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1. What Makes Theories Grow? 

Scientific theories are invented and cared for by people; and so have 
the properties of any other human institution - vigorous growth when 
all the factors are right; stagnation, decadence, and even retrograde 
progress when they are not. And the factors that determine which it 
will be are seldom the ones (such as the state of experimental or mathe
matical techniques) that one might at first expect. Among factors that 
have seemed, historically, to be more important are practical considera
tions, accidents of birth or personality of individual people; and above 
all, the general philosophical climate in which the scientist lives, which 
determines whether efforts in a certain direction will be approved or 
deprecated by the scientific community as a whole. 

However much the" pure" scientist may deplore it, the fact remains 
that military or engineering applications of science have, over and over 
again, provided the impetus without which a field would have remained 
stagnant. We know, for example, that ARCHIMEDES' work in mechanics 
was at the forefront of efforts to defend Syracuse against the Romans; 
and that RUMFORD'S experiments which led eventually to the first law 
of thermodynamics were performed in the course of boring cannon. The 
development of microwave theory and techniques during World War 
II, and the present high level of activity in plasma physics are more 
recent examples of this kind of interaction; and it is clear that the past 
decade of unprecedented advances in solid-state physics is not entirely 
unrelated to commercial applications, particularly in electronics. 

Another factor, more important historically but probably not today, 
is simply a matter of chance. Often, the development of a field of 
knowledge has been dependent on neither matters of logic nor practical 
applications. The peculiar vision, or blindness, of individual persons can 
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be decisive for the direction a field takes; and the views of one man can 
persist for centuries whether right or wrong. It seems incredible to us 
today that the views of Aristotle and ptolemy could have dominated 
thought in mechanics and astronomy for a millenium, until GALILEO and 
others pointed out that we are all surrounded daily by factual evidence 
to the contrary; and equally incredible that, although thermometers 
(or rather, thermoscopes) were made by GALILEO before 1600, it required 
another 160 years before the distinction between temperature and heat 
was clearly recognized, by JOSEPH BLACK. (Even here, however, the 
practical applications were never out of sight; for GALILEO'S thermos
copes were immediately used by his colleagues in the medical school at 
Padua for diagnosing fever; and JOSEPH BLACK'S prize pupil was named 
JAMES WATT). In an age averse to any speculation, FRESNEL was never
theless able, through pure speculation about elastic vibrations, to find 
the correct mathematical relations governing the propagation, reflection, 
and refraction of polarized light a half-century before MAXWELL'S 
electromagnetic theory; while at the same time the blindness of a few 
others delayed recognition of the first law of thermodynamics for forty 
years. 

Of far greater importance than these, however, is the general philo
sophical climate that determines the "official" views and standards of 
value of the scientific community, and the degree of pressure toward 
conformity with those views that the community exerts on those with a 
tendency to originality. The reality and effectiveness of this factor are 
no less great because, by its very nature, individual cases are more 
difficult to document; its effects" in the large" are easily seen as follows. 

If you make a list of what you regard as the major advances in 
physical theory throughout the history of science, look up the date of 
each, and plot a histogram showing their distribution by decades, you 
will be struck immediately by the fact that advances in theory do not 
take place independently and randomly; they have a strong tendency 
to appear in small close clusters, spaced about sixty to seventy years 
apart. What we are observing here is the result of an interesting social 
phenomenon; this pressure toward conformity with certain officially 
proclaimed views, and away from free speculation, is subject to large 
periodic fluctuation. The last three cycles can be followed very easily, 
and the pressure maxima and minima can be dated rather precisely. 

At the point of the cycle where the pressure is least, conditions are 
ideal for the creation of new theories. At these times, no one feels very 
sure just where the truth lies, and so free speculation is encouraged. New 
ideas of any kind are welcomed, and judged as all theories ought to be 
judged; on grounds of their logical consistency and agreement with 
experiment. Of course, we are only human; and so we also have a strong 
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pleference for theories which have a beautiful simplicity of concept. 
However, as stressed by many thinkers from OCCAM to EINSTEIN, this 
instinct seldom leads us away from the truth, and usually leads us 
toward it. 

Eventually, one of these theories proves to be so much more success
ful than its competitors that, in a remarkably short time the pressure 
starts rising, all effective opposition ceases, and only one voice is heard. 
A well-known human frailty - overeagerness of the fresh convert -
rides rough-shod over all lingering doubts, and the successful theory 
hardens into an unassailable official dogma, whose absolute, universal, 
and final validity is proclaimed independently of the factual evidence 
that led to it. We have then reached the peak of the pressure cycle; a 
High Priesthood arises whose members believe very sincerely that they 
are, at last, in possession of Absolute Truth, and this gives them the 
right and duty to combat errors of opinion with all the forces at their 
command. Exactly the same attitude was responsible, in still earlier 
times, for the Spanish Inquisition and the burning of witches. 

At times of a pressure maximum, all free exercise of the imagination 
is frowned upon, and if one persists, severely punished. New ideas are 
judged, not on grounds of logic or fact, but on grounds of ideological 
conformity with the official dogma. To openly advocate ideas which do 
not conform is to be branded a crackpot and to place one's professional 
career in jeopardy; and very few have the courage to do this. Those who 
are students at such a time are taught only one view; and they miss out 
on the give and take, the argument and rational counter-argument, which 
is an essential ingredient in scientific progress. A tragic result is that 
many fine talents are wasted, through the misfortune of being born at 
the wrong time. 

This high-pressure phase starts to break up when new facts are 
discovered, which clearly contradict the official dogma. As soon as one 
such fact is known, then we are no longer sure just what the range of 
validity of the official theory is; and we usually have enough clues by 
then so that additional disconcerting facts can be found without dif
ficulty. The voice of the High Priests fades, and soon we have again 
reached a pressure minimum, in which nobody feels very sure where 
the truth lies and new suggestions are again given a fair hearing, so that 
creation of new theories is again socially possible. 

Let us trace a few cycles of this pressure fluctuation (see Fig. 1). 
The pressure minimum that occurred at the end of the eighteenth 
century is now known as the" Age of Reason". 

During a fairly short period many important advances in physical 
theory were made by such persons as LAPLACE, LAGRANGE, LAVOISIER, 
and FOURIER. Then a pressure maximum occurred in the first half of the 
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nineteenth century, which is well described in some thermodynamics 
textbooks, particularly that of EpSTEIN [lJ. This period of hostility 
toward free speculation seems to have been brought about, in part, by 
the collapse of SCHELLING'S Naturphilosophie, and its chief effect was to 
delay recognition of the first law of thermodynamics for several decades. 
As already noted, FRESNEL was one of the very few physicists who 
escaped this influence sufficiently to make important advances in theory. 

