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Preface

This book is the outgrowth of a conference organized at the Interdisciplinary
Centre for Science and Technology Studies (IZWT) of the University of Wuppertal,
Germany, in 2010, July 21-23. Around that time the editors of the present volume
had the pleasure of a close interdisciplinary cooperation for several years. We thank
the centre for giving us the opportunity to organize the conference. We also express
our gratitude to the Fritz Thyssen Foundation and the University of Wuppertal for
their financial support. Two of us would like to use this opportunity to acknowledge
that the bulk of work for preparing the conference was generously taken over by
D. L., who also acted as the main editor of this book. However, most of all, we want
to thank all contributors to the conference and to this book.

Wuppertal/Pasadena Dennis Lehmkuhl

June 2016 Gregor Schiemann
Erhard Scholz
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Introduction: Towards A Theory
of Spacetime Theories

Dennis Lehmkuhl

The title of this book—Towards a Theory of Spacetime Theories—is an attempt at
false modesty. Or, rather, maybe: an act of an unreasonable raising of the chin in
the face of a task supposedly impossible to master. After all, we do not even have
a comprehensive map of the solution space of general relativity; by far the most
established and most investigated spacetime theory; how then are we supposed to
draw a map of the space of spacetime theories in which general relativity itself is but
one little point? It seems a daunting and impossible task. And still, we cannot afford
not to take it on.

General Relativity (GR) brought with it the idea that spacetime is not just a static
but a dynamical playing field in its own right; according to GR, spacetime itself is
dynamical. This is a wonderful insight, and in many ways we still have to come to
grips with its implications. Much of the current literature in philosophy of physics
wrestles with the right interpretation of Einstein’s 1915 theory. But GR is not the
only candidate for the ‘right’ theory of spacetime and gravitation out there. Indeed,
in recent years it has come under pressure. We need to understand the rivals of GR,
and try to play a part in getting an objective picture of how to decide between these
theories.

Even if we were absolutely sure that GR is the right theory of spacetime and
gravity, even if we were only concerned with its interpretation rather than with that
of its outlandish rivals, we would still need to look at said rivals. For you cannot
understand how special GR is as a theory, as a point in the space of possible spacetime
theories, without looking at least at its immediate neighbourhood in this space. Is
GR the only serious theory of gravity in which special relativity is locally valid? Or
is this a feature shared by a wide array of post-1915 theories and we should stop
seeing it as something noteworthy about GR in particular? How about the notorious
‘geometrization’ of the gravitational field and the unification of gravity and inertia?
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2 D. Lehmkuhl

Is GR the only theory achieving these goals? Are the field equations of the theories
in GR’s neighbourhood equally non-linear, or are there different degrees or kinds of
non-linearity in a sense to be specified? How exactly are the field equations and the
equations of motion of particles related to one another, in GR and in theories close to
GR? How about the shape of the solution space of GR’s field equations? Is it a special
characteristic of GR that there is a unique exterior static and spherically symmetric
solution to the field equations, or is this result (known as Birkhoff’s theorem) germane
not to GR itself but to the wider neighbourhood around and including GR in the
space of spacetime theories? If so, how big is this neighbourhood? And how about
gravitational waves: how special are the gravitational waves allowed for by GR as
compared to the gravitational waves allowed for by other theories?

1 Which Space of Theories?

We need a map. Maybe a map of the whole space of spacetime theories is too
much to ask for at the moment, but we can aim at a map of at least the immediate
neighbourhood of GR in the space of theories.

Here, however, we already hit the first obstacle. When I first envisaged the work-
shop on which this book is based, I had no doubt that the space GR lives in is the
space of spacetime theories, and that this was the space of which we had to draw
a map. But what distinguishes the space of spacetime theories from the space of
field theories? Maxwell-Lorentz electrodynamics is a member of the space of field
theories but not a member of the space of spacetime theories. General Relativity, on
the other hand, is arguably both a spacetime theory and a field theory. But which
neighbourhood are we looking at then: GR’s neighbourhood in the space of field
theories, or its neighbourhood in the space of spacetime theories? If we look at the
former neighbourhood, then special relativistic electrodynamics is arguably a very
close neighbour to GR, if we look at the latter, it is arguably not a neighbour at all.
But why? What makes a theory a spacetime theory?

We will not start with an answer to this question. Instead, one of the hopes for
this book is that by comparing different spacetime theories, we will come closer to
an inkling of what they have in common, in contrast to a field theory that is supposed
to be about an abstract space (like a fibre-bundle formulation of electrodynamics),
rather than about physical spacetime.

2 A Comparison of Different Theories of Spacetime
Theories

There are three kinds of (meta)-theories of spacetime theories; three ways to draw
a map. The first kind is the most ambitious: try to develop a framework so general
and encompassing that it can capture all the properties of each spacetime theory
(or a major subset of all spacetime theories), and allow us to compare them with

erik@strangebeautiful.com



Introduction: Towards A Theory of Spacetime Theories 3

one another. The first meta-theory of this camp was never declared as one, even
though it is implicit in the works of Weyl, Eddington, Einstein, Schouten, etc. The
idea is to focus on the underlying geometry on which general relativity is based—
pseudo-Riemannian geometry—and to find new geometries that are generalisations
of GR’s geometry on which, in turn, more general physical theories can be based.
Examples include Weyl geometry, in which the independently defined metric and the
connection are semi-compatible rather than compatible like in GR, or affine theory,
in which only the affine connection is fundamental. Further generalisations can be
obtained by allowing the metric and/or the connection to be asymmetrical, or for
them not to be compatible with one another at all. Depending on which generalised
geometry one chooses, one will have a torsion tensor arising from the connection in
addition to the curvature tensor, or obtain more than one curvature tensor.

The big drawback of the above approach is that it focuses merely on the fun-
damental mathematical objects of the different theories, but not so much on the
dynamics. Indeed, Eddington published on his affine approach, in which a gener-
alised affine connection is the only fundamental variable, without ever giving field
equations, let alone details on how the affine connection, whose Ricci tensor was
to represent the unified gravitational and electromagnetic fields, coupled to ordinary
matter.” Furthermore, depending on how restrictive your notion of ‘geometry’ is, the
approach might keep you from investigating generalisations of GR in which math-
ematical objects occur which do not have a ‘clear geometrical meaning’.> Finally,
the geometrical approach easily leads us to believe that in order to get a theory that
is in an interesting sense different from GR we need to move away from pseudo-
Riemannian geometry; and indeed this was the leading approach between the 1920s
and the 1940s.

