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STATISTICAL PHYSICS

1962 Brandeis Lectures in Theoretical
Physics, Volume 3

G. E. Uhlenbeck, N. Rosenzweig, A. J. F.
Siegert, E. T. Jaynes, and C. Fujita.

In his course on SELECTED TOPICS IN
STATISTICAL MECHANICS, Professor
G. E. Uhlenbeck begins with an exposi
tion of some diagrammatic methods used
to calculate virial coefficients and the
equation of state. He then gives a de
tailed analysis of the mathematics of
phas,~ transition with a soluble one~di

mensional model.

The second set of lectures, by Dr. N.
Rosenzweig, STATISTICAL MECHAN·
ICS OF EOUALLY LIKELY QUANTUM
SYSTEMS, is a discussion of the statis
tical properties of energy levels and
eigenfunctions for heavy nuclei and com
plex atoms, stressing the role of time re
versal and other symmetries.

Professor A. J. F. Siegert lectures on
FUNCTIONAL INTEGRALS IN STATIS
TICAL MECHANICS, demonstrating the
utility of new techniques by analysis of
the partition function of the Ising model
with long range interactions.

Information theory has provided the long
hoped for algorithm analogous to the par
tition sum of equilibrium theory, for cal
culation of irreversible processes. The
lectures of Professor E, T. Jaynes, IN
FORMATION THEORY AND STATISTI
CAL MECHANICS, provide an introduc·
tion to this subject.

In the final set of lectures, Professor C.
Fujita reviews and compares the inde
pendent achievements of Van Hove and
Prigogine and their schools, in their prog
ress toward better understanding the
APPROACH TO EQUILIBRIUM OF A
MANY-PARTICLE SYSTEM.
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Foreword

It is now an established tradition of the Brandeis Summer Institute
in Theoretical Physics to have lecturers who present a systematic account
of recent research in various fields of theoretical physics. 'I11C lecture
notes have also become a part of this tradition, and, altllough these arc
sometimes but a first approximation to the spoken lecture, they mny
serve to bring these much needed expositions to the wider audience of
physicists who may aspire to contribute to these fields.

I should like to take this opportunity to thank all those whose par
ticipation in the Institute during the summer of 1962 helped maintain
these traditions. Particular words of appreciation are due the Natioll:ll
Science Foundation, for its indispensable financial support, and Pro
fessor Kenneth Ford, who graciously carried the responsibility for
getting the notes ready for publication.

In this volume, the notes of Professor Jaynes and Professor Fujita
have been prepared by the lecturers; Professor Dhlenbeck, Dr. HasoIl
zweig, and Professor Siegert have kindly checked over the notes based
on their lectures.

DAVID L. FALKOFF

Co-Director of the 1962 Illstilllie
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1. INTRODUCTION

At the beginning of every problem in probability theory, there
arises a need to assign Some initial probability distribution; or
what is the same thing, to "set up an ensemble." This is a prob
lem which cannot be evaded, and for which the laws of physics
give us no help. For example, the laws of Physics tell us that a
density matrix p(t) must vary with time according tomp = [H,p)",
but they do not tell us what function p(O) should be put in at the
start. Assignment of p(O) is, of course, a matter of free choice
on our part-it is for us to say which problem we want to solve.

The assignment of initial probabilities must, in order to be
useful, agree with the Initial information we have (1. e., the re
sults of measurements of certain parameters). For example, we
might know that at time t = 0, a nuclear spin system having total '
(measured) magnetic moment M(O), is placed in a magnetic field
H, and the problem Is to predict the subsequent variaUon M(t),
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which presumably tends to an equilibrium value M(ro) '" XoH after a
long time. What initial density matrix for the spin system p(O),
should we use? EVidently, we shall want It to satisfy, at the very
least,

Tr (p(O)""p) • M(O) (I)

where M9P is the operator corresponding to total magnetic momenl.
But Eq. \1) is very far from uniquely specifying p(O). Out of the
infinite number of density matrices satisfying (1), which should we
~hoose as the starting point of our calculation to predict M(t)?

Conventional quantum theory has provided an answer to the
problem of setting up initial state descriptions only In the limltlng
case where measurements of a "complete set' of commuting ob
servables" have been made, the density matrix: p(O) then reducing
to the projection operator onto a pure state 1J'(O) which is the ap
propriate simultaneous eigenstate of all the measured quantities.
But there is almost no experimental situation In which we really
have all this informallon, and before we have a theory able to treat
actual experimental situations, existing quantum theory must be
supplemented with some principle that tells us how to translate, or
encode, the results of'measurements Into a definite state descrip
tion p(O). Note that the problem is not to find the p{O) which cor
rectly describes the "true phySical situation." That is unknown,
and always remains so, because of incomplete information. In
order to have a usable theory we must ask the much more modest
question: "What p(O) best describes our state of knowledge about
the physical situation?"

In order to emphasize that this problem really has nothing to
do with the laws of physics (and, as a corollary, that its solution
will have appllcatlons outside the field of physics), consider the
following: problem. A die has been tossed a very large number N
of times, and we are told that the average l~umber of spots up per
toss was not 3.5, as we might expect from '':in honest die, but 4.5.
Translate this information into a probability assignment Pll' n:::
1,2, .•. ,6, for the n-th face to come up on the next toss.

o To explain more fully what is meant by this, note that we arc
not asking for an estimate of the fraction (i. e., the relative fre
quency) of tosses which give n spots. There is, Indeed, a connec
tion between the probability and the frequency, which we will de
rIve later. But the problem stated is to reason as best we can
about the individual case. The probability Pn must thererore be
interpreted in the so-called "subjective" sense; it is only a means
of describing how strongly we believe that the n-th face will come
up in the next toss.

To state the problem more drastically, imagine that we are
offered several bets, at varlous odds, on various values of 11, and
we are compelled to accept one of tllQse bets. The probabilities
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(2)

Pn are the basic raw material from which we decide which one to
accept. This is typical of many practical problems faced by the
scientist, the engineer, the statistician, the politician; and indeed
all of us. We are continually faced with situations where some de
finite decision must be made now, even though we do not have all
the information we might like-.-

Conventional probability theory does not provide any principle
for assigning the probabilities Pn; so let us think about it a little.
We must, evidently, choose the Pn such that .

6
L; Pn = 1
n=l

6
L; nPn = 4.5
n=1

(3)

where (3) is analogous to (1). A possible solution of (2) and (3) is
indicated in Fig. 1; we could take p. = p. = 1/2, all other Pn = O.
This agrees with all the given data. But our common sense tells
us it is not a reasonable assignment. The assignment of Fig. 2 is

1

P n 0.5

o

1.0

1 2 3 4
n-

Fig. 1

5 6

o 1 2 3
n

4 5
I
6

Fig. 2
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evidently a more honest description of what we know. But even
this is not reasonable-nothing in the data tells us that n = 1,2 are
Impossible events. In Fig. 2, we are still jumping to conclusions
not warranted by the available evidence. Evidently, it is unrea
sonable to assign probability zero to any situation unless our data
really rules out that case. If we assign P l > 0, P2 > 0, then in
order to keep the average at 4.5, we shall have to give some in
creased weight to the cases n = 5,6. Figure 3 shows an assign
ment that agrees with the data and does not ignore any possibility.
But it still seems unreasonable to give the case n = 6 such excep
tional treatment. Figure 4 represents what we should probably