Another pressure minimum was reached during the third quarter of 
the nineteenth century, when a new spurt of advances took place in a 
period of only fifteen years (1855-1870), in the hands of MAXWELL, 
KELVIN, HERTZ, HELMHOLTZ, CLAUSIUS, BOLTZMANN, and several 
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Fig. 1. Some recent fluctuations in social pressure in science 

others. During this short period thermodynamics, electromagnetic 
theory, and kinetic theory were developed nearly to their present form; 
but the very success of these efforts led to another of the inevitable 
pressure maxima, which we recognize as being in full flower in the period 
1885-1900. One of the tragedies (at least from the standpoint of physics) 
caused by this was the virtual loss of the talents of POINCARE. While 
his contributions to physical theory are considerable, still they are 
hardly commensurate with what we know of his enormous abilities. This 
was recognized and explained by E. T. BELL [2J in these words: "He 
had the misfortune to be in his prime just when physics had reached 
one of its recurrent periods of senility." The official dogma at that time 
was that all the facts of physics are to be explained in terms of Newtonian 
mechanics; particularly that of particles interacting through central 
forces. Herculean efforts were made to explain away MAXWELL'S electro
magnetic theory by more and more complicated mechanical models of 
the ether - efforts which remind us very much of the earlier single
minded insistence that all the facts of astronomy must be explained by 
adding more and more Ptolemaic epicycles. 

An interesting manifestation toward the end of this period was the 
rise of the school of "Energetics", championed by MACH and OSTWALD, 
which represents an early attempt of the positivist philosophy to limit 
the scope of science. This school held that, to use modern terminology, 
the atom was not an "observable", and that physical theories should 
not, therefore, make use of the concept. The demise of this school was 
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brought about rapidly by PERRIN'S quantitative measurements on the 
Brownian motion, which verified EINSTEIN'S predictions and provided 
an experimental value for AVOGADRO'S number. 

The last" Golden Age of Theory" brought about by the ensuing pres
sure minimum, lasted from about 1910 to 1930, and produced our present 
general realitivity and quantum theories. Again, the spectacular success 
of the latter - literally thousands of quantitatively correct predictions 
which could not be matched by any competing theory - brought 
about the inevitable pressure rise, and for twenty-five years (1935 -1960) 
theoretical physics was paralyzed by one of the most intense and pro
longed high-pressure periods yet recorded. During this period the of
ficial dogma has been that all of physics is now to be explained by pre
scribing initial and final state vectors in a Hilbert space, and computing 
transition matrix elements between them. Any attempt to find a more 
detailed description than this stood in conflict with the official ideology, 
and was quickly suppressed without any attempt to exhibit a logical 
inconsistency or a conflict with experiment; this time, a few individual 
cases can be documented [3J. 

There are now many signs that the pressure has started down again; 
several of the supposedly universal principles of quantum theory have 
been confronted with new facts, or new investigations, which make us 
unsure of their exact range of validity. In particular, one of the funda
mental tasks of any theory is to prescribe the class of physical states 
allowed by Nature. In MAXWELL'S electromagnetic theory, for example, 
any mathematical solution of MAXWELL'S equations is held to represent 
a possible physical state, which could in principle be produced in the 
laboratory. In quantum theory, we were taught for many years that the 
class of possible physical states is in 1 : 1 correspondence with solutions 
of the Schrodinger equation that are either symmetric or antisymmetric 
under permutations of identical particles. Our confidence in the uni
versal validity of this rule has, recently, been shaken in two respects. 
In the first place, study of "parastatistics" has shown that much more 
general types of symmetry in configuration space can also be described 
by the machinery of quantized wavefunctions, and these new possibilities 
are not ruled out by experimental evidence. Secondly, the superposition 
principle (which may be regarded as a consequence of the above-men
tioned rule, although it is usually considered in a still more general 
sense) holds that, if 1jJ1 and 1jJ2 are any two possible physical states, then 
any linear combination 1jJ- a11jJ1 + a21jJ2 is also a possible physical state. 
But with the appearance of superselection rules, we are no longer sure 
what the range of validity of the superposition principle is. 

The discovery of parity nonconservation was a great psychological 
shock; a principle which had been taught to a generation of physicists 
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as a universally valid physical law, so firmly established that it could be 
used to rule out a priori certain theoretical possibilities, such as WEYL'S 

twocomponent relativistic wave equation, was found not to be uni
versally valid after all; and again we are unsure as to its exact range of 
validity, and WEYL'S equation has been resurrected. 

Several quantum mechanics textbooks assure us that the pheno
menon of spontaneous emission places a fundamental irreducible mini
mum value on the width of spectral lines. Such statements are now 
confronted with the laser, which - in instruments now commercially 
available, and as simple to operate as a sixty-watt light bulb - produce 
spectral lines over a million times narrower than the supposedly funda
mental limit ! Thus, all around the edges of quantum theory we see the 
familiar kind of crumbling which, historically, has always signalled the 
incipient breakdown of the theory itself. 

I hasten to add that, of course, none of these developments affects 
the basic" hard core" of quantum theory in any way; they show only 
that certain gratuitous additions to quantum theory (which had, how
ever, become very closely associated with the basic theory) were un
sound in the sense that they were not of universal validity. But it is 
inevitable that, faced these developments, more and more physicists 
will ask themselves how many other principles are destined to crumble 
a little at the edges, so that they can again be considered valid objects 
for inquiry; and not articles of faith to be asserted dogmatically for the 
purpose of discouraging inquiry. 

In particular, the uncertainty principle has stood for a generation, 
barring the way to more detailed descriptions of nature; and yet, with 
the lesson of parity still fresh in our minds, how can anyone be quite so 
sure of its universal validity when we note that, to this day, it has 
never been subjected to even one direct experimental test? 

Today, elementary particle theorists are busily questioning and re
examining all the foundations of quantum field theory, in a way that 
would have been regarded as utter heresy ten years ago; and some 
have suggested that perhaps the whole apparatus of fields and Hamil
tonians ought to be simply abandoned in favor of more abstract ap
proaches. It would be quite inconsistent with the present mood of 
theoretical physics if we failed to question and re-examine all of the 
supposedly sacred principles of quantum theory. 

For all these reasons, I think we are going to see a rapid decrease in 
pressure in the immediate future, and another period of great theoretical 
advances will again be socially possible in perhaps ten years. And I 
think we can predict with confidence that some of the clues which will 
lead to the next round of advances are to be found in the many suggestions 
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already made by dissenters from the Copenhagen theory - suggestions 
which have, thus far, been met only by sneers and attacks, which no 
attempt to study their real potentialities. 

