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Preface

This book is the outgrowth of a conference organized at the Interdisciplinary
Centre for Science and Technology Studies (IZWT) of the University of Wuppertal,
Germany, in 2010, July 21–23. Around that time the editors of the present volume
had the pleasure of a close interdisciplinary cooperation for several years. We thank
the centre for giving us the opportunity to organize the conference. We also express
our gratitude to the Fritz Thyssen Foundation and the University of Wuppertal for
their financial support. Two of us would like to use this opportunity to acknowledge
that the bulk of work for preparing the conference was generously taken over by
D. L., who also acted as the main editor of this book. However, most of all, we want
to thank all contributors to the conference and to this book.

Wuppertal/Pasadena Dennis Lehmkuhl
June 2016 Gregor Schiemann

Erhard Scholz
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Introduction: Towards A Theory
of Spacetime Theories

Dennis Lehmkuhl

The title of this book—Towards a Theory of Spacetime Theories—is an attempt at
false modesty. Or, rather, maybe: an act of an unreasonable raising of the chin in
the face of a task supposedly impossible to master. After all, we do not even have
a comprehensive map of the solution space of general relativity; by far the most
established and most investigated spacetime theory; how then are we supposed to
draw a map of the space of spacetime theories in which general relativity itself is but
one little point? It seems a daunting and impossible task. And still, we cannot afford
not to take it on.

General Relativity (GR) brought with it the idea that spacetime is not just a static
but a dynamical playing field in its own right; according to GR, spacetime itself is
dynamical. This is a wonderful insight, and in many ways we still have to come to
grips with its implications. Much of the current literature in philosophy of physics
wrestles with the right interpretation of Einstein’s 1915 theory. But GR is not the
only candidate for the ‘right’ theory of spacetime and gravitation out there. Indeed,
in recent years it has come under pressure. We need to understand the rivals of GR,
and try to play a part in getting an objective picture of how to decide between these
theories.

Even if we were absolutely sure that GR is the right theory of spacetime and
gravity, even if we were only concerned with its interpretation rather than with that
of its outlandish rivals, we would still need to look at said rivals. For you cannot
understand how special GR is as a theory, as a point in the space of possible spacetime
theories, without looking at least at its immediate neighbourhood in this space. Is
GR the only serious theory of gravity in which special relativity is locally valid? Or
is this a feature shared by a wide array of post-1915 theories and we should stop
seeing it as something noteworthy about GR in particular? How about the notorious
‘geometrization’ of the gravitational field and the unification of gravity and inertia?

D. Lehmkuhl (B)
Einstein Papers Project and HSS Division, California Institute of Technology,
Pasadena, CA, USA
e-mail: lehmkuhl@caltech.edu

© Springer Science+Business Media, LLC 2017
D. Lehmkuhl et al. (eds.), Towards a Theory of Spacetime Theories,
Einstein Studies 13, DOI 10.1007/978-1-4939-3210-8_1
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2 D. Lehmkuhl

Is GR the only theory achieving these goals? Are the field equations of the theories
in GR’s neighbourhood equally non-linear, or are there different degrees or kinds of
non-linearity in a sense to be specified? How exactly are the field equations and the
equations of motion of particles related to one another, in GR and in theories close to
GR?How about the shape of the solution space of GR’s field equations? Is it a special
characteristic of GR that there is a unique exterior static and spherically symmetric
solution to the field equations, or is this result (known asBirkhoff’s theorem) germane
not to GR itself but to the wider neighbourhood around and including GR in the
space of spacetime theories? If so, how big is this neighbourhood? And how about
gravitational waves: how special are the gravitational waves allowed for by GR as
compared to the gravitational waves allowed for by other theories?

1 Which Space of Theories?

We need a map. Maybe a map of the whole space of spacetime theories is too
much to ask for at the moment, but we can aim at a map of at least the immediate
neighbourhood of GR in the space of theories.

Here, however, we already hit the first obstacle. When I first envisaged the work-
shop on which this book is based, I had no doubt that the space GR lives in is the
space of spacetime theories, and that this was the space of which we had to draw
a map. But what distinguishes the space of spacetime theories from the space of
field theories? Maxwell–Lorentz electrodynamics is a member of the space of field
theories but not a member of the space of spacetime theories. General Relativity, on
the other hand, is arguably both a spacetime theory and a field theory. But which
neighbourhood are we looking at then: GR’s neighbourhood in the space of field
theories, or its neighbourhood in the space of spacetime theories? If we look at the
former neighbourhood, then special relativistic electrodynamics is arguably a very
close neighbour to GR, if we look at the latter, it is arguably not a neighbour at all.
But why? What makes a theory a spacetime theory?

We will not start with an answer to this question. Instead, one of the hopes for
this book is that by comparing different spacetime theories, we will come closer to
an inkling of what they have in common, in contrast to a field theory that is supposed
to be about an abstract space (like a fibre-bundle formulation of electrodynamics),
rather than about physical spacetime.

2 A Comparison of Different Theories of Spacetime
Theories

There are three kinds of (meta)-theories of spacetime theories; three ways to draw
a map. The first kind is the most ambitious: try to develop a framework so general
and encompassing that it can capture all the properties of each spacetime theory
(or a major subset of all spacetime theories), and allow us to compare them with
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Introduction: Towards A Theory of Spacetime Theories 3

one another. The first meta-theory of this camp was never declared as one, even
though it is implicit in the works of Weyl, Eddington, Einstein, Schouten, etc. The
idea is to focus on the underlying geometry on which general relativity is based—
pseudo-Riemannian geometry—and to find new geometries that are generalisations
of GR’s geometry on which, in turn, more general physical theories can be based.
Examples includeWeyl geometry, in which the independently defined metric and the
connection are semi-compatible rather than compatible like in GR, or affine theory,
in which only the affine connection is fundamental. Further generalisations can be
obtained by allowing the metric and/or the connection to be asymmetrical, or for
them not to be compatible with one another at all. Depending on which generalised
geometry one chooses, one will have a torsion tensor arising from the connection in
addition to the curvature tensor, or obtain more than one curvature tensor.1

The big drawback of the above approach is that it focuses merely on the fun-
damental mathematical objects of the different theories, but not so much on the
dynamics. Indeed, Eddington published on his affine approach, in which a gener-
alised affine connection is the only fundamental variable, without ever giving field
equations, let alone details on how the affine connection, whose Ricci tensor was
to represent the unified gravitational and electromagnetic fields, coupled to ordinary
matter.2 Furthermore, depending on how restrictive your notion of ‘geometry’ is, the
approach might keep you from investigating generalisations of GR in which math-
ematical objects occur which do not have a ‘clear geometrical meaning’.3 Finally,
the geometrical approach easily leads us to believe that in order to get a theory that
is in an interesting sense different from GR we need to move away from pseudo-
Riemannian geometry; and indeed this was the leading approach between the 1920s
and the 1940s.

However, in the 1950s and 1960s, the renaissance of gravitational research, more
and more alternatives to general relativity were found that, like GR, were based on
pseudo-Riemannian geometry. Their main difference to GR lay in new gravitational
fields in addition to the metric tensor (and not necessarily related to geometry),
in different field equations, and different coupling structures. The first formalism
aiming to capture this plethora of gravitational theories was ‘Dicke’s formalism’,
due to Robert Dicke. The main aim of the approach was to deliver a framework
that was theoretically as unrestrictive and prejudiced as possible, so as to provide
a framework in which different gravitational theories could be judged against new
data (more precise measurements in the earth–moon system, the solar system, and in
earthbound free-fall experiments) without preferring one theory over other theories.
Thus, Dicke’s formalism only demanded that the following minimal postulates are
fulfilled in any theory of gravity: (1) that spacetime is represented by a 4-dimensional

1See Goenner [9, 10] especially, but also van Dongen [19], Vizgin [20] and Bergia [2].
2See Goenner [9], section 4.3. Einstein’s main engagement with Eddington’s affine approach was to
deliver the field equations for the affine connection, see especially the recently published Volumes
13 and 14 of the Collected Papers of Albert Einstein.
3Einstein’s own notion of ‘geometry’ was very unrestrictive. Indeed, he argued that an arbitrary
vector vμ is not more nor less ‘geometrical’ than a metric tensor gμν . See [13] for details.
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4 D. Lehmkuhl

manifold, and (2) that every theory of gravity to be categorised is expressed in
generally covariant form. On top of this, the following constraints were imposed:
(i) gravity must be associated with one or more tensor fields; and (ii) the theory must
have a Lagrangian formulation. It was explicitly not demanded that (a) any kind of
equivalence principle holds, nor (b) that freely falling particles move on geodesics.4

Dicke’s framework was designed to compare gravitational experiments, espe-
cially in the solar system regime. In order to complement and build on this, Thorne
et al. [17] constructed an overarching system designed to compare the conceptual and
mathematical intricacies of different theories of gravity. I will call their framework
the TTL-framework for short. The authors start by giving separate definitions of
‘spacetime theory’ and ‘mathematical representation of a spacetime theory’, distin-
guish between ‘kinematically possible trajectories’ and ‘dynamically possible tra-
jectories’, three different kinds of variables that can appear in a spacetime theory
(confined, absolute, and dynamical variables), and they give abstract definitions of
the distinction between boundary conditions, prior geometric constraints, decom-
position equations, and dynamical laws. With this toolbox, they can succinctly and
completely characterise any theory that is a ‘spacetime theory’ according to their
definition of a spacetime theory: “any theory that possesses a mathematical repre-
sentation constructed from a 4-dimensional spacetime manifold and from geometric
objects defined on that manifold.”5 Thorne et al. go on to define a gravitation theory
as a special kind of spacetime theory, namely any spacetime theory that essentially
predicts Kepler’s laws for a binary star system.6 Ametric theory of gravity is, in turn,
a special case of gravitation theory that has a particular mathematical representation
in which (I) spacetime is endowed with a metric tensor; (II) the world lines of test
bodies are geodesics of said metric; and (III) the Einstein equivalence principle (as
defined within TTL) is satisfied; in particular, all non-gravitational laws in any freely
falling frame reduce to their counterparts in special relativity. Much could be said
about this definition of a metric theory of gravity, especially with regard to the ques-
tion of how the three conditions relate to one another. Note in particular that some of
these conditions will be theorems in one metric theory and assumptions in another;
I will come back to the special case of the second assumption further below.

The second kind of metatheoretical approach to spacetime theories, theories of
gravitation in particular, aims not to capture all of the properties of a given spacetime
theory but only how it behaves in a certain limit. One may ask why one would go
for this kind of approach if one could also go for the first approach listed above.
The answer is mostly practical. First, most of our empirical data tells us about the

4See Dicke [5] and Will [21], p. 10, for a summary of Dicke’s framework.
5The notion of ‘geometric object’ they draw on here is that of Trautman [18]; which is designed
to “include nearly all the entities needed in geometry and physics”. They are less explicit about
what they mean by a ‘4-dimensional spacetime manifold’ rather than a ‘4-dimensional manifold’;
I would argue that a spacetime manifold needs at least conformal structure (an equivalence class of
metrics defined on it) in order to be called a spacetime manifold, for only then can we distinguish
between spatial and temporal dimensions.
6See Thorne et al. [17], p. 18, for qualifications regarding what kind of binary star system they are
talking about, and how close the theory has to come to Kepler’s laws.
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Introduction: Towards A Theory of Spacetime Theories 5

properties of comparatively weak gravitational fields. If we want to know which
theory of gravity fares best in the light of this empirical data, then it is easiest to
look at the limit where gravitational fields are relatively weak and where non-linear
effects are typically negligible. But also, secondly, it makes it much easier to compare
gravitational theories almost at a glance, and to see in which respects they are alike
or not alike (in the limit).

The most prominent example in this second kind of approach is the parametrised
post-Newtonian (PPN) framework. It takes two tentative conclusions of Dicke’s
work/framework as a starting point and postulates (1) that there exists a metric tensor
gμν of signature −2 defined on the 4-dimensional manifold, (2) that this metric is
‘read’ by rods and clocks, and (3) that every material system is associated with an
energy-momentum tensor, whose covariant divergence vanishes, ∇μTμν = 0. Here,
the covariant derivative ∇μ is compatible with the metric gμν defined in the first
postulate.

Postulates 1 and 3 restrict the kinds of allowed gravitational theories significantly,
to a set of theories that is in important respects very much like GR. In addition to the
metric gμν , it allows for further fields associated with gravity, which can couple to
both the metric and the matter fields in various ways. But just like in GR, rods and
clocks are associated with one metric, and free particles follow the geodesics of the
Levi-Civita connection compatible with said metric. However, these postulates do
not yet constrain the different theories of gravity to a limiting case. This is achieved
by two further constraints, namely (i) that the gravitational sources are weak in the
sense that in the Newtonian limit of the respective theory the Newtonian potential
is <10−6; and (ii) that gravitational sources (except electromagnetic fields) move
slowly with respect to one another, in the sense that v2 < 10−7.7

The PPN framework has been incredibly succesfull. It was originally designed
primarily to be applied to the solar system regime in order to compare how different
theories of gravity handle, say, Mercury’s perihelion or the relative motion of Earth
and Sun. A particularly interesting difference found between different theories of
gravity as compared in the PPN framework is the so-called Nordvedt effect, which
some alternative theories of gravity (like Jordan–Brans–Dicke theory) predict while
others (including GR) do not. It is often referred to as a test of the strong equivalence
principle which holds in GR but not in all alternative theories of gravity.8 However,
since its inception in the 1960s, the PPN framework has also been applied to compare
the predictions of different gravitational theories outside of the solar system regime;
for example, their predictions with respect to how binary pulsars behave.

7I am using geometrized units here, in which the speed of light is 1, and the Newtonian potential
dimensionless. Cf. Will [21], p. 87.
8The Nordvedt effect would obtain if the ratio of inertial and gravitational mass would be different
from 1 for sufficiently large, sufficiently self-gravitating bodies. Thus it would show that while test
bodies move on geodesics (the weak equivalence principle), not all massive gravitating bodies do,
even if their spin is neglected. The most important experimental realisation were lunar laser tests
of the Earth–Moon system in the 1960s, in which no Nordvedt effect was discovered. However,
it remains possible that more massive bodies (black holes in particular) would exhibit a Nordvedt
effect. See Nordtvedt [15] and Will [21], section 8.1, for details.
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6 D. Lehmkuhl

Other limiting frameworks have been proposed, designed to compare the limits
of gravitational theories in different regimes. The parametrised Post-Friedmannian
(PPF) framework is particularly interesting, for it allows us to compare different
theories of gravity which have the Friedmann solution in its solution space.9 In
effect, the PPF framework is designed to judge how different theories handle the
cosmological data that has beengarnered since thediscoveryof the cosmicmicrowave
background, which brought about the widespread conviction that the whole history
of the universe we actually live in can be represented by the Friedmann solution.10

The articles in this book go into another direction than these grand metatheoretic
approaches. Rather than drawing a map in broad strokes, they focus on particularly
rich regions in the space of spacetime theories. Indeed, most of them compare our
most successful theory of gravity, GR, with one or two other theories of gravity. The
general idea is that by getting to know our own home city, and by comparing it to our
immediate neighbours, we will be better prepared for the grand journey still ahead
of us. By comparing GR in all its details to particular spacetime theories, we hope
to get a better idea about what is special about GR, to see patterns in the immediate
neighbourhood of GR that might be much more difficult to see on a map with a grand
scale.

3 The Case Studies Contained in this Book

The first article in this book is by JamesWeatherall; it comparesGRwith geometrized
Newtonian gravitation theory (also known as Newton–Cartan theory). In particular,
Weatherall compares the role of geodesic theorems in the two theories; the possibility
to derive the geodesic motion of matter within these theories. In the context of GR
alone it has sometimes been claimed (especially by Brown [4]) that the existence of a
theorem that tells us thatmattermoves on geodesics explains inertialmotion ofmatter
rather than presuming it. In drawing on his own proof that a similar theorem exists
in geometrized Newtonian gravity, Jim discusses the similarities and differences of
the respective theorems within the two theories, and uses the result to reflect on
the different senses in which one could take inertial motion to be explained. The
article shows clearly the direct benefits of a comparative analysis of two theories of
gravity: it is only through the comparison with geometrized Newtonian gravity that
the different ways in which we might interpret the sentence ‘GR explains inertial
motion’ come into focus.

While Weatherall’s chapter zooms in on a feature of GR that many have taken
as being at the core of GR (the geodesic theorem), Erik Curiel’s chapter focuses

9See Ferreira [8] for details on the PPF framework.
10Of course, the conviction that the Friedmann solution adequately represents the era that we
currently live in goes back to Hubble’s discovery of the redshift of galaxies. But only the discovery
of the Cosmic Microwave Background gave convincing evidence of the big bang theory, i.e. the
idea that the Friedmann solution applies to the beginning of the universe too; indeed that there was
a beginning in the first place. See Smeenk [16] for details.
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Introduction: Towards A Theory of Spacetime Theories 7

on something that many have taken to be at the periphery of GR. ‘A primer on
energy conditions’ gives a comprehensive overview of the different conditions that
can be imposed on the energy-momentum tensor, the source term of the Einstein
field equations, and discusses different possible interpretation for each of them. In
doing so, Curiel shows that there is almost nothing one can do with GR without
imposing energy conditions; they are anything but at the periphery of the theory.
But as Curiel shows, the conditions and their interpretations stretch way beyond GR,
towards the question of what it means to be a spacetime theory. In his final section,
‘Constraints on the character of spacetime theories’, Curiel has moved from what
was only apparently the periphery to the very heart of GR and spacetime theories
more generally: from his analysis of energy conditions he draws conclusions about
features that any spacetime theory must have, especially with regard to the relation
between the stress-energy of matter and the (local and global) structure of spacetime.

WhereWeatherall focused on the role of geodesic theorems and Curiel on the role
of energy conditions in spacetime theorems, Oliver Pooley focuses on a property of
GR that has too often been discussed without detailed comparison as to how the
property features in other spacetime theories: the alleged background independence
of GR. Pooley discusses different attempts of defining the notion of background
independence that result in different versions of GR, and compares them with dif-
ferent versions of the special relativistic theory of a scalar field defined on a flat
background. In doing so he disentangles different conceptions of background inde-
pendence, diffeomorphism invariance, and dynamicality of spacetime.

Friedrich Hehl investigates whether GR can be brought into the form of a gauge
theory akin to the standard model of elementary particle physics. Building on work
by Utiyama, Sciama and Kibble, he develops Riemann–Cartan theory on the basis of
the translation group ofMinkowski spacetime; the resulting theory has non-vanishing
curvature and non-vanishing torsion. It contains General Relativity (vanishing tor-
sion, non-vanishing curvature) and teleparallel theory (non-vanishing torsion, van-
ishing curvature) as special cases, and shows how the empirical equivalence of the
latter two theories can be understood and what it demands. This empirical equiv-
alence has recently been the topic of philosophical discussion [11]; Hehl’s article
sheds new light on this equivalence by embedding both theories into the more gen-
eral framework of Riemann–Cartan theory. Further philosophical work could use his
results to question the long-standing position that the diffeomorphism group is to be
regarded as the gauge group of GR.

Erhard Scholz looks at a different geometric generalisation of GR, pioneered by
Hermann Weyl. Scholz chooses a particular variant of Weyl geometry, one that is
integrable and not intrinsically linked to electromagnetism, and shows how looking
at both GR and Jordan-Brans-Dicke theory uncovers new relationships between the
two theories. He then relates this framework to electroweak theory, and discusses the
relationship between the gravitational scalar field of Weyl geometry and the scalar
Higgs field of the standard model. Scholz then derives new cosmological models in
this framework, and sheds new light on the cosmological models of GR.

Claus Beisbart’s chapter differs from most other chapters in this volume in that
it casts the net more widely: Beisbart starts from a general framework for a ‘theory
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8 D. Lehmkuhl

of theories’, the semantic or model-theoretic conception of what it is to be a theory,
and applies it to the case of spacetime theories. This allows Beisbart to reflect on
the question of what makes a theory a spacetime theory, and he can propose several
possible answers drawing on the semantic conception of theories. In the end, he
applies the framework to compare GR and Brans-Dicke theory in particular. He
argues that GR ‘is not a theory of its own, but rather a relationship between theories’,
and that the familiar claim that Brans–Dicke theory reduces to GR in a limit is
problematic when the limiting relationship is spelt out using the semantic framework.

David Wallace investigates how exactly the (special) relativity principle and the
equivalence principle are related in the context of GR. He starts by summarising the
often-voiced position that both principles are true in sufficiently small regions of
spacetime, namely in regions where curvature is negligible. He challenges this claim
by introducing a thought experiment he terms Galileo’s black hole: a system where
curvature is not negligible yet the relativity and equivalence principles still hold. He
diagnoses that if a general relativistic system is isolated, its metric at sufficiently
large distances is the same as the metric of any system at sufficiently small distances:
it is the Minkowski metric with the Poincaré group as its symmetry group. For such
systems, he argues, the relativity and equivalence principles hold even though curva-
ture/gravity is not negligible. Thus, he shows what exactly makes the two principles
hold both locally and at large distances from isolated bodies.

Both the relativity and the equivalence principle are specific symmetry principles.
The general characterisation of different kinds of symmetries is the topic of Adán
Sus’ paper. He carefully distinguishes between global and local symmetries, inves-
tigates how global conservation laws arise even in the context of theories with local
symmetries, and which types of symmetries exactly have direct empirical signifi-
cance. He points to the precise relationship between different types of symmetries
and different types of conserved currents, and their interpretation, in answering these
questions.

While the previous chapters have all investigated and compared different classical
(non-quantum) spacetime theories, the last two chapters in the volume turn to the
question of what spacetime (and spacetime theories) are in the context of approaches
to quantum gravity. Claus Kiefer investigates the different concepts of time in GR
and in quantum theory, and analyses the extent to which these differences present
an obstacle for the construction of a quantum theory of gravity. Kiefer argues that
one of the two requirements that any theory of quantum gravity must fulfil is the
recovery of GR in a classical limit.

Christian Wüthrich investigates how one of the most promising approaches for
the correct theory of quantum gravity, Loop Quantum Gravity (LQG), deals with
this problem. As he points out, many approaches to quantum gravity start from the
assumption that the world does not contain spacetime as part of its fundamental
structure, but as something that has to be regained in the classical limit. Wüthrich
investigates how exactly this might take place in LQG. In discussing different inter-
pretational options, one thing about Wüthrich’s analysis is particularly interesting
in the context of this volume: the (re)-emergence of spacetime in a classical limit
seems to uncover a rather different limiting relationship between LQG and GR as
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Introduction: Towards A Theory of Spacetime Theories 9

compared to, say, GR and special relativity (compare Pooley’s chapter), or GR and
Newtonian gravity (compare Weatherall’s chapter).

4 Outlook

It might seem strange to finish the introduction to a book with a few words about
what could come after the book. But in the end, this book is supposed to be a step (or
a couple of steps) towards a theory of spacetime theories. Thus, it seems appropriate
to say something about what the next steps could be.

I contrasted the chapters in this book with the grand schemes of Dicke’s frame-
work, the Thorne–Lee–Lightman framework, the PPN- and the PPF framework.
While these schemes try to cast their net widely, to cover as many spacetime theories
as possible, the chapters in this book instead focus on a detailed comparison of certain
pairs or triples of spacetime theories. A natural next step could be to investigatewhich
lessons can be drawn for modified grand-scheme frameworks; whether the results
of the pairwise comparison of spacetime theories allow for ‘bottom-up results’ that
directly impinge on the details of the overarching frameworks. Theymight evenmoti-
vate the construction of a new overarching framework to complement the existing
ones.

Another avenue would be to explore something that neither the grand schemes
nor the pairwise comparisons of this volumes have focused on so far, although both
endeavours have touched on it. Both approaches (grand frameworks and pairwise
comparisons) have focused on comparing the field equations, symmetry groups and
fundamental (geometric) objects of the different theories. The solutions to these
equations were not the focus of these investigations. However, much if not all of
the actual predictive work of spacetime theories is achieved by solutions to the field
equations. We see this, for example, by the fact that when Einstein [7] predicted the
perihelion of Mercury, he did not even have the final field equations of GR; but the
(approximation to) the Schwarzschild solution he used inmaking the predictionwas a
solution both to the field equations he used in that paper and to the (soon-to-be-called)
Einstein equations of the final theory. In defining the solution he used to model the
gravitational field of the Sun thatMercury is subject to, Einstein demanded that (i) the
field is spherically symmetric; (ii) the field is static; and (iii) that it is asymptotically
flat.

Birkhoff [3] soon showed that the Schwarzschild solution is the unique exterior
spherically symmetric solution that is also static and asymptotically flat. In other
words, it is unnecessary to demand staticity and asymptotic flatness as independent
assumptions; if the solution is demanded to be spherically symmetric, then one gets
the other two characteristics Einstein assumed ‘for free’. This is a rather striking
property of the solution space of Einstein’s field equations. Oneway of learningmore
about how special (or ordinary)GR is in its immediate neighbourhood in the ‘space of
spacetime theories’ would be to gauge whether (a counterpart of) Birkhoff’s theorem
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10 D. Lehmkuhl

holds in other spacetime theories; and if so which other features these theories have
in common with GR.11

Investigating the subspace of spherically symmetric solutions is particularly
important in every theory of gravity, for most astrophysical bodies (stars, black
holes, planets) are approximately spherically symmetric. An equally important solu-
tion subspace is that of gravitationalwave solutions.Weknow that inGRgravitational
waves have two modes of polarisation, two degrees of freedom. Is this typical of this
solution subspace inmost theories of gravity? Interestingly, it is not: Eardley et al. [6]
showed that the most general gravitational wave solution in a metric theory of grav-
ity (as defined in the TTL-framework) has six possible polarisation modes. GR, as a
special case of a metric theory of gravity, allows for only two of those, Brans–Dicke
theory allows for three.

The first gravitational wave has only just been detected experimentally [1]. How-
ever, the two LIGO detectors at Hanford and Louisiana were arranged in such a way
that the likelihood of detecting a gravitational wave hitting the Earth from an arbitrary
direction was to be maximised; not to distinguish, say, a GR-wave from a Brans–
Dicke wave. This will change once more the gravitational wave interferometers go
online.

There is so much left to be done towards an encompassing theory of spacetime
theories. But we are getting there. Step by Step.
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Inertial Motion, Explanation,
and the Foundations of Classical Spacetime
Theories

James Owen Weatherall

Abstract I begin by reviewing some recent work on the status of the geodesic princi-
ple in general relativity and the geometrized formulation of Newtonian gravitation. I
then turn to the question of whether either of these theories might be said to “explain”
inertial motion. I argue that there is a sense in which both theories may be under-
stood to explain inertial motion, but that the sense of “explain” is rather different from
what one might have expected. This sense of explanation is connected with a view
of theories—I call it the “puzzleball view”—on which the foundations of a physical
theory are best understood as a network of mutually interdependent principles and
assumptions.

1 Introduction

There is a very old question in the philosophy of space and time, concerning how and
why bodies move in the particular way that they do in the absence of any external
forces. The question originates with Aristotle, and indeed, the puzzle is particularly
acute when one thinks of it as the ancients might have. Given some external influence
on a body, itmight seemclearwhy that bodymoves in one fashion rather than another:
the external influence forces it to do so. But when there are no forces present, what
does the work of picking one possible state of motion over any other? Consider
planetarymotion: there are no apparent forces acting on planets, and yet they proceed
along fixed trajectories. Why these orbits rather than others? In Aristotelian terms,
what determines the “natural motions” of a body?

This manuscript was prepared in 2012 and has not been significantly revised since then. I still
hold the philosophical views defended here, but have not attempted to update the manuscript
in light of more recent work by myself or others.
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14 J.O. Weatherall

Themodern answer to the question originateswithGalileo andDescartes, but finds
its canonical form in Newton’s first law of motion, which states that in the absence
of external forces, a body will move in a straight line at constant velocity. This “law
of inertia,” as Newton called it, is preserved, mutatis mutandis, in general relativity,
where inertial motion is governed by the geodesic principle. The geodesic principle
states that in the absence of external forces, the possible trajectories through four-
dimensional spacetime of a massive test point particle will be timelike geodesics—
i.e., bodies will move along “locally straightest” lines without acceleration.

In standard presentations of general relativity, the geodesic principle is stated as a
postulate (cf. [27, 33, 36, 54]), much like Newton’s first law.1 However, shortly after
Einstein presented the theory, he and others began to suspect that one could equally
well conceive of the geodesic principle as a theorem, at least in the presence of other
standard assumptions of relativity theory [17, 19, 20]. This shift from geodesic-
principle-as-postulate to geodesic-principle-as-theorem has led to a widespread and
deeply influential view that general relativity has a special explanatory virtue that
distinguishes it from other theories of space and time. In the words of Harvey Brown,
general relativity “… is the first in the long line of dynamical theories… that explains
inertial motion” [4, pg. 163]. In other words, it may be that Newtonian physics
answers the “how” part of Aristotle’s question, but there is a sense in which only
general relativity answers the “why” part.

Although Einstein’s early attempts to prove the geodesic principle were not unam-
biguously successful, more recent efforts have shown that there is a precise sense in
which the geodesic principle may be understood as a theorem of general relativity
[23].2 However, it turns out that relativity is not unique in this regard. Geometrized
Newtonian gravitation (sometimes, Newton–Cartan theory) is a reformulation of

1For a detailed and enlightening discussion of the status of the first law of motion in standard
Newtonian gravitation, see Earman and Friedman [14].
2There have been several steps along the way to proving the geodesic principle as a rigorous
theorem of general relativity. The most significant early attempt was the work of Einstein and
Grommer [19] and Einstein et al. [20], with subsequent work due to Mathisson [34, 35] (see also
Sauer and Trautman [44]), Taub [50], Thomas [51], and Newman and Posadas [11, 38, 39].Many of
these are described and criticized briefly in Geroch and Jang [23]; for more expansive discussions,
see Blanchet [2] and Damour [10]. This history of Einstein’s efforts in this domain is described by
Havas [26] and Kennefick [28]. There are currently two approaches to the problem that are widely
recognized as successful: the one developed by Geroch and Jang [see also 18], which will be my
focus in the present paper, and one developed by Sternberg [47] and Souriau [45], among others,
which models a massive test point particle as an order-zero distribution with support along a curve.
One can then show that if the distribution is (weakly) conserved, the curve must be a geodesic. Note,
however, that although the Geroch–Jang approach and the Sternberg–Souriau approach are prima
facie different, there is a sense in which they turn out to be equivalent [24]. It is worth observing that,
although modern attempts to derive equations of motion in general relativity may be thought of as
addressing the same problem that Einstein and his contemporaries sought to address, the theorems
have a significantly different form. To give an example, Einstein et al. [20] claimed to show that
the geodesic principle followed from the vacuum form of Einstein’s equation; the Geroch–Jang
theorem,meanwhile, makes no explicit reference to Einstein’s equation, and, as wewill see below, if
it is related to Einstein’s equation at all, it is because the theorem assumes that matter is represented
by a divergence-free energy-momentum field—an assumption that may be thought to follow from
Einstein’s equation with sources, but not the vacuum form of the equation. And so, while I take the

erik@strangebeautiful.com



Inertial Motion, Explanation, and the Foundations … 15

Newtonian gravitation due to Cartan [5, 6] and Friedrichs [22] that shares many of
the qualitative features of general relativity. In geometrized Newtonian gravitation
one represents space and time as a four-dimensional spacetime manifold, the cur-
vature of which depends dynamically on the distribution of matter on the manifold.
Gravitational influences, meanwhile, are not understood as forces, as in traditional
formulations of Newtonian gravitation; rather, they are a manifestation of the cur-
vature of spacetime. And in particular, inertial motion is governed by the geodesic
principle: in the absence of external (nongravitational) forces, bodies move along the
geodesics of (curved) spacetime. Recently, I have shown that the geodesic principle
can be understood as a theorem of geometrized Newtonian gravitation [55]. Math-
ematically, the Newtonian theorem is nearly identical to the Geroch–Jang theorem.
Moreover, as I have argued elsewhere, when the background assumptions needed to
prove these theorems are examined in the contexts of each theory, one can reasonably
conclude that the geodesic principle has essentially the same status in both cases,
though in neither theory is the situation as simple as one might have hoped [56].

One consequence of this recent work is that Einstein and others’ idea that the
status of the geodesic principle in general relativity distinguishes the theory from
other theories of space and time seems more difficult to hold on to. But it also raises
a related issue. When one attends carefully to the details of these theorems, several
complications arise concerning the strength and status of the assumptions necessary
for proving them. Given these complications, one might reasonably ask, do either of
these theories explain inertial motion? It is this second question that I will take up in
the present paper.3

(Footnote 2 continued)
Geroch–Jang theorem to provide a kind of answer to a problem Einstein recognized, it may be that
the form of the answer is sufficiently different from what Einstein expected that Einstein would
not have found it satisfactory. I am grateful to an anonymous referee for emphasizing this last point
to me.
3The recent literature on whether and in what sense general relativity and Newtonian gravitation
explain inertial motion originates with Brown [4]. Brown is not especially concerned to give an
“account” of the sense of explanation he has in mind, in the sense of providing necessary or
sufficient conditions for when some argument, theorem, etc., is an explanation (nor, I should say,
am I!), though the idea is that the geodesic principle is explained in general relativity because there
is a sense in which it is a consequence of the central dynamical principle of the theory, Einstein’s
equation. Sus [48] has expanded on this view, calling the form of explanation at issue “dynamical
explanation,” and further defending Brown’s claim that general relativity is distinguished from other
spacetime theories with regard to the explanation it provides of inertial motion. Malament [32] and
I [56, 57], meanwhile, have pointed out that the geodesic principle does not follow merely from
Einstein’s equation, and that a strong energy condition is also required; moreover, as I note above,
a theorem remarkably similar to the one that holds in the relativistic case also holds in geometrized
Newtonian gravitation. But these latter discussions largely set aside the question of what sense of
explanation is at issue, if any. More recently, Tamir [49] has pointed out that in general relativity, at
least, the geodesic principle is false for realistic matter. He then considers almost-geodesic motion
as a kind of universal phenomenon in the sense of Batterman [1]. From this latter perspective, these
theorems provide explanations in the sense of showing how certain behavior can be expected to
arise approximately for a wide variety of substances. The remarks in the present paper are of a
rather different character than (most of) this earlier work, and so I will not engage with it closely in
the text.
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I will begin with a brief overview of geometrized Newtonian gravitation, after
which I will review the relevant theorems concerning the geodesic principle in that
theory and general relativity. I will focus on the subtle ways in which the theorems
differ, and on the complications that arise when one tries to interpret them. Once
this background material has been laid out, I will turn to the question at hand. The
starting point for this discussion will be to observe that on one way of thinking about
explanation in scientific theories, the answer to the question is “no”: neither of these
theories explains inertial motion, at least if the assumptions going into the theorems
have the character I describe. I want to resist this view, however, because I think it
takes for granted that one can make clear distinctions between “levels” or “tiers” of
fundamentality of the central principles of a theory. Careful analysis of the geodesic
principle theorems, meanwhile, suggests that there is another way of thinking about
how the principles of a theory fit together. The alternative view I will develop—I will
call it the “puzzleball view” or, perhapsmore precisely, the “puzzleball conjecture”—
holds that the foundations of physical theories, or at least these physical theories, are
best conceived as a network of mutually interdependent principles, rather than as a
collection of independent and explanatorily fundamental “axioms” or “postulates.”
On this view, one way to provide a satisfactory explanation of a central principle of a
theory, such as the geodesic principle in general relativity or geometrized Newtonian
gravitation, would be to exhibit its dependence on the other central principles of the
theory, i.e., to show how the principle-to-be-explained is a consequence of the other
central principles and basic assumptions of the theory. And this is precisely what the
theorems I will describe do. And so, I will argue that there is a sense in which both
theories explain inertial motion, though some care is required to say what is meant
by “explain” in this context.

I should be clear from the start: the language of explanation is a convenient one, but
I am not ultimately interested in the semantics of the word “explain.” The goal is not
to argue whether one thing or another is really an explanation. The dialectic, rather, is
as follows. Many people have suggested that general relativity provides an important
kind of insight with regard to inertial motion, something to be valued and sought
after in our physical theories. One might call this thing an “explanation,” or not. The
point, though, is that when one looks in detail at just what one gets in relativity theory
(and in geometrized Newtonian gravitation), it seems to work in a different way than
one might have initially guessed it would. One response to this observation would be
to say that we have not actually gotten what we were promised—or, in the language
above, that general relativity does not explain inertial motion. But another response
is to try to better understand what we do get. My principal thesis is that if one takes
this second path, an alternative picture emerges of how the foundations of theories
work. And on this alternative picture, general relativity and geometrized Newtonian
gravitation both do provide an important and very useful kind of insight into inertial
motion, and more, there are clear reasons why one should value and seek out this
sort of insight. Indeed, one might even think that what we ultimately get is what we
should have wanted in the first place. I am inclined to use the word “explanation”
for this sort of insight, but fully recognize that this usage may seem nonstandard or
incorrect to some readers.
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2 Overview of Geometrized Newtonian Gravitation

Geometrized Newtonian gravitation is best understood as a translation of Newtonian
gravitation into the language of general relativity, awayofmakingNewtonian physics
look as much like general relativity as possible, for the purposes of addressing com-
parative questions about the two theories.4 The result is a theory that is strikingly
similar in many qualitative respects to general relativity, but which differs in cer-
tain crucial details. Recall that in general relativity, a relativistic spacetime is an
ordered pair (M, gab), where M is a smooth four-dimensional manifold and gab is
a smooth Lorentzian metric on the manifold. In geometrized Newtonian gravitation,
meanwhile, one similarly starts with a smooth four-dimensional manifold M , but
one endows this manifold with a different metric structure. Specifically, one defines
two (degenerate) metrics. One, a temporal metric tab, has signature (1, 0, 0, 0). It is
used to assign temporal lengths to vectors on M : the temporal length of a vector ξ a

at a point p is (tabξ aξ b)1/2. Vectors with nonzero temporal length are called timelike;
otherwise, they are called spacelike. The second metric is a spatial metric hab, with
signature (0, 1, 1, 1). In general one requires that these twometrics satisfy an orthog-
onality condition, habtbc = 0. It is important that the temporal metric is written with
covariant indices and the spatial metric with contravariant indices: since both metrics
have degenerate signatures, they are not invertible, and so in general one cannot use
either to raise or lower indices. In particular, this means that the spatial metric cannot
be used to assign spatial lengths to vectors directly. Instead, one uses the following
indirect method. Given a spacelike vector ξ a , one can show that there always exists
a (nonunique) covector ua such that ξ a = habub. One then defines the spatial length
of ξ a to be (habuaub)1/2, which can be shown to be independent of the choice of ua .

Given a Lorentzian metric gab on a manifold M , there always exists a unique
covariant derivative operator ∇ that is compatible with gab in the sense that
∇agbc = 0. This does not hold for the degenerate Newtonian metrics. Instead, there
are an uncountably infinite collection of derivative operators that satisfy the com-
patibility conditions ∇atbc = 0 and ∇ahbc = 0. This means that to identify a model
of geometrized Newtonian gravitation, one needs to specify a derivative operator
in addition to the metric field. Thus, we define a classical spacetime as an ordered
quadruple (M, tab, hab,∇), where M , tab, hab, and ∇ are as described, the metrics
satisfy the orthogonality condition, and the metrics and derivative operator satisfy
the compatibility conditions. A classical spacetime is the analog of a relativistic
spacetime. Note that the signature of tab guarantees that at any point p, one can find
a covector ta such that tab = tatb; in cases where such a field can be defined globally,
we call the associated spacetime temporally orientable. In what follows, we will
always restrict attention to temporally orientable spacetimes, and will replace tab
with ta whenever we specify a classical spacetime.

4This brief overview of geometrized Newtonian gravitation is neither systematic nor complete.
The best available treatment of the subject is given in Malament [33]; see also Trautman [52]. My
notation and conventions here follow Malament’s.
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In both theories, timelike curves—curves whose tangent vector field is always
timelike—represent the possible trajectories of point particles (and idealized
observers). And as in general relativity, matter fields in geometrized Newtonian
gravitation are represented by a smooth symmetric rank-2 field T ab (with contravari-
ant indices). In general relativity, this field is called the energy-momentum tensor;
in geometrized Newtonian gravitation, it is called the mass-momentum tensor. The
reason for the difference concerns the interpretations of the fields. In relativity theory,
the four-momentum density of a matter field with energy-momentum tensor T ab is
only defined relative to some observer’s state of motion: given an observer whose
worldline has (timelike) tangent field ξ a , the four-momentum density Pa as deter-
mined by the observer is given by Pa = T abξb. When Pa is timelike or null, one can
define the mass density ρ of the field at a point, relative to the observer, as the length
of Pa . Moreover, the four-momentum field can be further decomposed (relative to
ξ a) as Pa = Eξ a + pa , where E = Pnξn is the relative energy density as determined
by the observer, and pa = Pn(δan − ξ aξn) is the relative three-momentum density.
Thus, the field T ab encodes the relative mass, relative energy, and relative momen-
tum densities as determined by any observer. In geometrized Newtonian gravitation,
meanwhile, all observers make the same determination of the four-momentum den-
sity of a matter field at a point: for any observer, Pa is given by Pa = T abtb. Given a
particular observer whose worldline has tangent field ξ a , though, one can decompose
Pa as Pa = ρξ a + pa , where ρ = Pata(= T abtatb) is the (observer-independent)
mass density associated with the matter field, and where pa = Pn(δan − ξ atn) is the
relative three-momentum density of the matter field as determined by the observer.
Thus in geometrized Newtonian gravitation, T ab encodes the (absolute) mass density
of a matter field, as well as its momentum relative to any observer.5

It is standard in both theories to limit attention to matter fields that satisfy several
additional constraints. In particular, in both cases one assumes that matter fields
satisfy the conservation condition, which states that their energy/mass-momentum
fields are divergence free (i.e.,∇aT ab = 0). One also usually requires that such fields
satisfy various energy conditions. In geometrized Newtonian gravitation, only one
such condition is standard: it is the so-called mass condition.

Mass condition: A mass-momentum field satisfies the mass condition if, at every point,
either T ab = 0 or T abtatb > 0.

Since T abtatb = ρ is themass density, this assumption states that whenever themass-
momentum tensor is nonvanishing, the associated matter field has positive mass. The
situation is more complicated in general relativity, where there are several energy
conditions that one may consider. I will mention a few because they are of particular
interest for present purposes. One, called theweak energy condition, is (at least prima

5Note that is general relativity, one makes a distinction between the mass and energy densities
relative to a given observer, where relative mass density is the length of the four-momentum
density determined by an observer at a point (ρ = (Pa Pa)1/2) and relative energy density is
E = T abξaξb = Paξa , where ξa is the tangent field to the observer’s worldline. In geometrized
Newtonian gravitation, this distinction collapses.
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facie) quite similar to the mass condition. It states that the energy density of a matter
field as determined by any observer is always nonnegative.

Weak energy condition: An energy-momentum field satisfies the weak energy condition if,
given any timelike vector ξa at a point, T abξaξb ≥ 0.

It is also common to consider stronger conditions. For instance, there are thedominant
energy condition and the strengthened dominant energy condition:

Dominant Energy Condition: An energy-momentum field satisfies the dominant energy
condition if, given any timelike vector ξa at a point, T abξaξb ≥ 0 and T abξa is timelike or
null.

Strengthened Dominant Energy Condition: An energy-momentum field satisfies the
strengthened dominant energy condition if, give any timelike covector ξa at a point,
T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike.

If these two conditions obtain for some matter field, then not only do all observers
take the field to have nonnegative energy density, they also take its four-momentum
to be causal or timelike (respectively). In other words, these latter conditions capture
a sense in which matter must propagate at or below the speed of light.

The curvature of a classical spacetime is defined in the standard way: given a
derivative operator ∇, the Riemann curvature tensor Ra

bcd is the unique tensor
field such that for any vector field ξ a , Ra

bcdξ
b = −2∇[c∇d]ξ a . The Ricci curvature

tensor, meanwhile, is given by Rab = Rn
abn . In both contexts, one says that a space-

time is flat if Ra
bcd = 0; in geometrized Newtonian gravitation, one also says that

a (possibly curved) spacetime is spatially flat if Rabcd = Ra
mnohbmhcnhdo = 0 or,

equivalently, Rmnhmahnb = 0. Given these ingredients, one can state the sense in
which in geometrized Newtonian gravitation, the curvature of spacetime depends
on the distribution of matter: namely, the central dynamical principle of the the-
ory, the geometrized Poisson equation, states that Rab = 4πρtatb, where ρ is the
mass density defined above. This expression explicitly relates the Ricci curva-
ture of spacetime to the distribution of matter. It is the Newtonian analog of
Einstein’s equation, Rab = 8π(Tab − 1

2Tgab), where T = T abgab, or equivalently
8πTab = Rab − 1

2 Rgab, where R = Rabgab.
There are a few points to emphasize here concerning the geometrized Poisson

equation. For one, if the geometrized Poisson equation holds of a classical spacetime
for some mass-momentum tensor T ab, then the classical spacetime is spatially flat,
since Rnmhnahmb = 4πρtntmhmahnb = 0. This fact is a way of recovering a familiar
feature of Newtonian gravitation, namely that space is always flat, even though in the
geometrized theory spacetime may be curved. Second, in general relativity one can
freely think of both the metric and the derivative operator as (systemically related)
dynamical variables in the theory. In geometrized Newtonian gravitation, this is not
the case: instead, the metrical structure of a classical spacetime is fixed, and only the
derivative operator (ormore specifically, theRicci curvature,which is defined in terms
of the derivative operator) is a dynamic variable. Finally, there is a sense in which,
given somematter distribution, the geometrized Poisson equation “fixes” a derivative
operator on a classical spacetime, but one has to be careful, as one can typically only
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recover a unique derivative operator satisfying the geometrized Poisson equation for
a given matter distribution in the presence of additional boundary conditions or other
assumptions.

The geometrized Poisson equation provides the sense in which in geometrized
Newtonian gravitation, spacetime is curved in the presence of matter; the sense in
which gravitational effects may be understood as a manifestation of this curvature
is just the same as in general relativity. That is, a derivative operator allows one to
define a class of geometrically privileged curves, the geodesics of the spacetime,
which consist of all curves whose tangent fields ξ a satisfy ξ n∇nξ

a = 0 everywhere.
I have already said that the timelike curves of a spacetime represent the possible
trajectories for massive particles; the timelike geodesics, meanwhile, represent the
possible unaccelerated trajectories of particles in both theories. The geodesic prin-
ciple then connects these geometrically privileged curves with force-free motion.
Thus, in geometrized Newtonian gravitation, as in general relativity, the distribu-
tion of matter throughout space and time affects the possible trajectories of massive
point particles not by causing such particles to accelerate, but rather by dynamically
determining a collection of unaccelerated curves.

These features of geometrized Newtonian gravitation provide the sense in which
the theory is qualitatively similar to general relativity. But one might wonder what
undergirds the implicit claim that geometrizedNewtonian gravitation is in some sense
Newtonian. One sense in which the theory is Newtonian is immediate: the degenerate
metric structure of a classical spacetime captures the implicit geometry of space
and time in ordinary Newtonian gravitation, where one has a temporally ordered
succession of flat three-dimensional manifolds representing space at various times
(cf. [46]). But there ismore to say. In standard formulations ofNewtonian gravitation,
spacetime is flat. Gravitation is a force mediated by a gravitational potential, which
is related to the distribution of matter by Poisson’s equation. In the present four-
dimensional geometrical language, this can be expressed as follows. We begin with
a classical spacetime (M, ta, hab,∇) as before, but now we require that ∇ is flat,
i.e., Ra

bcd = 0. We again represent matter by its mass-momentum field T ab, defined
just as above, but we also define a scalar field ϕ, which is the gravitational potential.
Poisson’s equation is written as∇a∇aϕ = 4πρ where the index on∇a is raised using
hab, and where ρ = T abtatb. And now the acceleration of amassive test point particle
in the presence of a gravitational potential ϕ is given by ξ n∇nξ

a = −∇aϕ, where
ξ a is the tangent to the particle’s trajectory. In other words, in standard Newtonian
gravitation matter accelerates in the presence of mass.

It turns out that standardNewtonian gravitation (thus understood) andgeometrized
Newtonian gravitation are systematically related [33, ch. 4.2]. Specifically, given
a classical spacetime (M, ta, hab,∇) with ∇ flat, a smooth mass density ρ, and
a smooth gravitational potential ϕ satisfying ∇a∇aϕ = 4πρ, there always exists
a unique derivative operator ∇̃ such that (M, ta, hab, ∇̃) is a classical spacetime,
R̃ab = 4πρtatb, and such that for any timelike vector field ξ a , ξ n∇nξ

a = −∇aϕ if and
only if ξ n∇̃nξ

a = 0. In otherwords, given amodel of standardNewtonian gravitation,
there is always amodel of geometrizedNewtonian gravitationwith precisely the same
mass density and allowed trajectories. Additionally, the derivative operator ∇̃ will
always satisfy two curvature conditions: R̃ab

cd = 0 and R̃a
b
c
d = R̃c

d
a
b. This result
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Fig. 1 In general, it is possible to translate betweengeometrizedNewtoniangravitation and standard
Newtonian gravitation, as depicted in this figure. On the left is a model of standard Newtonian
gravitation: one has a matter field represented by the world tube of some body, such as the sun, and
a curve orbiting this body, representing, say, a small planet. This curve corresponds to an allowed
trajectory insofar as it is accelerating by the appropriate amount. On the right is the corresponding
model of geometrized Newtonian gravitation. One has precisely the same matter distribution, and
the same allowed trajectory (i.e., the same orbit), but nowwe understand this trajectory to be allowed
by the theory because it is a geodesic of a curved derivative operator, with curvature determined by
the matter distribution. Note that both theories have the same metrical structure, represented here
by a succession of flat slices representing space at various times

is known as the Trautman geometrization lemma; it provides the sense in which
one can always translate from standard Newtonian gravitation into the geometrized
theory. One can also prove a corresponding recovery lemma (also due to Trautman),
allowing for translations back: namely, given a classical spacetime (M, ta, hab, ∇̃)

and smooth mass density ρ satisfying R̃ab = 4πρtatb, if R̃ab
cd = 0 and R̃a

b
c
d =

R̃c
d
a
b then at least locally there always exists a flat derivative operator ∇ and a

gravitational potential ϕ such that (M, ta, hab,∇) is a classical spacetime,∇a∇aϕ =
4πρ, and again for any timelike vector field ξ a , ξ n∇nξ

a = −∇aϕ if and only if
ξ n∇̃nξ

a = 0. Note that this recovery result only holds in the presence of the two
additional curvature conditions stated above; moreover, in general the translation
from geometrized Newtonian gravitation to standard Newtonian gravitation will not
be unique. (See Fig. 1.)

3 The Geodesic Principle as a Theorem

With the background of the previous section in place, I can now state the precise sense
in which the geodesic principle may be understood as a theorem in general relativity
and geometrized Newtonian gravitation. I will begin by stating both theorems, and
then double back to the question of how one should interpret them.
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Theorem 3.1 [23]6Let (M, gab) be a relativistic spacetime, and suppose M is ori-
ented. Let γ : I → M be a smooth imbedded curve. Suppose that given any open
subset O of M containing γ [I ], there exists a smooth symmetric field T ab with the
following properties.

1. T ab satisfies the strengthened dominant energy condition, i.e., given any timelike
covector ξa at a point, T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike;

2. T ab satisfies the conservation condition, i.e., ∇aT ab = 0;
3. supp(T ab) ⊂ O; and
4. there is at least one point in O at which T ab �= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

One can prove an almost identical theorem in geometrized Newtonian gravitation.7

Theorem 3.2 [55] Let (M, tab, hab,∇) be a classical spacetime, and suppose that
M is oriented. Suppose also that Rab

cd = 0. Let γ : I → M be a smooth imbedded
curve. Suppose that given any open subset O of M containing γ [I ], there exists a
smooth symmetric field T ab with the following properties.

1. T ab satisfies the mass condition, i.e., whenever T ab �= 0, T abtatb > 0;
2. T ab satisfies the conservation condition, i.e., ∇aT ab = 0;
3. supp(T ab) ⊂ O; and
4. there is at least one point in O at which T ab �= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

As a first remark, it may not be obvious that either of these theorems should
be understood to capture the geodesic principle at all, at least in a natural way. A
principal difficulty in trying to derive the geodesic principle as a theorem concerns a
kind of ontological mismatch between the geodesic principle and the rest of general
relativity: namely, general relativity is a field theory, whereas the geodesic principle
is a statement concerning point particles. One strategy for dealing with this problem
is to try to model massive point particles as “small” bits of extended matter, and then
show that under sufficiently general assumptions, the world tubes of such small bits
of matter will contain timelike geodesics. But this turns out to be false in general—
geodesic motion only obtains in the idealized limit where the world tube of a body
collapses to a curve, in which case one can no longer represent matter as a smooth

6This particular statement of the theorem is heavily indebted to Malament [33, Prop. 2.5.2].
7Note that the following theorem may be understood to include inertial motion in standard (i.e.,
non-geometrized) Newtonian gravitation as a special case where the derivative operator associated
with the classical spacetime in the proposition happens to be flat. So the present result may be
taken to show that Newton’s first law can be thought of as a theorem, too. In the case of standard
Newtonian gravitation, however, gravitational interactions are conceived as forces and correspond
to failures of the mass-momentum tensor to be conserved (relative to the fixed background choice
of flat derivative operator), so strictly fewer physical situations correspond to inertial motion. For
this reason, it is more interesting to focus on the geometrized theory, since the result is both stronger
in that case and more directly analogous to the Geroch–Jang theorem.
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field on spacetime.8 The Geroch–Jang strategy, meanwhile, is different. Instead of
starting with some matter and asking what kind of trajectory it follows, one starts
with a curve and asks under what circumstances that curve can be understood as a
trajectory for arbitrarily small bits of extended matter. Both theorems then state that
the only curves along which arbitrarily small bits of matter can be constructed are
timelike geodesics.

Importantly, one represents a “small bit of matter” by a smooth symmetric rank
2 tensor field with support in some neighborhood of the curve. But a curve is not
understood as a possible trajectory for a free massive test point particle if one can
constructany smooth symmetric rank2 tensor field in arbitrarily small neighborhoods
of the curve—rather, one limits attention to fields that satisfy additional constraints.
The claim, then, is that these theorems capture the geodesic principle in both theories
insofar as the additional constraints on the matter fields adequately capture what we
intendby “freemassive testmatter.”Thismeans that the interpretation of the theorems
turns on the status of these conditions. And so, for a comparative study of the status
of the geodesic principle in each theory, one wants to compare the status of each of
these assumptions relative to their respective theories.

Two of the assumptions can be set aside immediately: in both theorems, assump-
tions (3) and (4) play the role of setting up the limiting process implicit in the
theorems. Assumption (3) limits attention to matter fields that vanish outside one’s
chosen neighborhood of the curve (which captures the sense in which one is consid-
ering arbitrarily small bits of matter propagating along the curve), and assumption
(4) indicates that the matter field must be nonvanishing somewhere along curve, rul-
ing out the trivial case. These assumptions are identical in both cases, and neither is
troublingly strong.

There is also an obvious difference that can be safely ignored. In the Newtonian
theorem, we place an additional constraint on the curvature, namely Rab

cd = 0. This
is precisely the curvature condition needed to prove the Trautman recovery theorem,
allowing one to translate from a model of geometrized Newtonian gravitation to a
model of standard Newtonian gravitation. For this reason, the curvature condition is
naturally interpreted as a restriction to models of geometrized Newtonian gravitation
that areNewtonian, in the sense that they admit translations back tomodels of standard
Newtonian gravitation. This presumably is the case of greatest interest, and so I am
inclined to think of the assumption as benign.9 Moreover, there is good reason to
think that this assumption can be dropped, though tomy knowledge, proving asmuch
is still an open (and perhaps interesting) problem.

The most striking difference between the two theorems concerns the respective
assumptions (1).10 In the Newtonian theorem, this is the mass condition, i.e., that
whenever themass-momentumfield is nonvanishing, themass density determined by
any observer must be positive. This is the standard energy condition in geometrized

8This point is emphasized by Tamir [49].
9For another view on this matter, see Sus [48].
10For an enlightening and much more detailed discussion of energy conditions in general relativity,
including the Strengthened Dominant Energy Condition, see Curiel [9].
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Newtonian gravitation, andmore, it is natural in this context, as it captures the sense in
which the bits of matter being represented are massive. In the Geroch–Jang theorem,
meanwhile, one requires the strengthened dominant energy condition, which states
that (a) all observers must assign nonnegative energy density to the matter field (the
weak energy condition) and (b) that if T ab �= 0, then the four-momentum assigned
to the matter field by any observer must be timelike. It seems natural to think that
the weak energy condition, (a), is playing the role played by the mass condition in
the Newtonian case: namely, it captures the sense in which the small bits of matter
are massive, by requiring that they always have nonnegative mass. But from this
perspective, the second part of the condition, (b), is a strong additional requirement.
In Newtonian gravitation, it would seem, one needs only to assume that mass is
always positive to get timelike geodesic propagation, whereas in general relativity,
one also needs to make an assumption about the timelike propagation of energy-
momentum.11

However, the situation is not quite so simple as this. Although the mass condition
appears to be nothing more than an assumption about positive mass, it, too, contains
an implicit assumption about timelike propagation. To see this, consider a different
(nonstandard) Newtonian energy condition, which I will call the weakened mass
condition.

Weakened Mass Condition: A mass-momentum field T ab satisfies the weakened mass
condition if at every point, T abtatb ≥ 0.

The weakened mass condition has a good claim on being the Newtonian analog
of the weak energy condition and might similarly be understood as the claim that
mass/energy density is always nonnegative. But it is strictly weaker than the mass
condition, since the weakened mass condition may be satisfied by mass-momentum
fields that are spacelike, in the sense that T ab �= 0 but T abtatb = 0 (for example,
consider T ab = uaub, with ua a spacelike vector field). In other words, the mass
condition amounts to the weakened mass condition plus the additional assumption
that T ab is timelike. We can make this explicit by defining an equivalent condition,
the modified mass condition.

Modified Mass Condition: A mass-momentum field T ab satisfies the modified mass con-
dition if at every point, T abtatb ≥ 0 and either T ab = 0 or T abta is timelike.

The modified mass condition is equivalent to the mass condition, but would appear
to be the natural translation of the strengthened dominant energy condition.12

11This is precisely how I present the situation in [56, 57]. However, I now think matters are still
more complicated than I indicate there, as I explain in the text. Still, the principal morals of those
previous discussions are unchanged by these additional considerations.
12To see that themass condition andmodifiedmass condition are equivalent, consider the following.
Fix a classical spacetime (M, ta, hab,∇) and a mass-momentum field T ab on M . First suppose
T ab satisfies the mass condition. Then at every point, either T ab = 0 or T abtatb > 0. If T ab = 0
everywhere, then it also satisfies the modified mass condition, so suppose there is a point p such
that T ab �= 0. Thus at p, T abtatb > 0. It follows that the temporal length of T abta is positive, and
thus that the vector T abta must be timelike at p. So T ab satisfies the modified mass condition.
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Table 1 This table summarizes the relationship between the various energy conditions discussed in
the text. Single arrows represent “apparently natural translations”; double arrows represent logical
implications

Geometrized Newtonian
gravitation

General relativity

Modified mass condition ←→ Strengthened dom. energy
condition

� ⇓
Mass condition ←→ Strengthened weak energy

condition

⇓ ⇓
Weakened mass condition ←→ Weak energy condition

Returning to general relativity, one can also consider the strengthenedweak energy
condition.

StrengthenedWeak Energy Condition: An energy-momentum field satisfies the strength-
ened weak energy condition if, give any timelike vector ξa at a point, either T ab = 0 or
T abξaξb > 0.

This condition seems like the natural translation of the (standard) mass condition,
but it is strictly weaker than the strengthened dominant energy condition and strictly
stronger than the weak energy condition!13

This situation is summarized in Table 1. There are thus twoways of thinking about
the relationship between the energy conditions used in these theorems, depending
on which “natural translations” one emphasizes. On one way of thinking, the mass
condition is essentially the same as the strengthened weak energy condition. From
this point of view, then, the strengthened dominant energy condition in the Geroch–
Jang theorem is a strictly stronger assumption than the corresponding assumption in
its Newtonian counterpart, Theorem 3.2. More, one might be inclined to think that
one gets something additional for free in the Newtonian case, since the mass condi-
tion turns out to imply the (apparently) stronger modified mass condition, whereas
the strengthened weak energy condition does not imply the strengthened dominant
energy condition. Meanwhile, on the other way of thinking about things, one argues
that the strengthened dominant energy condition is essentially the same as the mod-
ified mass condition, which is fully equivalent to the mass condition. And so one
concludes that the energy conditions required by the two theorems are essentially
the same.

(Footnote 12 continued)
Now suppose T ab satisfies the modified mass condition. Once again, if T ab vanishes everywhere,
it automatically satisfies the mass condition, so suppose there is a point p such that T ab �= 0. At
that point, we know T abta is timelike, and thus that T abtatb �= 0. But since T abtatb ≥ 0, it follows
that T abtatb > 0. Thus T ab satisfies the mass condition.
13The strengthened weak energy condition is also strictly weaker than the (strict) dominant energy
condition, and so Prop. 4 of Weatherall [57] implies that the strengthened weak energy condition
is not strong enough to prove the Geroch–Jang theorem.
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There is also another possibility, which is to say that one cannot perform simple
translations between the energy conditions in these two theories at all. I am inclined
to endorse this last option, though this raises new questions about how one should
compare the theorems. There are a few things to say. First, irrespective of how
one tries (or does not try) to translate these conditions, there are still two senses in
which the strengthened dominant energy condition is arguably stronger than themass
condition. One is that the timelike propagation clause of the strengthened dominant
energy condition can be understood as the assumption that the instantaneous speed
of matter, relative to any observer, must be strictly less than the speed of light. The
corresponding clause of the (modified) mass condition, meanwhile, amounts to the
assumption that matter cannot propagate at infinite speed relative to any observer.
And the assumption that a number must be less than a fixed finite value is stronger
than the assumption that it must be finite, but not bounded.

The second, more significant sense in which the strengthened dominant energy
condition is stronger is that the only way in which matter in Newtonian gravitation
can be “massive” (i.e., have positive mass as determined by some observer) is if it
satisfies the mass condition. Matter that satisfies the weakened mass condition but
not the mass condition will necessarily have zero mass. And so one might argue that
the mass condition is necessary to capture what is meant by “massive” in the context
of Newtonian gravitation. In general relatively, meanwhile, matter can be “massive”
in two senses, without satisfying the strengthened dominant energy condition: it can
be massive in the sense that it has positive energy density (i.e., it satisfies the weak
energy condition), and it can be massive in the sense that some observers will assign
it positive mass density (i.e., the relative four-momentum density as determined by
some observers is timelike). This second sense trades on an important distinction
between some observers assigning positive mass density and all observers assigning
positive mass density. One might have thought that in order for a matter field to be
massive, it would be sufficient if some observers—say, co-moving observers making
determination of “restmass density,”when thatmakes sense—determine that the field
has positive mass density. But the strengthened dominant energy condition requires
considerably more than this. In geometrized Newtonian gravitation, meanwhile, all
of these distinctions collapse. If anyone determines a matter field has positive mass,
then everyone does.

A final remark is that, understood within the context of the respective theories,
the strengthened dominant energy condition is a more surprising assumption to have
to make than the mass condition. One often thinks of relativity theory as forbidding
superluminal propagation of energy-momentum, in the sense that somehow the geo-
metric structure of the theory renders superluminal energy-momentum incoherent.
But here, at least, it seems that we need to rule out superluminal propagation of
energy-momentum as an additional assumption in order to derive the geodesic prin-
ciple. This point can be made precise by asking whether one can drop or weaken the
energy condition in the Geroch–Jang theorem and still derive the geodesic principle.
And the answer is “no.” If one drops the energy condition altogether, it is possible
to construct bits of matter that propagate along any timelike curve [32]. And if one
weakens the energy condition to the weak energy condition or the dominant energy
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condition, one can construct bits of matter that propagate along spacelike or null
curves, respectively [57]. To be sure, in the Newtonian case the mass condition is
similarly necessary (the considerations offered in Weatherall [57] can be adapted to
show that theweakenedmass condition is not enough to get timelike geodesicmotion
in geometrized Newtonian gravitation), but this does not seem as striking, since one
does not expect Newtonian gravitation to imply restrictions on the propagation of
matter (or more specifically, mass-momentum), even if it is standard to assume that
matter cannot propagate instantaneously in the theory.

This leaves the conservation condition, assumption (2) in both theorems. The
statement of the assumption is identical in both cases, namely that the tensor fields
representing matter must be divergence-free. And in both theories, this assumption is
a way of capturing that the bits of matter must be free in the sense of noninteracting.
This interpretation is justified because in both theories there is a standard background
assumption that at every point of spacetime, total energy/mass-momentum must be
divergence free, and more, that a particular energy/mass-momentum field fails to be
divergence free at a point just in case it is interacting with some other such field at
that point. And so, to say that a particular field satisfies the conservation condition
everywhere is to say that that field cannot be exchanging energy/mass-momentum
with any other fields.

So far, it would seem that these assumptions have precisely the same status in both
theorems. But this is too quick. Although the assumptions are equally natural ways of
capturing the desired sense of “free” in both cases, they only have that interpretation
in the presence of the background assumption regarding the local conservation of
total energy/mass-momentum. And there is an argument to be made that this back-
ground assumption has a different status in general relativity than in geometrized
Newtonian gravitation. In general relativity, Einstein’s equation implies the conser-
vation condition, at least for total source matter. This is because the equation can
be written as 8πT ab = Rab − 1

2g
abR, and it is a brute geometrical fact (known as

Bianchi’s identity) that the right-hand side of this equation is always divergence free.
Thus, the left-hand side must also be divergence-free.

The geometrized Poisson equation, however, does not imply the conservation
condition. And so, if one has Einstein’s equation lurking in the background, one
might be inclined to say that the background assumption that matter is conserved
comes for free in general relativity, whereas it is an additional brute assumption in
geometrizedNewtonian gravitation. There is an important caveat here—the argument
that Einstein’s equation implies the conservation condition only applies for source
matter, whereas the geodesic principle is supposed to govern test matter, i.e., matter
that may be neglected as a source in Einstein’s equation. Nonetheless, one might
think that the conservation condition has a special status—even, to anticipate the
discussion in the next section, a privileged explanatory status—in general relativity
because of its relation to Einstein’s equation.14

14I should emphasize: one does not need to think of the conservation condition as having a different
status in general relativity than in geometrized Newtonian gravitation. For instance, I have else-
where argued that one can thinkof the conservation condition as ameta-principle, in the sense that the
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In the next section, I will turn to the question of whether either of these theorems
should count as explanations of inertial motion. But before I do so, it will be helpful
to sum up the discussion in the present section. I have now made precise the sense in
which one can prove the geodesic principle as a theorem of both general relativity and
geometrizedNewtonian gravitation. But, as I hope has become clear, interpreting and
comparing these theorems is quite subtle. It is not quite right to say that the theorems
have the same interpretation or significance: on the one hand, there is arguably a sense
in which the conservation condition, necessary for both theorems, has a different
and perhaps privileged status in general relativity; and on the other hand, there are
several senses in which the energy condition required for the Geroch–Jang theorem
is stronger than the condition required for the Newtonian theorem, both in absolute
terms and relative to the respective theories. Despite these differences, however,
there is at least one important sense in which the status of the geodesic principle is
strikingly similar in both theories. In both cases, one can prove the geodesic principle
as a theorem. But to do so, one needs to make strong assumptions about the nature
of matter. The status of these assumptions will play a central role in what follows.

4 Explaining Inertial Motion?

General relativity and geometrized Newtonian gravitation, like any physical theory,
involve a number of basic assumptions and central principles. For instance, general
relativity begins with some background assumptions about matter and geometry:
space and time are represented by a four-dimensional, possibly curved Lorentzian
manifold; matter is represented by its energy-momentum tensor, a smooth symmetric
rank two tensor field on spacetime. One then adds some additional assumptions, as
principles indicating how to interpret and use the theory. One may stipulate that total
energy-momentum at a point must satisfy the conservation condition. One assumes
that matter fields satisfy various possible energy conditions, that idealized clocks
measure proper time along their trajectories, and that free massive test point parti-
cles traverse timelike geodesics. We postulate a dynamical relationship between the
geometrical structure of spacetime and the energy-momentum field, and so on. Some
of these assumptions involve stipulating kinematical structure; others involve basic
constraints and dynamical relationships; others still tell us how to extract empirical
content from the theory. All of them have some claim to centrality or fundamentality
in the theory.

But they are not necessarily independent. For instance, as I mention above, the
conservation condition may be understood as a consequence of Einstein’s equation,

(Footnote 14 continued)
assumption that matter is conserved is expected to hold true in a wide variety of theories, and that
from this perspective the status of the assumption is much the same in both general relativity and
geometrized Newtonian gravitation [56]. (Of course, the assumption that a matter field is divergence
free is not exactly the same as the assumption that total mass or energy is constant over time, but it
does deserve to be called the relativistic version of traditional conservation principles.)
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at least for source matter. And so, at least in some contexts, one might want to think
of the conservation condition as somehow subordinate to Einstein’s equation. One
might even be inclined to say that it is Einstein’s equation that really deserves to be
called the “fundamental principle,” while the conservation condition has some other,
less fundamental status—or, in other words, that Einstein’s equation explains why
matter is locally conserved. We might even say that this is what it means to say that
something like the conservation condition is explained by a theory: it can be derived
from more fundamental principles in the theory.

From this point of view, one might have thought that when Einstein, Eddington,
and others have claimed that general relativity explains inertial motion, in the sense
that one can prove the geodesic principle as a theorem, the claim would have been
analogous to what I have just said about the conservation condition: namely, one
can take some collection of other principles of the theory and use them to derive the
geodesic principle. One might then think that the geodesic principle has the same
subordinate status as the conservation condition. It may be central to the theory, but
not truly fundamental. The fundamental principles are the ones that go into proving
the geodesic principle. On this view, one thinks of the foundations of general rela-
tivity as a two-tiered system. On the top tier are the truly fundamental principles; on
the lower tier are the other central principles that can be derived from the top-tier
principles. Initially, perhaps, one thought that the geodesic principle and conserva-
tion condition were top-tier principles; but the Geroch–Jang theorem and Bianchi’s
identity show that they are really second-tier principles.15

Thinking this way can lead to problems, however. The main moral of the last
section was that although one can prove the geodesic principle as a theorem in
both general relativity and geometrized Newtonian gravitation, to do so requires
strong assumptions about the nature of matter. And so, if we want to move the
geodesic principle to the lower tier, it would seem that we need to understand these
assumptions as top-tier principles. But this raises a question: why should we think
of these principles as the truly fundamental ones? Or more specifically, why should
we think of the conservation condition and the respective energy conditions as more
fundamental than the geodesic principle itself?

If one were committed to the idea that the geodesic principle is a second-tier
principle in one or both of these theories, perhaps one would be willing to include
the assumptions needed to prove the geodesic principle among the truly fundamental
principles of that theory.But it is hard to see how this is an appealingmoveon indepen-
dent grounds. Even if one were to argue that dynamical principles such as Einstein’s
equation and the geometrized Poisson equation are clearly more fundamental than
the geodesic principle, it remains the case that the strong energy condition needed
to prove the Geroch–Jang theorem is entirely independent of Einstein’s equation.
(And neither the conservation condition nor the mass condition follows from the
geometrized Poisson equation.)

15Indeed, it seems Einstein originally did think of the conservation condition as a top-tier principle,
in the sense that he thought it was an independent assumption that any realistic field equation would
need to be compatible with. See Earman and Glymour [15, 16].
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More, there is a sense in which one can draw all of the inferential arrows in
the opposite direction, at least in one important case. Consider an energy/mass-
momentumfield of the form T ab = ρξ aξ b, for some smooth scalar fieldρ and smooth
vector field ξ a . An energy/mass-momentum field of this form is the natural way
of representing a matter field composed of mutually noninteracting massive point
particles (at leastwhenρ is nonnegative).And so, since the geodesic principle governs
the behavior of freemassive test point particles, we can use it to derive features of this
matter field: specifically, the geodesic principle implies that the flow lines of the field,
which represent the trajectories of each speck of dust, must be timelike geodesics.
These flow lines are just the integral curves of ξ a , and so it follows that ξ a must
be timelike and geodesic (i.e., ξ n∇nξ

a = 0). But if ξ a is timelike, then T ab satisfies
the strengthened dominant energy condition (or respectively, the mass condition in
geometrized Newtonian gravitation). And if it is geodesic, then T ab is divergence
free. Thus the geodesic principle allows us to derive that matter fields consisting of
noninteracting massive test point particles satisfy precisely the two conditions we
need to assume in order to prove the geodesic principle.16

So perhaps we should not be so quick to declare the conservation condition and
energy conditions top-tier in either theory. At the very least, it is not perfectly clear
that these assumptions are more fundamental than the geodesic principle. But think-
ing in this way might lead one to conclude that neither of the geodesic principle
theorems has much explanatory significance, since (the intuition might go) expla-
nations always proceed from more fundamental or basic facts to less fundamental
facts. Here, meanwhile, the arrows of fundamentality are muddled. And this would
mean that not only is general relativity not special with regard to its explanation of
inertial motion—it does not explain inertial motion at all!

5 The Puzzleball Conjecture

I do not find the argument I offer in the previous section compelling. It rests on
a basic intuition: to explain something like the geodesic principle, one must begin
with some truly fundamental principles and then provide an argument for why the
principle-to-be-explained must follow from these more fundamental ones. This intu-
ition takes for granted that we can make sense of a distinction between different tiers
of fundamentality among the central principles of a theory like general relativity or
geometrized Newtonian gravitation. And I think that this is a mistake—or at least,
that there is a more compelling way of thinking about things.

Consider what the geodesic principle theorems do accomplish. In both of these
cases, the theorems show how in the presence of other basic assumptions of the
respective theories, the geodesic principle follows. Or in other words, they show
that given that one is committed to the rest of (say) general relativity, one must

16Of course, the present argument does not imply that the conservation condition and energy con-
ditions hold for all matter—just for the type of matter directly governed by the geodesic principle.
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Fig. 2 One way of thinking about the foundations of physical theories would have it that some of
the central principles of a theory have a distinguished status as the “truly fundamental” principles.
An alternative view, which I describe and advocate here, is that the foundations of a theory are
better thought of as a network of mutually interdependent principles, interlocking like the pieces
of a spherical puzzle. On this view, one would tend to expect that any of the central principles of a
theory should be derivable from the rest of the theory with that principle removed, much like the
overall shape of a puzzleball constrains the shape of any individual piece

also be committed to the geodesic principle. One cannot freely change the geodesic
principle without also changing the rest of general relativity: one cannot “fiddle”
with the theory by (merely) replacing the geodesic principle with the assumption
that free massive test point particles traverse some other class of curves—uniformly
accelerating curves, say, or spacelike curves. The geodesic principle is not modular,
in the sense that one cannot construct a collection of perfectly good theories that
differ only in how they treat inertial motion. More, the theorems clarify precisely
how it is that the geodesic principle “fits in” among the other central principles of
general relativity.

It seems to me that these reflections suggest a proposal. Instead of thinking of
the foundations of a physical theory as consisting of a collection of essentially inde-
pendent postulates from which the rest of the theory is derived, one might instead
think of the foundations of a theory as consisting of a network of mutually interde-
pendent principles—a collection of interlocking pieces, as in the spherical puzzle in
Fig. 2.17 The idea is that, as with the geodesic principle, one should generally expect

17Feynman [21] makes a distinction between two ways of understanding physical theories that is
similar to the one I make here. On the “Greek” view of theories, one begins with a collection of
fixed fundamental axioms or postulates. Feynman does not like this way of thinking about theories.
Instead, he endorses the “Babylonian” view, on which one observes that the principles of a theory
are more richly connected: perhaps it is sometimes convenient to take certain principles of a theory
as axioms and others as theorems, but one needs to recognize that in other cases one might want to
switch this around and think of your theorems as the axioms, and use them to prove your former
axioms. He then observes that “If all these various theorems are interconnected by reasoning there
is no real way to say ‘These are the most fundamental axioms,’ because if you were told something
different instead you could also run the reasoning the other way. It is like a bridge with lots of
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that many of the central principles of a physical theory may be proven as theorems,
given the rest of the theory. Trying to make a distinction between the top-tier princi-
ples and the second-tier principles of a theory is not fruitful, then, since most, or even
all, of the principles can be understood equally well as either postulate or theorem,
and indeed, in different contexts it may well be desirable to think of them in different
ways. Importantly, theories are not modular, in the sense described above.We cannot
simply replace any given principle with some other one, at least not without changing
the rest of the theory in possibly dramatic ways. And theorems such as the Geroch–
Jang theorem and its Newtonian counterpart are of interest because they exhibit the
details of these interdependencies. They show just how the pieces interlock.

To be sure, nothing I have said thus far should count as an apodictic argument
for the view I have described (call it the “puzzleball view”). Nor will I give such an
argument—indeed, I am not sure what an argument for the claim that there are no
truly fundamental principles of general relativity would look like. Instead, I merely
offer the view as an alternative way to think of the kinds of interrelations between
the principles of physical theories on display with theorems like the Geroch–Jang
theorem. Perhaps the proposal is best conceived as a conjecture, albeit one with some
compelling early evidence, for the following reason: while the senses in which, for
instance, the conservation condition and the geodesic principle follow from other
standard assumptions of general relativity are now established, the senses in which
other principles, such as Einstein’s equation or various energy conditions, are deriv-
able from or constrained by the rest of the theory are less clear.18 And so we have
the skeleton of a mathematical question: are all of the central principles of relativity
theory and geometrized Newtonian gravitation (or other theories still) indeed mutu-
ally interderivable in the way that I have suggested? Most or many of them? Or are
the geodesic principle and conservation condition anomalies?

Some important work has already been done on this topic: Dixon [12] has shown
a sense in which the geometrized Poisson equation is the unique dynamical principle
compatible with a collection of natural assumptions in Newtonian gravitation; simi-
larly, Sachs andWu [43] and Reyes [42] have shown that there is a sense in which the
(vacuum form of) Einstein’s equation can be derived from (in effect) the geodesic
principle, among other assumptions, and Lovelock [30, 31], Navarro and Sancho
[37], and Curiel [8] have argued for various senses in which the Einstein tensor is
the unique tensor that can appear on the left-hand side of Einstein’s equation, even
in the non-vacuum case.

Meanwhile, Duval andKünzle [13] andChristian [7] have argued that even though
the conservation condition in geometrized Newtonian gravitation does not follow
from the geometrized Poisson equation, one can nonetheless derive it from other
principles, at least if one considers Lagrangian formulations of the theory. Onemight

(Footnote 17 continued)
members, and it is overconnected; if pieces have dropped out you can reconnect it another way”
(pg. 46). The view I describe here is firmly in Feynman’s Babylonian tradition. I am grateful to Bill
Wimsatt for pointing out this connection.
18Indeed, it would seem that there are no known nontrivial derivations of energy conditions from
other central principles of relativity theory. See Curiel [9].
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even understand Newton’s argument for universal gravitation as a kind of heuristic
argument that the inverse square law of gravitation is the unique dynamical principle
compatible with certain other central principles of standard Newtonian gravitation
(including generalized empirical facts, such as Kepler’s Harmonic Law). Results
such as these provide tentative evidence for my basic hypothesis, that one should
expect many or all of the central principles of these spacetime theories to be mutually
interdependent.

But I do not think these results are yet conclusive. Specifically, what has not been
done is to systematically study such results in order to try to characterize, in the
way that has now been done for the geodesic principle theorems, (1) just what the
assumptions going into these theorems are, (2) how natural the assumptions are in
the contexts of the relevant theories, and (3) how these assumptions, in turn, depend
on the other central principles of the theories (if they do). And the attractiveness of
the proposal presented here turns on the answers to these questions. It is only after
a project of this form has been carried out that one can fully evaluate whether the
central principles of these theories are really as tightly intertwined as the puzzleball
view would have it.

That said, if a careful study of this sort reveals that only some of the central
principles of a theory are interconnected, it may still be fruitful to think about the
foundations of theories in theway I proposehere, since the discovery that somecentral
principles of a theory (say, energy conditions in general relativity) aremore peripheral
than others neednot imply that one canmake sense of a unique or privileged collection
of the most fundamental or basic principles. Much will depend on just what the
structure of the situation turns out to be.

It isworth emphasizing thatmapping out these kinds of relations among the central
principles of a physical theory is of some independent interest, since understanding
the extent to which the central principles of general relativity in particular are mutu-
ally interdependent could play an important role in the construction of future theories
(and in some ways, it already has).19 The reason has to do with the idea of “fiddling”
with physical theories. There is a long tradition of attempting to modify general
relativity with small changes: for instance, in Brans–Dicke theory, one modifies Ein-
stein’s equation to include an additional scalar field; in TeVeS gravitational theories,
one also considers vector fields. In still other cases, one modifies general relativity
by allowing derivative operators with torsion. In each of these examples (and many
others), one makes what appears to be a local change in the central principles of
general relativity.

19Feynman makes a related point about the practical importance of his Babylonian approach to
theories. He writes, “If you have a structure that is only partly accurate, and something is going to
fail, then if you write it with just the right axioms maybe only one axiom fails and the rest remain,
you need only change one little thing. But if you write it with another set of axioms they may all
collapse, because they all lean on that one thing that fails. We cannot tell ahead of time, without
some intuition, which is the best way to write it so that we can find out the new situation. We must
always keep all the alternative ways of looking at a thing in our heads; so physicists do Babylonian
mathematics, and pay but little attention to the precise reasoning from fixed axioms” [21, pg. 54].
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But these small changes can have dramatic consequences: for instance, in
Einstein–Cartan theory, a modification of general relativity with torsion, the con-
servation condition does not generally hold. One does not have a geodesic principle,
at least in the ordinary sense, since in general the collection of self-parallel curves
picked out by the derivative operator do not agree with the collection of extremal
curves picked out by the metric, and free massive test point particles need not propa-
gate along either class of curves. Thus, apparently small tweaks can lead to a dramati-
cally different theory, conceptually speaking. A clearer picture of just how the central
principles of general relativity do fit together and constrain one another may provide
important clarity into just what the consequences of these “small” modifications to
the theory are, and more, may help guide us in the search for alternative theories
of gravitation, by indicating which principles are more or less tightly connected to
which others. Indeed, for this reason there is a sense in which the situation I describe
above, where some principles are very tightly interlocking and others turn out to be
more loosely connected (for instance, some principles play a role as assumptions in
some theorems, but cannot be proved in complete generality themselves) is the most
interesting from the practical perspective of mapping out the space of possible future
theories.

In the next section, I will return to the question of explanation, now from the
perspective of the present view.But before I do so, Iwant to clarify the puzzleball view
slightly, as the language I have used to describe it may call to mind two other well-
known ideas. It seems tome that the view I have described is distinct from both. First,
note that the present proposal involves a picture of theories on which one emphasizes
the ways in which the principles cohere with one another. This way of thinking may
be reminiscent of coherentism in epistemology, a variety of anti-foundationalism that
holds that to justify a belief is to showhow it cohereswith one’s other beliefs (cf. [29]).
But there is at least one major difference. Coherentism takes the coherence of one’s
beliefs to be a form of justification for those beliefs. Nothing about the puzzleball
view should be taken to suggest that the justification for general relativity comes
from the apparent fact that one can derive certain central principles from others—
rather, the justification for the theory is based on its empirical successes. Or perhaps
more precisely, our justification for general relativity is essentially independent of the
relationship between the theory’s central principles. To see the pointmost clearly, one
mightwell expect both general relativity andgeometrizedNewtoniangravitation to be
coherent, in the sense of having mutually interdependent central principles. But this
does not imply that they are equally well justified—indeed, general relativity is better
justified than geometrized Newtonian gravitation even if the pieces of geometrized
Newtonian gravitation are more tightly interlocking.20

20The suggestion of a connection to coherentism raises a second, related issue. Even if we do
not take the coherence of a body of beliefs as justification for any particular belief, one might
nonetheless think of coherence as a virtue for a body of beliefs: all else being equal, one might tend
to prefer to hold coherent beliefs than not. Should one say the same thing about physical theories?
All else being equal, should one prefer a theory whose pieces interlock? I am not sure that anything
in the body of the paper depends on this, but I am inclined to say “yes,” for several reasons. First,
as I argued above, when the central principles of theories are (partially) mutually interdependent,
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Another view that the puzzleball view may be reminiscent of is some variety
of Quinean holism (cf. [40]). Quine famously used the “web of belief” metaphor
when arguing for the interdependencies of our scientific beliefs, and against the
analytic/synthetic distinction. One might worry that the puzzleball picture above is
just an alternative metaphor used to make a strikingly similar point—indeed, the
claim that we cannot make a fruitful distinction between top-tier and second-tier
principles sounds like an argument against an analytic/synthetic distinction, at least
in the narrow domain of the foundations of certain physical theories. And perhaps it is
right that I have recapitulated Quine here, though if it is, I think the point deserves to
be made again since it is relevant for the present discussion of the geodesic principle.
Still, while this article is not the occasion for detailed Quine exegesis, I will point to
two ways in what I have proposed is prima facie different from Quine’s holism, at
least on the web-of-belief version.21

The first difference concerns just what the holism is supposed to be doing. Quine
uses the interdependencies between beliefs as an argument for a radical form of
conventionalism: when faced with evidence that conflicts with our beliefs, we have
considerable leeway in choosing which parts of the web of beliefs to revise. Indeed,
theweb image is supposed to support a distinction between “central” or “core” beliefs
and “peripheral” beliefs such that we can always accommodate challenges to our full
collection of beliefs by modifying only the peripheral beliefs and leaving the core

(Footnote 20 continued)
the theory provides a guide for the building of future related theories in a way that may be helpful
for scientific practice. Second, principles that are mutually interdependent are protected against
claims of being ad hoc. A particular principle cannot be considered arbitrary or unmotivated if
it is derivable, perhaps in multiple ways, from one’s other principles. To put this point in a more
experimentally oriented way, if the pieces of a theory are mutually interdependent, then testing
any one principle can be understood as an implicit test of the other principles of a theory [25].
A third reason comes from Wimsatt [58], who argues that interderivability (or rather, multiple
interderivability) is an indication of theoretic robustness and confers a kind of stability under theory
change.
21My goal in the text is to distinguish the puzzleball view fromweb-of-belief holism. But this should
not be taken to imply that Quine does not come much closer to the puzzleball view in other parts
of his opus. For instance, Quine [41, Sec. V] distinguishes “legislative postulates” from “discursive
postulates.” “Legislative postulation,” he writes, “institutes truth by convention …” whereas “…
discursive postulation is mere selection, from some preëxisting body of truths, of certain ones for
use as a basis from which to derive others, initially known or unknown” [41, pg. 360]. He then goes
on to argue that “conventionality is a passing trait, significant at the moving front of science but
useless in classifying the sentences behind the lines. It is a trait of events and not of sentences.”
In other words, one might, when first developing a new scientific theory, begin with some bare,
legislative postulates. But as the theory develops, these truths “… become integral to the corpus of
truths; the artificiality of their origin does not linger as a localized quality, but suffuses the corpus.
If a subsequent expositor singles out those once legislatively postulated truths again as postulates,
this signifies nothing; he is engaged only in discursive postulation. He could as well choose his
postulates from elsewhere in the corpus, and will if he think this serves his expository ends” [41,
pg. 362]. The idea, I take it, is that once one has a well-developed scientific theory—such as general
relativity—one often identifies postulates for the purposes of deriving new facts about the theory,
but these are always discursive, and more, which facts or statements of the theory one will take to
be the postulates in any given case will depend on one’s purposes. This picture seems quite close
to the puzzleball view, indeed. I am grateful to Pen Maddy for pointing out this connection to me.
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beliefs intact. But this is precisely the opposite of what I have argued here, at least
with regard to the foundations of spacetime theories. Instead, the idea is supposed to
be that the foundations of physical theories are not modular, and that in general one
has remarkably little latitude in how one revises a theory in light of new evidence.
And this, I take it, is a desirable feature, since it provides a way out of the radical
conventionalism I just described. Since the various principles of a physical theory
constrain one another, we have very few degrees of freedom for enacting minor
changes in theories in light of new evidence.

The second difference is related (and relates, too, to coherentism as described
above). Quine’s web of belief is supposed to be a (descriptive) metaphor for the sum
total of one’s beliefs. The view I have described here is much narrower in its scope.
I do not claim that all of one’s beliefs interlock in the way described; nor do I claim
that scientific knowledge as a whole can be characterized by a puzzleball. The view
does not even hold that particular scientific theories have this feature. The suggestion
is that the central principles of some scientific theories are mutually interderivable,
or in other words, that the foundations of some physical theories should be thought
of in a certain way. I have been deliberately vague about just what is supposed to
count as a central principle, in large part because I think that trying to list these
principles in advance, even for well-understood theories such as general relativity
or geometrized Newtonian gravitation, would be unproductive. In fact, one might
expect that a full account of just what the central principles of a theory are may
have to wait until one sees just what assumptions are necessary nodes when trying
to map out the network of interconnected principles at the heart of a given physical
theory. What I have done so far—and what I think can be done at this stage—is
give examples of central principles of particular theories. And so one can say that
among the central principles of general relativity, for instance, are things such as
the conservation condition, Einstein’s equation, the geodesic principle, and various
energy conditions. But the point is that a claim about a collection of principles of
this specific character is quite different from a claim about human knowledge quite
broadly.

Note that this last point means that there is still a robust sense in which one can
think of some parts of a theory as having a special “fundamental” status, even on the
puzzleball view. Specifically, onemight take all of the central principles of a theory to
be fundamental. This leaves quite a bit of a theory as non-fundamental—for instance,
particular predictions of a theory would not be among the central principles, and so
these would not count as fundamental. If the puzzleball view is to be viewed as anti-
foundational, then, it is only with regard to determinations of relative fundamentality
among the central principles of a theory.22

22Feynman, and Wimsatt [58], argue that in cases where some principles can be proved in many
different ways and others cannot be proved or can be proved from fewer starting cases, one can
recover a different sense of “fundamental” principles, namely that the principles that can be proved
in the most different ways should be understood as the most fundamental. Note that this turns the
idea discussed above—where the most fundamental principles were the top-tier principles from
which other principles would be derived, not the ones most often derived themselves—on its head.
This idea is intriguing, but I mention it only to set it aside as it plays no role in the present discussion.
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6 Explaining Inertial Motion, Redux

Now that I have described the puzzleball view in some detail, I can return to the ques-
tion of principle interest in this paper: namely, is there a sense in which we should
understand theGeroch–Jang theorem and its Newtonian counterpart as explanations?
As a first remark, let me reiterate that in the context of the puzzleball view, it does not
make sense to think of theories as based on “top-tier” principles and other, derived
principles: in short, there is no way to make the distinction, at least among the central
principles of the theory. None of the assumptions of a theory are distinguished as
the truly basic or fundamental ones. And if this is right, then the kind of explanation
that we apparently cannot get of the geodesic principle in general relativity and in
geometrized Newtonian gravitation is uninteresting. No, we cannot derive the geo-
desic principle in either theory frommore fundamental principles, but that is because
it does not make sense to talk of unambiguously “more fundamental” principles in
the first place.

Instead, what we can do is show how the geodesic principle in both of these
theories fits into the rest of the puzzle (as it were). This, too, may be understood
as an answer to the question, “Why do bodies move in the particular way that they
do in the absence of an external force?” These theorems reveal that in the absence
of an external force, in the context of their respective theories, bodies must move
along timelike geodesics. In other words, the other basic assumptions of the theory
constrain the motion of (small) bodies. Why timelike geodesic motion rather than
any other? Because in general relativity, we understand matter to be conserved, and
to be such that observers always attribute instantaneous subluminal velocities to it at
every point. And it turns out that these assumptions, in the presence of the rest of the
theory, imply that the only curves along which free massive test point particles can
propagate are timelike geodesics. If we are committed to the rest of general relativity,
then there is only one candidate principle for inertial motion.

So do general relativity and/or geometrizedNewtonian gravitation explain inertial
motion? Given the considerations just mentioned, I think the answer in both cases
is “yes,” so long as one understands “explain” in the right way. At the very least,
these theorems provide deep insight and understanding into why bodies move in the
particular way that they do in the absence of any external force—which is precisely
what we were after when we asked the question. Moreover, the insight provided is
that, in the context of the other central principles of the theories, the geodesic principle
is necessary, the only principle governing inertial motion that is compatible with our
other principles. It is a demonstration of precisely theways inwhich theworking parts
of general relativity and geometrized Newtonian gravitation respectively constrain
one another.