0.5

0.4

0.3

0.2

0.1 I I I0 1 2 5

Fig. 3

0.5

0.4

0.3
P n 0.2

0.1 I I I0
1 2 3 4 5 6

Fig.. 4

call a backward step- nothing in the data of the problem indicates
any reason for such an uneven treatment. A· reasonable assign
ment Pn must not only agree with the data and must not ignore any
possibility-but It must also not give undue emphasis to any possi
bility. The Pn should vary as smoothly as possible, in some
sense. One criterion of "smoothnessll might be that adjacent dif
ferences Pnl-

1
- Pn should be constant; and, indeed, there is a so

lution with tliat property. It is given by Pn = (l2n - 7)/210 and is
shown In Fig. 5. This Is evidently the most reasonable prohablll-
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0.5
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0.3

0.2

0.1 I
o 1 2 3 4 5 6

Fig. 5

ty assignment so far. But there is a limit to how high an average
you can get with this linear variation of Pn• If we took the extreme
case, Pn = (const.)(n - 1), we should again violate one of our prIn
ciples because P, = 0, and the average would be only l;nPn = 70/15
= 4.67. Suppose the data of the problem had been changed so that
the average is to be 4.7 instead of 4.5. Then there is no straight-.
line solution satisfying 1'\, '" O. The Pn must lie on some concave
curve, as in Fig. 6. But the principles by which we reason surely

are the same whether the data specify 4.5 or 4.7; So it appears
that a result qualitatively such as Fig. 6 should be used also when
n = 4.5.

This is about as far as qualitative reasoning can take us, and
I have carried the argument through on that basis in order to show
how ordinary common sense leads us to a result that has all the
important features of the quantitative solution given below. The
probability assignment Pn which most honestly describes what we
know is the one that is as smooth and IIspread out" as possible sub~

ject to the data. It is the most conservative assignment in the
sense that it does not permit one to draw any conclusions not war
ranted QY the data.
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This suggests that the problem is a variational one; we need a
measure of the IIspread'l of a probability distribution which we can
maximize, subject to constraints which represent the available in
formation. It is by now amply demonstrated by many workers that
the Ilinformation measurefl introduced by Shannon1 has special
properties of consistency and uniqueness which make it the cor
rect measure of IIamount of uncertaintyll in a probability distribu
tion. This is, of course, the expression

(4)

which, for some distributions and in some physical situations, has
long been recognized as representing entropy. However, we have
to emphasize that "information-theory entropy" SI and the experi
mental thermodynamic entropy Se are entirely different concepts.
Our job cannot be to postulate any relati on between them; it is
rather to deduce whatever relations we can from known mathemat
Ical and physical facts. Confusion about the relation between en
tropy and probability has been one of the main stumbling blocks in
developing a gene ral theory of irreversibility.

2. THE GENERAL MAXIMUM-ENTROPY FORMALISM

To generalize the above problem somewhat, suppose that the
quantity x can take on the values (xu x2 , ••• , xn) where n can be
finite or infinite, and that the average values of several functions
f,(x), f2(x), ... , fm(x) are given, where m < n. The problem is to
find the probability assignment Pi = P(xi) which satisfies the given
data: Pi'" 0,

n
6 p. = 1
. I 11=

(5)

n
6 p.fk(x.) = (fk(x» = Fk. I 1 1
1=

k= 1,2, ... ,m (6)

(7)
n

SI = - L: p. log p.
1=1 1 1

and, subject to (5) and (6), maximizes the information theory en
tropy
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The solution to this mathematical problem can be found immedi
ately by the method of Lagrangian multipliers, and special cases
are given in every statistical mechanics,textbook. This method
has the merit that it leads immediately to the answer, but the
weakness that it does not make it obvious whether one obtains a
true absolute maximum of 81' The following argument establishes
this important result more rigorously.

Let (P"" Pn) and (u, ... un) be any two possible probability
distributions over the xi; i. e. J Pi::: OJ ilj;?: 0, i = 1,2, ... nand

n n
L: p. ~ L: u. ~ I
. I I . 1 11= 1=

(8)

Then, by using the fact that log x'" (1 - x-I), with equallty if and
only if x ~ I, we find the following:

Lemma

n p. n u.
Lp· log -..! '" Lp.(1 - -..!) ~ 0
. I' u. . II p.1= 11= 1

with equality if and only if Pi =Ui' i ~ 1,2, ... n. Now make the
choice

(9)

I
Z{A A) exp(-A,f,(X.) - •.• -A f (x.)}

l' .. n 1 mInI

where ;\1' •• Am are fixed constants, and

(10)

n
Z(Al'" Am) " i~1 expl-A,f,(\) - ... -Amfm(xi» (11)

will be called the "partition function." Substituting (10) Into (9) re
sults in the inequality

n n n
L p. log p. '" L: p. log u. ~ - L: p. [A,f,(X.) +...
'1 1 1'1' I '11 I1= 1= 1=

+A f (x.)]-logZ(Al ... Am)
mill 1

or



E. T. Jaynes

m
SI '" log Z(Al' .. A ) + L: Ak (fkJ

m k=l

189

(12)

Now let the distribution Pi vary over the class of all possible dis
tributions that satisfy (6). The right-hand side of (12) remains
fixed, and (12) shows that 81 attains its maximum possible value

m
(SI) = log Z + L; Ak (fk)

max k=l
(13)

if and only if Pi is taken as the generalized canonical distribution
(10). It only remains to choose the unspecified constants Ak so
that (6) 1s satisfied. This is the case, as one readily verifies, if
the Akare determined In terms of the given data Fk = (fk) by

a
(fk) = - -'---\ log Z(A•... A )

u. k m
k = 1, 2, .. '! m (14)

We now survey rapidly the main formal properties olthe distribu
tion found. The maximum attainable entropy (13) is some function
of the given data:

(SI)max = S«f,), ... (fm»

and, by using (13) and (14), we find

(15)

k = 1, 2, ... , m (16)

Regarding, in (14), the (fk) expressed as functions of (Al'" Am),
we find, on differentiating, the reciprocity law

(17)

while by the same argument, if we regard A
k

In (lG) expressed as
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a function of (f, ) ... (fm), we find a corresponding law

OAk _ OA j
o (fj) - 0 (fk)

(18)

Comparing (17) and (18) and remembering the chain rule for dif
ferentiating,

we see that the second derivatives of S and of log Z yield inverse
matrices:

(19)

The functions log Z(Al"' . An) and S«f1 ) ••• (in») are equivalent In
the sense that each gives full information about the probability dis
tribution; indeed (13) is just the Legendre transformation that
takes us from one representative function to the other.

The reciprocity law (17) acquires a deeper meaning when we
consider the "fluctuationsl! in our probability distribution. Using
the distribution (10), a short calculation shows that the second
central moments of the distribution of the fk(x) are given by

(20)
0'

= 11A OA log Z
k 9.

and so, comparing with (17), there Is a universal relation between
the "fluctuations" of the fk and the II compliance coefficients"
~ (fk)/oA9.:

(21)

Likewise, higher derivatives of log Z(Al" .. An) yield higher central
moments of the fk, in a manner analogous to (20), and a hierarchy
of fluctuation laws similar to (21).
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In addition to their dependence on x, the functions fk may de
pend on another parameter, 0'. The partition function will then al
so have an explicit dependence on a:

n
Z(A1... ,I. ;a)" l: exp{-A1f1(x.;a) - ... -,I. f (x.;a» (22)m.

1
1 mm]

1=

and a short calculation shows that the expected derivatives

satisfy the relations

m (afk) a asL: Ak T = - -a log Z = - a
k=1 a a a

(23)

If several parameters 0'1" • ar are present, a relation of this form
will hold for each of them.

