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Introduction

andrew janiak and eric schliesser

It may be anachronistic to say that Isaac Newton and his Principia decisively

changed physics and philosophy, because separate fields of physics and phi-

losophy did not yet exist. But the notion of decisive change captures some-

thing significant about the continuing relevance of studying Newton. What

has been aptly termed “Newton’s new way of inquiry” (Harper and Smith

1995) was baffling for even his most sophisticated contemporaries, and it took

Europe’s brightest astronomers and mathematically inclined natural philoso-

phers almost a century in order to evaluate and assimilate the Principia. But for

reasons that need not detain us here, few of these figures (e.g., Clairaut, Euler,

Laplace), who were fully immersed in Newton’s work, really offered a definitive

account of the methodology of the Principia. Of course, many scholars from

Newton’s day onward have offered interpretations of Newton’s explicit method-

ological claims, but surprisingly few have combined this approach with detailed

knowledge of Newton’s technical practice. As is well known, by the time physics

became enshrined as the leading part of the disciplinary structure of science,

its attitude toward its own history did not encourage close scrutiny of past

practices. In this volume, the three chapters on methodology by George Smith,

William Harper, and Ori Belkind all capture important aspects of Newton’s

new way of inquiry.

Newton also changed philosophy in two important ways. First, the body

of work eventually known as “Newtonian mechanics” became a privileged

form of knowledge that had to be dealt with somehow within metaphysics and

epistemology. Second, it initiated a slow process in which philosophy defined

itself in terms that often contrasted with – or were modeled on – Newtonian

success. But as a consequence, in philosophy’s evolving self-conception Newton

stopped being central to the history of philosophy. Somewhat surprisingly,

philosophical interest in Newton revived at the beginning of the twentieth

century, precisely when his physical theory was called into question by Einstein’s

revolutionary work. Most of the papers in this volume engage with Newton’s

place within the history of philosophy. Before we turn to a detailed description

of the chapters collected here, we offer a brief introduction to the scholarship

that in many ways forms the shared background of recent philosophically

motivated work on Isaac Newton.

1
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2 andrew janiak and eric schliesser

The philosophical study of Newton’s thought has undergone a series of rev-

olutionary developments during the past century.1 During the first half of the

twentieth century, in the context of Einstein’s transformative science, much

of the key work was accomplished by European historians of science such as

Hélène Metzger and Alexandre Koyré, but E. A. Burtt’s The Metaphysical Foun-

dations of Natural Science (1924) also had a lasting influence.2 Burtt’s text is

remarkable for its insistence on treating canonical modern philosophers – such

as Descartes and Hobbes – in tandem with canonical natural philosophers –

such as Boyle and Newton – in the same fashion, thereby expressing a more

expansive conception of philosophy’s history than one might have encoun-

tered elsewhere.3 For her part, Metzger wrote insightfully about Newton’s place

within the history of chemistry and also about a number of substantive philo-

sophical and theological issues that some of Newton’s interpreters took to be

raised by his work. At the time of her tragic death in Auschwitz, Metzger was

writing another work that traced developments in chemistry and optics from

Newton through to later figures.4 Koyré’s prodigious scholarship concerned

a host of philosophical and historical issues, encompassing a range of figures

from Galileo to Newton5 – his influence was felt not merely in his own schol-

arship, but through the magisterial critical edition of the Principia that he

undertook with I. B. Cohen (see below). Any historian or philosopher wishing

1 This introduction must be brief, and will therefore inevitably leave out discussions of
important scholars who have grappled with Newton during the past hundred years. Even
a volume-length introduction could not provide a comprehensive treatment of scholarly
developments during that time frame, let alone a standard introduction. We deal here with
those authors who seem, according to the editors of this volume, to have been the most
significant twentieth-century figures from the perspective of the philosophical engagement
with Newton. Discussions of mathematics, physics, alchemy, optics, politics, etc., would
obviously focus on other scholarly figures, texts and traditions. Finally, in what follows,
when we cite and discuss the scholarship of important figures who have worked on Newton,
we focus solely or principally on their main works concerning Newton and his influence
(many historians and philosophers have written on various topics over the years).

2 Pierre Duhem’s remarks about Newton in (1906) – which was translated as The Aim and
Structure of Physical Theory by Phillip Wiener in 1954 (reprinted 1982) – were also a
significant aspect of the reception of Newton in the pre-war period. Duhem argues in
particular that Newton’s “deduction” of the principle of universal gravity from Kepler’s
Laws is fundamentally flawed (see Duhem 1982, pp. 190–195). For a critical engagement
with Duhem’s criticism, see Smith (2007b).

3 Serious philosophical engagement with Newton’s work even in the 1970s would still involve
a citation or discussion of Burtt’s work – see, e.g., Westfall (1971).

4 Metzger was the author, inter alia, of (1930) and (1938); for an extensive discussion of her
life and work, see Freudenthal (1990).

5 The scope of Koyré’s scholarship in the history of science and in the history of philosophy,
to the extent that they can be distinguished, was immense. By the time of the beginning of
the Second World War in 1939, he had already published several monographs, a collection
of essays entitled Études Galiléennes, and a translation and commentary on Copernicus’s
magnum opus. For details of Koyré’s life and scholarship, see Herivel (1965b).
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introduction 3

to engage with Newton in, say, the 1950s or 1960s would have felt it necessary to

begin with – although not necessarily to end with – the work of these figures.6

The sale of many key Newton manuscripts in 1936 – in which John Maynard

Keynes played a crucial role7 – enabled many scholars to edit and publish texts

in the post-war period. These texts now form an essential component of our

understanding of Newton’s life and thought.8

During the immediate post-war period, Newton scholarship underwent

another major revolution at the hands of two towering figures in Britain and

the United States, I. B. Cohen and Sam Westfall.9 Having received the first

American Ph.D. in the history of science (1947), Cohen probably did more

than any single figure in the past century to make Newton’s texts available

to scholars and to the general public. In 1972, Cohen published Isaac New-

ton’s Philosophiae Naturalis Principia Mathematica, an edition co-edited with

Koyré, whose untimely death prevented him from seeing it through to com-

pletion. In 1958, Cohen had already edited Isaac Newton’s Papers and Letters,

which expertly collected a number of key Newtonian texts, including his optical

papers from the 1670s10 and his correspondence with Bentley (first published

in the mid-eighteenth century), and many years of work with Anne Whitman

would eventually lead (in 1999) to the first fully new English translation of the

Principia in two centuries.11 Cohen’s outstanding editorial work was matched

6 In the post-war period, the French tradition of Newton scholarship was continued by
a number of important figures, including Michel Blay (1995), and Francois de Gandt
(1995). The work of Léon Bloch (1908) was an early component of twentieth-century
French scholarship.

7 John Maynard Keynes’ 1946 lecture “Newton the Man,” characterized Newton’s interest
in alchemy, “with one foot in the Middle Ages and one foot treading a path for modern
science,” see: www-groups.mcs.st-andrews.ac.uk/∼history/Extras/Keynes Newton.html

8 Perhaps the most significant post-war investigation of Newton’s alchemical manuscripts
was presented in Betty Jo Teeter Dobbs’s (1975). There has been a tremendous amount
of interest in Newton’s alchemy in the past two decades – see, for instance, Figala’s
assessment in (2002) and, more recently, Newman (2006).

9 In addition to Force in Newton’s Physics and Never at Rest, Westfall was also the author
of (1958), (1971b) and numerous articles on Newton and the history of science. Cohen’s
works include (1956), (1971), and (1980). Before his untimely death in 1996, Westfall was
slated to edit the Cambridge Companion to Newton, which ultimately became a significant
institutional signal that Newton’s work was of continuing importance for philosophers
working in the English-speaking world. The volume, which eventually appeared in 2002,
was published under the editorship of I. B. Cohen and of George Smith.

10 During the past twenty years, the most significant research into Newton’s optics, and
the most important work on the scholarly editions of Newton’s work in optics, has been
published by Alan Shapiro (Newton 1984).

11 Cohen’s editorial and scholarly work on Newton’s manuscripts and on the Principia
has certainly been matched by the immense, decades-long project represented by D. T.
Whiteside’s The Mathematical Papers of Isaac Newton, and by H. W. Turnbull et al.’s
crucial project, The Correspondence of Isaac Newton. These are indispensable scholarly
editions.
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4 andrew janiak and eric schliesser

by his immense range of publications on many aspects of Newton’s life and

thought.

After finishing a Ph.D. in 1958 at Yale on science and religion in seventeenth-

century England, Westfall began to focus almost exclusively on Newton for the

next few decades, culminating in his two great works: Force in Newton’s Physics

(1971) and his unsurpassed biography, Never at Rest (1980). Although Westfall

held a Ph.D. in history, he taught in the History and Philosophy of Science

Department at Indiana University (founded in 1960 by the philosopher Nor-

wood Russell Hanson), and he showed a remarkable capacity for combining a

subtle understanding of historical detail with an insightful analysis of philo-

sophical issues and problems. Hence Force in Newton’s Physics is a contribution

not only to our understanding of Newton’s physical theory, but also to our

conception of how Descartes’s and Leibniz’s work in dynamics intersects with

their broader concerns and preoccupations. Even today, every scholar must

grapple with the enormously important work of Cohen and Westfall, which

have reshaped our understanding of Newton in numerous ways. Indeed, their

contributions may never be surpassed.

Beginning in the 1950s and 1960s, Marie Boas (later Marie Boas Hall) and

A. Rupert Hall made available for the first time a series of Newton’s

manuscripts – most notably “De gravitatione et Aequipondio Fluidorum,”

a crucial unpublished anti-Cartesian tract that has garnered enormous atten-

tion in recent years – that have been central to the scholarly understanding of

his life and work ever since.12 In addition to their editorial and archival work,

Hall and Hall published a number of articles and books that deal partly or

centrally with Newton’s thought, including Marie Boas’s classic monograph,

“The Establishment of the Mechanical Philosophy,” and A. R. Hall’s numer-

ous books about Newton and his milieu.13 During the 1960s and 1970s, key

contributions to the philosophical understanding of Newton were made by

Howard Stein, J. E. McGuire and Ernan McMullin.14 Stein’s most influential

paper, “Newtonian Space-Time,” was presented in 1967 and then published

12 Hall and Hall’s collection is Newton (1962). An updated translation of “De Gravitatione”
by Christian Johnson (with the assistance of Andrew Janiak) is available in Newton (2004).

13 See Marie Boas’s monograph-length article on the mechanical philosophy, Boas (1952).
Much of her subsequent work concerned Boyle and also the history of the scientific
revolution, including: Hall (1958), (1962), and (1991). A. Rupert Hall wrote, inter alia, the
following influential works: (1963), (1980), and (1992). Together, Hall and Hall also edited
Henry Oldenburg’s correspondence (Hall and Hall 1965), which is obviously crucial for
understanding the history of the Royal Society of London, as Oldenburg was its secretary
for many years. Many of Newton’s published and unpublished writings, on a wide variety
of topics, are now available via The Newton Project: www.newtonproject.sussex.ac.uk.

14 Although Max Jammer did not write specifically about Newton during this period, his
famous trilogy in the history of science contained substantial engagement with Newton’s
ideas: Jammer (1954), (1957) and (1961). At least two of the concepts Jammer discussed,
force and mass, are given their canonical modern formulation by Newton in 1687.
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in 1970 – it served to introduce a generation of philosophers, many of whom

worked not on Newton but on more general issues concerning philosophy of

science, to Newton’s thinking about space, time and motion.15 The originality

and power of Stein’s contribution were felt for many decades. In the ensuing

years, Stein has continued to influence many philosophers – including Michael

Friedman and Robert DiSalle – seeking to understand Newton’s place within

the early modern tradition of natural philosophy and the modern tradition

of philosophy of physics. J. E. McGuire’s life-long engagement with Newton’s

philosophical work began in the 1960s with a remarkable series of papers con-

cerning the then-neglected alchemical aspects of Newton’s unpublished oeuvre.

During the ensuing decades, McGuire also made seminal contributions to the

study of key Newtonian concepts such as space, time, and force, connecting

them to various philosophical and scientific traditions of the late Renaissance

and early modernity.16 For his part, McMullin’s wide ranging scholarship on

the history and philosophy of modern physics included a crucial early mono-

graph entitled Newton on Matter and Activity (1978). McMullin’s text was one

of the only systematic treatments of Newton’s philosophical views to have been

written in the post-war period, and its influence is still evident in contemporary

scholarship.
∗∗∗

The contributions to this volume build on the influential work in the twentieth

century discussed above, and they often see Newton through the various lenses

provided by that work. Indeed, contemporary philosophical engagement with

Newton must not only react to the myriad published and unpublished works

that form the known Newtonian corpus, they must also respond – both sym-

pathetically and sometimes critically – to the vast field of twentieth-century

scholarship on Newton and his influence. The editors have divided the fifteen

contributed papers in this volume into three sections: (1) Newton and his con-

temporaries; (2) Philosophical themes in Newton; (3) the reception of Newton.

Such a division is a bit arbitrary, of course, because there is considerable overlap

among the papers in different sections. In this introduction we call attention

to five broad themes that break new ground in Newton studies and that are

shared by a number of contributions.