That said, this kind of explanation differs in some important ways from other
kinds of explanations that one may be accustomed to thinking about. In particular,
if the puzzleball view is correct, the kind of explanation I have just described need
not be asymmetrical. That is, if general relativity might be said to explain inertial
motion in the present sense by appealing to the fact that one can derive the geodesic
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principle from various other assumptions in the theory, one should not conclude
that the geodesic principle cannot play a role in other derivations that should also
count as explanatory—even derivations of the assumptions going into the Geroch–
Jang theorem or its Newtonian counterpart. Indeed, one should expect that just as
the geodesic principle is constrained by the other central assumptions of general
relativity, so too are the conservation condition, the strengthened dominant energy
condition, and even Einstein’s equation constrained. And by the same reasons I have
offered above for the view that one might justly call the Geroch–Jang theorem an
explanation of inertial motion, one might also say that explanations can be given for
the conservation condition or Einstein’s equation, by showing how these principles of
general relativity are derivable from the other central principles of the theory. In other
words, general relativity explains inertialmotion by appeal to Einstein’s equation, but
it may equally well explain Einstein’s equation by appeal to the geodesic principle
and other central assumptions of general relativity.

This observation may give some readers pause. There is, by now, a long tradition
of philosophers of science worrying about the so-called “problem of explanatory
asymmetry” (cf. [3]): intuitively, explanations appear to run in one direction and
only one direction. The trajectory of a comet may explain why we see a bright light
in the nighttime sky once every few hundred years, but a bright light in the nighttime
sky cannot explain the trajectory of a comet; the height of a flagpole may explain
the length of its shadow at sunset, but the length of the shadow does not explain
the height of the flagpole. And so, many philosophers have argued, an account of
explanation that allows symmetrical explanations—situations where A explains B
and B explains A—is prima facie unacceptable.

A few remarks are in order. First, van Fraassen [53] has argued, I think correctly,
that explanation should be understood as essentially pragmatic—and in particular that
explanations should only be understood as responses to certain classes of question. To
determine whether or not some particular response to a why question (say) should
count as a satisfactory explanation depends on the context in which the question
was asked and the particular demands of the questioner. While in some contexts we
might want to say that a particular explanation runs in only one direction, there may
well be other contexts in which the explanation would run in the other direction.
If one is thinking in this way then the present example is simply a special case: if
the question “why do bodies move in the particular way that they do in the absence
of an external force?” is understood as “does general relativity require us to adopt
the geodesic principle as the central principle governing inertial motion?”, then one
is rightly satisfied by a response along the lines of the Geroch–Jang theorem, even
if in other contexts—i.e., in response to other questions—one might appeal to the
geodesic principle to explain (say) Einstein’s equation.

But there is also a more important point to make, here: I do not claim to be
offering an “account of explanation,” or anything like it. I have not suggested that a
necessary or even sufficient condition for being an explanation is to show how the
thing to be explained “fits in” with the rest of a physical theory, in the sense that it
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is derivable from other central principles of a theory. The point, rather, is to try to
spell out the sense in which a particular class of theorems that show how the central
principles of a spacetime theory fit together might be understood as explanatory—to
say what, precisely, the theorems are doing, and why one might think of this as a
kind of explanation, at least on the puzzleball view. Not all explanations work this
way, nor do they need to in order for the story I have told here to be correct. And so,
the fact that in some cases, we would want to say that if A explains B then B cannot
explain A in no way undermines the claim that the present explanations simply do
not work that way.

This point can be made most starkly by pointing to various other questions one
can ask about inertial motion, even in general relativity, whose answers would be
quite different from the Geroch–Jang theorem. Consider, for example, a question
concerning a particular instance of inertial motion. Why, one might ask, does the
perihelion of Mercury’s orbit precess? One would answer this by appealing to some
particular initial state of Mercury and features of spherically symmetric solutions to
Einstein’s equation to show that Mercury’s orbit is the only allowed trajectory for a
body with certain properties in a solar system like ours. The geodesic principle may
play a role in this argument, insofar as one might idealize Mercury as a free massive
test point particle, and Einstein’s equation may play a role, insofar as one would
want to consider a spacetime that is a solution to the equation, but the argument
would have nothing to do with the Geroch–Jang theorem. And moreover, one would
expect this sort of explanation to be asymmetric: Einstein’s equation and the geodesic
principle, along with some details concerning the state of the solar system and initial
conditions for Mercury, explain the precession of the perihelion of Mercury; the
precession of the perihelion of Mercury does not explain Einstein’s equation or the
geodesic principle.

But this is just the point. If the Geroch–Jang theorem and its Newtonian counter-
part should be countenanced as explanations, it is only because they are satisfactory
answers to particular questions, and they are only explanatory in the context of those
demands for explanation. A question concerning the orbit of Mercury is quite dif-
ferent from a question concerning the nature of inertial motion generally. And these
theorems answer only the most general version of the question: why this principle
as opposed to any other? This is no mean task, but it is a specific one, and it needs
to be treated with care.
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A Primer on Energy Conditions
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Abstract An energy condition, in the context of a wide class of spacetime theories
(including general relativity), is, crudely speaking, a relation one demands the stress-
energy tensor ofmatter satisfy in order to try to capture the idea that “energy should be
positive”. The remarkable fact I will discuss in this paper is that such simple, general,
almost trivial seeming propositions have profound and far-reaching import for our
understanding of the structure of relativistic spacetimes. It is therefore especially
surprising when one also learns that we have no clear understanding of the nature
of these conditions, what theoretical status they have with respect to fundamental
physics, what epistemic status they may have, when we should and should not expect
them to be satisfied, and even in many cases how they and their consequences should
be interpreted physically.Or so I shall argue, by a detailed analysis of the technical and
conceptual character of all the standard conditions used in physics today, including
examination of their consequences and the circumstances in which they are believed
to be violated.
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1 The Character of Energy Conditions

An energy condition, in the context of a wide class of spacetime theories (including
general relativity), is, crudely speaking, a relation one demands the stress-energy
tensor of matter satisfy in order to try to capture the idea that “energy should be
positive”.1 Perhaps the simplest example is the so-called weak energy condition: for
any timelike vector ξ a at any point of the spacetimemanifold, the stress-energy tensor
Tab satisfies Tmnξ

mξ n ≥ 0. This has, prima facie, a simple physical interpretation: the
(ordinary) energy density of the fields contributing to Tab, as measured in a natural
way by any observer (e.g., using instruments at rest relative to that observer), is never
negative. The remarkable fact I will discuss in this paper is that such simple, general,
almost trivial seeming propositions have profound and far-reaching import for our
understanding of the structure of relativistic spacetimes. It is therefore, especially,
surprising when one also learns that we have no clear understanding of the nature
of these conditions, what theoretical status they have vis-à-vis fundamental physics,
what epistemic status they may have, when we should and should not expect them
to be satisfied, and even in many cases how they and their consequences should be
interpreted physically. Or so I shall argue.

Geroch and Horowitz [92, p. 260], in discussing the form of singularity theorems
in general relativity, outline perhaps the most fundamental reason for the importance
of energy conditions with the following pregnant observation:

One would of course have to impose some restriction on the stress-energy of matter in order
to obtain any singularity theorems, forwith no restrictions Einstein’s equation has no content.
One might have thought, however, that only a detailed specification of the stress-energy at
each point would suffice, e.g. that one might have to prove a separate theorem for each
combination of the innumerable substances which could be introduced into spacetime. It is
the energy condition which intervenes to make this subject simple. On the one hand it seems
to be a physically reasonable condition on all types of classical matter, while on the other it
is precisely the condition on the matter one needs for the singularity theorem.

1From hereon until §5, unless explicitly stated otherwise, the discussion should be understood to
be restricted to the context of general relativity. Almost everything I say until then will in fact hold
in a very wide class of spacetime theories, but the fixed context will greatly simplify the exposition.
In general relativity, the fundamental theoretical unit, so to speak, is a spacetime model consisting
of an ordered pair (M , gab), whereM is a four-dimensional, paracompact, Hausdorff, connected,
differential manifold and gab is a pseudo-Riemannian metric on it of Lorentzian signature. ‘Tab’
will always refer to the stress-energy tensor picked out in a spacetime model by the Einstein field
equation, ‘T ’ to the trace of Tab (T n

n), ‘Rab’ to the Ricci tensor associated with the Riemann
tensor Ra

bcd associated with the unique torsion-free derivative operator ∇ associated with gab,
‘R’ to the trace of the Ricci tensor (Rn

n , the Gaussian scalar curvature), and ‘Gab’ to the Einstein
tensor (Rab − 1

2 Rgab). For conventions about the metric signature and the exact definitions of these
tensors, I followMalament [133]. Unless otherwise explicitly noted, indicial lowercase Latin letters
(a, b, . . .) designate abstract tensor-indices, indicial lower-case Greek letters (μ, ν, . . .) designate
components with respect to a fixed coordinate system or tetrad of tangent vectors (μ ∈ {0, 1, 2, 3}),
and hatted indicial lower-case Greek letters (μ̂, ν̂, . . .) designate the spacelike components (μ̂ ∈
{1, 2, 3}) with respect to a fixed 1 + 3 tetrad system. (For an exposition of the abstract index
notation, see Penrose and Rindler [155], Wald [203], or Malament [133].)

erik@strangebeautiful.com



A Primer on Energy Conditions 45

I will return to this quote later, in §5, but for now the salient point is that a generic
condition one imposes on the stress-energy tensor, “generic” in the sense that it can be
formulated independently of the details of the internal structure of the tensor, which
is to say independently of any quantitative or structural feature or idiosyncrasy of any
particular matter fields, suffices to prove theorems of great depth and scope. Indeed,
as Geroch and Horowitz suggest, without the possibility of relying on conditions
of such a generic character, we would not have the extraordinarily general and far-
reaching singularity theorems we do have. And it is not only singularity theorems
that rely for their scope and power on these energy conditions—it is no exaggeration
to say that the great renaissance in the study of general relativity itself that started in
the 1950s with the work of Synge, Wheeler, Misner, Sachs, Bondi, Pirani, et al., and
the blossoming of the investigation of the global structure of relativistic spacetimes at
the hands of Penrose, Hawking, Geroch, et al., in the 1960’s could not have happened
without the formulation and use of such energy conditions.

What is perhaps even more remarkable is that many of the most profound results
in the study of global structure—e.g., the Hawking Area Theorem—do not depend
on the Einstein field equation at all, but rather assume only a purely formal condition
imposed on theRicci tensor, which itself can be thought of as an “energy” condition if
one invokes theEinstein field equation to provide a physical interpretation of theRicci
tensor. In a sense, therefore, energy conditions seem to reach down to and get a hold
of a level of structure in our understanding of gravitation and relativistic spacetimes
evenmore fundamental than the Einstein field equation itself. (I will discuss in §5 this
idea of “levels of structure” in our understanding of general relativity in particular,
and of gravitation and spacetime more generally.)

Now, most propositions of a fundamental character in general relativity admit of
interpretation as either a postulate of the theory or as a derived consequence from
some other propositions taken as postulates. That is to say, the theory allows one a
great deal of freedom in what one will take as given and what one will demand a
proof of. One can, for example, either assume the so-called Geodesic Principle from
the start as a fundamental regulative principle of the theory, as, for example, in the
exposition of Malament [133], or one can assume other propositions as fundamental,
perhaps ones fixing the behavior of ideal clocks and rods, and derive the Geodesic
Principle as a consequence of those propositions, as, for example, in the exposition of
Eddington [64]. Which way one goes for any given proposition depends, in general,
on the context one is working in, the aims of one’s investigation, one’s physical and
philosophical intuitions and predilections, etc.2

This interpretive flexibility does not seem to hold, however, for energy conditions.
I know of no substantive proposition that, starting from some set of other important
“fundamental postulates”, has as its consequence an energy condition. One either
imposes an energy condition by fiat, or one shows that it holds for stress-energy
tensors associated with particular forms of matter fields. One never imposes general

2See Weatherall [209, this volume] for an insightful discussion of a view of the foundations of
spacetime theories, with particular regard to this issue, that I find sympathetic to my own views as
I sketch them here.
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conditions on other geometrical structures (e.g., the Riemann tensor or the topology
or the global causal structure) and derives therefrom the satisfaction of an energy
condition (except in the trivial case where one imposes conditions directly on the
Ricci or Einstein tensor, standing as a direct proxy for the stress-energy tensor by
dint of the relation between them embodied by the Einstein field equation).3 There
are a plethora of results that show when various energy conditions may or must be
violated both theoretically and according to observation, which I discuss in §3.2,
but none that show nontrivially when one must hold. Indeed, this inability to prove
them is an essential part of what seems to make them structure “at a deeper level”
perhaps even than causality conditions (many of which can be derived from other
fundamental assumptions), and so applicable across a very wide range of possible
theories of spacetime.

In a similar vein, they occupy an odd methodological and theoretical niche quite
generally. None is implied by any known general theory, though each can be for-
mulated in the frameworks of a wide spectrum of different theories, and several can
be shown to be inconsistent with a wide spectrum of theories (in the strong sense
that one can derive their respective negations in the context of the theories). Indeed,
they are among the very few physical propositions I know that can be used either to
exclude as physically unreasonable individual solutions to the field equations of a
particular theory (as for, e.g., a wide class of FLRW spacetimes in general relativity
that have strongly negative pressures4), or to exclude entire theories (such as the
Hoyle Bondi steady-state theory of cosmology, as I discuss below in §3.2). Whether
or not one should consider them as “part of” any given theory, therefore, seems a
problematic question at best, and an ill-posed one at worst.

It is difficult to get a grip on their epistemic status as well. They seem in no sense
to be laws, under any standard account in the literature, for none of them holds for all
known “physically reasonable” types of matter, and each of them is in fact violated
in what seem to be physically important circumstances. Neither do they appear to
be empirical or inductive generalizations, for the same reason.5 And yet we think
that (at least) one of them—or something close to them—likely holds generically in

3The one possible exception to this claim I knowof is the attempt byWall [206] to derive the so-called
averaged null energy condition (ANEC) from the Generalized Second Law of thermodynamics.
While I find his arguments of great interest, I also find them problematic at best. See Curiel [48]
for discussion.
4See Curiel [47] for discussion.
5It should be noted, however, that, to the best of my knowledge, there has never been direct exper-
imental observation of a violation of any of the standard energy conditions I discuss in §2. We do,
however, have extremely good indirect experimental and observational evidence for violations of
several of them, as I will discuss in §3. See Curiel [47] for an extended discussion of evidence
for their violation in cosmology, and Curiel [48] for one in the context of quantum field theory on
curved spacetime. Even direct experimental verification of the Casimir effect does not yield direct
measurement of negative energy densities, though the Casimir effect relies essentially on the exis-
tence of such; rather, the negative energy densities are inferred from measurement of the Casimir
force itself [28].
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the actual universe, at the level of classical (i.e., non-quantum) physics at least, and
even that one or more of them, appropriately reformulated, should hold generically
at the quantum level as well.6 Even more, as I have already indicated, there seem to
be very good reasons for thinking that the sense in which they do obtain, whatever
that may be, is grounded in structure at a level of our understanding even deeper than
the Einstein field equation itself, which we surely do think of as a law, under any
reasonable construal of the notion.

So what are they? The remainder of this paper consists of an attempt to come to
grips with this question, by exploring their formulations, their consequences, their
relations to other fundamental structures and principles, and their role in constraining
the possible forms a viable theory of spacetime may take. Those who hope for a
decisive answer to the question will leave disappointed. I feel I will have succeeded
well enough if I am able only to survey the most important issues and questions,
clarify and sharpen some of them, propose a few conjectures, and generally open the
field up for other investigators to do more work in it.7

2 The Standard Energy Conditions

There are several different ways to formulate all the energy conditions standardly
deployed in classical general relativity, both as a group and individually. I will focus
here on three ways of formulating them as a group, what one may think of as the
geometric, the physical and the effective ways, and will for a few of them discuss
as well alternative individual formulations according to the geometric and physical
ways, as they variously allow different insights into the character of the conditions.8

The geometric and physical ways are easy to characterize: for the former, one writes
down formal conditions expressed by use only of the value of a purely geometric ten-
sor (such as the Ricci orWeyl tensor), perhaps as it is required to stand in relation to a
fixed family of vectors or other tensors; for the latter, one writes down formal condi-
tions expressed by use only of the value of the stress-energy tensor itself, perhaps as
it is required to stand in relation to a fixed family of vectors or other tensors.9 In every

6See Curiel [48] for discussion.
7This paper, in other words, has as its goal a more modest version of that of Earman’s wonderful
book A Primer on Determinism, to which the name of this paper is an homage.
8In this section, aside from a few idiosyncracies, such as my classification of different types of
formulation, I follow in part the exposition of [195, ch. 12] and in part that of [133, §2.5 and §2.8]
for the formulations of the conditions themselves. See Curiel [47] for another formulation of them,
based on the scale factor a(t) in generic cosmological models, and discussion thereof.
9Another interesting way to study the properties and behavior of Tab is by the Segré alegebraic
classification of symmetric rank-two covariant tensors. (See, e.g., Hall [94].) It is beyond the scope
of the current paper to discuss that.
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case, the physical formulation is logically equivalent to the geometric formulation if
the Einstein field equation is assumed to hold.10

The effective way requires a bit of groundwork to explain. According to a useful
classification of stress-energy tensors given by [107, p. 89], a stress-energy tensor is
said to be of type i if at every point there is a 1 + 3 orthonormal frame with respect
to which it is diagonal, i.e., if its only nonzero components as computed in the given
frame are on the diagonal in its matrix form. In this case, it is natural to interpret the
timelike-timelike component as the ordinary (mass-)energy density ρ as represented
in the given frame, and the three spacelike-spacelike components to be the three
principal pressures pμ̂ (μ̂ ∈ {1, 2, 3}) as represented in the frame, to be understood
by analogy with the case of a fluid or an elastic body. The effective formulation of an
energy condition can then be stated as a quantitative relation among ρ and pμ̂. Since
all known “physically reasonable” classical fields (and indeed many unreasonable
ones) have associated stress-energy tensors of type i, this is no serious restriction.11

Thus, except for one special case to be discussed below, the effective formulation
should be understood to be in all ways physically equivalent to the geometric and the
physical formulations, under the assumption that the Einstein field equation holds,
andmatter is not too exotic.Under that assumption, the effective formulations become
especially useful in cosmological investigations, since the matter fields in standard
cosmological models, the FLRW spacetimes, can always be thought of as fluids.

It will be convenient to break the conditions up into two further classes, those
(pointilliste) that constrain behavior at individual points and those (impressionist)
that constrain average behavior over spacetime regions. I shall first list the definitions
of all the former, then discuss the significance and interpretation of each as it will be
useful to have them all in hand at once for the purposes of comparison, then do the
same for the latter class.

2.1 Pointilliste Energy Conditions

null energy condition (NEC)

geometric for any null vector ka , Rmnkmkn ≥ 0
physical for any null vector ka , Tmnkmkn ≥ 0
effective for each μ̂, ρ + pμ̂ ≥ 0

10This equivalence between the physical and the geometrical formulations does not hold in general
if and only if the Einstein field equation holds. The biconditional holds in general relativity (for
minimally coupled fields, at least). In other spacetime theories with field equations similar to but
distinct from the Einstein field equation, the biconditional will not in general hold. I will discuss
this further in §5.
11The one possible exception to this claim is a null fluid, which has a stress-energy tensor of the
form Tab = ρkakb + p1xa xb + p2ya yb, where ka is null and xa and ya are unit spacelike vectors
orthogonal to ka and to each other.
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weak energy condition (WEC)

geometric for any timelike vector ξ a , Gmnξ
mξ n ≥ 0

physical for any timelike vector ξ a , Tmnξ
mξ n ≥ 0

effective ρ ≥ 0, and for each μ̂, ρ + pμ̂ ≥ 0

strong energy condition (SEC)

geometric for any timelike vector ξ a , Rmnξ
mξ n ≥ 0

physical for any timelike vector ξ a , (Tmn − 1
2T gmn)ξ

mξ n ≥ 0
effective ρ + ∑

μ̂ pμ̂ ≥ 0, and for each μ̂, ρ + pμ̂ ≥ 0

dominant energy condition (DEC)

geometric
1. for any timelike vector ξ a , Gmnξ

mξ n ≥ 0, and Ga
nξ

n is causal
2. for any two co-oriented timelike vectors ξ a and ηa , Gmnξ

mηn ≥ 0
physical
1. for any timelike vector ξ a , Tmnξ

mξ n ≥ 0, and T a
nξ

n is causal
2. for any two co-oriented timelike vectors ξ a and ηa , Tmnξ

mηn ≥ 0
effective ρ ≥ 0, and for each μ̂, |pμ̂| ≤ ρ

strengthened dominant energy condition (SDEC)

geometric
1. for any timelike vector ξ a , Gmnξ

mξ n ≥ 0, and, if Rab �= 0, then Ga
nξ

n is
timelike

2. either Gab = 0, or, given any two co-oriented causal vectors ξ a and ηa ,
Gmnξ

mηn > 0
physical
1. for any timelike vector ξ a , Tmnξ

mξ n ≥ 0, and, if Tab �= 0, then T a
nξ

n is
timelike

2. either Tab = 0, or, given any two co-oriented causal vectors ξ a and ηa ,
Tmnξ

mηn > 0
effective ρ ≥ 0, and for each μ̂, |pμ̂| ≤ ρ

(It is not a typo that the given effective forms of the DEC and the SDEC are
identical; this is the one special case, mentioned above, in which the effective form
of the energy condition diverges from the geometrical and physical forms. Of course,
it is the case that when one restricts attention to stress-energy tensors of type i, then
the geometrical and physical forms of the DEC and SDEC also coincide.) I first
sketch the most more or less straightforward interpretations of the conditions, before
discussing problems with those interpretations.

The idea of average radial acceleration (explained in detail in the technical appen-
dix §2.5 below) offers one seemingly promising route toward an interpretation of
the geometric and physical forms of the NEC. Roughly speaking, the average radial
acceleration of a geodesic γ at a point p is the averagedmagnitude of the acceleration
of neighboring geodesics relative to γ in directions orthogonal to γ . If the average
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radial acceleration is negative, then this represents the fact that, again roughly speak-
ing, neighboring geodesics tend to fall inwards towards γ at p. Thus, according to
equation (2.4), the geometric form of the NEC requires that null geodesic congru-
ences tend to be convergent in sufficiently small neighborhoods of every spacetime
point (or at least not divergent). Assuming the Einstein field equation, the physical
interpretation of negative average radial acceleration for causal geodesics is that,
again roughly speaking, the “gravitational field” generated by the ambient stress-
energy is “attractive”. Thus, according to equation (2.5), the interpretation of the
physical form is that particles following null geodesics will observe that “gravity”
tends locally to be “attractive” (or at least not repulsive) when acting on nearby par-
ticles also following null geodesics. Another possible interpretation of the physical
form of the NEC is that an observer traversing a null curve will measure the ambient
(ordinary) energy density to be positive.

The interpretation of the effective form of the NEC is that the natural measure
either of mass–energy or of pressure in any given spacelike direction can be negative
as determined by an observer traversing a null curve, but not both, and, if either is
negative, it must be less so than the other is positive. In so far as one may think of
pressure as a momentum flux, therefore, and so equivalent relativistically to a mass–
energy flow, the effective form requires that ordinary mass–energy density at any
point cannot be negatively dominated by momentum fluxes in any given spacelike
direction as determined by an observer traversing a null curve: one cannot indefinitely
“mine” energy from a system by subjecting it to negative momentum flux.

The interpretation of the physical form of the WEC is straightforward: the (ordi-
nary) total energy density of all matter fields, as measured in a natural way by any
observer traversing a timelike curve, is never negative. The interpretation of the geo-
metric form is not straightforward. Indeed, I know of no simple, intuitive picture
that captures the geometrical significance of the condition.12 The interpretation of
the effective form is similar to that for the NEC. Ordinary mass–energy density must
be nonnegative as experienced by any observer traversing a timelike curve, and the

12It has goneoddly unremarked in the physics andphilosophy literatures, but is surelyworth puzzling
over, that the Einstein tensor itself, the fundamental constituent of the Einstein field equation, has
no simple, natural geometrical interpretation, in the way, e.g., that the Riemann tensor can naturally
be thought of as a measure of geodesic deviation. Perhaps one could try to use the Bianchi identity
to construct a geometric interpretation for Gab, or the Lanczos tensor (see footnote 22), but it is
not immediately obvious to me what such a thing would look like, if possible. One can give a
geometrical interpretation of Gab at a point by considering all unit timelike vectors at the point;
the Einstein tensor can then be reconstructed by defining it to be the unique symmetric two-index
covariant tensor at that point such that its double contraction with every unit timelike vector equals
minus one-half the spatial scalar curvature of the spacelike hypersurface with vanishing extrinsic
curvature orthogonal to the given vector. (SeeMalament [133, ch. 2, §7].) This may be only a matter
of taste, but I find this interpretation obscure and Baroque, certainly not simple and natural, in large
part because it relies on structure in a family of three-dimensional objects to fix the meaning of a
four-dimensional object.
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pressure in any given spacelike direction can never be so negative as to dominate
that value.13

It is easy to see, by considerations of continuity, that the WEC implies the NEC.
Tipler [189] proved two propositions that give some insight into the relation between
the NEC and the WEC, and into the character of the WEC itself. He first showed
that, in a natural sense, the WEC is the weakest local energy condition one can
define. (“Local” here means something like: holding at a point, for all observers.) In
particular, he proved the following: if Tmnξ

mξ n is finitely bounded from below for
all timelike ξ a , i.e., if there exists a b > 0 such that Tmnξ

mξ n ≥ −b for all timelike
ξ a , then WEC holds (i.e., the infimum of all such b is 0). He next proved that one
cannot do better by imposing further natural constraints on the condition: if Tmnξ

mξ n

is finitely bounded from below for all unit timelike ξ a , and Tab is of type i, then the
NEC holds. The effective form of theWEC, therefore, is in fact essentially equivalent
to the NEC. Thus, though the WEC is not the weakest condition in a logical sense
one can impose, it is the weakest in a loose, physical sense: one cannot do better by
imposing further natural restrictions.

The interpretation of the geometric form of the SEC is similar to that of the NEC.
According to equation (2.4), the geometric form of the SEC requires that timelike
geodesic congruences tend to be convergent in sufficiently small neighborhoods of
every spacetime point. This implies that congruences of null geodesics at that point
are also convergent. Similarly, according to equation (2.5), the interpretation of the
physical form is that observers following timelike geodesics will see that “gravity”
tends locally to be “attractive” in its action on stuff following both timelike and null
geodesics.14 The effective form of the SEC has part of its interpretation the same as
that of theWEC, viz., ordinarymass–energy density at any point cannot be negatively
dominated by momentum fluxes in any given spacelike direction as determined by
an observer traversing a timelike curve. It also says, however, that ordinary mass–
energy density cannot be negatively dominated by the sum of the individual pressures
(momentum fluxes) at any point, as determined by an observer traversing a timelike
curve. I know of no compelling elucidation of the physical content of that relation.
The SEC does not imply the WEC, for the SEC can be satisfied even if the ordinary
mass–density is negative. The SEC does, however, imply the NEC.

13Classically, some fluids such as water are known to exhibit negative pressures in some regimes
as measured by observers traversing timelike curves (e.g., us), but these negative pressures are
never large enough to dominate the fluid’s mass–energy. Indeed, when one considers how large the
relativistic mass–energy of, say, 1g of water is, and so correlatively how extraordinarily intense a
momentum flux would have to be to achieve a mass–energy content comparable to that, one gets a
good feel for just how “exotic” any stuff would be that violates the NEC.
14This explication of the physical form of the SEC clearly illustrates why it is problematic to try
to think of general relativity as a theory of “gravity”, in the sense of a force exerted on a body: for
bodies traversing non-geodetic curves, that is, for bodies experiencing nontrivial acceleration, one
has no natural way to judge whether “the force of gravity” is acting attractively or repulsively, not
even when one fixes a standard of rest (a fiducial body traversing a timelike geodesic). Pace particle
physicists, general relativity simply cannot be comprehended as a theory describing a dynamical
“force” at all.
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As for the WEC, the interpretations of the geometrical forms of the DEC and the
SDEC are not clear. The interpretations of their physical forms are apparent: every
timelike observer will measure ordinary mass–energy density to be nonnegative,
and will also measure total flux of energy–momentum to be causal, with the flow
oriented in the same direction as the observer’s proper time. The SDEC, as the
name suggests, is slightly stronger in that it requires energy–momentum flux as
measured by any timelike observer to be strictly timelike for nontrivial stress-energy
distributions. The DEC (and a fortiori the SDEC) are, therefore, standardly taken
to rule out “superluminal propagation of stress-energy”. (See, e.g., the exemplary
remarks of Wald [203, p. 219].) As already noted, the effective forms of the DEC
and SDEC are identical. Their interpretation, besides the now-familiar demand that
locally measured energy density be nonnegative, is that pressures be strictly bounded
both above and below by the energy density. This means that the effective fluid can
be neither too “stiff” nor too “lax”, but must lie in a middling Goldilocks regime.15

The second given geometric and physical forms of the SDEC make it manifest that
the SDEC is in fact logically stronger than the DEC. Of course, any Tab that satisfied
the DEC but violated the SDEC would have to be not of Hawking-Ellis type i, for
it is only in that case that the two come apart. Clearly, the SDEC implies the DEC,
which implies the WEC.

Before turning to examine the so-called impressionist energy conditions, I briefly
discuss a few problems with the interpretations I have sketched of the pointilliste
conditions. The interpretations of the geometrical and physical forms of the NEC
based on average radial acceleration is undermined by the fact that convergence of
null geodesics at a point does not in general imply convergence of all timelike geo-
desics at that point. This is why I hedged the proposed interpretations with slippery
terms like ‘tends to’: even if the NEC is satisfied at a point, an observer traversing a
timelike geodesic may still see “gravity acting repulsively” in a small neighborhood.
The existence of a positive cosmological constant is a case in which NEC is satis-
fied, but, by the failure of the SEC, there is still divergence of timelike geodesics:
“gravity acts repulsively” on matter following timelike geodesics, even though it
“acts attractively” on stuff following null geodesics.16 The other proposed interpre-
tation of the physical form of the NEC—that observers traversing null curves will
measure nonnegative energy density—suffers from the fact that it is difficult to see

15See Curiel [47] for a discussion of the consequences of allowing the effective fluid to be too lax,
which is to say, allowing the barotropic index w to be less than −1, in the context of cosmology.

w := p

ρ
, and so is a useful measure of the “stiffness” of whatever (nearly) homogeneous, isotropic

stuff fills spacetime in cosmological models.
16It should be kept in mind that the physical consequences of a “positive” versus a “negative”
cosmological constant in this context depend on one’s conventions for writing the Einstein field
equation and on one’s conventions for the metric signature. With the conventions I am using, a
positive value of � itself leads to negative momentum flux in spacelike directions, and that is the
condition that leads to accelerated expansion on the cosmological scale, as actually observed, and
so the theoretical need for “dark energy”.
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what physical sense can be made of the idea of an observer traveling at the speed
of light making (ordinary) energy measurements. One cannot try to ameliorate this
problem by positing that the condition means only that a physical system traversing a
null curve will “experience” only nonnegative energy densities in its couplings with
other systems, irrespective of whether it is an observer making measurements: ordi-
nary energy density is not an observer-independent quantity, and so it can mediate
no physical interaction in any way with intrinsic physical significance. No physical
system will “experience” ordinary energy density at all.17

The interpretation of the effective form of the NEC suffers the same difficulty:
what physical content does it have to compare the magnitude of ordinary energy
density and that of momentum flux in a given spacelike direction, as determined by
an observer traversing a null curve? There is an even more serious problem here,
though, which the effective formmakes particularly clear, showing the limitations of
the physical significance of the NEC. Assuming a well behaved barotropic equation
of state for the effectivefluid described by the stress-energy tensor, i.e., a fixed relation
ρ(p) expressing ρ as an invertible function of the single isotropic pressure p, and

assuming the medium is not too strongly dispersive, the speed of sound is c2s = dp

dρ
.

It should be clear that the NEC does not require that cs ≤ 1; in other words, stuff
can satisfy the NEC while still permitting superluminal propagation of physically
significant structure. It is thus unclear in the end what real physical significance the
requirement that mass–energy density not be negatively dominated by momentum
fluxes has.

Theproblemswith the effective interpretationof theWECaremuch the sameas for
the NEC: it is not clear what physical significance the given relations among energy
density and pressure can havewhen they permit superluminal propagation of physical
structure. The fact that the WEC requires energy density always to be positive may
make one at first glance think that it will be violated in the ergosphere of a Kerr black
hole, where, as is well known, ordinary systems can have in a natural sense negative
energy [150, 154]. In fact, though, there is an equivocationon ‘energy’ here that points
to a subtle and important point. The energy that can be negative near a Kerr black hole
is the energy defined by the stationary Killing field of the spacetime, not the ordinary
energy density as measured by any observer using tools at rest with respect to herself.
(Because the stationary Killing field is spacelike in the ergosphere, no observer can
have any of its orbits as worldine.) Now, as I remarked in footnote 17, ordinary

17We decompose Tab into energy density, momentum flux and stress in our representations of
our experiments, for various pragmatic and psychological reasons; the decomposition represents
nothing of intrinsic physical significance about the world. This fact perhaps lies at the root of most
if not all the difficulties and puzzles that plague the energy conditions, especially why they do not
seem to be derivable from other fundamental principles. Of course, this fact also makes it even
more puzzling that they should have such profound, physically significant consequences as they do.
What is going on here?
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energy density, not being an observer-independent quantity, is not a particularly
natural concept in general relativity. The energy defined by a stationary Killing
field, however, is observer-independent and so has prima facie physical significance,
even more so given that it obeys both a local and an integral conservation law.
Why is it not troubling that this quantity, a manifestly deep and important one,
can be negative, whereas the negativity of the observer-dependent ordinary energy
density throws us into fits? Why do we depend so strongly on conditions formulated
using quantities that, under their standard physical interpretation, are not observer-
independent, especially when proving results about quantities and structures such
as event horizons that are observer-independent? I don’t know. Perhaps the lesson
here is that the geometric form of the energy conditions are the ones to be thought
of as fundamental, in so far as they rely for their statement and interpretation only
on invariant, geometrical structures and concepts. It would then be an interesting
problem why in the context of some theories, such as general relativity, the physical
interpretation of the conditions turns out to have questionable significance. Perhaps
this is telling us to look for theories in which these important geometric conditions
have physically significant interpretations. I will return to discuss this question in §5.

With regard to the SEC, because the convergence of all timelike geodesics at a
point does imply the convergence of null geodesics there, the proposed interpretations
of its geometric and physical forms, that “gravity tends to be attractive”, are on firmer
ground than for the NEC. There is still a problem, though, even here. Averaged radial
acceleration is, after all, only an average, factitious quantity. That it be negative does
not say that individual freely falling ordinary bodies cannot in fact accelerate away
from each other for no apparent reason, only that, on average, they do not do so. Thus,
the idea that average geodetic convergence should be thought of as a representation
of the attractiveness of gravity is dicey at best. And, again, there is the issue that
this condition says nothing at all about the “effect of gravity” on bodies accelerating
under the action of other forces.

The DEC (and a fortiori the SDEC) are standardly taken to rule out “superluminal
propagation of stress-energy”. Once again, however, it is clear that the DEC does
not preclude superluminal speeds of sound for fields, so it is not clear what work the
prohibition on superluminal propagation of stress-energy is doing. Even if we put
that point aside, though, there are other problems, as Earman [62] argues, claiming
the DEC ought not be interpreted as prohibiting superluminal propagation of stress-
energy. His argument goes in two steps. He first argues for the positive conclusion
that the proper way to conceive of a prohibition on superluminal propagation is the
existence of a well posed (in the sense of Hadamard) initial value formulation for all
fields on spacetime. Then, based on Geroch [91], he shows that physical systems can
have well posed initial value formulations even when the DEC is violated. Earman’s
arguments are buttressed by a recent argument due to Wong [212]. As Wong notes
(along with Earman), the evidence almost always cited in support of the idea that
DEC prohibits superluminal propagation of stress-energy is the theorem that states
that, if a covariantly divergence-free Tab is required to satisfy the DEC and it vanishes
on a closed, achronal set, then it vanishes in the domain of dependence of that set
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[102, 107].18 Wong, I think rightly, points out that this theorem in fact shows only
that DEC prohibits “the edge of a vacuum” (or vacuum fluctuations, in a quantum
context) from propagating superluminally, not arbitrary stress-energy distributions.
Given the nonlinearity of the Einstein field equation, I find it plausible that there
may be problems in trying to naively generalize this result to arbitrary stress-energy
tensors, whether they obey the DEC or not.

Comparing the strengths and weaknesses of the interpretations of the different
forms of the conditions amongst themselves reveals some interesting questions. Con-
sider the NEC: on the face of it, the geometric form has a relatively unproblematic
interpretation, whereas the interpretations of the physical and effective forms are
beset with more serious problems. The case is just the opposite for the WEC: the
geometric form has no clear interpretation, whereas the physical form and at least part
of the effective form (the positivity of energy density) are relatively unproblematic.
The DEC occupies yet more treacherous ground, in so far as the geometric form has
no clear interpretation, the physical interpretation (as Earman’s and Wong’s argu-
ments show) is muddled at best, and the effective is only partially unproblematic.
And yet these statements are, modulo the assumption of the Einstein field equa-
tion, logically equivalent. Ought unclarity of interpretation of one form push us to
question the seeming clarity of interpretation of other forms? How can this happen,
that the interpretation of one proposition can be problematic while the interpretation
of a proposition logically equivalent is not (or, at least, is less so)? Can we lay all
the blame on the assumption of the Einstein field equation? I don’t think so, for, if
we could, then surely the forms that had interpretive problems would all be of the
same type, but that is not the case here. Sometimes it is the geometric that is less
problematic, and other times it is the more problematic.

This is not the place to try to address these questions. I will remark only that this
topic would provide very rich fodder for an investigation into the relations between
pure geometry and the physical systems that geometry purports to represent in a given
theory, what must be in place in order to extract physically significant information
from the geometry of those systems, and what the difference is between having an
interpretation of a piece of pure mathematics and having a physical interpretation
of it in the context of a theory. I have the sense that it is often a tacit assumption in
philosophical discussions of the meaning of theoretical terms that, if a mathematical
structure has a clear physical interpretation in a theory, then it itself must have a clear
mathematical interpretation already. These examples show that this need not be so.
They also provide interesting case studies of how theoretically equivalent statements
can seemingly have very different physical meanings.

I conclude this sectionwith anobservationofwhat isnot here: there are no standard
energy conditions based on theWeyl conformal tensorCa

bcd or on the Bel–Robinson

18A region of spacetime is achronal if no two of its points stand in timelike relation to each other.
The domain of dependence D(�) of a closed achronal set � is the collection of all points p in
spacetime such that every inextendible causal curve passing through p intersects �.
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tensor Tabcd .19 I find this odd. Because there is no object in general relativity that
one can reasonably interpret as the stress-energy tensor of the “gravitational field”,
the standard pointilliste energy conditions do not directly constrain the behavior of
anything onemaywant to think of as gravitational stress-energy, and yet onemay still
want to try to do so.20 The possible need for trying to do so becomes clear when one
considers how strange, even pathological, purely vacuum spacetimes can be, such as
Taub-NUT spacetime and some gravitational plane wave spacetimes.21 Because the
Weyl tensor is not directly constrained by the stress-energy tensor of matter, in the
sense that it may be nonzero even when Tab is zero, it is often thought to represent
“purely gravitational” degrees of freedom.22 The Bel–Robinson tensor, moreover,
may usefully be thought of as a measure of a kind of “super-energy” associated
with purely gravitational phenomena, and directly measures in a precise sense the
intensity of gravitational radiation in infinitesimal regions. These two tensors, there-
fore, would seem perfect candidates to serve as the basis for conditions that would
constrain the behavior of purely gravitational phenomena and, more particularly, of
vacuum spacetimes. I think it would be of great interest to investigate whether there
are natural conditions based on these two tensors that would constrain behavior in
vacuum spacetimes so as to rule out such pathologies. I conjecture that there are
indeed such conditions.23 One potentially promising place to start a search for such

19For characterization and discussion of the Bel–Robinson tensor and its properties, see Penrose
and Rindler [155], Senovilla [177, 178], Garecki [85] and García-Parrado Gómez-Lobo [84].
20There does not exist in general relativity a satisfactory definition for a “gravitational” stress-
energy tensor, one that represents localized stress-energy of purely “gravitational” systems. (See
Curiel [51].) One may want to think of this as a limitation on the possible physical content of the
standard pointilliste energy conditions, as I discuss at the end of §2.1.
21See, e.g., Misner [137] and Ellis and Schmidt [71], respectively, and Curiel [45] for further
discussion.
22Still, Ca

bcd and Tab are not entirely independent of each other. If we define the so-called Lanczos
tensor

Jabc := 1

2
∇[b Ra]c + 1

6
gc[a∇b] R

= 4π∇[bTa]c − 1

12
gc[b∇a]T (2.1)

then the Bianchi identities may be rewritten

∇nCn
abc = Jabc

The similarity of this equation to the sourced Maxwell equation suggests regarding the Bianchi
identities as field equations for the Weyl tensor, specifying how at a point it depends on the distrib-
ution of matter at nearby points. (This approach is especially useful in the analysis of gravitational
radiation; see, for example, Newman and Penrose [142], Newman and Unti [143], and Hawking
[99].) Thus, conditions imposed on the Weyl tensor might still be plausibly interpretable as energy
conditions in spacetimes with nontrivial Tab.
23It is well known that the Bel–Robinson tensor automatically satisfies the so-called “dominant
super-energy condition”, viz., Tmnrsξ

mξnξ r ξ s ≥ 0, for all causal vectors ξa in all spacetimes.
Because of the complete universality of the condition, however, it cannot rule out pathologies.
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conditions might be the Weyl Curvature Hypothesis of Penrose [152], and recent
work attempting to formulate expressions for gravitational entropy based on these
two tensors.24

2.2 Impressionist Energy Conditions

Before exhibiting the impressionist energy conditions, a little technical background
is in order. If γ is a timelike curve, then it is natural to parameterize the line integral
of a quantity along γ by proper time. If γ is a null curve, however, one does not
have a natural parameterization of it available. In this case, it is convenient to use a
generalized affine parameter.25 The generalized affine parameter is especially useful
in that it does not depend on the tetrad basis chosen in one crucial respect: whether
or not the generalized affine parameter of the curve increases without bound.

In order to express the impressionist conditions in effective form, it will be conve-
nient to define direction cosines for causal tangent vectors. Fix a 1 + 3 orthonormal
frame with respect to which the stress-energy tensor (assumed, recall, for the effec-
tive form, to be of Hawking-Ellis type i) is diagonal. Let kμ be the components of the
null vector ka with respect to the fixed frame. Then define the normalization function
νn and the direction cosines cosαμ so that cosα0 = 1 and kμ = νn(ka) cosαμ. Let
ξμ be the components of the timelike vector ξ a with respect to the fixed frame. Then
define the normalization function νt , the real number β, and the direction cosines
cosαμ so that cosα0 = 1, ξ 0 = νt (ξ

a) cosα0 and ξ μ̂ = νt (ξ
a)β cosαμ̂.

Although in principle one could define impressionist energy conditions based on
spacetime regions of any dimension or topology, in practice, at least in the classical
regime, they have all been defined using curves of various types. In my exposition of
them here, I will give what is in effect only a template for the ones actually used to
prove theorems, which often qualify the basic template in some way. I will explain or
at least mention some of those qualifications in my discussion below in this section,
and also in §3. All the impressionist energy conditions based on curves have this in
common: the characteristic property that is postulated is required to hold on every
curve in some fixed class Γ of curves on spacetime.

averaged null energy condition (ANEC)

geometric for every γ in the fixed class of null curves Γ ,

∫

γ

Rmnkmkn dθ ≥ 0

where γ has tangent vector ka and θ is a generalized affine parameter along γ

physical for every γ in the fixed class of null curves Γ ,

24See, e.g., Cotsakis and Klaoudatou [44] and Clifton [42].
25See, e.g., Schmidt [171] for a definition and discussion.
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∫

γ

Tmnkmkn dθ ≥ 0

where γ has tangent vector ka and θ is a generalized affine parameter along γ

effective for every γ in the fixed class of null curves Γ ,

∫

γ

⎛

⎝ρ +
∑

μ̂

pμ̂ cos2 αμ̂

⎞

⎠ ν2
n (ka) dθ ≥ 0

where γ has tangent vector ka and θ is a generalized affine parameter along γ

averaged weak energy condition (AWEC)

geometric for every γ in the fixed class of timelike curves Γ ,

∫

γ

Gmnξ
mξ n ds ≥ 0

where γ has tangent vector ξ a and s is proper time
physical for every γ in the fixed class of timelike curves Γ ,

∫

γ

Tmnξ
mξ n ds ≥ 0

where γ has tangent vector ξ a and s is proper time
effective for every γ in the fixed class of timelike curves Γ ,

∫

γ

⎛

⎝ρ + β2
∑

μ̂

pμ̂ cos2 αμ̂

⎞

⎠ ν2
t (ξ a) ds ≥ 0

where γ has tangent vector ξ a and s is proper time

averaged strong energy condition (ASEC)

geometric for every γ in the fixed class of timelike curves Γ ,

∫

γ

Rmnξ
mξ n ds ≥ 0

where γ has tangent vector ξ a and s is proper time
physical for every γ in the fixed class of timelike curves Γ ,

∫

γ

(

Tmn − 1

2
T gmn

)

ξmξ n ds ≥ 0
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where γ has tangent vector ξ a and s is proper time
effective for every γ in the fixed class of timelike curves Γ ,

∫

γ

⎧
⎨

⎩

⎛

⎝ρ + β2
∑

μ̂

pμ̂ cos2 αμ̂

⎞

⎠ ν2
t (ξ a) − 1

2
ξ nξn

⎛

⎝ρ −
∑

μ̂

pμ̂

⎞

⎠

⎫
⎬

⎭
ds ≥ 0

where γ has tangent vector ξ a and s is proper time

Before discussing their respective interpretations, a few remarks are in order. No
reasonable impressionist analogue of either of the pointilliste dominant conditions
are known.26 In practice, one generally requires that Γ consist of a suitably large
family of inextendible geodesics of the appropriate type. For the ANEC, ifΓ consists
of null geodesics, then one can replace the generalized affine parameter with the
ordinary affine parameter. In no case can one allow arbitrary parameterizations for
null curves in the defining integral, as that would simply reduce the ANEC to the
NEC. If one further requires for the ANEC that the curves in Γ be achronal, then the
condition is often called the ‘averaged achronal null energy condition’ (AANEC).
For the AWEC, if Γ contains enough timelike geodesics and the spacetime is well
behaved, then there may be null geodesics that are limit curves of subfamilies of
Γ ; in this case, the relevant characteristic integral will be nonnegative for those null
geodesics, and the AWEC with the fixed Γ can be said to imply the ANEC for the
family of limiting null geodesics. Even in well-behaved spacetimes, however, there
may be null geodesics that are not the limit of any family of timelike geodesics, so
in general the AWEC does not imply the ANEC. The ASEC does not imply either
the AWEC or the ANEC. Clearly, the NEC, WEC and SEC respectively imply the
ANEC, AWEC, and ASEC.

I am sorry to say the discussion of the possible interpretations of, or even just
motivations for, the standard impressionist energy conditions is a simple one to have:
there are no compelling geometrical, physical or effective interpretations of these
conditions, not even hand-waving, rough or approximate ones, and no compelling
physical or philosophical motivations for them.

I should perhaps clarifywhat Imean in claiming that there are no compelling inter-
pretations or motivations of these conditions. One can certainly describe in simple,
clear, physical language the sorts of spacetimes in which they will be satisfied—
geodesics experience more positive than negative energy, the regions in which the
pointilliste conditions are violated are bounded in various ways, etc.—but it is dif-
ficult, at best, to understand these classes of spacetimes as being related in any but
accidental ways. There is nothing principled or lawlike that makes these spacetimes
similar or the same in any deep sense. It is not easy to imagine principled conditions
one could impose on theories of matter or fields—say, a form for the Lagrangian, or
manifestation of a symmetry, etc.—that would ensure the sort of behavior captured

26One could in flat spacetimes, and possibly in stationary spacetimes, circumvent the obvious
problems with formulating a dominant-like impressionist energy condition, but, being confined to
flat (and possibly stationary) spacetimes, such a condition would have little import or relevance.
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by the averaged conditions. This somewhat vague qualm is substantiated by the ease
with which violations of the averaged conditions can be found, in both the classical
and the quantum cases, as I discuss in §3.2.

More to the point, there is at least one interesting way of making this vague qualm
more precise, that at the same time shows clearly the artificiality of the impressionist
conditions as compared to the pointilliste conditions: none of the quantities con-
strained by the impressionist conditions enter the equations of motion or the field
equations of any known kinds of physical system, and, correlatively, no couplings
between any known kinds of physical system are mediated by those quantities; the
opposite is true for the pointilliste conditions, whose constrained quantities promis-
cuously appear in equations of motion, field equations and couplings for many if not
most known kinds of physical system. Finally, the restriction to geodesics has no
compelling physical or philosophical basis that I can see, but appears to be dictated
by pragmatic considerations about the technical tractability of required calculations.

Still, there is more to say about them, even though none has a clear, princi-
pled interpretation or motivation. These conditions were all constructed by reverse
engineering—an investigator looked for the weakest condition she could impose on
the averaged behavior of some quantity depending on curvature or stress-energy in
order to derive the result of interest to her. (Indeed, I think it is not going too far to
say that many of them represent a case of outright gerrymandering by the relativity
community.27) Other researchers were impressed by the weakness of the condition
used to derive the important result, and so picked it up and used it themselves. And
so the impressionist conditions have been passed down through the generations of
relativists, hand to hand from teacher to student, powerful, talismanic runes to be
brought out and invoked with precise ceremony on formal occasions, but whose
inner significance is beyond our ken, though their very familiarity often obscures
that fact.28

This is not to say the impressionist energy conditions have no foundational or
physical interest at all. It is often important to find the weakest conditions one can
to prove theorems whose conclusions have great weight or significance, such as the
positive energy theorems or the singularity theorems, if only, for example, to get as
clear as one can on what those conclusions really depend on. If one wants to try
to extend or modify one’s global theory while ensuring that certain results remain
true, for example, it behooves one to find the weakest conditions from which one

27The only physicists I know of to express similar concerns are Visser and Barceló [6, 199]; indeed
they seem to be of the opinion that it is difficult to think of all energy conditions, not just the
impressionist ones, as anything more than pragmatically convenient tools whose formulation is
driven by the technical needs in proving desired theorems.
28

und Das und Den,
die man schon nicht mehr sah
(so täglich waren sie und so gewöhnlich),
auf einmal anzuschauen: sanft, versöhnlich
und wie an einem Anfang und von nah

— Rainer Maria Rilke, “Der Auszug des verlorenen Sohnes”
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can derive those results. For we who are interested in the foundations of the theory
in and of itself, however, these impressionist conditions have little to offer. Still,
because they have been used to prove deep results of great interest in themselves,
it is important to understand what sorts of system violate and what sorts satisfy the
conditions (which I will discuss in §3).

Before moving on, it will be edifying to examine in a little detail two of the
most important technical qualifications made to the templates I gave of the averaged
conditions. Tipler [189], which if my history is not mistaken was the first use of an
averaged condition to prove results of any depth, required the additional constraint
that the characteristic integral of the averaged condition at issue can equal zero for
any curve only if its integrand (e.g., Tmnξ

mξ n for the physical AWEC) equals zero
along the entire curve. As Borde [21] points out, this constraint raises problems for
the physical plausibility, or at least possible scope, of the conditions.29 To see the
problem, let us for the sake of definiteness focus attention for the moment on the
physical AWEC. Then Tipler’s constraint rules out cases where the integral equals
zero because the relevant curve passes endlessly in and out of regions of positive
and negative energy density. This may not sound so bad at first, until one realizes it
means that, for a spacetime to satisfy the constrained condition, every curve in the
fixed class must eventually traverse only regions of nonnegative energy density, both
to the past and the future: violations of the WEC are to be allowed only in bounded
regions in the interior of spacetime, so to speak. There seems even less physical
justification for demanding this than for the bare AWEC in the first place.

To try to address this problem, Borde proposed modifications to the averaged
conditions. The technical details of his proposals, while ingenious, are not worth
working through for my purposes, as they are complicated and shed little light on
the issues I am discussing. The gist of his proposed modifications is this: rather
than requiring that the salient integral equal zero only when its integrand equal zero
everywhere along the curve, we require only that, if the integral equal zero, then the
integrand must be suitably periodic along the entire curve, i.e., roughly speaking,
that the integrand visit a neighborhood of zero frequently and that the lengths of
the intervals it spends visiting those neighborhoods not approach zero as one heads
along the curve in either direction. This allows application of the averaged condition
to situations in which the total integral may essentially be zero even though there
are large and long violations of the relevant pointilliste condition, such as may occur
for the SEC during inflationary periods of a spacetime. In this sense, Borde’s modi-
fications do seem an improvement on Tipler’s original version. One cannot help but
feel though, given the intricacy and physical opacity of the mathematical machinery
required to formulate Borde’s condition, that the problems of physical interpreta-
tion in the sense I sketched above—not having in hand a principled justification for
the condition founded on general, fundamental principles, but rather only reverse
engineering the weakest suitable condition one can manage to prove the results one

29Chicone and Ehrlich [38] also pointed out that there were lacunæ in Tipler’s proofs, unrelated
to Borde’s problems, but that is by the by for our purposes, as they also showed how to fix the
problems.
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wants for the particular class of spacetimes one is interested in—become perhaps
even more severe than before.

2.3 Appendix: A Failed Attempt to Derive the NEC and SEC

It is sometimes claimed (e.g., Liu and Rebouças [130]) that one can derive the NEC
and the SEC from the Raychaudhuri equation. Even though I think the argument
fails, it is of interest to try to pinpoint exactly why it fails, as it sheds light on why
it appears to be difficult to derive the energy conditions from other fundamental
principles (the difficulty strongly suggested by the lack of convincing derivations).
I will sketch the argument only for the SEC, as that for the NEC is essentially the
same, with only a few inessential technical differences.

Raychaudhuri’s equation expresses the rate of change of the scalar expansion of
a congruence of geodesics, as one sweeps along the congruence, as a function of the
expansion itself, of the congruence’s shear and twist tensors, and of the Ricci tensor.
For a congruence of timelike geodesics with tangent vector ξ a , it takes the form

ξ n∇nθ = −1

3
θ2 − σmnσ

mn + ωmnω
mn − Rmnξ

mξ n (2.2)

where θ is the expansion of the congruence, σab its shear and ωab its twist.30 If the
total sum on the right-hand side is negative, then the expansion of the congruence
is decreasing with proper time, i.e., the geodesics in the congruence are everywhere
converging on each other. The first term on the right-hand side is manifestly negative,
as is the second, since σab is spacelike in both indices, and so σmnσ

mn ≥ 0. For a
hypersurface orthogonal congruence, it follows directly from Frobenius’s Theorem
that ωab = 0. Thus, if we assume that “gravity is everywhere attractive”, and we
interpret this to mean that congruences of timelike geodesics which have vanishing
twist should always converge, then, in order to ensure that the total right-hand side
of equation (2.2) is always negative, we require that Rmnξ

mξ n ≥ 0, which is just the
geometrical form of the SEC.

It should be clear why I fail to find the argument compelling. In fact, all one can
conclude from the demand that the righthand side of equation (2.2) be nonpositive
(when ωab = 0) is that

Rmnξ
mξ n ≥ −1

3
θ2 − σmnσ

mn (2.3)

everywhere. Of course, this is not the SEC, but only a weaker form of the geometric
formulation, one that sets a nonconstant lower bound on “hownegative”mass–energy

30See, e.g., Wald [203, ch. 9, §2] for a derivation and explanation of the Raychaudhuri equation
for both timelike and null congruences. There is a generalization of the Raychaudhuri equation
that treats congruences of accelerated curves, but nothing would be gained for our purposes by
discussing it.
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and momentum-energy flux can get (invoking the physical form of the condition).31

When one considers that one can, in every spacetime, find at every point a congruence
of timelike geodesics that has divergent expansion as one approaches that point, one
realizes that the inequality (2.3) is vacuous, for the right-hand side of the inequality
can bemade as negative as one likes. (Proof: in any spacetime, at any point p, consider
the family of timelike geodesics defined by the family of unit, past-directed, timelike
vectors at p, parametrized by proper time so that each geodesic’s parameter has the
value 0 at p; therewill be some real number ε such that the class of geodetic-segments
defined by considering all geodesics in the family for proper time values in the open
interval (−ε, 0) defines a proper congruence; that congruence will have divergent
expansion along all its members as one approaches proper time 0, i.e., the point p,
as can be seen by the fact that any spacelike volume swept along the flow of the
congruence toward p will converge to 0.)

The heart of the problem should now be clear. Geodesic congruences are a dime
a dozen. You can’t throw a rock in a relativistic spacetime without hitting a zillion
of them, most of them having no intrinsic physical significance. Because the pointil-
liste energy conditions, moreover, constrain the behavior of curvature terms only at
individual points, and that by reference to all timelike or null (or both) vectors at
those points, one can always find geodesic congruences that are as badly behaved as
one wants, in just about any way one wants to make that idea precise, with respect
to how various measures of curvature evolve along the congruences. Nonetheless,
geodesic congruences seem to be about the only structure one has naturally available
to work with, if one wants to try to constrain the behavior of curvature as measured
by the contractions of curvature tensors with causal vectors. So long as one wants
to work with geodesic congruences, therefore, it seems one must find some way to
restrict the class one allows as relevant to those that are “physically significant” in
some important and clear way. I know of no way to try to address that problem in
any generality. Of course, one could always try to work with structures other than
geodesic congruences, but, again, I know of no other natural candidates to try to
use to constrain the behavior of measures of curvature, given the typical form of the
energy conditions.

Even if one could find natural, compelling ways to restrict attention to a privileged
class of congruences in such a way as to resolve the technical problems I raised for
this kind of argument, there would still be interpretative problems with this kind of
argument. As I discussed at the end of §2.1 above, I do not find it convincing to
interpret the fact that causal congruences are convergent as a representation of the
idea that “gravity is attractive”. Without that interpretation, however, one has little
motivation for invoking Raychaudhuri’s equation in the first place without ancillary
physical justification.

31Because the lower bound is variable, the propositions of Tipler [189] I discussed in §2.1 do not
allow one to infer that this weaker condition is in fact equivalent to the WEC.
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2.4 Appendix: Very Recent Work

Recently, Abreu et al. [1] introduced a new classical energy condition

flux energy condition (FEC)

geometric
1. for any timelike vector ξ a , Ga

nξ
n is causal

2. for any timelike vector ξ a , Gm
r Gmsξ

rξ s ≥ 0
physical
1. for any timelike vector ξ a , T a

nξ
n is causal

2. for any timelike vector ξ a , T m
r Tmsξ

rξ s ≥ 0
effective for each μ̂, ρ2 ≥ p2

μ̂

There is, as is to be expected, no simple interpretation of its geometric form. The
simplest interpretation of its physical form is that the total flux of energy–momentum
as measured by any timelike observer is always causal, albeit the temporal direction
of the flux is not restricted. Because isotropic tachyonic gases always satisfy ρ < 1

3 p,
with weaker bounds for anisotropic tachyonic material, the effective form may be
interpreted as ruling out the possibility of tachyonic matter. Otherwise, I know of
no compelling interpretation of it, as it allows energy density to be unboundedly
negative, so long as the absolute value of pressure is not too great.

Abreu et al. [1] argue that the FEC gives better support to the claim that the
cosmological equation-of-state parameter w (the so-called barotropic index—see
footnote 15) must be ≤ 1, and so better substantiates arguments in favor of entropy
bounds they give based on that assumption. Martín-Moruno and Visser [134, 135]
investigated its properties and proposed a quantum analogue of it, which, they claim,
works in several respects better than the standard quantum energy conditions.32 The
FEC, therefore, shows prima facie promise as being of real physical interest. It is,
moreover, manifestly weaker than all the other standard energy conditions, as its
characteristic nonlinearity (most easily seen in the second given articulations of its
geometric and physical forms, and in its effective form) ensures that essentially no
limit is placed on the possible negativity of the ordinary mass–energy of matter.
If, therefore, it bears out its promise for leading to, or at least supporting, results of
interest, it would be a great improvement on the standard energy conditions. Because,
however, its properties and consequences are virtually unknown as compared to the
standard conditions, I shall not discuss it further.

Even more recently, Martín-Moruno and Visser [135] proposed two more energy
conditions, the determinant energy condition (DETEC) and the trace-of-square
energy condition (TOSEC), and also proposed quantum analogues for them. Again,
these energy conditions seem prima facie interesting, but even less work has been
done on and with them than the FEC, so I shall not discuss them here either.

32See Curiel [48] for extended discussion of energy conditions in quantum field theory on curved
spacetime.
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2.5 Technical Appendix: Average Radial Acceleration

To characterize the idea of the average radial acceleration of a causal geodesic,33

let ξ a be a future-directed causal vector field whose integral curves γ are affinely
parametrized geodesics. If γ is timelike, then assume ξ a to be unit. Let λa be a vector
field on γ such that at one point λnξn = 0 and £ξ λ

a = 0. (Note that if ξ a is null, then
λa may be proportional to ξ a; otherwise it must be spacelike.) Then automatically
λnξn = 0 at all points of γ . λa is usefully thought of as a “connecting field” that
joins the image of γ to the image of another, “infinitesimally close” integral curve
of ξ a . Then ξm∇m(ξ n∇nλ

a) represents the acceleration of that neighboring geodesic
relative to γ . According to the equation of geodesic deviation,

ξm∇m(ξ n∇nλ
a) = Ra

mnrξ
mλnξ r

Now, fix an orthonormal triad-field {μ

λa}μ∈{1, 2, 3}) along γ such that each
μ

λa forms
a connecting (relative acceleration) field along γ . The magnitude of the radial com-

ponent of the relative acceleration in the μth direction then is − μ

λrξ
m∇m(ξ n∇n

μ

λr ).
Fix a point p ∈ γ . The average radial acceleration Ar of γ at p is defined to be

Ar := −1

k

∑

μ

μ

λrξ
m∇m(ξ n∇n

μ

λ
r )

where k is 3 if ξ a is timelike and 2 if null. It is straightforward to verify that the
average radial acceleration is independent of the choice of orthonormal triad, so it
encodes a quantity of intrinsic geometric (and physical) significance accruing to ξ a .
A simple calculation using the equation of geodesic deviation then shows that

Ar = −1

k
Rmnξ

mξ n (2.4)

If the Einstein field equation is assumed to hold, it follows that

Ar = −8π

k
(Tmn − 1

2
T gmn)ξ

mξ n (2.5)

which reduces in the case of null vectors to

Ar = −4πTmnξ
mξ n (2.6)

33I follow the exposition of Malament [133, §2.7], with a few emendations.
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3 Consequences and Violations

To study the role of energy conditions in spacetime theories, I will look at results
that do not depend on the imposition of any field equations (e.g., the Einstein field
equation) and yet directly constrain spacetime geometry. One often hears the claim
that such-and-such result (e.g., various singularity theorems, various versions of the
geodesic postulate, the Zeroth Law of black hole mechanics, etc.) that assumes an
energy condition does require the Einstein field equation for its proof, but one must
be careful of such claims. It is almost always the case, in fact, that the Einstein field
equation is logically independent of the result (in the strong sense that one can assume
the negation of the Einstein field equation and still derive the result); the Einstein field
equation is used in such cases only to provide a physical interpretation of the assumed
energy condition; mathematically, one in general needs only the geometric form of
the condition, which is why I distinguish the geometric from the physical form.34

In this section, every consequence of the energy conditions I discuss is of this type:
it is logically independent of the Einstein field equation, and relies on the Einstein
field equation only for the physical interpretation of the assumed geometric energy
condition.35 Many of the violations of the energy conditions I list here, however, do
rely on assuming the Einstein field equation for their derivation, in so far as they use
the Lagrangian formulation of the relevant forms of matter to derive the violation,
or in so far as they rely on the effective form of the energy conditions in conjunction
with, e.g., the Friedmann equations to derive the violation.

I will beginwith a list of the consequences of the energy conditions, i.e., the results
each energy condition is used to derive, and then discuss the roles the conditions play
in the derivations of those results. I then list the classical cases in which each energy
condition is known to fail, then discuss how the known failures may or may not
undermine our confidence in the consequences.36 In several of the references I give
in the list of consequences, no explicit mention is made of energy conditions, but, if
one works through their arguments, one will see that the relevant energy condition
is indeed being implicitly assumed. In other works I cite, an energy condition is
explicitly assumed, but in fact, according to the arguments of those works, either a
weaker one is sufficient or a stronger one is required; in such cases, I cite the result
under the sufficient or required condition. For almost none of the statements in the list

34There is perhaps room for debate over this claim, at least in a few cases. Some elements of the black
hole uniqueness theorems, e.g., “use” the Einstein field equation to show that certain distinguished
spacelike hypersurfaces must be spatially conformally flat when the entire spacetime is assumed to
be vacuum; in such a case, the spatial conformal flatness follows from the vanishing of the Ricci
tensor, which follows from the vanishing of the stress-energy tensor by the Einstein field equation.
I would still argue in such cases that the Einstein field equation is not necessary for the proof of
the theorem—only Rab = 0 is—and, again, the Einstein field equation is used only to provide the
necessary condition a physical interpretation.
35In cosmology, several of the most interesting results do require assumption of the Einstein field
equation. For this reason, and also because it is such a large and rich field on its own, I explore the
role and character of energy conditions in the context of cosmology at some length in Curiel [47].
36See Curiel [48] for examination of the cases of failure in the quantum regime.
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of consequences is it the case that the energy condition alone is necessary or sufficient;
it is rather that the energy condition is one assumption amongothers in the only known
way (or ways) to prove the result. When I list the same proposition as a consequence
of more than one energy condition (e.g., “prohibition on spatial topology change”
under bothWEC andANEC), it means that there are different proofs of the statement
using different ancillary assumptions.When I qualify a spacetime as “spatially open”
or “spatially closed”, it should be understood that the spacetime is globally hyperbolic
and the openness or closedness refers to the topology of spacelike Cauchy surfaces
in a natural slicing of the spacetime.

3.1 Consequences

NEC

1. formation of singularities after gravitational collapse in spatially open space-
times [148]

2. formation of singularities in asymptotically flat spacetimes with non-simply
connected Cauchy surface [82, 128]

3. formation of an event horizon after gravitational collapse [148–150]
4. trapped andmarginally trapped surfaces and apparent horizonsmust be inside

asymptotically flat black holes [203]
5. Hawking’s Area Theorem for asymptotically flat black holes (Second Law of

black hole mechanics) [103]
6. the area of a generalized black hole always increases37 (Second Law of gen-

eralized black hole mechanics) [111]
7. asymptotically predictable black holes cannot bifurcate38 [203]
8. the domain of outer communication of a stationary, asymptotically flat,

causally well behaved spacetime is simply connected39 [40, 79, 81]
9. a stationary, asymptotically flat black hole has topology S

2, if the domain of
outer communication is globally hyperbolic and the closure of the black hole
is compact40 [40, 78]

37Hayward [111] defines a generalized notion of black hole, one applicable to spacetimes that are
not asymptotically flat, by the use of what he calls “trapping horizons”. In the same paper, he shows
that generalized black holes obey laws analogous to the standard Laws of black hole mechanics.
38A spacetime is asymptotically predictable if it is asymptotically flat, and there is a partial Cauchy
surface whose boundary is the event horizon, such that future null infinity is contained in its future
domain of dependence.
39The domain of outer communication of an asymptotically flat spacetime is, roughly speaking,
the exterior of the black hole region. See Chruściel et al. [41, §2.4] for a precise definition. This
theorem is similar to, but stronger than, the original Topological Censorship Theorem of Friedman
et al. [77]; see footnote 59. The theorem due to Galloway and Woolgar [81] in fact requires only
the ANEC.
40This is also a constituent of the proof of the full No-Hair Theorem, but is important enough a
result to warrant its own entry in the list; see footnote 41.
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10. almost all the constituents of the black hole No Hair Theorem for asymptoti-
cally flat black holes41 [12, 31, 119, 120, 136, 141, 164, 165, 185, 186, 201,
202]

11. generalized black holes are regions of “no escape” [110]
12. limits on energy extraction by gravitational radiation from colliding asymp-

totically flat black holes [103]
13. positivity of ADM mass42 [4, 153]
14. the Generalized Second Law of Thermodynamics43 [73]
15. Bousso’s covariant universal entropy bound44 [73]
16. the Shapiro “time-delay” is always a delay, never an advance45 [200]
17. chronology implies causality46 [107]
18. standard formulations of the classical Chronology Protection Conjecture47

[105]

WEC

1. asymptotically flat spacetimes without naked singularities are asymptotically
predictable [104]

2. asymptotically flat black holes cannot bifurcate [104]
3. the event horizon of a stationary black hole is a Killing horizon48 [104, 107]

41The No Hair Theorem states that an asymptotically flat, stationary black hole is completely
characterized by three parameters, viz., its mass, angular momentum and electric charge. The proof
of this theorem logically comprises many steps, each of interest in its own right, and historically
stretched from the original papers of Israel [119, 120] to the final results of Mazur [136]. There are
too many constituents of the proof to list each individually. A few remaining constituents require
the DEC; see that list for details. Heusler [113] provides an excellent, relatively up-to-date overview
of all the known results. There is an analogous No Hair Theorems for the generalized black holes
of Hayward [111], but I will not discuss them.
42Earlier proofs relied on the DEC; see that list for details.
43The total entropy of the world, i.e., the entropy of ordinary matter plus the entropy of a black hole
as measured by its surface area, never decreases.
44Bousso [24, 25], clarifying and improving on earlier work by Bekenstein [13, 15–17], ‘t Hooft
[184], Smolin [182, 183], Corley and Jacobson [43], and Fischler and Susskind [72], conjectured
that in any spacetime satisfying the DEC the total entropy flux SL through any null hypersurface L
satisfying some natural geometrical conditions must be such that SL ≤ A/4, where A is a spatial
area canonically associated with L . Flanagan et al. [73] managed to prove the bound using the
weaker NEC.
45One can understand this result physically as a prohibition on a certain form of “hyper-fast” travel
or communication. Roughly speaking, this is travel in spacetime in which the traveler is measured
by external observers, in a natural way, to travel faster than the speed of light, even though the
traveler’s worldline is everywhere timelike. It is closely related, though not equivalent, to the idea
of traversable wormholes.
46Chronology holds if there are no closed timelike curves; causality holds if there are no closed
causal curves.
47This states, roughly, that the formation of closed timelike curves always requires either the pres-
ence of singularities or else pathological behavior “at infinity”.
48A Killing horizon is a null hypersurface generated by the orbits of a non-degenerate null Killing
field.
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4. Third Law of black hole mechanics49 [121]
5. limits on energy extraction by gravitational radiation from asymptotically flat

colliding black holes [104]
6. formation of singularities after gravitational collapse in spatially open space-

times [89, 189]
7. cosmological singularities in spatially open or flat spacetimes [89, 96]
8. cosmological singularities in globally hyperbolic spacetimes that are non-

compactly regular near infinity50 [83]
9. prohibition on spatial topology change [87, 187]
10. geodesic theorems for “point-particles” [64, 70]
11. mass limits for stability of hydrostatic spheres against gravitational collapse

[19]
12. some standard forms of the Cosmic Censorship Hypothesis [123]

SEC

1. cosmological singularities in spatially closed spacetimes [86, 89, 98, 101,
106, 109]

2. cosmological singularities in spatially open spacetimes [89, 97, 100, 106,
109]

3. cosmological singularities in spacetimes with partial Cauchy surfaces [89,
97, 100, 101, 109]

4. formation of singularities after gravitational collapse in spatially closed space-
times [89, 101, 109]

5. formation of singularities after gravitational collapse in spatially open space-
times [89, 109]

6. Lorentzian splitting theorem51 [80, 214]
7. a given globally hyperbolic extension of a spacetime is the maximal such

extension [163]
8. existence and uniqueness of constant-mean-curvature foliations for space-

times with compact Cauchy surfaces [10, 26, 161, 162]

DEC

1. formation of a closed trapped surface after gravitational collapse of arbitrary
(i.e., not necessarily close to spherical) matter distribution [174]

49No physical process can reduce the surface gravity of an asymptotically flat black hole to zero in
a finite amount of time.
50Roughly speaking, a globally hyperbolic spacetime is noncompactly regular near infinity if it
has a (partial) Cauchy surface that is the union of well behaved nested sets, each having compact
boundary, that are themselves noncompact near infinity.
51I will give two versions of the theorem; see Galloway and Horta [80] for proofs of both. In
order to state the first version of the theorem, define a timelike line to be an inextendible timelike
geodesic that realizes the supremal Lorentzian distance between every two of its points [68].
Then the theorem, as first conjectured by Yau [214], is as follows: let (M , gab) be a timelike
geodesically complete spacetime satisfying the SEC; if it contains a timelike line, then it is isometric

erik@strangebeautiful.com



70 E. Curiel

2. a stationary, asymptotically flat black hole is topologically S
252 [104]

3. a generalized black hole is topologically S
253 [111]

4. constituents of the black hole No Hair Theorems for asymptotically flat black
holes54 [12, 32, 107]

5. Zeroth Law of black hole mechanics55 [7]
6. Zeroth Law of generalized black hole mechanics56 [111]
7. every past timelike geodesic in spatially open, nonrotating spacetimes with

nonzero spatially averaged energy densities is incomplete57 [179, 180]
8. positivity of ADM energy [172, 211]
9. positivity of Bondi energy [112, 115, 131, 173]
10. asymptotic energy-area inequality in the spherically symmetric case58 [112]
11. if a covariantly divergence-free Tab vanishes on a closed, achronal set, it

vanishes in the domain of dependence of that set [102, 107]

(Footnote 51 continued)
to (R × �, ta tb − hab), where (�, hab) is a complete Riemannian manifold and ta is a timelike
vector field in M . (In particular, (M , gab) must be globally hyperbolic and static.)

In order to state the second, we need two more definitions. First, the edge of an achronal,
closed set � is the set of points p ∈ � such that every open neighborhood of p contains a point
q ∈ I −(p), a point r ∈ I +(p) and a timelike curve from q to r that does not intersect �. Second,
let � be a nonempty subset of spacetime; then a future inextendible causal curve is a future �-ray
if it realizes the supremal Lorentzian distance between � and any of its points lying to the future of
� [80]; mutatis mutandis for a past �-ray. (If γ is a �-ray, it necessarily intersects �.) The second
version of the theorem is as follows: let (M , gab) be a spacetime that contains a compact, acausal
spacelike hypersurface � without edge and obeys the SEC; if it is timelike geodesically complete
and contains a future �-ray γ and a past �-ray η such that I −(γ ) ∩ I +(η) �= ∅, then it is isometric
to (R × �, ta tb − hab), where (�, hab) is a compact Riemannian manifold and ta is a timelike
vector field in M . (In particular, (M , gab) must be globally hyperbolic and static.)

I discuss the physical meaning of the splitting theorems below.
52This is also a constituent of the proof of the full No Hair theorem, but is important enough a result
to warrant its own entry in the list; see footnote 41. Hawking’s original proof was not rigorous;
in particular, it did not completely rule out a toroidal topology. See Gannon [83] for a rigorous
proof of the theorem in electrovac spacetimes, and Galloway [78] and Chruśchiel and Wald [40]
for a rigorous proof using the NEC for otherwise arbitrary stress-energy tensors but more stringent
constraints on the global topology of the spacetime.
53See footnote 37.
54See footnote 41.
55The surface gravity is constant on the event horizon of a stationary, asymptotically flat black hole.
56The total trapping gravity of a generalized black hole is bounded from above, and achieves its
maximal value if and only if the trapping gravity is constant on the trapping horizon, which happens
when the horizon is stationary. (See footnote 37.)
57This theorem is particularly strong: it implies that any singularity-free spacetime satisfying the
other conditions must have everywhere vanishing averaged spatial energies, making them highly
non-generic.
58This inequality, first conjectured by Penrose [151], states that if a spacelike hypersurface in
a spherically symmetric, asymptotically flat spacetime contains an outermost marginally trapped
sphere of radius R (in coordinates respecting the spherical symmetry), then the ADM energy≥ 1

2 R.
The DEC need hold only on the spacelike hypersurface, not in the whole spacetime.
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12. standard statements of the initial value formulation of the Einstein field equa-
tion with nontrivial Tab is well posed (in the sense of Hadamard) [107, 203]

13. natural definition of the center of mass, multipole moments and equations of
motion for an extended body [55–58, 65, 67, 169, 170]

14. some standard forms of the Cosmic Censorship Hypothesis [92, 123, 152,
203]

SDEC

1. geodesic theorem for “arbitrarily small” bodies, neglecting self-gravitational
effects [93, 133, 208]

2. geodesic theorem for “arbitrarily small” bodies, including self-gravitational
effects [66]

ANEC

1. a stationary, asymptotically flat black hole is topologically S
2 [122]

2. focusing theorems for congruences of causal geodesics [21]
3. formation of singularities after gravitational collapse in spatially open space-

times [166, 176]
4. Topological Censorship Theorem59 [77]
5. prohibition on traversable wormholes [140]
6. prohibition on spatial topology change [22]
7. positivity of ADM energy [156]

AWEC ∅
ASEC

1. cosmological singularities in spatially closed spacetimes60 [176, 189]
2. cosmological singularities in spatially open spacetimes61 [176, 189]

There is a striking absentee from the list of consequences: strictly speaking,
the First Law of black hole mechanics (for asymptotically flat black holes)—
conservation of mass–energy—does not require for its validity the assumption of

59The theorem states: fix an asymptotically flat, globally hyperbolic spacetime satisfying theANEC;
let γ be a causal curve with endpoints on past and future null infinity that lies in a simply connected
neighborhood of null infinity; then every causal curve with endpoints on past and future null infinity
is smoothly deformable to γ . Roughly speaking, this theorem says that no observer remaining
outside a black hole can ever have enough time to probe the spatial topology of spacetime: isolated,
nontrivial topological structure with positive energy will collapse into black holes too quickly for
light to cross it. Loosely speaking, the region outside black holes is topologically trivial.
60Strictly speaking, Tipler’s proof requires the ASEC with the additional constraint that its char-
acteristic integral can equal 0 for any geodesic only if its integrand (Rmnξmξn) equals 0 along the
entire geodesic. Senovilla’s proof does not require these extra assumptions, though it does require
the existence of a Cauchy surface with vanishing second fundamental form.
61Strictly speaking, Tipler’s proof of this theorem requires the WEC as well as the ASEC, and also
requires the same further constraint on the ASEC as described in footnote 60. Senovilla’s proof also
requires what is described in footnote 60.
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any energy condition (unlike the other three Laws).62 The issue is somewhat delicate
in the details, however. The delicacy arises from the fact that all the most rigorous
and the most physically compelling derivations of the Law I know [7, 205] assume
that the surface gravity of the black hole is constant on the event horizon. This, of
course, is the Zeroth Law of black hole mechanics, and all known proofs of the most
general form of the Zeroth Law rely on the DEC. The qualification “most general”
is required because there are weaker forms of the Zeroth Law that require no energy
condition for their proof: any sufficiently regular Killing horizon must be bifurcate,
and the appropriate generalization of surface gravity for a bifurcate Killing horizon
must be constant on the entire horizon, without the need to impose any energy con-
dition [113, 125, 159, 160, 204].63 This is a weaker form of the Zeroth Law, in so
far as it is not known whether the event horizons of all “physically reasonable” black
holes are sufficiently regular in any of the senses required, though in fact the event
horizons of all known exact black hole solutions are, and the condition of sufficient
regularity has strong physical plausibility on its own, at least if one accepts any ver-
sion of Cosmic Censorship—it almost necessarily follows that any non-sufficiently
regular horizon will eventuate in a naked singularity.

Whether one considers the First Law a consequence of the DEC, therefore,
depends on whether one thinks it suffices simply to assume the Zeroth Law in its
most general form, whether one thinks one should include a derivation of the most
general form of the Zeroth Law in a derivation of the First Law, or whether one thinks
that the weaker form of the Zeroth Law, which requires no energy condition, suffices
for the purposes of the First Law. The delicacy is exacerbated by the fact that (at
least) two conceptually distinct formulations of the First Law appear in the litera-
ture, what (following Wald [204, ch. 6, §2]) I will call the physical-process version
and the equilibrium version. The former fixes the relations among the changes in an
initially stationary black hole’s mass, surface gravity, area, angular velocity, angular
momentum, electric potential and electric charge when the black hole is perturbed
by throwing in an “infinitesimally small” bit of matter, after the black hole settles
back down to stationarity. The latter considers the relation among all those quantities
for two black holes in “infinitesimally close” stationary states, or, more precisely,
for two “infinitesimally close” black hole spacetimes.

The roles the assumption of the Zeroth Law plays in the proofs of the two versions
of the First Law differ significantly, moreover, so it is not clear one could give a single
principled answer to the question of whether or not the First Law is a consequence

62Hayward [111] does give a proof of what he calls the First Law for generalized black holes
(footnote 37), and that does explicitly require the NEC, but the physical interpretation of Hayward’s
result is vexed (as he himself admits), so I did not list it among the consequences of the NEC. The
physical interpretation of that result would be an interesting problem to resolve, as it would likely
shed light on the already vexed problem of understanding energy in general relativity.
63Roughly speaking, a Killing horizon is sufficiently regular in the relevant sense if: it is (locally)
bifurcate; or the null geodesic congruence constituting it is geodesically complete; or the twist of the
null geodesic congruence has vanishing exterior derivative; or the domain of exterior communication
is static; or the domain of exterior communication is stationary, axisymmetric, and the 2-surfaces
orthogonal to the two Killing fields are hypersurface orthogonal (and so integrable themselves).
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of the DEC that covered both versions at once. For example, in the physical-process
version, but not in the equilibrium version, one must assume that the black hole
settles back down to a stationary state after one throws in the small bit of matter, and
so, a fortiori, that the event horizon is not destroyed when one does so, resulting in
a naked singularity. I know of no rigorous proofs of the stability of an event horizon
under generic small perturbations. All the most compelling arguments in favor of
a reasonably broad kind of stability I know, however, do assume constraints on the
form of the matter causing the perturbation, constraints that usually look a lot like
energy conditions.64

Why is there this problem with understanding the relation of the First Law to the
energy conditions? The difficulty seems especially surprising in light of the fact that
it is the only one of the Laws that constrains mass–energy! Is it, perhaps, that mere
conservation doesn’t care whether mass–energy is negative or positive?

As striking as the difficulty in that case is, however, I still find more striking
the number, variety and depth of what are indubitably consequences that the energy
conditions do have, especiallywithout input from the Einstein field equation. The two
most numerous types of theorems in the list of consequences are those pertaining to
singularities and those to black holes (includinghorizons), respectively. Indeed, itwas
the epoch-making result of Penrose [148] showing that a singularity would inevitably
result from gravitational collapse in an open universe that first demonstrated the
power that the qualitative abstraction of energy conditions gives in proving far-
reaching results of great physical importance. I will first discuss some interesting
features of the singularity theorems and the role that energy conditions play in their
proofs, then do the same for theorems about black holes, positive energy, geodesic
theorems and entropy bounds.65 In §3.2, I will then review the violations of the
energy conditions and discuss whether they give us grounds for doubting the physical
relevance of the positive consequences.

The weakest condition, the NEC, already has remarkably strong consequences.
Among the singularity theorems it supports, to my mind the most astonishing is the
one due to Gannon [82] and Lee [128]:66 in any asymptotically flat spacetime with
a non-simply connected Cauchy surface, a singularity is bound to form. Topolog-
ical complexity by itself, with the only constraint on metrical structure being the
mild one of the NEC, suffices for the formation of singularities (in the guise of the
incompleteness of a causal geodesic). The theorem gives one no information about
the singularity, whether it will be a timelike or null geodesic that is incomplete,
or whether it will be associated with pathology in the curvature, or something that
looks like collapse of a material body, or will be cosmological in character (such as
a big bang or big crunch), but the simple fact that nontrivial topology plus the weak-

64See, e.g., Press and Teukolsky [124, 158], Kay and Wald [124], Carter [33, 34], and Kokkotas
and Schmidt [126].
65I will not discuss the role of energy conditions in ensuring that the initial value formulation of
general relativity is well posed, as the relation between the two is complex and very little is known
about it. Although I will make a few remarks on the subject in §5, it is work for a future project.
66Gannon and Lee discovered it independently, roughly simultaneously.
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est energy condition, irrespective of dynamics, suffices for geodesic incompleteness
already shows the profound power of these conditions. It is tempting to relate Gan-
non’s and Lee’s singularity theorem to Topological Censorship, especially in so far
as the latter requires only the ANEC, which the NEC implies. If one assumes that the
singularity predicted by the theorem will be hidden behind an event horizon, then
the theorem gives some insight into why nontrivial spatial topological structure will
always (quickly come to be) hidden inside a black hole. (See footnote 59.) It also
suggests that, in some rough sense, nontrivial topological structure may have mass–
energy associated with it (perhaps of an ADM-type). It would be of some interest to
see whether that idea can be made precise; one possible approach would be to see
whether one could attribute some physically reasonable, nonzero ADM-like mass to
flat, topologically nontrivial spacetimes. If so, I think this would give insight into the
vexed question of the meaning of “mass” and “energy” in general relativity. If such
a definition were to be had, I conjecture that nontrivial topological structure could
have either positive or negative mass–energy, depending on the form of the structure;
otherwise, it would not seem necessary to assume an energy condition in order to
derive the Topological Censorship Theorem.67

Another striking feature of the list is that the only important consequences of the
SEC (and theASEC) are singularity theorems,68 and among them themost physically
salient ones, whereas theDEC, contrarily, is used in only one type of singularity theo-
rem (Senovilla [179, 180]), and that of a character completely different from the other
singularity theorems. The singularity theorems following from the SEC are the most
physically salient both because they tend to have the weakest ancillary assumptions,
and because they apply to physically important situations, both for collapsing bodies
and for cosmology. I have no compelling explanation for why the SEC should have
no important consequences other than singularity theorems. Perhaps it has to do with
the fact that the SEC has a relatively clear geometrical interpretation (convergence
of timelike geodesics) that is manifestly relevant to the formation of singularities,
whereas its physical and effective interpretations are obscure at best. If so, then one
may want to consider the SEC a case of gerrymandering, the relativity community
simply having posited the weakest formal condition it could find to prove the results
it wants. This line of thought becomes especially attractive when one contemplates
the many possible violations of the SEC and even more the strong preponderance of
indirect observational evidence that the SEC has been widely violated on cosmologi-
cal scales at many different epochs in the actual universe, and is likely being violated

67A good place to start might be the investigation of asymptotically flat spacetimes with nontrivial
second Stiefel-Whitney class, as it is known that such spacetimes cannot support a global spinor
structure [88, 90]. That shows already that there is something physically outré about those space-
times.
68Although the proposition that a given globally hyperbolic extension of a spacetime is the maximal
such extension depends for its only known proof on the assumption of the SEC, this is not really
a counter-example to my claim: roughly speaking, the proof works by showing that the given
globally hyperbolic extension cannot be extended (and so is maximal) because to do so would
result “immediately” in singularities, contradicting the assumption of extendibility.
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right now.69 The result of Ansoldi [3], however, that black holes with singularity-free
interiors necessarily violate the SEC, may push one towards the opposite view, in so
far as it comes close to making the SEC both necessary and sufficient for the occur-
rence of certain types of singularities. (The construction of singularity-free FLRW
spacetimes violating the SEC, in Bekenstein [14], buttresses this line of thought; I
discuss this further below.)

I have no explanation for why the DEC should be used in almost no singularity
theorems, except for the simple observation that the only real addition theDECmakes
to the NEC and the WEC, that energy–momentum flux be causal, has no obvious
connection to the convergence of geodesics. The one type of singularity theorem
(Senovilla [179, 180]) it is used in, moreover, is the only one to make substantive,
explicit assumptions (over and above the energy conditions themselves) about the
distribution of stress-energy, in this case in the demand for nonzero averaged spatial
energy density. Perhaps that is why the DEC comes into play in this theorem, though
I have no real insight into how or why the DEC may bear on averaged spatial energy
density and its relation to the convergence of geodesic congruences.

The Lorentzian splitting theorems may be thought of as rigidity theorems for
singularity theorems invoking the SEC, for the splitting theorems show that, under
certain other assumptions, there will be no singularities only when the spacetime is
static and globally hyperbolic.70 Static and globally hyperbolic spacetimes, however,
are “of measure zero” in the space of all spacetimes, and so being free of singularities
is, under the ancillary conditions, unstable under arbitrarily small perturbations.71

Thus, they go some way towards proving the conjecture of Geroch [86] that essen-
tially all spatially closed spacetimes either have singularities or do not satisfy the
SEC.72

As a group, the singularity theorems are perhaps the most striking example of the
importance of ascertaining the status and nature of the energy conditions, because
all the assumptions used in proving essentially all of them have strong observational
or theoretical support except the energy conditions, as Sciama [175] emphasized
even before there were serious observational grounds for doubting any of the energy

69See §3.2 for discussion, and Curiel [47] for a more extensive and thorough analysis.
70See footnote 51 for a statement and explication of the splitting theorems. See Beem et al. [11,
ch. 14] for a beautiful discussion of the rationale behind and intent of rigidity theorems, as well as
an exposition of many of the most important ones.
71One should bear in mind that this argument is hand-waving at best. First, there is no known natural
measure on the space of spacetimes; second, even if there were, being a measure on an infinite-
dimensional space, it is possible that every open set (in some natural topology, of which there is
also not one known) would have zero measure or infinite measure. (There is no Borel measure on
an infinite-dimensional Fréchet manifold; thus measure and topology tend to come apart.) In that
case, in a natural sense “arbitrarily small” perturbations of a static, globally hyperbolic spacetime
could in fact yield another static, globally hyperbolic spacetime. This problem is not unique to this
argument but plagues all hand-waving arguments invoking “measure zero” sets in the space of all
spacetimes, which are a dime a dozen, especially in the cosmology literature. See Curiel [49] for
detailed discussion of all these issues.
72If this conjecture were to be precisely formulated and proven, perhaps one could view it as
providing something like an a posteriori partial physical interpretation of the SEC.
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conditions. This raises the question of the necessity of the energy conditions for the
singularity theorems. That some of the impressionist energy conditions can be used to
prove essentially identical theorems already shows that satisfaction of the pointilliste
conditions is not necessary for validity of at least some of the theorems. The original
singularity theorem, the demonstration by Penrose [148] that singularities should
form after gravitational collapse in spatially open universes, holds under the weaker
assumption of the ANEC [166, 176]. Likewise, the existence of cosmological (i.e.,
non-collapse) singularities in both spatially open and closed universes can be shown
under the assumption of the ASEC [176, 189], without the full SEC. So far as I know,
there is no proof that gravitational collapse will lead to singularities in the case of
spatially closed spacetimes under the weaker assumption of an impressionist energy
condition. I conjecture that there are such theorems; it would be of some interest to
formulate and prove one or to construct a counter-example.

With the possible exception of the First Law of black hole mechanics (for asymp-
totically flat black holes), every fundamental result about black holes requires an
energy condition for its proof, with the majority relying either on the NEC or the
DEC. Roughly speaking, the results pertaining to black holes fall into three cate-
gories: those constraining the topological and Killing structure of horizons; those
constraining the kinds of property black holes can possess; and those constraining
the relations among the horizon and the properties. Almost all of the first category
invokes the NEC for their proof. One can perhaps see why the NEC is relevant for
the results about the topological and Killing structure of horizons associated with
asymptotically flat black holes: such a black hole is defined as an event horizon,
which is the boundary of the causal past of future null infinity, and the boundary
of the causal past or future of any closed set is a null surface, i.e., is generated by
null geodesics and so may be thought of as a null geodesic congruence. The proofs
of many of those results, moreover, tend to have the same structure: very broadly
speaking, one assumes the result is not true and then derives a contradiction with the
fact that null geodesic congruences, by dint of the NEC, must be convergent (or at
least not divergent). This suggests that the NEC is necessary for these theorems, a
suspicion strengthened by the facts that, first, there is no weaker energy condition
that one could attempt to replace it with (except perhaps the FEC, if it turns out to
be viable—see §2.4), and, second, no such results are known to follow from any of
the impressionist energy conditions. Again, it would be of interest to see whether the
impressionist energy conditions could be used to prove theorems about the topologi-
cal andKilling structure of black hole horizons, or else to construct counter-examples
to the results in spacetimes in which the impressionist but not the pointilliste condi-
tions hold. The NEC is also used to prove many results about the kinds of properties
required to characterize black holes (the constituents of the No Hair Theorems), viz.,
that stationary black holes can be entirely characterized by three parameters, mass,
angular momentum and electric charge. I have no physically compelling story to
tell about why the NEC relates intimately to these kinds of result. Again, the lack
of such results depending on impressionist conditions suggests that the pointilliste
conditions are necessary, and, again, it is would be of some interest either to prove
analogous results using the impressionist conditions or to find counter-examples.
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Every consequence of the DEC pertaining to black holes is of the kind that con-
strains topological orKilling structure of the horizons. There is, however, no common
thread to the role the DEC plays in the proofs of those various results analogous to the
way that the NEC plays essentially the same role in the proofs of many of its conse-
quences. It is thus difficult even to hazard a guess about the necessity of the DEC for
these consequences. It would be of great interest to work through the various results
to see whether counter-examples to them satisfying or violating the DEC could be
found, or whether proofs using weaker energy conditions can be found. That there
is no impressionist analogue to the DEC may suggest that the DEC is necessary for
these results.