Finally, we note an important variational property which gen
eralizes (16) to the case where we have also variations in the par
ameters 0'1" • Q'r Let Z = Z(Al'" Am;al" . ar)' and consider an
arbitrary small change in the problem, where the given data (fk)
and the parameters aj are changed by small amounts o(fk)' Oaj.
This will lead to a change ~Ak in Ak. From (13), the maximum at
tainable entropy is changed by

m r
oS = l: a log Z 6,1. + l: a log Z Oa.

I 1 aAk k ·-1 aa. J<= J- J
(24)

m m
+ l: (fk) OAk + l: Ak 6 (fk)

k=1 k=1

The first and third terms cancel by virtue of (14).
(23), we have

Then, using

(25)
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Now we can write
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and so finally

or

where

(26)

(27)

(28)

(29)

In general 6Qk is not an exact differential; i. e., there is no func
tion Qk(A,••. Am;a, .•• ar ) which yields 6Qk by differentiation. But
(28) shows that Ak is an integrating factor such that L:kAk~Qk is
the exact differential of some Il state function" S(hl ... hm;al' .. ar).

All the above relations, (lO) to (29), are elementary conse
quences of maximizing the information theory entropy subject to
constraints on average values of certain quantities. Although they
bear a strong formal resemblance to the rules of calculation pro
vided by statistical mechanics, they make no reference to physics,
and, therefore, they must apply equally well to any problem, in or
out of physics, where the situation can be described by(l) enum
erating a discrete set of possibilities and by (2) specifying average
values of various quantities. The above formalism has been ap
plied also to problems in engineering" and economics.'

In most problems, interest centers on making the best pos
sible predictions for a specific situation, and we are not really in
terested in properties of any ensemble, real or imaginary. (For
example, we want to predict the magnetization M(t) of the particu
lar spin system that exists in the laboratory.) In this case, as al
ready emphasized, the maximum- entropy probability assignment
Pi cannot be regarded as describing any objectively existing state
of affairs; it is only a means of describing a state of knowledge in
a way that.is "maximally noncommital" by a certain criterion.
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The above equations then represent simply the best predictions we
are able to make on the given Information. We are not entitled to
assert that the predictions must be "right," only that to make any
better ones, we should need more Information than was given.
However, in cases where it makes sense to imagine xi as being
the result of some random experiment which can be repeated many
times, a somewhat more Il objectivell interepretation of this for
malism is possible, which in its essentials was given already by
Boltzmann. We are given the same average values (fk(X» as be
fore, but we are now asked a dille rent question. rr the random ex
periment Is repeated N times, the result Xi will be obtained mi
times, I = 1, 2, ••. ,n. We are to make the best estimates of the
numbers mi on the basis of this much information. The knowledge
of average values tells us that

n m.
L; -N

I
fk(x.) = (fk>

1=1 I

and, of course,

n m.
L;-1=1
. 1 N1=

k ::: 1,2, ... , m (30)

(31)

Equations (30) and (31) do not uniquely determine the mi if
m < n - 1, and so again It is necessary to Introduce some addi
tional principle, which now amounts to stating what we mean by
the "best" estimate. The following criterion seems reasonable.
In N repetitions of the random experiment, there are a priori nN
conceivable results, since each trial could give Independently any
of the results lxi' x" ••• , xn). But for given ml' there are only W
of these possible, where

and

(32)

1 = 1,2, ... , n (33)

Is the relative frequency with which the result XI Is obtained.
Which choice oC the gl can happen In the greatest number of

ways? rr we have to guess the frequencies on the basis of no more
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information than (30), it seems that a reasonable criterion is to
ask what choice will maximize (32) while agreeing with (30). Now
in the limit of large N, we have by the Stirling formula,

lim 1 I W lim 1 I rl NI ]
N-oo N og =N-oo N og (Ng,) I... (Ng

n
) 1

n
= - 2: g. log g.

. 1 1 1
1=

(34)

and so, if we are to estlmate limiting frequencies In an indefinite
ly large number of'irlals, we have in (30) and (34) formulated ex
actly the same mathematlcal problem as In (6) and (7). The same
solution (10) and formal properties, Eqs. (11) to (29), follow Im
mediately, and we have an alternative interpretation of the maxi
mum-entropy formalism: the probability Pi which Information
theory assigns to the event Xi at a single trial is numerically equal
to an estimate of the relative frequency gi of this result in an in
definitely large number of trials, obtained by enumerating all
cases consistent with our knowledge, and placing our bets on the
situation that can happen in the greatest number of ways. Thus,
for example, the fluctuation laws (21) describe, on the one hand,
our uncertainty as to the unknown true values of fk(x) in a specific
instance; on the other hand, they give the best estimates we can
make of the average departures from (fk) in many repetitions of
the experiment, by the criterion of placing our bets on the situa
tion that can happen in the greatest number of ways.

Two points about these interpretatlons should be noted:
1. In most practical problems, repeated repetition of the ex

periment is either impossible or not relevant to the real problem,
which is to do the best we can with the individual case. Thus if
one were to insist, as has sometimes been done, that only the sec
ond interpretation is valid, the result would be to deny ourselves
the use of this formalism in most of the problems where it is help
ful.

2. The argument leading from the averages (30) to the esti
mate of frequencies gi was not deductive reasoning, but only plau
sible reasoning. Consequently, we are not entitled to assert that
the estimates gi must be right; only that, in order to make any
better estimates, we should need more information. Thus the ap
parently greater "objectivity" of the second interpretation Is to a
large extent illusory.
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3. APPLICATION TO EQUILIBRIUM THERMODYNAMICS

We apply the formallsm of the preceding section to the follow
ing situation: m = I, f,(xi' a) = Ei(V). The parameter V (volume)
and the expectation value of the energy of the system (E) are giv
en. The partition function is

Z(x, V)" ~ e-AEi(V)
i=1

Then, by (14), A is determined from

(35)

(E) 8
= -- log Z

81.
(36)

and, as a special case of (23), we have

<
aE\ a

A av! = - av log Z

But - (8E/8V) = (P) is the maximum-entropy estimate of pres
sure, and so the predicted equation of state is.

1 a
(P) = :\ oV log Z

(37)

(38)

To identify the temperature and entropy, we use tJl€ general vari
ational property (28). A small change oV in volume will change
the energy levels by DEi = (aEl/av) IiV, and if this is carried out
infinitely slowly (I. e., reversibly), the "adiabatic theorem" of
quantum mechanics tells us that the probabllities Pi will not be
changed. So, the maximum- entropy estimate of the work done is

oW = - (DE) (39)

Of course, the given (E) is interpreted as the thermodynamic en
ergy function U. In additior. to the change oV, we allow a small
reversible heat flow oQ, and by the first law, the net change in
energy Is oU = oQ - oW, or
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Thus, if fk is the energy, then the 6Qk defined by (29) is the pre
dicted heat flow in the ordinary sense. Equation (28) shows that
for any quantity fk, there is a quantity 6Qk formally analogous to
heat.

In the present case (28) reduces to

liS«E), V) = A 6Q (41)

Now the Kelvin temperature is defined by the condition that (lIT)
Is the integrating factor for Infinitesimal reversible heat in closed
systems and the experimental entropy Se is defined as the result
ing state function. So from (41) the predicted temperature T' and
experimental entropy S~ are given by

1
A = kT'

S' =kS«E), V) =k(SI)
e max

(42)

(43)

The presence of Boltzmann's constant k merely indicates the par
ticular practical units in which we choose to measure temperature
and entropy. For theoretical discussions, we may as well adopt
units such that k e l.