First, the study of Newton’s methodology has long been the focus of George

Smith’s groundbreaking research.17 This volume concludes with a new major

15 See Stein (1970a), (1970b), (1990b), and (2002), which presents and expands upon many
classic themes from Stein’s forty-year engagement with Newton.

16 Many of McGuire’s papers are collected in his (1995). Together with Martin Tamny,
McGuire edited Newton (1983), an edition of the notes Newton kept as an undergraduate
at Trinity College, Cambridge in the 1660s. McGuire’s influence is also felt through the
many students he trained at Leeds and at Pittsburgh.

17 At present, Smith is probably the most influential English-speaking philosopher working
on Newton. His now renowned course on Newton at Tufts University has introduced at
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6 andrew janiak and eric schliesser

study of his that attempts to characterize Newton’s conception of inquiry in the

process of articulating nine different ways in which Newton changed physics.

Smith details how physical research was predicated on the theory of gravity.

Smith’s study will be of interest not merely to historians and methodologists,

but also to those exercised by the nature of scientific knowledge of gravity

before and after Einstein’s revolution. Smith’s methodological researches have

influenced many other contributions to this volume.

Smith’s sometime co-author, William Harper, contributes a paper in which

he contrasts Newton’s methodology of successive approximations with the

methodological views of Newton’s greatest scientific contemporary, Chris-

tian Huygens, who articulates a view of methodology characteristic of the

hypothetico-deductive approach. Harper focuses on Newton’s richer ideal of

empirical success. In particular, Harper calls attention to the importance within

Newton’s method of accurate theory-mediated measurement of the parame-

ters of the model which explain the predicted phenomena. In line with Smith’s

approach to Newton, according to Harper’s reconstruction a major feature of

Newton’s philosophy of science is the acceptance of theoretical propositions as

guides to research in which empirical deviations from the model count as new

theory-mediated phenomena to be exploited as carrying information to aid in

developing a more accurate successor.

Ori Belkind shares in Smith’s and Harper’s rejection of attributing to Newton

the hypothetico-deductive method. And like Harper, Belkind calls attention to

the importance of Newton’s strategy of contingently accepting certain (what

Belkind calls) “structural assumptions.” In his study of Newton’s argument for

universal gravity, Belkind calls attention to the importance in Newton’s thought

of the composition of the quantity of motion and the compositional nature

of the gravitational force. By showing that such composition is legitimate, it

becomes possible to treat measurement as a way of answering theoretically

interesting questions.

A second major theme in which the volume breaks new ground is in its

focus on Newton’s matter theory, which is the subject of four papers. Zvi

Biener and Chris Smeenk use the queries of Roger Cotes, the very able edi-

tor of the Principia’s second edition (1713), to highlight linked tensions in

Newton’s matter theory and empiricist methodology, and to stress their devel-

opment in Newton’s thought. Following Cotes, Biener and Smeenk identify

two competing views on the nature of matter in Newton. On what they call the

“dynamical conception of matter,” quantity of matter is measured through a

body’s response to impressed force. They argue that this conception is domi-

nant in the Principia and is justified by a quantitative empiricist method that

least an entire generation of students and faculty to Smith’s powerful approach to Newton’s
work. In addition, see the following: Smith (1999), (2001b), (2002a), and (2002b). He
also co-wrote an important article with Bill Harper (Harper and Smith 1995).
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relies on theory-mediated measurement of parameters that play a role in the

laws of motion, as articulated by Smith and Harper. On what they call the

“geometrical conception of matter,” quantity of matter is measured by the vol-

ume a body impenetrably fills. Biener and Smeenk argue that this Cartesian

conception is dominant in De Gravitatione and is justified by an essentially

qualitative empiricist method. They show that the tension between these two

conceptions threatens to undermine the argument for Universal Gravitation.

It is in response to this threat (as outlined by Cotes’s queries) that Newton

more decisively endorses a dynamical conception and casts off the vestiges of

De Gravitatione ’s Cartesianism.

Katherine Brading approaches Newton’s account of bodies by way of a

comparison between Descartes and Newton. She argues that Newton offers

a law-constitutive solution to the problem of bodies, according to which the

definition of bodies is incomplete prior to the specification of the laws of

nature, and completed by those laws. She argues that according to Newton, it is

a necessary condition for the individuation and identity of physical bodies that

they satisfy the three laws of motion. She then spells out how Newton can be

seen as generating a research program of identifying the laws that can account

for the necessary and sufficient conditions for the individuation and identity

of physical bodies.

Lynn Joy investigates Newton’s treatment of body by comparing Boyle and

Newton on dispositional properties. She claims that the very idea of a disposi-

tion itself underwent a major conceptual change between Boyle and Newton.

She argues that Newton turned Boyle’s philosophical theory of dispositions

on its head by showing that mass could be conceived as an exclusively dispo-

sitional property of bodies without requiring that mass be causally grounded

in the categorical properties of Boyle’s matter. Joy also calls attention to the

open-ended nature of Newton’s science and philosophy; they were open to the

revolutionary possibility that the disposition of mass, when conceived of as

a natural force acting according to certain mathematical laws, constitutes an

existence more fundamental than that of Boyle’s matter.

Daniel Garber’s paper compares Leibniz’s and Newton’s views on the nature

of force. Garber spells out some of their most fundamental differences in terms

of their different approaches toward thinking about the natural world. Garber

sees Leibniz as inheriting a program in natural philosophy from Descartes that

provides an account of bodies as such, one grounded in an understanding of

their true causes. Garber sees Newton as inheriting a Galilean project that offers

a quantitative account of the world, one that favors mathematical description

over an account of ultimate first causes. Garber also argues that whereas Leib-

niz’s interest in force is a means to illuminate the nature of body, Newton’s

account of force is allowed to remain explanatorily basic.

Strictly speaking, Nick Huggett’s piece is not on Newton’s matter theory,

but on Newton’s views on space and motion. Nevertheless, it reinforces and
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refines some of the other contributors’ conclusions on how to think of Newton’s

“dynamics” and the status of the laws of motion. Huggett develops and then

challenges Howard Stein’s and Robert DiSalle’s influential readings of Newton’s

Scholium on space. Huggett builds his case on the observation that Newton

does not introduce “true motion” and “absolute motion” as synonyms; “abso-

lute motion” connotes change of absolute place, while “true motion” connotes

a special privileged sense of motion. More specifically, the latter concept gets

meaning from the laws of mechanics – it is the concept of motion implicit

in the laws. In other words, according to Huggett, in “true motion” Newton

consciously held an extremely sophisticated conception of motion. The theo-

retical part of the concept is that of contemporary “dynamical” interpretations,

which also hold motion to be that which the laws refer to as motion in the

frames in which the laws hold. On Huggett’s interpretation, Newton cannot

be said to have advocated a purely dynamical view in the Scholium, but rather

the view that motion with respect to absolute space satisfied the dynamical

concept.

Two papers, one by Katherine Dunlop and the other by Marco Panza, focus on

Newton’s mathematics. They illuminate the relationship between mathematics

and the science of motion in Newton, which is the third broad theme. Katherine

Dunlop relates Newton’s views to those of his teacher, Isaac Barrow, emphasiz-

ing continuities between teacher and pupil in order to call attention to Newton’s

departures. She explains the significance of Newton’s Preface to the Principia,

with its focus on postulates as the link between geometry and mechanics. By

building on the methodological work of Smith and Harper, she explains the

way in which geometry’s first principles secure physical significance for the con-

clusions of theory-mediated measurement. The main point of Marco Panza’s

investigation of Newton’s development of his theory of fluxions is to locate

a crucial step in the origins of analysis, conceived as an autonomous math-

ematical theory. By closely analyzing Newton’s De Analysis and De Methodis

as well as Newton’s reaction to Roberval’s method of tangents, Panza argues

that fluxions were conceived by Newton as abstract quantities related to other

abstract quantities, called “fluents.” By contrast, that which Newton called (in

his notes of 1665–66) ‘motion’, ‘determination of motion’ or ‘velocity,’ was

understood as (a scalar component of) punctual speeds of motions generating

particular geometric magnitudes, typically segments. Panza’s interpretation

helps explain, in part, why in the Principia Newton did not rely on fluxions,

but instead turned to geometry.

In the fourth broad theme, ever since the French Enlightenment, Locke and

Newton have been considered intellectual fellow-travelers; in this picture New-

ton is seen as providing the physics and Locke the metaphysics for the new

sciences. In much recent scholarship, what are often called the “empiricist”

similarities between Locke and Newton have also been emphasized. Building

on previous work by Howard Stein, three papers force a reconsideration of the
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relationship between Locke and Newton. Graciela De Pierris brings out some

crucial differences between Locke and Newton, in part by comparing Hume’s

empiricism with Locke’s. She argues that Locke remains wedded to the demon-

strative ideal of the mechanical philosophy and lacks Newton’s understanding

of fruitful inductive generalization. She then reads Hume as simultaneously

articulating many of the fruits of the Newtonian method while also offering a

skeptical challenge to it.

Mary Domski reconsiders the famous “master-builders” and “under-

Labourer” passage in the Essay. She argues that in the fourth edition of the

Essay, Locke emphasizes Newton’s success as a mathematician, but not as a

mathematical natural philosopher. She also shows that in Locke’s other writ-

ings from the 1690s, Newton is praised for his application of mathematics to

a very specific domain of nature, namely, the motions of planetary bodies.

According to Domski, then, Locke took Newton’s work to be emblematic, not

of a general physics, but of a sub-discipline of natural philosophy dealing only

with the forces and motions of heavenly bodies.

Lisa Downing also re-evaluates the relationship between Locke and Newton;

she does so by way of Maupertuis’s analysis of the nature of attraction. Her paper

helps explain both how Locke and Newton came to be seen as fellow travelers,

and how philosophers drew on Lockean resources to defend Newtonian natural

philosophy. In particular, she shows how Maupertuis transforms s’Gravesande’s

claim that laws as regularities are the ultimate aim of Newtonian knowledge

into a claim in which experience is in principle capable of settling the existence

of attraction as an inherent quality of body.

Finally, two papers investigate how the nature of philosophy was reconfigured

through responses to Newton. Michael Friedman emphasizes the importance

of metaphysical and theological issues – about God, his creation of the material

world in space, and the consequences that different views of such creation have

for the metaphysical foundations of physics. Friedman argues that Kant’s differ-

ences with Newton over these issues constitute an essential part of Kant’s radical

transformation of the very meaning of metaphysics as practiced by his prede-

cessors. Friedman shows that since Newtonian absolute space is viewed as a

regulative idea of reason, there is also an associated reconfiguration, for the crit-

ical Kant, of the relationships among space, the interactions of matter, and the

idea of God. For the idea of God, too, is a regulative idea of reason. Indeed,

there is an important sense in which it is the ultimate such regulative idea. For

the critical Kant the only possible meaning that the idea of divine omnipresence

(and divine providence) can now have is a purely practical one, in so far as we

unconditionally obey the command of morality to strive to realize the realm

of ends here on Earth, and, accordingly, we take the whole of that material

nature of which we are a part to be in principle capable of such a realization (or,

more precisely, its successive approximation). On Friedman’s account, Kant

thereby brings the characteristic mode of metaphysical investigation into the
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relationships among space, God, and matter practiced by his predecessors to a

close, and transforms it into transcendental philosophy.

Eric Schliesser explores how the most able eighteenth-century Scottish New-

tonian, Colin MacLaurin, uses the authority of Newton to attack Spinoza

on empirical and moral grounds. MacLaurin argues from the empirical

success of Newtonian natural philosophy to the rejection of alternative posi-

tions, methodologies, and foundations within philosophy. At the same time,

MacLaurin argues for a certain form of self-limitation: aiming for completeness

is likely to get us into trouble. Schliesser argues that in MacLaurin’s hands New-

tonian science recommends a lowering of expectations – it favors piecemeal

progress over the demands of systematicity. MacLaurin thereby subordinates

application of Newton’s science to his religious and moral outlook. Schliesser

shows that MacLaurin constructed a tradition in which Descartes, Spinoza,

and Leibniz are linked as a threesome not in opposition to empiricism, but in

opposition to a tradition of mathematical-empirical research stretching back

to Galileo. Thus Schliesser’s analysis echoes Daniel Garber’s.
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Newton’s law-constitutive approach to bodies

a response to Descartes

katherine brading

1.1 Introduction

In his Principia Newton offers us a science of bodies in motion. Such a science

has bodies as its subject-matter, but what are these bodies? If Newton’s three

laws of motion are to say anything, then there must be bodies for them to

refer to. I shall label this the ‘problem of bodies’. In this chapter I outline the

‘problem of bodies’ as Newton finds it in Descartes’s Principles of Philosophy. I

claim that while there is no obvious solution explicit in Descartes’s writings, an

implicit solution is strongly suggested. I argue that Newton was acutely aware

of the problem, and addressed it explicitly by adopting the strategy implicit

in Descartes. My claim is that Newton offers a law-constitutive solution to the

problem of bodies, according to which the definition of bodies is incomplete

prior to the specification of the laws of nature, and completed by those laws of

nature.