Roughly speaking, the idea of the Cosmic Censorship Hypothesis is that “naked
singularities” should not be allowed to occur in nature, where, continuing in the same
rough vein, a naked singularity is one that is visible from future null infinity. Now, the
relation of the energy conditions to the status of the Cosmic Censorship Hypothesis
is complicated, first and foremost, by the fact that there are a multitude of different
formulations of the Hypothesis (thus calling into question the common practice of
honoring the thingwith the definite article and the capitalization of its name). Because
the presence of naked singularities would seem to herald a spectacular breakdown in
predictability and even determinism associated with dynamical evolution in general
relativity (such as it is),73 many attempts to make the Hypothesis precise focus on the
initial value formulation of general relativity. Themost common formulations invoke
either the WEC or the DEC [123] as a constraint on the matter fields permissible for
the initial value formulation. As initially plausible as are such attempts at formulating
a precise version of the Hypothesis that would admit of rigorous proof, there are
in fact cases where satisfaction of an energy condition actually seems to aid the
development of a naked singularity after gravitational collapse, e.g., the WEC in
the case of the self-similar collapse of a perfect fluid [123]. In such cases, one can
show that the focusing effects the energy condition induces in geodesic congruences
actually contribute directly to the lack of an event horizon. It is thus parlous to attempt
to draw any concrete conclusions regarding the relation of the energy conditions to
the Cosmic Censorship Hypothesis in our current state of knowledge.

With regard to results about positivity of global mass, because the NEC does
not require the convergence of timelike geodesics (as I discussed in §2.1), and so
does not entail that “gravity be attractive” for bodies traversing such curves, it is
particularly striking that Penrose [153] and Ashtekar and Penrose [4] were able to
prove positivity of ADM mass using only it, and that Penrose et al. [156] were able
to prove it using the even weaker ANEC, and not the significantly stronger DEC,
as all other known proofs require. All known proofs of the positivity of the Bondi
mass do require the DEC, which is perhaps not surprising, in light of the fact that
the Bondi energy essentially tracks mass–energy radiated away along null curves to
future null infinity. If the DEC were to fail, then it seems plausible that the Bondi
energy could become negative, if negative mass–energy radiated to null infinity. It

73See, e.g., Earman [61] for a thorough discussion, and Curiel [45] for arguments arriving at some-
what contrary conclusions.
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would be of some interest to try to find a spacetime model with negative Bondi mass
in which the DEC is not violated. Perhaps matter fields with “superluminal acoustic
modes” that still satisfied the DEC (§2.1) might provide such examples.

The most precise, rigorous and strongest geodesic theorems [66, 93] both assume
the SDEC.74 Under the assumptions used to prove the theorem of Geroch and Jang
[93], Malament [132] showed that the SDEC is necessary for the body to follow a
geodesic, and not just any timelike curve. Weatherall [208] strengthened the result
by showing that the SDEC is necessary for the geodesic to be timelike, not spacelike.
He showed as well that the SDEC is not strong enough to ensure that the curve not
be null: there is a spacetime with a null geodesic satisfying all the conditions of the
Geroch-Jang Theorem. It is perhaps important that the example Weatherall [208]
produces to show that a null curve can satisfy all of the theorem’s conditions rely on
a stress-energy tensor not of Hawking-Ellis type i. Since stress-energy tensors not
of type i are generally considered “unphysical”, it would be of interest to determine
whether there are counter-examples to the Geroch and Jang [93] and Ehlers and
Geroch [66] theorems that rely on stress-energy tensors of type i. Because of the
character of the proofs of the theorems and of the counter-examples that Weatherall
[208] produces, I conjecture that there are no such counter-examples, and thus that
null curves satisfying the conditions of the theorem require nonstandard stress-energy
tensors.75

Whether or not my conjecture is correct, I think the necessity of the strongest
energy condition for the validity of the theorems poses a problem for many attempts
to analyze and clarify the conceptual foundations of general relativity.Many attempts
to provide interpretations of the formalism of general relativity, for instance, place
fundamental weight on the so-called Geodesic Principle, that “small bodies”, when
acted on by no external forces, traverse timelike geodesics. The “fact” that the Geo-
desic Principle is a consequence of the Einstein field equation is often cited as jus-
tification for the validity of the Principle (e.g., Brown [27]). The work of Malament
[132] and Weatherall [208], however, show that, at best, such approaches to the
foundations of general relativity must be more subtle where the Geodesic Principle
is concerned, and, at worst, that the Principle may in fact not be suitable at all for
playing a fundamental role in giving an interpretation of the theory.76

With regard to entropy bounds such as that of Bousso [24, 25], if in fact the
NEC or DEC were necessary for their validity, this could spell serious trouble for

74The statement of the theorems in each of those papers in fact uses the DEC, but an examination
of the proof shows that they both actually use the SDEC, in both cases in order to ensure that a
constructed scalar quantity that can be thought of as the mass of an “arbitrarily small” body is
strictly greater than zero.
75I have not had the opportunity to work through the arguments of Dixon [55–58], Ehlers and
Rudolph [67] and Schattner [169, 170] to determine whether their results on the definability of the
center of mass of an extended body and the formulation of equations of motion for that center of
mass in fact rely on the SDEC rather than, as they explicitly assumed, the DEC. Because of the
intimate connection of these relations with the geodesic theorems, this would be of some interest
to determine.
76See Weatherall [209, this volume] for extended discussion of these issues.
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many programs in quantum gravity, or at least for the ways that research in such
programs are currently being carried out, in so far as many programs place enormous
motivational, argumentative and interpretational weight on such entropy bounds, and
we already know that essentially all energy conditions are promiscuously violated
when quantum effects are taken into account.77

3.2 Violations

In some of the cases of violations I list, the circumstance or condition possibly
leading to a violation of the germane energy condition (e.g., for some subset of
possible values for relevant parameters); in other cases, it necessarily does so. I will
indicate which is which. When I list the same type of system as violating different
energy conditions (e.g., “big bang” singularities for both NEC and SEC), it means
that different instances of that type of system (having different parameters) violate
the different conditions.

NEC

1. conformally coupled massless and massive scalar fields [possibly] [6, 199]
2. generically non-minimally coupled massless and massive scalar fields [pos-

sibly] [6, 59, 74, 199]
3. “big bang” and “big crunch” singularities78 [possibly] [35, 37]
4. “big rip” singularities79 [necessarily] [35, 37]
5. sudden future singularities80 [possibly] [8, 9, 35, 37]
6. naked singularities [possibly] [5, 123, 152]
7. closed timelike curves [possibly] [195]
8. Tolman wormholes and Einstein–Rosen bridges [necessarily] [5]
9. any fluid with a barotropic index w < −181 (such as those postulated in so-

called phantom cosmologies) [necessarily] [53, 195]

77See Curiel [48] for more detailed discussion of all these issues.
78A big bang or a big crunch is a singularity in a standard cosmological model where the expansion
factor a(t) → 0 in a finite period of time to the past or future, respectively. See, e.g., Weinberg [210]
or Wald [203]. In the specific context of FLRW spacetimes, this condition implies that a singularity
is “strong” in the sense of Tipler [188].
79A big rip is a singularity in a standard cosmological model where the expansion factor a(t) → ∞
in a finite period of time. If, as is currently believed, the universe is expanding at an accelerated
rate, and it continues to do so, it is possible that such a big rip will occur. See, e.g., Caldwell [29],
Caldwell et al. [30] and Chimento and Lazkoz [39].
80These are singularities in standard cosmological models in which the pressure of the effective
fluid or some higher derivative of the expansion factor a(t) diverges, even though the energy density
and curvature remain well behaved. They are very strange, not least because they do not necessarily
lead to curve incompleteness of any kind. See Curiel [50] for further discussion.
81See footnote 15.
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10. “hyper-fast” travel82 [possibly] [200]

WEC

1. naked singularities [possibly] [76]
2. closed timelike curves [possibly] [195]
3. physically traversable wormholes [necessarily] [139, 193, 194]
4. cosmological steady-state theories of Bondi and Gold [20] and Hoyle [116]83

[necessarily]
5. classical Dirac fields [possibly] [203]
6. a negative cosmological constant (e.g., anti-de Sitter Space) [necessarily]

[107, 195]
7. future eternal inflationary cosmologies [possibly] [23]
8. “hyper-fast” travel84 [necessarily] [2, 127, 144]

SEC

1. “big bang” and “big crunch” singularities85 [possibly] [35, 37]
2. sudden future singularities86 [possibly] [8, 9, 35, 37]
3. cosmological “bounces”87 [necessarily] [35, 37]
4. just before or just after a cosmological “inflexion”88 [possibly] [35, 37]
5. spatially closed, expanding, singularity-free spacetimes [necessarily] [176]
6. cosmological inflation [necessarily] [195]
7. a positive cosmological constant, as in de Sitter spacetime, and the “dark

energy” postulated to drive the observed accelerated expansion of the universe
[necessarily] [29, 30, 54, 107]

8. asymptotically flat black holes with regular (nonsingular) interiors [neces-
sarily] [3]

9. closed timelike curves [possibly] [195]
10. physically traversable wormholes [necessarily] [114, 138]
11. minimally coupled massless and massive scalar fields [possibly] [6, 199]
12. massive Klein-Gordon fields [possibly] [195]
13. typical gauge theories with spontaneously broken symmetries [possibly]

[189]
14. conformal scalar fields coupled with dust [possibly] [14]

82See footnote 45.
83See also Pirani [157], Hoyle and Narlikar [117], and Hawking and Ellis [107, §4.3, pp. 90–91;
§5.2, p. 126].
84See footnote 45.
85See footnote 78.
86See footnote 80.
87A bounce, in the context of a standard cosmological model, is a local minimum of the expansion
factor a(t). See, e.g., Bekenstein [14] and Molina-Paris and Visser [138].
88An inflexion, in the context of a standard cosmological model, is a saddle point of the expansion
factor a(t). See, e.g., Sahni et al. [167] and Sahni and Shtanov [168].
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15. “hyper-fast” travel89 [necessarily] [2, 127, 144]

DEC

1. “big bang” and “big crunch” singularities90 [possibly] [35, 37]
2. sudden future singularities91 [possibly] [8, 9, 35, 37]
3. classical Dirac fields [necessarily] [155]

ANEC

1. massless conformally coupled scalar fields92 [possibly] [6, 199]
2. massless andmassive non-minimally coupled scalar fields [possibly] [59, 74]
3. closed timelike curves [possibly] [195]
4. traversable wormholes [possibly] [140]

AWEC

1. cosmological steady-state theories of Bondi and Gold [20] and Hoyle [116]
[necessarily] (my calculation)

2. a negative cosmological constant (e.g., anti-de Sitter Space) [necessarily]
(my calculation)

3. classical Dirac fields [possibly] (my calculation)
4. closed timelike curves [possibly] [195]
5. physically traversable wormholes [possibly] (my calculation)
6. “hyper-fast” travel93 [possibly] (my calculation)

ASEC

1. a positive cosmological constant, as in de Sitter spacetime, and the “dark
energy” postulated to drive the observed accelerated expansion of the universe
[necessarily] (my calculation)

2. cosmological inflation [possibly] (my calculation)
3. massive Klein-Gordon fields [possibly] (my calculation)
4. typical gauge theories with spontaneously broken symmetries [possibly] (my

calculation)
5. conformal scalar fields coupled with dust [possibly] (my calculation)

89See footnote 45.
90See footnote 78.
91See footnote 80.
92 Urban and Olum [192] also show that AANEC can be violated by conformally coupled scalar
fields in conformally flat spacetimes, such as the standard FLRW cosmological models.
93See footnote 45.
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Themost compelling empirical evidence for violations of energy conditions comes
from cosmology. For instance, strongly substantiated cosmographic arguments com-
paring best estimates for the age of the oldest stars to the epoch of galaxy formation
show that the SECmust have been violated in the relatively recent cosmological past
(redshift z < 7) [196–198]. Visser’s arguments, particularly as presented in the 1997
papers, are an especially striking example of the power of the energy conditions:
years before there was any hard observational evidence for the acceleration of the
current expansion of the universe, and so hard, direct support for the existence of a
positive cosmological constant, Visser predicted on purely theoretical grounds that
the most likely culprit for violation of SEC in the recent cosmological past must be a
positive cosmological constant. In fact, if the current consensus that the expansion of
the universe is accelerating is correct, and so some form of “dark energy” exists, then
we know that the SEC is currently being violated on cosmological scales, entirely
independently of any assumptions about the nature of the fields entering into the
stress-energy tensor or cosmological constant [6, 35–37, 198, 199]. Finally, if any
model of inflationary cosmology is correct, then we know that the SEC was nec-
essarily violated at least during the inflationary period and possibly, depending on
the particulars of the model, the ASEC as well. One glimmer of hope among the
gloom, however, is that the presence of a positive cosmological constant does not
yield violations of the NEC, so no matter how exotic so-called dark energy is, and
whatever fundamental mechanism may underlie it, at the classical level at least it
will still satisfy that condition.

Far and away the simplest theoretical mechanisms presently known for yielding
violations of energy conditions, and in many ways the most plausible, come from
models including scalar fields. Indeed, using classical scalar fields alone, without
even having to resort to quantum weirdness, it is relatively easy to engineer viola-
tions of even the weakest conditions, the NEC and the ANEC, as the list of violations
shows. We do not yet have indubitable evidence for the existence of a fundamen-
tal scalar field in nature. (The recently discovered Higgs field is without question
phenomenologically a scalar field, but the jury is still out on whether or not it is a
composite, bound state of underlying non-scalar entities.) The importance of scalar
fields in fundamental theoretical physics, however, is indubitable.94 For many the-
oretical and pragmatic reasons, the so-called inflaton field that drives cosmological
inflation is most commonly modeled as a classical scalar field, and cosmological
inflation necessarily violates SEC and, depending on particulars of the model, possi-
bly ASEC. Many meson fields in the Standard Model (pions, kaons and many other
mesons, including their “charmed”, “truth” and “beauty” correlates), moreover, are
modeled to an extraordinarily high degree of accuracy as scalar fields, even though
we believe they in fact consist of bound states of (non-scalar) quark–antiquark pairs.
It is also widely believed that the so-called “strong CP problem”, the fact that no
CP-violation in strong nuclear interactions has ever been observed, is best solved

94It would be an interesting project to try to determine why theoretical physicists are firmly wedded
to scalar fields as fundamental constituents of reality in the face of an almost complete lack of
evidence for them, and whether their reasons for the marriage are really sound.
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by the postulation of a scalar field called the axion [147], though to the best of my
knowledge it is not known whether any classical models of the axion violate any of
the energy conditions (any more than those of other quantum fields do, at any rate).

Now, violations of the NEC are disturbing for at least two important reasons. First
and perhaps foremost, they imply violations of all other pointilliste energy conditions.
Second, they already would seem to allow not only violations of the ordinary Second
Law of thermodynamics [52, 75], but of the Generalized Second Law as well: send
lots of negative energy (with positive entropy) through the event horizon into a black
hole, and voilà!—the area of the black hole shrinks, even though arbitrary amounts of
entropy have disappeared from outside the event horizon. Perhaps the most troubling
violation of the NEC from the above list is the case of a conformally coupled scalar
field, given the naturalness of “conformal coupling” for scalar fields in quantum field
theory [6, 199], which is why in the list of violations I singled it out from the class
of generically non-minimally coupled scalar fields.

The particular example of amassive conformal scalar field coupledwith dust given
by Bekenstein [14] in an example of how to construct a nonsingular FLRW model,
exploiting the fact that the system can be made to violate the SEC, has interesting
possible physical significance, which is why I singled it out in the list of systems
for which energy conditions can fail: the pions that mediate the strong nuclear force
can to a very high degree of approximation be represented by just such scalar fields.
Thus, Bekenstein argues, nuclear matter in the very early, dense stages of the actual
universemay not have satisfied the SEC,whichmay suggest that the initial singularity
in standard Big Bang models may be avoidable. This may give reason to doubt the
stability of at least some of the singularity theorems in regimes where the energy
conditions fail. Because the SEC would have been necessarily violated during an
epoch of inflationary expansion, moreover, and because inflationary theories have
such strong support among many cosmologists, such doubts should perhaps cause
further concern for advocates of an initial Big Bang singularity. In light of the fact
that the strongest theorems for big bang singularities rely on the SEC, and that the
Lorentzian Splitting Theorems (in conjunction with the results of Senovilla [176]
to the effect that spatially closed, expanding, singularity-free spacetimes necessarily
violate the SEC) come close to showing that the SEC is necessary for those theorems,
then I think it becomes quite reasonable to question the current confidence in the
so-called Standard Model of cosmology, which rests on the idea that the universe
“started with” a big bang. That, moreover, both a cosmological “bounce” and a
Tolman wormhole (perhaps the two most natural possible replacements for an initial
big bang singularity) require violation only of the SEC [114, 138], not any of the
other energy conditions, only exacerbates the problem.

Tipler [189], in a line of argument intended to mitigate such doubts, has pointed
out an amusing poignancy in the role that homogeneity (high symmetry) plays in
Bekenstein’s construction of nonsingular FLRW spacetimes that violate the SEC. It
follows from a theoremTipler proves that, if a black hole (marginally trapped surface)
develops in one of Bekenstein’s spacetimes, then, because they do satisfy theWEC, a
singularitywould necessarily develop. Of course, amarginally trapped surfacewould
form only if there were deviations from homogeneity. We would expect, however,
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on physical grounds, that even slight deviations from homogeneity could lead to
the development of marginally trapped surfaces. Thus, it is only the strict symmetry
of the Bekenstein models that precludes singularities. This, of course, turns the
standard (mistaken) pre-Penrose [148] argument on its head: that the singularities
of the FLRW, Schwarzschild, and Oppenheimer and Snyder [145] spacetimes were
simply an artifact of their unrealistic perfect symmetry. In the case of Bekenstein’s
spacetimes, it is only their unrealistic perfect symmetries that precludes singularities.
Theorem 1 of Tipler [189], moreover, gives him even stronger grounds for thinking
that violations of SEC will not necessarily block formation of singularities, at least
for closed universes, so long as the period and extent of the failure is limited with
respect to its satisfaction in the rest of spacetime, i.e., so long as the ASEC holds.

The theorems predicting big bang and big crunch singularities face one more
problempeculiar to themalone: all such theorems invoke energy conditions of various
kinds, mostly the SEC, and yet one can show that, depending on the characteristics
of a given big bang or big crunch singularity, the presence of the singularity itself
implies a violation of the relevant energy condition. Roughly speaking, whether a big
bang or big crunch implies a violation of a given energy condition depends on how
“violent” the singularity is, which idea can be made precise by analysis of the nature
of the matter fields present (e.g., the value of the barotropic index of the ambient
homogeneous cosmological fluid), or by the behavior of geodesic congruences in the
immediate neighborhoodof the singularity (e.g., whether such singularities are strong
in the sense of Tipler [189], and, if so, how quickly they squeeze spatial volumes to
zero). What is one to say in such cases? Clearly, the known theorems do not apply to
such singularities, but also clearly the exact spacetimes in which such singularities
occur have been shown to exist. The only safe conclusion seems to be that, at least in
the case of these kinds of singularity, violations of salient energy conditions need not
preclude their existence. But then one must question the importance of the theorems
themselves, especially in light of the growing body of observational evidence that,
if there is a big bang or big crunch, it may well be of a type that violates energy
conditions.

What about the remainder of the singularity theorems? Should any of the viola-
tions drive us to doubt their validity or physical relevancy? In order to try to answer
this question with some generality, it will be useful to draw two distinctions, the
first between types of violations, and the second between types of theorems.95 First,
roughly speaking, the violations fall into one of two classes, being associated either
with a type of physical system (e.g., conformally coupled scalar field, classical Dirac
field), or with a type of “event” (very loosely construed, e.g., traversable wormhole,
closed timelike curve, or big rip singularity). Generally speaking, for the latter, the
regions where the energy conditions are violated can be “localized” to a neighbor-
hood of the “event”. The scare-quotes are to remind us of the fact that some such
events—e.g., many types of singularities—are not localizable in any reasonable sense

95I do not think the classifications I sketch here are of relevance beyond the context of such discus-
sions as this. I certainly do not think they capture anything of fundamental significance about the
nature of violations of energy conditions or about singularities.
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of the term.96 The qualification “generally speaking” hedges against cases such as
the traversable wormholes of Visser [194], for which travelers moving through the
wormholes never experience a violation of any energy condition. Generally speaking,
for violations of the former class (viz., associated with a type of physical system),
one cannot “localize” the regions of violation in any way, unless one can localize
the system itself, or at least those spacetime regions in which the system is known
to violate the energy conditions and one can also determine that the system violates
them nowhere else.

As for the singularity theorems, they also fall roughly into two classes, which
for lack of better terms I will refer to as pinpointing and not. Roughly speaking,
pinpointing theorems, as the name suggests, in certain ways allow one to say where
in spacetime the singularities occur, and so in a sense one can “localize” the sin-
gularities.97 Such theorems demonstrate the existence of singularities associated
with closed, trapped surfaces (for singularities contained in asymptotically flat black
holes: Penrose [148], Hawking and Ellis [107]), or with trapping surfaces (for sin-
gularities contained in generalized black holes: Hayward [110, 111]), or with the
“boundaries” of spacetime (such as big bang and big crunch singularities), or they
place the defining incomplete, inextendible geodesic entirely in a compact subset of
the spacetime (e.g., Hawking and Ellis [107, pp. 290–292]). Singularity theorems
that are not pinpointing, such as those of Gannon [82, 83], merely demonstrate the
existence of incomplete, inextendible geodesics without giving one any information
about “where the incompleteness of the geodesic” is in spacetime.

Now, the impact of possible violationswill differ from theorem to theoremdepend-
ing on whether the theorem at issue pinpoints or not, and on whether the violation
can be localized in an appropriate sense to that region of spacetime in which the
theorem locates the predicted singularity. For theorems that do not pinpoint, I think
there is no principled reason to believe that any salient violations may or may not
vitiate the theorem. For theorems that do pinpoint, there may be hope of showing that
at least some salient violations may or likely will not vitiate the theorems, but one
must work through them on a case by case basis to make the determination. If one
has some reason to believe, for example, that a given type of salient violation can be
segregated entirely from the region of spacetime in which a closed, trapped surface
forms and evolves (because, e.g., of the type of collapsing matter that eventuates
in the trapped surface), then one also has some reason to believe that any theorem
that both invokes the violated condition and places the singularity in such a closed,
trapped surface may still hold despite the violation. It would take us too long to
go through all the singularity theorems and all the types of violations to determine
which violations can and cannot be relevantly segregated from the regions where the
predicted singularities form or reside. I leave this as an exercise for the reader.

96See Curiel [45] for discussion.
97Again, see Curiel [45] for discussion of why the scare-quotes are called for.
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Similar considerations about pinpointing, type of violation, and the possibility
of segregation come into play when trying to determine whether a given violation
should give us reason to doubt the soundness of any other type of given consequence
of an energy condition. I see no way to draw clean, general conclusions.

In sum, it seems difficult to escape the conclusion that we are faced with the horns
of an important dilemma: either we must learn to live with the “exotic” physics
that violations of energy conditions lead to (wormholes, closed timelike curves,
sudden future singularities, spatial topology change, naked singularities, et al.), and
so become much more skeptical of the plethora of seemingly important results that
rely on the conditions; or else we must reconstruct fundamental physical theory
root and branch, e.g., by prohibiting the use of essentially all scalar fields, in order
to rule out the possibility of such violations. I personally find it more realistic, if
not more palatable, to grasp the first horn. An investigation of the consequences
of this conclusion for projects that purport to provide fundamental explication and
interpretation of the conceptual and physical structure of general relativity is beyond
the scope of this paper, but is, I think, urgently called for.

3.3 Appendix: The Principle of Equivalence

There is an interesting, thoughnot obvious, possible connection between the principle
of equivalence (in at least some of its guises) and energy conditions. (See Wallace
[207, this volume] for discussion of the principle of equivalence.) Postulating the
lack of a preferred flat affine connection is, to my mind, one of the most promising
ways of trying to formulate the principle of equivalence in a way that one can make
somewhat precise [190, 191], even if one cannot show that such a principle must
be true in the context of the theory. Could one derive an energy condition, or the
violation of one, from the existence of a preferred flat affine structure? One way to
determine such a privileged flat affine connection would be by use of the existence
of a distinguished family of particles possessing what, for lack of a better term, I will
call “anti-inertial charge”, which would couple with the “active gravitational mass”
of ordinary matter in such a way as to result in the anti-inertial systems traversing
curves whose images form the projective structure of a flat affine connection. For a
force that picks out such a connection, one can assign to it a stress-energy tensor by
solving the equation of geodesic deviation using it as a force that exactly cancels out
the curvature terms due to the ordinary affine connection, and deriving an expression
for an “effective” stress-energy tensor associated with the force.

One possible mechanism for producing anti-inertial charge is strongly suggested
by the arguments of Bondi [18] showing that active and passive gravitationalmass are
not necessarily equal in general relativity, at least when negative mass is allowed.98

98I put aside the problem that “mass” is, in general, not a well defined concept in general relativity.
If one likes, one can consider the following discussion to be restricted to test particles in static
spacetimes.
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In particular, negative masses uniformly repel all other mass, irrespective of the sign
of the other masses, and likewise positive masses uniformly attract all other masses,
and so, most strikingly, a system consisting of one positive and one negative mass
will spontaneously accelerate, even when no forces other than “gravitational” are
present. a clear violation of the weak equivalence principle, that, roughly speaking,
all small enough freely falling bodies traverse the same worldlines, viz., geodesics.
(Arguably, the inequality of passive and active gravitational mass already constitutes
a violation of the weak principle of equivalence, at least in one of its guises.) In
this case, negative mass plays the role of an anti-inertial charge. In the case that
Bondi describes, therefore, the projective structure of the flat affine connection could
possibly be determined by the acceleration curves of systems having equal parts
positive and negative active gravitational mass.

This line of thought suggests the following.

Conjecture 1 If one were able to demonstrate the existence of a privileged flat affine
connection, by the existence of a family of particles with anti-inertial charge, then one
or more of the standard pointilliste energy conditions would be generically violated.

3.4 Coda: The Trace Energy Condition

The history of what may be called the Trace Energy Condition (TEC) should give
one pause before rejecting possible violations of the standard energy conditions on
the grounds that the circumstances or types of matter involved in the violations seem
to us today “too exotic”. The TEC states that the trace of the stress-energy tensor can
never be negative (T = T n

n ≥ 0—or, depending on one’s metrical conventions, that
it can never be positive). In its effective formulation, therefore, the condition requires
that p ≤ 1

3ρ in a medium with isotropic pressure. Before 1961, it seemed to have
been more or less universally believed in the general relativity community that this
conditionwould alwaysbe satisfied, evenunder themost extremephysical conditions.
It is, for instance, assumed without argument, or even remark, in the seminal papers
of Oppenheimer and Volkoff [146] and Harrison et al. [95] on possible equations of
state for neutron stars. It was not seriously questioned until the work of Zel’dovich in
the early 1960s, in which he showed that a natural solution for a quantum field theory
relevant to modeling the matter in neutron stars leads to macroscopic equations of
state of the form p = ρ.99 In fact, it is widely believed today that matter at densities
above 10 times that of atomic nuclei, as we expect to find in the interior of neutron
stars, behaves in exactly that manner [181, ch. 8].100

99See Zel’dovich and Novikov [215] (especially p. 197) for a discussion.
100This coda was inspired by the discussion in Morris and Thorne [139].
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4 Temporal Reversibility

For the purposes of the discussion in §5, and because it is of some interest in its
own right, I will briefly discuss the relation of the energy conditions to the idea of
temporal reversibility.

A spacetime is temporally orientable if one can consistently designate one lobe
of the null cone at every point as the “future” lobe. A temporal orientation then
is logically equivalent to the existence of a continuous timelike vector field ξ a; by
convention, the future lobe of the null cone at each point is that into which ξ a points,
and a causal vector is itself future-directed if it points into or lies tangent to the
future lobe. To reverse the temporal orientation is to take −ξ a to point everywhere
in the “future” direction. If Tab is the stress-energy tensor in the original spacetime,
then we want the time-reversed spacetime to have the stress-energy tensor T ′

ab such
that: the four-momentum of any particle as determined relative to any observer will
be reversed in the time-reversed case; and the energy density of any particle as
determined relative to any observer will stay the same. Formally

1. T ′
an(−ξ n) = −Tanξ

n

2. T ′
mn(−ξm)(−ξ n) = Tmnξ

mξ n

Clearly, then, T ′
ab = Tab. So, in sum, I claim the rule for constructing the time reverse

of a (temporally orientable) relativistic spacetime is to leave everything the same
except for the sense of parameterization of timelike (and null) curves, which should
be reversed. (No problem arises with parameterization of spacelike curves: there is
no natural or preferred sense for their parameterization in the first place.)

This makes physical sense. The best way to see this is to ask what should happen
to the metric under time reversal. I claim the answer is: nothing at all. The metric
stays the same. Temporal orientation is not a metrical concept. It is a concept at the
level of differential topology and conformal structure. The temporal orientation is
determined by how one parameterizes temporal curves (which in turn, of course,
depends on whether one can do so in a way that consistently singles out a choice of
“future lobe of null cone” at every point of the manifold in the first place). It also

makes geometrical sense. If one fixes a 1 + 3 tetrad {μ

ξ a}μ∈{0, 1, 2, 3} (not necessarily

orthonormal) such that the metric at a point can be expressed as
∑

μ αμ

μ

ξ a

μ

ξ b, for

some real coefficients αμ, then reversing the sign of
0
ξ a clearly does not change the

metric.101 (One can always find such a tetrad at a single point, though it may not be
extendible to a tetrad-field with the same property.)

It is a simple matter to verify that a spacetime satisfies any one of the standard
energy conditions listed in §2 if and only if the time reverse of the spacetime does as

101Another way to see this is to note that the only reasonable choice for “changing the metric” under
time reversal would be to multiply it by −1; that however, does not change the Einstein tensor, and
so a fortiori cannot change the stress-energy tensor.
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well. (The same holds as well for all the more recently proposed energy conditions
discussed in §2.4.) On the face of it, this is somewhat surprising. A white hole, for
instance, is the time reverse of a black hole, and surely that should violate some
energy condition. But in fact, no, it shouldn’t, as a perusal of the relevant Penrose
diagram will show: a white hole will violate an energy condition if and only if its
time-reversed black hole does so.

5 Constraints on the Character of Spacetime Theories

General relativity assumes the existence of a single object, the stress-energy tensor
Tab that encodes, for all fields of matter, all properties relevant to determining the
relationship of the matter to the geometrical structure of spacetime. This relationship
is governed by the Einstein field equation,

Gab = 8πTab

This equation, conjoined with the definition of a spacetime model (M , gab), con-
stitutes the entirety of general relativity as a formal theory.

In order to do physics, however, we must give physical significance to the formal
terms in the Einstein field equation, and this is where the idea of stress-energy enters.
As its name suggests, the stress-energy tensor encodes for matter only information
about what we normally think of as its energy, momentum and stress content. Gen-
eral relativity, then, assumes that what we normally think of as stress-energy content
completely determines the relation of spacetime structure to matter—no other prop-
erty of matter “couples” with spacetime structure at all, except in so far as it may
have a part in determining the stress-energy of the matter. It is exactly this feature
of general relativity that affords the energy conditions their power. Nonetheless, we
fully expect, or at least fervently hope, that general relativity will one day give way
to a deeper theory of gravity, one that will attend to the presumably quantum nature
of phenomena in regions of extreme curvature.102 It thus makes sense to explore
alternative theories of spacetime even in the strictly classical regime, if only to get
ideas about how to try to modify general relativity in the search for that deeper the-
ory. Surely not everything is up for grabs, though. Even in the attempt to formulate
alternative theories in the spirit of free exploration, some core structure or set of
structures must be retained in order for the explorations to take place in the province
of “spacetime theories”. What is that core? Is there a single one?

In particular, for our purposes, the most important question is: what must be true
about the relation of stress-energy to the local and global structures of spacetime, in a

102I will not discuss the relation of energy conditions to any programs in quantum gravity, as I
do not feel any of them are mature enough as proposals for a physical theory to support serious
analysis of this sort. See Curiel [46] for why I hold this view. See Wüthrich [213, this volume],
among others, for arguments to the contrary.
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candidate spacetime theory, for one to be able to formulate energy conditions and use
them to derive results?What, we are thus led to ask, must a spacetime theory itself be
like in order for it to be able to exploit the possibility that deep and extensive features
of global structure depend only on purely qualitative properties of stress-energy?Any
field equations it imposes must be “loose” enough to respect this fact. In particular,
no global feature of the geometry, as constrained by a theory’s field equations, should
depend on anything but purely qualitative properties of stress-energy; a fortiori, no
global feature of the geometry should depend on the species of matter present, so
long as that species manifests a relevant qualitative property. It is otherwise difficult
to see how generic, purely qualitative conditions could determine specific, concrete
features of spacetime geometry.

A useful way to begin to try to address these questions, and at the same time to
begin to figure out the place of energy conditions in relation to potentially viable
alternative spacetime theories, is to ask oneself, following a line of questioning
introduced early inGeroch andHorowitz [92], what one can envisage needing to hold
onto in future developments of physical theory, come what may. Not the Einstein
field equation itself, most likely. Very likely causal structure of some sort.What else?

What follows is my attempt at such a list of structures, roughly ordered by
“fundamentality”—where I mean by this only something like: what we would or
should be willing to give up before what else, what we have more and less confi-
dence will survive in future theories (not anything having to do with recent debates
in the metaphysics literature). Such an ordering should respect, at a minimum, the
fact that one needs in place already some structure in order to be able to define other
structure—one could not countenance giving up the former before the latter.103

In constructing the list, I have been guided by the tenet that any physically reason-
able spacetime theory should “look enough like” general relativity so as to make all
the elements of the list sensible in its context. Not all the elements in the list, however,
should be understood to be restricted to the form they take in standard accounts of
general relativity. For instance, “causal structure” need not mean Lorentzian light
cone structure; it may signify, for example, only some relation among events required
by some feature of ambient matter fields, such as respecting the characteristic cones
ofmatter obeying symmetric, quasilinear, hyperbolic equations ofmotion,whether or
not those cones conform to the standard Lorentzian metric of spacetime.104 Any such
list, moreover, will ineluctably be shaped in part by the biases, prejudices and aes-
thetic and practical predilections of the one constructing it, so the following attempt
should be taken with a healthy dose of salt.105

103For a similar list, albeit constructed for a somewhat different purpose, and with a very different
ordering than mine, see Isham [118, p. 10].
104See, e.g., Geroch [91] and Earman [62].
105One could sharpen this list by distinguishing between local and global varieties of structure,
e.g., by allowing for the possibility that it makes sense to determine a local causal structure without
necessarily requiring the existence of a global one. (In such a case, presumably something like
transitivity of causal connectability would fail.) While I think such distinctions could have interest
for some projects, they are too recherché for my purposes here.
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1. event structure: primitive set of “events” constituting the fundamental building
blocks of spacetime106

2. causal structure: primitive relation of “causal connectability” among events (not
necessarily distinguishing between null and timelike connectability)

3. topology: spacetime dimension; notion of continuous curves and fields (maps to
and from event structure); relative notions of “proximity” among events; global
notions of “connectedness” and “hole-freeness” on event structure

4. projective structure, conformal structure, temporal orientability: notion of a set
of events forming a “straight line”, and so physically a distinguished family of
curves (but not yet a distinction between accelerated and non-acceleratedmotion);
distinction among spacelike, null and timelike curves; preferred orientation for
parameterization of causal curves; null geodesics (but not timelike or spacelike);
asymptotic flatness; singularities (incomplete, inextendible causal curves); hori-
zons (event, apparent, particle, etc., and so asymptotically flat black holes)

5. differential structure: notion of smooth (or at least finitely differentiable) curves
and fields; and so of tangent vectors, tensors, Lie derivatives and exterior deriva-
tives; and so of field equations and equations of motion; spinor structure

6. affine structure: notion of accelerated versus non-acceleratedmotion, and so time-
like geodesics; spacelike geodesics, and so characterization of “rigid bodies”;
“hyperlocal” conservation laws (covariant divergence), at least for quantities “rep-
resented by” contravariant indices on tensors; comparison (ratios) of lengths of
curve-segments, and so integrals along curves

7. metric structure: principled distinction between Ricci and Weyl curvature (“mat-
ter” versus “vacuum”); “hyperlocal” conservation laws (covariant divergence) for
any quantity; volume element, and so integrals, and so integral conservation laws
(in the presence of symmetries) for spacetime regions of any dimension; vari-
ational principles; convergence and divergence of geodesic congruences (Ray-
chaudhuri equation), and so trapping surfaces (generalized black holes)

8. Einstein field equation: fixed relation between properties of ponderable matter
and spacetime geometry; initial value formulation and dynamics

Now, granting the interest of the list for the sake of argument, where, if at all,
should one place energy conditions on it? No matter what else is the case, so long as
definitional dependence (what one needs in place already to define or characterize
structure of a particular sort) is one criterion used in ordering such a list, it seems that
energy conditions, in their standard forms, must be not so fundamental as differential
structure: one needs differential structure in order to write down any tensor, and
so a fortiori to write down a stress-energy tensor. Because all the standard energy
conditions (and prettymuch all the nonstandard ones), rely on the distinction between
causal and noncausal vectors in general, and often on the distinction between null
and timelike, it seems likely that energy conditions will be less fundamental than
conformal structure as well. Energy conditions, however, do not seem to require a
notion of temporal orientability, as the discussion of §4 strongly suggests, and, except

106This does not presuppose that an “event” is a purely local entity, in any relevant sense of “local”.
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for the impressionist conditions, neither do they require a projective structure. They
also seem to be largely independent of topological structure (except in so far as it
is required to define differential structure). The impressionist energy conditions do
require an affine structure (for the definition of a line-integral along a geodesic),
but since they have much murkier physical significance and far fewer important
applications than the pointilliste ones, I would almost certainly prefer to forego them
before foregoing an affine structure.

Now, if one accepts my ordering, or anything close to it, energy conditions do
not seem to fit anywhere neatly in it. So what can we conclude? One possibility
is that energy conditions are not clearly a part of any broad conception of what a
spacetime theory is, and thus, perhaps, are not themselves of fundamental importance
in the study of the foundations of spacetime theories. Alternatively, one could choose
to take the fact that energy conditions seem to fit nowhere neatly in the list as a
reason to change my groupings of structure into levels or to change my proposed
order of levels. All of these considerations are complicated by the fact that the
geometrical and physical forms of the energy conditions are equivalent if one assumes
the Einstein field equation, but, if one does not, as inmost if not all alternative theories
of spacetime, all bets are off. In such cases, should one hold on to the geometrical
formulations, to try to ensure that one will still be able to derive the consequences
listed in §3.1? Or should one hold on to the physical formulations, so as to be able
to investigate possible violations of the sort listed in §3.2?

One reason to think they should form part of any broad conception of what con-
stitutes a spacetime theory, irrespective of which formulation one wants to hold on
to, rests on the remark of Geroch and Horowitz [92] I quoted on page 49, that with-
out energy conditions the Einstein field equation “has no content.” The conditions
one needs to impose to make the initial value problem of general relativity merely
consistent—the so-called Gauss-Codazzi constraints—look very much like condi-
tions on the allowed forms of types of matter. So does the fact that the standard proofs
showing existence and uniqueness of solutions to the initial value problem of general
relativity require matter fields that yield quasilinear, hyperbolic equations of motion
satisfying the DEC throughout all of spacetime (Hawking and Ellis [107, ch. 7, §7,
pp. 254–5]; Wald [203, ch. 10, especially pp. 250 and 266–7]). This fact seems to
place a constraint on spacetime theories—only theories that require nontrivial input
about the nature of matter in order for the distribution of matter to constrain the
geometry of spacetime ought to be counted as physically reasonable, at least if we
want to try to hold on to the idea that a viable spacetime theory ought to support a
cogent notion of dynamical evolution, and thus (at a minimum) ought to admit a well
set initial value formulation.107

107One ought to keep in mind, of course, that we already know the DEC is not necessary for a
well defined initial value formulation, as the arguments of Geroch [91] show. What is at issue
here is whether the DEC is necessary for the initial value formulation to be well set in the sense
of Hadamard—whether, that is, we can show not only existence and uniqueness of solutions, but
also stability under small perturbations. There is some evidence that solutions to the initial value
problem for some particular types of matter fields violating the NEC will be unstable [59, 200], but
the arguments are murky and often hand-waving.
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One can try to make this idea precise, and at the same time to capture the kernel
of Geroch and Horowitz’s remark, in the following way. First, note that globally
hyperbolic spacetimes represent in a natural way possible solutions to the initial
value problem of general relativity as it is normally posed.108 Now, it is a trivial
matter to find globally hyperbolic spacetimes that violate any energy condition.
Proof: pick your favorite globally hyperbolic spacetime and some open set in it;
from the formulæ in Wald [203, Appendix D], it follows that one can always find a
conformal transformation of the metric that is the identity outside the open set and
nontrivial inside such that at somepoint in the set the transformed stress-energy tensor
will yield whatever one wants on contraction with a timelike or null vector; since
conformal transformations preserve causal structure, the transformed spacetime is
still globally hyperbolic.

Now, this fact poses a serious problem for any attempt to formulate a notion
of dynamical evolution that would support any minimal notion of predictability or
determinism. Fix a Cauchy surface in the original spacetime to the past of the open
set one conformally jiggered in the proof I sketched. Take that Cauchy surface as
initial data for the initial value problemof general relativity.Which spacetimewill the
Cauchy development off that Cauchy surface (the solution to the initial value problem
with that initial data) yield? The original one? One of the conformally jiggered ones?
Another one entirely? If one cannot give principled reasons for why exactly one of
those spacetimes and no other is the natural result of dynamical evolution off the
Cauchy surface according to the Einstein field equation, then one has captured one
sense in which the Einstein field equation may “have no content.”109 The fact that
the only known proof of the theorem that a given globally hyperbolic extension of
a spacetime is the maximal such extension requires the WEC [163], in conjunction
with the fact that the assumptions of standard proofs of the well posedness of the
initial value formulation for general relativity imply the DEC throughout the entirety
of the derived spacetime [203, ch. 11], suggest that it may be the energy conditions
that intervene to ensure a cogent notion of dynamical evolution that supports some
minimal notion of predictability or determinism.110

108But see, e.g., Ringström [163] for a discussion of the formidable subtleties and complexities
involved in trying to make even this seemingly simple idea precise.
109This is not the infamous Hole Argument [63], nor is it in any way related to it, as conformal
transformations are not in general associated with diffeomorphisms.
110One may want to object that, inside the region where the conformal transformation is nontrivial,
one has actually changed the stress-energy tensor in such a way that what type of matter now is there
is not the same as it was before, and so must obey different field equations; thus, the requirement
that the same field equations apply throughout the evolution suffices to guarantee uniqueness. I,
however, find the notion of “same field equations” to be, in our current state of understanding,
hopelessly ambiguous. It is a highly nontrivial matter to ascertain whether or not some matter field
obeys the “same field equations” in different spacetimes, or even in different regions of the same
spacetime. Say that the field couples to the scalar curvature, but it so happens that in the spacetime
at issue the scalar curvature vanishes everywhere. After the conformal transformation, the scalar
curvature may no longer vanish in the region where the conformal transformation is nontrivial, and
so the field equations will look as though they have “changed form” when passing from one region
to the other.
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Holding on to everything in my list except for the Einstein field equation, so long
as whatever field equations do hold depend only on something like the stress-energy
tensor that does not depend on idiosyncratic features of particular kinds of matter,
I strongly suspect that one will likely face the same problem. Thus, once again, we
seem pushed toward the view that energy conditions play some fundamental role or
other in any reasonably broad conception of spacetime theories or at least any such
conception that would include a cogent notion of dynamical evolution.

If one does think energy conditions belong as a part of any reasonably broad
conception of what constitutes spacetime theory, one tempting way to try to capture
the sense in which they may hold at a level of structure deeper than the Einstein
Field Equation invokes the thermodynamical character of stress-energy: all stress-
energy is fungible, is interchangeable, in the strong sense that the form it takes
(electromagnetic, viscoëlastic, thermal, etc.), and so a fortiori any property or quality
it may have idiosyncratic to that form, is irrelevant to its gravitational effects, both
locally and globally. This is not a conclusion that follows by logical consequence
from the observation that qualitative energy conditions suffice to prove theorems
of great depth and strength about global structure. It is only one that is strongly
suggested by what thermodynamics tells us about the nature of energy. I will not be
able to discuss this idea further in this paper, however, as it would take us too far
afield.111

The inability to derive the energy conditions from other propositions of a funda-
mental character constitutes an essential part of what pushes one to conceive of them
as structure “at a deeper level” than many other elements on the list, perhaps even
deeper than causality conditions (many of which can be derived from other funda-
mental assumptions), and so applicable across a very wide range of possible theories
of spacetime. If, in the end, one does hold the view that they ought to be thought of as
a fundamental part of a reasonably broad conception of what constitutes a spacetime
theory, then perhaps, as I suggested in §2.1, the final lesson here is that the geometric
form of the energy conditions are the ones to be thought of as fundamental, in so
far as they rely for their statement and interpretation only on invariant, geometri-
cal structures and concepts, whose consequences will hold irrespective of the exact
field equation assumed by the given spacetime theory. If that is so, then perhaps one

111In one of the first papers inwhich he tried to provide a fundamental derivation of the field equation
bearing his name, Einstein [69, pp. 148–9] explicitly used a similar line of thought to motivate the
idea that all gravitationally relevant mass-energetic quantities associated with matter of any kind is
exhaustively captured by the stress-energy tensor:

The special theory of relativity has led to the conclusion that inert mass is nothing more or
less than energy, which finds its complete mathematical expression in a symmetrical tensor
of second rank, the energy tensor. Thus in the general theory of relativity we must introduce
a corresponding energy tensor of matter T α

σ…. It must be admitted that this introduction of
the energy tensor of matter is not justified by the relativity postulate alone. For this reason
we have here deduced it from the requirement that the energy of the gravitational field shall
act gravitatively in the same way as any other kind of energy.
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potentially fruitful way to use the (poorly named?) energy conditions as a constraint
on the construction of spacetime theories is to search for theories in which these
important geometric conditions have unproblematic, physically significant interpre-
tations.
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Background Independence, Diffeomorphism
Invariance and the Meaning of Coordinates

Oliver Pooley

Abstract Diffeomorphism invariance is sometimes taken to be a criterion of
background independence. This claim is commonly accompanied by a second that the
genuine physical magnitudes (the “observables”) of background-independent theo-
ries and those of background-dependent (non-diffeomorphism-invariant) theories are
essentially different in nature. I argue against both claims. Background-dependent
theories can be formulated in a diffeomorphism-invariant manner. This suggests that
the nature of the physical magnitudes of relevantly analogous theories (one back-
ground free, the other background dependent) is essentially the same. The temptation
to think otherwise stems from a misunderstanding of the meaning of spacetime coor-
dinates in background-dependent theories.

1 What is so Special about General Relativity?

According to a familiar and plausible view, the core of Einstein’s general theory of
relativity (GR) is what was, in 1915, a radically new way of understanding grav-
itation. In pre-relativistic theories, whether Newtonian or specially relativistic, the
structure of spacetime is taken to be fixed, varying neither in time nor from solution
to solution. Gravitational phenomena are assumed to be the result of the action of
gravitational forces, diverting gravitating bodies from the natural motions defined by
this fixed spacetime structure. According to GR, in contrast, freely falling bodies are
force free; their trajectories are natural motions. Gravity is understood in terms of a
mutable spacetime structure. Bodies act gravitationally on one another by affecting
the curvature of spacetime. “Space acts on matter, telling it how to move. In turn,
matter reacts back on space, telling it how to curve” [41, 5]. Note that the first of
the claims in the quotation is as true in pre-relativistic theories as it is in GR, at
least according to the substantivalist view, which takes spacetime structure in such a
theory to be an independent element of reality. The novelty of GR lies in the second
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claim: spacetime curvature varies, in time (and space) and across models, and the
material content of spacetime affects how it does so.

This sketch of the basic character of GR has two separable elements. One is
the interpretation of the metric field, gab, as intrinsically geometrical: gravitational
phenomena are to be understood in terms of the curvature of spacetime. The second
is the stress on the dynamical nature of the metric field: the fact that it has its own
degrees of freedom and, in particular, that their evolution is affected bymatter. While
I believe that both of these are genuine (and novel) features of GR, my focus in this
paper is on the second. Those who reject the emphasis on geometry are likely to
claim that the second element by itself encapsulates the true conceptual revolution
ushered in by GR. Non-dynamical fields, such as the spacetime structures of pre-
relativistic physics, are now standardly labelled background fields (although which
of their features qualifies them for this status is a subtle business, to be explored
in what follows). On the view being considered, the essential novelty of GR is that
such background structures have been excised from physics; GR is the prototypical
background-independent theory1 (as it happens, a prototype yet to be improved
upon).

Although this paper is about this notion of background independence, the question
of the geometrical status of the metric field cannot be avoided entirely. In arguing
against the interpretation of GR as fundamentally about spacetime geometry, Ander-
son writes

What was not clear in the beginning but by now has been recognised is that one does not
need the “geometrical” hypotheses of the theory, namely, the identification of a metric with
the gravitational field, the assumption of geodesic motion, and the assumption that “ideal”
clocks measure proper time as determined by this metric. Indeed, we know that both of
these latter assumptions follow as approximate results directly from the field equations of
the theory without further assumptions. [3, 528]

There is at least the suggestion here that GR differs from pre-relativistic theories
not only in lacking non-dynamical, background structures but also in terms of how
one of its structures, the “gravitational field”, acquires geometrical meaning: the
appropriate behaviour of test bodies and clocks can be derived, approximately, in the
theory. Does this feature of GR really distinguish it from special relativity (SR)?

Consider, in particular, a clock’s property of measuring the proper time along
its trajectory. In a footnote, Anderson goes on to explain that “the behaviour of
model clocks and what time they measure can be deduced from the equations of

1In what follows I focus specifically on the notion of background independence that is connected
to the idea that background structures are non-dynamical fields. In doing so, I am ignoring several
other (not always closely related) definitions of background independence, including those given by
Gryb [35] (which arises more naturally in the context of Barbour’s 3-space approach to dynamics)
and by Rozali [55] (which arises naturally in string theory). A more serious omission is the lack of
discussion of the definition given by Belot [9], which is motivated by ideas closely related to the
themes of this paper. I hope to explore these connections on another occasion.
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sources of the gravitational and electromagnetic fields which in turn follow from the
field equations” [3, 529]. But the generally relativistic “equations of sources of the
gravitational and electromagnetic fields” are, on the assumption ofminimal coupling,
exactly the same as the equations of motion of an analogue specially relativistic
theory.2 It follows that whatever explanatory modelling one can perform in GR, by
appeal to such equations, to show that some particular material system acts as a good
clock and discloses proper time, is equally an explanation of the behaviour of the
same type of clock in the context of SR. Put differently, it is as true in SR as it is in
GR that the “geometrical” hypothesis linking the behaviour of ideal clocks to the (in
this context) non-dynamical background “metric” field is in principle dispensable.3

2 Einstein on General Covariance

The previous section’s positive characterisation of GR’s essential difference from its
predecessors goes hand-in-hand with a negative claim: GR does not differ from its
predecessors in virtue of being a generally covariant theory. In particular, the general
covariance of GR does not embody a “general principle of relativity” (asserting, for
example, the physical equivalence of observers in arbitrary states of relative motion).
In contrast, the restricted, Lorentz covariance of standard formulations of specially
relativistic physics does embody the (standard) relativity principle. InMichael Fried-
man’s words, “the principle of general covariance has no physical content whatever:
it specifies no particular physical theory; rather it merely expresses our commitment
to a certain style of formulating physical theories” [32, 55].

Notoriously, of course, Einstein thought otherwise, at least initially.4 The restricted
relativity principle of SR and Galilean-covariant Newtonian theories is the claim that
the members of a special class of frames of reference, each in uniform translatory

2That it is only in the GR context that material fields merit the label “sources of the gravitational
field” is, of course, irrelevant.
3In this context, it is interesting to consider Fletcher’s proof that the clock hypothesis holds up
to arbitrary accuracy for sufficiently small light clocks [31]. As is explicit in Fletcher’s paper, his
result is as applicable to accelerating clocks in SR as it is to arbitrarily moving clocks in GR.
Fletcher’s proof assumes only that light travels on null geodesics; it does not make any assumptions
about the fundamental physics, or even (specific) assumptions about the deformation of the spatial
dimensions of the clock. All of this is consistent with one of the morals of the “dynamical approach
to special relativity”, defended in Brown [11] and Brown and Pooley [13], that it is no more of a
brute fact in SR than in GR that real rods and clocks, which are more or less complex solutions
of the laws governing their constituents, map out geometrical properties in the way that they do.
What Fletcher’s proof illustrates is that some interesting results are nonetheless obtainable from
minimalist, high-level physical assumptions. (Note that, in contrast to the position taken in Brown
and Pooley [13], I am here assuming that the structure encoded by the flat metric field of special
relativity corresponds to a primitive element of reality, as was entertained in Brown and Pooley [13,
82, fn 22].)
4The evolution of Einstein’s views is covered in detail by Norton[43, §3]. In this section, I largely
follow Norton’s narrative.
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motion relative to the others, are physically equivalent. In such theories, although no
empirical meaning can be given to the idea of absolute rest, there is a fundamental
distinction between accelerated and unaccelerated motion. Einstein thought this was
problematic, and offered a thought experiment to indicate why.

Consider two fluid bodies, separated by a vast distance, rotating relative to one
another about the line joining their centres. Such relative motion is in principle
observable, and so far our description of the set-up is symmetric with respect to
the two bodies. Now, however, imagine that one body is perfectly spherical while
the other is oblate. A theory satisfying only the restricted principle of relativity is
compatible with this kind of situation. In such a theory, the second body might be
flattened along the line joining the two bodies only because that body is rotating,
not just with respect to other observable bodies, but with respect to the theory’s
privileged, non-accelerating frames of reference. Einstein deemed this an inadequate
explanation. He claimed that appeal to the body’s motion with respect to the invisible
inertial frames was an appeal to a “merely factitious cause”. In Einstein’s view, a
truly satisfactory explanation should cite “observable facts of experience” [24, 113].
A theorywhich in turn explains the (local) inertial frames in terms of the configuration
of (observable) distant masses—that is, a theory satisfying (a version of) Mach’s
Principle—would meet such a requirement.

In his quest for a relativistic theory of gravity, Einstein did not attempt to imple-
ment (this version of) Mach’s principle directly. Instead he believed that the equiva-
lence principle (as he understood it) was the key to extend the relativity principle to
cover frames uniformly accelerating with respect to the inertial frames. In standard
SR, force-free bodies that move uniformly in an inertial frame F are equally acceler-
ated by inertial “pseudo forces” relative to a frame F ′ that is uniformly accelerating
relative to F . According to Einstein’s equivalence principle, the physics of frame
F ′ is strictly identical to that of a “real” inertial frame in which there is a uniform
gravitational field. In other words, the same laws of physics hold in two frames that
accelerate with respect to each other. According to one frame, there is a gravitational
field; according to the other, there is not. The laws that hold with respect to both
frames, therefore, must cover gravitational physics. Einstein took it to follow that
there is no fact of the matter about whether a body is moving uniformly or whether
it is accelerating under the influence of gravitation. The existence of a gravitational
field becomes frame-relative, in a manner allegedly analogous to the frame-relativity
of particular electric and magnetic fields in special relativity.5

The equivalence principle, then, led Einstein to believe both that relativistic laws
covering gravitational phenomena would extend the relativity principle and that the
gravitational field would depend, in a frame-relative manner, on the metric field, gab.
A theory implementing a general principle of relativity would affirm the physical
equivalence of frames of reference in arbitrary relative motion. Einstein took the
physical equivalence of two frames to be captured by the fact that the equations

5For a recent, sympathetic discussion of this aspect of Einstein’s understanding of the equivalence
principle, see Janssen [37].
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expressing the laws of physics take the same form with respect to each of them.6

But general covariance is the property that a theory possesses if its equations retain
their form under smooth but otherwise arbitrary coordinate transformation. Einstein
noted that such coordinate transformations strictly include “those which correspond
to all relative motions of three-dimensional systems of co-ordinates” [24, 117]. He
therefore maintained that any generally covariant theory satisfies a general postulate
of relativity.7

Einstein soon modified his view. Essentially the view expressed by Friedman
in the quotation given above—that any theory can be given a generally covariant
formulation—was put to Einstein by Kretschmann [39].8 In his response, Einstein
conceded the basic point [25]. He identified three principles as at the heart of GR:
(a) the (general) principle of relativity; (b) the equivalence principle; and (c)
Mach’s principle. The relativity principle, at least as characterised in his reply to
Kretschmann, was no longer conceived of in terms of the physical equivalence of
frames of reference in various types of relative motion. Instead it had simply become
the claim that the laws of nature are statements only about spatiotemporal coin-
cidences, from which it was alleged to be an immediate corollary that such laws
“find their natural expression” in generally covariant equations. Mach’s principle
was also given a GR-specific rendition: the claim was that the metric was completely
determined by the masses of bodies.

In another couple of years, as a result of findings by de Sitter and Klein, Einstein
was also forced to accept that his theory did not vindicate Mach’s ideas about the
origin of inertia. His official objection to the spacetime structures of Newtonian and
specially relativistic theories changed accordingly, in order to fit this new reality.9

Einstein conceded that taking Newtonian physics at face value involves taking New-
ton’s Absolute Space to be “some kind of physical reality” [28, 15]. That it has to
be conceived of as something real is, he says, “a fact that physicists have only come
to understand in recent years” [28, 16]. It is absolute, however, not merely in the
substantivalist sense that it exists absolutely. Now Einstein placed emphasis on the
fact that it is not influenced “either by the configuration of matter, or by anything
else” [28, 15]. This violation of the action–reaction principle, rather than its status
as an unobservable causal agent, came to be seen as what is objectionable about
pre-relativistic spacetime. In Einstein’s words, “it is contrary to the mode of thinking

6Recall Einstein’s 1905 statement of the restricted principle of relativity: “The laws by which the
states of physical systems undergo change are not affected,whether these changes of state be referred
to the one or the other of two systems of co-ordinates in uniform translatory motion” [23, 41].
7“Es ist klar, daß eine Physik, welche diesem Postulat [i.e. general covariance] genügt, dem allge-
meinen Relativitätspostulat gerecht wird” [24, 776].
8Kretschmann’s position is more subtle than the headline lesson that is standardly taken from it. In
particular, he relied on a key premise, closely analogous to the central premise of Einstein’s ‘point-
coincidence’ response to his own hole argument that the factual content of a theory is exhausted
by spatiotemporal coincidences between the objects and processes it posits; see Norton [43, §5.1].
The assumption that the basic objects of a theory must be well defined in the sense of differential
geometry has come to play a similar role in modern renditions of Kretschmann’s claim.
9For more on the evolution of this aspect of Einstein’s thinking, see Brown and Lehmkuhl [12].
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in science to conceive of a thing (the space-time continuum) which acts itself, but
which cannot be acted upon” [27, 62].10 It is clear that, while GR fails to fulfil the
Machian goal of providing a reductive account of the local inertial frames, it does
not suffer from this newly identified (alleged) defect of pre-relativistic theories. The
metric structure of GR conditions the evolution of the material content of spacetime,
but it is also, in turn, affected by that content.

This potted review of Einstein’s early pronouncements is intended to show that
he was one of the original advocates of the view outlined in Section 1, namely,
that GR differs from its predecessors, not through lacking the kind of spacetime
structures that such theories have, but by no longer treating that structure as a non-
dynamical background. It also shows that, despite being responsible for the idea
that the general covariance of GR has physical significance as the expression of the
theory’s generalisation of the relativity principle, Einstein himself quickly retreated
from this idea. He continued (mistakenly) to espouse the idea that GR generalised the
principle of relativity, via the equivalence principle, but GR’s general covariance was
no longer taken to be a sufficient condition of its doing so. Instead the implication in
the opposite direction was stressed. General covariance was taken to be a necessary
condition of implementing a general relativity principle: there can be no special
coordinate systems adapted to preferred states of motion in a theory in which there
are no preferred states of motion!

In the immediate wake of Kretschmann’s criticism, one of Einstein’s most reveal-
ing statements concerning the status of general covariance comes in his response to
a paper by Ernst Reichenbächer. There, Einstein contrasts a theory that includes an
acceleration standard with one that does not

if acceleration has absolute meaning, then the nonaccelerated coordinate systems are pre-
ferred by nature, i.e., the laws then must—when referred to them—be different (and simpler)
than the ones referred to accelerated coordinate systems. Then it makes no sense to compli-
cate the formulation of the laws by pressing them into a generally covariant form.

Vice versa, if the laws of nature are such that they do not attain a preferred form through
the choice of coordinate systems of a special state of motion, then one cannot relinquish the
condition of general covariance as a means of research. [26, 205]

From a modern perspective, several things are notable about this passage. First, GR
qualifies as a theory whose laws do not attain a “preferred form through the choice of
coordinate systems of a special state of motion”, not because (as Einstein believed)
acceleration does not have an absolute meaning in the theory, but because the struc-
ture that defines absolute acceleration is no longer homogeneous; in general, it is not
possible to define, over a neighbourhood of a point in spacetime, a coordinate sys-
tem whose lines of constant spatial coordinate are both non-accelerating absolutely

10Similarly, Anderson writes that violation of what he calls a general principle of reciprocity “seems
to be fundamentally unreasonable and unsatisfactory” [1, 192]. As far as I know, neither he nor
Einstein explain why, exactly, such violation is supposed to be objectionable. At the very least,
given Newton’s open-eyed advocacy of absolute space, it seems peculiar to describe it as “contrary
to the mode of scientific thinking.”
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and not accelerating with respect to each other. GR lacks a non-generally covariant
formulation,11 but not for the reason Einstein suggests.

Second, while the equations expressing a theory’s laws might be simpler in a
coordinate system adapted to the theory’s standard of acceleration, it does not fol-
low that these equations, and the equations that hold with respect to accelerated
coordinate systems, express different laws. In fact, it is much more natural to see the
formally different equations as but different coordinate-dependent expressions of the
same relations holding between coordinate-independent entities. As Anderson says
of entities that occur explicitly in a generally covariant formulation of some laws but
which were not apparent in the non-(generally)-covariant equations: “these elements
were there in the first place, although their existence was masked by the fact that they
had been assigned particular values. That is, the gμν [of a generally covariant formu-
lation of a special relativity] are present in [the Lorentz-covariant form of] special
relativity with the fixed preassigned values of the Minkowski metric” [1, 192].12

Finally, while calculation might not be aided by complicating the formulation of
the laws by expressing them generally covariantly, conceptual clarity can be. Real
structures that are only implicit in the non-covariant formalism are laid bare in the
generally covariant formalism, and their status can then be subjected to scrutiny.

In fact, Einstein himself says something quite consonant with these observations
earlier in the same paper

the coordinate system is only a means of description and in itself has nothing to do with the
objects to be described. Only a law of nature in a generally covariant form can do complete
justice in this situation, because in any other way of describing, statements about the means
of description are jumbled with statements about the object to be described. [26, 203]

Einstein’s idea seems to be that coordinates should not have a function beyond the
mere labelling of physical entities, the qualitative character of which is to be fully
described by other means. But this is a basis, not for an argument in favour of laws
that can only be expressed generally covariantly (seemingly Einstein’s intention), but
for an argument for the generally covariant formulation of laws in general, whatever
they be. Ironically, it is an argument that is most relevant to pre-relativistic theories,
not GR, because only in this context can one choose to encode physically meaningful
quantities (spacetime intervals) via special choices of coordinate system, and thereby
‘jumble up’ the mode of description with that described.

11Even this can be disputed. Fock, for example, argued that harmonic coordinates, defined via the
condition (gμν√−g),μ = 0, have a preferred status in GR, analogous to that of Lorentz charts in
special relativity.
12The sameviewof themeaning of the preferred coordinates of the non-covariant formofNewtonian
gravitation theory is clearly articulated by Trautman [65, 418]. It was thoroughly assimilated in the
philosophical literature; see, e.g., Friedman [32, 54–55]. The perspective is explored further in
Sections 4 and 10, where I argue that its relevance for discussions of alleged differences between
the observables of GR and pre-relativistic theories has not been fully appreciated.
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3 Dissent from Quantum Gravity

Let me sum up the picture presented so far. General covariance per se has no physical
content: the essence ofKretschmann’s objection toEinstein is that any sensible theory
can be formulated in a generally covariant manner. It follows that GR does not differ
from SR in virtue of having a generally covariant formulation. However, GR does
differ from SR in lacking a non-covariant formulation. Some authors have made
this fact the basis for claiming that GR, but not SR, satisfies a “principle of general
covariance”. For example, Bergmann writes “The hypothesis that the geometry of
physical space is represented best by a formalism which is covariant with respect to
general coordinate transformations, and that a restriction to a less general group of
transformations would not simplify that formalism, is called the principle of general
covariance” [10, 159].

In SR, the existence of a non-covariant formulation is connectedwith the failure of
a general principle of relativity. The privileged coordinate systems of SR, in which
the equations expressing the laws simplify, encode (inter alia) a standard of non-
accelerated motion. There can be no preferred coordinate systems (of such a type)
in a theory that implements a general principle of relativity. This might suggest that
GR’s lack of a non-covariant formulation is connected to the generalisation of a
relativity principle, but (pace Einstein) it stems from no such thing. Rather, the lack
of preferred coordinates is due to the fact that the spacetime structures of a generic
solution, including those structures common to SR and GR that define absolute
acceleration (in essentially the same way in both theories), lack symmetries and so
cannot be encoded in special coordinates.

Finally, this lack of symmetry is entailed by, but does not entail, the fundamental
distinguishing feature of GR, namely, that the structure encoded by the metric of
GR is, unlike that of SR, dynamical. A fully dynamical field, free to vary from
solution to solution, will generically lack symmetries. So a background independent
theory, in which all fields are dynamical, will lack a non-covariant formulation (of
the relevant kind). The converse, however, is not true. In principle we can define a
theory involving a background metric with no isometries, and such a theory will only
have a generally covariant formulation.13

Something like this collection of commitments, though not uncontroversial, rep-
resents a mainstream view, at least amongst more recent textbooks in the tradition of
Synge [63] and Misner et al. [41]. Unfortunately, there is a fly in the ointment, for
it apparently conflicts with a dominant view amongst many in the quantum gravity
community, in particular, the founding fathers of loop quantum gravity. Workers in

13Smolin demurs: “if one believes that the geometry of space is going to have an absolute character,
fixed in advance, by some a priori principles, you are going to be led to posit a homogeneous
geometry. For what, other than particular states of matter, would be responsible for inhomogeneities
in the geometry of space?” [58, 201]. But why does a background geometry need to be fixed by “a
priori principles”? Its being what it is could simply be brute fact, inhomogeneities notwithstanding.
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this field often endorse the idea that GR’s background independence, understood as
the absence of ‘fixed’, non-dynamical spacetime structure, is its defining feature. But
they go on to link this property to the theory’s general covariance, or, to use the more
favoured label, its diffeomorphism invariance. For example, Lee Smolin claims that
“both philosophically and mathematically, it is diffeomorphism invariance that dis-
tinguishes general relativity from other field theories” [57, 234]. And Carlo Rovelli,
who has perhaps written the most on the link between background independence and
diffeomorphism invariance, says of the background independence of classical GR
that “technically, it is realised by the gauge invariance of the action under (active)
diffeomorphisms” [53, 10], and (perhaps in less careful moments) he treats the two
as synonymous [33, 279].

On the face of it, these claims conflict with the Kretschmann view. They appear
to assert that a formal property of GR, its “(active) diffeomorphism invariance”, has
physical content in virtue of realising, or expressing, a physical property of the theory,
namely, its background independence. Since specially relativistic theories are not
background independent (as we have been understanding this term), it should follow
that they cannot be formulated in a diffeomorphism invariant manner. At the very
least, if one follows Kretschmann in supposing that any theory can be formulated in a
generally covariant manner, then (active) diffeomorphism invariance, as understood
by Rovelli et al., cannot be the same as general covariance as understood in the
Kretschmann tradition. And, indeed, the same authors routinely draw distinctions of
this kind.

Much of the rest of this paper is concerned to see how far one can push back
against the Rovelli–Smolin line, in the spirit of Kretschmann and Friedman. What
the exercise reveals is that the connection between diffeomorphism invariance and
background independence is messier, and less illuminating, than recent discussions
originating in the quantum gravity literature might suggest. It also sheds light on a
different but closely related topic. In the samediscussions, the diffeomorphism invari-
ance and/or background independence of GR is frequently taken to have profound
implications for the nature of the theory’s observables. It is important that a merely
technical sense of “observable” is not all that is at issue. The claim often appears
to be that GR and pre-relativistic theories differ in terms of the kind of thing that
is observable in a non-technical sense. In other words, it is alleged that the theories
differ over the fundamental nature of the physical magnitudes that they postulate.14

This, I believe, is a mistake, as I hope some of the distinctions to be reviewed below
help to show.

The first task is to clarify what might be meant by “diffeomorphism invariance”
as distinct from “general covariance”. I then revisit the notion of a background field,
as characterised informally above, for finer grained distinctions should be drawn
here too.

14Amongst philosophers, Earman [20] and Rickles [49] are proponents of variants of this view.
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4 General Covariance Versus Diffeomorphism Invariance

Several authors have drawn what they presumably take to be the crucial, bipartite
distinction between types of general covariance and diffeomorphism invariance. Nor-
ton, for example, distinguishes “active” and “passive” general covariance [42, 1226,
1230]. Rovelli distinguishes “active diff invariance” from “passive diff invariance”
[52, 122]. Earman distinguishes merely “formal” from “substantive” general covari-
ance [20, 21]. Ohanian and Ruffini distinguish “general covariance” from “general
invariance” [44, 276–9]. Finally, Giulini distinguishes “covariance under diffeomor-
phisms” from “invariance under diffeomorphisms” [34, 108]. As this cornucopia of
terminology indicates, several different distinctions are in play, and linked to further
ancillary notions (for example, that between “active” and “passive” transformations)
in myriad ways. In the face of this morass, my strategy will be to articulate as clearly
as I can what I take to be the most useful distinction, before relating it to several of
the ideas just listed.

In differentiating distinct notions of general covariance and diffeomorphism
invariance, it will be useful to consider various concrete formulations of theories
that exemplify the properties in question. Further, when contrasting specially and
generally relativistic theories, it is a good policy to eliminate unnecessary and poten-
tially misleading differences by choosing theories that are as similar as possible.
My running example, for both the specially and generally relativistic cases, will be
theories of a relativistic massless real scalar field, Φ.

In the context of SR, such a field obeys the Klein–Gordon equation, but there are
at least three “versions” of this equation to consider:

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2
− ∂2Φ

∂t2
= 0, (1)

ημνΦ;νμ = 0, (2)

ηab∇a∇bΦ = 0. (3)

These equations are most plausibly understood as (elements of) different formula-
tions of one and the same theory, not as characterising different theories. This requires
that the equations are understood as but different ways of picking out the very same
set of models (and thereby the very same set of physical possibilities). On the picture
that allows this, one also gains a better understanding of the content of each equation.

What is that picture? Start with equation (3). The roman indices occurring in the
equation are “abstract indices”, indicating the type of geometric object involved. This
equation, therefore, is not to be interpreted (as the other two are) as relating the coor-
dinate components of various objects. Rather, it is a direct description of (the relations
holding between) certain geometric object fields defined on a differentiable mani-
fold. Its models are triples of the form 〈M, ηab, Φ〉: differential manifolds equipped
with a (flat) Lorentzian metric field ηab and a single scalar field Φ. (I am taking the
torsion-free, metric-compatible derivative operator, ∇, to be defined in terms of the
metric field; it is not another primitive object, over and above ηab and Φ.)
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Equations (1) and (2) are to be understood as ways of characterising the very same
models, but now given under certain types of coordinate description. In particular,
in the case of equation (1), one is choosing coordinates that are specially adapted to
symmetries of one of the fields of themodel, namely, the flatMinkowskimetric. Such
coordinates are singled out via the “coordinate condition” ημν = diag(−1, 1, 1, 1).
In the case of equation (2), one is allowing any coordinate system adapted to the
differential structure of the manifold, M .

We are now in a position to draw the crucial distinction betweengeneral covariance
(as it has been implicitly understood in the previous sections) and diffeomorphism
invariance for, on one natural way of further filling in the details, although it is
generally covariant, the theory just given fails to be diffeomorphism invariant.

First, general covariance. We define this as follows:

General Covariance. A formulation of a theory is generally covariant iff the equa-
tions expressing its laws are written in a form that holds with respect to all members
of a set of coordinate systems that are related by smooth but otherwise arbitrary
transformations.

It is clear that such a formulation is possible for our theory. It is what is achieved
in the passage from the traditional form of the equation (1), to equation (2). General
covariance in this sense is sometimes taken to be equivalent to the claim that the laws
have a coordinate-free formulation (32, 54; 34, 108). This takes us to equation (3): if
the laws relate geometric objects of types that are intrinsically characterisable, with-
out recourse to how their components transformations under changes of coordinates,
then one should be able, with the introduction of the right notation, to describe the
relationships between them directly, rather than in terms of relationships that hold
between the objects’ coordinate components.

In order to address the question of the theory’s diffeomorphism invariance, one
needs to be more explicit than we have so far been about how one should understand
equation (3). In particular, what, exactly, is the referent of the ‘ηab’ that occurs in
this equation? Here is one very natural way to set things up. It is a picture that
lies behind the claim of several authors that, while specially relativistic theories can
be made generally covariant in the sense just described, they are nevertheless not
diffeomorphism invariant.

Take the kinematically possible models (KPMs) of the theory to be suitably smooth
functions from some given manifold equipped with a Minkowski metric, 〈M, ηab〉
into R. That is, they are objects of the form 〈M, ηab, Φ〉, where ηab is held fixed—it
is identically the same in every model.15 The dynamically possible models (DPMs)
are then the proper subset of these objects picked out by the requirement that Φ

satisfies the Klein–Gordon equation relative to the ηab common to all the KPMs. So
understood, equation (3) is not an equation for ηab and Φ together. Rather, it is an
equation for Φ alone, given ηab (cf. [34], 107). For ease of future reference, call this
version of the specially relativistic theory of the scalar field SR1.

15This means that the concept of a fixed field is not equivalent to the concept of an absolute object
in the Anderson–Friedman sense. In using “fixed” in this quasi-technical sense, I follow Belot (see,
e.g., [7], 197, fn 137). The distinction is explored more fully in Section 7.
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Our initial definition of diffeomorphism invariance runs as follows:

Diffeomorphism Invariance (version 1). A theory T is diffeomorphism invariant
iff, if 〈M, O1, O2, . . .〉 is a solution of T , then so is 〈M, d∗O1, d∗O2, . . .〉 for all
d ∈ Diff(M).16

So defined, diffeomorphism invariance corresponds to what has sometimes sim-
ply been identified as general covariance in the post-Hole Argument philosophical
literature.17 Friedman is explicit in taking general covariance as defined above (cf.
[32], 51) to be equivalent to diffeomorphism invariance as just defined (cf. [32], 58).
In arguing for this equivalence [32, 52–4], he appears to overlook the crucial possi-
bility, exploited here, that a coordinate-free equation relating two geometric objects
A and B, can nonetheless be interpreted as an equation for B alone, given a fixed A.
(We shall see in Section 9 that Earman [21] seems to be guilty of a similar oversight.)

Returning to SR1, it is clear that, with the KPMs and DPMs defined as suggested,
the theory does not satisfy the definition of diffeomorphism invariance just given.
If 〈M, ηab, Φ〉 is a model of the theory, 〈M, d∗ηab, d∗Φ〉 will be a model only if
d∗ηab = ηab, for only in that case will 〈M, d∗ηab, d∗Φ〉 correspond to a KPM, let
alone a DPM!

Contrast SR1 to the generally relativistic theory of the scalar field. To make the
analogy as close as possible, consider the sector of the theory defined on the same
manifold M mentioned in SR1. Call this theory GR1. Superficially, the KPMs and
the DPMs of GR1 are the same type of objects as those of SR1: triples of the form
〈M, gab, Φ〉, where gab, like ηab, is a Lorentzian metric field. But now one does not
have the option of taking gab to be fixed.18 Rather the KPMs of the theory are all
possible triples of the form 〈M, gab, Φ〉, subject only to gab andΦ satisfying suitable
differentiability (and perhaps boundary) conditions. The DPMs are picked out as a
proper subset of the KPMs by two equations:

gab∇a∇bΦ = 0, (4)

Gab = 8πTab. (5)

16In this statement of the condition, Oi and d∗Oi are distinct mathematical objects; one is not
contrasting different coordinate representations of the very same objects.
17 See, e.g., Earman [17, 47]. As mentioned, Norton distinguishes active and passive general covari-
ance. His statement of the former [42, 1226] is almost identical to the statement of diffeomorphism
invariance just given, save that he considers diffeomorphisms between distinctmanifolds. (His state-
ment of passive general covariance [42, 1230] differs, however, from the characterisation of general
covariance given above, in focusing on the closure properties of the set of coordinate representations
of a theory’s models, rather than on the nature of the equations that pick out such models.)
18Strictly speaking, one could interpret equations (4) and (5), given below, as describing a theory of
a single field Φ propagating on a fixed gab. The resulting space of DPMs would consist of a single
point in this cut-down space of KPMs! What, exactly, would be wrong with such a set-up? We take
ourselves to have evidence for the (approximate) truth of our theory (GR) even though we have not
pinned down a specific model. But on this variant of the theory, pinning down the theory requires
pinning down a unique model.
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Equation (5) is the Einstein field equation, relating the Einstein tensor Gab, encod-
ing certain curvature properties of gab, to the energy momentum tensor Tab.19 Equa-
tion (4) might look superficially like equation (3), but now it is no longer an equation
for Φ given gab. Rather (4) and (5) together form a coupled system of equations—
the “Einstein–Klein–Gordon equations”—for gab and Φ together. This generally
relativistic theory is, of course, diffeomorphism invariant: if 〈M, gab, Φ〉 satisfies
equations (4) and (5), so does 〈M, d∗gab, d∗Φ〉 for any diffeomorphism d.

The rather dramatic way in which SR1 fails to meet our definition of diffeo-
morphism invariance—that for a generic diffeomorphism d, 〈M, d∗ηab, d∗Φ〉 is not
even a KPM when 〈M, ηab, Φ〉 is a DPM—suggests a modification of our defini-
tion. Rather than considering the effect of a diffeomorphism on all of the fields of
a theory’s models, we can exploit the distinction, built into the very construction
of the theory, between fixed fields and dynamical fields. Letting F stand for the
solution-independent fixed fields common to all KPMs, and letting D stand for the
dynamical fields, we can consider the effect of acting only on the latter. This leads
to the following amended definition:
DiffeomorphismInvariance (final version).AtheoryT isdiffeomorphism invariant
iff, if 〈M, F, D〉 is a solution of T , then so is 〈M, F, d∗ D〉 for all d ∈ Diff(M).
More generally, one can say that a theory T is G-invariant, for some subgroup
G ⊆ Diff(M) iff, if 〈M, F, D〉 is a solution of T , then so is 〈M, F, g∗ D . . .〉 for all
g ∈ G.

Since GR1 involves no fixed fields, acting only on the dynamical fields just is to
act on all the fields. Our amendment to the definition of diffeomorphism invariance
therefore makes no material difference in this case. For this reason, focus on theories
like GR1 tends to obscure the difference between our two definitions. Turning to
the case of SR1, this theory still fails to be diffeomorphism invariant under the new
definition: for an arbitrary diffeomorphismd, if 〈M, ηab, Φ〉 is a solution of SR1, then
〈M, ηab, d∗Φ〉, in general, will not be. However, assuming no boundary conditions
are being imposed, 〈M, ηab, d∗Φ〉 will nonetheless be a KPM of the theory. This
becomes significant when considering the definition of the invariance of the theory
under proper subgroups of Diff(M).

Suppose T hasmodels of the form 〈M, F, D〉 and that d is a symmetry of the fixed,
background structure, i.e. d∗F = F . In this case, 〈M, d∗F, d∗ D〉 = 〈M, F, d∗ D〉
and so, for this subgroup of Diff(M), an invariance principle that asks us to consider
transformations of all fields, background and dynamical, will give the same verdict
as those that consider transformations only of the dynamical fields. Further, it fol-
lows from the general covariance of the theory, i.e. from the fact that its defining
equation can be give a coordinate-free expression, that when d is a symmetry of F ,
〈M, d∗F, d∗ D〉 = 〈M, F, d∗ D〉 will be a DPM whenever 〈M, F, D〉 is.20 We can

19For our massless real scalar field, Tab = (∇aΦ)(∇bΦ) − 1
2 gabgmn(∇mΦ)(∇nΦ).

20Note that this claim is not identical to Earman’s claim that it follows from general covariance that
a diffeomorphism that is symmetry of a theory’s spacetime structure will also be what he calls a
“dynamical symmetry” [17, 46–7]. The reason is that Earman’s “general covariance” corresponds
to the (unmodified) definition of diffeomorphism invariance given above.
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therefore define G-invariance either by analogy with the first definition of diffeomor-
phism invariance or (as advocated) by analogy with the final version, and we will get
the verdict that if G is a subgroup of the automorphism group of F , then the theory
is G-invariant.

The definitions give different verdicts, however, when we consider the opposite
implication: if T is a G-invariant theory, does it follow that G is a subgroup of the
automorphism group of its fixed fields F? If G-invariance requires that if 〈M, F, D〉
is a DPM then so is 〈M, g∗F, g∗ D . . .〉, for all g ∈ G, then no diffeomorphism that is
not also an automorphism of F could be amember of G. Such a diffeomorphism does
not map KPMs to KPMs. However, if G-invariance only requires that if 〈M, F, D〉
is a DPM then so is 〈M, F, g∗ D . . .〉, then the automorphisms of F can be a proper
subgroupofG. In fact, this is exactly the situation in the case of SR1. Letd correspond
to a conformal transformation of ηab. Since we are considering the massless Klein–
Gordonfield, if 〈M, ηab, Φ〉 is aDPM, then so is 〈M, ηab, d∗Φ〉, even thoughd∗ηab 
=
ηab. We can only capture this fact in terms of the statement that the theory is invariant
under the relevant group if we define such invariance in the modified manner.21

Let us take a step back and recall the wider project. We are interested in assess-
ing the claim that diffeomorphism invariance is intimately linked to background
independence. I contend that the distinction drawn in this section between general
covariance and diffeomorphism invariance, and exemplified by SR1’s satisfaction of
the first but not the second, is the right one for this purpose, for it makes good sense
of several remarks by the claim’s defenders.

For example, Smolin [57, §6] offers an extended discussion of diffeomorphism
invariance and its connection to background independence. His focus is on the inter-
pretational consequences of diffeomorphism invariance, rather than on providing a
positive characterisation of the property as such, so no direct comparison with the
definition proposed here can be made. (He is also particularly concerned to stress
the gauge status of diffeomorphisms in the context of a diffeomorphism-invariant
formulation of a theory, a topic I return to in Section 9.) However, his contrasting dif-
feomorphism invariance with general coordinate invariance is fully consonant with
the distinction of this section

it can be asserted—indeed it is true—that with the introduction of explicit background fields
any field theory can be written in a way that is generally coordinate invariant. This is not
true of diffeomorphisms [sic] invariance, which relies on the fact that in general relativity
there are no non-dynamical background fields. [57, 233]

It is natural to read the second half of this passage as committing Smolin to the claim
that SR1 cannot be made diffeomorphism invariant because the theory involves a
non-dynamical background, ηab.

21Similar, historically inspired examples are Galilean-invariant classical mechanics set in full New-
tonian spacetime and, more interestingly, Newtonian gravitational theory set in Galilean spacetime
[see, e.g., 38]. What these examples should remind one is that such theories are epistemologically
problematic. The background structure that they postulate introduces allegedly meaningful prop-
erties (e.g. absolute velocities) that are undetectable in principle. This motivates the search for
formulations with weaker background structure (see, e.g. [48], §3 and §6]).

erik@strangebeautiful.com



Background Independence, Diffeomorphism Invariance … 119

Consider, now, a revealing passage from Rovelli. Having summarised what he
takes to be the philosophical implications of GR’s lack of non-dynamical background
structures, he states that these implications are “coded in the active diffeomorphism
invariance (diff invariance) of GR” [52, 108]. He goes on to elaborate in a footnote

Active diff invariance should not be confusedwith passive diff invariance, or invariance under
change of co-ordinates…A field theory is formulated in [a] manner invariant under passive
diffs (or change of co-ordinates), if we can change the co-ordinates of the manifold, re-
express all the geometric quantities (dynamical and non-dynamical) in the new coordinates,
and the form of the equations of motion does not change. A theory is invariant under active
diffs, when a smooth displacement of the dynamical fields (the dynamical fields alone) over
the manifold, sends solutions of the equations of motion into solutions of the equations of
motion. [52, 122]

I take it that SR1 is precisely a theory formulated in a manner invariant under passive
diffs, but not active diffs, whereas GR1 is a theory invariant under active diffs. In
other words, Rovelli’s “passive diffeomorphism invariance” is what I called above
general covariance. Identifying Rovelli’s “non-dynamical” fields with fixed fields,
his “active diffeomorphism invariance” corresponds to our (amended) definition of
diffeomorphism invariance.

Finally, Giulini [34] offers equivalent definitions, although he adopts a rather
different approach to characterising general covariance. He schematically represents
a theory’s equations of motion as

F [γ,Φ,Σ] = 0 (6)

Here γ goes proxy for structures given by maps into the manifold M (representing
particle worldlines, strings, etc.) and Φ goes proxy for the dynamical fields: maps
fromspacetime into somevalue space (or,more generally, structures givenby sections
in some bundle over M). Finally,Σ stands for the fixed (“background”) structures.22

He then distinguishes what he calls the notion of covariance from invariance as
follows (see [34, 108]). Equation (6) is said to be covariant under diffeomorphisms
iff

F [γ,Φ,Σ] = 0 iff F [d · γ, d · Φ, d · Σ] = 0 ∀d ∈ Diff(M). (7)

It is invariant under diffeomorphisms iff:

F [γ,Φ,Σ] = 0 iff F [d · γ, d · Φ,Σ] = 0 ∀d ∈ Diff(M). (8)

The only difference between these conditions is that in the former but not in the
latter case one allows the diffeomorphism to act on the fixed fields. In absence of
fixed fields, therefore, the distinction between the conditions collapses: covariance
implies invariance.

22In both our examples theories, γ is empty and the scalar field Φ belongs to Giulini’s category Φ.
In the case of SR1, ηab belongs to Σ ; in GR1, gab belongs to (Giulini’s) Φ, and Σ is empty.
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The distinction between the γ and Φ, on the one hand, and the Σ on the other is
crucial in understanding these conditions. Consider, first, condition (8). The state-
ment thatF [γ,Φ,Σ] = 0 iffF [d · γ, d · Φ,Σ] = 0 simply means that 〈γ,Φ〉 and
〈d · γ, d · Φ〉 stand or fall together as solutions of (6). The condition is therefore this
section’s (modified) statement of diffeomorphism invariance.

Now consider condition (7). The fact that F [γ,Φ,Σ] = 0 is only an equation
for γ andΦ (but notΣ) means thatF [γ,Φ,Σ] = 0 andF [d · γ, d · Φ, d · Σ] = 0
are distinct equations. The condition states that if 〈γ,Φ〉 is a solution to (6), then
〈d · γ, d · Φ〉 must be a solution of a structurally similar equation involving the
different field(s) d · Σ . The condition (7), therefore, says nothing about whether
d maps a solution of (6) to another solution of the same equation. Given that Σ

represents fixed fields, (7) does not collapse into our original, unmodified statement
of diffeomorphism invariance. All that it requires is that (6) be well defined in the
differential-geometric sense. It is therefore equivalent to the requirement that the
equation have a generally covariant expression in the sense given earlier.

5 Diffeomorphism-Invariant Special Relativity

The previous section described a generally covariant but non-diffeomorphism-
invariant formulation of an intuitively background-dependent theory, SR1. This was
contrasted with a generally covariant and diffeomorphism-invariant formulation of
an intuitively background-independent theory, GR1.23 What should one make of
SR1’s failure to be diffeomorphism invariant? Does it support Smolin’s contention
that diffeomorphism invariance “relies on” the absence of background fields? In this
section and the next, I suggest that it does not. At the very least, whether it does
depends on what counts as a “background field.”

We need to consider yet another formulation of a theory, which I will call SR2.
This theory’s space of KPMs is the very same set of objects that formed the space
of KPMs of the generally relativistic GR1. But, rather than being picked out via
equations (4) and (5), the subspace of DPMs is defined via

gab∇a∇bΦ = 0, (4)

Ra
bcd = 0, (1)

23From here on, when I refer simply to “diffeomorphism invariance” I am referring to the property
captured by the second (final) definition given in the previous section. The merits, or otherwise, of
the first definition will not be discussed further.
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where Ra
bcd is the Riemann curvature tensor of gab.24 Several comments are in

order before we assess the interpretational dilemmas that SR2 presents.
First, the contrast between SR1 and SR2 highlights something of a contrast

between the philosophy literature, including the post-Hole Argument literature,
and discussions of background independence arising from attempts to quantise GR.
Crudely put, philosophers have tended to have a formulation of a theory like SR2
in mind when they have considered ‘generally covariant’ formulations of special
relativity (see, e.g., [22, 518]), whereas physicists have tended to have something
like SR1 in mind. This is not unrelated to the fact, noted in the previous section, that
Friedman, Earman, and even Norton (used to) identify (active) general covariance
with diffeomorphism invariance (as initially characterised in the previous section).

This is not to say that the physics literature has not discussed theories like SR2—
we shall shortly see that it has—but it is possible to mistake a discussion of an
SR1-type theory for that of a SR2-type theory. One does not arrive at SR2 simply
by stipulating that equation (1) is to be satisfied. One must also indicate how gab, as
it occurs in (4) and (1), is to be interpreted. After all, the field ηab of SR1 satisfies
a formally identical equation to (1). It is just that, in this context, the equation does
not function to pick out a class of DPMs from a wider class of KPMs. Instead it
characterises a fixed field common to all the KPMs. In SR2, it is important that (4)
and (1), just like (4) and (5) in GR1, are understood as coupled equations for both
Φ and gab.

Finally, of course, we should note the crucial fact that SR2, like GR1 and unlike
SR1, is diffeomorphism invariant.

6 Connecting Diffeomorphism Invariance
and Background Independence

What does the diffeomorphism invariance of SR2 tell us about the alleged link
betweendiffeomorphism invariance andbackground independence?Aproper answer
to this question will require disentangling various meanings of “background”,
but here is the obvious moral: SR2 is a diffeomorphism-invariant but intuitively
background-dependent theory. Diffeomorphism invariance therefore cannot be
equated with—or be seen as a formal expression of, or sufficient condition for—
background independence. Diffeomorphism invariance is not, per se, what differen-
tiates GR from pre-relativistic theories.

Here is one way that this conclusion might be resisted. Consider the following
questions. (Q1) Is SR2 a background-independent theory? (Q2) Are SR1 and SR2

24As with those of GR1, the theory’s KPMs are restricted to fields defined on a given manifold M .
In the previous section, this restriction served to allow as direct as possible a comparison between
GR1 and SR1. When comparison with SR1 is not at issue, the restriction is arbitrary. One can (and
should) generalise the formulations of SR2 and GR1 further, not least to allow for different global
topologies.
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merely different ways of formulating the same theory? Suppose that one answers
(Q1) in the affirmative, on the grounds that gab in a model of the theory is a solution
to an equation. It therefore counts as a ‘dynamical field’; it is not ‘fixed a priori’. This,
in effect, is to treat ‘background field’ as synonymous with ‘solution-independent
fixed field’ in the sense highlighted in Section 4. One then goes on to answer question
(Q2) in the negative. Precursors of GR were not background independent, period,
and so only SR1 is faithful to the pre-GR understanding of the spacetime structure
of special relativity.

I take it that this package is a highly implausible cocktail of views. First, one
should ask: on what basis can one assert that SR1 and SR2 constitute genuinely
distinct theories, rather than merely different formulations of the same theory? On
the face of it, since their models involve the same types of geometric object, and
since all objects in any solution of one theory are diffeomorphic to the corresponding
objects in some solution of the other, the two formulations appear to be, not merely
empirically equivalent, but equivalent in a thoroughgoing sense. The DPMs of one
theory are isomorphic to the DPMs of the other; it is just that, for each solution of
one of the theories, the other theory has an infinite set of diffeomorphic copies.