All that we have shown so far is that the general maximum
entropy formalism leads automatically to definitions of quantities
analogous to those of thermodynamics. This is, of course, as far
as any mathematical theory can go; no amount of mathematics can
prove anything about experimental facts. To put it differently, be
fore we can establish any connection between our theoretical en
tropy S~ and the experimentally measured quantity Se' we have to
introduce some physical assumption about what the result of an ex
periment would in fact be:

Physical assumption: The equilibrium thermody
namic properties of a system, as measured experimen-
tally, agree with the results calculated by the usual meth- (44)
ods of statistical mechanics; i. e., from the canonical or
grand canonical ensemble appropriate to the problem.

This assumption has proved correct in every case where one
has succeeded in carrying out the calculations, and its universal
validity is taken so much for granted nowadays that authors of
textbooks no longer list it as an assumption. But strictly speaking,
all we can prove here is that systems conforming to this assump
tion will also conform to various other statements made below.
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If we accept (44), then the identification of entropy is com
plete, and connection between information theory entropy and ex
perimental entropy for the present problem can be stated as a the
orem.

Theorem: Let Pi " prob(E.) be any probability \'opsignment
which conforms to the data in the sense that (E) = L.iPiEj is the
measured energy. Let SI == - L.Pi log Pi be the corresponding in
formation theory entropy, and Se be the experimentaUy measured
entropy for the system. The additive constant is chosen so that at
zero temperature Se = log TI, where n is the degeneracy of the
ground state, and let Se be expressed in units such that Boltz
mann's constant k =: 1. Then

(45)

with equality if and only if p. is chosen as the canonical distribu-
tion 1

1
p. =-z exp{-AE.(V)J, , (46)

This is the physical meaning, for the present problem, of the
general inequality (12). Obviously, the above statement can be
greatly generalized; we can introduce more degrees of freedom in
addition to V, we can consider open systems, where the number of
molecules can change, and we can use th'e grand canonical ensem
ble, etc. The corresponding statement will still hold; over all
probability assignments that agree with the data in the aforemen
tioned sense, the information theory entropy attains an absolute
maximum, equal to the experimental entropy, if and only if Pi is
taken as the appropriate canonical or grand canonical distribution.

Remarks: 1. We have taken (E) as the given quantity. In
practice, it is usually the temperature that is measured. To treat
the temperature as the observable, one must regard'the system of
interest to be in contact with a heat reservoir, with which it may
exchange energy and which acts as a thermometer. Detailed anal
ysis of the resulting system (given in reference') leads to the
same probability assignments as we have found with (E) as the
given datum.

2. Ifnot only (E) is known, but also the accuracy of the
measurement, as given for example by (E') , then this informa
tion may be incorporated into the problem by taking f,(xi' ex) =
Ei(V), f,(xi' ex) = E!(V). The partition function (11) becomes
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Z(A" A" V) = L: exp[-A1E.(V) - A,E~(V)]
. 1 1
1

and from (14),

(47)

(E) o
= - 01., log Z (E') o= --log Z

0>',
(48)

The fluctuation theorem (21) then gives the relation

(E') - (E) (E') = - i@.
01.,

(49)

In principle, whenever information of this sort is available, it
should be incorporated into the problem. In practice, however,
we find that for the macroscopic systems that exhibit reproducible
thermodynamic properties, the variance (E') - (E)' as calcula
ted from (46) is already very small compared to any reasonable
mean-square experimental error, and so the additional informa
tion about accuracy of the measurement did not lead to any differ
ence in the predictions. This is, of course, the basic reason for
the success of the Gibbs canonical ensemble formalism.

3. The theory as developed here has, in principle, an addi
tional freedom of choice not present in conventional statistical me
chanics. The statement that a system has a dellnite, reproducible
equation of state means, for example, that if we fix experimental
lY any two of the parameters P, V, T, then the third is deter
mined. Correspondingly, in the theory it should be true that in
formation about any two of these quantities should suffice to enable
us to predict the third; there is no basic reason for constructing
our ensembles always in terms of energy rather than any other
measurable quantities. Use of energy has the mathematical con
venience that energy is a constant of the motion, and so the state
ment that the system is in equilibrium (I. e., measurable para
meters are not time- dependent) requIres no additional constraint.
With an ensembie based on some quantity, such as pressure or
magnetization, which is not an intrinsic constant of the motion, if
we wish to predict equilibrium properties we need to incorporate
into the theory an additional statement, involving the equations of
motion, which specifies that these quantities are constant. To do
this requires no new principles of reasoning beyond those given
above; we merely include the values of such a quantity f(t i) at
many different times (or in the limit, at all times) into the set of
quantities f

k
whose expectation vaiues are given. In the limit, the
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partition function thus becomes a partition functional:

Z [A(t)) = L: exp[- jA(t)f(x., t) dt]
i 1

199

(50)

and the relations (14) determining the A's go into the correspond
ing functional derivative relations

(f(t) = - 6A1t) log Z [A(t)) (51)

which determine the function A(t).
We have not found any general proof that the predicted equa

tion of state is independent of the type of information used, but a
special case is proved in the 1961 Stanford thesis of Dr. Douglas
Scalapino. There it is shown that the same equation of state of a
paramagnetic substance with spin- spin interaction is obtained
whatever the input information. We conjecture that this is true
for any system that exhibits an experimentally reproducible equa
tion of state.

It is doubtful whether this new degree of freedom in applying
the theory will prove useful in calculations pertaining to the equi
librium state, since it is more complicated than the usual proce
dure. However, it is just this extra freedom that makes it possi
ble to develop a general formalism for irreversible processes; in
deed, prediction of time- dependent phenomena is obviously impos
sible as long as our probability distributions depend only on con
stants of the motIon. Equations (50) and (51) form the starting
point for a general theory of the nonequilibrium steady state, the
Scalapino thesis providing an example of the calculation of trans
port coefficients from them.

4. GENERALIZATION

For most applications of interest, the foregoing formalism
needs to be generalized to the case of (a) systems described by a
density matrix or (b) continuous probability distributions as occur
in classical theory. We indicate briefly how this is done.
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a. Density Matrix

INFORMATION THEORY

The expectation value of an operato, Fk of a system described
by the density matrix p is

(52)

where Tr stands for the trace. The information theory entropy
corresponding to p is

SI =-Tr (p log p) (53)

(See reference' for the arguments that lead to this definition of SI
and discussion of other expressions which have been proposed.)
Maximizing SI subject to the constraints imposed by knowledge of
the (F'k) yields

1
p= z<X A) expl-A,F,- .•• -A F )

1".. m mm

where

To prove (54), use the lemma

Tr (p log p) ;,; Tr (p log ()")

(54)

(55)

(56)

analogous to (9). Here p is any density matrix satisfying (52), and
()" is the canonical density matrix (54). All the formal relations
(12) to (29) still hold, except that when the Fk no not all commute,
the fluctuation law (21) must be generalized to

where

1 xA -xA
= j(e Fke Fj> dx

- (F'k) (Fj)
(57)

(58)
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For all P that agree with the data in the sense of (52), we have
SI(P) :s Se' with equality if and only if P is the canonical matrix
(54).

