculate the surface quantities µ,
j A, and p associated with the null shell. Explain whether your results are com-
patible with the general relation p θ = [Tαβkαkβ] derived in Section 3.11.5.
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4

Lagrangian and Hamiltonian formulations
of general relativity

Variational principles play a fundamental role in virtually all areas of physics, and
general relativity is no exception. This chapter is devoted to a general discussion
of the Lagrangian and Hamiltonian formulations of field theories in curved space-
time, with a special focus on general relativity.

The Lagrangian formulation of a field theory (Section 4.1) begins with the in-
troduction of an action functional, which is usually defined as an integral of a
Lagrangian density over a finite region V of spacetime. As we shall see, general
relativity is peculiar in this respect, as its action involves also an integration over
∂V , the boundary of the region V ; this is necessary for the well-posedness of the
variational principle. We will, in this chapter, provide a systematic treatment of the
boundary terms in the gravitational action.

The Hamiltonian formulation of a field theory (Section 4.2) involves a decom-
position of spacetime into space and time. Geometrically, this corresponds to a
foliation of spacetime by nonintersecting spacelike hypersurfaces �. In this 3 + 1
decomposition, the spacetime metric gαβ is broken down into an induced metric
hab, a shift vector N a , and a lapse scalar N ; while the induced metric is concerned
with displacements within �, the lapse and shift are concerned with displacements
away from the hypersurface. The Hamiltonian is a functional of the field configu-
ration and its conjugate momentum on �. In general relativity, the Hamiltonian is a
functional of hab and its conjugate momentum pab, which is closely related to the
extrinsic curvature of the hypersurface �; the lapse and shift are freely specifiable,
and they do not appear in the Hamiltonian as dynamical variables. The gravita-
tional Hamiltonian inherits boundary terms from the action functional; those are
defined on the two-surface S formed by the intersection of ∂V and �.

There is a close connection between the gravitational Hamiltonian and the total
mass M and angular momentum J of an asymptotically-flat spacetime; this con-
nection is explored in Section 4.3. We will see that the value of the gravitational
Hamiltonian for a solution to the Einstein field equations depends only on the

118
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4.1 Lagrangian formulation 119

conditions at the two-dimensional boundary S. When the spacetime is asymptoti-
cally flat and S is pushed to infinity, the Hamiltonian becomes M if the lapse and
shift are chosen so as to correspond to an asymptotic time translation. For an alter-
native choice of lapse and shift, corresponding to an asymptotic rotation about an
axis, the Hamiltonian becomes J , the component of the angular-momentum vec-
tor along this axis. These Hamiltonian definitions for mass and angular momentum
form the starting point of a rather broad review of the different notions of mass and
angular momentum in general relativity.

4.1 Lagrangian formulation

4.1.1 Mechanics

In the Lagrangian formulation of Newtonian mechanics, one is given a Lagrangian
L(q, q̇), a function of the generalized coordinate q and its velocity q̇ ≡ dq/dt . One
then forms an action functional S[q],

S[q] =
∫ t2

t1
L(q, q̇) dt, (4.1)

by integrating the Lagrangian over a selected path q(t). The path that satisfies the
equations of motion is the one about which S[q] is stationary: Under a variation
δq(t) of this path, restricted by

δq(t1) = δq(t2) = 0 (4.2)

but otherwise arbitrary in the interval t1 < t < t2, the action does not change, δS =
0.

The change in the action is given by

δS =
∫ t2

t1
δL dt

=
∫ t2

t1

(
∂L

∂q
δq + ∂L

∂q̇
δq̇

)
dt

= ∂L

∂q̇
δq

∣∣∣∣
t2

t1

+
∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt,

where, in the last step, we have used δq̇ = d(δq)/dt and integrated by parts. The
boundary terms vanish by virtue of Eq. (4.2). Because the variation is arbitrary
between t1 and t2,

δS = 0 ⇒ d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (4.3)
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120 Lagrangian and Hamiltonian formulations of general relativity

This is the Euler–Lagrange equation for a one-dimensional mechanical system.
Generalization to higher dimensions is immediate.

4.1.2 Field theory

We now consider the dynamics of a field q(xα) in curved spacetime. Although this
field could be of any type (scalar, vector, tensor, spinor), for simplicity we shall
restrict our attention to the case of a scalar field.

In the Lagrangian formulation of a field theory, one is given an arbitrary region
V of the spacetime manifold, bounded by a closed hypersurface ∂V . One is also
given a Lagrangian density L (q, q,α), a scalar function of the field and its first
derivatives. The action functional is then

S[q] =
∫

V
L (q, q,α)

√−g d4x . (4.4)

Dynamical equations for q are obtained by introducing a variation δq(xα) that is
arbitrary within V but vanishes everywhere on ∂V ,

δq
∣∣
∂V = 0, (4.5)

and by demanding that δS vanish if the variation is about the actual path q(xα).
Equation (4.5) is the field-theoretical counterpart to Eq. (4.2).

Upon such a variation (we use the notation L ′ ≡ ∂L /∂q, L α ≡ ∂L /∂q,α),

δS =
∫

V

(
L ′δq + L αδq,α

)√−g d4x

=
∫

V

[
L ′ δq + (L αδq);α − L α

;αδq
]√−g d4x

=
∫

V

(
L ′ − L α

;α
)
δq

√−g d4x +
∮

∂V
L αδq d�α,

where Gauss’ theorem (Section 3.3) was used in the last step. The surface integral
vanishes by virtue of Eq. (4.5), and because δq is arbitrary within V we obtain

δS = 0 ⇒ ∇α

∂L

∂q,α

− ∂L

∂q
= 0. (4.6)

This is the Euler–Lagrange equation for a single scalar field q. Generalization to a
collection of fields is immediate, and the procedure can be taken over to fields of
arbitrary tensorial or spinorial types.
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4.1 Lagrangian formulation 121

As a concrete example, let us consider a Klein–Gordon field ψ with Lagrangian
density

L = −1

2

(
gµνψ,µψ,ν + m2ψ2

)
.

We have L α = −gαβψ,β , L α
;α = −gαβψ;αβ , and L ′ = −m2ψ . The Euler–

Lagrange equation becomes

gαβψ;αβ − m2ψ = 0,

which is the curved-spacetime version of the Klein–Gordon equation.

4.1.3 General relativity

The action functional for general relativity contains a contribution SG[g] from the
gravitational field gαβ and a contribution SM [φ; g] from the matter fields, which
we collectively denote φ.

The gravitational action contains a Hilbert term SH [g], a boundary term SB[g],
and a nondynamical term S0 that affects the numerical value of the action but not
the equations of motion. More explicitly,

SG[g] = SH [g] + SB[g] − S0, (4.7)

where

SH [g] = 1

16π

∫
V

R
√−g d4x, (4.8)

SB[g] = 1

8π

∮
∂V

εK |h|1/2 d3y, (4.9)

S0 = 1

8π

∮
∂V

εK0|h|1/2 d3y. (4.10)

Here, R is the Ricci scalar in V , K is the trace of the extrinsic curvature of ∂V , ε

is equal to +1 where ∂V is timelike and −1 where ∂V is spacelike (it is assumed
that ∂V is nowhere null), and h is the determinant of the induced metric on ∂V .
Coordinates xα are used in V , and coordinates ya are used on ∂V . The role of
SB[g] in the variational principle will be elucidated below. The presence of S0 in
the action will also be explained, and this explanation will come with a precise
definition for the quantity K0.

The matter action is taken to be of the form

SM [φ; g] =
∫

V
L (φ, φ,α; gαβ)

√−g d4x, (4.11)
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122 Lagrangian and Hamiltonian formulations of general relativity

for some Lagrangian density L . As Eq. (4.11) indicates, it is assumed that only
gαβ , and none of its derivatives, appears in the matter action. This assumption is
made for simplicity and it could easily be removed.

The complete action functional is therefore

S[g; φ] =
∫

V

(
R

16π
+ L

)√−g d4x + 1

8π

∮
∂V

ε(K − K0)|h|1/2 d3y. (4.12)

The Einstein field equations, Gαβ = 8πTαβ , are recovered by varying S[g, φ] with
respect to gαβ . The variation is subjected to the condition

δgαβ

∣∣
∂V = 0. (4.13)

This implies that hab = gαβ eα
a eβ

b , the induced metric on ∂V , is held fixed during
the variation.

4.1.4 Variation of the Hilbert term

It is convenient to use the variations δgαβ instead of δgαβ . These are of course not
independent: the relations gαµgµβ = δα

β imply

δgαβ = −gαµgβν δgµν. (4.14)

We recall (from Section 1.7) that the variation of the metric determinant is given
by δ ln |g| = gαβδgαβ = −gαβδgαβ , which implies

δ
√−g = −1

2

√−ggαβ δgαβ. (4.15)

We also recall (from Section 1.2) that although �α
βγ is not a tensor, the difference

between two sets of Christoffel symbols is a tensor; the variation δ�α
βγ is therefore

a tensor.
We now proceed with the variation of the Hilbert term in the gravitational

action:

(16π)δSH =
∫

V
δ
(
gαβ Rαβ

√−g
)

d4x

=
∫

V

(
Rαβ

√−g δgαβ + gαβ√−g δRαβ + R δ
√−g

)
d4x

=
∫

V

(
Rαβ − 1

2
Rgαβ

)
δgαβ√−g d4x +

∫
V

gαβδRαβ

√−g d4x .

In the last step we have used Eq. (4.15). The first integral seems to give us what we
need for the left-hand side of the Einstein field equations, but we must still account
for the second integral.
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4.1 Lagrangian formulation 123

Let us work on this integral. We begin with δRαβ , which we calculate in a local
Lorentz frame at a point P:

δRαβ
∗= δ

(
�

µ
αβ,µ − �

µ
αµ,β

)
∗= (

δ�
µ
αβ

)
,µ

− (
δ�µ

αµ

)
,β

∗= (
δ�

µ
αβ

)
;µ − (

δ�µ
αµ

)
;β.

Here, covariant differentiation is defined with respect to the reference metric gαβ ,
about which the variation is taken. We notice that the last expression is tensorial;
it is therefore valid in any coordinate system. We have found

gαβδRαβ = δ̄v
µ

;µ, δ̄vµ = gαβδ�
µ
αβ − gαµδ�

β
αβ. (4.16)

We use the ‘slash’ notation δ̄vµ to emphasize the fact that δ̄vµ is not the variation
of some quantity vµ. Using Eq. (4.16), the second integral in δSH becomes∫

V
gαβδRαβ

√−g d4x =
∫

δ̄v
µ

;µ
√−g d4x

=
∮

∂V
δ̄vµ d�µ

=
∮

∂V
ε δ̄vµnµ|h|1/2 d3y,

where nµ is the unit normal to ∂V and ε ≡ nµnµ = ±1.
We must now evaluate δ̄vµnµ, keeping in mind that on ∂V , δgαβ = 0 = δgαβ .

Under these conditions,

δ�
µ
αβ

∣∣
∂V = 1

2
gµν

(
δgνα,β + δgνβ,α − δgαβ,ν

)
,

and substituting this into Eq. (4.16) yields δ̄vµ = gαβ(δgµβ,α − δgαβ,µ), so that

nµδ̄vµ

∣∣
∂V = nµ(εnαnβ + hαβ)(δgµβ,α − δgαβ,µ)

= nµhαβ(δgµβ,α − δgαβ,µ).

In the first line we have inserted the completeness relations gαβ = εnαnβ + hαβ ,
where hαβ ≡ habeα

a eβ
b (see Section 3.1). To obtain the second line we have multi-

plied nαnµ by the antisymmetric quantity within the brackets. Proceeding, we ob-
serve that because δgαβ vanishes everywhere on ∂V , its tangential derivatives must
vanish also: δgαβ,γ eγ

c = 0. It follows that hαβδgµβ,α = 0 and we finally obtain

nµδ̄vµ

∣∣
∂V = −hαβδgαβ,µnµ. (4.17)
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124 Lagrangian and Hamiltonian formulations of general relativity

This is nonzero because the normal derivative of δgαβ is not required to vanish on
the hypersurface.

Gathering the results we obtain

(16π)δSH =
∫

V
Gαβδgαβ√−g d4x −

∮
∂V

εhαβδgαβ,µnµ|h|1/2 d3y. (4.18)

The boundary term in Eq. (4.18) will be cancelled by the variation of SB[g]: this is
the reason for including a boundary term in the gravitational action. That a bound-
ary term is needed is due to the fact that R, the gravitational Lagrangian density,
contains second derivatives of the metric tensor. This is a nontypical feature of
field theories, which are usually formulated in terms of Lagrangians that involve q
and q,α only.

4.1.5 Variation of the boundary term

We now work on the variation of SB[g], as given by Eq. (4.9). Because the induced
metric is fixed on ∂V , the only quantity to be varied is K , the trace of the extrinsic
curvature. We recall from Section 3.4 that

K = nα
;α

= (εnαnβ + hαβ)nα;β
= hαβnα;β
= hαβ(nα,β − �

γ
αβnγ ),

so that its variation is

δK = −hαβδ�
γ
αβnγ

= −1

2
hαβ

(
δgµα,β + δgµβ,α − δgαβ,µ

)
nµ

= 1

2
hαβδgαβ,µnµ;

we have used the fact that the tangential derivatives of δgαβ vanish on ∂V . We
have obtained

(16π)δSB =
∮

∂V
εhαβδgαβ,µnµ|h|1/2 d3y, (4.19)

and we see that this indeed cancels out the second integral on the right-hand side of
Eq. (4.18). Because δS0 ≡ 0, the complete variation of the gravitational action is

δSG = 1

16π

∫
V

Gαβ δgαβ√−g d4x . (4.20)

This produces the correct left-hand side to the Einstein field equations.
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4.1 Lagrangian formulation 125

4.1.6 Variation of the matter action

Variation of SM [φ; g], as given by Eq. (4.11), yields

δSM =
∫

V
δ(L

√−g) d4x

=
∫

V

(
∂L

∂gαβ
δgαβ√−g + L δ

√−g

)
d4x

=
∫

V

(
∂L

∂gαβ
− 1

2
L gαβ

)
δgαβ√−g d4x .

If we define the stress-energy tensor by

Tαβ ≡ −2
∂L

∂gαβ
+ L gαβ, (4.21)

then

δSM = −1

2

∫
V

Tαβ δgαβ√−g d4x, (4.22)

and this produces the correct right-hand side to the Einstein field equations.
We have obtained

δ(SG + SM) = 0 ⇒ Gαβ = 8πTαβ, (4.23)

because the variation δgαβ is arbitrary within V . The Einstein field equations there-
fore follow from a variational principle, and the action functional for the theory is
given by Eq. (4.12).

To see that Eq. (4.21) gives a reasonable definition for the stress-energy tensor,
let us consider once more a Klein–Gordon field ψ with Lagrangian density

L = −1

2

(
gµνψ,µψ,ν + m2ψ2

)
.

It is easy to check that for this, Eq. (4.21) becomes

Tαβ = ψ,αψ,β − 1

2

(
ψ,µψ,µ + m2ψ2

)
gαβ.

This is the correct expression for the Klein–Gordon stress-energy tensor. You may
look into the consistency of this result by checking that the statement of energy-
momentum conservation, T αβ

;β = 0, implies the Klein–Gordon equation.
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126 Lagrangian and Hamiltonian formulations of general relativity

4.1.7 Nondynamical term

What is the role of

S0 = 1

8π

∮
∂V

εK0|h|1/2 d3y

in the gravitational action? Because S0 depends only on the induced metric hab

(through the factor |h|1/2 in the integrand), its variation with respect to gαβ gives
zero, and the presence of S0 cannot affect the equations of motion. Its purpose can
only be to change the numerical value of the gravitational action.

Let us first assume that gαβ is a solution to the vacuum field equations. Then
R = 0 and the numerical value of the gravitational action is

SG = 1

8π

∮
∂V

εK |h|1/2 d3y,

where we omit the subtraction term K0 for the time being. Let us evaluate this
for flat spacetime. We choose ∂V to consist of two hypersurfaces t = constant
and a large three-cylinder at r = R (Fig. 4.1). It is easy to check that K = 0 on
the hypersurfaces of constant time. On the three-cylinder, the induced metric is
ds2 = −dt2 + R2 d
2, so that |h|1/2 = R2 sin θ . The unit normal is nα = ∂αr , so
that ε = 1 and K = nα

;α = 2/R. We then have

∮
∂V

εK |h|1/2 d3y = 8π R(t2 − t1),

and this diverges when R → ∞, that is, when the spatial boundary is pushed all the
way to infinity. The gravitational action of flat spacetime is therefore infinite, even
when V is bounded by two hypersurfaces of constant time. Because this problem
does not go away when the spacetime is curved, this would imply that the gravita-
tional action is not a well-defined quantity for asymptotically-flat spacetimes. (Of
course, the problem goes away if the spacetime manifold is compact.)

Figure 4.1 The boundary of a region V of flat spacetime.

t = t1

r = R

t = t2
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4.1 Lagrangian formulation 127

This problem is remedied by S0. This term is chosen to be equal to the gravi-
tational action of flat spacetime, as regularized by the procedure adopted before.
The difference SB − S0 is then well defined in the limit R → ∞, and there is no
longer a difficulty in defining a gravitational action for asymptotically-flat space-
times. (The subtraction term is irrelevant for compact manifolds.) In other words,
the choice

K0 = extrinsic curvature of ∂V embedded in flat spacetime (4.24)

cures the divergence of the gravitational action, which is then well defined when
the spacetime is asymptotically flat. In particular, SG = 0 for flat spacetime.

4.1.8 Bianchi identities

The Lagrangian formulation of general relativity provides us with an elegant
derivation of the contracted Bianchi identities,

Gαβ

;β = 0. (4.25)

In this approach, Eq. (4.25) comes as a consequence of the invariance of SG[g]
under a change of coordinates in V .

To prove this it is sufficient to consider infinitesimal transformations,

xα → x ′α = xα + εα, (4.26)

where εα is an infinitesimal vector field, arbitrary within V but constrained to
vanish on ∂V . The variation of the metric under such a transformation is

δgαβ ≡ g′
αβ(x) − gαβ(x)

= g′
αβ(x ′) − gαβ(x) + g′

αβ(x) − g′
αβ(x ′)

= ∂xµ

∂x ′α
∂xν

∂x ′β gµν(x) − gαβ(x) + g′
αβ(x) − g′

αβ(x + ε)

= (δµ
α − εµ

,α)(δν
β − εν

,β)gµν(x) − gαβ(x) − gαβ,µ(x)εµ

= −εµ
,αgµβ − ε

µ
,βgαµ − gαβ,µεµ

= −£εgαβ,

discarding all terms of the second order in εα . Using Eq. (4.14) we find that the
metric variation is

δgαβ = εα;β + εβ;α. (4.27)
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128 Lagrangian and Hamiltonian formulations of general relativity

Substituting this into Eq. (4.20), we find

(8π)δSG =
∫

V
Gαβεα;β

√−g d4x

= −
∫

V
Gαβ

;βεα

√−g d4x +
∮

∂V
Gαβεα d�β.

With εα arbitrary within V but vanishing on ∂V , the contracted Bianchi identities
follow from the requirement that δSG = 0 under the variation of Eq. (4.27).

4.2 Hamiltonian formulation

4.2.1 Mechanics

The Hamiltonian formulation of Newtonian mechanics begins with the introduc-
tion of the canonical momentum p, defined by

p = ∂L

∂q̇
. (4.28)

It is assumed that this relation can be inverted to give q̇ as a function of p and q.
The Hamiltonian is then

H(p, q) = p q̇ − L . (4.29)

Hamilton’s form of the equations of motion can be derived from a variational prin-
ciple. Here, the action is varied with respect to p and q independently, with the
restriction that δq must vanish at the endpoints. Thus,

δS =
∫ t2

t1
δ(p q̇ − H) dt

=
∫ t2

t1

(
p δq̇ + q̇ δp − ∂ H

∂p
δp − ∂ H

∂q
δq

)
dt

= p δq

∣∣∣∣
t2

t1

+
∫ t2

t1

[
−

(
ṗ + ∂ H

∂q

)
δq +

(
q̇ − ∂ H

∂p

)
δp

]
dt.

Because the variations are arbitrary between t1 and t2, but δq(t1) = δq(t2) = 0, we
have

δS = 0 ⇒ ṗ = −∂ H

∂q
, q̇ = ∂ H

∂p
. (4.30)

These are Hamilton’s equations. They are equivalent to the Euler–Lagrange equa-
tion (4.3).
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4.2 Hamiltonian formulation 129

4.2.2 3 + 1 decomposition

The Hamiltonian formulation of a field theory is more involved. Here, the Hamil-
tonian H [p, q] is a functional of q, the field configuration, and p, the canonical
momentum, on a spacelike hypersurface �. To express the action in terms of the
Hamiltonian it is necessary to foliate V with a family of spacelike hypersurfaces,
one for each ‘instant of time.’ This is the purpose of the 3 + 1 decomposition.

To effect this decomposition we introduce a scalar field t (xα) such that t =
constant describes a family of nonintersecting spacelike hypersurfaces �t . This
‘time function’ is completely arbitrary; the only requirements are that t be a single-
valued function of xα , and that nα ∝ ∂αt , the unit normal to the hypersurfaces, be
a future-directed timelike vector field.

On each of the hypersurfaces �t we install coordinates ya . A priori, the coordi-
nates on one hypersurface need not be related to the coordinates on another hyper-
surface. It is, however, convenient to introduce a relationship, as follows (Fig. 4.2).
Consider a congruence of curves γ intersecting the hypersurfaces �t . We do not
assume that these curves are geodesics, nor that they intersect the hypersurfaces
orthogonally. We use t as a parameter on the curves, and the vector tα is tangent
to the congruence. It is easy to check that the relation

tα∂αt = 1 (4.31)

follows from the construction. A particular curve γP from the congruence defines
a mapping from a point P on �t to a point P ′ on �t ′ , and then to a point P ′′ on
�t ′′ , and so on. To fix the coordinates of P ′ and P ′′, given ya(P) on �t , we simply
impose ya(P ′′) = ya(P ′) = ya(P). Thus, ya is held constant on each member of
the congruence.

This construction defines a coordinate system (t, ya) in V . There exists a trans-
formation between this and the system xα originally in use: xα = xα(t, ya). We

Figure 4.2 Foliation of spacetime by spacelike hypersurfaces.

γP γQ

�t

�t ′

�t ′′

P

P ′

P ′′

Q

Q′

Q′′
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130 Lagrangian and Hamiltonian formulations of general relativity

have

tα =
(

∂xα

∂t

)
ya

, (4.32)

and we define

eα
a =

(
∂xα

∂ya

)
t

(4.33)

to be tangent vectors on �t . These relations imply that in the coordinates (t, ya),
tα

∗= δα
t and eα

a
∗= δα

a . We also have

£t eα
a = 0, (4.34)

which holds in any coordinate system.
We now introduce the unit normal to the hypersurfaces:

nα = −N∂αt, nαeα
a = 0, (4.35)

where the scalar function N , called the lapse, ensures that nα is properly normal-
ized. Because the curves γ do not intersect �t orthogonally, tα is not parallel to
nα . We may decompose tα in the basis provided by the normal and tangent vectors
(Fig. 4.3):

tα = Nnα + N aeα
a ; (4.36)

the three-vector N a is called the shift. It is easy to check that Eq. (4.36) is compat-
ible with Eq. (4.31).

We can use the coordinate transformation xα = xα(t, ya) to express the metric
in the coordinates (t, ya). We start by writing

dxα = tα dt + eα
a dya

Figure 4.3 Decomposition of tα into lapse and shift.

γ

�t

Nnα tα

N aeα
a
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4.2 Hamiltonian formulation 131

= (N dt)nα + (dya + N a dt)eα
a ,

which follows at once from Eqs. (4.32), (4.33), and (4.36). The line element is then
given by ds2 = gαβdxαdxβ , or

ds2 = −N 2dt2 + hab(dya + N a dt)(dyb + N b dt), (4.37)

where hab = gαβ eα
a eβ

b is the induced metric on �t .
We may now express the metric determinant g in terms of h ≡ det[hab] and

the lapse function. We recall that gtt = cofactor(gtt )/g = h/g, as follows from
Eq. (4.37). But gtt = gαβ t,αt,β = N−2gαβnαnβ = −N−2, where Eq. (4.35) was
used. The desired expression is therefore

√−g = N
√

h. (4.38)

Equations (4.36), (4.37), and (4.38) are the fundamental results of the 3 + 1 de-
composition.

4.2.3 Field theory

We now return to the Hamiltonian formulation of a field theory. For simplicity we
will assume that the field is a scalar, but the procedure can easily be applied to
fields of other tensorial types. We begin by defining the ‘time derivative’ of q to
be its Lie derivative along the flow vector tα ,

q̇ ≡ £t q. (4.39)

In the coordinates (t, ya), £tq
∗= ∂q/∂t , and q̇ reduces to the ordinary time deriva-

tive. We also introduce the spatial derivatives, q,a ≡ q,αeα
a . The field’s Lagrangian

density can then be expressed as L (q, q̇, q,a).
The field’s canonical momentum p is defined by

p = ∂

∂q̇

(√−g L
)
. (4.40)

It is assumed that this relation can be inverted to give q̇ in terms of q, q,a , and p.
The Hamiltonian density is then

H (p, q, q,a) = p q̇ − √−g L . (4.41)

The presence of
√−g in Eqs. (4.40) and (4.41) implies that the Hamiltonian den-

sity is not a scalar with respect to transformations ya → ya′
. We might introduce
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132 Lagrangian and Hamiltonian formulations of general relativity

Figure 4.4 The region V , its boundary ∂V , and their foliations.

V

B
St

�t

�t1

�t2

a scalarized version Hscalar defined by H = √
h Hscalar = √−g Hscalar/N , but

such an object would turn out not to be as useful as the original, nonscalar, Hamil-
tonian density. The Hamiltonian functional is defined by

H [p, q] =
∫

�t

H (p, q, q,a) d3y. (4.42)

The Hamiltonian functional is an ordinary (nonscalar) function of time t .
We consider a region V of spacetime foliated by spacelike hypersurfaces �t

bounded by closed two-surfaces St (Fig. 4.4); V itself is bounded by the hyper-
surfaces �t1 , �t2 , and B, the union of all two-surfaces St . To obtain the Hamilton
form of the field equations, we will vary the action with respect to q and p, treat-
ing the variations δq and δp as independent. We will demand that δq vanish on the
boundaries �t1 , �t2 , and B.

The action functional is given by

S =
∫ t2

t1
dt

∫
�t

(
p q̇ − H

)
d3y,

and variation yields

δS =
∫ t2

t1
dt

∫
�t

(
p δq̇ + q̇ δp − ∂H

∂p
δp − ∂H

∂q
δq − ∂H

∂q,a
δq,a

)
d3y.

The first term may be integrated by parts:∫ t2

t1
dt

∫
�t

p δq̇ d3y =
∫ t2

t1
dt

d

dt

∫
�t

p δq d3y −
∫ t2

t1
dt

∫
�t

ṗ δq d3y

=
∫

�t2

p δq d3y −
∫

�t1

p δq d3y −
∫ t2

t1
dt

∫
�t

ṗ δq d3y

= −
∫ t2

t1
dt

∫
�t

ṗ δq d3y,
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4.2 Hamiltonian formulation 133

because δq = 0 on �t1 and �t2 . We treat the last term similarly:

−
∫ t2

t1
dt

∫
�t

∂H

∂q,a
δq,a d3y = −

∫ t2

t1
dt

∫
�t

∂Hscalar

∂q,a
δq,a

√
h d3y

= −
∫ t2

t1
dt

∮
St

∂Hscalar

∂q,a
δq dSa

+
∫ t2

t1
dt

∫
�t

(
∂Hscalar

∂q,a

)
|a

δq
√

h d3y

=
∫ t2

t1
dt

∫
�t

(
∂H

∂q,a

)
,a

δq d3y.

