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HORTLY after the death of Professor James Clerk Maxwell a Committee was

formed, consisting of graduate members of the University of Cambridge and

of other friends and admirers, for the purpose of securing a fitting memorial of
him.

The Committee had in view two objects: to obtain a likeness of Professor
Clerk Maxwell, which should be placed in some public building of the Uni-
versity ; and to collect and publish his scattered scientific writings, copies of
which, so far as the funds at the disposal of the Committee would allow,
should be presented to learned Societies and Libraries at home and abroad.

It was decided that the likeness should take the form of a marble bust.
This was executed by Sir J. E. Boehm, R.A., and is now placed in the
apparatus room of the Cavendish Laboratory.

In carrying out the second part of their programme the Committee
obtained the cordipl assistance of the Syndies of the University Press, who
willingly consented to publish the present work. At the request of the Syndics,
Mr W. D. Niven, M.A., Fellow and Assistant Tutor of Trinity College and
now Director of Studies at the Royal Naval College, Greenwich, undertook the
duties of Editor.

The Committee and the Syndics desire to take this opportunity of
acknowledging their obligation to Messrs Adam and Charles Black, Publishers
of the ninth Edition of the Encyclopedia Britannice, to Messrs Taylor and
Francis, Publishers of the London, Edinburgh, and Dublin Philosophical Mago-
zine and Journal of Science, to Messrs Macmillan and Co., Publishers of
Nature and of the Cambridge and Dublin Mathematical Journal, to Messrs
Metcalfe and Co., Publishers of the Quarterly Journal of Pure ond Applied
Mathematics, and to the Lords of the Committee of Council on Education,
Proprietors of the Handbooks of the South Kensington Museum, for their
courteous consent to allow the articles which Clerk Maxwell had contributed to
these publications to be included in the present work; to Mr Norman Lockyer
for the assistance which he rendered in the selection of the articles re-printed
from Nature; and their further obligation to Messrs Macmillan and Co. for
permission to use in this work the steel engravings of Faraday, Clerk Maxwell,
and Helmholtz from the Nature Series of Portraits.
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Numerous and important Papers, contributed by Clerk Maxwell to the
Tramsactions or Proceedings of the Royal Societies of London and of Edinburgh,
of the Cambridge Philosophical Society, of the Royal Scottish Society of Arts,
and of the London Mathematical Society; Lectures delivered by Clerk Maxwell
at the Royal Institution of Great Britain published in its Proceedings; as well
as Communications and Addresses to the British Association published in its
Reports, are also included in the present work with the sanction of the above
mentioned learned bodies.

The HEssay which gained the Adams Prize for the year 1856 in the
University of Cambridge, the introductory Lecture on the Study of Experimental
Physics delivered in the Cavendish Laboratory, and the Rede Lecture delivered
before the University in 1878, complete this collection of Clerk Maxwell’s scientific
writings.

The diagrams in this work have been re-produced by a photographic
process from the original diagrams in Clerk Maxwell's Papers by the Cambridge
Scientific Instrument Company.

It only remains to add that the footnotes inserted by the Editor are
enclosed between square brackets.

CaMBRIDGE, August, 1890.
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PREFACE.

LERK MAXWELL'S biography has been written by Professors Lewis Campbell and
Wm. Garnett with so much skill and appreciation of their subject that nothing further
remains to be told. It would therefore be presumption on the part of the editor of his
papers to attempt any lengthened narrative of a biographical character. At the same time
a memorial edition of an author’s collected writings would hardly be complete without
some account however slight of his life and works. Accordingly the principal events of
Clerk Maxwell’'s career will be recounted in the following brief sketch, and the reader
who wishes to obtain further and more detailed information or to study his character in
its social relations may consult the interesting work to which reference has been made.

James Olerk Maxwell was descended from the Clerks of Penicuick in Midlothian,
a well-known Scottish family whose history can be traced back to the 16th century. The
first baronet served in the parliament of Scotland. His eldest son, a man of learning,
was a Baron of the Exchequer in Scotland. In later times John Clerk of Eldin a
member of the family claimed the credit of having invented a new method of breaking
the enemy’s line in naval warfare, an invention said to have been adopted by Lord
Rodney in the battle which he gained over the French in 1782, Another John Clerk,
son of the naval tactitian, was a lawyer of much acumen and became a Lord of the
Court of Session. He was distinguished among his Edinburgh contemporaries by his ready
and sarcastic wit.

The father of the subject of this memoir was John, brother to Sir George Clerk of
Penicuick. He adopted the surname of Maxwell on succeeding to an estate in Kirkeud-
brightshire which came into the Clerk family through marriage with a Miss Maxwell. Tt
cannot be said that he was possessed of the energy and activity of mind which lead
to distinction. He was in truth a somewhat easy-going but shrewd and intelligent
man, whose most notable characteristics were his perfect sincerity and extreme benevolence.
He took an enlightened interest in mechanical and scientific pursuits and was of an
essentially practical turn of mind. On leaving the University he had devoted himself
to law and was called to the Scottish Bar. It does not appear however that he met
with any great success in that profession. At all events, a quiet life in the country

VOL. L. b
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X PREFACE.

presented so many attractions to his wife as well as to himself that he was easily induced
to relinquish his prospects at the bar. He had been married to Frances, daughter of
Robert Cay of N. Charlton, Northumberland, a lady of strong good sense and resolute
character.

The country house which was their home after they left Edinburgh was designed
by John Clerk Maxwell himself and was built on his estate. The house, which was named
Glenlair, was surrounded by fine scenery, of which the water of Urr with its rocky and
wooded banks formed the principal charm.

James was born at Edinburgh on the 13th of June, 1831, but it was at Glenlair
that the greater part of his childhood was passed. In that pleasant spot under healthful
influences of all kinds the child developed into a hardy and courageous boy. Not
precociously clever at books he was yet not without some signs of future intellectual
strength, being remarkable for a spirit of inquiry into the causes and connections of the
phenomena around him. It was remembered afterwards when he had become distinguished,
that the questions he put as a child shewed an amount of thoughtfulness which for his
years was very unusual.

At the age of ten, James, who had lost his mother, was placed under the charge of
relatives in Edinburgh that he might attend the Edinburgh Academy. A charming account
of his school days is given in the narrative of Professor Campbell who was Maxwell’s
schoolfellow and in after life an intimate friend and constant correspondent. The child is
father to the man, and those who were privileged to know the man Maxwell will easily
recognise Mr Campbell’s picture of the boy on his first appearance at school,—the home-
made garments more serviceable than fashionable, the rustic speech and curiously quaint
but often humorous manner of conveying his meaning, his bewilderment on first undergoing
the routine of schoolwork, and his Spartan conduct under various trials at the hands of
his schoolfellows. They will further feel how accurate is the sketch of the boy become
accustomed to his surroundings and rapidly assuming the place at school to which his
mental powers entitled him, while his superfluous energy finds vent privately in carrying
out mechanical contrivances and geometrical constructions, in reading and even trying his
hand at composing ballads, and in sending to his father letters richly embellished with
grotesquely elaborate borders and drawings.

An event of his school-days, worth recording, was his invention of a mechanical method
of drawing certain classes of Ovals. An account of this method was printed in the
Proceedings of the Royal Society of Edinburgh and forms the first of his writings
collected in the present work. The subject was introduced to the notice of the Society
by the celebrated Professor James Forbes, who from the first took the greatest possible
interest in Maxwell’s progress. Professor Tait, another schoolfellow, mentions that at the
time when the paper on the Ovals was written, Maxwell had received no instruction in
Mathematics beyond a little Euclid and Algebra.
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PREFACE. x1

In 1847 Maxwell entered the University of Edinburgh where he remained for three
sessions. He attended the lectures of Kelland in Mathematics, Forbes in Natural Philosophy,
Gregory in Chemistry, Sir W. Hamilton in Mental Philosophy, Wilson (Christopher North)
in Moral Philosophy. The lectures of Sir W. Hamilton made a strong impression upon
him, in stimulating the love of speculation to which his mind was prone, but, as might
have been expected, it was the Professor of Natural Philosophy who obtained the chief share
of his devotion. The enthusiasm which so distinguished a man as Forbes naturally inspired
in young and ardent disciples, evoked a feeling of personal attachment, and the Professor, on
his part, took special interest in his pupil and gave to him the altogether unusual
privilege of working with his fine apparatus.

What was the nature of this experimental work we may conjecture from a perusal of
his paper on Elastic Solids, written at that time, in which he describes some experiments
made with the view of verifying the deductions of his theory in its application to Optics.
Maxwell would seem to have been led to the study of this subject by the following cir-
cumstance. He was taken by his uncle John Cay to see William Nicol, the inventor of
the polarising prism which bears his name, and was shewn by Nicol the colours of unan-
nealed glass in the polariscope. This incited Maxwell to study the laws of polarised light
and to comstruct a rough polariscope in which the polariser and analyser were simple glass
reflectors. By means of this instrument he was able to obtain the colour bands of unannealed
glass. These he copied on paper in water colours and sent to Nicol. It is gratifying to
find that this spirited attempt at experimenting on the part of a mere boy was duly
appreciated by Nicol, who at once encouraged and delighted him by a present of a couple of
his prisms.

The paper alluded to, viz. that entitled “On the Equilibrium of Elastic Solids,” was
read to the Royal Society of Edinburgh in 1850. It forms the third paper which Maxwell
addressed to that Society. The first in 1846 on Ovals has been already mentioned. The
second, under the title “The Theory of Rolling Curves,” was presented by Kelland in 1849.

It is obvious that a youth of nineteen years who had been capable of these efforts
must have been gifted with rare originality and with great power of sustained exertion.
But his singular self-concentration led him into habits of solitude and seclusion, the tendency
of which was to confirm his peculiarities of speech and of manner. He was shy and
reserved with strangers, and his utterances were often obscure both in substance and in
his manner of expressing himself, so many remote and unexpected allusions perpetually
obtruding themselves. Though really most sociable and even fond of society he was
essentially reticent and reserved. Mr Campbell thinks it is to be regretted that Maxwell
did not begin his Cambridge career earlier for the sake of the social intercourse which
he would have found it difficult to avoid there. It is a question, however, whether in
losing the opportunity of using Professor Forbes’ apparatus he would not thereby have lost
what was perhaps the most valuable part of his early scientific training.

b2
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x11 PREFACE.

It was originally intended that Maxwell should follow his father’s profession of advocate,
but this intention was abandoned as soon as it became obvious that his tastes lay in a
direction so decidedly scientific. It was at length determined to send him to Cambridge
and accordingly in October, 1850, he commenced residence in Peterhouse, where however he
resided during the Michaelmas Term only. On December 14 of the same year he migrated
to Trinity College.

It may readily be supposed that his preparatory training for the Cambridge course
was far removed from the ordinary type. There had indeed for some time been practically
no restraint upon his plan of study and his mind had been allowed to follow its natural
bent towards science, though not to an extent so absorbing as to withdraw him from
other pursuits. Though he was not a sportsman,—indeed sport so called was always repugnant
to him—he was yet exceedingly fond of a country life. He was a good horseman and a
good swimmer. Whence however he derived his chief enjoyment may be gathered from the
account which Mr Campbell gives of the zest with which he quoted on one occasion the
lines of Burns which describe the poet finding inspiration while wandering along the banks
of a stream in the free indulgence of his fancies. Maxwell was not only a lover of poetry
but himself a poet, as the fine pieces gathered together by Mr Campbell abundantly testify.
He saw however that his true calling was Science and never regarded these poetical
efforts as other than mere pastime. Devotion to science, already stimulated by successful
endeavour, a tendency to ponder over philosophical problems and an attachment to English
literature, particularly to English poetry,—these tastes, implanted in a mind of singular
strength and purity, may be sald to have been the endowments with which young Maxwell
began his Cambridge career. Besides this, his scientific reading, as we may gather from his
papers to the Royal Society of Edinburgh referred to above, was already extensive and
varied. He brought with him, says Professor Tait, a mass of knowledge which was really
immense for so young a man but in a state of disorder appalling to his methodical
private tutor.

Maxwell’s undergraduate career was not marked by any specially notable feature. His
private speculations had in some measure to be laid aside in favour of more systematic
study. Yet his mind was steadily ripening for the work of his later years. Among those
with whom he was brought into daily contact by his position, as a Scholar of Trinity
College, were some of the brightest and most cultivated young men in the University. In
the genial fellowship of the Scholars’ table Maxwell’s kindly humour found ready play, while
in the more select coterie of the Apostle Club, formed for mutual cultivation, he found a field
for the exercise of his love of speculation in essays on subjects beyond the lines of the
ordinary University course. The composition of these essays doubtless laid the foundation
of that literary finish which is one of the characteristics of Maxwell’s scientific writings.
His biographers have preserved several extracts on a variety of subjects chiefly of a specu-
lative character. They are remarkable mainly for the weight of thought contained in them
but occasionally also for smart epigrams and for a vein of dry and sarcastic humour.
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PREFACE. x111

These glimpses into Maxwell's character may prepare us to believe that, with all his
shyness, he was not without confidence in his own powers, as also appears from the account
which was given by the late Master of Trinity College, Dr Thompson, who was Tutor when
Maxwell personally applied to him for permission to migrate to that College. He appeared
to be a shy and diffident youth, but presently surprised Dr Thompson by producing a
bundle of papers, doubtless copies of those we have already mentioned, remarking “Perhaps
these may shew you that I am not unfit to enter at your College.”

He became a pupil of the celebrated William Hopkins of Peterhouse, under whom his
course of study became more systematic. One striking characteristic was remarked by his
contemporaries, Whenever the subject admitted of it he had recourse to diagrams, though
his fellow students might solve the question more easily by a train of analysis. Many
illustrations of this manner of proceeding might be taken from his writings, but in
truth it was only one phase of his mental attitude towards scientific questions, which
led him to proceed from one distinct idea to another instead of trusting to symbols and
equations.

Maxwell’s published contributions to Mathematical Science during his undergraduate career
were few and of no great importance. He found time however to carry his investigations
into regions outside the prescribed Cambridge course. At the lectures of Professor Stokes*
he was regular in his attendance. Indeed it appears from the paper on Elastic Solids,
mentioned above, that he was acquainted with some of the writings of Stokes before he
entered Cambridge. Before 1850, Stokes had published some of his most important contri-
butions to Hydromechanics and Optics; and Sir W. Thomson, who was nine years’ Maxwell’s
senior in University standing, had, among other remarkable investigations, called special
attention to the mathematical analogy between Heat-conduction and Statical Electricity.
There is no doubt that these authors as well as Faraday, of whose experimental researches
he had made a careful study, exercised a powerful directive influence on his mind.

In January, 1854, Maxwell’s undergraduate career closed. He was second wrangler, but
shared with Dr Routh, who was senior wrangler, the honours of the First Smith’s Prize.
In due course he was elected Fellow of Trinity and placed on the staff of College Lecturers.

No sooner was he released from the vrestraints imposed by the Trinity Fellowship
Examination than he plunged headlong into original work. There were several questions
he was anxious to deal with, and first of all he completed an investigation on the Trans-
formation of Surfaces by Bending, a purely geometrical problem. This memoir he presented
to the Cambridge Philosophical Society in the following March. At this period he also
set about an enquiry into the quantitative measurement of mixtures of colours and the
causes of colour-blindness. During his undergraduateship he had, as we have seen, found
time for the study of Electricity. This had already borne fruit and now resulted in the
first of his important memoirs on that subject,—the memoir on Faraday’s Lines of Force.

* Now Sir George Gabriel Stokes, Bart., M.P. for the University.
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X1iv PREFACE.

The number and importance of his papers, published in 1855—6, bear witness to his
assiduity during this period. With these labours, and in the preparation of his College
lectures, on which he entered with much enthusiasm, his mind was fully occupied and the
work was congenial. He had formed a number of valued friendships, and he had a variety of
interests, scientific and literary, attaching him to the University. Nevertheless, when the chair
of Natural Philosophy in Marischal College, Aberdeen, fell vacant, Maxwell became a candidate.
This step was probably taken in deference to his father’s wishes, as the long summer
vacation of the Scottish College would enable him to reside with his father at Glenlair for
half the year continuously. He obtained the professorship, but unhappily the kind intentions
which prompted him to apply for it were frustrated by the death of his father, which took
place in April, 1856.

It is doubtful whether the change from the Trinity lectureship to the Aberdeen
professorship was altogether prudent. The advantages were the possession of a laboratory and
the long uninterrupted summer vacation. But the labour of drilling classes composed chiefly
of comparatively young and untrained lads, in the elements of mechanics and physics, was
not the work for which Maxwell was specially fitted. On the other hand, in a large college
like Trinity there could not fail to have been among its undergraduate members, some of the
most promising young mathematicians of the University, capable of appreciating his original
genius and immense knowledge, by instructing whom he would himself have derived ad-
vantage.

In 1856 Maxwell entered upon his duties as Professor of Natural Philosophy at Marischal
College, and two years afterwards he married Katharine Mary Dewar, daughter of the
Principal of the College. He in consequence ceased to be a Fellow of Trinity College,
but was afterwards elected an honorary Fellow, at the same time as Professor Cayley.

During the years 1856—60 he was still actively employed upon the subject of colour
sensation, to which he contributed a new method of measurement in the ingenious instru-
ment known as the colour-box. The most serious demands upon his powers and upon his
time were made by his investigations on the Stability of Saturn’s Rings. This was the
subject chosen by the Examiners for the Adams Prize Essay to be adjudged in 1857, and
was advertised in the following terms:—

“The Problem may be treated on the supposition that the system of Rings is
exactly or very approximately concentric with Saturn and symmetrically disposed about
the plane of his equator and different hypotheses may be made respecting the physical
constitution of the Rings. It may be supposed (1) that they are rigid; (2) that they
are fluid and in part aeriform; (3) that they consist of masses of matter not materially
coherent. The question will be considered to be answered by ascertaining on these
hypotheses severally whether the conditions of mechanical stability are satisfied by the
mutual attractions and motions of the Planet and the Rings.”
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“It is desirable that an attempt should also be made to determine on which of
the above hypotheses the appearances both of the bright rings and the recently
discovered dark ring may be most satisfactorily explained; and to indicate any causes
to which a change of form such as is supposed from a comparison of modern with the
earlier observations to have taken place, may be attributed.”

It is sufficient to mention here that Maxwell bestowed an immense amount of labour
in working out the theory as proposed, and that he arrived at the conclusion that “the
only system of rings which can exist is one composed of an indefinite number of unconnected
particles revolving round the planet with different velocities according to their respective
distances. These particles may be arranged in a series of narrow rings, or they may move
about through each other irregularly. In the first case the destruction of the system will be
very slow, in the second case it will be more rapid, but there may be a tendency towards
an arrangement in narrow rings which may retard the process.”

Part of the work, dealing with the oscillatory waves set up in a ring of satellites,
was illustrated by an ingenious mechanical contrivance which was greatly admired when
exhibited before the Royal Society of Edinburgh.

This essay, besides securing the prize, obtained for its author great credit among
scientific men. It was characterized by Sir George Airy as one of the most remarkable
applications of Mathematics to Physics that he had ever seen.

The suggestion has been made that it was the irregular motions of the particles which
compose the Rings of Saturn resulting on the whole in apparent regularity and uni-
formity, which led Maxwell to the investigation of the Kinetic Theory of Gases, his first
contribution to which was read to the British Association in 1859. This is not unlikely,
but it must also be borne in mind that Bernoulli’s Theory had recently been revived by
Herapath, Joule and Clausius whose writings may have drawn Maxwell’s attention to the
subject.

In 1860 King’s College and Marischal College were joined together as one institution,
now known as the University of Aberdeen. The new chair of Natural Philosophy thus
created was filled up by the appointment of David Thomson, formerly Professor at King's
College and Maxwell’s senior. Professor Thomson, though not comparable to Maxwell as a
physicist, was nevertheless a remarkable man. He was distinguished by singular force of
character and great administrative faculty and he had been prominent in bringing about
the fusion of the Colleges. He was also an admirable lecturer and teacher and had done
much to raise the standard of scientific education in the north of Scotland. Thus the choice
made by the Commissioners, though almost inevitable, had the effect of making it appear
that Maxwell failed as a teacher. There seems however to be no evidence to support such
an inference. On the contrary, if we may judge from the number of voluntary students
attending his classes in his last College session, he would seem to have been as popular as a
professor as he was personally estimable.
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This is also borne out by the fact that he was soon afterwards elected Professor of
Natural Philosophy and Astronomy in King’s College, London. The new appointment had
the advantage of bringing him much more into contact with men in his own department
of science, especially with Faraday, with whose electrical work his own was so intimately
connected. In 1862—63 he took a prominent part in the experiments organised by a
Committee of the British Association for the determination of electrical resistance in
absolute measure and for placing electrical measurements on a satisfactory basis. In the
experiments which were conducted in the laboratory of King’s College upon a plan due
to Sir W. Thomson, two long series of measurements were taken in successive years. In
the first year, the working members were Maxwell, Balfour Stewart and Fleeming Jenkin; in
the second, Charles Hockin took the place of Balfour Stewart. The work of this Committee
was communicated in the form of reports to the British Association and was afterwards
republished in one volume by Fleeming Jenkin.

Maxwell was a professor in King’s College from 1860 to 1865, and this period of his
life is distinguished by the production of his most important papers. The second memoir
on Colours made its appearance in 1860. In the same year his first papers on the Kinetic
Theory of Gases were published. In 1861 came his papers on Physical Lines of Force
and in 1864 his greatest memoir on Electricity,—a Dynamical Theory of the Electro-
magnetic Field. He must have been occupied with the Dynamical Theory of Gases in 1865,
as two important papers appeared in the following year, first the Bakerian lecture on the
Viscosity of Gases, and next the memoir on the Dynamical Theory of Gases.

The mental strain involved in the production of so much valuable work, combined
with the duties of his professorship which required his attention during nine months of
the year, seems to have influenced him in a resolution which in 1865 he at length
adopted of resigning his chair and retiring to his country seat. Shortly after this he had
a severe illness. On his recovery he continued his work on the Dynamical Theory of
Gases, to which reference has just been made. For the next few years he led a quiet
and secluded life at Glenlair, varied by annual visits to London, attendances at the British
Association meetings and by a tour in Italy in 1867. He was also Moderator or Examiner
in the Mathematical Tripos at Cambridge on several occasions, offices which entailed a few
weeks’ residence at the University in winter. His chief employment during those years
was the preparation of his now celebrated treatise on Electricity and Magnetism which,
however, was not published till 1873. He also wrote a treatise on Heat which was
published in 1871

In 1871 Maxwell was, with some reluctance, induced to quit his retreat in the
country and to enter upon a new career. The University of Cambridge had recently
resolved to found a professorship of physical science, especially for the cultivation and
teaching of the subjects of Heat, Electricity and Magnetism. In furtherance of this
object her Chancellor, the Duke of Devonshire, had most generously undertaken to build
a laboratory and furnish it with the necessary apparatus. Maxwell was invited to fill the
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new chair thus formed and to superintend the erection of the laboratory. In October,
1871, he delivered his inaugural lecture.

The Cavendish Laboratory, so called after its founder, the present venerable chief of
the family which produced the great physicist of the same name, was not completed
for practical work until 1874. In June of that year it was formally presented to the
University by the Chancellor. The building itself and the fittings of the several rooms
were admirably contrived mainly by Maxwell himself, but the stock of apparatus was
smaller than accorded with the generous intentions of the Chancellor. This defect must
be attributed to the anxiety of the Professor to procure only instruments by the best
makers and with such improvements as he could himself suggest. Such a defect therefore
required time for its removal and afterwards in great measure disappeared, apparatus being
constantly added to the stock as occasion demanded.

One of the chief tasks which Maxwell undertook was that of superintending . and
directing the energies of such young Bachelors of Arts as became his pupils after
having acquired good positions in the University examinations. Several pupils, who have
since acquired distinction, carried out valuable experiments under the guidance of the
Professor, It must be admitted, however, that the numbers were at first small, but perhaps
this was only to be expected from the traditions of so many years. The Professor was
singularly kind and helpful to these pupils. He would hold long conversations with them,
opening up to them the stores of his mind, giving them hints as to what they might try
and what avoid, and was always ready with some ingenious remedy for the experimental
troubles which beset them. These conversations, always delightful and instructive, were,
according to the account of one of his pupils, a liberal education in themselves, and were
repaid in the minds of the pupils by a grateful affection rarely accorded to any teacher.

Besides discharging the duties of his chair, Maxwell took an active part in conducting
the general business of the University and more particularly in regulating the courses of
study in Mathematics and Physics.

For some years previous to 1866 when Maxwell returned to Cambridge as Moderator
in the Mathematical Tripos, the studies in the University had lost touch with the great
scientific movements going on outside her walls. It was said that some of the subjects most
in vogue had but little interest for the present generation, and loud complaints began to
be heard that while such branches of knowledge as Heat, Electricity and Magnetism, were
left out of the Tripos examination, the candidates were wasting their time and energy
upon mathematical trifles barren of scientific interest and of practical results. Into the
movement for reform Maxwell entered warmly. By his questions in 1866 and subsequent
years he infused new life into the examination; he took an active part in drafting the
new scheme introduced in 1873; but most of all by his writings he exerted a powerful
influence on the younger members of the University, and was largely instrumental in
bringing about the change which has been now effected.

VOL. I. c
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In the first few years at Cambridge Maxwell was busy in giving the final touches
to his great work on Electricity and Magnetism and in passing it through the press.
This work was published in 1873, and it seems to have occupied the most of his attention
for the two previous years, as the few papers published by him during that period relate
chiefly to subjects forming part of the contents. After this publication his contributions to
scientific journals became more numerous, those on the Dynamical Theory of Gases being
perhaps the most important. He also wrote a great many short articles and reviews
which made their appearance in Nature and the Encyclopedia Britannica. Some of these
essays are charming expositions of scientific subjects, some are general criticisms of the
works of contemporary writers and others are brief and appreciative biographies of fellow
workers in the same fields of research.

An undertaking in which he was long engaged and which, though it proved exceedingly
interesting, entailed much labour, was the editing of the “Electrical Researches” of the Hon.
Henry Cavendish. This work, published in 1879, has had the effect of increasing the
reputation of Cavendish, disclosing as it does the unsuspected advances which that acute
physicist had made in the Theory of Electricity, especially in the measurement of electrical
quantities. The work is enriched by a variety of valuable notes in which Cavendish’s
views and results are examined by the light of modern theory and methods. Especially
valuable are the methods applied to the determination of the electrical capacities of con-
ductors and condensers, a subject in which Cavendish himself shewed considerable skill
both of a mathematical and experimental character.

The importance of the task undertaken by Maxwell in connection with Cavendish’s
papers will be understood from the following extract from his introduction to them.

“It is somewhat difficult to account for the fact that though Cavendish had
prepared a complete description of his experiments on the charges of bodies, and had
even taken the trouble to write out a fair copy, and though all this seems to have
been done before 1774 and he continued to make experiments in Electricity till 1781
and lived on till 1810, he kept his manuscript by him and never published it.”

“Cavendish cared more for investigation than for publication. He would under-
take the most laborious researches in order to clear up a difficulty which no one
but himself could appreciate or was even aware of, and we cannot doubt that the
result of his enquiries, when successful, gave him a certain degree of satisfaction.
But it did not excite in him that desire to communicate the discovery to others
which in the case of ordinary men of science, generally ensures the publication of
their results. How completely these researches of Cavendish remained unknown to
other men of science is shewn by the external history of electricity.”

It will probably be thought a matter of some difficulty to place oneself in the
position of a physicist of a century ago and to ascertain the exact bearing of his
experiments. But Maxwell entered upon this undertaking with the utmost enthusiasm and
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succeeded in completely identifying himself with Cavendish’s methods. He shewed that
Cavendish had really anticipated several of the discoveries in electrical science which have been
made since his time. Cavendish was the first to form the conception of and to measure
Electrostatic Capacity and Specific Inductive Capacity; he also anticipated Ohm’s law.

The Cavendish papers were no sooner disposed of than Maxwell set about preparing
a new edition of his work on Electricity and Magnetism; but unhappily in the summer
term of 1879 his health gave way. Hopes were however entertained that when he returned
to the bracing air of his country home he would soon recover. But he lingered through
the summer months with no signs of improvement and his spirits gradually sank. He was
finally informed by his old fellow-student, Professor Sanders, that he could not live more
than a few weeks. As a last resort he was brought back to Cambridge in October that he
might be under the charge of his favourite physician, Dr Paget*. Nothing however could

be done for his malady, and, after a painful illness, he died on the 5th of November, 1879,
in his 49th year.

Maxwell was thus cut off in the prime of his powers, and at a time when the depart-
ments of science, which he had contributed so much to develop, were being every day
extended by fresh discoveries. His death was deplored as an irreparable loss to science and
to the University, in which his amiable disposition was as universally esteemed as his genius
was admired.

It is not intended in this preface to enter at length into a discussion of the relation
which Maxwell’s work bears historically to that of his predecessors, or to attempt to estimate
the effect which it has had on the scientific thought of the present day. In some of his
papers he has given more than usually copious references to the works of those by whom
he had been influenced; and in his later papers, especially those of a more popular nature
which appeared in the Encyclopedia Britannica, he has given full historical outlines of some
of the most prominent fields in which he laboured. Nor does it appear to the present
editor that the time has yet arrived when the quickening influence of Maxwell’s mind on
modern scientific thought can be duly estimated. He therefore proposes to himself the duty
of recalling briefly, according to subjects, the most important speculations in which Maxwell
engaged.

His works have been arranged as far as possible in chronological order but they fall
naturally under a few leading heads; and perhaps we shall not be far wrong if we place
first in importance his work in Electricity.

His first paper on this’ subject bearing the title “On Faraday’s Lines of Force” was
read before the Cambridge Philosophical Society on Dec. 11th, 1855. He had been previously
attracted by Faraday’s method of expressing electrical laws, and he here set before himself
the task of shewing that the ideas which had guided Faraday’s researches were not incon-
sistent with the mathematical formule in which Poisson and others had cast the laws of

* Now Sir George Edward Paget, K.C.B.
c2
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Electricity. His object, he says, is to find a physical. analogy which shall help the mind
to grasp the results of previous investigations “without being committed to any theory
founded on the physical science from which that conception is borrowed, so that it is neither
drawn aside from the subject in the pursuit of analytical subtleties nor carried beyond the
truth by a favorite hypothesis.”

The laws of electricity are therefore compared with the properties of an incompressible
fluid the motion of which is retarded by a force proportional to the velocity, and the fluid
is supposed to possess no inertia. He shews the analogy which the lines of flow of such
a fluid would have with the lines of force, and deduces not merely the laws of Statical
Electricity in a single medium but also a method of representing what takes place when the
action passes from one dielectric into another.

In the latter part of the paper he proceeds to consider the phenomena of Electro-
magnetism and shews how the laws discovered by Ampere lead to conclusions identical with
those of Faraday. In this paper three expressions are introduced which he identifies with
the components of Faraday’s electrotonic state, though the author admits that he has not
been able to frame a physical theory which would give a clear mental picture of the
various connections expressed by the equations.

Altogether this paper is most important for the light which it throws on the principles
which guided Maxwell at the outset of his electrical work. The idea of the electrotonic
state had already taken a firm hold of his mind though as yet he had formed no physical
explanation of it. In the paper “On Physical Lines of Force” printed in the Phlosophical
Magazine, Vol. XXI. he resumes his speculations. He explains that in his former paper he
had found the geometrical significance of the Electrotonic state but that he now proposes
“to examine magnetic phenomena from a mechanical point of view.” Accordingly he propounds
his remarkable speculation as to the magnetic field being occupied by molecular vortices,
the axes of which coincide with the lines of force. The cells within which these vortices
rotate are supposed to be separated by layers of particles which serve the double purpose
of transmitting motion from one cell to another and by their own motions constituting an
electric current. This theory, the parent of several working models which have been devised
to represent the motions of the dielectric, is remarkable for the detail with which it is
worked out and made to explain the various laws not only of magnetic and electromagnetic
action, but also the various forms of electrostatic action. As Maxwell subsequently gave a
more general theory of the Electromagnetic Field, it may be inferred that he did not desire
it to be supposed that he adhered to the views set forth in this paper in every particular;
but. there is no doubt that in some of its main features, especially the existence of
rotation round the lines of magnetic force, it expressed his permanent convictions. In his
treatise on “Electricity and Magnetism,” Vol. 1. p. 416, (2nd edition 427) after quoting from
Sir W. Thomson on the explanation of the magnetic rotation of the plane of the polarisation
of light, he goes on to say of the present paper,
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“A theory of molecular vortices which I worked out at considerable length was
published in the Phil. Mag. for March, April and May, 1861, Jan. and Feb. 1862.”

“I think we have good evidence for the opinion that some phenomenon of rotation
is going on in the magnetic field, that this rotation is performed by a great number
of very small portions of matter, each rotating on its own axis, that axis being parallel
to the direction of the magnetic force, and that the rotations of these various vortices
are made to depend on one another by means of some mechanism between them.”

“The attempt which I then made to imagine a working model of this mechanism
must be taken for no more than it really is, a demonstration that mechanism may
be imagined capable of producing a connection mechanically equivalent to the actual
connection of the parts of the Electromagnetic Field.”

This paper is also important as containing the first hint of the Electromagnetic Theory
of Light which was to be more fully developed afterwards in his third great memoir
“On the Dynamical Theory of the Electromagnetic Field.” This memoir, which was presented
to the Royal Society on the 27th October, 1864, contains Maxwell’s mature thoughts on a
subject which had so long occupied his mind. It was afterwards reproduced in his Treatise
with trifling modifications in the treatment of its parts, but without substantial changes
in its main features. In this paper Maxwell reverses the mode of treating electrical
phenomena adopted by previous mathematical writers; for while they had sought to build
up the laws of the subject by starting from the principles discovered by Ampére, and
deducing the induction of currents from the conservation of energy, Maxwell adopts the
method of first arriving at the laws of induction and then deducing the mechanical
attractions and repulsions.

After recalling the general phenomena of the mutual action of currents and magnets
and the induction produced in a circuit by any variation of the strength of the field in
which it lies, the propagation of light through a luminiferous medium, the properties of
dielectrics and other phenomena which point to a medium capable of transmitting force
and motion, he proceeds.—

“Thus then we are led to the conception of a complicated mechanism capable
of a vast variety of motions but at the same time so connected that the motion of
one part depends, according to definite relations, on the motion of other parts, these
motions being communicated by forces arising from the relative displacement of their
connected parts, in virtue of their elasticity. Such a mechanism must be subject
to the laws of Dynamics.”

On applying dynamical principles to such a connected system he attains certain general
propositions which, on being compared with the laws of induced currents, enable him to
identify certain features of the mechanism with properties of currents. The induction of
currents and their electromagnetic attraction are thus explained and connected.
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In a subsequent part of the memoir he proceeds to establish from these premises
the general equations of the Field and obtains the wusual formule for the mechanical
force on currents, magnets and bodies possessing an electrostatic charge.

He also returns to and elaborates more fully the electromagnetic Theory of Light.
His equations shew that dielectrics can transmit only transverse vibrations, the speed of
propagation of which in air as deduced from electrical data comes out practically identical
with the known velocity of light. For other dielectrics the index of refraction is equal
to the square root of the product of the specific inductive capacity by the coefficient of
magnetic induction, which last factor is for most bodies practically unity. Various comparisons
have been made with the view of testing this deduction. In the case of paraffin wax and
some of the hydrocarbons, theory and experiment agree, but this is not the case with
glass and some other substances. Maxwell has also applied his theory to media which
are not perfect insulators, and finds an expression for the loss of light in passing through
a stratum of given thickness. He remarks in confirmation of his result that most good
conductors are opaque while insulators are transparent, but he also adds that electrolytes
which transmit a current freely are often transparent, while a piece of gold leaf whose
resistance was determined by Mr Hockin allowed far too great an amount of light to
pass. He observes however that it is possible “there is less loss of energy when the
electromotive forces are reversed with the rapidity of light than when they act for sensible
times as in our experiments” A similar explanation may be given of the discordance
between the calculated and observed values of the specific inductive capacity. Prof. J. J.
Thomson in the Proceedings of the Royal Society, Vol. 46, has described an experiment by
which he has obtained the specific inductive capacities of various dielectrics when acted
on by alternating electric forces whose frequency is 25,000,000 per second. He finds that
under these conditions the specific inductive capacity of glass is very nearly the same as
the' square of the refractive index, and very much less than the value for slow rates of
reversals. In illustration of these remarks may be quoted the observations of Prof Hertz who
has shewn that vulcanite and pitch are transparent for waves, whose periods of vibration are
about three hundred millionths of a second. The investigations of Hertz have shewn that
electro-dynamic radiations are transmitted in waves with a velocity, which, if not equal to, is
comparable with that of light, and have thus given conclusive proof that a satisfactory
theory of Electricity must take into account in some form or other the action of the
dielectric. But this does not prove that Maxwell’s theory is to be accepted in every
particular. A peculiarity of his theory is, as he himself points out in his treatise, that
the variation of the electric displacement is to be treated as part of the current as well
as the current of conduction, and that it is the total amount due to the sum of these
which flows as if electricity were an incompressible fluid, and which determines external
electrodynamic actions. In this respect it differs from the theory of Helmholtz which
also takes into account the action of the dielectric. Professor J. J. Thomson in his
Review of Electric Theories has entered into a full discussion of the points at issue
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between the two above mentioned theories, and the reader is referred to his paper for
further information*. Maxwell in the memoir before us has also applied his theory to
the passage of light through crystals, and gets rid at once of the wave of normal vibrations
which has hitherto proved the stumbling block in other theories of light.

The electromagnetic Theory of Light has received numerous developments at the hands
of Lord Rayleigh, Mr Glazebrook, Professor J. J. Thomson and others. These volumes
also contain various shorter papers on Electrical Science, though perhaps the most complete
record of Maxwell's work in this department is to be found in his Treatise on Electricity
and Magnetism in which they were afterwards embodied.

Another series of papers of hardly less importance than those on Electricity are the
various memoirs on the Dynamical Theory of Gases. The idea that the properties of
matter might be explained by the motions and impacts of their ultimate atoms is as
old as the time of the Greeks, and Maxwell has given in his paper on “Atoms” a full
sketch of the ancient controversies to which it gave rise. The mathematical difficulties of
the speculation however were so great that it made little real progress till it was taken
up by Clausius and shortly afterwards by Maxwell. The first paper by Maxwell on the
subject is entitled “Illustrations of the Dynamical Theory of Gases” and was published
in the Philosophical Magazine for January and July, 1860, having been read at a meeting
of the British Association of the previous year. Although the methods developed in this
paper were afterwards abandoned for others, the paper itself is most interesting, as it indicates
clearly the problems in the theory which Maxwell proposed to himself for solution, and so far
contains the germs of much that was treated of in his next memoir. It is also epoch-making,
inasmuch as it for the first time enumerates various propositions which are characteristic
of Maxwell's work in this subject. It contains the first statement of the distribution of velo-
cities according to the law of errors. It also foreshadows the theorem that when two gases
are in thermal equilibrium the mean kinetic energy of the molecules of each system is the
same; and for the first time the question of the viscosity of gases is treated dynamically.

In his great memoir “On the Dynamical Theory of Gases” published in the Philo-
sophical Tramsactions of the Royal Society and read before the Society in May, 1866, he
returns to this subject and lays down for the first time the general dynamical methods
appropriate for its treatment. Though to some extent the same ground is traversed as in
his former paper, the methods are widely different. He here abandons his former hypothesis
that the molecules are hard elastic spheres, and supposes them to repel each other with
forces varying inversely as the fifth power of the distance. His chief reason for assuming
this law of action appears to be that it simplifies considerably the calculation of the
collisions between the molecules, and it leads to the conclusion that the coefficient of
viscosity is directly proportional to the absolute temperature. He himself undertook an
experimental enquiry for the purpose of verifying this conclusion, and, in his paper on the
Viscosity of Gases, he satisfied himself of its correctness. A re-examination of the numerical

* British Association Report, 1885,
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reductions made in the course of his work discloses however an inaccuracy which materially
affects the values of the coefficient of viscosity obtained. Subsequent experiments also seem
to shew that the concise relation he endeavoured to establish is by no means so near
the truth as he supposed, and it is more than doubtful whether the action between two
molecules can be represented by any law of so simple a character.

In the same mernoir he gives a fresh demonstration of the law of distribution of
velocities, but though the method is of permanent value, it labours under the defect of
assuming that the distribution of velocities in the neighbourhood of a point is the same
m every direction, whatever actions may be taking place within the gas. This flaw in
the argument, first pointed out by Boltzmann, seems to have been recognised by Maxwell,
who in his next paper “On the Stresses in Rarefied Gases arising from inequalities of
Temperature,” published in the Philosophical Transactions for 1879, Part 1, adopts a form
of the distribution function of a somewhat different shape. The object of this paper was
to arrive at a theory of the effects observed in Crookes’s Radiometer. The results of the
investigation are stated by Maxwell in the introduction to the paper, from which it would
appear that the observed motion cannot be explained on the Dynamical Theory, unless it
be supposed that the gas in contact with a solid can slide along the surface with a finite
velocity between places whose temperatures are different. In an appendix to the paper
he shews that on certain assumptions regarding the nature of the contact of the solid
and gas, there will be, when the pressure is constant, a flow of gas along the surface
from the colder to the hotter parts. The last of his longer papers on this subject is
one on Boltzmann's Theorem. Throughout these volumes will be found numerous shorter
essays on kindred subjects, published chiefly in Nature and in the Encyclopwdia Britannica.
Some of these contain more or less popular expositions of this subject which Maxwell
had himself in great part created, while others deal with the work of other writers in
the same field. They are profoundly suggestive in almost every page, and abound in acute
criticisms of speculations which he could not accept. They are always interesting; for
although the larger papers are sometimes difficult to follow, Maxwell's more popular writings
are characterized by extreme lucidity and simplicity of style.

The first of Maxwell's papers on Colour Perception is taken from the Transactions of
the Royal Scottish Society of Arts and is in the form of a letter to Dr G. Wilson dated
Jan. 4, 1855. It was followed directly afterwards by a communication to the Royal Society
of Edinburgh, and the subject occupied his attention for some years. The most important
of his subsequent work is to be found in the papers entitled “An account of Experiments
on the Perception of Colour” published in the Philosophical Magazine, Vol. X1v. and “On
the Theory of Compound Colours and its relation to the colours of the spectrum” in the
Philosophical Transactions for the year 1860. We may also refer to two lectures delivered
at the Royal Institution, in which he recapitulates and enforces his main positions in his
usual luminous style. Maxwell from the first adopts Young’s Theory of Colour Sensation,
according to which all colours may ultimately be reduced to three, a red, a green and
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a violet. This theory had been revived by Helmholtz who endeavoured to find for it a
physiological basis. Maxwell however devoted himself chiefly to the invention of accurate
methods for combining and recording mixtures of colours. His first method of obtaining
mixtures, that of the Colour Top, is an adaptation of one formerly employed, but in
Maxwell's hands it became an instrument capable of giving precise numerical results by
means which he added of varying and measuring the amounts of colour which were
blended in the eye. In the representation of colours diagrammatically he followed Young
in employing an equilateral triangle at the angles of which the fundamental colours were
placed. All colours, white included, which may be obtained by mixing the fundamental
colours in any proportions will then be represented by points lying within the triangle.
Points without the triangle represent colours which must be mixed with one of the funda-
mental tints to produce a mixture of the other two, or with which two of them must be
mixed to produce the third.

In his later papers, notably in that printed in the Phalosophical Transactions, he
adopts the method of the Colour Box, by which different parts of the spectrum may be
mixed in different proportions and matched with white, the intensity of which has been
suitably diminished. In this way a series of colour equations are obtained which can be
used to evaluate any colour in terms of the three fundamental colours. These observations
on which Maxwell expended great care and labour, constitute by far the most important
data regarding the combinations of colour sensations which have been yet obtained, and
are of permanent value whatever theory may ultimately be adopted of the physiology of the
perception of colour.

In connection with these researches into the sensations of the normal eye, may be
mentioned the subject of colour-blindness, which also engaged Maxwell’s attention, and is
discussed at considerable length in several of his papers.

Geometrical Optics was another subject in which Maxwell took much interest. At an early
period of his career he commenced a treatise on Optics, which however was never completed.
His first paper “On the general laws of optical instruments,” appeared in 1858, but a brief
account of the first part of it had been previously communicated to the Cambridge Philosophical
Society. He therein lays down the conditions which a perfect optical instrument must fulfil,
and shews that if an instrument produce perfect images of an object, i.e. images free from
astigmatism, curvature and distortion, for two different positions of the object, it will give
perfect images at all distances. On this result as a basis, he finds the relations between
the foci of the incident and emergent pencils, the magnifying power and other characteristic
quantities. The subject of refraction through optical combinations was afterwards treated
by him in a different manner, in three papers communicated to the London Mathematical
Society. In the first (1873), “On the focal lines of a refracted pencil,” he applies Hamilton’s
characteristic function to determine the focal lines of a thin pencil refracted from one
isotropic medium into another at any surface of separation. In the second (1874), “On

VOoL. I d
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Hamilton’s characteristic function for a narrow beam of light,” he considers the more general
question of the passage of a ray from one isotropic medium into another, the two media
being separated by a third which may be of a heterogeneous character. He finds the most
general form of Hamilton’s characteristic function from one point to another, the first being
in the medium in which the pencil is incident and the second in the medium in which
it is emergent, and both points near the principal ray of the pencil. This result is then
applied in two particular cases, viz. to determine the emergent pencil (1) from a spectroscope,
(2) from an optical instrument symmetrical about its axis. In the third paper (1875) he
resumes the last-mentioned application, discussing this case more fully under a somewhat
simplified analysis.

It may be remarked that all these papers are connected by the same idea, which was—
first to study the optical effects of the entire instrument without examining the mechanism
by which these effects are produced, and then, as in the paper in 1858, to supply whatever
data may be necessary by experiments upon the instrument itself.

Connected to some extent with the above papers is an investigation which was published
in 1868 “On the cyclide.” As the name imports, this paper deals chiefly with the geometrical
properties of the surface named, but other matters are touched on, such as its conjugate
isothermal functions. Primarily however the investigation is on the orthogonal surfaces to
a system of rays passing accurately through two lines. In a footnote to this paper Maxwell
describes the stereoscope which he invented and which is now in the Cavendish Laboratory.

In 1868 was also published a short but important article entitled “On the best arrange-
ment for producing a pure spectrum on a screen.”

The various papers relating to the stresses experienced by a system of pieces joined
together so as to form a frame and acted on by forces form an important group connected
with one another. The first in order was “On reciprocal figures and diagrams of forces,”
published in 1864. It was immediately followed by a paper on a kindred subject, “On
the calculation of the equilibrium and stiffness of frames.” In the first of these Maxwell
demonstrates certain reciprocal properties in the geometry of two polygons which are related
to one another in a particular way, and establishes his well-known theorem in Graphical
Statics on the stresses in frames. In the second he employs the principle of work to
problems connected with the stresses in frames and structures and with the deflections
arising from extensions in any of the connecting pieces.

A third paper “On the equilibrium of a spherical envelope,” published in 1867, may
here be referred to. The author therein considers the stresses set up in the envelope by
a system of forces applied at its surface, and ultimately solves the problem for two normal
forces applied at any two points. The solution, in which he makes use of the principle
of inversion as it is applied in various electrical questions, turns ultimately on the deter-
mination of a certain function first introduced by Sir George Airy, and called by Maxwell
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Airy’s Function of Stress. The methods which in this paper were attended with so much
success, seem to have suggested to Maxwell a reconsideration of his former work, with the
view of extending the character of the reciprocity therein established. Accordingly in 1870
there appeared his fourth contribution to the subject, “On reciprocal figures, frames and
diagrams of forces.” This important memoir was published in the Transactions of the Royal
Society of Edinburgh, and its author received for it the Keith Prize. He begins with a
remarkably beautiful construction for drawing plane reciprocal diagrams, and then proceeds
to discuss the geometry and the degrees of freedom and constraint of polyhedral frames,
his object being to lead up to the limiting case when the faces of the polyhedron become
infinitely small and form parts of a continuous surface. In the course of this work he
obtains certain results of a general character relating to inextensible surfaces and certain
others of practical utility relating to loaded frames. He then attacks the general problem of
representing graphically the internal stress of a body and by an extension of the meaning
of “Diagram of Stress,” he gives a construction for finding a diagram which has mechanical
as well as geometrical reciprocal properties with the figure supposed to be under stress. It
is impossible with brevity to give an account of this reciprocity, the development of which
in Maxwell's hands forms a very beautiful example of analysis. It will be sufficient to
state that under restricted conditions this diagram of stress leads to a solution for the
components of stress in terms of a single function analogous to Airy’s Function of Stress.
In the remaining parts of the memoir there is a discussion of the equations of stress, and
it is shewn that the general solution may be expressed in terms of three functions analogous
to+Airy’s single function in two dimensions. These results are then applied to special
cases, and in particular the stresses in a horizontal beam with a uniform load on its upper
surface are fully investigated.

On the subjects in which Maxwell’s investigations were the most numerous it has
been thought necessary, in the observations which have been made, to sketch out briefly
the connections of the various papers on each subject with one another. It is not how-
ever intended to enter into an account of the contents of his other contributions to science,
and this is the less necessary as the reader may readily obtain the information he may
require in Maxwell's own language. It was usually his habit to explain by way of
introduction to any paper his exact position with regard to the subject matter and to
give a brief account of the nature of the work he was contributing. There are however
several memoirs which though unconnected with others are exceedingly interesting in them-
selves. Of these the essay on Saturn’s Rings will probably be thought the most important
as containing the solution of a difficult cosmical problem; there are also various papers on
Dynamics, Hydromechanics and subjects of pure mathematics, which are most useful con-
tributions on the subjects of which they treat.

The remaining miscellaneous papers may be classified under the following heads: (a)
Lectures and Addresses, (b) Essays or Short Treatises, (¢) Biographical Sketches, (d) Criticisms

and Reviews.

d2
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Class (a) comprises his addresses to the British Association, to the London Mathematical
Society, the Rede Lecture at Cambridge, his address at the opening of the Cavendish
Laboratory and his Lectures at the Royal Institution and to the Chemical Society.

Class (b) includes all but one of the articles which he contributed to the Encyclo-
pedia Britannica and several others of a kindred character to Nature.

Class (c) contains such articles as “Faraday” in the ZEncyclopedia Britannica and
“ Helmholtz” in Nature.

Class (d) is chiefly occupied with the reviews of scientific books as they were pub-
lished. These appeared in Nature and the most important have been reprinted in these
pages.

In some of these writings, particularly those in class (b), the author allowed himself a
greater latitude in the use of mathematical symbols and processes than in others, as
for instance in the article “ Capillary Attraction,” which is in fact a treatise on that subject
treated mathematically. The lectures were upon one or other of the three departments
of Physics with which he had mainly occupied himself;—Colour Perception, Action through
a Medium, Molecular Physics; and on this account they are the more valuable. In the
whole series of these more popular sketches we find the same clear, graceful delineation of
principles, the same beauty in arrangement of subject, the same force and precision in
expounding proofs and illustrations. The style is simple and singularly free from any kind
of haze or obscurity, rising occasionally, as in his lectures, to a strain of subdued eloquence
when the emotional aspects of the subject overcome the purely speculative.

The books which were written or edited by Maxwell and published in his lifetime but
which are not included in this collection were the “Theory of Heat” (lst edition, 1871);
“Electricity and Magnetism” (1st edition, 1873); “The Electrical Researches of the Hon-
ourable Henry Cavendish, F.R.S., written between 1771 and 1781, edited from the original
manuscripts in the possession of the Duke of Devonshire, K.G.” (1879). To these may be
added a graceful little introductory treatise on Dynamics entitled “Matter and Motion”
(published in 1876 by the Society for promoting Christian Knowledge). Maxwell also
contributed part of the British Association Report on Electrical Units which was afterwards
published in book form by Fleeming Jenkin.

The “Theory of Heat” appeared in the Text Books of Science series published by
Longmans, Green and Co., and was at once hailed as a beautiful exposition of a subject,
part of which, and that the most interesting part, the mechanical theory, had as yet but
commenced the existence which it owed to the genius and labours of Rankine, Thomson and
Clausius. There is a certain charm in Maxwell’s treatise, due to the freshness and originality
of its expositions which has rendered it a great favourite with students of Heat.

After his death an “Elementary Treatise on Electricity,” the greater part of which he
had written, was completed by Professor Garnett and published in 1881. The aim of this
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treatise and its position relatively to his larger work may be gathered from the following
extract from Maxwell’s preface.

“In this smaller book I have endeavoured to present, in as compact a form as I
can, those phenomena which appear to throw light on the theory of electricity and to
use them, each in its place, for the development of electrical ideas in the mind of
the reader.”

“In the larger treatise I sometimes made use of methods which I do not think
the best in themselves, but without which the student cannot follow the investigations
of the founders of the Mathematical Theory of Electricity. I have since become more
convinged of the superiority of methods akin to those of Faraday, and have therefore
adopted them from the first.”

Of the “Electricity and Magnetism” it is difficult to predict the future, but there is
no doubt that since its publication it has given direction and colour to the study of
Electrical Science. It was the master’s last word upon a subject to which he had devoted
several years of his life, and most of what he wrote found its proper place in the treatise.
Several of the chapters, notably those on Electromagnetism, are practically reproductions of
his memoirs in a modified or improved form. The treatise is also remarkable for the handling
of the mathematical details no less than for the exposition of physical principles, and is
enriched incidentally by chapters of much originality on mathematical subjects touched on
in the course of the work. Among these may be mentioned the dissertations on Spherical
Harmonics and Lagrange’s Equations in Dynamics.

The origin and growth of Maxwell’s ideas and conceptions of electrical action, cul-
minating in his treatise where all these ideas are arranged in due connection, form an
interesting chapter not only in the history of an individual mind but in the history of
electrical science. The importance of Faraday’s discoveries and speculations can hardly be
overrated in their influence on Maxwell, who tells us that before he began the study of
electricity he resolved to read none of the mathematics of the subject till he had first
mastered the “Experimental Researches” He was also at first under deep obligations to
the ideas contained in the exceedingly important papers of Sir W. Thomson on the analogy
between Heat-Conduction and Statical Electricity and on the Mathematical Theory of
Electricity in Equilibrium. In his subsequent efforts we must perceive in Maxwell, possessed
of Faraday’s views and embued with his spirit, a vigorous intellect bringing to bear on a
subject still full of obscurity the steady light of patient thought and expending upon it
all the resources of a never failing ingenuity.

Rovar Navar COLLEGE,
GREENWICH,
August, 1890.
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Page 40. In the first of equations (12), second group of terms, read
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instead of
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with corresponding changes in the other two equations.
Page 153, five lines from bottom of page, read 127 instead of 276.

Page 591, four lines from bottom of page the equation should be
AM M 1dM
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Page 592, in the first line of the expression for L change

T . - .
— g cos 20 into — 3 cosec 26.
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{From the Proceedings of the Royal Society of Edinburgh, Vol 1. April, 1846.]

I.  On the Description of Oval Curves, and those having a plurality of Foci; with
remarks by Professor Forbes. Communicated by Proressor ForsEs.

Mr CiErk MAXWELL ingeniously suggests the extension of the common
theory of the foci of the conic sections to curves of a higher degree of com-
plication in the following manner :—

(1) As in the ellipse and hyperbola, any point in the curve has the
sum or difference of two lines drawn from two points or jfoct=a constant
quantity, so the author infers, that curves to a certain degree analogous, may
be described and determined by the condition that the simple distance from
one focus plus a multiple distance from the other, may be=a constant quantity;
or more generally, m times the one distance+n times the other= constant.

(2) The author devised a simple mechanical means, by the wrapping
of a thread round pins, for producing these curves. See Figs. 1 and 2. He

Fig. 1. Two Foci. Ratios 1, 2. Fig. 2. Two Foci, Ratios 2, 3.

then thought of extending the principle to other curves, whose property
should be, that the sum of the simple or multiple distances of any point of
VOL. 1. 1
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2 DESCRIPTION OF OVAL CURVES.

the curve from three or more points or foci, should be=a constant quantity ;
and this, too, he has effected mechanically, by a very simple arrangement of
a string of given length passing round three or more fixed pins, and con-
straining a tracing point, P. See Fig. 3. Farther, the author regards curves

Fig. 3. Three Foci. Ratios of Equality.

of the first kind as constituting a particular class of curves of the second
kind, two or more foci coinciding in one, a focus in which two strings meet
being considered a double focus; when three strings meet a treble focus, &ec.

Professor Forbes observed that the equation to curves of the first class is
easily found, having the form

Jetp=a+bJ(w—c)+e,

which is that of the curve known under the name of the First Oval of
Descartes®. Mr Maxwell had already observed that when one of the foci was
at an infinite distance (or the thread moved parallel to itself, and was confined
in respect of length by the edge of a board), a curve resembling an ellipse
was traced ; frem which property Professor Forbes was led first to infer the
identity of the oval with the Cartesian oval, which is well known to have this
property. But the simplest analogy of all is that derived from the method of
description, » and +° being the radients to any point of the curve from the two
foci ;
mr +nr’ = constant,

which in fact at once expresses on the undulatory theory of light the optical
character of the surface in question, namely, that light diverging from one
focus F without the medium, shall be correctly convergent at another point f

* Herschel, On Light, Art. 232 ; Lloyd, On Light and Vision, Chap. vi1
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DESCRIPTION OF OVAL CURVES. 3

within it; and in this case the ratio % expresses the index of refraction of

the medium®.

If we denote by the power of either focus the number of strings leading
to it by Mr Maxwell's construction, and if one of the foci be removed to an
infinite distance, if the powers of the two foci be equal the curve is a parabola;
if the power of the nearer focus be greater than the other, the curve is an
ellipse; if the power of the infinitely distant focus be the greater, the curve
is a hyperbola. The first case evidently corresponds to the case of the reflection
of parallel rays to a focus, the velocity being unchanged after reflection; the
second, to the refraction of parallel rays to a focus in a dense medium (in
which light moves slower); the third case to refraction into a rarer medium.

The ovals of Descartes were described in his Geometry, where he has also
given a mechanical method of describing one of themt, but only in a particular
case, and the method is less simple than Mr Maxwell's. The demonstration of
the optical properties was given by Newton in the Principia, Book 1., prop. 97,
by the law of the sines; and by Huyghens in 1690, on the Theory of Undu-
lations in his Traité de la Lumiére. It probably has mnot been suspected that
so easy and elegant a method exists of describing these curves by the use of
a thread and pins whenever the powers of the foci are commensurable. For
instance, the curve, Fig. 2, drawn with powers 3 and 2 respectively, give the
proper form for a refracting surface of a glass, whose index of refraction is 150,
in order that rays diverging from f may be refracted to F.

As to the higher classes of curves with three or more focal points, we
cannot at present invest them with equally clear and curious physical properties,
but the method of drawing a curve by so simple a contrivance, which shall
satisfy the condition

mr +nr’ + pr’” + &e. = constant,

is in itself not a little interesting; and if we regard, with Mr Maxwell, the
ovals above described, as the limiting case of the others by the coalescence
of two or more foci, we have a farther generalization of the same kind as that
so highly recommended by Montucla, by which Descartes elucidated the conic
sections as particular cases of his oval curves.

* This was perfectly well shewn by Huyghens in his Traité de la Lumiére, p. 111, (1690.)
1 Edit. 1683. Geometria, Lib. 11. p. 54.
1 Histoire des Mathématiques. TFirst Edit. 11, 102.

1—-2
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[From the Transactions of the Royal Society of Edinburgh, Vol. Xxvi. Part v.]

II. On the Theory of Rolling Curves. Communicated by the Rev. Professor
KELLAND.

THERE is an important geometrical problem which proposes to find a curve
having a given relation to a series of curves described according to a given
law. This is the problem of Trajectories in its general form.

The series of curves is obtained from the general equation to a curve by
the variation of its parameters. In the general case, this variation may change
the form of the curve, but, in the case which we are about to consider, the
curve is changed only in position.

This change of position takes place partly by rotation, and partly by trans-
ference through space. The rolling of one curve on another is an example of
this compound motion.

As examples of the way in which the new curve may be related to the
series of curves, we may take the following :—

1. The new curve may cut the series of curves at a given angle. When
this angle becomes zero, the curve is the envelope of the series of curves.

2. It may pass through corresponding points in the series of curves.
There are many other relations which may be imagined, but we shall confine
our attention to this, partly because it affords the means of tracing various
curves, and partly on account of the connection which it has with many
geometrical problems.

Therefore the subject of this paper will be the consideration of the relations
of three curves, one of which is fixed, while the second rolls upon it and
traces the third. The subject of rolling curves is by no means a new one.
The first idea of the cycloid is attributed to Aristotle, and involutes and
evolutes have been long known.
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THE THEORY OF ROLLING CURVES. 5

In the History of the Royal Academy of Sciences for 1704, page 97,
there is a memoir entitled “Nouvelle formation des Spirales,” by M. Varignon,
in which he shews how to construct a polar curve from a curve referred to
rectangular co-ordinates by substituting the radius vector for the abscissa, and
a circular arc for the ordinate. After each curve, he gives the curve into
which it is “unrolled,” by which he means the curve which the spiral must
be rolled upon in order that its pole may trace a straight line; but as this
is not the principal subject of his paper, he does not discuss it very fully.

There is also a memoir by M. de la Hire, in the volume for 1706, Part 11.,
page 489, entitled “Methode generale pour réduire toutes les Lignes courbes 3
des Roulettes, leur generatrice ou leur base étant donnée telle qu'on voudra.”

M. de la Hire treats curves as if they were polygons, and gives geome-
trical constructions for finding the fixed curve or the rolling curve, the other
two being given; but he does not work any examples.

In the volume for 1707, page 79, there is a paper entitled, ‘“Methode
generale pour déterminer la nature des Courbes formées par le roulement de
toutes sortes de Courbes sur une autre Courbe quelconque.” Par M. Nicole.

M. Nicole takes the equations of the three curves referred to rectangular
co-ordinates, and finds three general equations to connect them. He takes the
tracing-point either at the origin of the co-ordinates of the rolled curve or not.
He then shews how these equations may be simplified in several particular
cases. These cases are—

(1) When the tracing-point is the origin of the rolled curve.
(2) When the fixed curve is the same as the rolling curve.
(3) When both of these conditions are satisfied.

(4) When the fixed line is straight.

He then says, that if we roll a geometric curve on itself, we obtain a new
geometric curve, and that we may thus obtain an infinite number of geometric
curves.

The examples which he gives of the application of his method are all taken
from the cycloid and epicycloid, except one which relates to a parabola, rolling
on itself, and tracing a cissoid with its vertex. The reason of so small a
number of examples being worked may be, that it is not easy to eliminate
the co-ordinates of the fixed and rolling curves from his equations.

The case in which one curve rolling on another produces a circle is treated
of in Willis’s Principles of Mechanism. Class C. Rolling Contact.
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6 THE THEORY OF ROLLING CURVES.

He employs the same method of finding the one curve from the other
which is used here, and he attributes it to Euler (see the Acta Petropolitana,
Vol. v.).

Thus, nearly all the simple cases have been treated of by different authors;
but the subject is still far from being exhausted, for the equations have been
applied to very few curves, and we may easily obtain new and elegant proper-
ties from any curve we please.

Almost all the more notable curves may be thus linked together in a great
variety of ways, so that there are scarcely two curves, however dissimilar,
between which we cannot form a chain of connected curves.

This will appear in the list of examples given at the end of this paper.

T H

\

Let there be a curve KAS, whose pole is at C.
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THE THEORY OF ROLLING CURVES. 7

Let the angle DCA4 =0, and C4 =7, and let
0,=¢, (r).
Let this curve remain fixed to the paper.
Let there be another curve BAT, whose pole is B.
Let the angle MBA =0, and BA=r,, and let
0,= o, (r,).
Let this curve roll along the curve KAS without slipping.
Then the pole‘ B will describe a third curve, whose pole is C.
Let the angle DCB=0,, and CB=r,, and let
0,= ¢, (r,).
We have here six unknown quantities 6,0,0,~7,,; but we have only three

equations given to connect them, therefore the other three must be sought for
in the enunciation. '

But before proceeding to the investigation of these three equations, we must
premise that the three curves will be denominated as follows :—

The Fixed Curve, Equation, 6,=4¢, ().
The Rolled Curve, Equation, 6,=4,(r,).
The Traced Curve, Equation, 8,=d¢,(r;).

When it is more convenient to make use of equations between rectangular
co-ordinates, we shall use the letters ay,, xy,, #y;. We shall always employ the
letters s.s,5, to denote the length of the curve from the pole, p,p,p, for the per-
pendiculars from the pole on the tangent, and ¢, for the intercepted part of
the tangent.

Between these quantities, we have the following equations:—

r=NT+1, 0=ta,n"%,
x=1rcos 6, y=rsin 6,
s=fJ¢2+<%> dé, s=f\/1+<%>zdm,
r ydo — ady
p=—_~_—~:2’ p=—_2 2’
(@ J(da % gy
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8 THE THEORY OF ROLLING CURVES.

rdr
dé xdax + ydy

- {“(ii’é)} R={1+<Z§Z)}f

- di dr’ a
T2 <d0> " a7 %

We come now to consider the three equations of rolling which are involved
in the enunciation. Since the second curve rolls upon the first without slipping,
the length of the fixed curve at the point of contact is the measure of the
length of the rolled curve, therefore we have the following equation to connect
the fixed curve and the rolled curve—

8§ =5y

Now, by combining this equation with the two equations

P XS e

it is evident that from any of the four quantities 610, or xyxy, we can
obtain the other three, therefore we may consider these quantities as known
functions of each other.
Since the curve rolls on the fixed curve, they must have a common tangent.
Let PA be this tangent, draw BP, (@ perpendicular to P4, produce CQ,
and draw BR perpendicular to it, then we have Cd=r, B4A=r, and CB=r,;
CQ=p,, PB=p, and BN=p,; AQ=q,, AP=gq,, and CN=gq,.

Also r7=CB=CR+RB=(CQ+PB)+(AP-A4QY)
=(p+p) +(%—a)
=p’+ 200+ P+ 1 =P = 2.4, + 17 - P
7y =1+ 42D, — 2¢,9..
Since the first curve is fixed to the paper, we may find the angle 6,
Thus 0,=DCB=DCA4+ ACQ+ RCB

RB
RC

n-t 9% .
p2+pl

=0 +tan“§‘ 4 tan™! ——

o, dn
0,=01+tan ;lo—l—e‘l"l'ta
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THE THEORY OF ROLLING CURVES. 9

Thus we have found three independent equations, which, together with the
equations of the curves, make up six equations, of which each may be deduced
from the others. There is an equation connecting the radii of curvature of the
three curves which is sometimes of use.

The angle through which the rolled curve revolves during the description of
the element ds, is equal to the angle of contact of the fixed curve and the
rolling curve, or to the sum of their curvatures,

. ds, ds, | ds,
T RURC

But the radius of the rolled curve has revolved in the opposite direction
through an angle equal to d#,, therefore the angle between two successive posi-
tions of 7, is equal to %—‘%—d@. Now this angle is the angle between two

2
successive positions of the normal to the traced curve, therefore, if O be the
centre of curvature of the traced curve, it is the angle which ds, or ds, subtends
at O. Let O4=1T, then

d33=ﬁc_l€2=~€l§_d02=cl'iz _d_32

R-T "7 RTR,
dé, 1 dé,

P = = = __1_ + L —_—
‘s, TR, TR, ds’
PRl Dy 11
v T, <T+¢2>_R1+R2‘

As an example of the use of this equation, we may examine a property
of the logarithmic spiral.

+

~dé,,

In this curve, p=mr, and R=—;—L, therefore if the rolled curve be the
logarithmic spiral

therefore AO in the figure=mR,, and

Let the locus of O, or the evolute of the traced curve LYBH, be the
curve OZY, and let the evolute of the fixed curve KZAS be FEZ, and let
us consider F'EZ as the fixed curve, and OZY as the traced curve.