b. Continuous Distributions

Shannon's fundamental uniqueness theorem (reference,l theo
rem 3) which establishes - LVi log Pi as the correct information
measure, goes through only for discrete probability distributions.
At the present time, the only criterion we have for finding the
analogous expression for the continuous case Is to pass to the lim
it from a discrete one; presumably, future study will give a more
elegant approach. The following argument can be made as rigor
ous as we please, but at considerable sacrifice of clarity. In the
discrete entropy expression

SI(d) = - f p. log p.
. 1 1 1
1=

(59)

we suppose that the discrete points Xi' i = 1, 2, ... , oJ become
more and more numerous, in such a way that, in the limit 0-00,
the density of points approaches a definite function m(x):

lim .!(number of points in a < x < b) = Jbm(x) dx (60)
TI-OO n

a

If this passage to the limit is sufficiently well behaved, it will also
be true that adjacent differences (xi+ 1 - Xi) in the neighborhood of
any particular value of x will tend to zero so that

lim [( ( -1n x. 1 - x.)] = [m x.)]n-oo 1+ 1 1
(61)

The discrete probability distribution Pi will go over into a continu
ous probability density w(x), according to the limiting form of

p. = w(x.)(x. 1 - x.)
1 1 1+ 1

or, from (61),

(62)
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Consequently, the discrete entropy (59) goes over into the integral

(d) f ( rw(x) 1
SI - - w x) dx log Lnm(xU

In the limit, this contains an infinite term log n; but if we subtract
this off, the difference will, in the cases of interest, approach a
defin.ite limit which we take as the continuous information measure:

SI(C) " lim [Sl(d) - log n] = - fw(x) log b~~~~ dx (63)

The expression (63) is invariant under parameter changes; i. e. J

instead of x anpther quantity y(x) could be used as the independent
variable. The probability density and measure function m(x)
transform as

w.(y) dy = w(x) dx
m.(y) dy = m(x) dx

so that (63) goes into

SI(C) =- fw,(y) dy log IP.\~)] (64)

To achieve this invariance it is necessary that the "measure"
m(x) be introduced. I stress this point because one still finds, in
the literature, statements to the effect that the entropy of a con
tinuous probability distribution is not an invariant. This is due to
the historical accident that in his original papers, Shannon' as
sumed, without calculating, that the analog of L;Pi log Pi was
f w log w dx, and got into trouble for lack of invariance. Only re
cently have we realized that mathematical deduction from the
uniqueness theorem, instead of guesswork, yields the invariant
information measure (63).

In many cases it is more natural to pass from the discrete
distribution to a continuous distribution of several variables,
Xl" .Xr; in this case the results readily generalize to

(c) f f ( ) bw(x•... X r )]S1 = - ... w x.... x log ( ) dx.... dxr m Xl' •• Xr r
(65)
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We apply this to the Liouville function of classical mechanics.
For a system of N particles, WN(x,P,.•. x'Px;t) d'x, ... d'PN is the
probability that at time t the system is in the element d'x,. •. d'PN
of 6N-dimensional phase space. Before we can set up the infor
mation measure for this case, we must decide on a basic measure
m(x1• " PN) for phase space. In classical statistical mechanics,
one has always taken uniform measure: m = const., largely be
cause one couldn't think of anything else to do. However, the
more careful writers have all stressed the fact that within the con
text of classical theory, no real justification of this has ever been
produced. For the present, I propose to dodge this issue by re
garding classical statistical mechanics merely as a limiting form
of the (presumably more fundamental) discrete quantum statistical
mechanics. In other words, the well-known proposition that each
discrete quantum state corresponds to a voiume h,N of classical
phase space, will determine our uniform measure as resulting
from equal weighting of ali orthogonal quantum states, and passing
to the limit h-O. Thus, apart from an irreievant additive con
stant which we drop, our information measure will be just the neg
ative of the Gibbs H-function, HG:

(66)

where dr = d'x, ... d'PW
With this continuous probablllty distribution, we are able to

incorporate into the theory a more detailed kind of macroscopic
information than we have considered up till now. Suppose we are
given the macroscopic density p(x) as a function of position. We
interpret this as specifying at each point of space, the expectation
value of a certain quantity:

where the phase function f, is given by

N
f,(X,P, ... xNPN;x) = L: m ~(x. - x)

. I ',=

(67)

(68)

The position x now plays the same role as the index k in the ele
mentary version of the formalism, Eqs. (10) to (29), and so in
place of the sum j\,.f,.(x,) in the exconent of the nrohohilltv rli~-
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fA(x)f, d'x

INFORMATION THEORY

(70)

into the exponent of WN. The partition function then becomes a
partition functional of the function A(X).

In general, we might have several phase functions of this kind,
whose expectation values are given at each point of space:

(69)

Maximization of SI subject to these constraints gives the partition
functional

Z[A,(X), •.. ,A (x)]=fdTexp{-~ fAk(x)
m k=1

X fk(X,. •. PN;x) d'X}

The Lagrange multiplier functions Ak(x) are determined by rela
tions analogous to (14), but now involving the functional deriva
tives:

and the other properties, Eqs. (16) to (29), are likewise easily
generalized.

Example: Suppose the macroscopic density of mass, momen
tum, and kinetic energy are given at the Initial time. This corre
sponds to expectation values of (68), and

=<f p.O(x. - X~. l' 11=

= P(x) (72)

(
N p! Y

= L: r- fi(x. - x) =K(x)
i=1 m 1

(73)

Since all the given data are formed additively from contributions
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of each particle, the maximum-entropy Liouville function factors:

(74)

(this would not be the case if the given information concerned mu
tual properties of different particles, such as the potential en
ergy), and the exponential in the partition functional (70) reduces
to

- j d'. [A,(x)2:m 6(x. - x) + X,(x) . 2:P. 6(x, - x)
iIi 1 1

p'
+ A3(X)2:~ 6(X. - x)]

i m 1

N p~

= - 2: [mA,(x.) + p.. X,(x.) + -2' A,(X.)]
i=l 1 11m 1

so that

log Z = N 10gjlexp[-mA,(x) - p . X,(x)

,
- ~A'(X)]) d'x d'p

(75)

Application of (71) now yields the physical meaning of the Lagrange
multipliers: defining the "mass velocity" u(x) by P(x) = p(x)u(x),
and the "local temperature" T(x) by the mean-square velocity as
seen by an observer moving at velocity u(x), we find

1
A,(X) = kT(x} = /3(x)

X,(x) = /3(x)u(x) (76)

mA,(x) = 1/2 mu'(x)/3(x) - 3/2 log /3(x) -log p(x) + (consi.)

and the single-particle distribution function w, of (74) reduces to

p(x) I ~) -mu(x)Ej
w,(x, p) = mN[2rrmkT(x)]!7'" exp - 2mkT{x) (77)
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In this rather trivial example we merely recover a well- known
'esult; but from a different viewpoint than the usual one, which
eads us to interpret (77) differently, and regard it as a very spe
:ial case. The method used enables us to translate other kinds of
nacroscopic information into definite probability distributions. In
lther words, we suggest that the maximum-entropy formalism
lrovides the general solution to the problem of "setting up an en
;emble" to describe an arbitrary macroscopic situation, equilibri
1m or nonequilibrium.

The distributions found in the above way, of course, describe
he situation only at the initial time for which the macroscopic 10
ormation is given. For predictions referring to other times, one
lhould, in principle, solve the equatlons of motion, or Ltouvi1le
'quation,

(78)

.,here H is the Hamiltonian and [WN, H), the Poisson bracket. In
>radice, the history of irreversible statistical mechanics has
,een one of unceasing efforts to replace this Impossibly' difficult
alculation by a simpler one, in which we try to reduce (78) to an

.irreversible" equation variously termed Boltzmann equation, rate
'quation, or master equation. Although considerable progress has
leen made in this direction in recent years, we are still far from
eally bridging the gap between these two methods of description.