In the second line we have used the three-dimensional version of Gauss’ theorem,
with dSa denoting the surface element on St . In the third line we have used the
divergence formula Aa|a = h−1/2(h1/2 Aa),a and the fact that δq vanishes on St .

Gathering the results, we have

δS =
∫ t2

t1
dt

∫
�t

{
−

[
ṗ + ∂H

∂q
−

(
∂H

∂q,a

)
,a

]
δq +

[
q̇ − ∂H

∂p

]
δp

}
d3y,

and

δS = 0 ⇒ ṗ = −∂H

∂q
+

(
∂H

∂q,a

)
,a

, q̇ = ∂H

∂p
. (4.43)

These are Hamilton’s equations for a scalar field q and its canonical momentum
p.

As a concrete example we consider once again a Klein–Gordon field ψ with its
Lagrangian density

L = −1

2

(
gµνψ,µψ,ν + m2ψ2

)
.

For simplicity we choose our foliation to be such that N a = 0. This implies gtt =
1/gtt , gta = 0, and gab = hab. Then L = −1

2(gtt ψ̇2 + habψ,aψ,b + m2ψ2),
p = −√−g gtt ψ̇ , and Eq. (4.41) gives

H = − p2

2
√−g gtt

+ 1

2

√−g
(
habψ,aψ,b + m2ψ2).

The equations of motion are

ψ̇ = − p√−g gtt
, ṗ = −√−g m2ψ + (√−g habψ,b

)
,a .

It is easy to check that from these follow the Klein–Gordon equation, gαβψ;αβ −
m2ψ = 0, in the selected foliation.
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134 Lagrangian and Hamiltonian formulations of general relativity

4.2.4 Foliation of the boundary

Before tackling the case of the gravitational field, we need to provide additional de-
tails regarding the foliation of B, the timelike boundary of V , by the two-surfaces
St . (Refer back to Fig. 4.4.)

The closed two-surface St is the boundary of the spacelike hypersurface �t ,
on which we have coordinates ya , tangent vectors eα

a , and an induced metric hab.
It is described by an equation of the form �(ya) = 0, or by parametric relations
ya(θ A), where θ A are coordinates on St . We use ra to denote the unit normal to St ,
and we define an associated four-vector rα by

rα = raeα
a . (4.44)

This satisfies the relations rαrα = 1 and rαnα = 0, where nα is the normal to �t .
The three-vectors ea

A = ∂ya/∂θ A are tangent to St , so that raea
A = 0. This implies

rαeα
A = 0, where

eα
A ≡ eα

a ea
A = ∂xα

∂θ A
. (4.45)

In this equation it is understood that xα stands for the functions xα(ya(θ A)), where
xα(ya) are the parametric relations describing �t .

The induced metric on St is given by

ds2 = σAB dθ A dθ B, (4.46)

where σAB = hab ea
Aeb

B = (gαβ eα
a eβ

b )ea
Aeb

B or, using Eq. (4.45),

σAB = gαβ eα
Aeβ

B . (4.47)

Its inverse is denoted σ AB . The three-dimensional completeness relations, hab =
rarb + σ ABea

Aeb
B , are easily established (see Section 3.1). It follows that the four-

dimensional relations, gαβ = −nαnβ + habeα
a eβ

b , can be expressed as

gαβ = −nαnβ + rαrβ + σ AB eα
Aeβ

B . (4.48)

This can be verified by computing all inner products between the vectors nα , rα ,
and eα

A.
The extrinsic curvature of St embedded in �t is defined by kAB = ra|bea

Aeb
B (see

Section 3.4), or

kAB = rα;β eα
Aeβ

B . (4.49)

We use k to denote its trace: k = σ ABkAB .
A priori, the coordinates θ A on a given two-surface (St ′ , say) are not related to

the coordinates on another two-surface (St ′′ , say). To introduce a relationship we
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4.2 Hamiltonian formulation 135

consider a congruence of curves β running on B, intersecting the two-surfaces St

orthogonally, and therefore having nα as their tangent vectors. We demand that if
the curve βP intersects St ′ at the point P ′ labelled by θ A, then the same coordinates
will designate the point P ′′ at which βP intersects St ′′ . Because θ A does not vary
along these curves, and because t can be chosen as a parameter on the curves, we
have

nα = N−1
(

∂xα

∂t

)
θ A

, (4.50)

where the factor N−1 comes from Eq. (4.35) and the normalization condition
nαnα = −1. The construction ensures that nα and eα

A are everywhere orthogonal.
The hypersurface B is foliated by the two-surfaces St . We place coordinates zi

on B, and introduce the tangent vectors eα
i = ∂xα/∂zi . The induced metric on B

is then given by

γi j = gαβ eα
i eβ

j . (4.51)

Its inverse is γ i j , and the completeness relations take the form

gαβ = rαrβ + γ i j eα
i eβ

j . (4.52)

While the coordinates zi are a priori arbitrary, the choice zi = (t, θ A) is clearly
convenient. In these coordinates a displacement on B is described by

dxα =
(

∂xα

∂t

)
θ A

dt +
(

∂xα

∂θ A

)
t
dθ A

= Nnα dt + eα
A dθ A,

where Eqs. (4.45) and (4.50) were used. The line element is

ds2
B = gαβdxα dxβ

= gαβ

(
Nnα dt + eα

A dθ A)(
Nnβ dt + eβ

B dθ B)
= (

gαβnαnβ
)
N 2 dt2 + (

gαβeα
Aeβ

B

)
dθ A dθ B,

where the relation nαeα
A = 0 was used. We have obtained

γi j dzi dz j = −N 2 dt2 + σAB dθ A dθ B . (4.53)

This implies
√−γ = N

√
σ , where γ and σ are the determinants of γi j and σAB ,

respectively.
Finally, we let Ki j be the extrinsic curvature of B embedded in the four-

dimensional spacetime. This is given by

Ki j = rα;β eα
i eβ

j , (4.54)
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136 Lagrangian and Hamiltonian formulations of general relativity

Table 4.1 Geometric quantities of �t , St , and B.

Surface �t St B

Unit normal nα rα rα

Coordinates ya θ A zi

Tangent vectors eα
a eα

A eα
i

Induced metric hab σAB γi j
Extrinsic curvature Kab kAB Ki j

because rα , the unit normal to the two-surfaces St , is also normal to B. We will
use K to denote its trace: K = γ i jKi j .

Table 4.1 provides a list of the various geometric quantities introduced in this
subsection.

4.2.5 Gravitational action

As a first step toward constructing the gravitational Hamiltonian, we must subject
the gravitational action SG to the 3 + 1 decomposition described in Section 4.2.2.
Our starting point is Eq. (4.12),

(16π)SG =
∫

V
R
√−g d4x + 2

∮
∂V

εK |h|1/2 d3y,

where the subtraction term S0 is omitted for the time being; it will be re-instated
at the end of the calculation. Here, ∂V is the closed hypersurface bounding the
four-dimensional region V , ya are coordinates on ∂V , hab is the induced metric,
K is the trace of the extrinsic curvature, and ε = nαnα , where nα is the outward
normal to ∂V .

Throughout this section the quantities nα , ya , hab, and Kab have referred specif-
ically to the spacelike hypersurfaces �t , and we need to be more precise with our
notation. We have seen that V ’s boundary is the union of two spacelike hypersur-
faces �t1 and �t2 with a timelike hypersurface B (Fig. 4.4):

∂V = �t2 ∪ (−�t1) ∪ B.

The minus sign in front of �t1 serves to remind us that while the normal to ∂V
must be directed outward, the normal to �t1 is future-directed and therefore points
inward. With the notation introduced in the preceding subsection, the gravitational
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action takes the form

(16π)SG =
∫

V
R
√−g d4x − 2

∫
�t2

K
√

h d3y + 2
∫

�t1

K
√

h d3y

+2
∫

B
K

√−γ d3z,

and the integration over �t1 incorporates the extra minus sign just discussed.
The region V is foliated by spacelike hypersurfaces �t on which the Ricci

scalar is given by (Section 3.5.3)

R = 3R + K ab Kab − K 2 − 2
(
nα

;βnβ − nαnβ

;β
)
;α,

where 3R is the Ricci scalar constructed from hab. Using Eq. (4.38), which we
write as

√−g d4x = N
√

h dt d3y, we have that

∫
V

R
√−g d4x =

∫ t2

t1
dt

∫
�t

(3R + K ab Kab − K 2)N
√

h d3y

−2
∮

∂V

(
nα

;βnβ − nαnβ

;β
)

d�α.

The new boundary term can be broken down into integrals over �t1 , �t2 , and B.
On �t1 , d�α = nα

√
h d3y – this also incorporates an extra minus sign – and

−2
∫

�t1

(
nα

;βnβ − nαnβ

;β
)

d�α = −2
∫

�t1

nβ

;β
√

h d3y = −2
∫

�t1

K
√

h d3y.

We see that this term cancels out the other integral over �t1 coming from the
original boundary term in the gravitational action. The integrals over �t2 cancel out
also. There remains a contribution from B, on which d�α = rα

√−γ d3z, giving

−2
∫

B

(
nα

;βnβ − nαnβ

;β
)

d�α = −2
∫

B
nα

;βnβrα

√−γ d3z

= 2
∫

B
rα;βnαnβ√−γ d3z,

where we have used nαrα = 0.
Collecting the results, we have

(16π)SG =
∫ t2

t1
dt

∫
�t

(3R + K ab Kab − K 2)N
√

h d3y

+ 2
∫

B

(
K + rα;βnαnβ

)√−γ d3z.
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138 Lagrangian and Hamiltonian formulations of general relativity

We now use the fact that B is foliated by the closed two-surfaces St . We substitute√−γ d3z = N
√

σ dt d2θ and express K as

K = γ i jKi j

= γ i j(rα;β eα
i eβ

j

)
= rα;β

(
γ i j eα

i eβ
j

)
= rα;β(gαβ − rαrβ),

so that the integrand becomes

K + rα;βnαnβ = rα;β(gαβ − rαrβ + nαnβ)

= rα;β
(
σ ABeα

Aeβ
B

)
= σ AB(

rα;βeα
Aeβ

B

)
= σ ABkAB

= k.

We have used Eqs. (4.48) and (4.52) in these manipulations. Substituting this into
our previous expression for the gravitational action, we arrive at

SG = 1

16π

∫ t2

t1
dt

{∫
�t

(
3R + K ab Kab − K 2

)
N

√
h d3y

+ 2
∮

St

(k − k0)N
√

σ d2θ

}
. (4.55)

We have re-instated the subtraction term, by inserting k0 into the integral over St .
This is justified by the fact that the integral over �t vanishes for flat spacetime,
so that the sole contribution to SG comes from the boundary integral; the k0 term
prevents this integral from diverging in the limit St → ∞, and it ensures that SG

vanishes identically for flat spacetime. Thus,

k0 = extrinsic curvature of St embedded in flat space.

The k0 term makes the gravitational action well defined for any asymptotically-flat
spacetime. For compact spacetime manifolds, this term is irrelevant.

The matter action should also be subjected to the 3 + 1 decomposition. Because
the procedure is straightforward, and because we would do well to keep things as
simple as possible, we shall omit this step here. In the remainder of this section we
will consider pure gravity only, and set the matter action to zero.
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4.2 Hamiltonian formulation 139

4.2.6 Gravitational Hamiltonian

To construct the Hamiltonian we must express SG in terms of

ḣab ≡ £t hab, (4.56)

where tα is the timelike vector field defined by Eq. (4.36). We calculate this as
follows. First we recall the definition of the induced metric and write

ḣab = £t
(
gαβeα

a eβ
b

) = (
£t gαβ

)
eα

a eβ
b ,

where we have used Eq. (4.34). Equation (4.36) implies that the Lie derivative of
the metric is given by

£t gαβ = tα;β + tβ;α
= (Nnα + Nα);β + (Nnβ + Nβ);α
= nα N,β + N,αnβ + N (nα;β + nβ;α) + Nα;β + Nβ;α,

where Nα = N aeα
a . Finally, projecting this along eα

a eβ
b gives

ḣab = 2N Kab + Na|b + Nb|a,

where we have used the definitions of extrinsic curvature and intrinsic covariant
differentiation found in Section 3.4.

We have obtained

Kab = 1

2N

(
ḣab − Na|b − Nb|a

)
. (4.57)

The gravitational action therefore depends on ḣab through the extrinsic curvature.
Notice that the action does not involve Ṅ nor Ṅ a , so that momenta conjugate to
N and N a are not defined. This means that unlike hab, the lapse and the shift are
not dynamical variables. This was to be expected: N and N a only serve to specify
the foliation of V into the spacelike hypersurfaces �t ; because this foliation is
arbitrary, we are completely free in our choice of lapse and shift.

The momentum conjugate to hab is defined by

pab = ∂

∂ ḣab

(√−g LG

)
, (4.58)

where LG is the ‘volume part’ of the gravitational Lagrangian. (The ‘boundary
part’ is independent of ḣab.) Because LG is expressed in terms of Kab, it is con-
venient to write Eq. (4.58) in the form

(16π)pab = ∂Kmn

∂ ḣab

∂

∂Kmn

(
16π

√−g LG

)
,
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140 Lagrangian and Hamiltonian formulations of general relativity

where

16π
√−g LG = [3R + (hachbd − habhcd)Kab Kcd

]
N

√
h

follows from Eq. (4.55). Evaluating the partial derivatives gives

(16π)pab = √
h (K ab − K hab), (4.59)

and we see that the canonical momentum is closely related to the extrinsic curva-
ture.

The ‘volume part’ of the Hamiltonian density is

HG = pab ḣab − √−g LG . (4.60)

Using our previous results, we have

(16π)HG = √
h (K ab − K hab)(2N Kab + Na|b + Nb|a)

− (3R + K ab Kab − K 2)N
√

h

= (K ab Kab − K 2 − 3R)N
√

h + 2(K ab − K hab)Na|b
√

h

= (K ab Kab − K 2 − 3R)N
√

h + 2
[
(K ab − K hab)Na

]
|b
√

h

− 2(K ab − K hab)|b Na
√

h.

The full Hamiltonian is obtained by integrating HG over �t and adding the bound-
ary terms:

(16π)HG =
∫

�t

16πHG d3y − 2
∮

St

(k − k0)N
√

σ d2θ

=
∫

�t

[
N (K ab Kab − K 2 − 3R) − 2Na(K ab − K hab)|b

]√
h d3y

+ 2
∮

St

(K ab − K hab)Na dSb − 2
∮

St

(k − k0)N
√

σ d2θ.

Writing dSb = rb
√

σ d2θ , the gravitational Hamiltonian becomes

(16π)HG =
∫

�t

[
N (K ab Kab − K 2 − 3R) − 2Na(K ab − K hab)|b

]√
h d3y

− 2
∮

St

[
N (k − k0) − Na(K ab − K hab)rb

]√
σ d2θ. (4.61)

It is understood that here, Kab stands for the function of hab and pab defined by
Eq. (4.59); this is given explicitly by

√
h K ab = 16π

(
pab − 1

2
p hab

)
, (4.62)

where p ≡ hab pab.
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4.2 Hamiltonian formulation 141

4.2.7 Variation of the Hamiltonian

The equations of motion for the gravitational field are obtained by varying the
action of Eq. (4.55) with respect to N , N a , hab, and pab, which are all treated as
independent variables. The variation is restricted by the conditions

δN = δN a = δhab = 0 on St , (4.63)

but there is no requirement that δpab vanish on the boundary. As a preliminary step
toward calculating δSG , we will now carry out the variation of HG . The computa-
tions presented here are rather formidable; the punch line is delivered in Eq. (4.73)
below.

We begin with a variation with respect to both N and N a . Taking Eq. (4.63) into
account, Eq. (4.61) gives

(16π)δN HG =
∫

�t

(−Ĉ δN − 2 Ĉa δN a)
√

h d3y, (4.64)

where

Ĉ ≡ 3R + K 2 − K ab Kab, Ĉa ≡ (K b
a − K δ b

a )|b. (4.65)

This was easy; the remaining variations will require a much larger effort.
To carry out a variation with respect to hab or pab, we must express HG in

terms of these variables, instead of hab and K ab as was done in Eq. (4.61). Using
Eq. (4.62), a few steps of algebra give

(16π)HG = Ĥ� + ĤS, (4.66)

where

Ĥ� =
∫

�t

[
Nh−1/2( p̂ab p̂ab − 1

2 p̂2) − Nh1/2 3R − 2Nah1/2(h−1/2 p̂ab)
|b
]

d3y

(4.67)
is the ‘volume’ term, while

ĤS = −2
∮

St

[
N (k − k0) − Nah−1/2 p̂abrb

]√
σ d2θ (4.68)

is the ‘boundary’ term. We have introduced the notation Ĥ� ≡ (16π)H� , p̂ab ≡
(16π)pab, and so on; this usage was anticipated in Eqs. (4.65).

We first vary ĤG with respect to p̂ab. From Eq. (4.67) we have

δp Ĥ� =
∫

�t

Nh−1/2δp
(

p̂ab p̂ab − 1
2 p̂2) d3y − 2 δp

∫
�t

Na
(
h−1/2 p̂ab)

|bh1/2 d3y.

We substitute

δp
(

p̂ab p̂ab − 1
2 p̂2) = 2( p̂ab − 1

2 p̂ hab)δ p̂ab
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142 Lagrangian and Hamiltonian formulations of general relativity

inside the first integral, and we integrate the second by parts. This gives

δp Ĥ� =
∫

�t

2
[

Nh−1/2( p̂ab − 1
2 p̂ hab) + N(a|b)

]
δ p̂ab d3y

− 2
∮

St

Nah−1/2δ p̂abrb
√

σ d2θ.

The boundary term is precisely equal to (minus) the variation of ĤS . We therefore
have obtained

δp ĤG =
∫

�t

Hab δ p̂ab d3y, (4.69)

where

Hab = 2Nh−1/2
(

p̂ab − 1

2
p̂ hab

)
+ 2N(a|b). (4.70)

To vary ĤG with respect to hab is more labourious, and we will rely on compu-
tations already presented in Section 4.1. We begin with the volume term:

δh Ĥ� =
∫

�t

[
−Nh−1( p̂ab p̂ab − 1

2 p̂2)δhh1/2 + Nh−1/2δh
(

p̂ab p̂ab − 1
2 p̂2)

− Nδh(h1/2 3R)
]

d3y − 2δh

∮
St

Nah−1/2 p̂abrb
√

σ d2θ

+ 2δh

∫
�t

Na|b p̂ab d3y,

in which the last term on the right-hand side of Eq. (4.67) was integrated by parts.
The variation of the integral over St vanishes because hab is fixed on the boundary.
In the first term within the integral over �t we substitute

δhh1/2 = 1

2
h1/2habδhab,

while in the second term,

δh
(

p̂ab p̂ab − 1
2 p̂2) = 2

(
p̂a

c p̂cb − 1
2 p̂ p̂ab)δhab.

In the third term, we use the three-dimensional version of Eq. (4.16),

δh
(
h1/2 3R

) = −h1/2Gabδhab + h1/2 δ̄vc|c,

where Gab = Rab − 1
2

3R hab is the three-dimensional Einstein tensor and δ̄vc =
habδ�c

ab − hacδ�b
ab. Finally, in the last term we substitute

δh Na|b = N c|bδhac + hac N dδ�c
bd .
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4.2 Hamiltonian formulation 143

After a few steps of algebra we obtain

δh Ĥ� =
∫

�t

[
−1

2 Nh−1/2( p̂cd p̂cd − 1
2 p̂2)hab + 2Nh−1/2( p̂a

c p̂bc − 1
2 p̂ p̂ab)

+ Nh1/2Gab + 2 p̂c(a N b)
|c
]
δhab d3y

+
∫

�t

[−Nh1/2 δ̄vc|c + 2 p̂b
c N dδ�c

bd

]
d3y.

We now leave the first integral alone and set to work on the second integral,
beginning with the first term. After integrating by parts,

−
∫

�t

Nh1/2δ̄vc|c d3y =
∫

�t

N,c δ̄v
ch1/2 d3y −

∮
St

N δ̄vcrc
√

σ d2θ

=
∫

�t

N,c δ̄v
ch1/2 d3y +

∮
St

Nhabδhab,crc√σ d2θ,

where the three-dimensional version of Eq. (4.17) was used. To express the first
integral in terms of δhab we use the relation

δ�c
ab = 1

2
hcd[

(δhda)|b + (δhdb)|a − (δhab)|d
]
,

which is easy to establish. (Note that the covariant derivative is defined with respect
to the reference metric hab, about which the variation is taken.) We have

δ̄vc = 1

2

(
habhcd − hachbd)[

(δhda)|b + (δhdb)|a − (δhab)|d
]

and then

N,c δ̄v
c = 1

2

(
hab N ,d − N ,ahbd)[

(δhda)|b + (δhdb)|a − (δhab)|d
]

= −(
hab N ,d − N ,ahbd)

(δhab)|d;
the second line follows by virtue of the antisymmetry in a and d of the first factor.
After another integration by parts we obtain

−
∫

�t

Nh1/2δ̄vc|c d3y =
∫

�t

(
hab N |d

d − N |ab)δhabh1/2 d3y

+
∮

St

Nhabδhab,crc√σ d2θ,

where we have used the fact that δhab vanishes on St . All this takes care of the first
term inside the second integral for δh Ĥ� . We now turn to the second term inside
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144 Lagrangian and Hamiltonian formulations of general relativity

the same integral. We have∫
�t

2 p̂b
c N dδ�c

bd d3y =
∫

�t

p̂ab N d[
(δhab)|d + (δhad)|b − (δhbd)|a

]
d3y

=
∫

�t

h−1/2 p̂ab N d(δhab)|dh1/2 d3y

= −
∫

�t

(h−1/2 p̂ab N d)|d δhabh1/2 d3y,

where we have integrated by parts and put δhab = 0 on St .
Gathering the results, we find that the variation of the volume term is

δh Ĥ� =
∫

�t

P̂abδhab d3y +
∮

St

Nhabδhab,crc√σ d2θ,

where P̂ab will be written in full below. On the other hand, variation of the bound-
ary term gives

δh ĤS = −2
∮

St

Nδk
√

σ d2θ,

and δk = 1
2 habδhab,crc is the three-dimensional analogue of a result previously

derived in Section 4.1.5. Thus,

δh ĤS = −
∮

St

Nhabδhab,crc√−σ d2θ,

and this cancels out the boundary integral in δh Ĥ� . The variation of the full Hamil-
tonian is therefore

δh ĤG =
∫

�t

P̂abδhab d3y, (4.71)

where

P̂ab = Nh1/2Gab − 1
2 Nh−1/2( p̂cd p̂cd − 1

2 p̂2)hab + 2Nh−1/2( p̂a
c p̂bc − 1

2 p̂ p̂ab)
− h1/2(N |ab − hab N |c

c

) − h1/2(h−1/2 p̂ab N c)
|c + 2 p̂c(a N b)

|c. (4.72)

Here, as before, Gab = Rab − 1
2

3R hab is the three-dimensional Einstein tensor.
Combining Eqs. (4.64), (4.69), and (4.71) we find that the complete variation of

the gravitational Hamiltonian, under the conditions of Eq. (4.63), is given by

δHG =
∫

�t

(
Pab δhab + Hab δpab − C δN − 2 Ca δN a

)
d3y, (4.73)

where Pab ≡ P̂ab/(16π) is given by Eq. (4.72), Hab by Eq. (4.70), while C ≡
Ĉ/(16π) and Ca ≡ Ĉa/(16π) are given by Eq. (4.65).
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4.2 Hamiltonian formulation 145

4.2.8 Hamilton’s equations

The equations of motion are obtained by varying the gravitational action, expressed
as

SG =
∫ t2

t1
dt

[∫
�t

pab ḣab d3y − HG

]
,

with respect to the independent variables N , N a , hab, and pab. Variation yields

δSG =
∫ t2

t1
dt

[∫
�t

(
pab δḣab + ḣab δpab) d3y − δHG

]
,

where δHG is given by Eq. (4.73). After integrating the first term by parts we
obtain

δSG =
∫ t2

t1
dt

∫
�t

[(
ḣab − Hab

)
δpab − (

ṗab + Pab) δhab

+ C δN + 2 Ca δN a
]

d3y. (4.74)

Demanding that the action be stationary implies

ḣab = Hab, ṗab = −Pab, C = 0, Ca = 0. (4.75)

These are the vacuum Einstein field equations in Hamilton form. The first two
govern the evolution of the conjugate variables hab and pab; it is easy to check
that ḣab = Hab just reproduces the relation between ḣab and pab implied by
Eqs. (4.57) and (4.62). The last two are the constraints equations first derived in
Section 3.6; the relations C = 0 and Ca = 0 are usually referred to as the Hamilto-
nian and momentum constraints of general relativity, respectively.

The Hamiltonian formulation of general relativity suggests the following strat-
egy for solving the Einstein field equations. First, select a foliation of spacetime
by specifying the lapse N and the shift N a as functions of xα = (t, ya); the choice
of foliation is completely arbitrary. Defining hab to be the induced metric on the
spacelike hypersurfaces, the full spacetime metric is given by Eq. (4.37):

ds2 = −N 2 dt2 + hab(dya + N a dt)(dyb + N b dt). (4.76)

Next, choose initial values for the tensor fields hab and Kab, where Kab is the
extrinsic curvature of the spacelike hypersurfaces. This choice is not entirely arbi-
trary because the constraint equations must be satisfied: The initial values must be
solutions to

3R + K 2 − K ab Kab = 0, (K ab − K hab)|b = 0, (4.77)
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146 Lagrangian and Hamiltonian formulations of general relativity

where 3R is the Ricci scalar associated with hab, and K = hab Kab. Finally, evolve
these initial values using Hamilton’s equations, ḣab = Hab and ṗab = −Pab,
which may be written in the form (Section 4.5, Problem 4)

ḣab = 2N Kab + £N hab (4.78)

and

K̇ab = N|ab − N
(
Rab + K Kab − 2K c

a Kbc
) + £N Kab. (4.79)

In these equations, the Lie derivatives are directed along N a , the shift vector. This
formulation of the vacuum field equations, usually referred to as their 3 + 1 de-
composition, is the usual starting point of numerical relativity.

4.2.9 Value of the Hamiltonian for solutions

We now return to Eq. (4.61) and ask: What is the value of the gravitational Hamil-
tonian when the fields hab and Kab satisfy the vacuum field equations (4.77)–
(4.79)? The answer is that by virtue of the constraint equations, only the boundary
term contributes to the solution-valued Hamiltonian:

H solution
G = − 1

8π

∮
St

[
N (k − k0) − Na

(
K ab − K hab)rb

]√
σ d2θ. (4.80)

As was discussed previously, this boundary term is relevant only when the space-
time manifold is noncompact. For compact manifolds, H solution

G ≡ 0. The physical
significance of H solution

G for asymptotically-flat spacetimes will be examined in the
next section.

4.3 Mass and angular momentum

4.3.1 Hamiltonian definitions

It is natural to expect that the gravitational mass of an asymptotically-flat space-
time – its total energy – should be related to the value of the gravitational Hamilto-
nian for this spacetime. We will explore this relation in this section, and motivate
another between the Hamiltonian and the spacetime’s total angular momentum.