VOL. I. 2
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10 THE THEORY OF ROLLING CURVES,

. . o 04 BP
Then in the triangles BPA, AOF, we have OAF=PBA, and IF="=7p
therefore the triangles are similar, and FOA4=APB =7§T, therefore OF is perpen-

dicular to OA, the tangent to the curve OZY, therefore OF is the radius of
the curve which when rolled on FEZ traces OZY, and the angle which the
curve makes with this radius is OFA =PAB=sin""'m, which is constant, there-
fore the curve, which, when rolled on FEZ, traces OZY, is the logarithmic
spiral. Thus we have proved the following proposition: “The involute of the
curve traced by the pole of a logarithmic spiral which rolls upon any curve,
is the curve traced by the pole of the same logarithmic spiral when rolled on
the involute of the primary curve.”

It follows from this, that if we roll on any curve a curve having the
property p,=my,, and roll another curve having p,=my, on the curve traced,
and so on, it is immaterial in what order we roll these curves. Thus, if we
roll a logarithmic spiral, in which p=mr, on the nth involute of a circle whose
radius is a, the curve traced is the n+ 1th involute of a circle whose radius
is V1—m

Or, if we roll successively m logarithmic spirals, the resulting curve is the
n+mth involute of a circle, whose radius is

aN1—m? J1—-m2 &e.

We now proceed to the cases in which the solution of the problem may
be simplified. This simplification is generally effected by the consideration that
the radius vector of the rolled curve is the normal drawn from the traced
curve to the fixed curve.

In the case in which the curve is rolled on a straight line, the perpen-
dicular on the tangent of the rolled curve is the distance of the tracing point
from the straight line; therefore, if the traced curve be defined by an equation
m , and ¥,

S | T (1),
v\ 2

and r,=, \/<d—w‘°’>2 F1 i (2).
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THE THEORY OF ROLLING CURVES. 11

By substituting for =, in the first equation, its value, as derived from the

second, we obtain
du, da, dr,
() () +1]= ()"

If we know the equation to the rolled curve, we may find <g§2> in

terms of 7,, then by substituting for , its value in the second equation, we

have an equation containing , and illy from which we find the value of le

in terms of x,; the integration of this gives the equation of the traced curve.

As an example, we may find the curve traced by the pole of a hyperbolic
spiral which rolls on a straight line.

The equation of the rolled curve is 6,= % ,

2

= () [ () +11 o )+
@;) == [(7) +1],

) dx
«/a—wQ'

This is the differential equation of the tractory of the straight line, which
is the curve traced by the pole of the hyperbolic spiral.
By eliminating «, in the two equations, we obtain

i, (1)
dé,  * \dy,) "’
This equation serves to determine the rolled curve when the traced curve
is given.
As an example we shall find the curve, which being rolled on a straight

line, traces a common catenary.
Let the equation to the catenary be

a/? A
= {ea al,
€ 2<6 +e )

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.005


https://doi.org/10.1017/CBO9780511698095.005
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

12 THE THEORY OF ROLLING CURVES.

dax, Xz
Then d—% = /\/Eé - 1,
. <d7'2>2 . 7'22 ,’.“‘4 Ty
~\a8) =& @y "
() +

drz 2 . 2_ ,’.23 2
[T -5

dr,\*
. <—0l_0;> =a‘(7'a—a)a

. de 1
. E———_-—_—'—a
" rN/Z—I
a
. . - (20
then by integration @ =cos™ <7 - 1) ,
e 2a
~ 14cosf’

This is the polar equation of the parabola, the focus being the pole ; there-
fore, if we roll a parabola on a straight line, its focus will trace a catenary.

The rectangular equation of this parabola is «’=4ay, and we shall now
consider what curve must be rolled along the axis of y to trace the parabola.

By the second equation (2),

4 2
r2=an£;+1, but L= Py
3

v r=NIE
'.. 7.22 =p22+4a2’
S 20=NTi =P =q,,

but ¢, is the perpendicular on the normal, therefore the normal to the curve
always touches a circle whose radius is 20, therefore the curve is the involute
of this circle.

Therefore we have the following method of describing a catenary by con-
tinued motion.

Describe a circle whose radius is twice the parameter of the catenary; roll a
straight line on this circle, then any point in the line will describe an involute
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THE THEORY OF ROLLING CURVES. 13

of the circle; roll this curve on a straight line, and the centre of the circle will
describe a parabola; roll this parabola on a straight line, and its focus will trace
the catenary required.

We come now to the case in which a straight line rolls on a curve.

When the tracing-point is in the straight line, the problem becomes that
of involutes and evolutes, which we need not enter upon; and when the tracing-
point is not in the straight line, the calculation is somewhat complex; we shall
therefore consider only the relations between the curves described in the first
and second cases.

Definition.—The curve which cuts at a given angle all the circles of a
given radius whose centres are in a given curve, is called a tractory of the
given curve.

Let a straight line roll on a curve A4, and let a point in the straight
line describe a curve B, and let another point, whose distance from the first
point is b, and from the straight line a, describe a curve C, then it is evident
that the curve B cuts the circle whose centre is in C, and whose radius is b,

at an angle whose sine is equal to %’, therefore the curve B is a tractory of
the curve C.

When a=>0, the curve B is the orthogonal tractory of the curve C. If
tangents equal to o be drawn to the curve B, they will be terminated in
the curve C; and if one end of a thread be carried along the curve C, the
other end will trace the curve B.

When a=0, the curves B and C are both involutes of the curve A4,
they are always equidistant from each other, and if a circle, whose radius is
b, be rolled on the one, its centre will trace the other.

If the curve 4 is such that, if the distance between two points measured
along the curve is equal to b, the two points are similarly situate, then the
curve B is the same with the curve C. Thus, the curve 4 may be a re-
entrant curve, the circumference of which is equal to b.

When the curve 4 is a circle, the curves B and C are always the same.
The equations between the radii of curvature become

1 1 r
Tt "ol
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14 THE THEORY OF ROLLING CURVES.

When a=0, =0, or the centre of curvature of the curve B is at the
point of contact. Now, the normal to the curve (' passes through this point,
therefore—

“The normal to any curve passes through the centre of curvature of its
tractory.”

In the next case, one curve, by rolling on another, produces a straight
line. Let this straight line be the axis of y, then, since the radius of the
rolled curve is perpendicular to it, and terminates in the fixed curve, and
since these curves have a common tangent, we have this equation,

. dy, _ .40,
' da, m dr,’

2

If the equation of the rolled curve be given, find %

2

in terms of 7,, sub-

stitute o, for r,, and multiply by x,, equate the result to %, and integrate.

Thus, if the equation of the rolled curve be
0=Ar"+&c.+ Kr*+ Lr™*+ Mlog r+ Nr+ &c. + Zr",

g—g— = — nAr~®t ~&c, —2Kr~* — Lr*+ Mr~* 4+ N + &c. + nZr™",

%: —ndx " —&e. ~2Kx " — Lx™' + M + Nx + &e. +nZx",
y——Ax “*+&e. + 2Kx™' — Llog x + Mx+ 3 Nu* + &e. + —— Za™™,

+1

which is the equation of the fixed curve.

If the equation of the fixed curve be given, find g% in terms of z, sub-

stitute » for x, and divide by r, equate the result to le—Z’ and integrate.

Thus, if the fixed curve be the orthogonal tractory of the straight line,
whose equation is

=qalog ——F— -
Y aogOH_J +~/a

d_y_«/oﬁ—ac?
de = x
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THE THEORY OF ROLLING CURVES. 15

this is the equation to the orthogonal tractory of a circle whose diameter is
equal to the constant tangent of the fixed curve, and its constant tangent
equal to half that of the fixed curve.

This property of the tractory of the circle may be proved geometrically,
thus—Let P be the centre of a circle whose radius is PD, and let CD be
a line constantly equal to the radius. Let BCP be the curve described by
the point C when the point D is moved along the circumference of the circle,
then if tangents equal to CD be drawn to the curve, their extremities will
be in the circle. Let ACH be the curve on which BCP rolls, and let OPE
be the straight line traced by the pole, let CDE be the common tangent,
let it cut the circle in D, and the straight line in Z.

A

=

0 ~pP

Then CD=PD, .. (DCP=L.LDPC, and CP is perpendicular to OE,

- LCPE= (DCP+ [ DEP. Take away (DCP= [DPC, and there remains
DPE=DEP, .. PD=DE, .. CE=2PD.
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16 THE THEORY OF ROLLING CURVES,

Therefore the curve ACH has a constant tangent equal to the diameter of
the circle, therefore ACH is the orthogonal tractory ef the straight line, which
is the tractrix or equitangential curve.

The operation of finding the fixed curve from the rolled curve is what
Sir John Leslie calls “divesting a curve of its radiated structure.”

The method of finding the curve which must be rolled on a circle to
trace a given curve is mentioned here because it generally leads to a double
result, for the normal to the traced curve cuts the circle in two points, either
of which may be a point in the rolled curve.

Thus, if the traced curve be the involute of a circle concentric with the
given circle, the rolled curve is one of two similar logarithmic spirals.

If the curve traced be the spiral of Archimedes, the rolled curve may be
either the hyperbolic spiral or the straight line.

In the next case, one curve rolls on another and traces a circle.

Since the curve traced is a circle, the distance between the poles of the
fixed curve and the rolled curve is always the same; therefore, if we fix the
rolled curve and roll the fixed curve, the curve traced will still be a circle,
and, if we fix the poles of both the curves, we may roll them on each other
without friction.

Let o be the radius of the traced circle, then the sum or difference of
the radii of the other curves is equal to @, and the angles which they make
with the radius at the point of contact are equal,

o=t (atr) and r%%:nzll—z?.
df, _ +(atr) do,
dr,T n dr,’

1

If we know the equation between 6, and »,, we may find ?h»‘ in terms of 7,

substitute +(a +7,) for r,, multiply by + (‘i +7,) ,

2

and integrate.

Thus, if the equation between 6, and », be

r,=asecl,
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THE THEORY OF ROLLING CURVES. 17

which is the polar equation of a straight line touching the traced circle whose
equation is =g, then

ad _ a
dr, 'rl~/frf—a2
_ a
(r2ia)~/r:i2na’
- db,_rta a
dr, Ty (rta)NTi 20
_ a
r2~/rfj:' 2ar,
/ a
02=:|: yliz,’_fz,
2a 2a,
Py= e =
0:—-1 -1

Now, since the rolling curve is a straight line, and the tracing point is
not in its direction, we may apply to this example the observations which
have been made upon tractories.

20
-1
the circle traced by C, then B is the tractory of C; therefore the involute

Let, therefore, the curve r= be denoted by 4, its involute by B, and

of the curve r=

0“301 is the tractory of the circle, the equation of which is

20
- Gy Seews to be among
spirals what the catenary is among curves whose equations are between rec-
tangular co-ordinates; for, if we represent the vertical direction by the radius
vector, the tangent of the angle which the curve makes with this line is
proportional to the length of the curve -reckoned from the origin; the point
at the distance a from a straight line rolled on this curve generates a circle,
and when rolled on the catenary produces a straight line; the involute of this
curve is the tractory of the circle, and that of the catenary is the tractory
of the straight line, and the tractory of the circle rolled on that of the straight
line traces the straight line; if this curve is rolled on the catenary, it produces
the straight line touching the catenary at its vertex; the method of drawing

VOL. L. 3

r o .« .
0=cos‘la - J ——1. The curve whose equation is r=
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18 THE THEORY OF ROLLING CURVES.

tangents is the same as in the catenary, namely, by describing a circle whose
radius is @ on the production of the radius vector, and drawing a tangent to the
circle from the given point.

In the next case the rolled curve is the same as the fixed curve. It is
evident that the traced curve will be similar to the locus of the intersection
of the tangent with the perpendicular from the pole; the magnitude, however,
of the traced curve will be double that of the other curve; therefore, if we
call 7,=¢,0, the equation to the fixed curve, r,=¢0, that of the traced curve,

we have
- T,
7= 2P, 0,=0,~cos™ 1—?—"=00——2—+sm ‘&,
70 /rO
also, ﬁ=z—)°.
/,-1 ,rO

Similarly, 7,=2p,= 27"1ﬁ =4 47, <&> , 0,=0,—2cos™ Do
7‘0 ’ro 7‘0 ’)”0

Simila’ﬂ)” Tp= 2Pp_y =20y, ¥ &e. =2"r, <&>n ’
7, T

0

and Dn _ Do
7’” 7.0
0,=0,—ncos™ ﬁ’,
7'0
0,=06,—n cos™ P
p

n

Let 6, become 6,'; 8,, 6 and %, % Let 6, —0,=aq,

0 0

1
0,)=0}!~ncos™* —’p—l,
*n
Pu P
a=60'-0,=0'—6,—ncos™ <% +ncos™t ==
7, T
1 1
- - o 6,86
cooost Dr gogri Pa % DT T
T Ty N n
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THE THEORY OF ROLLING CURVES, 19

Now, cos

o %oﬂ is the complement of the angle at which the curve cuts the

1

radius vector, and cos™ %Oﬁ —cos™ % is the variation of this angle when 6, varies

n

by an angle equal to a. Let this variation=¢; then if 6,—6:=g8,
B

a
¢_7_b+')_?,’

Now, if » increases, ¢ will diminish; and if n becomes infinite,
a B .
b=+ =0 when a and B are finite.

Therefore, when # is infinite, ¢ vanishes; therefore the curve cuts the radius
vector at a constant angle ; therefore the curve is the logarithmic spiral.

Therefore, if any curve be rolled on itself, and the operation repeated an
infinite number of times, the resulting curve is the logarithmic spiral.

Hence we may find, analytically, the curve which, being rolled on itself,
traces itself.

For the curve which has this property, if rolled on itself, and the operation
repeated an infinite number of times, will still trace itself.

But, by this proposition, the resulting curve is the logarithmic spiral;
therefore the curve required is the logarithmic spiral. As an example of a curve
rolling on itself, we will take the curve whose equation is

n
7, = 2" (cos %) .

Here - = O <sin @> <cos gi‘) ) ;
n" n

r=2p,=2

n
J 272 <cos ﬁ) + 2% (sin §> (cos 50—")
n n n
n+1
2%, <cos —9> R+
= n — = 9"y, (cos g’) ;

=2
e () "
<cosn + sm—n—
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20 THE THEORY OF ROLLING CURVES.

- - 6, 6
Now 6,—6,= —cos ‘%’= —cos ‘cos-q;":a",
n
- 0"_01%_-!-1’

substituting this value of 6, in the expression for r,

r,=2""q (cos _6, )™
1 n + 1 ’

similarly, if the operation be repeated m times, the resulting curve is

0 n+m
7= 2", (cos = .

n+m
‘When n=1, the curve is
r=2aq cos 0,

the equation to a circle, the pole being in the circumference.

When n=2, it is the equation to the cardioid

0 2
r=4q (cos 5) .

In order to obtain the cardioid from the circle, we roll the circle upon
itself, and thus obtain it by one operation; but there is an operation which,
being performed on a circle, and again on the resulting curve, will produce a
cardioid, and the intermediate curve between the circle and cardioid is

s 20\t
r=2% <cos %q) .

As the operation of rolling a curve on itself is represented by changing =

into (n+1) in the equation, so this operation may be represented by changing »
into (n+14).

Similarly there may be many other fractional operations performed upon
the curves comprehended under the equation

n
r=2"q .(cos Q) .
n

We may also find the curve, which, being rolled on itself, will produce a
given curve, by making n= —1.
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THE THEORY OF ROLLING CURVES. 21

We may likewise prove by the same method as before, that the result of
performing this inverse operation an infinite number of times is the logarithmic
spiral.

As an example of the inverse method, let the traced line be straight, let
its equation be

then ——._—:—-::—'——-,’

102~ 1=aT .y
therefore suppressing the suffix,
o de I
tae
dr\®
() =%
a0 __ 1

the polar equation of the parabola whose parameter is 4a.

The last case which we shall here consider affords the means of constructing
two wheels whose centres are fixed, and which shall roll on each other, so that
the angle described by the first shall be a given function of the angle described

by the second.

o, » .
Let 6,=¢0, then r,+7,=a, and a8 =r
A C A
T odf, a—r"

Let us take as an example, the pair of wheels which will represent the
angular motion of a comet in a parabola.
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22 THE THEORY OF ROLLING CURVES,

Here 6’2=tan&, %= 1 ___n ,
2 0, 0, a—n

2 cos® —

2

< 1

“a  2+4cosh,’

therefore the first wheel is an ellipse, whose major axis is equal to % of the

distance between the centres of the wheels, and in which the distance between
the foci is half the major axis.

Now since 0,=2tan™ 6, and r,=a—7,
r 1
= taese;
04:2—27'1 ?
=2
o

which is the equation to the wheel which revolves with constant angular velocity.

Before proceeding to give a list of examples of rolling curves, we shall
state a theorem which is almost self-evident after what has been shewn pre-
viously.

Let there be three curves, 4, B, and C. Let the curve A4, when rolled
on itself, produce the ourve B, and when rolled on a straight line let it
produce the curve C, then, if the dimensions of C be doubled, and B be
rolled on it, it will trace a straight line.

A Collection of Examples of Rolling Curves.

Fuirst. Examples of a curve rolling on a straight line.

Ex. 1. When the rolling curve is a circle whose tracing-point is in the
circumference, the curve traced is a cycloid, and when the point is not in the
circumference, the cycloid becomes a trochoid.

Ex. 2. When the rolling curve is the involute of the circle whose radius
is 2a, the traced curve is a parabola whose parameter is 4a.
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THE THEORY OF ROLLING CURVES. 23

Ex. 3. When the rolled curve is the parabola whose parameter is 4a, the
traced curve is a catenary whose parameter is @, and whose vertex is distant
a from the straight line.

Ex. 4. When the rolled curve is a logarithmie spiral, the pole traces a
straight line which cuts the fixed line at the same angle as the spiral cuts
the radius vector.

Ex. 5. When the rolled curve is the hyperbolic spiral, the traced curve
is the tractory of the straight line.

Ex. 6. When the rolled curve is the polar catenary

0=+ /1+g<}
r

the traced curve is a circle whose radius is a, and which touches the straight
line.

Ex. 7. When the equation of the rolled curve is

6= log(J:+ > log(J—: ‘f;)

the traced curve is the hyperbola whose equation is
y2= 0{[2 + mﬂ'
Second. In the examples of a straight line rolling on a curve, we shall
use the letters 4, B, and C to denote the three curves treated of in page 22.

Ex. 1. When the curve 4 is a circle whose radius is a, then the curve B
is the involute of that circle, and the curve C is the gpiral of Archimedes, »=a#f.

Ex. 2. "When the curve 4 is a catenary whose equation is

¥ Y
.’Jc=%<6“+e a’) y

the curve B is the tractory of the straight line, whose equation is

y=alog +Vat -2,

a+~/a -

and C is a straight line at a distance o from the vertex of the catenary.
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24 THE THEORY OF ROLLING CURVES,

Ex. 3. When the curve 4 is the polar catenary

the curve B is the tractory of the circle

T
0 =cos 15_ ——1,

and fhe curve C is a circle of which the radius is %.

Third. Examples of one curve rolling on another, and tracing a straight
line.
Ex. 1. The curve whose equation is

0=Ar"+&e.+ Kr~*+ Lr~'+ Mlog v + Nr + &c. + Zv,

when rolled on the curve whose equation is

=" 1-n -1_ n n+1
y—n_le +&e. + 2Kx Llogw+Moc+-}Nx’+&c.+n+1Z:c )

traces the axis of ¥.

Ex. 2. The circle whose equation is r=acosf rolled on the circle whose
radius is o traces a diameter of the circle.

Ex. 8. The curve whose equation is

2a .
0=J——1—vem1n"f,
r o

rolled on the circle whose radius is «, traces the tangent to the circle.

Ex. 4. If the fixed curve be a parabola whose parameter is 4a, and if we

roll on it the spiral of Archimedes r=af, the pole will trace the axis of the
parabola.

Ex. 5. If we roll an equal parabola on it, the focus will trace the directrix
of the first parabola.

Ex. 6. If we roll on it the curve ”'=Zag‘z the pole will trace the tangent
at the vertex of the parabola.
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THE THEORY OF ROLLING CURVES., 25

Ex. 7. If we roll the curve whose equation is

7= (1 CO8 (% 9)

on the ellipse whose equation is

to

gw' 8:7:
+

A
1l
b

the pole will trace the axis b.

Ex. 8. If we roll the curve whose equation is

on the hyperbola whose equation is

y2 w‘l

i

the pole will trace the axis b.

Ex. 9. If we roll the lituus, whose equation is

on the hyperbola whose equation is
xy =a’,

the pole will trace the asymptote.

Ex. 10. The cardioid whose equation is
r=q (14 cosd),

rolled on the cycloid whose equation is
y=0&versin"g+~/2(m—xﬂ
traces the base of the cycloid.

Ex. '11. The curve whose equation is

. 2
0 =versin™* f+2Jﬂ_ 1,
a r

rolled on the cycloid, traces the tangent at the vertex.
VOL. L 4
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26 THE THEORY OF ROLLING CURVES.

Ex. 12. The straight line whose equation is
r=aqsec 0,

rolled on a catenary whose parameter is a, traces a line whose distance from
the vertex is a.

Ex. 13. The part of the polar catenary whose equation is

9=J_r\/1+g0~”,
T

rolled on the catenary, traces the tangent at the vertex.

Ex. 14. The other part of the polar catenary whose equation is

2a

rolled on the catenary, traces a line whose distance from the vertex is equal to 2.

Ex. 15. The tractory of the circle whose diameter is a, rolled on the
tractory of the straight line whose constant tangent is «, produces the straight
line.

Ex. 16. The hyperbolic spiral whose equation is

a
7'=a',

rolled on the logarithmic curve whose equation is
=qlo o
y=alog
traces the axis of y or the asymptote.

Ex. 17. The involute of the circle whose radius is «, rolled on an orthogonal
trajectory of the catenary whose equation is

& T 1"
y—%Wo a+2log<J“2 1+a>’

traces the axis of .

Ex. 18. The curve whose equation is

0=<‘1‘+1> 2241,
T r

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.005


https://doi.org/10.1017/CBO9780511698095.005
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

THE THEORY OF ROLLING CURVES. 27

rolled on the witch, whose equation is
200
Y= 2a /\/ E— ].,

Ex. 19. The curve whose equation is

traces the asymptote.

r=aqatan 0,
rolled on the curve whose equation is

2
y:%log <0%— 1> ,
traces the axis of .
Ex. 20. The curve whose equation is
2r
N
rolled on the curve whose equation is

w2

y=m, or r=qtand,

0=

traces the axis of v.
Ex. 21. The curve whose equation is
r=a (sec § —tan §),
rolled on the curve whose equation is
y=alog<§:+ 1),
traces the axis of 4.

Fourth. Examples of pairs of rolling curves which have their poles at a fixed
distance = a.

The straight line whose equation is 0=sec™ .
Ex. 1L d 5
a

The polar catenary whose equation is 6= + J 1+—.

Ex. 2. Two equal ellipses or hyperbolas centered at the foci.

Ex. 3. Two equal logarithmic spirals.

Circle whose equation is 7=2a cos .
Ex. 4. ~ . ”,
Curve whose equation is 0=, /2 S 1+ Versin"‘a .
4—2
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28 THE THEORY OF ROLLING CURVES.,

Cardioid whose equation is r=2a (1 +cos 6).

Ex. 5. L r
Curve whose equation is 0 =sin a +log Jo—rta’
Conchoid, r=a (sec —1).

Ex. 6. { o r
Curve, 0=\/1_F +sec™ —.

a
Spiral of Archimedes, r=ab.
Ex. 7. r ,
Curve, f=—+log —.
a a
Hyperbolic spiral, r= % .

Ex. 8. { o

Curve, r=91i

. .. 1
_ {Elhpse whose equation is r=0g—y
) 1

Curve, fr_a<1 +55 = (2_04)> .

Involute of circle, 0= J %4 1secl .
Ex. 10. { : @ o

, i r 7 r? r
Curve, 0= Eizo_oilog<&i1'+«/$i2&>'

Fuifth. Examples of curves rolling on themselves.

Ex. 1. When the curve which rolls on itself is a circle, equation
r=qcos 0§,

the traced curve is a cardioid, equation r=a (1+cosf).
Ex. 2. When it is the curve whose equation is

r=2" (cos Q) s
r

the equation of the traced curve is

r=2""q (cos 0 >"+1.
n+t1

Ex. 8. When it is the involute of the cirele, the traced curve is the spiral
of Archimedes.
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THE THEORY OF ROLLING CURVES. 29

Ex. 4. When it is a parabola, the focus traces the directrix, and the vertex
traces the cigsoid.

Ex. 5. When it is the hyperbolic spiral, the traced curve is the tractory of
the circle.

Ex. 6. When it is the polar catenary, the equation of the traced curve is

0=N/2—a—1-versin"z.
r a

Ex. 7. When it is the curve whose equation is

oo ([ 5) e (f1+5:-5),

the equation of the traced curve is r=a (¢’ —€7%).

This paper commenced with an outline of the nature and history of the problem of rolling
curves, and it was shewn that the subject had been discussed previously, by several geometers,
amongst whom were De la Hire and Nicol® in the Mémoires de UAcadémie, Euler, Professor

Willis, in his Principles of Mechanism, and the Rev. H. Holditch in the Cambridge Philosophical
Transactions.

None of these authors, however, except the two last, had made any application of their
methods; and the principal object of the present communication was to find how far the general
equations could be simplified in particular cases, and to apply the results to practice.

Several problems were then worked out, of which some were applicable to the generation
of curves, and some to wheelwork ; while others were interesting as shewing the relations which
exist between different curves; and, finally, a collection of examples was added, as an illus-
tration of the fertility of the methods employed.
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[From the Tramsactions of the Royal Society of Edinburgh, Vol. XX. Part 1]

TII.—On the Equilibriwm of Elastic Solids.

THERE are few parts of mechanics in which theory has differed more from
experiment than in the theory of elastic solids.

Mathematicians, setting out from very plausible assumptions with respect to
the constitution of bodies, and the laws of molecular action, came to conclusions
which were shewn to be erroneous by the observations of experimental philoso-
phers. The experiments of (Ersted proved to be at variance with the mathe-
matical theories of Navier, Poisson, and Lamé and Clapeyron, and apparently
deprived this practically important branch of mechanics of all assistance from
mathematics.

The assumption on which these theories were founded may be stated thus:—

Solid bodies are composed of distinct molecules, which are kept at a certain
distance from each other by the opposing principles of attraction and heat. When
the distance between two molecules is changed, they act on each other with o force
whose direction 18 tn the line joining the centres of the molecules, and whose
magnitude s equal to the change of distance multiplied into a function of the
distance which voamishes when that distance becomes sensible.

The equations of elasticity deduced from this assumption contain only one
coefficient, which varies with the nature of the substance.

The insufficiency of one coefficient may be proved from the existence of
bodies of different degrees of solidity.

No effort is required to retain a liquid in any form, if its volume remain
unchanged; but when the form of a solid is changed, a force is called into
action which tends to restore its former figure; and this constitutes the differ-
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 31

ence between elastic solids and fluids. Both tend to recover their volume, but
fluids do not tend to recover their shape.

Now, since there are in nature bodies which are in every intermediate state
from perfect solidity to perfect liquidity, these two elastic powers cannot exist
in every body in the same proportion, and therefore all theories which assign to
them an invariable ratio must be erroneous.

I have therefore substituted for the assumption of Navier the following
axioms as the results of experiments.

If three pressures in three rectangular axes be applied at a point in an
elastic solid,—

1. The sum of the three pressures is proportional to the sum of the com-
presstons which they produce.

2. The difference between two of the pressures ts proportional to the differ-
ence of the compressions which they produce.

The equations deduced from these axioms contain two coefficients, and ditfer
from those of Navier only in not assuming any invariable ratio between the
cubical and linear elasticity. They are the same as those obtained by Professor
Stokes from his equations of fluid motion, and they agree with all the laws of
elasticity which have been deduced from experiments.

In this paper pressures are expressed by the number of units of weight to
the unit of surface; if in English measure, in pounds to the square inch, or
in atmospheres of 15 pounds to the square inch.

Compression is the proportional change of any dimension of the solid caused
by pressure, and is expressed by the quotient of the change of dimension divided
by the ‘dimension compressed *.

Pressure will be understood to include tension, and compression dilatation ;
pressure and compression being reckoned positive.

Elasticity is the force which opposes pressure, and the equations of elasticity
are those which express the relation of pressure to compressiont.

Of those who have treated of elastic solids, some have confined themselves
to the investigation of the laws of the bending and twisting of rods, without
* The laws of pressure and compression may be found in the Memoir of Lamé and Clapeyron. See

note A.
1 See note B,
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32 THE EQUILIBRIUM OF ELASTIC SOLIDS.

considering the relation of the coefficients which oecur in these two cases;
while others have treated of the general problem of a solid body exposed to
any forces. '

The investigations of Leibnitz, Bernoulli, Euler, Varignon, Young, La Hire,
and Lagrange, are confined to the equilibrium of bent rods; but those of
Navier, Poisson, Lamé and Clapeyron, Cauchy, Stokes, and Wertheim, are
principally directed to the formation and application of the general equations.

The investigations of Navier are contained in the seventh volume of the
Memovrs of the Institute, page 3873; and in the Annales de Chimie et de
Physique, 2° Série, xv. 264, and XXXVIIL 435; L'Application de la Mécanique,
Tom. 1.

Those of Poisson in Mém. de Ulnstitut, viir. 429; Annales de Chimie, 2°
Série, XXXVI 3834; XXXVIL 337; XXXVIL 338; xuil. Journal de I'Ecole
Polytechnique, cahier xx., with an abstract in Adnnales de Chimie for 1829.

The memoir of MM. Lamé and Clapeyron is contained in Crelle’s Mathe-
matical Journal, Vol. viL.; and some observations on elasticity are to be found
in Lamé’s Cours de Physique.

M. Cauchy’s investigations are contained in his Exercices d’Analyse, Vol. 1.
p. 180, published in 1828.

Instead of supposing each pressure proportional to the linear compression
which it produces, he supposes it to consist of two parts, one of which is pro-
portional to the linear compression in the direction of the pressure, while the
other is proportional to the diminution of volume. As this hypothesis admits
two coefficients, it differs from that of this paper only in the values of the
coefficients selected. They are denoted by K and %k and K=p—%m, k=m.

The theory of Professor Stokes is contained in Vol. viir. Part 3, of the
Cambridge Philosophical Transactions, and was read April 14, 1845.

He states his general principles thus:—“The capability which solids possess
of being put into a state of isochronous vibration, shews that the pressures
called into action by small displacements depend on homogeneous functions of
those displacements of one dimension. I shall suppose, moreover, according to
the general principle of the superposition of small quantities, that the pressures
due to different displacements are superimposed, and, consequently, that the
pressures are linear functions of the displacements.”
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Having assumed the proportionality of pressure to compression, he proceeds
to define his coeflicients.—“Let — A8 be the pressures corresponding to a uniform
linear dilatation 8 when the solid is in equilibrium, and suppose that it becomes
mA3$, in consequence of the heat developed when the solid is in a state of rapid
vibration. Suppose, also, that a displacement of shifting parallel to the plane
wy, for which 8x=Fkr, 8y= —ky, and 82=0, calls into action a pressure — Bk
on a plane perpendicular to the axis of @, and a pressure Bk on a plane
perpendicular to the axis of y; the pressure on these planes being equal and
of contrary signs; that on a plane perpendicular to z being zero, and the tan-

gential forces on those planes being zero.” The coefficients 4 and B, thus
defined, when expressed as in this paper, are 4=3p, B=%® .

Professor Stokes does not enter into the solution of his equations, but gives
their results in some particular cases.

1. A body exposed to a uniform pressure on its whole surface.
2. A rod extended in the direction of its length.
3. A cylinder twisted by a statical couple.

He then points out the method of finding 4 and B from the last two cases.

While explaining why the equations of motion of the luminiferous ether are
the same as those of incompressible elastic solids, he has mentioned the property
of plasticity or the tendency which a constrained body has to relieve itself
from a state of constraint, by its molecules assuming new positions of equi-
librium. This property is opposed to linear elasticity ; and these two properties
exist in all bodies, but in variable ratio.

M. Wertheim, in Annales de Chimie, 3° Série, xxi1r., has given the results
of some experiments on caoutchouc, from which he finds that K=k, or p=%m;
and concludes that %.=K in all substances. In his equations, w is therefore
made equal to %m.

The accounts of experimental researches on the values of the coefficients
are so numerous that I can mention only a few.

Canton, Perkins, (Ersted, Aimé, Colladon and Sturm, and Regnault, have
determined the cubical compressibilities of substances; Coulomb, Duleau, and
Giulio, have calculated the linear elasticity from the torsion of wires; and a
great many observations have been made on the elongation and bending of beams.

VOL. L 5
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34 THE EQUILIBRIUM OF ELASTIC SOLIDS.

I have found no account of any experiments on the relation between the
doubly refracting power communicated to glass and other elastic solids by com-
pression, and the pressure which produces it¥* ; but the phenomena of bent glass
seem to prove, that, in homogeneous singly-refracting substances exposed to
pressures, the principal axes of pressure coincide with the principal axes of
double refraction ; and that the difference of pressures in any two axes is
proportional to the difference of the velocities of the oppositely polarised rays
whose directions are parallel to the third axis. On this principle I have
calculated the phenomena seen by polarised light in the cases where the solid
is bounded by parallel planes.

In the following pages I have endeavoured to apply a theory identical
with that of Stokes to the solution of problems which have been selected on
account of the possibility of fulfilling the conditions. I have not attempted to
extend the theory to the case of imperfectly elastic bodies, or to the laws of
permanent bending and breaking. The solids here considered are supposed not
to be compressed beyond the limits of perfect elasticity.

The equations employed in the transformation of co-ordinates may be found
in Gregory’'s Soled Geometry.

I have denoted the displacements by &z, 8y, 6z. They are generally denoted
by a, B, y; but as I had employed these letters to denote the principal axes
at any point, and as this had been done throughout the paper, I did not alter
a notation which to me appears natural and intelligible.

The laws of elasticity express the relation between the changes of the
dimensions of a body and the forces which produce them.

These forces are called Pressures, and their effects Compressions. Pressures
are estimated in pounds on the square inch, and compressions in fractions of the
dimensions compressed.

Let the position of material points in space be expressed by their co-ordinates
z, y, and 2z, then any change in a system of such points is expressed by giving
to these co-ordinates the variations &, 8y, &z, these variations being functions of
x, 1Y, 2

* See note C.
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 35

The quantities 6x, &y, &z, represent the absolute motion of each point in
the directions of the three co-ordinates; but as compression depends not on
absolute, but on relative displacement, we have to consider only the nine
quantities—

dx’ dy’ dz ’

d8y ddy @
dx ? dy dz ’
ddz ddz ddz

dx’ dy’ dz
Since the number of these quantities is nine, if nine other independent

quantities of the same kind can be found, the one set may be found in terms
of the other. The quantities which we shall assume for this purpose are—

1. Three compressions, % , 6%8’ %Z, in the directions of three principal
axes a, 3, v.

2. The nine direction-cosines of these axes, with the six connecting equa-
tions, leaving three independent quantities. (See Gregory’s Solid Geometry.)

3. The small angles of rotation of this system of axes about the axes of

x, 1, 2.

The cosines of the angles which the axes of =, ¥, z make with those of
a, B, y are
cos (a0x)=a,, cos(B0x)=b,, cos(y0x)=c,,
cos (a0y)=a,, cos (BOy)=b,, cos(y0y)=c,,
cos (a02) =a,, cos (B0z) =b,, cos (y02)=c,.

These direction-cosines are connected by the six equations,

al+bl+tc’= 1, a,a,+bb,+¢,0, =0,
a’+bi+ci=1, aiy+ b,b, + c,e, =0,
a+b2+ct=1, agt, + bb, + ce,=0.

The rotation of the system of axes a, B, y, round the axis of
z, from y to z, =36,
9y, from 2z to x, =486,
z, from x to y, =380,;

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.006


https://doi.org/10.1017/CBO9780511698095.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

36 THE EQUILIBRIUM OF ELASTIC SOLIDS.

By resolving the displacements 8a, 88, 8y, 86,, 80,, 80,, in the directions
of the axes =z, v, 2, the displacements in these axes are found to be

dx=a,8a+b8B+ ¢Sy —80z+30y,
Sy =a.8a+b,8B8 +¢,0y — 80,2+ 60,2,
& =ada+bdB+ c,dy— 86,y + 60,x.

But : 8a=a§:—L, 5,3=,8§/§—3, and 8’}/:)/877,
and a=ax+ay+az, B=bxr+by+dbyz, and y=cax+cy+cz

Substituting these values of 8a, 8B, and 8y in the expressions for &x, Jy,
3z, and differentiating with respect to x, y, and 2, in each equation, we obtain
the equations

déxr _ da o 38 Sy o
Al g b b+ =+ 7
ddy _ da o 3B . i
dy " + B b + ;—02 .................. (1)
dd _ da o 3B
dz st g B b + 'y | Equations of
ddw _ Sa a,+ B 3B bb, + Y 0,480, ] compression.
dy = a B 7
déx _ da 3B
"Zzz—— " a, 3+ B bb + y 0103 802
%S_y_zaa 2 a+i3bzbs+870203+801
" g (2
% = % 0+ %3 bb, + & c,c, — 00,
ddz da 3B
de = e 31+Bbb+ycscl+80
ddz Sa 3,3
= A0y b b 3Ca 80

Equations of the equilibrium of an element of the solid.
The forces which may act on a particle of the solid are :—
1. Three attractions in the direction of the axes, represented by X, Y, Z.

2. Six pressures on the six faces,
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3. Two tangential actions on each face.

Let the six faces of the small parallelopiped be denoted by x,, ¥, 21, % ¥,
and z,, then the forces acting on x, are:—

1. A normal pressure p, acting in the direction of & on the area dydz.
2. A tangential force g, acting in the direction of ¥ on the same area.

3. A tangential force ¢, acting in the direction of z on the same area,
and so on for the other five faces, thus:—

Forces which act in the direction of the axes of

x Y 2

On the face =, — p,dydz —qdydz —q,'dydz
@, | (p+ % dw) dydz | (g, + dqs dw) dydz | (g2 + d- dax) dydz

% — g, drdx - pzdzdm — g dzda

d 3 d 2 d 1
9 | (gt gl dy) dede | ( 102+—0l1;’7 dy) dedas | (g, +£I—dy) deda
% — g, dady — q'dady ~ pydady
da, dg’ dp,
o | (+ GEde)dady | (¢ + L d)dady | (p+ L2 de) dady

Attractions, pXdaxdydz p Ydadydz pZdxdydz

Taking the moments of these forces round the axes of the particle, we find
Q11=Q1’ q;:%’ 931={Zs;

and then equating the forces in the directions of the three axes, and dividing
by dzx, dy, dz, we find the equations of pressures,

dp, | dg, , dg.

dxtdy dy Tt pX = O Equations of Pressures.
dp, dq,  dg,

@-I-Ez-i_dw-l- Y O F tectereierstiectoiotincernnsnans (3)
dp, | dq. dq1
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38 THE EQUILIBRIUM OF ELASTIC SOLIDS.

The resistance which the solid opposes to these pressures is called Elasticity,
and is of two kinds, for it opposes either change of volume or change of figure.
These two kinds of elasticity have no necessary connection, for they are possessed
in very different ratios by different substances. Thus jelly has a cubical elas-
ticity little different from that of water, and a linear elasticity as small as we
please; while cork, whose cubical elasticity is very small, has a much greater
linear elasticity than jelly.

Hooke discovered that the elastic forces are proportional to the changes
that excite them, or as he expressed it, “ Ut tensio sic vis.”

To fix our ideas, let us suppose the compressed body to be a parallelopiped,
and let pressures P,, P,, P, act on its faces in the direction of the axes
a, B, v, which will become the principal axes of compression, and the com-
S 38 3
a 2 B 2 7 .

The fundamental assumption from which the following equations are deduced
is an extension of Hooke’s law, and consists of two parts.

pressions will be

I. The sum of the compressions is proportional to the sum of the pressures.

II. The difference of the compressions is proportional to the difference of
the pressures.

These laws are expressed by the following equations:—

I (P.+P,+P)=3u <8°‘ sg + 8—7> ........................ (4).
%
- Equations of Elasticity.
R 1 £q Y
#i=py=n(3-3)
I {(P=P)=m (378@ _ %Z> S (5).
(P —P)=m (8—7’ - 8—“)
)/ a

The quantity p is the coefficient of cubical elasticity, and m that of linear
elasticity.
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 39

By solving these equations, the values of the pressures P,, P,, P,, and the

compressions %, %@, % may be found.
P1=(,L—%m)<8—a+%g+i—y> +m8—:51
P,= (H_lm)<8“+i§+87>+ %3» ...................... (6).
i (o845 o
%:(%—3;>(P+P+P)+ P,
%L <§1ﬁ‘3i> 12 5 JNLY N S o (7).
%Z-(glﬁ_%> (P+P+P)+ P

From these values of the pressures in the axes a, B, y, may be obtained
the equations for the axes =, ¥, 2, by resolutions of pressures and compressions®.

For p=a’P,+ 0P, + P,
and g=aalP,+bbP,+ccP,;

ddx  ddy  ddz d8w7
P1=(F—%m)<dw + dy?/ >

p=(p—1 )(@Zﬂ?j de da% ................... (8).
et (B2, 8 2
m [d8y | doz
) <dz + dy)
%Jg(‘ﬁ: + 8 ) e (9).
588

* See the Memoir of Lamé and Clapeyron, and note A.
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40 THE EQUILIBRIUM OF ELASTIC SOLIDS.

‘?f (92 3m> (p+patp) + o 1
%3?_/?! (91# 3m> (potpatp)) + ~ 7 SE—— (10).
fldi; = %—37@) (101+102+103)+§—%103J
B _50,=2Y 150,=1 g,
y
%—801=%+891=%%q1 e (11).
2 _s0=0 1 50-1, J

By substituting in Equations (3) the values of the forces given in Equa-
tions (8) and (9), they become

dSac dSy ddz m d2 d'2 R
ol8oc dSy déz m & _
m {dy dz>}+§<d 28w+d 28y+ 8>+pY—-0 »,.,(12)
de dSy déz m [ d? d d
m {dz dz>}+”2‘<d23w+d28?/+ 3Z>+pZ 0

These are the general equations of elasticity, and are identical with those
of M. Cauchy, in his Euxercices d'Analyse, Vol. 111, p. 180, published in 1828,

cz[n—t

o =t

[L+

o=

;L+

where %k stands for m, and K for y,—%?', and those of Mr Stokes, given in the

Cambridge Philosophical Transactions, Vol. vim., part 3, and numbered (30);
in his equations 4=38u, B =g—?'.
If the temperature is variable from one part to another of the elastic
solid, the compressions dow doy d¥ at any point will be diminished by a
’ P do’ dy’ &’ 7P 7

quantity proportional to the temperature at that point. This principle is applied
in Cases X. and XI. Equations (10) then become
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ddx 1 1 1 )

e = <-9 e 3—m> (Ptp.+p)+ev+—p,

déy (1 1 1

dy (@ - 37@) G2R 8  AR TR g % RTINS (13),
ddx 1 1 1

= (—-9 i 3~—m> (Putpatp)tow+ Py

¢;v being the linear expansion for the temperature ».

Having found the general equations of the equilibrium of elastic solids, I
proceed to work some examples of their application, which afford the means of
determining the coefficients u, m, and ®, and of calculating the stiffness of
solid figures. I begin with those cases in which the elastic solid is a hollow
cylinder exposed to given forces on the two concentric cylindric surfaces, and
the two parallel terminating planes.

In these cases the co-ordinates x, y, z are replaced by the co-ordinates
x=x, measured along the axis of the cylinder.
y=r, the radius of any point, or the distance from the axis.

z=r0, the arc of a circle measured from a fixed plane passing

through the axis.
ddx _ dox

o =gz Pr=0 are the compression and pressure in the direction of the

axis at any point.

O%Z = %87”‘, P.=p, are the compression and pressure in the direction of the
radius.
%: %8:70 = %ﬁ, P:=¢, are the compression and pressure in the direction of the
tangent.
Equations (9) become, when expressed in terms of these co-ordinates—
m déf)
“=2 "
g2=g—?'r%¥ L e e, (14).
m dox
“=%
The length of the cylinder is b, and the two radii @, and @, in every case.
VOL. 1. 6
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42 THE EQUILIBRIUM OF ELASTIC SOLIDS.

Case L

The first equation is applicable to the case of a hollow cylinder, of which
the outer surface is fixed, while the inner surface is made to turn through
a small angle 80, by a couple whose moment is M.

The twisting force M is resisted only by the elasticity of the solid, and
therefore the whole resistance, in every concentric cylindric surface, must be equal

to M.

The resistance at any point, multiplied into the radius at which it acts, is
expressed by

m , déf
rq, = 5 7 -(%; .
Therefore for the whole cylindric surface
%8—7;0— mar*hb =M.
Whence 0= M <—1— - —1—2> ,
2wmb \a® a,
M /1 1
and m=m<a—f—&/}> ............................ (16).
The optical effect of the pressure of any point is expressed by
. Mb
.l==wab=w.%_—1—.2 ............................ (15).

Therefore, if the solid be viewed by polarized light (transmitted parallel to
the axis), the difference of retardation of the oppositely polarized rays at any
point in the solid will be inversely proportional to the square of the distance from
the axis of the cylinder, and the planes of polarization of these rays will be
inclined 45° to the radius at that point.

The general appearance is therefore a system of coloured rings arranged
oppositely to the rings in uniaxal crystals, the tints ascending in the scale as
they approach the centre, and the distance between the rings decreasing towards
the centre. The whole system is crossed by two dark bands inclined 45° to the
plane of primitive polarization, when the plane of the analysing plate is perpen-
dicular to that of the first polarizing plate.
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A jelly of isinglass poured when hot between two concentric cylinders forms,
when cold, a convenient solid for this experiment; and the diameters of the rings
may be varied at pleasure by changing the force of torsion applied to the interior
cylinder.

By continuing the force of torsion while the jelly is allowed to dry, a hard
plate of isinglass is obtained, which still acts in the same way on polarized light,
even when the force of torsion is removed.

It seems that this action cannot be accounted for by supposing the interior
parts kept in a state of constraint by the exterior parts, as in unannealed and
heated glass; for the optical properties of the plate of isinglass are such as
would indicate a strain preserving in every part of the plate the direction of
the original strain, so that the strain on one part of the plate cannot be main-
tained by an opposite strain on another part.

Two other uncrystallised substances have the power of retaining the polariz-
ing structure developed by compression. The first is a mixture of wax and resin
pressed into a thin plate between two plates of glass, as described by Sir David
Brewster, in the Philosophical Transactions for 1815 and 1830.

When a compressed plate of this substance is examined with polarized light,
it is observed to have no action on light at a perpendicular incidence ; but when
inclined, it shews the segments of coloured rings. This property does not belong
to the plate as a whole, but is possessed by every part of it. It is therefore
similar to a plate cut from a uniaxal crystal perpendicular to the axis.

I find that its action on light is like that of a positive crystal, while that
of a plate of isinglass similarly treated would be negative.

The other substance which possesses similar properties is gutta percha. This
substance in its ordinary state, when cold, is not transparent even in thin films;
but if a thin film be drawn out gradually, it may be extended to more than
double its length. It then possesses a powerful double refraction, which it
retains so strongly that it has been used for polarizing light®. As one of its
refractive indices is nearly the same as that of Canada balsam, while the other
is very different, the common surface of the gutta percha and Canada balsam
will transmit one set of rays much more readily than the other, so that a film
of extended gutta percha placed between two layers of Canada balsam acts like

* By Dr Wright, T believe.
6—2

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.006


https://doi.org/10.1017/CBO9780511698095.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

44 THE EQUILIBRIUM OF ELASTIC SOLIDS.

a plate of nitre treated in the same way. That these films are in a state of
constraint may be proved by heating them slightly, when they recover their
original dimensions.

As all these permanently compressed substances have passed their limit of
perfect elasticity, they do not belong to the class of elastic solids treated of in
this paper; and as I cannot explain the method by which an uncrystallised body
maintains itself in a state of constraint, I go on to the next case of twisting,
which has more practical importance than any other. This is the case of a
cylinder fixed at one end, ahd twisted at the other by a couple whose moment
is M.

Case IIL
In this case let 80 be the angle of torsion at any point, then the resistance
to torsion in any circular section of the cylinder is equal to the twisting force M.

The resistance at any point in the circular section is given by the second
Equation of (14).
m s
g, =§ r % .

This force acts at the distance r from the axis; therefore its resistance to torsion
will be ¢, and the resistance in a circular annulus will be

,dd0
gir2ardr = mmr v dr

and the whole resistance for the hollow cylinder will be expressed by

mar dof
M= f (O = ), (16).
m=4M !

s g (ot —a)

720 M/ b
M—? %— <m> .............................. (17).

In this equation, m is the coefficient of linear elasticity; a, and a, are the
radii of the exterior and interior surfaces of the hollow cylinder in inches; M is
the moment of torsion produced by a weight acting on a lever, and is expressed
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by the product of the number of pounds in the weight into the number of inches
in the lever; b is the distance of two points on the cylinder whose angular
motion is measured by means of indices, or more accurately by small mirrors
attached to the cylinder; = is the difference of the angle of rotation of the two
indices in degrees.

This is the most accurate method for the determination of m independently
of u, and it seems to answer best with thick cylinders which cannot be used
with the balance of torsion, as the oscillations are too short, and produce a
vibration of the whole apparatus.

Case III.

A hollow cylinder exposed to normal pressures only. When the pressures
parallel to the axis, radius, and tangent are substituted for p,, p,, and p,,
Equations (10) become

ddx 1 1 1
T = <_9'u - 3——m> (o+p+9) F 0 (18).
dor 1 1 1
?l?=<§ﬁ—§-ﬁ%> (o+p+g)+q7b]0 ................. (19).
ds(rf) & 1 1 1
d(ge))= T.f=<§7&_%> R R B (20).

By multiplying Equation (20) by r, differentiating with respect to r, and

comparing this value of %8% with that of Equation (19),

Gt ()1

rm on 3m/\dr " dr " dr) mdr’

The equation of the equilibrium of an element of the solid is obtained by
considering the forces which act on it in the direction of the radius. By
equating the forces which press it outwards with those pressing it inwards, we
find the equation of the equilibrium of the element,

—p d
9_;12 = 31_;’4 .................................... (21).
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46 THE EQUILIBRIUM OF ELASTIC S8OLIDS.

By comparing this equation with the last, we find
1 1\do (1 , 2\/dp  dq\_
(oa = 5m) @+ it ) (4 20) =

1 1 1 2
(g;—gn>0+<§;+%> (p+q)=c.

Since o, the longitudinal pressure, is supposed constant, we may assume

c_-l—l)o
: I  3m

Integrating,

Cy = 1 9 = (.p + Q)'
ou " m
Therefore qg—p=c,—2p, therefore by (21),
dp  2p _ ¢,

dr ' ¢’

a linear equation, which gives

1 ¢
P=tuty:

The coefficients ¢, and ¢, must be found from the conditions of the surface
of the solid. If the pressure on the exterior cylindric surface whose radius is «,
be denoted by %, and that on the interior surface whose radius is a, by 4,

then p=h, when r=q,
and p=~h, when r=aq,
and the general value of p is

— al2h’l — azzhz _ 0&12(122 ]2’1 - kz

Bl LR (22)
r%=q—p=2%€b—: EL]?%ZZ—’ by (21).

q=“§’l’;l_“o‘f2:%+“i @ 0212:222 .......................... (23).
I=ba (p-g)= —2bo %% Oz;:’;} ...................... (24).

This last equation gives the optical effect of the pressure at any point. The
law of the magnitude of this quantity is the inverse square of the radius, as in
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THE EQUILIBRIUM OF ELASTIC SOLIDS, 47

Case I.; but the direction of the principal axes is different, as in this case they
are parallel and perpendicular to the radius. The dark bands seen by polarized
light will therefore be parallel and perpendicular to the plane of polarization, in-
stead of being inclined at an angle of 45°, as in Case I

By substituting in Equations (18) and (20), the values of p and ¢ given in
(22) and (23), we find that when r=aq,,
8_9: _ <L 042 afkl—az"’h2> + 2 o _o&fhl--ajk2> 2!
z  \9u a2 —a, 3m .l —-a, ’
(L2 s _pany Lt (L _ 1 >
=0 <§T’« + §77L> + 2 (b, _hl%)af—-aj <9H 3
2l oy 2 2 2}, __ Aq 2 1
When r=aq,, §Z' _1 (o+2 OL—————‘]L; a22h2) + 1 <a1h1+3?2h1 . 4a2h,__0> |
r  9u al—a, 3m a’—a,
Foeenn(26).

/11 1 [2a° a’+ 3a;> al /2 4
=0 <@ 3m>+k1af—a,2<9p, *3m hQaﬁ—a;‘ <§L+37n>J|
From these equations it appears that the longitudinal compression of cylin-
dric tubes is proportional to the longitudinal pressure referred to unit of surface

when the lateral pressures are constant, so that for a given pressure the com-
pression is inversely as the sectional area of the tube.

These equations may be simplified in the following cases:—
1. When the external and internal pressures are equal, or h,=h,.

2. When the external pressure is to the internal pressure as the square of
the interior diameter is to that of the exterior diameter, or when a’h,=ah,.

3. When the cylinder is solid, or when a,=0.

4. When the solid becomes an indefinitely extended plate with a cylindric
hole in it, or when a, becomes infinite.

5. When pressure is applied only at the plane surfaces of the solid cylinder,
and the cylindric surface is prevented from expanding by being inclosed in a

r
strong case, or when - =0.

6. When pressure is applied to the cylindric surface, and the ends are

. . . . dx
retained at an invariable distance, or when -x—=0.
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48 THE EQUILIBRIUM OF ELASTIC SOLIDS.

When h,=h,, the equations of compression become

o 1 2 )
—:; -——9—#(0'—]—27&1)—]-%(0—]7/1)

1 2 1
""(9 +3m>+ h(y 577)
5 e (27).
7=~—(o+2k)+ (k —0)

1 1 2 1
= (g~ 5) " (5 + 5w |

When A,=h,=o0, then

8.70 37'&

x  r 3p°

The compression of a cylindrical vessel exposed on all sides to the same

hydrostatic pressure is therefore independent of m, and it may be shewn that
the same is true for a vessel of any shape.

2. When a’h, =a’h,,
b 1 2 ]
=5 5m)
877”_1_()+ (8, =0) L eveevrerrerieeiieias (28).
11 1
_O(g_l;—é??)-l_hlmj

In this case, when 0=0, the compressions are independent of .

3. In a solid cylinder, a,=0,
p=q=h,.
Sr

. S
The expressions for = and — are

the same as those in the first case, when
h,=h,.

When the longitudinal pressure o vanishes,

ox 1 1
z =2 (5;:'%)’
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THE EQUILIBRIUM OF ELASTIC SOLIDS, 49

When the cylinder is pressed on the plane sides only,

4. When the solid is infinite, or when @, is infinite,
p=h= 50} (b~

. 1,
q-k1+;2a, (A=)

o
[
+
no
=
S’
+
[JV)
IS
P
[
|
=
=
~~
[ 3]
=)
g’

1 1 2 1
= (5= 5m) s o)
5. When &r=0 in a solid cylinder,

Sz _ 30
x  2m+ 3
Sz Sr g, [rerereereeeesresseeseens (30)

Since the expression for the effect of a longitudinal strain is

dx 1 2
2 = (o 5m)
. _ 9mp x_ 1
if we make E—m, then ; —-OE ......................... (31)
VOL. I. 7
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50 THE EQUILIBRIUM OF ELASTIC SOLIDS.

The quantity £ may be deduced from experiment on the extension of wires
or rods of the substance, and p is given in terms of m and E by the equation,

Em
P g, (32),
Pb
a,nd =§S‘§.............................-.....-......(33),

P being the extending force, b the length of the rod, s the sectional area,
and 8x the elongation, which may be determined by the deflection of a wire,
as in the apparatus of 8’ Gravesande, or by direct measurement.

Case IV.

The only known direct method of finding the compressibility of liquids is
that employed by Canton, (Ersted, Perkins, Aimé, &c.

The liquid is confined in a vessel with a narrow neck, then pressure is
applied, and the descent of the liquid in the tube is observed, so that the
difference between the change of volume of liquid and the change of internal
capacity of the vessel may be determined.

Now, since the substance of which the vessel is formed is compressible, a
change of the internal capacity is possible. If the pressure be applied only to
the contained liquid, it is evident that the vessel will be distended, and the
compressibility of the liquid will appear too great. The pressure, therefore, is
commonly applied externally and internally at the same time, by means of a

hydrostatic pressure produced by water compressed either in a strong vessel or
in the depths of the sea.

As it does not necessarily follow, from the equality of the external and
internal pressures, that the capacity does not change, the equilibrium of the
vessel must be determined theoretically. (Ersted, therefore, obtained from Poisson
his solution of the problem, and applied it to the case of a vessel of lead.
To find the cubical elasticity of lead, he applied the theory of Poisson to the
numerical results of Tredgold. As the compressibility of lead thus found was
greater than that of water, (Ersted expected that the apparent compressibility
of water in a lead vessel would be negative. On making the experiment the
apparent compressibility was greater in lead than in glass. The quantity found
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 51

by Tredgold from the extension of rods was that denoted by E, and the value
of u deduced from E alone by the formule of Poisson cannot be true, unless

%:%; and as % for lead is probably more than 3, the calculated compressi-

bility is much too great.

A similar experiment was made by Professor Forbes, who used a vessel of
caoutchouc. As in this case the apparent compressibility vanishes, it appears
that the cubical compressibility of caoutchouc is equal to that of water.

Some who reject the mathematical theories as unsatisfactory, have conjec-
tured that if the sides of the vessel be sufficiently thin, the pressure on both
sides being equal, the compressibility of the vessel will not affect the result.
The following calculations shew that the apparent compressibility of the liquid
depends on the compressibility of the vessel, and is independent of the thickness
when the pressures are equal.

A hollow sphere, whose external and internal radii are @, and a,, is acted
on by external and internal normal pressures A, and %,, it is required to deter-
mine the equilibrium of the elastic solid.

The pressures at any point in the solid are :—

1. A pressure p in the direction of the radius.

2. A pressure ¢ in the perpendicular plane.

These pressures depend on the distance from the centre, which is denoted

by .
. . dor . . .. or .
The compressions at any point are gy the radial direction, and - in

the tangent plane, the values of these compressions are :—

dor 1 1

37=<§ﬁ—§%3> (P+29)+= Peveriiniininininn. (34)

or 1 1

7—<%—%>(p+ @t G (35)

Multiplying the last equation by r, differentiating with respect to =, and
equating the result with that of the first equation, we find

_I__L dp dg 1 < dq >_
”(gﬂ 3m> <0W+20W>+47z rartea—r)=0
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52 THE EQUILIBRIUM OF ELASTIC SOLIDS,

Since the forces which act on the particle in the direction of the radius
must balance one another, or

2qdrd +p (rd6) = ( +% dr) (r+dr)6,

_rdp
therefore QP =g G everereeeesnsaenesnnninenen, (36).
Substituting this value of g—p in the preceding equation, and reducing,
dp_ 599 _
therefore ar T2 =
Integrating, p+29=c,
r dp
But q 2 dr +p »
and the equation becomes
dp G_
ar 3570
1 ¢
therefore P=ts+3-

Since p=h, when r=a,, and p=h, when r=a, the value of p at any
distance is found to be
a’_lsljl - azxkz _ alsazs hl - hz

P pe it SRR (37).
a’h, — ala} h —h,
= T T T e (38)
8V _ or al“77,1—cw;’k2 1 atal h,—h, 1
=35 = a’—a; ﬁ+% 7 al—alm
8V _a’h,—ath, 1 h2 1
When r=da,, V —a‘—_a— %} 3 ;?,
o (_1+ 3%) ) hga: 1 s ) ................ (39).
Tol—at\p  2m/) a’—a} 2m
When the external and internal pressures are equal
8V h,
h h =p=q, and —-I—,——'II ........................ (40),
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 53
the change of internal capacity depends entirely on the cubical elasticity of the
vessel, and not on its thickness or linear elasticity.

When the external and internal pressures are inversely as the cubes of the
radii of the surfaces on which they act,

3 3 b
h=aty, p="h, g= =3
8V a’h
v=-%5  eeerreeeinnene (41)
_8V_ . h
when r=aqa,, v=—%. J

In this case the change of capacity depends on the linear elasticity alone.

M. Regnault, in his researches on the theory of the steam engine, has
given an account of the experiments which he made in order to determine
with accuracy the compressibility of mercury.

He considers the mathematical formule very uncertain, because the theories
of molecular forces from which they are deduced are probably far from the
truth; and even were the equations free from error, there would be much
uncertainty in the ordinary method by measuring the elongation of a rod of
the substance, for it is difficult to ensure that the material of the rod is the
same as that of the hollow sphere.

He has, therefore, availed himself of the results of M. Lamé for a hollow
sphere in three different cases, in the first of which the pressure acts on the
interior and exterior surface at the same time, while in the other two cases

the pressure is applied to the exterior or interior surface alone. Equation (39)
becomes in these cases,—

1. When b, =h, STZ =% and the compressibility of the enclosed liquid being

po and the apparent diminution of volume &'V,

SV 1 1
7 =h1 ‘—2 bt p) .............................. (42)
2. When 4,=0,
3V &V ol 1.3
_T/__ = V. = k2 0&13-—0623 (;; + %) .................. (43)
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54 THE EQUILIBRIUM OF ELASTIC SOLIDS.

3. When %,=0,

3 3

M. Lamé’s equations differ from these only in assuming that p=§m. If
this assumption be correct, then the coefficients u, m, and p,, may be found
from two of these equations; but since one of these equations may be derived
from the other two, the three coefficients cannot be found when u is supposed
independent of m. In Equations (39), the quantities which may be varied at
pleasure are A, and A,, and the quantities which may be deduced from the
apparent compressions are,

<1 3) <1 1>
¢,;=|-+-—) and (= ——)=¢,
po 2m B e

therefore some independent equation between these quantities must be found,
and this cannot be done by means of the sphere alone; some other experiment
must be made on the liquid, or on another portion of the substance of which
the vessel is made.

The value of p,, the elasticity of the liquid, may be previously known.

The linear elasticity m of the vessel may be found by twisting a rod of
the material of which it is made;

Or, the value of £ may be found by the elongation or bending of the
1 1 2
rod, and

E™ o HETS
We have here five quantities, which may be determined by experiment.

(43) 1L ¢ = <—1— + Zim > by external pressure
# on sphere.

10

(42)

C,= <l - l) equal pressures
=z q p .

(31) 3. %}'=<—91~n+ §2;%> by elongation of a rod.

(17)

-

m by twisting the rod.
T the elasticity of the liquid.
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 55

When the elastic sphere is solid, the internal radius a, vanishes, and

3V _h,
h,=p=gq, and V=

When the case becomes that of a spherical cavity in an infinite solid, the
external radius a, becomes infinite, and

p=h=5 (h—h)

BN

g=h+% g:? (b —hy)

Sr 1 ol . e errerrerreraaeeeene (44)
8V b, _h—h,

J
The effect of pressure on the surface of a spherical cavity on any other part

of an elastic solid is therefore inversely proportional to the cube of its distance
from the centre of the cavity.

When one of the surfaces of an elastic hollow sphere has its radius rendered
invariable by the support of an incompressible sphere, whose radius is @, then

or

= 0, when r=a,

3a.’w ool 2m A
therefore p=h, Saim + 343 +h, 7 2aim+ 3ais
3 8,438 .
q=h2 33(12” 3 —% 2(1’1“2 3 = 3
2a,'m + 3a’m 7 2a°m+ 3a’w (45)
[ eesssossnvsoccsssscnnan
or _ a RN 1
r 2a'm+3ain 7 2aim+3atu
3 3a,*— 3a,?
h =, ol = 2% 7O
When r=a,, V= it a

Case V.

On the equilibrium of an elastic beam of rectangular section uniformly
bent.

By supposing the bent beam to be produced till it returns into itself, we
may treat it as a hollow cylinder.
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56 THE EQUILIBRIUM OF ELASTIC SOLIDS,

Let a rectangular elastic beam, whose length is 2w¢, be bent into a circular
form, so as to be a section of a hollow cylinder, those parts of the beam which
lie towards the centre of the circle will be longitudinally compressed, while the
opposite parts will be extended.

The expression for the tangential compression is therefore
&r r—c

r C

Comparing this value of -8;7' with that of Equation (20),

r—c_ (1 1 1
= (g;"gn) 0+p+9)+_ 9

—pir 2

and by (21), g=p+r ..

By substituting for ¢ its value, and dividing by ~ (% +3-247—L> , the equation
becomes

dp  2m+3up 9mp—(m—3p)o Imp ¢

dr * m+6pr  (m+6p)r  (m+6p)r’

a linear differential equation, which gives

e 9mp ¢ um —(m—3p) o

p=Cr e = T 2m+ 3p (46).
C, may be found by assuming that when r=a,, p=h,, and ¢ may be found
from p by equation (21).

ooooooooooooooo

As the expressions thus found are long and cumbrous, it is better to use
the following approximations :—

= —(9me \y

R B — e (47).
_ gm[L ._1_ & — of _

P—<m+6#) 2C<y+c +c y) ...................... (48).

In these expressions o is half the depth of the beam, and y is the distance
of any part of the beam from the neutral surface, which in this case is a cylin-
dric surface, whose radius is c.

These expressions suppose ¢ to be large compared with @, since most sub-

stances break when % exceeds a certain small quantity.
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 57

Let b be the breadth of the beam, then the force with which the beam
resists flexure =M.

_ _ 9mp bt 0%
M_fbyq—-———m-l-Gl.LE E—E?;- ........................ (49),

which is the ordinary expression for the stiffness of a rectangular beam.

The stiffness of a beam of any section, the form of which is expressed by
an equation between x and y, the axis of x being perpendicular to the plane of
flexure, or the osculating plane of the axis of the beam at any point, is ex-
pressed by

M being the moment of the force which bends the beam, and ¢ the radius of
the circle into which it is bent.

Case VI

At the meeting of the British Association in 1839, Mr James Nasmyth
described his method of making concave specula of silvered glass by bending.

A circular piece of silvered plate-glass was cemented to the opening of an
iron vessel, from which the air was afterwards exhausted. The mirror then
became concave, and the focal distance depended on the pressure of the air.

Buffon proposed to make burning-mirrors in this way, and to produce the
partial vacuum by the combustion of the air in the vessel, which was to be
effected by igniting sulphur in the interior of the vessel by means of a burn-
ing-glass. Although sulphur evidently would not answer for this purpose, phos-
phorus might; but the simplest way of removing the air is by means of the
air-pump. The mirrors which were actually made by Buffon, were bent by
means of a screw acting on the centre of the glass.

To find an expression for the curvature produced in a flat, circular, elastic
plate, by the difference of the hydrostatic pressures which act on each side
of it,—

Let ¢ be the thickness of the plate, which must be small compared with
its diameter.

Let the form of the middle surface of the plate, after the curvature is
produced, be expressed by an equation between », the distance of any point
from the axis, or normal to the centre of the plate, and x the distance of
the point from the plane in which the middle of the plate originally was, and let

ds =V (dux)*+ (dr)y.

VOL 1. 8
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58 THE EQUILIBRIUM OF ELASTIC SOLIDS,

Let h, be the pressure on one side of the plate, and %, that on the other.

Let p and ¢ be the pressures in the plane of the plate at any point, p
acting in the direction of a tangent to the section of the plate by a plane
passing through the axis, and ¢ acting in the direction perpendicular to that
plane.