As a preliminary step in this direction, it is necessary that
'/e understand clearly the physical meaning of the Liouville func
ion WN and the various reduced distribution functions derived
rom it. The.followlng section surveys these questions.

5. DISTRIBUTION FUNCTIONS

A recent review of transport theory by Dresden" (hereafter
eferred to as MD) illustrates that attempts to bridge the gap be
ween phenomenological rate equations and fundamentals (equations
-f Liouville and Gibbs) have been largely frustrated because basic
onceptual difficulties, dating from the time of Boltzmann, are
till unresolved. This section is intended as a supplement to the
liscussion of these problems given to, MD, Sec. I. B.

Early attempts to base transport theory on the BBGKY hier
-rchy of distribution functions made no distinction between the
loltzmann distribution function f(x, p, t) and the single-particle
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function w,(xpt) of the hierarchy. In MD this distinction is pointed
out without, however, stating any precise relation between them.
To do this requires, first of all, precise definitions of f and the
Liouville function WN. Boitzmann originally defined f as giving
the actual number of particles in various cells of six-dimensional
phase space; thus if R is the set of phase points comprising a cell,
the number of particles in R is -;I;-

nR = Jf(x, p, t) d'x d'p
R

(79)

The well-known paradoxes involving the H-theorem led to a feeling
that this definition should be modified; but the exact way seems
never to have been stated. Here we retain the definition (79),
which has at least the merit of being a precise statement, and ac
cept the consequence that the Boltzmann collision equation cannot
be strictly correct, for reasons given by Zermeio and Loschmidt.

From (79) it is immediately clear that>Boltzmann's f is not a
probability distribution at all, but a "random variabie." In other
words, instead of saying that f gives the probability of various
conditions, we should ask, "What is the probability that f takes on
various values?1l

Establishment of a precise connection between Boltzmann'·':) f
and the single-particle function of the hierarchy,

(80)

requires no coars~-graining, time-smoothing, or any other muti
lation of the hierarchy. If we agree that a particle will be consid
ered "in R" if its center of gravity is in R, and that the Liouville
function WN is symmetric under permutations of particle labels,
then from (79) and (80) the exact connection between them is sim
ply,

(f) = Nw, (81)

where the angular brackets denote an average over the Liouville
function WN' The only "statistical notion" which needs to be ad
joined to it is the usual one that WN dr shall be interpreted as the
probability that the individual system is in the phase region dr. To
say that WN refers to number density in a fictitious ensembie is
oniy to say the same thing in different words; this cannot be empha
sized too strongly. Indeed, the notion of an ensemble is merely a
device that enables us to speak of probabilities on the Gibbs, or
rrlnh':ll 10"",1 ~ If tho" "''''''''0 f .,...., .. .,." ~....... I ~ 1 _ _ -
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which is defined for just that purpose.
The reason why it was felt necessary to introduce the notion

of an ensemble is that the development of equilibrium statistical
mechanics took place entirely In a period when the frequency theo
ry of probability was the oaly one considered respectable. It has
been taken for granted that any probability distributions used must
be, in principle, empirically measurable frequencies, and that the
fundamental problem of statistical mechanics is to justily these
distributions in the frequency sense.

The statistical practice of physicists has tended to lag about
20 years behind current developments in the field of basic proba
bility and statistics. I hope to shorten that gap to about 10 years
by pointing out that a revolution in statistical thought has recently
taken place, brought about largely by the development of statisti
cal decision theory. Two brief summaries of these developments
have been published,,7 and a detailed analysis of the present situa
tion' will soon be available. The net result is a vindication of the
viewpoint of Laplace, and of Jeffreys," that probability theory is
-properly regarded as an extension of logic to the case of inductive,
or plausible, reasoning, the probabilities denoting basically a "de
gree of reasonable belief," rather than limiting frequencies. This
does not mean that there are no longer any connections between
probability and frequency; the situation is rather that every con
nection between probability and frequency which is actually used in.
applications is deducible as a mathematical consequence of the
"inductive logic" theory of probability.' Equation (81), and others
given below, provide examples of the kind of connections that exist.

Use of probability in this "modern" (actually the original)
sense is, of course, essential to the maximum-entropy formalism;
for the frequencies with which different microscopic states are oc
cupied are manifestly not given, in general, by a distribution ca
nonical in the observed quantities; indeed, for a time-dependent
problem the notion of occupation frequency is meaningless. Nev
ertheless, in a problem where frequencies are meaningful, if our
job is to estimate those frequencies, our best estimate on the ba
sis of the information available will be numerically equal to the
probabilities. One example of this was given In the "objective" in
terpretation of the maximum-entropy formalism in Sec. 2, and we
now give another example which clarifies the meaning of the dis
tribution functions.

From Eqs. (79) and (81) one sees that the single-particle func
tion w, does not contain full information about the distribution of
particles in six-dimensional phase space. Integrating (81) over
the cell R, we see that it determines only the expectation valUe of
particle occupation numbers:

(nrt> = NJR w,(x, p, t) d'x d'p (82)
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In words: the integral in (82) represents the probability that any
specified particle is in the phase cell R. This is not the same as
the fraction of particles in that cell but represents oniy the expec
tation vaIue of that fraction, over the Liouville distribution WN'
Before we are justified in the usual interpretation which identifies
(82) with the actual number of particles in R, it must be shown
that the variance of the nR distribution is small:

(nR') - (nw'
(nw'

« 1 (83)

Unless (83) is satisfied, the Liouville function is making no defi
nate prediction about the number of particles in R. But we are not
allowed to postulate (83) on the grounds of any "law of large num
bersll even for a cell R of macroscopic size, because the two-par
ticle distribution function of the hierarchy,

w,(x,p" x,p" t) = JWN d'x,... d'PN

completely determines whether (83) is or is not satisfied.
this, introduce the characteristic function of the set R:

M( ) = (1, x, p in R )
x, p - 0, otherwise

Then

(84)

To see

(85)

N
(n

R
') = L: (M(x., p.)M(x

j
, p.) = NI, + N(N - 1)1, (86)

. . 1 " J1, J=

where

I, " Jw,(x, p) d'x d'p
R

The measure of dispersion (83) then reduces to

.!L, Il h.:~
I + NI', 1

(87)

(88)

(89)
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;:.)
Thus, when N » 1 and (nn> "'" 1, the necessary and sufficient
condition for validity of (B3) becomes

(90)

Usually one omits gravitational forces from the Hamiltonian
and chooses a Liouville function which makes w, independent of
position. If we then describe thermal equilibribrium by WN
exph3H) and choose a cell R consisting of all of momentum space,
an!! a region VR of ordinary space of macroscopic size, Eq. (90)
becomes the necessary and sufficient condition that the Liouville
function makes a sharp prediction of the density of the fluid; i. e. J

it predicts that only one phase is present in VR' Thus the condi
tion for condensation, or more precisely for the coexistence of
more than one phase, is that (90) fails to hold. Equation (82) then
gives only a weighted average of the density of the various possible
phases.