The solution-valued Hamiltonian, H solution
G given by Eq. (4.80), depends on the

asymptotic behaviour of the spacelike hypersurface �t , and on the asymptotic
behaviour of the lapse and shift. While the lapse and shift are always arbitrary,
the fact that the spacetime is asymptotically flat gives us a preferred behaviour
for the hypersurfaces. We shall demand that �t asymptotically coincide with a
surface of constant time in Minkowski spacetime: If (t̄, x̄, ȳ, z̄) is a Lorentzian
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4.3 Mass and angular momentum 147

frame at infinity, then the asymptotic portion of �t must coincide with a sur-
face t̄ = constant. In this portion of �t , the (arbitrary) coordinates ya are re-
lated to the spatial Minkowski coordinates, and we have the asymptotic relations
ya → ya(x̄, ȳ, z̄); similarly, xα → xα(t̄, x̄, ȳ, z̄). We note that t̄ is proper time for
an observer at rest in the asymptotic region, and infer that this observer moves with
a four-velocity uα = ∂xα/∂ t̄ . Because this vector is normalized and orthogonal to
the surfaces t̄ = constant, it must coincide with the normal vector nα , and we have
another asymptotic relation, nα → ∂xα/∂ t̄ . Substituting this into Eq. (4.36) gives
us

tα → N

(
∂xα

∂ t̄

)
ya

+ N a
(

∂xα

∂ya

)
t̄
,

an asymptotic relation for the flow vector. This shows that once the asymptotic
behaviour of �t has been specified, there is a one-to-one correspondence between
a choice of lapse and shift and a choice of flow vector. The solution-valued Hamil-
tonian can then be regarded either as a functional of N and N a , or as a functional
of tα .

We shall define M , the gravitational mass of an asymptotically-flat spacetime,
to be the limit of H solution

G when St is a two-sphere at spatial infinity, evaluated
with the following choice of lapse and shift: N = 1 and N a = 0. From Eq. (4.80),

M = − 1

8π
lim

St→∞

∮
St

(k − k0)
√

σ d2θ. (4.81)

Here, σAB is the metric on St , k = σ ABkAB is the extrinsic curvature of St em-
bedded in �t , and k0 is the extrinsic curvature of St embedded in flat space. The
quantity defined by Eq. (4.81) is called the ADM mass of the asymptotically-flat
spacetime; the name refers to the seminal work by Arnowitt, Deser, and Misner.

The choice N = 1, N a = 0 implies that asymptotically, tα → ∂xα/∂ t̄ , so that
the flow vector generates an asymptotic time translation. The ADM mass is then
just the gravitational Hamiltonian for this choice of flow vector, and we have made
a formal connection between total energy and time translations. This connection
is both deep and compelling, and it can be adapted to give a definition of total
angular momentum. Indeed, the gravitational Hamiltonian should provide a sim-
ilar connection between angular momentum and asymptotic rotations, which are
characterized by tα → φα ≡ ∂xα/∂φ, where φ is a rotation angle defined in the
asymptotic region in terms of the Cartesian frame (x̄, ȳ, z̄). This corresponds to
the choice N = 0, N a = φa ≡ ∂ya/∂φ of lapse and shift.

We shall define J , the angular momentum of an asymptotically-flat spacetime,
to be (minus) the limit of H solution

G when St is a two-sphere at spatial infinity,
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148 Lagrangian and Hamiltonian formulations of general relativity

evaluated with N = 0 and N a = φa . From Eq. (4.80),

J = − 1

8π
lim

St→∞

∮
St

(Kab − K hab)φ
arb√σ d2θ. (4.82)

The minus sign was inserted to recover the usual right-hand rule for the angular
momentum. Notice that this definition of angular momentum refers to a specific
choice of rotation axis, and φ is the angle around this axis.

4.3.2 Mass and angular momentum for stationary, axially
symmetric spacetimes

To show that these definitions are in fact reasonable, we shall calculate M and J
for an asymptotically-flat spacetime that is both stationary and axially symmetric.
In the asymptotic region r � m, the metric of such a spacetime can be expressed
as

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 + 2m

r

)(
dr2 + r2 d
2) − 4 j sin2 θ

r
dt dφ, (4.83)

where m and j are the spacetime’s mass and angular-momentum parameters, re-
spectively. We will show that M = m and J = j , and thus confirm that the Hamil-
tonian definitions are well founded. We note that the validity of this metric in
the asymptotic region could always be used to define mass and angular momen-
tum. Our Hamiltonian definitions are more powerful, however, because they do
not involve a particular coordinate system, and they stay meaningful even when
the spacetime is not stationary or axially symmetric.

We choose the hypersurfaces �t to be surfaces of constant t , and nα =
−(1 − m/r)∂αt is the unit normal. (Throughout this calculation we work consis-
tently to first order in m/r .) The induced metric on �t is given by

hab dya dyb =
(

1 + 2m

r

)(
dr2 + r2 d
2).

The boundary St is the two-sphere r = R, and the limit R → ∞ will be taken at
the end of the calculation. Its unit normal is ra = (1 + m/r)∂ar and

σAB dθ A dθ B =
(

1 + 2m

R

)
R2 d
2

gives the two-metric on St .
To evaluate M we must first calculate k. This is given by k = ra|a and a brief

calculation yields k = 2(1 − 2m/R)/R. To this we must subtract k0, the extrinsic
curvature of a two-surface of identical intrinsic geometry, but embedded in flat
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4.3 Mass and angular momentum 149

space. On this surface,

σ 0
AB dθ A dθ B = R′2 d
2,

where R′ ≡ R(1 + m/R) so that σ 0
AB = σAB . We have k0 = 2/R′ =

2(1 − m/R)/R and simple algebra yields k − k0 = −2m/R2. On the other hand,√
σ d2θ = R2(1 + 2m/R) sin θ dθ dφ, and substitution into Eq. (4.81) yields

M = m, (4.84)

the expected result.
To evaluate J we must first calculate Kabφ

arb = Kφr (1 − m/r), where Kab =
nα;β eα

a eβ
b . (The second term in the integrand, K habφ

arb, vanishes because the
vectors ra and φa are orthogonal.) The relevant component of the extrinsic curva-
ture is Kφr = (1 − m/r)�t

φr . Using

gtt = −
(

1 + 2m

r

)
, gtφ = −2 j

r3
,

we find that �t
φr = −3 j sin2 θ/r2 and this gives Kφr = −3 j sin2 θ/R2. Substitut-

ing this into Eq. (4.82) yields J = (3 j/4)
∫ π

0 sin3 θ dθ , or

J = j, (4.85)

the expected result.

4.3.3 Komar formulae

An appealing feature of the Hamiltonian definitions for mass and angular momen-
tum is that they do not involve a specific choice of coordinates. Alternative defini-
tions that share this property can be produced for stationary and axially symmetric
spacetimes. These are known as the Komar formulae, and they are

M = − 1

8π
lim

St→∞

∮
St

∇αξ
β

(t) dSαβ (4.86)

and

J = 1

16π
lim

St→∞

∮
St

∇αξ
β

(φ) dSαβ. (4.87)

Here, ξα
(t) is the spacetime’s timelike Killing vector and ξα

(φ) is the rotational Killing
vector; they both satisfy Killing’s equation, ξα;β + ξβ;α = 0. The surface element
is given by (Section 3.2.3)

dSαβ = −2n[αrβ]
√

σ d2θ, (4.88)

where nα and rα are the timelike and spacelike normals to St , respectively.
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150 Lagrangian and Hamiltonian formulations of general relativity

To establish that these formulae do indeed give M = m and J = j , we must
prove that for the spacetime of Eq. (4.83), the relations

−2∇αξ
β

(t)nαrβ = −2m/r2 = k − k0, ∇αξ
β

(φ)nαrβ = Kabφ
arb

hold in the limit r → ∞. We begin with the first relation:

−2∇αξ
β

(t)nαrβ = 2ξα
(t);βnαrβ

= 2�α
βγ nαrβξ

γ

(t)

= −2(1 − 2m/r)�t
r t

= −2m/r2,

as required. We have used Killing’s equation in the first line, and inserted nα =
−(1 − m/r)∂αt , rα = raeα

a = (1 − m/r)∂xα/∂r , and �t
r t = m(1 + 2m/r)/r2 in

the following steps. To establish the second relation requires less work:

∇αξ
β

(φ)nαrβ = −ξα
(φ);βnαrβ

= ξα
(φ)nα;βrβ

= nα;β
(
φa eα

a

)(
rb eβ

b

)
= (

nα;β eα
a eβ

b

)
φarb

= Kabφ
arb.

Once again, Killing’s equation was used in the first line. The second line follows
from the fact that the Killing vector is orthogonal to nα . In the third line the vectors
ξα
(φ) and rβ were decomposed into the basis eα

a . Finally, the last line follows from
the definition of the extrinsic curvature. These computations prove that the defini-
tions of Eq. (4.86) and (4.87) do indeed imply M = m and J = j . We see that for
stationary and axially symmetric spacetimes, the Komar formulae are equivalent
to our Hamiltonian definitions for mass and angular momentum.

The Komar formulae can be turned into hypersurface integrals by invoking
Stokes’ theorem (Section 3.3.3),∮

S
Bαβ dSαβ = 2

∫
�

Bαβ

;β d�α,

where Bαβ is an antisymmetric tensor field and S is the two-dimensional boundary
of the hypersurface �. This is possible because when ξα is a Killing vector, the
tensor Bαβ = ∇αξβ is necessarily antisymmetric. We have

Bαβ

;β = (∇αξβ);β = −(∇βξα);β = −�ξα,
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4.3 Mass and angular momentum 151

where � ≡ ∇α∇α . Using the fact that all Killing vectors satisfy �ξα = −Rα
βξβ

(Section 1.13, Problem 9), we have established the identity∮
S
∇αξβ dSαβ = 2

∫
�

Rα
βξβ d�α.

Because the hypersurface � is spacelike, we have that d�α = −nα

√
h d3y. Using

the Einstein field equations we then obtain∮
S
∇αξβ dSαβ = −16π

∫
�

(
Tαβ − 1

2
T gαβ

)
nαξβ

√
h d3y.

Finally, combining this with Eqs. (4.86) and (4.87), we arrive at

M = 2
∫

�

(
Tαβ − 1

2
T gαβ

)
nαξ

β

(t)

√
h d3y (4.89)

and

J = −
∫

�

(
Tαβ − 1

2
T gαβ

)
nαξ

β

(φ)

√
h d3y. (4.90)

In these equations, � stands for any spacelike hypersurface that extends to spatial
infinity. If � had two boundaries instead of just one, then an additional contribu-
tion from the inner boundary would appear on the right-hand side of Eqs. (4.89)
and (4.90). Such a situation arises when the stationary, axially symmetric space-
time contains a black hole (see Section 5.5.3).

It is a remarkable fact that M and J are defined fundamentally in terms of
integrals over a closed two-surface at infinity. These quantities should therefore be
thought of as properties of the asymptotic structure of spacetime. It is only in the
case of stationary, axially symmetric spacetimes that M and J can be defined as
hypersurface integrals.

4.3.4 Bondi–Sachs mass

The ADM mass was constructed in Section 4.3.1 by selecting a closed two-surface
St ≡ S(t, r), integrating k − k0 over this surface, and then taking the limit r → ∞.
Thus,

MADM(t) = − 1

8π

∮
S(t,r→∞)

(k − k0)
√

σ d2θ. (4.91)

Here, S(t, r) denotes a surface of constant t and r which becomes a round two-
sphere of area 4πr2 as r → ∞. This limit, which is taken while keeping t fixed, is
what defines ‘spatial infinity.’
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152 Lagrangian and Hamiltonian formulations of general relativity

There exists another way of reaching infinity, and to this new limiting procedure
corresponds a distinct notion of mass. This is the Bondi–Sachs mass, which is
obtained by taking S(t, r) to ‘null infinity’ instead of spatial infinity. To define
this we introduce the null coordinates u = t − r (retarded time) and v = t + r
(advanced time). In these coordinates, a two-surface of constant t and r becomes
a surface of constant u and v, which we denote S(u, v). Null infinity corresponds
to the limit v → ∞ keeping u fixed, and the Bondi–Sachs mass is defined by

MBS(u) = − 1

8π

∮
S(u,v→∞)

(k − k0)
√

σ d2θ. (4.92)

The physical importance of the Bondi–Sachs mass comes from the fact that when
an isolated body emits radiation (in the form, say, of electromagnetic or gravita-
tional waves), the rate of change of MBS(u) is directly related to the outward flux
of radiated energy. If F denotes this flux, then the Bondi–Sachs mass satisfies

dMBS

du
= −

∮
S(u,v→∞)

F
√

σ d2θ. (4.93)

Thus, the mass of a radiating body decreases as the radiation escapes to infinity.
The proof of this statement is rather involved; it can be found in the original papers
by Bondi, Sachs, and their collaborators.

4.3.5 Distinction between ADM and Bondi–Sachs masses: Vaidya spacetime

For stationary spacetimes, the ADM and Bondi–Sachs masses are identical: there
is no distinction. For the dynamical spacetime of an isolated body emitting gravi-
tational (or other types of) radiation, the two notions of mass are distinct. For such
a system the Bondi–Sachs mass decreases according to Eq. (4.93), while the ADM
mass stays constant.

The metric of a radiating spacetime is difficult to write down; usually it is ex-
pressed as a messy expansion in powers of 1/r . We shall not attempt to deal with
these complications here. For the purpose of illustrating the difference between
the ADM and Bondi–Sachs masses, we shall instead adopt a simple spherically-
symmetric model. Consider the Schwarzschild metric expressed in terms of the
null coordinate u = t − r − 2M ln(r/2M − 1), and allow the mass parameter M
to become a function of retarded time: M → m(u). This new metric is given by

ds2 = − f du2 − 2 du dr + r2 d
2, f = 1 − 2m(u)/r, (4.94)

and it is a good candidate to represent a radiating spacetime. To see if it makes a
sensible solution to the Einstein field equations, let us examine the Einstein tensor,
whose only nonvanishing component is Guu = −(2/r2)(dm/du). This means that
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4.3 Mass and angular momentum 153

the stress-energy tensor must be of the form

Tαβ = −dm/du

4πr2
lαlβ, (4.95)

where lα = −∂αu is tangent to radial, outgoing null geodesics. This stress-energy
tensor describes a pressureless fluid with energy density ρ = (−dm/du)/(4πr2)

moving with a four-velocity lα . Such a fluid is usually referred to as null dust;
it gives a good description of radiation in the high-frequency, geometric-optics
approximation. It is easy to check that the form (function of u)/r2 for the energy
density is dictated by energy-momentum conservation. You may also verify that
all the standard energy conditions are satisfied by Tαβ if dm/du < 0, that is, if m
decreases with increasing retarded time. We conclude that the metric of Eq. (4.94),
called the outgoing Vaidya metric, makes a physically reasonable solution to the
Einstein field equations.

We wish to compute the ADM and Bondi–Sachs masses for the Vaidya space-
time. The first step is to select a spacelike hypersurface � bounded by a closed
two-surface S; this hypersurface must asymptotically coincide with a surface
t̄ = constant of Minkowski spacetime. A suitable choice is to let � be a surface of
constant t ≡ u + r , for which the unit normal

nα = −(2 − f )−1/2 ∂α(u + r)

is everywhere timelike. From Eq. (4.94) we obtain that the induced metric on � is

hab dya dyb = (2 − f ) dr2 + r2 d
2.

For S we choose the two-sphere r = R, where R is a constant much larger than the
maximum value of 2m(u); eventually we will take the limit R → ∞. Recall that
spatial infinity corresponds to keeping t fixed while taking the limit (which means
that u → −∞), whereas null infinity corresponds to keeping u fixed while taking
the limit. The unit normal on S is ra = (2 − f )1/2 ∂ar , and the induced metric is
σAB dθ Adθ B = R2 d
2.

First we calculate

M(S) ≡ − 1

8π

∮
S
(k − k0)

√
σ d2θ

for the bounded two-surface S; the two different limits to infinity will be taken
next. The extrinsic curvature of S embedded in � is calculated as

k = ra|a = 2

R

[
1 + 2m(u)

R

]−1/2

= 2

R

[
1 − m(u)

R
+ O

(
R−2)],
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154 Lagrangian and Hamiltonian formulations of general relativity

and the extrinsic curvature of S embedded in flat space is k0 = 2/R. Subtract-
ing, we have that k − k0 = −2m(u)/R2 + O(R−3) and integrating over S yields
M(S) = m(u) + O(R−1).

We may now take the limit R → ∞. As was mentioned previously, the ADM
mass is obtained by keeping t = u + R fixed while taking the limit. This gives

MADM(t) = m(−∞), (4.96)

and we see that the ADM mass is a constant, equal to the initial value of the mass
function. We may therefore say that MADM represents all the mass initially present
in the spacetime. (This interpretation is quite general and not limited to this specific
example.) For the Bondi–Sachs mass we must keep u fixed while taking the limit.
This gives

MBS(u) = m(u), (4.97)

and we see that the Bondi–Sachs mass is identified with the mass function of the
Vaidya spacetime. It decreases in response to the outflow of radiation described by
the stress-energy tensor of Eq. (4.95). Notice that the field equation

dm

du
= −4πr2Tuu = −4πr2(−T r

u

) ≡ −4πr2 F

is compatible with the general mass-loss formula of Eq. (4.93).
It may appear paradoxical that the ADM mass of a dynamical spacetime should

be a constant. This, however, is what should be expected of a radiating spacetime
(Fig. 4.5). The ADM mass represents all the mass present on a spacelike hypersur-
face of constant t . This hypersurface intersects the central body whose mass does
decrease as a consequence of radiation loss. But this does not mean that the ADM
mass should decrease, because the hypersurface intersects also the radiation, and
the ADM mass accounts for both forms of energy. The net result is a conserved
quantity. On the other hand, the Bondi–Sachs mass represents all the mass present

Figure 4.5 A radiating spacetime.

radiating mass

t = constant

u = constant
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4.3 Mass and angular momentum 155

on a null hypersurface of constant u. Because this hypersurface fails to intersect
any of the radiation that was emitted prior to the retarded time u, the net result is a
quantity that decreases with increasing retarded time.

4.3.6 Transfer of mass and angular momentum

We shall now derive expressions for the transfer of mass and angular momentum
across a hypersurface � in a stationary, axially symmetric spacetime.

To begin, consider the vector fields

εα = −T α
β ξ

β

(t), �α = T α
β ξ

β

(φ), (4.98)

where T αβ is a test stress-energy tensor that does not influence the spacetime ge-
ometry. According to the definition of the stress-energy tensor, εα can be inter-
preted as an energy flux vector, while �α is interpreted as an angular-momentum
flux vector.

To see this clearly, consider the simple case of dust, a perfect fluid with stress-
energy tensor T αβ = ρuαuβ , where ρ is the rest-mass density and uα the four-
velocity. Energy-momentum conservation implies that uα satisfies the geodesic
equation, and that jα = ρuα is a conserved vector: jα;α = 0. This vector can be
interpreted as the dust’s momentum density, or equivalently, as a rest-mass flux
vector. Then εα = Ẽ jα and �α = L̃ jα , where Ẽ ≡ −uαξα

(t) is the conserved en-
ergy per unit rest mass and L̃ ≡ uαξα

(φ) the conserved angular momentum per unit
rest mass. (As we have indicated, both Ẽ and L̃ are constants of the motion.) These
relations show quite clearly that εα represents a flux of energy density, while �α is
a flux of angular-momentum density.

The vectors εα and �α are divergence-free. For example,

εα
;α = −T αβ

;α ξ(t)β + T αβ ξ(t)β;α = 0;

the first term vanishes by virtue of energy-momentum conservation, and the second
vanishes because ξ(t)β;α is an antisymmetric tensor field. This implies that the
integral of εα or �α over a hypersurface ∂V enclosing a four-dimensional region
V is identically zero. For example,

∮
∂V

εα d�α = 0.

This equation states that the total transfer of energy across a closed hypersurface
∂V is zero. This is clearly a statement of conservation of total energy – or total
mass.
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156 Lagrangian and Hamiltonian formulations of general relativity

The boundary ∂V can be partitioned into any number of pieces. If one such
piece is the hypersurface �, then the integral of εα over � represents the mass
transferred across this piece of ∂V . Thus,

�M = −
∫

�

T α
β ξ

β

(t) d�α (4.99)

is the mass transferred across the hypersurface �, and similarly,

�J =
∫

�

T α
β ξ

β

(φ) d�α (4.100)

is the angular momentum transferred across �.
For illustration, let us return to our previous example, and let us choose � to be

spacelike and orthogonal to the vector field uα . Then d�α = −uα

√
h d3y and we

find that �M = ∫
�

Ẽρ
√

h d3y and �J = ∫
�

L̃ρ
√

h d3y. The first equation states
that the transfer of energy across � is the integral of Ẽρ, the energy density. The
second equation comes with a very similar interpretation.

4.4 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Arnowitt, Deser, and Misner (1962); Bondi, van der Burg, and Metzner (1962);
Brown and York (1993), Brown, Lau, and York (1997); Carter (1979); Hawking
and Horowitz (1996); Sachs (1962); Sudarsky and Wald (1992); and Wald (1984).

More specifically:
An overview of the Lagrangian and Hamiltonian formulations of general rela-

tivity is given in Appendix E of Wald. The Hamiltonian formulation was initiated
by Arnowitt, Deser, and Misner, who also introduced the ADM mass. Early treat-
ments of the Hamiltonian formulation often discarded the all-important boundary
terms; careful treatments are given in Sudarsky and Wald, Brown and York, and
Hawking and Horowitz. (Problem 7 below is based on this last paper.) The Hamil-
tonian definitions for mass and angular momentum are taken from Brown and
York; the discussion of Section 4.2.4 is also based on their paper. Sections 4.3.3
and 4.3.5 are based on Carter’s Sections 6.6.1 and 6.6.2, respectively. The Bondi–
Sachs mass was introduced by Bondi and his collaborators in an effort to put the
notion of gravitational-wave energy on a firm footing. The definition given in Sec-
tion 4.3.4 is due to Brown, Lau, and York. I would like to point out that the first
occurrence of the (k − k0) formula for the ADM mass can be found in a 1988
paper by Katz, Lynden-Bell, and Israel.
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Suggestions for further reading:
The numerical integration of the Einstein field equations is currently one of the

most active areas of research in gravitational physics. While the starting point of
most numerical methods is the 3 + 1 decomposition of the field equations pre-
sented in Section 4.2.8, the story by no means ends there. For its comprehensive
review of various methods and its summary of the field’s achievements, the 2001
article by Lehner is a very useful reference.

We have seen that the gravitational action, and the gravitational Hamiltonian,
must include a subtraction term in order to be well defined for asymptotically-flat
spacetimes. The subtraction term, however, is not unique, and alternative propos-
als were put forth by Mann (1999 and 2000) and Lau (1999). Generalizations to
spacetimes that are not asymptotically flat have been considered, mostly in the
context of spacetimes with a negative cosmological constant; see the 1999 paper
by Kraus, Larsen, and Siebelink.

Who was the first to discover the field equations of general relativity: Einstein
or Hilbert? The story used to be that after formulating a variational principle for
general relativity, Hilbert published the field equations first, just a few days before
Einstein did (on November 25, 1915). Recent historical investigation reveals, how-
ever, that Hilbert did not, in fact, anticipate Einstein. The revised story is told by
Corry, Renn, and Stachel (1997).

4.5 Problems

1. The Lagrangian density for the free electromagnetic field is

L = − 1

16π
Fαβ Fαβ,

where Fαβ = Aβ;α − Aα;β is the Faraday tensor, expressed in terms of the
vector potential Aα .
(a) Derive the Maxwell field equations in vacuum, Fαβ

;β = 0, on the basis
of this Lagrangian density.

(b) Show that the stress-energy tensor for the electromagnetic field is given
by

Tαβ = 1

4π

(
FαµF µ

β − 1

4
gαβ Fµν Fµν

)
.

2. The Lagrangian density for a point particle of mass m moving on a world line
zα(λ) is given by

L = −m
∫ √

−gαβ żα żβ δ4(x, z) dλ,
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158 Lagrangian and Hamiltonian formulations of general relativity

where δ4(x, x ′) is a four-dimensional, scalarized δ-function satisfying

∫
V

δ4(x, x ′)
√−g d4x = 1

if x ′ is within the domain of integration; we also have żα = dzα/dλ, and the
parameterization of the world line is arbitrary.
(a) Derive an expression for the stress-energy tensor of a point particle. To

simplify this expression, set dλ = dτ (with τ denoting proper time on
the world line) at the end of the calculation.

(b) Prove that when it is applied to a point particle, the statement T αβ

;β = 0
gives rise to the geodesic equation for uα = dzα/dτ .

(c) Explain whether the result of part (b) constitutes a valid proof of the state-
ment that the Einstein field equations predict the motion of a massive
body to be geodesic.

3. Calculate the gravitational action SG for a region V of Schwarzschild space-
time. Take V to be bounded by the hypersurfaces �t1 , �t2 , �R , and �ρ , where
�t1 (�t2) is the spacelike hypersurface described by t = t1 (t = t2), and where
�R (�ρ) is the three-cylinder at r = R (r = ρ). Here, 2M < ρ < R. At the
end of the calculation, take the limits R → ∞ and ρ → 2M .

4. Derive Eq. (4.79), the evolution equation for the extrinsic curvature. You may
use ṗab = −Pab as a starting point, or proceed from scratch with the definition
K̇ab = £t (nα;βeα

a eβ
b ). [Either way, the calculation is tedious! You may want to

consult York (1979).]
5. Recall that in Section 3.6.5 we introduced a mass function m(r) that deter-

mines the three-metric of a spherically symmetric hypersurface. Prove that

− 1

8π

∮
S(r)

(k − k0)
√

σ d2θ = r
(

1 − √
1 − 2m/r

)
,

where S(r) is a two-surface of constant r . Use this to show that m(∞) is the
ADM mass of this hypersurface.

6. In this problem we explore some consequences of Eq. (4.89), which gives an
expression for the ADM mass of a stationary spacetime.
(a) Prove that the right-hand side of Eq. (4.89) is independent of the choice

of hypersurface �.
(b) Show that if T αβ is the stress-energy tensor of a static perfect fluid, then

Eq. (4.89) reduces to

M =
∫

�

(ρ + 3p) e�
√

h d3y,
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where ρ is the mass density, p the pressure, and e2� ≡ −gαβξα
(t)ξ

β

(t).
[Hints: A perfect fluid is static if its four-velocity uα is parallel to ξα

(t).
You may assume that the spacetime also is static.]

(c) Specialize to spherical symmetry, and write the spacetime metric as

ds2 = −e2� dt2 + (1 − 2m/r)−1 dr2 + r2 d
2,

in which � and m are functions of r . Refer back to the result of Prob-
lem 5 and deduce the identity∫

�

ρ(1 − 2m/r)1/2 dV =
∫

�

(ρ + 3p) e� dV,

where dV = √
h d3y is the invariant volume element on the hypersur-

face �.
(d) Specialize now to a weak-field situation, for which the metric can be

expressed as

ds2 = −(1 + 2�) dt2 + (1 − 2�)(dx2 + dy2 + dz2);
the Newtonian potential � is a function of r̄ = √

x2 + y2 + z2. Work-
ing consistently in the weak-field approximation, show that the identity
derived in part (c) reduces to

1

8π

∫
�

|∇�|2 dV = 3
∫

�

p dV,

in which dV and all vectorial operations refer to the three-dimensional
flat space of ordinary vector calculus. The left-hand side represents
(minus) the total gravitational potential energy of the system. For a
monoatomic ideal gas in thermodynamic equilibrium, the right-hand
side represents twice the total kinetic energy of the system. This equa-
tion is therefore a formulation of the virial theorem of Newtonian grav-
itational physics. The identity of part (c) can then be interpreted as a
general-relativistic version of the virial theorem.