Second, the classification of SR2 as relevantly similar toGR1, and so background
independent, focuses on a minor similarity between the theories at the expense of
a more significant contrast. True, the gabs of both theories are treated as ‘solutions
of equations’ and in this sense they are not fixed, but this fact seems much less
interesting than their obvious differences. Recall the intuitive characterisation of the
differences between the spacetime structures ofGR and pre-relativistic theories given
in Section 1: in GR, the curvature of spacetime varies, not just in time and space, but
across models, and the material content of spacetime influences how it does so. The
fact that the gab of SR2 is the solution of an equation is not a sufficient condition
for either of these features. The gab of SR2 is not affected by matter, because it is
wholly determined (up to isomorphism) by equation (1). Relatedly, in the sense that
matters, the metric structure of spacetime does not differ from DPM to DPM: the
gabs in any two DPMs are isomorphic to one another.25

These features of SR2mean that, if onewishes to remain faithful to the natural pre-
theoretic sense of “background”, it should be classified as a background-dependent
theory. They further suggest that one should regard SR1 and the diffeomorphism-
invariant SR2 as different formulations of the same, background-dependent
theory. In contrast,GR1 is (a diffeomorphism-invariant formulationof) a background-
independent theory. This situation might bring to mind Bergmann’s claim, noted in
Section 3, that the distinctive feature of GR is its lack of a non-generally covariant
formulation. This feature of GR could not be equated with its background indepen-
dence: a background-dependent theory might lack a non-generally covariant formu-
lation because its background structures lack symmetries. However, nowwe have the
distinction between general covariance and diffeomorphism invariance on the table,
the general approach might appear more promising.

25Strictly, the global topology of the manifold M might allow for infinitely many non-isomorphic
flat metric fields. Even so, these will all be locally isomorphic.
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The idea is that it is the lack of a non-diffeomorphism-invariant formulation, rather
than the existence of a diffeomorphism-invariant formulation, that is the mark of a
background-independent theory. A non-diffeomorphism-invariant formulation of a
theory requires that some elements of its models are regarded as fixed, identically
the same frommodel to model. If a theory is background dependent, in the sense that
it involves non-dynamical fields that (intuitively) do not vary from model to model,
then those fields can be represented by fixed structures in a non-diffeomorphism-
invariant formulation of the theory. But if the theory is background independent, in
the sense that all of its fields can vary frommodel to model, it lacks elements that can
be represented by fixed structures. Of necessity, it will be diffeomorphism invariant.26

The background fields of a theory are to be identified with those fields that appear as
fixed elements in some non-diffeomorphism-invariant formulation that theory. So,
for example, the metric field, gab, of SR2 represents background structure because
it represents the same structure that is represented in the alternative formulation of
the theory, SR1, by ηab.

There is clearly a close connection between identifying a background field in
this way and Anderson’s notion of an absolute object [1, 2]. I will return to this
connection at the end of the next section, after reviewing one more complication.

7 Absolute Objects and the Action–Reaction Principle

Assume that background-independent theories can only be formulated in a
diffeomorphism-invariant manner. That leaves open the issue of whether every the-
ory that must be formulated in a diffeomorphism-invariant manner lacks background
fields. Whether one endorses this further claim in part depends on a subtlety con-
cerning what it takes to be a background field.

When the metric field of GR is presented as an example of field that, unlike its
precusors in pre-relativistic theories, is not a background field, two of its features are
often run together: (i) like other fields in the theory, themetric is dynamical; (ii) it also
obeys the action–reaction principle: it is affected by every field whose evolution it
constrains. The second feature entails the first (assuming the entity in question is not
entirely dynamically redundant); a field obviously cannot be dynamically affected
and yet not be dynamical. However, the converse implication does not hold. A field
might affect without being affected and yet have non-trivial dynamics of its own.

Consider, for example, the theory (call it GR2) given by the following equations:

gab∇a∇bΦ = 0, (4)

26This proposal fits with some of themore careful claims from the quantum gravity community con-
cerning the link between background independence and diffeomorphism invariance. For example,
in an informal website article on the meaning of background independence, Baez claims: “making
the metric dynamical instead of a background structure leads to the fact that all diffeomorphisms
are gauge symmetries in general relativity” [5].
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Rab = 0. (1)

Here Rab is the Ricci tensor associated with gab. In other words, equation (1) is
the vacuum Einstein equation, even though the theory’s models contain a material
scalar field. In this theory the metric is clearly dynamical; it varies from DPM to
DPM. Since it is constrained to obey equation (4), the matter field ‘feels’ the metric.
However, in contrast to the situation in GR, matter does not act back on the metric.
The action–reaction principle is violated. To adapt Einstein’s terminology, as quoted
in Section 2, the metric of GR2 is a causal absolute even though it is a thoroughly
dynamical field.

Should gab count as a background field in this theory? One might naturally char-
acterise the metric as a background relative to the dynamics of Φ. It is a kind of
“dynamical background field”. But it does not seem correct to classify the theory as
a whole as background dependent on this account. After all, in those models where
Φ vanishes, the theory just is vacuum GR. This verdict matches that reached if one
sticks with the criterion proposed in the previous section (necessary diffeomorphism
invariance), for GR2 lacks a non-diffeomorphism-invariant formulation in just the
way GR1 does.

GR2 serves another illustrative purpose. At the end of the previous section, I
suggested that there is a link between whether a field can appear as a fixed field
in a non-diffeomorphism-invariant formulation of a theory and whether that field is
an absolute object in Anderson’s sense. Although Anderson informally introduces
absolute objects in terms of their violation of the action–reaction principle, the defi-
nition he goes on to give characterises them in terms of a notion of sameness in all
DPMs of the theory.27 What the metric field gab of GR2 illustrates is that a field can
be an action–reaction violating causal absolute without being an absolute object in
the Andersonian sense.

Let us return to the connection between absolute objects and fixed fields. How
exactly, are they related? The answer is not entirely straightforward, partly because
different authors define absolute objects slightly differently.

Anderson’s formal definition of absolute objects does not characterise them
directly. Instead he defines them in terms of conditions intended to determine when
a subset of the dynamical variables of a theory constitute the components of the the-
ory’s absolute objects [2, 83]. Friedman [32, 56–60] later advocated a coordinate-free
characterisation, according to which a geometric object field counts as absolute if
there exist the right kind of maps between any two models of the theory that preserve
the object in question (more details shortly). According to Friedman’s set-up, the
metric fields of both SR1 and SR2 count as absolute objects, even though the metric

27The values of the absolute objects are said to determine the values non-absolute objects but not
vice versa ([2, 83]; see also [4] 1658, fn 6). In Anderson [1, 192], he says that “an absolute element
in a theory indicates a lack of reciprocity”. This is consistent with absolute objects being sufficient,
but not necessary, for a violation of the action–reaction principle.
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is a fixed field only in SR1.28 This is not true according to Anderson’s definitions. On
his way of setting things up, in a non-covariant coordinate presentation of SR1, there
are no absolute elements, because the metric field is not explicitly represented (cf.
[2], 87). In this formulation of the theory, all of the variables required to characterise
a solution (in this case, the values of Φ relative to some inertial coordinate system)
are the components of a genuinely dynamical object. Nevertheless, it is clear that
the metric of SR2 counts as an absolute object according to Anderson’s definition.
I suggested above that one should regard SR1 and SR2 as different formulations of
the same theory, and thus regard their metric fields as representing the same element
of physical reality. Generalising this move, one can say that an object that features
as a fixed field in one formulation of a theory will appear as an absolute object in
reformulations of the theory in which that object is no longer treated as fixed.

So far we have noted that fields that are (or can be represented as) fixed are (or can
be represented as) absolute objects. What about the converse? If a diffeomorphism-
invariant theory contains an absolute object, can it be given a non-diffeomorphism-
invariant formulation in which that object features as a fixed field? Here, again,
the way Friedman and Anderson define “absolute object” makes a difference. While
both, in different ways, formalise a notion of “sameness in every model”, Anderson’s
notion of sameness is global whereas Friedman’s is local. More specifically, Fried-
man holds that, if the models of a theory take the form 〈M, O1, . . . , On〉, then object
Oi is an absolute object just if, for any two models M1 = 〈M, O1, . . . , On〉 and
M2 = 〈M, O ′

1, . . . , O ′
n〉, and for every p ∈ M , there are neighbourhoods A and

B of p, and a diffeomorphism h : A → B such that O ′
i = h∗Oi on A ∩ B. Fried-

man’s absolute objects can therefore possess “global degrees of freedom”: differences
between such objects might distinguish between classes of DPMs even though the
objects are (in the sense just characterised) everywhere locally indistinguishable.29

The upshot is that a theory that involves absolute objects in Friedman’s sensemay not
have a (natural) non-diffeomorphism-invariant formulation in terms of fixed fields.

A popular move is to equate background fields and absolute objects, and so to treat
background independence as the lack of absolute objects. Giulini [34] offers a careful
recent development of this strategy. As Giulini notes, and as is discussed in depth
by Pitts [45], several “counterexamples” suggest that neither Anderson’s proposal
nor Friedman’s get things just right. The counterexamples come in three categories.
(1) There are cases where structure that, intuitively, should count as background is
not classified as an absolute. (2) There are cases where structure that, intuitively,

28Effectively, we are distinguishing two senses of “dynamical”. The metric of SR2 counts as
dynamical in a liberal sense, because it varies non-trivially in the space of KPMs and is constrained
to bewhat it is in anyDPMvia the “equation ofmotion” (1). But in a stricter sense it is not dynamical,
because (up to a diffeomorphism) it is the same in every model of the theory. The stricter sense
takes “dynamical” to mean “not absolute”; the liberal sense takes “dynamical” to mean “not fixed”.
29Consider, for example, flat Lorentzian metrics on a manifold with non-trivial global topology.
Such metrics need not be globally isometric even though they are everywhere flat. Some models
might be temporally finite whereas others are temporally infinite but spatially finite in a preferred
spatial direction.
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should not count as background is classified as an absolute. Finally, (3), it is noted
that, on Anderson’s definition (suitably localised), GR itself turns out to have an
absolute object (and so should count as background dependent).

Torretti’s [64] example of a theory set in classical spacetimes of arbitrary but
constant spatial curvature is of type (1). Pitts observes that if one decomposes the
spatial metric into a conformal spatial metric density and a scalar density, then the
former is an absolute object while the latter, while constant in space and time, counts
as a genuine, global degree of freedom.

The best-known case of type (2) is the Jones–Geroch example of the “dust” four-
velocity in GR coupled to matter that is characterised by only a four-velocity field
and a mass density. Pitts sees both Friedman’s own suggestion—that one take the
4-momentumfield of the dust as primitive [32, 59]—and the option of defining the “4-
velocity” so that it vanishes in matter-free regions, as motivated by an Andersonian
ban on formulations of a theory that contain physically redundant variables [45,
361–2].30 My own view is that both of these “solutions” miss the central problem
posed by the example. In the context of this theory, the non-vanishing velocity field
is, intuitively, as dynamical as the 4-momentum. The trouble arises not because we
mistook as indispensable an object that Anderson’s definition correctly classifies
as absolute. The trouble is that Anderson’s definition, intuitively, misclassifies that
object.

The example suggests that the notion of absolute objects might not, in fact,
be a better candidate than the notion of fixed fields for articulating the sense of
“dynamical” relevant to characterising background structure. Consider, for example,
a diffeomorphism-invariant formulation of a theory set in Minkowski spacetime and
involving matter characterised, in part, by a (non-vanishing) four-velocity. One can
define two distinct proper subsets of the KPMs (and, correspondingly, the DPMs)
of this theory. The first is obtained by specialising to a particular metric field on
the manifold, and retaining all and only those KPMs (and DPMs) that include this
metric field. The second is obtained by specialising to a particular representation of
the four-velocity. If we view each set of models as determining some theory, then
both theories involve (in some sense) a fixed field. However, in the case of the theory
obtained by specialising to a particular metric, the solution set is identifiable, as a
subspace of theKPMs, via some differential equations for the truly dynamical objects
given the fixed field (the metric). In the case of the “theory” with the fixed velocity
field, in contrast, it seems highly doubtful that we will be able to view the particular
(flat) metrics occurring in the DPMs as all and only the solutions of an equation for
the metric given the velocity field. (Imagine specialising to coordinates in which the
velocity field takes the value (1, 0, 0, 0) and consider how likely it is that the set of
admissible components of the metric field in such coordinates are picked out via an
equation.)

A similar strategy might be pursued in the case of ((3)). The candidate absolute
object in question is the determinant of the metric,

√−g. One might accept this

30Pitts pursues the topic further in Pitts [46].

erik@strangebeautiful.com



Background Independence, Diffeomorphism Invariance … 127

verdict without accepting that this automatically means that GR should count as
background dependent. The latter might be held to further require that

√−g be
interpretable as a fixed field.31

Suppose, however, that one sticks with the proposal that the lack of absolute
objects is equivalent to background independence. What light does that shed on
the relationship between background independence and diffeomorphism invariance?
Does a theory lack a non-diffeomorphism-invariant formulation just if it lacks
absolute objects? We have seen that, not only are fixed fields not absolute objects
(on either Anderson’s definition or Friedman’s), but being representable in terms of
a fixed field is also not equivalent to being an absolute object. Since the presence
of fixed fields would seem to be necessary for the failure of diffeomorphism invari-
ance, this means that necessary diffeomorphism invariance cannot be equivalent to
background independence understood as lack of absolute objects.

There is a rather desperate way to reconnect the question of whether Diff(M) is a
symmetry group with background independence: redefine symmetry! For example,
one might try stipulating that Diff(M) is a symmetry∗ group of a theory T iff, if
〈M, A, D〉 is a model of T , then so is 〈M, A, d∗ D〉 for all d ∈ Diff(M). (Formally
this looks just the definition of diffeomorphism invariance from Section 4, with “F”,
for “fixed field” replaced by “A”, for “absolute object”.) The proposal is problematic,
on at least three grounds.

First, the notion of symmetry∗ is transparently ad hoc.When our theory contained
fixed fields, restricting the action of Diff(M) to the dynamical (i.e. non-fixed) fields
was natural. Only by doing so could one define a natural group action on the space of
KPMs. The symmetry group is then naturally defined to be the subgroup of this group
that fixes the space of DPMs. When one has a diffeomorphism-invariant theory that
includes absolute objects, one (obviously!) does not need to stipulate that Diff(M)

acts only on the dynamical (i.e. non-absolute) fields in order for its action on the
space of KPMs to be well defined.

Second, defining the action of Diff(M) on the space of KPMs in such a way that
it does not act on the As breaks the natural definition of symmetry. The definition
yields, as intended, that a theory with, say, a flat Lorentzian metric as its absolute
object will fail to have Diff(M) as a symmetry∗ group. But it will also fail to have the
Poincaré group as a symmetry∗ group. For anygiven solution 〈M, A, D〉, themaximal
group G such that, for all g ∈ G, 〈M, A, g∗ D〉 is a solution, will be isomorphic
to the Poincaré group (or, possibly, a supergroup of the Poincaré group). But for

31Can the equations of the theory be interpreted as equations for the other variables given fixed√−g? This seems to be the correct verdict for unimodular GR, but not (or not clearly so) for GR
itself. For further discussion of this case, although not in terms of the notion of fixed fields, see
Earman [19]; Pitts [45]; Sus [61, 62].
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two arbitrary solutions 〈M, A, D〉 and 〈M, A′, D′〉, the groups so defined need not
coincide. In fact, in general, they will coincide only when A = A′.32

Suppose one circumvents these problems by adding some epicycles to the defini-
tion of symmetry∗. There remains a third reason to be dissatisfied with the proposal
that background independence is equivalent to Diff(M)’s being a symmetry∗ group.
At bottom, what is doing all the work is the notion of absolute object, in terms of
which the gerrymandered notion of symmetry is defined. If our interest is in char-
acterising background independence, why not simply characterise it as the lack of
absolute objects and be done with it? In particular, the detour via symmetry∗ does not
give us a better handle on GR’s background independence versus SR’s background
dependence.

8 Diff(M) as a Variational Symmetry Group

When physicists talk of a generally covariant formulation of a specially relativistic
theory, they typically have in mind a formulation like SR1. Undue focus on such
examples, at the expense of examples like SR2, might explain why the connection
between background independence and diffeomorphism invariance is sometimes
taken to be tighter than it really is. However, theories along the lines of SR2 do get
considered by those who defend a diffeomorphism invariance/background indepen-
dence link. As we have seen, the possibility of such formulations of specially rela-
tivistic theories is central to Anderson’s thinking (and explains the idiosyncrasies of
his definition of symmetry). The option is also considered by Rovelli, who concedes

even full diffeomorphism invariance, should probably not be interpreted as a rigid selection
principle, capable of selecting physical theories just by itself. With sufficient acrobatics, any
theory can perhaps be re-expressed in a diffeomorphism invariant language. …

But there are prices to pay. First, [SR2]…has a “fake” dynamical field, since g is constrained
to a single solution up to gauges, by the second equation of the system. Having no physical
degrees of freedom, g is physically a fixed background field, in spite of the trick of declaring
it a variable and then constraining the variable to a single solution. Second, we can insist on
a lagrangian formulation of the theory…[59], but to do this we must introduce an additional
field, and it can then be argued that the resulting theory, having an additional field is different
from [the original] [17]. [54]

32Invariance, as I defined it in Section 4, is called covariance by Anderson [2, 75]. He defines a
theory’s symmetry, or “invariance” group as the “largest subgroup of the covariance group…which
is simultaneously the symmetry group of its absolute objects” [2, 87]. It would seem, therefore, that
Anderson’s symmetry group is related to the notion of symmetry∗ in exactly the way the group of
automorphisms of the fixed fields of a theory is related the symmetry group (as defined in Section 4)
of that theory. In both cases one should expect the former to be a (possibly proper) subset of the
latter. But we have just seen that, without some finessing, the symmetry∗ group of a theory will be
trivial. The same trouble afflicts a flatfooted reading of Anderson’s definition. Consider SR2. The
symmetry group of any particular absolute gμν , occurring in a particular DPM, will be (isomorphic
to) the Poincaré group (cf. [2, 87]), but the only diffeomorphism that belongs to every such group
is the identity map.
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Several comments are in order. First, reference to “sufficient acrobatics” seems
like hyperbole, given the relatively straightforward nature of the transition from a
theory like SR1 to a reformulation along the lines of SR2.

Second, it is true that, inSR2, gab is a “fake” dynamical field. It should be classified
as background structure. Despite our treating it as dynamical in the liberal sense,
it remains non-dynamical in a stricter sense. The previous sections have reviewed
apparatus that allows us to draw precisely these distinctions, and to differentiateGR1
and SR2, despite both theories being equally diffeomorphism invariant. So, it is not
clear why there is a “price to pay” in adopting such a formulation, particularly since
we are regarding SR2 as merely a reformulation of SR1. Rovelli, perhaps, would
question this last stance. The diffeomorphism invariance of any theorymight be taken
to have significant implications for the nature of the true physical magnitudes of the
theory, and thus require that one distinguish SR2 from (the non-diffeomorphism-
invariant) SR1. If so, I disagree, for reasons I explain in the final section of this
paper.

Third, and most interestingly, Rovelli’s description of the second cost suggests a
quite different way to connect the question of whether diffeomorphisms are symme-
tries to background independence. Prima facie, there is a formal difference between
SR2 and GR1 that I have not so far mentioned. The two theories are defined on the
same space of KPMs. In the case of GR1, the space of solutions picked out by its
equations can also be fixed via a variational problem defined in terms of the action
SGR1 = ∫

d4x(LG + LΦ).33 On the face of it, the same is not true of SR2. One can
pick out the solution space of SR1 in terms of a variational problem, defined via
the action SSR1 = ∫

d4xLΦ , whereLΦ depends on the fixed metric field ηab. In the
context of the space of KPMs common to GR1 and SR2, however, elements in the
solution space of SR2 are not stationary points of

∫
d4xLΦ . The latter can identified

by considering the Euler–Lagrange equations one obtains by applying Hamilton’s
principle to both Φ and gab. From the first, one gets the Klein–Gordon equation, but
from the second one gets the trivialising condition that the stress-energy tensor for
Φ vanishes.

These reflections might suggest that background independence could be linked
to the symmetry status of Diff(M) in the following way:

Background Independence (version 1). A theory T is background independent if
and only if it can be formulated in terms of a variational problem for which Diff(M)

is a variational symmetry group.
Although one can write an action for SR1 in a generally covariant or coordinate-

independent manner, Diff(M) is not a symmetry group of the variational problem
that defines the theory’s models.34 Recall that the action of Diff(M) on the SR1’s
space of KPMs acts on Φ but not on ηab, and does not leave the space of DPMs
invariant. A useful alternative way of stating the proposed condition is as follows:

33The “gravitational” part of the Lagrangian is the Einstein–Hilbert Lagrangian LG = √−gκ R,
where R is the curvature scalar and κ is a suitable constant. The “matter” term is the standard
Lagrangian for the massless Klein–Gordon field: LΦ = √−ggab∇aΦ∇bΦ.
34See Belot [7, 161–2] for further discussion of the notion of a variational symmetry.
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Background Independence (version 2). A theory T is background independent if
and only if its solution space is determined by a generally covariant action all of
whose dependent variables are subject to Hamilton’s principle.

This rules out the generally covariant version of the SR1 action principle, since
in this case only Φ and not ηab is subject to Hamilton’s principle. It will also rule out
SR2 if the solution space of this theory really is not obtainable from an appropriately
formulated action principle.

Despite these promising results, the proposal does not work. In the quotation
above, Rovelli refers to Sorkin [59]. In that paper, Sorkin, rediscovering a procedure
originally employed by Rosen [50], shows how one can derive equations (4) and
(1) from a diffeomorphism-invariant action. One obtains a Sorkin-type action by
replacingLG in SGR1 with a different “gravitational” term,LS = √−g
abcd Rabcd .
The theory therefore involves a Lagrange multiplier field, 
abcd , in addition to the
fields common to SR2 and GR1. In this new action, all the dependent variables are
to be subject to Hamilton’s principle. For ease of reference, let us call the resulting
theory (so formulated) SR3. Varying 
abcd leads to equation (1). Since Φ does not
occur inLS , varying this field has the same effect as inGR1, and leads to the Klein–
Gordon equation (4). (One also needs to consider variations of gab. Rather than the
EFE, this leads to an equation that relates Θabcd , gab and Φ.)35

Let us assume, for the moment, that in SR3 we have yet another way to formu-
late the specially relativistic theory that has been our example throughout this paper.
Since its models are determined by a diffeomorphism-invariant action, all of whose
dependent variables are subject to Hamilton’s principle, the theory counts as back-
ground independent according to our latest proposal. The proposal therefore needs
to be revised. A natural thought is to amend it as follows:

Background Independence (version 3). A theory T is background independent if
and only if its solution space is determined by a generally covariant action: (i) all of
whose dependent variables are subject to Hamilton’s principle, and (ii) all of whose
dependent variables represent physical fields.
The idea is that SR3 fails to satisfy the second of these conditions because the
dynamics of the additional field Θabcd strongly suggest that it is not a physical field.
Itmakes no impact on the evolution of gab andΦ and hence,were it a genuine element
of reality, it would be completely unobservable (on the natural assumption that our
empirical access to it would be through its effect on “standard” matter fields such
as Φ). Indeed, it is only on the basis of interpreting Θabcd as a mere mathematical
device that one can view SR3 as a reformulation of SR2.

In the quotation at the start of this section, Rovelli suggests that one might instead
regard SR3 as a different theory from SR2, on the grounds that SR3 involves an

35Note that the evolution of Θabcd is constrained by, but does not affect the evolutions of gab and
Φ. The action–reaction principle is therefore violated by Φ, with respect to Θabcd , and not just by
gab. The theory illustrates that requiring that all of the dependent variables in an action be subject to
Hamilton’s principle does not entail that the resulting theory satisfies the action–reaction principle,
pace Baez [5].
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additional field (presumably because one views this field as representing a genuine
element of reality, the points just made notwithstanding). This might seem to pro-
vide an alternative way to argue that our revised proposal does not classify SR2 as
background independent on the basis of SR3’s satisfying its conditions: if SR3 is a
different theory, it clearly does not show that the solutions of SR2 can be derived
from a diffeomorphism-invariant action.

While this might get the classification of SR2 correct, it does so at the cost of mis-
classifying SR3. According to the current suggestion, SR3 now is a theory that meets
the conditions for being background independent. But this is not the right result. The
fact the equation of motion for its metric field is derived from a diffeomorphism-
invariant action expressed only in terms of physical fields, hardly makes that metric
more dynamical than the metric of SR2. After all, they both obey exactly the same
equation of motion. And once this problem is recognised, reclassifying Θabcd as
unphysical does not seem like enough to salvage the proposal. Even if SR3 is no
longer a counterexample, might there not be a relevantly similar theory that the pro-
posal incorrectly classifies as background independent? The Rosen–Sorkin method
is not the only way to construct a diffeomorphism-invariant variational problem for
a theory that involves non-dynamical fields. These alternative procedures arguably
provide examples of exactly the type envisaged.

One such procedure, developed by Karel Kuchař, is parameterization. In the sim-
plest case one starts with the Lorentz-covariant expression for the action, defined
with respect to inertial frame coordinates. Note that the field ηab does not explicitly
occur in this expression. One then treats the four coordinate fields Xμ of this formu-
lation as themselves dependent variables (“clock fields”), writes them as functions
of arbitrary coordinates, Xμ = Xμ(xν), and re-expresses the Lagrangian in terms of
these new variables. Hamilton’s principle is applied to the original dynamical vari-
ables, now conceived of as functions of xν , and to the coordinate fields, Xμ. In our
simple example of SR1, stationarity under variations of Φ leads to an equation for
Φ and Xμ that is satisfied just if Φ satisfies the standard Lorentz-covariant Klein–
Gordon equation (1) with respect to the Xμ. Stationarity under variations of the Xμ

yields equations that are automatically satisfied if the first equation is satisfied (see,
e.g. §II.A [66]). Let us call the resulting theory SR4.

Another technique is described by Lee and Wald [40, 734].36 Let the KPMs of
SR5 be defined in terms of two maps from the spacetime manifold, M . One is our
familiar scalar field Φ. The other is a diffeomorphism y into a copy of spacetime,
M̃ , that is equipped with a particular flat Lorentzian metric field. One can use the
diffeomorphism y to pull back the metric on M̃ onto M , and use the result, gab(y),
to define the standard Lagrangian, LΦ(y, Φ) = √−g(y)g(y)ab(∇aΦ)(∇bΦ), and
action functional S = ∫

d4xLΦ . To determine the theory’s solutions we require that
S is stationary under variations in both of the theory’s fundamental variables, y and
Φ. Φ variations give us that Φ satisfies the Klein–Gordon equation with respect to
gab(y). Variations in y give equations that involve the vanishing of terms that are

36See Belot [7, 206–9] for an extended discussion of this example.
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proportional to∇nT n
b, where T ab is the stress-energy tensor forΦ. Since∇nT n

b = 0
follows from the Klein–Gordon equation, these equations are automatically satisfied.

Both SR4 and SR5 are examples of theories defined by diffeomorphism-invariant
actions all of whose dependent variables are subject to Hamilton’s principle. They
will therefore be counterexamples to our latest proposal just if (i) they are background
dependent and (ii) all of their fields are physical fields. One way to explore whether
(i) and (ii) are satisfied is to consider how the theories relate to SR2. In particular,
if they count as reformulations of SR2, then they are formulations of a background-
dependent theory.

First, recall that a model of SR2 is a triple of the form 〈M, gab, Φ〉, where gab

is flat. A model of SR4, is of the form 〈M, Φ, X0, X1, X2, X3〉. That is, it lacks
a (primitive) field gab, and includes instead four scalar fields. Finally, models of
SR5 are of the form 〈M, y, Φ〉, where y is a diffeomorphism into M̃ , a copy of M
equipped with a fixed metric.

For both SR4 and SR5, there is a natural map from that theory’s solution space
to the solution space of SR2. For SR4, one first defines the unique flat metric
field gX

ab associated with the fields Xμ (the metric for which the Xμ are every-
where Riemmann–normal coordinates). One then requires that the map associates
〈M, Φ, X0, X1, X2, X3〉 with 〈M, gab, Φ〉 just if gX

ab = gab. For SR5, 〈M, y, Φ〉
maps to 〈M, gab, Φ〉 just if g(y)ab = gab. In the first case, the map is many-one. The
solution space of SR4 is intuitively ‘bigger’ than that of SR2. In the case of SR5,
however, the map is a bijection.

Thismachinery helps articulate how both SR4 and SR5 can naturally be viewed as
reformulations of SR2.37 First, consider SR4. For any model of SR2 one can choose
special coordinates that encode itsmetric via the requirement that, in these coordinate
systems, gab = diag(−1, 1, 1, 1). In order to understand SR4 as a reformulation of
SR2, one interprets the fundamental fields of SR4 to be such coordinate fields. So
interpreted, SR4 is a formulation of a background-dependent theory, since SR2 is.
Do the Xμ count as “physical fields”?Unlike theΘabcd of SR3, they certainly encode
something physical, since they encode the metrical facts. But there is also a sense
in which they do not themselves directly represent something physical: coordinate
systems are not physical objects. Note also that encoding a flat metric via special
coordinates in the manner proposed does not uniquely determine the coordinates.
If {Xμ} corresponds to one such set of fields, then so will any set {X ′μ} where the
X ′μ are related to the Xμ by a Poincaré transformation. This is the source of the fact
that the map from models of SR4 to those of SR2 is many-one. This means that
(on the suggested interpretation our formalism) the {Xμ} contain some redundancy;
“internal” Poincaré transformations Xμ �→ X ′μ should be regarded as mere gauge
re-descriptions.

37A similar observation can bemade concerning SR3. Its models are of the form 〈M, gab, Φ,Θabcd 〉
and the map from its solution space to that of SR2 simply involves throwing away Θabcd :
〈M, gab, Φ,Θabcd 〉 �→ 〈M, gab, Φ〉. This map is many-one, but the differences between SR3mod-
els mapped to the same SR2 model concern differences in the non-physical field Θabcd .
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The nature of the bijection between the solution space of SR5 and that of SR2
makes their interpretation as reformulations of the same background-dependent
theory even more straightforward. Are SR5’s basic variables physical fields? The
dynamical role of y is exhausted by its use to define the pull-back metric on M . It
is only through this metric that y enters into the Lagrangian of the theory. Nonethe-
less, there is again a clear sense in which the machinery involves arbitrary elements
that do not represent the physical facts directly. In particular, we might have set up
the theory in terms of a different (but still flat) metric on the target manifold. As a
mathematical object, this would constitute a different formulation of the theory, and
yet the difference does not show up at the level of the pulled-back metrics on M : the
same range of metrics for M is surveyed, just via different maps to a different object.

The upshot is that it is not clear whether SR4 and SR5, interpreted as reformula-
tions of SR2, constitute counterexamples to the proposed criterion for background
independence. All hinges on whether the relevant fields count as physical fields.
They clearly encode physical facts but, equally clearly, they do not do so in the most
perspicuous manner. One might seek to solve this dilemma via further proscriptive
modifications to the proposal. This, of course, risks creating further problems.38

More importantly, one should recognise that we are now far past the point where one
might hope to articulate a simple and illuminating connection between diffeomor-
phism invariance and background independence.

Rovelli writes

Diffeomorphism invariance is the key property of the mathematical language used to express
the key conceptual shift introduced with GR: the world is not formed by a fixed non-
dynamical spacetime structure, which defines localization and on which the dynamical fields
live. Rather, it is formed solely by dynamical fields in interactions with one another. Local-
ization is only defined, relationally, with respect to the fields themselves. [54, 1312]

The moral of our investigation so far is that diffeomorphism invariance can-
not be taken to express the shift from non-dynamical to only dynamical space-
time structures. Theories with non-dynamical structure can be formulated in a fully
diffeomorphism-invariant manner. But note that Rovelli’s description of the key con-
ceptual shift introduced with GR involves two elements. In addition to themove from
non-dynamical to dynamical spacetime, there is the claim that, in GR, “localization
is only defined, relationally, with respect to the fields themselves”. I agree that this is
how one should understand diffeomorphism-invariant theories. What the existence
of diffeomorphism-invariant formulations of theories with non-dynamical structure
indicates, however, is that this feature of a theory is not peculiar to theories that lack
non-dynamical fields. A diffeomorphism-invariant, relational approach to “localiza-
tion” is as appropriate in the context of Newtonian physics and special relativity as
it is in GR. A defence of this claim is the task of the last two sections.

38For example, does the metric field of GR1 represent the physical facts in the most perspicuous
manner? If GR1 is not to count as fully background independent, it should not be on account of
this type of failure.
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9 An Aside on the Gauge Status of Diff(M)

My central claim is this: the observable content of, and the nature of the genuine
physical magnitudes of, a specially relativistic theory, whether formulated along
the lines of SR1 or SR2, are identical in nature to those of an analogue generally
relativistic theory, such as GR1. In the next section, I will spell out how this can be
so. In this section, I say a little about when one should interpret diffeomorphisms as
gauge transformations.

In the previous section, we saw that Rovelli claimed that SR3 might be distin-
guished from SR2 on the grounds that the former involves an additional field. In the
passage quoted above, he cites Earman,who does indeed argue that one should distin-
guish SR3 from more standard formulations of specially relativistic Klein–Gordon
theory. Earman’s reasoning, however, is rather different from Rovelli’s.

Earman [21] defines (massive variants of) SR1, SR2 and SR3, via the analogues
of the equations considered earlier in this paper.39 (To ease exposition, I use this
paper’s labels to refer to Earman’s theories.) He is primarily concerned with the
comparison between SR1 (as obtained from an action principle) and SR3. Earman’s
reasons for differentiating the theories, unlike Rovelli’s, have nothing directly to do
with the presence of an additional field. He views the theories as distinct because he
believes that, in the context of SR1, Φ can be treated as an observable but, in SR3, it
cannot because: (i) only gauge-invariant quantities are observable and (ii) one should
regard the Diff(M) symmetry of SR3 as a gauge symmetry. Earman takes (ii) to be
justified by the fact that Diff(M) is both a local and a variational symmetry group
in the context of SR3. In reaching this judgement in this way, he takes himself to
be applying a “uniform method for getting a fix on gauge that applies to any theory
in mathematical physics whose equations of motion/field equations are derivable
from an action principle” and that is “generally accepted in the physics community”
[18, 19].

As I have argued elsewhere [47], the fact that this apparatus tells us that Diff(M)

is not a gauge group of SR1 is not surprising. Diff(M) is not a symmetry group of
SR1 and so a fortiori it is not a gauge symmetry group. What one really wishes
to know is whether one should view Diff(M) as a gauge group of SR2. Earman
does not address this question head-on, but one suspects that his answer would be in
the negative, for he argues that the solution sets of SR1 and SR2 are the same [21,
455]. This, of course, simply cannot be correct. It cannot be the case that (i) Diff(M)

is not a symmetry group of SR1; (ii) Diff(M) is a symmetry group of SR2; and
(iii) the solution sets of SR1 and SR2 are the same. It is (iii) that should be given
up, and it will be instructive to see where Earman’s argument goes wrong.

39His equation (3) [21, 451 ] is (once corrected) the massive analogue of my (3), and defines his
SR1-type theory. His equations (5) and (6) [21, 455] are the analogues of (4) and (1), and define
his SR2-type theory.
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Here is what he says

The solution sets for [SR1] and for [SR2] are the same, at least on the assumption that
the spacetime manifold is R4. For then there is a global coordinate system {xμ} such that
gμν = ημν (where ημν is the Minkowski matrix) solves [(1)]. Moreover, in this coordinate
system [(4)] reduces to [(3)40]. And every solution of [(1)] can be transformed, by a suitable
coordinate transformation, into a solution of the form gμν = ημν . Thus, every solution of
[SR2] is a solution of [SR1]. Similar reasoning shows that the converse is also true. [21,
455, 466, n 26]

This argument, effectively, ignores the distinction between fields that are solutions
to equations and fields that feature in equations as fixed fields. Here is one way to see
the error. Fix a coordinate system K on M (of the kind Earman considers). Relative
to K , ηab always has the same components in the coordinate representation of every
solution of SR1. Every one of these coordinate descriptions is also a description
with respect to K of a solution of SR2. But, in addition to these, every possible
set of coordinate functions that one can obtain from the original sets by acting by a
diffeomorphism on R4 also describes—still relative to K—a solution of SR2. Note,
too, that each of these additional sets of coordinate functions corresponds (relative
to K ) to a representation of a (mathematically, though not necessarily physically)
distinct solution of SR2. But these new coordinate functions are not descriptions
of solutions of SR1 relative to K (the components of the metric tensor have been
changed, so they no longer describe ηab).41

I conclude that Earman’s claims do not speak against the natural interpretation of
Diff(M) as a gauge group of SR2. His own favoured apparatus is simply silent on
the question. When physicists themselves justify the use of the apparatus to identify
gauge freedom, they take the deterministic nature of the theories in question as a
premise (see, e.g. [16, 20]). In the context of SR2, this premise also leads to the
conclusion that Diff(M) is a gauge group. In fact, Belot [8] shows how one can
regiment the intuitions that are arguably behind such arguments in order to define
a notion of gauge equivalence that matches Earman’s favoured notion in its ver-
dicts concerning Lagrangian theories but which applies more widely. Unsuprisingly,
Belot’s definition tells us that Diff(M) is a gauge group of SR2. There remains just
one task. We need to see how this interpretative stance with respect to SR2 can be
reconciled with a relatively orthodox account of the nature of the observables of both
background-dependent SR and background-independent GR.

40Since Earman refers to ημν as the Minkowski matrix, and since he has switched from Roman
indices—which I interpret as signalling coordinate-free, abstract index notation—to Greek indices,
it would seem more appropriate to refer to his equation (2), i.e., to equation (1), rather than to
his (3).
41They can be understood as descriptions of solutions of SR1, but only if we allow ourselves to
describe things with respect to coordinate systems other than K (in fact, we need to consider one
coordinate system for each class related by Poincaré transformations). And when we do this, each
solution of SR1 is, of course, multiply represented.
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10 On the Meaning of Coordinates

Recall, again, the similarities between GR1 and SR2. The two theories share a
space of KPMs. They differ only in terms of which subsets of this space are picked
out as dynamically possible. The DPMs of each theory, although distinct sets of
mathematical objects, are sets of the same kind of objects. Thatmuch ismathematical
fact. These similarities, I submit, make plausible the following interpretative stance:
one should treat the two theories uniformly. On this view, the physical magnitudes of
the two theories describe the same types of physical objects. The theories postulate
the same kind of stuff; they just differ over which configurations of this stuff are
physically possible.

Why might one reject such a view? The reason, I think, has to do with a popular,
but potentially misleading, way of thinking about the coordinates of non-generally
covariant formulations of pre-relativistic theories. As Iwill describe in amoment, this
way of thinking about the coordinates of, for example, Lorentz-invariant theories has
implications for howone conceives of the content of those theories. It leads to awayof
thinking about the theory’s physical content that does not transfer to theories without
special coordinates. The lack of non-dynamical background fields entails (though,
as we saw, cannot be equated with) the lack of such coordinates. It is therefore
natural to see the shift from SR to GR, in which background structures are excised,
as heralding a radical change in the nature of the content of our physical theories.
Against this, I want to highlight an alternative way of conceiving of the special
coordinates of a non-covariant physics. This alternative way is perfectly compatible
with the fundamental nature of the content of our physics remaining unchanged in the
passage from background dependence to background independence. It also provides
an independently plausible account of the content of background-dependent theories,
such as SR.

The influence of the problematic viewmight well flow from the following passage
in Einstein’s groundbreaking paper on special relativity:

The theory to be developed—like every other electrodynamics—is based upon the kinematics
of rigid bodies, since the assertions of any such theory concern relations between rigid bodies
(systems of coordinates), clocks, and electromagnetic processes. [23, 38, my emphasis]

Einstein seems here to be claiming that the meaning of the theoretical claims of
Lorentz-invariant electromagnetism—that is, what those claims are fundamentally
about—concerns the relationships between electromagnetic phenomena and rods
and clocks. In other words, the content of the theory’s claims is held to be about
relationships between electromagnetic phenomena and material bodies outside of
the electromagnetic system under study.

Versions of this type of view, as an interpretation of the special coordinates of
specially relativistic and Newtonian physics, are explicitly endorsed by, for exam-
ple, Stachel [60, 141–2], Westman and Sonego [67, 1592–3] and, in several places,
Rovelli. To give a flavour of the importance of the view for Rovelli, I quote at length
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For Newton, the coordinates x that enter his main equation

F = m
d2x(t)
dt2

(2.152)

are the coordinates of absolute space. However, since we cannot directly observe space, the
only way we can coordinatize space points is by using physical objects. The coordinates
x…are therefore defined as distances from a chosen system O of objects, which we call a
“reference frame”…

In other words, the physical content of (2.152) is actually quite subtle:

There exist reference objects O with respect to which the motion of any other object A is
correctly described by (2.152)…

Notice also that for this construction to work it is important that the objects O forming
the reference frame are not affected by the motion of the object A. There shouldn’t be any
dynamical interaction between A and O . [53, 87–8]42

The similarity with Einstein’s claim is clear. The “physical content” of an equa-
tion of restricted covariance turns out to involve claims about relations between the
dynamical quantities that are explicitly represented in the equations and other mate-
rial bodies that are only implicitly represented via the special coordinates. There is
one difference worth noting. For Einstein, the important role of external bodies is
to make meaningful spatial and temporal intervals; the bodies in question are rods
and clocks. Rovelli, in contrast, emphasises two other roles played by the bodies of
his reference system: they fix a particular coordinate system (define its origin) and,
more importantly, they define same place over time. In fact, in spelling out his notion
of a material reference system, Rovelli seems to take the notion of spatial distance
as primitive and empirically unproblematic.

Now contrast this Einstein–Stachel–Rovelli (ESR) way of understanding special
coordinates to what I will call the Anderson–Trautman–Friedman (ATF) perspec-
tive (recall footnote 12), which has already been adopted throughout in this paper.
According to this latter view, a generally covariant formulation of a theory has the
advantage over formulations of limited covariance of making the physical content of
the theory fully explicit. This content includes certain spatiotemporal structures, such
as those encoded by the Minkowski metric field ηab. In cases where these structures
are highly symmetric, one can encode certain physical quantities (e.g. spatiotemporal
intervals) via special choices of coordinates adapted to these structures. Newton’s
special coordinates are not fundamentally defined in terms of, and Newton’s equa-
tions do not make implicit reference to, external material bodies. Rather they are

42A similar claim is found in Rovelli [51, 187–9]. There Rovelli combines the claim that in pre-
relativistic physics “reference system objects are not part of the dynamical system studied, their
motion…is independent from the dynamics of the system studied” with the further assertion that
the “mathematical expression” of the failure of this condition in GR is “the invariance of Einstein’s
equations under active diffeomorphisms.”
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equations that encode physically meaningful chronometric and inertial structure, via
certain “gauge fixing” coordinate conditions.43

In order to avoid confusion, let me stress that according to both the ESR view
and the ATF view the special coordinates of a non-covariant form of pre-relativistic
physics have a different meaning to arbitrary coordinates in GR (or a generally
covariant form of the pre-relativistic theory). On both views the special coordinates
have physical meaning. The accounts just differ over what that physical meaning is.

To help further clarify the differences between two views, let me highlight three
distinct features that concrete applications of coordinate systems must or may have.

1. The coordinate system must be anchored to the world in some way. If it is to be
concretely applied, and predictively effective,wemust be able to practically deter-
mine which coordinate values’ particular observable events are to be assigned.

2. The coordinate system might be anchored to the world by observable material
objects outside the system under study. (The system under studymight be a proper
subsystem of the universe.)

3. The coordinate system might partially encode, or be partially defined in terms
of, physically meaningful spatiotemporal quantities (spacetime intervals; inertial
trajectories, etc.). In order for this to be applied in concrete cases, we require
physical systems that disclose these facts. Further, these systems may or may not
be external to the system being modelled by our theory.

The ATF perspective wholly concerns the third point: the special coordinates
of non-generally covariant formulations of theories encode physical magnitudes. It
is simply silent on the issues raised in the first two points. The ESR perspective
assumes such encoding too, but it makes various further commitments concerning
how such coordinate systems are anchored to the world, and what kind of systems
disclose the magnitudes that the coordinate systems encoded. It is important to see
that these additional claims are not necessary concomitants of the idea that there is
such encoding.

To see this, consider how one might in practice get one’s hands on an ATF special
coordinate system. The coordinates encode spatial intervals and temporal intervals.
So one needs to be able tomeasure spatial and temporal intervals. But without further
argument, one’s ability to measure these should not be taken to require that the rods
and clocks one uses are outside the system that one is describing, much less outside
the scope of the theory one is using. Note that such spatiotemporal measurement
is equally essential to the concrete application of GR, not now to give meaning to
special coordinates, but to give empirical content to one of the dynamical fields that
is explicitly described.

The ESR idea that, necessarily, special coordinates in pre-relativistic physics gain
their meaning from material systems outside the system being studied, blurs the dis-
tinction between (i) coordinates encoding physical magnitudes that are disclosed by

43Specifically, one imposes �
μ
νρ = 0, tμ = (1, 0, 0, 0) and hμν = diag(0, 1, 1, 1), where �

μ
νρ are

the components of the connection, tμ are the components of the one-form that defines the temporal
metric and hμν are the components of the spatial metric.
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systems not covered by the theory in question and (ii) the coordinates being anchored
to the world via material systems outside the system under study. Rovelli’s idea that
“localisation” is inherently non-relational in pre-relativistic physics really only relies
on (ii). However, it is easy to see that (ii) is not an intrinsic feature of the special
coordinates of pre-relativistic physics. Even if in practice we often use physical sys-
tems to measure spatiotemporal intervals (and thereby fix the “magnitude-encoding”
aspect of the coordinate system) that we do not (or cannot) actually model in our
theory, the anchoring of particular coordinates to the world might simply involve the
stipulation that some qualitatively characterisable components of the system under
study are to be given such-and-such coordinate values.

Consider the case of a Lorentz-covariant formulation of our theory of the spe-
cially relativistic scalar field, for which Φ(x) is supposed to be an “observable”, in
contrast to the analogous quantity in GR. If the special coordinate system in terms of
which Φ is being described is anchored to the world by some reference system not
described by the theory, and if the coordinates are understood as encoding objective
spatiotemporal quantities, then it is clear what physical meaning Φ(x0) is supposed
to have (for any given, particular x0) and what the difference in meaning is between
the quantities Φ(x0) and Φ(x0 + Δx). However—and this is the absolutely crucial
observation—such coordinate representations of Φ can also be understood to be
physically meaningful (in essentially the same way) without understanding them in
terms of “non-relational localisation” thought of as provided by an external anchor
for the coordinate system.

Imagine, for example, that one measures Φ to take a certain value (at one’s loca-
tion). One stipulates that this value is to be given coordinate values x0.44 One then
asks what value the theory predicts that the field will take at a certain spatiotempo-
ral distance away from the observed value. Since such spatiotemporal distances are
encoded in the coordinates of the Lorentz-covariant formulation of the theory, this is
to ask what the theory predicts the value of Φ(x0 + Δx) will be, given the value of
Φ(x0), where the coordinate difference Δx encodes the spatiotemporal interval we
are interested in. Note that, conceived of in this way, Φ(x) and Φ(x + Δx) specify,
not two independently predictable quantities ultimately defined in terms of the rela-
tionship of Φ to an unstated reference object, but a single diffeomorphism-invariant
coincidence quantity, involving how the variation of Φ is related to the underlying
metric field ηab.

If one considers Newtonian physics or special relativity as potentially providing
complete cosmological theories, then any anchoring of special coordinate systems
has to be done, ultimately, in this second way. Moreover, any systems that disclose
the metric facts are, by hypothesis, describable by the theory. Of course, this is not

44In reality, in order both to provide a uniquely identifying description of the field that allows us to
anchor the coordinate system, and to provide sufficient initial data that a prediction can be extracted
from the theory, one should really consider the observation of a certain qualitatively characterisable
and spatially extended continuum of field values. This complication does not alter the basic structure
of the story given in the text.
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how we now understand the empirical applicability of Newtonian physics or special
relativity in the actual world. But the point is that there is no logical incoherence in
so conceiving of them. Indeed, it was the interpretation each was assumed to have
prior to 1905 and 1915 respectively. A theory’s including non-dynamical background
fields does not, per se, preclude such a cosmological interpretation.

To summarise, the additional commitments of the ESR interpretation of coor-
dinates, over those of the ATF view, are not necessary consequences of a theory’s
being background dependent in the sense of involving non-dynamical structure. The
conditions that ESR write into the very meaning of all special coordinate systems
might correctly characterise some concrete applications of such systems, but they
need not do so. In fact, sometimes, they do not do so. Consider, for example, a case
whose philosophical importance is stressed by Julian Barbour: the use of Newtonian
mechanics by astronomers to determine ephemeris time and the inertial frames.45

Here certain facts about simultaneity and spatial distances are determined “exter-
nally”, but the way the coordinate system is anchored to the world, and the way some
of the spatiotemporal quantities encoded by the coordinate system are determined
(time intervals and an inertial standard of equilocality) are not.

There is, perhaps, one qualification to be made. I have argued that, in the context
of classical background-dependent physics, the ESR story about special coordinate
systems does not provide an analysis of their fundamental meaning. This, however,
does not rule out something like the story being correct for background-dependent
quantum theory. In this context, the suggestion would be that certain (non-quantum)
background structure in the theory, namely, Minkowski spacetime geometry, really
does acquire physical meaning via an implicit appeal to physical systems outside
the scope of the theory. Even if something along these lines were correct (and I
register my scepticism), the point to be stressed is that its correctness is not to be
understood as flowing from the necessary meaning of such coordinate systems in
classical background-dependent physics.
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Gauge Theory of Gravity and Spacetime

Friedrich W Hehl

Abstract The advent of general relativity in 1915/1916 induced a paradigm shift:
since then, the theory of gravity had to be seen in the context of the geometry of
spacetime. An outgrowth of this new way of looking at gravity is the gauge principle
of Weyl (1929) and Yang–Mills–Utiyama (1954/1956). It became manifest around
the 1960s (Sciama–Kibble) that gravity is closely related to the Poincaré group acting
in Minkowski space. The gauging of this external group induces a Riemann–Cartan
geometry on spacetime. If one generalizes the gauge group of gravity, one discovers
stillmore involved spacetime geometries. If one specializes it to the translation group,
one finds a specific Riemann–Cartan geometry with teleparallelism (Weitzenböck
geometry).

1 Apropos a Theory of Spacetime Theories

In this workshop, we are supposed tomove “Towards a theory of spacetime theories.”
The idea seems to be that there are many spacetime theories around: the Riemannian
spacetime theory in the framework of general relativity (GR), theWeitzenböck space-
time theory in teleparallelism approaches to gravity, the Riemann–Cartan spacetime
theory withing the Poincaré gauge theory of gravity (PG), the superspace(time) the-
ory within supergravity, the Weyl(–Cartan) spacetime theory within a gauge theory
of theWeyl group, etc. The list could be continued with spacetime theories emerging
in quantization approaches to gravity where spacetime becomes mostly a discrete
structure. There is a plethora of different spacetime theories around and it is hardly
possible to view all of them from some kind of a unifying principle, let alone from
one theory encompassing these spacetime theories as specific subcases.
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Orientation in this seemingly chaotic landscape of spacetime theories can be
provided by looking at the successful theories of our days that are able to predict
and describe correctly fundamental phenomena occurring in nature. There is the
standard model of particle physics, based on the Poincaré group (also known as
inhomogeneous Lorentz group) and the internal groups SU(3), SU(2), U(1). The
Poincaré group is the groupofmotion in theMinkowski spacetimeof special relativity
(SR), and it classifies the particles according to their masses and their spins. The
internal groups describe the strong and the electroweak interactions by means of the
respective gauge (or Yang–Mills) theory.

A book on the centennial of the discovery of SRwas called [1]: “Special Relativity.
Will it survive the next 100 years?” When I read this title in 2005, I thought for a
moment that I must have been in a time machine and in reality I am living in 1905.
Hadn’t SR already been superseded in 1915/1916 by GR, I wondered? I pointed this
out to the editors that this title looks anachronistic to me and is hardly appropriate for
editors who both are known to subscribe to GR. It turned out that both wanted to ask
whether SR survives locally as a valid theory. But they did not want to change the
title since this fact was, as they told me, known to everybody anyway. I gave up since
I realized that in a time when in the tabloid press a title is more for catching one’s
attention than for spreading the truth, the scientific literature cannot stand aside.

But what is my point? Well, we all seem to agree that at least presently SR is
universally valid locally in a freely falling frame. So far no deviations therefrom
have been found. Only at very high accelerations, the principle of locality, inherent
in SR, may need to be amended [2]. In any case, our march toward a theory of all
spacetime theories has at least a definitive starting point.

ButwasSR superseded byGR?Yes, of course—in spite of the title of reference [1].
The abstraction of a Minkowski space can only be uphold when gravitational effects
can safely be neglected. If you measure Planck’s constant or the elementary charge
by a conventional laboratory experiment, then this assumption is justified. But if
you go down the stairs, you had better not neglect gravity, otherwise you may fall
downwards; or if you measure the deflection angle of a light ray gracing a star, you
also had better not neglect gravity. From the laboratory to at least the scale of the
planetary system, GR is in excellent agreement with experiment. On the galactic
scale this is taken for granted by most physicists, but this is disputed by supporters
of MOND, of TeVeS, of f(R)-theory, or of nonlocal gravity,1 for example, compare
the presentations in [6]. Anyway, GR is mostly accepted for the global description
of the cosmos and if the cosmological principle is assumed, namely homogeneity
and isotropy of space, Einstein’s field equation predicts a Friedmann cosmos. The
cosmos started with the Big Bang and it is usually assumed to be equipped with a
scalar inflationary field providing a sufficiently fast expansion. Needless to say that
this framework is based on a number of extreme extrapolations.

1Mashhoon and the author [3, 4] formulated a nonlocal translational gauge theory of gravity that
can account for the observed rotation curves of spiral galaxies without invoking any dark matter; in
fact, this nonlocal theory of gravitation appears to be consistent with gravitational physics from the
scale of the solar system to the scale of clusters of galaxies—see the most recent results by Rahvar
and Mashhoon [5].
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The message is then that the Minkowski spacetime picture is replaced by the
Riemannian one. But this does not rest on the same strong experimentally well-
confirmed basis as the local presence of the Minkowski spacetime of SR.

2 Is the Gauge Idea the Underlying Principle for All
Interactions?

Since the advent of GR, it was clear that a spacetime theory is inextricably linked
to gravity. One cannot be understood without the other. Coming back to the topic of
our workshop, it is then clear that gravity has to be considered in this general context
willy nilly. Accordingly, a spacetime theory is at the same time, at least in some of
its parts, a theory of gravity.

Let us then turn to gravity: Is GR all we have? Well, by some people GR is
declared to be sacrosanct and you may touch it only by superimposing some abstract
mathematical framework supposedly quantizing GR, see [7]. But practitioners of
this method increasingly become aware that they have to amend the Hilbert–Einstein
Lagrangian of the free gravitational field by non-Riemannian supplementary terms,
thereby dissolving to a certain extend the Riemannian structure they started with
[8–10]. Hence alternatives to GR gain credibility even if GR is left fixed at first.

Is GR the only reasonable theory of gravity? No, it is not. Already in 1956,
Utiyama began to formulate gravity as a gauge theory, for a selection of classical
papers, see [11]. The strong and electro-weak gauge theories are based on internal
symmetry groups—mathematically semi-simple Lie groups—linked to conserved
currents. The gauge idea basically requires that the rigid (or global) symmetry group
related to the conserved current under consideration has to be made local; without
giving up the invariance of the Lagrangian, this is only possible by the introduction
of a gauge potential A = Aidxi (a covector or an 1-form) that transform under this
group suitably; for each parameter of the group one needs one covector field. Thus,
the group dictates the interaction emerging from that scheme: a new interaction
is created from a conserved current via the (reciprocal) Noether theorem and the
symmetry group attached to it.

In the standard model of particle physics all gauge groups are internal, that is,
they act in some internal space. In the original Yang–Mills theory, for example, it
was the isospin space. But the gauge idea of localizing a symmetry does not seem to
be restricted to internal groups. An external group affects by definition spacetime.
If we have a conserved current and a corresponding group, nothing prohibits us to
apply the gauge principle.

How does gravity come into this framework? The source of Newtonian gravity is
the mass of a body. In classical physics, mass is a conserved quantity, as has been
experimentally demonstrated by Lavoisier (around 1790). In SR mass conservation
is no longer valid—as has been shown in the 1930s by more accurate experimental
techniques—and is superseded by energy-momentum conservation, as has beenmost
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vividly demonstrated in Alamogordo in 1945. Clearly then, the Poisson equation
controlling Newton’s gravitational potential φ, namelyΔφ(r, t) = 4πGρ(r, t), with
Δ as the Laplace operator, G as the gravitational constant, and ρ as the mass density,
has to be replaced by an equation that carries on its right-hand side the energy
density of matter (and/or radiation). However, according to SR, the energy density
is the time–time component of the symmetric energy-momentum current tij = tji of
matter (and/or radiation).

For an isolated physical system, the energy-momentum current tij is conserved:
∂jti

j = 0. This is an expression of the fact that the action of the system is invariant
under translations in time and space. Consequently, the conserved energy-momentum
current together with the translation group T(4) acting in Minkowski space should
underlie gravity. Since the translation group has four parameters, one describing a
time translation and three describing space translations, we expect four potential
one-forms ϑα , for α = 0, 1, 2, 3. As we will see further down, this framework leads
to a teleparallelism theory of gravity and back to a theory that is equivalent to GR
for conventional (bosonic) matter. Accordingly, GR can be understood as a gauge
theory of the translation group T(4), which is an external group.

Ergo, all interactions, including gravity, are governed by gauge field theories. But
let us now turn back to the history of the gauge idea:

3 The Gauging of the Poincaré Group

As we mentioned before, Utiyama [12] first attacked the problem of understanding
gravity as a gauge theory by means of gauging the Lorentz group SO(1, 3). In this
way, Utiyama supposedly derived general relativity. However, the problematic char-
acter of his derivation is apparent. First of all, he had to introduce in an ad hoc way
tetrads ei

α (or coframes ϑα = ei
αdxi), first holonomic (natural), and later anholo-

nomic (arbitrary) ones. Secondly, he has to assume the connection Γi
αβ of spacetime

to be Riemannian, without any convincing argument.
But thirdly, perhaps the strongest reason, the current linked to the (homogeneous)

Lorentz group is the angular momentum current Jij
k = −Jji

k , which is conserved,
∂kJij

k = 0. However, as we have seen in the last section, gravity is coupled to the
conserved and symmetric energy-momentum current tik . Accordingly, Einstein in
1915 took in general relativity the symmetric energy-momentum current tik as the
source of gravity in his field equation and not the angular momentum current. Hence
Utiyama was not on the right track. Interestingly enough, in numerous publications
even today, the Lorentz group is incorrectly thought of as gauge group of GR; usually
the conserved current coupled to it is not even mentioned.

This can be also viewed from the translational gauge group of gravity, at which we
arrived above. In aMinkowski space, as in any Euclidean space, the group ofmotions
consists of translations and rotations. In fact, the semidirect product of the translation
group and the Lorentz group, T(4)�SO(1, 3), is the Poincaré group P(1, 3) with its
4 + 6 parameters (and its 4 + 6 gauge potentialsϑα andΓ αβ = −Γ βα , respectively).
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In a Euclidean or Minkowskian space the translations do not live alone, they are
accompanied, in a nontrivial way, by the (Lorentz) rotations. Accordingly, since we
find reasons to gauge the translations in aMinkowski spacetime, it is hardly avoidable
to gauge also the rotations. If one has spinless matter, this argument may be skipped.
However, if we have fermionic matter, its rotational behavior is closely linked to the
translational behavior. Kibble, who was the first to gauge the Poincaré group [13],
poses the following question [14]:

… Is it possible that starting from a theory with rigid symmetries and applying the gauge
principle, we can recover the gravitational field? The answer turned out to be yes, though in a
subtly differentway andwith an intriguing twist. Starting from special relativity and applying
the gauge principle to its Poincaré-group symmetries leads most directly not precisely to
Einstein’s general relativity, but to a variant, originally proposed by Élie Cartan, which
instead of a pure Riemannian space-time uses a space-time with torsion. In general relativity,
curvature is sourced by energy and momentum. In the Poincaré gauge theory, in its basic
version, additionally torsion is sourced by spin.

This is also the basic message of our seminar: Gauging an external group, here the
Poincaré group, leads directly to a new geometry of spacetime, here the Riemann–
Cartan geometry of spacetime. To an external gauge group a certain geometry of
spacetime is attached, the Minkowski space is deformed in accordance with the
gauged symmetries. Moreover, without a conserved current, there can be no real
gauge procedure in the sense of Weyl and Yang–Mills. If somebody tries to sell
you a gauge theory without mentioning the associated conserved current, do not
believe her or him a word. Gauging the Weyl group without considering the scale
current and gauging the conformal group without considering the conformal currents
are procedures that may lead to something, but certainly not to gauge theories à la
Weyl–Yang–Mills, see the discussion in [11].

Often I have heard the argument that gravity can have no relation to the translation
group since GR takes place in a Riemannian space and therein the translations are an
ill-defined concept since they are not integrable, for example. However, this argument
rests on a misunderstanding. In a gauge approach, at the start of the procedure,
that is, before the rigid symmetry is made local, we consider the gravity-free case.
Accordingly, we are in Minkowski space where a translation is part of the group of
motion. Only after we localized the symmetry, we lose the underlying Minkowski
space, it gets deformed, and one has to reconstruct the emerging geometry. This is
the radicality of the gauge principle: an interaction is created by a symmetry. The
translation group T(4), a subgroup of the Poincaré group P(1, 3), which acts in
a Minkowski space, creates the gravitational potential ϑα . The Lorentz subgroup
SO(1, 3) creates another gravitational potential Γ αβ = −Γ βα , the consequences of
which we will have to discuss.
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4 Einstein’s Discussion of the Transition from Special
to General Relativity

Before we turn to the subject of the gauging of the Poincaré group, we remind
ourselves how Einstein “derived” gravity [15]. When Einstein developed GR, he
could take a classical mass point withmassm as a starting point for his investigations.
He studied its behavior in an accelerated reference system. Technically, in order to
switch on acceleration, he transformed the original Cartesian coordinate system Xi

to a curvilinear coordinate system xi. Let us look at this in more detail. The points in
the Minkowski space of SR can be described with the help of Cartesian coordinates
Xi, with i = 0, 1, 2, 3. In these coordinates, the line element reads

ds2 = (dX0)2 − (dX1)2 − (dX2)2 − (dX3)2 = oijdXi ⊗ dXj, (1)

with oij = diag(1,−1,−1,−1) and summation over repeated indices. The equation
of motion of a force-free mass in an inertial frame K ,

d2Xk

ds2
= 0, (2)

leads for the particle trajectory to a straight line with constant velocity.
The same motion, as viewed from the accelerated frame K ′, can be derived by a

transformation of (2) to curvilinear coordinates,

D2xk

Ds2
:= d2xk

ds2
+ Γ̃ij

k dxi

ds

dxj

ds
= 0, (3)

with the Riemannian connection (Christoffel symbols of the 2nd kind):

Γ̃ij
k := 1

2 gk�
(
∂igj� − ∂jgi� + ∂�gij

) = Γ̃ji
k; (4)

here we abbreviated the partial differentiation ∂/∂xi as ∂i. Themassive particle accel-
erates with respect to the non-inertial frame K ′ in such a way that this acceleration
is independent of its mass. But an observer in K ′ cannot tell whether this motion
is accelerated or induced by a homogeneous gravitational field of strength Γ̃ij

k . In
other words, the reference system K ′ can be alternatively considered as being at rest
with respect to K , but a homogeneous gravitational field is present that is described
by the Christoffel symbols Γ̃ij

k .
Nothing has happened so far. We are still in a Minkowski space in which—as

is shown in geometry—the Riemann curvature tensor belonging to the Christoffel
symbols

R̃ijk
� := 2∂[iΓ̃j]k� + 2Γ̃[i|m|� Γ̃j]km (5)
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vanishes, that is R̃ijk
� = 0; brackets around indices denote antisymmetrization:

[ij] := {ij − ji}/2. This is the ingenuity of Einstein’s approach: He considers force-
freemotion from twodifferent reference frames and identifies thereby theChristoffels
as describing—according to the equivalence principle—ahomogeneous gravitational
field. Of course, this gravitational field in Minkowski space is fictitious, it is simu-
lated, it does not really exist since the Riemann curvature vanishes.

Besides massive point particles, we have light rays (“photons”) that can be con-
sidered in a similar way. For light propagation we have ds2 = 0, but the geodesic line
(3) can be reparametrized with the help of a suitable affine parameter. Then, from the
point of view of reference frame K ′, a light ray that propagates in a straight line in
the inertial frame K appears to be deflected in K ′. According to Einstein [16], “… the
principle of the constancy of the velocity of light in vacuo must be modified, since
we easily recognize that the path of the light ray with respect to K ′ must in general
be curvilinear.” Thus, the gravitational field deflects light. This is one of Einstein
famous and successful predictions.

In order to create a real gravitational field—this is Einstein’s assumption—
we must relax the rigidity of Minkowski space and allow for Riemannian curva-
ture, inducing in this way a “deformed” spacetime carrying nonvanishing curvature
R̃ijk

� �= 0. A prerequisite for this procedure to work is the fact that the Christoffels
depend at most on first derivatives ∂kgij(x) of the metric gij(x). These first deriva-
tives appear even in a flat space in an accelerated frame. Only nonvanishing second
derivatives tell us about real gravitational fields.

There is one more thing to be seen from (3). If we multiply it with a slowly
varying scalar mass density ρ of dust matter, then we recognize that the Christoffels
are coupled to the (symmetric) energy-momentum tensor density of dust,2

ρ
d2xk

ds2
+ tij Γ̃ij

k = 0 with tij := ρuiuj (6)

and ui := dxi/ds as velocity of the dust. The fictitious nontensorial force density
fk := tij Γ̃ij

k , as observed by Weyl [18], is somewhat analogous to the Lorentz force
acting on a charged particle in electrodynamics fkLor := JiFi

k , with Ji = ρelui as
electric current density and Fik as electromagnetic field strength, the difference being
that here the force density fk is quadratic in ui, whereas the Lorentz force density fkLor
is linear in ui; note also that the electromagnetic field is antisymmetric Fik = −Fki

and the gravitational field symmetric Γ̃ij
k = +Γ̃ji

k . Thus, as a by-product, we have
identified the energy-momentum tensor density of matter as the source of gravity.

2A more detailed discussion can be found in Adler et al. [17], p. 351.
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5 Neutron Interferometer Experiments

However, in themeantime, Imean since 1916,we have learned that there are fermions
in nature. Besides mass m, they carry half-integer spin s. Instead of a mass point, we
will then study the simplest massive fermion, the Dirac field in an inertial and a non-
inertial reference frame thus taking care of Synge’s verdict “Newton successfully
wrote apple = moon, but you cannot write apple = neutron.” This is what, in fact,
Kibble [13] has done in 1961.

But even better, experimentally it has been clear since 1975 that the Colella–
Overhauser–Werner (COW) experiment [19] is the “modern” archetypal experiment
for a fermion in a gravitational field: A monochromatic neutron beam, extracted
from a nuclear reactor, falls freely in the gravitational field of the earth. The phase
shift of its wave function Ψ (x), caused by the gravitational field, is measured by
means of an interferometer built from a silicon crystal, see also [20]. Accordingly,
the single-crystal interferometer is at rest with respect to the laboratory, whereas
the neutrons are subject to the gravitational potential. Bonse and Wroblewski (BW)
[21] compared this with the effect of acceleration relative to the laboratory frame
by letting the interferometer oscillate horizontally. With these experiments of BW
and COW the effect of local acceleration and local gravity on matter waves has been
shown to be equivalent. Later, with atomic beam interferometry, the accuracy of these
type of results were appreciably improved.

It is strange, but in most textbooks on gravitation—and in most philosophical
discussions on gravity—these successful experiments on the behavior of Dirac fields
under acceleration (BW) and in a gravitational field (COW)are simply notmentioned.
Most textbook authors and philosophers rather restrict themselves to Einstein’s 1916
discussion and to experiments related therewith. In writing a textbook on gravita-
tion, is it indecent to refer to experiments that have a certain quantum flavor? Is it
appropriate to be silent about experiments that provide new insight into the structure
of the gravitational field?

The neutrons in the COW and BW experiments have spin 1
2 ; they are fermions. At

the energies prevalent in the COW and the BW experiments, the neutron (including
its spin) can be supposed to be elementary, its composition out of three quarks can
be neglected. Accordingly, if the neutron is force-free, it can be described by a
Dirac spinor Ψ (x) obeying the free Dirac equation3 (iγ k∂k − m)Ψ (x) = 0. Thus,
the neutron obeys approximately a classical one-particle equation, namely the Dirac
or, in the nonrelativistic limit, the Pauli–Schrödinger equation and, if the spin can be
neglected, the Schrödinger equation. That this evaluation is correct has been borne
out by experiments of the COW and BW type [20]: the neutrons of the COW and the
BW experiments obey a Schrödinger equation including a Newtonian gravitational
potential energy or a corresponding acceleration term, respectively.

3Here � = 1, c = 1, the imaginary unit is denoted by i, the Dirac gamma matrices by γ k , and the
mass of the neutron by m. If an electromagnetic field is present, the Dirac equation has to be coupled
minimally to it and a Pauli-term added that takes into account the non-standard magnetic moment
of the neutron.
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Fig. 1 Natural frame eb = δ
j
b∂j and natural coframe ϑa = δa

i dxi at a point P of a three-dimensional
manifold (a, b = 1, 2, 3). The coordinates of P are denoted by xi, i = 1, 2, 3, whereas δb

a is the
Kronecker symbol. The coframeϑa is supposed to be also at the samepointP, but the three one-forms
ϑa are shifted for better visibility in three different directions. Note that ϑ1(e1) = 1, ϑ1(e2) = 0,
etc., that is, ϑa is dual to eb according to eb�ϑa ≡ ϑa(eb) = δa

b ; for the figure, see [22]

The basic difference between the mass point and the Dirac field is that the latter
requires an orthonormal reference frame for its description. A Dirac spinor is a
half-integer representation of the [covering group SL(2, C) of the] Lorentz group
SO(1, 3), that is, it is intrinsically tied to the Lorentz group. In Minkowski space, it
is simple to introduce an orthonormal frame. On starts with Cartesian coordinates
and takes the tangent vectors of the coordinate lines as “natural” frame eβ = δ

j
β∂j,

compare Figure 1. If one translates and Lorentz rotates such a frame, one can find
an arbitrary frame eβ = ej

β∂j that, in general, cannot any longer be derived from
coordinate lines. Before we discuss this from a more general point of view, let us
first make a general remark:

Pitts [23] argues, using work of Ogievetsky and Polubarinov of the 1960s, that
one does not require orthonormal frames for introducing spinors in curved spacetime
and that coordinate systems are sufficient. Frames are very useful for Fermi-Walker
transport and for gravitomagnetism already in GR. For the gauge theory of gravity,
frames were used by Sciama and Kibble, see [11], and we can hardly see a benefit
for kicking them out. The price one has to pay for the removal of frames is to go to
nonlinear group representations and to other complications.We do not knowwhether
this prevention of frames is really conclusive and leave the answer to this question
to the future.
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6 Some Geometric Machinery: Coframe and Connection

Suppose that spacetime is a four-dimensional continuum in which we can distinguish
one time and three space dimensions. At each pointP, we can span the local cotangent
space by means of four linearly independent covectors, the coframe ϑα = ei

αdxi.
Here α, β, . . . = 0, 1, 2, 3 are frame and i, j, . . . = 0, 1, 2, 3 coordinate indices. In
general, the object of anholonomity two-form does not vanish,

Cα := dϑα = 1
2Cij

αdxi ∧ dxj �= 0 , with Cij
α = 2∂[iej]α , (7)

see [24]. This specification of spacetime is the bare minimum that one needs for
applications to classical physics.

As soon as we have a coframe ϑα , we can also define its dual, the frame com-
posed of four likewise linearly independent vectors eα = ei

α∂i by the duality relation
eβ�ϑa = ϑα(eβ) = δα

β . Geometrically speaking, frame and coframe are equivalent
as reference frames for physical quantities. For physical reasons, the coframe turns
out to be the translational gauge type potential and thus does fit more smoothly into
a gauge formalism.

Having now a reference coframe ϑα , we want to do physics in such a spacetime.
We need a tool to express, for instance, that a certain field is constant. If the field is a
scalar φ, there is no problem, the gradient dφ = (∂iφ)dxi, if equated to zero, will do
the job. However, if the field is a vector or, more generally, a spinor or an arbitrary
tensor field ψ , we need a law that specifies the parallel transfer of ψ from one point
P to a neighboring point P′. Let us see how Einstein in 1955 looked in retrospect at
the development of GR [25]:

… the essential achievement of general relativity, namely to overcome “rigid” space (ie the
inertial frame), is only indirectly connected with the introduction of a Riemannian metric.
The directly relevant conceptual element is the “displacement field” (Γ l

ik), which expresses
the infinitesimal displacement of vectors. It is this which replaces the parallelism of spatially
arbitrarily separated vectors fixed by the inertial frame (ie the equality of corresponding
components) by an infinitesimal operation. This makes it possible to construct tensors by
differentiation and hence to dispense with the introduction of ‘rigid’ space (the inertial
frame). In the face of this, it seems to be of secondary importance in some sense that some
particular Γ field can be deduced from a Riemannian metric…4

Einstein’s “displacement field” can be implemented by means of a linear connection
Γα

β = Γiα
βdxi (“affinity”). The one-form field Γα

β(x), with its 64 independent com-

4When I showed this quotation during my seminar, E. Scholz (Wuppertal) immediately remarked
that the fact of the importance of the connection as guiding field was already clear to Weyl in 1918,
or at least in the 1920s. And D. Rowe (Mainz) added that also Einstein was aware of the importance
of the concept of a connection since at least the late 1920s. Both remarks are certainly true. However,
there is a subtle difference: Weyl referred to a symmetric connection since he was concerned with
coordinates and not with frames. When, in 1929, he introduced frames [26], Weyl’s connection still
remained symmetric, and only in 1950 he considered also asymmetric connections in the context of
gravity [27]. In contrast, Einstein was concerned with asymmetric connections at least since 1925,
when he formulated a unified theory of gravity and electricity and introduced what is nowadays
called incorrectly the Palatini variational principle [28].
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ponents, has to be prescribed before the parallel transport of a spinor or a tensor field
ψ can be performed and, associated with it, a covariant derivative be defined (whose
vanishing would imply that the field is constant). The linear connection Γα

β(x),
shortly after the advent of general relativity, was recognized as a fundamental ingre-
dient of spacetime physics, for more details see [11], for instance. The law of parallel
transport embodies the inertial properties of matter.

The connection Γα
β represents 4 × 4 potentials of the four-dimensional group of

general linear transformations GL(4, R). Very similar to the Yang–Mills potential of
the SU(3), for example.

Coframe and connection ϑa, Γα
β—still the metric is not involved—provide a

good arsenal for further geometrical battles. Having a connection, we can covari-
antly differentiate. We define straightforwardly the “field strengths” torsion Tα and
curvature Rα

β as

Tα := d ϑα + Γβ
α ∧ ϑβ = 1

2Tij
αdxi ∧ dxj , (8)

Rα
β := d Γα

β − Γα
γ ∧ Γγ

β = 1
2Rijα

βdxi ∧ dxj . (9)

One recognizes that Tα and Rα
β are the gauge field strengths of the affine group

A(4, R) = T(4)�GL(4, R).
Let us look at the torsion in components. From (8) we find

Tij
α = 2∂[iej]α + 2Γ[i|βαe|j]β = Cij

α + 2Γ[ij]α . (10)

In a holonomic (coordinate) frame, Cij
α = 0. Thus, Tij

α ∗= 2Γ[ij]α; incidentally, a
“star equal”

∗= is used, see [24], if a formula is only valid for a restricted class of
frames or coordinates. In such a frame—and only in a holonomic one—the vanishing
of the torsion translates into the symmetry of the connection. It is now obvious why
this symmetry is called a “bastard symmetry.” In Γ[ij]α = Γ[i|βαe|j]β , the index ‘i’
originates from the one-form character of the connection, whereas the index ‘j’ is
related to the Lie-algebra index ‘β’. Only in a holonomic frame the symmetry of
a connection looks natural. In an anholonomic frame, here Cij

α �= 0, it is nothing
trivial. It is a fundamental assumption that has to be justified similar as the vanishing
of the curvature.

A space with Tα �= 0, Rα
β �= 0, we call an affine space. If Tα = 0, we have a

symmetric affine space, if Rα
β = 0, we have a teleparallel affine space (or of a space

with teleparallelism). Should we require Tα = 0 and Rα
β = 0, we have a symmetric

flat affine space.
We followed here the lead of Schrödinger [29] and introduced first the connection

before we will turn to the metric.
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7 More Geometry: Metric and Orthonormal Coframe

However, our experience in Minkowski space tells us that there must be more struc-
ture on the spacetimemanifold than the symmetric flat affine space possesses. Locally
at least, we are able to measure time and space intervals and angles. A pseudo-
Riemannian (or Lorentzian) metric5 gij = gji is sufficient for accommodating these
measurement procedures. If gαβ denotes the components of the metric with respect
to the coframe, we have gij = ei

αej
β gαβ and g = gαβ ϑα⊗ ϑβ . In an orthonormal

coframe we recover

gαβ
∗= oαβ :=

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ . (11)

Now, in analogy to the procedures in equations (8) and (9), we can derive the
field strength, the nonmetricity one-form, corresponding to the potential gαβ , by
differentiation:

Qαβ := −Dgαβ = −dgαβ + Γα
γ gγβ + Γβ

γ gαγ = Qiαβdxi . (12)

Accordingly, the coframe ϑα(x), the linear connection Γα
β(x), and the metric gαβ(x)

control the geometry of spacetime. The metric determines the distances and angles,
the coframe serves as translational gauge potential, whereas the connection pro-
vides the guidance field for matter reflecting its inertial properties and it is the
GL(4, R) gauge potential. The space equipped with these 10 + 16 + 64 potentials
(gαβ, ϑα, Γα

β) we call a metric-affine space, the corresponding field strength are the
40 + 24 + 96 fields (Qαβ, Tα, Rα

β), for reviews and the corresponding formalism,
see [11, 31, 32].

In a metric-affine space, we can lower the second index of the connection accord-
ing to Γαβ := Γα

γ gγβ . Then we can compare it with the Riemann (Levi-Civita)
connection Γ̃αβ . After some algebra, see [24], we find in terms of components:

Γαβγ = Γ̃αβγ + 1
2 (Tαβγ − Tβγα + Tγαβ) + 1

2 (Qαβγ + Qβγα − Qγαβ) . (13)

It should be stressed that this decompositions are useful if a direct comparison ismade
with theRiemannian piece Γ̃ .However, in the variational formalismof a gauge theory
of gravity, besides gαβ and ϑα , the connection Γα

β is considered as independent
variable. Then such a decomposition is unwarranted under those circumstances.

Can we give a satisfactory justification for the emergence of three different grav-
itational gauge potentials? We take the Minkowski space of SR as basis for our

5Nowadays there exists a definite hint that the conformally invariant part of themetric, the light cone,
is electromagnetic in origin (see [22, 30]), that is, it can be derived from premetric electrodynamics
together with a linear constitutive law for the empty spacetime (vacuum). Hence the metric, or at
least its conformally invariant part, doesn’t appear as a fundamental structure, it rather emerges in
an electromagnetic context.
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considerations. It is a fact of life that the geometry of a Minkowski (or a Euclidean)
space consists of an interplay between properties that relate to parallel displacement
and those that relate to distance and angle measurements. In Minkowski space this
duality between affine (inertial) andmetric properties is solved in that the affine prop-
erties are exclusively expressed in terms of metric properties: the metric properties
dominate the affine ones.

If we “liberate” the affine properties, we are immediately led, in four dimensions,
to the affine group A(4, R) = T(4)�GL(4, R) and, gauging it, to the coframe ϑα

and the linear connection Γα
β as gauge potentials. The metric properties, expressed

by the metric gij, are then left behind.
Since macroscopic gravity in GR is so successfully described by means of the

metric gij as (Einstein’s) gravitational potential, it suggests itself to add themetric—in
its anholonomic form gαβ—as third member to the gravitational potentials. There are
two procedures possible: We pick, instead of an arbitrary coframe, an orthonormal
one,which is constructedwith the help of themetric; in thisway themetric is absorbed
and, besides this orthonormal coframe, only the connection remains as variable.
However, since this restricts the freedomof choosing also non-orthonormal coframes,
we take all three potentials as independent variables. The Lagrangian formalism of
the corresponding field theory will then provide the relation between the coframe and
themetric, and itwill turn out that there is, indeed, a close link between both variables,
see [32]. At the same time—and this is a real progress in understanding—we find
that the metric energy-momentum current of matter tαβ couples to the metric and
the canonical one Tα couples to the coframe. Their interdependence is beautifully
displayed in the three-potentials’ approach.

In a metric-affine space, as shown by Hartley [33], normal frames can be found:
locally it is possible to find suitable coordinates and suitable frames such that

(ϑα, Γα
β)

∗= (δα
i dxi, 0) . (14)

This is the new type of Einstein elevator. In GR, the Einstein elevator was described
by a holonomic reference frame ϑα with Cα = 0. Then, in the Riemann spacetime
of GR, one could introduce Riemannian normal coordinates. Here, in the gauge
theoretical approach, the constraint of holonomicity is dropped and this new degree
of freedom, which expresses itself in a rotational acceleration, admits to introduce
normal frames. The equivalence principle can then be applied in this new context.
For new developments of this notion, see Nester [34] and Giglio and Rodrigues [35].

As soon as we require in a metric-affine space integrability of length and angle
measurements, we have to postulate6 Qαβ = 0. Then we arrive at a Riemann–Cartan
space (RC-space), which wasmentioned in the context of the gauging of the Poincaré
group in Sec. 3. In such a space, if we choose orthonormal frames, the connection

6If one wants to keep the angles integrable, but not the length, one can postulate only the vanishing
of the tracefree part of the nonmetricity, Qαβ − 1

4 gαβQγ
γ = 0. This results in a Weyl–Cartan space

with nonvanishing Weyl covector 1
4 Qγ

γ , see the contribution of Scholz [36]; however, in this
approach also the torsion is put to zero.
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Fig. 2 The Riemann–Cartan space (or U4), a metric-affine space with vanishing nonmetricity, is
the arena for the Poincaré gauge theory (PG). It can either become a Weitzenböck space W4, if
its curvature vanishes, or a Riemann space V4, if the torsion happens to vanish. GR acts in a V4,
teleparallelism theories of gravity in a W4

becomes antisymmetric; then we have the 6 + 24 potentials (ϑa, Γ αβ = −Γ βα) as
gravitational variables. Again normal frames like in (14) can be found

(ϑα, Γ αβ)
∗= (δα

i dxi, 0) , (15)

as has been first shown by von der Heyde [37]. This geometrical fact shows clearly
that theLorentz connectionΓ αβ is, besides the orthonormal frameϑα , the appropriate
gauge field variable. After this geometrical detour we are back to where we started
from. In Figure 2 different subcases of a RC-space are displayed.

8 Dirac Field Ψ (x) in Minkowski Space in a Non-inertial
Reference Frame

After this rather long geometrical interlude, we come back to physics and consider
again theDirac fieldΨ (x). Amass point in an inertial framemoves according to equa-
tion (2), one in an accelerated frame, according to equation (3). The inertial forces
are represented by the Christoffels in equation (4). Let us execute the analogous
process for the Dirac electron. Since the Dirac electron is referred to an orthonormal

erik@strangebeautiful.com



Gauge Theory of Gravity and Spacetime 159

(co)frame, we have to study its behavior under translational and rotational accelera-
tions, see [38].

In Minkowski space in Cartesian coordinates, we have the force-free Dirac equa-
tion as analog of equation (17),

(iγ i∂i − m)Ψ
∗= 0 , (16)

and in a non-inertial frame in flat Minkowski space we find

[

iγ αei
α(∂i + i

4
σβγ Γ̃i

βγ ) − m

]

Ψ = 0 , σβγ := iγ[βγγ ] . (17)

These two equations correspond to the Einsteinian equations (2) and (3). Namely, in
the nonrelativistic WKB-approximation, when the spin can be neglected, equation
(16) becomes (2). You may wonder whether this is true since (16), in contrast to (2),
is mass dependent. For this reason, some people argued that this violates the equiv-
alence principle in the sense that the motion of a force-free particle (field) must be
independent of m. However, what they overlooked is that also in classical mechanics
the Hamilton–Jacobi equation for a force-free particle is mass dependent—and the
classical nonrelativistic analog of the Dirac equation is the Hamilton–Jacobi equa-
tion. Accordingly, all is fine and in the desired approximation the mass will drop
out.

The new potentials, emerging in a non-inertial frame, are (ei
α, Γ̃i

βγ ). The latter
one, in Minkowski space, can be expressed in terms of derivatives of the former:
Γ̃i

βγ = Γ̃i
βγ (∂jek

δ). However, we will not substitute Γ̃i
βγ in terms of the frame since

we will relax the constraint Tij
α = 0 subsequently.

This is what we will do now. Einstein relaxed the constraint R̃ijk
� = 0, since that

is all he found for a point particle, we relax the constraints Tij
α = 0 and R̃ij

αβ = 0,
since a Dirac field has a more involved structure as displayed in particular in a non-
inertial frame. This relaxation of both constraints leads directly to aRiemann–Cartan
spacetime as the arena appropriate for a Poincaré gauge theory (PG).

Why could not we do by only relaxing the curvature constraint, R̃ij
αβ �= 0, but

keeping the torsion constraint, Tij
α = 0? Well, this is possible. However, it is not in

the sense of local field theory.Why should we keep the nonlocal constraint7 Tij
α = 0,

which corresponds to 24 partial differential equations of first order, when we know
that its relaxation does away with these PDEs and still allows locally to get rid of
gravity according to (15)?

Whereas Einstein discussed the equivalence principle on the level of the equations
of motion, in gauge theories, because of the application of the Noether theorem for
rigid and local symmetries, the discussion takes place on the level of Lagrangians.

7Explicitly, this constraint reads Tij
α = 2(∂[iej]α + Γ[i|β|αej]β) = 0. These are 6 × 4 = 24 PDEs

for the coframe components ei
α . For their solution, we not only have to know the local values of

ei
α , but also their values in the infinitesimal neighborhood. In this sense, the constraint is nonlocal

and contrived, see [37] for a more detailed discussion.
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If we multiply DαΨ = (∂α + i
4σβγ Γα

βγ )Ψ from the left by iΨ γ α , average with
its Hermitian conjugate, and add a mass term, we find the (real) Dirac Lagrangian
density:8

L

e
= i

2
ei

α

[

Ψ γ α

(

∂i + i

4
σβγ Γi

βγ

)

Ψ

]

+ herm. conj. + mΨ Ψ

= i

2
(Ψ γ αDαΨ − Ψ γ αDαΨ ) + mΨ Ψ . (18)

The action is W = ∫
d4xL. The Lagrangian in an inertial frame in Cartesian coordi-

nates can be read off by making the substitutions ei
α → δi

α, Γi
βγ → 0.

9 Some Results of the Lagrange–Noether Formalism

To identify the currents that couple to the gravitational potentials (ei
α, Γi

αβ), some
formalism is necessary that may disturb the philosophically minded reader. We try
to simplify these considerations and will, instead of working in a RC-spacetime (for
a rigorous treatment see [32]), restrict ourselves to theMinkowski space in Cartesian
coordinates.

The action W is invariant under 4 rigid spacetime translations of 6 rigid Lorentz
rotations (3 boosts plus 3 spatial rotations). As a consequence, we have (see Corson
[39]) energy-momentum and angular momentum conservation,

∂kTi
k ∗= 0 , ∂kJij

k ∗= 0 , (19)

with the canonical energy-momentum tensor density

Ti
k : ∗= δk

i L − ∂L

∂∂kΨ
∂iΨ , (20)

the total canonical angular momentum tensor density, consisting of an intrinsic and
an orbital part,

Jij
k : ∗= Sij

k + xiTj
k − xjTi

k = −Jji
k, (21)

and the canonical spin angular momentum tensor density (lij = Lorentz generators)

Sij
k : ∗= ∂L

∂∂kΨ
lijΨ = −Sji

k . (22)

From this straightforward consideration in Minkowski space alone, we recognize
that the canonical energy-momentum Ti

k and the canonical angular momentum Jij
k

8e := det ei
α, ∂α = ei

α∂i, Dα = ei
αDi.
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are the translational and the Lorentz currents of matter. Only the intrinsic spin part
Sij

k of the angularmomentum is a tensor; the orbital part is only a tensor under Carte-
sian coordinate transformations. For the Dirac field we find (Tα

k = ei
αT i

k, etc.):

Tα
i ∗= i

2

(
Ψ γ i∂αΨ − Ψ γ i∂αΨ

)
, (23)

Sαβ
i ∗= 1

8
Ψ

(
σαβγ i + γ iσαβ

)
Ψ . (24)

The spin is totally antisymmetric: after some algebra, we can put (24) into the form

Sαβγ = 1

4
εαβγ δΨ γ δγ5Ψ , (25)

with γ5 := − i
4!εαβγ δγ

αγ βγ γ γ δ .
We compare (23) and (24) with the Lagrangian (18) and consider small deviations

from the inertial case, that is, ei
α = δi

α + εi
α , with εi

α 	 1, then we find after some
algebra and some rearrangements to linear order in εi

α ,

L ∼ ei
αTα

i + Γi
αβSαβ

i − mΨ Ψ . (26)

There is some resemblance to the structure in (6) even though we work here on a
Lagrangian level. This coupling of geometry to matter displayed in (26) suggests the
following representation of the canonical currents:

Tα
i = δL

δei
α

, Sαβ
i = δL

δΓi
αβ

. (27)

Of course, this was a heuristic consideration, but with the full Lagrange-Noether
machinery acting in RC-spacetime, it can be made rigorous [32]: The canonical
currents Tα

i, Sαβ
i, defined via the Noether theorem according to (20) and (22), can

be shown to be equal to the “dynamical” currents that couple to the gravitational
potentials according to (27). These currents should also play a decisive role in quark
and gluon physics, see [40].

A short summary of the formalism in this section

For those of you who were lost in this formalism, a short bird eye’s view on
the results: In order to compactify our notation, we change to exterior calculus. We
introduce the matrix-valued one-form γ := γαϑα and the Hodge star operator �.
Then the Dirac equation in an arbitrary orthonormal frame in a RC-space can be
rewritten as

i∗γ ∧ DΨ + ∗m Ψ = 0 , (28)
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with the covariant exterior derivative DΨ := (d + i
4σαβΓ αβ)Ψ . Let us then formu-

late the twisted Lagrange four-form of the Dirac field,

L = L(ϑα, Ψ, DΨ ) = i

2

(
Ψ ∗γ ∧ DΨ + DΨ ∧ ∗γ Ψ

) + ∗m Ψ Ψ , (29)

which is minimally coupled to the RC-spacetime via the gauge potentials ϑα [con-
tained in γ = γαϑα] andΓ αβ = −Γ βα [contained inD]. Note that only the potentials
themselves enter the Lagrangian, but not their derivatives. Thus, the Lagrangian (29),
formulated in aRC-spacetime, because of (15), looks locally special-relativistic. This
attests to the validity of the relaxation process discussed above. The currents, as we
saw above in (27), are then defined as follows:

Tα = δL

δϑα
, Sαβ = δL

δΓ αβ
. (30)

These innocently looking equations (29) and (30), all living in a RC-spacetime, are
the net outcome of our considerations so far.

It was then Sciama [41] and Kibble [13] in the early 1960s who added the Hilbert–
Einstein typeLagrangian of theRC-spacetime to (18) and formulated the correspond-
ing simplest field equations of the gauge theory of gravity; for a historical view see
O’Raifeartaigh [42] and the reprint volume [11], for a modern representation Blago-
jević [43] and Ryder [44].

10 Field Equations of Sciama and Kibble

TheRicci tensor in aRC-spacetime is defined according toRici
α := ej

βRji
αβ .A corre-

sponding scalar density eei
αRici

α is the simplest nontrivial gravitational Lagrangian.
The total action is (� = cosmological constant)

Wtot =
∫

d4x

[
1

2κ
e(ei

αRici
α − 2�) + L(ek

γ , Ψ, DΨ )

]

, (31)

with Einstein’s gravitational constant κ . Variation with respect to ei
α and Γi

αβ yields
the gravitational field equations of Sciama [41] and Kibble [13]:

Ricα
i − 1

2e
i
α Ricγ

γ + �ei
α = κ

e
Tα

i , (32)

Torαβ
i + ei

αTorβγ
γ − ei

βTorαγ
γ = κ

e
Sαβ

i . (33)

We made here the torsion a bit more visible. Please note that Ric and T have both 16
independent components, whereas Tor andS have both 24 independent components.
These field equations are just linear algebraic equations between Ric and Tor on the
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geometrical side and T and S on the matter side, respectively. The Dirac case is
particularly simple, there (33) collapses to just four equations.