Similarly, in the problem of deriving the laws of hydrodynam
ics from the Liouville equation, one needs to find the predicted
momentum density. In terms of the Boltzmann. distribution func
tion, the total momentum in any phase cell R is

p = f pf(x, p, t) d'x d'p
R

(91)

and we choose R to consist of all momentum space plus a cell S' of
ordinary space that is "microscopically large but macroscopically
small." Agaln, the single-particle function gives only the expec
tation value,

(p) = Nf pw,(x, p, t) d'x d'p
R

(92)

but WI gives no information at all as to whether this is a reliable
prediction. To answer this, we must appeal to the two-particle
function:

(p2) = Nf p2W, dx dp + N(N - 1)f dx dpf dx' dp'
R R R

X P • p' w2(x, P. x'. p')
(93)

If the variance of P is everywhere small, then the Liouville func-
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tion is making a definite prediction of a Clow patternj i. e., it pre
dicts'laminar flow. But if the last term of (93) is large, the
single- particle function gives only a weighted average of several
possible flows. In this case, the information put into the Liouville
function was not sufficient to determine any definite mass motion
of the fluid. But if we incorporated into WN alt the information
about the experimentally imposed conditions, the theory is now
telling us that under these conditions the flow will not be experi
mentally reproducible. In other words, the theory is predicting
turbulent flow.

These examples show that the proper physical interpretation
of the distributions (i. e., their exact relation to physical quanti.
,ties) is not an obscure philosophical point. Failure to distinguish
between w. and f as given In (79) means failure to distinguish be
tween expectation values and actual values, and amounts to the
same thing as simply postulating that ensembie averages are equal
to observed values of physical quantities. This is not only unjusti
fied because of the probability nature of WN; it would mean loss of
the correct criterion for phase changes and of the criterion which
distinguishes between laminar and turbulent flow.

On the other hand, we can see no basis for any distinction be
tween equilibrium and nonequilibrium situations here. One of the
most elementary theorems of probability theory assures us that,
for any phase function Q and any probability assignment WN what
soever, the expectation value (Q), denoted by Qobs in MD, is the
best estimate of Q in the sense that it minimizes the expected
square of the error. Whether the Information put into WN permits
an accurate estimate (I. e., whether the expected square of the
error is small), can be neither postulated nor denied arbitrarily;
it is determined by WN' In all cases, equilibrium or otherwise,
the test is to caiculate ~Q') = JQ'WN dv, and see whether it is
sulliciently close to (Q) in the sense of (83). If calculation of
(Q) requires knowledge of the function ws of the hierarchy, but
not wSf l' and 2s < N, then information about the reliability of the
ensemble average (Q) as an estimate of Q appears for the first
time In the function w's' and Is, of course, retained In all higher
ol"der functions.

Any system of "kinetic equations," such as the Boltzmann or
Bogoliubov scheme, which attempts to write the higher-order func
tions in terms of w" throws away information about the reliabillty
of the predictions. This, however, may represent a net advantage
If It simplifies the mathematics without greatly alfecting the actual
predictions; consequently the search for such kinetic equations is
a major objective of current theoretical effort. If the particles
move under the Influence of a potential energy function V(x•••. xN),
the exact differential equation satisfied by w.(x" p" t) may be wril
teu compactly
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where

Ow P'a ow ~ '0-ift +-~+-o-(F",w,l =0mx Plan'a
(94)

(95)

is the conditional expectation value of the force seen by particle 1,
given that it has position and momentum (xu p,). Here (x2 ' , ,PN I
x,p,) is the conditional probability density for the other particles,
defined by WN(Xl' ' • PN) = (x2• • ,PN Ix,p,)w,(x,p,).

Although direct calculation of <Fa> would be very difficult,
the form of (94) should prove useful in two respects. In the first
place, it shows that, although the basic ideas may be stated In en
tirely different terms, any proposed equation for WI' such as the
Boltzmann, the Fokker- Planck, or the Bogoliubov equation, is
equivalent to some assumption about the expected force (Fa) .
The physical reasonableness of any proposed equation may, there
fo,e, be judged by comparing it to (94), and seeing what explicit
assumption it makes about <Fa>' Second, (94) shows that all the
complications of this subject reduce ultimately to the determina
tion of one quantity, <Fa>' Therefore, a phenomenological theo
ry should be feasible in which <Fa> is determined from appropri
ate experiments. In situations close to equilibrium, one finds in
this way that in first approximation <Fa> is proportional to the
density gradient, and independent of p,. The condition for conden
sation, which is a particular kind of hydrodynamic instability, is
then that this proportionality coefficient exceeds· a certain critical
value.

6. ENTROPY AND PROBABILITY

Now we turn to what Is perhaps the most serious confusion of
all in current irreversible statistical mechanics-the interpreta
tion of entropy In terms of probability distributions. As recent
literature gives ample testimony, even the issue of Boltzmann's
versus Gibbs' H functions to represent entropy has not been re
solved in any c;ommonly agreed way. For example, in MD it is
stated that the Boltzmann H,

HB = Jflog f d'x d'p (96)
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is "directly relatedll to the entropy, whereas the Gibbs expression

(97)

is rejected with the statement: IIThere is, however, no possibility
of identifying or relating HG to the macroscopic entropy, for one
proves directly from (23) and (18) that HG Is constant in time,
whereas the macroscopic entropy always increases in a nonequi
librium situation." Similar statements appeared in the Ehrenfest10

review article of 1912, when the work of Gibbs had not yet been
understood. From the frequency with which this objection to
Gibbs' H has been repeated In the literature since then, it Is clear
that the nature of Gibbs' contribution has not been fully apprecia
ted to this day.

We wish to point out that the mathematical relations proved by
Gibbs, plus one physical assumption which Is universally accepted
today (although it had hardly been formulated at the time of the
Ehrenfest article) are sufficient to prove, on the contrary, the fol
lowing four statements:

(I) The Gibbs H has a simple and universally valid connection
with the entropy; for all probability assignments that agree with
the measured thermodynamic parameters we have S ;;: -kHG, with
equality If and only If HG Is computed from the appropriate canoni
calor grand canonical probability assignment.

(II) The Boltzmann H is related to the entropy in only one
case, the nonexistent ideal Boltzmann (I. e., not Bose or Fermi)
gas. In general, HB s HG, and the entropy can be either greater
or less than -kHB.

(III) The constancy of Gibbs' H, far from conflicting with the
Increase of entropy, is the sole dynamical property needed to
demonstrate that increase.

(IV) The Gibbs H provides a generalized definition of entropy
for nonequUlbrium cases, In such a way that the usual statement
of the second law remains valid. It gives, therefore, a new rule
telling which nonequllibrlum states are accessible from others in
adiabatic processes.

The fourth statement is a nontrivial extension of the second
law which Is capable of being tested experimentally, and whose
finding required only a careful reading of Gibbs. Since the second
law is a statement of experimental fact, it cannot be "proved"
mathematically without some assumption about what the result of
an experiment would be. The assumption we need is just the
statement (44) which we appealed to before.

Before turning to the proofs, some preliminary remarks nre
needed. We are stm faced with the ambiguity in the definition of f.
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The function defined by (79) is singular in such a way that the inte
gral (96) diverges; thus before we can introduce a Boltzmann H at
all, we have to abandon Boltzmann' 5 definition of f in favor of
some other, unspecified one. In MD it is stated that f gives an
"average" occupation number, and that this can be made more
precise by reference to an equation which is indeed an average ov
er an undefined probability distribution P. If we suppose that, In
going to fundamentals, this would eventually become an average
over the Liouvll1e function WN, we have a definition of HB for
which exact relations can be proved. In other words, we mean to
use the single-particle function w1 of the hierarchy to define a
Boltzmann H:

HB =Jw, log w, d'x d'p (98)

There Is really no other way of doing it If we are ever to prove
precise statements about Boltzmann's H, because eventually this
will have to depend on precise properties of the dynamics, and the
Liouville hierarchy is just the precise expression of the dynamics.