1.2 Descartes and the problem of bodies

Taken together, Descartes’s laws of nature concern the behaviour of ‘bodies’.1

Here are the laws as he stated them in his Principles of Philosophy (Part II,

paragraphs 37, 39, and 40):2

The first law of nature: that each thing, as far as is in its power, always

remains in the same state; and that consequently, when it is once moved,

it always continues to move.

The second law of nature: that all movement is, of itself, along straight

lines; and consequently, bodies which are moving in a circle always tend

to move away from the center of the circle which they are describing.

1 The first law has a more general scope, concerning ‘things’ in general. I am grateful to Eric
Schliesser for drawing my attention to this.

2 Quotations are from Descartes (1991), the Miller and Miller translation of the Principles
of Philosophy. The Principles was first published in Latin in 1644.

13
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The third law: that a body, on coming in contact with a stronger one, loses

none of its motion; but that, upon coming in contact with a weaker one,

it loses as much as it transfers to that weaker body.

The ‘problem of bodies’ is this: what are the ‘bodies’ to which these laws apply?

For Descartes, the answer is ‘parts of matter’. Famously, however, this answer

masks a difficulty that Descartes never satisfactorily resolved, and which arises

as follows.

1.2.1 Descartes on matter and its parts

In Part I of the Principles, Descartes argues that extension is the sole principal

attribute of material substance, and Part II opens with an argument that leads

from extended matter (mass noun) to bodies plural (count noun), repeating

essentially the same argument as in the Meditations.3 He writes (Descartes,

Principles of Philosophy, II.1) that we

clearly and distinctly perceive, a certain matter which is extended in length,

breadth and depth; the diverse parts of which are endowed with various

shapes and subject to various movements, and which also cause us to have

sensations of color, odor, pain, etc.

Then, since God is not a deceiver, we are entitled to conclude that extended

matter is indeed divided into parts of various shapes and movements, affecting

our senses in this way. However, while Descartes has argued earlier for the

claim that matter is extended, he offers no argument in support of the claim

that we clearly and distinctly perceive parts of matter that are endowed with

various shapes and subject to various movements, and also affect our senses.

This knowledge of bodies plural is dependent on what comes to us through

our senses, and the faculty of the imagination; whenever Descartes considers

the nature of the bodies that affect our senses, he takes us back to the sole

principal attribute of body, pure extension, and to a conception of body in

general4 that contains nothing corresponding to a division of extended matter

into parts.5 There is therefore an apparent gap between what is known via the

3 Descartes (1985), Meditation VI. The Meditations were first published in 1641.
4 The term ‘body in general’ should be understood to refer to the nature of any body

(that it is extended), and need not refer to the entirety of Descartes’s indefinite extension
(see Kaufman, 2008; Schmaltz, 2008b). However, the conception of ‘body in general’
understood as referring to a part of matter (a body, any body), presupposes that Descartes’s
extended matter is divided into parts (bodies). The slide from extended matter to bodies
plural (a body or any body) via ‘the nature of body in general’ is vividly seen in the
Principles II.1&4. Just how the division into parts is achieved is the issue we are interested
in here.

5 The claim that our knowledge of bodies plural is located only in the imagination and not
the intellect might seem in conflict with the wax example of Meditation II. However, in
the wax example bodies plural are presupposed as given, and the issue is our knowledge
of these bodies.
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intellect (the nature of body in general, as extended), and what is known via the

senses (that extended matter is divided into parts, having various shapes and

motions, and that these parts correlate with our experience of bodies (plural)

and their various sensory properties). To close this gap, Descartes must explain

in virtue of what extended matter is divided into parts such that we can clearly

and distinctly perceive that it is indeed so divided. If Descartes is to solve

the ‘problem of bodies’, he must provide within his metaphysical system the

resources for this division.6

After several passages discussing matter as extension, Descartes returns to

the topic of the parts of matter in motion in paragraph 23, where he writes:

all the properties which we clearly perceive in it [that is, in extended matter]

are reducible to the sole fact that it is divisible and its parts movable . . . all

the variation of matter, or all the diversity of its forms, depends on motion.

There are two possibilities here: either motion is the principle by which matter

is divided into parts, or matter is divided into parts by some other principle

and then the motions of the parts account for the ‘diversity of its forms’.

This paragraph leads naturally into a discussion of motion, in which

Descartes famously distinguishes between ‘What movement is in the ordi-

nary sense’ (paragraph 24) and ‘What movement properly speaking is’ (para-

graph 25). Newton’s vehement criticisms of Descartes’s ‘proper definition of

motion’ in ‘De Gravitatione’7 are now legendary, and I will have reason to

return to them later. The definition offered in the paragraph reads as follows

(emphasis in the original):

it is the transference of one part of matter or of one body, from the vicinity of

those bodies immediately contiguous to it and considered as at rest, into the

vicinity of some others.

There are two points here that are important for my argument. First, the motion

of a given body is defined with respect to other (special) bodies. For a body

to move is for it to move with respect to these other special bodies. Second,

Descartes clearly equates ‘one part of matter’ with ‘one body’. He immediately

goes on to say more about this second point:

By one body, or one part of matter, I here understand everything which is

simultaneously transported; even though this may be composed of many

parts which have other movements among themselves.8

6 Descartes’s God is so powerful that he could divide matter into parts in ways incomprehen-
sible to us, presumably, but that won’t do here because Descartes requires that we clearly
and distinctly perceive that matter is so divided. Therefore, on Descartes’s own terms, God
must be dividing matter into parts in a way that is intelligible to us and can be accounted
for within Descartes’s metaphysical system.

7 Newton (2004).
8 Note that Descartes also emphasizes at this point that motion is a mode of a body, just as

is shape.
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Here, Descartes offers an account of the division of indefinite extension into

parts or bodies through motion: one body, or one part of matter, is everything

that is ‘simultaneously transported’. Thus, it seems that motion is the principle

by which matter is divided into parts. The resulting view is that, in short,

motion is defined in terms of bodies, but the division of indefinite extension

into bodies is achieved through their relative motions. This is, at best, a rather

tight circle.9

1.2.2 Strategies for solving the ‘problem of bodies’

The question we are trying to address is this: Given Descartes’s laws of nature,

what are the ‘things’ and ‘bodies’ to which these laws apply?

Here is one way to understand Descartes’s general strategy: first, provide a

metaphysical account of bodies, and then provide the laws of nature governing

the behaviour of these bodies, consistent with

(a) various principles, including God not being a deceiver and God acting

constantly in the world, and

(b) our experience of change.

Construed this way, one understanding of his proposed solution is that there is a

substance, body, and this is divided into individual bodies (the term ‘individual

body’ is used in paragraph 31) by its modes (especially shape and motion). In

other words, on this interpretation Descartes seeks to provide a solution to the

problems of individuation and identity of bodies, following which he sets out

the laws of nature applying to those bodies.

What exactly are we looking for, when we ask Descartes for his solution

to the problems of individuation and identity of bodies?10 The following

9 The ensuing paragraphs (26–35) elaborate on this definition of motion, emphasizing
that true motion is reciprocal (paragraph 29) – hence why, when we are asking about the
motion of a single body, we must consider the reciprocal bodies to be at rest – and that
there is only one true motion associated with each body. Thus, paragraph 31 begins ‘Each
individual body has only one movement which is peculiar to it . . .’ Notice the term ‘Each
individual body’. The remainder of Part II of the Principles continues to make reference
to bodies, and no further explicit information is given concerning how the division of
indefinite extension into parts is achieved. Paragraph 36 turns our attention to the causes
of motion, the primary cause being God, and the secondary cause being the laws of
nature.

10 In his introduction to the collection Individuation and Identity in Early Modern Philosophy
(Barber and Gracia 1994), Barber notes that in Cartesian philosophy the problem of indi-
viduation loses the prominence it had enjoyed in much medieval philosophy, but writes
that (p. 2) ‘since philosophers in the early modern period were for the most part system-
atic, presenting ontologies rivalling their medieval counterparts in comprehensiveness if
not in detail, one can ask how within their systems the problem of individuation could
or should have been resolved even where explicit discussion of the issue is minimal’.
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distinctions will be helpful in thinking about what might constitute such a

solution. First, there is the metaphysical problem of individuation, and here we

should distinguish between necessary and sufficient conditions of individuality,

and a principle of individuation. For example, one might subscribe to the view

that the necessary and sufficient condition of individuality is being distinct

from all other individuals, and that the principle of individuation that grounds

this is being distinct in virtue of being a unique bundle of properties. (Other

conditions that might be thought to be necessary and/or sufficient include

indivisibility, noninstantiability, and ontological independence. Other prin-

ciples of individuation include haecceities, or essence, or Aristotelian prime

matter, and so forth.) The problem of individuation is to be distinguished

from the problem of identity over time, where we ask in virtue of what is this

individual the very same individual at another time. These metaphysical prob-

lems have epistemological counterparts, where we ask about our access to the

individuating features of these metaphysical individuals (how we distinguish

them from one another), and our warrant for according them the status of

individuality.11

What does Descartes offer us, as regards physical bodies? Let’s begin with the

problem of individuation. I think that we can offer the following interpretation.

The necessary and sufficient condition of individuality for physical bodies is

being a part of matter that is divided from the rest of matter. In virtue of what

is a region of matter so divided? Answer: in virtue of being in motion from

11 Barber (1994, p. 5) discusses the relationship between the metaphysical and epistemo-
logical problems, noting that they are often in tension:

the epistemologist complains about the cavalier attitude of his ontologically inclined
brethren who generate entities and distinctions in an unconscionable manner, while
the ontologist in turn dismisses the epistemologist as one blinded to the richness of
the universe through a neurotic fixation on a few favorite sense organs.

He distinguishes between a ‘strong model’, whereby ‘epistemological considerations serve
as criteria for the adequacy of an ontological system: putative candidates for inclusion
in the catalogue of existents must first pass a test for knowability and, once included,
their classification in terms of categorical features must again meet the same rigorous
standard’, and a ‘weak model’, which distinguishes between the ontological question of
‘what it is in objects that individuates those objects’ versus the epistemological questions
of how we can differentiate among objects through our experience of them, but requires
only that these should be compatible – neither has a veto over the other. Barber goes on
to say that, ‘broadly speaking, the weak model is dominant in medieval philosophy’, but
that ‘By 1641, however [the year Descartes published his Meditations], the strong model
has replaced its weaker medieval counterpart.’ He writes (p. 6): ‘the epistemological turn
is significant for its effect on the content of those discussions [i.e. of individuation and
identity]. What could possibly count as solutions to those problems is restricted by the
imposition of new criteria; solutions formerly held to be uncontroversial are rendered
puzzling, incomprehensible, or in conflict with newly discovered “truths” about the
world.’
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the vicinity of immediately contiguous bodies considered to be at rest into the

vicinity of some others.

This account faces immediate challenges as to its adequacy, both as a pro-

posed solution to the problem of individuation, and with respect to providing

bodies that are suitable as the subject of Descartes’s laws of nature. First, it is

not clear that Descartes’s definition of motion, without parts of matter that

are prior to motion, is coherent. Second, even if it is, we have as Garber (1992,

pp. 178–179) puts it ‘a rather unwelcome consequence’ that rules out the pos-

sibility of two bodies being at rest with respect to one another,12 and therefore

of any body ever being at rest. This leads directly to problems when we attempt

to apply Descartes’s laws of nature, most obviously in his rules of collision that

supplement his third law. As Garber goes on to discuss (1992, pp. 179–180), the

rules rely crucially on the distinction between bodies at rest and in motion.13

Turning now to the problem of identity over time, the only remaining

resource seemingly available is shape. The shape of a part of matter would

help in giving identity over time, but isn’t enough, unless every part of matter

has a different shape from every other part.

It seems to me that the strategy of first providing a metaphysical account of

bodies (i.e. a solution to the problems of individuation and identity of bodies),

and then providing the laws of nature governing the behaviour of these bodies,

does not succeed given the resources that Descartes provides.

Suppose we agree that in the first half of Part II of the Principles Descartes

does not solve the problem of individuation for the bodies that are the subject-

matter of his physics. Nevertheless, the second half of Part II proceeds as if

the problem has been solved – it assumes that there are individual bodies that

satisfy the laws of nature. But if there are no bodies in Descartes’s system, then

there is nothing for his physics to be about, which to me at least casts something

of a shadow over the entire exercise.14

Fortunately, there is a very different way to read what happens in Part II

of the Principles. I am not advocating it as an exegesis of what Descartes took

himself to be doing, but I do think the strategy I outline is implicit in the text,

I think it is broadly successful, and I will argue below that it is a strategy that

12 Thus, Descartes’s discussion (paragraph 55) of the cohesion of the parts of solid bodies
in terms of their being at rest relative to one another is, strictly speaking, nonsense: solid
bodies cannot have any parts.

13 Garber further notes that Descartes was aware of this difficulty, and yet failed to recognize
how problematic it is, merely saying that a body at rest is a ‘part’ of a larger body.