Thefirst equation can be easily recognized as anEinstein type field equation.How-
ever, the Ricci tensor is here asymmetric as well as the canonical energy-momentum
tensor of matter. The second equation relates the torsion linearly to the spin of matter.
If we consider matter without spin, the torsion vanishes and the first field equation
reduces just to the Einstein field equation of GR, for a review see [45].

In exterior calculus, these field equations, given first in this form by Trautman,
see [46], look even a bit more transparent:9

1
2ηαβγ ∧ Rβγ − �ηα = κ Tα , (34)

1
2ηαβγ ∧ T γ = κ Sαβ . (35)

The two equations (32), (33) or (34), (35) are the field equations of the Einstein–
Cartan(–Sciama–Kibble) theory of gravity or, in short, of theEinstein–Cartan theory
(EC). This is a special case of a Poincaré gauge theory, namely that which has the
curvature scalar of the RC-spacetime as gravitational Lagrangian. EC is a viable
gravitational theory.

The Maxwell field carries helicity, that is, spin projected along its wave vector,
but is does not carry spin proper as a gauge covariant quantity. Therefore, there is
no electromagnetic contribution to the material spin on the right-hand side of (33)
or (35). Light is insensitive to torsion; torsion cannot be “seen.”10

Torsion effects in EC-theory are minute. Besides the Einsteinian gravitational
field, we have additionally a very weak spin–spin contact interaction that is propor-
tional to the gravitational constant, which is measurable in principle. For a particle of
mass m and reduced Compton wave length λCo := �/mc (with � = reduced Planck
constant, c = speed of light), there exists in EC a critical density and, equivalently,
a critical radius of (�P� = Planck length)

ρEC ∼ m/(λCo�
2
P�) and rEC ∼ (λCo�

2
P�)

1/3 , (36)

respectively, see [45]. For a nucleon we have ρEC ≈ 1054 g/cm3 and rEC ≈ 10−26 cm.
Whereas those densities are extremely high from a usual lab perspective or even from
the point of view of a neutron star (≈1016 g/cm3), in cosmology they are standard.
It may be sufficient to recall that inflation is believed to set in around the Planck
density of 1093 g/cm3.

At densities higher than ρEC, EC-theory is expected to overtake GR. There is no
reason why GR should survive under those conditions, since for fermions the gauge
theoretical framework seems more trustworthy. Some cosmological models of EC
can be found in [11].

9Here we have: Hodge star �, ηα = �ϑa, ηαβ = �(ϑa ∧ ϑβ), ηαβγ = �(ϑa ∧ ϑβ ∧ ϑγ ). Moreover,
Tα = 1

e Tα
γ ηγ and Sαβ = 1

e Sαβ
γ ηγ .

10Only a nonminimal coupling of the electromagnetic field to torsion-square pieces is conceivable,
see [47].
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It is probably fair to say that EC has been established as a consistent and viable
theory of gravity and the Riemann–Cartan geometry of spacetime has won solid
support so that its study should not be skipped in philosophical circles as undesirable
complication of the Riemann geometry of GR.

11 Quadratic Poincaré Gauge Theory of Gravity (qPG)

Let me first express a word of caution: In a fairly recent paper, Mao et al. [48]
believe to have shown “… that Gravity Probe B is an ideal experiment for further
constraining nonstandard torsion theories, …” Nothing could be further away from
the truth. Following the guiding principle that nothing is more practical than a good
theory, Puetzfeld et al. [49, 50] have shown that the measurement of torsion requires
elementary particle spins as test objects whereas in Gravity Probe B the rotating
quartz balls carry orbital angular momentum only, but do not carry uncompensated
elementary particle spin. Thus, the results in [48] are simply incorrect in spite of the
wide publicity that this paper has won.

But back to Einstein–Cartan theory (EC). It is in many ways a very degenerate
theory. A contact interaction in physics cries for a generalization to a propagat-
ing interaction, as has been the way things developed in the Fermi theory of weak
interaction—which was a contact interaction par excellence—to the theory of the
propagating W and Z . The recipe is very simple: The EC-Lagrangian is linear in the
Lorentz field strength, add terms that are quadratic in the translational field strength
(torsion), and the Lorentz field strength (curvature).

Instead of boring you with all the details of this development to quadratic
Lagrangians in a RC-spacetime and who did what and when and why, I shock you
again with a messy formula. This is the most general quadratic Lagrangian including
parity violating pieces (see [9] and the explanations in the subsequent paragraphs):

V = 1

2κ
[ ( a0R + b0X − 2�) η (37)

+ 1
3a2V ∧ �V − 1

3a3A ∧ �A − 2
3σ2V ∧ �A + a1

(1)Tα ∧ �(1)Tα

]

− 1

2ρ

[
( 1
12w6R2 − 1

12w3X
2 + 1

12μ3RX) η + w4
(4)Rαβ ∧ �(4)Rαβ

+(2)Rαβ ∧ (w2
�(2)Rαβ + μ2

(4)Rαβ) + (5)Rαβ ∧ (w5
�(5)Rαβ + μ4

(5)Rαβ)
]
.

The first two lines representweak gravity, with the conventional gravitational con-
stant κ , the last two lines speculative strong gravity with the dimensionless strong
gravity constant ρ. The unknown constants (a0; a1, a2, a3; b0, σ2), weigh the differ-
ent terms of weak gravity, the unknown constants (w2, w3, w4, w5, w6;μ2, μ3, μ4)

those of strong gravity. What a mess!
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But let us discuss the formula line by line: In the first line R is the EC-term,
X := 1

4ηαβγ δR[αβγ δ] is the (parity violating) curvature pseudoscalar, which vanishes
in Riemannian space, but is nonvanishing in RC-space. This term is presently very
popular in the quantum gravity scene, � is the cosmological constant, and η the
“volume element.”

The second line houses all torsion-square pieces. We have a tensor torsion (1)Tα , a
vector torsion V , and an axial vector torsionA . They can enter in the combinations
shown. The remarkable fact is that for dimensional reasons the first line and the
second line give rise to similar effects. Instead of the EC-theory with R, you can
select a suitable linear combination of torsion-square pieces acting in a RC-space
with vanishing curvature (Weitzenböck space), see, for example, Itin [51] or [11] and
the historical article of Sauer [52]. On the first two lines there are literally hundreds
of published papers studying different properties. Numerous printed pages could
be saved, if our colleagues would start with the first two lines right away and just
motivate their choice of the unknown constants.

Now we turn to the remaining more speculative pieces, which are, however, fairly
plausible due to their Yang–Mills type structure. After all, C.N. Yang himself pro-
posed such a theory [53]. We are not in bad company! In the third line we turn our
attention immediately to the first three pieces: They are just squares built from the
curvature scalar and/or the curvature pseudoscalar. The curvature in a RC-space Rαβ

decomposes into six irreducible pieces (I)Rαβ : they are numbered by I , running from
one to six. The pseudoscalar X is number three, the scalar R number six. The last
term in the third line is then a square piece of number four. In the fourth line we have
the remaining curvature square pieces. The term with number one drops out due to
certain identities.

This is only algebra. Where is the physics? you may ask. Well, we have to find
out. It will be a task of the future to single out of this set of quadratic Lagrangians
(37) the physically acceptable one. How such possible developments may look like,
I will illustrate with one example. Shie–Nester–Yo [54] developed a fairly realistic
cosmological model of Friedmann type with propagating connection by picking the
Lagrangian

VSNY = 1

2κ

(
a0R η + a1

(1)Tα ∧ �(1)Tα

)

︸ ︷︷ ︸
weak Newton-Einstein gravity

− w6

24ρ
R2 η

︸ ︷︷ ︸
strong YM-type gravity

. (38)

They found two conventional graviton helicities, as in GR, and this, for a0 �= a1,
combined with a torsion mode of mass of μ := a1 − a0 and spin 0+ (spin zero with
positive parity, that is, an ordinary scalar), which has many attractive features. Of
course, equation (38) is a subcase of equation (37). In the meantime this paper has
been generalized by including parity violating pieces, inter alia, and it has been
numerically evaluated. This paper has about 45 follow-up papers. In this way one
collects more and more insight into the possible physics behind the most general
quadratic PG-Lagrangian.
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12 Outlook

What is the benefit of all of that for the theory of spacetime? Well, it is a small but
decisive step beyond the established Riemannian spacetime structure of GR. Car-
tan’s torsion has been incorporated into the body of knowledge of classical space-
time geometry. At the same time it has been demonstrated that the Poincaré group
P(1, 3) = T(4) � SO(1, 3), acting in the Minkowski space, and the behavior of the
Dirac field in non-inertial frames leads, via the gauge principle, to the Riemann–
Cartan geometry of spacetime. That is, the P(1, 3) symmetry induced the Riemann–
Cartan geometry.

The generalization of this procedure seems to be straightforward. If we add the
group of dilations to P(1, 3), assuming scale covariance in addition to the P(1, 3)
covariance, we arrive at the 11 parametric Weyl group. Gauging it, requires one
more potential, namely the Weyl covector Q, defined in terms of the nonmetricity
according to Q := 1

4Qγ
γ = 1

4gαβQαβ , see equation (12). Associated with it comes a
conservation law and the Noether current Δ = δL/δQ, the dilation or scale current,
whichWeyl hadmistaken for the electric current. If we turn the crank, aWeyl–Cartan
spacetime emerges together with a gauge field equation that has the dilation current
as source. This is standard Weyl lore from a contemporary point of view, see [11],
Chapter 8.

I hope it does not take you by surprise that I cannot see much common ground
with the theory of E. Scholz presented during this workshop [36]. In his approach,
spacetime is governed by a Weyl geometry with vanishing torsion, but the dilation
current is not an inhabitant of the Weyl space of Scholz—or, at least, this current has
not been identified as such and lives anonymously and drifts around uncontrolled by
any field equation.

Instead, one can add to the P(1, 3) simple supersymmetry (symmetry between
fermions and bosons) by extending the Poincaré algebra with anticommuting fermi-
onic generators thus being led to a Poincaré superalgebra. The corresponding gauge
procedure creates a so-called superspace(time) geometry. The field equations of sim-
ple supergravity can be immediately written down by using the EC-field equations
(34) and (35); as sources one takes the energy-momentum and the spin currents of the
massless Rarita–Schwinger field, which carries spin 3

2 . The Rarita–Schwinger field
conspires with the effective spin two of the EC-field to build up a super multiplet
(2, 3

2 ), compare [11], Chapter 12.
In this way, we see that also in supersymmetry the gauge concept of Weyl and

Yang–Mills–Utiyama is successful. And the geometry of spacetime turned out to
have a potential “super” structure beyond Riemann–Cartan geometry.

Mielke [55] generalized the Poincaré group T(4)�SO(1, 3) to the SL(5, R) and
recovered by symmetry breaking reasonable 4-dimensional gravitational gauge struc-
tures. This could be a future-pointing approach.
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Paving the Way for Transitions—A
Case for Weyl Geometry

Erhard Scholz

Abstract This paper presents three aspects bywhich theWeyl geometric generaliza-
tion of Riemannian geometry, and of Einstein gravity, sheds light on actual questions
of physics and its philosophical reflection. After introducing the theory’s principles,
it explains how Weyl geometric gravity relates to Jordan–Brans–Dicke theory. We
then discuss the link between gravity and the electroweak sector of elementary par-
ticle physics, as it looks from the Weyl geometric perspective. Weyl’s hypothesis of
a preferred scale gauge, setting Weyl scalar curvature to a constant, may get new
support from an interplay between the gravitational scalar field and the electroweak
one (the Higgs field). This has surprising consequences for cosmological models and
adds to the motivation for putting central features of the present cosmological model
into a wider perspective.

1 Introduction

When Johann Friedrich Herbart discussed the ‘philosophical study’ of science he
demanded that the sciences should organize their specialized knowledge about core
concepts (Hauptbegriffe). Philosophy should then strive “… to pave the way for
adequate transitions between the concepts …” in order to establish an integrated
system of knowledge.1 In this way philosophy and the specialized sciences were
conceived as a common enterprise. Only together they would be able to generate a
connected system of knowledge and contribute to the ‘many-sidedness of education’
Herbart had in mind.

This is not exactly what is usually understood by ‘metatheory’; but the concept of
the workshop which gave rise to this volume was to go beyond the consideration of
working theories in themselves and to reflect on possiblemutual connections between

1“… und gilt uns [im philosophischen Studium, E.S.], dem gemäß, alle Bemühung, zwischen
den Begriffen die gehörigen Uebergänge zu bahnen … ” [73, 275, emphasis in original].
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different spacetime theories, and perhaps beyond. This task comes quite close towhat
Herbart demanded from ‘speculation’ as he understood it. In this contribution, I want
to use the chance offered by the goal of the workshop to discuss how Weyl geometry
may help to ‘pave the way for transitions’ between certain segments of physical
knowledge. We deal here with connections between theories some of which came
into existence long after the invention of Weyl geometry and are far beyond Weyl’s
original intentions during the years 1918 to 1923.

Mass generation of elementary particle fields is one of the topics. In general rel-
ativity mass serves as the active and passive charge of the gravitational field; high
energy physics has made huge progress in analyzing the basic dynamical structures
which determine the energy content, and thus the gravitational charge, of field con-
stellations. The connection between high energy physics and gravity is still wide
open for further research. Most experts expect the crucial link between the two fields
to be situated close to the Planck scale, viz shortly after the big bang, with the Higgs
‘mechanism’ indicating a phase transition in the early universe. This need not be so.
TheWeyl geometric generalization of gravity considered here indicates amore struc-
tural connection between gravitation and the electroweak scalar field, independent
of cosmological time. The dilationally invariant Lagrangians of (special relativis-
tic) standard model fields translate to scale invariant fields on curved spaces in an
(integrable) Weyl geometry. The latter offers a well-adapted arena for studying the
transition between gravity and standard model fields. Scalar fields play a crucial role
on both sides, the question will be to what extent they are interrelatedmathematically
and physically.

Similar, although still more general, questions with regard to the transition from
conformal structures to gravity theory have already been studied byWeyl. In his 1921
article on the relationship between conformal and projective differential geometry,
[151] he argued that his new geometry establishes a peculiar bridge between the two
basic geometrical structures underlying general relativity, conformal and projective.
The first one was and still is themathematical expression of the causal structure (light
cones) and the second one represents the most abstract mathematization of inertial
structure (free fall trajectories under abstraction from proper time parametrization).
Weyl indicated a kind of ‘transition’ to a fully metric gravity theory into which
other dynamical fields, in his case essentially the electromagnetic one, could be
integrated. He showed that a Weylian metric is uniquely determined if its conformal
and its projective structures are known. In principle, such a metric can be determined
by physically grounded structural observations without any readings of clocks or
measurementswith rods; i.e.Weyl geometry allows to establish a connection between
causal structure, free fall and metrical geometry in an impressingly basic way.

To make the present contribution essentially self-contained, we start with a short
description of Weyl geometry, already with physical meaningful interpretations in
mind, exemplified by the well-known work of Ehlers/Pirani/Schild (section 2). In a
first transition we see how Jordan–Brans–Dicke (JBD) theory with its scalar field,
‘non-minimally’ coupled to gravity, fits neatly into a Weyl geometric framework
(section 3). The different ‘frames’ of JBD theory correspond to different choices of
scale gauges of theWeylian approach.Usually this remains unnoticed in the literature,
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although the basic structural ingredients ofWeyl geometry are presupposed and dealt
with in a non-explicit way.

The link is made explicit in a Weyl geometric version of generalized Einstein
theory with a non-minimally coupled scalar field, due to Omote, Utiyama, Dirac
e.a. (WOD gravity), introduced in section 4. Strong reasons speak in favour of its
integrable version (iWOD gravity) close to, but not identical with, (pseudo-) Rie-
mannian geometry. An intriguing parallel between the Higgs field of electroweak
theory and the scalar field of iWOD gravity comes into sight if one includes the
gravitational coupling into the potential of the scalar field. This suggests to consider
a common biquadratic potential for the two scalar fields (section 5). In its minimum,
the ground state of the scalar field specifies a (non-Riemannian) scale choice of the
Weyl geometry which establishes units for measuring mass, length, time, etc., and
gives rise to the vacuum expectation value and mass of the Higgs field.

In his correspondence with Einstein on the physical acceptability of his gener-
alized geometry Weyl conjectured, or postulated, an adaptation of atomic clocks
to (Weylian) scalar curvature. In this way, according to Weyl, measuring devices
would indicate a scaling inwhich (Weylian) scalar curvature becomes constant (Weyl
gauge). This conjecture is supported, in a surprising way, by evaluating the potential
condition of the gravitational scalar field. If, moreover, the gravitational scalar field
‘communicates’with the electroweakHiggsfield, clock adaptation to the ground state
of the scalar field gets a field theoretic foundation in electroweak theory (section 5.3,
5.4). The question is now open, whether such a transition between iWOD gravity and
electroweak theory indicates a physical connection or whether it is only an accidental
feature of the two theories.

Reconsidering Weyl’s scale gauge condition (constant Weylian scalar curva-
ture) necessitates another look at cosmological models (section 6). The warping
of Friedmann–Robertson–Walker geometries can no longer immediately be inter-
preted as an actual expansion of space (although that is not excluded). Cosmological
redshift becomes, at least partially, due to a field theoretic effect (Weylian scale
connection). From such a point of view, much of the cosmological observational
evidence, among it the cosmological microwave background and quasar distribu-
tion over redshift, ought to be reconsidered. The enlarged perspective of integrable
Weyl geometry and of iWOD gravity elucidate, by contrast, how strongly some
realistic claims of present precision cosmology are dependent on specific facets of
the geometrico-gravitational paradigm of Einstein–Riemann type. Many empirically
sounding statements are insolvably intertwined with the data evaluation on this basis.
Transition to a wider framework may be helpful to reflect these features—perhaps
not only as a metatheoretical exercise (section 7).

2 On Weyl Geometry and the Analysis of EPS

Weyl geometry is a generalization of Riemannian geometry, based on two insights:
(i) The automorphisms of both, of Euclidean geometry and of special relativity, are
the similarities (of Euclidean, or respectively of Lorentz signature) rather than the
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congruences. No unit of length is naturally given in Euclidean geometry, and likewise
the basic structures of special relativity (inertial motion and causal structure) can
be given without the use of clocks and rods. (ii) The development of field theory
and general relativity demands a conceptual implementation of this insight in a
consequently localized mode (physics terminology).2

Based on these insights,Weyl developed what he called reine Infinitesimalgeome-
trie (purely infinitesimal geometry) [149, 150]. Its basic ingredients are a confor-
mal generalization of a (pseudo-) Riemannian metric g = (gμν) by allowing point-
dependent rescaling g̃(x) = Ω(x)2 g(x) with a nowhere vanishing (positive) func-
tion Ω , and a scale (‘length’) connection given by a differential form ϕ = ϕμdxμ,
which has to be gauge transformed ϕ̃ = ϕ − d logΩ when rescaling (gμν). The scale
connection (ϕμ) expresses how to compare lengths of vectors (or othermetrical quan-
tities) at two infinitesimally close points, both measured in terms of a scale, i.e. a
representative (gμν) of the conformal class. The typical symmetry of the geometry,
in the infinitesimal, is thus the scale-extended Poincaré group, sometimes called the
Weyl group (although the same name is used in Lie group theory in a completely
different sense).3

Of course, Weyl’s generalization of Riemannian geometry may be embedded in
E. Cartan’s even wider program of geometries with infinitesimal symmetries. In
the case of the scale extended Poincaré group one then arrives at a Cartan–Weyl
geometry with a translational Cartan connection and torsion as the typical extension
of the structure. Here we restrict to the case without torsion and, as we shall see in a
moment, to the most simple case of an integrable scale connection.4 That even in this
most simple case (no torsion and an integrable scale connection) theCartan geometric
approach toWeyl geometry can be conceptually and physically illuminating, because
of the link between infinitesimal translational symmetries to the energy–momentum
current, may be inferred from F. Hehl’s contribution to this book. But the interesting
question of a ‘teleparallel’ version of integrable Weyl geometric gravity will not be
a topic in the present chapter.

2.1 Scale Connection, Covariant Derivative, Curvature

Metrical quantities in Weyl geometry are directly comparable only if they are mea-
sured at the same point p of the manifold. Quantities measured at different points
p �= q of finite, i.e. non-infinitesimal distance can be metrically compared only after

2In mathematical terminology, the implementation of a similarity structure happens at the infinites-
imal, rather than at the local, level. For a concrete (‘passive’) description of (i) and (ii) in a more
physical language, see Dicke’s postulate cited in section 3.1.
3For more historical and philosophical details see, among others, [120, 127, 147], from the point
of view of physics [2, 12, 114, 116, 131], and for the view of differential geometres [56, 64, 76]
(as a short selection in all three categories).
4For a modern presentation of Cartan geometry, including the Cartan–Weyl case, see, e.g. [138,
chap. 7]; for the physical aspects of the extension studied since the 1970s [13, chap. 8].
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an integration of the scale connection along a path from p to q.Weyl realized that this
structure is compatible with a uniquely determined affine connection Γ = (Γ

μ
νλ) (the

affine connection of Weylian geometry). If gΓ
μ
νλ denotes the Levi-Civita connection

of the Riemannian part g only, the Weylian affine connection is given by

Γ
μ
νλ = gΓ

μ
νλ + δμ

ν ϕλ + δ
μ
λ ϕν − gνλϕ

μ. (1)

The covariant derivative with regard to Γ , will be denoted by ∇ = ∇Γ . A change
of scale neither changes the connection (the left-hand side of (1)) nor the covari-
ant derivative; only the composition from the underlying Riemannian part and the
corresponding scale connection (right-hand side) is shifted.

Curvature concepts known from ‘ordinary’ (Riemannian) differential geometry
follow, as every connection defines a unique curvature tensor. TheRiemann andRicci
tensors, Riem, Ric, are scale invariant by construction, although their expressions
contain terms in ϕ. On the other hand, the scalar curvature involves ‘lifting’ of indices
by the inverse metric and is thus scale covariant of weight −2 (see below).

Field theory gets slightly more involved inWeyl geometry, because for vector and
tensor fields (of ‘dimensional’ quantities) the appropriate scaling behaviour under
change of the metrical scale has to be taken into account. If a field, expressed by X
(leaving out indices) with regard to the metrical scale g(x) = (gμν(x)) transforms to
X̃ = Ωk X with regard to the scale choice g̃(x) as above, X is called a scale covariant
field of scale or Weyl weight w(X) := k (usually an integer or a fraction). Generally
the covariant derivative, ∇ X , of a scale covariant quantity X is not scale covariant.
However, scale covariance can be reobtained by adding a weight dependent term.
Then the scale covariant derivative D of a scale covariant field X is defined by

DX := ∇ X + w(X)ϕ ⊗ X . (2)

For example, ∇g is not scale covariant, but Dg is. Moreover, one finds that Dg =
∇g + 2ϕ ⊗ g = 0; i.e. in Weyl geometry g appears no longer constant with regard
to the derivative ∇ but with regard to the scale covariant derivative D.

In physics literature, an affine connection Γ with ∇Γ g �= 0 is usually regarded as
‘non-metric’, and ∇Γ g is considered its non-metricity.5 These concepts hold in the
Riemannian approach. In Weyl geometry, in contrast,

∇g = −2ϕ ⊗ g ⇐⇒ Dg = 0 (3)

expresses the compatibility of the affine connection Γ with the Weylian metric rep-
resented by the pair (g, ϕ).

Geodesics can be invariantly defined as auto-parallels by the Weyl geometric
affine connection (so didWeyl himself). But one can just as well, in our context even
better, consider scale covariant geodesics of weight −1 (see section6.1).

5See the contribution by F. Hehl, this volume.
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Under a change of scale g �→ g̃ = Ω2g and the accompanying gauge transfor-
mation for the scale connection ϕ �→ ϕ̃ = ϕ − d logΩ , the compatibility condition
transforms consistently, ∇Γ g̃ = −2ϕ̃ ⊗ g̃. Equ. (3) ensures, in particular, that geo-
desics (i.e. auto-parallels) with initial direction along a nullcone of the conformal
metric remain directed along the nullcones. This is the most important geometric
feature of metric compatibility in Weyl geometry.6

2.2 Weyl Structures and Integrable Weyl Geometry (IWG)

In the more recent mathematical literature a Weyl structure on a manifold is defined
by a pair (C ,∇) consisting of a conformal structure C = [g] (an equivalence class
of pseudo-Riemannian metrics) and the covariant derivative of a torsion-free linear
connection ∇, constrained by the condition

∇g + 2ϕg ⊗ g = 0 ,

with a differential 1-form ϕg depending on g ∈ C .7 The change of the conformal
representative g �→ g̃ = Ω2 g is accompanied by a change of the 1-form

ϕg̃ = ϕg − d logΩ , (4)

i.e. by a ‘gauge transformation’ as introduced by Weyl in [149]. Formally, a Weyl
metric consists of an equivalence class of pairs (g, ϕg) with scale and gauge trans-
formations defining the equivalences. Given the scale choice g ∈ C , ϕg represents
the scale connection.

In Weyl’s view of a strictly ‘localized’ (better: infinitesimalized) metric, metrical
quantities at different points p and q can be compared only by a ‘transport of length
standards’ along a path γ from p to q, i.e. by multiplication with a factor

l(γ ) = e
∫ 1
0 ϕ(γ ′) . (5)

l(γ ) will be called the length or scale transfer function (depending on p, q and γ ).
The curvature of the scale connection is simply the exterior differential, f = dϕ

with components, fμν = ∂μϕν − ∂νϕμ, where ∂μ := ∂
∂xμ .

For vanishing scale curvature, f = 0, the scale transfer function can be integrated
away, i.e. there exist local choices of the scale, g̃, with vanishing scale connection,
ϕg̃ = 0. In this case one deals with integrable Weyl geometry (IWG). Then the Weyl

6Weyl understood the compatibility of the scale connection with the metric in the sense that parallel
transport of a vector X (p) by the affine connection along a path γ from p to q to X (q) leads to
consistency with length transfer along the same path. Compare the compatibility condition given,
in a different mathematical framework, by [44].
7[20, 64, 76, 106].
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metric may be locally represented by a Riemannian metric8; we call this the Riemann
gauge (equivalently Riemannian scale choice) of an integrable Weyl metric. In this
gauge the Weylian curvature tensor does not contain terms in ϕ. For integrable Weyl
geometry vanishing of the Riemann tensor, Riem = 0 is of course equivalent to local
flatness.

Whether a reduction to Riemannian geometrymakes sense physically, depends on
the field theoretic content of the theory. If a scalar field plays a part in determining the
scale—physically speaking, if scale symmetry is ‘spontaneously’ broken by a scale
covariant scalar field—the result may well be different from Riemannian geometry
(see below, sections. 4ff.).

2.3 From Ehlers/Pirani/Schild
to Audretsch/Gähler/Straumann

Weyl originally hoped to represent the potential of the electromagnetic field by a scale
connection and to achieve a geometrical unification of gravity and electromagnetism
by his ‘purely infinitesimal’ geometry. The physical difficulties of this approach,
usually presented as outright inconsistencies with observational evidence, have been
discussed in the literature [65, 147]. But, of course, there is no need to bind the
usage of Weyl geometry to this specific, and outdated, interpretation. Since the early
1970s a whole, although minoritarian and heterogeneous, literature of Weyl geomet-
ric investigations in the foundations of gravity has emerged. In this contribution I
want to take up, and pursue a little further, an approach going back to M. Omote,
R. Utiyama, and P.A.M. Dirac, which was later extended in different directions
(section 6, below).9 But before we follow these more specific lines we have to briefly
review the foundational aspects of Weyl geometry for gravity theory analyzed in the
seminal paper of Ehlers et al. [44] (EPS).

Like Weyl in 1921, these three authors based their investigation on the insight
that the causal structure of general relativity is mathematically characterized by a
conformal (cone) structure, and the inertial structure of point particles by a projective
path structure. They investigated the interrelation of the two structures from a foun-
dational point of view in a methodology sometimes called a ‘constructive axiomatic’
approach. Their axioms postulated rather general properties for these two structures
and demanded their compatibility. EPS concluded that these properties suffice for

8Here ‘local” is used in the sense of differential geometry, i.e. in (finite) neighbourhoods. Physicists
usage of ‘local’, in contrast, refers in most cases to point-dependence or ‘infinitesimal’ neighbour-
hoods. In the following, both language codes are used, not always with further specification. The
respective meaning will be clear from the context.
9The interpretation of the quantum potential in Weyl geometric terms proposed by [122, 123] and
others indicate a completely different route of attempted ‘transitions’ than reviewed here. It is not
further considered in the following.
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specifying a unique Weylian metric [44].10 The axioms of Ehlers, Pirani and Schild
were motivated by the physical intuition of inertial paths (of classical particles) and
the causal structure. Other authors investigated connections to quantum physics. J.
Audretsch, F.Gähler, N. Straumann (AGS) found thatwave functions (Klein–Gordon
andDirac fields) on aWeylianmanifold behave acceptable only in the integrable case.
As a criterion of acceptability they studied the streamlines ofwavefront developments
in an WKB approximation (WKB: Wentzel–Kramers–Brioullin) and found that, for
� → 0, the streamlines converge to geodesics if and only if dϕ = 0, i.e. in the case
of an integrable Weyl metric [4]. Therefore the integrability of the Weyl structure
seems necessary for consistency between the geodesic principle of classical particles
and the decoherence view of the quantum to classical transition.

The gap between the structural result of EPS (Weyl geometry in general) and
the pseudo-Riemannian structure of ordinary (Einstein) relativity was considerably
reduced in the sense of integrability, but still it was not clear that theRiemannian scale
choice of IWG had to be chosen. The selection of Riemannian geometry remained
ad hoc and was not based on deeper insights. It had to be stipulated by an addi-
tional postulate involving clocks and rods. The transition from the EPS axiomatics
to Einstein gravity still contained a methodological jump and relied on reference to
observational instruments external to the theory, whichWeyl wanted to exclude from
the foundations of general relativity.11 So even after the work of EPS and their suc-
cessors the question remained whether the transition to Riemannian geometry and
Einstein gravity is the only one possible. Alternatives were sought for by a different
group of authors who started more or less simultaneous to EPS, investigating alter-
natives based on a scale invariant Lagrangian (section 4) similar to the one studied
by Jordan, Brans, and Dicke in the Riemannian context. It was not noticed at the
time that even the latter can be analyzed quite naturally in the framework of Weyl
geometry.

3 Jordan–Brans–Dicke Theory in Weyl Geometric
Perspective

In the early 1950s and 1960s P. Jordan, later R. Dicke and C. Brans (JBD) proposed a
widely discussed modification of Einstein gravity.12 Essential for their approach was
a (real valued) scalar fieldχ , coupled to the traditionalHilbert actionwith Lagrangian
density

10For the compatibility see fn. 6. A recent commentary of the paper is given in [144]. How f (R)

theories of gravity may lead back to the EPS paper is discussed in [23].
11Although in his 1918 debate with Weyl, Einstein insisted on the necessity of clock and rod
measurements in general relativity as the empirical basis for the physical metric, he admitted that
rods and clocks should not be accepted as fundamental. He reiterated this view until late in his life
[45, 555f.], cf. [91].
12[17, 35, 77]; for surveys on the actual state of JBD theory and its applications to cosmology see
[50, 62], for a participant’s recollection of its history [16]; a broad contextual history is presented
in [87].
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LJBD = (χ R − ω

χ
∂μχ ∂μχ)

√|det g| , (6)

whereω is a free parameter of the theory. Forω → ∞ the theory has Einstein gravity
as limiting case. All three authors allowed for conformal transformations, g̃ = Ω2g,
underwhich their scalar fieldχ transformedwithweight−2 (matter fields and energy
tensors T of weight w(T ) = −2 etc.).13 Jordan took up the discussion of conformal
transformations only in the second edition of his book [77], after Pauli had made
him aware of such a possibility. Pauli knew Weyl geometry very well, he was one
of its experts already as early as 1919 but neither he nor Jordan or the US-American
authors looked at JBD theory from that point of view.

3.1 Conformal Rescaling in JBD Theory

For introducing conformal rescaling Dicke argued as follows:

It is evident that the particular values of the units of mass, length, and time employed are
arbitrary and that the laws of physics must be invariant under a general coordinate dependent
change of units [35, 2163][emph. ES].

By ‘coordinate dependent change of units’ Dicke indicated a point dependent rescal-
ing of basic units. In the light of the relations established by the fundamental constants
(velocity of light c, (reduced) Planck constant �, elementary charge e and Boltzmann
constant k) all units can be expressed in terms of one independent fundamental unit,
e.g. time, and the fundamental constants (which, in principle can be given any con-
stant numerical value, which then fixes the system).14 Thus only one essential scaling
degree of units remains and Dicke’s principle of an arbitrary, point dependent unit
choice came down to a ‘passive’ formulation of Weyl’s localized similarities in the
framework of his scale gauge geometry.15 It was not so clear, however, how Dicke’s
postulate that the ‘laws of physics must be invariant’ under point-dependent rescal-
ing ought to be understood in JBD theory. Its modified Hilbert term was, and is, not
scale invariant and assumes correction terms under conformal rescaling (vanishing
only for ω = − 3

2 ).

13Weights rewritten in adaptation to our convention.
14The present revision of the international standard system SI is heading towards implementing
measurement definitions with time as only fundamental unit, uT = 1 s such that “the ground state
hyperfine splitting frequency of the caesium 133 atomΔν(133Cs)hfs is exactly 9 192 631 770 hertz”
[19, 24f.]. In the ‘New SI’, four of the SI base units, namely the kilogram, the ampere, the kelvin
and the mole, will be redefined in terms of invariants of nature; the new definitions will be based
on fixed numerical values of the Planck constant, the elementary charge, the Boltzmann constant,
and the Avogadro constant (www.bipm.org/en/si/new_si/). The redefinition of the meter in terms
of the basic time unit by means of the fundamental constant c was implemented already in 1983.
Point dependence of the time unit because of locally varying gravitational potential will be inbuilt
in this system. For practical purposes it can be outlevelled by reference to the SI second on the geoid
(standardized by the International Earth Rotation and Reference Systems Service IERS).
15Compare principles (i) and (ii) at the beginning of section 2.
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On the other hand, the principles of JBD gravity were moved even closer to Weyl
geometry by all three proponents of this approach considering it as self-evident that
the Levi-Civita connection Γ := gΓ of the Riemannian metric g in (6) remains
unchanged under conformal transformation of the metric. Probably the protagonists
considered that as a natural outcome of assuming invariance of the ‘laws of nature’
under conformal rescaling.16 In any case, they kept the affine connection Γ fixed
and rewrote it in terms of the Levi-Civita connection g̃Γ of the rescaled metric,
g̃ = Ω2g, with additional terms in partial derivatives ofΩ . Let us summarily denote
these additional terms by Δ(∂Ω),17 then

Γ = g̃Γ + Δ(∂Ω) .

Conformal rescaling, in addition to a fixed affine connection, have become basic
tools of JBD theory.

3.2 IWG as Implicit Framework of JBD Gravity

The variational principle (6) of JBD gravity determines a connection with covariant
derivative ∇ = g∇ and a scalar field χ . The theory allows for conformal rescalings
of g and χ without changing∇. That is, JBD theory specifies a Weyl structure (C ,∇)

with C = [g]. Transformation between different frames happen in this framework,
even though this remains unreflected by most of its authors.

In the JBD tradition, a choice of units is called a frame. In terms ofWeyl geometry,
such a frame corresponds to the selection of a scale gauge. Two frames play a major
role:

• Jordan frame: the one in which ∇ = g∇ (g the metric of (6)), i.e. the affine con-
nection is the Levi-Civita one of the Riemannian metric,

• Einstein frame: the one in which χ̃ = const ; then the affine connection is different
from the Levi-Civita one of the reference metric.

The Jordan frame is such that, by definition, the dynamical affine connection is
identical to the Levi-Civita connection of g. Expressed in Weyl geometric terms,
this implies vanishing of the scale connection, ϕ = 0. Thus this frame corresponds
to what we have called the Riemann gauge of the underlying integrable Weylian
metric (section 2). In Einstein frame the scalar field (�= 0 everywhere) is scaled to
a constant; we may call this the scalar field gauge. Another terminology for it is

16If the trajectories of bodies are governed by the gravito-inertial ‘laws of physics’ they should not
be subject to change under transformation of units. The same should hold for the affine connection
which can be considered a mathematical concentrate of these laws.
17For our purpose the explicit form ofΔ(∂Ω) is not important. R. Penrose noticed that the additional
terms of the (Riemannian) scalar curvature are exactly cancelled by the partial derivative terms of
the kinematical term of χ if and only if ω = − 3

2 . In this case the Lagrangian (6) is conformally
invariant [109].
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Einstein gauge. In this gauge, the gravitational ‘constant’ appears as a true constant,
contrary to Jordan’s motivation. By obvious reasons, Jordan tended to prefer the
other frame; thus its name.

Clearly in the Einstein frame JBD gravity does not reduce to Einstein gravity,
as the affine connection is deformed with regard to the metrical component of the
gauge. Scalar curvature in Einstein frame can easily be expressed in terms of Weyl
geometrical quantities, but usually it is not. Practitioners of JBD theory prefer to
write everything in terms of g̃, take its Levi-Civita connection g̃Γ as representative
for the gravito-inertial field and consider the modification terms as arising from the
transformation from Riemann gauge to scalar field gauge. Sometimes they appear as
additional (‘fifth’) force.18

From our point of view, we observe

• Structurally, JBD theory presupposes and works in an integrable Weyl structure,
although its practitioners usually do not notice.19

• Scale covariance, not scale invariance, is often the game of JBD theoreticians.
That lead to a debate (sometimes confused), which frame should be considered as
‘physical’ and which not. Jordan frame used to be the preferred one. In the recent
literature of JBD some, maybe most, authors argue in favour of Einstein frame as
‘physical’ [51].

• Some authors studied the conformally invariant version of the JBD Lagrangian,
corresponding toω = − 3

2 , and investigated the hypothesis of a conformally invari-
ant theory of gravity at high energies, which gets ‘spontaneously broken’ by the
scalar field taking on a specific value [34, 48]. That was achieved by adding addi-
tional polynomial terms in χ with coefficients usually of ‘cosmological’ order of
magnitude. Problems arose in the conformal JBD approach from the sign of ω; a
negative sign indicated a ‘ghost field’ with negative energy [62, 5].20

• Empirical high precision tests of gravity in the solar system concentrated on the
Jordan frame and found increasingly high bounds for the parameter ω. To the
disillusionment of JBDpractitioners,ωwas found to be>3.6 · 103 at the turn of the
millenium [157]; today these values are even higher. So the leeway for JBD theory
in Jordan frame deviating from Einstein gravity became increasingly reduced.
That does not hinder authors in cosmology to assume Jordan frame models for the
expansion of universe shortly after the big bang.21 Shortly after the big bang, the
world of mainstream cosmology seems to be Feyerabendian.

From the Weyl geometric perspective, a criterion of scale invariance for observable
quantities supports preference of the Einstein frame. In any case, Weyl geometry is a
conceptually better adapted framework for JBD gravity than Riemannian geometry.

18For a critical discussion see [115].
19A discussion from a slightly different view can be found in [3, 115, 117].
20Some authors choose to switch the sign of the ‘gravitational constant’, e.g. [34, 250]. This strategy
indicated that there is a basic problem for the conformal JBD approach (ω = − 3

2 ) in spite of its
attractive basic idea.
21E.g. [10, 67, 78, 81].
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Perhaps that was felt by some physicists at the time. Be that as it may, about a
decade after the rise of JBD theory two groups of authors in Japan and in Europe,
independently of each other, started to study a similar type of coupling between
scalar field and gravity in a Weyl geometric theory of gravitation.

4 Weyl–Omote–Dirac Gravity and Its Integrable Version
(iWOD)

In 1971 M. Omote proposed a Lagrangian field theory of gravity with a scale covari-
ant scalar field coupling to the Hilbert term like in JBD theory, but now explicitly
formulated in the framework of Weyl geometry. A little later R. Utiyama and others
took up the approach for investigations aiming at an overarching theory of strongly
interacting fields and gravity.22 Independently P.A.M. Dirac initiated a, formally,
similar line of research with a look at possible connections between fields of high
energy physics, gravity, cosmology and geophysics [36]. In particular, he was fond of
the idea of a ‘time dependent’ gravitational constant G(t).23 It did not take long until
the idea of a spontaneously broken conformal gauge theory of gravitation was also
considered in the framework of Weyl geometry and brought into first contact with
the rising standard model of elementary particle physics [25, 72, 97, 140]. Important
for this move seemed to be that the obstacle of a negative energy (‘ghost’) scalar field
or wrong sign of the gravitational constant, arising in the strictly conformal version
of JBD theory, could be avoided in this framework.24 Here we are not interested in
historical details, but aim at sketching the potential of the approach from a more or
less philosophical point of view.25

4.1 The Lagrangian of WOD Gravity

The affine connection of Weyl geometry is scale invariant; the same holds for its
Riemannian curvature Riem = (Rκ

λμν) and the Ricci tensor Ric = (Rμν) as its
contraction.26 Scalar curvature R = gμν Rμν is scale covariant of weight

22[70, 102, 103, 145, 146]—thanks to F. Hehl to whom I owe the hint to Omote’s works.
23For a detailed study of the connection to geophysics see [87].
24Cf. fn. 20.
25For a first rough outline of the history see [132]. For a commented source collection of much
wider scope [13].
26We use abbreviated symbols of geometrical objects, Riem, Ric, ϕ,∇, etc., together with their
indexed coordinate description. The whole collection of indexed quantities will be denoted by round
brackets like in matrix notation, e.g. Ric = (Rμν) or ϕ = (ϕ1, . . . , ϕn), in short ϕ = (ϕμ). The lat-
ter is somehow analogous to ϕμ in ‘abstract index notation’, often to be found in the literature. In our
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w(R)= w(gμν)= − 2. Coupling of a norm squared real or complex scalar field27

φ of weight −1 to the scalar curvature of Weyl geometry gives, for the Lagrangian
density of the modified Hilbert term

LH W = L H W

√|det g| = −1

2
ξ 2|φ|2R

√|det g| , (7)

a total weight −2 − 2 + 4 = 0 and thus scale invariance.28 If R denotes just that
of Riemannian geometry and if one adds the kinematical term of the scalar field,
Penrose’s criterion for conformal invariance only holds for α = − 1

6 . It is crucial to
realize that in the Weyl geometric framework local scale invariance holds for any
coefficient.

Conformal rescaling leads to different ways of decomposing covariant or invariant
terms into contributions from the Riemannian component g and the scale connection
ϕ of a representative (a ‘scale gauge’) (g, ϕ) of the Weylian metric. We characterize
these components by subscripts put in front; e.g. for scalar curvature the decom-
position is summarily written as R =g R +ϕ R, with gR the scalar curvature of the
Riemannian part g of the metric alone and ϕR the term due to the respective scale
connection. For dimension n = 4 of spacetime one obtains (independently of the
signature)

ϕR = −(n − 1)(n − 2)ϕλϕ
λ − 2(n − 1)g∇λϕ

λ = −6ϕλϕ
λ − 6g∇λϕ

λ , (8)

where g∇ denotes the covariant derivative (Levi-Civita connection) of theRiemannian
part g of themetric. Of course, themerging of scale dependent terms to scale invariant
aggregates is of primary conceptual import, besides being calculationally advanta-
geous.29

The gradient term of the scalar field in Omote–Dirac gravity is modelled after the
kinematical term of a Klein–Gordon field:

Lφ = εsig
1

2
Dνφ

∗ Dνφ , Lφ = Lφ

√|det g| (9)

with scale covariant derivative Dνφ = (∂ν − ϕν)φ, according to equ. (2), is scale
invariant, as w(Lφ) = −4. Here εsig specifies a signature dependent sign: εsig = 1
for sig = (1, 3) i.e. (+ − −−) and εsig = −1 for sig = (3, 1) ∼ (− + ++). In this
paper we shall work with this kinematical term. In other contexts, e.g. in a Weyl
geometric adaptation of the AQUAL approach to relativistic MOND dynamics, one

(Footnote 26 continued)
notation the bracketed symbol stands for the whole collection of indexed quantities, the unbracketed
symbol for a single indexed quantity ϕμ ∈ {ϕ1, . . . , ϕn}.
27Later the scalar field is allowed to take values in an isospin 1

2 representation of the electroweak
group, section 4.5.
28w(

√|det g|) = 1
2 4 · 2 = 4, w(L H W ) = −2 − 2 = −4.

29The authors of the 1970s usually did not use the aggregate notation.
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has to allow for other forms of Lφ . In particular a cubic gradient terms may lead to
new insights in modified gravity on the galactic and the cluster level.30

A polynomial potential for the scalar field V (φ) leads to a scale invariant Lagrange
term if and only if the degree of V is four, i.e. for a quartic monomial

LV = −λ

4
|φ|4 , LV = LV

√|det g| . (10)

Considering the scale connection ϕ as a dynamical field, the ‘Weyl field’ with its
quantum excitation, called ‘Weyl boson’ or even ‘Weylon’ by [25], demands to add
a Yang–Mills action for the scale curvature f = ( fμν):

LY M ϕ = −β

4
fμν f μν (11)

So did Omote, Dirac and later authors.31

Thewhole scale invariant Lagrangian ofWeyl–Omote–Dirac gravity including the
scalar field, neglecting for the moment further couplings to matter and interactions
fields, is given by

LW O D = L R2 + L H W + Lφ + LV + LY M + Lm ,

where L R2 contains all second-order curvature contributions. They seem to be nec-
essary if one wants to study (perturbative) quantization, starting from this classical
template. Lm denotes matter and interaction terms, for example the adapted standard
model fields, Lm = L SM (lifted to curved Weyl space).32

LW O D = L R2 − εsig
1

2
ξ 2|φ|2R − λ

4
|φ|4 + εsig

1

2
Dνφ

∗ Dνφ − β

4
fμν f μν + Lm

(12)
Formally it contains a Brans–Dicke like modified Hilbert action, a ‘cosmological’
term, quartic in φ, and dynamical terms for the scalar field and the scale connection.
The Weyl geometric expressions for scalar curvature and scale covariant deriva-
tive ensure scale invariance of the Lagrangian density LW O D = LW O D

√|det g|.
Scale invariance forces the polynomial part of the potential with constant coeffi-

30AQUAL stands for the ‘aquadratic Lagrangian’ approach, which was the first attempt at a rela-
tivistic version of MOND dynamics [9]. An adaptation to Weyl geometric gravity is investigated in
[134, 135].
31Dirac, curiously, continued even in the 1970s to stick to the interpretation of the scale connection
as electromagnetic potential. No wonder that this proposal was not accepted even in the selective
reception of his work cf. [87].
32Signs are chosen such that φ has positive energy density (no ghost field) [62, 5]. In [13, equ. (8.5)]
the coefficient α has to be assumed negative—compare with their source paper 8.3 [97], eqs. (2)
and (7). For the role of L R2 in quantum gravity see [22, 18ff., 62ff.] and, historically, [124]. For
steps towards adapting the standard model Lagrangian to Weyl geometry (basically by writing it
locally scale invariant) see, among others, [7, 41, 96, 98, 116].
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cients to be exclusively quartic. Later we shall see that the assimilation of the stan-
dard model Lagrangian L SM to gravity makes it necessary to modify the potential
term LV = V (φ) = − λ

4 by introducing a combined quartic potential V (φ,Φ) for
the gravitational scalar field and the Higgs field Φ.

4.2 From WOD to iWOD Gravity

A closer look at the WOD-Hilbert term shows that, because of equ. (8), it contains
a mass-like term for the scale connection (the ‘Weyl field’):

1

2
m2

ϕ ϕλϕ
λ = 1

2
6ξ 2|φ|2ϕλϕ

λ (13)

If WOD describes a realistic modification of Einstein gravity, its Hilbert term has
to approximate the latter very well under the limiting conditions |φ| → const, ϕ →
0. Then ξ 2|φ|2 must be comparable to the inverse of the gravitational constant

ξ 2|φ|2 ≈ [�c](8πG)−1 = m2
pl

8π = M2
pl with reduced Planck mass Mpl .33 Then the

‘Weylon’ (Cheng, Nishino/Rajpoot e.a.) turns out to be sitting a little above the
reduced Planck mass (but below the unreduced one):

mϕ ≈ 2.5Mpl ≈ 0.5m pl (14)

Variation of the Lagrangian shows that it satisfies a Proca equation with this tremen-
dously high mass [25, 140]. Because of the scaling behaviour of φ the Proca-like
mass term does not destroy scale invariance of the Lagrangian.34

If one assumes a physical role for the Weyl field, its (immediate) range, in the
sense of its Compton wave length, would be restricted to Planck scale physics. On all
scales accessible to experiments and to direct observation the curvature of the Weyl
field vanishes effectively. This result agrees with the integrability result of Audretsch,
Gähler and Straumann on the compatibility of Weyl geometry with quasi-classical
relativistic quantum fields (section2).35 Although the scale curvature field (the Wey-
lon) stays in the background it may become important for stabilizing (quantum) fluc-
tuations of the scalar field, if one starts to investigate such problems more closely.
Here we can, for most of our purposes, pass to integrable Weyl geometry.36

33m2
pl = �c

G , with ‘reduced’ Mpl :=
√

�c
8πG .

34Therefore the, otherwise interesting, discussion of the gravitational scalar field as a kind of
‘Stückelberg compensator’ by [100] seems a bit artificial.
35This does not preclude the possibility for the Weylian scale connection (the ‘Weyl vector field’)
to play a proper dynamical role in a high energy regime (at present far beyond accelerator energies).
For a recent exploration of such a perspective see [101].
36In four space-time dimensions the collection of quadratic curvature terms then reduces to L R2 =
−α1R2 − α2Rλν Rλν [90]. The reduced form is assumed in [97, 389], [140, 260], [41, 1028]. It also
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Atmany occasions also L R2 may be neglected37; then the Lagrangian of integrable
Weyl–Omote–Dirac (iWOD) gravity reduces effectively to

LiW O D = −εsig
ξ 2

2
|φ|2R + εsig

1

2
Dνφ

∗ Dνφ − λ

4
|φ|4 + Lm . (15)

That is very close to the Lagrangian used in recent publications on Jordan–Brans–
Dicke theory, e.g. [62]. In Riemann gauge it is nearly identical with the ‘modernized’
JBD Lagrangian of the Jordan frame, the only difference being the |φ|4-term and the
explicit scale invariance of the Lagrangian. In other gauges (frames) the derivative
terms of the rescaling function are ‘hidden’ in the Weyl geometric terms.38

4.3 The Dynamical Equations of iWOD

Variation of the Lagrangian with regard to the Riemannian component of the metric
leads to an Einstein equation very close to the ‘classical’ case; but now the curvature
terms appear in Weyl geometric form.39 ForLiW O D without further matter terms the
modified Einstein equation becomes

Ric − R

2
g = Θ(φ) = Θ(I ) + Θ(I I ) , (16)

where the right-hand side is basically the energy–momentum Θ(φ) of the scalar field
(multiplied by (ξ |φ|)−2). It decomposes into a term proportional to the metric, Θ(I ),
therefore of the character of vaccum energy or ‘dark energy’, and another one which
behaves matter-like (compare the special case studied in section 6.2), Θ(I I ):

Θ(I ) = |φ|−2

(

−Dλ Dλ|φ|2 + εsigξ
−2 λ

4
|φ|4 − ξ−2

2
Dλφ

∗ Dλφ

)

g

Θ(I I )
μν = |φ|−2 (

D(μ Dν)|φ|2 + ξ−2D(μφ∗ Dν)φ
)

(17)

(Footnote 36 continued)
covers the simplified expression of the gravitational Lagrangian in Mannheim’s conformal gravity
built on Lcon f = CλμνκCλμνκ , with C the Weyl tensor [93].
37P.Mannheim indicates that thismay be acceptable only in themediumgravity regime; he considers
the conformal contribution to extremely weak gravity as crucial [93].
38Cf. [3]. The old version of the JBD parameter corresponds to ω = 1

2 ξ−2. Contrary to what one
might think at first glance, (15) does not stand in contradiction to high precision solar system
observations, because the ‘scale breaking’ condition for the scalar field by the quartic potential
prefers scalar field gauge (‘Einstein frame’)—see below.
39If one varies the Riemannian part of the metric g and the affine connection Γ separately (Palatini
approach), the variation of the connection leads to the compatibility condition (3) ofWeyl geometry
[3, 112]. That gives additional (dynamical) support to the Weyl geometric structure. Further indi-
cations of its fundamental role comes from a completely different side, a f (R) approach enriched
by an EPS-like property [23].
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The (‘ordinary’) summands with factor ξ−2 are derived from the kinematical φ-term
of the Lagrangian; the other summands arise from a boundary termwhile varying the
modified Hilbert action. Because of the variable factor |φ|2, the boundary term no
longer vanishes like in the classical case.40 The additional term is often considered
as an ‘improvement’ of the energy momentum tensor of the scalar field [21].41

All terms of the modified Einstein equation of iWOD gravity (16) are scale
invariant,42 although the geometrical structure is richer than conformal geometry.
Of course there arises the question whether such a geometrical framework may be
good for physics, without specifying a preferred scale; i.e. before ‘breaking’ of scale
symmetry. We shall see in the next section that there is a natural mechanism for
such ‘breaking’, which is not mandatory (at the classical level) on purely theoretical
grounds.

Constraining the variation to integrable Weylian metrics leaves no dynamical
freedom for the scale connection; thus no dynamical equation arises for ϕ.43 Varying
with regard to a real scalar field φ, on the other hand, gives a Klein–Gordon type
equation with a ‘funny’ mass-like term:

Dν Dνφ + 2(ξ 2R + εsigλ|φ|2)φ + δLm

δφ
= 0 (18)

In a way, the scale connection ϕ and the scalar field φ are closely related. It is
possible to scale φ to a constant, then in general ϕ �= 0; on the other hand one can
scale ϕ = 0, then in general φ �= const . The’kinematical’ (descriptive) freedom of
ϕ is essentially governed by the dynamics of φ. The scalar field φ, not the scale
connection ϕ encodes the additional dynamical degree of freedom in the integrable
(iWOD) case, far below Planck scale.

4.4 Ground State of the Scalar Field

There are no reasons to assume that φ represents an elementary field. Like many
other scalar fields of known physical relevance it may characterize an aggregate
state. From our context we may guess that it could represent an order parameter of a
collective quantum state, perhaps a condensate, of the Weyl field. Such a conjecture

40[143, 64ff.], [12, 96ff.], [62, 40ff.].
41Callan, Coleman, and Jackiw postulated these terms while studying perturbative scattering theory
in a weak gravitational field. They noticed that the ordinary energy momentum tensor of a scalar
field does not lead to finite matrix elements ‘even to the lowest order in λ’. The ‘improved’ terms
lead to finite matrix terms to all orders in λ [21].
42Sometimes the scale transformations are called ‘Weyl transformations’ in this context, e.g. in
[12].
43The variation of the Riemannian component of the metric can be restricted to Riemann gauge
(g, 0). Note the analogy to the variation in JBD gravity of the Riemannian metric with regard to
the Jordan frame.
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has been stated in [71, 263], [72, 1096], and similarly already in [97, 140]. Here we
are not interested in details of the dynamics given by its variational Klein–Gordon
equation, but mainly in the ground state which may be indicative for the transition
to Einstein gravity.

Transition to integrable Weyl geometry is not yet sufficient to get rid of rescaling
freedom. A full breaking of scale symmetry—like that of any other gauge group—
contains two ingredients:

(a) effective vanishing of the curvature (field strength) at a certain scale,
(b) physical selection of a specific gauge.44

Up to now only step (a) has been taken. (b) involves a ground state of the scalar
field with respect to the biquadratic potential given by its gravitational coupling if
the scalar field has the chance to govern the behaviour of physical systems serving
as ‘clocks’ or as mass units (see section 5).

For field theoretic investigations signature sig(g) = (1, 3) is best suited, so that
εsig = +1. Abbreviating the gravitational terms we get LiW O D = 1

2 Dνφ
∗ Dνφ −

Vgrav(φ) with

Vgrav(φ) = 1

2
ξ 2|φ|2R + λ

4
|φ|4 . (19)

In most important cases, scalar curvature R of cosmological models is negative.45

Thus the effective gravitational potential of the scalar field is biquadratic and of
‘Mexican hat’ type with two minima symmetric to zero, like in electroweak the-
ory. Here, however, the coefficient of the quadratic term ξ 2

2 R is a point-dependent
function, but may be scaled to a constant.

The scalar field assumes the gravitational potential minimum for

|φo|2 = −ξ 2R

λ
(in reciprocal length units), (20)

and the ‘funny’ mass term of the Klein–Gordon equation (18) vanishes in the undis-
turbed ground state. For the moment we have to leave it open, which kind of distur-
bances might shift the scalar field away from its potential minimum of (20).

Of course, there is a scale gauge in which |φo| assumes constant values. We call
it the scalar field gauge (of Weyl geometric gravity). Starting from any gauge (g, ϕ)

of the Weylian metric, just rescale by Ω := C−1|φo| with any constant C . Because
of it having scale weight −1, the norm of the scalar field then becomes |φo(x)| .= C
in inverse length units; equivalently in energy units

44‘Physical’ means a selection with observational consequences. Mathematically, the selection of
a gauge corresponds to the choice of a section (not necessarily flat) in the corresponding principle
fibre bundle, at least locally (in the sense of differential geometry).
45The higly symmetric Robertson–Walker models of Riemannian geometry, with warp (expan-
sion) function f (τ ) and constant sectional curvature κ of spatial folia, have scalar curvature

gR = −6
(
(

f ′
f )2 + f ′′

f + κ
f 2

)
in signature (1, 3) ∼ (+ − −−). For κ ≥ 0, or at best moderately

negative sectional curvature, and accelerating or ‘moderately contracting’ expansion, gR < 0.
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|φo(x)|[�c] .= C�c =: |φc| (21)

with some constant energy value |φc|. The dotted equality
.= expresses that the

relation is no longer scale invariant but holds in a specific gauge only, here in the
scalar field gauge.

With C such that ξ 2C2 = (8πG)−1[ c4

�c ] (G gravitational constant) the coefficient
of the iWOD-Hilbert term (15) goes over into the one of Einstein gravity. Then

|φc| = ξ−1

(
�c5

8πG

) 1
2

= c2Mpl = E pl (reduced Planck energy), (22)

and the coupling constant ξ 2 turns out to be basically a squared hierarchy factor
between the scalar field ground state in energy units and Planck energy E pl .

4.5 Scale Invariant Observables and a New Look at ‘dark
Energy’

It is easy to extract a scale invariant observable magnitude X̂ from a scale covariant
field X of weight w(X) = k. One only has to form the proportion with regard to the
appropriate power of the scalar field’s norm

X̂ := X/ |φ|−k = X |φ|k ; (23)

then clearly w(X̂) = 0.
Scale invariant magnitudes X̂ are directly indicated, up to a globally constant

factor in scalar field gauge, i.e. the gauge in which |φo| .= const .46 Conceptually the
problem of scale invariant magnitudes is solvable, even with full scaling freedom,
but there are physical effects which lead to actually breaking scale symmetry. Atomic
‘clocks’ and ‘rods’ (atomic distances) express a preferred metrical scale. They stand
in good agreement with other periodic motions of physics on different levels of
magnitude.

The ordinary energy–momentum terms with scale covariant derivatives of φ in
(17) get suppressed by the inverse squared hierarchy factor ξ−2 < 10−32 (see section
5.3). Only the λ-term corresponding to the old cosmological term survives because
it is of fourth order in |φ| and |φ| is sufficiently large. In the ground state |φ|2 can be
expressed in terms of the scalar curvature, (20). Then the energy–momentum of the
scalar field simplifies to (remember: g = (gμν) stands for the whole metric):

46In [145] φ is therefore called a ‘measuring field’; cf. [131].
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Θ(I ) ≈
(

− R

4
− |φ|−2Dλ Dλ|φ|2

)

g =: Λ g (24)

≈
(

− R

4
− R−1Dλ Dλ R

)

g

Θ(I I )
μν ≈ |φ|−2D(μ Dν)|φ|2 = R−1Dμ Dν R (25)

This expresses a peculiar back-reaction of curvature (gravity) on itself via the scalar
field, which is not present in Einstein gravity. Of course it also complicates the
dynamical equations.47

Taking traces on both sides of the (iWOD) Einstein equation shows that in the
matter free case, Lm = 0,

|φ|−2Dλ Dλ|φ|2 ≈ 0 , (26)

and the vacuum Einstein equation can be written in a trace free form

Ric − R

4
g ≈ Θ(I I ) (27)

These identities signal a remarkable change in comparison with Einstein grav-
ity and its problems with the cosmological constant. Θ(I ) represents a functional
equivalent to the traditional ‘vacuum energy’ term, but here it is due to the scalar
field. The coefficient Λ in (24) depends on the geometry of iWOD gravity and thus,
indirectly, on the matter distribution. Moreover, Θ(I I ) is an additional contribution
to the energy momentum of the scalar field (25). Perhaps we can expect that some
of the effects ascribed to dark matter may be due to it.

4.6 A First Try of Connecting to Electroweak Theory

It seems tempting to consider the electroweak energy scale v as a candidate for the
value of the gravitational scalar field in scalar field gauge,

|φc| = v ≈ 246GeV .

In this case, the value of the hierarchy factor would be ξ = E pl

v
∼ 1016.

With
λ ∼ 10−56, (28)

47In general, the order of the Einstein equation is raised to four, although in Weyl gauge it remains
of second order!
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the value of the scalar field’s ground state is located, by (20), at the electroweak
scale48:

[�c]|φo| = �c
ξ
√|R|√
2λ

∼̇ 1016−33+28 eV ∼ 1011 eV , |φo| ∼̇ 1016 cm−1 (29)

This observation indicates a logically possible connection between Weyl gravity
(iWOD) and electroweak theory, although the order of magnitude of λ looks quite
suspicious. In the next section we explore a related, but more convincing transition
which gives up the idea that the gravitational scalar field might be immediately
identified with the Higgs field. Our goal is to find out whether there is a chance for
the scalar field to determine the rate of clock ticking and to influence the units of
mass by some relation to the electroweak theory.

5 A Bridge Between Weyl Geometric Gravity and ew
Theory

Let us try to explore whether the Weyl geometric setting may contribute to concep-
tualizing the ‘generation of mass’ problem of elementary particle physics. Mass is
the charge of matter fields with regard to the inertio-gravitational field, the affine
connection of spacetime. In flat space, and thus in special relativity, that may fall
into oblivion because there the affine connection is hidden under the pragmatic form
of partial derivatives. The exercise of importing standard model fields to ‘curved
spaces’, i.e. Lorentzian or Weyl–Lorentzian manifolds is conceptually helpful even
if it is done on a classical level as a first step. UsingWeyl geometry seems all themore
appropriate, as nearly all of the Lagrange terms of the standard model of elementary
particle physics (SM) are already conformally invariant. The only exception is the
quadratic term of the Higgs field, μ2

2 |Φ|2, with the dimensional factor μ2. By means
of the gravitational scalar field it can easily brought into a scale covariant form of
the correct weight.49

5.1 Importing Standard Model Fields to IWG

Most contributions to the special relativistic Lagrange density L SM (ψ)dx of the stan-
dard model of elementary particles (SM) are invariant under dilations in Minkowski
space. Dilational invariance is closely related to unit rescaling, but not identical.
Assigning Weyl weight w = −d to a field ψ of dilational weight d (often called

48Here |R|∼̇H2 with H = H1 ≈ 7.6 · 10−29 cm−1, respectively �c H ≈ 1.5 · 10−33 eV ∼
10−32 eV . In section 6 we find good reasons to consider R

.= 24H2 (59).
49[7, 96, 98, 100].
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‘dimension’) gives an invariant Lagrangian density under global unit rescaling in
special relativity.50 Unit rescaling can be made point dependent, if the fields can be
generalized to the Weyl geometric framework.

An energy/mass scale is introduced into the SM by the Lagrangian of the Higgs-
e.a. mechanism.51 One usually assumes that the Higgs field is an elementary scalar
fieldwith values in an isospin-hypercharge representation (I, Y ) = ( 12 , 1) of the elec-
troweak group Gew = SU (2) × U (1).52 At least two generations of particle physi-
cists have been working in the expectation that this scalar field is carried by amassive
boson of rest mass at the electroweak level (∼100 GeV ). Experimenters at the LHC
have finally found striking evidence for such a bosonwithmassm H ≈ 125–126GeV
[28, 29].

Without going too much into detail, it can be stated that all the fields and differen-
tial operators of the standard model Lagrangian can be imported intoWeyl geometry.
The most subtle question is the representation of the Weylian covariant derivative
for fermionic fields.53

The kinetic term of the special relativistic Dirac action i
2 (ψ

∗γ oγ μ∂μψ − (γ μ

∂μψ)∗γ oψ) is conformally invariant if ψ is given the scaling weight w(ψ) = − 3
2 .

After orthogonalizing the Levi-Civita connection by introducing tetrad coordinates
(in the tangent bundle) it is locally given by a 1-formω with values in so(1, 3). Using
the appropriate spin representation it can be ‘lifted’ to spinor fields.54 In this way the
Dirac action on ‘curved’ Lorentzian spaces acquires the form

i

2
(ψ∗γ oγ j∇ jψ − (γ j∇ jψ)∗γ oψ) , (30)

50Under the active dilation of Minkowski space x �→ x̃ = Ωx (Ω > 0 constant) a field ψ

of dilational weight d transforms by ψ(x) �→ Ωdψ(Ω−1x) [111, 682ff.]. Invariance of the
action S = ∫

L(ψ)dx holds if
∫

L(ψ(x))dx = ∫
L̃(x)Ω−4dx . That is the case if and only if

L̃ = Ω4L , thus d(L) = 4 and w(L) = −4 for Lagrangians invariant under dilations. Rescaling

η = diag(1,−1,−1,−1) by η �→ η̃ = Ω2η leads to L
√|det η| = L̃

√

|det η̃| and thus to a scale
invariant Lagrange density.
51Spelt out, Brout–Englert–Guralnik–Hagen–Higgs–Kibble ‘mechanism’.
52With the ordinary Gellmann–Nishijima relation Q = I3 + 1

2Y usually assumed in the literature.
Drechsler uses a convention for Y , such that Q = I3 + Y .
53Here we are mainly concerned with the Higgs sector, so we do not need to consider all details of
the Weyl geometric version of LSM . For a complete formulation see [98, 100], similarly, from a
purely conformal view [96]; for the ew sector see [37, 41, 131]. The scalar field and scale connection
(Weylon) sector is introduced in [25]. A short discussion of the local bundle construction in Weyl
geometry is given by [39]; for the Riemannian case see, e.g. [57, chap. 19].
54In 1929, Weyl and Fock noticed independently that in this construction a point-dependent phase
can be chosen freely without affecting observable quantities. That implied an additionalU (1) gauge
freedom and gave the possibility to implement a U (1)-connection [129]. Their original proposal to
identify the latter with the electromagnetic potential was not accepted because all fermions would
seem to couple non-trivially to the electromagnetic field. [108] gives the interesting argument that
in electroweak theory the hypercharge field can be read as operating on the spinor phase, exactly
like Weyl and Fock had proposed for the electromagnetic field [55, 154].
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where the latin indices i, j, k . . . indicate tetrad coordinates, γ j constant, standard
Dirac matrices and∇ j (here) the covariant spinor derivative. Notation here:ψ∗ =t ψ ,
ψ complex conjugate, t transposition. All this can be done globally if the underlying
spacetime manifold M is assumed to be spin, otherwise only locally.55 The action
is conformal invariant and is used in conformal approaches to gravity and SM fields
[11, 85].56

For different choices of the representative of the metric, the conformal approach
refers to different affine connections, but uses scale invariant Lagrangians and equa-
tions. In the Weyl geometric approach, on the other hand, rescaling does not change
the affine connection and covariant derivative (see sect. 2.1, eq. (1)). Therefore the
‘orthogonalized’ Weyl geometric connection ω = (ωi

j ), written as 1-form with val-
ues in so(1, 3), contains a contribution of the scale connectionϕ,ω =gω +ϕ ω (gω the
orthogonalizedLevi-Civita connectionof g).57 This contribution is a specific attribute
of the Weyl geometric coupling of the scale connection to spinor fields, while the
usual gauge interaction vanishes (see below). ϕω takes care for the spin connection
being unchanged under rescaling. Without it the Audretsch/Gähler/Straumann con-
sideration on streamlines of theWKBapproximation could not hold indepedendently
of the scale gauge (section2.3).

Finally, the scale covariant derivative for Dirac spinors becomes

Dμψ = ∂μψ + 1

4
[γ i , γ j ] ωi jμ ψ − 3

2
ϕμψ

/Dψ = [�c] γ μ Dμψ , (31)

with w(γ μ) = −1 and w(/Dψ) = − 5
2 .

58 The kinetic term of the action is formed
analogous to (30). In simplified form (passing over the chiral decomposition of the
spinor fields) the massless Dirac action and the corresponding Yukawa mass term
can be written as

Lψ = i

2
(ψ∗γ o /Dψ − (/Dψ)∗γ oψ) (32)

LY = −μψ |φ| ψ∗γ o ψ

Lψ and LY are ofweight−4. Thus in theWeyl geometric theory not only themassless
Dirac field but also the massive one has a scale invariant Lagrangian density. Due to

55M is spin, iff it admits a global SL(2, C) bundle; then the Dirac operator can be defined
globally, otherwise only locally (in the sense of differential geometry). A sufficient criterion is
H2(M, Z2) = 0.
56Thanks to P.Mannheim for insisting on this point; cf. [93, fns. 20, 21]. It is important for clarifying
the specific difference between the conformal Dirac action and its Weyl geometric twin.
57

ϕω is of the form (ϕi η jk − ϕ j ηik)ϑ
k = ωi jkϑ

k , where {ϑ i } denotes the selected coframe basis, η
the Minkowski metric, and Latin indices i, j of ϕ indicate its coframe coordinates [39, eq. (2.16)],
[12, eq. (4.39b)].
58{γ μ, γ ν} = 2gμν implies w(γ μ) = −1, while by the same reason w(γ j ) = w(γ j ) = 0.
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hermitian symmetrization the real-valued gauge couplings − 3
2ϕkψ from (31) cancel

in (32).59

We rebuild crucial aspects of the Higgs field in our framework by extending the
scalar field of iWODgravity to an electroweak bundle of appropriatemaximal weight
for Gew, (I, Y ) = ( 12 , 1). The scalar field turns into a field Φ with values in a point
dependent representation space isomorphic to C

2,

Φ(x) = (φ1(x), φ2(x)) . (33)

5.2 Two Steps in the Geometry of Symmetry Breaking

The usual ‘mechanism’ for electroweak symmetry breaking on the classical level
consists of two components.

(I) By a proper choice of SU (2) gauge Φ(x) is transformed into a ‘down’ state at
every point; Φ(x) = (0, h(x)), with complex valued h(x).

(II) In the ground state of Φ, its (squared) norm, physically spoken the expectation
value < Φ∗Φ >, is assumed to lie in a minimum of a quartic (‘Mexican hat’)
potential. We write Φo = (0, ho(x)). In the classical Higgs theory its norm is a
constant, |ho(x)| = const = v.

In the physics literature (I) is considered as a spontaneous breaking of the SU (2)
symmetry. This happens without reducing the symmetry of the Lagrangian. For step
(II) in the usual understanding of the Higgs procedure, a mass scale is introduced into
the otherwise (globally) scale invariant Lagrangian of the standard model ; i.e. scale
symmetry is explicitly broken. In our context, we have to reconsider the last point.
But before we do so, we shall have a short look at the features of the spontaneous
breaking in step (I). This will help us in transforming step (II) into a breaking of the
spontaneous type, which we want to address in section 5.3.

The first step presupposes the ability to specify ‘up’ and ‘down’ states with regard
to which the ‘diagonal’ subgroup of SU (2) with generator σ3 = i

2 diag(1,−1) is
defined. Otherwise the U (1) subgroup could be any of infinitely many conjugate
ones.60 Stated in more physical terms: How do we know in which ‘direction’ (inside
C

2) the 3-component of isospin has to be considered? This question, already impor-
tant in special relativistic field theory, becomes pressing in a consequently ‘localized’
(in the physical sense) version of the theory; i.e. in passing to general relativity.

59Even for the non-integrable case this cancelling takes place [12, 81, ex.1], [94], already noted
by [69, 440]. Although there is no gauge coupling of the Yang–Mills type, the scale covariance
term − 3

2ϕkψ has to be retained for consistency reasons (in the Lagrangian and the resulting Dirac
equation). Dynamical effects of the scale connection result only from ϕω (→ fn. 57).
60There are infinitely many maximal tori subgroups, all of them can serve with equal right as ‘diag-
onal’ (Cartan) subgroup. The ‘localization’ (in the sense of physics) allows to make the selection
point dependent.
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In the following we shall consider the Weyl geometrically extended Higgs field
Φ and investigate whether the (complex valued) down state component h(x) of the
Higgs field may be related to the gravitational scalar field φ(x).

It seems natural to assume that the ground state of the electroweak vacuum field
Φ(x) defines the down state of the vacuum representation of the electroweak group,
(I, Y ) = ( 12 , 1), at every point x . Thus a subgroup U (1)o ⊂ SU (2) is specified as
the isotropy group (fix group) of the complex ray generated by Φ(x) at each point.
It singles out the I3 and charge eigenstates in all associated representations of Gew,
and thus for the elementary fields. In consequence, an adapted basis in each of the
representation spaces can be chosen at every point, such that wave functions of the
up/down states get their usual form. The scalar field, e.g. goes over into the form of
the preferred electroweak gauge (often called ‘unitary gauge’)

Φ(x) = (0, h(x)) , (34)

and the only degrees of freedom for Φ are those of h, a complex valued field.
In this way the Higgs field specifies, at each point x ∈ M , a subgroup U (1)o ⊂

SU (2), mathematically a maximal torus of SU (2), in Gew = SU (2) × U (1). The
eigenspaces of U (1)o are the I3 eigenstates of the corresponding isospin representa-
tion spaces with I ∈ { 12k| k ∈ N}. In physical terms, the ew dynamics is ‘informed’
by the Higgs field how the weak and the hypercharge group (or Liealgebra) are
coordinated in the generation of electric charge, also for other (fermionic) represen-
tation spaces.61 In this sense, the electroweak symmetry does not treat everymaximal
torus (U (1)) subgroup of the SU (2) ⊂ Gew equivalent to any other. The Higgs field,
encoding an important part of the physical vacuum structure, seems to be crucial for
the distinction.

In this way the Higgs-e.a. mechanism, can be imported to the general relativis-
tic framework. The whole structure can still be transformed under point-dependent
SU (2) operations without being spoiled, i.e. it may be gauge transformed.62 And
even more importantly, if a su(2) or gew connection of non-vanishing curvature, i.e.
an electroweak field, is present,63 it is not reduced to one of vanishing curvature by

61Experiment has shown that for left-handed elementary fields (and for the ‘vacuum’) I = 1
2 . At

any point of spacetime the charge eigenstates of left-handed elementary matter fields are specified
by the dynamical structure of the vacuum as the eigenstates (I3 = ± 1

2 ) ofU (1)o and Q = I3 + 1
2Y .

(I, Y ) = ( 12 ,−1) for (left-handed) leptons, (I, Y ) = ( 12 , 1
3 ) for (left-handed) quarks, and (I, Y ) =

( 12 , 1) for the ‘vacuum’. For right-handed elementary fields the isospin representation is trivial,
(I, Y ) = (0, 2Q).
62‘Active’ gauge transformations operate on thewhole setting ofΦ(x), U (1)o and the corresponding
frame of up/down bases—similar to the diffeomorphisms of general relativity, considered as gauge
transformations; they carry the metrical structure with them. The active transformations can be
countered by ‘passive’ ones which, in mathematical terminology, are nothing but an adapted change
of the trivialization of a principle fibre bundle and accompanying choices of standard bases (I3
eigenvectors) in the associated representation spaces. After a joint pair of active and passive gauge
transformations the wave functions expressed in ‘coordinates’ remain the same.
63Curly small letters like su(2) and gew denote the Liealgebra of the corresponding groups.
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the pure presence of the scalar (Higgs) field. In that respect, gauge symmetry remains
intact in the sense of both automorphism structure and dynamics.

The metaphor of ‘breaking’ gauge symmetries has been discussed broadly, often
critically, in philosophy of science, cf. [60, 61]. It did not pass without objection
among physicists either, e.g. [38]. For an enlightening historical survey of the rise of
the electroweak symmetry breaking narrative and its important heuristic and system-
atic role see [15, 82]. From our point of view, it does not seem a particularly happy
choice to speak of ‘breaking’ the SU (2) symmetry at this stage. But it is true that the
physical specification of the U (1)o subgroup (maximal torus) in SU (2) by the scalar
field allows to introduce standard sections (I3 bases) and preferred trivializations
of the representation bundles, corresponding to step (b) in the characterization of
section4 (above footnote 44). In this sense, the otherwise free choice of a trivializa-
tion is ‘broken’, and one can say that a full reduction of the electroweak symmetry,
which presupposes vanishing of the curvature (the field strength) is foreshadowed by
the presence of the scalar field. In such a sense there is no problem with the language
of ‘spontaneous breaking’ of symmetries.

A full breaking of the dynamical symmetrywill be accomplishedwhen, in addition
to a preferred gauge choice (trivialization), the physical conditions for an effective
vanishing of the SU (2) curvature component are given (step (a) in section4.4). That is
the result of the gauge bosons acquiring mass, rather than the origin and explanation
of mass generation, although the mass splitting of the fermions is ‘foreshadowed’ by
the physical choice of U (1)o subgroup (the ‘I3 direction’ in more physical terms).
This agrees well with S. Friederich’s convincing discussion, including quantum field
aspects, of the Higgs mechanism in [61]. We come back to this point in a moment.

The second aspect of the usual ew symmetry breaking scenario, (II) in the charac-
terization above, consists of reducing the underdetermination of the (squared) norm
of Φ, respectively the vacuum expectation value of Φ∗Φ = |h|2. In the ordinary
Higgs-e.a. mechanism that is achieved by ad hoc postulating a quartic potential of
‘Mexican hat’ type for the Higgs field. In the iWOD approach, a similar potential for
the gravitational φ is naturally given by (19), with ground state in (20). It remains
to be seen whether the Higgs potential can be related to it in a mathematically and
physically convincing way.

Crucial for the Higgs-e.a. mechanism is the fact that covariant derivative terms of
the scalar field in ew theory (the ew bundle) lead to mass-carrying Lagrange terms
for the gauge fields, which are nevertheless consistent with the full gauge symmetry.
This is, of course, just so in the ew-extended iWOD model. The kinematical term of
the scalar field becomes now

LΦ = 1

2
D̃νΦ

∗ D̃νΦ , (35)

D̃μΦ := (∂μ − ϕμ + 1

2
gWμ + 1

2
g′ Bμ)Φ ,

where the Wμ and Bμ denote the connections in the su(2) and u(1) component
of the electroweak group respectively. The ew covariant derivative terms of (35)
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lead to scale covariant formal mass terms for the ew bosons.64 After the settling
of Φ in a ground state, Φo = (0, h), we hope to find an appropriate scale in which
h

.= const = v (‘Higgs gauge’). Then, after a change of basis (Glashow–Weinberg
rotation), the formal mass terms turn into explicit ones

m2
W = g2

4
v2 , m2

Z = g2

4 cosΘ2
v2 , (36)

with cos θ = g (g2 + g′2)− 1
2 like in special relativistic field theory.

Already in the special relativistic case it is much more difficult to establish Gew

invariant and scale invariant Lagrangian densities for the fermionic fields, in par-
ticular with regard to the mass terms.65 The transfer to the Weyl geometric context
is a smaller problem, once that has been achieved.66 Basically one has to adapt the
Dirac operator (31) to theWeyl geometrical context. In simplified form, the resulting
Lagrangian for electrons can be written as

Le = i

2
(ψ∗

e γ o /Dψe − (/Dψe)
∗γ oψ) − μe|φ| ψ∗

e γ oψe , (37)

with μe the coupling coefficient for the interaction of φ and the electron field.
The fermions and theweak gauge bosons acquire theirmass from their interactions

with Higgs field in its ground state Φo. For the electron

me = μe[hc]|Φo| .= μev . (38)

Once the weak bosons have acquired mass mw, the range of the exchange forces
mediated by them is limited to the order of lw = �c

mc2 ∼ 10−16 cm. At distances d �
lw the curvature of the weak component in the group Gew = SU (2) × U (1) vanishes
effectively, the weak gauge connection can be ‘integrated away’, and the symmetry
can be effectively reduced toU (1). As a result, electroweak symmetry is broken down
to the electromagnetic subgroup. That happens because of the mass acquirement of
the weak bosons—not the other way round. In this respect the physical interpretation
of our stepwise reduction deviates slightly from the standard account, although the
basic structure of the Higgs-e.a. mechanism has been taken over in most respects.

We still have to face the fact that in the Weyl geometric setting even the ground
state Φo has to be scale covariant of weight w(Φ) = −1, just like the gravitational
scalar field φ. We therefore have to look for a modification of the classical Higgs
potential, adapting it to Weyl geometry and forging a bridge, a ‘transition’, between
the electroweak (Higgs) scalar field and the gravitational one.

64 1
4 g2|Φ|2WμW μ and 1

4 g′2|Φ|2Bμ Bμ.
65Decomposition in chiral (left and right) states and the transformation on mass eigenstates
for quarks (Cabibbo–Kobayashi–Maskawa (CKM) matrix) and leptons (Maki–Nakagawa–Sakate
(MNS)matrix) have to be taken into account. The Yukawa Lagrangian for the fermions are simplest,
if written in unitary gauge (34), but are gauge invariant, cf. fn 62.
66[38, 100, 131], cf. [96].
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5.3 Intertwinement of the Higgs Field with Gravity’s Scalar
Field

The usual Higgs ‘mechanism’ works with a Lagrangian of the form

LΦ = (
μ2

2
|Φ|2 − λ

4
|Φ|4 + 1

2
DνΦ

∗ DνΦ + . . .)
√|det η| , (39)

with η the Minkowski metric, |Φ|2 = Φ∗Φ, and μ2, λ the effective values for the
quadratic and quartic coefficients of the SM Lagrangian at the ew energy level. The
coefficient of the quadratic term μ2

2 is dimensionful and of type energy/mass squared.
In our convention it would correspond to a quantity of scale weight w(μ2) = −2.
Formally this Lagrangian bares a close resemblance to the one of theWeyl geometric
gravitational scalar field

Lφ = (−1

2
ξ 2|φ|2R − λ

4
|φ|4 + 1

2
Dνφ

∗ Dνφ + . . .)
√|det g| . (40)

But we have seen that a direct identification is impossible because of the empirical
constraints for the coupling coefficients.67

In order tomake (39) locally scale invariant,wefirst replace the definitemass value
μ by a scale covariant quantity which, for the sake of local scale covariance, has to be
a scale covariant scalar functionwith real or complex values. Nevertheless a preferred
scale indicating the level of electroweak energy v = 246GeV for the expectation
value of Φ,68 clearly a constant relative to the definitions of measurement units has
to arise naturally. For that we need some kind of ‘spontaneous breaking’ of the scale
symmetry.

In section4.4 we have observed that the gravitational scalar field φ shares fea-
tures of such a spontaneous breaking by its coupling to the Weyl geometric scalar
curvature (20), analogous to criterion (I) in section 5.2. In our context it seems very
natural to consider the hypothesis that the Higgs field acquires it preferred (‘broken’)
expectation value, and thus its mass, by its coupling to the gravitational scalar field.

The simplest form to achieve this is to assume a biquadratic potential

Vbi (φ,Φ) = λ

4
(|Φ|2 − α2φ2)2 + λ′

4
φ4 , (41)

in addition to the modified Hilbert term from (40). Simplifying |Φ|2 = h2 according
to (34), the full gravitational potential becomes

67Moreover, a closer look at galactic and cluster dynamics may speak in favour of introducing
another form of the gradient term Lφ , e.g. the cubic one of a weylianized AQUAL theory.
68More precisely we deal here with the square root of the expectation value< Φ∗, Φ > abbreviated
by |Φ|2.
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V (φ, h) = 1

2
ξ 2|φ|2R + λ

4
(h2 − α2φ2)2 + λ′

4
φ4 . (42)

And the scalar field part of the Lagrangian LφΦ = LφΦ

√|det g| is

LφΦ = −ξ 2

2
|φ|2R + 1

2
Dνφ

∗ Dνφ + 1

2
DνΦ

∗ DνΦ − Vbi (φ,Φ) . (43)

Similar locally scale invariant Lagrangians of the scalar field sector have been
introduced and studied by several author groups during the last few years.69 Of
course, the Lagrangians studied in these papers differ among each other.70 Here
we consider (43) as a paradigmatic example and concentrate on the role of the
gravitational coupling of φ for the emergence of a fixed (constant) value for h(x)

and, in this sense, for the ‘spontaneous breaking’ of scale symmetry.
For that we have to investigate, whether a common ground state of the two scalar

fields exist, that is, we have to ask for a (local) minimum of V (φ, h) in both variables.
An easy calculation shows that the gradient grad V = (∂φV, ∂h V ) vanishes for ho =
α|φ|o, φ2

o = − ξ 2

λ′ R, and that V (φo, ho) is, indeed, a local minimum.71 That shows
that the ground state of the gravitational scalar field φo, compared with (20), is not
affected by its coupling to h. The common ground state (φo, ho) of the two fields is

φ2
o = −ξ 2

λ′ R , h2
o = α2φ2

o = −α2ξ 2

λ′ R . (44)

Like in section 4.4 we see that the scalar field gauge agrees with the Weyl gauge,
if φ is in its ground state. Moreover, (44) shows that the ‘Higgs field gauge’ (i.e. the
gauge in which the Higgs field is scaled to a constant vacuum expectation value) is
identical to scalar field gauge and to Weyl gauge: There is one gauge in which all
three, gravitational scalar field, Higgs field, and Weyl geometric scalar curvature are
scaled to a constant norm. By obvious reasons we call it Einstein–Weyl gauge and
denote the respective values by φc, hc, Rc (lower c for ‘constant’).

69[7, 96, 98, 116] and others. A similar form of the scalar Lagrangian with global scale invariance
is considered in [63]. The last-mentioned authors introduce their Lagrangian as the ‘minimal scale
invariant extension’ of the SM and GR.
70All of the mentioned papers include a direct coupling of the Higgs field to the scalar curvature, but
conclude that the effects can be neglected. Some are fascinated by the perspective to study the role of
the Higgs field for cosmological ‘inflation’. Meissner/Nicolai and Bars/Steinharst/Turok do not use
a Weyl geometric framework but consider conformal or ‘Weyl scaling’. The last-mentioned group
of authors study the effects of considering φ as a ghost field (inverse signs of gravitational couplings
of φ and Φ and inverse signs of kinematical terms) on geodesic completability of cosmological
models. Although all investigations deserve attention in themselves we need not, and cannot, go
into more details here.
71∂φV = Rξ2φ − α2λφ(h2 − α2φ2) + φ3λ′, ∂h V = λh(h2 − α2φ2), and for φo, ho as above
Hessian (V )|(φo,ho) > 0 (positive definite).
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From empirical observation we get constraints

ξ 2φ2
c = M2

pl ≈ (2.4 · 1018 GeV )2 , α2φ2
c = v2 ≈ (246Gev)2 . (45)

Therefore
ξ

α
∼ 1016 , the ew-Planck hierarchy factor. (46)

If we assume λ′ ∼ 1, we read off from (44) and (45) that φc lies ‘logarithmically in
the middle’ between R (in Einstein–Weyl gauge) and Mpl ; i.e. φc is the geometrical
mean between the two72:

|R| 1
2

ξ/
√

λ′−→ |φc| ξ−→ MPl

For R ∼̇ 10 H 2 with Hubble constant H and �cH ∼ 10−33 and λ′ ∼ 1, we find73 that
the order of magnitude of the second hierachy factor (between the energy level of the
scalar field’s ground state and Planck energy) is ξ ∼ 1030. The ew scale lies close to
the geometrical mean between φc and Mpl :

H
ξ−→ |φc| α−→ v

α′−→ Mpl ,

where ξ = αα′, α ∼ 1014, α′ ∼ 1016. The effective (classical) value of λ is con-
strained by the observational values of the Higgs mass mh ≈ 126GeV and v ≈
256GeV to λ ≈ 0.24.74

At first glance one might expect that λ′ is constrained by dark energy considera-
tions. But this is not the case, as one can check by inspecting the changes in the energy
tensor (17) of the scalar sector after introducing the Higgs field. In the ground state
of the scalar fields the only changes arise from the contribution of the kinematical
terms of h. They are suppressed like the ones of φ in the effective approximation
(24, 25).75 Thus the energy momentum tensor of the combined scalar fields (φ,Φ)

in their ground state is still given by (24), (25) like in the single gravitational scalar
field case of section 4.4.

72This relation may lie at the bottom of some of the ‘large number coincidences’ which fascinated
Eddington, to a lesser degree Weyl, and others.
73For the estimates of R and H see footnote 48.
74The tachyonic mass term of the Higgs field λ

4α2|φc|2 = λ
2 v2 turns into a real mass term for the

Higgs excitation, m2
h = λv2, thus the value for λ.

75In (42, 43) the Higgs field Φ is not coupled to R; therefore no boundary term of the variation
of the Hilbert term appears. (This is similar for the direct Higgs coupling to R considered by the
authors mentioned in fn. 69, because in all cases the Higgs coupling to scalar curvature is by far
outweighed by the dominating φ term (∼M2

pl )). The quartic term of h does not deliver a contribution

to the energy tensor because in the ground state it is cancelled by the contribution from α2φ2. The
additional kinematical terms for Φ, (those with factor ξ2 in (17) are suppressed as indicated in the
main text.
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The often discussed question why the quartic term of the Higgs field does not
dominate gravitational vacuum energy in the cosmological term finds a completely
convincing explanation on the classical level. Moreover, while in Einstein gravity
the cosmological constant term results in the anomalous feature of vacuum energy of
being able to influence the dynamics of matter and geometry without backreacting to
them, this problematic feature is dissolved here (like in other JBD-like approaches).

These are pleasing results of our investigation of the intertwinement between
the Higgs field and the gravitational scalar field. Let us resume the most important
qualitative (structural) results:

– The Higgs coupling to gravity considered here does not affect the energy–
momentum tensor of the scalar sector.

– In its ground state the intertwined two gravitational scalar fields adapt to the
Weyl geometric scalar curvature like in the case of ‘pure’ gravitational scalar
field (section4.4).

– Therefore the vacuumenergynot only influencesmatter andgeometrical dynamics,
but also backreacts to the latter.

– Different to what one finds in the respective literature,76 there is no complete
decoupling of the electroweak sector from gravity in the ‘low’ energy regime …,

– … because the dimensional parameter μ2 of the ordinary Higgs mechanism is
derived from the scale covariant coupling with the gravitational scalar field.

– The ground state of the latter is determined by the coupling to gravity (ξ 2φ2R
term).

– In this sense, the two scalar fields are gravitationally combined like twins.77 Only
taken together they induce a kind of ‘spontaneous breaking’ of (local) scale sym-
metry.

The last point deserves to be discussed in more detail in the next section.

5.4 A Weylian Hypothesis Reconsidered

The proportionality between the squared scalar field’s value with R has the most
important consequences for our understanding of measurement processes. Quantum
mechanics teaches us how atomic spectra depend on the mass of the electron. The
energy eigenvalues of the Balmer series in the hydrogen atom are governed by the
Rydberg constant Rryd ,

En = −Rryd
1

n2
, n ∈ N . (47)

76Cf. fn 69.
77We may hope that a deeper understanding of the emergence of the scalar field sector can lead to
a common quantum field theoretical origin of the two related classical fields.
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The latter (expressed in electrostatic units) depends on the fine structure constant α f

and on the electron mass, thus finally on the norm of Higgs field78:

Rryd = e4 me

2�
2

= α2
f

2
mec2 = α2

f

2
√

μe vc2 (48)

This equation is a classical idealization; with field quantization the fine structure
constant α f , and with it Rryd , become scale dependent.79

In our scale covariant approach the masses of elementary fermions depend on
indirect coupling to gravity as argued in 5.3. The Rydberg ‘constant’ turns into a
scale covariant quantity of weight −1 and scales with φ, while the electron charge is
considered as a ‘true’ (nonscaling) constant. In scalar field gauge (in other words, in
Einstein gauge) the Rydberg factor is also scaled to constant (on the classical level)
together with φ and h. In terms of (44) it is

Rryd = α2
f

2
μe ho c2 = α2

f

2
α μe |φo| c2

.= α2
f

2
α μe |φc| c2 . (49)

Similarly, the usual atomic unit of length for a nucleus of charge number Z is the
Bohr radius lBohr = �

Ze2me
and gets rescaled just as well, like |φ|−1.