However, in the 1950s and 1960s, the renaissance of gravitational research, more
and more alternatives to general relativity were found that, like GR, were based on
pseudo-Riemannian geometry. Their main difference to GR lay in new gravitational
fields in addition to the metric tensor (and not necessarily related to geometry),
in different field equations, and different coupling structures. The first formalism
aiming to capture this plethora of gravitational theories was ‘Dicke’s formalism’,
due to Robert Dicke. The main aim of the approach was to deliver a framework
that was theoretically as unrestrictive and prejudiced as possible, so as to provide
a framework in which different gravitational theories could be judged against new
data (more precise measurements in the earth—moon system, the solar system, and in
earthbound free-fall experiments) without preferring one theory over other theories.
Thus, Dicke’s formalism only demanded that the following minimal postulates are
fulfilled in any theory of gravity: (1) that spacetime is represented by a 4-dimensional

ISee Goenner [9, 10] especially, but also van Dongen [19], Vizgin [20] and Bergia [2].
2See Goenner [9], section 4.3. Einstein’s main engagement with Eddington’s affine approach was to

deliver the field equations for the affine connection, see especially the recently published Volumes
13 and 14 of the Collected Papers of Albert Einstein.

3Einstein’s own notion of ‘geometry’ was very unrestrictive. Indeed, he argued that an arbitrary
vector v# is not more nor less ‘geometrical’ than a metric tensor g,,,. See [13] for details.
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4 D. Lehmkuhl

manifold, and (2) that every theory of gravity to be categorised is expressed in
generally covariant form. On top of this, the following constraints were imposed:
(i) gravity must be associated with one or more tensor fields; and (ii) the theory must
have a Lagrangian formulation. It was explicitly not demanded that (a) any kind of
equivalence principle holds, nor (b) that freely falling particles move on geodesics.*

Dicke’s framework was designed to compare gravitational experiments, espe-
cially in the solar system regime. In order to complement and build on this, Thorne
etal. [17] constructed an overarching system designed to compare the conceptual and
mathematical intricacies of different theories of gravity. I will call their framework
the TTL-framework for short. The authors start by giving separate definitions of
‘spacetime theory’ and ‘mathematical representation of a spacetime theory’, distin-
guish between ‘kinematically possible trajectories’ and ‘dynamically possible tra-
jectories’, three different kinds of variables that can appear in a spacetime theory
(confined, absolute, and dynamical variables), and they give abstract definitions of
the distinction between boundary conditions, prior geometric constraints, decom-
position equations, and dynamical laws. With this toolbox, they can succinctly and
completely characterise any theory that is a ‘spacetime theory’ according to their
definition of a spacetime theory: “any theory that possesses a mathematical repre-
sentation constructed from a 4-dimensional spacetime manifold and from geometric
objects defined on that manifold.” Thorne et al. go on to define a gravitation theory
as a special kind of spacetime theory, namely any spacetime theory that essentially
predicts Kepler’s laws for a binary star system.® A metric theory of gravity is, in turn,
a special case of gravitation theory that has a particular mathematical representation
in which (I) spacetime is endowed with a metric tensor; (II) the world lines of test
bodies are geodesics of said metric; and (III) the Einstein equivalence principle (as
defined within TTL) is satisfied; in particular, all non-gravitational laws in any freely
falling frame reduce to their counterparts in special relativity. Much could be said
about this definition of a metric theory of gravity, especially with regard to the ques-
tion of how the three conditions relate to one another. Note in particular that some of
these conditions will be theorems in one metric theory and assumptions in another;
I will come back to the special case of the second assumption further below.

The second kind of metatheoretical approach to spacetime theories, theories of
gravitation in particular, aims not to capture all of the properties of a given spacetime
theory but only how it behaves in a certain limit. One may ask why one would go
for this kind of approach if one could also go for the first approach listed above.
The answer is mostly practical. First, most of our empirical data tells us about the

4See Dicke [5] and Will [21], p. 10, for a summary of Dicke’s framework.

5The notion of ‘geometric object’ they draw on here is that of Trautman [18]; which is designed
to “include nearly all the entities needed in geometry and physics”. They are less explicit about
what they mean by a ‘4-dimensional spacetime manifold’ rather than a ‘4-dimensional manifold’;
I would argue that a spacetime manifold needs at least conformal structure (an equivalence class of
metrics defined on it) in order to be called a spacetime manifold, for only then can we distinguish
between spatial and temporal dimensions.

6See Thorne et al. [17], p. 18, for qualifications regarding what kind of binary star system they are
talking about, and how close the theory has to come to Kepler’s laws.
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Introduction: Towards A Theory of Spacetime Theories 5

properties of comparatively weak gravitational fields. If we want to know which
theory of gravity fares best in the light of this empirical data, then it is easiest to
look at the limit where gravitational fields are relatively weak and where non-linear
effects are typically negligible. But also, secondly, it makes it much easier to compare
gravitational theories almost at a glance, and to see in which respects they are alike
or not alike (in the limit).

The most prominent example in this second kind of approach is the parametrised
post-Newtonian (PPN) framework. It takes two tentative conclusions of Dicke’s
work/framework as a starting point and postulates (1) that there exists a metric tensor
g of signature —2 defined on the 4-dimensional manifold, (2) that this metric is
‘read’ by rods and clocks, and (3) that every material system is associated with an
energy-momentum tensor, whose covariant divergence vanishes, V#T,,, = 0. Here,
the covariant derivative V# is compatible with the metric g,, defined in the first
postulate.

Postulates 1 and 3 restrict the kinds of allowed gravitational theories significantly,
to a set of theories that is in important respects very much like GR. In addition to the
metric g, it allows for further fields associated with gravity, which can couple to
both the metric and the matter fields in various ways. But just like in GR, rods and
clocks are associated with one metric, and free particles follow the geodesics of the
Levi-Civita connection compatible with said metric. However, these postulates do
not yet constrain the different theories of gravity to a limiting case. This is achieved
by two further constraints, namely (i) that the gravitational sources are weak in the
sense that in the Newtonian limit of the respective theory the Newtonian potential
is <107°; and (ii) that gravitational sources (except electromagnetic fields) move
slowly with respect to one another, in the sense that v> < 1077.7

The PPN framework has been incredibly succesfull. It was originally designed
primarily to be applied to the solar system regime in order to compare how different
theories of gravity handle, say, Mercury’s perihelion or the relative motion of Earth
and Sun. A particularly interesting difference found between different theories of
gravity as compared in the PPN framework is the so-called Nordvedt effect, which
some alternative theories of gravity (like Jordan—Brans—Dicke theory) predict while
others (including GR) do not. It is often referred to as a test of the strong equivalence
principle which holds in GR but not in all alternative theories of gravity.® However,
since its inception in the 1960s, the PPN framework has also been applied to compare
the predictions of different gravitational theories outside of the solar system regime;
for example, their predictions with respect to how binary pulsars behave.