By equating the forces which act on any particle in a direction parallel to
the axis, we find

dr dx dp dx dx
tp 7 e+ dpds+trpds,+r(hl h)d =0.

By making p=0 when r=0 in this equation, when integrated,

r ds
p= _it-%(hl—hz)”””””“"”“””“””"(51)'

The forces perpendicular to the axis are

tp(?a) +tr (jlp(jlr-l-t d32 — (A, k)r —gt_

Substituting for p its value, the equation gives

_ b=k (drdr dx\  (h—h) ,(dr dsdx dsdr
1= -0 (Gt T (G a5~ e )
The equations of elasticity become
dds (1 1 hth) p
75‘(@;‘%) (f’*q*“z—)*a’
& (1 1 hith\ | g
?‘(@“%) (P’““'z—)*%
Differentiating dor _ d <-817'> , and in this case
dr T dr\7r
dSr_l dr  drdds
@ T Y ds
dér
By a comparison of these values of 75’
dr 1° ho+h\, g drp ) dp dq)
<1‘3§> <9M 3m> <P+Q+ >+ tosmt" (9,L 3m <dr dr
rdq  dr
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To obtain an expression for the curvature of the plate at the vertex, let a
be the radius of curvature, then, as an approximation to the equation of the

plate, let
,rﬂ

QJ:% .

By substituting the value of x in the values of p and ¢, and in the equa-
tion of elasticity, the approximate value of a is found to be

1 1
L (k1+k2)<§ﬁ—%>—2
T h—h, 1 1>. 9 '
<9p. 3m

t -~ 18mpu

— k1+h2 m—SIJv
&=l Tom+51a (53).

B, TOm 51 "

+1

Since the focal distance of the mirror, or g, depends on the difference of

pressures, a telescope on Mr Nasmyth's principle would act as an aneroid baro-
meter, the focal distance varying inversely as the pressure of the atmosphere.

Case VII

To find the conditions of torsion of a cylinder composed of a great number
of parallel wires bound together without adhering to one another.

Let = be the length of the cylinder, « its radius, 7 the radius at any point,
6 the angle of torsion, M the force producing torsion, 8z the change of length,
and P the longitudinal force. Each of the wires becomes «a helix whose radius
is r, its angular rotation 86, and its length along the axis z—&x.

Its length is therefore J (r86)* + <1 _ %@)2,

and the tension is =E{1 _\/<1 __8_a3>”+r2 <§Q)ﬁ] .
x xz/
This force, resolved parallel to the axis, is
1d d 1
= 5P=F -1,
rdf dr {J<1—Sﬁ> g <§_{9) }
x x/
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and since 8% and r 8—{5 are small, we may assume

d d S fzj<§g>2}

a—é —(27/' P=Er z o\x ’

Sx 1 [06\*
P=17E{ b~ <E>} R — 1)

The force, when resolved in the tangential direction, is approximately

1d d M=Er {78—08—%—?@9;},
x x

r df dr 2 \x
80 8x 1 (80\°
M=1TE{§ _93‘—5—_6— <a—7>} ............................... (55).
By eliminating %ac between (54) and (55) we have
r 80 7 (80\*
M:—Z— ;P—E’n’ﬂ (;‘) ...................... (56)

When P=0, M depends on the sixth power of the radius and the cube
of the angle of torsion, when the cylinder is composed of separate filaments.

Since the force of torsion for a homogeneous cylinder depends on the
fourth power of the radius and the first power of the angle of torsion, the
torsion of a wire having a fibrous texture will depend on both these laws.

The parts of the force of torsion which depend on these two laws may be
found by experiment, and thus the difference of the elasticities in the direction
of the axis and in the perpendicular directions may be determined.

A calculation of the force of torsion, on this supposition, may be found in
Young’s Mathematical Principles of Natural Philosophy; and it is introduced
here to account for the variations from the law of Case IL, which may be
observed in a twisted rod.

Case VIIL

It is well known that grindstones and fly-wheels are often broken by the
centrifugal force produced by their rapid rotation. I have therefore calculated
the strains and pressure acting on an elastic cylinder revolving round its axis,
and acted on by the centrifugal force alone.
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The equation of the equilibrium of a particle [see Equation (21)], becomes
_p0p 4k
q=p=rg.——

where ¢ and p are the tangential and radial pressures, £ is the weight in
pounds of a cubic inch of the substance, g is twice the height in inches that
a body falls in a second, ¢ is the time of revolution of the cylinder in seconds.

By substituting the value of ¢ and %-l' in Equations (19), (20), and neglect-

ing o,
o=<$—3-1;-1> (3%—2%”%%% (331: 34;k +r%)
which gives p= lr‘“ zqt’< E)T”+cz ’
S g—p=—g ,rlﬂ+g;kt< 4+2E>r2 ST (57).

qg=—c th2< —-24 E)fr”+c,,,‘

If the radii of the surfaces of the hollow cylinder be @, and a,, and the
pressures acting on them %, and A, then the values of ¢, and ¢, are

_ 1
6= atar 71'2762 <2+§_>_a1,%2 h; h22
2gt m a," —ay (58)
_a’h— ajh ' (a4 a =’k 2+€>
Ca= a’—a, )2 £ m
When a,=0, as in the case of a solid cylinder, ¢,=0, and
, Tk E
Cz—kl 1 thz <2+"_>’
=k
g=h, +2gt’ 2(r+a)+— (39* al)} .................. (59).
When 4,=0, and r=a,,
ko’ (E
q:—g—t2— <E - 2> ................................. (60).

When ¢ exceeds the tenacity of the substance in pounds per square inch,
the cylinder will give way; and by making ¢ equal to the number of pounds
which a square inch of the substance will support, the velocity may be found
at which the bursting of the cylinder will take place.
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62 THE EQUILIBRIUM OF ELASTIC SOLIDS.

Since I=bw(g—p)= o (E

e 2) br*, a transparent revolving cylinder, when
polarized light is transmltted parallel to the axis, will exhibit rings whose
diameters are as the square roots of an arithmetical progression, and brushes
parallel and perpendicular to the plane of polarization.

Case IX.

A hollow cylinder or tube is surrounded by a medium of a constant
temperature while a liquid of a different temperature is made to flow through
it. The exterior and interior surfaces are thus kept each at a constant tem-
perature till the transference of heat through the cylinder becomes uniform.

Let v be the temperature at any point, then when this quantity has
reached its limit,

rdv _,
d’/‘ = %Y
v=clog P46 i (61).

Let the temperatures at the surfaces be 6, and 6, and the radii of the
surfaces @, and a,, then
0.—0, _log a,0,—log a,0,
“loga,—loga,” *T loga,~loga,
Let the coefficient of linear dilatation of the substance be ¢,, then the
proportional dilatation at any point will be expressed by cw, and the equations
of elasticity (18), (19), (20), become

ddxr 1
dz <9/u, 3m> (0+p+9) +— — b
dor 1
d,r (9“' 3m> ( +p+9) +_ — Gy,

The equation of equilibrium is
d
q-—p+rd1:..... ................................ (21),

and since the tube is supposed to be of a considerable length

%%m=c4 a constant quantity.
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From these equations we find that

1 1 dp
cro-{l ) )
1 2 ’

9% 3m

o=

and hence v=c,logr+c,, p may be found in terms of r.

2 1\ 1
p=<—+——> clcslog7'+057—3+c.,.

I 3m
2 1\ 1 2 1
Hence q=<%+-37?,> clcslogr—cs7—3+cs+<@+§%> C.Ce
Since I=bo(q—p)=bo ~2~+—1—>-!cc—2bwc L
I 3m e S

the rings seen in this case will differ from those described in Case IIL only
by the addition of a constant quantity.

When no pressures act on the exterior and interior surfaces of the tube
h,=h,=0, and

2 1\ a’a’ loga,—loga,  a’loga,—a,log az)
p= <§7“ * g‘;‘> s <10g T r (111‘2 - 0&22 + a’l2 - a: ’

-1 2,2 — 2 -— 12
Q=<2 +_31w_b> clc,,(logr—ai,% log a, logobz_l_OL1 log a, —~a, logag_l_ 1>, ... (62).

5‘,; a’12 — 0622 %2 _ a:
I=1 2, 1\ 1—9 a’a;’ log a,—log a,
= @ + 3m C,Cw p (1:12 — 66,2 . ]

There will, therefore, be no action on polarized light for the ring whose
radius is r when '

a’al a,
ﬁ—zalz_azzlogag.
Case X.

Sir David Brewster has observed (Edinburgh ITramsactions, Vol. viiL), that
when a solid cylinder of glass is suddenly heated at the cylindric surface a
polarizing force is developed, which is at any point proportional to the square
of the distance from the axis of the cylinder; that is to say, that the dif-
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64 THE EQUILIBRIUM OF ELASTIC SOLIDS.

ference of retardation of the oppositely polarized rays of light is proportional
to the square of the radius 7, or

I=bowr*=bo (g—p)=bor L2

dr’
. dp_ R
. C—l;-clfr, Sp=g 7”4+,
Since if @ be the radius of the cylinder, p=0 when r=a,
c .
= 2 (7’2 -a )
Hence g= ;—‘ (3" —a’).

By substituting these values of p and ¢ in equations (19) and (20), and
making (—;—l;%'r 0287' I find,
_2 (1 2\ .
: (%.F 3m>r FCy rrreereenerrennns (63).
¢, being the temperature of the axis of the cylinder, and ¢, the coefficient of
linear expansion for glass.

Case XI.

Heat is passing uniformly through the sides of a spherical vessel, such as
the ball of a thermometer, it is required to determine the mechanical state of
the sphere. As the methods are nearly the same as in Case IX., it will be
sufficient to give the results, using the same notation.

, dv ) ¢
d,’,""cu 7):02_;’
_ 0,—90, 0.0, — 0,1,
C,=a,d, ) s = ]
a,—a, a,—d,

1 2 1\™ 1
b=c ;3‘ — <§;—L+—3—’In> CICB;"]'C,,.

When A, =h,=0 the expression for p becomes

2 1 alat 1 o, 1 al—a? }
= — il T AL s B T 64).
P <9p,+ 3m> ¢ (0.~ 0.) {al —at rt a-a, 'r+a‘a“(al—-a2) (o, —as) (64)
From this value of p the other quantities may be found, as in Case IX,
from the equations of Case IV.
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Case XII.

When a long beam is bent into the form of a closed circular ring (as in
Case V.), all the pressures act either parallel or perpendicular to the direction
of the length of the beam, so that if the beam were divided into planks, there
would be no tendency of the planks to slide on one another.

But when the beam does not form a closed circle, the planks into which it
may be supposed to be divided will have a tendency to slide on one another,
and the amount of sliding is determined by the linear elasticity of the sub-
stance. The deflection of the beam thus arises partly from the bending of the
whole beam, and partly from the sliding of the planks; and since each of these
deflections is small compared with the length of the beam, the total deflection
will be the sum of the deflections due to bending and sliding.

Let A=Mc=E|xyfdy.cceeeeeceeverenierinniarennn...(65).

4 is the stiffness of the beam as found in Case V., the equation of the

transverse section being expressed in terms of x and ¥, ¥ being measured from
the neutral surface.

Let a horizontal beam, whose length is 2J/, and whose weight is 2w, be
supported at the extremities and loaded at the middle with a weight W.

Let the deflection at any point be expressed by 8y, and let this quantity
be small compared with the length of the beam.

At the middle of the beam, 8,y is found by the usual methods to be

1
Oy =7 (Flw+IW) cerrirrririii, (66).
m m .
Let B= 5 f ady = 5 (sectional area).........ccceeerneersenn.. (67).

B is the resistance of the beam to the sliding of the planks. The de-
flection of the beam arising from this cause is

VOL. I. 9
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66 THE EQUILIBRIUM OF ELASTIC SOLIDS,

This quantity is small compared with 8y, when the depth of the beam is
small compared with its length.

The whole deflection Ay =38y +8y

r l
AYy= 7 (w+ VV)+@ (w+ W)

s l s l
Ay:w <{IZ+%§>+W<6—A +%§> ...................... (69).

Case XIII.

When the values of the compressions at any point have been found, when
two different sets of forces act on a solid separately, the compressions, when
the forces act at the same time, may be found by the composition of com-
pressions, because the small compressions are independent of one another.

It appears from Case I., that if a cylinder be twisted as there described,
the compressions will be inversely proportional to the square of the distance
from the centre.

If two cylindric surfaces, whose axes are perpendicular to the plane of an
indefinite elastic plate, be equally twisted in the same direction, the resultant
compression in any direction may be found by adding the compression due to
each resolved in that direction.

The result of this operation may be thus stated geometrically. Let 4, and
4, (Fig. 1) be the centres of the twisted cylinders. Join A4,4,, and bisect 4,4,
in O. Draw OBC at right angles, and cut off OB, and OB, each equal to OA,

Then the difference of the retardation of oppositely polarized rays of light
passing perpendicularly through any point of the plane varies directly as the
product of its distances from B, and B, and inversely as the square of the
product of its distances from 4, and A4,.

The isochromatic lines are represented in the figure.

The retardation: is infinite at the points A, and A,; it vanishes at B,
and B,; and if the retardation at O be taken for unity, the isochromatic curves
2, 4, surround 4, and 4,; that in which the retardation is unity has two
loops, and passes through O; the curves }, 1 are continuous, and have points
of contrary flexure; the curve } has multiple points at C, and C,, where
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 67

A,C=A4,4,, and two loops surrounding B, and B,; the other curves, for which
I=4, 3, &c., consist each of two ovals surrounding B, and B,, and an
exterior portion surrounding all the former curves.

Fig. 1.

)
aof

I have produced these curves in the jelly of isinglass described in Case L.
They are best seen by using circularly polarized light, as the curves are then
seen without interruption, and their resemblance to the calculated curves is
more apparent. To avoid crowding the curves toward the centre of the figure,
I have taken the values of I for the different curves, not in an arithmetical,
but in a geometrical progression, ascending by powers of 2.

9—2

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.006


https://doi.org/10.1017/CBO9780511698095.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

68 THE EQUILIBRIUM OF ELASTIC SOLIDS.

Case XIV.

On the determination of the pressures which act in the interior of trans-
parent solids, from observations of the action of the solid on polarized light.

Sir David Brewster has pointed out the method by which polarized light
might be made to indicate the strains in elastic solids; and his experiments on
bent glass confirm the theories of the bending of beams.

The phenomena of heated and unannealed glass are of a much more complex
nature, and they cannot be predicted and explained without a knowledge of the
laws of cooling and solidification, combined with those of elastic equilibrium.

In Case X. I have given an example of the inverse problem, in the case
of a cylinder in which the action on light followed a simple law; and I now
go on to describe the method of determining the pressures in a general case,
applying it to the case of a triangle of unannealed plate-glass.

DD ___E

Fig. 2. Fig. 4. Fig. 3.

The lines of equal intensity of the action on light are seen without
interruption, by using circularly polarized light. They are represented in Fig. 2,
where 4, BBB, DDD are the neutral points, or points of no action on light,
and CCC, EEE are the points where that action is greatest; and the intensity
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of the action at any other point is determined by its position with respect to
the isochromatic curves.

The direction of the principal axes of pressure at any point is found by
transmitting plane polarized light, and analysing it in the plane perpendicular
to that of polarization. The light is then restored in every part of the triangle,
except in those points at which one of the principal axes is parallel to the
plane of polarization. A dark band formed of all these points is seen, which
shifts its position as the triangle is turned round in its own plane. Fig. 3
represents these curves for every fifteenth degree of inclination. They correspond
to the lines of equal variation of the needle in a magnetic chart.

From these curves others may be found which shall indicate, by their own
direction, the direction of the principal axes at any point. These curves of
direction of compression and dilatation are represented in Fig. 4; the curves
whose direction corresponds to that of compression are concave toward the
centre of the triangle, and intersect at right angles the curves of dilatation.

Let the isochromatic lines in Fig. 2 be determined by the equation

(]51(90,?/)=I-:z£=w(q—1o)—i—,

where I is the difference of retardation of the oppositely polarized rays, and
q and p the pressures in the principal axes at any point, z being the thick-
ness of the plate.

Let the lines of equal inclination be determined by the equation
¢, (x, y)=tan 6,

§ being the angle of inclination of the principal axes; then the differential
equation of the curves of direction of compression and dilatation (Fig. 4) is

(;[)2(90, y)=%

By considering any particle of the plate as a portion of a cylinder whose
axis passes through the centre of curvature of the curve of compression, we find

d
g—p=r ijg .(21)
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Let R denote the radius of curvature of the curve of compression at any
point, and let S denote the length of the curve of dilatation at the same

point, _
¢ (z, y) =R, b, (%, y) =18,
_pdp
¢-p=E 35,

and since (g —p), R and S are known, and since at the surface, where ¢, (x,y)=0,
p=0, all the data are given for determining the absolute value of p by inte-
gration.

Though this is the best method of finding p and ¢ by graphic construc-
tion, it is much better, when the equations of the curves have been found, that
is, when ¢, and ¢, are known, to resolve the pressures in the direction of the
axes.

The new quantities are p,, p,, and ¢;; and the equations are

s

1

tanf= 2, (0-@f=¢'+(—p)s Ptm=pte

It is therefore possible to find the pressures from the curves of equal tint
and equal inclination, in any case in which it may be required. In the mean-
time the curves of Figs. 2, 8, 4 shew the correctness of Sir John Herschell’s
ingenious explanation of the phenomena of heated and unannealed glass.

Nore A.

As the mathematical laws of compressions and pressures have been very thoroughly
investigated, and as they are demonstrated with great elegance in the very complete and
elaborate memoir of MM. Lamé and Clapeyron, I shall state as briefly as possible their results.

Let a solid be subjected to compressions or pressures of any kind, then, if through any
point in the solid lines be drawn whose lengths, measured from the given point, are pro-
portional to the compression or pressure at the point resolved in the directions in which the
lines are drawn, the extremities of such lines will be in the surface of an ellipsoid, whose
centre is the given point.

The properties of the system of compressions or pressures may be deduced from those
of the ellipsoid.
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There are three diameters having perpendicular ordinates, which are called the principal
azes of the ellipsoid.

Similarly, there are always three directions in the compressed particle in which there
is no tangential action, or tendency of the parts to slide on one another. These directions
are called the principal azes of compression or of pressure, and in homogeneous solids they
always coincide with each other.

The compression or pressure in any other direction is equal to the sum of the products
of the compressions or pressures in the principal axes multiplied into the squares of the
cosines of the angles which they respectively make with that direction.

NoTtE B.

The fundamental equations of this paper differ from those of Navier, Poisson, &c., only
in not assuming an invariable ratio between the linear and the cubical elasticity; but since
I have not attempted to deduce them from the laws of molecular action, some other reasons
must be given for adopting them.

The experiments from which the laws are deduced are—

1st. Elastic solids put into motion vibrate isochronously, so that the sound does not
vary with the amplitude of the vibrations.

2nd. Regnault’s experiments on hollow spheres shew that both linear and cubic com-
pressions are proportional to the pressures.

3rd. Experiments on the elongation of rods and tubes immersed in water, prove that
the elongation, the decrease of diameter, and the increase of volume, are proportional to the
tension.

4th. In Coulomb’s balance of torsion, the angles of torsion are proportional to the
twisting forces.

It would appear from these experiments, that compressions are always proportional to
pressures.

Professor Stokes has expressed this by making one of his coefficients depend on the
cubical elasticity, while the other is deduced from the displacement of shifting produced by
a given tangential force.

M. Cauchy makes one coefficient depend on the linear compression produced by a force
acting in one direction, and the other on the change of volume produced by the same force.

Both of these methods lead to a correct result; but the coefficients of Stokes seem to
have more of a real signification than those of Cauchy; I have therefore adopted those of
Stokes, using the symbols m and p, and the fundamental equations (4) and (5), which define
them.
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Note C.

As the coefficient o, which determines the optical effect of pressure on a substance,
varies from one substance to another, and is probably a function of the linear elasticity, a
determination of its value in different substances might lead to some explanation of the
action of media on light.

This paper commenced by pointing out the insufficiency of all theories of elastic solids,
in which the equations do not contain two independent constants deduced from experiments.
One of these constants is common to liquids and solids, and is called the modulus of cubical
elasticity. The other is peculiar to solids, and is here called the modulus of linear elasticity.
The equations of Navier, Poisson, and Lamé and Clapeyron, contain only one coefficient;
and Professor G. G. Stokes of Cambridge, seems to have formed the first theory of elastic
solids which recognised the independence of cubical and linear elasticity, although M. Cauchy
seems to have suggested a modification of the old theories, which made the ratio of linear
to cubical elasticity the same for all substances. Piofessor Stokes has deduced the theory
of elastic solids from that of the motion of fluids, and his equations are identical with those
of this paper, which are deduced from the two following assumptions.

In an element of an elastic solid, acted on by three pressures at right angles to one
another, as long as the compressions do not pass the limits of perfect elasticity—

1st. The sum of the pressures, in three rectangular axes, is proportional to the sum
of the compressions in those axes.

2nd. The difference of the pressures in two axes at right angles to one another, is
proportional to the difference of the compressions in those axes.

Or, in symbols:

L (P,+P,+Pa)=3y(%+§;—/+%z—).
(B-P)=m (-,

2. <(P_,,—P3)=m<%y—%),
~(P3—P1)=m(8—“—%x),

p being the modulus of cubical, and m that of linear elasticity.

These equations are found to be very convenient for the solution of problems, some
of which were given in the latter part of the paper.
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THE EQUILIBRIUM OF ELASTIC SOLIDS. 73

These particular cases were—

That of an elastic hollow cylinder, the exterior surface of which was fixed, while the
interior was turned through a small angle. The action of a transparent solid thus twisted
on polarized light, was calculated, and the calculation confirmed by experiment.

The second case related to the torsion of cylindric rods, and a method was given by

which m may be found. The quantity £ = 51%— was found by elongating, or by bending
the rod used to determine m, and u is found by the equation,
_ Em
k= om—6E"

The effect of pressure on the surfaces of a hollow sphere or cylinder was calculated,
and the result applied to the determination of the cubical compressibility of liquids and
solids.

An expression was found for the curvature of an elastic plate exposed to pressure on
one side; and the state of cylinders acted on by centrifugal force and by heat was
determined.

The principle of the superposition of compressions and pressures was applied to the case of
a bent beam, and a formula was given to determine X from the deflection of a beam
supported at both ends and loaded at the middle.

The paper concluded with a conjecture, that as the quantity o (which expresses the
relation of the inequality of pressure in a solid to the doubly-refracting force produced) is
probably a function of m, the determination of these quantities for different substances
might lead to a more complete theory of double refraction, and extend our knowledge of the
laws of optics.

VOL. 1. 10
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[Extracted from the Cambridge and Dublin Mathematical Journal, Vol. viiL p. 188,
February, 1854.]

Solutions of Problems.

1. If from a point in the circumference of a vertical circle two heavy particles be suc-
cessively projected along the curve, their initial velocities being equal and either in the same
or in opposite directions, the subsequent motion will be such that a straight line joining
the particles at any instant will touch a circle.

Note. The particles are supposed not to interfere with each other’s motion.

TaE direct analytical proof would involve the properties of elliptic integrals,
but it may be made to depend upon the following geometrical theorems.

(1) If from a point in one of two circles a right line be drawn cutting
the other, the rectangle contained by the segments so formed is double of the
rectangle contained by a line drawn from the point perpendicular to the radical
axes of the two circles, and the line joining their centres.

The radical axis is the line joining the points of intersection of the two
circles. It is always a real line, whether the points of intersection of the circles
be real or imaginary, and it has the geometrical property—that if from any point
on the radical axis, straight lines be drawn cutting the circles, the rectangle con-
tained by the segments formed by one of the circles is equal to the rectangle
contained by the segments formed by the other.

The analytical proof of these propositions is very simple, and may be resorted

to if a geometrical proof does mnot suggest itself as soon as the requisite figure
is constructed.

If 4, B be the centres of the circles, P the given point in the circle whose
centre is A4, a line drawn from P cuts the first circle in p, the second in
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and ¢, and the radical axis in B. If PH be drawn perpendicular to the radical
axis, then

PQ.Pq=24B. HP.

Cor. If the line be drawn from P to touch the circle in 7, instead of
cutting it in @ and ¢, then the square of the tangent PT is equal to the
rectangle 248 . HP.

Similarly, if pk be drawn from p perpendicular to the radical axis
pI*=2A4B. hp.
Hence, if a line be drawn touching one circle in 7, and cutting the other

in P and p, then
(PTy : (pTy :: HP : hp.

(2) If two straight lines touching one circle and cutting another be made
to approach each other indefinitely, the small arcs intercepted by their inter-
sections with the second circle will be ultimately proportional to their distances
from the point of contact.

This result may easily be deduced from the properties of the similar
triangles P’TP and p'pT.

Cor. If particles P, p be constrained to move in the circle 4, while
the line Pp joining them continually touches the circle B, then the velocity
of P at any instant is to that of p as PT to pT; and conversely, if the
velocity of P at any instant be to that of P as PT to p7, then the line
Pp will continue to be a tangent to the circle B.

Now let the plane of the circles be vertical and the radical axis horizontal,
and let gravity act on the particles P, p. The particles were projected from
the same point with the same velocity. Let this velocity be that due to the
depth of the point of projection below the-radical axis. Then the square of
the velocity at any other point will be proportional to the perpendicular from
that point on the radical axis; or, by the corollary to (1), if P and p be at
any time at the extremities of the line PTp, the square of the velocity of P
will be to the square of the velocity of p as PH to ph, that is, as (PT) to
(pT). Hence, the velocities of P and p are in the proportion of PT to pT,
and therefore, by the corollary to (2), the line joining them will continue a
tangent to the circle B during each instant, and will therefore remain a tangent
during the motion.

10—2
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76 SOLUTIONS OF PROBLEMS.

The circle A4, the radical axis, and one position of the line Pp, are given
by the circumstances of projection of P and p. From these data it is easy to
determine the circle B by a geometrical construction.

It is evident that the character of the motion will determine the position
of the circle B. If the motion is oscillatory, B will intersect 4. If P and p
make complete revolutions in the same direction, B will lie entirely within 4,
but if they move in opposite directions, B will lie entirely above the radical axis.

If any number of such particles be projected from the same point at equal
intervals of time with the same direction and velocity, the lines joining successive
particles at any instant will be tangents to the same circle; and if the time
of a complete revolution, or oscillation, contain n of these intervals, then these
lines will form a polygon of n sides, and as this is true at any instant, any
number of such polygons may be formed.

Hence, the following geometrical theorem is true:

“If two circles be such that % lines can be drawn touching one of them
and having their successive intersections, including that of the last and first,
on the circumference of the other, the construction of such a system of lines
will be possible, at whatever point of the first circle we draw the first tangent.”

2. A transparent medium is such that the path of a ray of light within it is a given
circle, the index of refraction being a function of the distance from a given point in the
plane of the circle.

Find the form of this function and shew that for light of the same refrangibility—
(1) The path of every ray within the medium is a circle.

(2) All the rays proceeding from any point in the medium will meet accurately in
another point.

(8) If rays diverge from a point without the medium and enter it through a spherical
surface having that point for its centre, they will be made to converge accurately to a point
within the medium.

Lemma I. Let a transparent medium be so constituted, that the refractive
index is the same at the same distance from a fixed point, then the path of
any ray of light within the medium will be in one plane, and the perpen-
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SOLUTIONS OF PROBLEMS, 77

dicular from the fixed point on the tangent to the path of the ray at any
point will vary inversely as the refractive index of the medium at that point.

We may easily prove that when a ray of light passes through a spherical
surface, separating a medium whose refractive index is p, from another where
it is m,, the plane of incidence and refraction passes through the centre of
the sphere, and the perpendiculars on the direction of the ray before and after
refraction are in the ratio of p, to w, Since this is true of any number of
spherical shells of different refractive powers, it is also true when the index of
refraction varies continuously from one shell to another, and therefore the
proposition is true.

Lemma II. If from any fixed point in the plane of a circle, a perpen-
dicular be drawn to the tangent at any point of the circumference, the rectangle
contained by this perpendicular and the diameter of the circle is equal to the
square of the line joining the point of contact with the fixed point, together
with the rectangle contained by the segments of any chord through the fixed
point.

Let APB be the circle, O the fixed point; then

' OY.PR=0P*+A40. OB.

X

p <\
JYANS\

B

Produce PO to Q, and join @R, then the triangles OYP, PQR are similar;

therefore
OY .PR=OP. PQ

=0P"+0OP. 0Q;
*~ OY.PR=0OP'+40. OB.
If we put in this expression 40.0B=d’,
PO=r, OY=p, PR=2p,
it becomes 2pp=r"+a’,
r”+ao’
=55
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78 SOLUTIONS OF PROBLEMS.

To find the law of the index of refraction of the medium, so that a ray
from A4 may describe the circle APB, p must be made to vary inversely as p

by Lemma L
Let AO=r, and let the refractive index at 4 =p,; then generally
_C_20
#—p - a? +,r2 ’
2C,
but at 4 ™ =a¢%2 ,
a7
therefore Ol S e

The value of p at any point is therefore independent of p, the radius of
the given circle; so that the same law of refractive index will cause any other
ray to describe another circle, for which the value of o is the same. The
value of OB is %—, which is also independent of p; so that every ray which
proceeds from A4 must pass through B.

Again, if we assume p, as the value of p when +=0,

0!/2 + ,),,12
o= Pu o 5
a2
therefore P= P iy

a result independent of 7. This shews that any point A4’ may be taken as
the origin of the ray instead of A4, and that the path of the ray will still be
circular, and will pass through another point B” on the other side of O, such that

2

,
OB =04

Next, let CP be a ray from C, a point without the medium, falling at P
on a spherical surface whose centre is C.

Let O be the fixed point in the medium as before. Join PO, and produce
to @ till OQ= g—P . Through @ draw a circle touching CP in P, and cutting
CO in 4 and B; then PBQ is the path of the ray within the medium.
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SOLUTIONS OF PROBLEMS, 79

Since CP touches the circle, we have

CP'=CA. CB,
~(CO—-04) (CO+ OB);
a?
but 04 = 0B’
2 _ o —?
therefore OP'= CO*+ CO <OB 5 B> o,

an equation whence OB may be found, B being the point in the medium
through which all rays from C pass.

Note. The possibility of the existence of a medium of this kind possessing
remarkable optical properties, was suggested by the contemplation of the structure
of the crystalline lens in fish; and the method of searching for these properties
was deduced by analogy from Newton’s Principia, Lib. 1. Prop. viIL

It would require a more accurate investigation into the law of the refractive
index of the different coats of the lens to test its agreement with the supposed
medium, which is an optical instrument theoretically perfect for homogeneous
light, and might be made achromatic by proper adaptation of the dispersive
power of each coat.

On the other hand, we find that the law of the index of refraction which
would give a minimum of aberration for a sphere of this kind placed in water,
gives results not discordant with facts, so far as they can be readily ascertained.
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[From the Tramsactions of the Cambridge Philosophical Society, Vol. 1X. Part 1v.]

IV. On the Transformation of Surfaces by Bending.

EucLip has given two definitions of a surface, which may be taken as
examples of the two methods of investigating their properties.

That in the first book of the Elements is—
“A superficies is that which has only length and breadth.”

The superficies differs from a line in having breadth as well as length,
and the conception of a third dimension is excluded without being explicitly
introduced.

In the eleventh book, where the definition of a solid is first formally
given, the definition of the superficies is made to depend on that of the solid—

“ That which bounds a solid is a superficies.”

Here the conception of three dimensions in. space is employed in forming
a definition more perfect than that belonging to plane Geometry.

In our analytical treatises on geometry a surface is defined by a function
of three independent variables equated to zero. The surface is therefore the
boundary between the portion of space in which the value of the function is
positive, and that in which it is negative; so that we may now define a
surface to be the boundary of any assigned portion of space.

Surfaces are thus considered rather with reference to the figures which they
limit than as having any properties belonging to themselves.

But the conception of a surface which we most readily form is that of
a portion of matter, extended in length and breadth, but of which the thick-
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TRANSFORMATION OF SURFACES BY BENDING. 81

ness may be neglected. By excluding the thickness altogether, we arrive at
Euclid’s first definition, which we may state thus—

“ A surface is a lamina of which the thickness is diminished so as to become
evanescent.”

We are thus enabled to consider a surface by itself, without reference to
the portion of space of which it is a boundary. By drawing figures on the
surface, and investigating their properties, we might construct a system of
theorems, which would be true independently of the position of the surface in
space, and which might remain the same even when the form of the solid of
which it is the boundary is changed.

When the properties of a surface with respect to space are changed, while
the relations of lines and figures in the surface itself are unaltered, the surface
may be said to preserve its identity, so that we may consider it, after the
change has taken place, as the same surface.

When a thin material lamina is made to assume a new form it is said
to be bent. In certain cases this process of bending is called development, and
when one surface is bent so as to coincide with another it is said to be
applied to it.

By considering the lamina as deprived of rigidity, elasticity, and other
mechanical properties, and neglecting the thickness, we arrive at a mathemati-
cal definition of this kind of transformation.

“The operation of bending is a continuous change of the form of a surface,
without extension or contraction of any part of it.”

The following investigations were undertaken with the hope of obtaining
more definite conceptions of the nature of such transformations by the aid of
those geometrical methods which appear most suitable to each particular case.
The order of arrangement is that in which the different parts of the subject
presented themselves at first for examination, and the methods employed form
parts of the original plan, but much assistance in other matters has been
derived from the works of Gauss®, Liouvillet, Bertrand], Puiseux§, &c., references
to which will be given in the course of the investigation.

* Disquisitiones générales circa superficies curvas. Presented to the Royal Society of Gottingen,
8th October, 1827. Commentationes Recentiores, Tom. V1.
+ Liouville’s Journal, xir 1 Ibid. xunL § lbdd.

VOL. L. 11
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82 TRANSFORMATION OF SURFACES BY BENDING.

I

On the Bending of Surfaces generated by the motion of a straight line in space.

If a straight line can be drawn in any surface, we may suppose that
part of the surface which is on one side of the straight line to be fixed,
while the other part is turned about the straight line as an axis.

In this way the surface may be bent about any number of generating lines
as axes successively, till the form of every part of the surface is altered.

The mathematical conditions of this kind of bending may be obtained in
the following manner.

Let the equations of the generating line be expressed so that the constants
involved in them are functions of one independent variable u, by the variation of
which we pass from one position of the line to another.

If in the equations of the generating line Aa, w=wu,, then in the equations
of the line Bb we may put w=wu, and from the equations of these lines we
may find by the common methods the equations of the shortest line PQ between
Aa and Bb, and its length, which we may call 8. We may also find the
angle between the directions of Aa and Bb, and let this angle be 8&6.

In the same way from the equations of
Cec, in which u=w,, we may deduce the equa-
tions of RS, the shortest line between Bb and
Ce, its length 6f,, and the angle 36, between
the directions of Bb and Ce. We may also
find the value of QR, the distance between
the points at which PQ and RS cut Bb.
Let QR=280, and let the angle between the
directions of PQ and RS be d¢.

Now suppose the part of the surface between the lines Aa and Bb to be
fixed, while the part between Bb and Cc is turned round Bb as an axis. The
line RS will then revolve round the point R, remaining perpendicular to B0,
and Cc will still be at the same distance from Bb, and will make the same
angle with it. Hence of the four quantities 8(, 86,, 80 and 8¢, 3¢ alone will
be changed by the process of bending. 84, however, may be varied in a
perfectly arbitrary manner, and may even be made to vanish.
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TRANSFORMATION OF SURFACES BY BENDING. 83

For, PQ and RS being both perpendicular to Bb, RS may be turned
about Bb till it is parallel to PQ, in which case 8¢ becomes=0.

By repeating this process, we may make all the ‘shortest lines” parallel to
one another, and then all the generating lines will be parallel to the same
plane.

We have hitherto considered generating lines situated at finite distances from
one another; but what we have proved will be equally true when their distances
are indefinitely diminished. Then in the limit

8L becomes g ,
Uy — Uy du
3 a0
u,—u, 7 du’
8 do
Uy — U, ” du’
S dé
Uy — U, o du’

All these quantities being functions of u, {, 0, o and ¢, are functions of wu
and of each other; and if the forms of these functions be known, the positions
of all the generating lines may be successively determined, and the equation
to the surface may be found by integrating the equations containing the values
of {, §, o and ¢.

When the surface is bent in any manner about the generating lines, { 6,
and o remain unaltered, but ¢ is changed at every point.

The form of ¢ as a function of w» will depend on the nature of the
bending ; but since this is perfectly arbitrary, ¢ may be any arbitrary function
of . In this way we may find the form of any surface produced by bending
the given surface along its generating lines.

By making ¢=0, we make all the generating lines parallel to the same
plane. Let this plane be that of xy, and let the first generating line coincide
with the axis of x, then { will be the height of any other generating line
above the plane of wxy, and @ the angle which its projection on that plane
makes with the axis of @. The ultimate intersections of the projections of the
generating lines on the plane of xy will form a curve, whose length, measured
from the axis of x, will be o.

11—2
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S84 TRANSFORMATION OF SURFACES BY BENDING.

Since in this case the quantities {, 6, and o are represented by distinct
geometrical quantities, we may simplify the consideration of all surfaces generated
by straight lines by reducing them by bending to the case in which those lines
are parallel to a given plane.

In the class of surfaces in which the generating lines ultimately intersect,

%=O, and { constant. If these surfaces be bent so that ¢=0, the whole of
the generating lines will lie in one plane, and their ultimate intersections will
form a plane curve. The surface is thus reduced to one plane, and therefore
belongs to the class usually described as “developable surfaces.” The form of a
developable surface may be defined by means of the three quantities #, o and
¢. The generating lines form by their ultimate intersections a curve of double
curvature to which they are all tangents. This curve has been called the
cuspidal edge. The length of this curve is represented by o, its absolute

curvature at any point by jll—f_ , and its torsion at the same point by gif_.

When the surface is developed, the cuspidal edge becomes a plane curve,
and every part of the surface coincides with the plane. But it does not follow
that every part of the plane is capable of being bent into the original form
of the surface. This may be easily seen by considering the surface when the
position of the cuspidal edge nearly coincides with the plane curve but is not
confounded with it. It is evident that if from any point in space a tangent
can be drawn to the cuspidal edge, a sheet of the surface passes through that
point. Hence the number of sheets which pass through one point is the same
as the number of tangents to the cuspidal edge which pass through that
point ; and since the same is true in the limit, the number of sheets which
coincide at any point of the plane is the same as the number of tangents
which can be drawn from that point to the plane curve. In constructing a
developable surface of paper, we must remove those parts of the sheet from
which no real tangents can be drawn, and provide additional sheets where more
than one tangent can be drawn.

In the case of developable surfaces we see the importance of attending to
the position of the lines of bending; for though all developable surfaces may
be produced from the same plane surface, their distinguishing properties depend
on the form of the plane curve which determines the lines of bending.
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TRANSFORMATION OF SURFACES BY BENDING. 85

IL

On the Bending of Surfaces of Revolution.

In the cases previously considered, the bending in one part of the surface
may take place independently of that in any other part. In the case now
before us the bending must be simultaneous over the whole surface, and its
nature must be investigated by a different method.

The position of any point P on a surface of revolution may be deter-
mined by the distance PV from the vertex, measured

along a generating line, and the angle AVO which A e

the plane of the generating line makes with a fixed o

plane through the axis. Let PV=s and 4VO=0. g [
B

Let r be the distance (Pp) of P from the axis;
will be a function of s depending on the form of the
generating curve.

Now consider the small rectangular element of the surface at P. Its length
PR =3s, and its breadth PQ =730, where r is a function of s.

If in another surface of revolution #" is some other function of s, then the
length and breadth of the new element will be 8s and +/6¢, and if

'Y

1
¥=pr, and &=-0,
# P
'8¢’ =130,

and the dimensions of the two elements will be the same.

Hence the one element may be applied to the other, and the one surface
may be applied to the other surface, element to element, by bending it. To
effect this, the surface must be divided by cutting it along one of the generating
lines, and the parts opened out, or made to overlap, according as p is greater
or less than unity.

To find the effect of this transformation on the form of the surface we
must find the equation to the original form of the generating line in terms of
s and r, then putting »"=pur, the equation between s and » will give the form
of the generating line after bending.

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.007


https://doi.org/10.1017/CBO9780511698095.007
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

86 TRANSFORMATION OF SURFACES BY BENDING.

dr .
When p is greater than 1 it may happen that for some values of s, é is

greater than ;l;, In this case

%: IL% is greater than 1;
a result which indicates that the curve becomes impossible for such values of
s and p.

The transformation is therefore impossible for the corresponding part of
the surface. If, however, that portion of the original surface be removed, the
remainder may be subjected to the required transformation.

The theory of bending when applied to the case of surfaces of revolution
presents mno geometrical difficulty, and little variety; but when we pass to
the consideration of surfaces of a more general kind, we discover the insufficiency
of the methods hitherto employed, by the vagueness of our ideas with respect
to the nature of bending in such cases. In the former case the bending is
of one kind only, and depends on the variation of one variable; but the
surfaces we have now to consider may be bent in an infinite variety of ways,
depending on the variation of three variables, of which we do not yet know the
nature or interdependence.

We have therefore to discover some method sufficiently general to be appli-
cable to every possible case, and yet so definite as to limit each particular case
to one kind of bending easily understood.

The method adopted in the following investigations is deduced from the
consideration of the surface as the limit of the inscribed polyhedron, when the
size of the sides is indefinitely diminished, and their number indefinitely increased.

A method is then described by which such a polyhedron may be inscribed
in any surface so that all the sides shall be triangles, and all the solid angles
composed of six plane angles.

The problem of the bending of such a polyhedron is a question of trigo-
nometry, and equations might be found connecting the angles of the different
edges which meet in each solid angle of the polyhedron. It will be shewn that
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the conditions thus obtained would be equivalent to three equations between
the six angles of the edges belonging to each solid angle. Hence three addi-
tional conditions would be necessary to determine the value of every such angle,
and the problem would remain as indefinite as before. But if by any means
we can reduce the number of edges meeting in a point to four, only one con-
dition would be necessary to determine them all, and the problem would be
reduced to the consideration of one kind of bending only.

This may be done by drawing the polyhedron in such a manner that the
planes of adjacent triangles coincide two and two, and form quadrilateral facets,
four of which meet in every solid angle. The bending of such a polyhedron
can take place only in one way, by the increase of the angles of two of the
edges which meet in a point, and the diminution of the angles of the other two.

The condition of such a polyhedron being inscribed in any surface is then
found, and it is shewn that when two forms of the same surface are given,
a perfectly definite rule may be given by which two corresponding polyhedrons
of this kind may be inscribed, one in each surface.

Since the kind of bending completely defines the nature of the quadrilateral
polyhedron which must be described, the lines formed by the edges of the
quadrilateral may be taken as an indication of the kind of bending performed
on the surface.

These lines are therefore defined as “ Lines of Bending.”

When the lines of bending are given, the forms of the quadrilateral facets
are completely determined ; and if we know the angle which any two adjacent
facets make with one another, we may determine the angles of the three edges
which meet it at one of its extremities. From each of these we may find the
angles of three other edges, and so on, so that the form of the polyhedron
after bending will be completely determined when the angle of one edge is given.
The bending is thus made to depend on the change of one variable only.

In this way the angle of any edge may be calculated from that of any
given edge; but since this may be done in two different ways, by passing
along two different sets of edges, we must have the condition that these results
may be consistent with each other. This condition is satisfied by the method
of inscribing the polyhedron. Another condition will be necessary that the
change of the angle of any edge due to a small change of the given angle,
produced by bending, may be the same by both calculations. This is the con-
dition of ‘ Instantaneous Lines of Bending.” That this condition may continue
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to be satisfied during the whole process we must have another, which is the
condition for “Permanent Lines of Bending.”

The use of these lines of bending in simplifying the theory of surfaces is
the only part of the present method which is new, although the investigations
connected with them naturally led to the employment of other methods which
had been used by those who have already treated of this subject. A state-
ment of the principal methods and results of these mathematicians will save
repetition, and will indicate the different points of view under which the
subject may present itself.

The first and most complete memoir on the subject is that of M. Gauss,
already referred to.

The method which he employs consists in referring every point of the
surface to a corresponding point of a sphere whose radius is unity. Normals
are drawn at the several points of the surface toward the same side of it,
then lines drawn through the centre of the sphere in the direction of each of
these normals intersect the surface of the sphere in points corresponding to
those points of the original surface at which the normals were drawn.

If any line be drawn on the surface, each of its points will have a
corresponding point on the sphere, so that there will be a corresponding line
on the sphere.

If the line on the surface return into itself, so as to enclose a finite area
of the surface, the corresponding curve on the sphere will enclose an area on
the sphere, the extent of which will depend on the form of the surface.

This area on the sphere has been defined by M. Gauss as the measure of
the ‘“entire curvature” of the area on the surface. This mathematical quantity
is of great use in the theory of surfaces, for it is the only quantity connected
with curvature which is capable of being expressed as the sum of all its parts.

The sum of the entire curvatures of any number of areas is the entire
curvature of their sum, and the entire curvature of any area depends on the
form of its boundary only, and is not altered by any change in the form of
the surface within the boundary line.

The curvature of the surface -may even be discontinuous, so that we may
speak of the entire curvature of a portion of a polyhedron, and calculate its
amount.

If the dimensions of the closed curve be diminished so that it may be
treated as an element of the surface, the ultimate ratio of the entire curvature
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to the area of the element on the surface is taken as the measure of the
“sgpecific curvature” at that point of the surface.

The terms “entire” and “specific” curvature when used in this paper are
adopted from M. Gauss, although the use of the sphere and the areas on its
surface formed an essential part of the original design. The use of these terms
will save much explanation, and supersede several very cumbrous expressions.

M. Gauss then proceeds to find several analytical expressions for the measure
of specific curvature at any point of a surface, by the consideration of three
points very near each other.

The co-ordinates adopted are first rectangular,  and y, or x, y and 2, being
regarded as independent variables,

Then the points on the surface are referred to two systems of curves drawn
on the surface, and their position is defined by the values of two independent
variables p and ¢, such that by varying p while ¢ remains constant, we obtain
the different points of a line of the first system, while p constant and ¢
variable defines a line of the second system.

By means of these variables, points on the surface may be referred to lines
on the surface itself instead of arbitrary co-ordinates, and the measure of cur-
vature may be found in terms of p and ¢ when the surface is known.

In this way it is shewn that the specific curvature at any point is the
reciprocal of the product of the principal radii of curvature at that point, a
result of great interest.

From the condition of bending, that the length of any element of the
curve must not be altered, it is shewn that the specific curvature at any point
is not altered by bending.

The rest of the memoir is occupied with the consideration of particular
modes of describing the two systems of lines. One case is when the lines of
the first system are geodesic, or “shortest” lines having their origin in a point,
and the second system is drawn so as to cut off equal lengths from the curves
of the first system.

The angle which the tangent at the origin of a line of the first system
makes with a fixed line is taken as one of the co-ordinates, and the distance
of the point measured along that line as the other.

It is shewn that the two systems intersect at right angles, and a simple
expression is found for the specific curvature at any point.

M. Liouville (Journal, Tom. x11.) has adopted a different mode of simpli-

VOL. L. 12
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fying the problem. He has shewn that on every surface it is possible to find
two systems of curves intersecting at right angles, such that the length and
breadth of every element into which the surface is thus divided shall be equal,
and that an infinite number of such systems may be found. By means of these
curves he has found a much simpler expression for the specific curvature than
that given by M. Gauss.

He has also given, in a note to his edition of Monge, a method of testing
two given surfaces in order to determine whether they are applicable to one
another. He first draws on both surfaces lines of equal specific curvature, and
determines the distance between two corresponding consecutive lines of curvature
in both surfaces.

If by assuming the origin properly these distances can be made equal for
every part of the surface, the two surfaces can be applied to each other. He
has developed the theorem analytically, of which this is only the geometrical
interpretation.

When the lines of equal specific curvature are equidistant throughout their
whole length, as in the case of surfaces of revolution, the surfaces may be
applied to one another in an infinite variety of ways.

When the specific curvature at every point of the surface is positive and
equal to o, the surface may be applied to a sphere of radius «, and when the
specific curvature is negative = —a’ it may be applied to the surface of revo-
lution which cuts at right angles all the spheres of radius «, and whose centres
are in a straight line.

M. Bertrand has given in the XIIIth Vol. of Liouville’s Journal a very
simple and elegant proof of the theorem of M. Gauss about the product of
the radii of curvature.

He supposes one extremity of an inextensible thread to be fixed at a point
in a surface, and a closed curve to be described on the surface by the other
extremity, the thread being stretched all the while. It is evident that the
length of such a curve cannot be altered by bending the surface. He then
calculates the length of this curve, considering the length of the thread small,
and finds that it depends on the product of the principal radii of curvature
of the surface at the fixed point. His memoir is followed by a note of
M. Diguet, who deduces the same result from a consideration of the area of
the same curve; and by an independent memoir of M. Puiseux, who seems to
give the same proof at somewhat greater length.
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NoTE. Since this paper was written, I have seen the Rev. Professor Jellett’'s Memoir, On
the Properties of Inextensible Surfaces. 1t is to be found in the Transactions of the Royal Irish
Academy, Vol. XXI1. Science, &c., and was read May 23, 1853.

Professor Jellett has obtained a system of three partial differential equations which express
the conditions to which the displacements of a continuous inextensible membrane are subject.
From these he has deduced the two theorems of Gauss, relating to the invariability of the product
of the radii of curvature at any point, and of the “entire curvature” of a finite portion of the
surface.

He has then applied his method to the consideration of cases in which the flexibility of the
surface is limited by certain conditions, and he has obtained the following results :—

If the desplacements of an inextensible surfuce be all parallel to the same plane, the surface
moves as @ rigid body.

Or, more generally,

If the movement of an inextensible surface, parallel to any one line, be that of a rigid body, the
entire movement is that of a rigid body.

The following theorems relate to the case in which a curve traced on the surface is rendered
rigid :—

If any curve be traced upon an inextensible surface whose principal radii of curvature are finite
and of the same sign, and if this curve be rendered immoveable, the entire surface will become
immoveable also.

In o developable surface composed of an inextensible membrane, any one of its rectilinear
sections may be fived without destroying the flexibility of the membrane.

In convexo-concave surfaces, there are two directions passing through every point of the
surface, such that the curvature of a normal section taken in these directions vanishes. - We
may therefore conceive the entire surface to be crossed by two series of curves, such that
a tangent drawn to either of them at any point shall coincide with one of these direc-
tions. These curves Professor Jellett has denominated Curves of Flexure, from the following
properties :—

Any curve of flewure may be fived without destroying the flexibility of the surface.

If an arc of a curve traced upon an inextensible surface be rendered fixed or rigid, the entire of

the quadrilateral, formed by drawing the two curves of flexure through each emtremity of the curve,
becomes fixed or rigid also.

Professor Jellett has also investigated the properties of partially inextensible surfaces, and
of thin material laminz whose extensibility is small, and in a note he has demonstrated the
following theorem :—

If a closed oval surface be perfectly inextensible, it is also perfectly rigid.

A demonstration of one of Professor Jellett’s theorems will be found at the end of this paper.

J.C. M.
dug. 30, 1854,

12—2
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ON THE PROPERTIES OF A SURFACE CONSIDERED AS THE LIMIT OF THE INSCRIBED
POLYHEDRON,

1. To anscribe a polyhedron in a given surface, all whose sides shall be
triangles, and all whose solid angles shall be hexahedral.

On the given surface describe a series of curves
according to any assumed law. Describe a second series
intersecting these in any manner, so as to divide the
whole surface into quadrilaterals. Lastly, describe a
third series (the dotted lines in the figure), so as to
pass through all the intersections of the first and second
series, forming the diagonals of the quadrilaterals.

The surface is now covered with a network of curvilinear triangles. The

plane triangles which have the same angular points will form a polyhedron
fulfilling the required conditions. By increasing the number of the curves in
each series, and diminishing their distance, we may make the polyhedron
approximate to the surface without limit. At the same time the polygons
formed by the edges of the polyhedron will approximate to the three systems
of intersecting curves.

2. To find the measure of the “entire curvature” of a solid angle of the
polyhedron, and of a finite portion of its surfuce.

From the centre of a sphere whose radius is unity draw perpendiculars to
the planes of the six sides forming the solid angle. These lines will meet the
surface in six points on the same side of the centre, which being joined by
arcs of great circles will form a hexagon on the surface of the sphere.

The area of this hexagon represents the entire curvature of the solid angle.

It is plain by spherical geometry that the angles of this hexagon are the
supplements of the six plane angles which form the solid angle, and that the
arcs forming the sides are the supplements of those subtended by the angles
of the six edges formed by adjacent sides.

The area of the hexagon is equal to the excess of the sum of its angles
above eight right angles, or to the defect of the sum of the six plane angles
from four right angles, which is the same thing. Since these angles are
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invariable, the bending of the polyhedron cannot alter the measure of curvature
of each of its solid angles.

If perpendiculars be drawn to the sides of the polyhedron which contain
other solid angles, additional points on the sphere will be found, and if these
be joined by arcs of great circles, a network of hexagons will be formed on
the sphere, each of which corresponds to a solid angle of the polyhedron and
represents its “entire curvature.”

The entire curvature of any assigned portion of the polyhedron is the sum
of the entire curvatures of the solid angles it contains. It is therefore repre-
sented by a polygon on the sphere, which is composed of all the hexagons
corresponding to its solid angles.

If a polygon composed of the edges of the polyhedron be taken as the
boundary of the assigned portion, the sum of its exterior angles will be the
same as the sum of the exterior angles of the polygon on the sphere; but
the area of a spherical polygon is equal to the defect of the sum of its
exterior angles from four right angles, and this is the measure of entire curva~
ture.

Therefore the entire curvature of the portion of the polyhedron enclosed
by the polygon is equal to the defect of the sum of its exterior angles from
four right angles.

Since the entire curvature of each solid angle is unaltered by bending,
that of a finite portion of the surface must be also invariable.

8. On the “Comc of Contact,” and its use in determining the curvature
of mormal sections of a surfuce.

Suppose the plane of one of the triangular facets of the polyhedron to
be produced till it cuts the surface. The form of the curve of intersection
will depend on the nature of the surface, and when the size of the triangle
is indefinitely diminished, it will approximate to the form of a conic section.

For we may suppose a surface of the second order constructed so as to
have a contact of the second order with the given surface at a point within
the angular points of the triangle. The curve of intersection with this surface
will be the conic section to which the other curve of intersection approaches.

This curve will be henceforth called the ‘ Conic of Contact,” for want of a better
name.
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To find the radius of curvature of a normal section
of the surface.

Let ARa be the conic of contact, C its centre, and //gp\\ N\,

CP perpendicular to its plane. PR a normal section, and !. 4
() its centre of curvature, then :

=% —= 1n the limit, when CR and PR coincide,

or calling CP the “sagitta,” we have this theorem:

“The radius of curvature of a normal section is equal to the square of
the corresponding diameter of the conic of contact divided by eight times the

ey e 2]
sagitta.

4. To anscribe o polyhedron wn o giwen surface, all whose sides shall be
plane quadriaterals, and all whose solid angles shall be tetrahedral.

Suppose the three systems of curves drawn as described in sect. (1), then
each of the quadrilaterals formed by the intersection of the first and second
systems is divided into two triangles by the third system. If the planes of
these two triangles coincide, they form a plane quadrilateral, and if every such
pair of triangles coincide, the polyhedron will satisfy the required condition.

Let abc be one of these triangles, and acd the
other, which is to be in the same plane with abc.
Then if the plane of abe be produced to meet the
surface in the conic of contact, the curve will pass
through abc and d. Hence abed must be a quad-
rilateral inscribed in the conic of contact.

But since ab and dc belong to the same system of curves, they will be
ultimately parallel when the size of the facets is diminished, and for a similar
reason, ad and bc will be ultimately parallel. Hence abcd will become a paral-
lelogram, but the sides of a parallelogram inscribed in a conic are parallel to
conjugate diameters.
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Therefore the directions of two curves of the first and second system at
their point of intersection must be parallel to two conjugate diameters of the
conic of contact at that point in order that such a polyhedron may be inscribed.

Systems of curves intersecting in this manner will be referred to as “conju-
gate systems.”

5. On the elementary conditions of the applicability of two surfuces.

It is evident, that if one surface is capable of being applied to another by
bending, every point, line, or angle in the first has its corresponding point, line,
or angle in the second.

If the transformation of the surface be effected without the extension or
contraction of any part, no line drawn on the surface can experience any change
in its length, and if this condition be fulfilled, there can be no extension or
contraction.

Therefore the condition of bending is, that if any line whatever be drawn
on the first surface, the corresponding curve on the second surface is equal to it
in length. All other conditions of bending may be deduced from this.

6. If two curves on the first surface intersect, the corresponding curves on the
second surface wntersect at the same angle.

On the first surface draw any curve, so as to form a triangle with the
curves already drawn, and let the sides of this triangle be indefinitely dimin-
ished, by making the new curve approach to the intersection of the former
curves. Let the same thing be done on the second surface. We shall then
have two corresponding triangles whose sides are equal each to each, by (5),
and since their sides are indefinitely small, we may regard them as straight
lines. Therefore by Euclid 1. 8, the angle of the first triangle formed by the
intersection of the two curves is equal to the corresponding angle of the second.

7. At any given point of the first surface, two directions can be jfound, which
are conjugate to each other with respect to the conic of contact at that pownt, and

continue to be conjugate to each other when the first surface is transformed into the
second.

For let the first surface be transferred, without changing its form, to a
position such that the given point coincides with the corresponding point of the
second surface, and the normal to the first surface coincides with that of the
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second at the same point. Then let the first surface be turned about the normal
as an axis till the tangent of any line through the point coincides with the
tangent of the corresponding line in the second surface.

Then by (6) any pair of corresponding lines passing through the point will
have a common tangent, and will therefore coincide in direction at that point.

If we now draw the conics of contact belonging to each surface we shall
have two conics with the same centre, and the problem is to determine a pair
of conjugate diameters of the first which coincide with a pair of conjugate
diameters of the second. The analytical solution gives two directions, real,
coincident, or impossible, for the diameters required.

In our investigations we can be concerned only with the case in which these
directions are real.

When the conics intersect in four points, P, @, R, S, PQRS is a parallelo-
gram inscribed in both conics, and the axes C4, CB,
parallel to the sides, are conjugate in both conics.

If the conics do mnot intersect, describe, through any
point P of the second conic, a conic similar to and con-
centric with the first. If the conics intersect in four
points, we must proceed as before; if they touch in two
points, the diameter through those points and its conju-
gate must be taken. If they intersect in two points only,
then the problem is impossible; and if they coincide
altogether, the conics are similar and similarly situated,
and the problem is indeterminate.

8. Two surfaces being given as before, one pair of conjugate systems of
curves may be drawn on the first surface, which shall correspond to a pair of
conjugate systems on the second surface.

By article (V) we may find at every point of the first surface two
directions conjugate to one another, corresponding to two conjugate directions on
the second surface. These directions indicate the directions of the two systems
of curves which pass through that point.

Knowing the direction which every curve of each system must have at every
point of its course, the systems of curves may be either drawn by some direct
geometrical method, or constructed from their equations, which may be found by
solving their differential equations.
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Two systems of curves being drawn on the first surface, the corresponding
systems may be drawn on the second surface. These systems being conjugate
to each other, fulfil the condition of Art. (4), and may therefore be made the
means of constructing a polyhedron with quadrilateral facets, by the bending of
which the transformation may be effected.

These systems of curves will be referred to as the “first and second systems
of Lines of Bending.”

9. General considerations applicable to Lines of Bending.

It has been shewn that when two forms of a surface are given, one of
which may be transformed into the other by bending, the nature of the lines
of bending is completely determined. Supposing the problem reduced to its
analytical expression, the equations of these curves would appear under the
form of double solutions of differential equations of the first order and second
degree, each of which would involve one arbitrary quantity, by the variation of
which we should pass from one curve to another of the same system.

Hence the position of any curve of either system depends on the value
assumed for the arbitrary constant; to distinguish the systems, let us call one
the first system, and the other the second, and let all quantities relating to
the second system be denoted by accented letters.

Let the arbitrary constants introduced by integration be w for the first
system, and «" for the second.

Then the value of u will determine the position of a curve of the first
system, and that of «” a curve of the second system, and therefore u and «’ will
suffice to determine the point of intersection of these two curves.

Hence we may conceive the position of any point on the surface to be
determined by the values of v and «* for the curves of the two systems which
intersect at that point.

By taking into account the equation to the surface, we may suppose =z, v,
and z the co-ordinates of any point, to be determined as functions of the two
variables « and «, This being done, we shall have materials for calculating
everything connected with the surface, and its lines of bending. But before
entering on such calculations let us examine the principal properties of these lines
which we must take into account.

Suppose a series of values to be given to » and «’, and the corresponding
curves to be drawn on the surface.

VOL. L. 13
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The surface will then be covered with a system of quadrilaterals, the size
of which may be diminished indefinitely by interpolating values of w and
between those already assumed; and in the limit each quadrilateral may be
regarded as a parallelogram coinciding with a facet of the inscribed polyhedron.

The length, the breadth, and the angle of these parallelograms will vary at
different parts of the surface, and will therefore depend on the values of w
and ',

The curvature of a line drawn on a surface may be investigated by consider-
ing the curvature of two other lines depending on it.

The first is the projection of the line on a tangent plane to the surface at
a given point in the line. The curvature of the projection at the point of
contact may be called the tangential curvature of the line on the surface. It
has also been called the geodesic curvature, because it is the measure of its
deviation from a geodesic or shortest line on the surface.

The other projection necessary to define the curvature of a line on the
surface is on a plane passing through the tangent to the curve and the normal
to the surface at the point of contact. The curvature of this projection at that
point may be called the normal curvature of the line on the surface.

It is easy to shew that this normal curvature is the same as the curvature
of a normal section of the surface passing through a tangent to the curve at
the same point.

10.  Gleneral considerations applicable to the inscribed polyhedron.

When two series of lines of bending belonging to the first and second systems
have been described on the surface, we may proceed, as in Art. (1), to describe
a third series of curves so as to pass through all their intersections and form
the diagonals of the quadrilaterals formed by the first pair of systems.

Plane triangles may then be constituted within the surface, having these
points of intersection for angles, and the size of the facets of this polyhedron may
be diminished indefinitely by increasing the number of curves in each series.

But by Art. (8) the first and second systems of lines of bending are conju-
gate to each other, and therefore by Art. (4) the polygon just constructed will
have every pair of triangular facets in the same plane, and may therefore be
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TRANSFORMATION OF SURFACES BY BENDING. 99

considered as a polyhedron with plane quadrilateral facets all whose solid angles
are formed by four of these facets meeting in a point.

When the number of curves in each system is increased and their distance
diminished indefinitely, the plane facets of the polyhedron will ultimately coincide
with the curved surface, and the polygons formed by the successive edges between
the facets, will coincide with the lines of bending.

These quadrilaterals may then be considered as parallelograms, the length
of which is determined by the portion of a curve of the second system inter-
cepted between two curves of the first, while the breadth is the distance of
two curves of the second system measured along a curve of the first. The
expressions for these quantities will be given when we come to the calculation of
our results along with the other particulars which we only specify at present.

The angle of the sides of these parallelograms will be ultimately the same
as the angle of intersection of the first and second systems, which we may
call ¢; but if we suppose the dimensions of the facets to be small quantities
of the first order, the angles of the four facets which meet in a point will differ
from the angle of intersection of the curves at that point by small angles of
the first order depending on the tangential curvature of the lines of bending.
The sum of these four angles will differ from four right angles by a small
angle of the second order, the circular measure of which expresses the entire
curvature of the solid angle as in Art. (2).

The angle of inclination of two adjacent facets will depend on the normal
curvature of the lines of bending, and will be that of the projection of two con-
secutive sides of the polygon of one system on a plane perpendicular to a side
of the other system.

11. Explanation of the Notation to be employed wn calculation.

Suppose each system of lines of bend-
ing to be determined by an equation con-
taining one arbitrary parameter.

Let this parameter be « for the first
system, and « for the second.

Let two curves, one from each system,
be selected as curves of reference, and let
their parameters be %, and ',

13—2
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100 TRANSFORMATION OF SURFACES BY BENDING.

Let ON and OM in the figure represent these two curves.

Let PM be any curve of the first system whose parameter is u, and PN
any curve of the second whose parameter is «’, then their intersection P may
be defined as the point (u, %), and all quantities referring to the point P may
be expressed as functions of » and «"

Let PN, the length of a curve of the second system (u’), from N (u,) to P
(u), be expressed by s, and PM the length of the curve (u) from (u) to ('), by
¥, then s and s will be functions of » and "

Let (u+8u) be the parameter of the curve QV of the first system consecu-
tive to PM. Then the length of P¢), the part of the curve of the second system
intercepted between the curves (u) and (w+06u), will be

_d_s Su.

du

Similarly PR may be expressed by
ds’
dw’

These values of PQ and PR will be the ultimate values of the length and
breadth of a quadrilateral facet.

The angle between these lines will be ultimately equal to ¢, the angle of
intersection of the system; but when the values of du and 8w are considered as
finite though small, the angles a, b, ¢, d of the facets which form a solid angle
will depend on the tangential curvature of the two systems of lines.

Let » be the tangential curvature of a curve of the. first system at the
given point measured in the direction in which % increases, and let 7, that of the
second system, be measured in the direction in which %’ increases.

ou’.

Then we shall have for the values of the four plane angles which meet at P,

a=w—¢+§1;'g—:;8u’—§%,%i8u,
b=¢ +%%8u’+%%8u,
c=w—¢—%%8u’+;7%8u,
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TRANSFORMATION OF SURFACES BY BENDING. 101

These values are correct as far as the first order of small quantities. Those
corrections which depend on the curvature of the surface are of the second order.

Let p be the normal curvature of a curve of the first system, and p’ that
of a curve of the second, then the inclination I of the plane facets a and b,
separated by a curve of the second system, will be

B W
= psin ¢ duw °*’
as far as the first order of small angles, and the inclination I’ of b and ¢ will be
v 1 ds

=p'sin¢?i?& v

to the same order of exactness.

12. On the corresponding polygon on the surface of the sphere of reference.

By the method described in Art. (2) we may
find a point on the sphere corresponding to each
facet of the polyhedron. 5

In the annexed figure, let a, b, ¢, d be the
points on the sphere corresponding to the four facets
which meet at the solid angle P. Then the area g
of the spherical quadrilateral a, b, ¢, d will be the
measure of the entire curvature of the solid angle P.

This area is measured by the defect of the sum of the exterior angles
from four right angles; but these exterior angles are equal to the four angles
a, b, ¢, d, which form the solid angle P, therefore the entire curvature is
measured by

k=2n—(a+b+c+d).

Since «a, b, ¢, d are invariable, it is evident, as in Art. {2), that the entire
curvature at P is not altered by bending.

By the last article it appears that when the facets are small the angles b
and d are approximately equal to ¢, and ¢ and ¢ to (w—¢), and since the sides
of the quadrilateral on the sphere are small, we may regard it as approximately
a plane parallelogram whose angle bad = ¢.

The sides of this parallelogram will be ! and !, the supplements of the
angles of the edges of the polyhedron, and we may therefore express its area
as a plane parallelogram

k=10 sin ¢.
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102 TRANSFORMATION OF SURFACES BY BENDING.

By the expression for ! and I’ in the last article, we find
1 ds ds’

= s g du di du &u’
for the entire curvature of one solid angle.

Since the whole number of solid angles is equal to the whole number of
facets, we may suppose a quarter of each of the facets of which it is composed
to be assigned to each solid angle. The area of these will be the same as that

of one whole facet, namely,

. ds ds ,
sin qbaw I/ du Su’;
therefore dividing the expression for £ by this quantity, we find for the value
of the specific curvature at P
1
pp s G’
which gives the specific curvature in terms of the normal curvatures of the
lines of bending and their angle of intersection.

p:

13.  Further reduction of this expression by means of the * Conic of Con-
tact,” as defined wn Art. (3).

Let @ and b be the semiaxes of the conic of contact, and % the sagitta
or perpendicular to its plane from the centre to the surface.