14 Garber (1992, p. 181) concludes his discussion of motion and individuation and Descartes
writing, ‘I shall continue to talk as if Descartes is dealing with a world of individual bodies,
colliding with one another, at motion and at rest with respect to one another. But, in the
end, I suspect that this is something that he is not entitled to, and this is something that,
if true, would seriously undermine his whole program.’
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Newton explicitly takes up. The strongest, and most straightforward, version

of the solution is this:

The necessary and sufficient condition for the individuality and identity

of physical bodies is that they satisfy the laws of nature.

So: instead of first solving the problem of generating bodies, and then applying

the laws of nature to those bodies, physical bodies are whatever satisfy the laws.15

We expand that rather tight circle where motion and body are inter-defined,

and thereby hope to create a virtuous circle.16

A weaker version of the solution would drop the claim to sufficiency, as

follows:

A necessary condition for the individuality and identity of physical bodies

is that they satisfy the laws of nature.

Even on this weaker version, one consequence is that the account of bodies has

no wider applicability than that of the laws. That is, an account of bodies is

available to us at best only in those circumstances where the laws are applicable;

if there are circumstances for which it is inappropriate to apply the laws, then

we will also lack an account of bodies in those circumstances. What we have is

a law-constitutive solution to the problem of bodies.

Notice also that we have limited our goal to giving an account of physical

bodies, rather than bodies considered in general. This is consistent with Garber’s

point (1992, pp. 176–177) that Descartes’s definition of ‘one body’ in para-

graph 25 has a restricted application. He writes (p. 176): ‘it is important to

note, first of all, that this definition should be understood as limited to a special

kind of individuality, that which pertains to body as such, what we might call

physical individuality, to distinguish it from a broader notion of individuality’.

He emphasizes that this notion is not appropriate for other fields of interest

(such as ‘morality, property law, medicine, animal husbandry, agriculture, etc.’,

p. 177), and states (p. 177): ‘The notion of an individual body he is concerned

to define there is concerned with the notion of a physical individual, the sort

of thing that can enter into the basic laws of nature.’

15 Notice the change that this makes to the problem of individuation. Traditionally, the
challenge is to specify one constituent of an individual that is not present in any other
individual. In this way, the world can be created one individual at a time. But on the
approach I have outlined here, the challenge is to carve the given undifferentiated world
up into individuals ‘all at once’, and the resulting account of individuality does not include
the resources for creating the world one individual at a time. But this is not to say that it
is not a coherent strategy for creating individuals (pace Leibniz).

16 I will discuss the principle of individuation below.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 17:46:02 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.003

Cambridge Books Online © Cambridge University Press, 2012



20 katherine brading

I want to push this further, by arguing that the definition of physical bodies

is incomplete prior to the specification of the laws of nature, and completed by

those laws of nature.

In my opinion, this way of proceeding is strongly suggested by the text of

the Principles, because of the failure (arguably) of Paragraphs 1–35 to pro-

vide a complete solution to the problem of bodies, combined with the fact

that Descartes’s next move is to introduce his laws of nature. Paragraphs 36

onwards present the laws of nature for bodies and concern their elaboration

and consequences: these contain additional resources for individuating bod-

ies, including the laws themselves and refinements of the concept of motion

(introducing ‘determination’, for example). If we accept that Paragraphs 1–35

are insufficient by themselves, and we are seeking a solution to the problem of

bodies using the resources Descartes offers, then a natural move is to make use

of the laws in attempting to complete the solution. This is a law-constitutive

approach to the problem of bodies.

I have talked about necessary and sufficient conditions for a region of matter

to be a physical body, and I have talked about identity over time, but I have

said nothing about the principle of individuation. On this account, a principle

of individuation would tell us in virtue of what a body satisfies the laws of

nature. It seems that either there is no further question here (and principles of

individuation are dispensed with), or the only possible further response is ‘God’.

It is consistent with Descartes’s philosophy that the principle of individuation

is, indeed, God. But the other option is also available: the above approach to

solving the ‘problem of bodies’ makes philosophically viable the abandonment

of principles of individuation for physical bodies.

1.3 Newton and the ‘problem of bodies’

We know from Newton’s early writings that he also asked about the division of

uniform matter into parts (McGuire and Tamny, 1983, p. 339): ‘Suppose the

first matter one uniform mass without parts; how should that body be divided

into parts, as we see it now is, without admission of a vacuum?’ Of course,

the central topic here is the discussion of atoms and the void. But rather than

following this line of Newton’s thinking, my interest is in how the problem

of bodies shows up in other writings, specifically in the manuscript generally

referred to as ‘De Gravitatione’ and in the Principia.

In his Principia Newton, like Descartes, offers us a science of bodies in

motion, with laws that apply to those bodies. What are these bodies? To answer

this question, I will begin by looking at ‘De Gravitatione’, and I will argue

that in this text Newton criticizes Descartes’s account of body as a solution

to the ‘problem of bodies’, that he offers his own solution to the problem,

and that this solution is explicitly law-constitutive (in the sense explained

above). I will then argue that we should understand this solution as being

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 17:46:02 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.003

Cambridge Books Online © Cambridge University Press, 2012



newton’s law-constitutive approach to bodies 21

present in the Principia, and I will do this by looking at the text, but also

primarily at some draft revisions. My overall message is that in Newton’s

work we can find a powerful philosophical solution to the ‘problem of

bodies’.17

On the account offered so far, a necessary condition for the individuality

and identity of physical bodies is that they satisfy the laws of nature. This is the

weak version of the law-constitutive solution. The strong version asserts that

the necessary and sufficient conditions are satisfaction of the laws of nature. My

claim is that the weak version of the solution is explicit in Newton, and that,

in stating what the physical bodies are that are the subject-matter of his laws,

criteria additional to satisfaction of the laws are to be given. I am also willing

to argue that the strong version is implicit (although I will say little to support

this here), and that it offers important insights into the notion of body at work

in physics.

1.3.1 Newton’s criticisms of Descartes’s account of
bodies, in ‘De Gravitatione’

The Newton manuscript ‘De Gravitatione’ contains explicit criticisms of

Descartes’s account of bodies in motion, as he understood it from reading

Descartes’s Principles of Philosophy. Within the current philosophy of physics

literature, a great deal of attention has been paid to Newton’s criticisms of

Descartes’s definition of motion.18 However, the paragraph that introduces

these criticisms makes clear that the target is also the account of body along with

the definition of motion. Newton writes (2004, p. 14, my emphasis):

when I suppose in these definitions that space is distinct from body, and

when I determine that motion is with respect to the parts of that space, and

not with respect to the position of neighboring bodies, lest this should be

taken as gratuitously contrary to the Cartesians, I shall venture to dispose

of his fictions.

The two things (the account of body, and the definition of motion) are inti-

mately tied together. What I want to place centre stage is this: Newton’s diag-

nosis of the reason why ‘Cartesian motion is not motion’ (2004, p. 20) is that

17 When discussing Newton on body, the main focus of interest has been on Newton’s matter
theory, but my interest is different from this. As with Descartes, Newton offers us laws
that apply to bodies, and our question is: what are the bodies to which these laws apply?
Supplying a theory of matter could indeed answer this question, but – as I have argued –
that is not the type of solution that Descartes ended up offering, and nor – as I shall now
argue – is it the solution that Newton offers in his Principia. Nevertheless, it is a genuine
solution, and one which is (in an important way) complete even in the absence of a theory
of matter.

18 See Slowik (2002, chapter 1) for example.
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Descartes has offered an inadequate account of body, where ‘inadequate’ means

‘inadequate for the purposes of a science of bodies in motion’.

There’s a lot bundled up there, and I want to unpack it. Before discussing

Newton’s criticisms of Descartes’s account of body, let me first review the famil-

iar criticisms Newton makes of Descartes’s definition of motion. The standard

philosophy of physics story about ‘De Gravtitatione’ focuses on Descartes’s

relational definition of motion. Newton offers several criticisms of this defini-

tion, many of which are united by a central theme that, according to Newton,

we should be looking for a systematic connection between the presence of

forces and changes in states of motion, and that Descartes’s account fails to

offer this.19 However, the argument that has received the most attention is

one that doesn’t rely on appeal to the presence or absence of forces, and the

conclusion Newton draws is much stronger. He argues not that Descartes has

given a definition of motion that fails when we try to apply it, but that he has

failed to give a definition of motion at all (Newton 2004, p. 20):

Now since it is impossible to pick out the place in which a motion began –

that is, the beginning of the space traversed – for this place no longer

exists after the motion is completed, that the traversed space, having no

beginning, can have no length; and since velocity depends upon the length

of the space passed over in a given time, it follows that the moving body can

have no velocity, just as I wished to show at first. Moreover, what was said

regarding the beginning of the space passed over should be understood

concerning all the intermediate places; and thus, as the space has no

beginning nor intermediate parts, it follows there was no space passed

over and thus no determinate motion, which was my second point. It

follows indubitably that Cartesian motion is not motion, for it has no

velocity, no determination, and there is no space or distance traversed

by it.

I don’t want to dwell on this argument against the Cartesian definition of

motion. Instead, I want to shift attention to the very next sentence, which is

this (Newton 2004, pp. 20–21):

So it is necessary that the definition of places, and hence of local motion,

be referred to some motionless being such as extension alone or space in

so far as it is seen to be truly distinct from bodies.

So, there is a criticism of Descartes’s account of body here, and the thrust of it is

this: Descartes’s account of body is inadequate in the sense that it is inadequate

to the purposes of a science of bodies in motion. Why? Because if body is

19 For example, Newton points out apparent problems with reconciling in a consistent
manner when a body has a ‘tendency to recede’ and when it is in motion or at rest (2004,
p. 15), and that we can have changes in motion of a body even when there are no forces
acting on that body, and vice versa (2004, p. 18).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 17:46:02 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.003

Cambridge Books Online © Cambridge University Press, 2012



newton’s law-constitutive approach to bodies 23

identified with extension, then we can’t give an adequate account of what it is

for a body to move. Thus, the ‘problem of bodies’ – of specifying a concept

of body that is adequate to the purposes of a science of bodies in motion – is

explicitly at stake in Newton’s criticisms of Descartes on body and motion.

There is also strong evidence that this is exactly one of the problems that

Newton is trying to solve in ‘De Gravitatione’. Prior to the attack on Descartes’s

definition of motion, Newton states four definitions of his own (Newton 2004,

p. 13), the second of which is a definition of body. It reads: ‘Body is that

which fills place.’ Newton further elaborates on this as follows (my emphasis

added): ‘Note. I said that body fills place, that is, so completely fills it that it

wholly excludes other things of the same kind or other bodies, as if it were an

impenetrable being.’ He then goes on to state the purpose that this notion of

body is intended to fulfil, writing that ‘body is here proposed for investigation

not in so far as it is a physical substance endowed with sensible qualities, but

only in so far as it is extended, mobile, and impenetrable’. That is, the notion

of body is intended to be ‘adequate to’ the task Newton has in mind: he writes

that he has ‘postulated only the properties required for local motion’ (Newton

2004, p. 13).

In conclusion, the main content of this first part of ‘De Gravitatione’ is

Newton’s detailed arguments as to why space and body must be distinct from

one another: body cannot be merely extension because then we cannot give a

satisfactory account of what it would be for bodies to move. Descartes’s account

of body is inappropriate for the purposes of a theory of bodies in motion.

1.3.2 Newton’s solution to the ‘problem of bodies’ in ‘De Gravitatione’

In the second part of ‘De Gravitatione’ (beginning towards the end of p. 21 of

Newton, 2004), Newton offers his positive account of space and body, the most

familiar aspect of which is Newton’s insistence that space and body are distinct,

having a very different ontological status from one another. In addition to a rich

account of space,20 these passages are where we find evidence that Newton’s

solution to the ‘problem of bodies’ is a law-constitutive solution of exactly the

kind found implicitly in Descartes. Newton does not first give a general account

of bodies, and then show that it is satisfactory for the purposes of a science

of bodies in motion (among other things). Rather, a necessary condition for

something to be a body is that it satisfy certain laws. The textual evidence for

this claim is as follows.

Two properties that Newton attributes to bodies are mobility and impene-

trability (see Newton 2004, p. 27). A region of space that is impenetrable will be

‘impervious to bodies’, and ‘by hypothesis’ the implication of this is that it will

20 For discussion see DiSalle (2006), McGuire (1978), Stein (2002).
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‘assume all the properties of a corporeal particle, except that it will be regarded

as motionless’ (Newton 2004, p. 28) Crucially, this includes being sensible, or

‘tangible’ (Newton 2004, p. 28). Newton then goes on to introduce what he

means by mobility (Newton 2004, p. 28, my emphasis):

If we should suppose that that impenetrability is not always maintained

in the same part of space but can be transferred here and there according

to certain laws, yet so that the quantity and shape of that impenetrable

space are not changed, there will be no property of body which it does not

possess.