I am using geometrized units here, in which the speed of light is 1, and the Newtonian potential
dimensionless. Cf. Will [21], p. 87.

8The Nordvedt effect would obtain if the ratio of inertial and gravitational mass would be different
from 1 for sufficiently large, sufficiently self-gravitating bodies. Thus it would show that while test
bodies move on geodesics (the weak equivalence principle), not all massive gravitating bodies do,
even if their spin is neglected. The most important experimental realisation were lunar laser tests
of the Earth—-Moon system in the 1960s, in which no Nordvedt effect was discovered. However,
it remains possible that more massive bodies (black holes in particular) would exhibit a Nordvedt
effect. See Nordtvedt [15] and Will [21], section 8.1, for details.
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6 D. Lehmkuhl

Other limiting frameworks have been proposed, designed to compare the limits
of gravitational theories in different regimes. The parametrised Post-Friedmannian
(PPF) framework is particularly interesting, for it allows us to compare different
theories of gravity which have the Friedmann solution in its solution space.” In
effect, the PPF framework is designed to judge how different theories handle the
cosmological data that has been garnered since the discovery of the cosmic microwave
background, which brought about the widespread conviction that the whole history
of the universe we actually live in can be represented by the Friedmann solution.'”

The articles in this book go into another direction than these grand metatheoretic
approaches. Rather than drawing a map in broad strokes, they focus on particularly
rich regions in the space of spacetime theories. Indeed, most of them compare our
most successful theory of gravity, GR, with one or two other theories of gravity. The
general idea is that by getting to know our own home city, and by comparing it to our
immediate neighbours, we will be better prepared for the grand journey still ahead
of us. By comparing GR in all its details to particular spacetime theories, we hope
to get a better idea about what is special about GR, to see patterns in the immediate
neighbourhood of GR that might be much more difficult to see on a map with a grand
scale.

3 The Case Studies Contained in this Book

The first article in this book is by James Weatherall; it compares GR with geometrized
Newtonian gravitation theory (also known as Newton—Cartan theory). In particular,
Weatherall compares the role of geodesic theorems in the two theories; the possibility
to derive the geodesic motion of matter within these theories. In the context of GR
alone it has sometimes been claimed (especially by Brown [4]) that the existence of a
theorem that tells us that matter moves on geodesics explains inertial motion of matter
rather than presuming it. In drawing on his own proof that a similar theorem exists
in geometrized Newtonian gravity, Jim discusses the similarities and differences of
the respective theorems within the two theories, and uses the result to reflect on
the different senses in which one could take inertial motion to be explained. The
article shows clearly the direct benefits of a comparative analysis of two theories of
gravity: it is only through the comparison with geometrized Newtonian gravity that
the different ways in which we might interpret the sentence ‘GR explains inertial
motion’ come into focus.

While Weatherall’s chapter zooms in on a feature of GR that many have taken
as being at the core of GR (the geodesic theorem), Erik Curiel’s chapter focuses

9See Ferreira [8] for details on the PPF framework.

190f course, the conviction that the Friedmann solution adequately represents the era that we
currently live in goes back to Hubble’s discovery of the redshift of galaxies. But only the discovery
of the Cosmic Microwave Background gave convincing evidence of the big bang theory, i.e. the
idea that the Friedmann solution applies to the beginning of the universe too; indeed that there was
a beginning in the first place. See Smeenk [16] for details.
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Introduction: Towards A Theory of Spacetime Theories 7

on something that many have taken to be at the periphery of GR. ‘A primer on
energy conditions’ gives a comprehensive overview of the different conditions that
can be imposed on the energy-momentum tensor, the source term of the Einstein
field equations, and discusses different possible interpretation for each of them. In
doing so, Curiel shows that there is almost nothing one can do with GR without
imposing energy conditions; they are anything but at the periphery of the theory.
But as Curiel shows, the conditions and their interpretations stretch way beyond GR,
towards the question of what it means to be a spacetime theory. In his final section,
‘Constraints on the character of spacetime theories’, Curiel has moved from what
was only apparently the periphery to the very heart of GR and spacetime theories
more generally: from his analysis of energy conditions he draws conclusions about
features that any spacetime theory must have, especially with regard to the relation
between the stress-energy of matter and the (local and global) structure of spacetime.

Where Weatherall focused on the role of geodesic theorems and Curiel on the role
of energy conditions in spacetime theorems, Oliver Pooley focuses on a property of
GR that has too often been discussed without detailed comparison as to how the
property features in other spacetime theories: the alleged background independence
of GR. Pooley discusses different attempts of defining the notion of background
independence that result in different versions of GR, and compares them with dif-
ferent versions of the special relativistic theory of a scalar field defined on a flat
background. In doing so he disentangles different conceptions of background inde-
pendence, diffeomorphism invariance, and dynamicality of spacetime.

Friedrich Hehl investigates whether GR can be brought into the form of a gauge
theory akin to the standard model of elementary particle physics. Building on work
by Utiyama, Sciama and Kibble, he develops Riemann—Cartan theory on the basis of
the translation group of Minkowski spacetime; the resulting theory has non-vanishing
curvature and non-vanishing torsion. It contains General Relativity (vanishing tor-
sion, non-vanishing curvature) and teleparallel theory (non-vanishing torsion, van-
ishing curvature) as special cases, and shows how the empirical equivalence of the
latter two theories can be understood and what it demands. This empirical equiv-
alence has recently been the topic of philosophical discussion [11]; Hehl’s article
sheds new light on this equivalence by embedding both theories into the more gen-
eral framework of Riemann—Cartan theory. Further philosophical work could use his
results to question the long-standing position that the diffeomorphism group is to be
regarded as the gauge group of GR.