2. Statistical Mechanics 

At this point, I see that you are looking about anxiously and wonder
ing if you are in the right room; for the announced title of this talk was, 
"Foundations of Probability Theory and Statistical Mechanics". What 
has all this to do with statistical mechanics? Well, I wanted to say a 
few things first about general properties of physical theories because 
statistical mechanics is, in several respects, an exceptional case. Statisti
cal methods exist independently of physical theories, and so statistical 
mechanics is subject to additional outside interactions from other 
fields. The field of probability and statistics is also subject to periodic 
fluctuations, but they are not in phase with the fluctuations taking 
place in physics (they are right now at a deep pressure minimum); and 
so the history of statistical mechanics is more complicated. 

In particular, statistical mechanics missed out on the latest pressure 
minimum in physics, because it coincided with a pressure maximum in 
statistics; the transition to quantum statistics took place quietly and 
uneventfully without any real change in the basic formalism of GIBBS, 

and without any extension of the range of applicability of the theory. 
There was no advance in understanding, as witnessed by the fact that 
debates about irreversibility continue to this day, repeating exactly the 
same arguments and counter-arguments that were used in the time of 
BOLTZMANN; and the newest and oldest textbooks you can find hardly 
differ at all in their presentation of fundamentals. In short, statistical 
mechanics has suffered a period of stagnation and decadence that makes 
it unique in the recent history of science. 

A new era of active work in statistical mechanics started, however, 
about 1955, in phase with a revolution in statistical thought but not 
at first directly influenced by it. This was caused, in part, by practical 
needs; an understanding of irreversible processes became increasingly 
necessary in chemical and mechanical engineering as one demanded 
more efficient industrial processing plants, stronger and more reliable 
materials, and bigger and better bombs. There is always a movement of 
scientific talent into areas where generous financial support is there for 
the taking. Another cause was the appearance of a few people who 
were genuinely interested in the field for its own sake; and perhaps it 
helped to reflect that, since it had been virtually abandoned for decades, 
one might be able to work in this field free of the kind of pressure noted 
above, which was paralyzing creative thought in other areas of physics. 

6' 
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Regardless of the reasons for this renewed activity, we have now 
made considerable progress in theoretical treatment of irreversible 
processes; at least in the sense of successful calculation of a number of 
particular cases. It is an opportune time to ask whether this has been 
accompanied by any better understanding, and whether the foundations 
of the subject can now be put into some kind of order, in contrast to the 
chaos that has persisted for almost a century. I hope to show now that 
the answer to both of these questions is yes; and that recent develop
ments teach us an important lesson about scientific methodology in 
general. 

Let me state the lesson first, and then illustrate it by examples from 
statistical mechanics. It is simply this: You cannot base a general mathe
matical theory on imprecisely defined concepts. You can make some 
progress that way; but sooner or later the theory is bound to dissolve in 
ambiguities which prevent you from extending it further. Failure to re
cognize this fact has another unfortunate consequence which is, in a 
practical sense, even more disastrous : Unless the conceptual problems 
of a field have been clearly resolved, you cannot say which mathematical 
problems are the relevant ones worth working on; and your efforts are more 
than likely to be wasted. I believe that, in this century, thousands of 
man-years of our finest mathematical talent have been lost through 
failure to understand this simple principle of methodology; and this 
remark applies with equal force to physics and to statistics. 

2.1. BOLTZMANN'S Collision Equation 

Let us consider some case histories. BOLTZMANN sought to describe 
the approach to equilibrium in a gas in terms of the distribution f (x, p, t). 
In his first work, this function was defined as giving the actual number 
of particles in various cells of phase space; thus if R denotes the set of 
points comprising a region of six-dimensional phase space, the number of 
particles in R is to be computed from 

nR = J f(x, p, t)d3 X d3 p. (1 ) 
R 

After some physical arguments which need not concern us here, BOLTZ

MANN concluded that the time evolution of the gas should be described 
by his famous" collision equation", 

~ . ,,[Pa ~- + F!!L] = J 83 plJ 8Q(11'- ff')(J ot -j- L.... m ox a oF. a a a 
(2) 

where Fa is the IX-component of external force acting on a particle; and 
the right-hand side represents the effects of collisions in redistributing 
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particles in phase space, in a way familiar to physicists. As a consequence 
of this equation, it is easily shown that the quantity 

(3 ) 

can only decrease (in this equation we integrate over all the accessible 
phase space); and so BOLTZMA~N sought to identify the quantity 

(4) 

with the entropy, making the second law of thermodynamics a conse
quence of the dynamical laws, as expressed by (2). As we know, this was 
challenged by ZERMELO and LOSCHMIDT who produced two counter
examples, based on time-reversal and on the POINCARE recurrence theo
rem, showing that Eq. (2) could not possibly be an exact expression of 
the dynamical equations of motion, and thereby placing the range 01 
validity 01 Boltzmann's theory in doubt. 

At this point, confusion entered the subject; and it has never left it. 
For BOLTZMANN then retreated from his original position, and said 
that he did not intend that 1 (x, p, t) should represent necessarily the 
exact number of particles in various regions [indeed, it is clear that the 
only function 1 which has exactly the property of Eq. (1) is a sum of 
delta-functions: l(x,P, t)=E; r5(x-x;) r5(P-P;), where x;(t), P;(t) are 
the position and momentum of the i-th particle J. It represents only the 
probable number of particles; or perhaps the average number of particles; 
or perhaps it gives the probability that a given particle is to be found in 
various regions. The decrease in H B is then not something which must 
happen every time; but only what will most probably happen; or perhaps 
what will happen on the average, etc. 

Unfortunately, neither BOLTZMANN nor anybody else has ever become 
more explicit than this about just what BOLTZMANN'S I; and therefore 
BOLTZMANN'S H-theorem, means. When our concepts are not precisely 
defined, they are bound to end up meaning different things to different 
people, thus creating rooom for endless and fruitless debate, of exactly 
the type that has been going on ever since. Furthermore, when we 
debate about imprecise concepts, we can never be sure whether we are 
arguing about a question of fact; or only a question about the meaning 
of words. From BOLTZMANN'S day to this, the debate has never been 
able to rise above this level. 

If you think my characterization of the situation has been too laconic, 
and unfair to many honest seekers after the truth, I invite you to 
examine a recent review article on transport theory [4]. On page 271, 
the author states that "The Boltzmann distribution function - is the 
(probable) number of particles in the positional range d3 x and the 
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velocity range d3 v -". On page 274 this is altered to: "The quantity 
f, the Boltzmann distribution function - is, roughly speaking, the 
average number of particles in a cell in the x-v space (the ,u-space). 
f refers to a single system. A more precise definition of f can be obtained 
through the use of the master function P." Consulting this master 
function, we find that neither the definition of P, nor its connection 
with f, is ever given. This, furthermore, is not a particularly bad example; 
it is typical of what one finds in discussions of BOLTZMANN'S theory. 