Newton sums up his position (p. 28) by saying that ‘these beings will either be

bodies, or very similar to bodies’, and if they are bodies then we can define them

as ‘determined quantities of extension’ that are (1) mobile, (2) impenetrable,

such that they reflect off one another ‘in accord with certain laws’, (3) sensible,

and movable by us. The appeal to laws is emphasized by Janiak (2006), where he

notes that ‘in a clever and crucial twist, Newton adds that the region’s mobility

would be lawlike’. Newton is explicit that a necessary condition for something

to be a body is that it move in accordance with the laws.21

In sum, I have shown that in ‘De Gravitatione’ Newton’s criticism of

Descartes’s concept of body claims that it is inadequate to the purposes of

a science of bodies in motion, and I have argued that he offers an explicitly law-

constitutive solution to this problem (the ‘problem of bodies’). In the following

section I will argue that this same solution is also at work in the Principia. Before

doing so, however, I will address a criticism of Newton’s account of body, as

offered in ‘De Gravitatione’, made by Bennett and Remnant (1978).

In their paper ‘How matter might at first be made’, Bennett and Remnant

(1978) argue that the account of body offered by Newton in ‘De Gravitatione’

is a failure. They focus on the criterion of impenetrability, and object that

Newton does not have the resources to say what he means by impenetrability.22

21 There is a subtlety here. In a clear jibe at Descartes, Newton is cautious about saying
‘positively what the nature of bodies is’ since he has ‘no clear and distinct perception
of this matter’: he leaves open the possiblity that God could create bodies that appeared
to us in every way as Newton has described them and yet differ in nature from those
Newton describes (see Newton, 2004, p. 27). This could be read as casting doubt on
the law-constitutive approach as providing necessary conditions, but I think that this
isn’t right. In ‘De Gravitatione’, space and body differ in their epistemic status. The
exclusively a posteriori character of our enquiries into the nature of body render the
results less certain, and this includes the possibility that God has created bodies with a
nature different from that described by Newton. Nevertheless, Newton ends the relevant
paragraph by concluding that his description of body will be such that ‘we can hardly say
that it is not body’. It seems to me that the necessary conditions should be understood as
inheriting this modest epistemic status.

22 I am grateful to Eric Schliesser for suggesting that I revisit Bennett and Remnant’s position
in the light of my reading of ‘De Gravitatione’.
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There are many issues raised by their discussion, and I will pick up only

one thread that relates directly to the law-constitutive interpretation I have

been advocating here. According to Bennett and Remnant, impenetrability can

do the job of ensuring that two shapes, once delineated and distinguished

from space (such that they can move around with respect to space) never

overlap. What impenetrability cannot do, they say, is delineate a shape (so that

it is distinct from space such that it has the possibility of being mobile with

respect to space) in the first place. They claim that impenetrability is the only

resource that Newton has to delineate shapes, and that his account is therefore

a failure.

This criticism rests on the requirement that Newton’s account of bodies as

regions of impenetrable space underwrites in virtue of what bodies are mobile.

However, on the view I propose, it is a condition on being a body that – in

addition to being impenetrable and sensible – it be mobile. Mobility is itself

one of the criteria that Newton stipulates, independently of impenetrability,

so impenetrability was never intended to confer mobility. The condition of

mobility is itself a stipulation, and Newton is not attempting to explain in

virtue of what a shape is delineated in space such that it has the possibility of

being mobile. As Newton himself says, body is that which fills place; a portion

of matter, or a body, is not identified as an impenetrable region of space. It

is, rather, a perceptible shape that in fact moves around according to certain

laws. So we can grant Bennett and Remnant this much: Newton has not given

an account of how matter might at first be made in the sense that he has not

given an account of what makes possible the mobility of an impenetrable and

sensible region. Nevertheless, Newton has given a clear set of conditions that, if

satisfied in the making of matter, would deliver a world such that ‘if all of this

world were constituted out of these beings, it would hardly seem to be inhabited

differently’.23 And this is all that the law-constitutive approach requires.

1.3.3 The ‘problem of bodies’ in Principia

Definition 1 of Newton’s Principia is famous:24

Definition 1: Quantity of matter is a measure of matter that arises from its

density and volume jointly.

In elaborating on the definition, Newton says: ‘I mean this quantity whenever

I use the term “body” or “mass”.’ So ‘body’ is a ‘quantity of matter’, and the

first part of the definition tells us that this quantity is a measure of matter.

The first part of the definition introduces a new quantity into physics, and the

second part relates this newly introduced concept to the pre-existing concepts

23 Newton, ‘De Gravitatione’, p. 28.
24 Quotations are from Newton (1999), the Cohen and Whitman translation of the Principia.
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of density and volume. But still, this isn’t hugely informative. What else does

Newton give us? Definition 3 attributes a property to bodies, inertia,25 and in

the Scholium to Definition 8, Newton repeats an assertion familiar from ‘De

Gravitatione’: ‘Place is the part of space that a body occupies.’ And, of course,

we have Newton’s laws of motion:

Axioms, or the Laws of Motion

Law 1: Every body perserveres in its state of being at rest or of moving uniformly

straight forward, except insofar as it is compelled to change its state by forces

impressed.

Law 2: A change in motion is proportional to the motive force impressed and

takes place along the straight line in which that force is impressed.

Law 3: To any action there is always an opposite and equal reaction; in other

words, the actions of two bodies upon each other are always equal and always

opposite in direction.

What Newton is doing in these opening sections of the Principia is specifying

the notion of body that is needed for his project, his science of bodies in motion,

to get off the ground. But the question I am interested in is the same as the one I

discussed with respect to Descartes. Does Newton intend to offer an account of

body that is independent of the laws, or is the account of body incomplete prior

to the specification of the laws, and completed by those laws? I think the latter.

The material from ‘De Gravitatione’ discussed above, and which pre-dates the

Principia, points in this direction, and material from after the Principia also

points the same way, or so I will now argue.

The relevant later materials are drafts published by McGuire in 1966.26

McGuire dates the drafts at ‘some time towards the end of 1716’, but in any

case, they were done in preparation for the third edition of the Principia, which

came out in 1726. According to McGuire (p. 115) the intended positioning in

the third edition is just after the Rules of Reasoning, and indeed much of what

is at stake in the drafts for Newton concerns his claim that he is ‘arguing from

the phenomena’. But for our purposes I want to highlight the following aspects:

From Draft 1 (McGuire, p. 113):27

thus body and vacuum are here defined [not in order that we deny that other

bodies exist but in order that we may show in what sense these words are to be

25 Definition 3: ‘Inherent force of matter is the power of resisting by which every body, so
far as it is able, perseveres in its state either of resting or of moving uniformly straight
forward.’

26 Page references are to the reprinted version, McGuire (1995).
27 Square brackets were used by Newton to indicate passages that were to be omitted when

the document was copied. Italics indicate passages Newton crossed out. I have used
underlining to add my own emphasis.
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understood in what follows. The propositions which follow are understood of

bodies of this kind. About other bodies let authors in other sciences dispute.]

From Draft 2 (McGuire, p. 114):

Definition I Body I call everything tangible in which there is resistance

to tangible things, and whose action resistance, if it is great enough, can be

perceived.

It is indeed in this sense that the common people always accept the

word body. And of this sort are The Earth, Planets, Comets, metals, stones,

sand, clay . . . These emit and reflect light and are weighed down by their

constituent parts and are numbered among the phenomena and in their

motions observe the laws of bodies. [Mathematical solids are not perceived by

touching nor cause a resistance nor are they usually called bodies.] Vapours

and exhalations on account of Their rarity lose almost all perceptible

resistance, and in the common acceptance often lose even the name of

bodies and are called spirits. And yet they can be called bodies in so far as

they are the effluvia of bodies and have a resistance proportional to density.

[But if the effluvia of bodies were to change thus in respect of their forms

so that they are to lose all power of resisting, and cease to be numbered

among the phenomena, these I would no longer call bodies: for I speak

with the common people.]

From Draft 3 (McGuire, p. 115):

Definition II Body I call everything which can be moved and touched,

in which there is resistance to tangible things, and its resistance, if it is great

enough, can be perceived.

It is indeed in this sense that the common people always accept the word

body. And of this sort are The Earth, Planets, Comets, metals, stones, sand,

clay . . . I add the heavenly bodies. These emit and reflect light . . . and in

their motions observe the laws of bodies. Mathematical solids are not

perceived do not move by touching nor cause a resistance, nor are they

usually called bodies . . . . At the beginning of the first book I have defined

the quantity of matter so that it may be treated in mathematical terms;

here I have defined body composed of such matter in order that it may be

treated in physical terms.

I think there is clear evidence in these drafts of two things:

(1) The definition of body is intended for the specific purposes of Newton’s

project.

(2) The definition includes the requirement that for something to be a body of

this kind it move according to the laws.
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This is a law-constitutive solution to the ‘problem of bodies’. I think that the

solution is deliberate on Newton’s part, and that it is already present in the first

edition of the Principia.28

The conclusion we should draw is this: it is explicit in Newton’s writings,

from ‘De Gravitatione’ through the Principia, that a necessary condition for

the individuality and identity of physical bodies is that they satisfy the laws of

nature: in answering the question ‘What are the bodies that are the subject-

matter of Newton’s laws?’, we must make reference to those laws.

1.3.4 An interpretative consequence: transmutation

I believe that this approach to bodies is explicit in Newton’s writings, and

I am proposing it as an interpretation of one (very small) aspect of what

Newton took himself to be doing. If we accept this then, even though the topic

itself is narrow, there will be wider implications through its connections to

other areas of Newton’s work, including his views on atoms and the void, and

the divisibility of matter, and on universal and essential properties and the

distinction between them. Another example is his views on transformation

and transmutation, and how we should understand Rule 3 of his Rules of

Reasoning (in the second edition, 1713) and the abandoned Hypothesis 3 (of

the first edition). Hypothesis 3 reads as follows:29

Hypothesis 3. Every body can be transformed into a body of any other

kind and successively take on all the intermediate degrees of qualities.

The apparent problem is that Hypothesis 3 allows the degree of a quality to

vary, which entails, in the extreme, that the quality might disappear altogether.

28 One might object that – being later – these drafts are irrelevant to the claim that the
solution is already present in the first edition, leaving open the possibility that this view is
a post-hoc rationalization. I have already urged that ‘De Gravitatione’ provides evidence
that the position I am advocating on body was already in place prior to publication of the
Principia. I also suggest that this law-constitutive view of bodies is what Newton relies on
when, after the publication of the first edition of the Principia, the controversy over the
reality of the void gets going, but I will not argue for this here. It is also interesting to note
that Newton’s definition of motion as being with respect to space appears to long pre-date
his offering a definition of bodies, and indeed Newton doesn’t include any definition of
bodies in his manuscripts until quite close to the time of writing the Principia. The first
time it appears seems to be in ‘On the Motion of Bodies in uniformly yielding media’,
which Herivel dates to the 1680s. Here, Newton defines absolute and relative time and
space and then states (Herivel 1965a, pp. 309–310): ‘Definition 5 By common consent
bodies are movable things unable to penetrate each other.’ The next definition of body to
appear is one that is a clear pre-cursor to Definition 1 of the Principia. For those interested
in the dating of ‘De Gravitatione’, the presence of a definition of body in this manuscript
might add credence to the 1680s dating.

29 See Newton (1999, p. 198) for this translation of Hypothesis 3.
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And this seems to allow that we might transform a body into something that is

not a body. McMullin (1978, p. 7) puts the point as follows:

Newton gradually came to believe that he would have to limit his original

transformation hypothesis in order that mechanical properties remain

invariant. After all, if solidity could be ‘remitted’ (decreased) at all, it was

conceivable that it could be ‘taken away’ entirely, yet this must clearly be

excluded, since it would entail that a body could cease to be subject to

mechanics, that is, could cease to be a body.

I agree with the consequences McMullin states here: if solidity could be taken

away entirely, then the body would cease to be subject to the laws of motion,

and this implies that it would cease to be a body. But I don’t agree that New-

ton gradually came to believe that he would have to limit his transformation

hypothesis. Rather, I think that what happens is that Newton makes precise

and explicit a view he was already committed to, in particular that things have

to have certain features in order to count as bodies. In his revisions, he adds

a new hypothesis about qualities which cannot be intended or remitted, but

for a while he retains the old Hypothesis 3 alongside this new one. I agree

with McGuire (1967) that this is because Newton saw no conflict between

the two.30

1.4 Solving the ‘problem of bodies’

I have argued that in the work of Newton we find a solution to the ‘problem

of bodies’ according to which a necessary condition for the individuation and

identity of physical bodies is that they satisfy the laws. This is the weak version

of the ‘law-constitutive’ solution that I have been advocating, and it allows

that the sufficient conditions can be completed from resources outside the laws

themselves. The strong version states that the necessary and sufficient condition

for the individuation and identity of physical bodies is that they satisfy the laws.

Both the weak and strong versions are limited in the same way: they provide

a solution to the ‘problem of bodies’ for physical bodies rather than bodies in

general; that is, in each case the solution picks out bodies of a certain kind,

while leaving open the possibility that there may be other kinds of bodies that

are of relevance for other interests.