Let CP, CQ be semidiameters parallel to the

lines of bending of the first and second systems, and =
therefore conjugate to each other. < )
CP* ¢
By (Art. 3), P=% 5
and p'=}% C,? ;
and the expression for p in Art. (12), becomes
4h

P={CP.CQsin¢)"
But CP.CQsin¢ is the area of the parallelogram CPRQ, which is one

quarter of the circumscribed parallelogram, and therefore by a well-known
theorem

CP.CQsin¢=ab,
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TRANSFORMATION OF SURFACES BY BENDING. 103

and the expression for p becomes
— 4}&2 .
P= g
or if the area of the circumscribing parallelogram be called 4,
164
P= g

The principal radii of curvature of the surface are parallel to the axes of
the conic of contact. Let R and R’ denote these radii, then

R=%~C~;; and R’=%%2;

and therefore substituting in the expression for p,

1
P=pp;
or the specific curvature is the reciprocal of the product of the principal radii
of curvature.
This remarkable expression was introduced by Gauss in the memoir referred
to in a former part of this paper. His method of investigation, though not
so elementary, is more direct than that here given, and will shew how this

result can be obtained without reference to the geometrical methods necessary
to a more extended inquiry into the modes of bending.

14.  On the variation of mormal curvature of the lines of bending as we pass
Jrom one point of the surface to another.

We have determined the relation between the normal curvatures of the
lines of bending of the two systems at their points of intersection; we have
now to find the variation of normal curvature when we pass from one line of
the first system to another, along a line of the second.

In analytical language we have to find the value of

7 (3

Referring to the figure in Art. (11), we shall see that this may be done
if we can determine the difference between the angle of inclination of the
facets @ and b, and that of ¢ and d: for the angle I between a and b is

1 ds

b= sng aw o
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104 TRANSFORMATION OF SURFACES BY BENDING.

and therefore the difference between the angle of @ and b and that of ¢ and d is
dl d 1 ds
8= <p sing du’

du u.—_%

> ou du’ ;

whence the differential of p with respect to w may be found.

We must therefore find &/, and this is done by means of the quadrilateral
on the sphere described in Art. (12).

15. To find the values of 8l and &l

In the annexed figure let abed repre- / )
sent the small quadrilateral on the surface |
of the sphere. The exterior angles a, b,
¢, d are equal to those of the four facets
which meet at the point P of the surface,
and the sides represent the angles which
the planes of those facets make with each
other; so that

3

ab=1, be=l, cd=1+8], da=U+3l,
and the problem is to determine &/ and 6l" in terms of the sides ! and " and
the angles a, b, ¢, d.
On the sides ba, bec complete the parallelogram abed.
Produce ad to p, so that ap=ad. Join 3p.
Make c¢qg=cd and join dq.
then  Sl=cd—ab,
=cq — 8,
= —(qo+0d).
Now  go=qd tan gdo
=cd sin ged cot qod,
but cd =1 nearly, sin ged =qed=(c+b—n) and qod=¢;
s go=l(c+b—m)cot .
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TRANSFORMATION OF SURFACES BY BENDING. 105

pd
sin 80p

Also 06=

=ad (Sap) md’
=l, (a+b—7r) Si—ll-$.

Substituting the values of a, b, ¢, d from Art. (11),
8l= —(qo+03)
1 ds , 1 ols 1 ,

Finally, substituting the values of 7, I, and &/ from Art. (14),

cotdp ds” 1 ds Suf ds 1 ds Su i ;

d (L Eli’)SuSu’—-—————— Su du
du \psin¢ du’ ~ psing du’ 7 du psin’d du r du’
which may be put under the more convenient form
1 ds\, 1 ds plds 1
- (logp)—-—log<sin¢ C—M—,>+ 7 du ct¢+;;d—-——m¢
and from the value of 8" we may similarly obtain
1ds 1

d n_ 1 ds\, 6 1ds P
W(logp)—%—glog <sinq.’> c_lﬁ>+ a © t¢+ v du sing’

We may simplify these equations by putting p for the specific curvature of
the surface, and ¢ for the ratio £,, which is the only quantity altered by bending.

We have then
1
P pp st §° P

when g =1
YT P =Y psirg’
and the equations become
d d ds’|* ds 2ds 1
a&(logq)=%log< P G >+ 7 du t¢+'r0lu sm¢q
d _d —dﬂ 2 ds 2ds 1 1
W(logq)——%?log<p%>_; d_JCOt(]S_?oWsiﬁa'
In this way we may reduce the problem of bending a surface to the
consideration of one variable ¢, by means of the lines of bending.
14

VOL. L
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106 TRANSFORMATION OF SURFACES BY BENDING.

16. 7o obtain the condition of Instantameous lines of bending.

We have now obtained the values of the differential coefficients of ¢ with
respect to each of the variables u, '

From the equation
&
dudd (log q) = du d (log g),

we might find an equation which would give certain conditions of lines of
bending. These conditions however would be equivalent to those which we have
already assumed when we drew the systems of lines so as to be conjugate to
each other.

To find the true conditions of bending we must suppose the form of the
surface to vary continuously, so as to depend on some variable ¢ which we
may call the time.

Of the different quantities which enter into our equations, none are changed
by the operation of bending except ¢, so that in differentiating with respect
to ¢ all the rest may be considered constant, g being the only variable.

Differentiating the equations of last article with respect to ¢, we obtain

d
du dt (logg) = du s ¢ L dt (log 7,

du’ dt (logg) = 7 du’ sin ¢ g dt (log g).
‘Whence

d3
du du’ dt (log g)=

{W (’)7 du é{@) + > du SE(_]S (108 Q)} th (log q)+ 7 du sn & q T di (log q),

ds
dudu’dt (log 9) =

d /(2ds 1) 2ds 1 1 )
du \r’ du’ sin ¢) 7" du’ squdu log g dt(OgQ)+;'(Esmq5§dudt(0g@’

two independent values of the same quantity, whence the required conditions
may be obtained.
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TRANSFORMATION OF SURFACES BY BENDING. 107

Substituting in these equations the values of those quantities which occur
in the original equations, we obtain

1ds [d . 2 ds

quu{d,lg<pr s1n¢> coth}
11ds {d Lds 2 ds

=§?W{Wlog<prwsm¢>+?% cotc{)},
which is the condition which must hold at every instant during the process of
bending for the lines about which the bending takes place at that instant.
When the bending is such that the position of the lines of bending on the
surface alters at every instant, this is the only condition which is required.

It is therefore called the condition of Instantaneous lines of bending.

17.  To find the condition of Permanent lines of bending.

Since ¢ changes with the time, the equation of last article will not be
satisfied for any finite time unless both sides are separately equal to zero. In
that case we have the two conditions

dd,10g<107' sin > d t(b:O;W
.................. 1
vds_, )

T du ‘

d ,ds 2 ds

d—ulog<10 b ,sm</>>+ 7 n cot p= o & 2
ld_s_o .................. (2).

r ,,./du/— . ]

If the lines of bending satisfy these conditions, a finite amount of bending
may take place without changing the position of the system on the surface.
Such lines are therefore called Permanent lines of bending.

The only case in which the phenomena of bending may be exhibited by
means of the polyhedron with quadrilateral facets is that in which permanent
lines of bending are chosen as the boundaries of the facets. In all other cases
the bending takes place about an instantaneous system of lines which is con-
tinually in motion with respect to the surface, so that the nature of the poly-
hedron would need to be altered at every instant.

14—2

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.007


https://doi.org/10.1017/CBO9780511698095.007
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

108 TRANSFORMATION OF SURFACES BY BENDING.

We are now able to determine whether any system of lines drawn on a
given surface is a system of instantaneous or permanent lines of bending.

We are also able, by the method of Article (8), to deduce from two con-
secutive forms of a surface, the lines of bending about which the transformation
must have taken place,

If our analytical methods were sufficiently powerful, we might apply our
results to the determination of such systems of lines on any known surface, but
the necessary calculations even in the simplest cases are so complicated, that,
even if useful results were obtained, they would be out of place in a paper of
this kind, which is intended to afford the means of forming distinet conceptions
rather than to exhibit the results of mathematical labour.

18. On the application of the ordinary methods of analytical geometry to the
consuderation of lines of bending.

It may be interesting to those who may hesitate to accept results derived
from the consideration of a polyhedron, when applied to a curved surface, to

inquire whether the same results may not be obtained by some independent
method.

As the following method involves only those operations which are most
familiar to the analyst, it will be sufficient to give the rough outline, which may
be filled up at pleasure.

The proof of the invariability of the specific curvature may be taken from
any of the memoirs above referred to, and its value in terms of the equation of
the surface will be found in the memoir of Gauss.

Let the equation to the surface be put under the form
z=f (xy),
then the value of the specific curvature is

dz d*z 2 |’
do* dyf ~ da dy

«/”E—] +dy

The definition of conjugate systems of curves may be rendered independent
of the reasoning formerly employed by the following modification.
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TRANSFORMATION OF SURFACES BY BENDING. 109

Let a tangent plane move along any line of the first system, then if the line
of ultimate intersection of this plane with itself be always a tangent to some line
of the second system, the second system is said to be conjugate to the first.

It is easy to show that the first system is also conjugate to the second.

Let the system of curves be projected on the plane of xy, and at the point
(x, y) let a be the angle which a projected curve of the first system makes with
the axis of @, and B the angle which the projected curve of the second system
which intersects it at that point makes with the same axis. Then the condition
of the systems being conjugate will be found to be

&

dz . dz . .
dfCOSacosB+(msm(a+,8)+gg;§smasmﬁ=0,

a and B being known as functions of xz and y, we may determine the nature
of the curves projected on .the plane of xy.

Supposing the surface to touch that plane at the origin, the length and
tangential curvature of the lines on the surface near the point of contact may
be taken the same as those of their projections on the plane, and any change
of form of the surface due to bending will not alter the form of the projected
lines indefinitely near the point of contact. We may therefore consider z as the
only variable altered by bending; but in order to apply our analysis with facility,
we may assume

% =PQ sin’ a + PQ 7" sin® B,
dz - - PQsi PQ-sin B
P sin a cos & — sin B cos B,
T2 _ PQoosta+ PQ oos' B
dy = cos’a cos® 8.

It will be seen that these values satisfy the condition last given. Near the
origin we have

dz d% d% |

P= s dy ~ dwdy| =L 0 (= B).

and ¢g=@Q™
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110 TRANSFORMATION OF SURFACES BY BENDING.

3,

Differentiating these values of dz , &ec., we shall obtain two values of —iz»
da da® dy

and of o_lgozl—yé’ which being equated will give two equations of condition.

Now if s be measured along a curve of the first system, and R be any

function of = and y, then

dR _dR + dR o
T = dp s e dy sin a,
d dR _dR ds
ant W T ds di
da 1
We may also show that 7=

: da . da _d ds’ .
and that cosa i—sm ab—l—; =T log <(W sin gb) .

By substituting these values in the equations thus obtained, they are
reduced to the two equations given at the end of (Art. 15). This method of
investigation introduces no difficulty except that of somewhat long equations, and
is therefore satisfactory as supplementdry to the geometrical method given at

length.
As an example of the method given in page (2), we may apply it to
the case of the surface whose equation is

@ YUY o (Y
(65:) + (35 -G
This surface may be generated by the motion of a straight line whose
equation is of the form

w=acost<1—g>, y=asint<1+g>,
c ¢
¢t being the variable, by the change of which we pass from one position of the
line to another. This line always passes through the circle
2=0, Zc4+yf=a,
and the straight lines z=c, x=0,
and z=—¢, y=0,

which may therefore be taken as the directors of the surface.
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TRANSFORMATION OF SURFACES BY BENDING. 111

Taking two consecutive positions of this line, in which the values of ¢
are ¢t and t+93t, we may find by the ordinary methods the equation to the
shortest line between them, its length, and the co-ordinates of the point in which
it intersects the first line.

Calling the length &

o= de_ sin 2t3¢,

and the co-ordinates of the point of intersection are

x=2a cos’t, y=2a sin*t, z= —c cos 2t.
The angle 86 between the consecutive lines is

060 = , &L

J o +c
The distance 8o between consecutive shortest lines is
80’ = 30&,,,-20.4 'n 2t8t,
Jar+ ¢

and the angle 8¢ between these latter lines is

o = - &t.
¢ ~/ a*+c
Hence if we suppose {, 0, o, ¢, and ¢ to vanish together, we shall have by
integration
ZJZ — - (1 —cos 2t),
0=—£/‘_t,
Jai ¢
S?/iic— (1 —cos 2t),
o?
¢
=
¢ Jar+ ¢

By bending the surface about its generating lines we alter the value of ¢
in any manner without changing {, 6, or 0. For instance, making ¢=0, all the
generating lines become parallel to the same plane. Let this plane be that of
zy, then { is the distance of a generating line from that plane. The projections
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112 TRANSFORMATION OF SURFACES BY BENDING.

of the generating lines on the plane of wxy will, by their ultimate intersections,
form a curve, the length of which is measured by o, and the angle which its
tangent makes with the axis of # by 8, § and o being connected by the equation
3a’+ 2¢ 2Na*+ ¢’
o=——"(1—cog ————40),
Jar+ e a
which shows the curve to be an epicycloid.

The generating lines of the surface when bent into this form are therefore
tangents to a cylindrical surface on an epicycloidal base, touching that surface
along a curve which is always equally inclined to the plane of the base, the
tangents themselves being drawn parallel to the base.

We may now consider the bending of the surface of revolution
Vo F o+t =ck
Putting 7=+2"+77, then the equation of the generating line is
ryat=ch
This is the well-known hypocycloid of four cusps.

Let s be the length of the curve measured from the cusp in the axis of 2,
then,

s:.gc'k'/rﬁ’
wherefore, r=(3)tc s
Let @ be the angle which the plane of any generating line makes with

that of az, then s and @ determine the position of any point on the surface.
The length and breadth of an element of the surface will be 8s and »36.

Now let the surface be bent in the manner formerly described, so that @
becomes &, and », 7', when

@ =pb and r’=ir,
then " =(g)tctus?
=t
provided ¢ =plc.

The equation between ¢ and s being of the same form as that between

r and s shows that the surface when bent is similar to the original surface, its
dimensions being multiplied by u
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TRANSFORMATION OF SURFACES BY BENDING. 113

This, however, is true only for one half of the surface when bent. The

other half is precisely symmetrical, but belongs to a surface which is not con-
tinuous with the first.

The surface in its original form is divided by the plane of ay into two

parts which meet in that plane, forming a kind of cuspidal edge of a circular
form which limits the possible value of s and 7.

After being bent, the surface still consists of the same two parts, but the
edge in which they meet is no longer of the cuspidal form, but has a finite

angle =2 cos“%, and the two sheets of the surface become parts of two different

surfaces which meet but are not continuous.

NOTE.

As an example of the application of the more general theory of “lines of bending,” let us
consider the problem which has been already solved by Professor Jellett.

To determine the conditions under which one portion of a surface may be rendered rigid, while
the remainder vs flexible.

Suppose the lines of bending to be traced on the surface, and the corrésponding poly-
hedron to be formed, as in (9) and (10), then if the angle of one of the four edges which
meet at any selid angle of the polyhedron be altered by bending, those of the other three
must be also altered. These edges terminate in other solid angles, the forms of which will
also be changed, and therefore the effect of the alteration of one angle of the polyhedron will

be communicated to every other angle within the system of lines of bending which defines
the form of the polyhedron.

If any portion of the surface remains unaltered it must lie beyond the limits of the

system of lines of bending. We must therefore investigate the conditions of such a system
being bounded.

The boundary of any system of lines on a surface is the curve formed by the ultimate inter-
section of those lines, and therefore at any given point coincides in direction with the curve of
the system which passes through that point. In this case there are two systems of lines of
bending, which are necessarily coincident in extent, and must therefore have the same boundary.
At any point of this boundary therefore the directions of the lines of bending of the first
and second systems are coincident.

But, by (7), these two directions must be “conjugate” to each other, that is, must corre-
spond to conjugate diameters of the “Conic of Contact” Now the only case in which con-
VOL. I. 15
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114 TRANSFORMATION OF SURFACES BY BENDING.

jugate diameters of a conic can coincide, is when the conic is an hyperbola, and both diameters
coincide with one of the asymptotes; therefore the boundary of the system of lines of bending
must be a curve at every point of which the conic of contact is an hyperbola, one of whose
asymptotes lies in the direction of the curve. The radius of “normal curvature” must there-
fore by (8) be infinite at every point of the curve. This is the geometrical property of
what Professor Jellett calls a “ Curve of Flexure,” so that we may express the result as
follows :

If one portion of a surface be fived, while the remainder is bent, the boundary of the fixed
portion is a curve of flexure.

This the;orem includes those given at p. (92), relative to a fixed curve on a surface, for in
a surface whose curvatures are of the same sign, there can be no “curves of flexure,” and
in a developable surface, they are the rectilinear sections. Although the cuspidal edge, or
aréte de rebroussement, satisfies the analytical condition of a curve of flexure, yet, since its
form determines that of the whole surface, it cannot remain fixed while the form of the surface
1s changed.

In concavo-convex surfaces, the curves of flexure must either have tangential curvature or
be straight lines. Now if we put ¢=0 in the equations of Art. (17), we find that the
lines of bending of both systems have no tangential curvature at the point where they touch
the curve of flexure. They must therefore lie entirely on the convex side of that curve, and
therefore

If a curve of flexure be fixed, the surface on the concave side of the curve is not flexible.

I have not yet been able to determine whether the surface is inflexible on the convex side
of the curve. It certainly is so in some cases which I have been able to work out, but I
have no general proof.

When a surface has one or more rectilinear sections, the portions of the surface between
them may revolve as rigid bodies round those lines as axes in any manner, but no other motion

is possible. The case in which the rectilinear sections form an infinite series has been discussed
in Sect. (I.).
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[From the Cambridge and Dublin Mathematical Journal, Vol. 1x.]

V. On a particular case of the descent of a heavy body in a resisting
medium.

EvERY one must have observed that when a slip of paper falls through
the air, its motion, though undecided and wavering at first, sometimes becomes
regular. Its general path is not in the vertical direction, but inclined to it
at an angle which remains nearly constant, and its fluttering appearance will
be found to be due to a rapid rotation round a horizontal axis. The direction
of deviation from the vertical depends on the direction of rotation.

If the positive directions of an axis be toward the right hand and upwards,
and the positive angular direction opposite to the direction of motion of the
hands of a watch, then, if the rotation is in the positive direction, the hori-
zontal part of the mean motion will be positive.

These effects are commonly attributed to some accidental peculiarity in the
form of the paper, but a few experiments with a rectangular slip of paper
(about two inches long and one broad), will shew that the direction of rotation
is determined, not by the irregularities of the paper, but by the initial circum-
stances of projection, and that the symmetry of the form of the paper greatly
increases the distinctness of the phenomena. We may therefore assume that
if the form of the body were accurately that of a plane rectangle, the same
effects would be produced.

The following investigation is intended as a general explanation of the true
cause of the phenomenon.

I suppose the resistance of the air caused by the motion of the plane to
be in the direction of the normal and to vary as the square of the velocity
estimated in that direction.

Now though this may be taken as a sufficiently near approximation to the
magnitude of the resisting force on the plane taken as a whole, the pressure

15—2
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116 DESCENT OF A HEAVY BODY IN A RESISTING MEDIUM,

on any given element of the surface will vary with its position so that the
resultant force will not generally pass through the centre of gravity.

It is found by experiment that the position of the centre of pressure
depends on the tangential part of the motion, that it lies on that side of the
centre of gravity towards which the tangential motion of the plane is directed,
and that its distance from that point increases as the tangential velocity in-
creases.

I am not aware of any mathematical investigation of this effect. The
explanation may be deduced from experiment.

Place a body similar in shape to the slip of paper obliquely in a current
of some visible fluid. Call the edge where the fluid first meets the plane the
first edge, and the edge where it leaves the plane, the second edge, then we
may observe that

(1) On the anterior side of the plane the velocity of the fluid increases
as it moves along the surface from the first to the second edge, and therefore
by a known law in hydrodynamics, the pressure must diminish from the first
to the second edge. .

(2) The motion of the fluid behind the plane is very unsteady, but may
be observed to consist of a series of eddies diminishing in rapidity as they
pass behind the plane from the first to the second edge, and therefore relieving
the posterior pressure most at the first edge.

Both these causes tend to make the total resistance greatest at the first
edge, and therefore to bring the centre of pressure nearest to that edge.

Hence the moment of the resistance about the centre of gravity will always
tend to turn the plane towards a position perpendicular to the direction of the
current, or, in the case of the slip of paper, to the path of the body itself. It
will be shewn that it is this moment that maintains the rotatory motion of
the falling paper.

When the plane has a motion of rotation, the resistance will be modified
on account of the unequal velocities of different parts of the surface. The
magnitude of the whole resistance at any instant will not be sensibly altered
if the velocity of any point due to angular motion be small compared with that
due to the motion of the centre of gravity. But there will be an additional
moment of the resistance round the centre of gravity, which will always act in
the direction opposite to that of rotation, and will vary directly as the normal
and angular velocities together.
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DESCENT OF A HEAVY BODY IN A RESISTING MEDIUM. 117

The part of the moment due to the obliquity of the motion will remain
nearly the same as before.

We are now prepared to give a general explanation of the motion of the
slip of paper after it has become regular.

Let the angular position of the paper be determined by the angle between
the normal to its surface and the axis of x, and let the angular motion be
such that the normal, at first coinciding with the axis of ®, passes towards
that of 4. ‘

The motion, speaking roughly, is one of descent, that is, in the negative
direction along the axis of ¥.

The resolved part of the resistance in the vertical direction will always
act upwards, being greatest when the plane of the paper is horizontal, and
vanishing when it is vertical.

When the motion has become regular, the effect of this force during a
whole revolution will be equal and opposite to that of gravity during the same
time.

Since the resisting force increases while the normal is in its first and third
quadrants, and diminishes when it is in its second and fourth, the maxima of
velocity will occur when the normal is in its first and third quadrants, and
the minima when it is in the second and fourth.

The resolved part of the resistance in the horizontal direction will act in
the positive direction along the axis of x in the first and third quadrants, and
in the negative direction during the second and fourth; but since the resistance
increases with the velocity, the whole effect during the first and third quadrants
will be greater than the whole effect during the second and fourth. Hence
the horizontal part of the resistance will act on the whole in the positive
direction, and will therefore cause the general path of the body to incline in
that direction, that is, toward the right.

That part of the moment of the resistance about the centre of gravity
which depends on the angular velocity will vary in magnitude, but will always
act in the negative direction. The other part, which depends on the obliquity
of the plane of the paper to the direction of motion, will be positive in the
first and third quadrants and negative in the second and fourth; but as its
magnitude increases with the velocity, the positive effect will be greater than
the negative.

When the motion has become regular, the effect of this excess in the
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118 DESCENT OF A HEAVY BODY IN A RESISTING MEDIUM.

positive direction will be equal and opposite to the negative effect due to the
angular velocity during a whole revolution.

The motion will then consist of a succession of equal and similar parts
performed in the same manner, each part corresponding to half a revolution of
the paper.

These considerations will serve to explain the lateral motion of the paper,
and the maintenance of the rotatory motion.

Similar reasoning will shew that whatever be the initial motion of the
paper, it cannot remain uniform.

Any accidental oscillations will increase till their amplitude exceeds half a
revolution, The motion will then become one of rotation, and will continually
approximate to that which we have just considered.

It may be also shewn that this motion will be unstable unless it take
place about the longer axis of the rectangle.

If this axis is inclined to the horizon, or if one end of the slip of paper
be different from the other, the path will not be straight, but in the form of
a helix. There will be no other essential difference between this case and that
of the symmetrical arrangement.

Trimty College, April 5, 1853.
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[From the Transactions of the Royal Scottish Society of Arts, Vol. 1v. Part 111]

VI. On the Theory of Colours in relation to Colour-Blindness.
A letter to Dr G. Wilson.

DeAr Sir,—As you seemed to think that the results which I have obtained
in the theory of colours might be of service to you, I have endeavoured to
arrange them for you in a more convenient form than that in which I first
obtained them. I must premise, that the first distinct statement of the theory
of colour which I adopt, is to be found in Young’s Lectures on Natural Philo-
sophy (p. 345, Kelland’s Edition); and the most philosophical enquiry into it
which I have seen is that of Helmholtz, which may be found in the Annals of
Philosophy for 1852.

It is well known that a ray of light, from any source, may be divided by
means of a prism into a number of rays of different refrangibility, forming a
series called a spectrum. The intensity of the light is different at different
points of this spectrum; and the law of intensity for different refrangibilities
differs according to the nature of the incident light. In Sir John F. W.
Herschel's Treatise on Light, diagrams will be found, each of which represents
completely, by means of a curve, the law of the intensity and refrangibility of
a beam of solar light after passing through various coloured media.

I have mentioned this mode of defining and registering a beam of light,
because it is the perfect expression of what a beam. of light is in itself, con-
sidered with respect to all its properties as ascertained by the most refined
instruments. When a beam of light falls on the human eye, certain sensations
are produced, from which the possessor of that organ judges of the colour and
intensity of the light. Now, though every one experiences these sensations, and
though they are the foundation of all the phenomena of sight, yet, on account
of their absolute simplicity, they are incapable of analysis, and can never become
in themselves objects of thought. If we attempt to discover them, we must
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120 THE THEORY OF COLOURS IN RELATION TO COLOUR-BLINDNESS.

do so by artificial means; and our reasonings on them must be guided by some
theory.

The most general form in which the existing theory can be stated is this,—

There are certain sensations, finite in number, but infinitely variable in
degree, which may be excited by the different kinds of light. The compound
sensation resulting from all these is the object of consciousness, is a simple act
of vision.

It is easy to see that the number of these sensations corresponds to what

may be called in mathematical language the number of independent variables, of
which sensible colour is a function.

This will be readily understood by attending to the following cases:—

1. When objects are illuminated by homogeneous yellow light, the only
thing which can be distinguished by the eye is difference of intensity or
brightness.

If we take a horizontal line, and colour it black at one end, with increasing
degrees of intensity of yellow light towards the other, then every visible object
will have a brightness corresponding to some point in this line.

In this case there is nothing to prove the existence of more than one
sensation in vision.

In those photographic pictures in which there is only one tint of which
the different intensities correspond to the different degrees of illumination of the

object, we have another illustration of an optical effect depending on one variable
only.

2. Now, suppose that different kinds of light are emanating from different
sources, but that each of these sources gives out perfectly homogeneous light,
then there will be two things on which the nature of each ray will depend:—
(1) its intensity or brightness; (2) its hue, which may be estimated by its
position in the spectrum, and measured by its wave length.

If we take a rectangular plane, and illuminate it with the different kinds
of homogeneous light, the intensity at any point being proportional to its hori-
zontal distance along the plane, and its wave length being proportional to its
height above the foot of the plane, then the plane will display every possible
variety of homogeneous light, and will furnish an instance of an optical effect
depending on two variables.
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THE THEORY OF COLOURS IN RELATION TO COLOUR-BLINDNESS, 121

3. Now, let us take the case of nature. We find that colours differ not
only in intensity and hue, but also in tint; that is, they are more or less pure.
We might arrange the varieties of each colour along a line, which should begin
with the homogeneous colour as seen in the spectrum, and pass through all
gradations of tint, so as to become continually purer, and terminate in white.

We have, therefore, three elements in our sensation of colour, each of which
may vary independently. For distinctness sake I have spoken of intensity, hue,
and tint; but if any other three independent qualities had been chosen, the
one set might have been expressed in terms of the other, and the results identified.

The theory which I adopt assumes the existence of three elementary sen-
sations, by the combination of which all the actual sensations of colour are
produced. It will be shewn that it is not necessary to specify any given colours
as typical of these sensations. Young has called them red, green, and violet; but
any other three colours might have been chosen, provided that white resulted
from their combination in proper proportions.

Before going farther I would observe, that the important part of the theory
is not that three elements enter into our sensation of colour, but that there are
only three. Optically, there are as many elements in the composition of a ray
of light as there are different kinds of light in its spectrum; and, therefore,
strictly speaking, its nature depends on an infinite number of independent
variables.

I now go on to the geometrical form into which the theory may be thrown.
Let it be granted that the three pure sensations corre-
spond to the colours red, green, and violet, and that we
can estimate the intensity of each of these sensations
numerically.

Let v, 7, g be the angular points of a triangle, and V.
conceive the three sensations as having their positions at
these points. If we find the numerical measure of the
red, green, and violet parts of the sensation of a given r
colour, and then place weights proportional to these parts
at 7, g, and v, and find the centre of gravity of the three weights by the
ordinary process, that point will be the position of the given colour, and the
numerical measure of its intensity will be the sum of the three primitive
sensations.

In this way, every possible colour may have its position and intensity

VOL. I. 16
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122 THE THEORY OF COLOURS IN RELATION TO COLOUR-BLINDNESS.

ascertained ; and it is easy to see that when two compound colours are com-
bined, their centre of gravity is the position of the new colour.

The idea of this geometrical method of investigating colours is to be found
in Newton’s Opticks (Book I., Part 2, Prop. 6), but I am not aware that it has
been ever employed in practice, except in the reduction of the experiments
which I have just made. The accuracy of the method depends entirely on the
truth of the theory of three sensations, and therefore its success is a testimony
in favour of that theory.

Every possible colour must be included within the triangle rgv. White
will be found at some point, w, within the triangle. If lines be drawn through
w to any point, the colour at that point will vary in hue according to the
angular position of the line drawn to w, and the purity of the tint will depend
on the length of that line.

Though the homogeneous rays of the prismatic spectrum are absolutely pure
in themselves, yet they do not give rise to the ‘pure sensations” of which we
are speaking. Every ray of the spectrum gives rise to all three sensations,
though in different proportions; hence the position of the colours of the spectrum
is not at the boundary of the triangle, but in some curve C R Y G B V
considerably within the triangle. The nature of this curve is not yet determined,
but may form the subject of a future investigation *.

All natural colours must be within this curve, and all ordinary pigments
do in fact lie very much within it. The experiments on the colours of the
spectrum which I have made are not brought to the same degree of accuracy as
those on coloured papers. I therefore proceed at once to describe the mode of
making those experiments which I have found most simple and convenient.

The coloured paper is cut into the form of discs, each with a small hole
in the centre, and divided along a radius, so as to admit

of several of them being placed on the same axis, so that @

part of each is exposed. By slipping one disc over another,

we can expose any given portion of each colour. These

discs are placed on a little top or teetotum, consisting of @

a flat disc of tin-plate and a vertical axis of ivory. This

axis passes through the centre of the discs, and the quantity of each colour exposed
is measured by a graduation on the rim of the dise, which is divided into 100 parts.

* [See the author’s Memoir in the Philosophical Transactions, 1860, on the Theory of Compound
Colours, and on the relations of the Colours of the Spectrum.]
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THE THEORY OF COLOURS IN RELATION TO COLOUR-BLINDNESS. 123

By spinning the top, each colour is presented to the eye for a time pro-
portional to the angle of the sector exposed, and I have found by independent
experiments, that the colour produced by fast spinning is identical with that
produced by causing the light of the different colours to fall on the retina at
once.

By properly arranging the discs, any given colour may be imitated and
afterwards registered by the graduation on the rim of the top. The principal
use of the top is to obtain colour-equations. These are got by producing, by
two different combinations of colours, the same mixed tint. For this purpose
there is another set of discs, half the diameter of the others, which lie above
them, and by which the second combination of colours is formed.

The two combinations being close together, may be accurately compared, and
when they are made sensibly identical, the proportions of the different colours
in each 1is registered, and the results equated.

These equations in the case of ordinary vision, are always between four
colours, not including black.

From them, by a very simple rule, the different colours and compounds have
their places assigned on the triangle of colours. The rule for finding the position
is this :—Assume any three points as the positions of your three standard colours,
whatever they are; then form an equation between the three standard colours,
the given colour and black, by arranging these colours on the inner and outer
circles so as to produce an identity when spun. Bring the given colour to the
left-hand side of the equation, and the three standard colours to the right hand,
leaving out black, then the position of the given colour is the centre of gravity
of three masses, whose weights are as the number of degrees of each of the
standard colours, taken positive or negative, as the case may be.

In this way the triangle of colours may be constructed by scale and compass
from experiments on ordinary vision. I now proceed to state the results of
experiments on Colour-Blind vision. ‘

If we find two combinations of colours which appear identical to a Colour-
Blind person, and mark their positions on the triangle of colours, then the
straight line passing through these points will pass through all points corre-
sponding to other colours, which, to such a person, appear identical with the first
two.

We may in the same way find other lines passing through the series of

16—2
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colours which appear alike to the Colour-Blind. All these
lines either pass through one point or are parallel, ac-
cording to the standard colours which we have assumed,
and the other arbitrary assumptions we may have made.
Knowing this law of Colour-Blind vision, we may predict
any number of equations which will be true for eyes
having this defect. R e

The mathematical expression of the difference between
Colour-Blind and ordinary vision is, that colour to the
former is a function of two independent variables, but to an ordinary eye, of
three; and that the relation of the two kinds of vision is not arbitrary, but
indicates the absence of a determinate sensation, depending perhaps upon some
undiscovered structure or organic arrangement, which forms one-third of the
apparatus by which we receive sensations of colour.

Suppose the absent structure to be that which is brought most into play
when red light falls on our eyes, then to the Colour-Blind red light will be
visible only so far as it affects the other two sensations, say of blue and
green. It will, therefore, appear to them much less bright than to us, and will
excite a sensation not distinguishable from that of a bluish-green light. '

I cannot at present recover the results of all my experiments; but I recollect
that the neutral colours for a Colour-Blind person may be produced by com-
bining 6 degrees of ultramarine with 94 of vermilion, or 60 of emerald-green
with 40 of ultramarine. The first of these, I sdppose to represent to our eyes
the kind of red which belongs to the red sensation. It excites the other two
sensations, and 1is, therefore, visible to the Colour-Blind, but it appears very
dark to them and of no definite colour. I therefore suspect that one of the
three sensations in perfect vision will be found to correspond to a red of the
same hue, but of much greater purity of tint. Of the nature of the other two,
I can say nothing definite, except that one must correspond to a blue, and the
other to a green, verging to yellow.

I hope that what I have written may help you in any way in your

Y

experiments. I have put down many things simply to indicate a way of thinking
about colours which belongs to this theory of triple sensation. We are indebted
to Newton for the original design; to Young for the suggestion of the means
of working it out; to Prof. Forbes* for a scientific history of its application

* Phil. Mag. 1848,
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to practice; to Helmholtz for a rigorous examination of the facts on which it
rests; and to Prof. Grassman (in the Phil. Mag. for 1852), for an admirable
theoretical exposition of the subject. The colours given in Hay's Nomenclature
of Colours are illustrations of a similar theory applied to mixtures of pigments,
but the results are often different from those in which the colours are combined
by the eye alone. I hope soon to have results with pigments compared with
those given by the prismatic spectrum, and then, perhaps, some more definite
results may be obtained. Yours truly,

J. C. MAXWELL.

EpixsurcH, 4th Jan. 1855.
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[From the Transactions of the Royal Society of Edinburgh, Vol. XX1, Part 11.]

VII. Experiments on Colour, as percewed by the Eye, with remarks on Colour-
Blindness. Communicated by Dr Gregory.

TueE object of the following communication is to describe a method by
which every variety of visible colour may be exhibited to the eye in such a
form as to admit of accurate comparison; to shew how experiments so made
may be registered numerically; and to deduce from these numerical results
certain laws of vision.

The different tints are produced by means of a combination of dises of paper,
painted with the pigments commonly used in the arts, and arranged round an
axis, so that a sector of any required angular magnitude of each colour may be
exposed. 'When this system of discs is set in rapid rotation, the sectors of
the different colours become indistinguishable, and the whole appears of one uni-
form tint. The resultant tints of two different combinations of colours may be
compared by using a second set of discs of a smaller size, and placing these over
the centre of the first set, so as to leave the outer portion of the larger discs
exposed. The resultant tint of the first combination will then appear in a ring
round that of the second, and may be very carefully compared with it.

The form in which the experiment is most manageable is that of the com-
mon top. An axis, of which the lower extremity is conical, carries a circular
plate, which serves as a support for the discs of coloured paper. The circumfer-
ence of this plate is divided into 100 equal parts, for the purpose of ascertaining
the proportions of the different colours which form the combination. When the
discs have been properly arranged, the upper part of the axis is screwed down,
so as to prevent any alteration in the proportions of the colours.

The instrument used in the first series of experiments (at Cambridge, in
November, 1854) was constructed by myself, with coloured papers procured from
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Mr D. R. Hay. The experiments made in the present year were with the
improved top made by Mr J. M. Bryson, Edinburgh, and coloured papers pre-
pared by Mr T. Purdie, with the unmixed pigments used in the arts. A number
of Mr Bryson’s tops, with Mr Purdie’s coloured papers has been prepared, so as
to afford different observers the means of testing and comparing results inde-
pendently obtained.

The colour used for Mr Purdie’s papers were—

Vermilion . . v Ultramarine . . U Emerald Green . . EG
Carmine . . C Prussian -Blue . . PB Brunswick Green . . BG
Red Lead . . RL Verditer Blue . . VB Mixture of TUltramarine
Orange Orpiment . 00 and Chrome . . ud
Orange Chrome . oC
Chrome Yellow . CY
Gamboge . . Gam
Pale Chrome . . PC

Ivory Black . . Bk

Snow White . . SwW

‘White Paper (Pirie, Aberdeen).

The colours in the first column are reds, oranges, and yellows; those in
the second, blues; and those in the third, greens. Vermilion, ultramarine, and
emerald green, seem the best colours to adopt in referring the rest to a uniform
standard. They are therefore put at the head of the list, as types of three
convenient divisions of colour, red, blue, and green.

It may be asked, why some variety of yellow was not chosen in place of
green, which is commonly placed among the secondary colours, while yellow
ranks as a primary? The reason for this deviation from the received system is,
that the colours on the discs do not represent primary colours at all, but are
simply specimens of different kinds of paint, and the choice of these was deter-
mined solely by the power of forming the requisite variety of combinations. Now,
if red, blue, and yellow, had been adopted, there would have been a difficulty
in forming green by any compound of blue and yellow, while the yellow formed
by vermilion and emerald green is tolerably distinet. This will be more clearly
perceived after the experiments have been discussed, by referring to the diagram.

As an example of the method of experimenting, let us endeavour to form a
neutral gray by the combination of vermilion, ultramarine, and emerald green.
The most perfect results are obtained by two persons acting in concert, when
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128 EXPERIMENTS ON COLOUR, AS PERCEIVED BY THE EYE.

the operator arranges the colours and spins the top, leaving the eye of the

observer free from the distracting effect of the bright colours of the papers when
at rest.

After placing dises of these three colours on the circular plate of the top,
and smaller discs of white and black above them, the operator must spin the
top, and demand the opinion of the observer respecting the relation of the
outer ring to the inner circle. He will be told that the outer circle is too
red, too blue, or too green, as the case may be, and that the inner one is too.
light or too dark, as compared with the outer. The arrangement must then be
changed, so as to render the resultant tint of the outer and inner circles more
nearly alike. Sometimes the observer will see the inner circle tinted with the
complementary colour of the outer one. In this case the operator must interpret

the observation with respect to the outer circle, as the inner circle contains only
black and white.

By a little experience the operator will learn how to put his questions, and
how to interpret their answers. The observer should not look at the coloured
papers, nor be told the proportions of the colours during the experiments.
When these adjustments have been properly made, the resultant tints of the
outer and inner circles ought to be perfectly indistinguishable, when the top
has a sufficient velocity of rotation. The number of divisions occupied by the
different colours must then be read off on the edge of the plate, and registered
in the form of an equation. Thus, in the preceding experiment we have ver-
milion, ultramarine, and ‘emerald green outside, and black and white inside. The
numbers, as given by an experiment on the 6th March 1855, in daylight without
sun, are-——

87 V 427 U +36 EG =28 SW+72 Bk..vovvvoe.., (1).

The method of treating these equations will be given when we come to the
theoretical view of the subject.

In this way we have formed a neutral gray by the combination of the
three standard colours. We may also form neutral grays of different intensities
by the combination of vermilion and ultramarine with the other greens, and thus
obtain the quantities of each necessary to neutralize a given quantity of the
proposed green. By substituting for each standard colour in succession one of the
colours which stand under it, we may obtain equations, each of which contains
two standard colours, and one of the remaining colours.
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EXPERIMENTS ON COLOUR, AS PERCEIVED BY THE EYE. 129

Thus, in the case of pale chrome, we have, from the same set of experiments,
34 PC+55 U +12 EG="37 SW +63 Bk................ (2).

We may also make experiments in which the resulting tint is not a meutral
gray, but a decided colour. Thus we may combine ultramarine, pale chrome, and
black, so as to produce a tint identical with that of a compound of vermilion
and emerald-green. Experiments of this sort are more difficult, both from the
inability of the observer to express the difference which he detects in two tints
which have, perhaps, the same hue and intensity, but differ in purity; and also
from the complementary colours which are produced in the eye after gazing too
long at the colours to be compared.

The best method of arriving at a result in the case before us, is to render
the hue of the red and green combination something like that of the yellow, to
reduce the purity of the yellow by the admixture of blue, and to diminish its
intensity by the addition of black. These operations must be repeated and
adjusted, till the two tints are not merely varieties of the same colour, but
absolutely the same. An experiment made 5th March gives—

‘39 PC+21 U+°40 Bk=59 V+41 EG.....ccceennene (3).

That these experiments are really evidence relating to the constitution of the
eye, and not mere comparisons of two things which are in- themselves identical,
may be shewn by observing these resultant tints through coloured glasses, or by
using gas-light instead of day-light. The tints which before appeared identical
will now be manifestly different, and will require alteration, to reduce them to
equality.
Thus, in the case of carmine, we have by day-light,

‘44 C+22 U +-34 EG="17 SW +83 Bk,
while by gas-light (Edinburgh)

47 C+08 U+-45 EG=-25 SW +75 Bk,

which shews that the yellowing effect of the gas-light tells more on the white
than on the combination of colours. If we examine the two resulting tints
which appeared identical in experiment (3), observing the whirling discs through
a blue glass, the combination of yellow, blue, and black, appears redder than the
other, while through a yellow glass, the red and green mixture appears redder.
So also a red glass makes the first side of the equation too dark, and a green
glass makes it too light.
VOL. L. 17
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130 EXPERIMENTS ON COLOUR, AS PERCEIVED BY THE EYE.

The apparent identity of the tints in these experiments is therefore not real,
but a consequence of a determinate constitution of the eye, and hence arises
the importance of the results, as indicating the laws of human vision.

The first result which is worthy of notice is, that the equations, as observed
by different persons of ordinary vision, agree in a remarkable manner. If care
be taken to secure the same kind of light in all the experiments, the equations,
as determined by two independent observers, will seldom shew a difference of
more than three divisions in any part of the equation containing the bright
standard colours. As the duller colours are less active in changing the resultant
tint, their true proportions cannot be so well ascertained. The accuracy of vision
of each observer may be tested by repeating the same experiment at different
times, and comparing the equations so found.

Experiments of this kind, made at Cambridge in November 1854, shew that
of ten observers, the best were accurate to within 1} division, and agreed
within 1 division of the mean of all; and the worst contradicted themselves to

the extent of 6 degrees, but still were never more than 4 or 5 from the mean
of all the observations.

We are thus led to eonclude—

1st. That the human eye is capable of estimating the likeness of colours
with a precision which in some cases is very great.

2nd. That the judgment thus formed is determined, not by the real identity
of the colours, but by a cause residing in the eye of the observer.

3rd. That the eyes of different observers vary in accuracy, but agree with

each other so nearly as to leave no doubt that the law of colour-vision is
identical for all ordinary eyes.

Investigation of the Law of the Perception of Colour.

Before proceeding to the deduction of the elementary laws of the perception
of colour from the numerical results previously obtained, it will be desirable

to point out some general features of the experiments which indicate the form
which these laws must assume.

Returning to experiment (1), in which a neutral gray was produced from
red, blue, and green, we may observe, that, while the adjustments were incom-
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plete, the difference of the tints could be detected only by one circle appearing
more red, more green, or more blue than the other, or by being lighter or
darker, that is, having an excess or defect of all the three colours together.
Hence it appears that the nature of a colour may be considered as dependent
on three things, as, for instance, redness, blueness, and greenness. This is con-
firmed by the fact that any tint may be imitated by mixing red, blue, and
green alone, provided that tint does not exceed a certain brilliancy.

Another way of shewing that colour depends on three things is by con-
sidering how two tints, say two lilacs, may differ. In the first place, one may
be lighter or darker than the other, that is, the tints may differ in shade.
Secondly, one may be more blue or more red than the other, that is, they may
differ in Awe. Thirdly, one may be more or less decided in its colour; it may vary
from purity on the one hand, to neutrality on the other. This is sometimes
expressed by saying that they may differ in tnt.

Thus, in shade, hue, and tint, we have another mode of reducing the
elements of colour to three. It will be shewn that these two methods of con-
sidering colour may be deduced one from the other, and are capable of exact
numerical comparison.

On a Geographical Method of Exhibiting the Relations of Colours.

The method which exhibits to the eye most clearly the results of this theory
of the three elements of colour, is that which supposes each colour to be repre-
sented by a point in space, whose distances from three co-ordinate planes are
proportional to the three elements of colour. But as any method by which the
operations are confined to a plane is preferable to one requiring space of three
dimensions, we shall only consider for the present that which has been adopted
for convenience, founded on Newton’s Circle of colours and Mayer and Young’s
Triangle.

Vermilion, ultramarine, and emerald-green, being taken (for convenience) as
standard colours, are conceived to be represented by three points, taken (for con-
venience) at the angles of an equilateral triangle. Any colour compounded of
these three is to be represented by a point found by conceiving masses propor-
tional to the several components of the colour placed at their respective angular
points, and taking the centre of gravity of the three masses. In this way, each

17—2
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132 EXPERIMENTS ON COLOUR, AS PERCEIVED BY THE EYE.

colour will indicate by its position the proportions of the elements of which it is
composed. The total intensity of the colour is to be measured by the whole
number of divisions of V, U, and EG, of which it is composed. This may be
indicated by a number or coefficient appended to the name of the colour, by
which the number of divisions it occupies must be multiplied to obtain its mass
in calculating the results of new combinations.

This will be best explained by an example on the diagram (No. 1). We
have, by experiment (1),

37 V427 U+36 EG=-28 SW +-72 Bk,

To find the position of the resultant neutral tint, we must conceive a mass
of 87 at V, of 27 at U, and of ‘36 at EG, and find the centre of gravity.
This may be done by taking the line UV, and dividing it in the proportion of
‘37 to ‘27 at the point a, where

aV : aU :: 27 : *37.

Then, joining « with EG, divide the joining line in W in the proportion of ‘36
to (-37+-27), W will be the position of the neutral tint required, which is not
white, but 0:28 of white, diluted with 072 of black, which has hardly any effect
whatever, except in decreasing the amount of the other colour. The total in-
tensity of our white paper will be represented by o5 =23'57; so that, whenever
white enters into an equation, the number of divisions must be multiplied by
the coefficient 3:57 before any true results can be obtained.

We may take, as the next example, the method of representing the relation
of pale chrome to the standard colours on our diagram, by making use of ex-
periment (2), in which pale chrome, ultramarine, and emerald-green, produced a
neutral gray. The resulting equation was

33PC+55U+12EG="37 SW+63Bk .....c.oeoevniinnnn. (2).

In order to obtain the total intensity of white, we must multiply the
number of divisions, ‘37, by the proper coefficient, which is 8'57. The result is
132, which therefore measures the total intensity on both sides of the equation.

Subtracting the intensity of 55 U+-12EG, or 67 from 1'32, we obtain ‘65
as the corrected value of ‘33 PC. It will be convenient to use these corrected
values of the different colours, taking care to distinguish them by small initials
instead of capitals.
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Equation (2) then becomes
65 pe+55 U+ 12 EG =132 w.
Hence pc must be situated at a point such that w is the centre of gravity
of ‘65 pc+°55 U+ 12 EG.
To find it, we begin by determining B the centre of gravity of ‘55 U+ 12 EG,

then, joining Bw, the point we are seeking must lie at a certain distance on

the other side of w from c¢. This distance may be found from the proportion,
65 : (55+°12) = Bw : wpe,

which determines the position of pe. The proper coefficient, by which the ob-

served values of PC must be corrected, is gg—, or 1-97.

We have thus determined the position and coefficient of a colour by a single
experiment, in which it was made to produce a neutral tint along with two of
the standard colours. As this may be done with every possible colour, the
method is applicable wherever we can obtain a disc of the proposed colour. In
this way the diagram (No. 1) has been laid down from observations made in
daylight, by a good eye of the ordinary type.

It has been observed that experiments, in which the resultant tint is neutral,
are more accurate than those in which the resulting tint has a decided colour,
as in experiment (3), owing to the effects of accidental colours produced in the
eye in the latter case. These experiments, however, may be repeated till a
very good mean result has been obtained.

But since the elements of every colour have been already fixed by our
previous observations and calculations, the agreement of these results with those
calculated from the diagram forms a test of the correctness of our method.

By experiment (No. 3), made at the same time with (1) and (2), we have

839PC+21 U+ 40 Bk="59 V+ 41 EG ....c.covrneneen. (8).

Now, joining U with pe, and V with EG, the only common point is that
at which they cross, namely y.

Measuring the parts of the line V EG, we find them in the proportion of

58V and ‘42 EG=1007.
Similarly, the line U pc is divided in the proportion
78 pc and 22 U=1'007.
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But 78pc must be divided by 1'97, to reduce it to PC, as was previously
explained. The result of calculation is, therefore,

39 PC+-22 U +-39 Bk =58 V +-42 EG,
the black being introduced simply to fill up the circle.

This result differs very little from that of experiment (3), and it must be
recollected that these are single experiments, made independently of theory, and
chosen at random.

Experiments made at Cambridge, with all the combinations of five colours,
shew that theory agrees with calculation always within 0'012 of the whole,
and sometimes within 0:002. By the repetition of these experiments at the
numerous opportunities which present themselves, the accuracy of the results
may be rendered still greater. As it is, I am not aware that the judgments
of the human eye with respect to colour have been supposed capable of so
severe a test.

Further consideration of the Diagram of Colours.

We have seen how the composition of any tint, in terms of our three
standard colours, determines its position on the diagram and its proper coefficient.
In the same way, the result of mixing any other colours, situated at other
points of the diagram, is to be found by taking the centre of gravity of their
reduced masses, as was done in the last calculation (experiment 3).

We have now to turn our attention to the general aspect of the diagram.

The standard colours, V, U, and EG, occupy the angles of an equilateral
triangle, and the rest are arranged in the order in which they participate in
red, blue, and green, the neutral tint being at the point w within the triangle.
If we now draw lines through w to the different colours ranged round it, we
shall find that, if we pass from one line to another in the order in which they
lie from red to green, and through blue back again to red, the order will be—

Coefficient, Coefficient,
Carmine . . . . . 04 Pale Chrome . . . . 20
Vermalion . . .o . 10 Mixed Green (U C) . . . 04
Red Lead. . . . . 1-3 Brunswick Green . . . 02
Orange Orpiment . . . 1-0 Emerald Green . . . . 1-0
Orange Chrome . . . 16 Verditer Blue . . . . 0-8
Chrome Yellow . . . 15 Prussian Blue . . . . 01
Gamboge . . . . . 1-8 Ultramarine . . . . 1-0
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It may be easily seen that this arrangement of the colours corresponds to
that of the prismatic spectrum ; the only difference being that the spectrum
is deficient in those fine purples which lie between ultramarine and vermilion,
and which are easily produced by mixture. The experiments necessary for deter-
mining the exact relation of this list to the lines in the spectrum are not yet
completed.

If we examine the colours represented by different points in one of these
lines through w, we shall find the purest and most decided colours at its outer
extremity, and the faint tints approaching to neutrality nearer to w.

If we also study the coeflicients attached to each colour, we shall find that
the brighter and more luminous colours have higher numbers for their coefficients
than those which are dark.

In this way, the qualities which we have already distinguished as hue, tint,
and shade, are represented on the diagram by angular position with respect to w,
distance from w, and coefficient; and the relation between the two methods of
reducing the elements of colour to three becomes a matter of geometry.

Theory of the Perception of Colour.

Opticians have long been divided on this point; those who trusted to
popular notions and their own impressions adopting some theory of three primary
colours, while those who studied the phenomena of light itself proved that no
such theory could explain the constitution of the spectrum. Newton, who was
the first to demonstrate the actual existence of a series of kinds of light,
countless in number, yet all perfectly distinct, was also the first to propound
a method of calculating the effect of the mixture of various coloured light;
and this method was substantially the same as that which we have just
verified. It is true, that the directions which he gives for the construction
of his circle of colours are somewhat arbitrary, being probably only intended
as an indication of the general nature of the method, but the method itself
is mathematically reducible to the theory of three elements of the colour-
sensation®,

* See Note ITI. For a confirmation of Newton’s analysis of Light, see Helmholtz, Pogg, Ann,
1852; and Phil. Mag. 1852, Part 11,
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Young, who made the next great step in the establishment of the theory
of light, seems also to have been the first to follow out the necessary conse-
quences of Newton’s suggestion on the mixture of colours. He saw that, since
this triplicity has no foundation in the theory of light, its cause must be looked
for in the constitution of the eye; and, by one of those bold assumptions
which sometimes express the result of speculation better than any cautious
trains of reasoning, he attributed it to the existence of three distinct modes
of sensation in the retina, each of which he supposed to be produced in different
degrees by the different rays, These three elementary effects, according to his
view, correspond to the three sensations of red, green, and violet, and would
separately convey to the sensorium the sensation of a red, a green, and a violet
picture; so that by the superposition of these pictures, the actual variegated
world is represented*.

In order fully to understand Young’s theory, the function which he
attributes to each system of nerves must be carefully borne in mind. Each nerve
acts, not, as some have thought, by conveying to the mind the knowledge of the
length of an undulation of light, or of its periodic time, but simply by being
more or less affected by the rays which fall on it. The sensation of each
elementary nerve is capable only of increase and diminution, and of no other
change. We must also observe, that the nerves corresponding to the red
sensation are affected chiefly by the red rays, but in some degree also by those
of every other part of the spectrum ; just as red glass transmits red rays freely,
but also suffers those of other colours to pass in smaller quantity.

This theory of colour may be illustrated by a supposed case taken from
the art of photography. Let it be required to ascertain the colours of a land-
scape, by means of impressions taken on a preparation equally sensitive to rays of
every colour.

Let a plate of red glass be placed before the camera, and an impression
taken. The positive of this will be transparent wherever the red light has been
abundant in the landscape, and opaque where it has been wanting. Let it now

be put in a magic lantern, along with the red glass, and a red picture will be
thrown on the screen.

Let this operation be repeated with a green and a violet glass, and, by

* Young’s Lectures, p. 345, Kelland’s Edition. See also Helmholtz's statement of Young’s Theory,
in his Paper referred to in Note I.; and Herschel’s Light, Art. 518.
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means of three magic lanterns, let the three images be superimposed on the
screen. The colour of any point on the screen will then depend on that of the
corresponding point of the landscape; and, by properly adjusting the intensities
of the lights, &c., a complete copy of the landscape, as far as visible colour is
concerned, will be thrown on the screen. The only apparent difference will be,
that the copy will be more subdued, or less pure in tint, than the original
Here, however, we have the process performed twice—first om the screen, and
then on the retina.

This illustration will shew how the functions which Young attributes to the
three systems of nerves may be imitated by optical apparatus. It is therefore
unnecessary to search for any direct connection between the lengths of the
undulations of the various rays of light and the sensations as felt by us, as
the threefold partition of the properties of light may be effected by physical
means. The remarkable correspondence between the results of experiments on
different individuals would indicate some anatomical contrivance identical in all.
As there is little hope of detecting it by dissection, we may be content at
present with any subsidiary evidence which we may possess. Such evidence is
furnished by those individuals who have the defect of vision which was
described by Dalton, and which is a variety of that which Dr G. Wilson has
lately investigated, under the name of Colour-Blindness.

Testvmony of the Colour-Blind with respect to Colour.

Dr George Wilson has described a great number of cases of colour-
blindness, some of which involve a general indistinctness in the appreciation
of colour, while in others, the errors of judgment are plainly more numerous
in those colours which approach to red and green, than among those which
approach to blue and yellow. In these more definite cases of colour-blindness,
the phenomena can be tolerably well accounted for by the hypothesis of an
insensibility to red light; and this is, to a certain extent, confirmed by the
fact, that red objects appear to these eyes decidedly more obscure than to
ordinary eyes. But by experiments made with the pure spectrum, it appears
that though the red appears much more obscure than other colours, it is not
wholly invisible, and, what is more curious, resembles the green more than
any other colour. The spectrum to them appears faintly luminous in the red;

VOL. 1L 18
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bright yellow from orange to yellow, bright but not coloured from yellow-
green to blue, and then strongly coloured in the extreme blue and violet,
after which it seems to approach the neutral obscure tint of the red. It is
not easy to see why an insensibility to red rays should deprive the green
rays, which have no optical connection with them, of their distinctive appearance.
The phenomena seem rather to lead to the conclusion that it is the red
sensation which is wanting, that is, that supposed system of nerves which is
affected in various degrees by all light, but chiefly by red. We have fortunately
the means of testing this hypothesis by numerical results.

Of the subjects of my experiments at Cambridge, four were decided cases
of colour-blindness. Of these two, namely, Mr R. and Mr S., were not
sufficiently critical in their observations to afford any results consistent within
10 divisions of the colour-top. The remaining two, Mr N. and Mr X., were
as consistent in their observations as any persons of ordinary vision can be,
while the results shewed all the more clearly how completely their sensations
must differ from ours.

The method of experimenting was the same as that adopted with ordinary
eyes, except that in these cases the operator can hardly influence the result
by yielding to his own impressions, as he has no perception whatever of the
similarity of the two tints as seen by the observer. The questions which he
must ask are two, Which circle appears most blue or yellow? Which appears
lightest and which darkest? By means of the answers to these questions he
must adjust the resulting tints to equality in these respects as it appears to
the observer, and then ascertain that these tints now present no difference of
colour whatever to his eyes. The equations thus obtained do not require five
colours including black, but four only. For instance, the mean of several obser-
vations gives—

19 G405 B+76 Bk=100R......c.cocrvvrrreennne. (4).

[In these experiments R, B, G, Y, stand for red, blue, green, and yellow
papers prepared by Mr D. R. Hay. I am not certain that they are identical
with his standard colours, but I believe so. Their relation to vermilion, ultra-
marine, and emerald-green is given in diagram (1). Their relations to each other
are very accurately given in diagram (2).]

It appears, then, that the dark blue-green of the left side of the equation
is equivalent to the full red of the right side.
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Hence, if we divide the line BG in the proportion 19 to 5 at the point S,
and join RB, the tint at B will differ from that at R (to the colour-blind)
only in being more brilliant in the proportion of 100 to 24, and all inter-
mediate tints on the line RB will appear to them of the same hue, but
of intermediate intensities.

Now, if we take a point D, so that RD is to RB in the proportion of
24 to 100—24, or 76, the tint of D, if producible, should be invisible to
the colour-blind. D, therefore, represents the pure sensation which is unknown
to the colour-blind, and the addition of this sensation to any others cannot
alter it in their estimation. It is for them equivalent to black.

Hence, if we draw lines through D in different directions, the colours
belonging to any line ought to differ only in intensity as seen by them, so
that one of them may be reduced to the other by the addition of black
only. If we draw DW and produce it, all colours on the upper side of DW
will be varieties of blue, and those on the under side varieties of yellow, so
that the line DW is a boundary line between their two kinds of colour, blue
and yellow being the names by which they call them.

The accuracy of this theory will be evident from the comparison of the
experiments which I had an opportunity of making on Mr N. and Mr X. with
each other, and with measurements taken from the diagram No. 2, which was
copstructed from the observations of ordinary eyes only, the point D alone
being ascertained from a series of observations by Mr N.

Taking the point 7y, between R and B, it appears, by measurement of the
lines Ry and By, that y corresponds to

‘07 B+-93 R.

By measurement of Wy and Dy, and correction by means of the coefficient
of W, and calling D black in the colour-blind language, ¥ corresponds to

105 W + 895 Bk.

Therefore

By measurement ..................... ‘93 R+07 B="105 W +-895 Bk

By observation N. & X. together ‘94 R+°06 B=10 W4:90 Bk t...... (5).
By X. alone .....oooeiiiiii. ‘93 R+07 B="10 W+-90 Bk

The agreement here is as near as can be expected.
18—2
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By a similar calculation with respect to the point 8, between B and G,

By measurement ............... 43 B4+-57 G=335 W +'665 Bk
Observed by N. and X. ...... 41 B4+59 G=34 W+'66 Bk :...... (6).
By X. alone .......cceviiinnnnn. 42 B+58 G="32 W+'68 Bk

We may also observe, that the line GD crosses RY. At the point of inter-
section we have—

By calculation .......ccoevieiniiniin ‘87 R+°13 Y=-34 G+66 Bk

Observed by N. and X. ......... ‘86 R+-14 Y="40 G+60 Bk
N > S 84 R+16 Y=31 G+-69 Bk [ ()
” " DGR ‘90 R+°10 Y=-27 G+'73 Bk

Here observations are at variance, owing to the decided colours produced
affecting the state of the retina, but the mean agrees well with calculation.

Drawing the line BY, we find that it cuts lines through D drawn to every
colour. Hence all colours appear to the colour-blind as if composed of blue
and yellow. By measurement on the diagram, we find for red

Measured ... ...°138 Y+°123 B+:749 Bk=100 R}

Observed by N....'15 Y+'11 B+74 Bk=100R}......... (8).
X....718 Y+11 B+76 Bk=100 R
For green we have in the same way—
Measured ... ...°705 Y+°295 B="95 G+-05 Bk
Observed by N.... ‘70 Y+'30 B=86 G+ 14 Bk}........... (9)-
. X...."70 Y+'30 B='83G+'17 Bk
For white—
Measured ... ... 407 Y+°593 B="326 W +674 Bk

Observed by N.... 40 Y+'60 B=:'33 W+'67 Bk
X....44 Y+'56 B=-33 W++67 Bk

The accuracy of these results shews that, whether the hypothesis of the
want of one element out of three necessary to perfect vision be actually true
or not, it affords a most trustworthy foundation on which to build a theory
of colour-blindness, as it expresses completely the observed facts of the case.
They also furnish us with a datum for our theory of perfect vision, namely,
the point D, which points out the exact nature of the colour-sensation, which
must be added to the colour-blind eye to render it perfect. I am not aware
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of any method of determining by a legitimate process the nature of the other
two sensations, although Young’s reasons for adopting something like green and
violet appear to me worthy of attention.

The only remaining subject to which I would call the attention of the
Society is the effect of coloured glasses on the colour-blind. Although they can-
not distinguish reds and greens from varieties of gray, the transparency of red
and green glasses for those kinds of light is very different. Hence, after finding
a case such as that in equation (4), in which a red and a green appear iden-
tical, on looking through a red glass they see the red clearly and the green
obscurely, while through a green glass the red appears dark and the green light.

By furnishing Mr X. with a red and a green glass, which he could dis-
tinguish only by their shape, I enabled him to make judgments in previously
doubtful cases of colour with perfect certainty. I have since had a pair of
spectacles constructed with one eye-glass red and the other green. These Mr X,
intends to use for a length of time, and he hopes to acquire the habit of diseri-
minating red from green tints by their different effects on his two eyes. Though
he can never acquire our sensation of red, he may then discern for himself what
things are red, and the mental process may become so familiar to him as to act
unconsciously like a new sense.

In one experiment, after looking at a bright light, with a red glass over one
eye and a green over the other, the two tints in experiment (4) appeared to him
altered, so that the outer circle was lighter according to one eye, and the inner
according to the other. As far as I could ascertain, it appeared as if the eye
which had used the red glass saw the red circle brightest. This result, which
seems at variance with what might be expected, I have had no opportunity of
verifying.

This paper is already longer than was originally intended. For further
information I would refer the reader to Newton’s Opticks, Book 1. Part 1r, to
Young’s Lectures on Natural Philosophy, page 345, to Mr D. R. Hay’s works on
Colours, and to Professor Forbes on the  Classification of Colours” (Phil. Mag.,
March, 1849).

The most remarkable paper on the subject is that of M. Helmholtz, in the
Philosophical Magazine for 1852, in which he discusses the different theories of
primary colours, and describes his method of mixing the colours of the spectrum.
An examination of the results of M. Helmholtz with reference to the theory
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of three elements of colour, by Professor Grassmann, is translated in the Phal.
Mag., April, 1854.

References to authors on colour-blindness are given in Dr G. Wilson’s papers
on that subject. A valuable Letter of Sir J. F. W. Herschel to Dalton on his
peculiarity of vision, is to be found in the Iife of Dalton by Dr Henry.

I had intended to describe some experiments on the propriety of the method
of mixing colours by rotation, which might serve as an extension of Mr Swan’s
experiments on instantaneous impressions on the eye. These, together with the
explanation of some phenomena which seem to be at variance with the theory of
vision here adopted, must be deferred for the present. On some future occasion,
I hope to be able to connect these simple experiments on the colours of pigments
with others in which the pure hues of the spectrum are used. I have already
constructed a model of apparatus for this purpose, and the results obtained are
sufficiently remarkable to encourage perseverance.

Nore L
On different Methods of Exhibiting the Mixtures of Colours.

(1) Mechanical Muxture of Coloured Powders.

By grinding coloured powders together, the differently-coloured particles may
be so intermingled that the eye cannot distinguish the colours of the separate
powders, but receives the impression of a uniform tint, depending on the nature
and proportions of the pigments used. In this way, Newton mixed the powders
of orpiment, purple, bise, and wiride ris, so as to form a gray, which, in sun-
light, resembled white paper in the shade. (Newton’s Opticks, Book 1. Part 11,
Exp. xv.) This method of mixture, besides being adopted by all painters, has
been employed by optical writers as a means of obtaining numerical results.
The specimens of such mixtures given by D. R. Hay in his works on Colour,
and the experiments of Professor J. D. Forbes on the same subject, shew the
importance of the method as a means of classifying colours. There are two
objections, however, to this method of exhibiting colours to the eye. When
two powders of unequal fineness are mixed, the particles of the finer powder
cover over those of the coarser, so as to produce more than their due effect
in influencing the resultant tint. For instance, a small quantity of lamp-black,
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mixed with a large quantity of chalk, wiil produce a mixture which is nearly
black. Although the powders generally used are not so different in this respect
as lamp-black and chalk, the results of mixing given weights of any coloured
powders must be greatly modified by the mode in which these powders have
been prepared.

Again, the light which reaches the eye from the surface of the mixed pow-
ders consists partly of light which has fallen on one of the substances mixed
without being modified by the other, and partly of light which, by repeated
reflection or transmission, has been acted on by both substances. The colour of
these rays will not be a mixture of those of the substances, but will be the
result of the absorption due to both substances successively. Thus, a mixture of
yellow and blue produces a neutral tint tending towards red, but the remainder
of white light, after passing through both, is green; and this green is generally
sufficiently powerful to overpower the reddish gray due to the separate colours
of the substances mixed. This curious result has been ably investigated by
Professor Helmholtz of Koénigsberg, in his Memoir on the Theory of Compound
Colours, a translation of which may be found in the Annals of Philosophy for
1852, Part 2.

(2) Mixture of differently-coloured Beams of Light by Superposition
on an Opague Screen.