Let us note some of the difficulties that face the practical physicist 
because of this state of utter confusion with regard to basic concepts. 
Suppose we try to assess the validity of BOLTZMANN'S equation (2) for 
some particular problem; or we try to extend it to higher powers in the 
density, where higher order collisions will become important in addition 
to the binary ones that are taken into account, in some sense, in (2). If 
we agree that f represents an average number of particles, we must still 
specify what this average is to be taken over. Is it an average over the 
particles, an average over time for a single system, an average over 
many copies of the single system, or an average over some probability 
distribution? Different answers to this question are going to carry dif
ferent implications about the range of validity of (2), and about the 
correct way of extending it to more general situations. Even without 
answering it at all, however, we can still see the kind of difficulties that 
are going to face us. For if f (x, p, t) is an average over something, then 
the left-hand side of (2) is also an average over this same something. So 
also, therefore, is the right-hand side if the equation is correct. But on 
the right-hand side we see the product of two j's; the product of two 
averages. 

If you meditate about this for a moment, I think you will find it 
hard to avoid concluding that, if f is an average, then the right-hand side 
ought to contain the average of a product, not the product of the averages. 
These quantities are surely different; but we cannot say how different 
until we say what we are averaging over. Until this ambiguity in the 
definition of Boltzmann's f is cleared up, we cannot assess the range of 
validity of Eq. (2), and we cannot say how it should be extended to more 
general problems. Because of imprecise concepts, the theory reaches an 
impasse at the stage where it has barely scratched the surface of any 
real treatment of irreversible processes! 

2.2. Method of GIBBS 

For our second case history, we turn to the work of GIBBS. This was 
done some thirty years after the aforementioned work of BOLTZMANN, 
and the difficulties noted above, plus many others for which we do 
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not have time here, were surely clear to GIBBS, who was extremely 
careful in matters of logic, detail, and definitions. 

All important advances have their precursors, the full significance of 
which is realized only later; and the innovations of GIBBS were not 
entirely new. For example, considerations of the full phase space (r-space) 
appear already in the works of MAXWELL and BOLTZMANN; and GIBBS' 

canonical ensemble is clearly only a small step removed from the distribu
tion laws of MAXWELL and BOLTZMANN. However, GIBBS applied these 
ideas in a way which was unprecedented; so much so that his work was 
almost totally rejected ten years later in the famous Ehrenfest review 
article [5], which has had a dominating influence on thought in statistical 
mechanics for fifty years. In this article, the methods of GIBBS are 
attacked repeatedly, and the physical superiority of BOLTZMANN'S ap
proach is proclaimed over and over again. For example, GIBBS' canonical 
and grand canonical ensembles are dismissed as mere "analytical 
tricks", which do not solve the problem; but only enable GIBBS to 
evade what the authors consider to be real problems of the sUbject! 

Since then, of course, the mathematical superiority of GIBBS' methods 
for calculating equilibrium thermodynamic properties has become firmly 
established; and so statistical mechanics has become a queer hybrid, in 
which the practical calculations are always based on the methods of 
GIBBS; while in the pedagogy virtually all one's attention is given to 
repeating the arguments of BOLTZMANN. 

This hybrid nature - the attempt to graft together two quite in
compatible philosophies - is nowhere more clearly shown than in the 
fact that the "official" commentary on GIBBS' work [6J devotes a 
major amount of space to discussion of ergodic theories. Now, it is a 
curious fact that if you study GIBBS' work, you will not find the word 
" ergodic" or the concept of ergodicity, at any point. Recalling that 
ergodic theorems, or hypotheses, had been actively discussed by other 
writers for over thirty years, and recalling GIBBS' extremely meticulous 
attention to detail, I think the only possible conclusion we can draw 
is that GIBBS simply did not consider ergodicity as relevant to the founda
tions of the subject. Of course, he was far too polite a man to say so openly; 
and so he made the point simply by developing his theory without 
making any use of it. Unfortunately, this tactic was too subtle to be 
appreciated by most readers; and the few who did notice it took it to 
be a defect in GIBBS' presentation, in need of correction by others. 

This situation has had very unfortunate consequences, in that the 
work of GIBBS has been persistently misunderstood; and in particular, 
the full power and generality of the methods he introduced have not yet 
been recognized in any existing textbook. However, it is not a question 
of placing blame on anyone; for we can understand and sympathize 
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with the position of everyone involved. I think that a historical study 
will convince you, as it has convinced me, that all of this is the more or 
less inevitable result of the fact that GIBBS did not live long enough to 
complete his work. The principle he had discovered was so completely 
new, and the method of thinking so completely different from what had 
gone before, that it was not possible to explain it fully, or to explore its 
consequences for irreversible phenomena, in the time that was granted 
to him. 

GIBBS was in rapidly failing health at the time he wrote his work 
on statistical mechanics, and he lapsed into his final illness very soon 
after the manuscript was sent to the publisher. In studying his book, it 
is clear that it was never really finished; and we can locate very ac
curately the place where time and energy ran out on him. The first 
eleven chapters are written in his familiar style - extremely meticulous 
attention to detail, while unfolding a carefully thought out logical 
development. At Chapter 12, entitled, "On the Motion of Systems and 
Ensembles of Systems Through Long Periods of Time", we see an 
abrupt change of style; the treatment becomes sketchy, and amounts 
to little more than a random collection of observations, trying to state 
in words what he had not yet been able to reduce to equations. On 
pages 143-144 he tries to explain the methodology which led him to his 
canonical and grand canonical ensembles, as well as the ensemble 
canonical in the angular momenta which was presented in Chapter 4 
but not applied to any problem [7J. However, he devotes only two sen
tences to this; and the principle he states is what we would recognize 
today as the principle of maximum entropy! To the best of my knowl
edge, this passage has never been noted or quoted by any other author 
(it is rather well hidden among discussions of other topics); and I discov
ered it myself only by accident, three years after I had written some 
papers [8J advocating this principle as a general foundation for statistical 
mechanics. This discovery convinced me that there was much more to 
the history of this subject than one finds in any textbook, and induced 
me to study it from the original sources; some of the resulting con
clusions are being presented in this talk. 

GIBBS' discussion of irreversibility in this chapter does not advance 
beyond pointing to a qualitative analogy with the stirring of colored 
ink in water; and this forms the basis for another of the EHRENFEST'S 

criticisms of his work. I think that, had GIBBS been granted a few more 
years of vigorous health, this would have been replaced by a simple 
and rigorous demonstration of the second law based on other ideas. For 
it turns out that all the clues necessary to point the way to this, and all 
the mathematical material needed for the proof, were already present in 
the first eleven chapters of his book; it requires only a little more 
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physical reasoning to see that introduction of coarse-grained distributions 
does not advance our understanding of irreversibility and the second law, 
for the simple reason that the latter are experimentally observed macro
scopic properties; and the fine-grained and coarse-grained distributions 
lead to just the same predictions for all macroscopic quantities. Thus, 
the difference between the fine-grained and coarse-grained H-functions 
has nothing to do with the experimentally observed entropy; it depends 
only on the particular way in which we choose to coarse-grain. 