Erhard Scholz looks at a different geometric generalisation of GR, pioneered by
Hermann Weyl. Scholz chooses a particular variant of Weyl geometry, one that is
integrable and not intrinsically linked to electromagnetism, and shows how looking
at both GR and Jordan-Brans-Dicke theory uncovers new relationships between the
two theories. He then relates this framework to electroweak theory, and discusses the
relationship between the gravitational scalar field of Weyl geometry and the scalar
Higgs field of the standard model. Scholz then derives new cosmological models in
this framework, and sheds new light on the cosmological models of GR.

Claus Beisbart’s chapter differs from most other chapters in this volume in that
it casts the net more widely: Beisbart starts from a general framework for a ‘theory
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8 D. Lehmkuhl

of theories’, the semantic or model-theoretic conception of what it is to be a theory,
and applies it to the case of spacetime theories. This allows Beisbart to reflect on
the question of what makes a theory a spacetime theory, and he can propose several
possible answers drawing on the semantic conception of theories. In the end, he
applies the framework to compare GR and Brans-Dicke theory in particular. He
argues that GR ‘is not a theory of its own, but rather a relationship between theories’,
and that the familiar claim that Brans—Dicke theory reduces to GR in a limit is
problematic when the limiting relationship is spelt out using the semantic framework.

David Wallace investigates how exactly the (special) relativity principle and the
equivalence principle are related in the context of GR. He starts by summarising the
often-voiced position that both principles are true in sufficiently small regions of
spacetime, namely in regions where curvature is negligible. He challenges this claim
by introducing a thought experiment he terms Galileo’s black hole: a system where
curvature is not negligible yet the relativity and equivalence principles still hold. He
diagnoses that if a general relativistic system is isolated, its metric at sufficiently
large distances is the same as the metric of any system at sufficiently small distances:
it is the Minkowski metric with the Poincaré group as its symmetry group. For such
systems, he argues, the relativity and equivalence principles hold even though curva-
ture/gravity is not negligible. Thus, he shows what exactly makes the two principles
hold both locally and at large distances from isolated bodies.

Both the relativity and the equivalence principle are specific symmetry principles.
The general characterisation of different kinds of symmetries is the topic of Adan
Sus’ paper. He carefully distinguishes between global and local symmetries, inves-
tigates how global conservation laws arise even in the context of theories with local
symmetries, and which types of symmetries exactly have direct empirical signifi-
cance. He points to the precise relationship between different types of symmetries
and different types of conserved currents, and their interpretation, in answering these
questions.

While the previous chapters have all investigated and compared different classical
(non-quantum) spacetime theories, the last two chapters in the volume turn to the
question of what spacetime (and spacetime theories) are in the context of approaches
to quantum gravity. Claus Kiefer investigates the different concepts of time in GR
and in quantum theory, and analyses the extent to which these differences present
an obstacle for the construction of a quantum theory of gravity. Kiefer argues that
one of the two requirements that any theory of quantum gravity must fulfil is the
recovery of GR in a classical limit.

Christian Wiithrich investigates how one of the most promising approaches for
the correct theory of quantum gravity, Loop Quantum Gravity (LQG), deals with
this problem. As he points out, many approaches to quantum gravity start from the
assumption that the world does not contain spacetime as part of its fundamental
structure, but as something that has to be regained in the classical limit. Wiithrich
investigates how exactly this might take place in LQG. In discussing different inter-
pretational options, one thing about Wiithrich’s analysis is particularly interesting
in the context of this volume: the (re)-emergence of spacetime in a classical limit
seems to uncover a rather different limiting relationship between LQG and GR as
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Introduction: Towards A Theory of Spacetime Theories 9

compared to, say, GR and special relativity (compare Pooley’s chapter), or GR and
Newtonian gravity (compare Weatherall’s chapter).

4 Outlook

It might seem strange to finish the introduction to a book with a few words about
what could come after the book. But in the end, this book is supposed to be a step (or
a couple of steps) towards a theory of spacetime theories. Thus, it seems appropriate
to say something about what the next steps could be.

I contrasted the chapters in this book with the grand schemes of Dicke’s frame-
work, the Thorne-Lee—Lightman framework, the PPN- and the PPF framework.
While these schemes try to cast their net widely, to cover as many spacetime theories
as possible, the chapters in this book instead focus on a detailed comparison of certain
pairs or triples of spacetime theories. A natural next step could be to investigate which
lessons can be drawn for modified grand-scheme frameworks; whether the results
of the pairwise comparison of spacetime theories allow for ‘bottom-up results’ that
directly impinge on the details of the overarching frameworks. They might even moti-
vate the construction of a new overarching framework to complement the existing
ones.

Another avenue would be to explore something that neither the grand schemes
nor the pairwise comparisons of this volumes have focused on so far, although both
endeavours have touched on it. Both approaches (grand frameworks and pairwise
comparisons) have focused on comparing the field equations, symmetry groups and
fundamental (geometric) objects of the different theories. The solutions to these
equations were not the focus of these investigations. However, much if not all of
the actual predictive work of spacetime theories is achieved by solutions to the field
equations. We see this, for example, by the fact that when Einstein [7] predicted the
perihelion of Mercury, he did not even have the final field equations of GR; but the
(approximation to) the Schwarzschild solution he used in making the prediction was a
solution both to the field equations he used in that paper and to the (soon-to-be-called)
Einstein equations of the final theory. In defining the solution he used to model the
gravitational field of the Sun that Mercury is subject to, Einstein demanded that (i) the
field is spherically symmetric; (ii) the field is static; and (iii) that it is asymptotically
flat.

Birkhoff [3] soon showed that the Schwarzschild solution is the unique exterior
spherically symmetric solution that is also static and asymptotically flat. In other
words, it is unnecessary to demand staticity and asymptotic flatness as independent
assumptions; if the solution is demanded to be spherically symmetric, then one gets
the other two characteristics Einstein assumed ‘for free’. This is a rather striking
property of the solution space of Einstein’s field equations. One way of learning more
about how special (or ordinary) GR is in its immediate neighbourhood in the ‘space of
spacetime theories’ would be to gauge whether (a counterpart of) Birkhoff’s theorem

erik@strangebeautiful.com



10 D. Lehmkuhl

holds in other spacetime theories; and if so which other features these theories have
in common with GR.!!