7. The ADM mass is usually defined by

M = 1

16π

∮
S→∞

(
Dbγab − Daγ

)
ra√σ d2θ,

which is a very different expression from the one appearing in Section 4.3.1.
Here, S is the two-surface that encloses the spacelike hypersurface �. If hab

is the metric on � in arbitrary coordinates ya , then γab ≡ hab − h0
ab, where

h0
ab is the metric of flat space in the same coordinates. We also have γ ≡ γ a

a ,
and Da is the covariant derivative associated with the flat metric h0

ab, which is
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160 Lagrangian and Hamiltonian formulations of general relativity

used to raise and lower all indices. Finally, ra is the unit normal of the surface
S, and

√
σ d2θ is the surface element on S.

The purpose of this problem is to prove that this definition is equivalent to
the one given in the text,

M = − 1

8π

∮
S→∞

(k − k0)
√

σ d2θ,

where k (k0) is the extrinsic curvature of S embedded in � (flat space). You
may proceed along the following lines:

Because both expressions are invariant under a coordinate transformation,
we may use, in a neighbourhood of S, the coordinates (�, θ A), where � is
proper distance off S in the direction orthogonal to S, and θ A are coordinates
on S which are Lie transported off S along curves orthogonal to S. In these
coordinates the metric on � is given by

hab dya dyb = d�2 + σ̃AB(�) dθ A dθ B,

where σ̃AB(�) (which also depends on θ A) is such that σ̃AB(0) = σAB , the
induced metric on S. Similarly,

h0
ab dya dyb = d�2 + σ̃ 0

AB(�) dθ A dθ B .

Because the induced metrics must agree on S, we also have σ̃ 0
AB(0) = σAB .

This implies that γab = 0 on S.
Using this information, show that both expressions for M reduce to the same

form,

M = − 1

16π

∮
S→∞

h0abγab,�

√
σ d2θ.

This is sufficient to prove that the two expressions are indeed equivalent.
8. In this problem we study the transport of energy and angular momentum by

a scalar field ψ in flat spacetime. The metric is ds2 = −dt2 + dr2 + r2 d
2

and the scalar field satisfies the wave equation gαβψ;αβ = −4πρ, where ρ is a
specified source. It can be shown that in the wave zone (where r is much larger
than a typical wavelength of the radiation), the field is given by

ψ(t, r, θ, φ) = 1

r

∞∑
�=0

�∑
m=−�

a�m(u) Y�m(θ, φ) + O
(
r−2),

where Y�m(θ, φ) are spherical harmonics; the amplitudes a�m are constructed
from ρ, and they are functions of retarded time u ≡ t − r . The scalar field
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comes with a stress-energy tensor

Tαβ = ψ,αψ,β − 1

2

(
ψ,µψ,µ

)
gαβ,

and we are interested in the transfer of energy and angular momentum across
a null hypersurface � defined by v = constant, where v ≡ t + r is advanced
time.
(a) Show that d�α = −r2kα du d
, where kα = −1

2∂αv and d
 =
sin θ dθ dφ, is a surface element on �.

(b) Prove that for any test field producing a stress-energy tensor T αβ , the
amount of energy crossing � per unit retarded time is

dE

du
=

∮
S

r2Tαβkαtβ d
,

where tα = ∂xα/∂t and S is a two-sphere of constant u and v. Prove
also that the amount of angular momentum flowing across � is given
by

dJ

du
= −

∮
S

r2Tαβkαφβ d
,

where φα = ∂xα/∂φ.
(c) Show that for scalar radiation, the preceding expressions reduce to

dE

du
=

∞∑
�=0

�∑
m=−�

∣∣ȧ�m(u)
∣∣2

and

dJ

du
=

∞∑
�=0

�∑
m=−�

im ȧ�m(u)a∗
�m(u)

in the limit v → ∞. Here, an overdot indicates differentiation with
respect to u and an asterisk denotes complex conjugation.

(d) Suppose that the source producing the scalar radiation is in rigid rotation
around the z axis, in the sense that the t and φ dependence of ρ resides
entirely in the combination φ − 
t , where 
 is a constant angular ve-
locity. Prove that in this situation the field satisfies

ψ,α ξα = 0,
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162 Lagrangian and Hamiltonian formulations of general relativity

where ξα ≡ tα + 
φα . Prove also that in the limit v → ∞, the trans-
fers of energy and angular momentum are related by

dE

du
= 


dJ

du
.

This relation applies to any type of radiation emitted by a source in
rigid rotation. It is valid also in curved spacetimes, provided that the
spacetime is stationary, axially symmetric, and asymptotically flat.
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5

Black holes

The final chapter of this book is devoted to one of the most successful applications
of general relativity, the mathematical theory of black holes. In the first part of the
chapter we explore three exact solutions to the Einstein field equations that de-
scribe black holes; these are the Schwarzschild (Section 5.1), Reissner–Nordström
(Section 5.2), and Kerr (Section 5.3) solutions. In Section 5.4 we move away from
the specifics of those solutions and consider properties of black holes that can be
formulated quite generally, without relying on the details of a particular metric. In
the final section of this chapter, Section 5.5, we present the four fundamental laws
of black-hole mechanics.

The most important feature of a black-hole spacetime is the event horizon, a null
hypersurface which acts as a causal boundary between two regions of the space-
time, the interior and exterior of the black hole. Many physical quantities associ-
ated with the black hole, such as its mass, angular momentum, and surface area,
are defined by integration over the event horizon. The integration techniques intro-
duced in Chapter 3 will be put to direct use here, as well as the notions of mass and
angular momentum encountered in Chapter 4. And since the event horizon is gen-
erated by a congruence of null geodesics, the methods developed in Chapter 2 will
also be part of our discussion. So here it all comes together in one final glorious
moment!

5.1 Schwarzschild black hole

5.1.1 Birkhoff’s theorem

The Schwarzschild metric,

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2 d�2, (5.1)

163
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164 Black holes

is the unique solution to the Einstein field equations that describes the vacuum
spacetime outside a spherically symmetric body of mass M . While this object
could have a time-dependent mass distribution, the external spacetime is necessar-
ily static and its metric is given by Eq. (5.1). This statement, known as Birkhoff’s
theorem, implies that a spherical mass distribution cannot emit gravitational waves.

The proof of the theorem goes as follows. The metric of a spherically symmetric
spacetime can always be cast in the form

ds2 = −e2ψ f dt2 + f −1 dr2 + r2 d�2, (5.2)

involving the two arbitrary functions ψ(t, r) and f (t, r). (This statement is not
quite true: It could happen that t and r fail to be good coordinates in some region
of the spacetime, and this would invalidate this form of the metric in that region.
We will encounter such cases shortly, but they can be ignored for the time being.)
It is convenient to also introduce a mass function m(t, r) defined by

f = 1 − 2m

r
. (5.3)

For the metric of Eq. (5.2), the Einstein field equations are

∂m

∂r
= 4πr2(−T t

t

)
,

∂m

∂t
= −4πr2(−T r

t

)
,

(5.4)
∂ψ

∂r
= 4πr f −1(−T t

t + T r
r

)
.

The first two equations motivate the name ‘mass’ for the function m(t, r), as −T t
t

represents the density of mass-energy and −T r
t its outward flux; they imply that

in vacuum, m(t, r) = M , a constant. The third gives ψ ′ = 0, and ψ(t, r) can be
set equal to zero without loss of generality. The Schwarzschild solution is thereby
recovered.

5.1.2 Kruskal coordinates

The difficulties of the Schwarzschild metric at r = 2M are well known. While the
spacetime is perfectly well behaved there, the coordinates (t, r) become singular
at r = 2M – they are no longer in a one-to-one correspondence with spacetime
events. This problem can be circumvented by introducing another coordinate sys-
tem. The following construction originates from the independent work of Kruskal
(1960) and Szekeres (1960).

Consider a swarm of massless particles moving radially in the Schwarzschild
spacetime – t and r vary, but not θ and φ. It is easy to check that ingoing parti-
cles move along curves v = constant, while outgoing particles move along curves
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5.1 Schwarzschild black hole 165

Figure 5.1 Spacetime diagram based on the (u, v) coordinates.

outgoing ray

ingoing ray

u v

u = constant, where

u = t − r∗, v = t + r∗,
(5.5)

r∗ =
∫

dr

1 − 2M/r
= r + 2M ln

∣∣∣∣ r

2M
− 1

∣∣∣∣.

In a spacetime diagram using v (advanced time) and u (retarded time) as oblique
coordinates (both oriented at 45 degrees), the massless particles propagate at
45 degrees, just as in flat spacetime (Fig. 5.1). The null coordinates (u, v) are
therefore well suited to the description of (radial) null geodesics. In these coordi-
nates the Schwarzschild metric takes the form

ds2 = −(1 − 2M/r) du dv + r2 d�2. (5.6)

Here, r appears no longer as a coordinate, but as the function of u and v defined
implicitly by r∗(r) = 1

2(v − u). In these coordinates the surface r = 2M appears
at v − u = −∞, and it is still the locus of a coordinate singularity.

To see how this coordinate singularity might be removed, we focus our at-
tention on a small neighbourhood of the surface r = 2M , in which the rela-
tion r∗(r) can be approximated by r∗ � 2M ln |r/2M − 1|. This implies that
r/2M � 1 ± er∗/2M = 1 ± e(v−u)/4M , and f � ±e(v−u)/4M . Here and below, the
upper sign refers to the part of the neighbourhood corresponding to r > 2M , while
the lower sign refers to r < 2M . The metric (5.6) becomes

ds2 � ∓(e−u/4M du)(ev/4M dv) + r2 d�2.
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166 Black holes

This expression motivates the introduction of a new set of null coordinates, U and
V , defined by

U = ∓e−u/4M , V = ev/4M . (5.7)

In terms of these the metric will be well behaved near r = 2M . Going back to the
exact expression (5.5) for r∗, we have that er∗/2M = e(v−u)/4M = ∓U V , or

er/2M
(

r

2M
− 1

)
= −U V, (5.8)

which implicitly gives r as a function of U V . You may check that the
Schwarzschild metric is now given by

ds2 = −32M3

r
e−r/2M dUdV + r2 d�2. (5.9)

This is manifestly regular at r = 2M . The coordinates U and V are called null
Kruskal coordinates. In a Kruskal diagram (a map of the U -V plane; see Fig. 5.2),
outgoing light rays move along curves U = constant, while ingoing light rays
move along curves V = constant.

In the Kruskal coordinates, a surface of constant r is described by an equa-
tion of the form U V = constant, which corresponds to a two-branch hyperbola
in the U -V plane. For example, r = 2M becomes U V = 0, while r = 0 becomes
U V = 1. There are two copies of each surface r = constant in a Kruskal diagram.
For example, r = 2M can be either U = 0 or V = 0. The Kruskal coordinates
therefore reveal the existence of a much larger manifold than the portion covered
by the original Schwarzschild coordinates. In a Kruskal diagram, this portion is la-
beled I. The Kruskal coordinates do not only allow the continuation of the metric
through r = 2M into region II, they also allow continuation into regions III and

Figure 5.2 Kruskal diagram.

U V

IIII
II

IV

r = 0
r = M

r = M
r = 0

r = 3M r = 3M
r = 2M

r =
2M
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5.1 Schwarzschild black hole 167

IV. These additional regions, however, exist only in the maximal extension of the
Schwarzschild spacetime. If the black hole is the result of gravitational collapse,
then the Kruskal diagram must be cut off at a timelike boundary representing the
surface of the collapsing body. Regions III and IV then effectively disappear be-
low the surface of the collapsing star.

5.1.3 Eddington–Finkelstein coordinates

Because of the implicit nature of the relation between r and U V , the Kruskal coor-
dinates can be awkward to use in some computations. In fact, it is rarely necessary
to employ coordinates that cover all four regions of the Kruskal diagram, although
it is often desirable to have coordinates that are well behaved at r = 2M . In such
situations, choosing v and r as coordinates, or u and r , does the trick. These coordi-
nate systems are called ingoing and outgoing Eddington–Finkelstein coordinates,
respectively.

It is easy to check that in the ingoing coordinates, the Schwarzschild metric
takes the form

ds2 = −(1 − 2M/r) dv2 + 2 dv dr + r2 d�2, (5.10)

while in the outgoing coordinates,

ds2 = −(1 − 2M/r) du2 − 2 du dr + r2 d�2. (5.11)

It may also be verified that the (v, r) coordinates cover regions I and II of the
Kruskal diagram, while u and r cover regions IV and I.

The Eddington–Finkelstein coordinates can also be used to construct space-
time diagrams (Fig. 5.3), but these do not have the property that both ingoing
and outgoing null geodesics propagate at 45 degrees. For example, it follows

Figure 5.3 Spacetime diagram based on the (v, r) coordinates.

r = 0 r = 2M

ingoing

r

outgoing
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168 Black holes

from Eq. (5.10) that ingoing light rays move with dv = 0, that is, along coordi-
nate lines that can be oriented at 45 degrees, but the outgoing rays move with
dv/dr = 2/(1 − 2M/r), that is, with a varying slope.

5.1.4 Painlevé–Gullstrand coordinates

Another useful set of coordinates for the Schwarzschild spacetime are the
Painlevé–Gullstrand coordinates first considered in Section 3.13, Problem 1. Here,
as with the Eddington–Finkelstein coordinates, the spatial coordinates (r, θ, φ) are
the same as in the original form of the metric, Eq. (5.1), but the time coordinate
is different: T is proper time as measured by a free-falling observer starting from
rest at infinity and moving radially inward.

The four-velocity of such an observer is given by uα ∂α = f −1 ∂t − √
1 − f ∂r ,

where f = 1 − 2M/r . From this we deduce that uα = −∂αT , where the time
function T is obtained by integrating dT = dt + f −1√1 − f dr ≡ dτ , where τ

is proper time. (Integration is elementary, and the result appears in Section 3.13,
Problem 1.) After inserting this expression for dt into Eq. (5.1), we obtain the
Painlevé–Gullstrand form of the Schwarzschild metric:

ds2 = −dT 2 + (
dr + √

2M/r dT
)2 + r2 d�. (5.12)

The coordinates (T, r, θ, φ) give rise to a metric that is regular at r = 2M , in corre-
spondence with the fact that our free-falling observer does not consider this surface
to be in any way special. Because this observer originates in region I of the space-
time (at r = ∞) and ends up in region II (at r = 0), the new coordinates cover
only these two regions of the Kruskal diagram. By reversing the motion – letting
dr become −dr in Eq. (5.12) – an alternative coordinate system is produced that
covers regions VI and I instead.

From Eq. (5.12) we infer a rather striking property of the Painlevé–Gullstrand
coordinates: The hypersurfaces T = constant are all intrinsically flat. This can be
seen directly from the fact that the induced metric on any such hypersurface is
given by ds2 = dr2 + r2 d�.

5.1.5 Penrose–Carter diagram

The double-null Kruskal coordinates make the causal structure of the
Schwarzschild spacetime very clear, and this is their main advantage. Another use-
ful set of double-null coordinates is obtained by applying the transformation

Ũ = arctan U, Ṽ = arctan V . (5.13)

Cambridge Books Online © Cambridge University Press, 2010https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511606601.007
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 12 Apr 2020 at 14:32:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511606601.007
https://www.cambridge.org/core


5.1 Schwarzschild black hole 169

Figure 5.4 Compactified coordinates for the Schwarzschild spacetime.

Ũ Ṽ

Ũ + Ṽ = −π/2

Ũ + Ṽ = π/2

Ṽ = −π/2

Ũ = π/2

Ũ = −π/2

Ṽ = π/2

This rescaling of the null coordinates does not affect the appearance of radial light
rays, which still propagate at 45 degrees in a spacetime diagram based on the
new coordinates (Fig. 5.4). However, while the range of the initial coordinates
was infinite (for example, −∞ < U < ∞), it is finite for the new coordinates (for
example, −π/2 < Ũ < π/2). The entire spacetime is therefore mapped onto a
finite domain of the Ũ -Ṽ plane. This compactification of the manifold introduces
bad coordinate singularities at the boundaries of the new coordinate system, but
these are of no concern when the purpose is simply to construct a compact map of
the entire spacetime.

In the new coordinates the surfaces r = 2M are located at Ũ = 0 and Ṽ =
0, and the singularities at r = 0, or U V = 1, are now at Ũ + Ṽ = ±π/2. The
spacetime is also bounded by the surfaces Ũ = ±π/2 and Ṽ = ±π/2. The four
points (Ũ , Ṽ ) = (±π/2, ±π/2) are singularities of the coordinate transformation:
In the actual spacetime the surfaces U = 0, U = ∞, and U V = 1 never meet.

It is useful to assign names to the various boundaries of the compactified space-
time (Fig. 5.5). The surfaces Ũ = π/2 and Ṽ = π/2 are called future null infinity
and are labelled I + (pronounced ‘scri plus’). The diagram makes it clear that I +
contains the future endpoints of all outgoing null geodesics (those along which r
increases). Similarly, the surfaces Ũ = −π/2 and Ṽ = −π/2 are called past null
infinity and are labelled I −. These contain the past endpoints of all ingoing null
geodesics (those along which r decreases). The points at which I + and I −
meet are called spacelike infinity and are labelled i0. These contain the endpoints
of all spacelike geodesics. The points (Ũ , Ṽ ) = (0, π/2) and (Ũ , Ṽ ) = (π/2, 0)

are called future timelike infinity and are labelled i+. These contain the future end-
points of all timelike geodesics that do not terminate at r = 0. Finally, the points
(Ũ , Ṽ ) = (0, −π/2) and (Ũ , Ṽ ) = (−π/2, 0) are called past timelike infinity and
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170 Black holes

Table 5.1 Boundaries of the compactified Schwarzschild
spacetime.

Label Name Definition

I + Future null infinity v = ∞, u finite
I − Past null infinity u = −∞, v finite
i0 Spatial infinity r = ∞, t finite
i+ Future timelike infinity t = ∞, r finite
i− Past timelike infinity t = −∞, r finite

Figure 5.5 Penrose–Carter diagram of the Schwarzschild spacetime.

r = 0

r = 0

i−

i0

i+

i−

i0

i+

I −

I +

I −

I +

r = 2M

r =
2M

are labelled i−. These contain the past endpoints of all timelike geodesics that do
not originate at r = 0. Table 5.1 provides a summary of these definitions.

Compactified maps such as the one displayed in Fig. 5.5 are called Penrose–
Carter diagrams. They display, at a glance, the complete causal structure of the
spacetime under consideration. They make a very useful tool in general relativity.

5.1.6 Event horizon

On a Kruskal diagram (Fig. 5.2), all radial light rays move along curves U =
constant or V = constant. The light cones are therefore oriented at 45 degrees,
and timelike world lines, which lie within the light cones, move with a slope larger
than unity. The one-way character of the surface r = 2M separating regions I and
II of the Schwarzschild spacetime is then clear: An observer crossing this sur-
face can never retrace her steps, and cannot elude an encounter with the curvature
singularity at r = 0. It is also clear that after crossing r = 2M , the observer can
no longer send signals to the outside world, although she may continue to receive
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5.1 Schwarzschild black hole 171

them. The surface r = 2M therefore prevents any external observer from detecting
what goes on inside. In this context it is called the black-hole’s event horizon. The
region within the event horizon (region II) is called the black-hole region of the
Schwarzschild spacetime.

The surface r = 2M that separates regions I and II must be distinguished from
the surface r = 2M that separates regions IV and I. It is clear that the latter is
an event horizon to all observers living inside region IV (who cannot perceive
what goes on in region I). It is also a one-way surface, because observers from
the outside cannot cross it. To distinguish between the two surfaces r = 2M , it is
usual to refer to the first as a future horizon and to the second as a past horizon.
The region within the past horizon (region IV) is called the white-hole region of
the Schwarzschild spacetime.

5.1.7 Apparent horizon

Another important property of the surface r = 2M has to do with the behaviour
of outgoing light rays in a neighbourhood of this surface. Here, the term outgoing
will refer specifically to those rays which move on curves U = constant. This is
potentially confusing because the radial coordinate r does not necessarily increase
along those rays; in fact, r increases only if U < 0 (outside the black hole) and
it decreases if U > 0 (inside the black hole). While the term ‘outgoing’ should
perhaps be reserved to designate rays along which r always increases, this termi-
nology is nevertheless widely used. Similarly, we will use the term ingoing to des-
ignate light rays which move on curves V = constant. If V > 0, then r decreases
along the ingoing rays; if V < 0, r increases.

We will show that the expansion of a congruence of outgoing light rays (as
defined above) changes sign at r = 2M . (This should be obvious just from the fact
that r increases along the geodesics that are outside r = 2M , but decreases along
geodesics that are inside.) Outgoing light rays have

kα = −∂αU (5.14)

as their (affinely parameterized) tangent vector, and their expansion is calcu-
lated as θ = kα

;α = |g|−1/2(|g|1/2kα),α . In Kruskal coordinates kV = |gU V |−1 is
the only nonvanishing component of kα , and |g|1/2 = |gU V |r2 sin2 θ . This gives
θ = 2r,V /r |gU V |, and using Eq. (5.8) and (5.9) we obtain

θ = kα
;α = − U

2Mr
. (5.15)

As was previously claimed, the expansion is positive for U < 0 (in the past
of r = 2M) and negative for U > 0 (in the future of r = 2M). The expansion
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172 Black holes

Figure 5.6 Trapped surfaces and apparent horizon of a spacelike hypersurface.
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r = 2M

A

	

apparent horizon

trapped surface

therefore changes sign at r = 2M , and in this context, this surface is called an ap-
parent horizon. (A similar calculation would reveal that for ingoing light rays, the
expansion is negative everywhere in regions I and II.)

To give a proper definition to the term ‘apparent horizon,’ we must first intro-
duce the notion of a trapped surface (Fig. 5.6). Let 	 be a spacelike hypersurface.
A trapped surface on 	 is a closed, two-dimensional surface S such that for both
congruences (ingoing and outgoing) of future-directed null geodesics orthogonal
to S, the expansion θ is negative everywhere on S. (It should be clear that each two-
sphere U, V = constant in region II of the Kruskal diagram is a trapped surface.)
Let T be the portion of 	 that contains trapped surfaces; this is known as the
trapped region of 	. The boundary of the trapped region, ∂T , is what is defined to
be the apparent horizon of the spacelike hypersurface 	. (In Schwarzschild space-
time this would be any two-sphere at r = 2M .) Notice that the apparent horizon is
a marginally trapped surface: For one congruence of null geodesics orthogonal to
∂T , θ = 0. Notice also that the apparent horizon designates a specific two-surface
S on a given hypersurface 	. The apparent horizon can generally be extended to-
ward the future (and past) of 	, because hypersurfaces to the future (and past) of
	 also contain apparent horizons. The union of all these apparent horizons forms
a three-dimensional surface A called the trapping horizon of the spacetime. (In
Schwarzschild spacetime this would be the entire hypersurface r = 2M .) In the
following we will not distinguish between the two-dimensional apparent horizon
and the three-dimensional trapping horizon; we will refer to both as the apparent
horizon. (This sloppiness of language is not uncommon.)

5.1.8 Distinction between event and apparent horizons: Vaidya spacetime

The event and apparent horizons of the Schwarzschild spacetime coincide, and it
may not be clear why the two concepts need to be distinguished. This coincidence,
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5.1 Schwarzschild black hole 173

however, is a consequence of the fact that the spacetime is stationary; for more gen-
eral black-hole spacetimes the event and apparent horizons are distinct hypersur-
faces. To illustrate this we introduce a simple, non-stationary black-hole spacetime.

We express the Schwarzschild metric in terms of ingoing Eddington–Finkelstein
coordinates,

ds2 = − f dv2 + 2 dv dr + r2 d�2, (5.16)

and we allow the mass function to depend on advanced time v:

f = 1 − 2m(v)

r
. (5.17)

This gives the ingoing Vaidya metric, a solution to the Einstein field equations with
stress-energy tensor

Tαβ = dm/dv

4πr2
lαlβ, (5.18)

where lα = −∂αv is tangent to ingoing null geodesics. This stress-energy ten-
sor describes null dust, a pressureless fluid with energy density (dm/dv)/(4πr2)

and four-velocity lα . (A similar, outgoing Vaidya solution was considered in Sec-
tion 4.3.5. A notable difference between these solutions is that here, the mass func-
tion must increase for Tαβ to satisfy the standard energy conditions.)

Consider the following situation. A black hole, initially of mass m1, is irradiated
(with ingoing null dust) during a finite interval of advanced time (between v1 and
v2) so that its mass increases to m2. Such a spacetime is described by the Vaidya
metric, with a mass function given by

m(v) =
⎧⎨
⎩

m1 v ≤ v1

m12(v) v1 < v < v2

m2 v ≥ v2

,

where m12(v) increases smoothly from m1 to m2. We would like to determine
the physical significance of the surfaces r = 2m1, r = 2m12(v), and r = 2m2, and
find the precise location of the event horizon.

It should be clear that r = 2m1 and r = 2m2 describe the apparent horizon when
v ≤ v1 and v ≥ v2, respectively. More generally, we will show that the apparent
horizon of the Vaidya spacetime is always located at r = 2m(v).

The null vector field kα dxα = − f dv + 2 dr is tangent to a congruence of
outgoing null geodesics. It does not, however, satisfy the geodesic equation in
affine-parameter form: As a brief calculation reveals, kα;βkβ = κ kα where κ =
2m(v)/r2. To calculate the expansion of the outgoing null geodesics, we need to
introduce an affine parameter λ∗ and a rescaled tangent vector kα∗ . (The calcula-
tion can also be handled via the results of Section 2.6, Problem 8.) As was shown
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174 Black holes

in Section 1.3, the desired relation between these vectors is kα∗ = e−
kα , where
d
/dλ = κ(λ) with λ denoting the original parameter. We have

θ = kα
∗;α

= e−

(
kα

;α − 
,αkα
)

= e−


(
kα

;α − d


dλ

)

= e−

(
kα

;α − κ
)
.

Here, the factor kα
;α − κ is the congruence’s expansion when measured in terms

of the initial parameter λ – it is equal to (δA)−1d(δA)/dλ, where δA is the con-
gruence’s cross-sectional area. The factor e−
 converts it to (δA)−1d(δA)/dλ∗,
and this operation does not affect the sign of θ . A simple computation gives
kα

;α = 2(r − m)/r2 and we arrive at

e
θ = 2

r2

[
r − 2m(v)

]
.

So θ = 0 on the surface r = 2m(v), and we conclude that the apparent horizon
begins at r = 2m1 for v ≤ v1, follows r = 2m12(v) in the interval v1 < v < v2,
and remains at r = 2m2 for v ≥ v2.

We may now show that while the apparent horizon is a null hypersurface before
v = v1 and after v = v2, it is spacelike in the interval v1 ≤ v ≤ v2. This follows at
once from the fact that if � ≡ r − 2m(v) = 0 describes the apparent horizon, then

gαβ�,α�,β = −4
dm

dv

is negative (so that the normal �,α is timelike) if dm/dv > 0 (so that the energy
conditions are satisfied). We therefore see that the apparent horizon is null when
the spacetime is stationary, but that it is spacelike otherwise.