On the other hand, the variational (maximum entropy) property 
noted by GIBBS does lead us immediately to a proof, not only of the second 
law, but of an extension of the second law to non equilibrium states. I 
have recently pointed this out [9J and supplied the very simple proof, 
which I think is just the argument GIBBS would have given if he had 
been able to complete his work. However, this is not the main point I 
wish to discuss tonight, so let us turn back to other topics. 

In defense of the EHRENFEST'S position, it has to be admitted that, 
through no fault of his own, GIBBS did fail to present any clear descrip
tion of the motivation behind his work. I believe that it was virtually 
impossible to understand what GIBB'S methods amounted to, and there
fore how great was their generality and range of validity, until the ap
pearance of SHANNON'S work on Information Theory, in our own time 
[10]. Finally, until recently the situation in probability theory itself, 
which was in a high-pressure phase completely dominated by the fre
quency theory, which only sneers and attacks on the theories of LAPLACE 

and JEFFREYS, has made it impossible even to discuss, much less publish, 
the viewpoint and approach which I believe has now solved these 
problems. 

Now, in order to lend a little more substance to these remarks, let's 
examine some equations, the net result of GIBBS' work. Considering a 
closed system (i.e., no particles enter or leave), the thermodynamic 
properties are to be calculated from the Hamiltonian H(qi' Pi) as follows. 
First, we define the partition function 

(5) 

where we integrate over all the accessible phase space, and the dependence 
on the volume V arises because the range of integration over the co
ordinates qi depends on V. If we succeed in evaluating this function, 
then all thermodynamic properties are known; for the energy function 
(which determines the thermal properties) is given by 

;; 
U=--logZ 

8{1 
(6) 
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in which we interpret f3 as (kTtl, where k is BOLTZMANN'S constant and 
T the KELVIN temperature; and the equation of state is 

1 0 
p= 7f av log Z. (7) 

Now, isn't this a beautifully simple and neat prescription? For the first 
time in what has always been a rather messy subject, one had a glimpse 
of the kind of formal elegance that we have in mechanics, where a 
single equation (HAMILTON'S principle) summarizes everything that 
needs to be said. Of all the founders of statistical mechanics, only 
GIBBS gives us this formal simplicity, generality, and as it turned out, 
a technique for practical calculation which the labors of another sixty 
years have not been able to improve on. The transition to quantum 
statistics took place so quietly and uneventfully because it consisted 
simply in the replacement of the integral in (5) by the corresponding 
discrete sum; and nothing else in the formalism was altered. 

In the history of science, whenever a field has reached such a stage, 
in which thousands of separate details can be summarized by, and deduced 
from, a single formal rule - then an extremely important synthesis has 
been accomplished. Furthermore, by understanding the basis of this 
rule it has always been possible to extend its application far beyond the 
original set of facts for which it was designed. And yet, this did not 
happen in the case of GIBBS' formal rule. With only a few exceptions, 
writers on statistical mechanics since GIBBS have tried to snatch away 
this formal elegance by grafting GIBBS' method onto the substrate of 
BOLTZMANN'S ideas, for which GIBBS himself had no need. However, a 
few, including TOLMAN and SCHRODINGER, have seen GIBBS' work in a 
different light - as something that can stand by itself without having 
to lean on unproved ergodic hypotheses, intricate but arbitrarily defined 
cells in phase space, Z-stars, and the like. Thus, while a detailed study 
will show that there are as many different opinions as to the reason for 
GIBBS' rules as there are writers on the subject, a more coarse-grained 
view shows that these writers are split into two basic camps; those who 
hold that the ultimate justification of GIBBS' rules must be found in 
ergodic theorems; and those who hold that a principle for assigning a 
priori probabilities will provide a sufficient justification. Basically, the 
confusion that still exists in this field arises from the fact that, while the 
mathematical content of GIBBS' formalism can be set forth in a few lines, 
as we have just seen, the conceptual basis underlying it has never been 
agreed upon. 

Now, while GIBBS' formalism has a great generality - in particular, 
it holds equally well for gas and condensed phases, while BOLTZMANN'S 
results apply only to dilute gases - it nevertheless fails to give us many 
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things that BOLTZMANN'S "collision equation" does yield, however 
imperfectly. For BOLTZMANN'S equation can be applied to irreversible 
processes; and it gives definite theoretical expressions for transport 
coefficients (viscosity, diffusion, heat conductivity), while GIBBS' rules 
refer only to thermal equilibrium, and one has not seen how to extend 
them beyond that domain. Furthermore, in spite of all my carping about 
the imprecision of BOLTZMANN'S equation, the fact remains that it has 
been very successful in giving good numerical values for these transport 
coefficients; and it does so even for fairly dense gases, where we really 
have no right to expect such success. So, my adulation of Gibbs must 
be carried to the point of rejecting BOLTZMANN'S work; it appears that 
we need both approaches! 

All right. I have now posed the problem as it appeared to me a 
number of years ago. Can't we learn how to combine the best features 
of both approaches, into a new theory that retains the unity and formal 
simplicity of GIBBS' work with the ability to describe irreversible proc
esses (hopefully, a better ability) of BOLTZMANN'S work? This question 
must have occurred to almost every physicist who has made a serious 
study of statistical mechanics, for the past sixty years. And yet, it has 
seemed to many a hopelessly difficult task; or even an impossible one. 
For example, at the 1956 International Congress on Theoretical Physics, 
L. VAN HOVE [l1J remarked, "In contrast to the case ofthermodynamical 
equilibrium, no general set of equations is known to describe the behavior 
of many-particle systems whenever their state is different from the 
equilibrium state and, in view of the unlimited diversity of possible 
nonequilibrium situations, the existence of such a set of equations 
seems rather doubtful". 

Now, while I hesitate to say so at a symposium devoted to Philo
sophy of Science, the injection of philosophical considerations into 
science has usually proved fruitless, in the sense that it does not, of 
itself, lead to any advances in the science. But there is one extremely 
important exception to this; and it is in exactly the situation now before 
us. At the stage in development of a theory where we already have a 
formalism successful in one domain, and we are trying to extend it to a 
wider one, some kind of philosophy about what the formalism" means" 
is absolutely essential to provide us with a sense of direction. And it 
need not even be a "true" philosophy - whatever that may mean - for 
its real justification will not lie in whether it is "true", but in whether 
it does point the way to a successful extension of the theory. 

In the construction of theories, a philosophy plays somewhat the 
same role as scaffolding does in the construction of buildings; you need 
it desperately at a certain phase of the operation, but when the con
struction is completed you can remove if it you wish; and the structure 
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will still stand of its own accord. This analogy is imperfect, however, 
because in the case of theories, the scaffolding is rarely ugly, and many 
will wish to retain it as an integral part of the final structure. At the 
opposite extreme to this conservative attitude stands the radical posi
tivist, who in his zeal to remove every trace of scaffolding, also tears down 
part of the building. Almost always, the wisest course will lie somewhere 
between these extremes. 