When we can obtain light of sufficient intensity, this method produces the
most beautiful results. The best series of experiments of this kind are to be
found in Newton’s Opticks, Book 1. Part 1. The different arrangements for
mixing the rays of the spectrum on a screen, as described by Newton, form
a very complete system of combinations of lenses and prisms, by which almost
every possible modification of coloured light may be produced. The principal
objections to the use of this method are—(1) The difficulty of obtaining a con-
stant: supply of uniformly intense light; (2) The uncertainty of the effect of
the position of the screen with respect to the incident beams and the eye of
the observer; (3) The possible change in the colour of the incident light due
to the fluorescence of the substance of the screen. Professor Stokes has found
that many substances, when illuminated by homogeneous light of one refrangi-
bility, become themselves luminous, so as to emit light of lower refrangibility.
This phenomenon must be carefully attended to when screens are used to exhibit
light.
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(8) Umion of Coloured Beams by a Prism so as to form one Beam.

The mode of viewing the beam of light directly, without first throwing it
on a screen, was not much used by the older experimenters, but it possesses
the advantage of saving much light, and admits of examining the rays before
they have been stopped in any way. In Newton’s 11th proposition of the 2nd
Book, an experiment is described, in which a beam is analysed by a prism,
concentrated by a lens, and recombined by another prism, so as to form a beam
of white light similar to the incident beam. By stopping the coloured rays at
the lens, any proposed combination may be made to pass into the emergent
beam, where it may be received directly by the eye, or on a screen, at pleasure.

The experiments of Helmholtz on the colours of the spectrum were made
with the ordinary apparatus for directly viewing the pure spectrum, two oblique
slits crossing one another being employed to admit the light instead of one
vertical slit. Two pure spectra were then seen crossing each other, and so
exhibiting at once a large number of combinations. The proportions of these
combinations were altered by varying the inclination of the slits to the plane of
refraction, and in this way a number of very remarkable results were obtained,—
for which see his Memoir, before referred to.

In experiments of the same kind made by myself in August 1852 (inde-
pendently of M. Helmholtz), I used a combination of three moveable vertical
slits to admit the light, instead of two cross slits, and observed the compound
ray through a slit made in a screen on which the pure spectrum is formed.
In this way a considerable field of view was filled with the mixed light, and
might be compared with another part of the field illuminated by light proceeding
from a second system of slits, placed below the first set. The general character
of the results agreed with those of M. Helmholtz. The chief difficulties seemed
to arise from the defects of the optical apparatus of my own eye, which ren-
dered apparent the compound nature of the light, by analysing it as a prism
or an ordinary lens would do, whenever the lights mixed differed much in
refrangibility.
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(4) Union of two beams by means of a transparent surface, which reflects
the first and transmits the second.

The simplest experiment of this kind is described by M. Helmholtz. He
places two coloured wafers on a table, and then, taking a piece of transparent
glass, he places it between them, so that the reflected image of one apparently
coincides with the other as seen through the glass. The colours are thus mixed,
and, by varying the angle of reflection, the relative intensities of the reflected
and transmitted beams may be varied at pleasure.

In an instrument constructed by myself for photometrical purposes two re-
flecting plates were used. They were placed in a square tube, so as to polarize
the incident light, which entered through holes in the sides of the tubes, and
was reflected in the direction of the axis. In this way two beams oppositely
polarized were mixed, either of which could be coloured in any way by coloured
glasses placed over the holes in the tube. By means of a Nicol's prism placed
at the end of the tube, the relative intensities of the two colours as they
entered the eye could be altered at pleasure,

(5) Union of two coloured beams by means of a doubly-refracting Prism.

I am not aware that this method has been tried, although the opposite
polarization of the emergent rays is favourable to the variation of the experiment.

(6) Successive presentation of the different Colours to the Retina.

It has long been known, that light does not produce its full effect on the
eye at once, and that the effect, when produced, remains visible for some time
after the light has ceased to act. In the case of the rotating disc, the various
colours become indistinguishable, and the disc appears of a uniform tint, which
is in some sense the resultant of the colours so blended. This method of com-
bining colours has been used since the time of Newton, to exhibit the results
of theory. The experiments of Professor J. D. Forbes, which I witnessed in
1849, first encouraged me to think that the laws of this kind of mixture might
be discovered by special experiments. After repeating the well-known experiment
in which a series of colours representing those of the spectrum are combined

VOL. L. 19
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to form gray, Professor Forbes endeavoured to form a neutral tint, by the
combination of three colours only. TFor this purpose, he combined the three
so-called primary colours, red, blue, and yellow, but the resulting tint could
not be rendered neutral by any combination of these colours; and the reason
was found to be, that blue and yellow do not make green, but a pinkish tint,
when neither prevails in the combination. It was plain, that no addition of
red to this, could produce a neutral tint.

This result of mixing blue and yellow was, I believe, not previously known.
It directly contradicted the received theory of colours, and seemed to be at
variance with the fact, that the same blue and yellow paint, when ground
together, do make green. Several experiments were proposed by Professor Forbes,
in order to eliminate the effect of motion, but he was not then able to under-
take them. One of these consisted in viewing alternate stripes of blue and
yellow, with a telescope out of focus. I have tried this, and find the resultant
tint pink as before*. I also found that the beams of light coloured by trans-
mission through blue and yellow glasses appeared pink, when mixed on a screen,
while a beam of light, after passing through both glasses, appeared green. By
the help of the theory of absorption, given by Herschelt, I made out the
complete explanation of this phenomenon. Those of pigments were, I think, first
explained by Helmholtz in the manner above referred tof.

It may still be asked, whether the effect of successive presentation to the
eye is identical with that of simultaneous presentation, for if there is any action
of the one kind of light on the other, it can take place only in the case of
simultaneous presentation. An experiment tending to settle this point is recorded
by Newton (Book 1. Part 1., Exp. 10). He used a comb with large teeth to
intercept various rays of the spectrum. When it was moved slowly, the various
colours could be perceived, but when the speed was increased the result was
perfect whiteness. For another form of this experiment, see Newton'’s Sixzth
Letter to Oldenburg (Horsley’s Edition, Vol. 1v., page 335).

In order more fully to satisfy myself on this subject, I took a disc in
which were cut a number of slits, so as to divide it into spokes. In a plane,
nearly passing through the axis of this disc, I placed a blue glass, so that one

* See however Encyc. Metropolitana, Art. ¢ Light,” section 502. T Ib. sect. 516.

1 I have lately seen a passage in Moigno’s Cosmos, stating that M. Platean, in 1819, had obtained
gray by whirling together gamboge and Prussian blue. Correspondance Math. et Phys. de M. Quetelet,
Vol. v, p. 221
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half of the disc might be seen by transmitted light—blue, and the other by
reflected light—white. In the course of the reflected light I placed a yellow
glass, and in this way I had two nearly coincident images of the slits, one
yellow and one blue. By turning the disc slowly, I observed that in some
parts the yellow slits and the blue slits appeared to pass over the field alter-
nately, while in others they appeared superimposed, so as to produce alternately
their mixture, which was pale pink, and complete darkness. As long as the
disc moved slowly I could perceive this, but when the speed became great, the
whole field appeared uniformly coloured pink, so that those parts in which the
colours were seen successively were indistinguishable from those in which they
were presented together to the eye.

Another form in which the experiment may be tried requires only the
colour-top above described. The disc should be covered with alternate sectors
of any two colours, say red and green, disposed alternately in four quadrants.
By placing a piece of glass above the top, in the plane of the axis, we make
the image of one half seen by reflection coincide with that of the other seen
by transmission. It will then be seen that, in the diameters of the top which
are parallel and perpendicular to the plane of reflection, the transmitted green
coincides with the reflected green, and the transmitted red with the reflected
red, so that the result is always either pure red or pure green. But in the
diameters intermediate to these, the transmitted red coincides with the reflected
green, and vice versa, so that the pure colours are never seen, but only their
mixtures. As long as the top is spun slowly, these parts of the disc will
appear more steady in colour than those in which the greatest alternations
take place; but when the speed is sufficiently increased, the disc appears per-
fectly uniform in colour. From these experiments it appears, that the apparent
mixture of colours is not due to a mechanical superposition of vibrations, or

to any mutual action of the mixed rays, but to some cause residing in the
constitution of the apparatus of vision.

(7)  Presentation of the Colours to be mixed one to each Eye.

This method is said not to succeed with some people; but I have always
found that the mixture of colours was perfect, although it was difficult to con-
ceive the ohjects seen by the two eyes as identical. In using the spectacles,

19—2
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of which one eye is green and the other red, I have found, when looking at
an arrangement of green and red papers, that some looked metallic and others
transparent. This arises from the very different relations of brightness of the
two colours as seen by each eye through the spectacles, which suggests the false
conclusion, that these differences are the result of reflection from a polished
surface, or of light transmitted through a clear one.

Nore IT.
Results of Expervments with Mr Hay's Papers at Cambridge, November, 1854.

The mean of ten observations made by six observers gave
‘449 R+299 G+°252 B="224 W+-776 Bk .....eouvnenen (1).
696 R+304 G="181 B+-327 Y 4492 Bk .c.ceenenennnn, (2).
These two equations served to determine the positions of white and yellow
in diagram No. 2. The coefficient of W is 4'447, and that of yellow 2°506.
From these data we may deduce three other equations, either by calcu-
lation, or by measurement on the diagram (No. 2).

Eliminating green from the equations, we find
565 B+435 Y =307 R+ 304 W +889 Bk...ceourennn(3).
The mean of three observations by three different observers gives
573 B+477 Y =313 R+°297 W 4390 Bk.
Errors of calculation —-008 B+-008 Y —006 R+ 007 W —-001 Bk.

The point on the diagram to which this equation corresponds is the intersec-
tion of the lines BY and RW, and the resultant tint is a pinkish-gray.

Eliminating red from the equations, we obtain

Calculation 533 B+°150 G+ 317 Y="337 W + 663 Bk ]
By 10 observations 537 B+146 G+'317 Y="337 W +-663 Bk :...... (4).
Errors —-004 +-004 — — — J

Eliminating blue 660 R+340 G=-218 Y +108 W + 682 Bk )
By 5 observations ‘672 R+°328 G=-224 Y+094 W+672 Bk +...... (5).
Errors —-012 +-012 -'006 +°014 +°008
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Nore III.
On the Theory of Compound Colours.

Newton’s theorem on the mixture of colours is to be found in his Opticks,
Book 1., Part 11., Prop. vi

In o mizture of primary colours, the quantity and quality of each being
given, to know the colour of the compound.

He divides the circumference of a circle into parts proportional to the seven
musical intervals, in accordance with his opinion of the divisions of the spectrum.
He then conceives the colours of the spectrum arranged round the circle, and at
the centre of gravity of each of the seven arcs he places a little circle, the
area of which represents the number of rays of the corresponding colour which
enter into the given mixture. He takes the centre of gravity of all these circles
to represent the colour formed by the mixture. The hue is determined by
drawing a line through the centre of the circle and this point to the circum-
ference. The position of this line points out the colour of the spectrum which
the mixture most resembles, and the distance of the resultant tint from the
centre determines the fulness of its colour.

Newton, by this construction (for which he gives no reasons), plainly shews
that he considered it possible to find a place within his circle for every possible
colour, and that the entire nature of any compound colour may be known from
its place in the circle. It will be seen that the same colour may be compounded
from the colours of the spectrum in an infinite variety of ways. The apparent
identity of all these mixtures, which are optically different, as may be shewn by
the prism, implies some law of vision not explicitly stated by Newton. This
law, if Newton’s method be true, must be that which I have endeavoured to
establish, namely, the threefold nature of sensible colour.

With respect to Newton’s construction, we now know that the proportions
of the colours of the spectrum vary with the nature of the refracting medium.
The only absolute index of the kind of light is the time of its vibration. The
length of its vibration depends on the medium in which it is; and if any pro-
portions are to be sought among the wave-lengths of the colours, they must
be determined for those tissues of the eye in which their physical effects are
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supposed to terminate. It may be remarked, that the apparent colour of the
spectrum changes most rapidly at three points, which lie respectively in the
yellow, between blue and green, and between violet and blue. The wave-lengths
of the corresponding rays 4n water are in the proportions of three geometric
means between 1 and 2 very nearly. This result, however, is not to be con-
sidered established, unless confirmed by better observations than mine.

The only safe method of completing Newton’s construction is by an exami-
nation of the colours of the spectrum and their mixtures, and subsequent
calculation by the method used in the experiments with coloured papers. In
this way I hope to determine the relative positions in the colour-diagram of
every ray of the spectrum, and its relative intensity in the solar light. The
spectrum will then form a curve not necessarily circular or even re-entrant, and
its peculiarities so ascertained may form the foundation of a more complete
theory of the colour-sensation.

On the relation of the pure rays of the Spectrum to the three assumed Elementary
Sensations.

If we place the three elementary colour-sensations (which we may call, after
Young, red, green, and violet) at the angles of a triangle, all colours which
the eye can possibly perceive (whether by the action of light, or by pressure,
disease, or imagination) must be somewhere within this triangle, those which lie
farthest from the centre being the fullest and purest colours. Hence the colours
which lie at the middle of the sides are the purest of their kind which the
eye can see, although not so pure as the elementary sensations.

It is natural to suppose that the pure red, green, and violet rays of the
spectrum produce the sensations which bear their names in the highest purity.
But from this supposition it would follow that the yellow, composed of the red
and green of the spectrum, would be the most intense yellow possible, while
it is the result of experiment, that the yellow of the spectrum itself is much
more full in colour. Hence the sensations produced by the pure red and green
rays of the spectrum are not the pure sensations of our theory. Newton has
remarked, that no two colours of the spectrum produce, when mixed, a colour
equal in fulness to the intermediate colour. The colours of the spectrum are
all more intense than any compound ones. Purple is the only colour which
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must be produced by combination. The experiments of Helmholtz lead to the
same conclusion; and hence it would appear that we can find no part of the
spectrum which produces a pure sensation.

An additional, though less satisfactory evidence of this, is supplied by the
observation of the colours of the spectrum when excessively bright. They then
appear to lose their peculiar colour, and to merge into pure whiteness. This
is probably due to the want of capacity of the organ to take in so strong an
impression ; one sensation becomes first saturated, and the other two speedily
follow it, the final effect being simple brightness.

From these facts I would conclude, that every ray of the spectrum is capable
of producing all three pure sensations, though in different degrees. The curve,
therefore, which we have supposed to represent the spectrum will be quite within
the triangle of colour. All natural or artificial colours, being compounded of
the colours of the spectrum, must lie within this curve, and, therefore, the colours
corresponding to those parts of the triangle beyond this curve must be for ever
unknown to us. The determination of the exact nature of the pure sensations,
or of their relation to ordinary colours, is therefore impossible, unless we can
prevent them from interfering with each other as they do. It may be possible
to experience sensations more pure than those directly produced by the spec-
trum, by first exhausting the sensibility to one colour by protracted gazing, and
then suddenly turning to its opposite. But if, as I suspect, colour-blindness be
due to the absence of one of these sensations, then the point D in diagram (2),
which indicates their absent sensation, indicates also our pure sensation, which
we may call red, but which we can never experience, because all kinds of
light excite the other sensations.

Newton has stated one objection to his theory, as follows:—* Adlso, if only
two of the primary colours, which wn the circle are opposite to one another, be
mized i an equal proportion, the point Z” (the resultant tint) “shall fall wupon
the centre O (neutral tint); “and yet the colour compounded of these two shall
not be perfectly white, but some faint anonymous colour. For I could never yet, by
mixing only two primary colowrs, produce a perfect white.” This is confirmed by
the experiments of Helmholtz; who, however, has succeeded better with some
pairs of colours than with others.

In my experiments on the spectrum, I came to the same result; but it
appeared to me that the very peculiar appearance of the neutral tints produced
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was owing to some optical effect taking place in the transparent part of the
eye on the mixture of two rays of very different refrangibility. Most eyes are
by no means achromatic, so that the images of objects illuminated with mixed
light of this kind appear divided into two different colours; and even when
there is no distinct object, the mixtures become in some degree analysed, so as
to present a very strange, and certainly “anonymous” appearance.

Additional Note on the more recent expervments of M. Helmholtz*.

In his former memoir on the Theory of Compound Colours+, M. Helmholtz
arrived at the conclusion that only one pair of homogeneous colours, orange-
yellow and indigo-blue, were strictly complementary. This result was shewn by
Professor Grassmann] to be at variance with Newton’s theory of compound
colours; and although the reasoning was founded on intuitive rather than
expeumental truths, it pointed out the tests by which Newton’s theory must
be verified or overthrown. In applying these tests, M. Helmholtz made use of
an apparatus similar to that described by M. Foucault§, by which a screen of
white paper is illuminated by the mixed light. The field of mixed colour is
much larger than in M. Helmholtz’s former experiments, and the facility of
forming combinations is much increased. In this memoir the mathematical theory
of Newton’s circle, and of the curve formed by the spectrum, with its possible
transformations, is completely stated, and the form of this curve is in some
degree indicated, as far as the determination of the colours which lie on oppo-
site sides of white, and of those which lie opposite the part of the curve which
is wanting. The colours between red and yellow-green are complementary to
colours between blue-green and violet, and those between yellow-green and blue-
green have no homogeneous complementaries, but must be neutralized by various
hues of purple, 7.e., mixtures of red and violet. The names of the complementary
colours, with their wave-lengths in air, as deduced from Fraunhofer'’s measure-
ments, are given in the following table :—

* Poggendorfl’s Annalen, Bd. xcrv. (I am indebted for the perusal of this Memoir to Professor
Stokes.) :
+ Ib, Bd. ixxxvii. Annals of Philosophy, 1852, Part 11
+ Ib. Bd. Lxxxix. Ann. Phil., 1854, April
§ Ib. Bd, rxxxvis. Moigno, Cosmos, 1853, Tom. 11, p. 232.
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Comple: t Ratio of
Colour Wave-length ’ 1())011;13;3 o Wave-length wav:-llengths
Red . 2425 Green-blue . . 1818 1-334
Orange . . 2244 Blue . , 1809 1-240
Gold-yellow 2162 Blue . 1793 1-206
Gold yellow 2120 Blue . . . 1781 1-190
Yellow . 2095 Indigo-blue 1716 1-221
Yellow . 2085 Indigo-blue 1706 1-222
Green-yellow 2082 Violet 1600 ~ 1-301
(The wave-lengths are expressed in millionths of a Paris inch.)

(In order to reduce these wave-lengths to their actual lengths in the eye,
each must be divided by the index of refraction for that kind of light in the
medium in which the physical effect of the vibrations is supposed to take place.)

Although these experiments are not in themselves sufficient to give the com-
plete theory of the curve of homogeneous colours, they determine the most
important element of that theory in a way which seems very accurate, and I
cannot doubt that when a philosopher who has so fully pointed out the im-
portance of general theories in physics turns his attention to the theory of
sensation, he will at least establish the principle that the laws of sensation can
be successfully investigated only after the corresponding physical laws have been
ascertained, and that the connection of these two kinds of laws can be appre-
hended only when the distinction between them is fully recognised.

Nore IV.

Description of the Figures. Plate I.

No. 1. is the colour-diagram already referred to, representing, on Newton’s principle, the relations of
different coloured papers to the three standard colours—vermilion, emerald-green, and ultra-
marine. The initials denoting the colours are explained in the list at page 276, and the
numbers belonging to them are their coefficients of intensity, the use of which has been
explained. The initials H.R.,, H.B., and H.G., represent the red, blue and green papers
of Mr Hay, and serve to connect this diagram with No. (2), which takes these colours for
its standards,

VOL, 1. 20
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No. 2. represents the relations of Mr Hav's red, blue, green, white, and yellow papers, as deter-
mined by a large number of experiments at Cambridge.—(See Note IL). The use of the
point D, in calculating the results of colour-blindness, is explained in the Paper.

Fig. 3. represents a disc of the larger size, with its slit.
Fig. 4. shows the mode of combining two dises of the smaller size,

Fig. b. shows the combination of discs, as placed on the top, in the first experiment described
in the Paper.

Fig. 6. represents the method of spinning the top, when speed is required.

The last four figures are half the actual size.

Colour-tops of the kind used in these experiments, with paper dises of the colours whose relations
are rvepresented in No. 1, are to be had of Mr J. M. Bryson, Optician, Edinburgh.
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[From the Transactions of the Cambridge Philosophical Society, Vol. X. Part 1]

VIII. On Faraday's Lines of Force.

[Read Dec. 10, 1855, and Feb. 11, 1856.]

THE present state of electrical science seems peculiarly unfavourable to specu-
lation. The laws of the distribution of electricity on the surface of conductors
have been analytically deduced from experiment; some parts of the mathematical
theory of magnetism are established, while in other parts the experimental data
are wanting; the theory of the conduction of galvanism and that of the mutual
attraction of conductors have been reduced to mathematical formule, but have
not fallen into relation with the other parts of the science. No electrical theory
can now be put forth, unless it shews the connexion not only between electricity
at rest and current electricity, but between the attractions and inductive effects
of electricity in both states. Such a theory must accurately satisfy those laws,
the mathematical form of which is known, and must afford the means of calcu-
lating the effects in the limiting cases where the known formulse are inapplicable.
In order therefore to appreciate the requirements of the science, the student
must make himself familiar with a considerable body of most intricate mathe-
matics, the mere retention of which in the memory materially interferes with
further progress. The first process therefore in the effectual study of the science,
must be one of simplification and reduction of the results of previous investiga-
tion to a form in which the mind can grasp them. The results of this simplifi-
cation may take the form of a purely mathematical formula or of a physical
hypothesis. In the first case we entirely lose sight of the phenomena to be
explained ; and though we may trace out the consequences of given laws, we
can never obtain more extended views of the connexions of the subject. If,
on the other hand, we adopt a physical hypothesis, we see the phenomena only
through a medium, and are liable to that blindness to facts and rashness in

20—2
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156 ON FARADAY'S LINES OF FORCE,

assumption which a partial explanation encourages. We must therefore discover
some method of investigation which allows the mind at every step to lay hold
of a clear physical conception, without being committed to any theory founded
on the physical science from which that conception is borrowed, so that it is
neither drawn aside from the subject in pursuit of analytical subtleties, nor carried
beyond the truth by a favourite hypothesis.

In order to obtain physical ideas without adopting a physical theory we must
make ourselves familiar with the existence of physical analogies. By a physical
analogy I mean that partial similarity between the laws of one science and those
of another which makes each of them illustrate the other. Thus all the mathe-
matical sciences are founded on relations between physical laws and laws of
numbers, so that the aim of exact science is to reduce the problems of nature
to the determination of quantities by operations with numbers. Passing from
the most universal of all analogies to a very partial one, we find the same
resemblance in mathematical form between two different phenomena giving rise
to a physical theory of light.

The changes of direction which light undergoes in passing from one medium
to another, are identical with the deviations of the path of a particle in moving
through a narrow space in which intense forces act. This analogy, which extends
only to the direction, and not to the velocity of motion, was long believed to
be the true explanation of the refraction of light; and we still find it useful
in the solution of certain problems, in which we employ it without danger, as
an artificial method. The other analogy, between light and the vibrations of an
elastic medium, extends much farther, but, though its importance and fruitfulness
cannot be over-estimated, we must recollect that it is founded only on a resem-
blance in form between the laws of light and those of vibrations. By stripping
it of its physical dress and reducing it to a theory of “transverse alternations,”
we might obtain a system of truth strictly founded on observation, but probably
deficient both in the vividness of its conceptions and the fertility of its method.
I have said thus much on the disputed questions of Optics, as a preparation
for the discussion of the almost universally admitted theory of attraction at a
distance.

We have all acquired the mathematical conception of these attractions. We
can reason about them and determine their appropriate forms or formulz. These
formulze have a distinct mathematical significance, and their results are found
to be in accordance with mnatural phenomena. There is no formula in applied
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mathematics more consistent with nature than the formula of attractions, and no
theory better established in the minds of men than that of the action of bodies
on one another at a distance. The laws of the conduction of heat in uniform
media appear at first sight among the most different in their physical relations
from those relating to attractions. The quantities which enter into them are
temperature, flow of heat, conductivity. The word jforce is foreign to the subject.
Yet we find that the mathematical laws of the uniform motion of heat in
homogeneous media are identical in form with those of attractions varying in-
versely as the square of the distance. We have only to substitute sowrce of
heat for centre of attraction, flow of heat for accelerating effect of attraction at
any point, and temperature for potential, and the solution of a problem in
attractions is transformed into that of a problem in heat.

This analogy between the formule of heat and attraction was, I believe,
first pointed out by Professor William Thomson in the Camb. Math. Journd,
Vol. IIL

Now the conduction of heat is supposed to proceed by an action between
contiguous parts of a medium, while the force of attraction is a relation be-
tween distant bodies, and yet, if we knew nothing more than is expressed in
the mathematical formulse, there would be nothing to distinguish between the
one set of phenomena and the other.

It is true, that if we introduce other considerations and observe additional
facts, the two subjects will assume very different aspects, but the mathematical
resemblance of some of their laws will remain, and may still be made useful
in exciting appropriate mathematical ideas.

It is by the use of analogies of this kind that I have attempted to bring
before the mind, in a convenient and manageable form, those mathematical ideas
which are necessary to the study of the phenomena of electricity. The methods
are generally those suggested by the processes of reasoning which are found in
the researches of Faraday®, and which, though they have been interpreted
mathematically by Prof. Thomson and others, are very generally supposed to be
of an indefinite and unmathematical character, when compared with those em-
ployed by the professed mathematicians. By the method which I adopt, I hope
to render it evident that I am not attempting to establish any physical theory
of a science in which I have bardly made a single experiment, and that the
limit of my design is to shew how, by a strict application of the ideas and

* See especially Series xxxviiL of the FEwperimental Researches, and Phil. Mag. 1852
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methods of Faraday, the connexion of the very different orders of phenomena
which he has discovered may be clearly placed before the mathematical mind.
I shall therefore avoid as much as I can the introduction of anything which
does not serve as a direct illustration of Faraday’s methods, or of the mathe-
matical deductions which may be made from them. In treating the simpler
parts of the subject I shall use Faraday’s mathematical methods as well as
his ideas. When the complexity of the subject requires it, I shall use analytical
notation, still confining myself to the development of ideas originated by the
same philosopher.

I have in the first place to explain and illustrate the idea of “lines of
force.”

When a body is electrified in any manner, a small body charged with posi-
tive electricity, and placed in any given position, will experience a force urging
it in a certain direction. If the small body be now negatively electrified, it will
be urged by an equal force in a direction exactly opposite.

The same relations hold between a magnetic body and the north or south
poles of a small magnet. If the north pole is urged in one direction, the south
pole is urged in the opposite direction.

In this way we might find a line passing through any point of space, such
that it represents the direction of the force acting on a positively electrified
particle, or on an elementary north pole, and the reverse direction of the force
on a negatively electrified particle or an elementary south pole. Since at every
point of space such a direction may be found, if we commence at any point
and draw a line so that, as we go along it, its direction at any point shall
always coincide with that of the resultant force at that point, this curve will
indicate the direction of that force for every point through which it passes, and
might be called on that account a line of force. We might in the same way
draw other lines of force, till we had filled all space with curves indicating by
their direction that of the force at any assigned point.

We should thus obtain a geometrical model of the physical phenomena,
which would tell us the direction of the force, but we should still require some
method of indicating the entensity of the force at any point. If we consider
these curves not as mere lines, but as fine tubes of variable section carrying
an incompressible fluid, then, since the velocity of the fluid is inversely as the
section of the tube, we may make the velocity vary according to any given law,
by regulating the section of the tube, and in this way we might represent the
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intensity of the force as well as its direction by the motion of the fluid in
these tubes. This method of representing the intensity of a force by the velocity
of an imaginary fluid in a tube is applicable to any conceivable system of forces,
but it is capable of great simplification in the case in which the forces are such
as can be explained by the hypothesis of attractions varying inversely as the
square of the distance, such as those observed in electrical and magnetic pheno-
mena. In the case of a perfectly arbitrary system of forces, there will generally
be interstices between the tubes; but in the case of electric and magnetic forces
it is possible to arrange the tubes so as to leave no interstices. The tubes will
then be mere surfaces, directing the motion of a fluid filling up the whole space.
It has been usual to commence the investigation of the laws of these forces by
at once assuming that the phenomena are due to attractive or repulsive forces
acting between certain points. We may however obtain a different view of the
subject, and one more suited to our more difficult inquiries, by adopting for the
definition of the forces of which we treat, that they may be represented in
magnitude and direction by the uniform motion of an incompressible fluid.

I propose, then, first to describe a method by which the motion of such a
fluid can be clearly conceived; secondly to trace the consequences of assuming
certain conditions of motion, and to point out the application of the method to
some of the less complicated phenomena of electricity, magnetism, and galvanism ;
and lastly to shew how by an extension of these methods, and the introduction
of another idea due to Faraday, the laws of the attractions and inductive actions
of magnets and currents may be clearly conceived, without making any assump-
tions as to the physical nature of electricity, or adding anything to that which
has been already proved by experiment. |

By referring everything to the purely geometrical idea of the motion of an
imaginary fluid, I hope to attain generality and precision, and to avoid the
dangers arising from a premature theory professing to explain the cause of the
phenomena. If the results of mere speculation which I have collected are found
to be of any use to experimental philosophers, in arranging and interpreting
their results, they will have served their purpose, and a mature theory, in which
physical facts will be physically explained, will be formed by those who by
interrogating Nature herself can obtain the only true solution of the questions
which the mathematical theory suggests.
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1. Theory of the Motion of an tncompressible Fluid.

(1) The substance here treated of must not be assumed to possess any of
the properties of ordinary fluids except those of freedom of motion and resistance
to compression. It is not even a hypothetical fluid which is introduced to
explain actual phenomena. It is merely a collection of imaginary properties
which may be employed for establishing certain theorems in pure mathematics in
a way more intelligible to many minds and more applicable to physical problems
than that in which algebraic symbols alone are used. The wuse of the word
“Fluid” will not lead us into error, if we remember that it denotes a purely
imaginary substance with the following property :

The portion of fluid which at any instant occupied o given wvolume, will at
any succeeding instant occupy an equal volume.

This law expresses the incompressibility of the fluid, and furnishes us with
a convenient measure of its quantity, namely its volume. The unit of quantity
of the fluid will therefore be the unit of volume.

(2) The direction of motion of the fluid will in general be different at
different points of the space which it occupies, but since the direction is deter-
minate for every such point, we may conceive a line to begin at any point and
to be continued so that every element of the line indicates by its direction the
direction of motion at that point of space. Lines drawn in such a manner that
their direction always indicates the direction of fluid motion are called lines of
Suid motion. ,

If the motion of the fluid be what is called steady motion, that is, if the
direction and velocity of the motion at any fixed point be independent of the
time, these curves will represent the paths of individual particles of the fluid,
but if the motion be variable this will not generally be the case. The cases
of motion which will come under our notice will be those of steady motion.

(8) If upon any surface which cuts the lines of fluid motion we draw a
closed curve, and if from every point of this curve we draw a line of motion,
these lines of motion will generate a tubular surface which we may call a tube
of fluid motion. Since this surface is generated by lines in the direction of fluid
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motion no part of the fluid can flow across it, so that this imaginary surface
is as impermeable to the fluid as a real tube.

(4) The quantity of fluid which in unit of time crosses any fixed section
of the tube is the same at whatever part of the tube the section be taken.
For the fluid is incompressible, and no part runs through the sides of the tube,
therefore the quantity which escapes from the second section is equal to that
which enters through the first.

If the tube be such that unit of volume passes through any section in
unit of time it is called a wnit tube of fluid motion.

(5) In what follows, various units will be referred to, and a finite number
of lines or surfaces will be drawn, representing in terms of those units the
motion of the fluid. Now in order to define the motion in every part of the
fluid, -an infinite number of lines would have to be drawn at indefinitely small
intervals; but since the description of such a system of lines would involve
continual reference to the theory of limits, it has been thought better to suppose
the lines drawn at intervals depending on the assumed unit, and afterwards to
assume the unit as small as we please by taking a small submultiple of the
standard unit.

(6) To define the motion of the whole fluid by means of a system of unit
tubes.

Take any fixed surface which cuts all the lines of fluid motion, and draw
upon it any system of curves not intersecting one another. On the same surface
draw a second system of curves intersecting the first system, and so arranged
that the quantity of fluid which crosses the surface within each of the quadri-
laterals formed by the intersection of the two systems of curves shall be unity
in unit of time. From every point in a curve of the first system let a line
of fluid motion be drawn. These lines will form a surface through which no
fluid passes. Similar impermeable surfaces may be drawn for all the curves of
the first system. The curves of the second system will give rise to a second
system of impermeable surfaces, which, by their intersection with the first system,
will form quadrilateral tubes, which will be tubes of fluid motion. Since each
quadrilateral of the cutting surface transmits unity of fluid in unity of time,
every tube in the system will transmit unity of fluid through any of its sections

in unit of time. The motion of the fluid at every part of the space it occupies
VOL. L. 21
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is determined by this system of unit tubes; for the direction of motion is that
of the tube through the point in question, and the velocity is the reciprocal
of the area of the section of the unit tube at that point.

(7) We have now obtained a geometrical construction which completely
defines the motion of the fluid by dividing the space it occupies into a system
of unit tubes. We have next to shew how by means of these tubes we may
ascertain various points relating to the motion of the fluid.

A unit tube may either return into itself, or may begin and end at differ-
ent points, and these may be either in the boundary of the space in which we
investigate the motion, or within that space. In the first case there is a con-
tinual circulation of fluid in the tube, in the second the fluid enters at one end
and flows out at the other. If the extremities of the tube are in the bound-
ing surface, the fluid may be supposed to be continually supplied from without
from an unknown source, and to flow out at the other into an unknown reser-
voir; but if the origin of the tube or its termination be within the space under
consideration, then we must conceive the fluid to be supplied by a source within
that space, capable of creating and emitting unity of fluid in unity of time, and
to be afterwards swallowed up by a sink capable of receiving and destroying
the same amount continually.

There is nothing self-contradictory in the conception of these sources where
the fluid is created, and sinks where it is annihilated. The properties of the
fluid are at our disposal, we have made it incompressible, and now we suppose
it produced from nothing at certain points and reduced to nothing at others.
The places of production will be called sources, and their numerical value will be
the number of units of fluid which they produce in unit of time. The places
of reduction will, for want of a better name, be called sinks, and will be esti-
mated by the number of units of fluid absorbed in unit of time. Both places
will sometimes be called sources, a source being understood to be a sink when
its sign is negative.

(8) It is evident that the amount of fluid which passes any fixed surface
is measured by the number of unit tubes which cut it, and the direction in
which the fluid passes is determined by that of its motion in the tubes. If
the surface be a closed one, then any tube whose terminations lie on the same
side of the surface must cross the surface as many times in the one direction
as in the other, and therefore must carry as much fluid out of the surface as
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it carries in, A tube which begins within the surface and ends without it
will carry out unity of fluid; and one which enters the surface and terminates
within it will carry in the same quantity. In order therefore to estimate the
amount of fluid which flows out of the closed surface, we must subtract the
number of tubes which end within the surface from the number of tubes which
begin there. If the result is negative the fluid will on the whole flow inwards.

If we call the beginning of a unit tube a unit source, and its termination
a unit sink, then the quantity of fluid produced within the surface is estimated
by the number of unit sources minus the number of unit sinks, and this must
flow out of the surface on account of the incompressibility of the fluid.

In speaking of these unit tubes, sources and sinks, we must remember what
was stated in (5) as to the magnitude of the unit, and how by diminishing
their size and increasing their number we may distribute them according to any
law however complicated.

(9) If we know the direction and velocity of the fluid at any point in
two different cases, and if we conceive a third case in which the direction and
velocity of the fluid at any point is the resultant of the velocities in the two
former cases at corresponding points, then the amount of fluid which passes a
given fixed surface in the third case will be the algebraic sum of the quantities
which pass the same surface in the two former cases. For the rate at which
the fluid crosses any surface is the resolved part of the velocity normal to the
surface, and the resolved part of the resultant is equal to the sum of the
resolved parts of the components.

Hence the number of unit tubes which cross the surface outwards in the
third case must be the algebraical sum of the numbers which cross it in the
two former cases, and the number of sources within any closed surface will be
the sum of the numbers in the two former cases. Since the closed surface may
be taken as small as we please, it is evident that the distribution of sources
and sinks in the third case arises from the simple superposition of the distri-
butions in the two former cases.

II.  Theory of the uniform motion of an tmponderable incompressible fluid
through a resisting medvum.

(10) The fluid is here supposed to have no inertia, and its motion is opposed
by the action of a force which we may conceive to be due to the resistance of a
21—2
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medium through which the fluid is supposed to flow. This resistance depends on
the nature of the medium, and will in general depend on the direction in which
the fluid moves, as well as on its velocity. For the present we may restrict
ourselves to the case of a uniform medium, whose resistance is the same in all
directions. The law which we assume is as follows.

Any portion of the fluud moving through the resisting medium s directly
opposed by a retarding force proportional to its velocity.

If the velocity be represented by v, then the resistance will be a force equal
to kv acting on unit of volume of the fluid in a direction contrary to that of
motion. In order, therefore, that the velocity may be kept up, there must be a
greater pressure behind any portion of the fluid than there is in front of it, so
that the difference of pressures may neutralise the effect of the resistance. Con-
ceive a cubical unit of fluid (which we may make as small as we please, by (5)),
and let it move in a direction perpendicular to two of its faces. Then the resist-
ance will be kv, and therefore the difference of pressures on the first and second
faces is kv, so that the pressure diminishes in the direction of motion at the rate
of kv for every unit of length measured along the line of motion; so that if we

measure a length equal to % units, the difference of pressure at its extremities
will be kvh.

(11) Since the pressure is supposed to vary continuously in the fluid, all
the points at which the pressure is equal to a given pressure p will lie on a
certain surface which we may call the surfuce (p) of equal pressure. If a series
of these surfaces be constructed in the fluid corresponding to the pressures 0, 1,
2, 8 &c., then the number of the surface will indicate the pressure belonging to
it, and the surface may be referred to as the surface 0, 1, 2 or 3. The unit of
pressure is that pressure which is produced by unit of force acting on unit of
surface. In order therefore to diminish the unit of pressure as in (5) we must
diminish the unit of force in the same proportion.

(12) It is easy to see that these surfaces of equal pressure must be perpen-
dicular to the lines of fluid motion; for if the fluid were to move in any other
direction, there would be a resistance to its motion which could not be balanced
by any difference of pressures. (We must remember that the fluid here con-
sidered has no inertia or mass, and that its properties are those only which are
formally assigned to it, so that the resistances and pressures are the only things
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to be considered.) There are therefore two sets of surfaces which by their inter-
section form the system of unit tubes, and the system of surfaces of equal pres-
sure cuts both the others at right angles. Let % be the distance between two
consecutive surfaces of equal pressure measured along a line of motion, then since

the difference of pressures = 1,
kvh=1,

which determines the relation of » to %, so that one can be found when the
other is known. ILet s be the sectional area of a unit tube measured on a
surface of equal pressure, then since by the definition of a unit tube

vs=1,

we find by the last equation
s=kh.

(18) The surfaces of equal pressure cut the unit tubes into portions whose
length is & and section s. These elementary portions of unit tubes will be called
untt cells. In each of them unity of volume of fluid passes from a pressure p to
a pressure (p—1) in unit of time, and therefore overcomes unity of resistance in
that time. The work spent in overcoming resistance is therefore unity in every
cell in every unit of time.

(14) If the surfaces of equal pressure are known, the direction and magni-
tude of the wvelocity of the fluid at any point may be found, after which the
complete system of unit tubes may be constructed, and the beginnings and end-
ings of these tubes ascertained and marked out as the sources whence the fluid
is derived, and the sinks where it disappears. In order to prove the converse of
this, that if the distribution of sources be given, the pressure at every point may
be found, we must lay down certain preliminary propositions.

(15) If we know the pressures at every point in the fluid in two different
cases, and if we take a third case in which the pressure at any point is the
sum of the pressures at corresponding points in the two former cases, then the
velocity at any point in the third case is the resultant of the velocities in the
other two, and the distribution of sources is that due to the simple superposition
of the sources in the two former cases.

For the velocity in any direction is proportional to the rate of decrease of
the pressure in that direction; so that if two systems of pressures be added
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together, since the rate of decrease of pressure along any line will be the sum
of the combined rates, the velocity in the new system resolved in the same
direction will be the sum of the resolved parts in the two original systems.
The velocity in the new system will therefore be the resultant of the velocities
at corresponding points in the two former systems.

It follows from this, by (9), that the quantity of fluid which crosses any
fixed surface is, in the new system, the sum of the corresponding quantities in
the old ones, and that the sources of the two original systems are simply
combined to form the third.

It is evident that in the system in which the pressure is the difference
of pressure in the two given systems the distribution of sources will be got
by changing the sign of all the sources in the second system and adding them
to those in the first.

(16) If the pressure at every point of a closed surface be the same and
equal to p, and if there be no sources or sinks within the surface, then there
will be no motion of the fluid within the surface, and the pressure within it
will be uniform and equal to p.

For if there be motion of the fluid within the surface there will be tubes
of fluid motion, and these tubes must either return into themselves or be
terminated either within the surface or at its boundary. Now since the fluid
always flows from places of greater pressure to places of less pressure, it
cannot flow in a re-entering curve; since there are no sources or sinks within
the surface, the tubes cannot begin or end except on the surface ; and since
the pressure at all points of the surface is the same, there can be no motion
in tubes having both extremities on the surface. Hence there is no motion
within the surface, and therefore no difference of pressure which would cause
motion, and since the pressure at the bounding surface is p, the pressure at
any point within it is also p.

(17) If the pressure at every point of a given closed surface be known,
and the distribution of sources within the surface be also known, then only
one distribution of pressures can exist within the surface.

For if two different distributions of pressures satisfying these conditions
could be found, a third distribution could be formed in which the pressure at
any point should be the difference of the pressures in the two former distri-
butions. In this case, since the pressures at the surface and the sources within
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it are the same in both distributions, the pressure at the surface in the third
distribution would be zero, and all the sources within the surface would
vanish, by (15).

Then by (16) the pressure at every point in the third distribution must
be zero; but this is the difference of the pressures in the two former cases,
and therefore these cases are the same, and there is only one distribution of
pressure possible.

(18) Let us next determine the pressure at any point of an infinite body
of fluid in the centre of which a unit source is placed, the pressure at an
infinite distance from the source being supposed to be zero.

The fluid will flow out from the centre symmetrically, and since unity of
volume flows out of every spherical surface surrounding the point in unit of
time, the velocity at a distance r from the source will be

b L
T A’
The rate of decrease of pressure is therefore kv or %ﬁ’ and since the
pressure=0 when = is infinite, the actual pressure at any point will be
_k
P=tmr

The pressure is therefore inversely proportional to the distance from the
source.
It is evident that the pressure due to a unit sink will be negative and

equal to— I

If we have a source formed by the coalition of S unit sources, then the

resulting pressure will be p= f;; , so that the pressure at a given distance

varies as the resistance and number of sources conjointly.

(19) If a number of sources and sinks coexist in the fluid, then in order
to determine the resultant pressure we have only to add the pressures which
each source or sink produces. For by (15) this will be a solution of the
problem, and by (17) it will be the only one. By this method we can
determine the pressures due to any distribution of sources; as by the method
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of (14) we can determine the distribution of sources to which a given distri-
bution of pressures is due.

(20) We have next to shew that if we conceive any imaginary surface
as fixed in space and intersecting the lines of motion of the fluid, we may
substitute for the fluid on one side of this surface a distribution of sources
upon the surface itself without altering in any -way the motion of the fluid
on the other side of the surface. '

For if we describe the system of unit tubes which defines the motion of
the fluid, and wherever a tube enters through the surface place a unit source,
and wherever a tube goes out through the surface place a unit sink, and at the
same time render the surface impermeable to the fluid, the motion of the fluid
in the tubes will go on as before.

(21) If the system of pressures and the distribution of sources which pro-
duce them be known in a medium whose resistance is measured by %, then in
order to produce the same system of pressures in a medium whose resistance
is unity, the rate of production at each source must be multiplied by £ For
the pressure at any point due to a given source varies as the rate of produc-
tion and the resistance conjointly; therefore if the pressure be constant, the
rate of production must vary inversely as the resistance.

(22) On the conditions to be fulfilled at a surface which separates two media
whose coefficients of resistance are k and k.

These are found from the consideration, that the quantity of fluid which
flows out of the one medium at any point flows into the other, and that the
pressure varies continuously from one medium to the other. The velocity normal
to the surface is the same in both media, and therefore the rate of diminution
of pressure is proportional to the resistance. The direction of the tubes of
motion and the surfaces of equal pressure will be altered after passing through
the surface, and the law of this refraction will be, that it takes place in the
plane passing through the direction of incidence and the normal to the surface,
and that the tangent of the angle of incidence is to the tangent of the angle
of refraction as %’ is to k.

(23) Let the space within a given closed surface be filled with a medium
different from that exterior to it, and let the pressures at any point of this
compound system due to a given distribution of sources within and without
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the surface be given; it is required to determine a distribution of sources which
would produce the same system of pressures in a medium whose coefficient of
resistance is unity.

Construct the tubes of fluid motion, and wherever a unit tube enters either
medium place a unit source, and wherever it leaves it place a unit sink. Then
if we make the surface impermeable all will go on as before.

Let the resistance of the exterior medium be measured by %, and that of
the interior by %. Then if we multiply the rate of production of all the sources
in the exterior medium (including those in the surface), by % and make the
coefficient of resistance unity, the pressures will remain as before, and the same
will be true of the interior medium if we multiply all the sources in it by %
including those in the surface, and make its resistance unity.

Since the pressures on both sides of the surface are now equal, we may
suppose it permeable if we please.

We have now the original system of pressures produced in a uniform medium
by a combination of three systems of sources. The first of these is the given
external system multiplied by %, the second is the given internal system multi-
plied by ¥, and the third is the system of sources and sinks on the surface
itself. In the original case every source in the external medium had an equal
sink in the internal medium on the other side of the surface, but now the
source is multiplied by % and the sink by %, so that the result is for every
external unit source on the surface, a source =(k—%"). By means of these three

systems of sources the original system of pressures may be produced in a medium
for which k=1.

(24) Let there be no resistance in the medium within the closed surface,
that is, let &' =0, then the pressure within the closed surface is uniform and
equal to p, and the pressure at the surface itself is also p. If by assuming
any distribution of pairs of sources and sinks within the surface in addition to
the given external and internal sources, and by supposing the medium the same
within and without the surface, we can render the pressure at the surface uni-
form, the pressures so found for the external medium, together with the uniform
pressure p in the internal medium, will be the true and only distribution of
pressures which is possible.

For if two such distributions could be found by taking different imaginary
distributions of pairs of sources and sinks within the medium, then by taking
VOL. L 22
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the difference of the two for a third distribution, we should have the pressure
of the bounding surface constant in the new system and as many sources as
sinks within it, and therefore whatever fluid flows in at any point of the surface,
an equal quantity must flow out at some other point.

In the external medium all the sources destroy one another, and we have
an infinite medium without sources surrounding the internal medium. The pres-
sure at infinity is zero, that at the surface is constant. If the pressure at the
surface is positive, the motion of the fluid must be outwards from every point
of the surface; if it be negative, it must flow inwards towards the surface. But
it has been shewn that neither of these cases is possible, because if any fluid
enters the surface an equal quantity must escape, and therefore the pressure at
the surface is zero in the third system.

The pressure at all points in the boundary of the internal medium in the
third case is therefore zero, and there are no sources, and therefore the pressure
is everywhere zero, by (16).

The pressure in the bounding surface of the internal medium is also zero,
and there is no resistance, therefore it is zero throughout; but the pressure in
the third case is the difference of pressures in the two given cases, therefore
these are equal, and there is only one distribution of pressure which is possible,
namely, that due to the imaginary distribution of sources and sinks.

(25) When the resistance is infinite in the internal medium, there can be
no passage of fluid through it or into it. The bounding surface may therefore
be considered as impermeable to the fluid, and the tubes of fluid motion will
run along it without cutting it.

If by assuming any arbitrary distribution of sources within the surface in
addition to the given sources in the outer medium, and by calculating the
resulting pressures and velocities as in the case of a uniform medium, we can
fulfil the condition of there being no velocity across the surface, the system of
pressures in the outer medium will be the true one. For since no fluid passes
through the surface, the tubes in the interior are independent of those outside,
and may be taken away without altering the external motion.

(26) If the extent of the internal medium be small, and if the difference
of resistance in the two media be also small, then the position of the unit tubes
will not be much altered from what it would be if the external medium filled
the whole space.
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On this supposition we can easily calculate the kind of alteration which
the introduction of the internal medium will produce; for wherever a unit tube
K-k
\ k
and wherever a tube leaves it we must place a sink annihilating fluid at the

enters the surface we must conceive a source producing fluid at a rate

’

rate -

};k , then calculating pressures on the supposition that the resistance in

both media is %, the same as in the external medium, we shall obtain the true
distribution of pressures very approximately, and we may get a better result
by repeating the process on the system of pressures thus obtained.

(27) If instead of an abrupt change from one coefficient of resistance to
another we take a case in which the resistance varies continuously from point
to point, we may treat the medium as if it were composed of thin shells each
of which has uniform resistance. By properly assuming a distribution of sources
over the surfaces of separation of the shells, we may treat the case as if the
resistance were equal to unity throughout, as in (23). The sources will then
be distributed continuously throughout the whole medium, and will be positive
whenever the motion is from places of less to places of greater resistance, and
negative when in the contrary direction.

(28) Hitherto we have supposed the resistance at a given point of the
medium to be the same in whatever direction the motion of the fluid takes
place ; but we may conceive a case in which the resistance is different in
different directions. In such cases the lines of motion will not in general be
perpendicular to the surfaces of equal pressure. If @, b, ¢ be the components
of the velocity at any point, and a«, B, v the components of the resistance at
the same point, these quantities will be connected by the following system of
linear equations, which may be called equations of conduction,” and will be
referred to by that name.

a=Poa+ QB+ Ry,
b=PB+Qry+ Ry,
c=Py+Qa+Rp.
In these equations there are nine independent coeflicients of conductivity. In
order to simplify the equations, let us put
Q.+R =25, Q-R=2T,

22—2
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where 4T =(Q,— R)+ (@, — R+ (Q,—~ R,),
and I, m, n are direction-cosines of a certain fixed line in space.
The equations then become
a=Pa+8SB+8Sy+(nB —my)T,
b=PB+8Sy+Sa+(ly —na)T,
c=Py+Sa+SB+(ma—18) T.
By the ordinary transformation of co-ordinates we may get rid of the
coefficients marked S. The equations then become
a=Pla+(nB-m'y) T,
b=P/B+(l'y — n'a) T,
c=Ply+(ma— UB) T,

where I, m’, n’ are the direction-cosines of the fixed line with reference to the
new axes. If we make

_p 5 9 %
“=dx ‘B—dy’ and Y=z

the equation of continuity

da db  do_
du dy+dz~ ’
becomes 7 7
AP 5 dp 5, dp
P dac 2+Pzd 2+P3 Az =0,
and if we make x=JPE, y=d /n, 2=NP/,
then d dp

the ordinary equation of conduction.

It appears therefore that the distribution of pressures is not altered by
the existence of the coefficient 7. Professor Thomson has shewn how to
conceive a substance in which this coefficient determines a property having
reference to an axis, which unlike the axes of P,, P,, P, is dipolar.

For further information on the equations of conduction, see Professor
Stokes On the Conduction of Heat wn Crystals (Caombridge and Dublin Math.
Journ.), and Professor Thomson On the Dynamical Theory of Heat, Part v.
(Transactions of Royal Society of Edinburgh, Vol. xx1. Part 1.).
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It is evident that all that has been proved in (14), (15), (16), (17), with
respect to the superposition of different distributions of pressure, and there being
only one distribution of pressures corresponding to a given distribution of sources,
will be true also in the case in which the resistance varies from point to point,
and the resistance at the same point is different in different directions. For
if we examine the proof we shall find it applicable to such cases as well as to
that of a uniform medium.

(29) We now are prepared to prove certain general propositions which are
true in the most general case of a medium whose resistance is different in
different directions and varies from point to point.

We may by the method of (28), when the distribution of pressures is
known, construct the surfaces of equal pressure, the tubes of fluid motion, and
the sources and sinks. It is evident that since in each cell into which a unit
tube is divided by the surfaces of equal pressure unity of fluid passes from
pressure p to pressure (p—1) in unit of time, unity of work is done by the
fluid in each cell in overcoming resistance.

The number of cells in each unit tube is determined by the number of
surfaces of equal pressure through which it passes. If the pressure at the
beginning of the tube be p and at the end p’, then the number of cells in
it will be p—p’. Now if the tube had extended from the source to a place
where the pressure is zero, the number of cells would have been p, and if
the tube had come from the sink to zero, the number would have been p,
and the true number is the difference of these.

Therefore if we find the pressure at a source S from which S tubes
proceed to be p, Sp is the number of cells due to the source S; but if § of
the tubes terminate in a sink at a pressure p’, then we must cut off S'p" cells
from the number previously obtained. Now if we denote the source of S
tubes by S, the sink of § tubes may be written —.8, sinks always being
reckoned negative, and the general expression for the number of cells in the
system will be = (Sp).

(30) The same conclusion may be arrived at by observing that unity of
work is done on each celll. Now in each source S, S units of fluid are
expelled against a pressure p, so that the work done by the fluid in over-
coming resistance is Sp. At each sink in which 8" tubes terminate, S" units
of fluid sink into nothing under pressure p’; the work done upon the fluid by
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the pressure is therefore S"p’. The whole work done by the fluid may there-
fore be expressed by

W=38p-38p,
or more concisely, considering sinks as negative sources,

W =3(Sp).

(81) Let S represent the rate of production of a source in any medium,
and let p be the pressure at any given point due to that source. Then if we
superpose on this another equal source, every pressure will be doubled, and
thus by successive superposition we find that a source nS would produce a
pressure 7mp, or more generally the pressure at any point due to a given
source varies as the rate of production of the source. This may be expressed
by the equation

p=RS,

where R is a coefficient depending on the nature of the medium and on the
positions of the source and the given point. In a uniform medium whose
resistance is measured by £,

kS k

P'—'m’ . =m,

B may be called the coefficient of resistance of the medium between the source
and the given point. By combining any number of sources we have generally

p=2(RS).

(32) In a uniform medium the pressure due to a source S
_£ 8
Tdwmor’

if p° be the pressure at S due to §. If therefore there be two systems of
sources 3(S) and 3(S’), and if the pressures due to the first be p and to the

second p’, then
| 2(S'p) =Z2(Sp)-
For every term S’p has a term Sp” equal to it.
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(33) Suppose that in a uniform medium the motion of the fluid is every-
where parallel to one plane, then the surfaces of equal pressure will be
perpendicular to this plane. If we take two parallel planes at a distance equal
to k from each other, we can divide the space between these planes into unit
tubes by means of cylindric surfaces perpendicular to the planes, and these
together with the surfaces of equal pressure will divide the space into cells of
which the length is equal to the breadth. Tor if A be the distance between
consecutive surfaces of equal pressure and s the section of the unit tube, we
have by (13) s=Fkh.

But s is the product of the breadth and depth; but the depth is £,
therefore the breadth is % and equal to the length.

If two systems of plane curves cut each other at right angles so as to
divide the plane into little areas of which the length and breadth are equal,
then by taking another plane at distance % from the first and erecting
cylindric surfaces on the plane curves as bases, a system of cells will be
formed which will satisfy the conditions whether we suppose the fluid to run
along the first set of cutting lines or the second*.

Application of the Idea of Lines of Force.

I have now to shew how the idea of lines of fluid motion as described
above may be modified so as to be applicable to the sciences of statical elec-
tricity, permanent magnetism, magnetism of induction, and uniform galvanic
currents, reserving the laws of electro-magnetism for special consideration.

I shall assume that the phenomena of statical electricity have been already
explained by the mutual action of two opposite kinds of matter. If we consider
one of these as positive electricity and the other as negative, then any two
particles of electricity repel one another with a force which is measured by the
product of the masses of the particles divided by the square of their distance.

Now we found in (18) that the velocity of our imaginary fluid due to a
source S at a distance r varies inversely as 7°. Let us see what will be the
effect of substituting such a source for every particle of positive electricity. The
velocity due to each source would be proportional to the attraction due to the
corresponding particle, and the resultant velocity due to all the sources would

* See Cambridge and Dublin Mathematical Journal, Vol 11 p. 286.
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be proportional to the resultant attraction of all the particles. Now we may find
the resultant pressure at any point by adding the pressures due to the given
sources, and therefore we may find the resultant velocity in a given direction
from the rate of decrease of pressure in that direction, and this will be
proportional to the resultant attraction of the particles resolved in that direction.

Since the resultant attraction in the electrical problem is proportional to
the decrease of pressure in the imaginary problem, and since we may select
any values for the constants in the imaginary problem, we may assume that the
resultant attraction in any direction is numerically equal to the decrease of
pressure in that direction, or

By this assumption we find that if ¥ be the potential,
dV=Xdx+ Ydy+ Zdz= - dp,
or since at an infinite distance V=0 and p=0, V= —p.

In the electrical problem we have
Ve -3 <@>.
r
. kS
In the fluid p=3 <I7; ;):
P
oo S= 7‘ dm.
If % be supposed very great, the amount of fluid produced by each source

in order to keep up the pressures will be very small.

The potential of any system of electricity on itself will be
3 (pdm) = 2(p8)=§, w.

47’

If 2 (dm), 2 (dm’) be two systems of electrical particles and p, p” the potentials
due to them respectively, then by (32)

’ k 4 k ’ U4
2(pdm’) = 2(pS)= -2 (p'S) =2 (p'dm),

or the potential of the first system on the second is equal to that of the second
system on the first.
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So that in the ordinary electrical problems the analogy in fluid motion is
of this kind:

V=—p,
__dp_
X= -—%—lm,

k
dm=4—7—TS,

whole potential of a system = —EVdm:Zk; W, where W is the work done by

the fluid in overcoming resistance.

The lines of forces are the unit tubes of fluid motion, and they may be
estimated numerically by those tubes.

Theory of Drelectrics.

The electrical induction exercised on a body at a distance depends not
only on the distribution of electricity in the inductric, and the form and posi-
tion of the inducteous body, but on the nature of the interposed medium, or
dielectric. Faraday® expresses this by the conception of one substance having
a greater inductive capacity, or conducting the lines of inductive action more
freely than another. If we suppose that in our analogy of a fluid in a resisting
medium the resistance is different in different media, then by making the
resistance less we obtain the analogue to a dielectric which more easily conducts
Faraday’s lines.

It is evident from (23) that in this case there will always be an apparent
distribution of electricity on the surface of the dielectric, there being negative
electricity where the lines enter and positive electricity where they emerge. In
the case of the fluid there are no real sources on the surface, but we use
them merely for purposes of calculation. In the dielectric there may be no
real charge of electricity, but only an apparent electric action due to the surface.

If the dielectric had been of less conductivity than the surrounding medium,
we should have had precisely opposite effects, namely, positive electricity where
lines enter, and negative where they emerge.

* Series xI.
VOL. I. 23
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If the conduction of the dielectric is perfect or nearly so for the small
quantities of electricity with which we have to do, then we have the case of
{24). The dielectric is then considered as a conductor, its surface is a surface
of equal potential, and the resultant attraction near the surface itself is per-
pendicular to it.

Theory of Permanent Magnets.

A magnet is conceived to be made up of elementary magnetized particles,
each of which has its own north and south poles, the action of which upon
other north and south poles is governed by laws mathematically identical with
those of electricity. Hence the same application of the idea of lines of force
can be made to this subject, and the same ‘a,nalogy of fluid motion can be
employed to illustrate it.

But it may be useful to examine the way in which the polarity of the
elements of a magnet may be represented by the unit cells in fluid motion.
In each unit cell unity of fluid enters by one face and flows out by the opposite
face, so that the first face becomes a wunit sink and the second a unit source
with respect to the rest of the fluid. It may therefore be compared to an
elementary magnet, having an equal quantity of north and south magnetic
matter distributed over two of its faces. If we now consider the cell as forming
part of a system, the fluid flowing out of one cell will flow into the next, and
so on, so that the source will be transferred from the end of the cell to the
end of the unit tube. If all the unit tubes begin and end on the bounding
surface, the sources and sinks will be distributed entirely on that surface, and in
the case of a magnet which has what has been called a solenoidal or tubular
distribution of magnetism, all the imaginary magnetic matter will be on the
surface™.

Theory of Paramagnetic and Diamagnetic Induction.

Faradayt has shewn that the effects of paramagnetic and diamagnetic bodies
in the magnetic field may be explained by supposing paramagnetic bodies to

* See Professor Thomson On the Mathematical Theory of Magnetism, Chapters 11, and v. Phil.
Trans. 1851.
+ Experimental Researches (3292).
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conduct the lines of force better, and diamagnetic bodies worse, than the
surrounding medium. By referring to (23) and (26), and supposing sources to
represent north magnetic matter, and sinks south magnetic matter, then if a
paramagnetic body be in the neighbourhood of a north pole, the lines of force
on entering it will produce south magnetic matter, and on leaving it they will
produce an equal amount of north magnetic matter. Since the quantities of
magnetic matter on the whole are equal, but the southern matter is nearest
to the north pole, the result will be attraction. If on the other hand the body
be diamagnetic, or a worse conductor of lines of force than the surrounding
medium, there will be an imaginary distribution of northern magnetic matter
where the lines pass into the worse conductor, and of southern where they pass
out, so that on the whole there will be repulsion.

We may obtain a more géneral law from the consideration that the poten-
tial of the whole system is proportional to the amount of work done by the
fluid in overcoming resistance. The introduction of a second medium increases
or diminishes the work done according as the resistance is greater or less than
that of the first medium. The amount of this increase or diminution will vary
as the square of the velocity of the fluid.

Now, by the theory of potentials, the moving force in any direction is
measured by the rate of decrease of the potential of the system in passing along
that direction, therefore when %, the resistance within the second medium, is
greater than £k, the resistance in the surrounding medium, there is a force tend-
ing from places where the resultant force » is greater to where it is less, so
that a diamagnetic body moves from greater to less values of the resultant
force *.

In paramagnetic bodies % is less than %, so that the force is now from
points of less to points of greater resultant magnetic force. Since these results
depend only on the relative values of £ and %, it is evident that by changing
the surrounding medium, the behaviour of a body may be changed from para-
magnetic to diamagnetic at pleasure.

It is evident that we should obtain the same mathematical results if we
had supposed that the magnetic force had a power of exciting a polarity in
bodies which is in the same direction as the lines in paramagnetic bodies, and

* Experimental Researches (2797), (2798). See Thomson, Cambridge and Dublin Mathematical
Journal, May, 1847.

23—2

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.011


https://doi.org/10.1017/CBO9780511698095.011
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

180 ON FARADAY'S LINES OF FORCE.

in the reverse direction in diamagnetic bodies*. In fact we have not as yet
come to any facts which would lead us to choose any one out of these three
theories, that of lines of force, that of imaginary magnetic matter, and that of
induced polarity. As the theory of lines of force admits of the most precise,
and at the same time least theoretic statement, we shall allow it to stand for
the present.

Theory of Magnecrystallic Induction.

The theory of Faradayt with respect to the behaviour of crystals in the
magnetic field may be thus stated. In certain crystals and other substances the
lines of magnetic force are conducted with different facility in different directions.
The body when suspended in a uniform magnetic field will turn or tend to turn
into such a position that the lines of force shall pass through it with least resist-
ance. It is not difficult by means of the principles in (28) to express the laws
of this kind of action, and even to reduce them in certain cases to numerical
formulze. The principles of induced polarity and of imaginary magnetic matter
are here of little use; but the theory of lines of force is capable of the most
perfect adaptation to this class of phenomena.

Theory of the Conduction of Current Electricity.

It is in the calculation of the laws of constant electric currents that the
theory of fluid motion which we have laid down admits of the most direct appli-
cation. In addition to the researches of Ohm on this subject, we have those
of M. Kirchhoff, Ann. de Chim. xr1. 496, and of M. Quincke, XLvIL. 203, on the
Conduction of Electric Currents in Plates. According to the received opinions
we have here a current of fluid moving uniformly in conducting circuits, which
oppose a resistance to the current which has to be overcome by the application
of an electro-motive force at some part of the circuit. On account of this
resistance to the motion of the fluid the pressure must be different at different
points in the circuit. This pressure, which is commonly called electrical tension,

* Exp. Res. (2429), (3320). See Weber, Poggendorff, rxxxvir p. 145. Prof Tyndall, Phil.
Trans. 1856, p. 237.

+ Eap. Res. (2836), &e.
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is found to be physically identical with the potential in statical electricity, and
thus we have the means of connecting the two sets of phenomena. If we knew
what amount of electricity, measured statically, passes along that current which
we assume as our unit of current, then the connexion of electricity of tension
with current electricity would be completed®. This has as yet been done only
approximately, but we know enough to be certain that the conducting powers of
different substances differ only in degree, and that the difference between glass
and metal is, that the resistance is a great but finite quantity in glass, and a
small but finite quantity in metal. Thus the analogy between statical electricity
and fluid motion turns out more perfect than we might have supposed, for there
the induction goes on by conduction just as in current electricity, but the quan-
tity conducted is insensible owing to the great resistance of the dielectricst.

On Electro-motive Forces.

When a uniform current exists in a closed circuit it is evident that some
other forces must act on the fluid besides the pressures. For if the current
were due to difference of pressures, then ‘it would flow from the point of
greatest pressure in both directions to the point of least pressure, whereas in
reality it circulates in one direction constantly. We must therefore admit the
existence of certain forces capable of keeping up a constant current in a closed
circuit. Of these the most remarkable is that which is produced by chemical
action. A cell of a voltaic battery, or rather the surface of separation of the
fluid of the cell and the zine, is the seat of an electro-motive force which
can maintain a current in opposition to the resistance of the circuit. If we
adopt the usual convention in speaking of electric currents, the positive current
is from the fluid through the platinum, the conducting ecircuit, and the zine,
back to the fluid again. If the electro-motive force act only in the surface of
separation of the fluid and zine, then the tension of electricity in the fluid
must exceed that in the zinc by a quantity depending on the nature and
length of the circuit and on the strength of the current in the conductor.
In order to keep up this difference of pressure there must be an electro-motive
force whose intensity is measured by that difference of pressure. If F be the
electro-motive force, I the quantity of the current or the number of electrical

* See Kxp. Res. (371). t Exp. Res. Vol. nr p. 513,
P
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units delivered in unit of time, and K a quantity depending on the length
and resistance of the conducting circuit, then

F=IK=p-yp,
where p is the electric tension in the fluid and p” in the zinec.

If the circuit be broken at any point, then since there is no current the
tension of the part which remains attached to the platinum will be p, and
that of the other will be p’, p—p” or F affords a measure of the intensity
of the current. This distinction of quantity and intensity is very useful ¥,
but must be distinctly understood to mean nothing more than this:—The
quantity of a current is the amount of electricity which it transmits in unit
of time, and is measured by I the number of unit currents which it contains.
The intensity of a current is its power of overcoming resistance, and is
measured by F or IK, where K is the resistance of the whole circuit.

The same idea of quantity and intensity may be applied to the case of
magnetismt. The quantity of magnetization in any section of a magnetic
body is measured by the number of lines of magnetic force which pass through
it. The intensity of magnetization in the section depends on the resisting
power of the section, as well as on the number of lines which pass through
it. If & be the resisting power of the material, and S the area of the section,
and [ the number of lines of force which pass through it, then the whole
intensity throughout the section

k

=F=I:Sy.

When magnetization is produced by the influence of other magnets only,
we may put p for the magnetic tension at any point, then for the whole
magnetic solenoid

F=If§dx=ﬂf=p—p'.

When a solenoidal magnetized circuit returns into itself, the magnetization
does not depend on difference of tensions only, but on some magnetizing force
of which the intensity is F.