That is, typical atomic time intervals (‘clocks’) and atomic distances (‘rods’)
are regulated by the ew scalar field’s ground state |ho|. If the discussion of section
5.3 hits the point, it is linked to the ground state of the gravitational scalar field
and thus to Weyl geometric scalar curvature. Under the assumptions of section 5.3, a
definition of units for central physicalmagnitudes like in the newSI rules establishes a
measurement system inwhich the value of |h| is set to a constant by convention, If it is
evaluated in the framework of iWODgravity (and presupposing the correctness of the
laws linkingmeasurement procedures to natural constants onwhich the SI regulations
are based) that corresponds to fixing Einstein gauge for actual measurements.80

In the end, the scaling condition of Einstein gauge (= Weyl gauge) and (49) gives
a surprising justification for an ad hoc assumption introduced by Weyl during his
1918 discussion with Einstein. Weyl conjectured that atomic spectra, and with them
rods and clocks, adjust to the ‘radius of the curvature of the world’ [152, 309]. In his
view, natural length units are chosen in such a way that scalar curvature is scaled to
a constant, the defining condition of what we call Weyl gauge. In the fourth edition
of Raum–Zeit–Materie (translated into English by H.L. Brose) he wrote:

In the same way, obviously, the length of a measuring rod is determined by adjustment; for
it would be impossible to give to this rod at this point of the field any length, say two or three
times as great as the one that it now has, in theway that I can prescribe its direction arbitrarily.
The world-curvature makes it theoretically possible to determine a length by adjustment. In

78Vacuum permissivity εo = (4π)−1; then e2 = 2α f εohc = α f �c.
79C. Hölbling and R. Harlander made me aware of this problem.
80Cf. fn. (14). Although the calculation of the spectral lines of 133Caesium is more involved, the
dependence on electron mass remains.
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consequence of this constitution the rod assumes a length which has such and such a value
in relation to the radius of curvature of the world. [152, 308f.]

The electroweak link explored in section 5.3 thus underpins a feature of Weyl
geometric gravity which was introduced Weyl in a kind of ‘a priori’ speculative
move. In the fifth (German) edition of Raum–Zeit–Materie Weyl already called upon
Bohr’s atom model as a first step towards justifying his scaling conjecture:

Bohr’s theory of the atom shows that the radii of the circular orbits of the electrons in the
atom and the frequencies of the emitted light are determined by the constitution of the atom,
by charge and mass of electron and the atomic nucleus, and Planck’s action quantum.81

At the time when this was written, Bohr had already derived (47) and (48) for the
Balmer series of the hydrogen atom and for the Rydberg constant [107, 201]. Weyl
saw, at first, no reason to give up his scale gauge geometry. He rather continued:

The most recent development in atomic physics has made it likely that the electron and the
hydrogen nucleus are the fundamental constituents of all matter; all electrons have the same
charge and mass, and the same is true for all hydrogen nuclei. From this it follows with all
evidence that the masses of atoms, periods of clocks and lengths of measuring rods are not
preserved by some tendency of persistence; it rather is a result of some equilibrium state
determined by the constitution of the structure (Gebilde), onto which it adjusts so to speak
at every moment anew (emphasis in original).82

The claim that ‘it follows with all evidence’ was, of course, an overstatement. It is
well known how Weyl himself shifted his gauge concept from scale to phase only a
few years later (in the years 1928–1929). After this shift he reinterpreted the Bohr
frequency condition. In later discussions he referred to it as an argument against the
physicality of his scale gauge idea.83

This shift gives evidence to a paradoxical double face of Weyl’s remarks with
regard to the Bohr frequency condition. For Weyl it may have contained a germ for
the later distantiation from his first gauge theory, hidden behind an all too strong
rhetoric of ‘evidence’. But now it appears again in a completely new light. Read in
a systematical perspective, Weyl’s remarks from 1922/23 can now even appear as
foreshadowing a halfway marker on the road towards a bridge between gravity and
atomic physics. Whether this bridge resists depends, of course, on the answer to the
question whether or not the link discussed here between the scalar fields of gravity
and of ew theory is realistic (‘physical’). This question is open for further research.

81“Die Bohrsche Atomtheorie zeigt, daß die Radien der Kreisbahnen, welche die Elektronen im
Atom beschreiben und die Frequenzen des ausgesendeten Lichts sich unter Berücksichtigung der
Konstitution desAtoms bestimmen aus demPlanckschenWirkungsquantum, ausLadung undMasse
von Elektron und Atomkern …” [153, 298].
82“Die neueste Entwicklung der Atomphysik hat es wahrscheinlich gemacht, daß die Urbestandteile
aller Materie das Elektron und der Wasserstoffkern sind; alle Elektronen haben die gleiche Ladung
und Masse, ebenso alle Wasserstoffkerne. Daraus geht mit aller Evidenz hervor, daß sich die Atom-
massen, Uhrperioden und Maßstablängen nicht durch irgendeine Beharrungstendenz erhalten;
sondern es handelt sich da um einen durch die Konstitution des Gebildes bestimmten Gleichgewicht-
szustand, auf den es sich sozusagen in jedem Augenblick neu einstellt.” (loc. cit., emph. in or., 298).
83Compare, for example, Weyl’s remarks in [155, 83].
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At the end of the 1920s there was no chance for anticipating the electroweak
pillar of the bridge. Historically, Weyl was completely right in considering the Bohr
frequency condition as an indicator that his early scale gauge geometry could not be
upheld as a physical theory in its original form. Weyl’s original interpretation of the
scale connection as the electromagnetic potential became obsolete in the 1920s, but
his ad hoc hypothesis that Weyl gauge indicates measurements by material clocks
and ‘rods’ most directly may now get new support.84

6 Another Look at Cosmology

It is of interest to see how cosmology looks from the vantage point of scale covariant
gravity, not only in order to test the latter’s formal potentialities on this level of theory
building, but also because certain features of recent observational evidence of cos-
mology are quite surprising: dark matter and dark energy, distribution and dynamics
of dwarf galaxies, lacking correlation of metallicity with redshift of galaxies and
in quasars (i.e. no or, at best, highly doubtful indications of evolution), too high
metallicity in some deep redshift quasars and the intriguing, but as yet unexplained,
distribution of quasar numbers over redshift.85 It would not be surprising if some of
these develop into veritable anomalies for the present standard model of cosmology.
At least they seem to indicate that some basic changes in the conceptual framework
for cosmological model building may be due.

At the moment we neither can claim that these (potential) anomalies will be
resolved byWeyl geometric gravity, nor are cosmological investigations in the frame-
work ofWeyl geometry per se bound to go beyond the present picture of an expanding
universe plus ‘inflation’. Often these studies are still committed to the standard pic-
ture.86 But the above-mentioned problems may be taken as a reason for reflecting
the status of present cosmology and to compare it with alternative approaches.

Weyl geometric gravity is not the only alternative ‘on the market’; many others
are being explored.87 The number of publications which accept the present standard
cosmology in the observable part but develop alternatives to the ‘big bang’ singularity
seems to be rising.88 Someof themmaybeworth considering in philosophical ‘meta’-
reflections on cosmology, complementary to philosophical investigations centred on
more mainstream lines of investigation in cosmology.89

84This idea is discussed in more detail in [133].
85[31, 68, 88, 89, 121, 125, 142].
86E.g. [100, 116].
87Some of them have been reviewed from a contemporary history view in [84–86] and the (quasi)
steady state approach in [92]. Less discussed are different kinds of static or neo-static approaches
[30, 95, 128, 130], or explorations of unconventional views on vacuum energy like in [49].
88Among them [7, 14, 110, 141].
89Very selectively, [8, 119, 139] and the recent volume 46 of Studies in History and Philosophy of
Science, Part A.
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6.1 Friedmann–Lemaitre Models in iWOD Gravity

One often uses approximate descriptions of cosmological spacetime by models with
maximal symmetric spacelike folia, i.e. Friedmann–Lemaitre–Robertson–Walker
(FLRW) manifolds with metric of the form

g̃ : ds̃2 = dτ 2 − a(τ )2dσ 2
κ , (50)

dσ 2
κ = dr2

1 − κ r2
+ r2(dΘ2 + sin2 Θ dφ2) .

The underlying manifold is M ≈ I × S(3), with I ⊂ R and S(3) three-dimensional.
S(3) is endowedwith aRiemannian structure of constant sectional curvature κ , locally
parametrized by spherical coordinates (r,Θ, φ).90

ForWeyl geometric FLRWmodels the behaviour and calculation of cosmological
redshift is very close to what is known from the standard approach. The energy of a
photon describing a null-geodesic γ (τ) considered by cosmological observers along
trajectories of a cosmological time flow unit vector field X (p), p ∈ M , X = x ′(τ ),
is given by E(τ ) = g(γ ′(τ ), X (γ (τ ))).91 Cosmological redshift is expressed by the
ratio

z + 1 = E(τo)

E(τ1)
= g(γ ′(τo), X (γ (τ0)))

g(γ ′(τ1), X (γ (τ1)))
. (51)

As we are working with geodesics of weight−1,w(X) = −1, andw(g) = 2, energy
expressions for photons with regard to cosmological observers are independent of
scale gauge; so is cosmological redshift.

In the standard view the warp function a(τ ) is considered as an expansion of space
with the cosmological time parameter τ . After an embedding of Einstein gravity into
iWOD this view is no longer mandatory.92 Even more, it is no longer convincing.
If electroweak coupling—or any other mechanism leading to an analogous scale
gauge behaviour—is realistic, Friedmann–Robertson–Walker geometries are better
considered in Weyl gauge, i.e. scaled to constant scalar curvature in the Weylian
generalization, than in Riemann gauge. In consequence, a large part of what appears
as ‘space expansion’ a(τ ) in present cosmology, perhaps even all of it, is encoded
by the scale connection ϕ after rescaling to Weyl gauge.

In the result, the cosmological redshift need not (exclusively) be due to expansion;
it can just as well be a result of field theoretic effects expressed, in scalar field gauge,

90Here φ is the usual designation of an angle coordinate. Contextual reading disentangles the dual
meaning for φ we allow here. —For a survey of models with less symmetry constraints see [47],
but consider the argumentation in [8].
91Cf. [24, 110, 116], for Weyl geometric generalizations, e.g. [112, 117, 130].
92Every Riemannianmodel (M, g)with Lorentzian spacetime M andmetric g can easily be consid-
ered as an integrable Weyl geometric model with Weyl metric [(g, 0)]. If the dynamics is enhanced
by a scalar field and scalar curvature of the model is �= 0 the extension which is dynamically
non-trivial. For a discussion of consequences for the view of gravitational effects see [118].
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by both the warping of the Riemannian component of the metric and by the scale
connection.93 A similar argument that redshift may result from ‘varying particle
masses’ was recently given in the framework of JBD gravity by [148] .94

The counter argument that a quantum mechanical explanation is lacking and a
necessary prerequisite for accepting the explanation is self-defeating, as the explana-
tion by space expansion does not provide one either. Expansion or scale connection,
both are essentially (gravitational) field theoretic effects and, in a scale covariant
theory, even mutually interchangable.

6.2 A Static Toy Model: Einstein–Weyl Universes

If we extend our view from the classical cosmological models built upon Einstein’s
theory to scale invariant gravity, the picture of the ‘universe’ may change consid-
erably. Models come into sight without any expansion at all, where the whole cos-
mological redshift is due to the scale connection ϕ. Toy models of such a type have
been studied in [130].95 The constraint for the scalar field, established here by the
potential condition (20), facilitates the analysis considerably and allows to derive a
surprising result with regard to dynamic equilibrium.

In Riemann gauge, these models can be represented as particularly simple
Friedmann–Robertson–Walker spacetimes with a varying scalar field (a ‘varying
gravitational constant’) and a linear warp (‘expansion’) function a(τ ) = Hτ .96 In
Weyl gauge, on the other hand, they exhibit a non-expanding spacetime, of course now
with a non-vanishing scale curvature which contains all the information of the former
warp function. After reparametrization of the timelike parameter τ = H−1eHt , the
Weylian metric is given by

ds2 = dt2 −
(

dr2

1 − κ r2
+ r2(dΘ2 + sin2 Θ dφ2)

)

= dt2 − dσ 2
κ (52)

ϕ = (H, 0, 0, 0) ,

93The scale connection in scalar field gauge corresponds, in Riemann gauge, to a ‘varying cosmo-
logical constant’ and ‘varying’ particle masses and measuring units, regulated by the scalar field.
See [112, 128, 130].
94Wetterich’s reputation in the physics community helped to bring his argument into the Nature
online journal http://www.nature.com/news/cosmologist-claims-universe-may-not-be-expanding-
1.13379.
95The balancing condition between matter and the scalar field assumed there did not yet take the
link to ew theory into account; therefore the dynamical assumptions of [130] differ from those
discussed here and lead only to provisional results.
96Reparametrization of the time coordinate in Riemann gauge gives the picture of a ‘scale expanding
cosmos’ [95] with exponential scale growth ds2 = e2H T (ds2 − dσ 2

κ ). H the Hubble parameter
observed today, cf. fn (97).
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(dσ 2
κ the metrik on the spacelike folia of constant curvature). These models have

been called Weyl universes, in particular Einstein–Weyl universes for κ > 0 [130].
They are time homogeneous in a Weyl geometric sense.

The cosmological time flow remains static x(τ ) = (τ, x̃) with x̃ ∈ S(3). Coeffi-
cients of the Weylian affine connection are easily derived from the classical case, in
particular Γ 0

00 = H and Γ i
oi = H (i = 1, 2, 3), while all Γ k

i j , for i, j, k = 1, 2, 3, are
those of the spacetime folia (3-spaces of constant curvature). The parameter

ζ := κ

H 2
(53)

characterizes Weyl universes up to isomorphism (Weyl geometric isometries).
The increment in cosmological redshift in Weyl universes is constant, and thus

z + 1 = eHt (54)

or z + 1 = eHc−1d for signals from a point of distance d on S(3) from the observer
(depending on ‘which’ H is meant, Ho or H1).97 In Weyl gauge it is described by
the time component of the scale connection, ϕo = H .

Ricci curvature (independent of scale gauge) and scalar curvature in Weyl gauge
are98

Ric = 2(κ + H 2)dσ 2
κ , (55)

R = −6(κ + H 2) . (56)

InWeyl gauge the left-hand side of the generalizedEinstein equation (16) has timelike
component 3(κ + H 2) and spacelike entries (κ + H 2)gii , i.e. −(κ + H 2)dσ 2

κ , (i =
1, . . . , 3). That is familiar from classical static universe models. The absolute value
of negative pressure p gii is here |p| = κ + H 2, i.e. one third of the energy density
3(κ + H 2). The only difference to classical Einstein universes is marked by the H 2

terms.
In Einstein gravity, static universes are stricken by problems, even inconsisten-

cies, with regard to their dynamics. It turns out impossible to stabilize them by a
cosmological vacuum energy term or by substitutes. A natural question seems to
ask, whether this may change by taking the energy momentum of the scalar field into
account. Calculation of the scale covariant derivatives of |φ|2 for Weyl universes
leads to99

97More precisely, one could distinguish between the time dimensional Hubble constant Ho ≈
2.27 10−18 s−1 and its length dimensional version H1 = H0c−1 ≈ 7.57 10−29 cm−1 with its
inverse, the Hubble distance H−1

1 ≈ 4.28 Mpc.
98Cf., e.g. [104], or any other textbook about Robertson–Walker spacetimes.
99Note that the scale covariant derivative of a function f ofweightw( f ) = −2neednot be zero, even
if f is gauged to a constant. For Weyl universes D0 f = −2H f and D0D0 f = D0D0 f = 6H2 f ,
because of Γ o

oo = H . Moreover, D1D1 f = −2H2 f , similarly for j = 2, 3 because of Γ i
oi = H

for i, j = 1, 2, 3; thus Dν Dν |φ|2 = 0 (wrong calculation in [130], corrected in [131, 64]).
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Θ(I ) = 3

2
(κ + H 2)g (57)

Θ(I I ) = diag (6H 2g00,−2H 2g11,−2H 2g22,−2H 2g33) (58)

(24), (25), (26). Comparison with (55, 56) shows that the Einstein equation holds for
exactly one value of the spatial curvature,100

κo = 3 H 2 , i.e. ζo = 3 , then Ro = −24 H 2. (59)

We may call this special case the balanced Einstein–Weyl universe.
An inspection of the Friedmann equations in the Weyl geometric case leads to the

sobering result that this balance is instable in the class of Robertson–Walker–Weyl
models including the scalar field equation.101 That seems to indicate that theEinstein–
Weyl model with ζ = 3 suffers from instability problems similar to those of the
classical Einstein universe, and is thus relegated to the status of a toymodel. But even
then, its characteristic features, in particular cosmological redshiftwithout expansion,
are an interesting hint on how the perspectivemay change under amoderate change of
the geometric framework of our gravity theory. Moreover, the picture changes if we
bring the potential condition (20) into play. If the latter is of physical relevance on the
cosmological level, the balanced Einstein–Weyl model seems to be the only vacuum
solution of the overdetermined system constituted by the Friedmann equations, the
scalar field equation and the potential condition (for our choice (15) of the coupling
constant of Lφ).

6.3 Theory-Ladenness of Cosmological Observations

Positive curvature for spatial folia and static geometry stand in harsh contrast tomany
features of the present standard model of cosmology. Moreover, observational evi-
dence of the cosmic microwave background CMB and from supernovae magnitude–
luminosity characteristics, measured with such impressing precision during the last
decades, seem to outrule not only balanced Einstein–Weyl universes, but also the
whole attempt at extending cosmological modelling to the framework of Weyl geo-
metric gravity.

But we should be careful. If wewant to judge the empirical reliability of a new the-
oretical approach we have to avoid rash claims of refutation on the basis of empirical
results which have been evaluated and interpreted in a theoretical framework dif-
fering in basic respects from the new one. Theory-ladenness of the interpretation

100κ = 3 H2 corresponds toΛ = 6H2 with relative valueΩΛ = 2. Note that the ‘dark matter’ term
Θ(I I ) has positive pressure, characterized by p

ρ
= 1

3 , and contributes ΩΘ(I I ) = 2 to the relative
energy density.
101Contrary to hopes, based on too naive heuristic considerations, expressed in earlier preprint
versions of this paper.
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of empirical data is particularly strong in the realm of cosmology. Enlarging the
symmetry of the Lagrangian by scale invariance comes down to a drastic shift in
the constitutive framework for the formulation of physical laws. Judgement of such
a shift demands careful comparative considerations. That has to be kept in mind in
particular for the evaluation and conclusions drawn from the high-precision studies
of the cosmic microwave background (Planck and WMAP data).

In the Weyl geometric approach, cosmological redshift looks like a field theoretic
effect on the classical level; in scalar field gauge it is modelled by the combination of
the (integrable) scale connection and the remaining warp factor of the spatial com-
ponent of the Riemannian metric, rather than by a realistically interpreted ‘space
expansion’. The CMB may be explainable be a quantum physical background equi-
librium state of the Maxwell field excited by stellar and quasar radiation, as was
argued by I.E. Segal.102 The correlation of the tiny inhomogeneities in the tempera-
ture distributionwith large scalematter structures would be independent of the causal
evolution postulated in the present structure formation theory. It has to be checked
whether the flatness conclusion from CMB data is stable against a corresponding
paradigm change.

Supernovae data have to be reconsidered in the new framework, in particular
with view on possible observation selection effects.103 Galaxy evolution would look
completely different, as no big bang origin would shape the overall picture. In partic-
ular Seyfert galaxies and quasars can be understood as late developmental stages of
mass accretion in massive galactic cores. Jets emitted from them seem to redistribute
matter recycled after high energy cracking inside galactic cores. Structure formation
would have to be reconsidered.104 Nuclear synthesis would no longer appear as ‘pri-
mordial’ but could take place in stars on a much larger time scale than in the recieved
view, and in galactic cores, respectively, quasars.105

Regenerative cycles of matter mediated by galactic cores, quasars and their jets
are excluded as long as cosmology is based on Einstein gravity by the extraordinary
role of its singularity structures (‘black holes’). But these have to be reconsidered in
the Weyl gravity approach.

Because of theWeyl gauge condition, local clocks tick slower in regions of strong
gravity (large gR) also in comparison with Riemann gauge. The resulting conformal
rescaling demanded by the potential condition (20), Weyl gauge as Einstein gauge,
and their influence on the rate of spectral clocks (47) changes the picture of the
spacetime metric near singularities of the Riemann gauge (and also in comparison
to Einstein gravity). We cannot be sure that the singularity structure is upheld. Con-
formal rescaling may change the whole geometry, similar to the effect that an initial

102According to Segal, the quantizedMaxwell field on an Einstein universe will, under very general
assumptions, build up an equilibrium radiation of perfect Planck characteristic [136].
103For a detailed argument that strong observation selection effects may come into the play in the
selection procedures of the SNIa data see [30, sec. 4.6], for a first glance at supernovae data from
the point of view of Einstein–Weyl universes [130].
104For a sketch of such a picture see [30] or [52].
105Then even the Lithium 6/7 riddle might dissolve quite unspectacularly.
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singularity may be due to a ‘wrong’ (Riemannian) scaling of Friedmann–Robertson–
Walker geometry in the case of Einstein–Weyl universes. Such investigations have
started for Weyl geometric gravity by [113] and in a different perspective by [7].

But why should one head towards such an enterprise of basic reconsideration of
the cosmological overall picture? Only a few astronomers or astrophysicists like to
tackle such a complex task at the moment. Among them, David Crawford has been
investigating for some time, how well different classes of observational evidence fits
into thepicture of a comologicalmodelwith static spherical spatial folia. Theoutcome
is not disappointing for this assumption [30]. The choice between an expanding space
model or a (neo-)static one seems to be essentially determined by underlying (explicit
or implicit) principles of gravity theory.106

Certain basic problems of the standard picture are being discussed in the present
discourse on cosmology. There are different strategies to overcome them. The most
widely known approaches for explaining the unexpected outer galaxy dynamics
ascribe these effects to dark matter [121]. On larger scales the evolution and dis-
tribution of quasars deliver plenty empirical evidence, not always in full agreement
with the ‘old’ picture. Quasar data of the Sloan Digital Sky Survey (SDSS), the
2dF group, and others outweigh the supernovae observations in number, precision
and redshift range [125, 142]. A striking feature is that there is no indication of
evolution of metallicity in quasars or galaxies along the cosmological timeline, i.e.
in correlation to redshift.107 Less well known, but perhaps even more important,
are recent observations of distribution and dynamics of dwarf galaxies. They seem
to indicate a fundamental inconsistency with the structure formation theory of the
standard approach [88].

Such irritating observations, combined with diverging research strategies, are
a worthwhile object for metatheoretical investigations in a pragmatic sense. The
concentration on new classes of observational evidence is often crucial for the process
of clarifying mutual vices and virtues of competing theories. That is the reason why
we want to have a short glance at quasar distribution before we finish.

106Crawford assumes a peculiar dynamics of ‘curvature cosmology’ which claims to remain in the
framework of Einstein gravity. It seems doubtful that this conception can be defended. But here we
are mainly interested in the detailed investigation of observational evidence in parts I, II of [30].
107Another, at the moment isolated, inconsistency with the received picture of metallicity devel-
opment is a quasar with redshift z ≈ 3.91 and of extremely high metallicity (Fe/O ratio about 3)
observed by [68]. Still it is considered as irritating only for the standard picture of star, galaxy, and
quasar evolution [31]. But it could foreshadow more.
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6.4 A Geometrical Explanation of Quasar Distribution?

The distribution of quasars in dependence of redshift shows a distinctive asymmet-
ric bell shape with a soft peak between z ≈ 0.9 and 1.6 and at first a rapid, then
slackening, decrease after z ≈ 2 shown in figure 1.108

In standard cosmology the regular distribution curve is a riddle which calls for
ad hoc explanations of quasar formative factors. In the toy model of the balanced
Einstein–Weyl universe, the distribution pattern would be easy to explain: Here it
turns out to be close to the volume increments of the backward lightcone with rising
redshift in the balanced Einstein–Weyl universe (fig.2).109

The deviation of the SDSS number counts from the calculated curve of the bal-
anced Einstein–Weyl universe consists of fluctuations and some remaining, rather
plausible, observational selection effects: a moderate excess of counts below Z = 1
and a suppression of observed quasars above z ≈ 2. All in all, the curves agree sur-
prisingly well with the assumption of an equal volume distribution of quasars in
large averages in the balanced Weyl universe. But there arises a new question: The
conjugate point on the spatial sphere is reached at z = eHπ/c − 1 = e

π√
3 − 1 ≈ 5.13

(r = 1√
κ
radius of the sphere). Interpreted in this model, quasars and galaxies with

higher redshift than 5.13 ought to be images of objects ‘behind’ the conjugate
point and should have counterparts with lower redshift on ‘this’ side. For terres-
trial observers the two images are antipodal, up to the influence of gravitational
deflection of the sight rays. In principle, it should be possible to check the ‘predic-
tion’ of the Einstein–Weyl model of paired antipodal objects for the highest redshift
quasars and galaxies with present observational techniques.110

At the moment such consequences have not yet been studied in sufficient detail.
Maybe they never will, unless some curiosity of experts in gravity theory and in
cosmology, both theoretical and observational, are directed towards studying some
of the more technical properties of the iWOD approach.

For the ‘metatheoretical’ point of view, it becomes apparent already here and now,
that important features of our present standard model of cosmology are not as firmly
anchored in empirical evidence as is often claimed. They are highly dependent on
the interpretive framework of Riemannian geometry which plays a constitutive role
for Einstein gravity. Although we have very good reasons to trust this framework
on closer, surveyable astronomical scales—at least on the solar system level—it

108Best data come from the 2dF collaboration and the Sloan Digital Sky Survey [125, 142]. Here
we take the data of SDSS 5th data release; total number of objects 77429 (fig.1 upper curve),
SDSS corrections for selection effects reduces the total number by half [125]; the total number of
the corrected collective is 35892. The maximum of the corrected distribution is manifestly a little
above z ≈ 1; the authors give z = 1.48 as the median of the collection.
109The maximum is reached around the equator of the spatial sphere. For κ = 3H2 the equator

corresponds to redshift zeq = eH π
2 (

√
3H)−1 − 1 ≈ 1.47 (54).

110The pairing of redshift and magnitudes are easy to calculate. But gravitational deflection of light
disturbs the direction and local deviation from spherical symmetry close to the conjugate point blurs
the focussing of light rays and affects magnitudes and redshift. Therefore an effective decision of
this question could be a true challenge for observational cosmology.
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Fig. 1 Redshift distribution of quasars from SDSS, 5th data release, width of redshift bins 0.05;
upper curve raw data, lower curve corrected for selection effects; source [125, Fig. 3].

is not clear at all whether we can trust its extrapolation to the gigantic scales far
above cluster level. The proposal of modified Newtonian dynamics (MOND) for
explaining galaxy rotation curves may be understood as a sign that we cannot be
sure that Einstein gravity describes gravity with the necessary precision already at
outer galaxy level.111

7 Review of ‘transitions’

We have seen howWeyl geometry offers a well-structured intermediate step between
the conformal structure and the projective path structure of physics and a fully met-
rical geometry (section 2). Riemannian geometry is only slightly generalized, if
the Weyl geometric scale connection is integrable. Low energy quantum physics
gives convincing arguments to accept this constraint for considerations far below
the Planck scale (Audretsch/Gähler/Straumann, section 2.3, and mass of the ‘Weyl

111For other anomalous evidence see fn. 85 and, in particular, the above mentioned study of dwarf
galaxies in [88].
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Fig. 2 Redshift distribution of quasars from SDSS, 5th data release, corrected for selection effects
(zigzag curve), in comparison with equally distributed objects, volume increments over redshift
bins of width 0.05, in Einstein–Weyl universe ζ = 3 (dotted curve).

boson’, section 4.2).As the standardmodelLagrangian of elementary particle physics
is (nearly) invariant under point-dependent rescaling, a scale invariant generalization
of Einstein gravity is a natural, perhaps necessary, intermediate step for bridging the
gap between gravitation theory and elementary particle fields. There are encouraging
indications that integrable Weyl geometry may be helpful for the search of deeper
interconnections between gravity and quantum structures. Recently, the authors of
[26] have proposed a quantization procedure of a Weyl (scale) invariant classical
Lagrangian, which preserves Weyl invariance for the effective (quantized) action.
Some experts expect a resolution of the notorious fine tuning problem for the Higgs
mass from such a move.112

In the 1980s, not in its beginnings,113 Jordan–Brans–Dicke theory was explored
for similar reasons, although in a different theoretical outlook and, up to now, without
striking success [79, 80]. A conceptual look at Jordan–Brans–Dicke theory shows
that the latter’s basic assumptions presuppose, usually without being noticed, the
basic structure of integrable Weyl geometry (section 3). From a metatheoretical
standpoint it seems surprising that this has been acknowledged explicitly only very

112In a scale invariant Lagrangian the radiative corrections to theHiggsmass are expected to become
only logarithmic rather than quadratic [7]; for global scale invariance see the similar argument in
[137].
113The different motivations in the early phase are described by [87].
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recently.114 The Weyl geometric view makes some of the underlying assumptions
clearer and supports the arguments of those who consider the Einstein frame as the
‘physical’ one (although this is an oblique way of posing the question). Physicists
often seem towithhold fromsuchmetatheoretical considerations bydeclaring themas
formal—and ‘thus’—idle games. Philosophers of physics are of a different opinion.
That this game is not idle at all, can be seen by looking at the transition from JBD
theory to Omote–Utiyama–Dirac gravity (WOD). WOD gravity has a Lagrangian
close to JBD theory, but is explicitly formulated in Weyl geometric terms (section
4). Historically, the transition from JBD to WOD gravity took place in the 1970s;
but only a tiny minority of theoreticians in gravity and field theory contributed to it
from the 1980s and 1990s until the present.115

Perhaps themass factor of the scale connection (‘Weyl field’) close to Planck scale
contributed to the widely held belief that Weyl geometric gravity is an empty gener-
alization as far as physics is concerned. We have argued that this is not necessarily
the case. Although the scale connection ϕ is able to play the role of a dynamical field
only close to the Planck scale—where it may be important for a transition to quantum
gravity structures—it is an important geometric device for studying the dynamics
of the interplay of the Weyl geometric scalar field with measuring standards (scale
gauges) on lower energy scales. It is therefore not negligible even in the integrable
version of Weyl–Omote gravity and closely related to the scalar field φ which has
to be considered as the new dynamical entity in the integrable case. The latter may
represent a state function of a quantum collective close to the Planck scale.

By conceptual reasons iWOD does not need breaking of scale co- or invariance;
it allows to introduce scale invariant observable magnitudes with reference to any
scale gauge of the scalar field (section 4.5). There are physical reasons, however, to
assume such ‘breaking’ of a spontaneous type, if one takes the potential condition
for the scalar field’s ground state into account. A quartic potential of Mexican hat
type arises here from the gravitational coupling of the scalar field. Formally, it is
so close to the potential condition of the Higgs mechanism in electroweak theory
that it invites us to consider an extension of the Weyl geometric scalar field to the
electroweak sector (section 5). We then recover basic features of the so-called Higgs
mechanism of electroweak theory, but now without assuming an elementary field
with an ‘ordinary’ mass factor in the classical Lagrangian. From a metatheoretical
point of view this closeness allows to illucidate the usual narrative of ‘symmetry
breaking’ in the electroweak regime. We have seen how the mass acquirement of
weak bosons and elementary fermions may come about by a bridge between the
Higgs field to gravity via a coupling of the two scalar fields (section 5.3). But of

114See the first preprint version of this paper, arXiv:1206.1559v1 and [115] which was first posted
on arXiv in 2011.
115Of course other contributions could bementioned. Perhapsmost extensive, and not yetmentioned
here, are the contributions of N. Rosen and M. Israelit, cf. the provisional survey in [132].
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course we cannot judge, at the moment, whether such a link indicated by iWOD is
more than a seducive song of the syrenes.116

From the point of view of the iWOD generalization of Einstein gravity we have
reasons to reconsider our view of cosmology. The potential condition established
by the electroweak link of the scalar field ‘breaks’ scale symmetry most naturally in
such away thatWeyl geometric scalar curvature is set to a constant. That corresponds
to an idea of Weyl formulated in 1918 (section5.4). It may induce us to have a new
look at the Friedmann–Lemaitre models of classical cosmology, readapted to the
Weyl geometric context.

The consequences of such a shift cannot yet be spelled out in detail. Models of
constant scalar curvature and time homogeneity (Weyl universes) show interesting
unexpected features. The Einstein–Weyl universe with κ = 3H 2 is a balanced vac-
uum solution (section6.2). Although it seems to be instable in the solution space of
the Friedmann equations and the scalar field equation, it becomes distinguished if the
potential condition (20) is added.Certain empirical data, in particular fromquasar dis-
tribution and from metallicity, would even fit surprisingly well to the model (section
6.4).

On the conceptual level there is a fundamental argument in favour of the model.
A (neo-) static universe of the Einstein–Weyl type could bring back energy and
momentum conservation to cosmology. The ‘expanding’ universe with its permanent
increase of energy in the observed part of the universe by the cosmological constant
term (‘dark energy’) has very unpleasant consequences for the asymptotics of local
field constellations. Einstein–Weyl universes have a group of automorphisms of type
SO(4) × R, inside the larger group of (‘gauge like’) diffeomorphisms as in Ein-
stein general relativity. For local inhomogeneities constellations with Einstein–Weyl
asymptotics, we may therefore expect that asymptotic time homogeneity symmetry
(R,+) and the 6 spacelike symmetry generators of the cosmological model lead to
integral charge conservation for (on-shell) field constellations.117 This difference to
the expanding space view might invite physicists and philosophers alike to consider
the chances and the advantages of a paradigm shift from the expanding view to the
Einstein–Weyl framework.

In this framework, dark energy changes its character already at the classical
level. It is generated by the metric proportional part of the energy momentum of the
scalar field Θ(I ). Not only does it influence spacetime geometry, but it also reacts
back to curvature. In addition, the question of dark matter might get a new face, if
the respective gravitational effects can be explained by the part of the scalar field’s
energymomentum,Θ(I I ), not proportional to themetric. At themoment this is only a

116A full-fledged (non-integrable)Weyl geometric framework in the strong energy regime of particle
physics, in which the scale symmetry is broken down to Einstein gravity, not to integrable Weyl
geometry, is studied in [101].
117Asymptotically ‘conserved’ (i.e. closed) (n − 2)-forms derived from the superpotentials of
Noether II currents have, in many similar cases, been shown to lead to conserved charges defined by
the flux of the superpotential forms through the asymptotic (closed) (n − 2)-dimensional boundaries
of spacelike hypersurfaces [1, 6, 154]. See A. Sus’ contribution to this volume.
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speculation; an important open question would be to study the quantitative behaviour
of inhomogeneities of Θ(I I ) around galaxies and clusters in the iWOD approach.

In the end, the question iswhether aMOND-like phenomenology can be recovered
by Weyl geometric gravity. A chance for this may be opened by studying a modi-
fied kinetic term Lφ of the scalar field, similar to the one of Bekenstein/Milgrom’s
AQUAL theory. A first look at an adaptation of this approach to the Weyl geometric
setting is encouraging, at least from a conceptual point of view. It would be interest-
ing, if it works out for the gravitational dynamics of galaxies as well as MOND and,
perhaps, even better for galaxy clusters.118

In such an approach we may have to give up the received view of cosmological
redshift as an effect of ‘space expansion’ and to substitute it by an effect of the
whole Weylian metric, including the scale connection (section6.1). Rescaling of
the metric, in particular in regions of strong gravity (high Riemannian component
of scalar curvature), changes the effective measure of time and length so strongly
that in this regime no immediate transfer of geometrical results derived in classical
gravity to the new context is possible. It is no longer clear that cosmological geometry
necessarily contains an initial singularity.119

Let us, at the end, come back to the philosopher quoted at the beginning of this arti-
cle. Herbart—talking about metaphysics—described transitions between established
theories, which he called the ‘different formative stages’ of knowledge, as revolu-
tions which have to be traversed before research can generate concepts necessary
for a ‘distinguished enduring’ state [74, 198, 199]. Also he spoke of the ‘manifold
delusions (mannigfaltige Täuschungen)’ which our knowledge has to pass before
such an enduring state can be reached. Riemann considered these remarks important
enough for excerpting them.120

It may be that in present cosmology (although it is embellished by the attribute
‘precision’ at many occasions) we still have to leave behind ‘manifold delusions’,
before we have a chance to arrive at a more enduring picture of how the universe in
the large and the foundations of physics may go together.
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Their detailed remarks helped to improve content, structure and readability of the paper. I also want
to thank G. Ellis for his interest in the Weyl geometric approach to gravity and for his comments.
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kind to give helpful comments in spite of his general scepticism with regard to the integrable Weyl

118First steps in this direction are attempted in [134, 135].
119A similar question may be posed for localized singularities. Their external dynamics might be
caused by finite matter concentrations which mimick structures of the black hole type if considered
in Einstein gravity.
120“Wie die astronomische Betrachtung, die in die Tiefen des Weltbaues hinausgeht, so muß auch
die metaphysische Forschung, welche in die Tiefen der Natur eindringt, mancherley Revolutionen
durchlaufen, ehe sie so glücklich ist solcheBegriffe zu erzeugen, welche der Erscheinung genugthun
undmit sich selbst zusammenstimmen” [74, 198, emph. in original]. The section ends by the remark
“Daraus folgt dann sogleich, daß auch die Täuschungen, die in diesem Werden nach einander
entstehen, sehr mannigfaltig, daß sie den verschiedenen Bildungsstufen angemessen sind, welche
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geometric approach to gravity (for his critical remarks see his contribution to this volume). Recently
H. Ohanian explained to me why, at least in his approach of including a fully dynamical Weylian
scale connection to elementary particle physics at highest energies (close to the Planck scale), there
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Postscript

The first version of this paper was written in summer 2012, somemonths before the Higgs detection
was announced. Four years went by until publication. That gave plenty occasion for my rethinking
basic questions of Weyl geometric gravity. Clear evidence of the author’s ‘manifold delusions’ is
documented in the successive versions of this paper in arXiv:1206.1559.
E.S., March 2016.
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AModel-Theoretic Analysis of Space-Time
Theories

Claus Beisbart

Abstract This paper studies space-time theories from the perspective of the Seman-
tic View of theories. Set-theoretic models are used to reconstruct several non-
quantum space-time theories and to characterize their mutual relationships. Further,
the Semantic View is adopted to discuss the question of what a space-time theory
is to begin with. While the space-time theories incorporated in Newtonian theories,
on the one hand, and in Einstein’s General theory of relativity (GTR), on the other
hand, are markedly different, GTR and many rival theories of gravitation do not
differ on their space-time theory, but only on the way the structure of a space-time
is explained.

1 Introduction

Some theories are space-time theories, others not. Which are? And why? And how
are space-time theories related to each other and to other theories? If we are lucky,
we can answer these questions in a systematic way and provide something like a
theory of space-time theories.

One strategy to develop such a theory is to draw on a general theory of theories.
This paper draws on the Semantic View of theories and uses amodel-theoretic frame-
work to answer some of the questions mentioned above. The basic idea behind the
semantic approach is to account for theories using systems of which the axioms of
the theory hold true. The systems and their evolutions are formalized using models,
which are constructed using sets.1 The Semantic View contrasts with the so-called
Received View developed during logical positivism.2

1“Model” is a technical term in this context, the main idea being that models satisfy axioms.
See [20] for a brief introduction to model theory.
2See [34] for a formulation and discussion of the Received View.
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Why study space-time theories in themodel-theoretic framework suggested by the
Semantic View? First, regardless of whether the Semantic View provides the (whole)
truth about theories, it is at least a useful framework to theorize about theories (see
e.g., [17, 19]). The view suggests a couple of distinctions, and we can use them to
put space-time theories into perspective. Second, to analyze a theory in the terms
offered by the Semantic View is effectively to formalize or to axiomatize the theory
in set-theoretic terms. Such an axiomatization is useful to clarify the concepts and
claims associated with a theory. As [35], p. 244 puts it,

“axiomatization is one constructive way of obtaining the sort of intellectual clarity and
precision for which philosophers are always striving with respect to the foundations of the
various sciences.”

Axiomatizations of theories may even inspire new lines of research (cf. [31]). Third
and finally, proponents of the Semantic View have extensively investigated relation-
ships between theories, most notably varieties of reduction.3 We can draw on this
work to describe the relationships between different space-time theories.

As far as technical details are concerned, the ideas of the Semantic View have
been elaborated in several ways.4 In this paper, I try to be neutral between the various
elaborations. Technical details will be glossed over whenever possible, and the focus
is on the definitions of the models constitutive of a theory. The characterization of
inter-theoretic relationships is more sketchy; I either put forward claims the proof
of which is straightforward, or I sketch how one should proceed. In this sense, the
present paper is only a first step toward a fully elaborated account of space-time
theories.

To provide nomore than this seems justifiable in view of the fact that no systematic
study about space-time theories from the perspective of the Semantic View has yet
been published. There is some work about the general theory of relativity though,
on which I can draw [3, 30]. A further very interesting study is [11] who define
set-theoretic structures and a topology to highlight assumptions that all classical
space-time theories share. Their definition of space-time points in terms of underlying
events may be used to avoid the sets, and models refer to primitive space-time points.
My paper will not adopt their definition because my concern is not how space-time
points may be constructed from underlying structures. But many claims in this paper
may be elaborated further by using their definition.

The plan of my paper is as follows. Because I do not want to presume much
familiarity with the semantic framework, I first recall some of its basic ideas in Sec. 2.
The aim of Sec. 3 is to reconstruct the space-time theories part of Newtonian and
general relativistic theories. Sec. 4 uses a few general distinctions suggested by the
Semantic View to discuss space-time in physical theories. We can then distinguish
different ways in which theories are space-time theories (Sec. 5). One possibility
is that a theory is a space-time theory in that it can be used to explain why the
spatiotemporal structure of the world is as it is. Sec. 6 turns to such theories, in

3See e.g., [1], Ch. VI and [29]/[30].
4See [1, 29, 30, 33]; cf. also [23].
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particular to GTR and to some of its rivals. I explore the mutual inter-theoretic
relationships between some space-time theories in Sec. 7. Conclusions are drawn in
Sec. 8.

Before I begin, a few warnings and clarifications are in order. First, in this paper,
quantum theories of space-time are bracketed. Their consideration would raise a
number of issues that could not be dealt within a paper such as this. Second, for
convenience, I will sometimes talk of a space-time even if I refer to theories that
draw a sharp distinction between space and time. Third, I use the word “theory”
in a very broad sense. In this paper, theories need not be more than small units of
empirical research, e.g., representational models (theory elements in the terms of
Balzer, Moulines and Sneed [1] = BMS, for short), although they may also be more
comprehensive frameworks (e.g., theory nets in their terms; see their Ch. II and
Sec. IV.2). Fourth, in the literature, set-theoretical models are often called structures.
In this paper, I prefer talk of set-theoretical models; the term “structure” is only
used in the context of space-time structure. Fifth and finally, in this paper, the term
“classical” is employed to contrast broadly Newtonian theories with relativistic ones.

2 In the Space of Theories: The Semantic View of Theories

The semantic approach takes theories to be characterized by models. Models fulfill
the theory. To a first approximation, the models are possible physical systems or
ways in which such systems can behave according to the theory. They are faithfully
described by solutions to the equations constitutive of the theory. We can thus say
that certain systems are constitutive of a theory.5

Each theory is characterized by a plurality of models because i. most theories hold
true of several distinct systems; ii. eachparticular systemcanbehave inmanydifferent
ways, depending on the initial conditions; and, maybe, iii. the same evolution of one
system may be described in different ways. The last point applies only if the models
of a theory are individuated in a fine-grained way that takes into account the way in
which a system is described, e.g., the coordinates used.

Theories allow for a systematic account of a plurality of systems. To this end,
they use theoretical concepts and mathematical objects such as numbers, functions,
manifolds, tensor fields, and so on. But physical systems qua parts of the real world
do not include mathematical objects, at least not obviously so. Consequently, we
have to regiment and to formalize the systems when we use them to characterize a
theory. The formalization is set-theoretic, i.e., the models are thought of as n-tuples

〈S1, ..., A1, ..., s1, ...〉 (1)

5It seems attractive of this view that it characterizes theories in terms of real stuff as it were. A dif-
ferent approach that nevertheless provides model-theoretic reconstructions of theories is advocated
by G. Ludwig; see [23] for a recent outline.
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with sets as components.6 The base sets Si are non-mathematical because their ele-
ments are (possible) physical objects in a wide sense.7 The auxiliary sets A1 are
purely mathematical sets, e.g., the set of real numbers, R, or R3. Since the auxiliary
sets are most often well-known mathematical entities with standard names, we can
omit them for the sake of brevity. Finally, the si are constructed on the basis of the
Si and the Ai . For instance, s1 may be a function that assigns each particle from base
set Sj a number from an auxiliary set to represent its mass in some units. Each si has
a unique typification in terms of the base and auxiliary sets.8

The literal claim of a theory has it that certain target systems called the intended
applications are within the class of systems constitutive of the theory. The claim
makes sense only if the target systems are formalized in the same way as are the
models of the theory. The claim is nontrivial because the range of systems associated
with a theory is narrow, and intended applications may not be within this range.

But the literal claim of a theory is often too strong to be taken true. Many theories
postulate entities and relationships that stretch beyond the realm of the observable,
and scientists may use a theory without thinking that its theoretical posits exist.
Proponents of the Semantic View account for this by associating an idealized empir-
ical claim with a theory. According to the claim, the intended applications are not
full models of the theory, but can be embedded in full models of the theory. There
are two aspects of embedding. First, the models of the real-world systems may be
poorer in that they do not contain certain theoretical components (more on theo-
reticity below). Second, the functions in the models of the real-world systems may
only be restrictions of the corresponding functions in the theory. Intuitively, either
the theories introduce functions that stretch beyond possible data, or the latter are
sparser than the theories allows.9 The name “idealized empirical claim” is justified
because theoretical components do not matter for this claim.10

As a matter of fact, most theories hold only up to some approximation. This
motivates the introductionof anapproximate empirical claim of a theory.11 To express

6For this and the following see [1], Ch. I and [29], Secs. II.1–II.2.
7For BMS, the sets Si are merely not necessarily mathematical; they may contain physical objects,
but need not. But in this way, BMS allow for many models that are irrelevant for the purposes
of representing physical systems. I will not follow them in this regard. See their pp. 20–23 for a
discussion.
8See BMS, p. 8 for a precise definition of typification.
9Data may of course also be richer than a theory allows. But this is just to say that a theory is
restricted to certain aspects of a class of systems. See BMS, Sec. II.7 for details about the idealized
empirical claim of a theory.
10Since theoreticity is theory-relative according to BMS (see below), the empirical claim is only
empirical in a theory-relative sense. But below,wewill often use the term “empirical” in the absolute
sense of “subject to empirical scrutiny.”
11See BMS, Sec. VII.2.3.
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this claim, we need an approximation apparatus.12 In this paper, I will bracket the
approximation apparatus as far as possible.13

To study a particular theory in the semantic framework, we have to specify what
its models are. As the models are set-theoretical constructions, we can pick them
using a set-theoretic predicate.14 Providing the set-theoretic predicate of a theory is
the most important step to axiomatize or to reconstruct a theory. A full reconstruction
of a theory includes further elements such as links to other theories and constraints
(see below).

Some proponents of the Semantic View seem to think that a full reconstruction
of this sort gives us what the theory is.15 Such a claim would go too far. One and the
same theory can be associated with different sets of models. Trivially, the base sets
in the models may appear in different orders. Less trivially, the same systems may be
formalized using slightly different mathematical constructions. All this casts doubts
on the idea that a theory is at bottom a set of models because there seems no unique
answer to the question as to which set the theory is. Consequently, I will here only
use models to represent theories; questions that concern the ontology of theories are
beyond the scope of this paper.16

In practice and regarding concrete examples, reconstructions of a theory in terms
of models should take into account some desiderata. First, a reconstruction should be
as free from “descriptive fluff” ([14], p. 27) as possible. The idea here is to abstract
from representational devices and to concentrate on the systems the theory applies
to. A second desideratum is motivated by the fact that each reconstruction of a theory
suggests ontological commitments. If you take a theory to be literally true of a real-
world system, you are committed to think that the elements of the base sets exist
and provide the basic building blocks of the system.17 Accordingly, theories should
be reconstructed using base sets the elements of which we are prepared to take as
existent. Third, the reconstructions of theories should make plain how the theories
relate to experience. According to a very simple picture, some theories are basic
in that they have only observable objects in their base sets and that their relations
are subject to empirical scrutiny. Other theories may then build upon these theories

12See e.g., BMS, Sec. VII.2.
13There is an alternative way to associate claims with a theory. The idea is that a theory describes
real-world systems not because the latter are among a theory’s models, but rather because they are
isomorphic to models constitutive of the theory (see e.g., [39], pp. 43–44; see [12] for a weakening).
But the notion of isomorphism is a mathematical one, and to apply it to real-world systems, we
have to formalize them in terms of models. We have to build up set-theoretical constructions of
real-world stuff. If this is so, why not start with real-world models and then say that they can be
embedded in models constitutive of a theory?
14See [36], Ch. XII or BMS, p. 15 for a definition.
15E.g., [2], p. 50.
16Cf. [17], pp. 278–279.
17This is a counterpart to Quine’s claim that theories commit us to assume the existence of those
things to which quantified variables refer [26]. Note though that proponents of the Semantic View
need not assume that theories are, or should be, literally true. In fact, an influential proponent of the
Semantic View [39], does not take serious parts of the models that stretch beyond the observable.
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and introduce more theoretical layers. This would lead to a hierarchy of theories.
But there are well-known difficulties with such a hierarchical picture (see [3]). The
Semantic View does invite us to build up set-theoretic constructions from base sets,
but that these sets are base sets does not mean that their elements are basic in the
sense of empirical accessibility.

3 Making Space for Space-Time

Most physical theories describe how things (particles, fields, etc.) are distributed in
space and how their positions change in time. Therefore, most physical theories use
spatiotemporal notions and include or presuppose assumptions about space-time. If
we want, we can assemble these assumptions into little space-time theories. The aim
of this section is to analyze two space-time theories of this sort. We first consider
the space-time theory assumed by classical particle mechanics (CPM, for short) and
then turn to the space-time theory presumed in the general theory of relativity. We
take it that CPM assumes what is called full Newtonian space-time even though other
classical space-times would do as well.18

3.1 Space-Time in Classical Particle Mechanics

Let us first turn to classical particle mechanics. The theory traces the motion of parti-
cles in space. To simplify matters, I will only consider free particles; i.e., there are no
forces. This does not make a difference for our purposes. Granted this simplification,
the basic assumption of the theory is often put as

d2

dt2
ri (t) = 0, (2)

where ri denotes the position of the i th particle for i = 1, . . . , Npart , and t refers to
time. The equation is a special case of Newton’s Second Law.

Assuming the Semantic View, the theory is uniquely characterized by those pos-
sible systems to which the theory applies.19 Let us thus characterize the theory by
describing these systems in terms of models. An important relation in the models
will be the entirety of functions ri . In Eq. (2), a derivative of ri is taken, so it is
natural to assume that each ri maps real numbers t to vectors ri (t) in R3.

ri is not just any mathematical function of this sort, but rather has a certain
empirical significance. To account for this significance, we take the real numbers t

18See [15], Chs. 2–3 for a discussion of classical space-times. Newtonian space-time is defined on
his pp. 33–34.
19Set-theoretic axiomatizations of CPM have been provided by e.g., [33], Ch. VI and [1], Sec. I.7.
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to label instances of time, and the vectors ri to denote positions in space. To build
up the models properly, we add S, i.e., the set of space points, and T , the set of
instances of time, and coordinate charts that map elements from S and T to R and
R

3, respectively.20 S and T are base sets because they are not built up using other
sets.

Regarding coordinate charts, we could give each model two fixed charts (one for
space, one for time), but this is not a good idea because coordinates are descriptive
fluff and no proper part of physical systems. If we included particular coordinate
charts in each model, the models would not be individuated in the same way as are
systems.21 We thus assign each model a class of coordinate charts.

The sets S and T are peculiar because their elements, space points and instances
of time, are so, too. Do space points exist? Can they be identified through time?
Whatever the answers are, it seems fair to say that CPM assumes there to be space
points and instances of time, and every reconstruction of CPM should take this into
account. Whatever the truth of the theory, the elements of S and T seem among its
posits. Possiblymore relationalist construals or varieties of CPM that avoid reference
to points are beyond the scopeof this paper.What is important though for our purposes
is that the theory be empirical. Thus, space points and instances of time have to be
connected to experience and to measurements.22

What we can measure about space and time are, e.g., distances between space
points that are identified using physical objects, e.g., because they are occupied
by particles, and temporal distances between physical events. Let us thus define
distance functions and include them in the models. To this end, we need values of
such functions:

• DS , the set of possible spatial distances between space points;
• DT , the set of possible temporal distances between instances of time.

These are again base sets because physical distances are not obviously set-theoretic
constructions, nor are they just numbers.23

We can now define the physical distance functions:

• the physical spatial distance function: dS : S × S → DS; it returns the distance
between two space points;

• the physical temporal distance function: dT : T × T → DT ; it returns the tempo-
ral distance between two instances of time.

As amodel is supposed to conceptualize a physical system, dS and dT cannot fully
be characterized in terms of mathematics only; they have to return the real distances.
Thus, dS and dT have to be such that they can be constrained empirically; they have

20The term “coordinate charts” is well-known from differential geometry and anticipates the ter-
minology from differential geometry used later in this paper. In the present context, we have one
coordinate chart for space points and one for instances of time.
21See [29], p. 222 for a discussion.
22Costa et. al. [11] construct points (in their case, space-time points) from underlying events, but
we have then to posit the events.
23One could try to introduce distances though through equivalence classes of pairs of objects.
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to return those distances that can be measured, e.g., using rigid rods or clocks. This
requirement escapes a purely formal account, and we can only informally state that
dS and dT are in fact distance functions.24

For a mathematical description of distances, the latter have to be labeled using
numbers too. Ideally, the labels preserve certain features of distances. In particular, if
one distance is a multiple of another in a physical sense, then the respective numbers
behave in the same way. Suitable labelings are called “representations.” Let us thus
include the representations as typified components of the models:

• FS , the set of representations fS : DS → R
+
0 of spatial distances through nonneg-

ative real numbers;
• FT , the set of representations fT : DT → R

+
0 of temporal distances through non-

negative real numbers.

So-called representation theorems ensure that the sets are not empty.25 The repre-
sentations are not unique; e.g., each mapping fS fixes a conventional unit of length.

When we say that a function provides a representation, we do not just characterize
the function mathematically, but rather relate it to physical systems. It would be
desirable to spell out in set-theoretic terms what it means that the functions are
representations. True, the relationships between physical systems and mathematical
entities cannot be fully captured using mathematics (i.e., set theory) only, but in our
example, we could at least use set theory and other relationships between physical
objects to define what a representation is. Alternatively, we can say that the functions
obtain their meaning via links to models of other theories. A link is a relation between
models of different theories.26 Models that fit each other, for instance because they
contain the same function, are paired. In our example, we link the models of CPM to
models of a theory that spells out how physical distances are represented numerically.
The latter theory may be a theory of measurement, i.e., a theory that explains how
distances are measured.27

Representation is also an issue concerning the space-time. The laws of CPM are
most often stated assuming preferred charts. Most spatial coordinate charts are not
useful because they do not match empirically significant spatial relationships. We
can say that a coordinate cS represents the distances between space points if, and
only if, there is a representation fS such that for all pairs of space points x, y ∈ S:

fS(dS(x, y)) = |cS(x) − cS(y)|, (3)

where “| · |” always denotes the usual square norm on R
n for a contextually fixed

number n (here, n = 3).

24In differential geometry, distances are conceptualized using metric tensor fields (see below).
Tensor fields are only defined on manifolds, and our space-time is not yet assumed to be a manifold.
This is not a problem though because we are here not yet assuming the full mathematical formalism,
but rather talking about physical distances.
25See e.g., [36], §12.3 for the notion of a representation theorem.
26See BMS, Def. DII-4 on p. 61 for a formal definition of (abstract) links.
27See [32] and [37] for measurement in a model-theoretic framework.
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It is far from trivial that there are such representations. For instance, Eq. (3) implies
the triangle inequality for distances between triples of space points x, y, z:

fS(dS(x, y)) + fS(dS(y, z)) ≤ fS(dS(x, z)) . (4)

The triangle inequality is trivial for a mathematical distance function, but not so for
physical distances between space points.

In fact, to adopt Eq. (3) is to assume that space is Euclidean ([29], p. 50). And
CPM does take space to be Euclidean. The components of our models have thus
to obey Eq. (3). This is a significant assumption of the theory; it narrows down the
range of models characteristic of the theory.28

CPM makes also assumptions about time. We can encapsulate them in the fol-
lowing requirement: For some fT , there is a global chart cT from T to R such that
for all t1, t2 ∈ T

fT (dT (t1, t2)) = |cT (t1) − cT (t2)| . (5)

This finishes the reconstruction of the space-time theory presumed by CPM. Let us
call this theory CPMST and summarize our results in the following definition.

Definition 1 x is a model of CPMST if, and only if (iff)

x = 〈S, T, DS, DT , dS, dT , FS, FT ,CS,CT 〉, (6)

where

1. the base sets S, T , DS , and DT comprise the space points, instances of time,
spatial distances, and temporal distances, respectively;

2. dS : S × S → DS anddT : T × T → DT are spatial/temporal distance functions;
3. FS, FT are sets of representations fS, fT of spatial/temporal distances;
4. CS andCT are sets of coordinate charts cS and cT for space and time, respectively;
5. there are coordinate charts cS , cT and representations fS and fT such that

fS(dS(x, y)) = |cS(x) − cS(y)|, (3)

fT (dT (t1, t2)) = |cT (t1) − cT (t2)|. (5)

CPMST fixes the space-time structure uniquely. It thus only picks one model. The
literal claim of the theory then is that, if regimented in the right way, the real world
coincides with the only model of CPMST. As there are no theoretical components in
the model of CPMST, the idealized empirical claim is that all intended applications
can be embedded in the model of CPMST.

28Equation (3) fixes the Euclidean nature of space using coordinate charts. Alternatively, one could
try to do without them. This would avoid some descriptive fluff. For instance, we could demand
that the triangle inequality, Eq. (4) holds. Even this equation is not free of descriptive fluff, but at
least it dispenses with coordinate charts. However, it is much easier to use coordinate charts to fix
the properties of a space ([29], p. 50).
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An important question though is how empirical this claim really is. If the claim
is to be empirical, then it must be possible to determine empirically whether or not
space points stand in the relationships they are supposed to stand in. The problem
with this is that we can only pick space points using physical objects. For instance,
the spatial location of a point particle defines a space point. Consequently, possible
data for the theory have to refer to physical objects such as particles or fields, at least
indirectly. But CPMST itself does not contain any particles or fields. Thus, CPMST

has only an empirical claim if we understand it that the space points are defined or
individuated using physical objects.29

Now CPM (rather than CPMST) does have particles in its ontology, and it thus
makes a claim that is less elusive than that of CPMST. The models of CPM are of the
type

〈S, T, DS, DT ,P, dS, dT , FS, FT ,CS,CT , r〉, (7)

where we have added two new components, viz.

• P , a set of particles

and

• r : P × T → S a function for the trajectories of the particles.

The models have to obey Newton’s Second Law assuming zero forces. Thus, for
all particles p ∈ P and for all charts cS and cT that are representations, we have:
cS(r(p, c

−1
T (·))) : R �→ R

3 is twice differentiable and for all a ∈ R

d2

da2
cS(r(p, c

−1
T (a))) = 0 . (8)

Here, a serves as a label for time. Newton’s Second Law looks more complicated
than usual (cf. Eq. 1) because the trajectories of the particles are described using a
function that has non-mathematical sets as domain and range.30

CPM has additional implications over and above CPMST, and some of them are
more clearly empirical. CPMentails how the distances between certain point particles
evolve in time.Distances between their positions canbemeasured and are thus subject

29The status of other space points not picked using physical objects remains peculiar anyway. In
GTR, this peculiarity is much discussed in debates about the hole argument. The latter is often
taken to show that the assumption of space-time points in empty space has untenable consequences
[13, 21]. But the hole argument does not raise any problem peculiar to our approach. First, most
formulations of GTR quantify over all points of the manifold, regardless how they are identified
empirically, sowe do not have an objection specific to our approach. Second, what the hole argument
shows is only that space-time points identified independently of any physical events are problematic.
If we understand it that the elements of the space-time do not have identity apart from the roles that
they take in the models, our formalization does not seem problematic.
30It can be shown that the equation holds for all representations if it holds for one pair of represen-
tations (cT , cS).
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to empirical scrutiny. Related measurements, e.g., using rigid rods, can be described
using a theory of measurement.

Further, physical measurements are themselves physical processes and we may
hope that the latter can be described by the theory itself or, maybe, by an extension
thereof. In the former case, we call the theory complete; in the latter, the theory can
at least be completed.31 In our reconstruction, CPM does not contain rigid rods nor
standard clocks, so it may seem that CPM is incomplete. We could try to complete
CPM by introducing rigid rods and standard clocks. But this would not be very
elegant because the ontology of the theory then would display less unity. It would
be more satisfactory to construct measurement devices on the basis of the ontology
of CPM, i.e., only using particles. The question of whether this is possible is beyond
the scope of this paper. But if a theory is complete, then we do not have to link its
models to those of other theories to give their components meaning. The components
of the models either have empirical significance in a very straightforward way or are
theoretical.

We can reconstruct CPM, particularly the space-time theory it presupposes, using
models in an alternative way. To this purpose, we use notions from differential geom-
etry, notably that of a manifold. Amanifold M is a set of points with additional math-
ematical structure, viz., with a topology and a set of coordinate charts. Effectively,
several components of our models used thus far are condensed into one mathemat-
ical object, and the models become simpler because they have less components.
Strictly speaking, a manifold is not a base set any more because it is a set-theoretic
construction built up out of more basic sets, but to simplify matters, we will treat
the manifold like a base set. A manifold allows for a number of other well-known
constructions, notably of the tangent space Tq(M) for each point q of the manifold
and of the co-tangent space, i.e., the dual space to Tq(M). In what follows, I will
take these constructions for granted and not explicitly include them in the models.

We can now reconstruct the space-time using a four-dimensional manifold that
is built up from space-time points (events) and describe distances using metrices.
This is preferable in view of the General Theory of Relativity to which we turn soon.
In what follows, all manifolds are assumed to be four-dimensional, differentiable,
connected, and para-compact Hausdorff spaces.

To obtain full Newtonian space-time,we have to introduce absolute time, to ensure
that space is flat and to identify space points throughout time. To this end, we need
additional objects.32 Here then are the models of the space-time theory behind CPM.

Definition 2 x is a model of CPMST iff

x = 〈M, DS, DT , dS, dT , FS, FT , gS, gT , Γ, v〉, (9)

31See [41], pp. 18–19; for the completeness of space-time theories see [9] and [10].
32See [15], Ch. 2, particularly pp. 33–34; consult [18], Sec. III.1 for a slightly different alternative.
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where

1. M is a manifold of space-time events;
2. DS, DT are sets of spatial/temporal distances as before;
3. dS, dT are physical distance functions as before;
4. FS, FT are sets of representation functions of spatial/temporal distances as before;
5. gS is a symmetric, contravariant tensor field of signature (0, +, +, +);
6. gT is a symmetric, covariant tensor field of signature (+, 0, 0, 0);
7. Γ is an affine connection;
8. v is a vector field;

and the following conditions hold:

a. There are representations fS, fT such that gS and gT “return” distances in units
provided by fS, fT ;

b. gS and gT are compatible with Γ , Γ is flat, v is constant with respect to the con-
nection, the contraction of gS and gT equals zero, and gT (v�, v�) = 1 everywhere,
where v� is the dual of v.33

It is desirable, but fairly complicated to spell out condition a. in detail because
gS and gT are defined locally. Here is nevertheless a brief sketch how gS returns
distances (cf. [18], p. 77). Consider a space-like curve, i.e., for every tangent vector
to the curve, w, gT (w�,w�) = 0. gS(w,w) equals the length of the tangent vector.
An integration over the whole curve returns the length of the curve in some units.
The distance between two events that can be connected via a space-like curve is the
minimal length of the curves connecting the points.

Instead of relying on such complicated descriptions, we can hope for complete-
ness, i.e., that the theory can be completed such that it can describe measurements
within it.

3.2 Space-Time in General Relativistic Theories

The space-time theory incorporated in CPM has been overthrown. Let us thus con-
sider a general relativistic counterpart to CPM, call it “general relativistic particle
mechanics” or “GPM,” and its space-time theory, GPMST. What are its models like?
To simplify matters, we assume again free particles, i.e., that particles are freely
falling; further, we neglect units and thus representations of distances. The corre-
sponding set-theoretical constructions will be dropped in our models.

According toGTR, space and time cannot be separated in an observer-independent
way. In particular, there are no space points that could be identified through time.
Accordingly, the models of CPMST cannot include sets of space points and of
instances of time. S and T have to be replaced by a set of space-time points or

33See [40], pp. 35–36 for details about compatibility, consult ibid., pp. 20–21 for contraction and
ibid., p. 19 for the dual.
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events, M , and we need four-dimensional coordinate charts. M is assumed to be a
manifold. Manifolds were already used for our second reconstruction of CPMST in
Def. 2.

Following GTR, we can measure spatial and temporal distances, but they are not
observer-independent any more. Accordingly, we keep DS and DT in the models,
but we have to drop the typified relations dS and dT . Further, gS and gT are replaced
by one metric tensor field g.

As before, g cannot be any old mathematical tensor field on the manifold, but has
to be the metric. It must be possible to obtain physical distances using g, yet in a
different manner than before because there are no observer-independent spatial and
temporal distance functions any more.

Turn first to temporal distances as measurable by standard clocks. Let W be the
typified set of all world lines of freely falling massive test particles on the manifold.
These are the paths that such particles can take in the space-time.What they are is not
fixed using other components in the models; rather, we take it that, for each specific
space-time, there are matters of fact what these world lines are.34 Each world line
can be parameterized using a curve (i.e., a differentiable map from a real interval to
the manifold). The following considerations do not depend on the way in which a
world line is parameterized.

We associate with each world line inW a function that assigns a temporal distance
to each pair of events on the world line. This distance is supposed to be the proper
time that a clock traveling on the world line measures. Again, this function is not
fixed a priori; there are matters of fact what these distances are.

Consider now a word-line in W with parameterization r(λ), where λ is the para-
meter. For each event r(λ) on the curve, the tangent to the word-line defines a vector
in the tangent space at r(λ), call it Vr(λ).35 We can thus form the following quantity:

∫ λ2

λ1

dλ
√−g(Vr(λ), Vr(λ)) . (10)

We require this integral to equate the length of the time interval read off from a stan-
dard clock that follows the word-line. More precisely, for all possible pairs of events
on all possible world lines of freely falling standard clocks, for all parametrizations,
the integral has to return the proper time in the same units (i.e., using the same fT ).

Another restriction is needed to ensure that g measures spatial distances in the
usual way. One option is to postulate that, in the models of the theory, in special
coordinates, certain parts of g return spatial distances as measured with small rigid
rods ([27], p. 143). To use rigid rods is problematic though since GTR does not allow
for rigid rods. The problem is avoided by [38], Ch. III who uses proper temporal
distances and certain configurations of events. Ehlers et al. [16] only draw on light

34Note though that we are here talking not about trajectories of real particles, but rather about
hypothetical world lines.
35See [40], p. 17 for technical details.
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rays and freely falling particles (instead of freely falling clocks).But such an approach
is not needed for our purposes.36

These restrictions ensure that the tensor field g is the physical metric. The restric-
tions implicitly assume the geodesic hypothesis, i.e., that test particles follow geo-
desics.37 This hypothesis is built into metric theories such as the GTR, but not into
every theory of gravitation. The hypothesis follows from the strong principle of
equivalence.38

All this leaves us with the following models (where we bracket entities needed to
equip g with its meaning).

Definition 3 x is a model of GPMST iff x = 〈M, DS, DT , g, Γ 〉, where
1. M is a manifold as before;
2. DS and DT are sets of physical distances as before;
3. g is a symmetric covariant tensor field of signature (−, +, +, +), which measures

physical distances in the way sketched above;
4. Γ is an affine connection;

and Γ and g are compatible.

Here, the connection Γ fixes the affine structure of the space-time, i.e., its geodes-
ics ([18], pp. 39–40). It is used to define a covariant derivative. Compatibility with
the metric uniquely fixes the connection ([40], pp. 35–36).

The metric is not further restricted by axioms of the theory. Accordingly, unlike
CPMST, GPMST is characterized by a plurality of models that differ on the metric
structure. In this sense, GPMST has less content than CPMST. The content of GPMST

is only that physical distances can be determined using themetric in theway sketched.
Part of this content is that hypothetical freely falling standard clocks minimize the
integral in Eq. (10).

We have used hypothetical freely falling standard clocks to equip g with its mean-
ing. Because we did not include standard clocks in the models, we have to link g
to other theories. GPMST then is incomplete because it does not describe how g is
constrained empirically. In our reconstruction, GPMST does not even contain any
objects.

By contrast, GPM does have objects because it describes massive particles in
the space-time. Consequently, the models of GPM are richer. They include a set of
particles,P , and a family of their world lines, r . A further axiom of the theory, viz.,
the geodesic hypothesis states that the world lines (ranges of differentiable curves
on the manifold) are geodesics with respect to the metric. To add such particles is
a step toward completeness because particles can be used to empirically constrain
the metric. There is a price to pay though because, if we add further components,

36For a discussion onwhether the unparameterized geodesics in a space-time uniquely fix themetric
see [24].
37See [40], p. 67.
38See e.g., [41], Sec. 2.3.
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we arguably move beyond the space-time theory within GPM. We had similar prob-
lems with CPMST above. It thus seems that mere space-time parts of theories are
abstractions that cannot really be isolated from more comprehensive theories.

Even if it should not prove sensible to isolate space-time theories from more
comprehensive theories, we can still ask how space-time and assumptions about it
enter physical theories. This is a question we have effectively answered for CPM and
GPM in this section. From the perspective of the Semantic View, the models of the
theories include a space-timemanifold of events as a component. The space-time has
a structure due to its metric. The events in the space-time manifold and the metric
only obtain physical significance due to objects moving in the space-time. They latter
define certain events, and it may be determined by measurement in which relations
they stand.

4 Time for Distinctions

The Semantic View suggests a couple of issues that may be used to discuss the role
of space-time in physical theories (more on space-time theories shortly).

Co-variance and symmetries.
The basic idea of the semantic approach taken in this paper is that theories are

characterized using systems. It proves useful to use coordinate charts to characterize
the models of a theory, and we have thus included sets of such charts in the models.
Coordinate charts are descriptive fluff, but our account does at least not individuate
models using coordinate charts. In this sense, our approach is friendly to coordinate–
free representations of a theory. The axioms of GTR, in particular Einstein’s field
equations, are usually stated in a coordinate-independent way.39

Coordinate-free versions of a law or an axiom should be distinguished from sym-
metries of a theory. Naturally, our focus is here on symmetries with respect to the
space-time. These are invariances of functions characterizing the space-time under
automorphisms of the space-time manifold. For an example, consider CPM in our
first formalization, but assume for simplicity that S is a manifold. Suppose now that
ι is an automorphism of S onto itself and let d be a distance function as before. ι

gives rise to a dragged distance function d�
ι (x, y) = d(ι−1x, ι−1y) for all x, y ∈ S.

The distance structure of the space-time is symmetric concerning ι if and only if
d�

ι (·, ·) = d(·, ·) everywhere. Space-time is fully symmetric under ι if this property
holds for each function definitive of the space-time structure. As is well-known, the
spatial part of full Newtonian space-time is invariant with respect to translations and
rotations. By contrast, space-times in general relativistic theories need not display
any symmetries.

39Some proponents of the Semantic View, e.g., BMS and [3] part company with me at this point
because they include particular coordinate charts in their models. A potential reason is that, in
practice, scientific work done with a theory often uses specific coordinates, and that a change in
coordinates can have nontrivial consequences for this work. See [22], pp. 95–100 for illustrations.
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To explain the significance of a symmetry, automorphisms of a manifold are often
interpreted using active transformations, e.g., real translations. But this interpretation
does not really make sense if applied to a whole space-time. It is not clear what it
means to say that each event is, e.g., shifted in the same way. The point of applying
an automorphism is rather to compare the space-time at different points. Symmetric
space-times have the same characteristics at different points.

Potential and actual models.
Within the semantic framework, it is often useful to distinguish between potential

and actual models of a theory. The potential models fix the ontology of the theory;
figuratively speaking, they determine the sorts of properties and relations that can
obtain in the systems. The actual models are further restricted and encompass those
potential models in which the laws of the theory hold.40

We need laws to distinguish betweenmerely potential and actualmodels. Butwhat
exactly are laws? BMS propose to say that laws characteristically connect several
typified components si of the models of a theory (BMS, Sec. I.3). For instance,
Newton’s Second Law connects acceleration, mass and force. Granted this view,
most assumptions about the space-time in our space-time theories are laws because
they concern several typified sets in the models. E.g., Eq. (3) refers to the space-time
manifold itself, the metric and the distance function. That Eq. (3) reflects a law is
not implausible because it makes a substantial assumption about space. Concerning
GPM, it is nontrivial that distances arise from a metric as described above.

The observational/theoretical distinction.
Proponents of the Semantic View distinguish between theoretical and observa-

tional components within the models. Sneed [33], Ch. II, particularly pp. 33–35,
proposes that this distinction should be drawn in a theory-relative way, and in the
following, I will focus on this relativized version of theoreticity. A typified compo-
nent in the models of a theory T is T-theoretical if it can only be determined from
other components within the class of actual models and thus using the laws of the
theory. For instance, in CPM, the force can only be determined assuming the use
of Newton’s Second Law. Components that are not T-theoretical are either purely
observational or imported from other theories via links that provide the meanings of
the terms (see BMS, Sec. II.3.2).41

Which components inCPMST orGPMST are theoretical in this sense?Themetric g
is GPMST-theoretical as are themetrices ofCPMST. To determine ametric, we have to
relate it to distances and thus to other typified sets in the models. According to BMS,
the pertinent relations between distances and the metric count as laws. Consequently,
actual models are needed to fix the metric, and the metric is theoretical. The other
components in themodels, e.g., S and T orM , and the distance functions dS, dT from
CPMST, by contrast, are not CPMST-theoretical.42 Actual models are not needed to

40Nevertheless, some actual models of a theory may not match the actual world. The actual models
are solutions to the equations of a theory, but these solutions may not describe our real world, e.g.,
due to unrealistic initial conditions.
41See BMS, Sec. II.3 for two formalizations of theoreticity with respect to a theory.
42Cf. BMS, pp. 51–52.
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determine them. For instance, there are simply distances between the space points,
and the metric would not help us to determine the distances. Rather, the distances
have to be determined empirically, e.g., using rigid rods. Note though that the space
points are theoretical in another sense because they are theoretical posits. We can
pick some space points because they are occupied by point particles. Other space
points each have their specific identities because they bear certain spatial relations
to other points, e.g., because they are exactly in between two other points picked in
some other way.

Constraints.
Physical systems are defined by humans. Several physical systems that are part

of the same world can thus overlap and include the same objects. If the same theory
holds true of these systems, then one theory has overlapping systems as its models.
In this case, objects that belong to several systems should have the same properties
in all these systems. Put differently, scientists focus on classes of systems that are
consistent in that they assign the same properties to the same objects. BMS formalize
this using so-called constraints (BMS, II.2.3). A constraint has subsets of models as
its members. In each subset, the models are consistent in some respect. For instance,
CPM has a mass constraint, which comprises subsets of models in which a specific
particle has the same mass (BMS, p. 106). Constraints do not ensure that an object
has the same characteristics in all models. They only group together models in which
the object has the same characteristics. The intersection of all constraints comprises
sets of models that are consistent in every relevant respect (BMS, p. 78).

Are there any constraints pertinent to the space-time? All models considered thus
far include the whole space-time. If the models do not ascribe the same features to
the space-time, e.g., if the metric properties of the space-times are different, then it is
clear that two distinct worlds are pictured. There then is no need for constraints about
one space-time. Put differently, whole space-times cannot overlap, which obliterates
the use of constraints.

It is arguable, however, that the systems of CPM do not necessarily include the
whole space-time, but only refer to portions of it.43 If this is right, we can intro-
duce constraints that express consistency constraints on overlapping models. The
constraints group models that may describe parts of the same space-time.

The kernel.
The kernel of a theory comprises those components that are the same in every

model.44 So-called absolute objects are part of the kernel.45 If the sets S and T in
the models comprise all space points and instances of time, respectively, then these
sets as well as sets of coordinate charts, distance functions and metrices are part of
the kernel of CPM.46 The reason is that CPM assumes a fixed metric structure (what

43BMS reconstruct CPM using local models; cf. our discussion below in the next section.
44[29], pp. 52, 66–68.
45Absolute objects are contrasted to dynamical objects. See [18], pp. 64–70 for the distinction.
46[29], pp. 52, 66–68. S and T cannot be part of the kernel if there are models that have only portions
of the space-time as components.
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should be the point of endowing the same space with different distance relationships
between points?).

The kernel of general relativistic theories is less comprehensive. As the metric
structure is not fixed, W as well as g can differ between the models and thus do not
form part of the kernel. But of course, every model has to have a metric tensor field.

5 Space for Space-Time Theories: What May a Space-Time
Theory Be?

So far, the notion of a space-time theory has not been introduced in a systematic way.
We have assembled the assumptions that some theories make about space-time and
tentatively called the results space-time theories. But which theories are properly
called space-time theories? Intuitively, CPM is not, while GTR may well be. Is there
a principled way to draw the distinction? Or does the distinction crumble under
reflection? Our model-theoretic framework suggests a number of ways to draw the
distinction. None of them is incorrect, but some may capture more faithfully than
others what we take to be a space-time theory.

Suggestion 1: Cosmological import.

According to our first suggestion, the systems constitutive of space-time theories
extend over the whole space-time. More technically, space-time theories have a full
space-time in each of their models, while other theories do not because some of their
models only include portions of space-time. This suggestion seems plausible because
most theories are about small systems that only occupy a small part of the space-time,
and such theories need not adopt assumptions about the whole space-time.

The suggestion is compatible with the idea that many solutions to equations from
theories are defined for whole space and time, for instance because boundary con-
ditions are assumed for infinite times, even though the theories are not space-time
theories. The suggested criterion is that every model of a space-time theory contains
the whole space-time, while other theories have at least some models that do not
include the whole of it.

The suggestion may be formalized a bit more. A manifold equipped with a metric
is extendable if it can be thought of as a proper sub-manifold of another manifold
with a metric.47 Space-time manifolds are sometimes required not to be extendable
(the idea being that an extendable manifold can’t be the whole space-time). We then
can demand that the models of a space-time theory include an inextendable manifold
of events.48

According to the suggestion, CPM would seem to count as a space-time theory.
For we have here assumed that every model of CPM contains the whole space-time

47See e.g., [40], p. 215.
48Because extendability involves the manifold and the metric, a requirement of inextendability
would have law-like status according to BMS.
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(so does [29], Sec. II.1). But as already indicated, this assumption is not necessary.
Many systems described by CPM are much confined in space and only studied for
a small portion of time. They do not seem to assume that all of space is Euclidean.
We could capture this by replacing the whole space-time manifold with suitable
sub-manifolds that only contain a proper part of the space-time.

There are nevertheless problemswith ourfirst suggestion. First, the criterion seems
too strict. GTR is a paradigm example of a space-time theory, but it seems artificial to
say that each system constitutive of the theory comprises a whole space-time. Many
applications of GTR concern subsystems of the universe such as certain binaries or
black holes. Does one really need an inextendable space-time manifold to follow
such a system using GTR?49

Second, the question of whether all models of a theory include the whole space-
time as a component seems too technical to make a difference. It is often a matter of
taste whether we reconstruct a particular application of the theory as a model about
the whole space-time or not.

Finally, the suggestion does not capture the sense in which space-time theories are
about space-time. A theory may accidentally, e.g., for some technical reason, only
have models that include a whole space-time. Does it follow that it is a space-time
theory? The best way to deal with this objection is to consider alternatives way of
delineating space-time theories and to see whether they do better.

Suggestion 2: Exclusiveness.

According to a second suggestion, a space-time theory is about space-time iff it
is about space-time exclusively. That is, the models contain only components that
describe space-time and its properties, e.g., themetric. There are no particles, charged
fields and so on. If we adopt this suggestion, then CPMST and GTRST are space-time
theories, while GTR itself is not (see below).

The claim of such a theory would have to be that the metric returns physical
distances between space-time points in a specific way, and, in the case of CPMST,
that space is Euclidean. These claims do not have empirical significance, unless
points are picked in some way, and this can only be done using physical objects. So
the theory has to be linked to other theories. But if this is so, then exclusiveness can
only be fulfilled in a formal sense: There are theories the models of which have only
spatiotemporal notions as components, but the exclusiveness is deceptive because
the theory is either not empirical or it has to be linked to other, more comprehensive

49One can rebut this objection though by saying that, even though everymodel of a space-time theory
contains the whole space-time, the models need not be used to describe the whole space-time. For
instance, formally, the Schwarzschild solution of GTR is a solution for the whole space-time, but
it is often used as an idealization to understand subsystems of the Universe only. GTR would then
still be a space-time theory.
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theories. It then seems that exclusiveness is too formal a criterion to distinguish
space-time theories form others.

Suggestion 3: Introduction of spatiotemporal notions as theoretical components.

A third suggestion has it that a space-time theory introduces spatiotemporal
notions in the following sense: Spatiotemporal notions are T-theoretical with respect
to a space-time theory T. Once this theoretical structure including the metric is avail-
able, other theories can draw on it. Technically speaking, they are linked to it.

The suggestion has to be precisified because there are several spatiotemporal
notions. Which one is introduced by space-time theories? Consider first metrices.
When we have reconstructed CPMST and GPMST using metrices, we have assumed
that substantial assumptions relate the metric to measurable distances. Thus, the
metric can only be determined using the theory itself, and thus is T-theoretical in
both cases. Accordingly, CPMST and GPMST introduce the metric. Thus, if space-
time theories introduce themetric, CPMST andGPMST are space-time theories,which
is plausible.

By contrast, physical distances between points (i.e., between points in space,
instances of timeor events) canbedetermined empiricallywithout recourse toCPMST

and GPMST. This is at least so if the points are defined using physical objects. Thus,
distances are not introduced by CPMST and GPMST, and the latter would not be
space-time theories according to the third suggestion if space-time theories had to
introduce distances. But CPMST and GPMST are space-time theories, at least intu-
itively speaking. It is thus not useful to require that a space-time theory introduces
distance functions. We can thus conclude that the third suggestion should be under-
stood as follows: A theory is a space-time theory if it introduces the metric in the
sense explained above.

A problemwith this suggestion is as follows. If reconstructed according to Def. 1,
CPMST does not introduce ametric in the required sense because there is nometric in
the models at all. Thus, understood in this way, CPMST would not count as a space-
time theory according to the third suggestion, which sounds counterintuitive. But at
least the spirit of the third suggestion seems right because most points themselves
are theoretical posits, and theories from which CPMST imports notions may not yet
include sets of all points.

Suggestion 4: Explanation of spatiotemporal structure.

Tomotivate another suggestion, we note that, often, GTR counts as a paradigmatic
space-time theorywhileCPMdoes not.Why is this so?Plausibly becauseGTRallows
formarkedly different space-time structureswhileCPMdoes not. The idea here is that
each theory is general and has several possible applications. If a space-time theory
is about space-times, it should thus allow for different possible space-times. Since
there is, presumably, only one space-time, it must at least allow that our space-time
may be structured in alternative ways. That is, the metric structure of the space-time
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is not fixed in advance, but varies between the models.50 In the terms of [29], p. 67,
the metric is not part of the kernel of the theory.

Now this cannot be the whole story because, if it were, then even GPMST would
have to count as a space-time theory, while CPMST would not. But this is not a
sensible thing to say. Either CPMST and GPMST both are space-time theories, or
both are not.

GTR has an additional benefit: It not only allows for alternative space-time struc-
tures, but also constrains the latter via Einstein’s field equations and other quantities,
notably the energy-momentum tensor. For this reason we can use GTR to explain
why the space-time has those metric features it has. Let us thus strengthen our fourth
suggestion and require that space-time theories must have explanatory power regard-
ing our space-time in the sense that other components in the models constrain the
space-time via axioms. GTR then is a space-time theory, while CPMST and GPMST

are not.
Both the third and the fourth suggestion seem to make some sense, but they lead

to incompatible results because CPMST and GPMST are space-time theories under
the third suggestion while they are not under the fourth. This is not too much of a
problem though. There may be no unambiguous notion of a space-time theory. It
seems fair to say that, at some times when we talk about space-time theories, we
have in mind something like the third suggestion, while, at other times, we require
that a space-time theory be explanatory in accordance with the fourth suggestion.
In this paper, the notion of space-time theory is normally reserved for theories that
introduce a metric or other space-time notions in rough accordance with the third
suggestion.

6 Space for Explanation: Explanatory Space-Time
Theories

Let us now look at some theories that are explanatory in the sense of our fourth
suggestion. According to such theories, the geometry of space-time is constrained
by physical objects via laws. The aim of this section is to extend our model-theoretic
analysis to such theories.

6.1 Einstein’s GTR

Let us beginwithEinstein’sGTR. It is centered about Einstein’s field equations (EFE)
that relate the Einstein tensorG, which is built up from themetric and the connection,

50Here, the metric structure does not only mean the metric itself, but also physical relationships
about events on world lines incorporated in the metric field tensor.
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and the energy-momentum tensor to each other. The simplest way to account for the
EFE is to expand the models of GPM. We add two typified components, viz.

• a symmetric, covariant tensor field Ttot of rank 2, the energy-momentum tensor
and

• a symmetric covariant tensor G of rank 2, the Einstein tensor.

We then demand that the actual models obey the following requirements.

• G measures the curvature (i.e., it is a certain construction of the metric g and the
connection Γ , see [40], pp. 40–41);

• Einstein’s field equations are fulfilled:

G = 8πTtot , (11)

As before, we neglect the freedom to choose one’s units and assume units in which
the gravitational constant is set to 1.

However, even though we have now used EFE to define a set-theoretic predicate that
picks a set of models, our reconstruction does not yet capture the explanatory power
of GTR. For we have only typified Ttot , and if Ttot is otherwise free, EFE do not
restrict the space-time. But in fact, depending on the energy and matter components
in the universe, Ttot can be obtained from the distribution of matter and energy. We
could try to account for this using a link to another theory, viz., a theory that specifies
the energy-momentum tensor for some matter model. For instance, if the universe
is filled with a perfect fluid, then Ttot is a certain functional of the metric and of
some characteristics of the fluid, as is well-known from general relativistic fluid
dynamics, and we could link GTR to fluid dynamics. But such a link would be too
inflexible because Ttot can also take different shapes for other types of matter and
energy (e.g., electromagnetic fields). For this reason, Bartelborth [3] regards EFE and
GTR as inter-theoretic in character. I will follow him even though his move is not
necessary (as an alternative, one could link Ttot to several theories with a many-place
relationship).

As a first step, we define several general relativistic dynamical theories, e.g., gen-
eral relativistic perfect fluid dynamics (GPFD), general relativistic electrodynamics
(GED), and so on. The former describes the motion of a perfect fluid on a given
space-time, one law being that the energy-momentum tensor takes a certain form.
GED describes the dynamics of the electromagnetic field and specifies the energy-
momentum tensor for such fields. GPFD and GED are roughly on the same footing
as GPM because they presume a space-time structure and define a dynamics on it.
But contrary to GPM, GPFD and GED are field theories, i.e. the degrees of freedom
are featured using fields.

As an example, consider briefly GPFD.We concentrate on those components that
are most important for understanding the theory and drop, e.g., DS .

Definition 4 x is a model of GPFD if and only if x = 〈M, g, Γ, V, μ, P, Tpf 〉,
where
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• M is a manifold of events;
• g is a symmetric covariant metric tensor field of signature (−, +, +, +);
• Γ is an affine connection compatible with g;
• V is a vector field on M representing the velocity of the fluid;
• μ, P are scalar fields on M representing energy density and pressure, respectively;
• Tpf is a second-rank, contravariant tensor field on M .

Further, for all points of the manifold q ∈ M we have

g(V (q), V (q)) = −1, (12)

Tpf (q) = (P(q) + μ(q))
(
V (q) ⊗ V (q) + P(q)g�(q)

)
, (13)

DTpf (q) = 0 . (14)

where “⊗” denotes the well-known tensor product.

This definition provides precise typifications, while the meanings of the compo-
nents are indicated informally. For instance, g is the metric and returns distances.
We could render the definition of GPFD more precise, e.g., by linking it to other
theories.

We can proceed in an analogous way for GED and define models for it. One
component in themodels is the energy-momentum density due to the electrodynamic
field, call this tensor Ted . In the following, I restrict myself to GPFD and GED as
examples of general relativistic dynamic theories.

In a second step, Einstein’s field equations are used to link certain pairs of models
of such theories. Call this link EFE. The intuitive idea is that certain models of GPFD
and GED can be combined: They fit each other because they provide a consistent
description of how things might go. The details are provided by the following defini-
tion. In this and the following, we label components from amodel x with a sub-index
x ; for instance, Mx is the space-time manifold within model x .51

Definition 5 Amodel x of GPFD and another y of GED are linked to each other iff
the following two conditions hold:

1. x and y agree on the space-time and on fields common to both GPFD and GED,
most notably on the metric, i.e.,

Mx = My and ∀q ∈ Mx : gx(q) = gy(q) . (15)

2. The metric arises from the total energy momentum via Einstein’s field equations:
Einstein

G = 8πTtot . (16)

Here, Ttot contains all relevant contributions to energy and momentum, i.e.,

51According to the definition, the link is a two-place relation; it can be generalized to an n-place
relation easily if there are n general relativistic dynamic theories. If there is no matter of a particular
type, e.g., no perfect fluid component, the pertinent part of Ttot equals zero.
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Ttot = Tpf d + Ted . (17)

G is the Einstein tensor as before.

The conditions in the definition can even be relaxed: We require identity up to
certain transformations rather than strict identity. In mathematical terms, we demand
only that there be a diffeomorphism ι from Mx to My that transforms the metric,
etc., of x into those of y, respectively. In this case, Eqs. (16) and (17) have also to
be adapted slightly.52

Formalized in this way, GTR is not a theory of its own, but rather a relationship
between theories. It is not defined in terms of a set-theoretic predicate that fixes
a class of models, but rather in terms of a relationship between models from two
or more other theories. Nevertheless, we would like to assign a claim to GTR. To
this effect, we think of GPFD, GED, etc., as forming a theory net. We associate the
following literal claim with the theory net: When described in the right sort of way,
every intended application is an actual model of each theory in the theory net and
the pertinent actual models are mutually related to each other via the link EFE. An
idealized empirical claim can be defined in a similar way.53

6.2 An Alternative Theory of Gravitation:
The Brans–Dicke Theory

Let us now consider an alternative to GTR. The simplest, presumably, is the Brans–
Dicke theory (BDT, for short; [6]). It is a special case of a scalar-tensor theory.54

Many results of this section can easily be generalized to other scalar-tensor theories.
The Brans–Dicke theory introduces new dynamic degrees of freedom, viz., a

scalar field φ. This field does not affect other matter directly, but it has a bearing on
the metric, which in turn is crucial for the dynamics of all sorts of matter/energy. To
reconstruct the Brans–Dicke theory we can thus again proceed in two steps.

First we define a theory for the dynamics of the scalar field on a given space-time,
call this theory BDD. It is on the same footing as is GPFD. The models of BDD are
of the following type: x = 〈M, g, Γ, Ttot , φ, V 〉, where M, g, Γ are as before; φ is
a scalar field on the manifold (the Brans–Dicke field), and V : R → R is a function
representing the potential for the Brans–Dicke field. The dynamical evolution of the
Brans–Dicke field is also driven by the energy-momentum tensor of ordinary matter,
Ttot , so we have to include it in the models as well and to link it to other theories.55

52See [40], pp. 437–439 for technical details about diffeomorphisms. We can relax the conditions
in the definition because space-time manifolds that are identical up to certain structure-preserving
maps are not supposed to picture distinct physical possibilities.
53This is effectively an amendment of Bartelborth’s Def. 12.
54See [5] for a classic source about scalar-tensor theories and [41], Sec. 5.3 for an overview.
55Alternatively, we could regard BDD as inter-theoretical as we did with GTR before. However,
this would complicate matters too much.
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The following law characterizes the evolution of the scalar field φ and thus is
crucial for the actual models of BDD: For all events on the manifold q ∈ M :

�φ(q) = 1

2ω + 3

(

8πTr(Ttot (q)) + φ(q)
dV

dy
(φ(q)) − 2V (φ(q))

)

. (18)

Here,� is the covariant d’Alembert operator,ω is a constant parameter. The potential
V is not specified by the theory.56 According to this law, the dynamic evolution of
the scalar field is fueled by all other fields via Ttot and via the potential.

The second step is to introduce BDT as an inter-theoretic link. We proceed as
we did in the case of EFE, with the only difference that Einstein’s field equations,
Eq. (16), are replaced by the following equation ([8], p. 60, here cast in the abstract
index notation, [40], pp. 23–26).

Gμν = 8π

φ
(Ttot )μν + ω

φ2

(

∇μφ∇νφ − 1

2
gμν∇ρφ∇ρφ

)

+ 1

φ

(∇μ∇νφ − gμν�φ
) − V

2φ
gμν.