The point which I am trying to make, in this rather cryptic way, is 
just the one which we have already noted in the attempt to evaluate and 
extend BOLTZMANN'S collision equation. Different philosophies of what 
that equation means carry different implications as to its range of 
validity, and the correct way of extending it. And we are now at just 
the same impasse with regard to GIBBS' equations; because their con
ceptual basis has not been precisely defined, the theory dissolves in ambigui
ties which have prevented us, for sixty years, from extending to to 
new domains. 

2.3. Conceptual Problems of the Ensemble 

The fact that two different camps exist, with diametrically opposed 
views as to the justification of GIBBS' methods, is simply the reflection 
of two diametrically opposed philosophies about the real meaning of the 
GIBBS ensemble; and this in turn arises from two different philosophies 
about the meaning of any probability distribution. Thus, the foundations 
of probability theory itself are involved in the problem of extending 
GIBBS' methods. 

Statistical mechanics has always been troubled with questions 
concerning the relation between the ensemble and the individual system, 
even apart from possible extensions to nonequilibrium cases. In the 
theory, we calculate numbers to compare with experiment by taking 
ensemble averages; that is what we are doing in Eqs. (6) and (7). And yet, 
our experiments to check these predictions are not performed on en
sembles; they are performed on the one individual system that exists in 
the laboratory. Nevertheless, we find that the predictions are verified 
accurately; a rather astonishing result, but one without which we would 
have little interest in ensembles. For if it were necessary to repeat a 
thermodynamic measurement 1,000 times and average the results before 
any regularities (laws of thermodynamics) began to appear, both thermo
dynamics and statistical mechanics would be virtually useless to us; 
and they would not appear in our physics curriculum. Thus, it appears 
that a major problem is to explain why GIBBS' rules work in practice; 
and not only why they work so well, but why they work at all! 

We can make this dilemma appear still worse by noting that the 
relation between the ensemble and the individual system is usually 
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described by supposing that the individual system can be regarded as 
having been drawn" at random" from the ensemble. I personally have 
never been able to comprehend what" at random" means; for I ask 
myself: What is the criterion, what is the test, by which we could decide 
whether it was or was not really" random" ? Does it make sense to ask 
whether it was exactly random, or approximately random? - and neither 
the literature nor my introspection give me any answer. However, even 
without understanding this point, the real difficulty is obvious; for the 
same individual system may surely, and with equal justice, be regarded 
as having been drawn" at random" from anyone of an infinite number 
of different ensembles! But the measured properties of an individual 
system depend on the state of the system; and not on which ensemble you 
or I regard it as having been "drawn from". How, then is it possible 
that ensemble averages coincide with experimental values? 

The two different philosophical camps try to extricate themselves 
from this dilemma in two entirely different ways. The" ergodic" camp, 
of course, is composed of those who believe that a probability distribution 
describes an objectively real physical situation; that it stands for an 
assertion about experimentally measurable frequencies; that it is there
fore either correct or incorrect; and that this can, in principle, be decided 
by performing" random experiments". They note that what we measure 
in any experiment is necessarily a time average over a time that is long 
on the atomic scale of things; and so the success of GIBBS' methods will 
be accounted for if we can prove, from the microscopic equations of 
motion, that the time average for an individual system is equal to the 
ensemble average over the particular ensembles given by GIBBS. 

This viewpoint has much to recommend it. In the first place, physi
cists have a natural tendency to believe that, since the observed properties 
of matter" in the large" are simply the resultant of its properties" in 
the small" multiplied many times over, it ought to be possible to obtain 
the macroscopic behavior by strict logical deduction from the micro
scopic laws of physics; and the "ergodic" approach gives promise of 
being able to do this. Secondly, while the necessary theorems have not 
been established rigorously and universally, the work done on this 
problem thus far has made it highly plausible that, in a system inter
acting with a large heat bath, the frequencies with which various micro
scopic conditions are realized in the long run are indeed given correctly 
by the GIBBS canonical ensemble. This has been rendered so extremely 
plausible that I think no reasonable person can seriously doubt that it is 
true, although we cannot rule out the possibility of occasional" patho
logical" exceptions. Thus the "ergodic" school of thought has, in my 
opinion, very nearly succeeded in its aim of establishing equality of time 
averages and ensemble averages for the particular case of Gibbs' canonical 
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ensemble; and in the following I am simply going to grant, for the sake 
of the argument, that this program has succeeded entirely. 

Nevertheless, the" ergodic" school of thought still faces a fundamen
tal difficulty; and one that was first pointed out by BOLTZMANN himself, 
and stressed in the EHRENFEST review article. Curiously, {here exists to 
this day a group of workers in Europe who refuse to recognize the 
seriousness of this difficulty, and deny that it invalidates their ap
proach. The difficulty is that, even if one had succeeded in proving these 
ergodic theorems rigorously and universally, the result would have 
been established only for time averages over infinite times; whereas the 
experiments which verify GIBBS' rules measure time averages only over 
finite times. Thus, a further mathematical demonstration would in any 
event be necessary, to show that these finite time averages have suf
ficiently approximated their limits for infinite times. 

Now we can give simple and general counter-examples proving that 
such an additional demonstration cannot be given; and indeed that any 
macroscopic system, given a time millions of times the age of the uni
verse, still could not" sample" more than an infinitesimal fraction of all 
the microscopic states which have high probability in the canonical 
emsemble; and thus any assertion about the frequencies with which dif
ferent microscopic states are realized in an individual system, is com
pletely devoid of operational meaning. 

The easiest way of seeing this is just to note that, if a macroscopic 
system could sample all microscopic states in the time in which measure
ments are made, so that the measured time averages would be equal to 
ensemble averages, then the measured values would necessarily always 
be the equilibrium values; we would not even know about irreversible 
processes! The fact that we can measure the rate of an irreversible process 
already proves that the time required for a representative sampling of 
microstates must be much longer than the time required to make our meas
urements. Thus, any purported proof that time averages over the finite 
times involved in actual measurements are equal to canonical ensemble 
averages would, far from justifying statistical mechanics, stand in clear 
conflict with the very experimental facts about irreversibility that we are 
trying to account for by extending GIBBS' methods! 

The thing which has to be explained is, not that ensemble averages 
are equal to time averages; but the much stronger statement that 
ensemble averages are equal to experimental values. The most that 
ergodic theorems could possibly establish is that ensemble averages are 
equal to time averages over infinite time, and so the" ergodic" approach 
cannot even justify equilibrium statistical mechanics without contradict
ing experimental facts. Obviously, such an approach cannot be extended 
to irreversible processes where, in order for ensemble theory to be of 
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any use, the ensemble averages must still be equal to experimental 
values; but the very phenomena to be explained consist of the fact that 
these are not equal to time averages. 