This solution to the philosophical problem leaves us with a research pro-

gramme: to fill out the details of the laws, and of any additional conditions, and

30 I am also sympathetic to McGuire’s position that the reason Newton eventually abandoned
Hypothesis 3 during his revisions of the Principia was because he didn’t want to have to
explain the compatibility and the details of his atomism and transformation thesis, partly
because it would have been a distraction from his main point, which was to argue for the
universality of gravitation as a quality of bodies.
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to demonstrate that the resulting package is indeed a complete and coherent

account of the physical bodies that are the subject-matter of the laws.

One way to interpret the Principia would be that the definition of mass and

the three laws of motion complete the task of filling out these details. We might

read Stein (2002) as endorsing the weak version of the law-constitutive solution,

and as viewing Newton as having completed the filling out of the details, when

he writes (p. 275),

we have a perfectly clear conception of these attributes of bodies that

the mechanical, corpuscular, philosophy has conceived as fundamental,

including laws governing the interactions of those bodies: the laws of

impact. That means, in Newton’s view, that we have a sufficiently clear

conception of what bodies are if the mechanical philosophy is true.

Be that as it may regarding the interpretation of Newton’s own position, implicit

in the Principia is a strategy for filling out the details that is very different, and

which shifts us from the weak to the strong solution (although I am definitely

not advocating this as an interpretation of Newton’s own position). According

to this approach, Newton’s three laws of motion begin the project but do

not complete it. The left-hand side of Newton’s second law is a place-holder

for force-functions associated with whatever forces there happen to be in the

world. Completing our account of physical bodies requires the specification of

all these force-functions. Newton’s law of universal gravitation provides one

such force-function, and thereby moves us closer to an account of physical

bodies. Newton believed that there were more force-functions to be found

(associated with electrical phenomena, for example), but he did not know

what they were or how many more remained to be found. Filling in the details

of our solution to the ‘problem of bodies’ will be complete only when all the

force-functions have been found. The strong version of the law-constitutive

approach maintains that the laws are both necessary and sufficient, and – with

this as a guiding heuristic – the research programme it engenders is the search

for the specific forms of the laws that provide the details of this solution to the

‘problem of bodies’.31

There are no guarantees that a research programme guided by the strong ver-

sion of the law-constitutive approach will succeed: perhaps we will always be left

with some additional features of bodies that need to be specified antecedently

to the laws, in order for the laws to have bodies that can serve as their subject-

matter. Furthermore, there is no guarantee that this strategy will generate one

31 This approach appears to ride roughshod over Newton’s distinction between universal
and essential qualities; I think that the distinction can be maintained even while pursuing
the strong programme (McMullin 1978, for example, argues that the role of universal
qualities is to ensure that the bodies that are the subject-matter of Newton’s mechanics
remain bodies (by remaining solid, etc.)), but in any case I am not advocating the strong
programme as an interpretation of Newton’s own thinking.
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unified kind of physical body: perhaps the bodies that serve as the subject-

matter of the laws when gravitation is included will turn out not to be identical

to those that serve as the subject-matter of the laws when electrical phenomena

are at issue. Thirdly, there is no guarantee that the law-constitutive approach

to physical bodies will deliver individuals. While I have formulated the law-

constitutive approach offered in this chapter in terms of necessary and suffi-

cient conditions for the individuation and identity of physical bodies, a more

general formulation of the law-constitutive approach (in its strong version) says

that the necessary and sufficient condition for some region of a world to be a

physical body is that it satisfy the laws of that physical theory. This formulation

is neutral as to whether the bodies to which the laws of a given theory apply

will turn out to be individuals. Finally, there is no guarantee that the ‘bodies’

that we end up with are sufficiently close to our pre-theoretic account of bodies

that we will be willing to call them bodies: a generalization to the ‘entities’ that

are the subject-matter of a given theory is therefore natural. All these become

matters that can be decided only by including the details of a particular physics,

and not in advance.

When we see this, we realize just how radical is this solution (in its weak

or strong version) to the ‘problem of bodies’. Metaphysics and physics become

entangled: not all metaphysical questions about what bodies are can be settled

prior to doing physics, and that doesn’t mean ‘physics in general’, it means

that some metaphysical questions are not independent of a specific and speci-

fied physical theory (and which questions are independent and which are not

depends on the specific theory in question).32

My claim is that the law-constitutive approach (weak or strong) is successful

as a philosophical solution to the problem of bodies. I have argued that there

is no guarantee of success when we work out the details with the specific

laws we find in this, the actual, world. But that is a different matter from its

philosophical viability as a candidate generic solution. Thus, independently

of whether we accept my account as an interpretation of what Newton took

himself to be doing, one of the implications of his work for philosophy is that

it offers a solution to a problem found in Cartesian philosophy.

The philosophical consequences of this solution should be taken seriously.

One motivation for contemporary structural realism stems from the fact that

quantum mechanics fails to determine whether its particles are individuals or

non-individuals. According to French and Ladyman, if quantum mechanics is

interpreted as being about objects (rather than about structure), then it fails

to adequately specify the entities that are its subject-matter. This is because,

according to French and Ladyman, objects must be determinately individuals or

32 In Brading (2011) I further explore the metaphysical ramifications of the law-constitutive
approach, treating composite systems, their unity, and the actual/potential parts
debate.
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non-individuals.33 Clearly, this includes in the necessary conditions of quantum

object-hood a requirement that goes beyond being an entity that satisfies the

laws of quantum mechanics. Thus, how we respond to their challenge will

depend in part on the extent to which we are willing to say: to be an entity that

serves as the subject-matter of a theory is to satisfy the laws of that theory; no

less, and also no more.

1.5 Conclusions

I have drawn conclusions of increasing strength during the course of this

paper, and there are various points at which one might want to get off the boat.

However, there are some key claims that I would press for, as follows.

Descartes fails to offer an adequate account of the bodies that are the subject-

matter of his laws. This is by his own criteria: there are not the resources within

his metaphysics to underwrite his claim that we have a clear and distinct idea

of bodies (plural) as opposed to body (Cartesian indefinite extension). It is also

by Newton’s criteria: Descartes fails to specify a concept of body that allows

him to go on and provide an account of what it is for a body to move. In these

ways, Descartes fails to solve the ‘problem of bodies’. Newton’s solution to the

problem involves distinguishing body from space, and stating that a necessary

condition for something to be a physical body is that it move according to

certain laws. It is this latter claim that I have focused on, arguing that while

this law-constitutive account of body can be read implicitly in Descartes, it is

explicit in Newton.

I have also gone on to claim that this is a powerful and effective solution

to the ‘problem of bodies’, one which challenges the need for a principle of

individuation distinct from necessary and sufficient conditions, and which has

significance for discussions of the entities that are the subject-matter of con-

temporary physics. About these latter claims, there are surely more arguments

to be made.
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Leibniz, Newton and force

daniel garber

Leibniz developed a conception of the physical world that was grounded in

the notion of force. So did Newton. In this essay I would like to explore the

different ways that these two contemporaries conceived of this notion, and

the different ways in which the notion of force functions in their thought. My

main focus in the essay will be Leibniz. Leibniz’s view of the physical world is

much less well known (and much less familiar to readers of this volume) than

is Newton’s, and his metaphysical conception of force much more central to

his thought than it was to Newton’s. Consequently, I will begin with a rather

extensive development of Leibniz’s conception of force, showing where it comes

from and what it is supposed to do for him. After we have a clearer idea about

Leibniz’s conception of force, I would like to turn to Newton and compare the

way the two treat the common notion that is so important to both.

2.1 Leibniz: body and force

Before beginning the project, I would like to make a brief comment on Leibniz’s

thought about the natural world. I’m not going to talk about monads in this

essay. Leibniz had well-developed views about the physical world, about motion

and its laws, about body, the nature of body, and the structure of body, and

about force. This is the level at which I would like to work here. At a metaphysical

level below that of body, Leibniz also had views about the ultimate nature of

reality, what we might call the level of fundamental metaphysics. It is at this

level that one finds his discussion of monads. While the level of fundamental

metaphysics is connected with Leibniz’s thought about the physical world, the

two are not as closely connected as one might think. We can talk about body,

motion, and force without directly engaging the metaphysical subbasement.

And that’s what we will do in this context.

I would like to thank the audience at the Leiden Newton Conference for a very helpful
discussion that considerably clarified the issues. I would like especially to thank Eric Schliesser
for his comments on earlier versions of this paper, even if he may disagree with how I have
responded to them in the final version. Much of the material in this paper is a summary of
material that I discuss at greater length in Garber (2009).
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In order to understand Leibniz’s notion of force, we must begin with his early

speculations about the notion of body. And in order to understand Leibniz’s

early speculations about body, we must see them in the context of his early –

and continuing – infatuation with the mechanical philosophy. In one of his

earliest writings, the “Confesio naturae contra atheistas” (“The Confession of

Nature against Atheism”), published in 1669 when Leibniz was only 23 years

old, he writes:

For through the admirable improvement of mathematics and the

approaches which chemistry and anatomy have opened into the nature

of things, it has become apparent that mechanical explanations – reasons

from the figure and motion of bodies, as it were – can be given for most of

the things which the ancients referred only to the Creator or to some kind

(I know not what) of incorporeal forms.1

The version of the mechanical philosophy that most attracted him at this time

was that of Thomas Hobbes, as given in the De corpore of 1655.2

For Hobbes, as for Descartes, the notion of extension is basic to the idea of

body. It is almost definitive of the Cartesian school of philosophy that bodies

are the objects of geometry made real, and contain nothing but extension

and its modes. Hobbes goes even farther and actually identifies fundamental

physics with geometry itself.3 One feature of Hobbes’ physics that attracted

the young Leibniz was its treatment of force in the physical world. Descartes

recognizes force in the physical world, grounded in the continual activity of God

in sustaining the world from moment to moment.4 But God has no substantive

role to play in Hobbes’ conception of the physical world. And as a consequence,

there is no place for a concept of force or resistance outside of motion itself

in Hobbes’ physics: “Rest does nothing at all, nor is of any efficacy; and . . .

nothing but Motion gives Motion to such things as be at Rest, and takes it from

things moved.”5

1 A6.1.489 (L 109–110) (see the list of abbreviations at the end of the chapter).
2 Beeley (1995), e.g., emphasizes the connections between Hobbes’ thought about the phys-

ical world and that of the young Leibniz.
3 On Hobbes’ conception of body, see De corpore, chapter 8.1. On the interconnection of

physics and geometry, see De corpore, chapter 6.6. Geometrical and physical considerations
are freely intermixed in parts II and III of De corpore. However, one should note that he
proceeds differently in part IV, where he treats sense, light, heat, cold, etc., starting with
experience and inferring causes.

4 On Descartes’s derivation of the laws of motion from God and the grounding of force, see
Garber (1992, chapters 7–9). Though I still hold to the view as presented in these chapters,
in the last few years there have emerged a variety of alternative views on the notions of
force and activity in Descartes. For a recent discussion that sets out some of these recent
alternative positions, see Schmaltz (2008a).

5 De corpore, 15.3.
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When, in the late 1660s and early 1670s Leibniz becomes interested in the

laws of motion and impact, it is Hobbes’ conceptions of body and force that are

at the root of his project.6 The works in question are the Theoria motus abstracti

and the Hypothesis physica nova, both published in 1671. The heart of the early

theory of motion in these writings is an account of the collision of two bodies;

for Leibniz, as for Hobbes, collision is the only way in which the motion of a

body can be changed naturally. Because bodies exert no force except through

motion, the outcomes of collisions are determined by simply combining the

instantaneous motions (conatus) of the two bodies at the moment of collision;

body as such offers no resistance to motion and so the mass or size of the

bodies in question plays no role whatsoever in the outcome of a collision. As

Leibniz put it in the Hypothesis physica nova, “all power in bodies depends on

the speed.”7 If two bodies with unequal speed collide, then, Leibniz argues, the

two will move together after the collision with a speed which is the difference

between the two, and in the direction of the faster. One interesting special case

is when one of the bodies is at rest. In that case, a moving body, no matter how

small, can set a resting body, no matter how large, into motion without losing

any of its own motion. As Leibniz noted in a document written during this

period (1675), “We have assumed by a kind of prejudice that a greater body is

harder to move, as if matter itself resisted motion.”8 Another interesting special

case is when two bodies with the same speed collide directly. In this case, both

come to a halt and all motion is lost.9

These laws of motion, reasonable as they might be in the abstract, fit very

poorly with the world we see around us, as Leibniz knew; in particular, the

bodies of our world do seem to offer resistance to being set into motion.

Leibniz reconciled these abstract laws with experience through an hypothesis

about the makeup of the world; this is the new hypothesis of the Hypothesis

physica nova. Using this hypothesis that the bodies of everyday experience are

made up of tiny parts, corpuscles, Leibniz is able to convince himself that he

can explain why it is that larger bodies will appear to resist new motion in

collision more than smaller bodies will.10 And so, the laws bodies appear to

obey in our world are the result of abstract and geometrical laws, very different

from what we experience in day-to-day life, operating in a complex world that

6 It should be noted that when Leibniz became interested in the laws of motion in 1669,
it was initially the Huygens/Wren laws of impact that caught his attention. On this see
Garber (2009, pp. 14ff). But it seems to have been to Hobbes that the young Leibniz
turned to clarify the question. Descartes and his laws didn’t really enter the picture until
somewhat later.