Investigating the subspace of spherically symmetric solutions is particularly
important in every theory of gravity, for most astrophysical bodies (stars, black
holes, planets) are approximately spherically symmetric. An equally important solu-
tion subspace is that of gravitational wave solutions. We know that in GR gravitational
waves have two modes of polarisation, two degrees of freedom. Is this typical of this
solution subspace in most theories of gravity? Interestingly, it is not: Eardley et al. [6]
showed that the most general gravitational wave solution in a metric theory of grav-
ity (as defined in the TTL-framework) has six possible polarisation modes. GR, as a
special case of a metric theory of gravity, allows for only two of those, Brans—Dicke
theory allows for three.

The first gravitational wave has only just been detected experimentally [1]. How-
ever, the two LIGO detectors at Hanford and Louisiana were arranged in such a way
that the likelihood of detecting a gravitational wave hitting the Earth from an arbitrary
direction was to be maximised; not to distinguish, say, a GR-wave from a Brans—
Dicke wave. This will change once more the gravitational wave interferometers go
online.

There is so much left to be done towards an encompassing theory of spacetime
theories. But we are getting there. Step by Step.
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Inertial Motion, Explanation,
and the Foundations of Classical Spacetime
Theories

James Owen Weatherall

Abstract Ibegin by reviewing some recent work on the status of the geodesic princi-
ple in general relativity and the geometrized formulation of Newtonian gravitation. I
then turn to the question of whether either of these theories might be said to “explain”
inertial motion. I argue that there is a sense in which both theories may be under-
stood to explain inertial motion, but that the sense of “explain” is rather different from
what one might have expected. This sense of explanation is connected with a view
of theories—I call it the “puzzleball view”—on which the foundations of a physical
theory are best understood as a network of mutually interdependent principles and
assumptions.

1 Introduction

There is a very old question in the philosophy of space and time, concerning how and
why bodies move in the particular way that they do in the absence of any external
forces. The question originates with Aristotle, and indeed, the puzzle is particularly
acute when one thinks of it as the ancients might have. Given some external influence
on abody, it might seem clear why that body moves in one fashion rather than another:
the external influence forces it to do so. But when there are no forces present, what
does the work of picking one possible state of motion over any other? Consider
planetary motion: there are no apparent forces acting on planets, and yet they proceed
along fixed trajectories. Why these orbits rather than others? In Aristotelian terms,
what determines the “natural motions” of a body?

This manuscript was prepared in 2012 and has not been significantly revised since then. I still
hold the philosophical views defended here, but have not attempted to update the manuscript
in light of more recent work by myself or others.
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14 J.0. Weatherall

The modern answer to the question originates with Galileo and Descartes, but finds
its canonical form in Newton’s first law of motion, which states that in the absence
of external forces, a body will move in a straight line at constant velocity. This “law
of inertia,” as Newton called it, is preserved, mutatis mutandis, in general relativity,
where inertial motion is governed by the geodesic principle. The geodesic principle
states that in the absence of external forces, the possible trajectories through four-
dimensional spacetime of a massive test point particle will be timelike geodesics—
i.e., bodies will move along “locally straightest” lines without acceleration.

In standard presentations of general relativity, the geodesic principle is stated as a
postulate (cf. [27, 33, 36, 54]), much like Newton’s first law.! However, shortly after
Einstein presented the theory, he and others began to suspect that one could equally
well conceive of the geodesic principle as a theorem, at least in the presence of other
standard assumptions of relativity theory [17, 19, 20]. This shift from geodesic-
principle-as-postulate to geodesic-principle-as-theorem has led to a widespread and
deeply influential view that general relativity has a special explanatory virtue that
distinguishes it from other theories of space and time. In the words of Harvey Brown,
general relativity “... is the first in the long line of dynamical theories ... that explains
inertial motion” [4, pg. 163]. In other words, it may be that Newtonian physics
answers the “how” part of Aristotle’s question, but there is a sense in which only
general relativity answers the “why” part.

Although Einstein’s early attempts to prove the geodesic principle were not unam-
biguously successful, more recent efforts have shown that there is a precise sense in
which the geodesic principle may be understood as a theorem of general relativity
[23].2 However, it turns out that relativity is not unique in this regard. Geometrized
Newtonian gravitation (sometimes, Newton—Cartan theory) is a reformulation of

For a detailed and enlightening discussion of the status of the first law of motion in standard
Newtonian gravitation, see Earman and Friedman [14].

2There have been several steps along the way to proving the geodesic principle as a rigorous
theorem of general relativity. The most significant early attempt was the work of Einstein and
Grommer [19] and Einstein et al. [20], with subsequent work due to Mathisson [34, 35] (see also
Sauer and Trautman [44]), Taub [50], Thomas [51], and Newman and Posadas [11, 38, 39]. Many of
these are described and criticized briefly in Geroch and Jang [23]; for more expansive discussions,
see Blanchet [2] and Damour [10]. This history of Einstein’s efforts in this domain is described by
Havas [26] and Kennefick [28]. There are currently two approaches to the problem that are widely
recognized as successful: the one developed by Geroch and Jang [see also 18], which will be my
focus in the present paper, and one developed by Sternberg [47] and Souriau [45], among others,
which models a massive test point particle as an order-zero distribution with support along a curve.
One can then show that if the distribution is (weakly) conserved, the curve must be a geodesic. Note,
however, that although the Geroch—Jang approach and the Sternberg—Souriau approach are prima
facie different, there is a sense in which they turn out to be equivalent [24]. It is worth observing that,
although modern attempts to derive equations of motion in general relativity may be thought of as
addressing the same problem that Einstein and his contemporaries sought to address, the theorems
have a significantly different form. To give an example, Einstein et al. [20] claimed to show that
the geodesic principle followed from the vacuum form of Einstein’s equation; the Geroch-Jang
theorem, meanwhile, makes no explicit reference to Einstein’s equation, and, as we will see below, if
it is related to Einstein’s equation at all, it is because the theorem assumes that matter is represented
by a divergence-free energy-momentum field—an assumption that may be thought to follow from
Einstein’s equation with sources, but not the vacuum form of the equation. And so, while I take the
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Newtonian gravitation due to Cartan [5, 6] and Friedrichs [22] that shares many of
the qualitative features of general relativity. In geometrized Newtonian gravitation
one represents space and time as a four-dimensional spacetime manifold, the cur-
vature of which depends dynamically on the distribution of matter on the manifold.
Gravitational influences, meanwhile, are not understood as forces, as in traditional
formulations of Newtonian gravitation; rather, they are a manifestation of the cur-
vature of spacetime. And in particular, inertial motion is governed by the geodesic
principle: in the absence of external (nongravitational) forces, bodies move along the
geodesics of (curved) spacetime. Recently, I have shown that the geodesic principle
can be understood as a theorem of geometrized Newtonian gravitation [55]. Math-
ematically, the Newtonian theorem is nearly identical to the Geroch—Jang theorem.
Moreover, as [ have argued elsewhere, when the background assumptions needed to
prove these theorems are examined in the contexts of each theory, one can reasonably
conclude that the geodesic principle has essentially the same status in both cases,
though in neither theory is the situation as simple as one might have hoped [56].