The above line of reasoning convinced me, ten years ago, that further 
advances in the basic formulation of statistical mechanics cannot be made 
within the framework of the" ergodic" viewpoint; and, rightly or wrong
ly, it seemed equally clear to me that the really fundamental trouble 
which was preventing further advances, both in statistical mechanics 
and in the field of statistics in general, was this dogmatic, single-minded 
insistence on the frequency theory of probability which had dominated 
the field for so many years. At that time, virtually every writer on 
probability theory felt impelled to insert an introductory paragraph or 
two, expressing his denunciation and total rejection of the so-called 
"subjective" interpretation of probability, as advocated by LAPLACE, 
DE MORGAN, POINCARE, KEYNES, and JEFFREYS; and this was done, 
invariably, without any attempt to understand the arguments and 
results which these people - particularly LAPLACE and JEFFREYS -
had advanced. The situation was, psychologically, exactly like the one 
which has dominated American Politics since about 1930; the Republicans 
continually analyze the statements of Democrats and issue counter
arguments, which the Democrats contemptuously dismiss without any 
attempt to understand them or answer them. 

On the other hand, I had taken the trouble to read all of JEFFREYS' 
work, and much of LAPLACE'S, on probability theory; and was unable 
to find any of the terrible things about which the" frequentist" writers 
had warned us. On the philosophical side I found their arguments to be, 
far from irresponsible and useless, so eminently sound and reasonable 
that I could not imagine any sane person disputing them. On the mathe
matical side, I found that in problems of statistical estimation and 
hypothesis testing, any problem for which the" frequentist" offered any 
solution at all was also solved with ease by the methods of LAPLACE and 
JEFFREYS; and their results were either the same or demonstrably 
superior to the ones found by the frequentists. Furthermore, the methods 
of LAPLACE and JEFFREYS (which were, of course, based on BAYES' 
theorem as the fundamental tool of statistics) were applied with equal 
ease to many problems which, according to the frequentist, did not 
belong to the field of probability theory at all; and they still yielded 
perfectly reasonable, and scientifically useful, results! 

I don't want to dwell at length on the situation in probability theory, 
because time is running short and a rather large exposition of this,with 
full mathematical details, is being readied for pUblication elsewhere. But 
let me just mention one example of what one finds if he takes the trouble 
to go beyond polemics and study the mathematical facts of the matter. 
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In problems of interval estimation of unknown parameters, the fre
quentist has rejected the method of LAPLACE and JEFFREYS, on grounds 
that I can only describe as ideological, and has advocated vigorously 
the method of confidence intervals. Now it is a matter of straightforward 
mathematics to show that, whenever the frequentist's "estimator" is 
not a sufficient statistic (in the terminology of FISHER), there is always a 
class of possible samples for which the method of confidence intervals 
leads to absurd or dangerously misleading results, in the sense that it 
yields a wrong answer far more frequently (or, if one prefers, with far 
higher probability) than one would suppose from the stated confidence 
level. The confidence interval can, in some cases, contradict what can 
be proved on strict deductive reasoning from the observed sample. One 
can even invent problems, which are not at all unrealistic, in which the 
probability of this happening is greater than the stated confidence level! 

This is something which, to the best of my knowledge, you cannot 
find mentioned in any of the" orthodox" statistical literature; and I 
shudder to think of some of the possible consequences, if important 
decisions are being made on the basis of confidence interval analyses. 
The method of LAPLACE and JEFFREYS is demonstrably free from this 
defect; it cannot contradict deductive reasoning and, in the case of the 
aforementioned "bad" class of samples, it automatically detects them 
and yields a wider interval, so that the probability of a correct decision 
remains equal to the stated value. Once one is aware of such facts, the 
arguments advanced against the method of LAPLACE and JEFFREYS and 
in favor of confidence intervals (i.e. that it is meaningless to speak of the 
probability that () lies in a certain interval, because () is not a "random 
variable," but only an unknown constant) appear very much like those 
of the 17th century scholar who claimed his theology had proved there 
could be no moons on Jupiter, and steadfastly refused to look through 
GALILEO'S telescope. 

Since the reasoning by which the "frequentist" has rejected LA
PLACE'S methods is so patently unsound, and since attempts to extend, 
or even justify, GIBBS' methods in terms of the frequency theory of 
probability have met with an impasse, it would appear that we ought to 
explore the possibilities of applying LAPLACE'S" subjective" theory of 
probability to this problem. At any rate, to reject this procedure without 
bothering to explore its potentialities, is hardly what we mean by a 
"scientific" attitude! So, I undertook to think through statistical 
mechanics all over again, using the concept of "subjective" probability. 

It became clear, very quickly, that to do this makes all the unsolved 
problems of the theory appear in a very different light; and possibilities 
for extension of GIBBS' methods are seen in entirely different directions. 
Once we clearly and explicitly free ourselves from the delusion that an 
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ensemble describes an "objectively real" physical situation, and re
cognize that it describes only a certain state oj knowledge, then it is 
clear that, in the case of irreversible processes, the knowledge which we 
have is of a different nature than in the case of equilibrium. We can then 
see the problem as one which cannot even be formulated in terms of the 
frequency theory of probability. It is simply this: What probability 
assignment to microstates correctly describes the state oj knowledge which 
we have, in practice, about a nonequilibrium state? Such a question just 
doesn't make sense in terms of the frequency theory; but, thanks to the 
work of GIBBS and SHANNON, I believe that it makes extremely good 
sense, and in fact has a very general and mathematically unambiguous 
solution in terms of subjective probabilities. 

3. The General Maximum-Entropy Formalism 

If we accept SHANNON'S interpretation (which can be justified by 
other mathematical arguments entirely independent of the ones given 
by SHANNON) that the quantity 

H=- 'LPilogPi 
i 

(8) 

is an "information measure" for any probability distribution h; i.e. 
that it measures the" amount of uncertainty" as to the true value of i, 
then an ancient principle of wisdom - that one ought to acknowledge 
frankly the full extent of his ignorance - tells us that the distribution 
that maximizes H subject to constraints which represent whatever in
formation we have, provides the most honest description of what we 
know. The probability is, by this process, "spread out" as widely as 
possible without contradicting the available information. 

But recognition of this simple principle suddenly makes all the 
maximum-minimum properties given by GIBBS in his Chapter XI - what 
I believe to be the climax of GIBBS' work, and just the place where time 
and energy ran out on him - acquire a much deeper meaning. If we 
specify the expectation value of the energy, this principle uniquely 
determines GIBBS' canonical ensemble. If we specify the expectations 
of energy and mole numbers, it uniquely determines GIBBS' grand 
canonical ensemble [8]. If we specify the expectations of energy and 
angular momentum, it uniquely determines GIBBS' rotational ensemble 
[7]. Thus, all the results of GIBBS on statistical mechanics follow im
mediately from the principle of maximum entropy; and their derivation 
is astonishingly short and simple compared to the arguments usually 
found in textbooks. 