7 A6.2.228. 8 A6.3.466 (RA 31) 9 See A6.2.269 § 12.
10 See on this A6.2.164 (§ 33); Hypothesis physica nova §§ 22–23, A6.2.228–232. For a

more detailed discussion of this, see Hannequin (1908, pp. 103–107); Duchesneau (1994,
p. 63f). This may well have been inspired by Hobbes, De corpore 15.8. (I would like to
thank Kathryn Morris for this observation and for the reference.)
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God created for his ends. Leibniz was later to see the deep problems with this

account, but in 1670 and 1671, the young Leibniz was very pleased with his

first serious excursion into physics.

This early world begins to crumble in the mid 1670s, when Leibniz is about

30 years old. Attractive as his earlier picture of the physical world is, he begins to

notice some uncomfortable features. Though at the macroscopic level Leibniz

is able to save the phenomena and account for the fact that it seems to take more

effort to move a larger body than a smaller one, at the level of fundamental

physics, this isn’t true. And as a consequence, at the fundamental level, no basic

conservation principles would seem to hold. But in 1676, Leibniz comes to

accept a metaphysical principle that will shape his physics for the rest of his

life: the principle of the equality of cause and effect.11 On this principle there

must be exactly the same ability to do work in the total cause as there is in

the full effect. He quickly realizes that this seriously undermines the strategy

of his early physics. Immediately after giving an extensive formulation of the

principle, he writes:

It has been established through experience that the cause why a larger

body is moved with difficulty even on a horizontal plane is not [always]

heaviness, but massiveness.12 Unless body were to resist, perpetual motion

would follow, since a body resists in proportion to its bulk [moles], since

there is no other factor that would limit it [nulla alia ratio determinandi].

That is to say, since there is no other factor [ratio] which would hinder it

from rebounding to less than its [original] height, since in itself, without

an extrinsic impediment through the impulse of [another] body, it would

give [the other body] its whole motion, and retain it as well.13

With these considerations, we can no longer separate out the basic abstract laws

of physics from the ones that are obeyed by the bodies of everyday experience:

unless the principle of the equality of cause and effect holds at every level, we

are subject to the possibility of perpetual motion. And as a consequence of

that, we must recognize that there must be genuine resistance to motion in

body, something by virtue of which bodies can resist the acquisition of new

motion.

At the same time that Leibniz was worrying about resistance, he was also

beginning to worry about another feature of his earlier physics, the coherence

11 The key document here is a remarkable essay, “De Arcanis Motus et Mechanica ad puram
Geometriam reducenda,” “On the secrets of motion and the reduction of mechanics to
pure geometry,” probably written in the summer of 1676. It can be found in Hess (1978,
pp. 202–205). It is discussed, and its significance underscored in Fichant (1978).

12 The word here is “soliditas.” According to Robert Estienne’s Dictionarium latinogallicum
(Paris, 3rd edn., 1552), “soliditas” means “massivité, solidité, fermeté.” Of these, I think
that the first is closest to what Leibniz has in mind here.

13 Hess (1978, p. 205).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 18:03:19 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.004

Cambridge Books Online © Cambridge University Press, 2012



leibniz, newton and force 37

of the notion of motion and the distinction between motion and rest. When

two bodies are in motion with respect to one another, what does it mean to

say that one is really in motion and the other is really at rest? The solution he

comes to is that the body that is really in motion is the one that is the real cause

of the change. This idea is set out in a series of fragments that the Akademie

editors date from Summer 1678 to Winter 1680/1. In these fragments, Leibniz

explains and defends the following view:

A body in motion is one which is the proximate efficient cause for why

each of its parts changes position with respect to other bodies; otherwise

it is said to be at rest.14

In another fragment from the series, he gives the cause in question a general

name:

And so we attribute motion to that which has a force of acting [vis agendi].

Whence it is also obvious that those who have said that what is real and

positive in motion is equally found in both contiguous bodies receding

from one another have spoken falsely. For the force of acting can only be in

one of them, and therefore it is also the cause [of the change of position].15

The ‘vis agendi,’ the force of acting, then, is what will enable us to say that there

is a distinction between motion and rest.

Leibniz’s discovery of the ‘vis agendi,’ the active force by which motion

and rest are distinguished from one another, together with his realization that

bodies must have a passive force by virtue of which they resist the acquisition

of new motion, led Leibniz to a new view about the nature of body. Hobbesian

(or Cartesian) bodies, the objects of geometry made real, have nothing in

them from which such forces could arise. So, Leibniz concludes, there must be

something to bodies over and above their geometrical properties. But what is it?

Leibniz’s answer is simple: to ground these forces in bodies we must revive the

forms that the schoolmen had posited, and that the mechanists had rejected.

Here is how Leibniz puts it in a document written shortly after his decision in

1679 to revive substantial forms:

[W]hen I considered how, in general, we could explain what we experience

everywhere, that speed is diminished through an increase in bulk [moles]

as, for example, when the same boat carried downstream goes more slowly

the more it is loaded down, I stopped, and all my attempts having been

in vain, I discovered that this, so to speak, inertia of bodies cannot be

deduced from the initially assumed notion of matter and motion, where

matter is understood as that which is extended or fills space, and motion

is understood as change of space or place. But rather, over and above that

which is deduced from extension and its variation or modification alone,

14 A6.4.2011. 15 A6.4.2019.
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we must add and recognize in bodies certain notions or forms that are

immaterial, so to speak, or independent of extension, which you can call

powers [potentia], by means of which speed is adjusted to magnitude.

These powers consist not in motion, indeed, not in conatus or the begin-

ning of motion, but in the cause or in that intrinsic reason for motion,

which is the law required for continuing. And investigators have erred

insofar as they considered motion, but not motive power or the reason for

motion, which even if derived from God, author and governor of things,

must not be understood as being in God himself, but must be understood

as having been produced and conserved by him in things. From this we

shall also show that it is not the same quantity of motion (which misleads

many), but the same powers that are conserved in the world.16

Leibniz’s idea seems to be this. Resistance and the ability to do work are kinds

of activity in bodies, and therefore cannot be derived from bare matter, which

is inert. And therefore, to inert extended matter we must add something that

can be the source of these kinds of activity, both resistance and the positive

ability to do work. That is, to inert matter we must add form. The view that

he is trying to articulate seems to be that for there to be activity – both resistance

and the positive activity by which one body acts on another – there must

be form in bodies. Form is the source of this activity, both resistance and

positive activity.

Leibniz’s idea seems to have been that both the active force that bodies

have to cause changes in other bodies and which grounds motion, and the

passive forces of resistance that bodies exert in opposition to the active forces

that act on them derive from the form, which is added to inert Cartesian (or

Hobbesian) matter. But this passes quickly over into a subtly different view.

While continuing to locate the active forces in the soul or form, Leibniz moved

the passive forces into matter. In a passage from the essay “On the Method

of Distinguishing Real from Imaginary Phenomena,” now dated as between

Summer 1683 and Winter 1685/6, Leibniz wrote:

Concerning bodies I can demonstrate that not merely light, heat, color

and similar qualities are apparent but also motion, figure, and extension.

And that if anything is real, it is solely the force of acting and suffering

[vim agendi et patiendi], and hence that the substance of a body consists

in this (as if in matter and form). Those bodies, however, which have no

substantial form are merely phenomena or at least only aggregates of the

true ones.17

16 A6.4.1980 (AG 249). Cf. also the following passage from 1680, where Leibniz goes as far
as to identify activity and active force with the essence of body: “[I found] that there
are substantial forms, and that the nature of body consists not in extension, but in an
action which is related to extension, since I hold that a body cannot be without effort . . . ”
(Leibniz to de La Chaise (April/May 1680), A2.12.798).

17 A6.4.1504 (L 365).
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Leibniz is somewhat more expansive on this theme in another essay that prob-

ably dates from the same period, just before the composition of the Discourse

on Metaphysics, an essay that the Akademie editors have entitled “De mundo

praesenti”:

Corporeal substances have parts and species. The parts are matter and

form. Matter is the principle of being acted on [principium passionis]

that is, the primitive force of resisting, which is commonly called bulk or

antitypy, from which flows the impenetrability of body. The substantial

form is the principle of action or the primitive force of acting. Furthermore,

there is in every substantial form a certain knowledge [cognitio] that is an

expression or representation of external things in a certain individual thing,

in accordance with which a body is per se one, namely in the substantial

form itself. This representation is joined with a reaction or conatus or

appetite which follows this thought of acting. This substantial form must

be found in all corporeal substances which are per se one.18

With this we have a new and coherent view of body. Bodies are no longer the

objects of geometry made real, as they are for Descartes and Hobbes. They

are Aristotelian unities of substantial form and primary matter. But even more

interesting than that, the newly revived form and matter of the Aristotelians

is identified with force: form with the active force associated with motion, and

matter with the passive force associated with resistance.

This view gets its fullest statement in the essay, Specimen dynamicum which

Leibniz published in the Acta eruditorum in 1695, a kind of summary treatment

of elements of the science of force (which he entitled ‘dynamics’) that he

had developed in the intervening years. Though it was published after the

publication of Newton’s Principia in 1686/7, one can argue that the metaphysics

of force that Leibniz presents there grows largely out of the view that he

first articulated in the writings beginning in the late 1670s. In the Specimen

dynamicum and related writings Leibniz presents a conception of force that

involves two important distinctions, the distinction between primitive and

derivative forces, and the distinction between active and passive forces. So in

all, there are four principal varieties of force, primitive active and passive force,

and derivative active and passive force. Leibniz writes:

Active force (which might not inappropriately be called power [virtus], as

some do) is twofold, that is, either primitive, which is inherent in every

corporeal substance per se . . . or derivative, which, resulting from a limi-

tation of primitive force through the collision of bodies with one another,

for example, is found in different degrees. Indeed, primitive force (which

is nothing but the first entelechy) corresponds to the soul or substantial

18 A6.4.1507–1508 (RA 285–287). It should be noted that Leibniz is rather unclear about
what exactly the species are.
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form . . . Similarly, passive force is also twofold, either primitive or deriva-

tive. And indeed, the primitive force of being acted upon [vis primitiva

patiendi] or of resisting constitutes that which is called primary matter in

the schools, if correctly interpreted. This force is that by virtue of which it

happens that a body cannot be penetrated by another body, but presents

an obstacle to it, and at the same time is endowed with a certain laziness,

so to speak, that is, an opposition to motion, nor, further, does it allow

itself to be put into motion without somewhat diminishing the force of

the body acting on it. As a result, the derivative force of being acted upon

later shows itself to different degrees in secondary matter.19

The active and passive forces in question are the ones that we discussed earlier:

the forces connected with motion (active), and the forces connected with

resistance (passive). One might add here the distinction Leibniz makes between

two kinds of active force: living and dead. Living force is associated with

actual motion. Dead force, on the other hand, is associated with what Leibniz

calls the “solicitation to motion,” the acceleration involved in a spring or

a bow.20 But also interesting is the distinction Leibniz draws here between

primitive and derivative forces. Leibniz characterizes the primitive active force

as corresponding to “the soul or substantial form”; the primitive passive force,

on the other hand, is characterized as constituting “that which is called primary

matter in the schools, if correctly interpreted.”21 In this way, primitive forces

are conceived of as things, or at least as constituents of things, the way we might

talk about the Church as a force in society. Derivative forces, in contrast, are

the momentary and quantifiable modes of the primitive forces, both active and

passive. It is in terms of these forces that the laws of nature are framed. As

Leibniz wrote to Johann Bernoulli in 1698:

If we conceive of soul or form as the primary activity from whose mod-

ification secondary [i.e. derivative] forces arise as shapes arise from the

modification of extension, then, I think, we take sufficient account of

the intellect. Indeed there can be no active modifications of that which

is merely passive in its essence, because modifications limit rather than

increase or add.22

In this way form and matter, primitive active and passive force constitute the

grounds for the particular modifications that are the particular magnitudes of

active force and resistance that we can observe in bodies. In this way, Leibniz’s

conception of force is connected in one direction with his doctrine of the nature

19 GM VI 236–237 (AG 119–120). A very similar account is given in “On Body and Force,
May 1702”; see G IV 395 (AG 252).

20 See GM VI 238 (AG 121). 21 GM VI 236–237 (AG 119–120).
22 GM III 552 (AG 169).
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of body, while at the same time it is connected with our understanding of the

behavior of body and the laws of motion.

2.2 Newton vs. Leibniz on Force

Leibniz’s doctrine of force and body is directed solidly against the mechanist

doctrines of Descartes, Hobbes and their followers. There is every reason to

think that it was largely in place by 1686 when, seemingly out of nowhere,

Newton published his Philosophiae naturalis principia mathematica, what came

to be known simply as the Principia, and articulated a conception of force that

was very different from what Leibniz had developed. The ultimate success

of the Newtonian program has all but driven Leibniz’s conception of force

off of the playing field. But I would like to reflect a bit about the places in

which the two conceptions of force come together, and the ways in which they

differ.