One consequence of this recent work is that Einstein and others’ idea that the
status of the geodesic principle in general relativity distinguishes the theory from
other theories of space and time seems more difficult to hold on to. But it also raises
a related issue. When one attends carefully to the details of these theorems, several
complications arise concerning the strength and status of the assumptions necessary
for proving them. Given these complications, one might reasonably ask, do either of
these theories explain inertial motion? It is this second question that I will take up in
the present paper.’

(Footnote 2 continued)

Geroch—Jang theorem to provide a kind of answer to a problem Einstein recognized, it may be that
the form of the answer is sufficiently different from what Einstein expected that Einstein would
not have found it satisfactory. I am grateful to an anonymous referee for emphasizing this last point
to me.

3The recent literature on whether and in what sense general relativity and Newtonian gravitation
explain inertial motion originates with Brown [4]. Brown is not especially concerned to give an
“account” of the sense of explanation he has in mind, in the sense of providing necessary or
sufficient conditions for when some argument, theorem, etc., is an explanation (nor, I should say,
am I!), though the idea is that the geodesic principle is explained in general relativity because there
is a sense in which it is a consequence of the central dynamical principle of the theory, Einstein’s
equation. Sus [48] has expanded on this view, calling the form of explanation at issue “dynamical
explanation,” and further defending Brown’s claim that general relativity is distinguished from other
spacetime theories with regard to the explanation it provides of inertial motion. Malament [32] and
1 [56, 57], meanwhile, have pointed out that the geodesic principle does not follow merely from
Einstein’s equation, and that a strong energy condition is also required; moreover, as I note above,
a theorem remarkably similar to the one that holds in the relativistic case also holds in geometrized
Newtonian gravitation. But these latter discussions largely set aside the question of what sense of
explanation is at issue, if any. More recently, Tamir [49] has pointed out that in general relativity, at
least, the geodesic principle is false for realistic matter. He then considers almost-geodesic motion
as a kind of universal phenomenon in the sense of Batterman [1]. From this latter perspective, these
theorems provide explanations in the sense of showing how certain behavior can be expected to
arise approximately for a wide variety of substances. The remarks in the present paper are of a
rather different character than (most of) this earlier work, and so I will not engage with it closely in
the text.

erik@strangebeautiful.com



16 J.0. Weatherall

I will begin with a brief overview of geometrized Newtonian gravitation, after
which I will review the relevant theorems concerning the geodesic principle in that
theory and general relativity. I will focus on the subtle ways in which the theorems
differ, and on the complications that arise when one tries to interpret them. Once
this background material has been laid out, I will turn to the question at hand. The
starting point for this discussion will be to observe that on one way of thinking about
explanation in scientific theories, the answer to the question is “no”: neither of these
theories explains inertial motion, at least if the assumptions going into the theorems
have the character I describe. I want to resist this view, however, because I think it
takes for granted that one can make clear distinctions between “levels” or “tiers” of
fundamentality of the central principles of a theory. Careful analysis of the geodesic
principle theorems, meanwhile, suggests that there is another way of thinking about
how the principles of a theory fit together. The alternative view I will develop—I will
callit the “puzzleball view” or, perhaps more precisely, the “puzzleball conjecture”—
holds that the foundations of physical theories, or at least these physical theories, are
best conceived as a network of mutually interdependent principles, rather than as a
collection of independent and explanatorily fundamental “axioms” or “postulates.”
On this view, one way to provide a satisfactory explanation of a central principle of a
theory, such as the geodesic principle in general relativity or geometrized Newtonian
gravitation, would be to exhibit its dependence on the other central principles of the
theory, i.e., to show how the principle-to-be-explained is a consequence of the other
central principles and basic assumptions of the theory. And this is precisely what the
theorems I will describe do. And so, I will argue that there is a sense in which both
theories explain inertial motion, though some care is required to say what is meant
by “explain” in this context.

I'should be clear from the start: the language of explanation is a convenient one, but
I am not ultimately interested in the semantics of the word “explain.” The goal is not
to argue whether one thing or another is really an explanation. The dialectic, rather, is
as follows. Many people have suggested that general relativity provides an important
kind of insight with regard to inertial motion, something to be valued and sought
after in our physical theories. One might call this thing an “explanation,” or not. The
point, though, is that when one looks in detail at just what one gets in relativity theory
(and in geometrized Newtonian gravitation), it seems to work in a different way than
one might have initially guessed it would. One response to this observation would be
to say that we have not actually gotten what we were promised—or, in the language
above, that general relativity does not explain inertial motion. But another response
is to try to better understand what we do get. My principal thesis is that if one takes
this second path, an alternative picture emerges of how the foundations of theories
work. And on this alternative picture, general relativity and geometrized Newtonian
gravitation both do provide an important and very useful kind of insight into inertial
motion, and more, there are clear reasons why one should value and seek out this
sort of insight. Indeed, one might even think that what we ultimately get is what we
should have wanted in the first place. I am inclined to use the word “explanation”
for this sort of insight, but fully recognize that this usage may seem nonstandard or
incorrect to some readers.
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2 Overview of Geometrized Newtonian Gravitation

Geometrized Newtonian gravitation is best understood as a translation of Newtonian
gravitation into the language of general relativity, a way of making Newtonian physics
look as much like general relativity as possible, for the purposes of addressing com-
parative questions about the two theories.* The result is a theory that is strikingly
similar in many qualitative respects to general relativity, but which differs in cer-
tain crucial details. Recall that in general relativity, a relativistic spacetime is an
ordered pair (M, g.»), where M is a smooth four-dimensional manifold and g, is
a smooth Lorentzian metric on the manifold. In geometrized Newtonian gravitation,
meanwhile, one similarly starts with a smooth four-dimensional manifold M, but
one endows this manifold with a different metric structure. Specifically, one defines
two (degenerate) metrics. One, a temporal metric t,p, has signature (1, 0, 0, 0). It is
used to assign temporal lengths to vectors on M: the temporal length of a vector £¢
atapoint p is (t,,£°€%)!/2. Vectors with nonzero temporal length are called timelike;
otherwise, they are called spacelike. The second metric is a spatial metric h®®, with
signature (0, 1, 1, 1). In general one requires that these two metrics satisfy an orthog-
onality condition, 2*°t,. = 0. It is important that the temporal metric is written with
covariant indices and the spatial metric with contravariant indices: since both metrics
have degenerate signatures, they are not invertible, and so in general one cannot use
either to raise or lower indices. In particular, this means that the spatial metric cannot
be used to assign spatial lengths to vectors directly. Instead, one uses the following
indirect method. Given a spacelike vector £, one can show that there always exists
a (nonunique) covector u, such that £ = h“’u,,. One then defines the spatial length
of £% to be (h*’u,u,)'/?, which can be shown to be independent of the choice of u,.