But the generalization of GIBBS' formalism to nonequilibrium prob
lems also follows immediately (although I have to confess that I spent 

7 Studies in the Foundations, Vol. 1 
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six years trying to do this by introducing new and more complicated 
principles, before I finally saw how simple the problem was). For this 
principle in no way depends on the physical meaning of the quantities 
we specify; there is nothing unique about energy, mole numbers, or 
angular momentum. If we grant that it represents a valid method of 
reasoning at all, then we must also grant that it applies equally well to 
any physical quantity whatsoever. So, let us jump immediately, in view 
of the time, to the most sweeping generalization of GIBBS' formalism. 

We have a number of physical quantities about which we have some 
experimental information. Let them be represented by the Heisenberg 
operators 1\ (x, t), F2 (x, t), ... Fm (x, t). In general they will depend on 
the position x and, through the equations of motion, on the time t. 
For example, FI might be the particle density, F2 the density of kinetic 
energy, Fa the "mass velocity" of the fluid, F4 the (yz)-component of the 
stress tensor, Fs the intensity of magnetization, ... , and so on; whatever 
information of this type is available, represents our definition of the 
nonequilibrium state. 

Now we wish to construct a density matrix e which incorporates all 
this information. When I say that a density matrix" contains" certain 
information, I mean by this simply that, if we apply the usual rule for 
prediction; i.e. calculate the expectation values 

<F;.(x, t)=Tr[eF;.(x, t)] (9) 

we must be able to recover this information from the density matrix. 
Thus, the mathematical constraints on the problem are that the ex
pectation values (9) must agree with the experimental information: 

tk(X, t) =Tr[eF;.(x, t)], x, t in Rk (10) 

where tk (x, t) represent the experimental values, and Rk is the space
time region in which we have information about tk; in general it may be 
different for different k. Subject to these constraints, we are to maximize 
the" information entropy" 

(11) 

which is the appropriate generalization of (8), as found many years ago 
by VON NEUMANN. The solution of this variational problem is: 

e= ~ expt~ll d3 x dt Ak(X, t) Fk(x, t)} (12) 

where the Ak (x, t) are a set of real functions to be determined presently 
(they arise mathematically as Lagrange multipliers in solving the 
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variational problem with constraints), and for normalization the partition 
function of GIBBS has been generalized to the partition functional: 

Z [Adx, t)] - Tr exp {~ f d3 x dt Ak (x, t) F;, (x, t)}. (13) 
k=l Rk 

The Ak (x, t) are now to be found from the conditions (10), which reduce to 

r5 
fk(x, t) = r5Jc ) log Z 

k(X, t 
( 14) 

which is a generalization of GIBBS' equation (6); where <5 denotes the 
functional derivative. Mathematical analysis shows that (14) is just 
sufficient to determine uniquely the integrals in the exponent of (12); 
it does not necessarily determine the functions Ak (x, t), but it does 
determine the only property of those functions which is needed in the 
theory; a very interesting example of mathematical economy. 

The density matrix having been thus found, prediction of any other 
quantity ](x, t) in its space-time dependence is then found by applying 
the usual rule: 

<](x, t)=Tr[e](x, t)]. (15 ) 

In Eqs. (12) to (15) we have the generalization of GIBBS' algorithm to 
arbitrary nonequilibrium problems. From this point on, it is simply a 
question of mathematics to apply the theory to any problem you wish. 

Of course, it requires a great deal of nontrivial mathematics to 
carry out these steps explicitly for any nontrivial problem! If GIBBS' 

original formalism was somewhat deceptive, in that its formal simplicity 
conceals an enormous amount of intricate detail, the same is true with 
a vengeance for this generalization. Nevertheless, it is still only mathe
matics; and if it were important enough to get a certain result, one could 
always hire a building full of mathematicians and computers to grind 
it out; there are no further questions of principle to worry about. 

For the past three years, my students and I have been exploring 
these mathematical problems, and we have a large mass of results that 
will be reported in due course. Without going into further details, let 
me just say that all the previously known results in theory of irreversible 
processes can be derived easily from this algorithm. Dissipative effects 
such as viscosity, diffusion, heat conductivity are obtained by direct 
quadratures using (15), with no need for the forward integration and 
coarse-graining operations characteristic of previous treatments. For 
static transport coefficients we obtain formulas essentially equivalent to 
those of KUBO; we can exhibit certain ensembles for which KUBO'S 

results, originally obtained by perturbation theory, are in fact exact. 
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Because we are freed from the need for time-smoothing and other 
coarse-graining operations, the theory is no longer restricted to the 
quasi-stationary, long-wavelength limit. It gives, with equal ease, general 
formulas for such things as ultrasonic attenuation and for nonlinear 
effects, such as those due to extremely large temperature or concentra
tion gradients, for which previously no unambiguous theory existed. 
Because of these results, I feel quite confident that we are on the right 
track, and that this generalization will prove to be the final form of 
nonequilibrium statistical mechanics. 

Let me close with a couple of philosophical remarks, relating this 
development to things I mentioned earlier in this talk. In seeking to 
extend a theory to new domains, some kind of philosophy about what 
the theory "means" is absolutely essential. The philosophy which led 
me to this generalization was, as already indicated, my conviction that 
the "subjective" theory of probability has been subjected to grossly 
unfair attacks from people who have never made the slightest attempt 
to examine its potentialities; and that if one does take the trouble to 
rise above ideology and study the facts, he will find that" subjective" 
probability is not only perfectly sound philosophically; it is a far more 
powerful tool for solving practical problems than the frequency theory. 
I am, moreover, not alone in thinking this, as those familiar with the 
rise of the" neo-Bayesian" school of thought in statistics are well aware. 

Nevertheless, that philosophy of mine was only scaffolding, which 
served the purpose of telling me in what specific way the formalism of 
GIBBS was to be generalized. Once a philosophy has led to a definite, 
unambiguous mathematical formalism by which practical calculations 
may be carried out, then the issue is no longer one of philosophy; but of 
fact. The formalism either will or will not prove adequate in practice; 
and it will be judged, quite properly, not by the philosophy which led 
to it, but by the results which its gives. If you do not like my philosophy, 
but you find that the formalism, nevertheless, does give useful results, 
then I am quite sure that you will be able to invent some other philosophy 
by which that formalism can be justified! And, perhaps, that other 
philosophy will lead to still further generalizations and extensions, to 
which my own philosophy makes me blind. That is, after all, just the 
process by which all progress in theoretical physics has been made. 
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