(19)

From a conceptual point of view, GTR and BDT do not differ much. Both can be
conceptualized as inter-theoretic links. Further, regarding the description of a space-
time, GTR and BDT do not differ. The space-time theories presupposed by both
GTR and BDT in the sense of the third suggestion above are identical. Both times,
space-time is characterized as a four-dimensional manifold with a metric tensor field
with the same empirical significance.

Using a suitable conformal transformation,57 g can be mapped to a variant such
that the Brans–Dicke equations take the same form as Einstein’s field equations
(see [8], p. 361). This has motivated claims to the effect that GTR and Brans–
Dicke theory are equivalent (see ibid., Sec. 3.6.4 for evidence). Such claims are
problematic though. g is not an arbitrary tensor field on the manifold, but rather one
with a specific meaning. If it is transformed using a conformal transformation, its
meaning is changed. Thus, even though g, as considered in GTR, and its conformal
transform, as considered in BDT, both solve equations of the same type, they are
different things. This becomes also manifest when we consider GTR and BDT as
parts of complete theories, respectively, because then g and its conformal transform
play different roles in the models (e.g., the paths that freely falling test particles take
are different [8], p. 88), which means that the theories are different.

Our results concerning BDT can be generalized to many other alternative theo-
ries of gravity. So-called metric f (R)-theories, which add expressions nonlinear in
curvature to the action ([8], Sec. 3.2), do not even introduce new degrees of freedom.
Other theories like the one by Rosen [28] do introduce new degrees of freedom, but
the latter are only used to constrain the space-time structure, which is described using
a metric as before ([7], p. 175). An exception may seem the tensor-vector-scalar the-

56Often, the Brans–Dicke theory is defined more narrowly with a zero potential.
57A conformal transformation maps the metric g to �2g, where � is a strictly positive smooth
function. �2g yields the same angles as does g, but other geometric features are not invariant under
conformal transformations. See [40], p. 445.
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ory by Bekenstein [4]. This theory contains a second metric tensor field over and
above g, and it turns out that this tensor field determines lengths as measured by rods
and clocks ([7], p. 175). But even in this theory, the space-time is described using
a manifold and a metric, only that the metric plays otherwise a very different role
than it does in Einstein’s theory. In general, our results about BDT apply to all metric
theories, which describe space-time structure using a metric.

7 In the Space of Space-Time Theories

We have now seen various theories that are space-time theories in one or the other
sense. How are they related to each other? Previous work in the semantic framework
has defined various inter-theoretic relationships, notably variants of reduction (see
particularly [29, 30]). In the model-theoretic framework, two theories stand in an
inter-theoretic relationship if their models are related in some way. For instance, the
models of one theory may be built up using only components of models of another
theory. The aim of this section is to explore inter-theoretic relationships between the
space-time theories analyzed thus far. To simplify matters, I will largely bracket links
and constraints. Properly speaking, reduction of one theory to another requires that
their constraints and links be related, but I will neglect corresponding conditions.

Consider first the space-time theory incorporated in CPM, viz., CPMST, and that
entailed inGPFD, call it GPFDST. In the first reconstruction presented here, CPMST is
very different from GPFDST because the models have mostly different components.
However, CPMST was also reconstructed in an alternative way using terms from
differential geometry. Both versions of CPMST are equivalent, where equivalence
itself is an inter-theoretic relationship.

A differential geometric axiomatization of CPMST as expounded in Def. 2 brings
it closer to GTR. But even then there are a lot of differences between the models
of CPMST and GFDST. The models have components with different typifications,
and they bear different relationships to experience, as stated in the axioms. Scheibe
[30], Chs. VII–VIII implicitly concentrates on the former aspect and investigates the
relationship between, e.g., a Newtonian space-time theory and the one behind the
special theory of relativity. For this example, he constructs a limiting case reduction
(his Sec. VII.2) and an asymptotic reduction (his Sec. VII.3).58

To establish the former, he expands the theory ofMinkowski space. He introduces
a parameter that is a function of the maximal velocity. Newtonian space-time is
obtained, if this parameter approaches zero or, equivalently, if the maximal velocity
approaches infinity. The parameter is not a variable in any theory considered, but the
trick to establish a connection between a classical and a special relativistic space-time
is to allow for models in which the parameter can take every value. It can then be
shown that the models of the expanded theory ofMinkowski space approach the only

58See [29], Sec. V.1, particularly pp. 175–177 for a general account of asymptotic reduction, and
ibid., Sec. V.2 for limiting case reduction.
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model of Newtonian space-time in the sense of point-wise convergence of the metric
everywhere (ibid., p. 24). This is an important necessary condition for the envisaged
limiting case reduction of Newtonian space-time theory to a special relativistic one.
Since Minkowski space is but one space-time possible according to GTR, it should
be possible to generalize Scheibe’s result to general relativistic space-time theories,
but the details are beyond the scope of this paper.59

Turn now to GTR and its explanatory rivals such as BDT. We simplify matters
if we conceive of both as self-standing theories, and not as inter-theoretic links.
To this effect, we include a component Ttot in the models of GPMST as indicated
earlier in Sec. 6.1. The models of GTR and those of its metric rivals then share the
components that characterize the space-time, notably the four-dimensional manifold
and the metric tensor field, and the meaning of the metric tensor is the same through
the same geodesic connection (see the previous section).

A good candidate for characterizing the relationship between GTR and BDT then
is the limiting case reduction in the terms of [29], Sec. V.1.60 Intuitively, to “regain”
GTR from BDT, we set the potential V to zero and let ω go to infinity. At least the
latter limit takes us beyond BDT because ω is supposed to be constant according to
BDT. We have thus to generalize BDT to BDT’, which allows for several values of
ω. BDT is a specialization of BDT’. The hope then is that every model of GTR is
approached by a series of models from BDT’. There are two difficulties to establish
this claim. First, to make good on claims to the effect that series of models converge
to another model, we need to introduce a topology or, preferably, a metric on the
models. We thus have to define distance measures between manifolds equipped with
a metric. This is very difficult.61 Second, we have to show that, according to the
distance measure, each model of GTR is the limit of a sequence of models of BDT.
There seem to be problems with such a claim (see [8], p. 61).

In practice, working scientists are interested in the different predictions of GTR
and its rivals to test the empirical adequacy of GTR. To this end, they use the so-
called Parameterized Post-Newtonian formalism (PPN formalism, for short; see [41],
Chs. 4–6). The core of the formalism is a set of equations for the metric tensor field
in specific coordinates (see ibid., Table 4.1 on pp. 103–104 for a succinct summary).
The equations contain a set of free parameters. Different choices of the parameters
yield solutions that are approximations to different rivals to GTR.

In the semantic framework, we can think of the PPN formalism as a theory net
(see e.g., BMS, Def. DIV-2 on p. 172). In the special case of a theory net that is of
interest here, several little theories are specializations of one and the same theory.
Let us first consider this more general theory, call it PPN. We can define its models
as follows:

59For the relationship between Newton’s Theory of Gravitation and GTR see [30], Ch. VIII.
60GTR is not just a specialization of BDT because the latter has additional degrees of freedom, viz.,
the scalar field (see BMS, Def. DIV.1 on p. 170 for specialization).
61Scheibe’s comparison between a classical space-time and Minkowski space-time is simpler
because both manifolds are homogeneous.
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Definition 6 x is a model of PPN iff x = 〈M,P, y, g, ρ, v,w, P,�, α, β, ..., y〉,
where

• M is a manifold of events;
• P is a set of particles;
• y : M → R

4 is a global coordinate chart on M with certain properties as indicated
above.

• g : R4 → R
4×4 is the metric in the coordinates;

• ρ : R4 → R is the density of rest mass in the coordinates;
• v : R4 → R

3 is the velocity field of matter in the coordinates;
• w ∈ R

3 is the velocity of the frame associated with the coordinates relative to the
rest frame of the universe;

• P : R4 → R is pressure in the coordinates;
• � : R4 → R is internal energy in the coordinates;
• α, β, ... are real numbers;
• r comprises the world lines of test particles.

Further, the functions are related as described in Table 4.1 on pp. 103–104 in [41].
For instance, the metric is expressed in terms of metric potentials that are calculated
from ρ, v and w.

As is evident, the models are coordinate-dependent, i.e., a particular coordinate
system is assumed. This system allows us to distinguish between space and time.
Assuming the coordinate system, the various fields simplify to functions from and
to mathematical vector spaces. For instance, ρ is a function from R

4 to R. As a
consequence, it is straightforward to define distances between different models of
PPN.

We obtain different specializations of PPN if we set the parameters at certain
values. The idea now is that certain parameter choices correspond to certain theories
such as GTR or BDT because the models with these parameter choices are approx-
imately models of GTR, BDT, etc. For instance, within the PPN formalism, we are
lead to GTRwhen we set γ and β at 1 and the other parameters at zero ([41], p. 123).

But what exactly does it mean to say that a specialization of the PPN formalism,
call it PPN(GTR), “corresponds” to GTR or “leads to it”? A first hope may be that
PPN(GTR) approximately reduces to GTR. According to BMS, Def. DVII-22 on
p. 373, an approximate reduction is a relation between the models of two theories.62

The most important condition for a theory T1 reducing to another, better one, T2,
approximately is that, for every model x of T2, one can find a model of T1 that comes
arbitrarily close to x .63

62I here refer to BMS because their account of approximate reduction seems simpler than that by
Scheibe.
63This does not require that a distance measure between models of both theories be defined, but it
does require that there is a least a topology over models in one of the theories (cf. BMS, Ch. VII,
particularly Sec. VII.3.1). At this point, BMS differ from Scheibe, who demands that a common
space be defined in which the models of both theories are included.

erik@strangebeautiful.com

http://dx.doi.org/10.1007/978-1-4939-3210-8_4


A Model-Theoretic Analysis of Space-Time Theories 253

PPN(GTR) does not approximately reduce to GTR in the sense just explained.
First, the models of PPN(GTR) are very special because they are supposed to trace
the solar system. They thus obey peculiar boundary conditions (according to which
themetric approaches homogeneity and isotropy, see [41], pp. 91–92). Consequently,
only some models of GTR have a chance of being approximated by models in
PPN(GTR). In the terms of BMS, this is to say that the approximate reduction is
at best indirect.64

But second, there is not even an indirect approximate reduction to GTR. The
models of PPN(GTR) do not come arbitrarily close to models of GTR. The reason is
that PPN is not an approximation scheme that can take into account arbitrary orders.
Rather, it is restricted to fixed orders (see [41], Ch. 4). Thus, models of GTR are not
approximated by models of PPN(GTR) to arbitrary precision, which is incompatible
with there being an approximate reduction.

8 Conclusions

In this paper, we have discussed space-time theories from the semantic point of view
and using reconstructions in terms of models. What are the payoffs? Let me mention
four.

First, using a model-theoretic analysis, we can understand how concepts obtain
their meanings and how they depend on each other. The notions of space-time and of
spatiotemporal relationships are very interesting in this respect. On the one hand, they
are very basic; most physical theories use these notions. On the other hand, space-
time itself and its elements cannot be observed or measured. One way in which terms
can obtain meaning in our framework is that they are introduced as theoretical terms
by some theories. We have seen how the metric tensor field can be introduced as a
theoretical term. The space-time manifold itself is more difficult to handle. It seems
wrong that points are simply introduced as T-theoretical notions by some theory T
because some points can be determined empirically without recourse to a space-time
theory, e.g., as positions of events/particles. A precise account of how space-time
points and their manifolds obtain meaning was beyond the scope of this paper.

Second, the framework considered in this paper suggests a way to define what
a space-time theory is to begin with. I do not think that working scientists use the
concept of a space-time theory always in the same way, but, often, a theory T that
introduces spatial notions or the metric as T-theoretic component is called a space-
time theory. Alternatively, we may call a theory space-time theory if it explains why
the space-time has the structure it has.

Third, we can compare different conceptualizations of space-time and of spa-
tiotemporal relationships. In this paper, we have seen two, viz., that known from
Newtonian physics (Def. 1) and the general relativistic one (Def. 3). Both differ not

64See BMS, Defs. VI-5 and VI-6 on p. 277 for direct and indirect reduction. Scheibe’s limiting case
reduction is only indirect in the terms of BMS.
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only in the mathematical apparatus used to represent space-time and spatiotemporal
features such as distances. They also differ in the way the mathematical appara-
tus it related to experience. It is no surprise then that some philosophers take these
notions to be subject to meaning-variance (in the sense defined by Feyerabend) or
incommensurability.65

Fourth, in the framework adopted in this paper, we can study inter-theoretic rela-
tionships between space-time theories. Formal results were beyond the scope of this
paper, but we have at least sketched some relationships between the theories. The
relationship between classical space-time theories and relativistic ones is fairly com-
plicated. It is possible to assimilate classical space-time theories to relativistic ones
by recasting them in a covariant form using a four-dimensional manifold and ametric
(see Def. 2). But even if this is done, it seems at most possible to obtain a limiting
case reduction or an asymptotic reduction of a Newtonian space-time to Minkowski
space-time, which is but one of many space-times allowed by GTR. The relationship
between GTR and its alternatives, e.g., BDT, is more straightforward. Regarding the
description of space-time, metric rivals do not differ at all from GTR: Space-time
is featured using a four-dimensional manifold with a Lorentzian metric. The only
difference is that the theories allow for different combinations of momentum-energy
distribution and the metric.

Things become very different if we turn to theories that try to unify gravitation and
quantum theory. Some of them suggest a new theoretical account of space-time, e.g.,
that the space-time emerges in someway. This should not come as a surprise.We have
seen that the space-time manifold is largely a theoretical posit, so it seems possible
to fancy alternative conceptualizations of spatiotemporal relationships. Proposals
for an emerging space-time could certainly be considered in the model-theoretic
framework; what is more, a related reconstruction could cast some light on the
“emergence” of space-time.

There is space, and hopefully also time, for more then.
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The Relativity and Equivalence Principles
for Self-gravitating Systems

David Wallace

Abstract I criticise the view that the relativity and equivalence principles are conse-
quences of the small-scale structure of the metric in general relativity by arguing that
these principles also apply to systemswith non-trivial self-gravitation and hence non-
trivial space-time curvature (such as black holes). I provide an alternative account,
incorporating aspects of the criticised view, which allows both principles to apply to
systems with self-gravity.

1 Introduction: Two Principles

The relativity principle—the observation that the laws of physics are the same in two
reference frames in constant motion with respect to one another—is by now very
well understood at least from a mathematical point of view. It can be understood as
entailed by certain symmetries of the laws of physics: the Gallilei symmetry group
in pre-relativistic physics, the Poincaré group in special relativity. Alternatively,
and perhaps equivalently, it can be understood as a consequence of the structure
of spacetime: in either neo-Newtonian1 or Minkowski spacetime, boosts between
reference frames are automorphisms of the background spacetime structure and so
have no physically detectable consequences.

This raises a question: our world is apparently correctly described (or at any rate
better described) by general relativity rather than by special relativity (let aloneNew-
tonian physics). So the laws of physics do not have the Poincaré group as a symmetry
(indeed, it is not even clear what that would mean), and the spacetime structure is
described by a metric which does not, in general, have any automorphisms. So why
is the relativity principle empirically correct, if its theoretical underpinnings are not?

The conventional wisdom appears to be that the relativity principle is recovered
as a result of holding in regions which small enough that spacetime curvature can be

1See (e.g.) chapter 2 of [3] for an account of neo-Newtonian spacetime.
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neglected. In terms of the metric: in a sufficiently small spacetime patch, curvature
is negligible so the metric may be approximated as Minkowskian. In terms of the
laws of physics: in a sufficiently small spacetime patch, the laws of special relativity
hold to a high level of accuracy. (See the work of Harvey Brown, and in particular
[1, pp. 169–172] for a particularly clear statement of this position.)

Just as the relativity principlewas historically crucial in the development of special
relativity, so the equivalence principle played a crucial part in developing general
relativity.2 A natural way to state it3 is as the claim that a system falling freely in
a uniform gravitational field will behave in exactly the same way as an isolated
system. In Newtonian physics, this makes literal sense, and can be understood as the
consequence of a symmetry of the theory: if we take the theory to be specified by a
collection of point particles and by a gravitational potential V (x, t), where V (x, t)
satisfies the Poisson equation and the particles obey Newton’s laws (possibly with
other distance-dependent or contact forces present), then the process of giving the
masses uniform acceleration a(t) and adding a term a(t) · x to the potential is a
process which takes solutions to solutions. While there is no geometric equivalent
of this dynamical symmetry as long as we formulate Newtonian physics on neo-
Newtonian spacetime, the very presence of this mismatch between dynamical and
spacetime symmetries points to the existence of a more natural geometric arena for
Newtonian gravity: Newton–Cartan spacetime, the automorphisms of which include
arbitrary spatially constant accelerations.

It is somewhat harder to make sense of the equivalence principle in this way in
general relativity, where there is no direct analogue to the gravitational potential.
But a natural point of connection is the idea that physics should be the same in
any freely falling reference frame (and therefore, in particular, the same in a freely
falling reference frame as in a frame moving inertially in a region of spacetime
where gravitational phenomena are negligible). Once that is understood, we are
faced with a similar problem as for the relativity principle—how to define “reference
frame” in a setting which has spacetime curvature—and a similar answer is available.
Namely, the equivalence principle (says the conventional wisdom) is a corollary of
the fact that sufficiently small regions of spacetime may be treated as flat (and hence
isomorphic to regions of Minkowski spacetime). In particular, since in a sufficiently
thin tube around an arbitrary geodesic the spacetime metric may be approximated
as flat, physics within that tube ought to be indistinguishable from physics within a
similarly shaped tube in Minkowski spacetime (or indeed in intergalactic space).

Sowe have a rather straightforward story: the relativity and equivalence principles
both hold true, in general relativity, in sufficiently small spacetime patches, because
of the small-scale behaviour of the metric, and in particular because in any metric,

2Equally crucial was Einstein’s desire to extend the relativity principle to cover non-uniformmotion;
cf [6]. (I am grateful to an anonymous referee for stressing this point.)
3There are many ways to state it, and much controversy about just what was meant by it historically;
see, e.g., [9] for more details. The formulation I use here is approximately that of [8, p. 386] and
[1, p. 169] (his ‘SEP’) and [7, p. 874] (her ‘NSEP’). I hold no brief that this is ‘the’ or ‘the right’
equivalence principle, simply that it is a principle worthy of study.
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a sufficiently small spacetime patch (or a sufficiently thin spacetime tube around
some geodesic) may be idealised as metrically flat. Neither principle, therefore, is
concerned with the large-scale behaviour of the metric in solutions to the Einstein
field equations; neither can apply in situations where curvature cannot be neglected.

The point of this paper is to challenge this story: it is not right, or at any rate it
is not at all the whole truth, and there is an alternative and preferable account. In
section 2 I will give examples to show just why there must be more to say; in the rest
of the paper, I will try to say it.

2 Galileo’s Black Hole

The folklore of physics (correctly, so far as I know) attributes the first statement of
the relativity principle to Galileo, in his famous thought-experiment:

Shut yourself up with some friend in the main cabin below decks on some large ship, and
have with you there some flies, butterflies, and other small flying animals. Have a large bowl
of water with some fish in it; hang up a bottle that empties drop by drop into a wide vessel
beneath it.

With the ship standing still, observe carefully how the little animals fly with equal speed to
all sides of the cabin. The fish swim indifferently in all directions; the drops fall into the
vessel beneath; and, in throwing something to your friend, you need to throw it no more
strongly in one direction than another, the distances being equal; jumping with your feet
together, you pass equal spaces in every direction.

When you have observed all of these things carefully (though there is no doubt that when
the ship is standing still everything must happen this way), have the ship proceed with any
speed you like, so long as the motion is uniform and not fluctuating this way and that. You
will discover not the least change in all the effects named, nor could you tell from any of
them whether the ship was moving or standing still. [4]

Tragically (if unsurprisingly), Galileo did not live to see the development of general
relativity. If he had, who can doubt that he would have quickly penned a sequel,
which no doubt would have become known as Galileo’s black hole:

Put yourself together with some friend in orbit around some large black hole, and have with
you there some planetoids, interstellar dust, and other solid matter. Have a long rope with
a clock at one end of it; place a light source into an orbit below yours. With the black hole
standing still, observe carefully how the redshift from the light source is of equal magnitude
at all points in its orbit. The clock slows equally whatever side of the hole it is lowered
towards; and, in allowing the solid matter to fall inward and form an accretion disk, the disk
forms no more strongly on one side than another; observing the high-energy jets above and
below its plane, they are as like to emerge in one direction as in the other.

When you have observed all these things carefully (though there is no doubt that when the
black hole is standing still everything must happen in this way), have the hole proceed with
any speed you like (staying in orbit around it all the while), so long as the motion is uniform
and not fluctuating this way and that. You will discover not the least change in all the effects
named, nor could you tell from any of them whether the hole was moving or standing still.

The relativity principle, in other words, had better apply to all manner of systems,
including those which are strongly self-gravitating. More to the point (for what does
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Nature care what “had better” be true?), there is abundant evidence that it does apply
to such systems. Observations of black holes and neutron stars are commonplace
in high-energy astrophysics these days, and astrophysicists do not even consider
the “absolute velocity” of the system they study (whatever that would be) in their
analysis, except insofar as they apply standard length contraction and time dilation
formulae to translate phenomena in the system’s rest frame into phenomena in our rest
frame. And at a more mundane level, even planets have non-trivial self-gravity, and
the relativity principle manifestly applies to that self-gravity itself. Objects fall under
Earth’s gravity in just the same way in summer as in winter, despite the ∼60km/s
velocity difference.

But the analysis I gave of the relativity principle in section 1 cannot possibly
apply to self-gravitating systems. For that analysis required the principle to apply
only in regions where the metric could be idealised as flat, and what is “a region
where the metric can be idealised as flat”, if not a region in which self-gravitational
phenomena can be idealised away? Insofar aswe idealise themetric of, say, the Earth-
Moon system as flat, we idealise away the gravitational binding between Earth and
Moon. And more starkly, regions of spacetime in which the metric is approximately
flat do not as a rule contain black holes.

And the same is true of the equivalence principle. The Earth-Moon system is in
orbit around the Sun, and thus moving freely in the Sun’s gravitation field, yet the
Moon orbits the Earth, and objects fall under Earth’s gravity, just as they would were
the Sun not there.4 Drop a star—or even a neutron star or black hole—deep into
the gravitational field of a supermassive black hole. As long as tidal forces remain
insignificant on the lengthscale of the star, the star’s own physics—including the
star’s gravitational physics—will show no sign that it is not in open space far from
the supermassive hole.

So: physically speaking both the equivalence principle and the relativity principle
make sense not only in flat regions of spacetime but for systems with significant
self-gravity. In the next two sections I will consider how to make sense of this fact
mathematically speaking, and thus show what makes it correct. The framework I
adopt is a special case of that developed more generally in [5]. I should stress that
the level of mathematical rigour I adopt is about that in the mainstream theoretical
physics literature (at the level, say, of [2, 8, 10]); those who prefer their general
relativity to be completely rigorous should regard my claims as heuristic rather
than as theorems, though they should also recognise that “general relativity” in this
sense falls very short of encompassing all that is actually done with the theory in
contemporary physics.5

4To a good approximation, at any rate; the only observable effect of which I am aware (other than
astronomical observations) is the monthly variation in the strength of the tides as Sun and Moon
move in and out of alignment.
5On this note, see in particular Zee’s comments on mathematical rigor in the introduction to [10].
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3 The Relativity and Equivalence Principles
for Non-gravitating Systems

To get a version of the relativity and equivalence principles applicable to systems
with appreciable self-gravity, I need a rather operationalised version of the princi-
ples, relatively close in content to the thought-experiments of the previous section. I
interpret the operational content of the relativity principle as follows:

Given a collection of isolated systems each moving in Minkowski spacetime (or in some
region of amore general spacetimewhich can be approximated asMinkowskian), the physics
internal to each system as described in inertial coordinates comoving with that system is
independent of the velocity of that system.

While the operational content of the equivalence principle is as follows:

Given a general spacetime, and a geodesic within that spacetime, there is a local inertial
frame along that geodesic such that to an arbitrarily good approximation, the physics of a
sufficiently small system freely falling along that geodesic (and thus isolated from other
systems) is indistinguishable from that of the same system in Minkowski spacetime.

These operational results follow, in non-gravitating systems, respectively from the
Poincaré-covariance of the non-gravitational interactions and from the fact that a
sufficiently small region of a (pseudo-)Riemannian manifold can be approximated as
flat. Letme reviewbriefly how they follow. First, a little terminology: I assume thatwe
are considering (general- or special-) relativistic spacetimes with some given matter
fields and dynamical equations. If one such spacetime M is foliated by spacelike
hypersurfaces, a temporal segment of M is the part of the spacetime between any
two such hypersurfaces. A tube in a temporal segment T of M is a smooth map
ϕ : B3 × [0, 1] → M (where B3 is the closed unit ball in R3) such that

1. ϕ is a diffeomorphism onto a closed subset of T ;
2. Each of the curves ϕ({x} × [0, 1]) is a segment of a timelike curve;
3. Each of the surfaces ϕ(B3 × {x}) is spacelike;
4. Each of the surfaces in (3) is orthogonal to each of the curves in (2);
5. ϕ(B3 × {0} and ϕ(B3 × {1} lie, respectively, in the initial and final bounding

surfaces of T .

In Minkowski spacetime coordinatised in the usual way, the canonical example of
a tube is given by ϕ(x, y, z, t) = (λx, λy, λz, μt) for positive real λ and μ. A tube
around a timelike curve segment γ : [0, 1] → M is a tube ϕ such that ϕ(0, x) =
γ (x). The surface of a tube isϕ(S3 × [0, 1]), where S3 is the boundary of the unit ball.
And two tubes are surface-compatible if there is a diffeomorphismof neighbourhoods
of their respective surfaces that maps the metric and matter fields of one to the other.
(So in vacuum, this reduces to the requirement that the tubes’ surfaces have isometric
neighbourhoods.)

Now letT ,T ′ be temporal segments of some spacetime, and let ϕ, ϕ′ be tubes in
T ,T ′ that are surface-compatible. We can construct another temporal segmentT ′′
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by replacing the matter and metric fields inside ϕ by those inside ϕ′, via the diffeo-
morphism ϕ · ϕ′−1. Since the tubes are surface-compatible, there is a neighbourhood
of the tube whose matter and metric fields are diffeomorphically related to those in
a neighbourhood of T ′, and a neighbourhood of the tube whose matter and metric
fields are diffeomorphically related to those in a neighbourhood ofT . So there is an
open covering ofT ′′ by sets on each of which the dynamical equations are satisfied.
And so T ′′ is a temporal segment of a dynamically possible spacetime.

This ability to patch one tube into another allows us to derive both the relativity and
equivalence principles in the form I give above. To see this for the relativity principle,
consider an isolated system moving in Minkowski spacetime, with its centre of mass
following some given inertial trajectory. If that system is indeed completely isolated,
that is to say that its evolution would be unchanged if all other bodies were absent—
which is to say that there is anotherMinkowski spacetime in which nothing is present
except (a copy of) the system, but where the system itself is unchanged. Which is in
turn to say that there is some tube along (any given segment of) the body’s trajectory,
and some tube within (a temporal segment of) another Minkowski spacetime such
that nothing is present outside the tube, where the fields inside the two tubes are the
same (i.e., diffeomorphically related).

In idealisation, a sufficient condition for all this is that each of the isolated bodies
has no fields associated with it outside some tube containing any finite period of its
evolution, so that the spacetime is empty in a neighbourhood of the surfaces of each
tube. From this it follows that each tube is surface-compatiblewith a tube in otherwise
empty Minkowski space. But then given another inertial trajectory having velocity
v compared to the first, the Poincaré covariance of the Minkowski metric means that
any given segment of that trajectory has a tube along it that is surface-compatible
with the first tube. And so the contents of the first tube can be pasted into the second
tube, creating a new spacetime (or temporal segment thereof) in which the system is
boosted relative to its original state while remaining intrinsically unchanged.

Of course, in realistic systems isolation is never complete: there will be fields arbi-
trarily far from the system’s centre of mass trajectory still associated with the system
(think of long-range Coulomb fields, for instance). So the result of this patching is
only an exact solution of the dynamical equations in the idealised limit of perfect
isolation; otherwise, there will be a slight discontinuity at the boundary. However,
we have good (albeit heuristic) grounds to think that extremely small perturbations
of the solutions within and without the tube can be made that will remove this dis-
continuity. (Insofar as this is not the case, the claim that the systems are isolated
becomes questionable.)

For the equivalence principle, let γ be a geodesic in some spacetime. If there were
some tube surrounding the geodesic in which the metric was exactly flat, we could
take a tube in Minkowski spacetime, surrounding some isolated system, and patch
it onto the first tube: this would show that local physics along that geodesic was
intrinsically identical to the same local physics playing out in Minkowski spacetime.

Exactly flat tubes are going to be hard to come by, though: in an exactly flat tube,
the Riemann tensor vanishes, and it’s typically non-zero pretty much everywhere on
nontrivial spacetimes. However, this tensor is dimensionful—it has the dimensions
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of 1/length2—which suggests that in sufficiently small tubes it can be treated as
negligible. We can flesh out this suggestion by noting that the physical significance
of the Riemann tensor comes through its contribution to the holonomy—the effect
of parallel transporting a vector around a closed loop and that, if the maximum value
of a given component of the Riemann tensor with respect to some tetrad is Rmax ,
the maximum value of the component of holonomy associated with that component
is the area of the loop around which it is evaluated times Rmax . So (given that the
length of the tube is fixed) for any degree of approximation desired there will be a
lengthscale such that a tube narrower than that lengthscale can be treated as flat to
that degree of approximation. Given a dynamical system in Minkowski space that
can be enclosed within a tube of that lengthscale, to that degree of approximation
the tube can be pasted onto the geodesic.

One way to quantify this is to note that for a sufficiently narrow tube the linear
approximation to general relativity will be valid to any given degree of accuracy, so
that we can understand the physics of the tube interior as playing out on aMinkowski
spacetime with a symmetric tensor field representing gravity. If there is a regime in
which that gravity field is dynamically negligible compared to the internal interac-
tions relevant to the system, in that regime the system can be treated as interacting on
flat spacetime. Of course, for any given physical system there will be levels of curva-
ture so great that this cannot be done—for instance, there are curvatures sufficient to
tear apart atoms, and still greater curvatures sufficient to tear apart nuclei. It cannot
be expected that any operationalised version of the equivalence principle holds for
arbitrarily high curvatures and for any given sort of non-gravitational interaction.

4 Extending the Principles to Self-gravitating Systems

Note that in both the relativity principle and the equivalence principle case, the “iso-
lated systems” being studied aremodelled as systems alone inMinkowski spacetime.
What is required of them is (i) that their dynamical equations are Poincaré-covariant
(so that they can indeed be modelled on that spacetime); (ii) that they can indeed be
treated as isolated, i.e. contained within some finite width tube to any given degree
of accuracy.

Condition (i) does not hold in any straightforward sense for self-gravitating sys-
tems, which are not modelled on a background Minkowski spacetime. However, we
can consider a temporal segment of a more general spacetime which to any given
degree of approximation is Minkowskian outside, and on the boundary of, some tube
of given size and shape. For instance, the spacetime around a black hole has this char-
acter: asymptotically at spatial infinity, the metric tends to the Minkowski metric. So
for any given level of tolerable deviation from the Minkowski metric, we can find a
tube around the black hole such that the spacetime outside that tube approximates
the Minkowski metric to that level. The same will very plausibly be true for more
complex self-gravitating systems such as the Solar system. Such systems also satisfy
condition (ii). So these systems, too, can be pasted into tubes in existing spacetimes
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provided those tubes are themselves flat to a sufficient degree of approximation (as
discussed above).

A self-gravitating system of mass m, if its angular momentum, charge, and radia-
tive emissions can be neglected, has ametric which at large distances from the system
tends towards the Schwarzschild metric

ds2 = −(1 − 2m/r)dt2 + (1 − 2m/r)−1dr2 + r2(dθ2 + sin2 θdφ2)

(indeed, this can be taken as definitional of the system’s mass). (Defining the
Schwarzschild radius rs = 2m, we have the result that the metric of such a sys-
tem is approximately Minkowskian when r � rs .) Such a system, asymptotically,
is a Minkowski spacetime with a preferred standard of rest: that in which the lines
(r, θ, φ) = constant are at rest.

Given one such system, geodesics sufficiently far from its centre will approximate
straight lines in Minkowski space (for given finite period of time) to any desired
degree of accuracy. Another such system can then be pasted onto a tube around any
such geodesic, and the intrinsic physics of that second system will be independent
of the velocity of the second system with respect to the preferred rest frame of the
first. Thus, this combination of two systems demonstrates a form of the relativity
principle.

Now consider the case where one spherical black hole is falling into a much
larger one (as happens in astrophysics when galactic centre black holes consume
stellar-mass black holes). The effective size of the smaller hole—the radius, in
Schwarzschild coordinates, of the tube we wish to place around it—is ∼ λrs , for
some dimensionless λ � 1: at distances greater than λrs the spacetime around the
black hole can be treated as approximately Minkowskian (with the exact value of λ

being dependent on the level of approximation required and the scale of the black
hole dynamical processes of interest—for accretion λr would need to be the width
of the accretion disc, for instance, or possibly the full size of the binary system in
which the accretion is occurring). Then we can paste the smaller hole onto a geodesic
of the larger hole if its curvature times (λrs)

2 is sufficiently small.
The tetrad components of the curvature of a Schwarzschild black hole of mass

M , at radial distance R, have magnitude ∼ M/R3 [8, p. 822]. So we require

M

R3
(λrs)

2 � 1.

Rearranging, and defining Rs as the Schwarzschild radius of the second black hole,
gives

R

Rs
� λ

( m

M

)2/3

as a condition for the validity of the equivalence principle in this case. So if the larger
black hole has a mass many times that of the former, we would expect local physics

erik@strangebeautiful.com



The Relativity and Equivalence Principles for Self-gravitating Systems 265

as observed by those closely orbiting the smaller hole to continue undisturbed until
well after that smaller hole has crossed the event horizon of the larger one.

5 Conclusions

We can coherently talk about isolated systems in general relativity because, as a mat-
ter of dynamics, there exist a large number of solutions to the equations—including
ones which represent stars, planets, black holes, etc., as well as interacting sets of
these—where the curvature and matter are concentrated in some finite region and
far outside that region the spacetime is approximately empty and flat. This allows
us to paste such solutions together, to form regions of spacetime consisting of a
number of isolated subsystems embedded in approximately flat spacetime. Because
of the Poincaré symmetry of flat spacetime, we can perform a Poincaré transforma-
tion on one of the subsystems without violating the boundary conditions between
subsystems; hence, the relativity principle applies for collections of such subsystems.

In turn, regions of effectively flat spacetime can always be found in a given space-
time, provided we are prepared to make those regions sufficiently small. If “suffi-
ciently small” is nonetheless large compared to the effective size of the subsystems
we are interested in, then (a) we can apply the above argument for the relativity prin-
ciple to isolated systems in a curved spacetime; (b) we can embed such systems in
any such effectively flat region without affecting their internal dynamics, since their
Minkowski boundary conditions are compatible with any region flat on sufficiently
large lengthscales.

In effect, then, the equivalence principle applies in general relativity because the
metric of isolated systems at sufficiently large distances is the same as the metric of
any system at sufficiently small distances. The relativity principle applies because,
in addition to this, that metric has the Poincaré group as a symmetry group.

To some extent, of course, this is definitional of isolated systems, which in this
paper I have defined as systems which are asymptotically Minkowskian. But it is
interesting to note that this definition of ‘isolated’ does not obviously coincide with
the common definition of “isolated” as “completely alone in the Universe”. Systems
isolated in that sense might be expected to have spacetimes that were asymptotically
anti-de-Sitter, or asymptotically Friedmannian, or asymptotically whatever space-
time fits our current best cosmology. “Isolated” here—and, I’d suggest, in physics
more generally—actually means something more mundane: “such that the details of
their internal dynamics don’t depend on the details of the dynamics of other systems”.

I began this paper by criticising the ‘conventional wisdom’ that the relativity and
equivalence principles apply to general relativity because of the flatness of the metric
at sufficiently short lengthscales. I hope that I have ended by showing that this is at
most half the story: the flatness of the metric of certain systems at sufficiently large
lengthscales has an equally important role. There is therefore an important dynamical
aspect to both principles which does not seem to have been widely recognised:
whether or not the small-scale behaviour of the metric should be understood as
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‘mere kinematics’, it is a nontrivial dynamical fact that there exist asymptotically
flat solutions of the Einstein field equations appropriate for the description of the
isolated systems in our Universe.
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The Physical Significance of Symmetries
from the Perspective of Conservation Laws

Adán Sus

1 Introduction

The empirical significance of symmetries in physical theories has been the subject
of considerable discussion in recent times. Although there seems to be no problem
with the interpretation of global spacetime symmetries, there is no consensus in
relation to the empirical import of gauge symmetries and local spacetime symmetries.
Nonetheless, it is usually assumed that global, but not local, symmetries have some
special empirical significance due to the fact that global, but not local, transformations
have an active interpretation. The physical intuition linked to this is that some (gauge
and local spacetime) symmetries connect different mathematical representations of
the same physical situationwhile in general global symmetries can connect genuinely
different physical states.

Furthermore, it is well known that there is a relationship between symmetries
and conservation laws which, for Lagrangian theories, is encoded by Noether’s theo-
rems.Here conventionalwisdomholds the following: it is global symmetries, through
Noether’s first theorem (NFT), that are related to conservation laws. Less well known
is the fact that for theorieswith local symmetries, because theynecessarily haveglobal
subgroups as symmetry groups, NFT is also applicable, but this time it produces con-
servation laws with a less clear physical interpretation. Noether herself introduced
the terminology of improper and proper conserved currents to distinguish between
those found in theories with and without local symmetries. There is a sense in which
the presence of local symmetries trivialises the conserved quantities obtainable, but
recent work shows that things are not so simple; even in theories with local symme-
tries that have certain boundary conditions some conserved quantities can be defined
that resemble those obtained in theories for which the global symmetry group is not
extended by a local one.

This paper aims to bring together these two discussions and shows that such a con-
junction produces interesting results. On the one hand, introducing the relationship
with conservation laws into the discussion of the empirical significance of symme-
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tries can help to discriminate between symmetries that in principle will or will not
have direct empirical significance. The rationale behind this is that proper conser-
vation laws are a good indication of empirical significance; to show this I use and
modify a well-known analysis of what symmetries with direct empirical significance
are. The original idea is simple: Noether’s theorems provide formal relations between
symmetries and conservation laws; differences in the physical status of symmetries
should be reflected in differences in the physical interpretation of conserved quan-
tities. On the other hand, introducing the reference to the empirical significance of
symmetries might provide a good and novel perspective for the ongoing discussion
about the physical meaning of the connection between symmetries and conservation,
together with introducing a much needed philosophical discussion about the status
of the different types of conserved currents obtained in physical theories with local
symmetries.

The paper is laid out as follows. First, I briefly review the discussion of the
connection between symmetries and conserved currents established by Noether’s
theorems (Section 2). I concentrate on the significance of the classification of the
conserved currents associatedwith different types of symmetries. This is done, partly,
through the discussion of some standard examples and leads naturally to the question
regarding the physical significance of the symmetries themselves (Sections 3 and 4).
Then, I assess whether the notion of direct empirical significance of symmetries
can be clarified through the previously discussed connection to conserved currents
(Sections 5 and 6). As Imentioned above, the intuition thatmotivates the introduction
of such a notion is the attempt to capture those symmetry transformations that are
transformations of subsystems of the universe andwhich produce empirically distinct
situations. I defend the idea that both conserved currents and symmetries that are
physically relevant can also be connected to another intuition; the existence of a
physically relevant background. This is taken, in Section 7, as a guide to identify
the formal features of symmetries that can have direct empirical significance and
which, at the same time, mean that the conserved currents associated with them are
not physically trivial. I end the paper by considering some potential problems for the
proposal (Section 8).

2 Conserved Currents for Lagrangian Theories. Noether’s
Theorems

NFT provided a systematic general account of the relationship between symmetries
and conservation laws for Lagrangian theories, although it had been recognised long
before that such a connection should exist in the context of Newtonian mechanics.
Nevertheless, when talking about the relationship between symmetries and conser-
vation laws, one must be careful about what may be meant by the extremes of that
relation. Strictly speaking, what NFT tells us is that, for field theories derivable from
an action invariant under a group of global symmetries, one can derive a number

erik@strangebeautiful.com



The Physical Significance of Symmetries … 269

of relations which, under certain conditions (satisfying the field equations for the
fields that are arguments of the Lagrangian), express the conservation of a current.
Usually, but not always, these conserved currents can be expressed in the form of
an integral conservation law; as a quantity that remains constant in time. So the first
complication for the simple connection between symmetries and conservation laws
that is referred to so often, comes from understanding under what conditions the
differential continuity equations can be turned into the usual integral conservation
laws; a complication, by the way, that is essential if we are to tackle the intricate
debate about the status of energy conservation in GR.

There is what I will call a second complication that is concerned with the question
of when the conserved currents can be derived and under what conditions they can be
said to be conserved; an issue that is intimately related to the physical interpretation
of the conserved quantities. It was shown long ago [3] that any Lagrangian theory
that has a local group as a symmetry group, also has an infinite number of one-
parameter global subgroups as symmetry groups and, therefore, under the appropriate
conditions, an infinite number of conserved currents should be derivable. Moreover,
for such theories, it is also true that there exists an infinite number of conserved
currents that do not need any conditions for them to be conserved—that is, their
continuity equations are mathematical identities and such currents are said to be
conserved off-shell.

Before reflecting on the physical interpretation of such currents, it is necessary
to revisit the application of Noether’s theorems to a Lagrangian field theory with
a local symmetry group. This presentation of Noehter’s theorems follows [5]. Let
us consider a field theory whose field equations are derivable through Hamilton’s
principle from an action S = ∫

d4xL(ϕi , ∂νϕi , xμ), where L is a Lagrangian density
that depends on the independent variables xμ, together with the fields ϕi and their
derivatives. Iwill use the term variational symmetries to denote those transformations
that leave the Lagrangian density form invariant up to a divergence term (note that
this is a sufficient condition for the Euler–Lagrange equations to be invariant under
such transformations). This is the type of symmetries for which Noether’s theorems
apply.

Noether’s First Theorem (NFT): If the variational symmetry transformations
form a continuous group depending on p constant parameters (k = 1, . . . , p), such
that δxμ = εkξ

μ

k (x), δ0ϕi (x) = ϕ′
i (x) − ϕi (x), then the following p relations hold:

∑

i

Lϕi

∂(δ0ϕi )

∂εk
= ∂μ jμk (1)

where Lϕi are the Euler–Lagrange expressions given by the variational derivatives
of the Lagrangian with respect to the corresponding fields ( δL

δϕi
) and jμk is the current

associated with the parameter εk . From this we obtain a conserved current when the
Euler–Lagrange equations for all the fields are satisfied: ∂μ jμ = 0.

Noether’s Second Theorem (NST): If the symmetry transformations form a
continuous group depending on η arbitrary spacetime functions εk(x)(k = 1, . . . , η)
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and their first derivatives, δxμ = εk(x)ξμ

k (x), δ0ϕi = ∑
k(aki (ϕi , ∂μϕi , x)εk(x) +

bν
ki (ϕi , ∂μϕi , x)∂νεk(x)), then the following η relations hold:

∑

i

Lϕi aki =
∑

i

∂ν(b
ν
ki Lϕi ) (2)

We are now going to assume that we have a global symmetry group that is
a subgroup of a local one. Then we can write εk(x) = εmζ k

m(x) and δ0ϕi (x) =
(akiζ k

m(x) + bν
ki∂νζ

k
m(x))εm for the variation of the fields. Now applying NFT and

NST (combining (1) and (2)) we obtain

∑

i

∂ν(b
ν
ki Lϕi ζ

k
m) = ∂ν j

ν
m (3)

From equation (3) we derive the existence of conservation laws that hold identi-
cally (independently of whether any field equation is satisfied)

∂ν( j
ν
m −

∑

i

bν
ki Lϕi ζ

k
m) = 0 (4)

The functions in brackets have identically vanishing divergences, fromwhich one
can infer the existence of antisymmetrical functions, the so-called superpotentials
U [νρ]

m (whose divergences vanish identically, ∂ν∂ρU
[νρ]
m = 0) such that

jνm =
∑

i

bν
ki Lϕi ζ

k
m + ∂ρU

[νρ]
m . (5)

The Noether current obtained from the NFT is now expressed as a term that
vanishes on-shell plus one whose divergence vanishes identically. In the next section,
I will start to reflect on the physical meaning of such currents.

3 Proper and Improper Conservation Laws

Noether (following Hilbert) introduces the following classification of conservation
laws. She uses the term improper conservation laws to denote those where the con-
served current can be written in the above form (5): as a combination of Euler–
Lagrange expressions plus an identically conserved quantity. This implies that, when
the Euler–Lagrange equations are satisfied (on-shell), the conserved current is given
by the divergence of an arbitrary superpotential. Such conservation laws are always
obtained in a theory with a local symmetry group. In contrast, she reserves the name
proper conservation law for those in which the conserved current cannot be decom-
posed in this way. Trautman [10, p. 179] argues that proper conservation laws are
obtained in theories where the global symmetry group cannot be enlarged so that
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the theory possesses a local symmetry group without introducing auxiliary, non-
dynamical fields.

There is another common term that is used in discussions about conservation laws.
Bergmann namesweak conservation laws those that are only conserved if all the field
equations are satisfied. In contrast, strong conservation laws are divergences that
vanish whether or not the Euler–Lagrange equations are satisfied. Although the term
strongmight have positive connotations, the fact that in many cases such expressions
are mathematical identities does not confer any robust physical significance on them.

Now, the focus of our interest is on the physical significance, if any, of such
classifications. I will start by briefly reviewing some of the positions expressed with
respect to this issue in the physics literature. Here we find what has been named
the Noether-charge puzzle for gauge symmetries [1] which surfaces when one tries
to define a charge related to a gauge symmetry using NFT, as one does for global
symmetries. As we have seen, the presence of the local symmetry makes the Noether
current vanish on-shell up to the divergence of a superpotential (a term whose diver-
gence vanishes identically, that is, which is completely arbitrary). So, if we use the
current to define the charge, as one does following the usual procedure this results
in an undefined Noether charge (the surface integral of an arbitrary function):

Q[ϕ(x)] =
∫

�

j |ϕ(x) =
∫

δ�

U |ϕ(x) (6)

This problem was introduced by Bergmann and collaborators. They showed that a
theorywith local symmetries produces an infinite number of strong conservation laws
(generated by the existence of the one-parameter global subgroups of the local ones
(see eq. 4)) which induce the definition of the superpotentials that are at the origin
of the above-mentioned puzzle. So, superpotentials are going to come together with
local (gauge) symmetries and this, in some cases, engenders improper conservation
laws. One of the first tasks of this paper will be to clarify why improper conservation
laws do not appear with every local symmetry and the consequences of this for
the discussion of the significance of these quantities. A second question that we
will need to address is whether, and in what precise sense, the mere fact of having
improper conservation laws has any devastating effect on our usual interpretation
of symmetries. It seems to be the case that the existence of improper conservation
laws trivialises the definition of charges, and we will need to see why the definition
of charges might be important for the interpretation of symmetries. Before that,
however, it has been pointed out that the connection between improper conservation
laws and the impossibility of defining respectable charges is not correct; or at least,
it must be tempered. In section 4, I will look at the solutions that have been proposed
to escape the puzzle.
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3.1 Some Examples

In order to start thinking about the meaning of the different types of conserved
currents, it will be useful to consider some concrete examples.1 First, I will illustrate
how weak proper conservation laws appear in theories with global symmetries that
are not embedded in a local symmetry group. Consider a Lagrangian density that
produces, through Hamilton’s principle, the Klein–Gordon equation for a complex
scalar field

Lkg = ∂μϕ∂μϕ∗ − m2ϕϕ∗ (7)

This Lagrangian is invariant under the following global transformations:

ϕ → ϕ′ = ϕeiθ

ϕ∗ → ϕ∗′ = ϕ∗e−iθ (with θ constant) (8)

Taking that the phase transformation is infinitesimal, to first order, we have

δϕ = iθϕ

δϕ∗ = −iθϕ∗ (9)

Applying NFT (1), we obtain:

∂μ jμkg = iϕ∗Eϕ∗ − iϕEϕ (10)

with
jμkg = i(ϕ∗∂μϕ − ϕ∂μϕ∗). (11)

When the Euler–Lagrange equations are satisfied (Eϕ = Eϕ∗ = 0), then jμkg is a weak
proper conserved current. The continuity equation ∂μ jμkg = 0 can be transformed,
through imposing suitable boundary conditions involving the rapid fall-off of fields
at spatial infinity, into the conservation of a quantity (charge)

Qkg = i
∫

V
(ϕ∗∂μϕ − ϕ∂μϕ∗)d3x (12)

It is easy to transform the Lagrangian Lkg into one that is invariant under local
phase transformations by introducing a four-vector field Aμ(x) and a covariant deriv-
ative associated with it, Dμ = (∂μ + Aμ)

LKG = DμϕDμϕ∗ − m2ϕϕ∗ (13)

LKG is invariant under the following transformations:

1See Brading [4] for a similar treatment of these examples.
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ϕ → ϕ′ = ϕeiθ

ϕ∗ → ϕ∗′ = ϕ∗e−iθ

Aμ → A′
μ = Aμ + ∂μθ (with θ = θ(x)arbitrary functions) (14)

Now we can apply both of Noether’s theorems and obtain a strong conservation law
(substituting in (4)). Nonetheless, when we write the conserved current, we realise
that it is not truly an improper one, due to the fact that Aμ(x) is not a dynamical field
and its Euler–Lagrange expression does not vanish; current (5) takes the following
form on-shell:

jν = L A + ∂ρU
[νρ] (15)

Notice that this would not be a conserved current were it not the case (as in fact it is)
that the non-dynamical field is invariant under the global subgroup of constant phase
transformations. This can be seen directly on the application of NFT; divergence (1)
in this case becomes on-shell:

∂μ jμ = L Aν

∂(δ0Aν)

∂θ
(16)

which vanishes despite the Euler–Lagrange expression being non-zero, because:
∂(δ0Aν )

∂θ
= 0. So in this case, the currents associated with the transformations that

are symmetries of the non-dynamical field cannot be suspected of generating trivial
charges (wewill see that this is also the case for generally covariant spacetime theories
with a non-dynamical symmetrical metric; in those cases, the properly conserved
currents are associated with the Killing vectors of the background metric).

Finally, let us consider an example of local symmetries where there are no non-
dynamical fields. For this, I am going to complete the Lagrangian LKG with a term
that provides field equations for Aμ

LEM = DμϕDμϕ∗ − m2ϕϕ∗ − 1

4
FμνFμν (17)

with Fμν = ∂μAν − ∂ν Aμ. This Lagrangian is invariant under the local transforma-
tions (14). As above, we can apply both theorems. However, as opposed to what
happened previously, we now obtain an improper conservation law because on-shell
all the Euler–Lagrange expressions become zero.We seem to be in a potentially prob-
lematic situation: throughNFTweobtain aweakly conserved current; but by applying
both theorems, we discover that this current is improper. This leaves the charge, in
principle, ill-defined: jν = ∂ρU [νρ]. Now, we know that the Euler–Lagrange equa-
tions for Aμ are

∂νF
μν = jμ (18)

with
jμ = i(ϕ∗Dμϕ − ϕDμϕ∗). (19)
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From which, simply by definition of Fμν :

∂μ∂νF
μν = ∂μ jμ = 0 (20)

So even if the application of both theorems indicates to us the possible triviality in
the definition of charge, the dynamics of the theory offers us a plausible physical
interpretation. If we take Fμν to be the superpotential, then the definition of charge
through the superpotential that we considered before as problematic, just expresses
this quantity as the flux of a field quantity through a tree-dimensional surface

Q[ϕ(x)] =
∫

δ�

Fμν |ϕ(x) (21)

This makes the situation here not so desperate. To see why, let us have a look
at a possible definition of superpotential and the associated charge. By looking at
the result of applying NFT (or simply the Euler–Lagrange equations for A) we
realise that one possibility for the superpotential is the electromagnetic field F ; this
undermines the claim that the definition of a charge that is based on this quantity
should have a problematic physical status. We must not forget, though, an important
feature of this theory, one that not every theory with local symmetries is going to
posses: the global transformations that are associated with the conserved current
through NFT are still symmetries of the field Aμ (as they were for the theory with
Lagrangian LKG). This makes the expression for the current the same as before.
Therefore, the physical status of the charge defined through that current should be
as respectable as before. Nonetheless, we still have the result from the application of
both theorems that obscures the physical meaningfulness of the conserved current.
From this perspective, wemight say that, even if the current is given by the divergence
of an arbitrary superpotential on-shell, a natural choice for the superpotential, the
current and the subsequent charge is available; thanks to the relationship between
the electromagnetic field and the sources provided by the field equations. Moreover,
this choice produces quantities that are invariant under the transformations that leave
the A field invariant. As we will see in the next section, this procedure is somehow
generalisable; at least to some solutions of other theories with local symmetries.

To sum up, the fact that the solutions of the theory are globally symmetrical
seems to be tied up with the current obtained through NFT not being trivial; even
if it has the form of a superpotential on-shell, the same field equations suggest the
definition of the superpotential and suggest the interpretation of charge as field flux.
Moreover, the superpotential is symmetrical under the global transformations that
leave the solutions invariant and this means that the surface integral that enters into
the charge definition is well defined. All this will generalise as desirable features
for superpotentials involved in the definition of physically meaningful charges for
theories with local symmetries.

erik@strangebeautiful.com



The Physical Significance of Symmetries … 275

4 Conservation Laws in Gauge Theories: Asymptotic
Symmetries

A potential problem for theories with local symmetries—what has been called the
Noether-charge puzzle for gauge symmetries—is that the usual definition of charges
associated with global symmetries yields quantities that can be said to be physically
trivial. We need to consider the relevance of this result for the interpretation of
symmetries; but before that we must make this claim more precise, following the
hints extracted from the discussion of the examples above. The following is what
one can extract from the discussion of application of Noether’s theorems to theories
with local symmetries.

First, the presence of local symmetries is not a sufficient condition for the theory to
have improper conservation laws. This is a direct consequence of (5). Note that local
symmetries always imply strong conservation laws and therefore superpotentials
(see (4)); but by itself this does not mean that there is a conserved current associated
with a global symmetry that is a superpotential on-shell. In other words, we might
have strong conservation laws that are trivial in a sense (this is not a surprise if one
considers that no dynamical conditions were imposed to arrive at such laws) but we
do not necessarily have weak improper conservation laws; when there are absolute
variables in the theory, if there are weak conservation laws, they are going to be
related to the symmetries of the absolute objects and are going to be proper laws.
So we can conclude that in such cases, local symmetries do not trivialise conserved
quantities that have their origin in global symmetries.

The situation is different when all the variable fields in the Lagrangian are dynam-
ical. Nonetheless, one must distinguish between theories with symmetrical fields and
theories where none of the fields have global symmetries. In both cases (5) is going
to be an improper, weakly conserved current, but in the first case it is possible to think
of a theory where the symmetrical field that produces the same conserved current is
non-dynamical but is, as above, proper. This may be interpreted as indicating that the
improperness of the current in the original theory is accidental and that the definition
of non-trivial charges is possible.

Finally, we are left with the most general case: theories for which all fields are
dynamical and whose solutions are not generally symmetrical (this group includes
General Relativity and Yang–Mills theories). These theories produce improper cur-
rents that are weakly conserved and the charges defined through them fall prey to
the accusation of a lack of meaningfulness. Nonetheless, as Barnich et al. [1] point
out, the problem can be, at least partially, solved. The idea is that although there
are no non-trivial conserved currents in these theories, one can define non-trivial
asymptotically conserved currents, and well-defined charges, when solutions are
asymptotically symmetrical. According to Barnich et al. [1] it is enough that the
“theory becomes asymptotically linear near the boundary when expanded around a
suitable background.” When this is the case, they claim to prove that the asymp-
totically non-trivial conserved currents are generated by transformations that are
symmetries of such a background.
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The details are not important for our discussion but it might be useful to reflect
on the origins of the problem and this solution to it. Recall that a consequence of
the presence of local symmetries is to make the definition of charge dependent on
a surface integral of an arbitrary identically conserved function (the superpotential).
This makes charge, in general, undefined; but it also indicates that, if we have a
criterion that allows us to choose (construct) the right superpotential, the definition
of charge will depend only on the properties of the superpotential around the bound-
ary. If, as happens for Maxwell’s theory, we can choose a physically meaningful
superpotential, then charge can be interpreted as the flux of a field through a closed
surface. According to the proposed solution, non-trivial conserved superpotentials
exist when the theory can be decomposed around a symmetrical background at the
boundary. Meaningful conserved charges are then linked to symmetries of the back-
ground; this is the same as we found for electromagnetism but, while in that case
the background was an exact solution, in general it is enough if such a background
exists at the boundary and the solutions tend asymptotically to it. What this seems
to suggest is that there is a connection between meaningful conserved charges and
global symmetries of a background.

5 The Physical Significance of Local Symmetries

It is widely recognised that symmetries and symmetry arguments have played a very
important role in theorising in physics. Some of the most influential physical theories
of the twentieth century have brought the concept of symmetry to the fore, which
makes a correct understanding of the physical importance of such a feature of theo-
ries essential. In fact, of the different ways in which one can classify the symmetries
present in physical theories, there is one that is intended precisely to distinguish
between symmetries that are a sub-product of the formalism that the theory uses to
describe phenomena, and others that capture a feature belonging to the phenomena
themselves. Such a distinction is what is going to occupy the rest of this discussion.
In different contexts it has been labelled using various pairs of names (such as analyt-
ical/physical, passive/active, with/without empirical significance, gauge/non-gauge)
and equated, many times erroneously, to other ends of different criteria of classifi-
cation (internal/external, local/global). So, before moving on to the remainder of the
debate, it is necessary to revisit the terms in which this discussion will take place.

An analysis of the empirical significance of symmetries has been set out (see
Kosso [9], Brading and Brown [6]). In it, there is a distinction between the direct
and indirect empirical significance of symmetries. Symmetries would have indirect
empirical significance if they had consequences that are observable; as an example
of this authors often refer to conservation laws. On the other hand, symmetries with
direct empirical significance are characterised by the two following conditions:
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(1) Transformation Condition: the transformation of a subsystem of the universe with respect
to a reference system must yield an empirically distinguishable scenario; and

(2) Symmetry Condition: the internal evolution of the untransformed and transformed sub-
systems must be empirically indistinguishable.

For Brading and Brown, symmetries that have direct empirical significance (those
that therefore meet the conditions just quoted) are those that correspond to transfor-
mations that can, in principle, actively transform effectively isolated with respect to
the rest of the universe; this involves symmetry transformations that connect two, in
principle, empirically distinct scenarios. Although Kosso, and Brading and Brown
coincide in their account of what the empirical significance of symmetries is, they
differ on the verdict as to the empirical significance of some specific symmetries.
According to Brading and Brown, it is only global spacetime symmetries that can
have direct empirical significance; some instances of them have an active interpre-
tation when they are applied to effectively isolated subsystems of the universe. Note
that it is not enough to say that global spacetime symmetries have direct empiri-
cal significance because they include transformations of the whole universe, which
cannot receive the same kind of active interpretation (this is almost by definition
as the whole cannot be a subsystem). So, according to this approach, it seems that
there must be something in global spacetime transformations that is always lacking
in global internal transformations and this is the fact that under the former, but not
the latter, it is possible to effectively isolate subsystems to which the transformation
is applied. Brading and Brown hint at the dynamical reason behind this difference in
the following passage:

In so far as internal global symmetries and local symmetries are perfect symmetries (i.e.,
there are no other interactions that fail to respect the symmetry in question), they have no
direct empirical significance, only indirect empirical significance.
[6]

This idea is stressed in the discussion about the possible empirical significance of
general covariance

Active arbitrary coordinate transformations in General Relativity involve transformations
of both the matter fields and the metric, and they are symmetry transformations having no
observable consequences. Coordinate transformations applied to the matter fields alone are
no more symmetry transformations in General Relativity than they are in Newtonian physics
(whether written in generally covariant form or not). Such transformations do have obser-
vational consequences. Analogously, local gauge transformations in locally gauge invariant
relativistic field theory are transformations of both the particle fields and the gauge fields,
and they are symmetry transformations having no observable consequences. Local phase
transformations alone (i.e. local gauge transformations of the matter fields alone) are no
more symmetries of this theory than they are of the globally phase invariant theory of free
particles.
[6]

I believe that the central idea behind this analysis, i.e. that for transformations to
have empirical significance it must be possible that they change only some of the
fields in the theory and not others, is correct; but this idea has not been implemented
with enough care. Although there might be more direct roads to this conclusion, I
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will argue that our previous discussion of the status of conservation laws helps to
clarify the physical significance of some symmetries with doubtful status that do
not have empirical significance according to Brading and Brown. Furthermore, this
will also make clear why some global spacetime symmetries cannot have empirical
significance.2

6 Physical Significance of Conservation Laws

I have argued, following Kosso, and Brading and Brown, that the empirical signif-
icance of symmetries is linked to the possibility of effectively isolating a subsys-
tem from its environment and being able to perform a transformation that renders
an empirically distinguishable scenario but one for which the same physical laws
apply. In other words, physical experiments inside the subsystem cannot tell whether
a symmetry transformation has been performed, but there must be some physical
differences between the two situations connected by the transformation which are
observable in principle. Those differences must come from the relation that exists
between the subsystem and the rest of the universe, in other words, the transforma-
tion must change the relationship between a given subsystem and other subsystems.
This involves change between subsystems, but at the same time invariance in the
relationship that holds between the transformed subsystem and the physically rel-
evant environment, and which is expressed through the dynamical laws. This can
be conceptualised by the existence of a background (a common framework) that
stands in the same relationship to both the untransformed and transformed subsys-
tems while allowing a distinct relationship between those subsystems. It must be
the case that with respect to (some of) the transformations that are symmetries of
the dynamical laws that encode the evolution of the subsystem, the background is
symmetrical; but at the same time that such transformations are not symmetries of
possible interactions between the subsystem and other subsystems (or the subsystem
and the background). Therefore, the background must be symmetrical with respect
to such a transformations.

Let us go back to our previous discussion of the different types of conservation
laws and their connection to the symmetries of theories. We have seen that there
is a correlation, shown by Noether’s theorems, between a subset of the dynamical
symmetries (the variational symmetries) and continuity equations that can sometimes
be transformed into conservation laws.Moreover, depending on the type of symmetry
present in the theory, we will obtain different types of conserved quantities. I said
before that some of these conservation laws are arguably trivial; we must see exactly
which ones and in what sense that is the case.

2In a recent paper, Greaves andWallace [7], a new theoretical framework is offered to try to capture
this same idea and solve some of the problems of the original framework. Part of this manoeuvre
involves being able to express isolation for a subsystem and using that to distinguishing between
different types of local symmetries. I believe that the verdictwith respect to the empirical significance
of local symmetries arrived at following such a path is in agreement with the one defended here.
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Two different types of trivial conservation laws appeared in the foregoing discus-
sion. The first type consists of having a conserved current that vanishes, up to an
identically conserved term, when all the field equations are satisfied. These are what
I have called improper weakly conserved currents and they appear in theories with
local symmetries where all the dependent (field) variables are dynamical. Such cur-
rents are associated with symmetry transformations that transform all the fields. The
second type of triviality consists of the divergences that vanish identically (without
the need to impose any field equation). I have called these strong conservation laws
and they are present in any Lagrangian theory with a local symmetry, irrespective of
whether it has variables to which Hamilton’s principle applies or not.

Of the two types of triviality, the second is linked to the formal character of some
symmetry transformations. The kind of continuity equations that I have called strong
conservation laws have nothing to do with the dynamics of the theory and appear
in theories where the symmetry is merely a formal feature of the field equations
and the action. One can say that no physical content is involved in that kind of
expression. The first kind of triviality, however, is of quite a different nature; it
involves having conserved currents that reduce to identically conserved currents on-
shell. So, the difference seems to be that, in the first case, the trivial conservation
laws appear after taking into account the dynamics of the theory. One would expect
symmetries with direct empirical significance to have consequences that depend
on some specific features of the space of solutions, rather than just holding in any
kinematically possiblemodel. This seems to suggest the following paradoxical claim:
although for theories with local symmetries and no absolute objects the number of
symmetries associated with conserved currents on-shell is higher, in reality they are
all trivial (in the first sense). However, as we have seen, for a class of solutions with
certain properties at the boundary, the problem of the triviality of such currents can
be solved, which results in a higher number of potentially physically meaningful
currents.

Although arguably3 these two different types of triviality of conservation laws
can have some consequences for the interpretation of the symmetries to which they
are related, it is the case that non-trivial conservation laws share a common feature:
they are somehow related to the presence of some kind of symmetrical background.
In the case of having non-dynamical variables in the theory, the weakly conserved
currents are associated with the symmetries of such non-dynamical variables. For
theories with only dynamical variables, we have seen that non-trivial charges are
definable through superpotentials for solutions that, at the boundary, have a globally
symmetrical background.

3More about this below.
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7 Physical Symmetries and Conservation Laws

Let us go back to the question regarding the empirical significance of symmetries.
It seems clear that in the talk about symmetries one must distinguish between when
one is referring to an empirical situation (an empirical system) and when one is
attributing the symmetry to theoretical formalism, even if this is done through the
consideration of a model that is a solution of the equations of the theory (we must
not forget that a model always involves idealisation of some kind). Any discussion of
the empirical consequences of symmetries must, therefore, make clear when one is
talking about symmetries as a feature of the world, which are independent of which
theory might be used to describe such empirical situation; and when one is talking
about symmetries as a feature of a given theory. It seems to me that the attempt
to characterise symmetries with direct empirical significance introduced above is
ambiguous in this respect; it is not clear whether one is talking about models of
theories or empirical systems.

I propose to modify the proposal in the following way. First, one must explicitly
declare that symmetries with direct empirical significance must be a type of theo-
retical symmetry (symmetries of some theoretical models). In consideration of this
not being the intention of the original proposal, I call such symmetries symmetries
with, in principle, direct empirical significance or, for short, symmetries with physi-
cal significance. The conditions for a symmetry to be one of these must be modified
as follows:

(1) Transformation Condition: the transformation of a subsystem of the universe with respect
to a reference system must yield an, in principle, empirically distinguishable scenario; and

(2) Symmetry Condition: the transformations are, at least, dynamical symmetries (they pro-
duce physically indistinguishable evolutions).

The second condition is the one that ensures that the transformations in question are in
fact symmetries in the relevantway:with respect to any experiments performed inside
a subsystem and that test the evolution of such subsystem according to certain laws,
the two situations at the end of the transformation are indistinguishable. Meanwhile,
the first condition is the one that provides the empirical significance; but now we
are viewing the system as a theoretical model and the question is whether the theory
behind such a model has enough resources to distinguish between the two situations.
Naturally, this question cannot be answered by looking at themathematical formalism
alone (from the mathematical point of view, the distinction is certainly possible) and
will be dependent on the interpretation of the theory (which obviously does not mean
that any interpretation will do for a given formalism).

The presence, in the models, of geometrical objects that are invariant under the
symmetry transformations can be taken as the indication of, in principle, direct empir-
ical significance; that such objects are symmetrical under the transformations in ques-
tion permits us to use them as a marker of the change suffered by the other objects
in the model. Naturally, this is originally a mathematical difference that will only
be physically significant if the interpretation of the theory allows us to see change
relative to the symmetrical object as physically relevant. In any case, what can be
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said so far is that symmetrical objects are a sign of, in principle, direct empirical
significance of symmetries.

In the previous section, we saw that non-trivial conservation laws are also related,
in one way or another, to the existence of symmetrical backgrounds. My claim is that
such a coincidence is not accidental, but expresses a deeply rooted fact about what is
involved in performing an, in principle, directly empirically significant transforma-
tion. From the point of view of both the symmetry transformation and the conserved
current, the presence of a symmetrical background indicates that one can effectively
isolate a subsystem from the rest of the universe.

8 Do Non-trivial Conservation Laws Always Relate
to Empirically Significant Symmetries?

The discussion presented here can, at the most, make the connection between empir-
ical symmetries and non-trivial conservation laws plausible through the existence
of symmetrical backgrounds. A more systematic study would be needed in order to
establish the connection on firmer grounds. Nonetheless, even without more rigorous
consideration, which is beyond the scope of this paper, we must make sure that the
proposal does not have any obvious drawbacks.

Here is a positive way of presenting the task ahead: we may assume that a certain
connection between physical symmetries and non-trivial conservation laws has been
established. So, we look at the symmetries that, according to the grounds for that
connection, should have this kind of empirical significance, and discuss whether they
are, mainly, the ones we expect andwhat this approach says about the cases which are
usually considered as controversial in discussions about the empirical significance
of symmetries. To this end, I will concentrate on applying the proposal to global
symmetries that are a subgroup of local ones, and global symmetries applied to the
universe as a whole.

8.1 The Empirical Significance of Global Symmetries

The first inconvenience for my claim is the existence of an obvious potential coun-
terexample. Global symmetries are related to physically respectable conservation
laws and these can be applied to the universe as a whole, but it seems obvious that
this type of symmetry transformation cannot have any direct empirical significance.
In this section, I argue that the global symmetry transformations that NFT relate to
proper conservation laws should not, in reality, be interpreted as transformations of
the universe as a whole.

To see this, let us look at a simple example; a Lagrangian formulation of a special
relativistic Klein–Gordon scalar field
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Lkg(φ, x) = ∂μφ∂μφ − m2φ2 (22)

The variational symmetries of this theory are given by the transformations of
the Poincaré group: global symmetries that are linked, through NFT, to ten weakly
conserved currents. Each of these transformations applies to the only field present in
the theory, the scalar field, and in this sense they are universe transformations with no
possible empirical significance. My assertion, then, that the existence of non-trivial
conserved currents is linked to empirical symmetries, seems to go completely astray
in this example.

Nonetheless, this interpretation might be misleading; it obscures the existence of
the Minkowski metric that is invariant under the symmetry transformations. There-
fore, the symmetry transformations leave a metrical structure invariant; a structure
that can play the role of background that I mentioned above. Moreover, the existence
of such a background can make it physically possible to distinguish between the two
states separated by the transformation. Therefore, the symmetries under considera-
tion can, in principle, have empirical significance. Of course, whether it does or not
will depend on whether one is ready to endow physical significance on the spacetime
points represented by the Minkowski metric.

However, if the foregoing argument is correct, there is a question that we should
answer: what happens if we have a relational theory, understanding by this one for
which the dynamics is not formulated as dependent on spacetime points, but in terms
of relational quantities? Arguably, a Lagrangian for such a theory is going to have, let
us say, translations as variational symmetries; but the field variables are themselves
also going to be invariant under such transformations. The consequence of this is that
the currents conserved according toNFT are going to be strongly conserved ones, and
therefore they will be affected by one of the two types of triviality explained above.
The verdict is that for a relational theory, one for which no background structure
can exist, the conservation laws associated with transformations of the universe are
trivial. In contrast, for a theory in which there is a structure that can be interpreted as a
background that remains unaltered while the other fields are transformed, conserved
currents associated with what one might have thought were universe transformations
are non-trivial and have, in principle, direct empirical significance. If this result seems
anti-intuitive, one must remember that such empirical significance is a property of
symmetries relative to theoretical models, which indicates that the theory has the
resources to describe the symmetry transformation as connecting two physically
distinct situations.

8.2 The Empirical Significance of Local Symmetries

Conservation laws linked to symmetry transformations that are arguably not observ-
able are affected by some type of triviality and in this paper, I have tried to argue that
we can extrapolate physical meaning from this fact. Furthermore, there appear to be
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different kinds of trivial conservation laws and, I argue here, they seem to be linked
to two different types of unobservable symmetry transformations.

For Lagrangian theorieswith local symmetries that have non-dynamical variables,
proper weakly conserved quantities, non-trivial ones then, can be derived that are
linked to the symmetries of the non-dynamical object. Moreover, we have strong
conservation laws associated with the one-parameter global subgroups of the local
symmetry group. Such conservation laws are trivial in a very strong sense; they are
identically conserved off-shell. In other words, the conserved current is identical to
a superpotential (it differs from zero only by this arbitrary, identically conserved
quantity: it belongs to the null equivalence class).

Let us consider in which cases such currents appear. Theories with absolute vari-
ables that are nonetheless locally symmetrical can be said to have a merely formal or
passive variant of local symmetry; think for instance of coordinate independent the-
ories with an absolute spacetime structure. Obviously, not all theories with absolute
variables are going to have this high degree of formal symmetry, but as a conse-
quence the number of symmetry transformations related to trivial conservation laws
will also vary.

Trivial conservation laws are also present in theories with no absolute variables
(for which all the variables varied in the Lagrangian are subject to Hamilton’s princi-
ple). But in this case, we have conserved currents that are arbitrarily identically con-
served only on-shell; what, following Noether, I have called improper conservation
laws. We have seen how these currents, for solutions with symmetrical background
around the boundary, allow the definition of non-trivial charges. One can argue that
this feature is connected to these quantities having a milder form of triviality. The
symmetries associated with this type of conservation laws are local symmetries that,
although they are often clustered under the term gauge, one would not want to see as
merely formal. Examples of these are general covariance in GR or the gauge sym-
metry of Yang–Mills theory. These symmetries, non-observable in general, become
observable when they are asymptotical symmetry transformations of the background
at the boundary.

What is the best way to interpret these facts? The following is what can be derived
from the strategy adopted in this paper. We can think of symmetries in physics origi-
nally as a formal feature of theories: they are formal features of field equations or of
their models. In some cases, such transformations can correspond to some particular
physical transformations, and the ones that can be so must be the symmetries that
we want to call with in principle direct empirical significance. In such cases, it must
be the case that the physical systems to which one can apply the transformations
have some specific physical requirements and that the mathematical apparatus of the
theory has the power to capture some of them (in the form of conservation laws, for
instance). Conservation laws (non-trivial ones) would then be a feature indicating
that a physical transformation corresponding to a given symmetry can be performed
and that the interpretation of the mathematical apparatus of the theory can capture
the transformation as physical. In this sense, wewould be able to distinguish between
merely formal and substantive versions of symmetries depending on the theory in
which they are implemented.
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With this to hand, we can make sense of cases in which global symmetries, under-
stood as a subgroup of local ones, can have direct empirical significance. According
to Brading and Brown, only global spacetime symmetries can have direct empirical
significance. As I said above, this poses the problem of how to understand the fact
that global symmetries applied to subsystems of the universe can have this status in
theories in which such symmetries are part of a local symmetry group: as an exam-
ple of this, just think of how from GR one would explain a situation of the type of
Galileo’s ship. From our perspective, this seems an easy task. GR has some theoreti-
cal models in which the spacetime metric has certain symmetries at the boundary. In
those models, the transformations that at the boundary correspond to those symme-
tries are the ones that would have, in principle, empirical significance; and the ones
for which non-trivial conserved currents can be defined.

9 Concluding Remarks

No doubt that the discussion regarding the physical significance of symmetries is one
of the most venerable in the foundations of physics. I have argued that by introducing
conservation laws into the discussion, one sheds light on the much-debated issue of
the physical/empirical significance of symmetries in physical theories. The main
purpose of this paper is to show just how this can be so.

We can summarise the virtues of using the connection between symmetries and
conserved currents (encoded by Noether’s theorems for Lagrangian theories) for the
discussion in the following manner. First, it shows that there is an issue that has
been greatly ignored regarding the physical status of different conserved currents
that runs parallel to the question about the physical/empirical status of the associated
symmetries. On the side of currents, the issue is elucidated by noting that physi-
cally significant conserved currents are such in virtue of reference to some physical
background. Second, we can use this same idea to modify the characterisation of
symmetries with direct empirical significance. The result indicates a property of for-
mal symmetries that identifies those that can have direct empirical significance; the
formal imprint of physical symmetries is that the models have absolute objects that,
while being symmetrical, can be used to distinguish situations linked by the sym-
metry transformation. Third, this strategy provides a certain natural understanding
of how global symmetries with direct empirical significance can be a subgroup of
local symmetries (which are always under suspicion of being merely formal): what
is relevant, as in the Noether-charge puzzle, is whether some models of the theory
contain objects with certain symmetries (perhaps only introduced as boundary con-
ditions) that permit us to define empirical transformations. This is compatible with
the idea that local symmetries are prima facie just formal features of the theory.
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Does Time Exist in Quantum Gravity?

Claus Kiefer

Abstract Quantum theory and general relativity contain different concepts of time.
This is considered as one of the major obstacles to constructing a quantum theory
of gravity. In my essay, I investigate those consequences for the concept of time in
quantum gravity that may be drawn without a detailed knowledge of the final theory.
The only assumptions are the experimentally supported universality of the linear
structure of quantum theory and the recovery of general relativity in the classical
limit. Among the consequences are the fundamental timelessness of quantumgravity,
the approximate nature of a semiclassical time and the correlation of entropy with
the size of the Universe.

1 Time in Physics

On 14 December, 1922, Albert Einstein delivered a speech to students and faculty
members of Kyoto University in which he summarized how he created his theories of
relativity [1]. As for the key idea in finding special relativity in 1905, he emphasized:
“An analysis of the concept of time was my solution”. He was then able to complete
his theory within five weeks.

An analysis of the concept of time may also be the key for the construction of a
quantum theory of gravity. Such a hope is supported by the fact that a change of the
fundamental equations in physics is often accompanied by a change in the notion of
time. Let me briefly review the history of time in physics.

Before the advent of modern science, time was largely associated with periodic
motion, notably the motion of the ‘Heavens’; time was considered ‘the measure of
change’. It was Newton’s great achievement to invent the notion of an absolute and
continuous time, described by an external parameter t . Such a concept was needed
for the formulation of his laws of mechanics and universal gravitation. Although
Newton’s concepts of absolute space and absolute time were heavily criticized by
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some contemporaries as being unobservable, alternative relational formulations were
only constructed after the advent of general relativity in the 20th century [2].

InEinstein’s theory of special relativity, timewas unifiedwith space to forma four-
dimensional spacetime. But this ‘Minkowski spacetime’ still constitutes an absolute
background in the sense that there is no reactio of fields and matter—Minkowski
spacetime provides only the rigid stage for their dynamics. Einstein considered this
lack of back reaction as very unnatural.

Minkowski spacetime provides the background for relativistic quantum field the-
ory and the Standard Model of particle physics. In the non-relativistic limit, it yields
quantum mechanics with its absolute Newtonian time t . This is clearly seen in the
Schrödinger equation,

i�
∂ψ

∂t
= Ĥψ. (1)

It must also be noted that the presence of t occurs on the left-hand side of this
equation together with the imaginary unit, i; this fact will become important below.
In relativistic quantum field theory, (1) is replaced by its functional version.

The Schrödinger equation (1) is, with respect to t , deterministic and time-reversal
invariant. As was already emphasized by Wolfgang Pauli, the presence of both t and
i are crucial for the probability interpretation of quantum mechanics, in particular
for the conservation of probability in time.

But the story is not yet complete. It was Einstein’s great insight to see that gravity
is a manifestation of the geometry of spacetime; in fact, gravity is geometry. This
led him to his general theory of relativity, which he completed in 1915. Because of
this identification, spacetime is no longer absolute, but dynamical. There is now a
reactio of all matter and fields onto spacetime and even an interaction of spacetime
with itself (as is, e.g. the case in the dynamics of gravitational waves).

So, time is absolute in quantum theory, but dynamical in general relativity. What,
then, happens if one seeks a unification of gravity with quantum theory or, more
precisely, seeks an accommodation of gravity into the quantum framework? To para-
phrase Einstein’s words from above: an analysis of the concept of time is needed. In
this context, one often speaks about the ‘problem of time’ [3–6].

But does one really have to unify gravity with quantum theory into a theory of
quantum gravity? In the next section, I shall give a concise summary of the main
reasons for doing so. I shall then argue that one can draw important conclusions about
the nature of time in quantum gravity without detailed knowledge of the full theory;
in fact, all that is needed is the semiclassical limit—general relativity. I shall then
describe the approximate nature of any time parameter and clarify the relevance of
these limitations for the interpretation of quantum theory itself. I shall finally show
how the direction of time can be understood in a theory which is fundamentally
timeless.
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2 The Disappearance of Time

The main arguments in favour of quantizing gravity have to do with the universality
of both quantum theory and gravity. The universality of quantum theory is encoded
in the apparent universality of the superposition principle, which has passed all
experimental tests so far [7, 8]. There is, of course, no guarantee that this principle
will not eventually break down. However, I shall make the conservative assumption,
in accordance with all existing experiments, that the superposition principle does
hold universally. Arbitrary linear combinations of physical quantum state do again
lead to a physical quantum state; in general, the resulting quantum states describe
highly entangled quantum systems. If the superposition principle holds universally,
it holds in particular for the gravitational field.

The universality of the gravitational field is a consequence of its geometric nature:
it couples equally to all forms of energy. It thus interacts with all quantum states of
matter, suggesting that it is itself described by a quantum state. This is not a logical
argument, though, but an argument of naturalness [9].

A further argument for the quantization of gravity is the incompleteness of general
relativity. Under very general assumptions, one can prove singularity theorems that
force us to conclude that timemust come to an end in regions such as the big bang and
the interior of black holes. This is, of course, only possible because time in general
relativity is dynamical. The hope, then, is that quantum gravity will be able to deal
with these situations.

It is generally argued that quantum gravity effects can only be seen at a remote
scale—the Planck scale, which originates from the combination of the three funda-
mental constants c (speed of light), G (gravitational constant) and � (quantum of
action). The Planck length, for example, is given by

lP =
√

�G

c3
≈ 1.62 × 10−35 m, (2)

and is thus much smaller than any length scale that can be probed by the Large
Hadron Collider (LHC).

This argument is, however, misleading. One may certainly expect that quantum
effects of gravity are always important at the Planck scale. But they are not restricted
to this scale a priori. The superposition principle allows the formation of nontrivial
gravitational quantum states at any scale. Why, then, is such a state not observed?
The situation is analogous to quantum mechanics and the nonobservability of states
such as a Schrödinger–cat state. And the reason why such states are not found is the
same: decoherence [7, 8]. The interaction of a quantum system with its ubiquitous
environment (that is, with unaccessible degrees of freedom) will usually lead to its
classical appearance, except for micro- or mesoscopic situations. The process of
decoherence is founded on the standard quantum formalism, and it has been tested
in many experiments [8].
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The emergence of classical behaviour through decoherence also holds for most
states of the gravitational field. But there may be situations where the quantum nature
of gravity is visible—even far away from the Planck scale. We shall encounter such
a situation in quantum cosmology. It is directly related to the concept of time in
quantum gravity.

Due to the absence of a background structure, the construction of a quantum theory
of gravity is difficult and has not yet been accomplished. Approaches are usually
divided into two classes. The more conservative class is the direct quantization of
general relativity; path-integral quantization and canonical quantum gravity belong
to it. The second class starts from the assumption that a consistent theory of quantum
gravity can only be achieved within a unified quantum theory of all interactions;
superstring theory is the prominent (and probably unique) example for this class.

In this essay, I want to put forward the view that the concept of time in quantum
gravity can be discussed without having the final theory at one’s disposal; the exper-
imentally tested part of physics together with the above universality assumptions
suffice.

The arguments are similar in spirit to the ones that led Erwin Schrödinger in 1926
to his famous equation (1). Motivated by Louis de Broglie’s suggestion of the wave
nature of matter, Schrödinger tried to find awave equation which yields the equations
of classical mechanics in an appropriate limit, in analogy to the recovery of geometric
optics as a limit to the fundamental wave optics. To achieve this, Schrödinger put
classical mechanics into the Hamilton–Jacobi form, from which the desired wave
equation could be easily guessed [10].

The same steps can be followed for gravity. One starts by casting Einstein’s field
equations into Hamilton–Jacobi form. This was already done by Asher Peres in 1962
[11]. The wave equation behind the gravitational Hamilton–Jacobi equation is then
nothing but the Wheeler–DeWitt equation, which was derived by John Wheeler [12]
and Bryce DeWitt [13] in 1967 from the canonical formalism. It is of the form

Ĥtot� = 0, (3)

where here Ĥtot denotes the full Hamilton operator for gravity plus matter. The wave
functional � depends on the three-dimensional metric plus all non-gravitational
fields.1

TheWheeler–DeWitt equation (3) may ormay not hold at the fundamental Planck
scale (2). But as long as quantum theory is universally valid, it will hold at least as
an approximate equation for scales much bigger than lP. In this sense, it is the most
reliable equation of quantum gravity, even if it is not the most fundamental one.

The wave function � in the Wheeler–DeWitt equation (3) does not contain any
time parameter t . Although at first glance surprising, this is a straightforward conse-
quence of the quantum formalism. In classical mechanics, the trajectory of a particle
consists of positions q in time, q(t). In quantum mechanics, only probability ampli-

1There also exist the so-called diffeomorphism constraints, which state that � is independent of
the choice of spatial coordinates, see e.g. [4] for details.
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tudes for those positions remain. Because time t is external, the wave function in (1)
depends on both q and t , but not on any q(t). In gravity, three-dimensional space
is analogous to q, and the classical spacetime corresponds to q(t). Therefore, upon
quantization, spacetime vanishes in the same manner as the trajectory q(t) vanishes.
But as there is no absolute time in general relativity, only space remains, and one is
left with (3).

We can thus draw the conclusion that quantum gravity is timeless solely from
the validity of the Einstein equations at large scales and the assumed universality
of quantum theory. Our conclusion is independent of additional modifications at the
Planck scale, such as the discrete features that are predicted from loop quantum
gravity and string theory. The latter two approaches do, however, lead to additional
modifications in the concept of space [4]. The AdS/CFT correspondence in string
theory, for example, suggests that laws including gravity in three spatial dimensions
are equivalent to laws excluding gravity in two spatial dimensions. It has even been
claimed that gravity thus is an illusion [14].

3 Time Regained

In August 1931, Neville Mott submitted a remarkable paper to the Cambridge Philo-
sophical Society [15]. He discussed the collision of an alpha-particle with an atom.
The remarkable thing is that he considered the time-independent Schrödinger equa-
tion of the total system and used the state of the alpha-particle to define time and to
derive a time-dependent Schrödinger equation for the atom alone. The total quantum
state is of the form

�(r,R) = ψ(r,R)eikR, (4)

where r and R refer to the atom and the alpha-particle, respectively. The time t is
then defined from the exponential in (4) through a directional derivative,

i�
∂

∂t
∝ ik · ∇R. (5)

This leads to the time-dependent Schrödinger equation for the atom. Such a viewpoint
of time as a concept derived from a fundamental timeless equation is rarely adopted
in quantum mechanics. It is, however, the key step to understanding the emergence
of time from the timeless Wheeler–DeWitt equation (3). While the alpha-particle in
Mott’s example corresponds to the gravitational part, the atom corresponds to the
non-gravitational degrees of freedom. The time t of the Schrödinger equation (1) is
then defined by a directional derivative similar to (5). Various derivations of such a
‘semiclassical time’ have been given in the literature (reviewed, e.g. in [4]), but the
general idea is always the same. Time emerges from the separation into two different
subsystems: one subsystem (here: the gravitational part) defines the timewith respect
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to which the other subsystem (here: the non-gravitational part) evolves.2 Time is thus
only an approximate concept. A closer investigation of this approximation scheme
then reveals the presence of quantum-gravitational correction terms [16]. Such terms
can in principle be observed in the anisotropy spectrum of the Cosmic Microwave
Background radiation [17].

I have remarked above that theHilbert-space structure of quantum theory is related
to the probability interpretation, and that the latter seems to be tied to the presence of t .
In the light of the fundamental absence of t , one may speculate that the Hilbert-space
structure, too, is an approximate structure and that different mathematical structures
are needed for full quantum gravity.

I have also remarked above that the time t in the Schrödinger equation (1) occurs
together with the imaginary unit i. The quantum-mechanical wave functions are thus
complex, which is an essential feature for the probability interpretation. Since the
Wheeler–DeWitt equation is real, the complex numbers emerge together with the
time t [18, 19]. Has this not been put in by hand through the i in the ansatz (4)? Not
really. One can start with superpositions of complex wave functions of the form (4),
which together give a real quantum state. But now, again, decoherence comes into
play. Irrelevant degrees of freedom distinguish the complex components from each
other, making them dynamically independent [7]. In a sense, time is ‘measured’ by
such irrelevant degrees of freedom (gravitational waves, tiny density fluctuations).
Some time ago, I estimated the magnitude of this effect for a simple cosmological
model [20] and found that the interference terms between the complex components
can be as small as

exp

(

− πmc2

128�H0

)

∼ exp
(−1043

)
, (6)

where H0 is the Hubble constant and m the mass of a scalar field, and some stan-
dard values for the parameters have been chosen. This gives further support for the
recovery of time as a viable semiclassical concept.

There are, of course, situations where the recovery of semiclassical time breaks
down. They can be found through a study of the full Wheeler–DeWitt equation
(3). One can, for example, study the behaviour of wave packets. Semiclassical time
is only a viable approximation if the packets follow the classical trajectory without
significant spreading. Onemay certainly expect that a breakdown of the semiclassical
limit occurs at the Planck scale (2). But there are other situations, too. One occurs
for a classically recollapsing universe and is described in the next section. Other
cases follow from models with fancy singularities at large scales. The ‘big brake’,
for example, corresponds to a universe which classically comes to an abrupt halt with
infinite deceleration, leading to a singularity at large scale factor. The corresponding
quantum model is discussed in [21]. If the wave packet approaches the classical
singularity, the wave function will necessarily go to zero there. The time t then loses

2More precisely, some of the gravitational degrees of freedom can also remain quantum, while some
of the non-gravitational variables can be macroscopic and enter the definition of time.
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its meaning, and all classical evolution comes to an end before the singularity is
reached. One might even speculate that not only time, but also space disappears [22].

The ideas presented here are also relevant to the interpretation of quantum theory
itself. They strongly suggest, for example, that the Copenhagen interpretation is not
applicable in this domain. The reason is the absence of a classical spacetime at the
most fundamental level, which in the Copenhagen interpretation is assumed to exist
from the outset. In quantum gravity, the world is fundamentally timeless and does not
contain classical parts. Classical appearance only emerges for subsystems through
the process of decoherence—with limitations dictated by the solution of the full
quantum equations.

4 The Direction of Time

A fundamental open problem in physics is the origin of irreversibility in theUniverse,
the recovery of the arrow of time [23]. It is sometimes speculated that this can only
be achieved from a theory of quantum gravity. But can statements about the direction
of time be made if the theory is fundamentally timeless?

The answer is yes. The clue is, again, the semiclassical nature of the timeparameter
t . As we have seen in the last section, t is defined via fundamental gravitational
degrees of freedom. The important point is that the Wheeler–DeWitt equation (3) is
asymmetric with respect to the scale factor that describes the size of the Universe in
a given state. It assumes a simple form for a small universe, but a complicated form
for a large universe. For small scale factor, there is only a minor interaction between
most of the degrees of freedom. The equation then allows the formulation of a simple
initial condition [23]: the absence of quantum entanglement between global degrees
of freedom (such as the scale factor) and local ones (such as gravitational waves or
density perturbations). The local variables serve as an irrelevant environment in the
sense of decoherence.

Absence of entanglementmeans that the full quantum state is a product state. Trac-
ing out the environment then has no effect; the state of the global variables remains
pure. There is then a vanishing entropy (as defined by the reduced density matrix)
connected with them; all information is contained in the system itself. The situation
changes with increasing scale factor; the entanglement grows and the entropy for the
global variables increases, too. As soon as the semiclassical approximation is valid,
this growth also holds with respect to t ; it is inherited from the full equation. The
direction of time is thus defined by the direction of increasing entanglement. In this
sense, the expansion of the Universe is a tautology.

There are interesting consequences for a classically recollapsing universe [24].
In order to produce the correct classical limit, the wave function of the quantum
universe must go to zero for large scale factors. Since the quantum theory cannot
distinguish between the different ends of a classical trajectory (such ends would
be the big bang and the big crunch), the wave function must consist of many quasi-
classical components with entropies that increase in the direction of a larger universe;
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one could then never observe a recollapsing universe. In the region of the classical
turning point, all components have to interfere destructively in order to fulfil the final
boundary condition of the wave function going to zero. This is a drastic example of
the relevance of the superposition principle far away from the Planck scale—with
possible dramatic consequences for the fate of our Universe: the classical evolution
would come to an end in the future. Such a quantum end could occur also in dark-
energy models that do not recollapse [21].

Let me finally emphasize again that all the consequences presented in this essay
result from a very conservative starting point: the assumed universality of quantum
theory and its superposition principle. Unless this assumption breaks down, these
consequences should hold in every consistent quantum theory of gravity. We are able
to understand from the fundamental picture of a timeless world both the emergence
and the limit of our usual concept of time, at least in principle.
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Raiders of the Lost Spacetime

Christian Wüthrich

Abstract Spacetime as we know and love it is lost in most approaches to quantum
gravity. For many of these approaches, as inchoate and incomplete as they may
be, one of the main challenges is to relate what they take to be the fundamental
non-spatiotemporal structure of the world back to the classical spacetime of general
relativity (GR). The present essay investigates how spacetime is lost and how it may
be regained in one major approach to quantum gravity, loop quantum gravity.