Given a Lorentzian metric g,, on a manifold M, there always exists a unique
covariant derivative operator V that is compatible with g,, in the sense that
V.gbc = 0. This does not hold for the degenerate Newtonian metrics. Instead, there
are an uncountably infinite collection of derivative operators that satisfy the com-
patibility conditions V,#,. = 0 and V,h?¢ = 0. This means that to identify a model
of geometrized Newtonian gravitation, one needs to specify a derivative operator
in addition to the metric field. Thus, we define a classical spacetime as an ordered
quadruple (M, t,p, hab, V), where M, t,, heb and V are as described, the metrics
satisfy the orthogonality condition, and the metrics and derivative operator satisfy
the compatibility conditions. A classical spacetime is the analog of a relativistic
spacetime. Note that the signature of #,;, guarantees that at any point p, one can find
a covector t, such that ¢,, = 1,1; in cases where such a field can be defined globally,
we call the associated spacetime temporally orientable. In what follows, we will
always restrict attention to temporally orientable spacetimes, and will replace 7,
with ¢, whenever we specify a classical spacetime.

“This brief overview of geometrized Newtonian gravitation is neither systematic nor complete.
The best available treatment of the subject is given in Malament [33]; see also Trautman [52]. My
notation and conventions here follow Malament’s.
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In both theories, timelike curves—curves whose tangent vector field is always
timelike—represent the possible trajectories of point particles (and idealized
observers). And as in general relativity, matter fields in geometrized Newtonian
gravitation are represented by a smooth symmetric rank-2 field 7¢% (with contravari-
ant indices). In general relativity, this field is called the energy-momentum tensor;
in geometrized Newtonian gravitation, it is called the mass-momentum tensor. The
reason for the difference concerns the interpretations of the fields. In relativity theory,
the four-momentum density of a matter field with energy-momentum tensor T is
only defined relative to some observer’s state of motion: given an observer whose
worldline has (timelike) tangent field £¢, the four-momentum density P¢ as deter-
mined by the observer is given by P = T £,. When P is timelike or null, one can
define the mass density p of the field at a point, relative to the observer, as the length
of P“. Moreover, the four-momentum field can be further decomposed (relative to
£ as P* = E£? 4 p®,where E = P"&, is the relative energy density as determined
by the observer, and p* = P"(§%, — £¢,) is the relative three-momentum density.
Thus, the field 79 encodes the relative mass, relative energy, and relative momen-
tum densities as determined by any observer. In geometrized Newtonian gravitation,
meanwhile, all observers make the same determination of the four-momentum den-
sity of a matter field at a point: for any observer, P¢ is given by P* = T%1,. Given a
particular observer whose worldline has tangent field £, though, one can decompose
P% as P = p£® + p*, where p = P%,(= T%1,t},) is the (observer-independent)
mass density associated with the matter field, and where p* = P" (8¢, — £%t,) is the
relative three-momentum density of the matter field as determined by the observer.
Thus in geometrized Newtonian gravitation, 7® encodes the (absolute) mass density
of a matter field, as well as its momentum relative to any observer.’

It is standard in both theories to limit attention to matter fields that satisfy several
additional constraints. In particular, in both cases one assumes that matter fields
satisfy the conservation condition, which states that their energy/mass-momentum
fields are divergence free (i.e., V, T = 0). One also usually requires that such fields
satisfy various energy conditions. In geometrized Newtonian gravitation, only one
such condition is standard: it is the so-called mass condition.

Mass condition: A mass-momentum field satisfies the mass condition if, at every point,
either 79 = 0 or T%%1,1, > 0.

Since T%1,t, = p is the mass density, this assumption states that whenever the mass-
momentum tensor is nonvanishing, the associated matter field has positive mass. The
situation is more complicated in general relativity, where there are several energy
conditions that one may consider. I will mention a few because they are of particular
interest for present purposes. One, called the weak energy condition, is (at least prima

SNote that is general relativity, one makes a distinction between the mass and energy densities
relative to a given observer, where relative mass density is the length of the four-momentum
density determined by an observer at a point (p = (P?P,)'/?) and relative energy density is
E = T%¢,€, = PY,, where £% is the tangent field to the observer’s worldline. In geometrized
Newtonian gravitation, this distinction collapses.
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facie) quite similar to the mass condition. It states that the energy density of a matter
field as determined by any observer is always nonnegative.

Weak energy condition: An energy-momentum field satisfies the weak energy condition if,
given any timelike vector £¢ at a point, T%?£,&, > 0.

Itis also common to consider stronger conditions. For instance, there are the dominant
energy condition and the strengthened dominant energy condition:

Dominant Energy Condition: An energy-momentum field satisfies the dominant energy
condition if, given any timelike vector £, at a point, T%?£,&, > 0 and T“?£, is timelike or
null.

Strengthened Dominant Energy Condition: An energy-momentum field satisfies the
strengthened dominant energy condition if, give any timelike covector &, at a point,
T¢,&, > 0 and either 79 = 0 or T%&, is timelike.

If these two conditions obtain for some matter field, then not only do all observers
take the field to have nonnegative energy density, they also take its four-momentum
to be causal or timelike (respectively). In other words, these latter conditions capture
a sense in which matter must propagate at or below the speed of light.