If < be the quantity of the magnetization at any point, or the number of
lines of force passing through unit of area in the section of the solenoid, then

* Kup. Res. Vol. 1L p. 519. t Exp. Res. (2870), (3293).
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the total quantity of magnetization in the circuit is the number of lines which
pass through any section, I=Z3idydz, where dydz is the element of the section,
and the summation is performed over the whole section.

The intensity of magnetization at any point, or the force required to
keep up the magnetization, is measured by ki=f, and the total intensity of
magnetization in the circuit is measured by the sum of the local intensities all
round the circuit,

F=53 (fia),

where dx is the element of length in the circuit, and the summation is extended
round the entire circuit.

In the same circuit we have always F'=IK, where K is the total resistance
of the circuit, and depends on its form and the matter of which it is
composed.

On the Action of closed Currents at o Distance.

The mathematical laws of the attractions and repulsions of conductors have
been most ably investigated by Ampere, and his results have stood the test of
subsequent experiments.

From the single assumption, that the action of an element of one current
upon an element of another current is an attractive or repulsive force acting
in the direction of the line joining the two elements, he has determined by
the simplest experiments the mathematical form of the law of attraction, and
has put this law into several most elegant and wuseful forms. We must
recollect however that no experiments have been made on these elements of
currents except under the form of closed currents either in rigid conductors
or in fluids, and that the laws of closed currents can only be deduced from
such experiments. Hence if Ampere’s formule applied to closed currents give
true results, their truth is not proved for elements of currents unless we
assume that the action between two such elements must be along the line which
joins them. Although this assumption is most warrantable and philosophical in
the present state of science, it will be more conducive to freedom of investi-
gation if we endeavour to do without it, and to assume the laws of closed currents
as the ultimate datum of experiment.
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Ampere has shewn that when currents are combined according to the law
of the parallelogram of forces, the force due to the resultant current is the
resultant of the forces due to the component currents, and that equal and
opposite currents generate equal and opposite forces, and when combined
neutralize each other.

He has also shewn that a closed circuit of any form has no tendency to
turn a moveable circular conductor about a fixed axis through the centre of
the circle perpendicular to its plane, and that therefore the forces in the case
of a closed circuit render Xdx+ Ydy+ Zdz a complete differential.

Finally, he has shewn that if there be two systems of circuits similar
and similarly situated, the quantity of electrical current in corresponding
conductors being the same, the resultant forces are equal, whatever be the
absolute dimensions of the systems, which proves that the forces are, caterss
partbus, inversely as the square of the distance.

From these results it follows that the mutual action of two closed currents
whose areas are very small is the same as that of two elementary magnetic
bars magnetized perpendicularly to the plane of the currents.

The direction of magnetization of the equivalent magnet may be pre-
dicted by remembering that a current travelling round the earth from east
to west as the sun appears to do, would be equivalent to that magnetization
which the earth actually possesses, and therefore in the reverse direction to
that of a magnetic needle when pointing freely.

If a pumber of closed unit currents in contact exist on a surface, then at
all points in which two currents are in contact there will be two equal and
opposite currents which will produce no effect, but all round the boundary of the
surface occupied by the currents there will be a residual current not neutralized
by any other; and therefore the result will be the same as that of a single
unit current round the boundary of all the currents.

From this it appears that the external attractions of a shell uniformly
magnetized perpendicular to its surface are the same as those due to a current
round its edge, for each of the elementary currents in the former case has
the same effect as an element of the magnetic shell.

If we examine the lines of magnetic force produced by a closed current,
we shall find that they form closed curves passing round the cwrrent and
embracing it, and that the total intensity of the magnetizing force all along
the closed line of force depends on the quantity of the electric current only.
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The number of unit lines* of magnetic force due to a closed current depends
on the form as well as the quantity of the current, but the number of unit
cellst in each complete line of force is measured simply by the number of unit
currents which embrace it. The unit cells in this case are portions of space in
which unit of magnetic quantity is produced by unity of magnetizing force.
The length of a cell is therefore inversely as the intensity of the magnetizing
force, and its section inversely as the quantity of magnetic induction at that
point.

The whole number of cells due to a given current is therefore proportional
to the strength of the current multiplied by the number of lines of force
which pass through it. If by any change of the form of the conductors the
number of cells can be increased, there will be a force tending to produce that
change, so that there is always a force urging a conductor transverse to the
lines of magnetic force, so as to cause more lines of force to pass through the
closed circuit of which the conductor forms a part.

The number of cells due to two given currents is got by multiplying
the number of lines of inductive magnetic action which pass through each by
the quantity of the currents respectively. Now by (9) the number of lines
which pass through the first current is the sum of its own lines and those
of the second current which would pass through the first if the second current
alone were in action. Hence the whole number of cells will be increased by
any motion which causes more lines of force to pass through either circuit,
and therefore the resultant force will tend to produce such a motion, and the
work done by this force during the motion will be measured by the number

of new cells produced. All the actions of closed conductors on each other may
be deduced from this principle.

On Electric Currents produced by Induction.

Faraday has shewn} that when a conductor moves transversely to the lines
of magnetic force, an electro-motive force arises in the conductor, tending to
produce a current in it. If the conductor is closed, there is a continuous
current, if open, tension is the result. If a closed conductor move transversely
to the lines of magnetic induction, then, if the number of lines which pass

* Exp. Res. (3122), See Art. (6) of this paper. t Art. (13).
$ Exp. Res. (3077), &e.
VOL. L 24
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through it does not change during the motion, the electro-motive forces in the
circuit will be in equilibrium, and there will be no current. Hence the electro-
motive forces depend on the number of lines which are cut by the conductor
during the motion. If the motion be such that a greater number of lines pass
through the circuit formed by the conductor after than before the motion,
then the electro-motive force will be measured by the increase of the number
of lines, and will generate a ocurrent the reverse of that which would have
produced the additional lines. When the number of lines of inductive magnetic
action through the circuit is increased, the induced current will tend to diminish
the number of lines, and when the number is diminished the induced current
will tend to increase them.

That this is the true expression for the law of induced currents is shewn
from the fact that, in whatever way the number of lines of magnetic induction
passing through the circuit be increased, the electro-motive effect is the same,
whether the increase take place by the motion of the conductor itself, or of other
conductors, or of magnets, or by the change of intensity of other currents, or
by the magnetization or demagnetization of neighbouring magnetic bodies, or
lastly by the change of intensity of the current itself.

In all these cases the electro-motive force depends on the change in the

3
5

number of lines of inductive magnetic action which pass through the circuit*.

* The electro-magnetic forces, which tend to produce motion of the material conductor, must be
carefully distinguished from the electro-motive forces, which tend to produce electric currents.

Let an electric current be passed through a mass of metal of any form. The distribution of
the currents within the metal will be determined. by the laws of conduction. ‘Now let a constant
electric current be passed through another conductor near the first. If the two currents are in the
same direction the two conductors will be attracted towards each other, and would come nearer if
not held in their positions. But though the material conductors are attracted, the currents (which
are free to choose any course within the metal) will not alter their original distribution, or incline
towards each other. For, since no change takes place in the system, there will be no electro-motive
forces to modify the original distribution of currents.

In this case we have electro-magnetic forces acting on the material conductor, without any
electro-motive forces tending to modify the current which it carries.

Let us take as another example the case of a linear conductor, not forming a closed cireuit,
and let it be made to traverse the lines of magnetic force, either by its own motion, or by changes
in the magnetic field. An electro-motive force will act in the direction of the conductor, and, as it
cannot produce a current, because there is no circuit, it will produce electric tension at the extremi-
ties. There will be no electro-magnetic attraction on the material conductor, for this attraction
depends on the existence of the current within it, and this is prevented by the circuit not being closed.

Here then we have the opposite case of an electro-motive force acting on the electricity in the
conductor, but no attraction on its material particles.
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It is natural to suppose that a force of this kind, which depends on a
change in the number of lines, is due to a change of state which is measured
by the number of these lines. A closed conductor in a magnetic field may
be supposed to be in a certain state arising from the magnetic action.
As long as this state remains unchanged no effect takes place, but, when the
state changes, electro-motive forces arise, depending as to their intensity and
direction on this change of state. I cannot do better here than quote a
passage from the first series of Faraday’'s Experimental Researches, Art. (60).

““While the wire is subject to either volta-electric or magno-electric
induction it appears to be in a peculiar state, for it resists the formation of
an electrical current in it; whereas, if in its common condition, such a current
would be produced; and when left uninfluenced it has the power of originating a
current, a power which the wire does not possess under ordinary circumstances.
This electrical condition of matter has mnot hitherto been recognised, but it
probably exerts a very important influence in many if not most of the - phe-
nomena produced by currents of electricity. For reasons which will immediately
appear (7) I have, after advising with several learned friends, ventured to
designate it as the electro-tonic state.” Finding that all the phenomena could
be otherwise explained without reference to the electro-tonic state, Faraday in
his second series rejected it as not necessary; but in his recent researches*
he seems still to think that there may be some physical truth in his
conjecture about this new state of bodies.

The conjecture of a philosopher so familiar with nature may sometimes be
more pregnant with truth than the best established experimental law disco-
vered by empirical inquirers, and though not bound to admit it as a physical
truth, we may accept it as a new idea by which our mathematical conceptions
may be rendered clearer.

In this outline of Faraday’s electrical theories, as they appear from a
mathematical point of view, I can do no more than simply state the mathe-
matical methods by which I believe that electrical phenomena can be best
comprehended and reduced to calculation, and my aim has been to present the
mathematical ideas to the mind in an embodied form, as systems of lines or
surfaces, and not as mere symbols, which neither convey the same ideas, nor
readily adapt themselves to the phenomena to be explained. The idea of the
electro-tonic state, however, has not yet presented itself to my mind in such a

* (3172) (3269),
24~—2
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form that its nature and properties may be clearly explained without reference
to mere symbols, and therefore I propose in the following investigation to use
symbols freely, and to take for granted the ordinary mathematical operations.
By a careful study of the laws of elastic solids and of the motions of viscous
fluids, I hope to discover a method of forming a mechanical conception of this
electro-tonic state adapted to general reasoning¥.

Parr II.
On Faraday's “ Electrostonic State.”

When a conductor moves in the neighbourhood of a current of electricity,
or of a magnet, or when a current or magnet near the conductor is moved, or
altered in intensity, then a force acts on the conductor and produces electric
tension, or a continuous current, according as the circuit is open or closed. This
current is produced only by changes of the electric or magnetic phenomena sur-
rounding the conductor, and as long as these are constant there is no observed
effect on the conductor. Still the conductor is in different states when near a
current or magnet, and when away from its influence, since the removal or
destruction of the current or magnet occasions a current, which would not have
existed if the magnet or current had not been previously in action.

Considerations of this kind led Professor Faraday to connect with his
discovery of the induction of electric currents the conception of a state into
which all bodies are thrown by the  presence of magnets and currents. This
state does not manifest itself by any known phenomena as long as it is undis-
turbed, but any change in this state is indicated by a current or tendency
towards a current. To this state he gave the name of the * Electro-tonic
State,” and although he afterwards succeeded in explaining the phenomena
which suggested it by means of less hypothetical conceptions, he has on several
occasions hinted at the probability that some phenomena might be discovered
which would render the electro-tonic state an object of legitimate induction.
These speculations, into which Faraday had been led by the study of laws
which he has well established, and which he abandoned only for want of experi-

* See Prof. W. Thomson On a Mechanical Representation of Electric, Magnetic and Galvanic
Forces. Coamb. and Dub. Math. Jour. Jan, 1847,
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mental data for the direct proof of the unknown state, have not, I think, been
made the subject of mathematical investigation. Perhaps it may be thought
that the quantitative determinations of the various phenomena are not suffi-
ciently rigorous to be made the basis of a mathematical theory; Faraday,
however, has not contented himself with simply stating the numerical results of
his experiments and leaving the law to be discovered by calculation. Where
he has perceived a law he has at once stated it, in terms as unambiguous as
those of pure mathematics; and if the mathematician, receiving this as a physical
truth, deduces from it other laws capable of being tested by experiment, he
has merely assisted the physicist in arranging his own ideas, which is con-
fessedly a necessary step in scientific induction.

In the following investigation, therefore, the laws established by Faraday
will be assumed as true, and it will be shewn that by following out his
speculations other and more general laws can be deduced from them. If it
should then appear that these laws, originally devised to include one set of
phenomena, may be generalized so as to extend to phenomena of a different
class, these mathematical connexions may suggest to physicists the means of
establishing physical connexions; and thus mere speculation may be turned to
account in experimental science.

On Quantity and Intensity as Properties of Electric Currents.

It is found that certain effects of an electric current are equal at what-
ever part of the circuit they are estimated. The quantities of water or of
any other electrolyte decomposed at two different sections of the same circuit,
are always found to be equal or equivalent, however different the material and
form of the circuit may be at the two sections. The magnetic effect of a
conducting wire is also found to be independent of the form or material of
the wire in the same circuit. There is therefore an electrical effect which is
equal at every section of the circuit. If we conceive of the conductor as the
channel along which a fluid is constrained to move, then the quantity of fluid
transmitted by each section will be the same, and we may define the quantity
of an electric current to be the quantity of electricity which passes across a
complete section of the current in unit of time. We may for the present
measure quantity of electricity by the quantity of water which it would decom-
pose in unit of time.
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In order to express mathematically the electrical currents in any conductor,
we must have a definition, not only of the entire flow across a complete section,
but also of the flow at a given point in a given direction.

Der. The quantity of a current at a given point and in a given direction
is measured, when uniform, by the quantity of electricity which flows across
unit of area taken at that point perpendicular to the given direction, and when
variable by the quantity which would flow across this area, supposing the flow
uniformly the same as at the given point.

In the following investigation, the quantity of electric current at the point
(wyz) estimated in the directions of the axes , v, z respectively will be denoted
by a., b,, c,.

The quantity of electricity which flows in unit of time through the ele-
mentary area dS

=dS (la,+ mb, +nc,),
where I, m, n are the direction-cosines of the normal to dS.

This flow of electricity at any point of a conductor is due to the electro-
motive forces which act at that point. These may be either external or internal.

External electro-motive forces arise either from the relative motion of currents
and magnets, or from changes in their intensity, or from other causes acting
at a distance.

Internal electro-motive forces arise principally from difference of electric
tension at points of the conductor in the immediate neighbourhood of the point
in question. The other causes are variations of chemical composition or of tem-
perature in contiguous parts of the conductor.

Let p, represent the electric tension at any point, and X,, Y,, Z, the sums
of the parts of all the electro-motive forces arising from other causes resolved
parallel to the co-ordinate axes, then if a,, B, 7. be the effective electro-motive

forces
Bz"'lfz"%lll; ................................. (A)
72=Zz-%on
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Now the quantity of the current depends on the electro-motive force and
on the resistance of the medium. If the resistance of the medium be uniform
in all directions and equal to k,,

a,=k,a,, B.=k.b,, Yo=Ky vriniiiiiii (B),

but if the resistance be different in different directions, the law will be more
complicated.

These quantities a,, B,, ¥, may be considered as representing the intensity
of the electric action in the directions of z, y, =

The intensity measured along an element do of a curve is given by

e=la+mB+ny,
where I, m, n are the direction-cosines of the tangent.

The integral fedo taken with respect to a given portion of a curve line,
represents the total intensity along that line. If the curve is a closed ome, it
represents the total intensity of the electro-motive force in the closed curve.

Substituting the values of a, B, v from equations (A)

Jedo = [(Xdx+ Ydy + Zdz) —p+ C.
If therefore (Xdax+ Ydy+Zdz) is a complete differential, the value of fedo for
a closed curve will vanish, and in all closed curves
fedo = [(Xdx+ Ydy + Zdz),
the integration being effected along the curve, so that in a closed curve the

total intensity of the effective electro-motive force is equal to the total intensity
of the impressed electro-motive force.

The total quantity of conduction through any surface is expressed by
feds,

where
e=la+mb+ne,

I, m, n being the direction-cosines of the normal,

. fedS = {[adydz + [[bdadx + [[cdaxdy,

the integrations being effected over the given surface. When the surface is a
closed one, then we may find by integration by parts

fedS = JH' da + leb + dc) dzdydz.
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If we make

da  db  de

d—x-l_@ +Jz“-—4‘7TP ...... sevvsessassrssesssrsssens (C),

fedS = 4= {{[pdadydz,

where the integration on the right side of the equation is effected over every
part of space within the surface. In a large class of phenomena, including all
cases of uniform currents, the quantity p disappears.

Magnetic Quantity and Intensity.

From his study of the lines of magnetic force, Faraday has been led to
the conclusion that in the tubular surface® formed by a system of such lines,
the quantity of magnetic induction across any section of the tube is constant,
and that the alteration of the character of these lines in passing from one
substance to another, is to be explained by a difference of inductive capacity
in the two substances, which is analogous to conductive power in the theory
of electric currents.

In the following investigation we shall have occasion to treat of magnetic
quantity and intensity in connection with electric. In such cases the magnetic
symbols will be distinguished by the suffix 1, and the electric by the suffix 2.
The equations connecting a, b, ¢, k, @, B, v, p, and p, are the same in form as
those which we have just given. a, b, ¢ are the symbols of magnetic induction
with respect to quantity; k denotes the resistance to magnetic induction, and
may be different in different directions; a, B, 7, are the effective magnetizing
forces, connected with a, b, ¢, by equations (B); p is the magnetic tension or
potential which will be afterwards explained; p denotes the density of real
magnetic matter and is connected with o, b, ¢ by equations (C). As all the
details of magnetic calculations will be more intelligible after the exposition of the
connexion of magnetism with electricity, it will be sufficient here to say that
all the definitions of total quantity, with respect to a surface, the total intensity
to a curve, apply to the case of magnetism as well as to that of electricity.

* Eap. Res. 3271, definition of ‘Sphandyloid.”
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Electro-magnetism.

Ampere has proved the following laws of the attractions and repulsions of
electric currents :

I. Equal and opposite currents generate equal and opposite forces.

II. A crooked current is equivalent to a straight one, provided the two
currents nearly coincide throughout their whole length.

III. Equal currents traversing similar and similarly situated closed curves
act with equal forces, whatever be the linear dimensions of the circuits.

IV. A closed current exerts no force tending to turn a circular conductor
about its centre.

It is to be observed, that the currents with which Ampeére worked were constant
and therefore re-entering. All his results are therefore deduced from experiments
on closed currents, and his expressions for the mutual action of the elements
of a current involve the assumption that this action is exerted in the direction
of the line joining those elements. This assumption is no doubt warranted by the
universal consent of men of science in treating of attractive forces considered
as due to the mutual action of particles; but at present we are proceeding
on a different principle, and searching for the explanation of the phenomena,
not in the currents alone, but also in the surrounding medium.

The first and second laws shew that currents are to be combined like
velocities or forces.

The third law is the expression of a property of all attractions which may
be conceived of as depending on the inverse square of the distance from a fixed
system of points; and the fourth shews that the electro-magmetic forces may
always be reduced to the attractions and repulsions of imaginary matter properly
distributed.

In fact, the action of a very small electric circuit on a point in its neigh-
bourhood is identical with that of a small magnetic element on a point outside
it. If we divide any given portion of a surface into elementary areas, and
cause equal currents to flow in the same direction round all these little areas,
the effect on a point not in the surface will be the same as that of a shell
coinciding with the surface, and uniformly magnetized normal to its surface.
But by the first law all the currents forming the little circuits will destroy

VOL. 1. 25
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one another, and leave a single current running round the bounding line. So
that the magnetic effect of a uniformly magnetized shell is equivalent to that
of an electric current round the edge of the shell. If the direction of the current
coincide with that of the apparent motion of the sun, then the direction of
magnetization of the imaginary shell will be the same as that of the real mag-
netization of the earth¥.

The total intensity of magnetizing force in a closed curve passing through
and embracing the closed current is constant, and may therefore be made a
measure of the quantity of the current. As this intensity is independent of the
form of the closed curve and depends only on the quantity of the current which
passes through it, we may consider the elementary case of the current which
flows through the elementary area dydz.

Let the axis of x point towards the west, z towards the south, and vy
upwards. Let «, y, z be the coordinates of a point in the middle of the area
dydz, then the total intensity measured round the four sides of the element is

+ <,81 + gl(% %> dy,
Total intensity = (‘% - ZZ‘) dy d-.

The quantity of electricity conducted through the elementary area dydz is
adydz, and therefore if we define the measure of an electric current to be the
total intensity of magnetizing force in a closed curve embracing it, we shall have

a8 _dy
de dy’
b_d')/l_(_i_qg
T de  dz?
o % _ 4B,
T dy  dx

* See Experimental Researches (3265) for the relations between the electrical and magnetic circuit,
considered as mutually embracing curves,
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These equations enable us to deduce the distribution of the currents of
electricity whenever we know the values of a, B, y, the magnetic intensities.
If a, B, v be exact differentials of a function of x, y, z with respect to x, y
and z respectively, then the values of a,, b,, ¢, disappear; and we know that the
magnetism is not produced by electric currents in that part of the field which
we are investigating. It is due either to the presence of permanent magnetism
within the field, or to magnetizing forces due to external causes.

We may observe that the above equations give by differentiation
da,  db, dc,

dz + @ + P
which is the equation of continuity for closed currents. Our investigations are
therefore for the present limited to closed currents; and we know little of the
magnetic effects of any currents which are not closed.

0,

Before entering on the calculation of these electric and magnetic states it

may be advantageous to state certain general theorems, the truth of which may
be established analytically.

TaroreM L
The equation

7/ L A A A
a—a;‘;+?.l—y‘2‘+%;+4ﬂp=0,

(where V' and p are functions of «, y, z never infinite, and vanishing for all points

at an infinite distance), can be satisfied by one, and only one, value of V. See
Art. (17) above.

Tarorem II.

The value of V' which will satisfy the above conditions is found by inte-

grating the expression
f j f pdxdydz
@—aT+y—gT¥e=21"

where the limits of a, y, z are such as to include every point of space where p
is finite.

25—2
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The proofs of these theorems may be found in any work on attractions or
electricity, and in particular in Green’s Essay on the Application of Mathematics
to Electricity. See Arts. 18, 19 of this paper. See also Gauss, on Attractions,
translated in Taylor's Scientific Memours.

TeeEorEM III.

Let U and V be two functions of «, y, #, then

d“’V sz VvV dU dV dU dV  dU dV
e G + ) detvie =~ [[[(Z T+ 3 G+ % ) v

U ng dU dU) Vel dy dz

where the integrations are supposed to extend over all the space in which U
and V have values differing from 0.—(Green, p. 10.)

This theorem shews that if there be two attracting systems the actions
between them are equal and opposite. And by making U=V we find that
the potential of a system on itself is proportional to the integral of the square
of the resultant attraction through all space; a result deducible from Art. (30),
since the volume of each cell is inversely as the square of the velocity (Arts.
12, 13), and therefore the number of cells in a given space is directly as the
square of the velocity,

TueoreM IV.

Let o, B, 7, p be quantities finite through a certain space and vanishing
in the space beyond, and let % be given for all parts of space as a continuous
or discontinuous function of «, v, 2, then the equation in p

d 1 dp d1 dp _
da k < dx> dy k <'8 > " <7_(7;>+47TP-0’

has one, and only one solution, in which p is always finite and vanishes at
an infinite distance.

The proof of this theorem, by Prof. W. Thomson, may be found in the
Cambridge and Dublin Mathematical Journal, Jan. 1848.
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If a, B, y be the electro-motive forces, p the electric tension, and % the
coefficient of resistance, then the above equation is identical with the equation
of continuity

da,
dx

db, de,
+ 5= dy - T —+4mp=0;

and the theorem shews that when the electro-motive forces and the rate of
production of electricity at every part of space are given, the value of the

electric tension is determinate.

Since the mathematical laws of magnetism are identical with those of elec-
tricity, as far as we now consider them, we may regard a«, B, y as magnetizing
forces, p as magnetic tension, and p as real magnetic density, k being the
coefficient of resistance to magnetic induction.

The proof of this theorem rests on the determination of the minimum value

- W{( ~BVE) +i (8- r ) L - E g e

where V is got from the equation

av d”V d:V

+0ly“ d2+47rp 0,

and p has to be determined.

The meaning of this integral in electrical language may be thus brought
out. If the presence of the media in which % has various values did not
affect the distribution of forces, then the ‘“quantity” resolved in @« would be

simply % and the intensity k(;ll—;f But the actual quantity and iﬁtensity are

]1; (a—%) and a— g—g, and the parts due to the distribution of media alone

are therefore
1 dp\ dV dp ,dV
’IE <a—b?a—c>_d_:c and a—%—k%—.
Now the product of these represents the work done on account of this
distribution of media, the distribution of sources being determined, and taking
in the terms in y and z we get the expression @ for the total work done
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by that part of the whole effect at any point which is due to the distribution
of conducting media, and not directly to the presence of the sources.

This quantity @ is rendered a minimum by one and only one value of p,
namely, that which satisfies the original equation.

TarEorEM V.

If a, b, ¢ be three functions of «, y, # satisfying the equation
da db dc
dw + O—@ + =

it is always possible to find three functions a, B, y which shall satisfy the equa-

tions
g _dy

.___‘—=a’

dz dy
é?_’ da
de  dz

0,

=,

—_——— =,

Let 4 =[cdy, where the integration is to be performed upon ¢ considered
as a function of y, treating x and z as constants. Let B=[ads, C=|bdx,
= [bdz, B’ ={cdx, C"=[ady, integrated in the same way.

Then
a=d— A+ *b
_ , d#‘
B=B-B+3!,

, AP
Y= c-C + a—zj
will satisfy the given equations ; for

g _dy _ de db da
dz " dy” Jdy [ do = ?/d“fd_ydy’

and 0=fglgoloc+ Cwa+[gl9dw;

. dB d’y da da
Cdz dy dmd +f d +f

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.011


https://doi.org/10.1017/CBO9780511698095.011
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ON FARADAY'S LINES OF FORCE. 199

- In the same way it may be shewn that the values of a, B, y satisfy
the other given equations. The function ¢ may be considered at present as
perfectly indeterminate.

The method here given is taken from Prof. W. Thomson’s memoir on
Magnetism (Phil. Trans. 1851, p. 283).

As we cannot perform the required integrations when a, b, ¢ are discon-
tinuous functions of x, y, 2, the following method, which is perfectly general
though more complicated, may indicate more clearly the truth of the proposition.

Let 4, B, C be determined from the equations

a4  d*4  d*4
i + —O_Z? + e +a=0,
d*B  d*B _d’B

dE +zl§g+——zg+b=0,
ar¢ ¢  d*C

d—oc“-l_?cl—y?_}-?l?*_(}:o’

by the methods of Theorems I. and IIL, so that 4, B, C are never infinite,
and vanish when «, ¥, or z is infinite.

Also let

_dB dC  dy

_dC d4  dy

B=u =@ty

_dd_dB dy

YSdy T dn T dz?

then

98_dy_d(i4 4B 40\ (24 o4 00
dz dy de\de " dy * dz det " dy*  dZ

L s a0y,

Tde\dx " dy " dz '

If we find similar equations in y and 2, and differentiate the first by «,
the second by v, and the third by 2z, remembering the equation between
a, b, ¢, we shall have

& & d*\(dA dB dC
(@ i+ ) (7 + g + )=
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and since 4, B, C are always finite and vanish at an infinite distance, the
only solution of this equation is

dA4 olB dC

Tty tE=Y

and we have finally

with two similar equations, shewing that a, B8, y have been rightly determined.

The function ¢ is to be determined from the condition

g dy (dt 4 &
dw+dy+dz <a_+dy+dz>¢

if the left-hand side of this equation be always zero, ¥ must be zero also.

TaeoremM VI,

Let a, b, ¢ be any three functions of @, v, 2, it is possible to find three
functions «, B, vy and a fourth V, so that

dp d-y
dw+dy dz =0,
dg dy  dV

and o= ;i_z—_al?/-l-dx
dy da  dV
b=~ &t ay
_da d,3+dV
Tdy dzT dz
Let
da db  dc

de Tyt &= = dmp,
and let V' be found from the equation

v dvV  dV
@ Ty dy* +gg = e
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then
,__av
a=0a 'CE,
, av
b —b—@,
.14
C="%
satisfy the condition
da’  db  d¢

and therefore we can find three functions 4, B, C, and from these a, B, v, so as
to satisfy the given equations.

TaeEorEM VIL
The integral throughout infinity
Q=[[[ (0, + 1B, + ¢y,) daxdydz,
where abc,, By, are any functions whatsoever, is capable of transformation into

Q= + [[[{4mpp, — (2,0, + B, + yC.)} dxdyde,

in which the quantities are found from the equations

da, db, de,
T + d'—y + e +47p, =0,
da] dBl d‘)’l

6750-+c—l§+ dz +4mp, =0

aByy,V are determined from ab,c, by the last theorem, so that

ol,B’o _dy, + av.

Tdz dy T dx’
abe, are found from By, by the equations
n= B g,
T de dy

and p is found from the equation

d’p dp d*p
g gy T AP =0

VOL. 1. 26
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For, if we put a, in the form

dB, _dy, ,dV
de dy " dz’

and treat b, and ¢, similarly, then we have by integration by parts through
infinity, remembering that all the functions vanish at the limits,

ol e
+ %, <0;—Z‘ - ﬁ‘)} dxdydz,
or @=+[[[{(47Vp") = (a,+ Bib, + v,c.)} dwdydz,
and by Theorem ITI.

[[[Vp dxdydz= [[[ppdxdydz,

Q = ”H477pp - (aoa’2 + Bob2 + '}’ocz)} dwdydz

If abc, represent the components of magnetic quantity, and «By, those
of magnetic intensity, then p will represent the real magnetic density, and p
the magnetic potential or tension. abc, will be the components of quantity
of electric currents, and a8y, will be three functions deduced from abc,,
which will be found to be the mathematical expression for Faraday’s Electro-
tonic state.

so that finally

Let us now consider the bearing of these analytical theorems on the
theory of magnetism. Whenever we deal with quantities relating to magnetism,
we shall distinguish them by the suffix (,). Thus abe, are the components
resolved in the directions of x, y, z of the quantity of magnetic induction acting
through a given point, and o8y, are the resolved intensities of magnetization
at the same point, or, what is the same thing, the components of the force
which would be exerted on a unit south pole of a magnet placed at that
point without disturbing the distribution of magnetism.

The electric currents are found from the magnetic intensities by the equations

_9B: 0%/1
T dz dy

When there are no electric currents, then

adx + Bdy +ydz=dp,,
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a perfect differential of a function of x, y, 2 On the principle of analogy we
may call p, the magnetic tension.

The forces which act on a mass m of south magnetism at any point are

dp, dp, dp,
—m —-md—y and —m

dz’
in the direction of the axes, and therefore the whole work done during any
displacement of a magnetic system is equal to the decrement of the integral
Q=[[lppdxdyde
throughout the system.
Let us now call @ the total potential of the system on dtself. The increase
or decrease of ¢ will measure the work lost or gained by any displacement

of any part of the system, and will therefore enable us to determine the
forces acting on that part of the system.

By Theorem III. @ may be put under the form

Q=+ %T f f f (e + .8, + ciy,) daedy dz,

in which «fBy, are the differential coefficients of p, with respect to z, ¥, 2
respectively.

If we now assume that this expression for @ is true whatever be the
values of a,, B, 7,, we pass from the consideration of the magnetism of permanent

magnets to that of the magnetic effects of electric currents, and we have then
by Theorem VII.

Q= f f f {plpl - %T (@t + Bb. +7062)} dxdydz.

So that in the case of electric currents, the components of the currents have
to be multiplied by the functions a,, B,, 7y, respectively, and the summations of

all such products throughout the system gives us the part of @ due to those
currents.

We have now obtained in the functions a,, B,, y, the means of avoiding
the consideration of the quantity of magnetic induction which passes through
the circuit. Instead of this artificial method we have the natural one of con-
sidering the current with reference to quantities existing in the same space
with the current itself. To these I give the name of Electro-tonic functions, or
components of the Electro-tonic intensity.

26—2
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Let us now consider the conditions of the conduction of the electric
currents within the medium during changes in the electro-tonic state. The
method which we shall adopt is an application of that given by Helmholtz in
his memoir on the Conservation of Force*.

Let there be some external source of electric currents which would generate
in the conducting mass currents whose quantity is measured by a,, b,, ¢, and
their intensity by a,, B, 7.

Then the amount of work due to this cause in the time d¢ is
dt [[f(a.0s+ 0B+ c2y,) daxdydz

in the form of resistance overcome, and

dt

o & |||+ vpirey) dedya:

in the form of work done mechanically by the electro-magnetic action of these
currents. If there be no external cause producing currents, then the quantity

representing the Whole work done by the external cause must vanish, and we
have

dt f fj(az%+b2ﬁz+0272) dxdydz + th i f f f (taty + 0B, + ¢1y,) dacdy dz,
where the integrals are taken through any arbltrary space. We must therefore
have

1 d
a0, + sza + Gy, = 4—1;' (% (a2ao + szo + 0270)

for every point of space; and it must be remembered that the variation of
@ is supposed due to variations of «,, B,, y,, and not of a,, b, ¢, We must
therefore treat a,, b,, ¢, as constants, and the equation becomes

1 da, dg, 1 dy,
a,(a,+4 dt>+b (/3, - dt>+cg<y dt> 0.

In order that this equation may be independent of the values of a, b,, c,,
each of these coefficients must =0; and therefore we have the following
expressions for the electro-motive forces due to the action of magnets and
currents at a distance in terms of the electro-tonic functions,

1 da, _1dg, 1 dy,
=@ P m@m YT md

* Translated in Taylor's New Scientific Memoirs, Part 11
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It appears from experiment that the expression O% refers to the change

of electro-tonic state of a given particle of the conductor, whether due to
change in the electro-tonic functions themselves or to the motion of the particle.

If a, be expressed as a function of x, y, z and ¢, and if =, y, z be the
co-ordinates of a moving particle, then the electro-motive force measured in the
direction of z is

1

da, de  da,dy = da,dz da,
“F‘Er(% dﬁz.z@;m““zz;a—ﬁaz)'

The expressions for the electro-motive forces in y and z are similar. The
distribution of currents due to these forces depends on the form and arrange-
ment of the conducting media and on the resultant electric tension at any
point.

The discussion of these functions would involve us in mathematical formulee,
of which this paper is already too full. It is only on account of their physical
importance as the mathematical expression of one of Faraday’s conjectures that I
have been induced to exhibit them at all in their present form. By a more
patient consideration of their relations, and with the help of those who are
engaged in physical inquiries both in this subject and in others not obviously
connected with it, I hope to exhibit the theory of the electro-tonic state in a
form in which all its relations may be distinctly conceived without reference to
analytical calculations.

Summary of the Theory of the Electro-tonic State.

We may conceive of the electro-tonic state at any point of space as a
quantity determinate in magnitude and direction, and we may represent the
electro-tonic condition of a portion of space by any mechanical system which
has at every point some quantity, which may be a velocity, a displacement, or
a force, whose direction and magnitude correspond to those of the supposed
electro-tonic state. This representation involves no physical theory, it is only
a kind of artificial notation. In analytical investigations we make use of the
three components of the electro-tonic state, and call them electro-tonic functions.
We take the resolved part of the electro-tonic intensity at every point of a
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closed curve, and find by integration what we may call the entire electro-tonic
intensity round the curve.

Prop. I. If on any surface a closed curve be drawn, and if the surface
within it be divided into small areas, then the entire intensity round the closed
curve 1s equal to the sum of the intensities round each of the small areas, all
esttmated in the same direction.

For, in going round the small areas, every boundary line between two of
them is passed along twice in opposite directions, and the intensity gained in
the one case is lost in the other. Every effect of passing along the interior
divisions is therefore neutralized, and the whole effect is that due to the
exterior closed curve.

Law 1. The entire electro-tonic wntensity round the boundary of an element of
surface measures the quantity of magnetic wnduction which passes through that

surface, or, wn other words, the number of lines of magnetic force which pass
through that surface. '

By Prop. L it appears that what is true of elementary surfaces is true also
of surfaces of finite magnitude, and therefore any two surfaces which are
bounded by the same closed curve will have the same quantity of magnetic
induction through them.

Law II.  The magnetic intensity at any point s connected with the quantity
of magnetic induction by a set of linear equations, called the equations of con-
duction™.

Law IIL.  The entire magnetic intensity round the boundary of any surface
measures the quantity of electric current which passes through that surfuce.

Law IV. The quantity and wntensity of electric currents are connected by a
system of equations of conduction.

By these four laws the magnetic and electric quantity and intensity may be
deduced from the values of the electro-tonic functions. I have not discussed
the values of the units, as that will be better done with reference to actual
experiments. We come next to the attraction of conductors of currents, and to
the induction of currents within conductors.

* See Art. (28).
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Law V. The total electro-magnetic potentiol of a closed current is measured
by the product of the quantity of the cwrrent multiplied by the entire electro-tonic
intensity esttmated in the same divection round the circuit.

Any displacement of the conductors which would cause an increase in the
potential will be assisted by a force measured by the rate of increase of the
potential, so that the mechanical work done during the displacement will be
measured by the increase of potential.

Although in certain cases a displacement in direction or alteration of inten-
sity of the current might increase the potential, such an alteration would not
itself produce work, and there will be no tendency towards this displacement,
for alterations in the current are due to electro-motive force, not to electro-
magnetic attractions, which can only act on the conductor.

Law VI The electro-motwe force on any element of a conductor is measured
by the instantaneous rate of change of the electro-tonic wntensity on that element,
whether in magnitude or direction.

The electro-motive force in a closed conductor is measured by the rate of
change of the entire electro-tonic intensity round the circuit referred to wunit
of time. It is independent of the nature of the conductor, though the current
produced varies inversely as the resistance; and it is the same in whatever
way the change of electro-tonic intensity has been produced, whether by motion
of the conductor or by alterations in the external circumstances.

In these six laws I have endeavoured to express the idea which I believe to
be the mathematical foundation of the modes of thought indicated in the FEux-
perimental Researches. 1 do not think that it contains even the shadow of a
true physical theory; in fact, its chief merit as a temporary instrument of
research is that it does not, even in appearance, account for anything.

There exists however a professedly physical theory of electro-dynamics, which
is so elegant, so mathematical, and so entirely different from anything in this
paper, that I must state its axioms, at the risk of repeating what ought to
be well known. It is contained in M. W. Weber’s Electro-dynamic Measure-
ments, and may be found in the Transactions of the Leibnitz Society, and of the
Royal Society of Sciences of Saxony*. The assumptions are,

* When this was written, I was not aware that part of M. Weber’s Memoir is translated in

Taylor’s Scientific Memoirs, Vol. v. Art. x1v. The value of his researches, both experimental and
theoretical, renders the study of his theory necessary to every electrician.
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(1) That two particles of electricity when in motion do not repel each other
with the same force as when at rest, but that the force is altered by a quantity
depending on the relative motion of the two particles, so that the expression for
the repulsion at distance » is

ee’ drf . dr
7_2-<1 +a % +b7" CW)
(2) That when electricity is moving in a conductor, the velocity of the

positive fluid relatively to the matter of the conductor is equal and opposite to
that of the negative fluid.

(8) The total action of one conducting element on another is the resultant
of the mutual actions of the masses of electricity of both kinds which are
in each.

(4) The electro-motive force at any point is the difference of the forces
acting on the positive and negative fluids.

From these axioms are deducible Ampére’s laws of the attraction of
conductors, and those of Neumann and others, for the induction of currents.
Here then is a really physical theory, satisfying the required conditions better
perhaps than any yet invented, and put forth by a philosopher whose experi-
mental researches form an ample foundation for his mathematical investigations.
What is the use then of imagining an electro-tonic state of which we have
no distinctly physical conception, instead of a formula of attraction which we
can readily understand? 1 would answer, that it is a good thing to have
two ways of looking at a subject, and to admit that there are two ways of
looking at it. Besides, I do not think that we have any right at present to
understand the action of electricity, and I hold that the chief merit of a
temporary theory is, that it shall guide experiment, without impeding the
progress of the true theory when it appears. There are also objections to
making any ultimate forces in nature depend on the  velocity of the bodies
between which they act. If the forces in nature are to be reduced to forces
acting between particles, the principle of the Conservation of Force requires
that these forces should be in the line joining the particles and functions of
the distance only. The experiments of M. Weber on the reverse polarity of
diamagnetics, which have been recently repeated by Professor Tyndall, establish
a fact which is equally a consequence of M. Weber's theory of electricity and
of the theory of lines of force. ‘
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With respect to the history of the present theory, I may state that the
recognition of certain mathematical functions as expressing the *electro-tonic
state” of Faraday, and the use of them in determining electro-dynamic
potentials and electro-motive forces is, as far as I am aware, original; but the
distinct conception of the possibility of the mathematical expressions arose in
my mind from the perusal of Prof W. Thomson’s papers “On a Mechanical
Representation of Electric, Magnetic and Galvanic Forces,” Cambridge and
Dublin Mathematical Journal, January, 1847, and his “ Mathematical Theory of
Magnetism,” Philosophical Transactions, Part 1. 1851, Art. 78, &c. As an
instance of the help which may be derived from other physical investigations,
I may state that after I had investigated the Theorems of this paper
Professor Stokes pointed out to me the use which he had made of similar
expressions in his “Dynamical Theory of Diffraction,” Section 1, Cambridge
Transactions, Vol. 1x. Part 1. Whether the theory of these functions, consi-
dered with reference to electricity, may lead to new mathematical ideas to be
employed in physical research, remains to be seen. I propose in the rest of
this paper to discuss a few electrical and magnetic problems with reference to
spheres. These are intended merely as concrete examples of the methods of
which the theory has been given; I reserve the detailed investigation of cases
chosen with special reference to experiment till I have the means of testing
their results.

EXAMPLES.

1. Theory of Electrical Images.

The method of Electrical Images, due to Prof. W. Thomson*, by which
the theory of spherical conductors has been reduced to great geometrical sim-
plicity, becomes even more simple when we see its connexion with the methods
of this paper. We have seen that the pressure at any point in a uniform
medium, due to a spherical shell (radius=a) giving out fluid at the rate of

47Pg¢® wunits In unit of time, is lcP% outside the shell, and kPa inside it,
where » is the distance of the point from the centre of the shell.

* See a series of papers “On the Mathematical Theory of Electricity,” in the Cambridge and
Dublin Math. Jour., beginning March, 1848,

VOL 1. 27
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If there be two shells, one giving out fluid at a rate 47Pa’ and the
other absorbing at the rate of 4wP’a” then the expression for the pressure will
be, outside the shells,

’2

p=4wP Y taP %,
r 7

where r and +* are the distances from the centres of the two shells. Equating
this expression to zero we have, as the surface of no pressure, that for which

¥ _Pda”

r  Pa’

Now the surface, for which the distances to two fixed points have a given
ratio, is a sphere of which the centre O is in the line joining the centres of
the shells CC" produced, so that

yiy
co—co Lt
Po*F—Pa”}
and its radius

Po?. Pa™
=00 =—=——"—+—,
Pa? -] Pa*}

If at the centre of this sphere we place another source of the fluid, then
the pressure due to this source must be added to that due to the other two;
and since this additional pressure depends only on the distance from the centre,
it will be constant at the surface of the sphere, where the pressure due to
the two other sources is zero.

We have now the means of arranging a system of sources within a given
sphere, so that when combined with a given system of sources outside the
sphere, they shall produce a given constant pressure at the surface of the sphere.

Let a be the radius of the sphere, and p the given pressure, and let the
given sources be at distances b, b, &c. from the centre, and let their rates of
production be 4wP, 477P2, &e.

Then if at distances - x b , &ec. (measured in the same direction as b, b,, &c.

from the centre) we place negative sources whose rates are

—47P, g, — 47w P, %, &e.,
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the pressure at the surface r=a will be reduced to zero. Now placing a source
4#% at the centre, the pressure at the surface will be uniform and equal to p.

The whole amount of fluid emitted by the surface r=a may be found by
adding the rates of production of the sources within it. The result is

To apply this result to the case of a conducting sphere, let us suppose
the external sources 4wP, 4wP, to be small electrified bodies, containing e, e,
of positive electricity. Let us also suppose that the whole charge of the con-
ducting sphere is =FE previous to the action of the external points. Then all
that is required for the complete solution of the problem is, that the surface
of the sphere shall be a surface of equal potential, and that the total charge
of the surface shall be E.

If by any distribution of imaginary sources within the spherical surface we
can effect this, the value of the corresponding potential outside the sphere is
the true and only one. The potential inside the sphere must really be constant
and equal to that at the surface.

We must therefore find the umages of the external electrified points, that

is, for every point at distance b from the centre we must find a point on the
2
same radius at a distance %, and at that point we must place a quantity

= - eg of imaginary electricity.

At the centre we must put a quantity E’ such that
E=FE+e, gL—+e2g+&c.;
b, b,

then if R be the distance from the centre, 7, 7, &ec. the distances from the
electrified points, and 7/, 7, &c. the distances from their images at any point
outside the sphere, the potential at that point will be

g 1 al 1 a1
p=gte () ve ) e
E e (a b a\ e [a b a
=‘R+E<R+Z—Z>+E<R+Z“E>+&&
27—2
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This is the value of the potential outside the sphere. At the surface we

have
R=qa and z=i,, @=gf—, &e.,
1 7‘1 7‘2 2
so that at the surface
E e e

p=a+b—l+gz+&c.,

and this must also be the value of p for any point within the sphere.

For the application of the principle of electrical images the reader is referred
to Prof. Thomson’s papers in the Cambridge and Dublin Mathematical Journal.

The only case which we shall consider is that in which {-’2—=I, and b, is infi-
nitely distant along the axis of «, and E=0.

The value p outside the sphere becomes then

as
p=Iw ( —,,_,§> ’

and inside p=0.

II. On the effeet of a paramagnetic or diamagnetic sphere in a wmform field of
magnetic force*.

The expression for the potential of a small magnet placed at the origin of
co-ordinates in the direction of the axis of x is

d (m\ x

The effect of the sphere in disturbing the lines of force may be supposed
as a first hypothesis to be similar to that of a small magnet at the origin,
whose strength is to be determined. (We shall find this to be aceurately true.)

* See Prof. Thomson, on the Theory of Magnetic Induction, Phil. Mag. March, 1851. The induc-
tive capacity of the sphere, according to that paper, is the ratio of the quanfify of magnetic induction

(not the ¢ntensity) within the sphere to that without. It is therefore equal to %B% =%]:k, accord-

ing to our notation.
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Let the value of the potential undisturbed by the presence of the sphere be
p=1Ix.
Let the sphere produce an additional potential, which for external points is
ed®
D "‘A 7 &,
and let the potential within the sphere be
p,= DBz,
Let ¥ be the coeflicient of resistance outside, and % inside the sphere, then
the conditions to be fulfilled are, that the interior and exterior potentials should
coincide at the surface, and that the induction through the surface should be the

same whether deduced from the external or the internal potential. Putting
x=rcos §, we have for the external potential

P=<Ir+A%> cos 8,
and for the internal
p,=DBrcos 6,
and these must be identical when r=a, or
I+A=B.

The induction through the surface in the external medium is

1d 1
7 £;=P(I-2A)coso,

and that through the interior surface is

These equations give

k- 3k

4=srvel B

The effect outside the sphere is equal to that of a little magnet whose
length is I and moment ml, provided

-k o

mz=m0/
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Suppose this uniform field to be that due to terrestrial magnetism, then,
if £ is less than % as in paramagnetic bodies, the marked end of the equi-
valent magnet will be turned to the north. If % is greater than % as in
diamagnetic bodies, the unmarked end of the equivalent magnet would be turned
to the north.

III. Magnetic field of variable Intensity.

Now suppose the intensity in the undisturbed magnetic field to vary in
magnitude and direction from one point to another, and that its components
in , y, z are represented by a, B, y, then, if as a first approximation we re-
gard the intensity within the sphere as sensibly equal to that at the centre,
the change of potential outside the sphere arising from the presence of the
sphere, disturbing the lines of force, will be the same as that due to three
small magnets at the centre, with their axes parallel to z, v, and #z, and their
moments equal to

k—k k¥ k—-k
Y AL =y AL Ey A

The actual distribution of potential within and without the sphere may be
conceived as the result of a distribution of imaginary wmagnetic matter on the
surface of the sphere; but since the external effect of this superficial magnetism
is exactly the same as that of the three small magnets at the centre, the
mechanical effect of external attractions will be the same as if the three magnets
really existed.

Now let three small magnets whose lengths are I, [, I, and strengths
m,, m,, m,, exist at the point x, y, z with their axes parallel to the axes of
x, y, z; then resolving the forces on the three magnets in the direction of X, we

have
Jdal) [, dal da ]
Tz 2 * Ty 2 [ ‘Tt 2
-—X=m, +m2 +m3
Capdal L dal, ]_ Jdal
x 2 Ty 2 Tz 2
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Substituting the values of the moments of the imaginary magnets
E-F ,3 y E-F & d
X =T 8 2
2Ic+k’“< o Pz dw> Wr W 2 ds CHEEY)

The force impelling the sphere in the direction of w is therefore dependent
on the variation of the square of the intensity or («’+/8°+19°), as we move along
the direction of x, and the same is true for y and 2, so that the law is, that
the force acting on diamagnetic spheres is from places of greater to places of
less intensity of magnetic force, and that in similar distributions of magnetic
force it varies as the mass of the sphere and the square of the intensity.

It is easy by means of Laplace’s Coefficients to extend the approximation
to the value of the potential as far as we please, and to calculate the attrac-
tion. For instance, if a north or south magnetic pole whose strength is M, be
placed at a distance b from a diamagnetic sphere, radius a, the repulsion will be

2.1 3.2 o 4.8 o

R=3 (b=F) 35 <2k+k’+3k+2k’ Bk 3k b

+&>

When & is small, the first term gives a sufficient approximation. The repul-

b
sion is then as the square of the strength of the pole, and the mass of the
sphere directly and the fifth power of the distance inversely, considering the
pole as a point.

IV. Two Spheres vn uniform field.

Let two spheres of radius @ be connected together so that their centres are
kept at a distance b, and let them be suspended in a uniform magnetic field,
then, although each sphere by itself would have been in equilibrium at any part
of the field, the disturbance of the field will produce forces tending to make the
balls set in a particular direction.

Let the centre of one of the spheres be taken as origin, then the undis-
turbed potential is

p=1Ircos 6,
and the potential due to the sphere is
/ Izkk+kk’ cos 6.
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The whole potential is therefore equal to

I<r + Okk+];c’ a2> cos f=p,

0—@:[(1—2—70———]0—13) cos 0,

dr 2k+ k& »
%%=“I<1+zkk1kk' _>Sn0 %=
”E%Q“L%%?*w;nza%z
=1 {1+ 2]2:_];;,%3(1 3 cos? 6?)+2k_'_k];,2 5 (143 cos? 0)}

This is the value of the square of the intensity at any point. The moment
of the couple tending to turn the combination of balls in the direction of the

original force

h=K ~
Lr_%%% <2]C—-|-k,a> when ’I"—b,
=Ko k—k o\ .
L=3l 17 E(l_mb'f‘)mn%

This expression, which must be positive, since b is greater than «, gives the
moment of a force tending to turn the line joining the centres of the spheres
towards the original lines of force.

Whether the spheres are magnetic or diamagnetic they tend to set in the
axial direction, and that without distinction of north and south. If, however,
one sphere be magnetic and the other diamagmetic, the line of centres will set
equatoreally. The magnitude of the force depends on the square of (£—£), and
is therefore quite insensible except in iron®.

V. Two Spheres between the poles of a Magnet.

Let us next take the case of the same balls placed not in a uniform field
but between a north and a south pole, + M, distant 2¢ from each other in the
direction of .

* See Prof. Thomson in Phil, Mag. March, 1851.
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The expression for the potential, the middle of the line joining the poles
being the origin, is

< >

I“"=4]l41 <1—-37—':+97—'zc0320>;
C C C
R S
e IEE—- —18"(-}6—‘)7'2311120,

and the moment to turn a pair of spheres (radius «, distance 2b) in the
direction in which # is increased is
k=k Mza?b“’s.

—-36 m, '——6—6—“ 1n 20.

This force, which tends to turn the line of centres equatoreally for diamagnetic
and axially for magnetic spheres, varies directly as the square of the strength of
the magnet, the cube of the radius of the spheres and the square of the dis-
tance of their centres, and inversely as the sixth power of the distance of the
poles of the magnet, considered as points. As long as these poles are near each
other this action of the poles will be much stronger than the mutual action of
the spheres, so that as a general rule we may say that elongated bodies set
axially or equatoreally between the poles of a magnet according as they are mag-
netic or diamagnetic. If, instead of being placed between two poles very near
to each other, they had been placed in a uniform field such as that of terrestrial
magnetism or that produced by a spherical electro-magnet (see Ex. viL), an
elongated body would set axially whether magnetic or diamagnetic.

In all these cases the phenomena depend on k—Z’, so that the sphere con-
ducts itself magnetically or diamagnetically according as it is more or less
magnetic, or less or more diamagnetic than the medium in which it is placed.

VI. On the Magnetic Phenomena of o Sphere cut from a substance whose
coefficient of resistance ts dyfferent in dyfferent directions.

Let the axes of magnetic resistance be parallel throughout the sphere, and
let them be taken for the axes of x, y, 2. Let k, k, &, be the coefficients of
resistance in these three directions, and let & be that of the external medium,

VOL. L 28
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and a the radius of the sphere. Let I be the undisturbed magnetic intensity
of the field into which the sphere is introduced, and let its direction-cosines
be I, m, n.

Let us now take the case of a homogeneous sphere whose coefficient is £,
placed in a uniform magnetic field whose intensity is /I in the direction of .
The resultant potential outside the sphere would be

, , k—~¥ o

_29 —ZI <1 +m, ;3> X,
st
2k, + &
So that in the interior of the sphere the magnetization is entirely in the direc-
tion of x. It is therefore' quite independent of the coefficients of resistance in
the directions of # and y, which may be changed from %, into k, and %, with-
out disturbing this distribution of magnetism. We may therefore treat the sphere
as homogeneous for each of the three components of I, but we must use a
different coeflicient for each. We find for external points

=TI lz+my+ LAl SN ol >“3
pr=Ilztmy st g et g T Y ™) )

and for internal points

p=4I .

and for internal points

1=I( 3k, I+ 3k, 8k, nz)

Y ey L Ay e o
The external effect is the same as that which would have been produced
if the small magnet whose moments are
k,—k k,—¥ b—FK

i gaemd g

had been placed at the origin with their directions coinciding with the axes of
@, y, 2. The effect of the original force I in turning the sphere about the axis
of @ may be found by taking the moments of the components of that force
on these equivalent magnets. The moment of the force in the direction of ¥
acting on the third magnet is

k,~k

ok + K
and that of the force in z on the second magnet is

2klc +kk’ mnla

mmI*o?,
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The whole couple about the axis of x is therefore
8K (k,—k,) -
@+ F) @k 1) "L
tending to turn the sphere round from the axis of y towards that of z. Sup-

pose the sphere to be suspended so that the axis of x is vertical, and let I
be horizontal, then if 6 be the angle which the axis of y makes with the

direction of I, m=cos f, n= —sin #, and the expression for the moment becomes
K (k,—F,) .
3 —F, g
Yok b) (k1) L sin2h,

tending to increase #. The axis of least resistance therefore sets axially, but
with either end indifferently towards the north.

Since in all bodies, except iron, the values of £ are nearly the same as in
a vacuum, the coefficient of this quantity can be but little altered by changing
the value of %" to %, the value in space. The expression then becomes

% lé—k_-ka] *a’ sin 20,

independent of the external medium¥.

VIL. Permanent magnetism wn o spherical shell.

The case of a homogeneous shell of a diamagnetic or paramagnetic substance
presents no difficulty. The intensity within the shell is less than what it would
have been if the shell were away, whether the substance of the shell be dia-
magnetic or paramagnetic. When the resistance of the shell is infinite, and when
it vanishes, the intensity within the shell is zero.

In the case of no resistance the entire effect of the shell on any point,
internal or external, may be represented by supposing a superficial stratum of

* Taking the more general case of magnetic induction referred to in Art, (28), we find, in the
expression for the moment of the magnetic forces, a constant term depending on 7', besides those
terms which depend on sines and cosines of 6. The result is, that in every complete revolution in
the negative direction round the axis of 7', a certain positive amount of work is gained; but, since
no inexhaustible source of work can exist in nature, we must admit that 7=0 in all substances,
with respect to magnetic induction. This argument does not hold in the case of electric conduction,
or in the case of a body through which heat or electricity is passing, for such states are main-
tained by the continual expenditure of work. See Prof. Thomson, Phil. Mag. March, 1851, p. 186.

28—2
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magnetic matter spread over the outer surface, the density being given by the
equation

p=3Icosd.

Suppose the shell now to be converted into a permanent magnet, so that the
distribution of imaginary magnetic matter is invariable, then the external poten-
tial due to the shell will be

a3
p = '—I}—zcos g,

and the internal potential p,= —1Ircosb.

Now let us investigate the effect of filling up the shell with some substance
of which the resistance is %, the resistance in the external medium being .
The thickness of the magnetized shell may be neglected. Let the magnetic
moment of the permanent magnetism be Io®, and that of the imaginary super-
ficial distribution due to the medium k=A4qa" Then the potentials are

ail

external p’=(I+.4) - cos¥b, internal p,=(I+4)rcos@.

1“2

The distribution of real magnetism is the same before and after the introduc-
tion of the medium %, so that

1 2 1 2
E,I+]C—,I=%(I+A)+E(I+A),
k¥
or d=orzw’

The external effect of the magnetized shell is increased or diminished according
as k is greater or less than X. It is therefore increased by filling up the shell
with diamagnetic matter, and diminished by filling it with paramagnetic matter,
such as iron.

VIIL.  Electro-magnetic spherical shell.

Let us take as an example of the magnetic effects of electric currents,
an electro-magnet in the form of a thin spherical shell. Let its radius be a,
and its thickness ¢, and let its external effect be that of a magnet whose
moment is fo’. Both within and without the shell the magnetic effect may be
represented by a potential, but within the substance of the shell, where there
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are electric currents, the magnetic effects cannot be represented by a potential.
Let p’, p, be the external and internal potentials,

p=I _% cos 0, py=Arcos b,

dp’ _dp, _
dr = J;:, when r=a,

and since there is no permanent magnetism,

‘A= —9I

If we draw any closed curve cutting the shell at the equator, and at some
other point for which 6 is known, then the total magnetic intensity round this
curve will be 8Ja cos §, and as this is a measure of the total electric current which
flows through it, the quantity of the current at any point may be found by
differentiation. The quantity which flows through the element td is —3Ia sin 6d6,
so that the quantity of the current referred to unit of area of section is

- 31% sin 6.

If the shell be composed of a wire coiled round the sphere so that the number
of coils to the inch varies as the sine of #, then the external effect will be
nearly the same as if the shell had been made of a uniform conducting sub-
stance, and the currents had been distributed according to the law we have just
given.

If a wire conducting a current of strength I, be wound round a sphere
of radius @ so that the distance between successive coils measured along the

axis of x is ?g , then there will be n coils altogether, and the value of I, for

the resulting electro-magnet will be

=21,

~ 6a

The potentials, external and internal, will be

2

, n o nr
10——-1267‘2 cos 0, p1=—212€ &cosﬂ.

The interior of the shell is therefore a uniform magnetic field.
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IX. Effect of the core of the electro-magnet.

Now let us suppose a sphere of diamagnetic or paramagnetic matter intro-
duced into the electro-magnetic coil. The result may be obtained as in the
last case, and the potentials become

, n 3K o n 8k r
p—IzémFCOSG, pl——2I2Em &0080.

The external effect is greater or less than before, according as k' is greater
or less than %, that is, according as the interior of the sphere is magnetic or
diamagnetic with respect to the external medium, and the internal effect is
altered in the opposite direction, being greatest for a diamagnetic medium.

This investigation explains the effect of introducing an iron core into an
electro-magnet. If the value of £ for the core were to vanish altogether, the
effect of the electro-magnet would be three times that which it has without
the core. As k has always a finite value, the effect of the core is less' than this.

In the interior of the electro-magnet we have a uniform field of magnetic
force, the intensity of which may be increased by surrounding the coil with a
shell of iron. If =0, and the shell infinitely thick, the effect on internal points
would be tripled.

The effect of the core is greater in the case of a cylindric magnet, and
greatest of all when the core is a ring of soft iron.

X. Electro-tonic functions tn spherical electro-magnet.

Let us now find the electro-tonic functions due to this electro-magnet.
They will be of the form
a,=0, B.= w2, Vo= — oV,
where « is some function of 7. Where there are no electric currents, we must
have a,, b,, ¢, each=0, and this implies

d do
EZ—’I—' <3m+7‘ %>=O,
the solution of which is
— C +_g2
o=C+-3.
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Within the shell o cannot become infinite ; therefore w=C, is the solution,
and outside ¢ must vanish at an infinite distance, so that

is the solution outside. The magnetic quantity within the shell is found by last
article to be

n 3 _dB, dy, .
G TR T d T~y 2%
therefore within the sphere

_ A 1
@= T2 3EHEC

Outside the sphere we must determine o so as to coincide at the surface
with the internal value. The external value is therefore

Am 1 @
20 3k+k ¥’

=

where - the shell containing the currents is made up of « coils of wire, con-
ducting a current of total quantity I,

Let another wire be coiled round the shell according to the same law, and
let the total number of coils be #"; then the total electro-tonic intensity EI,
round the second coil is found by integrating

2
EI= J wa sin Ods,
~Jo

along the whole length of the wire. The equation of the wire is
¢

nw

cos =

where 7’ 18 a large number; and therefore
ds=a sin 0de,
= —an'm sin® 0d0,

. 4T L, gf , 1
. El,= g @O = —— annIé—k—I—k—,.

E may be called the electro-tonic coefficient for the particular wire.
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XI1. Spherical electro-magnetic Coil-Machine.

We have now obtained the electro-tonic function which defines the action
of the one coil on the other. The action of each coil on itself is found by
putting #* or n* for nn. Let the first coil be connected with an apparatus
producing a variable electro-motive force F. Let us find the effects on both
wires, supposing their total resistances to be R and R, and the quantity of
the currents J and I

2T a .
Let N stand for 5 GE+F)’ then the electro-motive force of the first
wire on the second is
,dl
~Nmn T
That of the second on itself is
» &I
~Nn T
The equation of the current in the second wire is therefore
,dI - dr ,
— N —OE—N Ti C ¥ [ (1).
The equation of the current in the first wire is
Al ,dr
- Nn T ~ Nnn I +F=RI....cccovvvevrininn.. (2).
Eliminating the differential coefficients, we get
E I__fi r=f,
n’
dI F n* dF
and N<R R) e A - (3),

from which to find I and I. For this purpose we require to know the value
of F in terms of ¢.

Let us first take the case in which F is constant and I and I’ initially =0.
This is the case of an electro-magnetic coil-machine at the moment when the
connexion is made with the galvanic trough.
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. . n2 n’2
Putting 3+ for N <R+ R—,) we find
v -
I=R (1 —€ "'),
r %

n -
T=-F—¢€-".
‘ REn

The primary current increases very rapidly from 0 to L and the secondary

’

commences at -—g,— % and speedily vanishes, owing to the value of 7 being

generally very small.

The whole work done by either current in heating the wire or in any other
kind of action is found from the expression

f PR,

0

f Ide.
0

For the secondary current we find
- _ Pt r ® _Fn <
fOIR’dt.. L Td=7 T

The total quantity of current is

v 1

The work done and the quantity of the current are therefore the same as

’

if a current of quantity I’ =—2-€R7—% had passed through the wire for a time 7, where

n? n’i
This method of considering a variable current of short duration is due to
Weber, whose experimental methods render the determination of the equivalent
current a matter of great precision.
Now let the electro-motive force # suddenly cease while the current in the
primary wire is Z, and in the secondary=0. Then we shall have for the subse-
quent time

2t ’ 2%
I=‘[0€_?’ I’= Io }in 6-; .

<

VOL. L. 29
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The equivalent currents are %I, and %I, % %, and their duration is 7.

When the communication with the source of the current is cut off, there
will be a change of R. This will produce a change in the value of 7, so that
if R be suddenly increased, the strength of the secondary current will be increased,
and its duration diminished. This is the case in the ordinary coil-machines. The
quantity N depends on the form of the machine, and may be determined by
experiment for a machine of any shape.

XII. Spherical shell revolving in magnetic field.

Let us next take the case of a revolving shell of conducting matter under
the influence of a uniform field of magnetic force. The phenomena are explained
by Faraday in his Experimental Researches, Series 11., and references are there
given to previous experiments.

Let the axis of z be the axis of revolution, and let the angular velocity
be w. Let the magnetism of the field be represented in quantity by I, inclined
at an angle 0 to the direction of #, in the plane of zx.

Let B be the radius of the spherical shell, and T the thickness. Let the
quantities a,, B,, ¥,, be the electro-tonic functions at any point of space; a,, b, c,
@, B, 7, symbols of magnetic quantity and intensity; a,, b, ¢, @, B, 7, of
electric quantity and intensity. Let p, be the electric tension at any point,

dp, 5 |
=g +hay
dp
3=_'"2+kb2 P ododee Ghedsesestnvine icesesnan 1 3
g~ (1)
dp,
Y= +h
da,  db, dc,
dw+?l§+dz_0 ................................. (2);
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The expressions for a,, 8,, 7, due to the magnetism of the field are

a0=Ao+§ycose,
I, .
Bo=Bo+—2' (28in @ -z cos b),

yo= G ysin,

4,, B,, C, being constants; and the velocities of the particles of the revolving
sphere are

da _ dy dz _
%-—-—wy, zlz—(l)%, 'CTt-—O

We have therefore for the electro-motive forces

B T i At A g OPYS
1dB,
B L= I 20080coy,
_ ldy,_ 11
Y= —Z—T;" 'd—t—- EESIDH&XE

Returning to equations (1), we get
P (db, _ dcs> _dB, dy,_

dz dy) T de  dy
de, da)\ _dy, da, 11T
HE-F) =BTt
k(‘il_%_%>_% B, _,
dy dx)  dy do
From which with equation (2) we find
11171,
G= =T -7 sin fwz,
b,=0,
1117,
C=7 1= 750 bwz,
1

= = 5= Lo {(@+y’) cos f a2 sin 6},
29—2
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These expressions would determine completely the motion of electricity in
a revolving sphere if we neglect the action of these currents on themselves.
They express a system of circular currents about the axis of y, the quantity
of current at any point being proportional to the distance from that axis.
The external magnetic effect will be that of a small magnet whose moment

is %ﬁ;ﬂ ol sin 0, with its direction along the axis of y, so that the magnetism of
the field would tend to turn it back to the axis of x*

The existence of these currents will of course alter the  distribution of
the electro-tonic functions, and so they will react on themselves. Let the
final result of this action be a system of currents about an axis in the plane
of xy inclined to the axis of x at an angle ¢ and producing an external effect
equal to that of a magnet whose moment is IR’

The magnetic inductive components within the shell are
ILsin@—2I cos in z,
—2I'sin¢ in ¥,
I, cos @ in 2.

Each of these would produce its own system of currents when the sphere
is in motion, and these would give rise to new distributions of magnetism,
which, when the velocity is uniform, must be the same as the original distri-
bution,

(Z,sin §—21I" cos @) in « produces 2 ZSZ;TIc o(Z,8in@—2I"cos @) in y,

s . T , .
(—2I'sing) in y produces 2 yrma (2I’sin ¢) in x;

I, e0s 0 in z produces no currents.
We must therefore have the following equations, since the state of the shell
is the same at every instant,

. , . T .
I sin 0—2T cos¢>=Ilsm0+m w2l sin ¢

9T sin ¢=§ZT77—km(I,sin0—-21’ cos 9,

* The expression for. p, indicates a variable electric tension in the shell, so that currents might
be collected by wires touching it at the equator and poles,
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T
whence cot = — %?76 o, I'=} 4W]C‘T - I,sin 6.
V1 (o)
Ak

To understand the meaning of these expressions let us take a particular case.