Where is the event horizon? Clearly it must coincide with the surface r = 2m2

in the future of v = v2. But what is its extension to the past of v = v2? Because the
event horizon is defined as a causal boundary in spacetime, it must be a null hyper-
surface generated by null geodesics (more will be said on this in Section 5.4). The
event horizon can therefore not coincide with the apparent horizon in the past of
v = v2. Instead, its location is determined by finding the outgoing null geodesics of
the Vaidya spacetime that connect smoothly with the generators of the surface r =
2m2. (See Fig. 5.7; a particular example is worked out in Section 5.7, Problem 2.)

It is clear that the generators of the event horizon have to be expanding in the
past of v = v2 if they are to be stationary (in the sense that θ = 0) in the future.
Indeed, supposing that the null energy condition is satisfied (which will be true
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5.1 Schwarzschild black hole 175

Figure 5.7 Black hole irradiated with ingoing null dust.
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if dm/dv > 0), the focusing theorem (Section 2.4) implies that the congruence
formed by the null generators of the event horizon will be focused by the infalling
null dust; a zero expansion in the future of v = v2 guarantees a positive expansion
in the past. The event horizon is therefore generated by those null geodesics that
undergo just the right amount of focusing, so that after encountering the last of the
infalling matter, their expansion goes to zero.

The event horizon coincides with the apparent horizon only in the future of
v = v2. In the past, because the apparent horizon has a spacelike segment while
the event horizon is everywhere null, the apparent horizon lies within the event
horizon, that is, inside the black hole (Fig. 5.7). As we shall see in Section 5.4, this
observation is quite general.

It is a remarkable property of the event horizon that the entire future history
of the spacetime must be known before its position can be determined: The black
hole’s final state must be known before the horizon’s null generators can be identi-
fied. This teleological property is not shared by the apparent horizon, whose loca-
tion at any given time (as represented by a spacelike hypersurface) depends only
on the properties of the spacetime at that time.

5.1.9 Killing horizon

The vector tα = ∂xα/∂t is a Killing vector of the Schwarzschild spacetime. While
this vector is timelike outside the black hole, it is null on the event horizon, and it
is spacelike inside:

gαβ tαtβ = 1 − 2M

r
.
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176 Black holes

The surface r = 2M can therefore be called a Killing horizon, a hypersurface on
which the norm of a Killing vector goes to zero. In static black-hole spacetimes,
the event, apparent, and Killing horizons all coincide.

5.1.10 Bifurcation two-sphere

The point (U, V ) = (0, 0) in a Kruskal diagram, at which the past and future
horizons intersect, represents the bifurcation two-sphere of the Schwarzschild
spacetime. This two-surface is characterized by the fact that the Killing vector
tα = ∂xα/∂t vanishes there. To recognize this we need to work out the compo-
nents of this vector in Kruskal coordinates. From Eqs. (5.5) and (5.7) we get the
relation et/2M = −V/U , and after using Eq. (5.8) we obtain

U 2 = e(r−t)/2M
(

r

2M
− 1

)
, V 2 = e(r+t)/2M

(
r

2M
− 1

)
.

Taking partial derivatives with respect to t , we arrive at

tU = − U

4M
, t V = V

4M
. (5.19)

It follows immediately that tα = 0 at the bifurcation two-sphere. It should be
noted that the bifurcation two-sphere exists only in the maximally extended
Schwarzschild spacetime. If the black hole is the result of gravitational collapse,
then the bifurcation two-sphere is not part of the actual spacetime.

According to our previous calculation, t V is the only nonvanishing component
of the Killing vector on the future horizon. This implies that tα ∝ −∂αU at U = 0,
and we have the important result that tα is tangent to the null generators of the
event horizon. This was to be expected from the fact that the event horizon of the
Schwarzschild spacetime is also a Killing horizon.

5.2 Reissner–Nordström black hole

5.2.1 Derivation of the Reissner–Nordström solution

The Reissner–Nordström (RN) metric describes a static, spherically symmetric
black hole of mass M possessing an electric charge Q. We begin our discussion
with a derivation of this solution to the Einstein–Maxwell equations.

We assume that the electromagnetic-field tensor Fαβ has no components along
the θ and φ directions; this ensures that the field is purely electric when measured
by stationary observers. Under this assumption the only nonvanishing component
is Ftr . Maxwell’s equations in vacuum are 0 = Fαβ

;β = |g|−1/2(|g|1/2 Fαβ),β .
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5.2 Reissner–Nordström black hole 177

Using the metric of Eq. (5.2), this implies (eψr2 Ftr )′ = 0, or

Ftr = e−ψ Q

r2
,

where Q is a constant of integration, to be interpreted as the black-hole charge.
The stress-energy tensor for the electromagnetic field is

T α
β = 1

4π

(
FαµFβµ − 1

4
δα

β Fµν Fµν

)
,

and a few steps of algebra yield

T α
β = Q2

8πr4
diag(−1, −1, 1, 1). (5.20)

The Einstein field equations (5.4) imply m′ = Q2/2r2, or m(r) = M − Q2/2r .
The fact that T t

t = T r
r implies ψ ′ = 0, so that ψ can be set to zero without loss of

generality. The RN solution is therefore

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2 + r2 d�2, (5.21)

with an electromagnetic-field tensor whose only nonvanishing component is

Ftr = Q

r2
. (5.22)

Here, M is total (ADM) mass of the spacetime and Q is the black hole’s electric
charge.

To see that Q is indeed the charge, consider a nonsingular charge distribution
on a spacelike hypersurface 	, described by a current density jα . An appropriate
definition for total charge is Q = ∫

	
jα d	α , or Q = (4π)−1

∫
	

Fαβ

;β d	α after
using Maxwell’s equations. Using Stokes’ theorem (Section 3.3.3), we rewrite this
as an integral over a closed two-surface S bounding the charge distribution. This
yields Gauss’ law,

Q = 1

8π

∮
S

Fαβ dSαβ. (5.23)

The advantage of this expression for the total charge is that it is applicable even
when the charge distribution is singular, which is the case in the present appli-
cation. Also, this definition of total charge is in the same spirit as the previously
encountered definitions for total mass and angular momentum (Section 4.3). Sub-
stituting Eq. (5.22) and evaluating for a two-sphere of constant t and r confirms
that the Q appearing in Eq. (5.22) is indeed the black hole’s electric charge.
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5.2.2 Kruskal coordinates

The function f (r) = 1 − 2M/r + Q2/r2 has zeroes at r = r±, where

r± = M ±
√

M2 − Q2. (5.24)

The roots are both real, and the RN spacetime truly contains a black hole, when
|Q| ≤ M . The special case of a black hole with |Q| = M is referred to as an ex-
treme RN black hole. If |Q| > M , then the RN solution describes a naked singu-
larity at r = 0.

The coordinates (t, r) are singular at the outer horizon (r = r+), and new co-
ordinates must be introduced to extend the metric across this surface. This can be
done with Kruskal coordinates. As we shall see, however, these coordinates fail
to be regular at the inner horizon (r = r−), and another coordinate transformation
will be required to extend the metric beyond this surface. Thus, Kruskal coordi-
nates are specific to a given horizon, and a single coordinate patch is not sufficient
to cover the entire RN manifold (Fig. 5.8). We will see that the outer horizon in an
event horizon for the RN spacetime, and the inner horizon is an apparent horizon.

Let us first take care of the extension across the outer horizon. We express the
RN metric in the form

ds2 = − f dt2 + f −1 dr2 + r2 d�2,

where f = 1 − 2M/r + Q2/r2. Near r = r+ this function can be approximated
by

f (r) � 2κ+(r − r+),

where κ+ ≡ 1
2 f ′(r+). It follows that near r = r+,

r∗ ≡
∫

dr

f
� 1

2κ+
ln

∣∣κ+(r − r+)
∣∣.

Figure 5.8 Kruskal patches for the Reissner–Nordström spacetime.
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5.2 Reissner–Nordström black hole 179

Introducing the null coordinates u = t − r∗ and v = t + r∗, the surface r = r+
appears at v − u = −∞ and we define the Kruskal coordinates U+ and V+ by

U+ = ∓e−κ+u, V+ = eκ+v. (5.25)

Here, the upper sign refers to r > r+ and the lower sign refers to r < r+. It is easy
to check that f � −2U+V+ near r = r+, so that the metric becomes

ds2 � − 2

κ+2
dU+dV+ + r+2 d�2.

This shows that when it is expressed in the coordinates (U+, V+), the metric
is well behaved at the outer horizon. On the other hand, an exact integration for
r∗(r) would reveal that r∗ → +∞ at the inner horizon, which is then located at
v − u = ∞, or U+V+ = ∞. The Kruskal coordinates are singular at the inner
horizon.

The coordinates (U+, V+) should be used only in the interval r1 < r < ∞,
where r1 > r− is some cutoff radius. Inside r = r1 another coordinate system
must be introduced. One such system is (t, r), in which the metric takes the stan-
dard form of Eq. (5.21). It is important to understand that this new coordinate
patch, which covers the portion of the RN spacetime corresponding to the inter-
val r− < r < r+, is distinct from the original patch that covers the external region
r > r+. And indeed, because f is now negative, the new t must be interpreted as
a spacelike coordinate (because gtt > 0) while r must be interpreted as a timelike
coordinate (because grr < 0).

There still remains the issue of extending the spacetime beyond r = r−, where
the new (t, r) coordinates fail. We want to construct a new set of Kruskal coordi-
nates, U− and V−, adapted to the inner horizon. Retracing the same steps as before,
we have that near r = r− the function f can be approximated by

f (r) � −2κ−(r − r−),

where κ− = 1
2 | f ′(r−)|. It follows that

r∗ � − 1

2κ−
ln

∣∣κ−(r − r−)
∣∣.

With u = t − r∗ and v = t + r∗, the surface r = r− appears at v − u = +∞ and
we define the new Kruskal coordinates by

U− = ∓eκ−u, V− = −e−κ−v. (5.26)

Here, the upper sign refers to r > r− and the lower sign refers to r < r−. Then
f � −2U−V− and the metric becomes

ds2 � − 2

κ−2
dU−dV− + r−2 d�2.
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180 Black holes

This is manifestly regular across r = r−. The new Kruskal coordinates, however,
are singular at r = r+.

What happens now on the other side of the inner horizon? The most notice-
able feature is that the singularity at r = 0 appears as a timelike surface – this is
markedly different from what happens inside a Schwarzschild black hole, where
the singularity is spacelike. Because f > 0 when r < r−, r re-acquires its inter-
pretation as a spacelike coordinate; any surface r = constant < r− is therefore a
timelike hypersurface, and this includes the singularity. Because it is timelike, the
singularity can be avoided by observers moving within the black hole. This is a
striking new phenomenon, and we should examine it very carefully.

Consider the motion of a typical observer inside a RN black hole (Fig. 5.8).
Before crossing the inner horizon (but after going across the outer horizon), r is a
timelike coordinate and the motion necessarily proceeds with r decreasing. After
crossing r = r−, however, r becomes spacelike and both types of motion (r de-
creasing or increasing) become possible. Our observer may therefore decide to re-
verse course, and if she does, she will avoid r = 0 altogether. Her motion inside the
inner horizon will then proceed with r increasing and she will cross, once more, the
surface r = r−. This, however, is another copy of the inner horizon, distinct from
the one encountered previously. (Recall that there are two copies of each surface
r = constant in a Kruskal diagram.) After entering this new r > r− region, our ob-
server notices that r has once again become timelike, and she finds that reversing
course is no longer possible: Her motion must proceed with r increasing and this
brings her in the vicinity of another surface r = r+. Because there is no reason for
spacetime to just stop there, yet another Kruskal patch (U+, V+) must be intro-
duced to extend the RN metric beyond this horizon. The new Kruskal coordinates
take over where the old patch (U−, V−) leaves off, at the spacelike hypersurface
r = r1.

The ultimate conclusion to these considerations is that our observer eventually
emerges out of the black hole, through another copy of the outer horizon, into a
new asymptotically-flat universe. Her trip may not end there: Our observer could
now decide to enter the RN black hole that resides in this new universe, and this en-
tire cycle would repeat! It therefore appears that the RN metric describes more than
just a single black hole. Indeed, it describes an infinite lattice of asymptotically-flat
universes connected by black-hole tunnels.

Such a fantastic spacetime structure is best represented with a Penrose–Carter
diagram (Fig. 5.9). The diagram shows that the region bounded by the surfaces
r = r+ and r = r− contains trapped surfaces: Both ingoing and outgoing light
rays originating from this region converge toward the singularity. The outer and
inner horizons are therefore apparent horizons, but only the outer horizon is an
event horizon.
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5.2 Reissner–Nordström black hole 181

Figure 5.9 Penrose–Carter diagram of the Reissner–Nordström spacetime.

r = 0 r = 0

r = 0 r = 0

I − I −

I − I −

I + I +

r−

r+

r−

5.2.3 Radial observers in Reissner–Nordström spacetime

The discovery of black-hole tunnels is so bizarre that it should be backed up by a
solid calculation. Here we consider the geodesic motion of a free-falling observer
in the RN spacetime. It is assumed that the motion proceeds entirely in the radial
direction and that initially, it is directed inward.

We will first work with the (v, r) coordinates, in which the metric takes the form

ds2 = − f dv2 + 2 dv dr + r2 d�2, (5.27)

where f = 1 − 2M/r + Q2/r2. The observer’s four-velocity is uα ∂α = v̇ ∂v +
ṙ ∂r , where an overdot denotes differentiation with respect to proper time τ . The
quantity Ẽ = −uαtα = −uv , the observer’s energy per unit mass, is a constant of
the motion. In terms of v̇ and ṙ this is given by Ẽ = f v̇ − ṙ . On the other hand,
the normalization condition uαuα = −1 gives f v̇2 − 2v̇ṙ = 1, and these equations
imply

ṙin = −(
Ẽ2 − f

)1/2
, v̇in = Ẽ − (

Ẽ2 − f
)1/2

f
, (5.28)

where the sign in front of the square root was chosen appropriately for an ingoing
observer.
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182 Black holes

The equation for ṙ can also be written in the form

ṙ2 + f = Ẽ2, (5.29)

which comes with a nice interpretation as an energy equation (Fig. 5.10). Its mes-
sage is clear: After crossing the outer and inner horizons the observer reaches a
turning point (ṙ = 0) at a radius rmin < r− such that f (rmin) = Ẽ2. The motion,
which initially was inward, turns outward and the observer eventually emerges out
of the black hole, into a new external universe. During the outward portion of the
motion, the observer’s four-velocity is given by

ṙout = +(
Ẽ2 − f

)1/2
, v̇out = Ẽ + (

Ẽ2 − f
)1/2

f
, (5.30)

with the opposite sign in front of the square root.
Let us examine the behaviour of v̇ as the observer traverses a horizon. When the

motion is inward we have that v̇ � (2Ẽ)−1 in the limit f → 0. This means that
v stays finite during the first crossings of the outer and inner horizons. When the
motion is outward, v̇ � 2Ẽ/ f in the limit f → 0, and this means that the coordi-
nates (v, r) become singular during the second crossing of the inner horizon. The
observer’s motion cannot be followed beyond this point, unless new coordinates
are introduced.

Let us therefore switch to the coordinates (u, r), in which the RN metric takes
the form

ds2 = − f du2 − 2 du dr + r2 d�2. (5.31)

Figure 5.10 Effective potential for radial motion in Reissner–Nordström
spacetime.
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5.2 Reissner–Nordström black hole 183

Figure 5.11 Eddington–Finkelstein patches for the Reissner–Nordström
spacetime.
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In these coordinates, and during the outward portion of the motion (after the
bounce at r = rmin), the four-velocity is given by

ṙout = +(
Ẽ2 − f

)1/2
, u̇out = Ẽ − (

Ẽ2 − f
)1/2

f
. (5.32)

We have that u̇ � (2Ẽ)−1 when f → 0, which shows that u stays finite during the
second crossings of the inner and outer horizons.

We see that a large portion of the RN spacetime is covered by the two coordinate
patches employed here (Fig. 5.11). This includes two asymptotically-flat regions
connected by a black-hole tunnel that contains two copies of the outer horizon, and
two copies of the inner horizon. The complete spacetime is obtained by tessella-
tion, using the patches (v, r) and (u, r) as tiles; this gives rise to the diagram of
Fig. 5.9. Because the complete spacetime contains an infinite number of black-hole
tunnels, an infinite number of coordinate patches is required for its description.

The presence of black-hole tunnels in the RN spacetime is now well established.
These tunnels, of course, have a lot to do with the occurrence of a turning point in
the motion of our free-falling observer. This is a rather striking feature of the RN
spacetime. While turning points are a familiar feature of Newtonian mechanics, in
this context they are always associated with the presence of an angular-momentum
term in the effective potential: The centrifugal force is repulsive and it prevents an
observer from reaching the centre at r = 0. This, however, cannot explain what is
happening here, because the motion was restricted from the start to be radial – there
is no angular momentum present to produce a repulsive force. The gravitational
field alone must be responsible for the repulsion, and we are forced to conclude
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184 Black holes

that inside the inner horizon, the gravitational force becomes repulsive! It is this
repulsive gravity that ultimately is responsible for the black-hole tunnels.

Such a surprising conclusion can perhaps be understood better if we recall our
previous expression for the mass function:

m(r) = M − Q2

2r
. (5.33)

This relation shows that m(r) becomes negative if r is sufficiently small, and
clearly, this negative mass will produce a repulsive gravitational force. How can
we explain this behaviour for the mass function? We recall that m(r) measures
the mass inside a sphere of radius r . In general this will be smaller than the total
mass M ≡ m(∞), because a sphere of finite radius r excludes a certain amount –
equal to Q2/(2r) – of electrostatic energy. If the radius is sufficiently small, then
Q2/(2r) > M and m(r) < 0. You may check that this always occurs within the
inner horizon.

The conclusion that the RN spacetime contains black-hole tunnels is firm.
Should we then feel confident that a trip inside a charged black hole will lead
us to a new universe? This answer is no. The reason is that the existence of such
tunnels depends very sensitively on the assumed symmetries of the RN spacetime,
namely, staticity and spherical symmetry. These symmetries would not be exact in
a realistic black hole, and slight perturbations have a dramatic effect on the hole’s
internal structure. The tunnels are unstable, and they do not appear in realistic
situations. (More will be said on this in Section 5.7, Problem 3.)

5.2.4 Surface gravity

In Section 5.2.2, a quantity κ+ ≡ 1
2 f ′(r+) was introduced during the construction

of Kruskal coordinates adapted to the outer horizon. We shall name this quantity
the surface gravity of the black hole, and henceforth denote it simply by κ . As we
shall see in Section 5.5, the surface gravity provides an important characterization
of black holes, and it plays a key role in the laws of black-hole mechanics. For the
RN black hole the surface gravity is given explicitly by

κ = r+ − r−
2r+2

=
√

M2 − Q2

r+2
, (5.34)

where we have used Eq. (5.24). Notice that κ = 0 for an extreme RN black hole
and that

κ = 1

4M
(5.35)

for a Schwarzschild black hole.
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5.2 Reissner–Nordström black hole 185

The name ‘surface gravity’ deserves a justification. Consider, in a static and
spherically symmetric spacetime with metric

ds2 = − f dt2 + f −1 dr2 + r2 d�2, (5.36)

a particle of unit mass held stationary at a radius r . (Here, f is not necessarily
required to have the RN form, but this will be the case of interest.) The four-
velocity of the stationary particle is uα = f −1/2tα and its acceleration is aα =
uα

;βuβ . The only nonvanishing component is ar = 1
2 f ′ and the magnitude of the

acceleration vector is

a(r) ≡ (
gαβaαaβ

)1/2 = 1

2
f −1/2 f ′(r). (5.37)

This is the force required to hold the particle at r if the force is applied locally,
at the particle’s position. This, not surprisingly, diverges in the limit r → r+. But
suppose instead that the particle is held in place by an observer at infinity, by
means of an infinitely long, massless string. What is a∞(r), the force applied by
this observer?

To answer this we consider the following thought experiment. Let the observer
at infinity raise the string by a small proper distance δs, thereby doing an amount
δW∞ = a∞δs of work. At the particle’s position the displacement is also δs, but
the work done is δW = a δs. (You may justify this statement by working in a local
Lorentz frame at r .) Suppose now that the work δW is converted into radiation that
is then collected at infinity. The received energy is redshifted by a factor f 1/2, so
that δE∞ = f 1/2a δs. But energy conservation demands that the energy extracted
be equal to the energy put in, so that δE∞ = δW∞. This implies

a∞(r) = f 1/2a(r) = 1

2
f ′(r). (5.38)

This is the force applied by the observer at infinity. This quantity is well behaved
in the limit r → r+, and it is appropriate to call a∞(r+) the surface gravity of the
black hole. Thus,

κ ≡ a∞(r+) = 1

2
f ′(r+). (5.39)

The surface gravity is therefore the force required of an observer at infinity to hold
a particle (of unit mass) stationary at the event horizon.

The surface gravity can also be defined in terms of the Killing vector tα . We
have seen in Section 5.1.9 that the event horizon of a static spacetime is also a
Killing horizon, so that tα is tangent to the horizon’s null generators. Because
tα is orthogonal to itself on the horizon, it is also normal to the horizon. But
� ≡ −tαtα = 0 on the horizon, and since the normal vector is proportional to
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186 Black holes

�,α , there must exist a scalar κ such that
(−tµtµ

)
;α = 2κtα (5.40)

on the horizon. A brief calculation confirms that this κ is the surface gravity: Us-
ing the coordinates (v, r) we have that tα ∂α = ∂v and tα dxα = dr on the hori-
zon; with � = −gvv = f we obtain �,α = f ′∂αr , which is just Eq. (5.40) with
κ = 1

2 f ′(r+). This calculation reveals also that the horizon’s null generators are
parameterized by v.

Because tα is tangent to the horizon’s null generators, it must satisfy the
geodesic equation at r = r+. This comes as an immediate consequence of
Eq. (5.40) and Killing’s equation: On the horizon,

tα;β tβ = κtα, (5.41)

and we see that v is not an affine parameter on the generators. An affine parameter
λ can be obtained by integrating the equation dλ/dv = eκv (Section 1.3). This
gives λ = V/κ , where V ≡ eκv is one of the Kruskal coordinates adapted to the
event horizon – it was denoted V+ in Section 5.2.2. It follows that on the horizon,
the null vector

kα = V −1tα (5.42)

satisfies the geodesic equation in affine-parameter form.
It is possible to derive an explicit formula for κ . Because the congruence

of null generators is necessarily hypersurface orthogonal, Frobenius’ theorem
(Section 2.4.3) guarantees that the relation

t[α;β tγ ] = 0

is satisfied on the event horizon. Using Killing’s equation, this implies

tα;β tγ + tγ ;αtβ + tβ;γ tα = 0,

and contracting with tα;β yields

tα;β tα;β tγ = −tγ ;αtα;β tβ + tβ;γ tβ;αtα

= −κ tγ ;αtα + κ tβ;γ tβ

= −2κ2tγ .

We have obtained

κ2 = −1

2
tα;β tα;β, (5.43)
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5.3 Kerr black hole 187

in which it is understood that the right-hand side is evaluated at r = r+. Equations
(5.40), (5.41), and (5.43) can all be regarded as fundamental definitions of the
surface gravity; they are of course all equivalent.

5.3 Kerr black hole

5.3.1 The Kerr metric

A solution to the Einstein field equations describing a rotating black hole was dis-
covered by Roy Kerr in 1963. (There is also a solution to the Einstein–Maxwell
equations that describes a charged, rotating black hole. It is known as the Kerr–
Newman solution, and it is described in Section 5.7, Problem 8.) As we shall
see, the Kerr metric can be written in a number of different ways. In the standard
Boyer–Lindquist coordinates it is given by

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dt dφ + 	

ρ2
sin2 θ dφ2

+ ρ2

�
dr2 + ρ2 dθ2

(5.44)

= −ρ2�

	
dt2 + 	

ρ2
sin2 θ(dφ − ω dt)2 + ρ2

�
dr2 + ρ2 dθ2,

where

ρ2 = r2 + a2 cos2 θ, � = r2 − 2Mr + a2,
(5.45)

	 = (r2 + a2)2 − a2� sin2 θ, ω ≡ − gtφ

gφφ

= 2Mar

	
.

The Kerr metric is stationary and axially symmetric; it therefore admits the Killing
vectors tα = ∂xα/∂t and φα = ∂xα/∂φ. It is also asymptotically flat. The Komar
formulae (Section 4.3) confirm that M is the spacetime’s ADM mass, and show
that J ≡ aM is the angular momentum (so that a is the ratio of angular momentum
to mass).

The components of the inverse metric are

gtt = − 	

ρ2�
, gtφ = −2Mar

ρ2�
, gφφ = � − a2 sin2 θ

ρ2� sin2 θ
,

(5.46)
grr = �

ρ2
, gθθ = 1

ρ2
.

The metric and its inverse have singularities at � = 0 and ρ2 = 0. To distinguish
between coordinate and curvature singularities, we examine the squared Riemann
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188 Black holes

tensor of the Kerr spacetime:

Rαβγ δ Rαβγ δ = 48M2(r2 − a2 cos2 θ)(ρ4 − 16a2r2 cos2 θ)

ρ12
. (5.47)

This reveals that the singularity of the metric at � = 0 is just a coordinate sin-
gularity, but that the Kerr spacetime is truly singular at ρ2 = 0. The nature of the
curvature singularity will be clarified in Section 5.3.8.

Various properties of the Kerr spacetime will be examined in the following sub-
sections. To facilitate this discussion we will introduce three families of observers:
zero-angular-momentum observers (ZAMOs), static observers, and stationary ob-
servers.

5.3.2 Dragging of inertial frames: ZAMOs

ZAMOs are observers with zero angular momentum: if uα is the four-velocity, then
L̃ ≡ uαφα = 0. This implies that gφt ṫ + gφφφ̇ = 0, where an overdot indicates
differentiation with respect to proper time τ . Using Eqs. (5.44) this translates to

� ≡ dφ

dt
= ω, (5.48)

and we see that ZAMOs possess an angular velocity equal to ω = −gtφ/gφφ . This
angular velocity increases as the observer approaches the black hole, and it goes
in the same direction as the hole’s own rotation – the ZAMOs rotate with the
black hole. This striking property of the Kerr black hole, which in fact is shared
by all rotating bodies, is called the dragging of inertial frames (see Section 3.10).
At large distances from the black hole, ω � 2J/r3, and the dragging disappears
completely at infinity.

5.3.3 Static limit: static observers

We now consider static observers in the Kerr spacetime. Such observers have a
four-velocity proportional to the Killing vector tα:

uα = γ tα, (5.49)

where the factor γ ≡ (−gαβ tαtβ)−1/2 ensures that the four-velocity is properly
normalized. Because these observers must be held in place by an external agent (a
rocket engine, for example), the motion is not geodesic.

Static observers cannot exist everywhere in the Kerr spacetime. This can be
seen from the fact that tα is not everywhere timelike, but becomes null when
γ −2 = −gtt = 0; when this occurs, Eq. (5.49) breaks down. The static limit is
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Figure 5.12 Static limit and event horizon of the Kerr spacetime.
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therefore described by gtt = 0 or, after using Eqs. (5.44) and (5.45), r2 − 2Mr +
a2 cos2 θ = 0. Solving for r reveals that the static limit is located at r = rsl(θ),
where

rsl(θ) = M +
√

M2 − a2 cos2 θ. (5.50)

Thus, observers cannot remain static when r ≤ rsl(θ), even if an arbitrarily large
force is applied. Instead, the dragging of inertial frames compels them to rotate
with the black hole. As we shall see, the static limit does not coincide with the
hole’s event horizon. The finite region between the horizon and the static limit is
called the ergosphere of the Kerr spacetime (Fig. 5.12).