Many approaches to quantumgravity (QG) suggest or imply that space and time do
not exist at the most fundamental ontological level, at least not in anything like their
usual form. Thus deprived of their former status as part of the fundamental furniture
of the world, together, perhaps, with quarks and leptons, they merely ‘emerge’ from
the deeper physics that does not rely on, or even permit, their (fundamental) existence,
rather like tables and chairs. The extent towhich the fundamental structures described
by competing approaches to QG diverge from relativistic spacetimes varies, along
different dimensions [22]. That modern physics puts time under pressure is widely
accepted. One can read the history of modern physics from the advent of relativity
theory to the present day as a continuing peeling away of the structure that time was
initially believed to exemplify ([23] §2.1). But at least in some approaches, spacetime
as a whole comes under siege. This may occur in the relatively mild sense that the
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fundamental structure turns out to be discrete; or it may be discrete and non-local,
as it happens in loop quantum gravity (LQG); or the reality of some dimensions
of space is questionable altogether, as it is in theories with certain dualities; or it
may exhibit non-commutativity among different dimensions, obliterating the usual
geometric understanding that we routinely have of spacetime.

Just how radical the departure from the spacetime we know and love is remains
to be seen, but it is likely to have profound implications. For instance, it may render
some of our cherished philosophical theories not just of space and time, but also
of persistence, causation, laws of nature and modality obsolete, or at least in need
of revision [48]. But this paper will be concerned with the consequences for the
physics, rather than the metaphysics. Two urgent, and related, issues arise. First,
one might worry that if it is a necessary condition for an empirical science that we
can at least in principle measure or observe something at some location at some
time. The italicized locution, in turn, seems to presuppose the existence of space and
time. If that existence is now denied in quantum theories of gravity, one might then
fear that these theories bid adieu to empirical science altogether. It thus becomes
paramount for advocates of these theories to show that the latter only threaten the
fundamentality, but not the existence of space and time. To discharge this task means
to show how relativistic spacetimes re-emerge and how measurable quantities arise
from the fundamental structure as postulated by the theory at stake.

This first issue is closely related to a second problem: a novel theory can supplant
an incumbent theory only if it recreates at leastmost of the empirical success of the old
theory. The way in which this requirement is typically met in physics is by showing
how the newer theory offers a more general framework than the older one, and that
therefore the older is a special case of the newer, which can be regained, or at least
mocked in formally suggestive ways, in some limit or to some approximation. For
instance, it was important to Albert Einstein to be able to show that one obtains from
general relativity (GR), in aweak-field limit, a theorywhich returns essentially all the
same empirical results in the appropriate regime as Newtonian gravitational theory.
This recovery mattered because the Newtonian theory garnered impressive empirical
successes over the more than two centuries preceding Einstein’s formulation of GR.
For the very same reason, present-day quantum theories of gravity must eventually
prove that they relate, in physically salient ways, to the classical GR that the last
century of observations has found to be so accurate.1 In fact, given the complete
absence of direct empirical access to the quantum-gravitational regime, establishing
this link with ‘old’ physics arguably constitutes the single most important constraint
on theorizing in the quantum-gravitational realm.

Consequently, in theories of lost spacetime, relativistic spacetimes must be
regained from the fundamental structure in order to discharge the tasks of secur-
ing both the theory’s empirical coherence and its account of why the theory it seeks
to supplant was as successful as it was. It is the goal of this essay to show just

1Given this formidable success of the classical theory, one might wonder why we need a quantum
theory of gravity at all. There are good reasons to think that we do, but they do not fully align with
the standard lore one finds in the physics literature ([49] §1).
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how spacetime vanishes and how it might be seen to re-emerge in one important
approach to quantum gravity, LQG. Since the emergence of spacetime from a non-
spatiotemporal structure is often thought to be impossible, establishing the mere
possibility of such emergence assumes vital importance.2

The next section, Section 1, explicates how time, rather than spacetime, disappears
in a class of approaches toQG, the so-called ‘canonical’ theories. Canonical QG casts
GR in a particular way, and the sectionwill show how time and change vanish already
at the level of GR so cast. Section 2 then investigates the fundamental structures as
they are described byLQGand discusses the twomainways inwhich they differ from
relativistic spacetimes, viz. in their discreteness and their non-locality. The following
section, Section3, starts to clear the path for the re-emergenceof relativistic spacetime
by arguing how the emergence relation should not be construed in the present case.
Specifically, it argues against a non-reductive understanding of emergence and an
attempt to cash out the relation between the structures in terms of unitary equivalence
as both inadequate to the task at hand. Next, Section 4 sketches a way in which the
relationship between fundamental spin networks and relativistic spacetimes might
be worked out and tries to understand what it would generally take to relate them.
Section 5 offers brief conclusions.

1 The Problem of Time in Canonical General Relativity

Casting GR as a Hamiltonian system with constraints has many advantages, as John
Earman [16] affirmed: it gives the vague talk about ‘local’ and ‘global’ transforma-
tions a more tangible meaning, it explains how the fibre bundle formalism arises in
the cases it does, it has a sufficiently broad scope to relate GR to Yang–Mills gauge
theories, it offers a formalization of the gauge concept, and it connects to founda-
tional issues, such as the nature of observables and the status of determinism in GR
and in gauge theories. Moreover, the Hamiltonian formulation affords a natural affin-
ity to the initial-value problem in GR.3 The real gain of a Hamiltonian formulation,
however, arises when one tries to quantize the classical theory. Typically, prescrip-
tions to find a quantum theory from a classical theory require either a Lagrangian
(e.g. for the path integral method) or a Hamiltonian (e.g. for canonical quantization)
formulation of the theory. LQG relies on a canonical quantization procedure and thus
uses a Hamiltonian formulation of GR as a starting point.4,5

2For a very recent critical view, see, e.g. [25].
3Cf. ([46], Appendix E.2). A locus classicus for the Cauchy problem in GR is [12]; a more recent
survey article is [19].
4A useful introduction to the Lagrangian and the Hamiltonian formulation of GR is given in ([46],
Appendix E). Wald’s textbook of 1984 only deals with the ADM version of Hamiltonian GR and,
as time travel was not yet invented in 1984, does not treat Ashtekar’s version, pioneered in 1986.
5Of course, for most cases we care about, Hamiltonian theories afford a corresponding equiva-
lent Lagrangian theory, and vice versa. Currently, a debate rages in philosophy of physics overwhich
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However, forcing GR, to use the words of Tim Maudlin ([29], 9) “into the Pro-
crustean bed of the Hamiltonian formalism” also comes, as conveyed by the quote,
at a cost. The cost arises from the fact that the Hamiltonian formalism tends to
construe the physical systems it describes as spatially extended three-dimensional
objects evolving over an external time, and this is no different for the Hamiltonian
formulation of GR.6 Recasting GR in a Hamiltonian formalism thus reinterprets the
four-dimensional spacetimes of standard GR as three-dimensional ‘spaces’ which
evolve in a fiducial ‘time’ according to the dynamics governed by Hamilton’s equa-
tion. Pulling space and time asunder in this way, of course, contravenes the received
view of what many take to be the deepest insight of relativity, viz. that no separation
of the fundamental spacetime into space and time can in any physically relevant way
be privileged. This blatant violation of four-dimensionalism, of course, gets mathe-
matically mended in the formalism through the imposition of constraints. But we are
getting ahead of ourselves. What this brief paragraph should suggest is that having
a philosophically closer look at the dynamics of this reformulation of classical GR
is worth our while.7

A spacetime is an ordered pair 〈M , gab〉 consisting of a four-dimensional pseudo-
Riemannian manifold M and a metric tensor field gab defined on M . Starting out
from the Einstein–Hilbert action S[gab] for gravity without matter,

S[gab] = 1

16πG

∫

M
d4x

√−gR, (1)

where G is Newton’s gravitational constant, g the determinant of the metric tensor
gab, and R the Ricci scalar, one can gain a Lagrangian formulation of GR with the
dynamical Euler–Lagrange equations in terms of a Lagrangian function L(q, q̇) of
generalized coordinates q and the generalized velocities q̇ . The Lagrange function
is essentially the integrand in the action integral (1) integrated over the three spatial
dimensions. This action leads to the (vacuum) field equations of GR if one varies
(1) with respect to the metric gab. Thus, Einstein’s vacuum field equations can be
recognized as the equations of motion of the Lagrangian formulation of GR, i.e.
as the Euler–Lagrange equations. They are second-order differential equations. The
solutions to the Euler–Lagrange equations will be uniquely determined by q, q̇ just
in case the so-called ‘Hessian’ matrix ∂2L(q, q̇)/∂q̇n′

∂ q̇n of L(q, q̇), where n labels
the degrees of freedom, is invertible. This is the case if and only if its determinant,

(Footnote 5 continued)
of the two, if any, is more fundamental or more perspicuous. Nothing I say here should be taken to
entail a stance in that debate.
6There are, of course, purely internal degrees of freedom of particles, such as classical spin, which
admit of a Hamiltonian treatment without the system necessarily being extended in space. Now,
even a point particle with internal degrees of freedom is at least a physical system in space, and it
certainly also evolves over external time.
7In connection with what follows, Chapter 1 of [21] is recommended reading. For a less formal and
hence more accessible treatment of the problem of time, cf. ([23], §2) and references therein. Cf.
also Kiefer’s contribution to this collection.
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confusingly sometimes also called ‘Hessian’, does not vanish. In case the determinant
of the Hessian vanishes, which means the Hessian is ‘singular’, the accelerations q̈
will not be uniquely determined by the positions and the velocities and the solutions
to the Euler–Lagrange equations are not only not unique in q and q̇ , but also contain
arbitrary functions of time. Thus, the impossibility of inverting ∂2L(q, q̇)/∂q̇n′

∂ q̇n

is an indication of gauge freedom. How such gauge freedom arises in constrained
Hamiltonian systems is the topic of the next subsection, §1.1, followed by an analysis
in §1.2 of how this lesson carries over into the context of Hamiltonian GR and leads
to the problem of time.

1.1 Hamiltonian Systems with Constraints

Finding aHamiltonian formulation amounts to putting the Euler–Lagrange equations
in the formofHamiltonian equations ofmotion, q̇ = ∂H/∂p and ṗ = ∂H/∂q, which
are of first order. This can be achieved by the introduction of canonical momenta via

pn = ∂L

∂q̇n
, (2)

where n = 1, ..., N , N being the number of degrees of freedomof the system at stake.
These momenta are not all independent when we are faced with a system exhibiting
gauge freedom—i.e. just in case the Hessian is singular. These dependencies get
articulated in constraint equations

φm(q, p) = 0, m = 1, ..., M, (3)

whereM is the number of dependencies. The relations (3) between q and p are called
primary constraints and define a submanifold smoothly embedded in phase space
called the primary constraint surface. The phase space � is defined as the space of
solutions of the equations of motion. Assuming that all equations (3) are linearly
independent, which may not be the case, this submanifold will be of dimension
2N − M . Equations (3) imply that the transformation map between the Lagrangian
phase space �(q, q̇) and the Hamiltonian phase space �(q, p) is onto but not one-
to-one. Equations (2) define a mapping from a 2N -dimensional manifold of the q’s
an q̇’s to the (2N − M)-dimensional manifold defined by (3). In order to render the
transformation bijective and thus invertible, the introduction of extra parameters—
‘gauge fluff’—is required.8

Next, one introduces a Hamiltonian H as a function of position and momentum
variables as

H(q, p) = q̇n pn − L(q, q̇). (4)

8For more details on how the constraints arise in some Hamiltonian systems, see ([21], Ch. 1). My
exposition largely follows this reference.
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This canonicalHamiltonian is uniquely definedonly on the primary constraint surface
but can arbitrarily be extended to the rest of phase space. The ‘Legendre transfor-
mation’ defined by (2) turns out to be invertible just in case det(∂2L/∂q̇n′

∂ q̇n) �= 0.
Should the determinant of the Hessian vanish, as above, one can add extra vari-
ables um and thus render the Legendre transformation invertible. In this case, the
Hamiltonian equations corresponding to the Euler–Lagrange equations become

q̇n = ∂H

∂pn
+ um

∂φm

∂pn
,

ṗn = − ∂H

∂qn
− um

∂φm

∂qn
,

φm(q, p) = 0.

These Hamilton equations lead via arbitrary variations δqn, δpn, δum (except for the
boundary conditions δqn(t1) = δqn(t2) = 0 and that they must conserve H ) to the
Hamiltonian equations of motion for arbitrary functions F(q, p) of the canonical
variables

Ḟ = {F, H} + um{F, φm}, (5)

where {, } is the usual Poisson bracket

{F,G} := ∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
.

Consistency requires that the primary constraints φm be preserved over time, i.e.
that φ̇m = 0. As primary constraints are phase space functions, equation (5) then
implies

{φm, H} + um
′ {φm, φm ′ } = 0. (6)

This equation has one of two possible forms: either it embodies a relation only
between the q’s and p’s, without any um , or it results in a relation including um . In
the latter case, we just end upwith a restriction on um . In the former case, however, (6)
leads to additional constraints, called secondary constraints, on the canonical vari-
ables and thus on the physically relevant region of the phase space. These secondary
constraintsmust also fulfill the consistency requirement of being preserved over time,
which leads to new equations of the type (6), which again are either restrictions on
the um or constraints on the canonical variables, etc. Once the process is finished, and
we have all secondary constraints,9 denoted by φk = 0 with k = M + 1, ..., M + K ,
all constraints can be rewritten as φ j = 0 with j = 1, ..., M + K =: J . The full set
of constraints φ j = 0 defines a ‘subsubmanifold’ in the phase space�, i.e. a subman-
ifold of the primary constraint surface φm = 0, called the constraint surface C . The
relevant difference between primary and secondary constraints is that primary con-

9They are not referred to as tertiary, quaternary etc. constraints, but only collectively as ‘secondary’
constraints.
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straints are direct consequences of equation (2), whereas the secondary constraints
only arise once the equations of motion (5) are given.

Any two functions F and G in phase space that coincide on the constraint surface
are said to be weakly equal, symbolically F ≈ G. In case they agree throughout the
entire phase space, their equality is considered strong, expressed as usual as F = G.
Above, I have introduced the qualification of constraints as primary. However, there
is a more important classification of constraints into first-class and second-class
constraints, defined as follows:

Definition 1 (First-class constraints) A function F(q, p) is termed first class if and
only if its Poisson bracket with every constraint vanishes weakly,

{F, φ j } ≈ 0, j = 1, ..., J. (7)

If that first-class function is a constraint itself, then we call it a first-class constraint.
A function in phase space is called second class just in case it is not first class.

The property of being first class is preserved under the Poisson bracket, i.e. the
Poisson bracket of two first-class functions is first class again.

The fact that arbitrary functions um enter the Hamilton equations (or, equivalently,
the Hamiltonian equations of motion) implies that a physical state is uniquely deter-
mined by a pair (q, p), i.e. by a point in (Hamiltonian) phase space �(q, p), but
not vice versa. In other words, these arbitrary functions encode the gauge freedom
which arises for systems with a singular Hessian. It can be shown that a dynamical
variable F , i.e. a function on �, differs in value from time t1 to time t2 = t1 + δt by

δF = δva{F, φa} (8)

where the φa range over the complete set of first-class primary constraints and the
va are the totally arbitrary part of the um , with δva = (va − ṽa)δt where va and ṽa

are two different choices of va at t1.10 In a deterministic theory, the transformation
(8) does not modify the physical state and is thus considered a gauge transformation.
In this sense, the first-class primary constraints generate gauge transformations. The
famous ‘Dirac conjecture’ attempts to extend this result to include all first-class
constraints as generating gauge. In general, however, the conjecture is false as the
existence of some admittedly contrived counter examples illustrates.11 There is no
harm for present purposes, however, if we assume that all first-class constraints
generate gauge transformations. The restriction of a phase space function F to C
is gauge-invariant just in case {F, φa} ≈ 0, in which case (8) implies δF ≈ 0. The
first-class constraints are thus seen to generatemotions withinC . In contrast, second-
class constraints generate motions leading outside of C .12 This distinction permits
the explication of another important concept: the gauge orbit. A gauge orbit is a

10Cf. ([21], §1.2.1).
11Cf. ([21] §1.2.2).
12Cf. ([8] §10.2.2).
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submanifold of C which contains all those points in C which form an equivalence
class under a gauge transformation. The sets of these points are path-connected in C
since gauge transformations that connect these points are continuous and do not leave
C . They form a curve in C . The gauge motion produced by the first-class constraints
can thus be seen to be the tangents to these curves. The points of the gauge orbits
in C , equipped with a projection C → �phys , constitute the so-called reduced or
physical phase space �phys . The physical phase space �phys is defined as the set
of points representing gauge equivalence classes of points in �. In other words, the
physical phase space is obtained by identifying all points on the same gauge orbits.
This means that the bundle of admissible dynamical trajectories passing through a
particular point x ∈ C is mapped to the physical phase space such that the bundle is
projected onto a single dynamical trajectory through the point in �phys representing
the gauge equivalence class in which x falls.

Assume a Hamiltonian system with constraints is given. Assume further that all
constraints are first-class.13 Constraint equations are equations which the canonical
variables must satisfy in addition to the dynamical equations of the system. If a
set of variables were to determine one and only one physical state, then, given the
existence and uniqueness of the solutions of the dynamical equations, one could
plug the set of variables uniquely specifying the state into the dynamical equations
and could thus obtain the full deterministic dynamical evolution of the physical
degrees of freedom. If constraints are present, however, a set of variables does not
uniquely describe a physical state. Solving the constraints thus means to use these
additional equations to explicitly solve for a variable. This permits the elimination
of this variable (and the now solved constraint equation). Solving the constraints of
the constrained Hamiltonian system thus amounts to the reduction of the number of
variables used to specify the physical state of the system.Once all constraint equations
are solved and thus eliminated, the remaining canonical variables are ineliminable
for the purpose of uniquely specifying a physical state. In this case, we are back to
an unconstrained Hamiltonian system in the sense that its phase space is its physical
phase space. In the absence of any second-class constraints, the total number of
canonical variables (=2N ) minus twice the number of first-class constraints equals
the number of independent canonical variables. Equally, the number of physical
degrees of freedom is the same as half the number of independent canonical variables,
or the same as half the number of canonical variables minus the number of first-class
constraints.14

13Second-class constraints can be regarded as resulting from fixing the gauge of a ‘larger’ system
with an additional gauge invariance. They can be replaced by a corresponding set of first-class
constraints which capture the additional gauge invariance. Second-class constraints are thus elim-
inable. In fact, in some cases, it may prove advantageous to thus ‘enlarge’ a system as this permits
the circumvention of some technical obstacles ([21] §1.4.3), albeit at the price of introducing new
‘unphysical’ degrees of freedom. Without loss of generality, we can thus consider a Hamiltonian
system whose constraints are all first-class.
14This manner of counting the physical degrees of freedom is well defined for any finite number
of degrees of freedom, and perhaps for countably many too. For uncountably many degrees of
freedom, new subtleties arise. Cf. ([21] §1.4.2).
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1.2 Gauge Freedom in Hamiltonian General Relativity

Hamilton’s equations, at least in the narrower standard sense, explicitly solve for the
time derivatives. This can only be achievedwithin GR if its original four-dimensional
quantities are broken up into (3+1)-dimensional quantities, with time accruing in the
one single dimension. Similar coercion must be exercised upon the four-dimensional
structure of spacetime, nota bene, when we wish to consider an initial-value formu-
lation of GR. In order to find a Hamiltonian or an initial-value formulation, GR
must be regarded as describing the dynamical evolution of something. Breaking up
spacetime into ‘space’ that evolves in ‘time’ in order to determine whether a well-
posed initial-value formulation exists, i.e. whether the physical degrees of freedom
enjoy an at least minimally stable deterministic evolution, becomesmanageable once
we impose a gauge condition to weed out any unphysical degrees of freedom. The
traditional formulation of GR as a constrained Hamiltonian system entertains 12
dynamical variables, the six independent components of the three-metric qab and the
six independent components of the corresponding conjugate momentum πab. Half
this number is six, and there are four first-class constraint equations, which leaves
the gravitational field with two physical degrees of freedom per point in space. For-
tunately, this is the same number of degrees of freedom as one gets for a linear
spin-2 field propagating on a flat spacetime background, which can be considered as
a weak-field limit of GR.15 With a gauge condition enforced, Einstein’s field equa-
tions can be massaged into a form of hyperbolic second-order differential equations
defined on manifolds which admit existence and uniqueness theorems. Even in an
appropriate gauge fix, however, GR allows for ways in which the field equations may
fail to uniquely determine their solutions.16

The conceptually most momentous consequence of casting GR as a constrained
Hamiltonian system is that the Hamiltonian H is itself a constraint bound to vanish
on the constraint surface of the phase space. This is what ultimately leads to the
‘problem of time’, a conceptual tangle in the foundations of Hamiltonian GR and of
quantizations relying thereon, consisting of essentially two strands, the disappearance
of time as a fundamental magnitude and the ‘freezing’ of the dynamics. The first
aspect, the vanishing of time as a fundamental physical magnitude, is suggested at
the classical level by the increasing elimination of time in classical physics, leading
up to Hamiltonian GR, as it is retraced in ([23] §2.1 and §2.2). However, there is a
sense in which it only comes to full fruition in quantum theories, as will be elaborated
below.

15See ([46] §4.4b); cf. also ([46] 266) for a slightly different way of calculating the degrees of
freedom of the gravitational field.
16For an explanation of the failures of determinism in this setting, cf. ([47] §4.1), on which the
past few pages have been based. Also, and at the peril of burying an absolutely central point in a
footnote, this severance of space and time threatens the general covariance so central to GR. How
general covariance gets implemented in Hamiltonian GR and the subtleties that arise in doing so
are discussed in ([47] §4.4). What follows explicates the gist of this implementation.
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The freezing of the dynamics—more aptly called the ‘problem of change’—,
however, fully appears at the classical level. A crucial premise of the argument
leading to the problem of change is that only gauge-invariant quantities can capture
the genuinely physical content of a theory. This premise is justified by pointing
to the fact that two distinct mathematical models of a theory describe the same
physical situation just in case they are related by maps which are interpreted as
‘gauge’ transformations. Of course, it may be controversial for any given theory
just which maps ought to be considered ‘gauge’, but I take the justificatory fact
invoked in the previous sentence to be analytic of what it means to be ‘gauge’, viz. to
capture a representational redundancy not reflective of the true physical situation. In
other words, the premise stipulates that the physical content of a theory is exhausted
by the gauge-invariant quantities as codified by the theory. The concept of ‘Dirac
observables’ tries to capture this idea in the context of constrained Hamiltonian
theories:

Definition 2 (Dirac observables) A(n equivalence class of) Dirac observable(s) is
defined as the (set of those) function(s) in phase space that has (have) weakly vanish-
ing Poisson brackets with all first-class constraints (and coincide on the constraint
surface). Equivalently, Dirac observables are functions in phase space which are
constant along gauge orbits on the constraint surface.

Thus, if the premise is true, and if the gauge-invariant quantities of a constrained
Hamiltonian theory are precisely its Dirac observables as defined in Definition 2,
then the physical content of a constrained Hamiltonian theory is exhausted by its
Dirac observables.

In order to determine the physical content of Hamiltonian GR, thus, it becomes
paramount to identify its first-class constraints. I will not execute this task here with
themathematical precision it deserves but rest contentwith a conceptualmotivation.17

The vantage point is the principle of general covariance so central to GR. This
principle demands that the Einstein equations’ dynamical symmetry group Diff(M )

of active spacetime diffeomorphisms is the gauge group of GR.18,19 In other words,
active spacetime diffeomorphisms, which map a solution of the dynamical equation
to another solution, ought to be considered relating two mathematically distinct
solutions describing one and the same physical situation.20 Thus, general covariance
is spelled out as gauge invariance under active spacetime diffeomorphisms.

17For a somewhat rigorous execution in the case of the so-called ADM and Ashtekar-Barbero
versions of Hamiltonian GR, cf. [47], §4.2.1 and §4.2.2, respectively.
18A spacetime diffeomorphism is a one-to-one and onto C∞-map from M onto itself which has
a C∞-inverse. Diffeomorphisms induce transformations in the fields defined on the manifolds.
Intuitively, a map between manifolds is active if it ‘moves around’ the points without recourse to
any coordinate system. Thus, an active transformation is not a change in coordinate systems, but
a transformation pushing around the physical fields on the manifold. But this metaphorical picture
should be enjoyed with the adequate mathematical caution.
19This is the received view, but it should be noted that there has been recent dissent, e.g. in ([14]
§3).
20For a detailed analysis and justification, cf. ([47] §3, particularly §3.2).
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In the Hamiltonian formalism, the dynamical symmetry of GR gets encoded as
constraints which generate the spacetime diffeomorphisms in the sense explained in
§1.1. In the standard formulation ofGR, the elements of the symmetry groupDiff(M )

are defined as maps between four-dimensional manifolds. The Hamiltonian formal-
ism breaks this four-dimensionality down to a three-plus-one-dimensional rendering;
accordingly, Diff(M ) breaks down into a group of three-dimensional ‘spatial’ dif-
feomorphisms and a group of one-dimensional ‘temporal’ diffeomorphisms. This
move is not without subtleties, as expounded in ([47] §4.2): the symmetry group in
Hamiltonian versions of GR differs from that in the usual articulation of the the-
ory, thus distinguishing Hamiltonian GR from its standard cousin in yet another
way from those given at the end of the section. In the exemplary ADM version of
Hamiltonian GR, the spacetime diffeomorphisms are generated by normal and tan-
gential components of the Hamiltonian flow. Since the constraints generating the
diffeomorphism must vanish (weakly), these components of the Hamiltonian vanish
(weakly). Furthermore, in a Hamiltonian theory, it is the Hamiltonian which gener-
ates the dynamical evolution via the Hamilton equations. Since the Hamiltonian is
constrained to vanish, the dynamics gets ‘frozen’.

More specifically, (the normal component of the) Hamiltonian is a first-class con-
straint. Thus, the Dirac observables must have weakly vanishing Poisson brackets
with the Hamiltonian and thus turn out to be constants along the gauge orbits gener-
ated by the Hamiltonian. This accords with the stipulation above that the physical-
content-capturing Dirac observables must be invariant under gauge transformations,
here constituted by active spacetime diffeomorphisms. Since the Dirac observables
are constant along orbits generated by the Hamiltonian, all genuinely physical mag-
nitudes must be constants of the motion, i.e., they must remain constant over time.
In other words, any supposed change is purely a representational redundancy, and
not a physical fact. Thus, the argument concludes, there is no change! Since GR,
or any quantum theory of gravity replacing it, is a fundamental theory, we are sad-
dled with the uncomfortable task of explicating how time and change can arise
phenomenologically—which they undoubtedly do—in a fundamentally changeless
world. O quam cito transit gloria temporis.21

Avoiding this unpalatable conclusion might be all too easy by simply brushing
asideHamiltonianGRas a failed articulation of the theory.But thismove is not readily
available, at least not without some considerable cost. A prima facie justification
for brushing it aside points out that Hamiltonian GR is not theoretically equivalent
to the standard formulation of GR. It is true: Hamiltonian GR presupposes that
spacetimes can always be sliced up to conform to its (3 + 1)-dimensional framework,
but this is demonstrably false inGR. Thus, HamiltonianGR at best captures the sector
of GR containing sliceable, globally hyperbolic spacetimes. Furthermore, known
articulations of Hamiltonian versions of GR exclude any matter content from the
spacetimes and thus only codify vacuum spacetimes. It is not clear, however, that
this inequivalence suffices to evade the strictures of the above argument. And most
importantly, Hamiltonian formulations of GR serve as the basis for one of the most

21For a discussion of philosophical reactions to this situation, cf. ([23] §2.3).
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important family of approaches to formulating a quantum theory of gravity. By virtue
of this fact alone, they deserve to be taken seriously, not just mathematically, but also
philosophically.

2 How Spacetime Dissolves in LQG

Once the classical theory is cast in a Hamiltonian fashion, then it can be subjected
to the powerful canonical quantization technique. This procedure, pioneered by Paul
Dirac, converts the canonical variables of the classical theory into quantum operators
defined on an appropriately chosen Hilbert space. The Poisson bracket structure of
the classical level is thereby transposed to give rise to the canonical commutation
relations obtaining between the basic operators in the quantum theory. From these
basic operators, more complex operators can be built up. The classical constraint
functions get translated into such complex operators acting on elements in the Hilbert
space, thus turning the constraint equations into wave equations. Since they are
constraint equations, the constraint operators annihilate the states on which they are
acting. Only those states which are so annihilated by the constraints operators are
considered physical states. As usual in quantummechanics, theHamiltonian operator
Ĥ generates the dynamics via a Schrödinger-type equation.

As we have seen in §1.2, in Hamiltonian formulations of GR, the Hamiltonian
itself becomes a constraint. In the quantum theory, we get

Ĥ |ψ〉 = 0 (9)

which is demanded to hold for all physical states |ψ〉. The ‘physical’ Hilbert space
H consists just of those states, which satisfy all constraints, i.e., are annihilated
by all constraint operators in the theory. Equation (9), also called the ‘Wheeler–
DeWitt equation’, gives a very direct intuition of both the problem of time and that
of change. Concerning the problem of time strictly so-called, comparing (9) to the
ordinary Schrödinger equation,

Ĥ |ψ〉 = i�
∂

∂t
|ψ〉, (10)

we notice the absence of the time parameter t in (9). This is indicative of the problem
of time: the absence of time from the fundamental picture. Quite literally, time drops
out of the equation in Hamiltonian quantum gravity.

Given that (9) plays the role of the dynamical equation in quantum Hamiltonian
GR just as (10) does for ordinary quantum mechanics, we also glean the first traces
of the quantum version of the problem of change by recognizing that the time deriv-
ative vanishes. Analogous to the classical case, constraint operators generate the
gauge symmetries of the theory. Accordingly, the criterion for the gauge-invariant
observables, the Dirac observables defined in Definition 2 of the quantum theory,
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gets translated as requiring that functions F̂ of operators represent Dirac observables
just in case they commute with all the constraint operators Ĉi

[F̂, Ĉi ]|ψ〉 = 0,

for all i = 1, ...,m, wherem is the number of constraints, and for all |ψ〉 inH . This
entails that every Dirac observable must commute with the Hamiltonian. Since the
Hamiltonian is what generates the dynamical evolution of the states, all Dirac observ-
ables must thus be constants of the motion, i.e., not changing over time. However,
the Dirac observables also exhaustively capture the physical content of the theory, at
least according to the premise stated in §1.2. Thus, no genuine physical magnitude
changes over time. Hence, the dynamics of the world described in canonical quantum
gravity is ‘frozen’ in time. There simply is no change at the most fundamental level
described by these Hamiltonian quantum theories of gravity! Change, as it turns out,
only arises as a representational artefact—‘gauge’—with no physical counterpart in
the fundamental theory.

Unlike at the classical level, where arguably the strictures of the argument can be
evaded, at least to some extent, by avoiding Hamiltonian formulations of GR, this is
evidently not possible for quantizations based on them as the problem is built right
into the framework. Perhaps we ought to have expected such an outcome—after all,
GR teaches us that time is not external to the physical systems of interest but itself
partakes as part of spacetime in dynamical interactions with the material content of
the universe, which constitute the usual physical systems physics describes. In other
words, time is part of the physical system we are trying to quantize.

In fact, indications persist that quite generically in quantum gravity space and
time, at least as standardly understood in GR, no longer form part of the fundamental
ontology. Instead, space and time, or at least one or the other, are ‘emergent’ phenom-
ena that arise from the basic physics. As it is used in the present essay, ‘emergent’
should not be taken as the terminus technicus in philosophy that designates properties
which are not even weakly reducible. Rather, it should be considered as an umbrella
term for a relationship that may well turn out to be reductive, as will be argued in
§3.1. In fact, to characterize the exact nature of this relationship is the ultimate goal
of the research addressing the issue at stake. In the language of physicists, spacetime
theories such as GR are ‘effective’ theories trading in ‘emergent’ phenomena, much
like thermodynamics is an effective theory dealing with the emergent phenomenon
of temperature, as it is built up from the collective behaviour of gas molecules. How-
ever, quite unlike the fact that temperature is emergent, the idea that the universe
and its material content is not in space and time shocks our very idea of physical
existence as profoundly as any previous scientific revolution did.

So there is at least a sense in which time vanishes in canonical approaches to
quantum gravity. It has been argued that because string theory contains GR “in some
limit... [t]he disappearance of external time should... also hold in string theory” ([24]
10). As a consequence of the holographic principle, space as well can be considered
emergent in string theory [23]. Furthermore, the fundamental structures postulated
by various quantum theories of gravity diverge significantly from the familiar space-
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times of GR. For instance, so-called non-commutative geometry replaces the basic
geometric picture we have of spacetime by algebraic relations between temporal
and spatial coordinates or directions and generalizes multiplicative relations among
them so that they no longer commute. This generalization has weird consequences
and renders the basic structure conceptually quite different from spacetime [23]. As
another example, the fundamental structure generically turns out to be discrete rather
than continuous. For a vast class of quantum theories of gravity, Lee Smolin, takes
discreteness to be “well established.” ([42] 549).

Of course, one might react to these developments as John Earman did, at least
concerning LQG, and insist that

although classical general relativistic spacetime has been demoted from a fundamental to an
emergent entity, spacetime per se has not been banished as a fundamental entity. After all,
what LQG offers is a quantization of classical general relativistic spacetime, and it seems not
unfair to say that what it describes is quantum spacetime. This entity retains a fundamental
status in LQG since there is no attempt to reduce it to something more fundamental. ([17]
21)

If this is just a quarrel over words, I have no appetite to engage in it. We are free to
call LQG’s fundamental structure, to be described in the remainder of this section,
‘quantum spacetime’ all right, but given the profound departures from relativistic
spacetimes, the use of a different term is not only warranted, but also preferable, as
I have argued elsewhere [48]. Let us leave this debate to one side and delve into the
physics in order to get a sense of what it is LQG theorizes about.

2.1 Introducing LQG

Canonical quantum gravity generally, and LQG in particular, attempt to transpose
the central lesson of GR into a quantum theory. The pertinent key innovation of GR
is the recognition that spacetime does not passively offer a fixed ‘background’ which
determines the inertial ‘forces’ acting on the physical content of the universe, but
instead a dynamical structure which interacts with matter. To repeat, LQG is based
on a reformulation of GR as a ‘Hamiltonian system’, which reinterprets spacetimes
as (3 + 1)-dimensional rather than 4-dimensional, with constraints. Thus, recasting
GR as a Hamiltonian theory forces a ‘foliation’ of its spacetimes by an equiva-
lence relation into three-dimensional ‘spatial’ hypersurfaces, parametrized by a one-
dimensional ‘time’. The natural interpretation of the Hamiltonian system would be
that of a three-dimensional ‘space’ considered as a dynamical physical systemwhich
evolves over ‘time’, where the three-dimensional hypersurfaces would represent the
instantaneous state of the dynamical theory.

LQG is thus a canonical quantization of Hamiltonian GR.22 Before we proceed,
let it be noted that the particular formulation required entails a substantive limitation

22For a thorough introduction to LQG, cf. [34]; for the mathematical foundations, cf. [44]. [35] is
a recent review article.
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of the approach: only ‘globally hyperbolic’ spacetimes of the classical theory are
considered. If a spacetime is globally hyperbolic, then it is topologically ‘3 + 1’,
i.e., the topology of M is � × R, where � is a three-dimensional submanifold of
M .23 Just how severe this limitation is is debatable; many physicists do not consider
it troubling, some philosophers have dissented. To impose global hyperbolicity as
a necessary condition for physically reasonable spacetimes amounts to asserting a
strong form of themerely conjectured, but not proven, cosmic censorship hypothesis.
Dissenting voices cautioning against stipulating global hyperbolicity as necessary
include Earman [18], Erik Curiel [13], Chris Smeenk and Wüthrich [41], and John
Manchak [27].Manchak ([27] 414) proves that as long as a spacetime is not “causally
bizarre”, it is observationally indistinguishable from another spacetime, not isometric
to the first and not globally hyperbolic, yet with exactly the same local properties.
From this, Manchak concludes that “[i]t seems that, although our universe may
be... globally hyperbolic..., we can never know that it is.” (ibid.) In the light of this
result, it appears brash to enthrone global hyperbolicity as a sine qua non of physical
reasonability. Having said that, however, if LQGwere to be a huge empirical success,
its premises would be vindicated. Note the future subjunctive tense in the previous
sentence.

There currently still persists another, uncontroversially problematic, limitation
of the approach: only vacuum spacetimes are considered, i.e., the classical vantage
point of the approach is the vacuum sector of GRwith everywhere vanishing energy-
momentum. This technical simplification comes at the price of rendering it unclear
whether the resulting quantum theory can deal with a non-zero energy and matter
content of the universe, presumably a necessary condition for giving an empirically
adequate account of the actual world. The situationmay not be quite as bleak for LQG
as this may suggest, for three reasons. First, vacua are physically important states
and their theoretical understanding may shed decisive light on the necessary steps
leading to a more general theory encompassing matter. Second, the assessment as to
whether or notmodels of a theory or vacuum states of the universe containmattermay
come apart for classical and quantum theories. In other words, the quantum theory
which started out from classical vacuum states may be interpreted to contain matter.
This possibility does not come without further complications, though: the emerging
matter may well be highly non-local and may violate most or all energy conditions.
Third, and most speculatively, matter, just as space and time, may emerge from the—
perhaps topological or combinatorial—properties of the fundamental structure and
hence not be present at the fundamental level.

The goal of the quantization is to find the Hilbert space corresponding to the
physical state space of the theory and to define operators on the Hilbert space rep-
resenting the relevant physical magnitudes. The hope would naturally be that some
of the latter make contact to the empirically testable. In order to get the quantization
started, one chooses a pair of canonically conjugate variables which coordinatizes
the relevant sector of the classical phase space. Different choices lead to differ-

23For a more systematic explication of global hyperbolicity and neighbouring concepts, see ([41]
593).
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ent quantum theories: geometrodynamics’s choice is the induced three-metric on
the three-hypersurface and its conjugate momentum constructed from the external
curvature of the three-hypersurface, LQG starts out from Abhay Ashtekar’s ‘new
variables’ of a connection Ai

a and its conjugate, a densitized triad ‘electric field’
Ea
i and constructs a ‘holonomy’ and its conjugate ‘flux’ variables from them. The

geometrical structure of the classical phase space is encapsulated in the canoni-
cal algebra given by the Poisson brackets among the basic variables. This structure
gets transposed into a quantum theory by first defining an initial functional Hilbert
space of quantum states |ψ〉. The basic canonical variables are turned into operators
whose algebra is determined by their commutation relations arising from the classi-
cal Poisson brackets. The classical constraints, which are functions of the canonical
variables, now become operators constructed ‘isomorphically’ as functions of the
basic operators. Classically, the constraint functions are set to zero; in the quantum
theory, they annihilate the states. Thus, by imposing the constraints, the theory effec-
tively demands that only states which are annihilated by all constraint operators are
considered physical. Dynamical equations, as was already clear at the outset of this
section, play a somewhat different role. In a sense, given that the ‘Schrödinger-like’
equation of the quantum theory is the constraint equation (9), there is no additional
dynamical equation governing any ‘dynamics’ of the theory.

In LQG, three families of constraints arise. First, the so-called ‘Gauss constraints’
indicate a rotational gauge freedom of the triads and generate an infinitesimal SU (2)
transformation in the internal, as opposed to spacetime, indices (indicated by letters
from the middle of the alphabet). These are comparatively straightforward to solve.
Next, we find three ‘(spatial) diffeomorphism’ constraints, which generate the spatial
diffeomorphisms on the three-hypersurfaces. These constraints are hard to solve, but
it has been done. The resulting Hilbert space, i.e., the Hilbert space we obtain from
the states which get annihilated by the Gauss and diffeomorphism constraints, is
called the ‘kinematical Hilbert space’ and will here be denoted byHK . Finally, there
is the Hamiltonian constraint which has so far defied solution. In fact, it is not even
clear what the concrete form of the formal equation (9) is. In this sense, LQG is not
yet a complete theory. As will hopefully become clear later in the essay, there remain
plenty of reasons not to walk away from LQG, at least not just yet.

Given the technical and conceptual difficulties with the ‘dynamics’ (9), various
authors have sought ways to circumvent the standard conceptualization of dynamics
in a Hamiltonian theory. One main approach conceives of the dynamics in ways
similar to perturbative approaches to quantum field theory, taking elements of HK

as three-dimensional ‘initial’ and ‘final’ ‘spaces’ and compute transition amplitudes
between them ([35] §3). Or alternatively, as Carlo Rovelli has suggested, the states in
the physical Hilbert space may not be ‘states at some time’; instead, they are ‘bound-
ary states’, i.e., states describing quantum space surrounding a four-dimensional
region of spacetime.24

Because (9) is not solved yet, all results must remain preliminary. One way to see
this immediately is to remind the reader that all Dirac observables must commute

24A more detailed analysis of dynamics in LQG can be found in ([47] §5.3).
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Fig. 1 A spin network state
is characterized by an
abstract graph with
‘spin’-representations on the
nodes and the links between
them

with all constraints. If we accept that the set of Dirac observables is identical to the
set of genuine physical magnitudes, as arguably we should on pain of introducing
gauge-dependent quantities, then we cannot determine the physical magnitudes yet,
as we do not know the explicit form of Ĥ and so cannot determine which operators
commute with it. It thus remains open whether any of the geometric operators to be
introduced shortly really corresponds to a genuine physical magnitude.

Let us study the structure of HK then. It turns out that so-called ‘spin network
states’ provide a useful basis inHK .25 These spin network states are interpreted to be
the quantum states of the gravitational field. Since physical ‘space’ will be in a state
in HK , as §4.2 will suggest, it will generally be in a quantum superposition of spin
network states. Spin network states can be represented by abstract labelled graphs as
in Figure 1,26 as they are completely characterized and uniquely identified by three
types of ‘quantum numbers’. The first label characterizes the abstract graph �, the
second the irreducible SU (2)-(hence ‘spin’) representations jl on the links and a third
the SU (2)-representations on the nodes, denoted by in . It should be emphasized that
the abstractness of the graph is central to the correct interpretation of the emerging
picture here: the spin network states are not quantum states of a physical system in
space; rather they are the quantum states of physical space.

The spin network states |�, jl , in〉 are eigenstates of the so-called area and volume
operators defined onHK . The spectra of these operators yield important information
concerning the geometrical interpretation of the spin network states, although it must
be emphasized that the interpretation of the states relies, in turn, on an interpretation
of these operators as geometric. Since we study the properties of the gravitational
field via the geometry of the physical space, the properties of (three-dimensional)

25For the technical background of this basis and its interpretation, cf. ([35] §2.3).
26More precisely, they are represented by labelled graphs embedded in some background space.
Thus, they are not invariant under spatial diffeomorphisms, i.e., when they are ‘pushed around’
on the embedding manifold. In order to fully solve the diffeomorphism constraints, then, we need
equivalence classes of spin network states under three-dimensional diffeomorphisms on the back-
ground manifold. Sometimes, these equivalence classes, represented by abstract labelled graphs,
are called ‘s-knot states’ in the literature. So I am being slightly sloppy by using the locution ‘spin
network states’ ambiguously.
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gravitational fields are determined by the spectral properties of the area and volume
operators. These operators, which will be discussed in greater detail in §4.2, turn out
to have discrete spectra [2–4, 36, 37]. The granularity of the spatial geometry—the
‘polymer’ geometry of space—follows from the discreteness of the spectra of the
volume and the area operators. Essentially, each node (and only the nodes) in the
network contributes a term to the sum of the volume of a region. On each node,
there sits an ‘atom’ of space with volume Vn , as it were. These elementary grains
of space are separated from each other by their surfaces of contiguity. Just as the
volume operator receives contributions from the nodes of a region, the area operator
acquires contributions from all the links that intersect the surface. For instance, the
surface whose only intersecting link is a link with quantum number jl has a surface
area of Al ∝ √

jl( jl + 1) ([34] §6.7). Thus, the ‘size’ of the surface connecting
adjacent ‘chunks’ of ‘space’ is constructed from the spin representations sitting on
the relevant links. Thus, the smooth space of the classical theory is supplanted by
a discrete quantum structure displaying the granular nature of space at the Planck
scale. Continuous space as we find it in classical theories such as GR and as it figures
in our conceptions of the world is a merely emergent phenomenon.27

Physical three-space, in Rovelli’s interpretation, is a quantum superposition of
spin network states, analogously to the physical electromagnetic field consisting of
a superposition of n-photon states. LQG predicts the existence of indivisible quanta
of volume, area, and length, as well as their spectra (up to a constant). Importantly,
this discreteness was a result of the loop quantization, rather than an assumption.
According to LQG, measurements of the Planck geometry of space must therefore
yield one of the values in the spectrum of the concerned operator.

As mentioned above, the ‘dynamics’ of canonical LQG are only known in formal
outline. As in any Hamiltonian theory, the dynamics of the theory is generated by
the Hamiltonian operators Ĥ , which is defined on HK , via the Wheeler–DeWitt
equation (9). The space of the solutions of (9) will constitute the physical Hilbert
spaceH . But since there exist several inequivalent versions of Ĥ—all of whichmay
be false—the Hilbert spaceH has not yet been constructed and the theory remains
incomplete.

Before we start to consider how spacetime emerges from the fundamental struc-
tures of LQG—spin network states—, let us make sure that it has indeed vanished
from the fundamental ontology. Of course, as Earman suggested in the quote above,
we might simply call the spin-network structure ‘quantum spacetime’ and move
on with it. To use homonyms, or near-homonyms, for two rather different struc-
tures, however, promises to create more confusion than comprehension. The spin
networks diverge from classical relativistic spacetimes in at least two crucial points.
First, unlike the continua of classical physics, they are discrete. As was observed
above, many expect the fundamental structure in quantum gravity to be discrete and
this expectation is certainly borne out in many of the extant approaches. This is

27It should be kept in mind, however, that these operators are not Dirac observables and should
therefore be taken with a grain of salt. They are partial observables in the sense of [33].
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a significant departure, but may not sway everyone to discontinue considering the
fundamental structure a ‘spacetime’.

Arguably, however, the deeper divergence from classical spacetimes arises from
the ‘non-localities’ that we find in spin networks (and in many other quantum struc-
tures).28 How these fundamental structures can be ‘non-local’ needs a bit of explain-
ing, given that (non-)locality is a spatiotemporal, or anyway a spatial, concept. To
appreciate the sense in which the spin networks do contain ‘non-localities’, consider
a fundamental relational structure consisting of a set of basal atoms,which exemplify,
in pairs, a basal ‘adjacency’ relation. Together with an intrinsic ‘valence’ attributed
to each of the atoms and each of the exemplified relations, this yields a connected
structural complex of the kind we find in LQG. Contrast this with the spatiotemporal
structure we find in GR, where the spatiotemporal, indeed metric, relations obtain-
ing between the spacetime events give rise to a locality and neighbourhood edifice.
Now, these two structures are supposed to be related by an emergence relation. More
specifically, the idea is that the exemplified fundamental structure is related, in some
limit or in some approximation or at some scale, to a relativistic spacetime. Given
two particular structures related in this way, one can map the atoms of the fundamen-
tal structure onto events in the spacetime. What it then means to say that there are
‘non-localities’ present in the fundamental structure is that some pairs of adjacent
basal atoms, i.e., pairs of atoms exemplifying the fundamental adjacency relation, get
mapped onto events in the spacetime which can be at arbitrarily large distances now
as measured in the metric of the emerging spacetime.29 Locality is notoriously tricky
in GR, of course, but in globally hyperbolic relativistic spacetimes, a precise notion
of locality is readily available. Given a possibly physically privileged foliation, a
spatial metric is induced on the leaf containing the events, which are thus spatially
related. This now permits an explication of locality e.g. in terms of convex spatial
neighbourhoods of events. Thus, what is adjacent in the fundamental structure in
general is not local or nearby in the emerging spacetime as judged by the latter’s
induced spatial metric.

From the perspective of the emerging spacetime, the spin networks generally get
the locality structure wrong, or so one would expect. The expectation that these
non-localities are generic arises from the fact that relation between spin networks
and classical spacetimes—to the extent to which we understand it—is many-to-
one.30 In other words, there are in general many spin network states whose best
classical approximation is the same relativistic spacetime. Since these spin networks
are physically distinct, and one of the main ways in which they can differ is by
their connectivity defined by the obtaining adjacency relations, spin networks with
distinct topologies will be best approximated by one and the same spacetime. As
spin networks that give rise to realistically large universes will consist of very many
adjacent pairs of nodes, it seem natural to think that at least some of them will be
non-local in the present sense. If this is right, then non-localities generically arise in

28Cf. e.g. [28].
29Cf. Figure 1 in [22].
30Cf. Section 4. Cf. also ([28] §2) who give a related reason.
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spin networks, and we have a second deep departure of the latter from relativistic
spacetimes.

These non-localities are suppressed in the low-energy approximation from the spin
network to the relativistic spacetime. In fact, they must be suppressed, for otherwise
they would have to be emulated by the emerging structure in the sense that these
adjacency relations would re-occur in the spacetime in the form of neighbouring
relations and thus not qualify as ‘non-localities’. To repeat, ‘non-localities’ of the
relevant sort are fundamental adjacencies with no vicinity-type counterpart in the
emerging spacetime. If the course graining attendant to the emergence of spacetime
from spin network states—of which more in §4—would not ‘wash out’ the non-local
connections, they would have to be encoded in the emerging relativistic spacetime,
perhaps as non-local ‘wormholes’. If, however, their presence were so strong as
to preclude essentially local physics at comparatively low energy scales, such as
described by quantum field theory on relativistic spacetime backgrounds, then the
corresponding theory, or at least model, would have to be considered empirically
inadequate.31 So we would expect those non-localities to be generically present, but
suppressed in the coarse graining to macroscopic scales.

Relativistic spacetimes arguably differ in significant ways in how they concep-
tualize space and time from our intuitive concepts of space and time. But whatever
differences these are, they do not suffice to call into questionwhywe refer to the struc-
tures of GR as ‘spacetimes’, and justifiably so. Whatever the differences between
intuitive space and time and spacetime in GR may be, it is clear that the departures
of LQG from the manifest image run much deeper. Not only is the fundamental
structure discrete and non-local, but as we have seen in §1, the problem of time in its
different forms illustrated how our common concepts of time, change and dynamics
and the way these concepts are standardly encoded in physical theories and their
languages completely and utterly fails. Even though this failure was enunciated in
§1 at the classical level already, it crucially depended on the particular non-standard,
and inequivalent, formulation of GR necessary for the canonical programme to get
going. If we could directly quantize GR from its standard formulation, the resulting
theory’s departure from classical spacetime physics might be milder. But alas, no
promising strategy along these lines is known.

I conclude that we can safely assume that spacetime has been lost, at least in its
traditional, relativistic sense, somewhere in the transition from GR to LQG. Now
that the Babylonians of quantum gravity have removed spacetime from its sacred
place, amid rampant speculation concerning its whereabouts, serious efforts have
commenced to recover the lost spacetime and restore it to its lawful place. He or she
who recaptures it may be blessed with wisdom—or be smitten, as the case may be.

31This does not entail that the fundamental non-localities could not have observable consequences,
such as those proposed by [32].
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3 What Emergence of Spacetime is Not

In order to honour the covenant—and to avoid being smitten—, then, let this section
clarify what the emergence of spacetime could not be. First, §3.1 explains the dif-
ference between the standard concepts of ‘emergence’ as they figure in philosophy
and physics, respectively, and states that it is the physicists’ use that will be rele-
vant for our purposes. Second, it will be argued in §3.2 that the use of the notion of
‘unitary equivalence’ will not serve to determine whether spacetime still maintains
fundamental existence in LQG.

3.1 Non-reductive Relation

The concept of ‘emergence’ has a venerable history in philosophy: arguably stretch-
ing back toAristotle andGalen, it attracted renewed interest in the nineteenth century,
reflected in the work of George Henry Lewes, John Stuart Mill, and C D Broad in
Britain, and Nicolai Hartmann on the continent. Despite some variation among them,
authors in this tradition as well as contemporary philosophers use the term so as to
imply a non-reductive relation between the emergent and the fundamental, presup-
posing that reality is somehow layered into different ‘strata’ and that the properties
and relations attributed to entities at different levels in general differ fromone another.
The general spirit of the concept is well captured by Brian McLaughlin’s definition
in terms of supervenience:

Definition 3 (Emergent property) “If P is a property of w, then P is emergent if and
only if (1) P supervenes with nomological necessity, but not with logical necessity,
on properties the parts of w have taken separately or in other combinations; and (2)
some of the supervenience principles linking properties of the parts of w with w’s
having P are fundamental laws.” ([30] 39)

Definition 3 only gets traction if all the terms in the definiens are defined in their
turn. Let us briefly discuss some of them. The first clause in the definition betrays
the physicalist underpinnings of the version of emergentism which I assume here
as standard. As ([30] §3) explains, the relevant notion of ‘supervenience’ in this
context is based on the idea of a “required-sufficiency relationship” (ibid.), i.e., that
the possessing of a higher-level property requires the possessing of a lower-level
property which in turn suffices for the possessing of the higher-level property. This
supervenience should not be forced by logic alone, but instead result from contingent
laws of nature. To grasp the meaning and the role of the second clause, let me state
the definition of ‘fundamental law’ as given by McLaughlin:

Definition 4 (Fundamental law) “A lawL is a fundamental law if and only if it is not
metaphysically necessitated by any other laws, even together with initial conditions.”
(ibid., 39)
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The second clause is necessary; for without it, Definition 3 would be overly inclu-
sive, as McLaughlin argues, in that reducible properties would often also qualify as
emergent, against the stated intention of the emergentists. If the laws which codify
the connections between the properties of the lower level entities with those of the
higher level, or those of the parts with those of the whole, are fundamental, then they
are in principle not reducible to other laws governing the properties of lower levels,
thus ruling out that reducible properties qualify.32

It should be emphasized that in the context of the present study, and of much of the
physics literature on the subject, ‘emergent’ should not be understood as the terminus
technicus defined in Definition 3, where an emergent property (or, mutatis mutandis,
an emergent entity) is not even weakly reducible. Rather, it is to be understood as a
collective designation for broadly reductive relationships. Indeed, that is the point of
the entire enterprise: to understand how classical spacetime and its properties reduce,
ormore neutrally relate, to the fundamental non-spatiotemporal structure. Reduction,
as an inter-theoretic relation, can thus be regarded as a working hypothesis of the
quest to regain spacetime.

3.2 Unitary Equivalence

Leaving behind the general philosophical literature, we find in the pertinent phi-
losophy of physics a very specific criterion which has been proposed to determine
whether or not in a quantum theory of gravity spacetime can still be regarded as
fundamental or not. Almost as an aside, Craig Callender and Nick Huggett ([11] 21)
use the criterion of unitary equivalence for exactly this purpose, and in the context
of LQG! Unitary equivalence, here as elsewhere, is used as a sufficient condition
for physical equivalence. Callender and Huggett state that if bases of spin network
states and of (functionals of) three-metrics in quantum geometrodynamics are uni-
tarily equivalent, then they would merely constitute different representations of the
same objects—viz. space—, rather than of numerically distinct objects. Hence, if
successful, unitary equivalence would establish a particularly direct (reductive) rela-
tion, at least concerning space. If the two bases turn out to be unitarily inequivalent,
then the reductive relation will be more complex. To invoke unitary equivalence as
a (necessary and sufficient) condition for physical equivalence is well motivated.33

Despite qualms onemight entertain regarding the equivalence of the equivalences, let
us grant, for the sake of argument, that unitary equivalence and physical equivalence
come together. It turns out, however, that the criterion is nevertheless unhelpful, for
three reasons.

32For an up-to-date review on emergent properties, cf. [31].
33At least at the level of ordinary quantum mechanics; in relativistic quantum theories, matters
become more subtle. Cf. ([38] §2.2).

erik@strangebeautiful.com



Raiders of the Lost Spacetime 319

Since unitary (in)equivalence is usually predicated of representations, not of
bases, let us translate the condition into the language of bases of Hilbert spaces
before we start listing the problems:

Definition 5 (Unitary equivalence between bases) Two bases {|a(k)〉} and {|b(l)〉}
of two Hilbert spaces H and H ′, respectively, are unitarily equivalent just in case
there is a unitary map U : H → H ′ such that U |a(k)〉 = |b(k)〉 for all k.
Now, given this definition, and the orthonormality and the completeness of bases, it is
easy to construct such a unitary map between Hilbert spaces of the same dimension:
U = ∑

k |b(k)〉〈a(k)|. For our discussion below, we need to put two theorems on the
table. Here is the first one:

Theorem 1 ([15], 3.11.3(a)) If H is an infinite-dimensional separable Hilbert
space, then it is isomorphic to l2, the space of square-summable sequences.

Two Hilbert spaces are isomorphic just in case there is a unitary map that leaves
the inner product invariant. Since being isomorphic is a transitive relation, any two
infinite-dimensional separable Hilbert spaces are isomorphic. In other words, there
is a unitary map between the bases of any two infinite-dimensional separable Hilbert
spaces. This entails, of course, that for any two infinite-dimensional separable Hilbert
spaces, we can find unitarily equivalent bases in the sense of Definition 5. In fact,
we have the more general theorem:

Theorem 2 ([20], §16) Any two Hilbert spaces H and H ′ are isomorphic iff
dim(H ) = dim(H ′).

An immediate consequence of this theorem is that any twoHilbert spaces of the same
dimension will have unitarily equivalent bases. So our knee-jerk reaction right after
Definition 5 stands vindicated. Quite generally, the theorem shows thatHilbert spaces
of the same dimension are geometrically indistinguishable and can thus rightfully be
considered identical as far as their physically salient structure is concerned.

Let us return to the proposal by Callender and Huggett [11] and discuss its prob-
lems. As announced above, there are three of them. Primo, in order for this criterion
to get any traction, the relevant Hilbert spaces would have to be known—but they
are not. We have already seen that the physical Hilbert space H of LQG has not
yet been constructed, only its kinematic Hilbert space HK . The same is true for
geometrodynamics, where the constraints are non-polynomial and so far defy solu-
tion. No Hilbert space, no basis. No basis, no checking for unitary equivalence. But
let us proceed, again for the sake of argument, on the assumption that we had the
relevant Hilbert spaces.

Secundo, the criterion, although perhaps necessary, is far removed from anything
close to a sufficient condition, at least on its own. Consider the following three
exhaustive possibilities. First, the physical Hilbert spaces of quantum geometrody-
namics and LQG are both separable, i.e. they each have a countable basis. Second,
one of them is separable, but the other is not. And third, both Hilbert spaces are
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non-separable, with either (a) their bases having the same cardinality, or (b) different
cardinality.

In the first case, the criterion is trivially satisfied because two bases in any two
(infinite-dimensional) separable Hilbert spaces are unitarily equivalent. In the second
case, the criterion is trivially violated, for corresponding reasons. In the third case,
if the bases of the two Hilbert spaces have the same cardinality, we are back to the
first situation; if they do not, we find ourselves in the second case again. So either
way, the criterion by itself is not very illuminating and clearly not sufficient. It would
have much more bite—and that may be the unarticulated intention behind Callender
and Huggett’s proposal—if it were augmented by some additional condition such as
the preservation of the characteristic algebraic relations among the operators (such
as the canonical commutation relations) in the transformation from one to the other.

Tertio, the Callender-Huggett criterion gives themetric codification, which is used
in quantum geometrodynamics, undue precedence over the connection codification,
which is LQG’s vantage point, in that it assumes that only the first captures the
geometric essence of relativistic spacetimes. At least classically, both the metric and
the connection descriptions are equally respectable ways of capturing the geometry
of a spacetime and I see no reason to elevate one at the expense of the other. So
we might, with equal justification, demand that a quantum theory of gravity offers a
description of a quantum spacetime just in case a basis of its physical Hilbert space is
unitarily equivalent to the connection basis of the physical Hilbert space of a quantum
theory of gravity based on a connection representation.34 Such a choice would be,
of course, vulnerable to the same charge raised here.

Thus, unitary equivalence between a basis of the physical Hilbert space of a theory
in question and the three-metrics basis of quantum geometrodynamics is certainly
not sufficient to think that the fundamental structure proposed by the theory in ques-
tion is still spacetime. Perhaps it is not even necessary. But even if the criterion
were valuable, we would still be faced with a rather complete dissolution of the
classical continuous and local spacetime structure into granular structure with odd
non-localities, represented by labelled graphs. And the question would still naturally
arise how come our world looks like it is well described at sufficiently large scales
by relativistic spacetimes. This explanation would still be owed, even if we man-
aged to convince ourselves that the fundamental structure still deserves to be called
‘spacetime’.

4 Re-emergence of Spacetime

Before we venture into the enterprise of investigating how spacetime emerges from
spin networks, one mistaken argument should be put to the side. I am thinking of a

34Strictly speaking, LQG basic variables are the holonomies and fluxes introduced in §2.1, which
are not identical to the connection and the canonically conjugate electric field of the connection
representation but are constructed from them.

erik@strangebeautiful.com



Raiders of the Lost Spacetime 321

Kantian who nonchalantly responds to the present situation of the fundamental loss
of spacetime by declaring that spacetime is a ‘pure form of intuition’ and as such does
not exist mind-independently anyway. So, the Kantian continues, we should not have
expected to find spacetime as an ontological posit of a fundamental theory in the first
place. But such a complacent ‘told-you-so’ reaction would be entirely misguided;
assuming space and time to be pure forms of intuition does nothing to relieve us from
the obligation to explicate how relativistic spacetimes emerge fromwhat physics tells
us is fundamental. On a Kantian perspective, the job of physics is to describe nature
as it appears to us, not as it may be an sich. And the natural world surely appears to be
spatiotemporally ordered, which is why (earlier) physical theories made the natural
assumption that there are space and time. Since physical theories involving such
postulations have been empirically very successful, any theory seeking to supplant a
theory as successful as, e.g., GR, must explain why the latter was as successful as it
was given that it is not true. In this sense, recovering spacetime from the fundamental
structure becomes part of the task of justifying the fundamental theory. This aspect
assumes great urgency in a field plagued by the lack of empirical data.

This justificatory task of understanding the emergence of spacetimes from fun-
damental structures, such as spin networks, is discharged by ‘taking the classical
limit’ of the fundamental theory: one shows that the classical theory results from an
appropriate mathematical procedure which is interpreted to physically explain why
and how the proprietary effects of the fundamental theory are hidden behind the
phenomena so well represented by the classical theory. To express the situation in
Reichenbachian terms, taking the classical limit, and thus showing how relativistic
spacetimes emerge from fundamental structures, constitutes, at least partially, the
‘context of justification’. As indicated in Figure 2, the reverse process by which we
arrived at the quantum theory of gravity from the classical theory is of course the
quantization studied in §2 and can thus be understood as the ‘context of discovery’
(of the novel quantum theory). Understanding how classical spacetimes re-emerge is
thus not only important to save the appearances and to accommodate common sense,
but also a methodologically central part of the entire enterprise of quantum gravity.

Nota bene, the quantization procedure as outlined above lacks a unique implemen-
tation for which every step is well justified. At various steps, one can choose to follow
different paths, all presumably leading to inequivalent quantum theories. Some may
find the fact that the construction of the quantum theory does not proceed along
more principled lines troublesome. Applying this Reichenbachian terminology also

Fig. 2 Quantization and the
classical limit as ‘inverse’
tasks

Classical general-relativistic spacetimes

quantization classical limit

spin network states
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illustrates why this need not be a problem: the ‘context of discovery’ is dominated
by creative elements which defy being bound by the narrow strictures of a research
logic. On the other hand, the same traditional philosophy of science also urges that
the other direction, the ‘context of justification’, be taken very seriously. Regardless
of this traditional philosophy of science’s merits, the urgency clearly applies to the
case at hand.35

‘Taking the classical limit’means establishing amapping between, in some princi-
pled way, either individual models of the fundamental, ‘reducing’, theory to individ-
ual models of the higher level, ‘reduced’, theory, or ‘generic’ models of the reducing
theory to ‘generic’ models of the reduced theory, or the totality or near-totality of
models of the reducing theory to the totality or near-totality of models of the reduced
theory. It will not suffice to just procure a merely mathematical expression of such
a mapping; instead, any formal articulation of it will need to be supplemented by a
demonstration of its ‘physical salience’ [22]. To start with the obvious, the map from
the set of quantum states to the set of classical spacetimes should not be expected to
be bijective, but many-to-one as there will be multiple distinct quantum states with
the same classical limit.36 Furthermore, there will be no classical analogue for some
sets of quantum states. Also, the quantization of a classical theory might not guar-
antee the re-emergence of the classical structure from the resulting quantum theory,
due to interpretational issues ([10], 80).

So far, the classical limit of LQG (and many other quantum theories of gravity)
has resisted understanding. The difficulties tend to be of two disparate kinds. First,
there are technical intricacies. Second, and of present interest, there are numerous
conceptual and interpretational issues. This is where philosophers can hope to make
contributions by helping to explore the conceptual landscape, to map possibilities,
and, more concretely, bring the literature on emergence and reduction to bear on the
problems at hand. To date, only few philosophers have ventured into this area. I hope
that more will follow—and there are hopeful signs. But still, [9] and [10] constitute
more or less the complete philosophical literature on emergence in canonical quantum
gravity, together with my dissertation ([47], §9.2) on which the remainder of this
section is based.

A caveat before we proceed to portray the emergence scheme proposed by Jeremy
Butterfield and Chris Isham and articulate its application to LQG and hence to the
emergence of the full spacetime, rather than just time, as Butterfield and Isham do.
As we noticed above (in §2.1), LQG is not a complete theory in that the ‘dynamics’
is not well understood and in this sense the physical Hilbert space has not yet been
isolated. Therefore, what follows below is limited to the kinematical level. This has
some of the advantages of theft over honest toil, as we can thus circumvent the
notorious problem of time, which of course Butterfield and Isham address. But it

35The remainder of this section draws on ([47] §9).
36Consider the n-body problem: while the phase space of states of an n-particle system in a physical
space ofm dimensions is topologicallyR2mn and thereforefinite-dimensional in classicalmechanics,
the corresponding quantum space of states is the infinite-dimensional Hilbert space L2(Rmn), the
space of square-integrable functions on R

mn .
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brings with it the distinct disadvantage that the following remains preliminary and
must thus be taken with a grain of salt.

4.1 The Butterfield-Isham Scheme

Let us then orient our conceptualization of the problem toward the extant literature on
emergence in canonical quantum gravity. Similarly to my suggestion above, [9, 10]
propose to regard quantization and emergence as two distinct, somewhat inverse, and
independent strategies for solving the problem of quantum gravity. Butterfield and
Isham consider various potentially helpful explications of the concept of emergence.
As it turns out, all of them cast emergence as a reductive relation. As we have
seen in §3.1, this usage is consonant with the physics literature, but dissonant with
the one in general philosophy. Given the richness and diversity of the literature on
reductive relations between theories, [9] conclude that this should be taken to sustain
the conclusion that there may not be a single concept of reduction to fit all instances
considered, not even if the analysis is confined to physics.37

Butterfield and Isham [9] distinguish three ways in which theories (or their con-
cepts, entities, laws, or models) can stand in a reductive relation to one another:
definitional extension, supervenience, and emergence. The first typically assumes
a syntactic understanding of theories, i.e. it understands a theory as a deductively
closed set of propositions. Applying Butterfield and Isham’s definition of it to the
case at hand, one could say that GR is a definitional extension of LQG iff it is possible
to add to LQG definitions of all non-logical symbols of GR such that every theorem
of GR can be proven in LQG thus augmented. The concept of definitional extension
is attractive because it gives us a clear understanding of how two theories, one of
which is a definitional extension of the other, relate to one another. Thus, definitional
extension goes a long way to explain why the predecessor theory was as successful
as it was and why it breaks down where in fact it does. However, we do not expect
the relation between GR and LQG to be as clear-cut as it is between Newtonian
mechanics and special relativity, where the concept of definitional extension admits
a rather straightforward application. In order to determine whether or not GR is a
definitional extension of LQG, one would need to know how to recover the classical
limit. Unless there is at least some progress in the recovery of the classical limit of
LQG, the concept of definitional extension cannot usefully be applied to the case at
stake. One would expect, to be sure, that relating LQG to GR will involve approxi-
mations such that general-relativistic propositions only hold approximately in LQG,
and only under certain conditions. More specifically, one first extends the definitions
of LQG such as to make it conceptually sufficiently potent to be able to prove all
theorems of an intermediate theory, from which GR can, in a well-understood way,

37No attempt shall be made to substantially consider the wider literature on the topic. Cf. [43] for
an analysis of various proposals for reduction as an inter-theoretic relation, with a particular eye on
the physical sciences.
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be recovered as an approximation. This process of approximation can be defined as
follows:

Definition 6 (Approximating procedure) An approximating procedure designates
the process of either neglecting some physical magnitudes, and justifying such
neglect, or selecting a proper subset of states in the state space of the approximating
theory, and justifying such selection, or both, in order to arrive at a theory whose val-
ues of physical quantities remain sufficiently close to those of appropriately related
quantities in the theory to be approximated.

But all of this goes beyond the concept of definitional extension and shall be discussed
below when I will discuss approximation as a form of emergence.38

The second relation considered by Butterfield and Isham is supervenience. Per
definitionem, GR supervenes onLQG iff all its predicates supervene on the predicates
of LQG, with respect to a fixed set A of objects on which both predicates of GR and
of LQG are defined. The set of predicates of GR is said to supervene on the set of
predicates in LQG, given a setA of objects, iff any two objects inA that differ in what
is predicated of them inGRmust also differ inwhat is predicated of them inLQG.The
fact that supervenience requires a stable setA of objects underlying both theories, i.e.
an identical ontology on which the ideologies of both theories are defined, renders it
rather useless in the present case. In a very rough way, the ontology of both theories
of course contains the gravitational field. But the finer structure of the ontologies of
both theories do not resemble each other: in LQG, one might perhaps find loops, or
spin networks, or more generally the inhabitants of the physical Hilbert space in its
ontology, while in GR, no such objects can be found. Hence, supervenience, at least
as defined above, does not offer any help in understanding the relation between GR
and LQG. Of course, the requirement that the set A must underlie both theories can
be relaxed: one could instead demand that the set A of objects on which the setsP1

and P2 of properties figuring in the two theories are defined must be closed under
compositional operations such as mereological sums or the formation of sets. The
setsP1 andP2 would then be defined with respect to some base individuals, forming
subsets A1 and A2 of A. Typically, these predications would induce some properties
on the non-basic composite objects. Conceivably, this relaxation might be sufficient
to overcome the disjointness of the sets A1 and A2.39

Consequently, we should not harbour any hope that GR either is a definitional
extension of LQG or supervenes on LQG. However, if one admits a sufficiently
liberal notion of emergence, hope resurges. The third broadly reductive relation
proposed by Butterfield and Isham, and termed ‘emergence’ by them, fits the bill:

Definition 7 (Emergence) For Butterfield and Isham, a theory T1 emerges from
another theory T2 iff there exists either a limiting or an approximating procedure to
relate the two theories (or a combination of the two).

38The clause “appropriately related quantities in the theory to be approximated” in Definition 6
above occludes substantive work that must be completed to achieve such “appropriate relation”. I
am grateful to Erik Curiel for pushing me on this point—I most certainly deserve the pushing here.
39I wish to thank Jeremy Butterfield for suggesting this relaxation.
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The definition of ‘approximating procedure’ was given in Definition 6; here is the
one for ‘limiting procedure’:

Definition 8 (Limiting procedure) A limiting procedure is taking the mathematical
limit of some physically relevant parameters, in general in a particular order, of the
underlying theory in order to arrive at the emergent theory.

For it to have any prayer of sufficing to relate two theories, a limiting procedure as
envisioned by Butterfield and Isham must be accompanied by a specification of a
map between the theories that relates at least some of their algebraic or geometric
structures.40 For both technical and conceptual reasons, one should not expect that the
emergence of GR from LQG can be understood only as a simple limiting procedure.
Carlo Rovelli ([34] §6.7.1) delivers an account of how limiting procedures alone are
incapable of establishing the missing link. He relates how loop quantum gravitists
have not suspected that quantum space might turn out to have a discrete structure
during the period from the discovery of the loop representation of GR around 1988 to
the derivation of the spectra of the area and volume operators in 1995. He reminisces
how during this period researchers believed that the classical, macroscopic geometry
could be gained by taking the limit of a vanishing lattice constant of the lattice of
loops. This limiting procedure was taken to run analogously to letting the lattice
constant of a lattice field theory go to zero and thus define a conventional quantum
field theory (QFT). With this model in mind, something remarkable happened when
people tried to construct so-called weave states which are characterized as approxi-
mating a classicalmetric: when the quantum states were defined as the limit one gains
when the spatial loop density grows to infinity, i.e. when the loop size is assumed to
go to zero, it turned out that the approximation did not become increasingly accurate
as the limit was approached. This can be taken as a clear indication that taking this
limit was physically inappropriate. What was observed instead was that eigenvalues
of the area and volume operators increased. This, of course, meant that the areas and
volumes of the spatial regions under consideration also increased. In other words,
the physical density of the loops did not increase when the ‘lattice constant’ was
decreased. The physical density of loops, it turned out, remains unaffected by how
large the lattice constant is chosen; it is simply given by a dimensional constant of
the theory itself, Planck’s constant. This result is interpreted to mean that there is a
minimal physical scale. Or, in Rovelli’s words, “more loops give more size, not a
better approximation to a given [classical] geometry” (ibid.). The loops, it turns out,
have an intrinsic physical size. Taking this limit, then, does not change the structure
from discrete quantum states to smooth manifolds. It just does not change anything
in the physics, except that we look at larger volumes. As some of the features of
the classical geometry such as smoothness cannot be reduced to or identified with
properties of the quantum states of the more fundamental theory, GR in toto does
not reduce to LQG. Thus, a limiting procedure, at least if used in isolation, will just
not do the trick.

40Thanks to Erik Curiel for holding me to task here.
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On the conceptual side, a limiting procedure never eliminates superposition states,
which of course are generic in a quantum theory. For this reason alone, a limiting
procedure cannot succeed in recovering a classical theory from a quantum one. As
argued by Klaas Landsman [26], the classical world only emerges from the quantum
theory if some quantum states and some observables of the quantum theory are
neglected, and some limiting procedure is executed. According to his view, to be
discussed below, relating the classical with the quantum world thus takes both, the
limiting as well as the approximating, procedures.

Turning to approximations then, a series of theories the last of which will mimic
classical spacetimes via approximations needs to be constructed. First, let us consider
what the ‘approximandum’, the classical theory to be approximated, should be. In
GR, and in quantum theories based on it, one standardly, and perhaps somewhat
unprincipledly, distinguishes between gravity and matter—a distinction routinely
downplayed in particle-physics based approaches. They differ in their role and where
they show up in the Einstein equations: gravity, the “marble” as Einstein called it,
constitutes the left-hand side of the equations anddetermines the spacetimegeometry;
matter, the “low-grade wood”, enters the stress-energy tensor on the right-hand side.
In the quantization that led to LQG, nomatterwas assumed to be present: LQG results
from a vacuum quantization of GR. It would seem, therefore, that states in LQG’s
physical Hilbert space should generically give rise to semi-classical states which
yield emergent classical spacetimes that are vacuum solutions. But this expectation
may be disappointed, and perhaps for a reason: it has been claimed that matter is
implicitly built into LQG and that it would therefore be a mistake to think that no
matter is present in spin network states. In particular, it may be that the very structure
of the spin networks gives rise to matter in the appropriate low-energy limit. This
means that it may be advisable not to be fixated on vacuum spacetimes.

Similarly, Hamiltonian GR is restricted to spacetime models with topology
� × R. Should we thus expect that the procedure for recovering relativistic space-
timeswould only yield spacetimes of such topology?While spacetimeswith different
topology may be suppressed and the generic result thus be concentrated on (� × R)-
spacetimes, the quantum structures with their combinatorial and topologically var-
iegated connections may lead to spacetimes with more complicated topologies than
those permitted by Hamiltonian GR.

In order to prepare the field for applying the Butterfield-Isham scheme, let us
consider the major ways in which classical physics is typically held to relate to
quantum physics, as listed and discussed, e.g., by Landsman [26]: (i) by a limiting
procedure involving the limit � → 0 for a finite system, (ii) by a limiting procedure
involving the limit N → ∞ of a large system of N degrees of freedom while � is
held constant, and (iii) either by decoherence or by a consistent histories approach.
Landsman defends the point of view that while none of these manners is individually
sufficient to understand how classicality emerges from the quantum world, they
jointly suggest that it results from ignoring certain states and certain observables
from the quantum theory.41

41For a more thorough discussion of Landsman’s argument, cf. ([47] §9.2.1).
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As Landsman shows, taking limits such as N → ∞, albeit ‘factual’, i.e., pertain-
ing to our world, and hence physically more reasonable, is mathematically just a
special case of the ‘counterfactual’, and hence physically more problematic, limit
� → 0. Regardless of their physical salience, these limits will in themselves not
suffice because no such limit can ever resolve a quantum superposition state into a
classical state. Thus, something more will be necessary, and that is where many think
‘decoherence’ will come into play. The main idea of the program of decoherence is
that the generically assumed presence of interference in quantum states is suppressed
by the system’s interaction with the ‘environment’, such as is thought to occur in the
measurement process.42 Decoherence, then, is the phenomenon that pure quantum
states, by virtue of their interaction with the system’s ‘environment’, evolve, over
very short time spans, from superposition states to ‘almost’ mixed states with clas-
sical probability distributions but ‘almost’ no quantum interference left. Roughly
speaking, decoherence leaves the quantum system, to a high approximation, in an
eigenstate of a macroscopically relevant operator; the classical probabilities of the
resulting mixed states then only reflect our ignorance as to which eigenstate the
system’s in.

Given that the system at stake is the universe, and all of it, of course, the notion that
‘environmental’ degrees of freedom are those which decohere the system must be
generalized so as to include ‘internal’ degrees of freedom of the system. This does
not mean that the system is put in a mixed state from the beginning—that would
be begging the question, as a referee correctly remarked—, but instead to ‘coarse
grain’ and thereby ‘wash out’ many degrees of freedom, which then effectively act
as the environment of the ‘system’ consisting of the remaining, physically salient
degrees of freedom. This ‘internal’ environment then induces the decoherence of
the originally pure state. We will return to this ‘cosmological’ problem below in the
specific context of LQG.

The cosmological problem thus requires that we operate with a generalized notion
of decoherence, which does not rely on a decohering system being embedded in an
environment which is literally external to it. There is, however, a second issue that
needs to be addressed. Decoherence is usually understood as a dynamical process
of a system interacting with a large number of ‘environmental’ degrees of freedom.
How shouldwe conceive of a dynamical process in the general quantum-gravitational
context in which time itself is part of the system at stake and, at least for canonical
approaches, in which we face the nasty problem of time? Unfortunately, I have no
solution to offer here, but can only note the puzzling problem and venture a guess
as to the direction in which its resolution may have to go. In my view, the solution
will come from a considered understanding of how dynamical processes such as
decoherence can co-emerge with spacetime such that the emergence of the former
facilitates the emergence of the latter, and vice versa, to let dynamics and spacetime
mutually enable one another.

In sum, if—and only if—a theory of decoherence manages to give us a handle on
how to identify the relevant degrees of freedom, and under what circumstances the

42For reviews of decoherence, see [7] and [40].
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Fig. 3 The Butterfield-Isham scheme transposed to the present case

interaction between these degrees of freedom and those which were not picked out
as ‘environmental’ leads to a suppression of interference, and how this suppression
works in detail, particularly concerning its ‘dynamics’, then we will have a mech-
anism that ‘drives the system’ to the right sorts of semi-classical quantum states.
In other words, such a mechanism would then justify the selection of the subset of
states (and of a subset of physical magnitudes) we made in what Butterfield and
Isham called the ‘approximating procedure’.

In general outline, then, following Butterfield and Isham’s proposal will lead to a
two-step procedure, as illustrated in Figure 3. The first step consists of an approxi-
mating procedure, driving the generic quantum states, by some physical mechanism
or other, into the semi-classical states, which are more closely related to classical
states. The second step involves a limiting procedure relating these semi-classical
states to states in the classical phase space, denoted in Figure 3 by Γ . Regardless of
how the details of this story work out, one thing is clear: a whole host of issues known
from the traditional problem of understanding the relation between the quantum and
the classical world will arise.

4.2 Applying the Butterfield-Isham Scheme

The thesis—or should I say the ‘promissory note’—to be suggested in the remainder
of this essay asserts that at least to the extent to which LQG is a consistent and
complete theory, (a close cousin of) GR can be seen to emerge from LQG if a
delicately chosen ordered combination of approximations and limiting procedures
is applied. This note is yet to be redeemed. All approaches to finding the semi-
classical and classical limits of LQG are confined, to date, to using the kinematical
Hilbert space HK rather than the physical Hilbert space H as their starting point.
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This raises the concern of both the viability and the meaningfulness of relating the
kinematical states to corresponding classical spacetimes, or spaces. But concerns like
these, although perhaps ultimately critical, should not keep us from attempting to get
a grasp on what it means to draw the classical limit of the background-independent
QFT as it stands now (and has been sketched above), as it may turn out to be an
eminent help in the construction of the physical Hilbert space itself. To be sure, even
the relationship between kinematic LQG and classical theories is ill-understood.
Let me sketch, however, how preliminary work by physicists might bear out the
Butterfield-Isham scheme.

The rough idea of constructing semi-classical states from the kinematical Hilbert
space HK is to find those kinematical states which correspond to almost flat three-
metrics, i.e. to three-geometries where the quantum fluctuations are believed to be
negligibly small. Two major approaches to construct semi-classical theories domi-
nate the extant literature, the so-called ‘weave state approach’ and the ansatz using
coherent states. The latter has been pioneered by Thomas Thiemann and OliverWin-
kler.43 Other proposals include Madvahan Varandarajan’s ‘photon Fock states’ and
generalizations thereof [1, 45], and the Ashtekar group’s ‘shadow states’ [6].44 The
remainder of this essay shall be dedicated, however, to the most prominent approach
of constructing semi-classical states, the so-called ‘weave states’.

The idea of a weave state originally introduced by Ashtekar, Rovelli, and Smolin
[5],45 revolves around selecting spin network states that are eigenstates of the geo-
metrical operators for the volume of a (spatial) region R with eigenvalues which
approximate the corresponding classical values for the volume of R as determined
by the classical gravitational field. Simultaneously, these selected spin network states
are eigenstates of the geometrical area operator for a surface S . More technically,
consider a macroscopic three-dimensional region R of spacetime with the two-
dimensional surfaceS and the three-dimensional gravitational field eia(x) defined for
all x ∈ R. This gravitational field defines a metric field qab(x) = eia(x)e j

b(x)ηi j (x),
where ηab is the Minkowski metric, for which it is possible to construct a spin
network state |S〉 such that |S〉 approximates the metric qab for sufficiently large
scales � � �Pl, where �Pl is the Planck length, in a yet to be rigorously specified
sense.46 Classically, the area of a two-dimensional surfaceS ⊂ M and the volume
of a three-dimensional regionR ⊂ M with respect to a (sufficiently well-behaved)

43For a review, cf. [39] and ([44] §11.2). Thiemann’s book also discusses weave states in §11.1 and
the photon Fock states in §11.3.
44As ([44] §11) points out, there are deep connections between the various semi-classical pro-
grammes.
45For an intuitive introduction, see ([34] §6.7.1). The picture is that of the gravitational field like a
(quantum cloud of) fabric(s) of weaves which appears to be smooth if seen from far but displays a
discrete structure if examined more closely. Hence weave states.
46The ‘upper case’ spin network states |S〉 live in K 
, the pre-kinematical Hilbert space, i.e. the
Hilbert space containing all spin network states which solve the Gauss constraints, but not necessar-
ily the spatial diffeomorphism constraints. Thus, the spin network states inK 
 are not represented
by abstract graphs, as are those in the full kinematical Hilbert space HK , but as embedded graphs
on a backgroundmanifold. This choice is just conveniently following the established standard in the
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fiducial gravitational field 0eia are given by ([34] §2.1.4)

A[0e,S ] =
∫

|d2S |, (11)

V[0e,R] =
∫

|d3R|, (12)

where the relevant measures for the integrals are determined by 0eia . This fiducial
metric is typically, but not necessarily, chosen to be flat. The requirement that the
spin network state |S〉 must approximate the classical geometry for sufficiently large
scales is made precise by demanding that |S〉 be a simultaneous eigenstate of the area
operator Â and the volume operator V̂ as mentioned above with eigenvalues equal
to the classical values as given by (11) and (12), respectively, up to small corrections
of the order of �Pl/�:

Â(S )|S〉 = (
A[0e,S ] + O(�2Pl/�

2)
) |S〉, (13)

V̂(R)|S〉 = (
V[0e,R] + O(�3Pl/�

3)
) |S〉. (14)

If a spin network state |S〉 satisfies these requirements, then it is called a weave
state. In fact, the length scale �, which is large compared to the Planck length �Pl,
characterizes the weave states, which are for this reason sometimes denoted by |�〉
in the literature. At scales much smaller than �, the quantum features of spacetime
would become relevant, while at scales of order � or larger, the weave states exhibit
a close approximation to the corresponding classical geometry in the sense that it
determines the same areas and volumes as the classical metric qab. In this sense, the
weave states are semi-classical approximations.

It should be noted that the correspondence between weave states and classical
spacetimes is many-to-one. In other words, equations (13) and (14) do not determine
the state |S〉 uniquely from a given three-metric qab. The reason for this is that these
equations only put constraints on values averaged over all ofS andR, respectively,
and we have assumed ex constructione that these regions are large compared to the
Planck scale. Of course, there are many spin network states with these averaged
properties, but only one classical metric which exactly corresponds to these averages
values. The situation can be thought of as somewhat analogous to thermodynamics,
where a physical system with many microscopic degrees of freedom has many dif-
ferent microscopic states with the same averaged, macroscopic properties such as
temperature.47

(Footnote 46 continued)
literature on weave states; we will see below in Footnote 47 that this poses no problem as everything
can be directly carried over to the spatially diffeomorphically invariant level.
47The weave states as introduced above have merely been defined at the pre-kinematic level, i.e.
they are not formulated in terms invariant under spatial diffeomorphisms (cf. also Footnote 46). The
reason for this choice lies mostly in that this is the canonical choice in the literature, but also because
in this way, the weave states can be directly related to three-metrics, rather than equivalence classes
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Apart from a serious difficulty in constructing semi-classical weave states corre-
sponding to classical Minkowski spacetime,48 it seems as if the notion of approxima-
tion as captured in Definition 6 and the Butterfield-Isham scheme might bear fruit in
relating semi-classical weave states to classical spacetimes (or at least spaces). If the
weave states are taken to be simultaneous eigenstates of the area and volume oper-
ators, as they are in (13) and (14), then some physical quantities must be neglected,
viz. all those operators constructed from connection operators, since the ‘geometri-
cal’ eigenstates are maximally spread in these operators, and the kinematical (weave)
states must be carefully selected to only include those which are peaked around the
geometrical values determined by the fiducial metric. It is at least questionable, how-
ever, whether the neglect of connection-based operators can be justified. If it cannot,
then only semi-classical states which are peaked in both the connection and the triad
basis, and are peaked in such a manner as to approximate classical states, should be
considered. In this case, we would still only have a selection of states, but perhaps
no operators, or no physically salient ones, which are being ignored.

None of this gives us just as yet a physical mechanism that drives generic kine-
matical states to the semi-classical weave states. Just as above in the general case,
decoherence is widely assumed to offer such a mechanism in the context of weave
states. But this brings what I termed above the ‘cosmological problem’ back into the
fold: how should such a story possibly apply to the present context where the spin
network states are supposed to be the quantum account of space—and all of it. If we
thus think of an ‘environment’ as something external to the system for which it is
an environment, then relying on such an environment in our story implies that there
must be something outside of space. But this is clearly incoherent. Not all hope is
lost, however, as there are at least two ways to escape the incoherence. First, as in
the general case above, one might conceive of decoherence not in terms of exter-
nal, environmental degrees of freedom which interact with the system, but instead
as interactions among different degrees of freedom of the system itself. This will
presuppose a partition of the system’s degrees of freedom into ‘salient’ ones and
mere ‘background’; but there is no reason that this could not be done in a principled
fashion.

Second,wemay reconceptualizeLQG’s subjectmatter.Wemay,more specifically,
conceive of areas and volumes as local properties of the quantum gravitational field,
just as these geometrical properties were local in GR. As was explicated in §2.1,
given a region R of quantum space, e.g. a chunk of space in our laboratory, each
node of the spin network state represents a grain of such a space as it contributes to

(Footnote 47 continued)
of three-metrics. This, however, does not constitute a problem whatsoever, as the characterization
of weave states carries over into the context of diffeomorphically invariant spin network states in
HK , as follows. If we introduce a map Pdiff : K 
 → HK which projects states in K 
 related by
a spatial diffeomorphism unto the same element of HK , then the state HK � |s〉 = Pdiff|S〉 is a
weave state of the classical three-geometry [qab], i.e., the equivalence class of three-metrics qab
under spatial diffeomorphisms, just in case |S〉 is a weave state of the classical three-metric qab as
defined above.
48For details, cf. ([47] 181).
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the eigenvalue of the volume operator. Similarly, each link from a node withinR to a
node outside ofR, i.e. each link which intersects the boundaryS ofR, contributes
to the eigenvalue of the area operator. If we had measurement devices at our disposal
with Planck-scale accuracy, we could, in principle, measure the volume and the
surface area of a region of space(time) given in our lab. Such a measurement would
essentially amount to counting (and weighing) the nodes within a region as well as
counting (and weighing) the links which leave the region. If the regionR considered
does not encompass all of space, but only a delimited piece of it, then of course finding
an environment for such a ‘mid-sized’ region is straightforward and the cosmological
problem dissolves. In fact, it would arguably also resolve the dynamical problem, as
the lab frame would offer a context in which dynamical processes unravel. It could
thus be the case that if we performed an area or volume measurement on surfaceS
or region R, respectively, then we would find the quantum state of this ‘mid-sized’
region decohered into an eigenstate of the relevant operator, and thus into a weave
state.

Once we have completed this stage, and we have found semi-classical states
which approximate classical states, then a limiting procedure can be executed. Such
a limiting procedure will involve taking the limit �Pl/� → 0, which will make the
small corrections in (13) and (14) disappear. This limit can be performed by either
having � go to infinity, or �Pl go to zero (or both). The first choice corresponds to
letting the size of the spatial regionR grow beyond all limits, and thus resembles the
‘factual’ limit N → ∞ as discussed above. The second choice, letting the Planck
size go to zero, corresponds, accordingly, to the ‘counterfactual’ case � → 0. With
the second choice, but arguably not the first, we leave the realm of the quantum
theory and arrive at a strictly classical description of the spatial geometry.

It should be noted that none of this solves the measurement problem. Only a full
solution of the measurement problem will ultimately give us complete comprehen-
sion of the emergence of classicality from a reality which is fundamentally quantum.
But to solve this problem is hard in non-relativistic quantum mechanics, harder still
if special relativity must be incorporated, and completely mystifying once we move
to fully relativistic quantum theories of gravity. In light of this, I submit that we
would have reason to uncork our champagne even if we only managed to articu-
late a complete and consistent quantum theory of gravity with a well-understood
approximation to semi-classical states and a somewhat rigorous limiting procedure
connecting these semi-classical states to classical states of the gravitational field.

5 Conclusion

We have seen how classical space and time ‘disappear’ in quantum gravity and
considered a sketch of how theymight re-emerge from the fundamental, not obviously
spatiotemporal structure. Even though the situation is technically and conceptually
more demanding overall and even though a case must be made for the applicability
of a traditional measurement concept more specifically, I hope the reader has also
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recognized that the way in which classicality emerges from the quantum theory does
not radically differ fromordinary quantummechanics, at least along somedimensions
of comparison.

The project of analyzing the emergence of spacetime, and hence of classicality,
from quantum theories of gravity, which often deny at least some aspects of spa-
tiotemporality, is relevant for two reasons. First, important foundational questions
concerning the interpretation of, and the relation between, theories are addressed,
which contributes to the conceptual clarifications in the foundations of physics
arguably necessary to achieve a breakthrough. Not only philosophers of physics
will contribute to this project, of course. They are not even likely to shoulder the
lion’s share, which will still fall on the physicists. But they can nevertheless bring
their unique skill set to the table, to the benefit, it is hoped, of the entire dinner party.
Second, and conversely, quantum gravity is rich with implications for specifically
philosophical, and particularly metaphysical, issues concerning not just space and
time, but also causation, reduction and evenmodality. Quantum gravity thus turns out
to be a very fertile ground for the philosopher. Altogether, I take it, there is no reason
for philosophers to keep aloof from these exciting developments in the foundations
of physics.
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