The curvature of a classical spacetime is defined in the standard way: given a
derivative operator V, the Riemann curvature tensor R%p., is the unique tensor
field such that for any vector field £%, R%;.4&? = —2V V&9, The Ricci curvature
tensor, meanwhile, is given by R,;, = R",p,. In both contexts, one says that a space-
time is flat if Ry = 0; in geometrized Newtonian gravitation, one also says that
a (possibly curved) spacetime is spatially flat if Rabed — Ra pbmpenpdo — () or,
equivalently, R,,,h™*h"> = 0. Given these ingredients, one can state the sense in
which in geometrized Newtonian gravitation, the curvature of spacetime depends
on the distribution of matter: namely, the central dynamical principle of the the-
ory, the geometrized Poisson equation, states that R,, = 4mpt,t,, where p is the
mass density defined above. This expression explicitly relates the Ricci curva-
ture of spacetime to the distribution of matter. It is the Newtonian analog of
Einstein’s equation, R, = 87w (T, — %Tgab), where T = T%g,,, or equivalently
87 Tup = Rap — 3 Rgap, Where R = R,

There are a few points to emphasize here concerning the geometrized Poisson
equation. For one, if the geometrized Poisson equation holds of a classical spacetime
for some mass-momentum tensor 7%, then the classical spacetime is spatially flat,
since R, h"h™ = 4mpt,t,,h"™*h"> = 0. This fact is a way of recovering a familiar
feature of Newtonian gravitation, namely that space is always flat, even though in the
geometrized theory spacetime may be curved. Second, in general relativity one can
freely think of both the metric and the derivative operator as (systemically related)
dynamical variables in the theory. In geometrized Newtonian gravitation, this is not
the case: instead, the metrical structure of a classical spacetime is fixed, and only the
derivative operator (or more specifically, the Ricci curvature, which is defined in terms
of the derivative operator) is a dynamic variable. Finally, there is a sense in which,
given some matter distribution, the geometrized Poisson equation “fixes” a derivative
operator on a classical spacetime, but one has to be careful, as one can typically only

erik@strangebeautiful.com



20 J.0. Weatherall

recover a unique derivative operator satisfying the geometrized Poisson equation for
a given matter distribution in the presence of additional boundary conditions or other
assumptions.

The geometrized Poisson equation provides the sense in which in geometrized
Newtonian gravitation, spacetime is curved in the presence of matter; the sense in
which gravitational effects may be understood as a manifestation of this curvature
is just the same as in general relativity. That is, a derivative operator allows one to
define a class of geometrically privileged curves, the geodesics of the spacetime,
which consist of all curves whose tangent fields £¢ satisfy £"V,£¢ = 0 everywhere.
I have already said that the timelike curves of a spacetime represent the possible
trajectories for massive particles; the timelike geodesics, meanwhile, represent the
possible unaccelerated trajectories of particles in both theories. The geodesic prin-
ciple then connects these geometrically privileged curves with force-free motion.
Thus, in geometrized Newtonian gravitation, as in general relativity, the distribu-
tion of matter throughout space and time affects the possible trajectories of massive
point particles not by causing such particles to accelerate, but rather by dynamically
determining a collection of unaccelerated curves.

These features of geometrized Newtonian gravitation provide the sense in which
the theory is qualitatively similar to general relativity. But one might wonder what
undergirds the implicit claim that geometrized Newtonian gravitation is in some sense
Newtonian. One sense in which the theory is Newtonian is immediate: the degenerate
metric structure of a classical spacetime captures the implicit geometry of space
and time in ordinary Newtonian gravitation, where one has a temporally ordered
succession of flat three-dimensional manifolds representing space at various times
(cf. [46]). But there is more to say. In standard formulations of Newtonian gravitation,
spacetime is flat. Gravitation is a force mediated by a gravitational potential, which
is related to the distribution of matter by Poisson’s equation. In the present four-
dimensional geometrical language, this can be expressed as follows. We begin with
a classical spacetime (M, t,, he V) as before, but now we require that V is flat,
i.e., R%;cq = 0. We again represent matter by its mass-momentum field 7¢%, defined
just as above, but we also define a scalar field ¢, which is the gravitational potential.
Poisson’s equation is written as V¢V, ¢ = 4w p where the index on V¢ is raised using
he, and where p = T"t,t,. And now the acceleration of a massive test point particle
in the presence of a gravitational potential ¢ is given by §"V,£¢ = —V“%¢, where
&“ is the tangent to the particle’s trajectory. In other words, in standard Newtonian
gravitation matter accelerates in the presence of mass.

It turns out that standard Newtonian gravitation (thus understood) and geometrized
Newtonian gravitation are systematically related [33, ch. 4.2]. Specifically, given
a classical spacetime (M, t,, he V) with V flat, a smooth mass density p, and
a smooth gravitational potential ¢ satisfying V“V,@ = 4mp, there always exists
a unlque derivative operator V such that (M, 1,, h“?, V) is a classical spacetime,

R, = 4mpt,tp,, and such that for any timelike vector field £¢,£"V,,£? = —V?¢pifand
onlyif €”V,&% = 0.In other words, given a model of standard Newtonian gravitation,
there is always a model of geometrized Newtonian gravitation with precisely the same
mass density and allowed trajectories. Additionally, the der1vat1ve operator v will

always satisfy two curvature conditions: Rab «d = 0 and =R¢ 4%p. This result
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Fig.1 Ingeneral,itis possible to translate between geometrized Newtonian gravitation and standard
Newtonian gravitation, as depicted in this figure. On the left is a model of standard Newtonian
gravitation: one has a matter field represented by the world tube of some body, such as the sun, and
a curve orbiting this body, representing, say, a small planet. This curve corresponds to an allowed
trajectory insofar as it is accelerating by the appropriate amount. On the right is the corresponding
model of geometrized Newtonian gravitation. One has precisely the same matter distribution, and
the same allowed trajectory (i.e., the same orbit), but now we understand this trajectory to be allowed
by the theory because it is a geodesic of a curved derivative operator, with curvature determined by
the matter distribution. Note that both theories have the same metrical structure, represented here
by a succession of flat slices representing space at various times

is known as the Trautman geometrization lemma; it provides the sense in which
one can always translate from standard Newtonian gravitation into the geometrized
theory. One can also prove a corresponding recovery lemma (also due to Trautman),
allowing for translations back: namely, given a classical spacetime (M, 1, h b V)
and smooth mass density o satisfying Rup = 4mptaty, if R?.y =0 and R%,¢,; =
R¢,%, then at least locally there always exists a flat derivative operator V and a
gravitational potential ¢ such that (M, ¢,, he, V) is a classical spacetime, V¢V, ¢ =
4mp, and again for any timelike vector field &9, £"V, £ = —V?¢p