5.3.4 Event horizon: stationary observers

We now consider observers moving in the φ direction with an arbitrary, but uni-
form, angular velocity dφ/dt = �. Because such observers do not perceive any
time variation in the black hole’s gravitational field, they are called stationary ob-
servers. They move with a four-velocity

uα = γ
(
tα + �φα

)
, (5.51)

where tα + �φα is a Killing vector for the Kerr spacetime, and γ a new normal-
ization factor given by

γ −2 = −gαβ

(
tα + �φα

)(
tβ + �φβ

)
= −gtt − 2�gtφ − �2gφφ

= −gφφ

(
�2 − 2ω� + gtt/gφφ

)
,

where ω = −gtφ/gtt .
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190 Black holes

Stationary observers cannot exist everywhere in the Kerr spacetime: The vector
tα + �φα must be timelike, and this fails to be true when γ −2 is nonpositive. It is
easy to check that the condition γ −2 > 0 gives rise to the following requirement
on the angular velocity:

�− < � < �+, (5.52)

where �± = ω ±
√

ω2 − gtt/gφφ . After some algebra, using Eqs. (5.44) and
(5.45), this reduces to

�± = ω ± �1/2ρ2

	 sin θ
. (5.53)

A stationary observer with � = 0 is a static observer, and we know that static ob-
servers exist only outside the static limit. It must therefore be true that �− changes
sign at r = rsl(θ). This is confirmed by a few lines of algebra, using Eqs. (5.50)
and (5.53). As r decreases further from rsl(θ), �− increases while �+ decreases.
Eventually we arrive at the situation �− = �+, which implies � = ω; at this point
the stationary observer is forced to move around the black hole with an angular
velocity equal to ω. This occurs when � = 0, or r2 − 2Mr + a2 = 0. The largest
solution is r = r+, where

r+ = M +
√

M2 − a2. (5.54)

Notice that the roots of � = 0 are real if and only if a ≤ M , or J ≤ M2: There
is an upper limit on the angular momentum of a black hole. Kerr black holes with
a = M are said to be extremal. For a > M the Kerr metric describes a naked sin-
gularity.

The vector tα + �φα becomes null at r = r+ and stationary observers cannot
exist inside this surface, which we identify with the black hole’s event horizon
(Fig. 5.12). The quantity

�H ≡ ω(r+) = a

r+2 + a2
(5.55)

is then interpreted as the angular velocity of the black hole. Stationary observers
just outside the horizon have an angular velocity equal to �H – they are in a state
of corotation with the black hole.

To confirm that r = r+ is truly the event horizon, we use the property that in a
stationary spacetime, the event horizon is also an apparent horizon – a surface of
zero expansion for a congruence of outgoing null geodesics orthogonal to the sur-
face. The event horizon must therefore be a null, stationary surface. Now, the nor-
mal to any stationary surface must be proportional to ∂αr , and such a surface will
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be null if gαβ(∂αr)(∂βr) = grr = 0. Using Eq. (5.46) gives

� ≡ r2 − 2Mr + a2 = 0. (5.56)

The largest solution, r = r+, designates the event horizon. The other root,

r− = M −
√

M2 − a2, (5.57)

describes the black hole’s inner apparent horizon, which is analogous to the inner
horizon of the Reissner–Nordström black hole.

We have found that the vector

ξα ≡ tα + �Hφα (5.58)

is null at the event horizon. It is tangent to the horizon’s null generators, which
wrap around the horizon with an angular velocity �H . Because it is a linear com-
bination of two Killing vectors, ξα is also a Killing vector, and the event horizon
of the Kerr spacetime is a Killing horizon. Notice an important difference between
stationary and static black holes: For a static black hole, tα becomes null at the
event horizon; for a stationary black hole, tα is null at the static limit and ξα be-
comes null at the event horizon.

5.3.5 The Penrose process

The fact that tα is spacelike in the ergosphere – the region r+ < r < rsl(θ) of the
Kerr spacetime – implies that the (conserved) energy E = −pαtα of a particle
with four-momentum pα can be of either sign. Particles with negative energy can
therefore exist in the ergosphere, but they would never be able to escape from this
region. (Note that E < 0 refers to the energy that would be measured at infinity if
the particle could be brought there. Any local measurement of the particle’s energy
inside the static limit would return a positive value.)

It is easy to elaborate a scenario in which negative-energy particles created in
the ergosphere are used to extract positive energy from a Kerr black hole. Imagine
that a particle of energy E1 > 0 comes from infinity and enters the ergosphere.
There, it decays into two new particles, one with energy −E2 < 0, the other with
energy E3 = E1 + E2 > E1. While the negative-energy particle remains inside
the static limit, the positive-energy particle escapes to infinity where its energy is
extracted. Because E3 is larger than the energy of the initial particle, the black hole
must have given off some of its own energy. This is the Penrose process, by which
some of the energy of a rotating black hole can be extracted.

The Penrose process is self-limiting: Only a fraction of the hole’s total energy
can be tapped. Suppose that in order to exploit the Penrose process, a rotating
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192 Black holes

black hole is made to absorb a particle of energy E = −pαtα < 0 and angular mo-
mentum L = pαφα . Because the Killing vector ξα = tα + �Hφα is timelike just
outside the event horizon, the combination E − �H L ≡ −pαξα must be positive;
otherwise the particle would not be able to penetrate the horizon. Thus L < E/�H

and L must be negative if E < 0. The black hole will therefore lose angular mo-
mentum during the Penrose process. Eventually the hole’s angular momentum will
go to zero, the ergosphere will disappear, and the Penrose process will stop. We
might say that only the hole’s rotational energy can be extracted by the Penrose
process.

Note that in a process by which a black hole absorbs a particle of energy E (of
either sign) and angular momentum L , its parameters change by amounts δM = E
and δ J = L . Since E − �H L must be positive, we have

δM − �H δ J > 0.

As we shall see, this inequality is a direct consequence of the first and second laws
of black-hole mechanics.

5.3.6 Principal null congruences

The Boyer–Lindquist coordinates, like the Schwarzschild coordinates, are singular
at the event horizon: While a trip down to the event horizon requires a finite proper
time, the interval of coordinate time t is infinite. Moreover, because the angular
velocity dφ/dt tends to a finite limit at the horizon, φ also increases by an infinite
amount. We therefore need another coordinate system to extend the Kerr metric
beyond the event horizon. It is advantageous to tailor these new coordinates to
the behaviour of null geodesics. The two congruences considered here (which are
known as the principal null congruences of the Kerr spacetime) are especially sim-
ple to deal with; we will use them to construct new coordinates for the Kerr metric.

It is a remarkable feature of the Kerr metric that the equations for geodesic mo-
tion can be expressed in a decoupled, first-order form. These equations involve
three constants of the motion: the energy parameter Ẽ , the angular-momentum pa-
rameter L̃ , and the ‘Carter constant’ Q. (This last constant appears because of the
existence of a Killing tensor. This is explained in Section 5.7, Problem 4, which
also provides a derivation of the geodesic equations.) For null geodesics the equa-
tions are

ρ2 ṫ = −a
(
aẼ sin2 θ − L̃

) + (
r2 + a2)P/�,

ρ2 ṙ = ±√
R,

ρ2 θ̇ = ±√
�,

ρ2 φ̇ = −(
aẼ − L̃/ sin2 θ

) + a P/�,
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in which an overdot indicates differentiation with respect to an affine parameter λ,
and

P = Ẽ
(
r2 + a2) − aL̃,

R = P2 − �
[(

L̃ − aẼ
)2 + Q

]
,

� = Q + cos2 θ
(
a2 Ẽ2 − L̃2/ sin2 θ

)
.

We simplify these equations by making the following choices:

L̃ = aẼ sin2 θ, Q = −(
L̃ − aẼ

)2 = −(
aẼ cos2 θ

)2
.

It is easy to check that these imply � = 0, so that our geodesics move with a
constant value of θ . We also have P = Ẽ ρ2 and R = (Ẽ ρ2)2, which give

ṫ = Ẽ
(
r2 + a2)/�, ṙ = ±Ẽ, θ̇ = 0, φ̇ = aẼ/�.

The constant Ẽ can be absorbed into the affine parameter λ. We obtain an ingoing
congruence by choosing the negative sign for ṙ , and we shall use lα to denote its
tangent vector field:

lα ∂α = r2 + a2

�
∂t − ∂r + a

�
∂φ. (5.59)

Choosing instead the positive sign gives an outgoing congruence, with

kα ∂α = r2 + a2

�
∂t + ∂r + a

�
∂φ (5.60)

as its tangent vector field.
To give the simplest description of the ingoing congruence, we introduce new

coordinates v and ψ defined by

v = t + r∗, ψ = φ + r�, (5.61)

where

r∗ =
∫

r2 + a2

�
dr

= r + Mr+√
M2 − a2

ln

∣∣∣∣ r

r+
− 1

∣∣∣∣ − Mr−√
M2 − a2

ln

∣∣∣∣ r

r−
− 1

∣∣∣∣ (5.62)

and

r� =
∫

a

�
dr = a

2
√

M2 − a2
ln

∣∣∣∣r − r+
r − r−

∣∣∣∣. (5.63)

It is easy to check that in these coordinates, lr = −1 is the only nonvanishing com-
ponent of the tangent vector. This means that v and ψ (as well as θ ) are constant
on each of the ingoing null geodesics, and that −r is the affine parameter.
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194 Black holes

The simplest description of the outgoing congruence is provided by the coordi-
nates (u, r, θ, χ), where

u = t − r∗, χ = φ − r�. (5.64)

In these coordinates kr = +1 is the only nonvanishing component of the tangent
vector. This shows that u and χ (as well as θ ) are constant along the outgoing null
geodesics, and that r is the affine parameter.

The Kerr metric can be expressed in either one of these new coordinate systems.
While the coordinates (v, r, θ, ψ) are well behaved on the future horizon but sin-
gular on the past horizon, the coordinates (u, r, θ, χ) are well behaved on the past
horizon but singular on the future horizon. For example, a straightforward compu-
tation reveals that after a transformation to the ingoing coordinates, the Kerr metric
becomes

ds2 = −
(

1 − 2Mr

ρ2

)
dv2 + 2 dv dr − 2a sin2 θ dr dψ

− 4Mar sin2 θ

ρ2
dv dψ + 	

ρ2
sin2 θ dψ2 + ρ2 dθ2. (5.65)

These coordinates produce an extension of the Kerr metric across the future hori-
zon. Several coordinate patches, both ingoing and outgoing, are required to cover
the entire Kerr spacetime, whose causal structure is very similar to that of the
Reissner–Nordström spacetime. We shall return to this topic in Section 5.3.9.

5.3.7 Kerr–Schild coordinates

Another useful set of coordinates for the Kerr metric is (t ′, x, y, z), the pseudo-
Lorentzian Kerr–Schild coordinates in terms of which the metric takes a particu-
larly interesting form. These are constructed as follows.

We start with Eq. (5.65) and separate out the terms that are proportional to M .
After some algebra we obtain

ds2 = −dv2 + 2 dv dr − 2a sin2 θ dr dψ + (r2 + a2) sin2 θ dψ2 + ρ2 dθ2

+ 2Mr

ρ2
(dv − a sin2 θ dψ)2.

The terms that do not involve M have a simple interpretation: They give the metric
of flat spacetime in an unfamiliar coordinate system. The rest of the line element
can be written neatly in terms of lα: Recalling that lr = −1 is the only nonvanish-
ing component of lα , we find that

−lα dxα = dv − a sin2 θ dψ
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and the line element becomes

ds2 = (ds2)flat + 2Mr

ρ2

(
lα dxα

)2
. (5.66)

The Kerr metric can therefore be expressed as

gαβ = ηαβ + 2Mr

ρ2
lαlβ, (5.67)

where ηαβ is the metric of flat spacetime in the coordinates (v, r, θ, ψ).
Equation (5.67) gives us the Kerr metric in a rather attractive form. Any metric

that can be written as gαβ = ηαβ + Hlαlβ , where H is a scalar function and lα
a null vector field, is known as a Kerr–Schild metric. It is by adopting such an
expression that Kerr discovered his solution in 1963. (Some general aspects of the
Kerr–Schild decomposition are worked out in Section 5.7, Problem 5.)

The next order of business is to find the coordinate transformation that brings
ηαβ to the standard Minkowski form. The answer is

x + iy = (r + ia) sin θ eiψ, z = r cos θ, t ′ = v − r. (5.68)

Going through the necessary algebra does indeed reveal that in these coordinates,

(ds2)flat = −dt ′2 + dx2 + dy2 + dz2. (5.69)

It is easy to work out the components of lα in this coordinate system. Because the
null geodesics move with constant values of v, θ , and ψ , we have that ẋ + i ẏ =
− sin θ eiψ , ż = − cos θ , and ṫ ′ = 1, where we have used ṙ = −1. Lowering the
indices is a trivial matter (see Section 5.7, Problem 5), and expressing the right-
hand sides in terms of the new coordinates gives

−lα dxα = dt ′ + r x + ay

r2 + a2
dx + r y − ax

r2 + a2
dy + z

r
dz. (5.70)

The quantity r must now be expressed in terms of x , y, and z. Starting with x2 +
y2 = (r2 + a2) sin2 θ , it is easy to show that

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0, (5.71)

which may be solved for r(x, y, z). Equations (5.66), (5.69)–(5.71) give the ex-
plicit form of the Kerr metric in the Kerr–Schild coordinates.

5.3.8 The nature of the singularity

We have seen that the Kerr spacetime possesses a curvature singularity at

ρ2 ≡ r2 + a2 cos2 θ = 0.
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196 Black holes

According to this equation, the singularity occurs only in the equatorial plane
(θ = π/2), at r = 0. The Kerr–Schild coordinates can help us make sense of this
statement. The relations x2 + y2 = (r2 + a2) sin2 θ and z = r cos θ indicate that
the ‘point’ r = 0 corresponds in fact to the entire disk x2 + y2 ≤ a2 in the plane
z = 0. The points interior to the disk correspond to angles such that sin2 θ < 1.
The boundary,

x2 + y2 = a2,

corresponds to the equatorial plane, and this is where the Kerr metric is singular.
The curvature singularity of the Kerr spacetime is therefore located on a ring of
(coordinate) radius a in the x-y plane. This singularity can be avoided: Observers
at r = 0 can stay away from the equatorial plane, and they never have to encounter
the singularity; such observers end up going through the ring.

5.3.9 Maximal extension of the Kerr spacetime

We have already constructed coordinate systems that allow the continuation of the
Kerr metric across the event horizon. We now complete the discussion and show
how the spacetime can also be extended beyond the inner horizon. For simplicity
we shall work with the two-dimensional section of the Kerr spacetime obtained by
setting θ = 0. This is the rotation axis, and because the Kerr metric is not spheri-
cally symmetric, this does represent a loss of generality.

Going back to Eq. (5.44) and the original Boyer–Lindquist coordinates, we find
that when θ = 0, the Kerr metric reduces to

ds2 = −
(

1 − 2Mr

r2 + a2

)
dt2 + r2 + a2

�
dr2

= − �

r2 + a2

(
dt − r2 + a2

�
dr

)(
dt + r2 + a2

�
dr

)
,

or

ds2 = − f du dv, (5.72)

where u = t − r∗ and v = t + r∗ are the coordinates of Section 5.3.6. Here,

f = �

r2 + a2
= (r − r+)(r − r−)

r2 + a2
, (5.73)

and r± = M ± √
M2 − a2 denote the positions of the outer and inner horizons,

respectively. The metric of Eq. (5.72) is extremely simple, and the construction of
Kruskal coordinates for the θ = 0 section of the Kerr spacetime proceeds just as
for the Reissner–Nordström (RN) black hole (Section 5.2.2).
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Figure 5.13 Kruskal patches for the Kerr spacetime.
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We first consider the continuation of the metric across the event horizon. Near
r = r+ Eq. (5.73) can be approximated by

f � 2κ+(r − r+),

where κ+ = 1
2 f ′(r+). It follows that

r∗ =
∫

dr

f
� 1

2κ+
ln

∣∣κ+(r − r+)
∣∣

and f � ±2 e2κ+r∗ = ±2 eκ+(v−u); the upper sign refers to r > r+ and the lower
sign to r < r+. Introducing the new coordinates

U+ = ∓e−κ+u, V+ = eκ+v, (5.74)

we find that near r = r+ the Kerr metric admits the manifestly regular form ds2 �
−2κ−2+ dU+dV+.

Just as for the RN spacetime, the coordinates U+ and V+ are singular at the
inner horizon, and another coordinate patch is required to extend the Kerr met-
ric beyond this horizon (Fig. 5.13). The procedure is now familiar. Near r = r−
we approximate Eq. (5.73) by f � −2κ−(r − r−), where κ− = 1

2 | f ′(r−)|, so that
f � ∓2 e−2κ−r∗ = ∓2 eκ−(u−v). The appropriate coordinate transformation is now

U− = ∓eκ−u, V+ = −e−κ−v, (5.75)

and the metric becomes ds2 � −2κ−2− dU−dV−.
Just as for the RN spacetime, another copy of the outer horizon presents itself

in the future of the inner horizon, and another Kruskal patch is required to ex-
tend the spacetime beyond this new horizon. This continues ad nauseam, and we
see that the maximally extended Kerr spacetime contains an infinite succession
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Figure 5.14 Penrose–Carter diagram of the Kerr spacetime.
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r = −∞ r = −∞

r = −∞ r = −∞

r = −∞ r = −∞

I − I −

I − I −

I + I +

of asymptotically-flat universes connected by black-hole tunnels. There is more,
however. It is easy to check that in a spacetime diagram based on the (U−, V−)

coordinates, the surface r = 0 is represented by U−V− = −1. This is a timelike
surface, and on the rotation axis this surface is nonsingular. The Kerr spacetime
can therefore be extended beyond r = 0, into a region in which r adopts negative
values. This new region has no analogue in the RN spacetime; it contains no hori-
zons and it becomes flat in the limit r → −∞. Observers in this region interpret
the Kerr metric as describing the gravitational field of a (naked) ring singularity.
You should be able to convince yourself that this singularity has a negative mass.

The maximally extended Kerr spacetime can be represented by a Penrose–
Carter diagram (Fig. 5.14). The resulting causal structure is extremely complex.
It should be kept in mind, however, that the interior of a Kerr black hole is subject
to the same instability as that of a RN black hole (see Section 5.2.3 and Section 5.7,
Problem 3). The tunnels to other universes, and the regions of negative r , are not
present inside physically realistic black holes.

5.3.10 Surface gravity

As was pointed out in Section 5.3.4, the vector

ξα = tα + �Hφα, (5.76)
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5.3 Kerr black hole 199

where �H is given by Eq. (5.55), is null at the event horizon and is in fact tangent
to the horizon’s null generators. From the same arguments as those presented in
Section 5.2.4, the black hole’s surface gravity κ can be defined by(−ξβξβ

)
;α = 2κξα, (5.77)

or by

ξα
;βξβ = κξα, (5.78)

or finally, by

κ2 = −1

2
ξα;βξα;β. (5.79)

These definitions are all equivalent.
Let us use Eq. (5.77) to calculate the surface gravity. The norm of ξα is given

by

ξβξβ = 	 sin2 θ

ρ2
(�H − ω)2 − ρ2�

	
,

and differentiation yields

(−ξβξβ

)
;α = ρ2

	
�,α

on the horizon, at which ω = �H and � = 0. We have that �,α = 2(r+ − M) ∂αr
and ξα = (1 − a�H sin2 θ) ∂αr on the horizon, and a few lines of algebra reveal
that the surface gravity is

κ = r+ − M

r+2 + a2
=

√
M2 − a2

r+2 + a2
. (5.80)

Notice that this is the same quantity that was denoted κ+ in Section 5.3.9. Notice
also that κ = 0 for an extreme Kerr black hole. And finally, notice that in the
general case κ does not depend on θ – the surface gravity is uniform on the event
horizon. We shall return to this remarkable property in Section 5.5.1.

5.3.11 Bifurcation two-sphere

In the coordinates (v, r, θ, ψ) which are regular on the event horizon, ξα ∂α =
∂v + �H ∂ψ . This shows that the horizon’s null generators are parameterized by
the advanced-time coordinate v, but as Eq. (5.78) reveals, v is not affine. An affine
parameter λ is obtained by integrating

dλ

dv
= eκv,
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200 Black holes

so that κλ = eκv ≡ V . It follows that on the horizon, the vector kα = V −1ξα sat-
isfies the geodesic equation in affine-parameter form: kα

;βkβ = 0. [This vector is
not equal to the kα introduced in Section 5.3.6, but it is proportional to it. It is easy
to check that these vectors are indeed related by kα

new = 1
2�kα

old/(r
2 + a2), where

the right-hand side is to be evaluated on the horizon.] If κ �= 0 and the event hori-
zon is geodesically complete (in the sense that the null generators can be extended
arbitrarily far into the past), the relation

ξα = V kα (5.81)

implies that ξα = 0 at V = 0. This defines a closed two-surface called the bifurca-
tion two-sphere of the Kerr spacetime. The conditions are sometimes violated: The
event horizon of a black hole formed by gravitational collapse is not geodesically
complete, because the horizon was necessarily formed in the finite past; and as we
have seen, the surface gravity of an extreme Kerr black hole (for which M = a)
vanishes. In either one of these situations the bifurcation two-sphere does not exist.

5.3.12 Smarr’s formula

There exists a simple algebraic relation between the black-hole mass M , its angular
momentum J ≡ Ma, and its surface area A. This is defined by

A =
∮

H

√
σ d2θ, (5.82)

where H is a two-dimensional cross section of the event horizon, described by
v = constant, r = r+, 0 ≤ θ ≤ π , and 0 ≤ ψ < 2π . From Eq. (5.65) we find that
the induced metric is given by

σAB dθ A dθ B = ρ2 dθ2 + 	

ρ2
sin2 θ dψ2,

so that
√

σ d2θ = √
	 sin θ dθ dψ = (r+2 + a2) sin θ dθ dψ . Integration yields

A = 4π
(
r+2 + a2). (5.83)

The algebraic relation, which was discovered by Larry Smarr in 1973, reads

M = 2 �H J + κ A

4π
, (5.84)

where �H is the hole’s angular velocity and κ its surface gravity. Smarr’s for-
mula is established by straightforward algebra: Substituting Eqs. (5.55), (5.80),
and (5.83) into the right-hand side of Eq. (5.84) reveals that it is indeed equal to
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5.4 General properties of black holes 201

M . We will generalize Smarr’s formula, and present an alternative derivation, in
Section 5.5.2.

5.3.13 Variation law

It is clear that the surface area of a black hole is a function of its mass and angu-
lar momentum: A = A(M, J ). Suppose that a black hole of mass M and angular
momentum J is perturbed so that its parameters become M + δM and J + δ J .
(For example, the black hole might absorb a particle, as was considered in Sec-
tion 5.3.5.) How does the area change? There exists a simple formula relating δA
to the changes in mass and angular momentum. It is

κ

8π
δA = δM − �H δ J. (5.85)

To derive this we start with Eq. (5.83), which immediately implies

δA

8π
= r+ δr+ + a δa.

But the horizon radius r+ depends on M and a; the defining relation is r+2 −
2Mr+ + a2 = 0 and this gives us

(r+ − M) δr+ = r+ δM − a δa.

This result can be substituted into the preceding expression for δA. The final step
is to relate a to the hole’s angular momentum J ; we have that a = J/M and this
implies M δa = δ J − a δM . Collecting these results, we arrive at Eq. (5.85) after
involving Eqs. (5.55) and (5.80).

In Section 5.3.5 we found that the right-hand side of Eq. (5.85) must be positive.
What we have, therefore, is the statement that the surface area of a Kerr black
hole always increases during a process by which it absorbs a particle. This is a
restricted version of the second law of black-hole mechanics, to which we shall
return in Section 5.5.4.

5.4 General properties of black holes

The Kerr family of solutions to the Einstein field equations plays an extremely
important role in the description of black holes, but this does not mean that all
black holes are Kerr black holes. For example, a black hole accreting matter is not
stationary, and a stationary hole is not a Kerr black hole if it is tidally distorted
by nearby masses. In this section we consider those properties of black holes that
are quite general, and not specific to any particular solution to the Einstein field
equations.
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Figure 5.15 Causal future and past of an event p.

J−(p)

p

J+(p)

5.4.1 General black holes

A spacetime containing a black hole possesses two distinct regions, the interior
and exterior of the black hole; they are distinguished by the property that all exter-
nal observers are causally disconnected from events occurring inside. Physically
speaking, this corresponds to the fact that once she has entered a black hole, an
observer can no longer send signals to the outside world.

These fundamental notions can be cast in mathematical terms. Consider an event
p and the set of all events that can be reached from p by future-directed curves,
either timelike or null (Fig. 5.15). This set is denoted J+(p) and is called the
causal future of p. A similar definition can be given for its causal past, J−(p).
These definitions can be extended to whole sets of events: If S is such a set, then
J+(S) is the union of the causal futures of all the events p contained in S; a similar
definition can be given for J−(S).

Loosely speaking, a spacetime contains a black hole if there exist outgoing
null geodesics that never reach future null infinity, denoted I +. These originate
from the black-hole interior, a region characterized by the very fact that all future-
directed curves starting from it fail to reach I +. Thus, events lying within the
black-hole interior cannot be in the causal past of I +. The black-hole region B
of the spacetime manifold M is therefore the set of all events p that do not belong
to the causal past of future null infinity:

B = M − J−(I +). (5.86)

The event horizon H is then defined to be the boundary of the black-hole region:

H = ∂ B = ∂
(
J−(I +)

)
. (5.87)

The two-dimensional surface obtained by intersecting the event horizon with a
spacelike hypersurface 	 is denoted H (	); it is called a cross section of the
horizon.
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5.4 General properties of black holes 203

Figure 5.16 Event and apparent horizons of a black-hole spacetime.
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H

EH

AH

EH + AH

Because the event horizon is a causal boundary, it must be a null hypersurface.
Penrose (1968) was able to establish that the event horizon is a null hypersur-
face generated by null geodesics that have no future end points. This means that:
(i) when followed into the past, a generator may, but does not have to, leave the
horizon; (ii) once a generator has entered the horizon, it cannot leave; (iii) two
generators can never intersect, except possibly when they both enter the horizon;
and finally, (iv) through every point on the event horizon, except for those at which
new generators enter, there passes one and only one generator. It should be clear
that the entry points into the event horizon are caustics of the congruence of null
generators (Fig. 5.16).

The black-hole region typically contains trapped surfaces, closed two-surfaces
S with the property that for both ingoing and outgoing congruences of null
geodesics orthogonal to S, the expansion is negative everywhere on S. (Excep-
tions are the extreme cases of Kerr, Kerr–Newman, or Reissner–Nordström black
holes, which do not have trapped surfaces.) The three-dimensional boundary of
the region of spacetime that contains trapped surfaces is the trapping horizon, and
its two-dimensional intersection with a spacelike hypersurface 	 is called an ap-
parent horizon. The apparent horizon is therefore a marginally trapped surface –
a closed two-surface on which one of the congruences has zero expansion. The
apparent horizon of a stationary black hole typically coincides with the event hori-
zon. In dynamical situations, however, the apparent horizon always lies within the
black-hole region (Fig. 5.16), unless the null energy condition is violated. (Refer
back to Section 5.1.8 for a specific example.)
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204 Black holes

The presence of trapped surfaces inside a black hole unequivocally announces
the formation of a singularity; this is the content of the beautiful singularity the-
orems of Penrose (1965) and Hawking and Penrose (1970). The theorems rely
on some form of energy condition (null for Penrose’s original formulation, strong
for the Hawking–Penrose generalization) and require additional technical assump-
tions. The nature of the ‘singularity’ predicted by the theorems is rather vague: The
singularity is revealed by the existence inside the black hole of at least one incom-
plete timelike or null geodesic, but the physical reason for incompleteness is not
identified. In all known examples satisfying the conditions of the theorems, how-
ever, the black hole contains a curvature singularity at which the Riemann tensor
diverges.