Another point is that, strictly speaking, all this should be re
stated in terms of quantum theory using the density matrix formal
ism. This will introduce the N I permutation factor, a natural ze
ro for entropy, alteration of numerical values if discreteness of
energy levels becomes comparable to kT, etc. But there seems
to be complete agreement as to how this transcription is to be
made, and it will affect the Boltzmann and Gibbs expressions in
the same way. We shall first attempt to define the Boltzmann H as
HI = Tr (0- log u), where (J is the "molecular" density matrix oper
ating in the Hilbert space of a single molecule and gives occupation
numbers. The Gibbs H will become Hc\ = W'Tr (p log p), where p
is the "global" density matrix with an enormously greater number
of rows and coiumns, operating in the entire Hilbert space of the
system. On closer examination, we shall wonder whether the di
agonal elements of a are to represent the actual values, probable
values, average values, etc. of the occupation numbers, and H'
will peter out in ambiguities until we note that, if it is to have any
precisely provable properties, it must be preciseiy related to the
dynamics; i. e., out of all possible definitions of a, we decide to
use Pu the projection of p onto the subspace of a single molecule,
as defined in reference,' Sec. 11. Its diagonal elements are ex
pectation values, over the global density matrix p, of occupation
fractions. Then with He and Ha=Tr (P, log p,) we can prove ex
actly the same inequalities as for the classical case. Thus, the
issue of Boitzmann versus Gibbs entropy expressions does not in
volve quantum theory, and we continue to use classical terminolo
gy for brevity.
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Statement (I) is now just the theorem (45) already proved, if
one grants the physical assumption (44), for the quantum theory
case.

Statement (11) quotes a well-known mathematical theorem,

(99)

with equality if and only if the Liouville function factors "almost
everywhere"

N

WN(x,.•. PN) = i~lwl(xI'Pi) (100)

which corresponds, in quantum theory, to the condition that the
global density matrix is a direct product'

P = P, X P, X • •• X PN
(101)

where Pi is the projection of P onto the Hilbert space of the i-th
molecule. The final part of statement 11 then follows from the fact
that the canonical distribution WN - exp(- J3H) has the factorized
form (100) only In the case of an ideal Boltzmann gas. In thls case
the "Boltzmann entropy,w' SB = -kHB, is equal to the experimental
entropy; in all other cases, if w1 is constructed from the appropri
ate canonical distribution WN, we shall have SB > See

Statement III is likewise an immediate consequence of state
ment r and the well-known fact that HG is, in consequence of the
equations of motion, constant· in time in either classical or quan
tum theory. To make this clearer, consider the following experi
ment. At time t = 0, we measure the values of various parame
ters X" .. Xn adequate to determine the state of a thermodynamic
system of n degrees of freedom. The experimental entropy is, of
course, some function Se(X

"
, . ~n) of the measured quantilies; and

not primarIly related to any probability distribution. But we have
shown that the maximum attainable information theory entropy Sr,
corresponding to the appropriate canonical distribution based on
the values of Xl" .. Xn, is equal to See At some later time t, a new
measurement of the thermodynamic state yields different values,
X;, •.. , X", and a different experimental entropy Se(X;, .• X~). Dut
the inequality Sr:S Se still holds; and so the statement that Sr (or
what is the same thing, HG) Is constant, then gives us S.; '" Se'

The re is still an apparent paradox hiding here; for suppose we
choose t negative. It looks as If this argument then says lhat the
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experimental entropy in the past was greater than at the time of
the measurements Xl" . Xn. Actually, the explanation of this par
adox has been given before.5 We have, of course, assumed in the
above that forward integration of the equations of motion does, in
fact, yield the correct predictions at time t; i. e~, the measured
Xi are equal to ensemble averages calculated from the time-devel
oped Liouvl1le function obeying (78), or the time- developed global
density matrix obeying iN> = [H, p]. In reference,' it is shown that
this is the case if the observed change Xi - Xj is an experimental
ly reproducible one. But we know that many past macroscopic
states Xi' would all relax into the same state Xi at time t = O.
Th!ls, we suggest that the correct statement of the second law is
that spontaneous decreases in the experimental entropy, although
not absolutely prohibited by the laws of physics, cannot occur in an
experimentally reproducible process.

Statement N now follows from the fact that nothing in the
above reasoning restricts us to equilibrium stales. In convention
al thermodynamics, the experimental entropy is defined only for
equilibrium states; however, our definition Se == [max SI over all
probability distributions that agree with the data in the sense of
(52)] defines a function Se(Xl'" Xn) of the experimentally mea
sured parameters for the equilibrium or nonequilibrium case,
which by the above arguments cannot spontaneously decrease in an
experimentally reproducible process. It can no longer be found by
numerical integration of dQ/T over a reversible path; but the con
tent of statement IV is that a function Se still exists, such that the
usual statement of the second law remains valid. It requires a
great deal more analysis, to be given elsewhere, before we can
reduce this to a suggestion of a definite experiment that could test
statement IV; I am trying here only to point out in the briefest
terms why it is that an extension of the second law is predicted by
theory as soon as we have understood everything revealed by Gibbs
about the connection between entropy and probability.

Finally, we note that the Boltzmann H-theorem, whether cor
rect or not, cannot have any real relevance to the second law.
For, summarizing the above inequalities,

(102)

where the first inequality becomes an equality if and only if there
are no interparticle correlations (t. e., ideal Boltzmann gas), the
second if and only if HG is computed from the appropriate canoni
cal distribution. Obviously, whether HB increases or decreases
allows us to infer nothing about Se' The situation is even worse
than that; for the Boltzmann H-theorem was based on incorrect
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equations of motion, and whether HB increases or decreases de
pends on the form of the distribution and the force law. To see
this, note that from (98) and the exact equation of motion (94), the
exact rate of change of HB is just the negative of the expected di
vergence in momentum space of the molecular force <Fa>:

(103)

and this can have either sign. For example, if <Fa >is dominated
by a "dragging" term as in the Langevin equation: (Fa> = - KPa +
.•. , th~n we find that the exact equations give us an "anti-H-theo
rem,lT HB > O.

7. CONCLUSION

We have seen that the principle of maximum entropy leads
immediaiely to the same final rules of calculation that convention
al statistical mechanics had provided only after long and inconclu
sive discussion of phase space, ergodicityJ metric transitivity J

etc.; and then only for the equilibrium case. The viewpoint advo
cated here thus represents, from the pedagogical standpoint, a
considerable simplification of the SUbject. But this agreement al
so means that, from a pragmatic standpoint, if there is any new
content in this principle, we must look for it in the extension to
the statistical mechanics of irreversible processes, where there
does not exist at present any general formal theory, and ask
whether the principle of maximum entropy provides such a basis.
Over the past several years, my students and I have verified that
all the commonly accepted principles of irreversible statistical
mechanics can be derived from this formalism; that is, of course,
a minimum requirement that any proposed new theory must pass.
The real test of these ideas can come only through their applica
tion to problems that have resisted solution by older methods. Al
though a few results along this line are now in," and a few others
have been hinted at in these talks, a finai settlement of the ques
tions raised still lies rather far in the future.
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