Let the axis of the revolving shell be vertical, and let the revolution be
from north to west. Let I be the total intensity of the terrestrial magnetism,
and let the dip be 6, then Icos@ is the horizontal component in the direction
of magnetic north.

The result of the rotation is to produce currents in -the shell about an

axis inclined at a small angle=tan™ 2—Z—w to the south of magnetic west, and

dnk
the external effect of these currents is the same as that of a magnet whose
moment 1is
3 __Tf___ R cos 6.
VodakF + T’

The moment of the couple due to terrestrial magnetism tending to stop the
rotation is
24wk To
2 2Unkl+ e

RI*cos’ 0,

and the loss of work due to this in unit of time is

247k Te?
_ R cos* 0.
2 QamkPt Twt o ®

This loss of work is made up by an evolution of heat in the substance of

the shell, as is proved by a recent experiment of M. Foucault (see Comptes
Rendus, x11. p. 450).
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[From the Transactions of the Royal Scottish Society of Arts, Vol 1v. Part 1v.]

IX. Description of a New Form of the Platometer, an Instrument for
measuring the Areas of Plane Figures drawn on Paper*.

1. TaE measurement of the area of a plane figure on a map or plan is an
operation so frequently occurring in practice, that any method by which it may
be easily and quickly performed is deserving of attention. A very able expo-
sition of the principle of such instruments will be found in the article on
Planimeters in the Reports of the Juries of the Great Exhibition, 1851.

2. In considering the principle of instruments of this kind, it will be most
convenient to suppose the area of the figure measured by an imaginary straight
line, which, by moving parallel to itself, and at the same
time altering in length to suit the form of the area, A
accurately sweeps it out.

Let AZ be a fixed vertical line, 4 PQZ the boundary
of the area, and let a variable horizontal line move 5
parallel to itself from 4 to Z, so as to have its extremi-
ties, P, M, in the curve and in the fixed straight line.
Now, suppose the horizontal line (which we shall call the
generating line) to move from the position PM to QN,
MN being some small quantity, say one inch for distinet-
ness. During this movement, the generating line will
have swept out the narrow strip of the surface, PMNGQ,
which exceeds the portion PMNp by the small triangle P@p.

But since MN, the breadth of the strip, is one inch, the strip will contain
as many square inches as PM is inches long; so that, when the generating

a8

* Read to the Society, 22nd Jan. 1855,

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.012


https://doi.org/10.1017/CBO9780511698095.012
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ON A NEW FORM OF THE PLATOMETER. 231

line descends one inch, it sweeps out a number of square inches equal to the
number of linear inches in its length.

Therefore, if we have a machine with an index of any kind, which, while
the generating line moves one inch downwards, moves forward as many degrees
as the generating line is inches long, and if the generating line be alternately
moved an inch and altered in length, the index will mark
the number of square inches swept over during the whole
operation. By the ordinary method of limits, it may be
shown that, if these changes be made continuous instead
of sudden, the index will still measure the area of the B o
curve traced by the extremity of the generating line. / i

3. When the area is bounded by a closed curve, as Ad D__p
ABDC, then to determine the area we must carry the tra-
cing point from some point 4 of the curve, completely round
the circumference to 4 again. Then, while the tracing point d R
moves from 4 to C, the index will go forward and mea-
sure the number of square inches in ACRP, and, while it
moves from C to D, the index will measure backwards the
square inches in CRPD, so that it will now indicate the
square inches in ACD. Similarly, during the other part of the motion from
D to B, and from B to D, the part DBA will be measured; so that when
the tracing point returns to D, the instrument will have measured the area
ACDB. It is evident that the whole area will appear positive or negative
according as the tracing point is carried round in the direction ACDB or ABDC.

4. We have next to consider the various methods of communicating the
required motion to the index. The first is by means of two discs, the first
having a flat horizontal rough surface, turning on a vertical
axis, 0@, and the second vertical, with its circumference rest-
ing on the flat surface of the first at P, so as to be driven
round by the motion of the first disc. The velocity of the
second disc will depend on OP, the distance of the point of
contact from the centre of the first disc; so that if OP be @
made always equal to the generating line, the conditions of the instrument will
be fulfilled.

This is accomplished by causing the index-disc to slip along the radius of
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232 ON A NEW FORM OF THE PLATOMETER.

the horizontal disc; so that in working the instrument, the motion of the index-
disc is compounded of a rolling motion due to the rotation of the first disc,
and a slipping motion due to the variation of the generating line.

5. In the instrument presented by Mr Sang to the Society, the first disc is
replaced by a cone, and the action of the instrument corresponds to a mathe-
matical valuation of the area by the use of oblique co-ordinates. As he has
himself explained it very completely, it will be enough here to say, that the
index-wheel has still a motion of slipping as well as of rolling.

6. Now, suppose a wheel rolling on a surface, and pressing on it with a
weight of a pound; then suppose the coeflicient of friction to be 3, it will
require a force of 2 oz. at least to produce slipping at all, so that even if the
resistance of the axis, &c., amounted to 1 oz., the rolling would be perfect. But
if the wheel were forcibly pulled sideways, so as to slide along in the direction
of the axis, then, if the friction of the axis, &c., opposed no resistance to the
turning of the wheel, the rotation would still be that due to the forward motion;
but if there were any resistance, however small, it would produce its effect in
diminishing the amount of rotation.

The case is that of a mass resting on a rough surface, which requires a
great force to produce the slightest motion; but when some other force acts
on it and keeps it in motion, the very smallest force is sufficient to alter that
motion in direction.

7. This effect of the combination of slipping and rolling has not escaped
the observation of Mr Sang, who has both measured its amount, and shown how
to eliminate its effect. In the improved instrument as constructed by him, I
believe that the greatest error introduced in this way does not equal the ordi-
nary errors of measurement by the old process of triangulation. This accuracy,
however, is a proof of the excellence of the workmanship, and the smoothness
of the action of the instrument; for if any considerable resistance had to be
overcome, it would display itself in the results.

8. Having seen and admired these instruments at the Great Exhibition in
1851, and being convinced that the combination of slipping and rolling was a
drawback on the perfection of the instrument, I began to search for some
arrangement by which the motion should be that of perfect rolling in every
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motion of which the instrument is capable. The forms of the rolling parts which
I considered were—

1. Two equal spheres.
2. Two spheres, the diameters being as 1 to 2.
3. A cone and cylinder, axes at right angles.

Of these, the first combination only suited my purpose. I devised several modes
of mounting the spheres so as to make the principle available. That which I
adopted is borrowed, as to many details, from the instruments already con-
structed, so that the originality of the device may be reduced to this principle—
The abolition of slipping by the use of two equal spheres.

9. The instrument (Fig. 1) is mounted on a frame, which rolls on the two
connected wheels, MM, and is thus constrained to travel up and down the
paper, moving parallel to itself.

CH is a horizontal axis, passing through two supports attached to the
frame, and carrying the wheel K and the hemisphere LAP. The wheel K rolls
on the plane on which the instrument travels, and communicates its motion to
the hemisphere, which therefore revolves about the axis AH with a velocity
proportional to that with which the instrument moves backwards or forwards.

FCO is a framework (better seen in the other figures) capable of revolving
about a vertical axis, Cc, being joined at C and ¢ to the frame of the instru-
ment. The parts CF and CO are at right angles to each other and horizontal.
The part CO carries with it a ring, SOS, which turns about a vertical axis Oo.
This ring supports the index-sphere Bb by the extremities of its axis Ss, just
as the meridian circle carries a terrestrial globe. By this arrangement, it will
be seen that the axis of the sphere is kept always horizontal, while its centre
moves so as to be always at a constant distance from that of the hemisphere.
This distance must be adjusted so that the spheres may always remain in con-
tact, and the pressure at the point of contact may be regulated by means of
springs or compresses at O and o acting in the direction OC| oc. In this way
the rotation of the hemisphere is made to drive the index-sphere.

10. Now, let us consider the working of the instrument. Suppose the arm
CE placed so as to coincide with CD, then O, the centre of the index-sphere
will be in the prolongation of the axis HA4. Suppose also that, when in this
position, the equator bB of the index-sphere is in contact with the pole 4 of
the hemisphere. Now, let the arch be turned into the position CE as in the

VOL. L 30
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234 ON A NEW FORM OF THE PLATOMETER.

figure, then the rest of the framework will be turned through an equal angle,
and the index-sphere will roll on the hemisphere till it come into the position
represented in the figure. Then, if there be no slipping, the arc AP=BP, and
the angle 4CP=BOP.

Next, let the instrument be moved backwards or forwards, so as to turn
the wheel Kk and the hemisphere LI, then the index-sphere will be turned
about its axis Ss by the action of the hemisphere, but the ratio of their veloci-
ties will depend on their relative positions. If we draw PQ, PR, perpendiculars
from the point of contact on the two axes, then the angular motion of the
index-sphere will be to that of the hemisphere, as PQ is to PR; that is, as
PQ is to QC, by the equal triangles POQ, PQC; that is, as ED is to DC,
by the similar triangles CQP, CDE.

Therefore the ratio of the angular velocities is as ED to DC, but since
DC is constant, this ratio varies as KD. We have now only to contrive some
way of making KD act as the generating line, and the machine is complete
(see art. 2).

11. The arm CF is moved in the following manner:—7%¢ is a rectangular
metal beam, fixed to the frame of the instrument, and parallel to the axis Am.
eLe is a little carriage which rolls along it, having two rollers on one side and
one on the other, which is pressed against the beam by a spring. This carriage
carries a vertical pin, £, turning in its socket, and having a collar above,
through which the arm CF works smoothly. The tracing point G' is attached
to the carriage by a jointed frame eGe, which is so arranged that the point
may not bear too heavily on the paper.

12. When the machine is in action, the tracing point is placed on a point
in the boundary of the figure, and made to move round it always in one
direction till it arrives at the same point again. The up-and-down motion of
the tracing point moves the whole instrument over the paper, turns the wheel
K, the hemisphere LI, and the index-sphere Bb; while the lateral motion of
the tracing point moves the carriage £ on the beam I¢, and so works the arm
CF and the framework CO; and so changes the relative velocities of the two
spheres, as has been explained.

13. In this way the instrument works by a perfect rolling motion, in what-
ever direction the tracing point is moved; but since the acouracy of the result
depends on the equality of the arcs AP and BP, and since the smallest error
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of adjustment would, in the course of time, produce a considerable deviation
from this equality, some contrivance is necessary to secure it. For this purpose
a wheel is fixed on the same axis with the ring SOs, and another of the same
size is fixed to the frame of the instrument, with its centre coinciding with the
vertical axis through C. These wheels are connected by two pieces of watch-
spring, which are arranged so as to apply closely to the edges of the wheels.
The first is firmly attached to the nearer side of the fixed wheel, and to the
farther side of the moveable wheel, and the second to the farther side of the
fixed wheel, and the nearer side of the moveable wheel, crossing beneath the
first. steel band. In this way the spheres are maintained in their proper relative
position; but since no instrument can be perfect, the wheels, by preventing
derangement, must cause some slight slipping, depending on the errors of work-
manship. This, however, does not ruin the pretensions of the instrument, for it
may be shown that the error introduced by slipping depends on the distance
through which the lateral slipping takes place; and since in this case it must
be very small compared with its necessarily large amount in the other instru-
ments, the error introduced by it must be diminished in the same proportion.

14. T have shewn how the rotation of the index-sphere is proportional to
the area of the figure traced by the tracing point. This rotation must be
measured by means of a graduated circle attached to the sphere, and read off
by means of a vernier. The result, as measured in degrees, may be interpreted
in the following manner :—

Suppose the instrument to be placed with the arm CF coinciding with CD,
the equator Bb of the index-sphere touching the pole A of the hemisphere, and
the index of the vernier at zero: then let these four operations be performed :—

(1) Let the tracing point be moved to the right till DE=DC, and there-
fore DCE, ACP, and POB = 45"

(2) Let the instrument be rolled upwards till the wheel K has made a
complete revolution, carrying the hemisphere with it; then, on account of the
equality of the angles SOP, PCA, the index-sphere will also make a complete

revolution.
(3) Let the arm CF be brought back again till F' coincides with D.

(4) Let the instrument be rolled back again through a complete revolution
of the wheel K. The index-sphere will not rotate, because the point of contact
is at the pole of the hemisphere.

30=—2
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The tracing point has now traversed the boundary of a rectangle, whose
length is the circumference of the wheel K, and its breadth is equal to CD;
and during this operation, the index-sphere has made a complete revolution.
860° on the sphere, therefore, correspond to an area equal to the rectangle con-
tained by the circumference of the wheel and the distance CD. The size of
the wheel K being known, different values may be given to CD, so as to make
the instrument measure according to any required scale. This may be done,
either by shifting the position of the beam 7% or by having several sockets
in the carriage E for the pin which directs the arm to work in.

15. If I have been too prolix in describing the action of an instrument
which has never been constructed, it is because I have myself derived great
satisfaction from following out the mechanical consequences of the mathematical
theorem on which the truth of this method depends. Among the other forms
of apparatus by which the action of the two spheres may be rendered available,
is one which might be found practicable in cases to which that here given
would not apply. In this instrument (Fig. 4) the areas are swept out by a
radius-vector of variable length, turning round a fixed point in the plane. The
area is thus swept out with a velocity varying as the angular velocity of the
radius-vector and the square of its length conjointly, and the construction of the
machine is adapted to the case as follows:—

The hemisphere is fixzed on the top of a vertical pillar, about which the rest
of the instrument turns. The index-sphere is supported as before by a ring and
framework. This framework turns about the vertical pillar along with the tra-
cing point, but has also a motion in a vertical plane, which is communicated to
it by a curved slide connected with the tracing point, and which, by means of a
prolonged arm, moves the framework as the tracing point is moved to and from
the pillar.

The form of the curved slide is such, that the tangent of the angle of
inclination of the line joining the centres of the spheres with the vertical is
proportional to the square of the distance of the tracing point from the vertical
axis of the instrument. The curve which fulfils this condition is an hyperbola,
one of whose asymptotes is vertical, and passes through the tracing point, and
the other horizontal through the centre of the hemisphere.

The other parts of this instrument are identical with those belonging to
that already described.
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When the tracing point is made to traverse the boundary of a plane figure,
there is a continued rotation of the radius-vector combined with a change of
length. The rotation causes the index-sphere to roll on the fixed hemisphere,
while the length of the radius-vector determines the rate of its motion about its
axis, so that its whole motion measures the area swept out by the radius-vector
during the motion of the tracing point.

The areas measured by this instrument may either lie on one side of the
pillar, or they may extend all round it. In either case the action of the
instrument is the same as in the ordinary case. In this form of the instrument
we have the advantages of a fixed stand, and a simple motion of the tracing
point; but there seem to be difficulties in the way of supporting the spheres
and arranging the slide; and even then the instrument would require a tall
pillar, in order to take in a large area.

16. It will be observed that I have said little or nothing about the prac-
tical details of these instruments. Many useful hints will be found in the large
work on Platometers, by Professor T. Gonnellu, who has given us an account
of the difficulties, as well as the results, of the construction of his most
elaborate instrument. He has also given some very interesting investigations
into the errors produced by various irregularities of construction, although, as
far as I am aware, he has not even suspected the error which the sliding of
the index-wheel over the disc must necessarily introduce. With respect to this,
and other points relating to the working of the instrument, the memoir of
Mr Sang, in the Transactions of this Society, is the most complete that I
have met with. It may, however, be as well to state, that at the time when
I devised the improvements here suggested, I had not seen that paper, though
I had seen the instrument standing at rest in the Crystal Palace.

EpixsurcH, 30th January, 1855.

Nore—=Since the design of the above instrument was submitted to the Society of Arts,
I have met with a description of an instrument combining simplicity of construction with
the power of adaptation to designs of any size, and at the same time more portable than
any other instrument of the kind. Although it does mnot act by perfect rolling, and there-
fore belongs to a different class of instruments from that described in this paper, I think
that its simplicity, and the beauty of the principle on which it acts, render it worth the
attention of engineers and mechanists, whether practical or theoretical. A full account of
this instrument is to be found in Moigno’s “Cosmos,” 5th year, Vol. viiL, Part vimr., p. 213,
published 20th February 1856. Description et Théorie du planimétre polaire, inventé par
J. Amsler, de Schaffouse en Suisse.

CaumBriDGE, 30th April, 1856,
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[From the Cambridge Philosophical Society Proceedings, Vol. 1. pp. 173—175.]

X. On the Elementary Theory of Optical Instruments.

THE object of this communication was to shew how the magnitude and
position of the image of any object seen through an optical instrument could
be ascertained without knowing the construction of the instrument, by means
of data derived from two experiments on the instrument. Optical questions
are generally treated of with respect to the pencils of rays which pass through
the instrument. A pencil is a collection of rays which have passed through one
point, and may again do so, by some optical contrivance. Now if we suppose
all the points of a plane luminous, each will give out a pencil of rays, and
that collection of pencils which passes through the instrument may be treated
as a beam of light. In a pencil only one ray passes through any point of
space, unless that point be the focus. In a beam an infinite number of rays,
corresponding each to some point in the luminous plane, passes through any
point; and we may, if we choose, treat this collection of rays as a pencil
proceeding from that point. Hence the same beam of light may be decomposed
into pencils in an infinite variety of ways; and yet, since we regard it as the
same collection of rays, we may study its properties as a beam independently
of the particular way in which we conceive it analysed into pencils.

Now in any instrument the incident and emergent beams are composed
of the same light, and therefore every ray in the incident beam has a
corresponding ray in the emergent beam. We do not know their path within
the instrument, but before incidence and after emergence they are straight
lines, and therefore any two points serve to determine the direction of each.

Let us suppose the instrument such that it forms an accurate image of a
plane object in a given position. Then every ray which passes through a given
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ON THE ELEMENTARY THEORY OF OPTICAL INSTRUMENTS. 239

point of the object before incidence passes through the corresponding point of
the image after emergence, and this determines one point of the emergent ray.
If at any other distance from the instrument a plane object has an accurate
image, then there will be two other corresponding points given in the incident
and emergent rays. Hence if we know the points in which an incident ray
meets the planes of the two objects, we may find the incident ray by joining
the points of the two images corresponding to them.

It was then shewn, that if the image of a plane object be distinct, flat, and
similar to the object for two different distances of the object, the image of any

other plane object perpendicular to the axis will be distinct, flat and similar
to the object.

When the object is at an infinite distance, the plane of its image is the
principal focal plane, and the point where it cuts the axis is the principal
Jocus. The line joining any point in the object to the corresponding point of
the image cuts the axis at a fixed point called the focal centre. The distance
of the principal focus from the focal centre is called the principal focal length,
or simply the focal length.

There are two principal foci, ete., formed by incident parallel rays passing
in opposite directions through the instrument. If we suppose light always to
pass in the same direction through the instrument, then the focus of incident
rays when the emergent rays are parallel is the first principal focus, and the

focus of emergent rays when the incident rays are parallel is the second
principal focus.

Corresponding to these we have first and second focal centres and focal
lengths.

Now let @, be the focus of incident rays, P, the foot of the perpendicular
from @, on the axis, @, the focus of emergent rays, P, the foot of the corre-
sponding perpendicular, F.F, the first and second principal foci, 4,4, the first and
second focal centres, then

PF, _ PQ FP
AF,”PQ,” FA’

lines being positive when measured in the direction of the light. Therefore
the position and magnitude of the image of any. object is found by a simple
proportion.
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240 ON THE ELEMENTARY THEORY OF OPTICAL INSTRUMENTS.

In one important class of instruments there are no principal foci or focal
centres. A telescope in which parallel rays emerge parallel is an instance. In
such instruments, if m be the angular magnifying power, the linear dimensions

of the image are }')ﬁ of the object, and the distance of the image of the object

from the image of the object-glass is % of the distance of the object from
the object-glass. Rules were then laid down for the composition of instruments,
and suggestions for the adaptation of this method to second approximations, and
the method itself was considered with reference to the labours of Cotes, Smith,
Euler, Lagrange, and Gauss on the same subject.
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[From the Report of the British Association, 1856.]

XI. On a Method of Drawing the Theoretical Forms of Faraday's Lanes of
' Force without Calculation.

TrE method applies more particularly to those cases in which the lines
are entirely parallel to one plane, such as the lines of electric currents in a
thin plate, or those round a system of parallel electric currents. In such cases,
if we know the forms of the lines of force in any two cases, we may combine
them by simple addition of the functions on which the equations of the lines
depend. Thus the system of lines in a uniform magnetic field is a series of
parallel straight lines at equal intervals, and that for an infinite straight electric
current perpendicular to the paper is a series of concentric circles whose radii
are in geometric progression. Having drawn these two sets of lines on two
separate sheets of paper, and laid a third piece above, draw a third set of lines
through the intersections of the first and second sets. This will be the system
of lines in a uniform field disturbed by an electric current. The most interesting
cases are those of uniform fields disturbed by a small magnet. If we draw a
circle of any diameter with the magnet for centre, and join those points in which
the circle cuts the lines of force, the straight lines so drawn will be parallel and
equidistant ; and it is easily shown that they represent the actual lines of
force in a paramagnetic, diamagnetic, or crystallized body, according to the
nature of the original lines, the size of the circle, &. No one can study
Faraday’s researches without wishing to see the forms of the lines of force.
This method, therefore, by which they may be easily drawn, is recommended
to the notice of electrical students.

VOL. I. 31
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[From the Report of the British Association, 1856.]

XII. On the Unequal Sensibility of the Foramen Centrale to Light of
different Colours.

WBHEN observing the spectrum formed by looking at a long vertical slit
through a simple prism, I noticed an elongated dark spot running up and down
in the blue, and following the motion of the eye as it moved up and down
the spectrum, but refusing to pass out of the blue into the other colours. It
was plain that the spot belonged both to the eye and to the blue part of the
spectrum. The result to which I have come is, that the appearance is due to
the yellow spot on the retina, commonly called the Foramen Centrale of Soem-
mering. The most convenient method of observing the spot is by presenting
to the eye in not too rapid succession, blue and yellow glasses, or, still better,
allowing blue and yellow papers to revolve slowly before the eye. In this way
the spot is seen in the blue. It fades rapidly, but is renewed every time the
yellow comes in to relieve the effect of the blue. By using a Nicol's prism
along with this apparatus, the brushes of Haidinger are well seen in connexion
with the spot, and the fact of the brushes being the spot analysed by polarized
light becomes evident. If we look steadily at an object behind a series of bright
bars which move in front of it, we shall see a curious bending of the bars as
they come up to the -place of the yellow spot. The part which comes over the
spot seems to start in advance of the rest of the bar, and this would seem to
indicate a greater rapidity of sensation at the yellow spot than in the surround-
ing retina. But I find the experiment difficult, and I hope for better results
from more accurate observers,
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[From the Report of the British Association, 1856.]

XIIL. On the Theory of Compound Colours with reference to Muxtures of Blue
and Yellow Light.

WHEN we mix together blue and yellow paint, we obtain green paint. This
fact is well known to all who have handled colours; and it is universally
admitted that blue and yellow make green. Red, yellow, and blue, being the
primary colours among painters, green is regarded as a secondary colour, arising
from the mixture of blue and yellow. Newton, however, found that the green
of the spectrum was not the same thing as the mixture of two colours of the
spectrum, for such a mixture could be separated by the prism, while the green
of the spectrum resisted further decomposition. But still it was believed that
yellow and blue would make a green, though not that of the spectrum. As
far as I am aware, the first experiment on the subject is that of M. Plateau,
who, before 1819, made a disc with alternate sectors of prussian blue and gam-
boge, and observed that, when spinning, the resultant tint was not green, but
a neutral gray, inclining sometimmes to yellow or blue, but never to green. Prof
J. D. Forbes of Edinburgh made similar experiments in 1849, with the same
result. Prof. Helmholtz of Konigsberg, to whom we owe the most complete
investigation on visible colour, has given the true explanation of this phznomenon.
The result of mixing two coloured powders is not by any means the same as
mixing the beams of light which flow from each separately. In the latter case
we receive all the light which comes either from the one powder or the other.
In the former, much of the light coming from one powder falls on particles of
the other, and we receive only that portion which has escaped absorption by one
or other. Thus the light coming from a mixture of blue and yellow powder,
consists partly of light coming directly from blue particles or yellow particles,
and partly of light acted on by both blue and yellow particles. This latter light
is green, since the blue stops the red, yellow, and orange, and the yellow stops

31—2
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244 ON THE THEORY OF COMPOUND COLOURS.

the blue and violet. I have made experiments on the mixture of blue and
yellow light—by rapid rotation, by combined reflexion and transmission, by view-
ing them out of focus, in stripes, at a great distance, by throwing the colours
of the spectrum on a screen, and by receiving them into the eye directly; and
I have arranged a portable apparatus by which any one may see the result of
this or any other mixture of the colours of the spectrum. In all these cases
blue and yellow do not make green. I have also made experiments on the
mixture of coloured powders. Those which I used principally were ‘ mineral
blue” (from copper) and “chrome-yellow.” Other blue and yellow pigments gave
curious results, but it was more difficult to make the mixtures, and the greens
were less uniform in tint. The mixtures of these colours were made by weight,
and were painted on discs of paper, which were afterwards treated in the manner
described in my paper “On Colour as perceived by the Eye,” in the Transactions
of the Royal Society of Edinburgh, Vol. xx1. Part 2. The visible effect of the
colour is estimated in terms of the standard-coloured papers:—vermilion (V),
ultramarine (U), and emerald-green (E). The accuracy of the results, and their
significance, can be best understood by referring to the paper before mentioned.
I shall denote mineral blue by B, and chrome-yellow by Y; and B, Y, means
a mixture of three parts blue and five parts yellow.

Given Colour. Standard Colours, Coefficient

V. U. E of brightness.
B; , 100 = 2 36 Y RO 45
B, Y ,100 = 1 18 17 ........ 37
B Y,,100 = 4 11 34 ... 49
B, Y,,100 = 9 5 40 ...l 54
B, Y,,100 = 15 1 40 ... 56
B, Y,,100 = 22 - 2 44 ... ... 64
B, Y,,100 = 35 -10 51 ............ 76
B Y,,100 = 64 —-19 64 ... 109
Y,, 100 =180 -27 124 ............ 277

The columns V, U, E give the proportions of the standard colours which
are equivalent to 100 of the given colour; and the sum of V, U, E gives a co-
efficient, which gives a general idea of the brightness. It will be seen that the
first admixture of yellow divminishes the brightness of the blue. The negative
values of U indicate that a mixture of V, U, and E cannot be made equivalent
to the given colour. The experiments from which these results were taken had

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.016


https://doi.org/10.1017/CBO9780511698095.016
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ON THE THEORY OF COMPOUND COLOURS. 245

the negative values transferred to the other side of the equation. They were
all made by means of the colour-top, and were verified by repetition at different
times. It may be necessary to remark, in conclusion, with reference to the mode
of registering visible colours in terms of three arbitrary standard colours, that it
proceeds upon that theory of three primary elements in the sensation of colour,
which treats the investigation of the laws of visible colour as a branch of human
physiology, incapable of being deduced from the laws of light itself, as set forth
in physical optics. It takes advantage of the methods of optics to study vision
itself; and its appeal is not to physical principles, but to our consciousness of
our own sensations.
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[From the Report of the British Association, 1856.]

XIV. On an Instrument to tllustrate Poinsdt’'s Theory of Rotation.

In studying the rotation of a solid body according to Poinsdt’s method, we
have to consider the successive positions of the instantaneous axis of rotation
with reference both to directions fixed in space and axes assumed in the moving
body. The paths traced out by the pole of this axis on the nvariable plane and
on the central ellipsoid form interesting subjects of mathematical investigation.
But when we attempt to follow with our eye the motion of a rotating body,
we find it difficult to determine through what point of the body the instantaneous
axis passes at any time,—and to determine its path must be still more difficult.
I have endeavoured to render visible the path of the instantaneous axis, and to
vary the circumstances of motion, by means of a top of the same kind as that
used by Mr Elliot, to illustrate precession®. The body of the instrument is a
hollow cone of wood, rising from a ring, 7 inches in diameter and 1 inch thick.
An iron axis, 8 inches long, screws into the vertex of the cone. The lower
extremity has a point of hard steel, which rests in an agate cup, and forms the
support of the instrument. An iron nut, three ounces in weight, is made to
screw on the axis, and to be fixed at any point; and in the wooden ring are
screwed four bolts, of three ounces, working horizontally, and four bolts, of one
ounce, working vertically. On the upper part of the axis is placed a disc of
card, on which are drawn four concentric rings. Each ring is divided into four
quadrants, which are coloured red, yellow, green, and blue. The spaces between
the rings are white. When the top is in motion, it is easy to see in which quad-
rant the instantaneous axis is at any moment and the distance between it and
the axis of the instrument; and we observe,—1st. That the instantaneous axis
travels in a closed curve, and returns to its original position in the body. 2ndly.

* Transactions of the Royal Scottish Society of Arts, 1855,
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ON AN INSTRUMENT TO ILLUSTRATE POINSOT'S THEORY OF ROTATION. 247

That by working the vertical bolts, we can make the axis of the instrument
the centre of this closed curve. It will then be one of the principal axes of
inertia.  3rdly. That, by working the nut on the axis, we can make the order
of colours either red, yellow, green, blue, or the reverse. When the order of
colours is in the same direction as the rotation, it indicates that the axis of the
instrument is that of greatest moment of inertia. 4thly. That if we screw the
two pairs of opposite horizontal bolts to different distances from the axis, the
path of the instantaneous pole will no longer be equidistant from the axis, but
will describe an ellipse, whose longer axis is in the direction of the mean axis
of the instrument. 5thly. That if we now make one of the two horizontal axes
less and the other greater than the vertical axis, the instantaneous pole will
separate from the axis of the instrument, and the axis will incline more and more
till the spinning can no longer go on, on account of the obliquity. It is easy
to see that, by attending to the laws of motion, we may produce any of the
above effects at pleasure, and illustrate many different propositions by means of
the same instrument.
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[From the Transactions of the Royal Society of Edinburgh, Vol. XX1. Part 1v.]

XV. On a Dynamical Top, for exhibiting the phenomena of the motion of a
system of tnvariable form about a fixed pount, with some suggestions as to
the Earth’'s motion.

(Read 20th April, 1857.)

To those who study the progress of exact science, the common spinning-top
is a symbol of the labours and the perplexities of men who had successfully
threaded the mazes of the planetary motions. The mathematicians of the last
age, searching through nature for problems worthy of their analysis, found in
this toy of their youth, ample occupation for their highest mathematical powers.

No illustration of astronomical precession can be devised more perfect than
that presented by a properly balanced top, but yet the motion of rotation has
intricacies far exceeding those of the theory of precession.

Accordingly, we find Euler and D’Alembert devoting their talent and their
patience to the establishment of the laws of the rotation of solid bodies.
Lagrange has incorporated his own analysis of the problem with his general
treatment of mechanics, and since his time M. Poinsdt has brought the subject
under the power of a more searching analysis than that of the caleulus, in
which ideas take the place of symbols, and intelligible propositions supersede
equations.

In the practical department of the subject, we must notice the rotatory
machine of Bohnenberger, and the nautical top of Troughton. In the first of
these instruments we have the model of the Gyroscope, by which Foucault has
been able to render visible the effects of the earth’s rotation. The beautiful
experiments by which Mr J. Elliot has made the ideas of precession so familiar
to us are performed with a top, similar in some respects to Troughton’s, though
not borrowed from his. ‘
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ON A DYNAMICAL TOP. 249

The top which I have the honour to spin before the Society, differs from
that of Mr Elliot in having more adjustments, and in being designed to exhibit
far more complicated phenomena.

The arrangement of these adjustments, so as to produce the desired effects,
depends on the mathematical theory of rotation. The method of exhibiting the
motion of the axis of rotation, by means of a coloured disc, is essential to the
success of these adjustments. This optical contrivance for rendering visible the
nature of the rapid motion of the top, and the practical methods of applying
the theory of rotation to such an instrument as the one before us, are the
grounds on which I bring my instrument and experiments before the Society
as my own.

I propose, therefore, in the first place, to give a brief outline of such parts
of the theory of rotation as are necessary for the explanation of the phenomena
of the top. ‘

I shall then describe the instrument with its adjustments, and the effect of
each, the mode of observing of the coloured disc when the top is in motion, and
the use of the top in illustrating the mathematical theory, with the method of
making the different experiments.

Lastly, I shall attempt to explain the nature of a possible variation in the
earth’s axis due to its figure. This variation, if it exists, must cause a periodic
inequality in the latitude of every place on the earth’s surface, going through its
period in about eleven months. The amount of variation must be very small,

but its character gives it importance, and the necessary observations are already
made, and only require reduction.

On the Theory of Rotation.

The theory of the rotation of a rigid system is strictly deduced from the
elementary laws of motion, but the complexity of the motion of the particles of
a body freely rotating renders the subject so intricate, that it has never been
thoroughly understood by any but the most expert mathematicians. Many who
have mastered the lunar theory have come to erroneous conclusions on this sub-
Ject; and even Newton has chosen to deduce the disturbance of the earth’s axis
from his theory of the motion of the nodes of a free orbit, rather than attack
the problem of the rotation of a solid body.

VOL. L 32
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The method by which M. Poins6t has rendered the theory more manageable,
is by the liberal introduction of ‘appropriate ideas,” chiefly of a geometrical
character, most of which had been rendered familiar to mathematicians by the
writings of Monge, but which then first became illustrations of this branch of
dynamics. If any further progress is to be made in simplifying and arranging
the theory, it must be by the method which Poinsdt has repeatedly pointed out
as the only one which can lead to a true knowledge of the subject,—that of
proceeding from one distinct idea to another, instead of trusting to symbols and
equations.

An important contribution to our stock of appropriate ideas and methods has
lately been made by Mr R. B. Hayward, in a paper, “On a Direct Method of
estimating Velocities, Accelerations, and all similar quantities, with respect to axes,
moveable in any manner in Space.” (Trans. Cambridge Phil. Soc. Vol. X. Part 1.)

* In this communication I intend to confine myself to that part of the
subject which the top is intended to illustrate, namely, the alteration of the
position of the axis in a body rotating freely about its centre of gravity. I
shall, therefore, deduce the theory as briefly as possible, from two considera-
tions only,—the permanence of the original angular momentum in direction and
magnitude, and the permanence of the original vis vive.

* The mathematical difficulties of the theory of rotation arise chiefly from
the want of geometrical illustrations and sensible images, by which we might
fix the results of analysis in our minds.

It is easy to understand the motion of a body revolving about a fixed axle.
Every point in the body describes a circle about the axis, and returns to its
original position after each complete revolution. But if the axle itself be in
motion, the paths of the different points of the body will no longer be circular
or re-entrant. Kven the velocity of rotation about the axis requires a careful
definition, and the proposition that, in all motion about a fixed point, there is
always one line of particles forming an instantaneous axis, is usually given in
the form of a very repulsive mass of calculation. Most of these difficulties may
be got rid of by devoting a little attention to the mechanics and geometry of
the problem before entering on the discussion of the equations.

Mr Hayward, in his paper already referred to, has made great use of the
mechanical conception of Angular Momentum.

* 7th May, 1857. The paragraphs marked thus have been rewritten since the paper was read.
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DerintrioN.—The Angulor Momentum of a particle about an axis s mea-
sured by the product of the mass of the particle, its velocity resolved in the normal
plane, and the perpendicular from the axis on the direction of motion.

* The angular momentum of any system about an axis is the algebraical
sum of the angular momenta of its parts.

As the rate of change of the linear momentum of a particle measures the
moving force which acts on it, so the rate of change of angular momentum
measures the moment of that force about an axis.

All actions between the parts of a system, being pairs of equal and opposite
forces, produce equal and opposite changes in the angular momentum of those
parts. Hence the whole angular momentum of the system is not affected by
these actions and re-actions.

* When a system of invariable form revolves about an axis, the angular
velocity of every part is the same, and the angular momentum about the axis is
the product of the angular velocity and the moment of inertia. about that axis.

* It is only in particular cases, however, that the whole angular momentum
can be estimated in this way. In general, the axis of angular momentum differs
from the axis of rotation, so that there will be a residual angular momentum
about an axis perpendicular to that of rotation, unless that axis has one of three
positions, called the principal axes of the body.

By referring everything to these three axes, the theory is greatly simplified.
The moment of inertia about one of these axes is greater than that about any
other axis through the same point, and that about one of the others is a mini-
mum. These two are at right angles, and the third axis is perpendicular to
their plane, and is called the mean axis.

* Let 4, B, (' be the moments of inertia about the principal axes through
the centre of gravity, taken in order of magnitude, and let w, w, @, be the
angular velocities about them, then the angular momenta will be Aw,, B,
and Co,.

Angular momenta may be compounded like forces or velocities, by the

law of the parallelogram,” and since these three are at right angles to each
other, their resultant is

VA0 +Bol+ Col=H .......c.coooveevvaannnn., (1),

and this must be constant, both in magnitude and direction in space, since no
external forces act on the body.

32—2
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We shall call this axis of angular momentum the invariable axis. It is
perpendicular to what has been called the invariable plane. Poinsét calls it
the axis of the couple of impulsion. The direction-cosines of this axis in the
body are,

Ao, Bo, Co,

b= m=75, n=7p-

Since I, m and # vary during the motion, we need some additional
condition to determine the relation between them. We find this in the property
of the ws wwa of a system of invariable form in which there is no friction.
The ws vwa of such a system must be constant. We express this in the

equation
Ao+ Bl +Col=TV cerirrriiririieinieniinainnns (2).
Substituting the values of ,, w,, o, in terms of I, m, n,
A" B C H”
1 e 1o 1_ . Y _o
Let =% B—b, =% =%
and this equation becomes
o T N o R (3),

and the equation to the cone, described by the invariable axis within the
body, is

(=) + V=) P+ (=) =0 veerrrrrrreanennnns .-(4).

The intersections of this cone with planes perpendicular to the principal
axes are found by putting @, y, or z, constant in this equation. By giving
e various values, all the different paths of the pole of the invariable axis,
corresponding to different initial circumstances, may be traced.

*¥In the figures, I have supposed a*=100, b*=107, and ¢*=110. The
first figure represents a section of the various cones by a plane perpendicular
to the axis of x, which is that of greatest moment of inertia, These sections
are ellipses having their major axis parallel to the axis of b. The value of ¢
corresponding to each of these curves is indicated by figures beside the curve.
The ellipticity increases with the size of the ellipse, so that the section
corresponding to ¢’=107 would be two parallel straight lines (beyond the bounds
of the figure), after which the sections would be hyperbolas.
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*The second figure represents the sections made by a plane, perpendicular
to the mean axis. They are all hyperbolas, except when ¢*=107, when the
section is two intersecting straight lines.

The third figure shows the sections perpendicular to the axis of least
moment of inertia. From ¢*=110 to €=107 the sections are ellipses, ¢*=107
gives two parallel straight lines, and beyond these the curves are hyperbolas.

*The fourth and fifth figures show the sections of the series of cones
made by a cube and a sphere respectively. The use of these figures is to
exhibit the connexion between the different curves described about the three
principal axes by the invariable axis during the motion of the body.

*We have next to compare the velocity of the invariable axis with respect
to the body, with that of the body itself round one of the principal axes.
Since the invariable axis is fixed in space, its motion relative to the body
must be equal and opposite to that of the portion of the body through which
it passes. Now the angular velocity of a portion of the body whose direction-
cosines are [, m, n, about the axis of x is

o, l
1— l2 - 1-——l2 (la)l + ’Inw2+ nw3).

Substituting the values of @, , @, in terms of I, m, », and taking
account of equation (3), this expression becomes

(0 —¢)
H =7 l.
Changing the sign and putting l=0;)—i[ we have the angular velocity of
the invariable axis about that of «
o, €e-=a

always positive about the axis of greatest moment, negative about that of least
moment, and positive or negative about the mean axis according to the value
of ¢. The direction of the motion in every case is represented by the arrows

in the figures. The arrows on the outside of each figure indicate the direction
of rotation of the body. .

*If we attend to the curve described by the pole of the invariable axis
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on the sphere in fig. 5, we shall see that the areas described by that point,
if projected on the plane of yz, are swept out at the rate

e —at

CLZ

@,

Now the semi-axes of the projection of the spherical ellipse described by
the pole are

e and 570

b —a c—a
Dividing the area of this ellipse by the area described during one revo-
lution of the body, we find the number of revolutions of the body during

the description of the ellipse—

The projections of the spherical ellipses upon the plane of yz are all
similar ellipses, and described in the same number of revolutions; and in each
ellipse so projected, the area described in any time is proportional to the
number of revolutions of the body about the axis of x, so that if we measure
time by revolutions of the body, the motion of the projection of the pole of
the invariable axis is identical with that of a body acted on by an attractive
central force varying directly as the distance. In the case of the hyperbolas
in the plane of the greatest and least axis, this force must be supposed
repulsive. The dots in the figures 1, 2, 3, are intended to indicate roughly
the progress made by the invariable axis during each revolution of the body
about the axis of x, ¥ and 2 respectively. It must be remembered that the
rotation about these axes varies with their inclination to the invariable axis,
so that the angular velocity diminishes as the inclination increases, and there-
fore the areas in the ellipses above mentioned are not described with uniform
velocity in absolute time, but are less rapidly swept out at the extremities of
the major axis than at those of the minor.

*When two of the axes have equal moments of inertia, or b=c, then
the angular velocity o, is constant, and the path of the invariable axis is
circular, the number of revolutions of the body during one circuit of the
invariable axis, being

b—a®’
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The motion is in the same direction as that of rotation, or in the opposite
direction, according as the axis of x is that of greatest or of least moment
of inertia.

*Both in this case, and in that in which the three axes are unequal, the
motion of the invariable axis in the body may be rendered very slow by
diminishing the difference of the moments of inertia. The angular velocity of
the axis of x about the invariable axis in space is

e —al?
e

which is greater or less than w,, as ¢* is greater or less than ¢, and, when
these quantities are nearly equal, is very nearly the same as o, itself. This
quantity indicates the rate of revolution of the axle of the top about its
mean position, and is very easily observed.

*The wnstantaneous axis is not so easily observed. It revolves round the
invariable axis in the same time with the axis of x, at a distance which is very
small in the case when a, b, ¢, are nearly equal. From its rapid angular motion
in space, and its near coincidence with the invariable axis, there is no advantage
in studying its motion in the top.

*By making the moments of inertia very unequal, and in definite proportion
to each other, and by drawing a few strong lines as diameters of the disc, the
combination of motions will produce an appearance of epicycloids, which are the
result of the continued intersection of the successive positions of these lines, and
the cusps of the epicycloids lie in the curve in which the instantaneous axis
travels. Some of the figures produced in this way are very pleasing.

In order to illustrate the theory of rotation experimentally, we must have
a body balanced on its centre of gravity, and capable of having its principal
axes and moments of inertia altered in form and position within certain limits.
We must be able to make the axle of the instrument the greatest, least, or
mean principal axis, or to make it not a principal axis at all, and we must be
able to see the position of the invariable axis of rotation at any time. There
must be three adjustments to regulate the position of the centre of gravity,
three for the magnitudes of the moments of inertia, and three for the directions
of the principal axes, nine independent adjustments, which may be distributed
as we please among the screws of the instrument.
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256 ON A DYNAMICAL TOP.

The form of the body of the instrument which I have found most suitable is
that of a bell (p. 262, fig. 6). C is a hollow cone of brass, R is a heavy
ring cast in the same piece. Six screws, with heavy heads, =, v, 2, «, ¢/, 2,
work horizontally in the ring, and three similar screws, I, m, n, work vertically
through the ring at equal intervals. A4S is the axle of the instrument, SS is
a brass screw working in the upper part of the cone C, and capable of being
firmly clamped by means of the nut ¢. B is a cylindrical brass bob, which may
be screwed up or down the axis, and fixed in its place by the nut b.

The lower extremity of the axle is a fine steel point, finished without emery,
and afterwards hardened. It runs in a little agate cup set in the top of the
pillar P. If any emery had been embedded in the steel, the cup would soon
be worn out. The upper end of the axle has also a steel point by which it may
be kept steady while spinning.

When the instrument is in use, a coloured disc is attached to the upper
end of the axle.

It will be seen that there are eleven adjustments, nine screws in the brass
ring, the axle screwing in the cone, and the bob screwing on the axle. The
advantage of the last two adjustments is, that by them large alterations can be
made, which are not possible by means of the small screws.

The first thing to be done with the instrument is, to make the steel point
at the end of the axle coincide with the centre of gravity of the whole. This
is done roughly by screwing the axle to the right place nearly, and then balancing
the instrument on its point, and screwing the bob and the horizontal screws till
the instrument will remain balanced in any position in which it is placed.

When this adjustment is carefully made, the rotation of the top has no
tendency to shake the steel point in the agate cup, however irregular the motion
may appear to be.

The next thing to be done, is to make one of the principal axes of the
central ellipsoid coincide with the axle of the top.

To effect this, we must begin by spinning the top gently about its axle,
steadying the upper part with the finger at first. If the axle is already a
principal axis the top will continue to revolve about its axle when the finger is
removed. If it is not, we observe that the top begins to spin about some other
axis, and the axle moves away from the centre of motion and then back to it
again, and so on, alternately widening its circles and contracting them.
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It is impossible to observe this motion successfully, without the aid of the
coloured disc placed near the upper end of the axis. This disc is divided into
sectors, and strongly coloured, so that each sector may be recognised by its colour
when in rapid motion. If the axis about which the top is really revolving, falls
within this disc, its position may be ascertained by the colour of the spot at the
centre of motion. If the central spot appears red, we know that the invariable
axis at that instant passes through the red part of the disc.

In this way we can trace the motion of the invariable axis in the revolving
body, and we find that the path which it describes upon the disc may be a circle,
an ellipse, an hyperbola, or a straight line, according to the arrangement of the
instrument. _

In the case in which the invariable axis coincides at first with the axle of
the top, and returns to it after separating from it for a time, its true path is
a circle or an ellipse having the axle in its circumference. The true principal
axis is at the centre of the closed curve. It must be made to coincide with the
axle by adjusting the vertical screws I, m, =.

Suppose that the colour of the centre of motion, when farthest from the
axle, indicated that the axis of rotation passed through the sector L, then the
principal axis must also lie in that sector at half the distance from the axle.

If this principal axis be that of greatest moment of inertia, we must raise
the screw I in order to bring it nearer the axle 4. If it be the axis of least
moment we must lower the screw I. In this way we may make the principal
axis coincide with the axle. Let us suppose that the principal axis is that of
greatest moment of inertia, and that we have made it coincide with the axle of
the instrument. Let us also suppose that the moments of inertia about the
other axes are equal, and very little less than that about the axle. Let the top
be spun about the axle and then receive a disturbance which causes it to spin
about some other axis. The instantaneous axis will not remain at rest either
in space or in the body. In space it will describe a right cone, completing a
revolution in somewhat less than the time of revolution of the top. In the
body it will describe another cone of larger angle in a period which is longer
as the difference of axes of the body is smaller. The invariable axis will be
fixed in space, and describe a cone in the body.

The relation of the different motions may be understood from the following
illustration. Take a hoop and make it revolve about a stick which remains at

rest and touches the inside of the hoop. The section of the stick represents the
VOL. 1. 33
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258 ON A DYNAMICAL TOP.

path of the instantaneous axis in space, the hoop that of the same axis in the
body, and the axis of the stick the invariable axis. The point of contact repre-
sents the pole of the instantaneous axis itself, travelling many times round the
stick before it gets once round the hoop. It is easy to see that the direction in
which the instantaneous axis travels round the hoop, is in this case the same as
that in which the hoop moves round the stick, so that if the top be spinning in
the direction L, M, N, the colours will appear in the same order.

By screwing the bob B up the axle, the difference of the axes of inertia
may be diminished, and the time of a complete revolution of the invariable
axis in the body increased. By observing the number of revolutions of the top
in a complete cycle of colours of the invariable axis, we may determine the
ratio of the moments of inertia.

By screwing the bob up farther, we may make the axle the principal axis of
least moment of inertia.

The motion of the instantaneous axis will then be that of the point of
contact of the stick with the outside of the hoop rolling on it. The order of
colours will be N, M, L, if the top be spinning in the direction L, M, N, and
the more the bob is screwed up, the more rapidly will the colours change, till
1t ceases to be possible to make the observations correctly.

In calculating the dimensions of the parts of the instrument, it is necessary
to provide for the exhibition of the instrument with its axle either the greatest
or the least axis of inertia. The dimensions and weights of the parts of the top
which I have found most suitable, are given in a note at the end of this paper.

Now let us make the axes of inertia in the plane of the ring unequal. We
may do this by screwing the balance screws x and «' farther from the axle
without altering the centre of gravity.

Let us suppose the bob B screwed up so as to make the axle the axis of
least inertia. Then the mean axis is parallel to xza', and the greatest is at right
angles to xx' in the horizontal plane. The path of the invariable axis on the
disc is no longer a circle but an ellipse, concentric with the disc, and having
its major axis parallel to the mean axis xx’.

The smaller the difference between the moment of inertia about the axle and
about the mean axis, the more eccentric the ellipse will be; and if, by screwing
the bob down, the axle be made the mean axis, the path of the invariable axis
will be no longer a closed curve, but an hyperbola, so that it will depart alto-
gether from the neighbourhood of the axle. When the top is in this condition
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it must be spun gently, for it is very difficult to manage it when its motion
gets more and more eccentric.

‘When the bob is screwed still farther down, the axle becomes the axis of
greatest inertia, and ax' the least. The major axis of the ellipse described by
the invariable axis will now be perpendicular to xx’, and the farther the bob
is screwed down, the eccentricity of the ellipse will diminish, and the velocity
with which it is described will increase.

I have now described all the phenomena presented by a body revolving freely
on its centre of gravity. If we wish to trace the motion of the invariable axis
by means of the coloured sectors, we must make its motion very slow compared
with that of the top. It is necessary, therefore, to make the moments of inertia
about the principal axes very nearly equal, and in this case a very small change
in the position of any part of the top will greatly derange the position of the
principal axis. So that when the top is well adjusted, a single turn of one of
the screws of the ring is sufficient to make the axle no longer a principal axis,
and to set the true axis at a considerable inclination to the axle of the top.

All the adjustments must therefore be most carefully arranged, or we may
have the whole apparatus deranged by some eccentricity of spinning. The method
of making the principal axis coincide with the axle must be studied and prac-
tised, or the first attempt at spinning rapidly may end in the destruction of
the top, if not of the table on which it is spun.

On the Earth’s Motion.

We must remember that these motions of a body about its centre of gra-
vity, are not illustrations of the theory of the precession of the Equinoxes.
Precession can be illustrated by the apparatus, but we must arrange it so that
the force of gravity acts the part of the attraction of the sun and moon in
producing a force tending to alter the axis of rotation. This is easily done by
bringing the centre of gravity of the whole a little below the point on which
it spins. The theory of such motions is far more easily comprehended than
that which we have been investigating.

But the earth is a body whose principal axes are unequal, and from the
phenomena of precession we can determine the ratio of the polar and equatorial
axes of the “central ellipsoid;” and supposing the earth to have been set in
motion about any axis except the principal axis, or to have had its original

33—2
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axis disturbed in any way, its subsequent motion would be that of the top
when the bob is a little below the critical position.

The axis of angular momentum would have an invariable position in space,
and would travel with respect to the earth round the axis of figure with a velo-

city =o y where o is the sidereal angular velocity of the earth. The apparent
pole of the earth would travel (with respect to the earth) from west to east
round the true pole, completing its circuit in _C—’%—Z sidereal days, which appears

to be about 825'6 solar days.

The instantaneous axis would revolve about this axis in space in about
a day, and would always be in a plane with the true axis of the earth and
the axis of angular momentum. The effect of such a motion on the apparent
position of a star would be, that its zenith distance would be increased and
diminished during a period of 825'6 days. This alteration of zenith distance
is the same above and below the pole, so that the polar distance of the star
is unaltered. In fact the method of finding the pole of the heavens by obser-
vations of stars, gives the pole of the invariable awis, which is altered only by
external forces, such as those of the sun and moon. ,

There is therefore no change in the apparent polar distance of stars due to
this cause. It is the latitude which varies. The magnitude of this variation
cannot be determined by theory. The periodic time of the variation may be
found approximately from the known dynamical properties of the earth. The
epoch of maximum latitude cannot be found except by observation, but it must
be later in proportion to the east longitude of the observatory.

In order to determine- the existence of such a variation of latitude, I have
examined the observations of Polaris with the Greenwich Transit Circle in the
years 1851-2-3-4. The observations of the upper transit during each month were
collected, and the mean of each month found. The same was done for the lower
transits. The difference of zenith distance of upper and lower transit is twice
the polar distance of Polaris, and half the sum gives the co-latitude of Greenwich.

In this way I found the apparent co-latitude of Greenwich for each month
of the four years specified.

There appeared a very slight indication of a maximum belonging to the set
of months,

March, 51. TFeb. 52. Dec. 52. Nov. 53. Sept. 54.
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This result, however, is to be regarded as very doubtful, as there did not
appear to be evidence for any variation exceeding half a second of space, and
more observations would be required to establish the existence of so small a
variation at all.

I therefore conclude that the earth has been for a long time revolving
about an axis very near to the axis of figure, if not coinciding with it. The
cause of this near coincidence is either the original softness of the earth, or
the present fluidity of its interior. The axes of the earth are so nearly equal,
that a considerable elevation of a tract of country might produce a deviation
of the principal axis within the limits of observation, and the only cause which
would restore the uniform motion, would be the action of a fluid which would
gradually diminish the oscillations of latitude. The permanence of latitude essen-
tially depends on the inequality of the earth’s axes, for if they had been all
equal, any alteration of the crust of the earth would have produced new prin-
cipal axes, and the axis of rotation would travel about those axes, altering the
latitudes of all places, and yet not in the least altering the position of the
axis of rotation among the stars.

Perhaps by a more extensive search and analysis of the observations of
different observatories, the nature-of the periodic variation of latitude, if it exist,
may be determined. I am not aware of any calculations having been made to
prove its non-existence, although, on dynamical grounds, we have every reason
to look for some very small variation having the periodic time of 325'6 days
nearly, a period which is clearly distinguished from any other astronomical cycle,
and therefore easily recognised.
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262 ON A DYNAMICAL TOP.

NOTE.
Dimensions and Weights of the parts of the Dynamical Top.

I. Body of the top—
Mean diameter of ring, 4 inches.
Section of ring, 3 inch square.

The conical portion rises from the upper and inner edge of the ring, a
height of 1 inches from the base.

The whole body of the top weighs . . . . 11b. 7 oz
Each of the nine adjusting serews has its screw 1 1nch long, and the
screw and head together weigh 1 ounce. The whole weigh . . 9 ,
I1. Axle, &c—

Length of axle 5 inches, of which % inch at the bottom is occupied by
the steel point, 3% inches are brass with a good screw turned on it,
and the remaining inch is of steel, with a sharp point at the top.

The whole weighs . . . 1,
The bob B has a diameter of 1'4 1nches and a thlckness of ‘4. It Welghs 23 ,
The nuts b and ¢, for clamping the bob and the body of the top on the
axle, each weigh % oz. . e e e 1.,
Weight of whole top 2 1b. 5% oz

The best arrangement, for general observations, is to have the disc of card divided
into four quadrants, coloured with vermilion, chrome yellow, emerald green, and ultramarine.
These are bright colours, and, if the vermilion is good, they combine into a grayish tint
when the revolution is about the axle, and burst into brilliant colours when the axis is
disturbed. It is useful to have some concentric circles, drawn with ink, over the colours,
and about 12 radii drawn in strong pencil lines. It is easy to distinguish the ink from
the pencil lines, as they cross the invariable axis, by their want of lustre. In this way,

the path of the invariable axis may be identified with great accuracy, and compared with
theory.
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[From the Philosophical Magazine, Vol. X1v.]

XVI. Account of Expervments on the Perception of Colour.

To the Editors of the Philosophical Magazine and Journal.

GENTLEMEN,

THE experiments which I intend to describe were undertaken in order
to render more perfect the quantitative proof of the theory of three primary
colours. According to that theory, every sensation of colour in a perfect human
eye is distinguished by three, and only three, elementary qualities, so that in
mathematical language the quality of a colour may be expressed as a function
of three independent variables. There is very little evidence at present for
deciding the precise tints of the true primaries. I have ascertained that a
certain red is the sensation wanting in colour-blind eyes, but the mathematical
theory relates to the number, not to the nature of the primaries. If, with Sir
David Brewster, we assume red, blue, and yellow to be the primary colours, this
amounts to saying that every conceivable tint may be produced by adding
together so much red, so much yellow, and so much blue. This is perhaps the
best method of forming a provisional notion of the theory. It is evident that if
any colour could be found which could not be accurately defined as so much of
each of the three primaries, the theory would fall to the ground. Besides this,
the truth of the theory requires that every mathematical consequence of assuming
every colour to be the result of mixture of three primaries should also be true.

I have made experiments on upwards of 100 different artificial colours, con-
sisting of the pigments used in the arts, and their mechanical mixtures. These
experiments were made primarily to trace the effects of mechanical mixture on
various coloured powders; but they also afford evidence of the truth of the
theory, that all these various colours can be referred to three primaries. The
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264 EXPERIMENTS ON THE PERCEPTION OF COLOUR.

following experiments relate to the combinations of six well-defined colours only,
and I shall describe them the more minutely, as I hope to induce those who
have good eyes to subject them to the same trial of skill in distinguishing
tints.

The method of performing the experiments is described in the Transactions
of the Royal Society of Edinburgh, Vol. xx1. Part 2. The colour-top or teetotum
which I used may be had of Mr J. M. Bryson, Edinburgh, or it may be easily
extemporized. Any rotatory apparatus which will keep a disc revolving steadily
and rapidly in a good light, without noise or disturbance, and can be easily
stopped and shifted, will do as well as the contrivance of the spinning-top.

The essential part of the experiment consists in placing several dises of
coloured paper of the same size, and slit along a radius, over one another, so
that a portion of each is seen, the rest being covered by the other dises. By
sliding the discs over each other the proportion of each colour may be varied,
and by means of divisions on a circle on which the discs lie, the proportion of
each colour may be read off. My circle was divided into 100 parts.

On the top of this set of dises is placed a smaller set of concentric disecs,
so that when the whole is in motion round the centre, the colour resulting from
the mixture of colours of the small dises is seen in the middle of that arising
from the larger dises. It is the object of the experimenter to shift the colours
till the outer and inner tints appear exactly the same, and then to read off the
proportions.

It is easy to deduce from the theory of three primary colours what must
be the number of disecs exposed at one time, and how much of each colour must
appear. ~~

Every colour placed on either circle consists of a certain proportion of eac
of the primaries, and in order that the outer and inner circles may have precisely
the same resultant colour in every respect, there must be the same amount of
each of the primary colours in the outer and inner circles. Thus we have as
many conditions to fulfil as there are primary colours; and besides these we
have two more, because the whole number of divisions in either the outer or
the inner circle is 100, so that if there are three primary colours there will be
five conditions to fulfil, and this will require five dises to be disposable, and
these must be arranged so that three are matched against two, or four against one.

If we take six different colours, we may leave out any one of the six, and
so form six different combinations of five colours. It is plain that these six
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EXPERIMENTS ON THE PERCEPTION OF COLOUR. 265

combinations must be equivalent to two equations only, if the theory of three
primaries be true.

The method which I have found most convenient for registering the result
of an experiment, after an identity of tint has been obtained in the inner and
outer circles, is the following :—

Write down the names or symbols of the coloured discs each at the top of
a column, and underneath write the number of degrees of that colour observed,
calling it+when the colour is in the outer circle, and —when it is in the inner
circle; then equate the whole to zero. In this way the account of each colour
is kept in a separate column, and the equations obtained are easily combined and
reduced, without danger of confounding the colours of which the quantities have
been measured. The following experiments were made between the 3rd and 11th
of September, 1856, about noon of each day, in a room fronting the mnorth,
without curtains or any bright-coloured object near the window. The same
combination was never made twice in one day, and no thought was bestowed
upon the experiments except at the time of observation. Of course the gradua-
tion was never consulted, nor former experiments referred to, till each combi-
nation of colours had been fixed by the eye alone; and no reduction was
attempted till all the experiments were concluded.

The coloured discs were cut from paper painted of the following colours:—
Vermilion, Ultramarine, Emerald-green, Snow-white, Ivory-black, and Pale
Chrome-yellow. They are denoted by the letters V, U, G, W, B, Y respectively.
These colours were chosen, because each is well distinguished from the rest, so
that a small change of its intensity in any combination can be observed. Two
discs of each colour were prepared, so that in each combination the colours might
occasionally be transposed from the outer circle to the inner. '

The first equation was formed by leaving out vermilion. The remaining
colours are Ultramarine-blue, Emerald-green, White, Black, and Yellow. We
might suppose, that by mixing the blue and yellow in proper proportions, we
should get a green of the same hue as the emerald-green, but not so intense,
so that in order to match it we should have to mix the green with white to
dilute it, and with black to make it darker. But it is not in this way that we
have to arrange the colours, for our blue and yellow produce a pinkish tint, and
never a green, so that we must add green to the combination of blue and yellow,
to produce a neutral tint, identical with a mixture of white and black.

VOL. L 34
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266 EXPERIMENTS ON THE PERCEPTION OF COLOUR.

Blue, green, and yellow must therefore be combined on the large discs, and
stand on one side of the equation, and black and white, on the small discs, must
stand on the other side. In order to facilitate calculations, the colours are
always put down in the same order; but those belonging to the small discs
are marked negative. Thus, instead of writing

54U + 14G +32Y = 32W + 68B,
we write f54U+ 14G —32W —68B+32Y =0.

The sum of all the positive terms of such an equation is 100, being the
whole number of divisions in the circle. The sum of the negative terms is
also 100. ‘

The second equation consists of all the colours except blue; and in this
way we obtain six different combinations of five colours.

Each of these combinations was formed by the unassisted judgment of my
eye, on six different occasions; so that there are thirty-six independent observa-
tions of equations between five colours.

Table 1. gives the actual observations, with their dates.
Table IL. gives the result of summing together each group of six equations.

Fach equation in Table II. has the sums of its positive and negative co-
efficients each equal to 600.

Having obtained a number of observations of each combination of colours,
we have next to test the consistency of these results, since theoretically two
equations are sufficient to determine all the relations among six colours. We
must therefore, in the first place, determine the comparative accuracy of the
different sets of observations. Table IIL. gives the averages of the errors of
each of the six groups of observations. It appears that the combination IV. is
the least accurately observed, and that VI. is the best.

Table IV. gives the averages of the errors in the observation of each colour
in the whole series of experiments. This Table was computed in order to detect
any tendency to colour-blindness in my own eyes, which might be less accurate
in discriminating red and green, than in detecting variations of other colours.
It appears, however, that my observations of red and green were more accurate
than those of blue or yellow. White is the most easily observed, from the
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EXPERIMENTS ON THE PERCEPTION OF COLOUR. 267

brilliancy of the colour, and black is liable to the greatest mistakes. I would
recommend this method of examining a series of experiments as a means of
detecting partial colour-blindness, by the different accuracy in observing differ-
ent colours. The next operation is to combine all the equations according to
their values. Each was first multiplied by a coefficient proportional to its ac-
curacy, and to the coefficient of white in that equation. The result of adding
all the equations so found is given in equation (W).

Equation (Y) is the result of similar operations with reference to the
yellow on each equation.

We have now two equations from which to deduce six new equations, by
eliminating each of the six colours in succession. We must first combine the
equations, so as to get rid of one of the colours, and then we must divide by
the sum of the positive or negative coefficients, so as to reduce the equations
to the form of the observed equations. The results of these operations are given
in Table V., along with the means of each group of six observations. It will
be seen that the differences between the results of calculation from two equations
and the six independent observed equations are very small. The errors in red
and green are here again somewhat less than in blue and yellow, so that there
is certainly no tendency to mistake red and green more than other colours.
The average difference between the observed mean value of a colour and the
calculated value is ‘77 of a degree. The average error of an observation in any
group from the mean of that group was ‘92, No observation was attempted
to be registered nearer than one degree of the top, or 35 of a circle; so that
this set of observations agrees with the theory of three primary colours quite
as far as the observations can warrant us in our calculations; and I think that
the human eye has seldom been subjected to so severe a test of its power of
distinguishing colours. My eyes are by no means so accurate in this respect as
many eyes I have examined, but a little practice produces great improvement
even in inaccurate observers.

I have laid down, according to Newton’s method, the relative positions of
the five positive colours with which I worked. It will be seen that W lies
within the triangle V U G, and Y outside that triangle.

The first combination, Equation I, consisted of blue, yellow, and green,
taken in such proportions that their centre of gravity falls at W.
34—2
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268 EXPERIMENTS ON THE PERCEPTION OF COLOUR.

In Equation II. a mixture of red and green, represented in the diagram
by the point 2, is seen to be equivalent to a mixture of white and yellow, also
represented by 2, which is a pale yellow tint.

Equation IIL. is between a mixture of blue and yellow and another of
white and red. The resulting tint is at the intersection of YU and WV ; that
is, at the point 3, which represents a pale pink grey. '

Equation IV. is between VG and UY, that is, at 4, a dirty yellow.

Equation V. is between a mixture of white, red, and green, and a mixture
of blue and yellow at the point 5, a pale dirty yellow.

Equation VI. has W. for its resulting tint.

Blue, U.

Red, V 5 @G, Green.

Y, Yellow.

Of all the resulting tints, that of Equation IV. is the furthest from white ;
and we find that the observations of this equation are affected with the greatest
errors. Hence the importance of reducing the resultant tint to as nearly a
neutral colour as possible,

It is hardly necessary for me to observe, that the whole of the numerical
results which I have given apply only to the coloured papers which I wused,
and to them only when illuminated by daylight from the north at mid-day in
September, latitude 55°. In the evening, or in winter, or by candlelight, the
results are very different. I believe, however, that the results would differ far
less if observed by different persons, than if observed under different lights;
for the apparatus of vision is wonderfully similar in different eyes, and even in
colour-blind eyes the system of perception is not different, but defective.
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EXPERIMENTS ON THE PERCEPTION OF COLOUR. 269

TABLE I—The observations arranged in groups.

Equation I. V=0. +U. +G. -W. -B. +7. Equation IV, -V. +U, -G. W=0. +B. +¥.
1856, Sept. 3 0 54 12 34 66 34 | 1856, Sept. 3. 62 15 38 0 53 32
4, 0 58 14 31 69 28 4. 63 17 37 0 46 37
5, 0 55 12 32 68 33 5. 64 16 36 0 50 34
6 0 54 14 32 68 32 6. 62 19 38 0 46 35
8 0 b4 14 32 68 32 8. 62 19 38 0 47 34
9 0 53 15 32 68 32 9. 63 17 37 0 49 34
Equation IL. -V. U=0, -G. +W. +B., +Y. Equation V. +V. -~-U. +G. +W. B=0. ~Y.
Sept. 3. 59 0 41 9 71 20 Sept. 3. 56 47 28 16 0 53
4, 61 0 39 9 68 23 4. 57 50 25 18 0 50
5. 61 0 39 9 67 24 5, 56 49 24 20 0 51
6, 59 0 41 10 66 24 6. 55 47 27 18 0 53
8. 60 0 40 9 69 22 8. 54 49 26 20 0 51
9. 61 0 39 9 68 23 11. 56 50 27 17 0 50
Equation I11. +V. -U. G=0. +W. +B. -Y. Equation VI. +V. 4U. +G. -W. -B. Y=0.
Sept. 3. 20 56 0 28 52 44 Sept. 3. 38 27 35 24 176 0
4, 23 58 0 30 47 42 4. 39 27 34 24 76 0
5. 24 56 0 29 47 44 5 40 26 34 24 76 0
6. 20 56 0 31 49 44 6 38 28 34 24 76 0
8. 21 57 0 29 50 43 8 39 28 33 2¢ 76 0
9. 21 58 0 29 50 42 11 39 27 34 23 77 0
TaBLE II.—The sums of the observed equations.
V. U. G, w. B. Y.
Equation I. 0 + 328 + 81 ~193 - 407 +191
IT. - 361 0 -239 + b5 +409 +136
IIL + 129 - 341 0 +176 +295 -~ 259
Iv. - 376 +103 ~224 0 +291 +206
V. +334 —-292 + 157 +109 0 - 308
VI +233 +163 + 204 —143 — 457 0

TaBLE IIL—The averages of the errors of the several equations from the means expressed in
135 parts of a circle.