5.4.2 Stationary black holes

It was established by Hawking in 1972 that if a black hole is stationary, then it
must be either static or axially symmetric. This means that the stationary spacetime
of a rotating hole is necessarily axially symmetric and that it admits two Killing
vectors, tα and φα . Hawking was also able to show that a linear combination of
these vectors,

ξα = tα + �Hφα, (5.88)

is null at the event horizon. Here, �H is the hole’s angular velocity, which vanishes
if the spacetime is nonrotating (and therefore static). Thus, the event horizon is
a Killing horizon and ξα is tangent to the horizon’s null generators. These are
parameterized by advanced time v, so that a displacement along a generator is
described by dxα = ξα dv. The hole’s surface gravity κ is then defined by the
relation

ξα
;βξβ = κξα, (5.89)

which holds on the horizon. We will prove in Section 5.5.2 that κ is constant along
the horizon’s null generators. (Indeed, it is uniform over the entire horizon.) This
means that we can replace v by an affine parameter λ = V/κ , where V = eκv

(Section 5.3.10). Then

kα ≡ V −1ξα (5.90)

satisfies the geodesic equation in affine-parameter form. It follows that if κ �= 0
and the horizon is geodesically complete (in the sense that its generators never
leave the horizon when followed into the past), then there exists a two-surface,
called the bifurcation two-sphere, on which ξα = 0.
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5.4 General properties of black holes 205

The properties of stationary black holes listed here were all encountered before,
during our presentation of the Kerr solution. It should be appreciated, however, that
Eqs. (5.88)–(5.90) hold by virtue of the sole fact that the black hole is stationary;
these results do not depend on the specific details of a particular metric.

The observation that a stationary black hole must be axially symmetric if it is
rotating might seem puzzling. After all, it should be possible to place a nonsym-
metrical distribution of matter outside the hole, and let it tidally distort the event
horizon in a nonsymmetrical manner. This, presumably, would produce a black
hole that is still stationary and rotating, but not axially symmetric. Hawking and
Hartle (1972) have shown that this, in fact, is false! The reason is that such a distri-
bution of matter would impart a torque on the black hole, which would force it to
spin down to a nonrotating (and static) configuration. Thus, such a situation would
not leave the black hole stationary.

Additional properties of stationary black holes can be inferred from Raychaud-
huri’s equation (Section 2.4.4),

dθ

dλ
= −1

2
θ2 − σαβσαβ − Rαβkαkβ, (5.91)

in which we have put ωαβ = 0 to reflect the fact that the congruence of null gener-
ators is necessarily hypersurface orthogonal. The event horizon will be stationary
if θ and dθ/dλ are both zero. Using the Einstein field equations and the null energy
condition, Eq. (5.91) implies that the stress-energy tensor must satisfy

Tαβξαξβ = 0 (5.92)

on the horizon. This means that matter cannot be flowing across the event hori-
zon; if it were, the generators would get focused and the black hole would not be
stationary. Raychaudhuri’s equation also implies

σαβ = 0; (5.93)

the null generators of the event horizon have a vanishing shear tensor.

5.4.3 Stationary black holes in vacuum

In the absence of any matter in their exterior, stationary black holes admit an ex-
tremely simple description.

If the black hole is static, then it must be spherically symmetric and it can only
be described by the Schwarzschild solution. This beautiful uniqueness theorem,
the first of its kind, was established by Werner Israel in 1967. It implies that in the
absence of angular momentum, complete gravitational collapse must result in a
Schwarzschild black hole. This might seem puzzling, because the statement is true
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irrespective of the initial shape of the progenitor, which might have been strongly
nonspherical. The mechanism by which a nonspherical star shakes off its higher
multipole moments during gravitational collapse was elucidated by Richard Price
in 1972: These multipole moments are simply radiated away, either out to infinity
or into the black hole. After the radiation has faded away the hole settles down to
its final, spherical state.

If the black hole is axially symmetric, then it must be a Kerr black hole. This ex-
tension of Israel’s uniqueness theorem was established by Brandon Carter (1971)
and D.C. Robinson (1975).

The black-hole uniqueness theorems can be generalized to include situations in
which the black hole carries an electric charge. If the black hole is static, then it
must be a Reissner–Nordström black hole (Israel, 1968). If it is axially symmetric,
then it must be a Kerr–Newman black hole (Mazur, 1982; Bunting, unpublished).

We see that a black hole in isolation can be characterized, uniquely and com-
pletely, by just three parameters: its mass, angular momentum, and charge. No
other parameter is required, and this remarkable property is at the origin of John
Wheeler’s famous phrase, ‘a black hole has no hair.’ Chandrasekhar (1987) was
well justified to write:

Black holes are macroscopic objects with masses varying from a few solar masses to mil-
lions of solar masses. To the extent that they may be considered as stationary and isolated,
to that extent, they are all, every single one of them, described exactly by the Kerr solu-
tion. This is the only instance we have of an exact description of a macroscopic object.
Macroscopic objects, as we see them all around us, are governed by a variety of forces,
derived from a variety of approximations to a variety of physical theories. In contrast, the
only elements in the construction of black holes are our basic concepts of space and time.
They are, thus, almost by definition, the most perfect macroscopic objects there are in the
universe. And since the general theory of relativity provides a single unique two-parameter
family of solutions for their descriptions, they are the simplest objects as well.

5.5 The laws of black-hole mechanics

In 1973, Jim Bardeen, Brandon Carter, and Stephen Hawking formulated a set
of four laws governing the behaviour of black holes. These laws of black-hole
mechanics bear a striking resemblance to the four laws of thermodynamics. While
this analogy was at first perceived to be purely formal and coincidental, it soon
became clear that black holes do indeed behave as thermodynamic systems. The
crucial step in this realization was Hawking’s remarkable discovery of 1974 that
quantum processes allow a black hole to emit a thermal flux of particles. It is thus
possible for a black hole to be in thermal equilibrium with other thermodynamic
systems. The laws of black-hole mechanics, therefore, are nothing but a description
of the thermodynamics of black holes.
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5.5 The laws of black-hole mechanics 207

5.5.1 Preliminaries

We begin our discussion of the four laws by collecting a few important results
from preceding chapters; these will form the bulk of the mathematical framework
required for the derivations.

Let ya = (v, θ A) be coordinates on the event horizon. The advanced-time coor-
dinate v is a non-affine parameter on the horizon’s null generators, and θ A labels
the generators. The vectors

ξα =
(

∂xα

∂v

)
θ A

, eα
A =

(
∂xα

∂θ A

)
v

(5.94)

are tangent to the horizon; they satisfy ξαeα
A = 0 = £ξ eα

A and ξα = tα + �Hφα

is a Killing vector. We complete the basis by introducing an auxiliary null vector
Nα , normalized by Nαξα = −1. This basis gives us the completeness relations
(Section 3.1)

gαβ = −ξα Nβ − Nαξβ + σ ABeα
Aeβ

B,

where σ AB is the inverse of σAB = gαβ eα
Aeβ

B , the metric on the two-dimensional
space transverse to the generators. The determinant of the two-metric will be de-
noted σ .

The vectorial surface element on the event horizon can be expressed as (Sec-
tion 3.2)

d	α = −ξα dS dv, (5.95)

where dS = √
σ d2θ . The two-dimensional surface element on a cross section v =

constant is

dSαβ = 2ξ[α Nβ] dS. (5.96)

We shall denote such a cross section by H (v).
Finally, we will need Raychaudhuri’s equation for the congruence of null gen-

erators, expressed in a form that does not require the parameter to be affine. This
was worked out in Section 2.6, Problem 8 and the answer is

dθ

dv
= κ θ − 1

2
θ2 − σαβσαβ − 8πTαβξαξβ; (5.97)

the last term would normally involve the Ricci tensor, but we have used the Ein-
stein field equations to write it in terms of the stress-energy tensor. We recall
that θ is the fractional rate of change of the congruence’s cross-sectional area:
θ = (dS)−1d(dS)/dv.
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5.5.2 Zeroth law

The zeroth law of black-hole mechanics states that the surface gravity of a station-
ary black hole is uniform over the entire event horizon. We saw in Section 5.3.10
that this statement is indeed true for the specific case of a Kerr black hole, but the
scope of the zeroth law is much wider: The black hole need not be isolated and its
metric need not be the Kerr metric.

To prove that κ is uniform on the event horizon, we need to establish that
(i) κ is constant along the horizon’s null generators, and (ii) κ does not vary from
generator to generator. We will prove both statements in turn, starting with

κ2 = −1

2
ξα;βξα;β (5.98)

as our definition for the surface gravity. (We saw in Section 5.2.4 that this relation
is equivalent to ξα

;βξβ = κξα .) We shall need the identity

ξα;µν = Rαµνβξβ, (5.99)

which is satisfied by any Killing vector ξα . (This was derived in Section 1.13,
Problem 9.)

We differentiate Eq. (5.98) in the directions tangent to the horizon. (Because κ

is defined only on the event horizon, its normal derivative does not exist.) Using
Eq. (5.99) we obtain

2κκ,α = −ξµ;ν Rµναβξβ. (5.100)

The fact that κ is constant on each generator follows immediately from this:

κ,αξα = 0. (5.101)

We must now examine how κ changes in the transverse directions. Equation
(5.100) implies

2κκ,α eα
A = −ξµ;ν Rµναβ eα

Aξβ,

and we would like to show that the right-hand side is zero. Let us first assume
that the event horizon is geodesically complete, so that it contains a bifurcation
two-sphere, at which ξα = 0. Then the last equation implies that κ,αeα

A = 0 at
the bifurcation two-sphere. Because κ,αeα

A is constant on the null generators (Sec-
tion 5.7, Problem 6), we have that κ,αeα

A = 0 on all cross sections v = constant of
the event horizon. This shows that the value of κ does not change from generator
to generator, and we conclude that κ is uniform over the entire event horizon.

It is easy to see that the property κ,αeα
A = 0 must be independent of the exis-

tence of a bifurcation two-sphere. Consider two stationary black holes, identical
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5.5 The laws of black-hole mechanics 209

in every respect in the future of v = 0 (say), but different in the past, so that only
one of them possesses a bifurcation two-sphere. (We imagine that the first black
hole has existed forever, and that the second black hole was formed prior to v = 0
by gravitational collapse; the second black hole is stationary only for v > 0.) Our
proof that κ,αeα

A = 0 on all cross sections v = constant of the event horizon ap-
plies to the first black hole. But since the spacetimes are identical for v > 0, the
property κ,αeα

A = 0 must apply also to the second black hole. Thus, the zeroth law
is established for all stationary black holes, whether or not they are geodesically
complete.

It is clear that the relation ξµ;ν Rµναβ eα
Aξβ = 0 must hold everywhere on a

stationary event horizon, but it is surprisingly difficult to prove this. In their orig-
inal discussion Bardeen, Carter, and Hawking establish this identity by using the
Einstein field equations and the dominant energy condition (Section 5.7, Prob-
lem 7). This restriction was lifted in a 1996 paper by Rácz and Wald.

5.5.3 Generalized Smarr formula

Before moving on to the first law, we generalize Smarr’s formula (Section 5.3.12)
that relates the black-hole mass M to its angular momentum J , angular velocity
�H , surface gravity κ , and surface area A. In the present context the black hole is
stationary and axially symmetric, but it is not assumed to be a Kerr black hole.

Our starting point is the Komar expressions for total mass and angular momen-
tum (Section 4.3.3):

M = − 1

8π

∮
S
∇αtβ dSαβ, J = 1

16π

∮
S
∇αφβ dSαβ,

where the integrations are over a closed two-surface at infinity. We consider a
spacelike hypersurface 	 extending from the event horizon to spatial infinity
(Fig. 5.17). Its inner boundary is H , a two-dimensional cross section of the event
horizon, and its outer boundary is S. Using Gauss’ theorem, as was done in Sec-
tion 4.3.3 (but without the inner boundary), we find that M and J can be expressed
as

M = MH + 2
∫

	

(
Tαβ − 1

2
T gαβ

)
nαtβ

√
h d3y (5.102)

and

J = JH −
∫

	

(
Tαβ − 1

2
T gαβ

)
nαφβ

√
h d3y, (5.103)
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Figure 5.17 A spacelike hypersurface in a black-hole spacetime.

I−

I+

S	

H

where MH and JH are the black-hole mass and angular momentum, respectively.
They are given by surface integrals over H :

MH = − 1

8π

∮
H

∇αtβ dSαβ (5.104)

and

JH = 1

16π

∮
H

∇αφβ dSαβ, (5.105)

where dSαβ is the surface element of Eq. (5.96). The interpretation of Eqs. (5.102)
and (5.103) is clear: The total mass M (angular momentum J ) is given by a contri-
bution MH (JH ) from the black hole, plus a contribution from the matter distribu-
tion outside the hole. If the black hole is in vacuum, then M = MH and J = JH .

Smarr’s formula emerges after a few simple steps. Using Eqs. (5.96), (5.104)
and (5.105) we have

MH − 2 �H JH = − 1

8π

∮
H

∇α
(
tβ + �Hφβ

)
dSαβ

= − 1

8π

∮
H

∇αξβ dSαβ

= − 1

4π

∮
H

ξβ;αξα Nβ dS

= − 1

4π

∮
H

κξβ Nβ dS

= κ

4π

∮
H

dS,
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where we have used the relation ξα Nα = −1 and the fact that κ is constant over
H . The last integration gives the horizon’s surface area and we arrive at

MH = 2 �H JH + κ A

4π
, (5.106)

the generalized Smarr formula.

5.5.4 First law

We consider a quasi-static process during which a stationary black hole of mass
M , angular momentum J , and surface area A is taken to a new stationary black
hole with parameters M + δM , J + δ J , and A + δA. The first law of black-hole
mechanics states that the changes in mass, angular momentum, and surface area
are related by

δM = κ

8π
δA + �H δ J. (5.107)

If the initial and final black holes are in vacuum, then they are Kerr black holes
by virtue of the uniqueness theorems, and a derivation of Eq. (5.107) was already
presented in Section 5.3.13. That derivation, however, relied heavily on the details
of the Kerr metric. We will now present a derivation that is largely independent of
those details. In particular we will not assume that the black hole is in vacuum.

We suppose that a black hole, initially in a stationary state, is perturbed by a
small quantity of matter described by the (infinitesimal) stress-energy tensor Tαβ .
As a result the mass and angular momentum of the black hole increase by amounts
(Section 4.3.4)

δM = −
∫

H
T α

β tβ d	α (5.108)

and

δ J =
∫

H
T α

β φβ d	α, (5.109)

where the integrations are over the entire event horizon. We will be working to first
order in the perturbation Tαβ , keeping tα , φα , and d	α at their unperturbed values.
We assume that at the end of the process, the black hole is returned to another
stationary state.

Substituting the surface element of Eq. (5.95) into Eqs. (5.108) and (5.109) we
find

δM − �Hδ J =
∫

H
Tαβ

(
tβ + �Hφβ

)
ξα dS dv

=
∫

dv

∮
H (v)

Tαβξαξβ dS.
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212 Black holes

To work out the integral we turn to Eq. (5.97). Because θ and σαβ are quantities
of the first order in Tαβ , it is appropriate to neglect the quadratic terms and Ray-
chaudhuri’s equation simplifies to

dθ

dv
= κ θ − 8πTαβξαξβ.

Then

δM − �Hδ J = − 1

8π

∫
dv

∮
H (v)

(
dθ

dv
− κ θ

)
dS

= − 1

8π

∮
H (v)

θ dS

∣∣∣∣
∞

−∞
+ κ

8π

∫
dv

∮
H (v)

θ dS.

Because the black hole is stationary both before and after the perturbation, θ(v =
±∞) = 0 and the boundary terms vanish. Using the fact that θ is the fractional
rate of change of the congruence’s cross-sectional area, we obtain

δM − �Hδ J = κ

8π

∫
dv

∮
H (v)

(
1

dS

d

dv
dS

)
dS

= κ

8π

∮
H (v)

dS

∣∣∣∣
∞

−∞
= κ

8π
δA,

where δA is the change in the black hole’s surface area. This is Eq. (5.107), the
statement of the first law of black-hole mechanics.

5.5.5 Second law

The second law of black-hole mechanics states that if the null energy condition is
satisfied, then the surface area of a black hole can never decrease: δA ≥ 0. This
area theorem was established by Stephen Hawking in 1971.

Glossing over various technical details, the area theorem follows directly from
the focusing theorem (Section 2.4.5) and Penrose’s observation that the event hori-
zon is generated by null geodesics with no future end points. This statement means
that the generators of the event horizon can never run into caustics. (A generator
can enter the horizon at a caustic point, but once in H it will never meet another
caustic.) The focusing theorem then implies that θ , the expansion of the congru-
ence of null generators, must be positive, or zero, everywhere on the event horizon.
To see this, suppose that θ < 0 for some of the generators. The focusing theo-
rem then guarantees that these generators will converge into a caustic, at which
θ = −∞. We have a contradiction and we must conclude that θ ≥ 0 everywhere
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5.5 The laws of black-hole mechanics 213

on the event horizon. This implies that the horizon’s surface area will not decrease,
which is just the statement of the area theorem. (The fact that new generators can
enter the event horizon contributes even further to the growth of its area.)

5.5.6 Third law

The third law of black-hole mechanics states that if the stress-energy tensor is
bounded and satisfies the weak energy condition, then the surface gravity of a
black hole cannot be reduced to zero within a finite advanced time. A precise
formulation of this law was given by Werner Israel in 1986.

We have seen that a black hole of zero surface gravity is an extreme black hole.
(Recall that a Kerr black hole is extremal if a = M ; for a Reissner–Nordström
black hole, the condition is |Q| = M .) An equivalent statement of the third law is
therefore that under the stated conditions on the stress-energy tensor, it is impos-
sible for a black hole to become extremal within a finite advanced time.

The proof of the third law is rather involved and we will not attempt to go
through it here. Instead of presenting a proof, we will illustrate the fact that the
third law is essentially a consequence of the weak energy condition.

For the purpose of this discussion we need a black-hole spacetime which is
sufficiently dynamical that it has the potential of becoming extremal at a finite
advanced time v. A simple choice is the charged generalization of the ingoing
Vaidya spacetime, whose metric is given by

ds2 = − f dv2 + 2 dv dr + r2 d�2, (5.110)

with

f = 1 − 2m(v)

r
+ q2(v)

r2
. (5.111)

This metric describes a black hole whose mass m and charge q change with time
because of irradiation by charged null dust, a fictitious form of matter. This inter-
pretation is confirmed by inspection of the stress-energy tensor,

T αβ = T αβ

dust + T αβ
em , (5.112)

where

T αβ

dust = ρ lαlβ, ρ = 1

4πr2

∂

∂v

(
m − q2

2r

)
(5.113)

is the contribution from the null dust (lα = −∂αv is a null vector), and

T α
em β = P diag(−1, −1, 1, 1), P = q2

8πr4
(5.114)
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214 Black holes

is the contribution from the electromagnetic field. The spacetime of Eqs. (5.110)
and (5.111) will produce a violation of the third law if m(v0) = q(v0) for some
advanced time v0 < ∞.

An essential aspect of this discussion is the weak energy condition (Section 2.1),
which states that the energy density measured by an observer with four-velocity uα

will always be positive:

Tαβuαuβ > 0.

Here, T αβ is the stress-energy tensor of Eq. (5.112). If our observer is restricted
to move in the radial direction only, then Tαβuαuβ = ρ(dv/dτ)2 + P . Because
dv/dτ can be arbitrarily large, the weak energy condition requires ρ > 0. In
particular ρ must be positive at the apparent horizon, r = r+(v), where r+ =
m + (m2 − q2)1/2. This gives us the following condition:

4πr+3ρ(r+) = mṁ − qq̇ + (m2 − q2)1/2 ṁ > 0, (5.115)

where an overdot indicates differentiation with respect to v.
Let us imagine a situation in which the black hole becomes extremal at a finite

advanced time v0. This means that �(v0) = 0, where �(v) ≡ m(v) − q(v). Be-
cause the black hole was not extremal before v = v0, we have that �(v) > 0 for
v < v0 and �(v) must be decreasing as v approaches v0. However, Eq. (5.115)
implies

m(v0) �̇(v0) > 0,

according to which �(v) must be increasing. We have a contradiction and we con-
clude that the weak energy condition prevents the black hole from ever becoming
extremal at a finite advanced time.

5.5.7 Black-hole thermodynamics

The four laws of black-hole mechanics bear a striking resemblance to the laws of
thermodynamics, with κ playing the role of temperature, A that of entropy, and
M that of internal energy. Hawking’s discovery that quantum processes give rise
to a thermal flux of particles from black holes implies they do indeed behave as
thermodynamic systems. Black holes have a well-defined temperature, which as a
matter of fact is proportional to the hole’s surface gravity:

T = h̄

2π
κ. (5.116)

The zeroth law is therefore a special case of the corresponding law of ther-
modynamics, which states that a system in thermal equilibrium has a uniform
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temperature. The first law, when recognized as a special case of the corresponding
law of thermodynamics, implies that the black-hole entropy must be given by

S = 1

4h̄
A. (5.117)

The second law is therefore also a special case of the corresponding law of ther-
modynamics, which states that the entropy of an isolated system can never de-
crease. In this regard it should be noted that Hawking radiation actually causes
the black-hole area to decrease, in violation of the area theorem. (The radiation’s
stress-energy tensor does not satisfy the null energy condition.) However, the pro-
cess of black-hole evaporation does not violate the generalized second law, which
states that the total entropy, the sum of radiation and black-hole entropies, does
not decrease.

The fact that black holes behave as thermodynamic systems reveals a deep con-
nection between such disparate fields as gravitation, quantum mechanics, and ther-
modynamics. This connection is still poorly understood today.

5.6 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Bardeen, Carter, and Hawking (1973); Carter (1979); Chandrasekhar (1983);
Hayward (1994); Israel (1986a); Israel (1986b); Misner, Thorne, and Wheeler
(1973); Sullivan and Israel (1980); Wald (1984); and Wald (1992).

More specifically:
The term ‘trapping horizon,’ used in Sections 5.1.7 and 5.4.1, was introduced

by Sean Hayward in his 1994 paper. The various definitions for the surface grav-
ity (Sections 5.2.4, 5.3.10, 5.4.2, and 5.5.2) are taken from Section 12.5 of Wald
(1984). The discussion of the Kerr black hole is based on Sections 33.1–5 of
Misner, Thorne, and Wheeler, and Sections 57 and 58 of Chandrasekhar. The def-
initions for black-hole region and event horizon are taken from Section 12.1 of
Wald (1984); trapped surfaces and apparent horizons are defined in Wald’s Sec-
tion 9.5 and 12.2, respectively. Penrose’s theorem on the structure of the event hori-
zon (Section 5.4.1) is very nicely discussed in Section 34.4 of Misner, Thorne, and
Wheeler. Section 9.5 of Wald (1984) provides a thorough discussion of the singu-
larity theorems. The general properties of stationary black holes (Section 5.4.2) are
discussed in Section 12.3 of Wald (1984) and Section 6.3.1 of Carter. An overview
of the uniqueness theorems of black-hole spacetimes (Section 5.4.3) can be found
in Section 12.3 of Wald (1984) and Section 6.7 of Carter. In Section 5.5 the deriva-
tions of the zeroth and first laws are taken from Wald’s 1992 Erice lectures. The
generalized Smarr formula is derived in Section 6.6.1 of Carter. The discussion of
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the second law is adapted from Section 6.1.2 of Carter. The final form of the third
law was given in Israel (1986b); my discussion is based on Sullivan and Israel.
Finally, in the problems below, the material on the Majumdar–Papapetrou solution
is taken from Section 113 of Chandrasekhar, the description of null-dust collapse
is adapted from Israel (1986a), and the alternative derivation of the zeroth law is
based on Bardeen, Carter, and Hawking.

Suggestions for further reading:
There is a lot more than can be said on black holes. The book by Frolov

and Novikov is a genuine encyclopedia that is well worth consulting. The book
by Thorne, Price, and Macdonald focuses on astrophysical aspects of black-hole
physics, and presents them in an interesting package known as the ‘membrane
paradigm.’ The book by Birrell and Davies gives a complete account of the quan-
tum production of particles by black holes (Hawking evaporation). The uniqueness
theorems of black-hole spacetimes are presented by Heusler in his 2003 book.

Since their original formulation by Bardeen, Carter, and Hawking, the laws of
black-hole mechanics have been reformulated in terms of the apparent horizon
(instead of the event horizon). See the recent papers by Ashtekar, Beetle, Krishnan,
and Lewandowski (2001 and 2002) for an account of this interesting development.

The search for a statistical understanding of black-hole entropy continues. For a
survey of various possibilities you might consult the articles by Jacobson (1999),
Sorkin (1998), and Peet (1998).

5.7 Problems

1. The metric of an extreme (Q = ±M) Reissner–Nordström black hole is given
by

ds2 = −
(

1 − M

r

)2

dt2 +
(

1 − M

r

)−2

dr2 + r2 d�2.

(a) Find an appropriate set of Kruskal coordinates for this spacetime.
(b) Show that the region r ≤ M does not contain trapped surfaces.
(c) Sketch a Penrose–Carter diagram for this spacetime.
(d) Find a coordinate transformation that brings the metric to the form

ds2 = −
(

1 + M

r̄

)−2

dt2 +
(

1 + M

r̄

)2 (
dx2 + dy2 + dz2),

where r̄2 = x2 + y2 + z2. Show that in these coordinates, the elec-
tromagnetic field tensor can be generated from the vector potential
Aα dxα = ∓(1 + M/r̄)−1 dt , in which the upper (lower) sign gives
rise to a positive (negative) electric charge.
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(e) Show that the metric

ds2 = −�−2 dt2 + �2(dx2 + dy2 + dz2)

and the vector potential Aα dxα = ∓�−1 dt produce an exact solu-
tion to the Einstein–Maxwell equations provided that �(x) satisfies
Laplace’s equation ∇2� = 0. Here, ∇2 is the usual Laplacian operator
of three-dimensional flat space and x = (x, y, z). This metric is known
as the Majumdar–Papapetrou solution. Prove that if the spacetime is
asymptotically flat, then the total charge Q and the ADM mass M are
related by Q = ±M . Finally, find an expression for �(x) that corre-
sponds to a collection of N black holes situated at arbitrary positions
xn (n = 1, 2, . . . , N ) .

2. A black hole is formed by the gravitational collapse of null dust. During the
collapse the metric is given by an ingoing Vaidya solution with mass function
m(v) = v/16. Spacetime is assumed to be flat before the collapse (v < 0),
and after the collapse (v > v0) the metric is given by a Schwarzschild solution
with mass m0 = m(v0) = v0/16. We want to study various properties of this
spacetime.
(a) Show that in the interval 0 < v < v0, outgoing light rays are described

by the parametric equations

r(λ) = c λ e−λ, v(λ) = 4c (1 + λ) e−λ,

where c is a constant. Show that v = 4r also describes an outgoing
light ray. Plot a few of these curves in the (v, r) plane, using both
positive and negative values of c. Plot also the position of the apparent
horizon.

(b) Find the parametric equations that describe the event horizon.
(c) Prove that the curvature singularity at r = 0 is naked, in the sense that

it is visible to observers at large distances. Prove also that at the mo-
ment it is visible, the singularity is massless. [It is generally true that
the central singularity of a spherical collapse must be massless if it is
naked. This was established by Lake (1992).]

3. In this problem we have a closer look at the instability of black-hole tunnels, a
topic that was mentioned briefly in Sections 5.2.3 and 5.3.9. We will see that
the instability is caused by the pathological behaviour of the ingoing branch
(v = ∞) of the inner horizon (r = r−). For reasons that will become clear, we
shall call this the Cauchy horizon of the black-hole spacetime. For simplicity
we shall restrict our attention to the Reissner–Nordström (RN) spacetime. [The
physics of the Cauchy-horizon instability was this author’s Ph.D. topic; see
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218 Black holes

Poisson and Israel (1990). The book by Burko and Ori (1997) presents a rather
complete review of this fascinating part of black-hole physics.]
(a) Consider an event P located anywhere in the future of the Cauchy hori-

zon. Argue that the conditions at P are not uniquely determined by
initial data placed on a spacelike hypersurface 	 located outside the
black hole. Then argue that the Cauchy horizon is the boundary of
the region of spacetime for which the evolution of this data is unique.
(This region is called the domain of dependence of 	, and we say
that the Cauchy problem of general relativity is well posed in this re-
gion. The Cauchy horizon is the place at which the evolution ceases to
be uniquely determined by the initial data; the Cauchy problem breaks
down. In effect, the predictive power of the theory is lost at the Cauchy
horizon.)

(b) Consider a test null fluid with stress-energy tensor T αβ = ρ lαlβ , where
ρ is the energy density and lα = −∂αv the four-velocity. The fluid
moves parallel to the Cauchy horizon, along ingoing null geodesics.
Prove that ρ must be of the form

ρ = L(v)

4πr2
,

where L(v) is an arbitrary function of advanced time v. Show that if
a finite quantity of energy is to enter the black hole, then L → 0 as
v → ∞. (How fast must L vanish?) Typically, radiative fields outside
black holes decay in time according to an inverse power law (Price
1972). We shall therefore take L(v) ∼ v−p as v → ∞, with p larger
than, say, 2.

(c) Consider now a free-falling observer inside the black hole. This observer
moves in the outward radial direction, encounters the null dust, and
measures its energy density to be Tαβ uαuβ , where uα is the observer’s
four-velocity. Show that as the observer crosses the Cauchy horizon,

Tαβ uαuβ = Ẽ2

4πr−2
L(v) e2κ−v,

where Ẽ = −uαtα and κ− was defined in Section 5.2.2. Conclude that
the measured energy density diverges at the Cauchy horizon, even
though the total amount of energy entering the hole is finite. This is
the pathology of the Cauchy horizon, which ultimately is responsible
for the instability of black-hole tunnels.

4. The equations governing geodesic motion in the Kerr spacetime were given
without justification in Section 5.3.6. Here we provide a derivation, which is
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valid both for timelike and null geodesics. [The general form of the geodesic
equations can be found in Section 33.5 of Misner, Thorne, and Wheeler
(1973).]
(a) By definition, a Killing tensor field ξαβ is one which satisfies the equa-

tion ξ(αβ;γ ) = 0. Show that if ξαβ is a Killing tensor and uα satisfies
the geodesic equation (uα

;βuβ = 0), then ξαβ uαuβ is a constant of the
motion.

(b) Verify that

ξαβ = � k(αlβ) + r2gαβ

is a Killing tensor of the Kerr spacetime. Here, kα and lα are the null
vectors defined in Section 5.3.6.

(c) Write the relations Ẽ = −tαuα and L̃ = φαuα explicitly in terms of
uα = (ṫ, ṙ , θ̇ , φ̇). Then invert these relations to obtain the equations
for ṫ and φ̇. [Hint: Make sure to involve the inverse metric.]

(d) The Carter constant Q is defined by

ξαβ uαuβ = Q + (
L̃ − aẼ

)2
.

By working out the left-hand side, derive the equation for ṙ . [Hint:
Express kα and lα in terms of the Killing vectors, and then ξαβ uαuβ in
terms of Ẽ , L̃ , and ṙ2.]

(e) Finally, use the normalization condition gαβuαuβ = −ζ (where ζ = 1
for timelike geodesics and ζ = 0 for null geodesics) to obtain the equa-
tion for θ̇ .

5. Let lα be a null, geodesic vector field in flat spacetime. With this vector and
an arbitrary scalar function H we construct a new metric tensor gαβ :

gαβ = ηαβ + Hlαlβ,

where ηαβ is the Minkowski metric and lα = ηαβlβ . Such a metric is called a
Kerr–Schild metric.
(a) Show that lα is null with respect to both metrics.
(b) Show that gαβ = ηαβ − Hlαlβ is the inverse metric.
(c) Prove that lα = gαβlβ and lα = gαβlβ . Thus, indices on the null vector

can be lowered and raised with either metric.
(d) Calculate the Christoffel symbols for gαβ . Show that they satisfy the re-

lations

lµ

µ
αβ = −1

2
Ḣlαlβ, lµ
α

µβ = 1

2
Ḣlαlβ,

where Ḣ ≡ H,µlµ.
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(e) Prove that lα;βlβ = 0. Thus, lα is a geodesic vector field in both metrics.

(f) Prove that the component Rαβlαlβ of the Ricci tensor vanishes for any
choice of function H .

6. Complete the discussion of the zeroth law by proving that κ,α eα
A is constant

along the null generators of a stationary event horizon.
7. In this problem we provide an alternative derivation of the zeroth law of

black-hole mechanics. This derivation is based on the original presentation
by Bardeen, Carter, and Hawking (1973); it uses the Einstein field equations
and the dominant energy condition.
(a) We have seen that the vector ξα is tangent to the null generators of the

event horizon. It possesses the following properties: (i) ξα is null on the
horizon; (ii) ξα

;βξβ = κξα on the horizon; (iii) ξα is a Killing vector;
and (vi) the congruence of null generators has zero expansion, shear,
and rotation. Use these facts to infer

ξα;β = (
κ Nα + cAeAα

)
ξβ − ξα

(
κ Nβ + cBeBβ

)
,

where cA ≡ σ ABξα;β Nαeβ
B . This relation holds on the horizon only.

(b) Prove that the gradient of the surface gravity (in the directions tangent to
the horizon) is given by

κ,α = −Rαβγ δξ
β N γ ξ δ − (

σABcAcB)
ξα.

This immediately implies that κ is constant on each generator:
κ,αξα = 0.

(c) Show that the result of part (b) also implies

κ,αeα
A = −Rαβ eα

Aξβ − σ BC Rαβγ δ eα
Aeβ

Beγ

Cξδ.

(d) The quantities BAB ≡ ξα;β eα
Aeβ

B and their tangential derivatives must all
vanish on the horizon. Use this observation to derive

Rαβγ δ eα
Aeβ

Beγ

Cξδ = 0.

This relations holds on the horizon only.
(e) Collecting the results of parts (c) and (d), use the Einstein field equations

to write

κ,αeα
A = 8π jαeα

A,

where jα = −T α
βξβ represents a flux of momentum across the hori-

zon.
(f) The dominant energy condition states that jα should be either timelike

or null, and future directed. Use this, together with the stationary
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condition Tαβξαξβ = 0, to prove that jα must be parallel to ξα . Under
these conditions, therefore,

κ,αeα
A = 0,

and the zeroth law is established.
8. The unique solution to the Einstein–Maxwell equations describing an isolated

black hole of mass M , angular momentum J ≡ aM , and electric charge Q is
known as the Kerr–Newman solution; it was discovered by Newman et al. in
1965. The Kerr–Newman metric can be expressed as

ds2 = −ρ2�

	
dt2 + 	

ρ2
sin2 θ(dφ − ω dt)2 + ρ2

�
dr2 + ρ2 dθ2,

where ρ2 = r2 + a2 cos2 θ , � = r2 − 2Mr + a2 + Q2, 	 = (r2 + a2)2 −
a2� sin2 θ , and ω = a(r2 + a2 − �)/	. The metric comes with a vector po-
tential

Aα dxα = − Qr

ρ2

(
dt − a sin2 θ dφ

)
.

When Q = 0, Aα = 0 and this reduces to the Kerr solution.
(a) Find expressions for r+, the radius of the event horizon, and �H , the

angular velocity of the black hole.
(b) Prove that the vector field

lα ∂α = r2 + a2

�
∂t − ∂r + a

�
∂φ

is tangent to a congruence of ingoing null geodesics. Prove also that

v ≡ t +
∫

r2 + a2

�
dr

and

ψ ≡ φ +
∫

a

�
dr

are constant on each member of the congruence.
(c) Show that in the coordinates (v, r, θ, ψ), the Kerr–Newman metric takes

the form

ds2 = −� − a2 sin2 θ

ρ2
dv2 + 2 dv dr − 2a

r2 + a2 − �

ρ2
sin2 θ dv dψ

− 2a sin2 θ dr dψ + 	

ρ2
sin2 θ dψ2 + ρ2 dθ2.

Find an expression for Aα is this coordinate system.
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(d) Show that the vectors

ξα ∂α = ∂v + �H ∂ψ, eα
θ ∂α = ∂θ , eα

ψ ∂α = ∂ψ,

and

Nα ∂α = − a2 sin2 θ

2(r+2 + a2 cos2 θ)
∂v − r+2 + a2

r+2 + a2 cos2 θ
∂r

− a

2(r+2 + a2)

2r+2 + a2(1 + cos2 θ)

r+2 + a2 cos2 θ
∂ψ

form a good basis on the event horizon. In particular, prove that
they give rise to the completeness relations gαβ = −ξα Nβ − Nαξβ +
σ AB eα

Aeβ
B , where σ AB is the inverse of σAB ≡ gαβ eα

Aeβ
B .

(e) Prove that the surface gravity of a Kerr–Newman black hole is given by

κ = r+ − M

r+2 + a2
.

Prove also that the hole’s surface area is

A = 4π
(
r+2 + a2).

(f) Compute the black-hole mass MH and the black-hole angular momentum
JH of a Kerr–Newman black hole. (These quantities are defined in
Section 5.5.3.) Make sure that your results are compatible with the
following expressions:

MH = r+2 + a2

2r+

[
1 − Q2

ar+
arctan

(
a/r+

)]

and

JH = a
r+2 + a2

2r+

{
1 + Q2

2a2

[
1 − r+2 + a2

ar+
arctan

(
a/r+

)]}
.

Verify that these expressions satisfy the generalized Smarr formula.
(g) Derive the following alternative version of Smarr’s formula:

M = 2�H J + κ A

4π
+ �H Q,

where

�H ≡ −Aαξα
∣∣∣
r=r+

= r+Q

r+2 + a2

is the electrostatic potential at the horizon.
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(h) Consider a quasi-static process during which a stationary black hole of
mass M , angular momentum J , and electric charge Q is taken to a new
stationary black hole with parameters M + δM , J + δ J , and Q + δQ.
Prove that during such a transformation, the hole’s surface area A will
change by an amount δA given by

δM = κ

8π
δA + �H δ J + �H δQ.

This is the first law of black-hole mechanics for charged, rotating black
holes.

9. Consider a quasi-static process during which the surface area of a black hole
changes. (By quasi-static we mean that dA/dv is very small.) Derive the
Hawking–Hartle formula,

dA

dv
= 8π

κ

∮
H (v)

(
1

8π
σαβσαβ + Tαβξαξβ

)
dS,

in which ξα is tangent to the null generators of the event horizon and σαβ is
their shear tensor. The second term within the integral represents the effect
of accreting matter on the surface area. The first term represents the effect of
gravitational radiation flowing across the horizon.
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third law, viii, 213–4, 216
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Boyer–Lindquist coordinates, 187, 192, 196
Brane worlds, 114

C
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Cauchy horizon, 217, 218
Cauchy problem, 218
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Caustic, 41, 51, 203, 212
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Charge, 25, 176, 177, 184, 187, 206, 213, 216, 217,

221, 223
Christoffel symbols, 6, 7, 22, 23, 86, 87, 101, 122, 219
Cofactor, 65, 69, 131
Collapse, gravitational, see Gravitational collapse
Completeness relations, 29, 63, 67, 68, 78, 79, 99,

102, 107, 123, 134, 135, 207, 222
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of null geodesics, viii, 28, 45–54, 56–8, 105, 116,
163, 171–5, 186, 190, 192–4, 203, 205, 207, 212,
220, 221

of timelike curves, 54, 129, 135
of timelike geodesics, viii, 28, 36–45, 54, 55, 76,

85, 99, 100, 104, 114
Connection, 4–6, 8, 9, 11, 12, 22, 73, 74, 86
Conservation laws, 16, 71, 91, 116, 125, 153, 155, 185
Constraint equations, 79–84, 116, 145, 146
Coordinates

Boyer–Lindquist, see Boyer–Lindquist coordinates
Eddington–Finkelstein, see Eddington–Finkelstein

coordinates
Fermi normal, see Fermi normal coordinates
Kerr–Schild, see Kerr–Schild coordinates
Kruskal, see Kruskal coordinates
Painlevé–Gullstrand, see Painlevé–Gullstrand

coordinates
Reimann normal, see Reimann normal coordinates

Cosmological constant, 117
Cosmology, ix, 41, 54, 80, 112–3
Covariant differentiation, x, 1, 4–6, 8, 9, 47, 73, 74,

76, 123, 139, 143, 159
Cross section, 42–5, 48, 51–3, 66, 105, 174, 200, 202,

207–9, 212
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extrinsic, see Extrinsic curvature
Ricci, x, 2, 16, 26, 31, 55, 78, 79, 82, 84, 88, 98,

115, 121, 137, 146, 207, 220
Riemann, x, 2, 15–7, 19, 23, 24, 26, 59, 76–8,
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de Sitter spacetime, 117
Delta function, see Dirac distribution
Density, see Mass density or Energy density
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covariant, see Covariant differentiation
Lie, see Lie differentiation

Determinant, 2, 12–4, 45, 53, 64–8, 71, 121, 122, 131,
135, 207

Deviation vector, viii, 16–8, 21, 23, 36, 37, 45–7
Deviation, geodesic, see Geodesic deviation equation
Dirac distribution, 85–9, 98, 101, 104, 113, 158
Divergence formula, 13, 70, 72, 133
Dragging of inertial frames, 97, 110, 188, 189
Dual vector, 1–3, 5, 9
Dust, 90, 91, 153, 155, 173, 175, 213, 216–8

E

Eddington–Finkelstein coordinates, 167, 168, 173
Einstein field equations, viii, ix, 2, 16, 26, 31, 40,
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117, 118, 122, 124–6, 145, 146, 151–4, 157,
158, 163, 164, 173, 177, 187, 201, 205, 207,
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Einstein tensor, see Curvature tensors, Einstein
Einstein–Hilbert priority dispute, 157
Einstein–Maxwell field equations, 176, 187, 217,

221
Electromagnetic field, 32, 152, 157, 176, 177, 214,

216, 222
Embedding, 25, 59, 67, 68, 76, 115, 127, 134, 135,

138, 147, 148, 153, 160
Energy

binding, 93
density, 29, 30, 32, 55, 113, 153, 156, 173, 214,

218
electrostatic, 184
flux vector, 155
gravitational potential, 159
internal, 214
kinetic, 93, 159
mass-energy, see Mass
of a particle, 10, 27, 42, 92, 109, 155, 181, 191,

192
rotational, 192

Energy conditions
averaged, 32
dominant, 32, 209, 220
in general, ix, 28–33, 54, 173, 174, 214
null, 31, 50, 174, 203–5, 212, 215
strong, 31, 40, 41, 204
violations, 32, 54
weak, 30–1, 213, 214

Entropy, see Black-hole entropy
Equivalence principle, see Principle of equivalence
Ergosphere, 189, 191, 192
Euler–Lagrange equation, 6, 7, 120, 121, 128
Event horizon, viii, ix, 28, 163, 170–6, 178, 180,

185, 186, 189–92, 196, 197, 199, 200, 202–5,
207–9, 211–3, 215–7, 220–23

Expansion scalar, 28, 34, 35, 37, 40–3, 46, 48, 51,
52, 55, 56, 58, 76, 105, 113, 114, 116, 171–5,
190, 203, 212, 220

Extrinsic curvature, ix, 59, 75–7, 79–81, 83, 89, 92,
95, 102, 103, 114, 115, 118, 121, 124, 127,
134–6, 138–40, 145, 147–50, 153, 158, 160

F

Fermi normal coordinates, 2, 18–24, 26
Field equations
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Einstein, see Einstein field equations
Einstein–Maxwell, see Einstein–Maxwell field

equations
Klein–Gordon, see Klein–Gordon equation
Maxwell, see Maxwell field equations

Flat space, 25, 60, 70, 80, 82–4, 115, 138, 147, 149,
154, 159, 160, 168, 217

Flat spacetime, 17, 26, 32, 51, 56, 63, 65, 66, 83, 93,
95, 107, 115, 116, 126, 127, 138, 146, 153, 160,
165, 194, 195, 217, 219

Flatness
asymptotic, see Asymptotically-flat spacetime
conformal, see Conformal flatness
local, see Local flatness theorem

Fluid, 30, 55, 90, 96, 97, 111–3, 117, 153, 155, 158,
173, 218

Focusing action of gravity, ix, 28, 109, 116, 175,
205

Focusing theorem
for null geodesics, 28, 50–1, 175, 212
for timelike geodesics, 28, 40–1, 43

Friedmann–Robertson–Walker spacetime, 54, 81,
90

Frobenius’ theorem, 28, 38–40, 48–50, 186

G

Gauss’ law, 177
Gauss’ theorem, 69, 71, 120, 133, 209
Gauss–Codazzi equations, 76–9, 115
Gauss–Weingarten equation, 75
Generators

of a null hypersurface, 49, 51, 61–3, 65, 66, 98,
104–13

of an event horizon, viii, 174–6, 185, 186, 191,
199, 200, 203–5, 207, 208, 212, 220, 223

Geodesic deviation equation, 2, 16–8, 21, 23
Geodesic equation

in affine parameter form, 7, 10, 17, 18, 20, 22,
25, 39, 52, 56, 92, 100, 155, 158, 173, 186,
192, 200, 204, 219

in general form, 7, 25, 50, 61, 186, 204
Geodesic, defined, 6–8
Gravitational collapse

in general, 167, 176, 200, 205, 209
of a pressureless star, 90–2
of a thin shell, 93, 107–9
of null dust, 216, 217

Gravitational repulsion, 184
Gravitational waves, 152, 156, 164, 223
GRTensorII, x

H

Hamilton’s equations, 128, 132, 133, 145–6
Hamiltonian

density, 131, 132, 140
formulation of general relativity, x, 118, 136–46,

156
gravitational, ix, 118, 119, 136–47, 157
in general, 118, 128, 129, 131, 132

Hawking evaporation, 206, 214–6
Hawking temperature, 214

Hawking–Hartle formula, 223
Hilbert action, 121, 122
Hilbert–Einstein priority dispute, see Einstein–Hilbert

priority dispute
Horizon

apparent, see Apparent horizon
Cauchy, see Cauchy horizon
event, see Event horizon
Killing, see Killing horizon
trapping, see Trapping horizon

Hypersurface orthogonal, 28, 38–40, 42, 43, 48–50,
52, 56, 57, 76, 82, 105, 129, 186, 190, 205

Hypersurface, defined, 60

I

Ideal gas, 159
Induced metric, ix, 59, 62–3, 68, 71, 73, 74, 76,

80, 82, 84, 86, 91, 94–6, 102, 103, 106,
108, 110, 113–5, 117, 118, 121, 122, 124,
126, 131, 134–6, 139, 145, 148, 153, 158,
160, 168, 200

Inertial frame, 94, 97, 110, 112
Infinity

null, 152, 153, 161, 169, 170, 202, 206
spatial, ix, 71, 97, 110, 119, 126, 147, 151, 153,

168–70, 185, 188, 191, 209
timelike, 169, 170

Initial-value problem, ix, 79–84, 114, 145
Integration over a hypersurface, ix, 59, 64–9, 118,

150, 151, 155, 156, 163, 209–11

J

Jacobian, 12, 14, 36
Junction conditions, ix, 60, 84–90, 92

K

Kerr spacetime, 94, 109, 163, 187–201, 205, 206,
208, 211, 215, 218, 219, 221

Kerr–Newman spacetime, 187, 221–3
Kerr–Schild coordinates, 194–6
Kerr–Schild metric, 195, 219
Killing horizon, 175–6, 185, 191, 204
Killing tensor, 192, 219
Killing vector, x, 1, 10–11, 25–7, 82, 96, 149, 150,

176, 185–9, 191, 192, 204, 207, 208, 219, 220
Klein–Gordon equation, 121, 125, 133
Komar integral

for angular momentum, see Angular momentum,
definition in terms of Komar integral

for mass, see Mass, definition in terms of Komar
integral

Kruskal coordinates, 164–8, 171, 176, 178–80, 184,
186, 196, 197, 216

Kruskal diagram, 166–8, 170, 172, 176, 180

L

Lagrangian
density, 118, 120–2, 125, 131, 133, 139, 157
formulation of general relativity, x, 118, 121–8, 156
in general, 6, 118–20, 124
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Laplace’s equation, 84, 217
Lapse function, 118, 119, 130, 131, 139, 145–7
Lense–Thirring effect, see Dragging of inertial frames
Levi-Civita tensor, 2, 13–5, 26, 64, 65
Lie differentiation, x, 1, 8–10, 17, 25, 44, 53, 76, 80,

103, 127, 130, 131, 139, 146, 158, 207
Lie transport, 9, 45, 75, 103, 160
Light cone, 51, 63–4, 66, 170
Local flatness theorem, 1, 11–2, 18, 19, 22
Local Lorentz frame, 2, 11, 12, 15, 37, 46, 123, 185
Lorentz transformation, 11

M

Mach’s principle, 97
Majumdar–Papapetrou spacetime, 216, 217
Manifold, 1–3, 8, 12, 26, 59, 60, 68, 69, 76, 120, 126,

127, 138, 146, 166, 169, 178, 202
Mass

-energy, see Energy
Arnowitt–Deser–Misner, 147, 151–6, 158, 159,

177, 187, 217
Bondi–Sachs, 151–6
definition in terms of gravitational Hamiltonian, ix,

x, 147, 156, 177
definition in terms of Komar integral, 149, 177,

209
density, 84, 90–3, 96, 97, 102, 104, 106, 109,

111–3, 116, 117, 155, 159, 164
in spherical symmetry, 82, 115, 152, 158, 164, 173,

184, 217
of a black hole, ix, 55, 109, 110, 163, 176, 177,

184, 187, 200, 201, 206, 209–11, 213, 221–3
of a collapsing shell, 93, 94, 108, 109, 111
of a particle, 10, 27, 42, 157, 181, 185
of an isolated body, ix, 82, 91, 92, 116–9, 146, 148,

150, 164, 198, 210
transfer across a hypersurface, 155, 156, 160, 161

Matrix, 11–4, 34, 35, 56–8, 65, 66
Matter distribution, 16, 26, 30, 59, 82, 88, 90, 93, 109,

121, 175, 205, 210, 211, 213
Maximal extension of a spacetime, 167, 176, 196–8
Maxwell field equations, 157, 176, 177
Membrane paradigm, 216
Metric determinant, see Determinant
Minkowski metric, 11, 19, 22, 23, 29, 56, 64, 95, 195,

219
Minkowski spacetime, see Flat spacetime
Moment of time symmetry, 81–4, 115
Momentum vector, 32, 191
Multipole moments, 206

N

Normal coordinates
Fermi, see, Fermi normal coordinates
Riemann, see Riemann normal coordinates

Normal vector, 38, 48, 60–1, 63, 65–9, 71, 75, 80–2,
85, 87, 92, 95, 99, 100, 103, 109, 114, 115, 123,
126, 129, 130, 134, 136, 147–9, 153, 160, 174,
185, 190

Numerical relativity, 84, 114, 146, 157

O

Oppenheimer–Snyder collapse, see Gravitational
collapse of a pressureless star

P

Painlevé–Gullstrand coordinates, 168
Parallel transport, 1, 4, 6, 7, 19, 22, 24, 25, 37, 47, 57,

58
Penrose process, 191–2
Penrose’s description of the event horizon, 203, 212,

215
Penrose–Carter diagram, 168–70, 180, 198, 216
Permutation symbol, 13
Perturbation of a black hole, 184, 201, 211, 212
Poisson’s equation, 84
Pressure, 29, 55, 90, 91, 93, 96, 97, 102, 104–7, 109,

111–3, 116, 117, 153, 159, 173
Price’s theorem, 206
Principal null congruences of the Kerr spacetime,

192–4
Principle of equivalence, 6, 11
Projection of a tensor, 24, 47, 56, 73, 74, 77, 96, 100,

101, 139
Proper distance, 7, 8, 19–21, 85, 115, 160, 185
Proper time, 7, 8, 19, 20, 24, 25, 36, 41, 43, 85, 91,

99, 100, 104, 116, 147, 158, 168, 181, 188, 192

R

Radiation, 112, 152–5, 160–62, 173, 185, 206, 213,
215, 218, 223

Raychaudhuri’s equation, 28, 40–41, 50–51, 55, 57,
58, 105, 116, 205, 207, 212

Redshift, 185
Reissner–Nordström spacetime, 163, 176–87, 194,

196, 197, 217
Retarded time, 152, 153, 155, 160, 161, 165
Ricci tensor, see Curvature tensors, Ricci
Riemann normal coordinates, 26
Riemann tensor, see Curvature tensors, Riemann
Rigid rotation, 161
Rotation tensor, 28, 35–41, 48, 50, 51, 55–7, 205,

220
Rotation, gravitational effects, 97

S

Schwarzschild spacetime, 26, 42, 52, 55, 90, 93, 108,
114–7, 152, 158, 163–76, 205, 217

Shear tensor, 28, 34–7, 40, 41, 48, 50, 51, 55–8, 105,
205, 220, 223

Shift vector, 118, 119, 130, 139, 145–7
Singularity

of a congruence, see Caustic
of null-dust collapse, 217
of the Boyer–Lindquist coordinates, 187, 192
of the Eddington–Finkelstein coordinates, 182
of the Kerr spacetime, 187, 190, 195–6, 198
of the Kruskal coordinates, 179, 180, 197
of the Reissner–Nordström spacetime, 178, 180
of the Schwarzschild coordinates, 164, 165, 178
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of the Schwarzschild spacetime, 169, 170
theorems, 28, 204, 215

Smarr’s formula, 200, 209–11, 215, 222
Stokes’ theorem, 69, 71, 150
Stress-energy tensor

decomposed in terms of density and principal
pressures, 29

in general, ix, 16, 29, 105, 113, 125, 155, 205, 207,
211, 213, 215

of a perfect fluid, 30, 96, 155, 158
of a point particle, 158
of a scalar field, 125, 161
of a surface layer, 87–90, 93, 95, 96, 98, 100–4,

107, 111, 113, 116
of an electromagnetic field, 157, 177
of null dust, 153, 173, 213, 214, 218

Surface area of a black hole, ix, 163, 200, 201, 209,
211–3, 222, 223

Surface element, ix, 59, 64–9, 72, 106, 133, 149, 207,
210, 211

Surface gravity of a black hole, 184–7, 198–200, 204,
208, 209, 213–5, 220, 222, 223

Surface integral, see Integration over hypersurfaces
Surface layer, ix, 59, 84–90, 93–114, 116

T

Tangent plane, 3
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Thermodynamics, 159, 206, 214, 215
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