Equations. I II. IIT. IV, V. VI
Errors. 94 85 1:05 117 1-08 40

TABLE IV.—The averages of the errors of the several colours from the means in ;}; parts of

a circle.
Colours. V. U. G. Ww. B. Y.
Errors. -83 ‘99 80 61 115 109

Average error on the whole -92.

The equations from which the reduced results were obtained were calculated as follow :—
Equation for (W)= (II)+2 (III) + (V) -2 (I) -4 (VI).
Equation for (Y)=2(I)+ 2 (II)-3 (I1I)+2(IV)-3(V)
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270 EXPERIMENTS ON THE PERCEPTION OF COLOUR.

These operations being performed, gave
V. U. G. Ww. B. Y.
(W) -+ T01+2282+1060-1474-3641+1072=0,
(Y) +2863-2761+1235+1131+ 299-2767=0.

From these were obtained the following results by elimination :—

TaBLE V.

Equation
1 { From (W) and (Y) 0 -541 -139 +320 +680 -320
From observation 0 —-547 =135 +321 +679 -318

From (W) and (Y) -596 0 —~404 +104 4+660 +236
From observation - 602 0 -398 + 92 +682 +226

From (W) and (Y) -217 +57+4 0 ~-302 —-481 4426
From observation -216 4+ 568 0 ~293 —49-2 +432

i {
V{me (W)and (Y) —62+4 +186 -376 0  +457 +357

o

.
.

bt
—
-

o]

From observation -627 +172 -373 0 +485 +34-3

From (W) and (Y) +556 —~490 +252 +192 0 ~51-0
From observation  +55'7 —487 +26:1 4182 0 -51-3

From (W) and (Y) -397 -266 -337 +227 +773 0
From observation ~388 —-272 340 +283 +762 0

V.

v

—

James CLERK MAXWELL.

GLENLAIR, June 13, 1857.
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[From The Quarterly Jowrnal of Pure and Applied Mathematics, Vol. 11.]

XVII. On the General Laws of Optical Instruments.

THE optical effects of compound instruments have been generally deduced
from those of the elementary parts of which they are composed. The formule
given in most works on Optics for calculating the effect of each spherical sur-
face are simple enough, but, when we attempt to carry on our calculations from
one of these surfaces to the next, we arrive at fractional expressions so com-
plicated as to make the subsequent steps very troublesome.

Euler (Acad. R. de Berlin, 1757, 1761. Acad. R. de Paris, 1765) has attacked
these expressions, but his investigations are not easy reading. Lagrange (Acad.
Berlin, 1778, 1803) has reduced the case to the theory of continued fractions
and so obtained general laws.

Gauss (Dioptrische Untersuchungen, Gottingen, 1841) has treated the subject
with that combination of analytical skill with practical ability which he displays
elsewhere, and has made use of the properties of principal foci and principal
planes. An account of these researches is given by Prof Miller in the third
volume of Taylor's Scientific Memoirs. It is also given entire in French by
M. Bravais in Liouwville’s Journal for 1856, with additions by the translator.

The method of Gauss has been followed by Prof Listing -in his Treatise
on the Dioptrics of the Eye (in Wagner’'s Handworterbuch der Physiologie) from
whom I copy these references, and by Prof. Helmholtz in his Treatise on
Phystological Optics (in Karsten's Cyclopadie).

The earliest general investigations are those of Cotes, given in Smith's
Optics, 11. 76 (1738). The method there is geometrical, and perfectly general,
but proceeding from the elementary cases to the more complex by the method
of mathematical induction. Some of his modes of expression, as for instance his
measure of ‘““apparent distance,” have never come into use, although his results
may easily be expressed more intelligibly; and indeed the whole fabric of
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272 ON THE GQENERAL LAWS OF OPTICAL INSTRUMENTS,

Geometrical Optics, as conceived by Cotes and laboured by Smith, has fallen
into neglect, except among the writers before named. Smith tells us that it
was with reference to these optical theorems that Newton said “If Mr Cotes
had lived we might have known something.”

The investigations which I now offer are intended to show how simple and
how general the theory of instruments may be rendered, by considering the
optical effects of the entire instrument, without examining the mechanism by
which those effects are obtained. I have thus established a theory of  perfect
instruments,” geometrically complete in itself, although I have also shown, that
no instrument depending on refraction and reflexion, (except the plane mirror)
can be optically perfect. The first part of this theory was communicated to
the Philosophical Society of Cambridge, 28th April, 1856, and an abstract will
be found in the Philosophical Magazine, November, 1856. Propositions VIIL
and IX. are now added. I am not aware that the last has been proved before.

In the following propositions I propose to establish certain rules for deter-
mining, from simple data, the path of a ray of light after passing through any
optical instrument, the position of the conjugate focus of a luminous point, and
the magnitude of the image of a given object. The method which I shall use
does not require a knowledge of the internal construction of the instrument and
derives all its data from two simple experiments.

There are certain defects incident to optical instruments from which, in the
elementary theory, we suppose them to be free. A perfect instrument must
fulfil three conditions :

I. Every ray of the pencil, proceeding from a single point of the object,
must, after passing through the instrument, converge to, or diverge from, a
single point of the image. The corresponding defect, when the emergent rays
have not a common focus, has been appropriately called (by Dr Whewell)
Astigmatism.

II. If the object is a plane surface, perpendicular to the axis of the
instrument, the image of any point of it must also lie in a plane perpendicular
to the axis. When the points of the image lie in a curved surface, it is said
to have the defect of curvature.

IIT. The image of an object on this plane must be similar to the object,
whether its linear dimensions be altered or not; when the image is not similar
to the object, it is said to be distorted.
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ON THE GENERAL LAWS OF OPTICAL INSTRUMENTS. 273

An image free from these three defects is said to be perfect.

In Fig. 1, p. 285, let 4,ma, represent a plane object perpendicular to the
axis of an instrument represented by I, then if the instrument is perfect, as
regards an object at that distance, an image Aa, will be formed by the
emergent rays, which will have the following properties:

I Every ray, which passes through a point @, of the object, will pass
through the corresponding point @, of the image.

II. Every point of the image will lie in a plane perpendicular to the axis.

IIT. The figure A.m,a, will be similar and similarly situated to the figure
A,a,a,

Now let us assume that the instrument is also perfect as regards an object
in the plane Bb,B3, perpendicular to the axis through B, and that the image
of such an object is in the plane B)bB, and similar to the object, and we
shall be able to prove the following proposition :

Pror. I. If an instrument give a perfect image of a plane object at two
different distances from the instrument, all incident rays having a common focus
will have a common focus after emergence.

Let P, be the focus of incident rays. Let Pab, be any incident ray.
Then, since every ray which passes through @, passes through a,, its image after
emergence, and since every ray which passes through b, passes through b,, the
direction of the ray P,ab, after emergence must be ab,

Similarly, since «, and B, are the images of a, and B,, if Pa,B be any
other ray, its direction after emergence will be a3,

Join a,a,, b8, aa, bB,; then, since the parallel planes 4,0, and BbB,
are cut by the plane of the two rays through P,, the intersections a,a, and
b8, are parallel.

Also, their images, being similarly situated, are parallel to them, therefore
a0, is parallel to b, and the lines ab, and a3, are in the same plane, and
therefore either meet in a point P, or are parallel.

Now take a third ray through P, not in the plane of the two former.
After emergence it must either cut both, or be parallel to them. If it cuts
both it must pass through the point P,, and then every other ray must pass
through P,, for no line can intersect three lines, not in one plane, without

passing through their point of intersection. If not, then all the emergent rays
VOL. L. 35
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are parallel, which is a particular case of a perfect pencil. So that for every
position of the focus of incident rays, the emergent pencil is free from astig-

matism.

Prop. II. In an instrument, perfect at two different distances, the image
of any plane object perpendicular to the axis will be free from the defects of

curvature and distortion.

Through the point P, of the object draw any line P,Q, in the plane of
the object, and through P,Q, draw a plane cutting the planes 4,, B, in the lines
aa,, bB,. These lines will be parallel to P, @, and to each other, wherefore
also their images, a,a,, b8, will be parallel to P,Q, and to each other, and
therefore in one plane.

Now suppose another plane drawn through P,Q, cutting the planes 4, and
B, in two other lines parallel to P,@,. These will have parallel images in the
planes 4, and B,, and the intersection of the planes passing through the two
pairs of images will define the line P,Q, which will be parallel to them, and
therefore to P,Q,, and will be the wmage of P,Q,. Therefore P,Q,, the image
of PQ, is parallel to it, and therefore in a plane perpendicular to the axis.
Now if all corresponding lines in any two figures be parallel, however the lines
be drawn, the figures are similar, and similarly situated.

From these two propositions it follows that an instrument giving a perfect
image at two different distances will give a perfect image at all distances. We
have now only to determine the simplest method of finding the position and
magnitude of the image, remembering that wherever two rays of a pencil inter-
sect, all other rays of the pencil must meet, and that all parts of a plane
object have their images in the same plane, and equally magnified or diminished.

Prop. III. A ray is incident on a perfect instrument parallel to the axis,
to find its direction after emergence.

Let ab, (fig. 2) be the incident ray, 4.a, one of the planes at which an
object has been ascertained to have a perfect image. A,, that image, similar
to A,a, but in magnitude such that 4,a,=x40,.

Similarly let Bp, be the image of B, and let Bpb,=yBb,. Also let
A B =c and A4,B,=c,.

Then since a, and b, are the images of @, and b,, the line Fyab, will be
the direction of the ray after emergence, cutting the axis in F,, (unless =y,
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when ab, becomes parallel to the axis). The point F, may be found, by
remembering that 4,0,=Bb,, 4,0,=x4,0,, Bb,=yBb,. We find—

A.F,=c,

Let g, be the point at which the emergent ray is at the same distance
from the axis as the incident ray, draw ¢,G, perpendicular to the axis, then

we have
C,

y—x’

Similarly, if aB.F, be a ray, which, after emergence, becomes parallel to
the axis; and ¢,G, a line perpendicular to the axis, equal to the distance of
the parallel emergent ray, then

AF, =, x.i_y- FG,= g—f% :

FG,=

Definitions.

I. The point F,, the focus of incident rays when the emergent rays are
parallel to the axis, is called the first principal focus of the instrument.

II. The plane (g9, at which incident rays through F#, are at the same
distance from the axis as they are after emergence, is called the first princi-
pal plane of the instrument. F,G, is called the first focal length.

III. The point F,, the focus of emergent rays when the incident rays
are parallel, is called the second principal focus.

IV. The plane G,g,, at which the emergent rays are at the same distance

from the axis, as before incidence, is called the second principal plane, and
F,G, is called the second focal length.

When x=y, the ray is parallel to the axis, both at incidence and emerg-
ence, and there are no such points as # and G. The instrument is then
called a telescope. x(=y) is called the linear magnifying power and is denoted
by I, and the ratio Z—*’ is denoted by n, and may be called the elongation.

In the more general case, in which # and y are different, the principal
foct and principal planes afford the readiest means of finding the position of
images.

35—2
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Pror. IV. Given the principal foci and principal planes of an instrument,
to find the relations of the foci of the incident and emergent pencils.

Let F,, F, (fig. 3) be the principal foci, @,, G, the principal planes, @,
the focus of incident light, @.P, perpendicular to the axis.

Through @, draw the ray @,¢,F, Since this ray passes through F, it
emerges parallel to the axis, and at a distance from it equal to G,g,. Its
direction after emergence is therefore @,9, where G,g,=G.g,. Through @, draw
Qy, parallel to the axis. The corresponding emergent ray will pass through
F,, and will cut the second principal plane at a distance Gyy,=Ghy,, so that
Fyy, is the direction of this ray after emergence.

Since both rays pass through the focus of the emergent pencil, @, the
point of intersection, is that focus. Draw @,P, perpendicular to the axis.
Then P,Q,=Gy=Gy, and G,g,=G,9,=P,Q,. By similar triangles F.P,Q, and
NGy,

PF, : F\G, : PQ, : (Gig,=) P,Q..

And by similar triangles F,P,Q, and F,Gyy,
-P1Q1(=G2 2) : PzQz s GrF2 : F2P2-
We may put these relations into the concise form

PF,_PQ, _G.F,
FG T PQ - EPY

and the values of F,P, and P,Q, are

F\G, . G.F,
P.F,

and P,Q,=1% pg.

Fby= P,

These expressions give the distance of the image from ¥, measured along the
axis, and also the perpendicular distance from the axis, so that they serve to
determine completely the position of the image of any point, when the princi-
pal foci and principal planes are known.

Prop. V. To find the focus of emergent rays, when the instrument is a
telescope.

Let @, (fig. 4) be the focus of incident rays, and let Qa,b, be a ray
parallel to the axis; then, since the instrument is telescopic, the emergent
ray @Q.o,b, will be parallel to the axis, and @,P,=1. Q,P,.
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Let QaB, be a ray through B,, the emergent ray will be Qq,B,, and

Aa,=1.A4a,.
NOW P2B2_PzQz_l--PlQl_PlQl_PlBl
4.B, B 4., 1. 4,0, - A,a, - A.B°
go that P.B, A4,B,

PB- ZI_B—1=n, a constant ratio.

Cor. If a point C be taken on the axis of the instrument so that
___4,B, _on
CBz = m B1B2 = _1——_7& BIB”
then CP,=n.CP,.
Def. The point C is called the centre of the telescope.

It appears, therefore, that the image of an object in a telescope has its
dimensions perpendicular to the axis equal to ! times the corresponding dimen-
sions of the object, and the distance of any part from the plane through C
equal to n times the distance of the corresponding part of the object. Of
course all longitudinal distances among objects must be multiplied by = to
obtain those of their images, and the tangent of the angular magnitude of an

object as seen from a given point in the axis must be multiplied by % to
obtain that of the image of the object as seen from the image of the given
point. The quantity % is therefore called the angular magnifying power, and
is denoted by m.

Pror. VI. To find the principal foci and principal planes of a combina-
tion of two instruments having a common axis.

Let I, I (fig. 5) be the two instruments, G, F.F,G, the principal foci and
planes of the first, G/F/F/G, those of the second, T¢I, those of the com-
bination. Let the ray ¢,9.9/9) pass through both instruments, and let it be
parallel to the axis before entering the first instrument. It will therefore pass
through F, the second principal focus of the first instrument, and through g¢,
so that G.g,= G,

On emergence from the second instrument it will pass through ¢, the
focus conjugate to F,, and through ¢, in the second principal plane, so that
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Glg,=G/g/. ¢, is by definition the second principal focus of the combination
of instruments, and if Tyy, be the second principal plane, then T,y,=Gg.

We have now to find the positions of ¢, and T,.

By Prop. IV., we have
F/'G!.GF/
FF
Or, the distance of the principal focus of the combination, from that of the
second instrument, is equal to the product of the focal lengths of the second
instrument, divided by the distance of the second principal focus of the first
instrument from the first of the second. From this we get
GUF, (FF!—F )
FFY ’
oy _OF, . G/F,
or G2 ¢2=——F:F—1,—-.

Now, by the pairs of similar triangles ¢G)g/, ¢Tyy, and F,G)g/, F,G.g,

F2¢2 . Pz’)’z . ng2 _ EGz

G/, Glg. Glg/ ™ GIF’
Multiplying the two sides of the former equation respectively by the first and
last of these equal quantities, we get

F;,sz =

Gy F; —F, 2’4’2 =

GaF 2 Gzl 2’
R o
Or, the second focal distance of a combination is the product of the second
focal lengths of its two components, divided by the distance of their consecutive
principal foci.
If we call the focal distances of the first instrument f, and f,, those of

the second f, and f,, and those of the combination f,, f.» and put F,F/=d,
then the positions of the principal foci are found from the values

_Eh e S
$F=IL Eg bl

and the focal lengths of the combination from

.fl':j;({;” f-;:‘éé—;

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 13 Apr 2020 at 02:51:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/CBO9780511698095.020


https://doi.org/10.1017/CBO9780511698095.020
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ON THE GENERAL LAWS OF OPTICAL INSTRUMENTS. 279

When d=0, all these values become infinite, and the compound instrument
becomes a telescope.

Prop. VII. To find the linear magnifying power, the elongation, and the
centre of the instrument, when the combination becomes a telescope.

Here (fig. 6) the second principal focus of the first instrument coincides at /'
with the first of the second. (In the figure, the focal distances of both instru-
ments are taken in the opposite direction from that formerly assumed. They are
therefore to be regarded as negative.)

In the first place, F, is conjugate to F,, for a pencil whose focus before
incidence is F, will be parallel to the axis between the instruments, and will
converge to F, after emergence.

Also if G.g, be an object in the first principal plane, G.g, will be its first
image, equal to itself, and if HA be its final image

07 R S L Y

GV £
A
- GQF 292 - ﬁ Glgl.
Now the linear magnifying power is gh , and the elongation is F“’g ,

because F, and H are the images of F, and @, respectively; therefore

-1 .
2 Tt

and n=

The angular magnifying power=m= /’—ZL = - L

y

The centre of the telescope is at the point C, such that
F/0=-"_ F.F,.
1—n

When n becomes 1 the telescope has no centre. The effect of the instrument
is then simply to alter the position of an object by a certain distance measured
along the axis, as in the case of refraction through a plate of glass bounded by
parallel planes. In certain cases this constant distance itself disappears, as in
the case of a combination of three convex lenses of which the focal lengths are
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4, 1, 4 and the distances 4 and 4. This combination simply inverts every object
without altering its magnitude or distance along the axis.

The preceding theory of perfect instruments is quite independent of the
mode in which the course of the rays is changed within the instrument, as
we are supposed to know only that the path of every ray is straight before
it enters, and after it emerges from the instrument. We have now to con-
sider, how far these results can be applied to actual instruments, in which
the course of the rays is changed by reflexion or refraction. We know that
such instruments may be made so as to fulfil approximately the conditions of
a perfect instrument, but that absolute perfection has not yet been obtained.
Let us inquire whether any additional general law of optical instruments can
be deduced from the laws of reflexion and refraction, and whether the imper-
fection of instruments is necessary or removeable.

The following theorem is a necessary consequence of the known laws of
reflexion and refraction, whatever theory we adopt.

If we multiply the length of the parts of a ray which are in different
media by the indices of refraction of those media, and call the sum of these
products the reduced path of the ray, then:

I. The extremities of all rays from a given origin, which have the same
reduced path, lie in a surface normal to those rays.

II. 'When a pencil of rays is brought to a focus, the reduced path from
the origin to the focus is the same for every ray of the pencil.

In the undulatory theory, the “reduced path” of a ray is the distance
through which light would travel in space, during the time which the ray
takes to traverse the various media, and the surface of equal “reduced paths”
is the wave-surface. In extraordinary refraction the wave-surface is not always
normal to the ray, but the other parts of the proposition are true in this and all
other cases.

From this general theorem in optics we may deduce the following propo-
sitions, true for all instruments depending on refraction and reflexion.

Pror. VIII. In any optical instrument depending on refraction or reflex-
ion, if a,a, b8, (fig. 7) be two objects and aa, bB, their images, 4,B, the
distance of the objects, 4,B, that of the images, p, the index of refraction of
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the medium in which the objects are, m, that of the medium in which the
images are, then
a,a, X b8, a.a, X b3,
b aB TP A4AB

approximately, when the objects are small.

Since a, is the image of a,, the reduced path of the ray aba, will be
equal to that of a8, and the reduced paths of the rays a,8,a, and aba, will
be equal. '

Also because b8, and b8, are conjugate foci, the reduced paths of the
rays bab, and bab, and of BaB, and BB, will be equal. So that the
reduced paths

ab, + ba, = a8+ B,
B+ B, = ab, + ba,
ba, + ab, = ba, + a.b,
,81002+a2,32=,31a2+a2,32

. albl + aqu + azb2 + a’aB2 = 0&1,81 + a’lbl + azbz + azﬁz’

these being still the reduced paths of the rays, that is, the length of each
ray multiplied by the index of refraction of the medium.

If the figure is symmetrical about the axis, we may write the equation

1 (a')Bl - albl) =M. (aZB2 - O”zb2)’

where a,8,, &c. are now the actual lengths of the rays so named.

Now aBi=A4B’+} (a0, +DB),
abi=A,B+} (ta,~bB),
so that o8B —ab} = a0, X b,

_ a,o, X b]ﬂl‘
and p (0B, —ab,) =, aBrab,
.o e _ a0 X waz
Slmllarly M (az,Bz -— 0621)2) = [y M2 .

0, X buBl ___ oty X b2:82
MaBtab, af+ab,’

VOL. 1. 36

So that the equation
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is true accurately, and since when the objects are small, the denominators are
nearly 24,B, and 24,B,, the proposition is proved approximately true.

Using the expressions of Prop. III., this equation becomes
1y

’J" cl——'U'2 Cy

Now by Prop. IIL, when « and y are different, the focal lengths f, and £,

are
=YY — L .
j‘l—clx_y7 j;_c2y-ac’
therefore j;‘: Clcﬂ =;: * by the present theorem.
2 2 2

So that in any instrument, not a telescope, the focal lengths are directly as
the indices of refraction of the media to which they belong. If, as in most
cases, these media are the same, then the two focal distances are equal.

When z=y, the instrument becomes a telescope, and we have, by Prop. V.,

l=2x, and n="2: and therefore by this theorem

1

o~
Xy

M

M2

S|

We may find ! experimentally by measuring the actual diameter of the
image of a known near object, such as the aperture of the object glass. If O be
the diameter of the aperture and o that of the circle of light at the eye-hole
(which is its image), then

=2
5

From this we find the elongation and the angular magnifying power

n=LF and m=’i‘1.
! pa b
. . 1 0 T ,
When p,=p, as in ordinary cases, m=g==, which is Gauss’ rule for deter-

mining the magnifying power of a telescope.
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Prop. IX. It is impossible, by means of any combination of reflexions

and refractions, to produce a perfect image of an object at two different distances,
unless the instrument be a telescope, and

!
e ’

l=n= m=1.

It appears from the investigation of Prop. VIIL. that the results there
obtained, if true when the objects are very small, will be incorrect when the
objects are large, unless

aBi+ab; : aB+ab, :: 4.B, : 4,B,

and it is easy to prove that this cannot be, unless all the lines in the one figure
are proportional to the corresponding lines in the other.

In this way we might show that we cannot in general have an astigmatic,
plane, undistorted image of a plane object. But we can prove that we cannot
get perfectly focussed images of an object in two positions, even at the expense
of curvature and distortion.

We shall first prove that if two objects have perfect images, the reduced
path of the ray joining any given points of the two objects is equal to that
of the ray joining the corresponding points of the images.

Let a, (fig. 8) be the perfect image of @, and B, of B,. Let
Ala/1=a1’ BlB1=b1, A2a’2=a/2’ Bzﬁ2=b2’ A1B1=cv ArB2=C2'

Draw oD, parallel to the axis to meet the plane B,, and a,D, to the plane
of B,

Since everything is symmetrical about the axis of the instrument we shall
have the angles D BB ,=D,BSB,=0, then in either figure, omitting the suffixes,

aft=al’ + DB
=c*+a*+ b*—2ab cos 6.

It has been shown in Prop. VIIL that the difference of the reduced paths
of the rays a,b,, a,8 in the object must be equal to the difference of the reduced
paths of a;b,, @8, in the image. Therefore, since we may assume any value for 6

Fa \/ (a’12 + blz + c12 - 2a’1b1 cos 0) i ~/ (a’z2 + b22 + 022 - 2&262 cos 0)
36—2
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is constant for all values of 6. This can be only when
o ~/ (a’lz + bl2 + 012) = [, ~/ (OL; + 622 + 022)’
and pa (,0,) = p, o/ (,D,),

which shows that the constant must vanish, and that the lengths of lines
joining corresponding points of the objects and of the images must be inversely
as the indices of refraction before incidence and after emergence.

Next let ABC, DEF (fig. 9) represent three points in the one object
and three points in the other object, the figure being drawn to a scale so that
all the lines in the figure are the actual lines multiplied by p,. The lines of
the figure represent the reduced paths of the rays between the corresponding
points of the objects.

Now it may be shown that the form of this figure cannot be altered with-
out altering the length of one or more of the nine lines joining the points 4ABC
to DEF. Therefore since the reduced paths of the rays in the image are equal
to those in the object, the figure must represent the image on a scale of g,
to 1, and therefore the instrument must magnify every part of the object alike
and elongate the distances parallel to the axis in the same proportion. It is
therefore a telescope, and m=1.

If m,=p,, the image is exactly equal to the object, which is the case in
reflexion in a plane mirror, which we know to be a perfect instrument for all
distances.

The only case in which by refraction at a single surface we can get a
perfect image of more than one point of the object, is when the refracting
surface is a sphere, radius », index p, and when the two objects are spherical

surfaces, concentric with the sphere, their radii being 5’ and »; and the two
images also concentric spheres, radii ur, and 7.

In this latter case the image is perfect, only at these particular distances
and not generally.

I am not aware of any other case in which a perfect image of an object
can be formed, the rays being straight before they enter, and after they emerge
from the instrument. The only case in which perfect astigmatism for all pencils
has hitherto been proved to exist, was suggested to me by the consideration
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of the structure of the crystalline lens in fish, and was published in one of
the problem-papers of the Cambridge and Dublin Mathematical Jowrnal. My
own method of treating that problem is to be found in that Jouwrnal, for
February, 1854. The case is that of a medium whose index of refraction varies
with the distance from a centre, so that if u, be its value at the centre, «
a given line, and + the distance of any point where the index is p, then
a2
= m‘z‘

The path of every ray within this medium is a circle in a plane passing through
the centre of the medium.

Every ray from a point in the medium, distant b from the centre, will
a’

b
It will be observed that both the object and the image are included in
the variable medium, otherwise the images would not be perfect. This case

therefore forms no exception to the result of Prop. IX., in which the object and
image are supposed to be outside the instrument.

converge to a point on the opposite side of the centre and distant from it

Aberdeen, 12th Jan., 1858.
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[From the Proceedings of the Royal Society of Edinburgh, Vol 1v.]

XVIII. On Theories of the Constitution of Saturn’s Rings.

TuE planet Saturn is surrounded by several concentric flattened rings, which
appear to be quite free from any connection with each other, or with the planet,
except that due to gravitation.

The exterior diameter of the whole system of rings is estimated at about
176,000 miles, the breadth from outer to inner edge of the entire system,
36,000 miles, and the thickness not more than 100 miles.

It is evident that a system of this kind, so broad and so thin, must
depend for its stability upon the dynamical equilibrium between the motions of
each part of the system, and the attractions which act on it, and that the
cohesion of the parts of so large a body can have no effect whatever on its
motions, though it were.made of the most rigid material known on earth. It
is therefore necessary, in order to satisfy the demands of physical astronomy,
to explain how a material system, presenting the appearance of Saturn’s Rings,
can be maintained in permanent motion consistently with the laws of gravitation.
The principal hypotheses which present themselves are these—

I. The rings are solid bodies, regular or irregular.
II. The rings are fluid bodies, liquid or gaseous.

ITI. The rings are composed of loose materials.

The results of mathematical investigation applied to the first case are,—
1st. That a uniform ring cannot have a permanent motion.

2nd. That it is possible, by loading one side of the ring, to produce
stability of motion, but that this loading must be very great compared with
the whole mass of the rest of the ring, being as 82 to 18.
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3rd. That this loading must not only be very great, but very nicely
adjusted ; because, if it were less than ‘81, or more than ‘83 of the whole,
the motion would be unstable.

The mode in which such a system would be destroyed would be by the
collision between the planet and the inside of the ring.

And it is evident that as no loading so enormous in comparison with the
ring actually exists, we are forced to consider the rings as fluid, or at least
not solid; and we find that, in the case of a fluid ring, waves would be gene-
rated, which would break it up into portions, the number of which would
depend on the mass of Saturn directly, and on that of the ring inversely.

It appears, therefore, that the only constitution possible for such a ring is
a series of disconnected masses, which may be fluid or solid, and need not be
equal. The complicated internal motions of such a ring have been investigated,
and found to consist of four series of waves, which, when combined together,
will reproduce any form of original disturbance with all its consequences. The
motion of one of these waves was exhibited to the Society by means of a small
mechanical model made by Ramage of Aberdeen.

This theory of the rings, being indicated by the mechanical theory as the
only one consistent with permanent motion, is further confirmed by recent obser-
vations on the inner obscure ring of Saturn. The limb of the planet is seen
through the substance of this ring, not refracted, as it would be through a
gas or fluid, but in its true position, as would be the case if the light passed
through interstices between the separate particles composing the ring.

As the whole investigations are shortly to be published in a separate form,
the mathematical methods employed were not laid before the Society.
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XIX. On the Stability of the motion of Saturn’s Rings.

[An Essay, which obtained the Adams Prize for the year 1856, in the University
of Cambridge.]

ADVERTISEMENT.

THE Subject of the Prize was announced in the following terms :—

The University having accepted a fund, raised by several members of St John’s College,
for the purpose of founding a Prize to be called the Apams Prize, for the best Essay
on some subject of Pure Mathematics, Astronomy, or other branch of Natural Philosophy,
the Prize to be given once in two years, and to be open to the competition of all persons
who have at any time been admitted to a degree in this University :—

" The Examiners give Notice, that the following is the subject for the Prize to be adjudged
in 1857 :—

The Motions of Saturn’s Rings.

*4* The problem may be treated on the supposition that the system of Rings is exactly or
very approximately concentric with Saturn and symmetrically disposed about the plane of his Equator,
and different hypotheses may be made respecting the physical constitution of the Rings. It may
be supposed (1) that they are rigid: (2) that they are fluid, or in part aeriform: (3) that they
consist of masses of matter not mutually coherent. The question will be considered to be answered
by ascertaining on these hypotheses severally, whether the conditions of mechanical stability are
satisfled by the mutual attractions and motions of the Planet and the Rings.

It is desirable that an attempt should also be made to determine on which of the above
hypotheses the appearances both of the bright Rings and the recently discovered dark Ring may
be most satisfactorily explained; and to indicate any causes to which a change of form, such as
is supposed from a comparison of modern with the earlier observations to have taken place, may
be attributed.

E. GUEST, Vice-Chancelior.
J. CHALLIS.
S. PARKINSON.
W. THOMSON.
March 23, 1855.
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THERE are some questions in Astronomy, to which we are attracted rather
on account of their peculiarity, as the possible illustration of some unknown
principle, than from any direct advantage which their solution would afford to
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mankind. The theory of the Moon’s inequalities, though in its first stages it
presents theorems interesting to all students of mechanics, has been pursued into
such intricacies of calculation as can be followed up only by those who make
the improvement of the Lunar Tables ‘the object of their lives. The value of
the labours of these men is recognised by all who are aware of the importance
of such tables in Practical Astronomy and Navigation. The methods by which
the results are obtained are admitted to be sound, and we leave to professional
astronomers the labour and the merit of developing them.

The questions which are suggested by the appearance of Saturn’s Rings
cannot, in the present state of Astronomy, call forth so great an amount of
labour among mathematicians. I am not aware that any practical use has been
made of Saturn’s Rings, either in Astronomy or in Navigation. They are too
distant, and too insignificant in mass, to produce any appreciable effect on the
motion of other parts of the Solar system; and for this very reason it is diffi-
cult to determine those elements of their motion which we obtain so accurately
in the case of bodies of greater mechanical importance.

But when we contemplate the Rings from a purely scientific point of view,
they become the most remarkable bodies in the heavens, except, perhaps, those
still less wseful bodies—the spiral nebulee. When we have actually seen that
great arch swung over the equator of the planet without any visible connexion,
we cannot bring our minds to rest. We cannot simply admit that such is the
case, and describe it as one of the observed facts in nature, not admitting or
requiring explanation. We must either explain its motion on the principles. of
mechanics, or admit that, in the Saturnian realms, there can be motion regu-
lated by laws which we are unable to explain.

The arrangement of the rings is represented in the figure (1) on a scale
of one inch to a hundred thousand miles. S is a section of Saturn through
his equator, 4, B and C are the three rings. 4 and B have been known for
200 years. They were mistaken by Galileo for protuberances on the planet itself,
or perhaps satellites. Huyghens discovered that what he saw was a thin flat
ring not touching the planet, and Ball discovered the division between 4 and B.
Other divisions have been observed splitting these again into concentric rings,
but these have not continued visible, the only well-established division being one
in the middle of 4. The third ring C' was first detected by Mr Bond, at
Cambridge U.S. on November 15, 1850; Mr Dawes, not aware of Mr Bond’s
discovery, observed it on November 29th, and Mr Lassel a few days later. It

37—2
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gives little light compared with the other rings, and is seen where it crosses
the planet as an obscure belt, but it is so transparent that the limb of the
planet is visible through it, and this without distortion, shewing that the rays
of light have not passed through a transparent substance, but between the
scattered particles of a discontinuous stream.

It is difficult to estimate the thickness of the system; according to the
best estimates it is not more than 100 miles, the diameter of 4 being 176,418
miles; so that on the scale of our figure the thickness would be one thousandth
of an inch. '

Such is the scale on which this magnificent system of concentric rings is
constructed; we have next to account for their continued existence, and to
reconcile it with the known laws of motion and gravitation, so that by rejecting
every hypothesis which leads to conclusions at variance with the facts, we may
learn more of the nature of these distant bodies than the telescope can yet
ascertain. We must account for the rings remaining suspended above the planet,
concentric with Saturn and in his equatoreal plane; for the flattened figure of the
section of each ring, for the transparency of the inner ring, and for the gradual
approach of the inner edge of the ring to the body of Saturn as deduced
from all the recorded observations by M. Otto Struvé (Sur les dimensions des
Anneaux de Saturne—Recueil de Mémoires Astronomiques, Poulkowa, 15 Nov.
1851). For an account of the general appearance of the rings as seen from the
planet, see Lardner on the Uranography of Saturn, Mem. of the Astronomical
Society, 1853. See also the article “Saturn” in Nichol's Cyclopedia of the
Physical Sciences.

Our curiosity with respect to these questions is rather stimulated than
appeased by the investigations of Laplace. That great mathematician, though
occupied with many questions which more imperiously demanded his attention,
has devoted several chapters in various parts of his great work, to points con-
nected with the Saturnian System.

He has investigated the law of attraction of a ring of small section on a
point very near it (Méc. Cél. Liv. 1. Chap. vi), and from this he deduces the
equation from which the ratio of the breadth to the thickness of each ring is
to be found,

_Fp_ _Ar-1)
T 3Pp T (N+1)(3N+1)’
where R is the radius of Saturn, and p his density; a the radius of the ring,
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and p’ its density; and M\ the ratio of the breadth of the ring to its thick-
ness. The equation for determining A when e is given has one negative root
which must be rejected, and two roots which are positive while e<0'0543, and
impossible when e has a greater value. At the critical value of e, A=2594

nearly.
The fact that X is impossible when e is above this value, shews that the

ring cannot hold together if the ratio of the density of the planet to that of
the ring exceeds a certain value. This value is estimated by Laplace at 1'3,
assuming o =2F.

We may easily follow the physical interpretation of this result, if we observe
that the forces which act on the ring may be reduced to—

(1) The attraction of Saturn, varying inversely as the square of the dis-
tance from his centre.

(2) The centrifugal force of the particles of the ring, acting outwards, and
varying directly as the distance from Saturn’s polar axis.

(38) The attraction of the ring itself, depending on its form and density,
and directed, roughly speaking, towards the centre of its section.

The first of these forces must balance the second somewhere near the mean
distance of the ring. Beyond this distance their resultant will be outwards,
within this distance it will act inwards.

If the attraction of the ring itself is not sufficient to balance these residual
forces, the outer and inner portions of the ring will tend to separate, and the
ring will be split up; and it appears from Laplace’s result that this will be
the case if the density of the ring is less than 3% of that of the planet.

This condition applies to all rings whether broad or narrow, of which the
parts are separable, and of which the outer and inner parts revolve with the
same angular velocity.

Laplace has also shewn (Liv. v. Chap. 1ir.), that on account of the oblate-
ness of the figure of Saturn, the planes of the rings will follow that of Saturn’s
equator through every change of its position due to the disturbing action of
other heavenly bodies.

Besides this, he proves most distinctly (Liv. 1. Chap. v1.), that a solid uni-
form ring cannot possibly revolve about a central body in a permanent manner,
for the slightest displacement of the centre of the ring from the centre of the
planet would originate a motion which would never be checked, and would
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inevitably precipitate the ring upon the planet, not necessarily by breaking the
ring, but by the inside of the ring falling on the equator of the planet.

He therefore infers that the rings are irregular solids, whose centres of
gravity do not coincide with their centres of figure. We may draw the con-
clusion more formally as follows, “If the rings were solid and uniform, their
motion would be unstable, and they would be destroyed. But they are not
destroyed,-and their motion is stable; therefore they are either not uniform or
not solid.”

I have not discovered * either in the works of Laplace or in those of more
recent mathematicians, any investigation of the motion of a ring either not uni-
form or not solid. So that in the present state of mechanical science, we do
not know whether an irregular solid ring, or a fluid or disconnected ring, can
revolve permanently about a central body; and the Saturnian system still re-
mains an unregarded witness in heaven to some necessary, but as yet unknown,
development of the laws of the universe.

We know, since it has been demonstrated by Laplace, that a uniform solid
ring cannot revolve permanently about a planet. We propose in this Essay to
determine the amount and nature of the irregularity which would be required
to make a permanent rotation possible. We shall find that the stability of the
motion of the ring would be ensured by loading the ring at one point with a

* Since this was written, Prof. Challis has pointed out to me three important papers in Gould’s
Astronomical Journal :—Mr G. P. Bond on the Rings of Saturn (May 1851) and Prof. B. Pierce of
Harvard University on the Constitution of Saturn’s Rings (June 1851), and on the Adams’ Prize
Problem for 1856 (Sept. 1855). These American mathematicians have both considered the conditions
of statical equilibrium of a transverse section of a ring, and have come to the conclusion that the
rings, if they move each as a whole, must be very narrow compared with the observed rings, so
that in reality there must be a great number of them, each revolving with its own velocity. They
have also entered on the question of the fluidity of the rings, and Prof. Pierce has made an
investigation as to the permanence of the motion of an irregular solid ring and of a fluid ring.
The paper in which these questions are treated at large has not (so far as I am aware) been
published, and the references to it in Gould’s Journal are intended to give rather a popular account
of the results, than an accurate outline of the methods employed. In treating of the attractions of
an irregular ring, he makes admirable use of the theory of potentials, but his published investi-
gation of the motion of such a body contains some oversights which are due perhaps rather to the
imperfections of popular language than to any thing in the mathematical theory. The only part of
the theory of a fluid ring which he has yet given an account of, is that in which he considers
the form of the ring at any instant as an ellipse; corresponding to the case where n=w, and
m=1. As I had only a limited time for reading these papers, and as I could not ascertain the
methods used in the original investigations, I am unable at present to state how far the results of
this essay agree with or differ from those obtained by Prof. Pierce.
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heavy satellite about 4% times the weight of the ring, but this load, besides
being inconsistent with the observed appearance of the rings, must be far too
artificially adjusted to agree with the natural arrangements observed elsewhere,
for a very small error in excess or defect would render the ring again unstable.

We are therefore constrained to abandon the theory of a solid ring, and
to consider the case of a ring, the parts of which are not rigidly connected,
as in the case of a ring of 1ndependent satellites, or a fluid ring.

There is now no danger of the whole ring or any part of it being pre-
cipitated on the body of the planet. Every particle of the ring is now to be
regarded as a satellite of Saturn, disturbed by the attraction of a ring of
satellites at the same mean distance from the planet, each of which however is
subject to slight displacements. The mutual action of the parts of the ring will
be so small compared with the attraction of the planet, that no part of the
ring can ever cease to move round Saturn as a satellite.

But the question now before us is altogether different from that relatmg to
the solid ring. We have now to take account of variations in the form and
arrangement of the parts of the ring, as well as its motion as a whole, and
we have as yet no security that these variations may not accumulate till the
ring entirely loses its original form, and collapses into one or more satellites,
circulating round Saturn. In fact such a result is one of the leading doctrines
of the “mnebular theory” of the formation of planetary systems: and we are
familiar with the actual breaking up of fluid rings under the action of “capil-
lary” force, in the beautiful experiments of M. Plateau.

In this essay I have shewn that such a destructive tendency actually exists,
but that by the revolution of the ring it is converted into the condition of
dynamical stability. As the scientific interest of Saturn’s Rings depends at
pfesent mainly on this question of their stability, I have considered their motion
rather as an illustration of general principles, than as a subject ' for elaborate
calculation, and therefore I have confined myself to those parts of the subject
which bear upon the question of the permanence of a given form of motion.

There is a very general and very important problem in Dynamics, the solu-
tion of which would contain all the results of this Essay and a great deal
more. It is this—

“Having found a particular solution of the equations of motion of any
material system, to determine whether a slight disturbance of the motion. indi-
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cated by the solution would cause a small periodic variation, or a total
derangement of the motion.”

The question may be made to depend upon the conditions of a maximum
or a minimum of a function of many variables, but the theory of the tests
for distinguishing maxima from minima by the Calculus of Variations becomes
so intricate when applied to functions of several variables, that I think it doubt-
ful whether the physical or the abstract problem will be first solved.

PART I
ON THE MOTION OF A RIGID BODY OF ANY FORM ABOUT A SPHERE.

WE confine our attention for the present to the motion in the plane of
reference, as the interest of our problem belongs to the character of this motion,
and not to the librations, if any, from this plane.

Let S (Fig. 2) be the centre of gravity of the sphere, which we may call
Saturn, and R that of the rigid body, which we may call the Ring. Join RS,
and divide it in G so that

SG : GR = R : S,

R and S being the masses of the Ring and Saturn respectively.

Then G will be the centre of gravity of the system, and its position will
be unaffected by any mutual action between the parts of the system. Assume G
as the point to which the motions of the system are to be referred. Draw GA
in a direction fixed in space.

Let AGR=0, and SR=r,
then GR= —‘S—,'—_*S_'——R r, and GS= —S—f—ﬁ 7,

so that the positions of S and R are now determined.

Let BRB be a straight line through R, fixed with respect to the substance
of the ring, and let BRK=¢.
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This determines the angular position of the ring, so that from the values
of r, §, and ¢ the configuration of the system may be deduced, as far as relates
to the plane of reference.

We have next to determine the forces which act between the ring and

the sphere, and this we shall do by means of the potential function due to
the ring, which we shall call V.

The value of V for any point of space S, depends on its position relatively
to the ring, and it is found from the equation

r

where dm is an element of the mass of the ring, and +° is the distance of that
element from the given point, and the summation is extended over every element
of mass belonging to the ring. V will then depend entirely upon the position
of the point S relatively to the ring, and may be expressed as a function
of r, the distance of S from R, the centre of gravity of the ring, and ¢, the
angle which the line SE makes with the line EB, fixed in the ring.

A particle P, placed at S, will, by the theory of potentials, experience a

moving force P av in the direction which tends to increase », and P 1dV
dr r d¢

in a tangential direction, tending to increase ¢.

Now we know that the attraction of a sphere is the same as that of
a particle of equal mass placed at its centre. The forces acting between the

sphere and the ring are therefore S ar tending to increase 7, and a tangential
dr

force S% % , applied at S tending to increase ¢. In estimating the effect of

this latter force on the ring, we must resolve it into a tangential force S% (fl—z
acting at R, and a couple S %ll—g tending to increase ¢.
We are now able to form the equations of motion for the planet and the

ring.
VOL, I. 38
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For the planet

d Rr \*d@) R AV
Sa—t <m> -CTt- =-—"ST‘“RSd—¢ ..................... (1),
d* [ Rr Rr  (dO\*  dV
s <S+R>—SS+R <€z‘t‘> LA — ().
For the centre of gravity of the ring,
d Sr \* df S odV
.R 82 <S:R> 'Et‘ = —S"’_*_—R S'&g .................. (3),
a [ Sr Sr (dO\*  ,dV
R <S__m> ~Rgn <Ei> =SE (4).
For the rotation of the ring about its centre of gravity,
av
dt2 (0+<l>) =8 S+ F:7 SRR (5),

where k is the radius of gyration of the ring about its centre of gravity.

Equation (3) and (4) are necessarily identical with (1) and (2), and shew
that the orbit of the centre of gravity of the ring must be similar to that
of the Planet. Equations (1) and (3) are equations of areas, (2) and (4) are
those of the radius vector.

Equations (3), (4) and (5) may be thus Written,

dr dé a6
Ri2r o 47 st H(B+S) d¢‘° ..................... (6),
R fl_tf_ } B+8) T =0 ),
, [def d2¢> av _
RE <0722‘+2JF>‘SE$ R (8).

These are the necessary and sufficient data for determining the motion of
the ring, the initial circumstances being given.

Proe. I. To find the conditions under which a uniform motion of the
ring is possible.

By a uniform motion is here meant a motion of uniform rotation, during
which the position of the centre of the Planet with respect to the ring does
not change.
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In this case r and ¢ are constant, and therefore V and its differential
coeflicients are given. Equation (7) becomes,

dé av
Br (G) +(B+8) G =
which shews that the angular velocity is constant, and that

do R+S dV
<dt>‘“—~—R;“—7d—r—=w, BAY ceveiiiiiiiiiiiiiiiieies (9).

Hence, Ocll—f,=0, and therefore by equation (8),
av
dé

Equations (9) and (10) are the conditions under which the uniform motion

is possible, and if they were exactly fulfilled, the uniform motion would go on
for ever if not disturbed. But it does not follow that if these conditions were
nearly fulfilled, or that if when accurately adjusted, the motion were slightly
disturbed, the motion would go on for ever mearly uniform. The effect of the
disturbance might be either to produce a periodic variation in. the elements
of the motion, the amplitude of the variation being small, or to produce a
displacement which would increase indefinitely, and derange the system altogether.
In the one case the motion would be dynamically stable, and in the other it
would be dynamically unstable. The investigation of these displacements while
still very small will form the next subject of inquiry.

S 0teeerreeeeeirreere e e (10).

Prob. II. To find the equations of the motion when slightly disturbed.
Let r=7, 0=0ot and ¢=¢, in the case of uniform motion, and let

=7, +1,
0=wt+0,
d=d,+,,

when the motion is slightly disturbed, where 7, 8, and ¢, are to be treated
as small quantities of the first order, and their powers and products are to be

neglected. We may expand d—I{ le 3 by Taylor’s Theorem,

w_av &V v
=~ v 1+dd¢¢“

av_av, av.  d
G- dg T Trdp" ddf b
38—2
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300 ON THE STABILITY OF THE MOTION OF SATURN'S RINGS,

where the values of the differential coefficients on the right-hand side of the
equations are those in which 7, stands for r, and ¢, for ¢.

. v av av
Calling =L grag=¥ Gp=N
and taking account of equations (9) and (10), we may write these equations,
olV _ Br, o
av
%=M¢1+N¢l,

Substituting these values in equations (6), (7), (8), and retaining all small
quantities of the first order while omitting their powers and products, we have
the following system of linear equations in 7, 6,, and ¢,

R(z 0y oozf>+(R+S)(Mr +NG) =0, (11),
dr, dé

R<th—2— —%rw ) —(R+8) (L, + Mp)=0......... (12),
&0, d

Rl&( il +a%> S (Mr,+ N 0. (13).

Proe. III. To reduce the three simultaneous equations of motion to the
form of a single linear equation.
Let us write n instead of the symbol 0%, then arranging the equations in
terms of », 6,, and ¢,, they may be written:
{2Rwn +(R+8) M} r,+(Rrin’) 6,4 (R +S) N, =0...... (14),
{Rw*~ Ro*—(R+8) L} r,— (2Rrwn) 0, — (R+8) M$,=0 ...... (15),
—(SM) r,+ (Rkn?) 6,+ (Rkn*~ SN) ¢, =0...... (16).
Here we have three equations to determine three quantities 7, 8,, ¢,; but
it is evident that only a relation can be determined between them, and that

in the process for finding their absolute values, the three quantities will vanish
together, and leave the following relation among the coefficients,
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—{2Rrwn+ (R+8) M} {2Rrwn} {Rkn*— SN} 1
+{Rn*— Re*— (R+8) L} {Rkn?} {(R+S) N}
+(SM) (Rren?) (R+8) M~ (SM) (2Rron) (R+8) N + =0 ......(17).
+{2Rren+ (R+S) M} {Rkn?} {(R+S) M}
—{Rn?— Re*— (R +8)} {Rrin} {Rlén* — SN}

By multiplying up, and arranging by powers of n and dividing by R#n’
this equation becomes

A+ B4+ C=0..coceiviiiniiiininininincnnnnn, (18),
where
A =R, '
B=3Rrke’—R(R+8) Lr/—R{(R+S)k*+Sr} N } ...... (19).
C=R{(R+S) ¥ —3Sr} o+ (R+S){(R+S)F+Sr’} (LN — M)

Here we have a biquadratic equation in » which may be treated as a

quadratic in #°, it being remembered that n stands for the operation ao_lg .

ProB. IV. To determine whether the motion of the ring is stable or
unstable, by means of the relations of the coefficients 4, B, C.

The equations to determine the forms of =, 6,, and ¢, are all of the form

d'u d*u
A% B%+C’u=0 ............................ (20),
and if n be one of the four roots of equation (18), then
u=De™

will be one of the four terms of the solution, and the values of r,, #,, and
¢, will differ only in the values of the coefficient D.
Let us inquire into the nature of the solution in different cases.

(1) If n be positive, this term would indicate a displacement which
must increase indefinitely, so as to destroy the arrangement of the system.

(2) If n be negative, the disturbance which it belongs to would gradually
die away.

(3) If n be a pure impossible quantity, of the form +a« —1, then there
will be a term in the solution of the form D cos(at+a), and this would indi-

cate a periodic variation, whose amplitude is D, and period %—W .
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302 ON THE STABILITY OF THE MOTION OF SATURN'S RINGS.

(4) If n be of the form b+ —1a, the first term being ‘positive and
the second impossible, there will be a term in the solution of the form

Dé" cos (at +a),

which indicates a periodic disturbance, whose amplitude continually increases
till it disarranges the system.

(5) If n be of the form —b++ —1a, a negative quantity and an im-
possible one, the corresponding term of the solution is

De% cos (at +a),
which indicates a periodic disturbance whose amplitude is constantly diminishing.

It is manifest that the first and fourth cases are inconsistent with the
permanent motion of the system. Now since equation (18) contains only even
powers of n, it must have pairs of equal and opposite roots, so that every
root coming under the second or fifth cases, implies the existence of another
root belonging to the first or fourth. If such a root exists, some disturbance
may occur to produce the kind of derangement corresponding to it, so that
the system is not safe unless roots of the first and fourth kinds are altogether
excluded. This cannot be done without excluding those of the second and fifth
kinds, so that, to insure stability, all the four roots must be of the third kind,
that is, pure impossible quantities.

That this may be the case, both values of #* must be real and negative,
and the conditions of this are—

1st. That 4, B, and C should be of the same sign,
2ndly. That B> 4A4C.

When these conditions are fulfilled, the disturbances will be periodic and
consistent with stability. When they are not both fulfilled, a small disturbance
may produce total derangement of the system.

Proe. V. To find the centre of gravity, the radius of gyration, and the
variations of the potential near the centre of a circular ring of small but variable
section.

Let o be the radius of the ring, and let 6 be the angle subtended at the
centre between the radius through the centre of gravity and the line through
a given point in the ring. Then if u be the mass of unit of length of the
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ON THE STABILITY OF THE MOTION OF SATURN'S RINGS. 303

ring near the given point, u will be a periodic function of #, and may there-
fore be expanded by Fourier's theorem in the series,

=§§_d {14 2f cos 0+ %9 cos 20 + £h sin 20+ 2¢ cos (30 + a) + &e.}..... (21),

where f, g, h, &ec. are arbitrary coefficients, and R is the mass of the ring.

(1) The moment of the ring about the diameter perpendicular to the
prime radius is

2w
Rr,= f pa’ cos 0df = Raf,
0

therefore the distance of the centre of gravity from the centre of the ring,
r=df.
(2) The radius of gyration of the ring about its centre in its own plane
is evidently the radius of the ring =a, but if ¥ be that about the centre of

gravity, we have
o +,),.02= 0(/2;
* k2=a2(1 —-fz).
(3) The potential at any point is found by dividing the mass of each

element by its distance from the given point, and integrating over the whole
mass.

Let the given point be near the centre of the ring, and let its position be

defined by the co-ordinates #* and ¥y, of which +’ is small compared with a.
The distance (p) between this point and a point in the ring is
1 1

p a

{1+ %’ cos (y—0)+ % <¢—’>2+% <%,>2 cos 2 (Y —0) + &e.}.

a
The other terms contain powers of ?(;- higher than the second.
We have now to determine the value of the integral,

27
V=f E 0dd
o P

and in multiplying the terms of (u) by those of <%> , we need retain only

those which contain constant quantities, for all those which contain sines or
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304 ON THE STABILITY OF THE MOTION OF SATURN'S RINGS.

cosines of multiples of (y—6) will vanish when integrated between the limits.
In this way we find

R 7 7 . ,
== {1+facos¢+§;a;(l+gcosz¢+ksm2\[;)} ........... (22).

The other terms containing higher powers of %.

In order to express V in terms of r, and ¢,, as we have assumed in the
former investigation, we must put
' cos = —r,+ir e’
7’ Sin‘l’: - 0¢’1’

V=§{1 —f%+%“;—f(i+g)+%%fmﬁ%fw (B=g)veenrn. (23).

. d R
From which we find (W )0= —O?f;
2 R
(@), =2 =20 )

v R
<m>o= M= %afh C sessesetecsnssscestassessnan (24:).
R

(). =¥ £1(3-9)

These ‘results may be confirmed by the following considerations applicable to
any circular ring, and not involving any expansion or integration. Let af be
the distance of the centre of gravity from the centre of the ring, and let
the ring revolve about its centre with velocity w. Then the force necessary
to keep the ring in that orbit will be — Rafw’

But let S be a mass fixed at the centre of the ring, then if
w“’=§
o’
every portion of the ring will be separately retained in its orbit by the attrac-
tion of S, so that the whole ring will be retained in its orbit. The resultant
attraction must therefore pass through the centre of gravity, and be

— Rafur=—RSL,;
av__pf

dr — a’

therefore
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av . av K av

EZEQ + dy2 + W+47Tp,—0

is true for any system of matter attracting according to the law of gravitation.
If we bear in mind that the expression is identical in form with that which

measures the total efflux of fluid from a differential element of volume, where
dv dv dv '
Ti’ dy’ &z
easily form the equation for any other case. Now let the position of a point
in space be determined by the co-ordinates 7, ¢ and 2z, where z is measured
perpendicularly to the plane of the angle ¢. Then by choosing the directions
of the axes x, ¥, 2, so as to coincide with those of the radius vector r, the per-
pendicular to it in the plane of ¢, and the normal, we shall have

de=dr, dy=rde, dz=dz,
av_dv v _1dv 4v_av
de ~dr’ dy r d¢’ dz dz”
The quantities of fluid passing through an element of area in each direction are

T g, %f Lard, E¥ vagar,
so that the expression for the whole efflux is
1dV &V 1 &V &V
;zl?-l-W—l-F ?l:ﬁé-l_a?v ........................ (25),

which is necessarily equivalent to the former expression.

The equation

are the rates at which the fluid passes through its sides, we may

Now at the centre of the ring %}7 may be found by considering the attrac-

tion on a point just above the centre at a distance z,

a&v__p_*_
dz (a2 +2)F’
d—?: ——, when 2=0.
dz o
Also we know LdV_ —if, and r=af,
r dr o
. . . &V, 1 &V _R
so that in any circular ring W_l_&;f? W=2a; .......................... (26),

an equation satisfied by the former values of L and N.
VOL. L. 39
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306 ON THE STABILITY OF THE MOTION OF SATURN’S RINGS.

By referring to the original expression for the variable section of the ring,
it appears that the effect of the coefficient f is to make the ring thicker on
one side and thinner on the other in a uniformly graduated manner. The effect
of g is to thicken the ring at two opposite sides, and diminish its section in
the parts between. The coefficient % indicates an inequality of the same kind,
only not symmetrically disposed about the diameter through the centre of
gravity.

Other terms indicating inequalities recurring three or more times in the
circumference of the ring, have no effect on the values of I, M and N. There is
one remarkable case, however, in which the irregularity consists of a single
heavy particle placed at a point on the circumference of the ring.

Let P be the mass of the particle, and @ that of the uniform ring on
which 1t 1s fixed, then R=P+Q,

P
I=®
P Q P+@ P\ R, .
L—zaa““ﬁ—"é?‘(”?’fa)—@(”g)’
3P
‘e g=-F=f ................................. (27).

ProB. VI. To determine the conditions of stability of the motion in terms
of the coefficients f; ¢, h, which indicate the distribution of mass in the ring.

The quantities which enter into the differential equation of motion (18)
are R, S, B, r, *, L, M, N. We must observe that S is very large compared

with R, and therefore we neglect R in those terms in which it is added to S,
and we put

S=d"e’,
B (1-F)
r,=af,

R
L=27«73(1+g),

R
M= éaéfk,

R 2
N::%—f (3—[]).
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Substituting these values in equation (18) and dividing by R'a!f*, we obtain
(=) n'+ (1 =4/ + 1) v'o’+ (- 6" — 19" - 3" +2f"9) & =0......(28).

The condition of stability is that this equation shall give both values of »*
negative, and this renders it necessary that all the coefficients should have the
same sign, and that the square of the second should exceed four times the
product of the first and third.

(1) Now if we suppose the ring to be uniform, f, ¢ and % disappear,
and the equation becomes
W+ FF=0uriiiniii (29),

which gives impossible values to #* and indicates the instability of a uniform
ring.

(2) If we make g and =0, we have the case of a ring thicker at one
side than the other, and varying in section according to the simple law of sines.
We must remember, however, that f must be less than 3, in order that the
section of the ring at the thinnest part may be real. The equation becomes

(L=f) 0+ (1 =5/ W0’ + (2= 6/7) 0 =0urerrereranrrnnnnn (30).
The condition that the third term should be positive gives
J1<375.

The condition that n* should be real gives
71f*~112 f*+ 32 negative,
which requires f* to be between ‘37445 and 1-2.
The condition of stability is therefore that f* should lie between
37445 and °375,

but the construction of the ring on this principle requires that f* should be
less than ‘25, so that it is impossible to reconcile this form of the ring with
the conditions of stability.

(3) Let us next take the case of a uniform ring, loaded with a heavy
particle at a point of its circumference. We have then g=3f, 4 =0, and the
equation becomes

(L=f) nt (1 =5+ 3" 70t + (3 =324+ 6/) &' =0 cvrerennes (31).
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308 ON THE STABILITY OF THE MOTION OF SATURN'S RINGS.

Dividing each term by 1—f, we get
1+ ) w+(Q+f-3 )’ +2{8(1+f) -8 o' =0............ (32).
The first condition gives f less than °8279.
The second condition gives f greater than °815865.

Let us assume as a particular case between these limits f=-82, which
makes the ratio of the mass of the particle to that of the ring as 82 to 18,
then the equation becomes

1'82 048114 #e0® 96960 =0 vevvirvverniennnnnnns (33),
which gives J—=1n= +'59160 or +'3076w.

These values of = indicate variations of =, 6,, and ¢,, which are com-
pounded of two simple periodic inequalities, the period of the one being 169
revolutions, and that of the other 3251 revolutions of the ring. The relations
between the phases and amplitudes of these inequalities must be deduced from
equations (14), (15), (16), in order that the character of the motion may be
completely determined.

Equations (14), (15), (16) may be written as follows:

(470 + he) % + 20, +f(3—9) 0 =0 seevreeerennnnn. (34),
{n*— 30" (3+9)} 2 = Zfum,— 1 Fhe'$ =0 covvorrenn (35),.

—fho? %+2 (L—f) w0, 4+{2 (1 =) n—f* (3—g) o} ;=0 ....... (36).

By eliminating one of the variables between any two of these equations,
we may determine the relation between the two remaining variables. Assuming
one of these to be a periodic function of ¢ of the form A4 cosvt, and remem-

bering that n stands for the operation %, we may find the form of the other.

Thus, eliminating 6, between the first and second equations,

{W+3ne*(5-g)+ ha)”}g1 +fe*{(8=9) o—hn} g=0...cco...0n (37).
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Assuming % =Asinvt, and ¢, = Q cos (vt —B),

{=v+3ve’ (5 —g)} 4 cos vt + ho® Asinvt +fo® (3 — g) Qcos (vt — B) + } fho'v@ sin (vt — B).

Equating » to 0, and to g, we get the equations

{—tve’ (5 —9)} A =Ffu'Q {(3 —g) » cos B—Lhvsin B},
~he’ A =f’Q{(3 —g) w sin B+ +hv cos B},
from which to determine @ and S.

In all cases in which the mass is disposed symmetrically about the diameter
through the centre of gravity, A=0 and the equations may be greatly simplified.

Let 6,=Pcos(vt—a), then the second equation becomes

{¥+3e* (3+9)} 4 sin vt = 2Pfov sin (vt — a),
whence a=0, P=

The first equation becomes

4Awv cos vt — 2Pf* cos vt + Qf (3 —g) & cos (vt —B8) =0,

whence B=0, @= v }‘%;02_”;)5;9) R (39).

In the numerical example in which a heavy particle was fixed to the cir-
cumference of the ring, we have, when f=-82,

v_[5916 P _ (321 Q _[-1229
o '8076° A \572° A\ - 79T’
so that if we put wt=0,=the mean anomaly,
2= 4 sin (‘5916 6,— a) + B'sin (3076 6, ) weovvrerinirnninnn. (40),
0,=821 4 cos ("5916 ,—a)+ 572 B cos (-3076 6,— B)............ (41)
¢, = —1229 4 cos (5916 6,—a) — 5797 B cos (*3076 6,— B) ... (42).

These three equations serve to determine 7, 6§, and ¢, when the original
motion is given. They contain four arbitrary constants 4, B, a, 8. Now since
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310 ON THE STABILITY OF THE MOTION OF SATURN’S RINGS.

the original values 7,, 6,, ¢,, and also their first differential coefficients with
respect to ¢, are arbitrary, it would appear that six arbitrary constants ought
to enter into the equation. The reason why they do not is that we assume
r, and 6, as the mean values of r and 0 in the actual motion. These quantities
therefore depend on the original circumstances, and the two additional arbitrary
constants enter into the values of 7, and ,. In the analytical treatment of the
problem the differential equation in n was originally of the sixth degree with a
solution #*=0, which implies the possibility of terms in the solution of the
form Ct+ D.

The existence of such terms depends on the previous equations, and we find
that a term of this form may enter into the value of #, and that », may contain
a constant term, but that in both cases these additions will be absorbed into
the values of 6, and r,.

PART IL
ON THE MOTION OF A RING, THE PARTS OF WHICH ARE NOT RIGIDLY CONNECTED.

1. Ix the case of the Ring of invariable form, we took advantage of the
principle that the mutual actions of the parts of any system form at all times
a system of forces in equilibrium, and we took no account of the attraction
between one part of the ring and any other part, since no motion could result
from this kind of action. But when we regard the different parts of the ring
as capable of independent motion, we must take account of the attraction on
each portion of the ring as affected by the irregularities of the other parts, and
therefore we must begin by investigating the statical part of the problem in
order to determine the forces that act on any portion of the ring, as depending
on the instantaneous condition of the rest of the ring.

In order to bring the problem within the reach of our mathematical methods,
we limit it to the case in which the ring is nearly circular and uniform, and has
a transverse section very small compared with the radius of the ring. By
analysing the difficulties of the theory of a linear ring, we shall be better able
to appreciate those which occur in the theory of the actual rings.
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The ring which we consider is therefore small in section, and very nearly
circular and uniform, and revolving with nearly uniform velocity. The variations
from circular form, uniform section, and uniform velocity must be expressed by a
proper notation.

2. To express the position of an element of a variable ring at a given time
in terms of the original position of the element in the ring.

Let S (fig. 3) be the central body, and S4 a direction fixed in space.

Let SB be a radius, revolving with the mean angular velocity w of the
ring, so that ASB=wt.

Let = be an element of the ring in its actual position, and let P be the
position it would have had if it had moved uniformly with the mean velocity o
and had not been displaced, then BSP is a constant angle =s, and the value
of s enables us to identify any element of the ring.

The element may be removed from its mean position P in three different
ways.

(1) By change of distance from S by a quantity pr=p.

(2) By change of angular position through a space Pp=o.

(3) By displacement perpendicular to the plane of the paper by a quantity ¢

p, o and { are all functions of s and ¢ If we could calculate the attrac-
tions on any element as depending on the form of these functions, we might
determine the motion of the ring for any given original disturbance. We cannot,
however, make any calculations of this kind without knowing the form of the

functions, and therefore we must adopt the following method of separating the

original disturbance into others of simpler form, first given in Fourier's Traité
de Chaleur.

8. Let U be a function of s, it is required to express U in a series of
sines and cosines of multiples of s between the values s=0 and s=2m.

Assume U=A4,coss+ A4,cos 2s+ &e. + 4,, cos ms + A, cos ns
+ B, sin s+ B, cos 25+ &c. + B,, sin ms + B, sin ns.
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Multiply by cosmsds and integrate, then all terms of the form
| cos ms cos nsds and [ cos ms sin nsds

will vanish, if we integrate from $=0 to s=2#, and there remains
2 2m
I U cosmsds=nA,,, f U sin msds =nwB,,.
0 [

If we can determine the values of these integrals in the given case, we
can find the proper coefficients 4,,, B,, &c., and the series will then represent
the values of U from s=0 to s=27, whether those wvalues be continuous or
discontinuous, and when none of those values are infinite the series will be
convergent.

In this way we may separate the most complex disturbances of a ring into
parts whose form is that of a circular function of s or its multiples. Fach of
these partial disturbances may be investigated separately, and its effect on the
attractions of the ring ascertained either accurately or approximately.

4, To find the magnitude and direction of the attraction between two
elements of a disturbed ring.

Let P and @ (fig. 4) be the two elements, and let their original positions
be denoted by s, and s, the values of the arcs BP, BQ before displacement.
The displacement consists in the angle BSP being increased by o, and BS@
by o,, while the distance of P from the centre is increased by p, and that of
Q by p,. We have to determine the effect of these displacements on the distance
"PQ and the angle SPQ.

Let the radius of the ring be unity, and s,—s,=26, then the original
value of PQ will be 2sinf, and the increase due to displacement

=(p,+p,) sin 0+ (o, — o) cos 6.
We may write the complete value of PQ thus,
PQ=2sin0{1+%(p.+p)+3(0.—0)cot b} oeeuernnnnnss (1).

The original value of the angle SPQ was g—b’, and the increase due to

displacement is % (p.—p,) cot 0 =3 (0, — o),
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so that we may write the values of sin SPQ and cos SPQ,
sin SPQ =cos 0 {1 +% (p,—p.) —% (0. — o) tan 6}
cos SPQ =sin 6 {1 — (p,— p,) cot’ 8+ % (0, — o,) cot 6}

If we assume the masses of P and @ each equal to 1 R, where R 1is the

mass of the ring, and p the number of satellites of which it is composed, the
accelerating effect of the radial force on P is

1 SP 1 R 2
ﬁRCO_SPQaQ= o Tsn gL~ (Pt p) =% (pi—pr) cot* 0 =% (o — ) cot 6}... (4