Now, there are at least two sets of notes Leibniz wrote on Newton’s Principia

that survive, in addition to the numerous comments that he made in letters

and essays on his great contemporary and rival.23 Interestingly enough, none

of them are addressed directly at the relation between their accounts of force.

Neither is the issue addressed in the Leibniz–Clarke exchange, which many

(though not all) consider a near-direct exchange between Leibniz and Newton.

My account here is thus less a report on how each saw the other in relation to

his own views, than it is the remarks of a modern commentator trying to make

historical and philosophical sense of the relations between them on this issue.

The various notes we have that precede the final composition of the Principia

show that Newton struggled with the articulation of the notion of force. Though

it would be interesting to trace the development of Newton’s conception and

compare it with the considerations that drove Leibniz,24 I am going to limit

myself to a consideration of the final account as it appears in the Principia.

The star of the Principia is Newton’s notion of impressed force. Newton

defines as follows in the Principia:

Impressed force is the action exerted on a body to change its state either of

resting or of moving uniformly straight forward.

This force consists solely in the action and does not remain in a body after

the action has ceased. For a body perseveres in any new state solely by the

23 Leibniz (1973) was thought to be the only such set of notes for quite a while. Then
Bertoloni Meli (1993) published another set of notes in his appendix 1, and in chapter 5
argued very convincingly that Leibniz had read Newton’s Principia before writing his
“Tentamen de motuum caelestium causis.”

24 For a recent account that gives an elegant account of the last stages of Newton’s develop-
ment of the notion of force, see Bertoloni Meli (2006a), § 2.
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force of inertia. Moreover, there are various sources of impressed force,

such as percussion, pressure, or centripetal force.25

(The reference to the force of inertia is significant here, and we will address

that shortly.) It is this kind of force that is at issue in Newton’s second law:

“A change in motion is proportional to the motive force impressed and takes

place along the straight line in which that force is impressed.”26 The project of

book I of the Principia is to give us the general tools that we need to infer the

existence of various impressed forces from the phenomena. As Newton writes

in the preface to the first edition, “the basic problem of philosophy seems to be

to discover the forces of nature from the phenomena of motions and then to

demonstrate the other phenomena from these forces.”27 In book III Newton

works out one important example, that of gravitational force. But there is an

explicit assumption from the beginning that this is not the only kind of force

in nature. Again, in the preface to the first edition Newton writes:

For many things lead me to have a suspicion that all phenomena may

depend on certain forces by which the particles of bodies, by causes not

yet known, either are impelled toward one another and cohere in regular

figures, or are repelled from one another and recede. Since these forces are

unknown, philosophers have hitherto made trial of nature in vain.28

In the Principia, Newton gives us the methods we need to find these other

forces, perhaps chemical forces, electrical forces, magnetic forces, etc. All of

these other impressed forces can be handled by the same mathematical tools,

etc., but they are in their nature rather different. What they have in common is

simply that they are causes of the change in velocity of bodies. Force answers

the question not of what bodies are, but how they behave.

This conception of force seems importantly different from Leibniz’s con-

ception. For Newton, the focus is on the impressed force that changes the

motion of a body. His interest in the Principia is in the common cause of the

impressed forces that explain the trajectories of the heavenly bodies, as well

as the fall of bodies on Earth. That cause is what he calls gravity. Newton is

thus interested in causes in the Principia, but only in determining that there

is a common cause for a variety of phenomena: otherwise the cause in ques-

tion remains unknown in its nature, though one can, perhaps, read him as

entertaining the possibility that gravitation (i.e., the underlying cause of the

impressed forces that are examined in the Principia) is essential to body as

such. At the same time, Newton recognizes other forces in nature (chemi-

cal, electrical, magnetic, etc.) which will have their own distinctive (but as of

yet unknown) causes, causes that might be present in some bodies but not

in others. These other causes will impress other forces on bodies in other

circumstances.

25 Newton (1999, p. 405). 26 Ibid., p. 416. 27 Ibid., p. 382.
28 Ibid., pp. 382–383. Cf. also Ibid., p. 588.
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Now, it is not impossible that all of the Newtonian impressed forces can

be given a mechanical explanation, as Descartes or Hobbes or Leibniz would

want to do. That is, it is not impossible that all of the causes of the impressed

forces that explain the different phenomena of interest to Newton are, at root,

mechanical causes. It is also possible for Newton that gravitation could be

an essential property of body as such. While one can find many apparently

tentative speculations about this question in his notes and papers,29 this wasn’t

Newton’s interest, at least not in the Principia: his first problem was to establish

the existence of the forces of different kinds. It was only after that that one should

investigate the underlying causes, and that only to the extent that experience

and experiment reveal them to us. To the best of our knowledge, Newton never

got to that part of his investigation. The framework of the Principia doesn’t

commit him to mechanism or to anything else: it is an open framework that

allows one to entertain a larger vision.

Leibniz, unlike Newton, is doing what we might call fundamental physics,

trying to characterize the physical world at its physically most basic level. And in

this connection, Leibniz’s interest in the notion of force is linked to a strict and

rigorous version of the mechanist program: at root there is one kind of material

stuff, all of which obeys the same laws. Leibniz is working within a rigidly

mechanist framework. And like Descartes and Hobbes before him, his problem

is grounding the physical world in an appropriate conception of that material

stuff. This is where the notion of force enters into his project. Force is not just

a tool to explain the empirically observed behavior of bodies: the conception

of force that interests Leibniz operates at the physically most fundamental level

and reveals the underlying nature of body as such. In Newton’s world one

can contemplate different kinds of forces, with different underlying causes.

Leibniz begins with the commitment that in the world, there is just body of

one sort. And in this world, there is force of one sort, at root. Again, it might

turn out for Newton that all the different forces can be reduced to one kind

of force, the mechanist’s force that acts through collision. But while Newton is

not committed to that position for a priori reasons, Leibniz is. It is this one,

unitary conception of force that he identifies with body as such. For Newton,

the force treated in the second law and as the focus of attention in the rest of the

Principia is a generic notion, as it were, a general kind of thing, characterized

by its mathematical structure and connection with other notions such as mass

and acceleration; it can thus come in different varieties, gravitational, chemical,

electrical, magnetic, and perhaps others. For Leibniz, on the other hand, force

is something very specific and very concrete: it is what is ultimately grounded

in the fundamental make-up of a mechanist world. It is force with a capital ‘F’,

the ultimate stuff that grounds the physical world.

Indeed, in a very strict sense, there are no external, impressed forces

for Leibniz. It is well known that for Leibniz, there is no genuine causal

29 See the introduction to part III in Newton (1962).
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communication between substances: all of the activity of a corporeal sub-

stance derives from its own internal states. Thus Leibniz writes in Part II of the

Specimen dynamicum: “every passion of a body is of its own accord, that is, arises

from an internal force, even if it is on the occasion of something external.”30 In

this way, from a metaphysical point of view, at least, the central notion of force,

that of an impressed force, is strictly speaking unintelligible from the point of

view of a Leibnizian conception of force.

But even if Newton’s impressed force doesn’t have much in common with

Leibniz’s conception of force, there is another Newtonian notion that seems

much closer. In the Principia Newton writes:

Inherent force of matter is the power of resisting by which every body, so far

as it is able, perseveres in its state either of resting or of moving uniformly

straight forward.

This force is always proportional to the body and does not differ in any

way from the inertia of the mass except in the manner in which it is

conceived. Because of the inertia of matter, every body is only with dif-

ficulty put out of its state either of resting or of moving. Consequently,

inherent force may also be called by the very significant name of force of

inertia . . . 31

The inherent force of matter is very closely identified with matter itself: it is

something that pertains to body as such, by virtue of which body is capable of

resisting an impressed force imposed upon it. In this respect it is rather different

than the more central notion of impressed force in Newton, as commentators

have noted with some puzzlement. In his recently published commentary on

the Principia, I. B. Cohen remarks that this definition is “in many ways the

most puzzling of all the definitions in the Principia.” He continues:

Today’s reader will . . . be struck by the fact that Newton uses the word

“force” in relation to “inertia” (“vis inertiae”), although – as Newton is at

pains to explain – this is an internal force and not the kind of force which

(according to the second law) acts externally to change a body’s state of rest

or of motion. Unless we follow Newton’s instructions and make a sharp

cleavage between such an internal “force” and external forces, we shall fail

to grasp the Newtonian formulation of the science of dynamics.32

The fact that Cohen consistently puts this use of force into scare-quotes suggests

that he doesn’t think that it is really force, properly speaking. If what we mean

by force is a physical magnitude that satisfies Newton’s second law, then the vis

insita certainly isn’t a force.

30 GM VI 251 (AG 134–135). 31 Newton (1999, p. 404).
32 Cohen’s “Guide” in Newton (1999, p. 96).
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But Newton’s inherent force of matter is very similar to Leibniz’s primitive

passive force; both are expressions of the basic nature of body as such.33 And

both are connected with the resistance to change in a body’s state of motion or

rest. Here is how Leibniz characterizes primitive passive force in the Specimen

dynamicum, as quoted above:

And indeed, the primitive force of being acted upon [vis primitiva patiendi]

or of resisting constitutes that which is called primary matter in the schools,

if correctly interpreted. This force is that by virtue of which it happens that

a body cannot be penetrated by another body, but presents an obstacle to

it, and at the same time is endowed with a certain laziness, so to speak,

that is, an opposition to motion, nor, further, does it allow itself to be put

into motion without somewhat diminishing the force of the body acting

on it. As a result, the derivative force of being acted upon later shows itself

to different degrees in secondary matter.34

And here is Newton, from Definition 3 of the Principia:

Moreover, a body exerts this force only during a change of its state, caused

by another force impressed upon it, and this exercise of force is, depending

on the viewpoint, both resistance and impetus: resistance insofar as the

body, in order to maintain its state, strives against the impressed force,

and impetus insofar as the same body, yielding only with difficulty to the

force of a resisting obstacle, endeavors to change the state of that obsta-

cle. Resistance is commonly attributed to resting bodies and impetus to

moving bodies, but motion and rest, in the popular sense of the terms, are

distinguished from each other only by point of view, and bodies commonly

regarded as being at rest are not always truly at rest.35

Let me begin by emphasizing some striking similarities between these two

conceptions. First of all, Leibniz’s passive force seems to be responsible for

doing pretty much what Newton’s vis insita is supposed to do: it is the force

that resists change both in bodies at rest and bodies in motion. In this way it is

the force that breaks the speed of a colliding body. Unlike Leibniz, Newton does

not emphasize the difference between primitive and derivative forces. But one

can say that something very like Leibniz’s distinction is inherent in Newton’s

definition insofar as he distinguishes between the “inherent force” which is

“always proportional to the body” and “inherent” in it, and the exercise of this

force on the occasion of an impact.

But despite the similarities, there are some profound differences as well. One

profound difference concerns the relation between resistance and impetus, the

force exerted by a body resisting change in its motion, and the force exerted by

33 On the relation between Newton’s vis insita and Leibniz’s notion of inertia, see Bernstein
(1981).

34 GM VI 236–237 (AG 119–120). 35 Newton (1999, 404–405).
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a body in motion on another body. For Newton, the two are the same force,

and differ only in our point of view:

this exercise of force is, depending on the viewpoint, both resistance and

impetus: resistance insofar as the body, in order to maintain its state,

strives against the impressed force, and impetus insofar as the same body,

yielding only with difficulty to the force of a resisting obstacle, endeavors

to change the state of that obstacle.

Though Newton, of course, recognizes a real distinction between absolute

motion and absolute rest, this distinction does not enter into his account of

the vis insita: it is both resistance and impetus. But for Leibniz, the arch-

relativist in other respects, there is a real distinction between resistance and

impetus, between (primitive) passive force and (primitive) active force. Indeed,

this distinction is identical for Leibniz to a fundamental distinction in his

metaphysics between matter and form, the two distinct principles that make

up corporeal substance. Though a relativist about space and time, Leibniz is

not a relativist about motion and rest, and thus not a relativist about impetus

and resistance. For him they are radically distinct, and ground a fundamental

dichotomy in his metaphysical account of body.

There is another, perhaps more subtle difference between Newton and Leib-

niz on this issue worth noting. Newton’s is a vis insita, a force inherent in body.

This is important to Newton, no doubt. But Newton is less interested in the

contribution this makes to the understanding of the nature of body, and more

interested in the consequences that it has for our understanding of the behavior

of body. What is important about it being an inherent force is simply that it is

always available to us in understanding the behavior of bodies. Impressed forces

come and go as bodies find themselves in different external circumstances. But

you can always count on a body to resist the change in its state. For Leibniz,

though, the inherence of passive forces, important as it is for understanding the

behavior of bodies, is also central for his account of their nature. The primitive

passive force of a body is a central constituent of its underlying nature.

And with this we reach what is a very deep difference between Leibniz and

Newton and their conception of force. In the Principia, Newton is interested

in demonstrating certain theorems about force and motion and in demon-

strating from them and from certain empirical phenomena the existence of a

universal law that explains planetary motion and terrestrial gravitation and the

connection between the two. While in various places he speculates about the

nature of matter, his thoughts about matter are just that, speculations, and in

the Principia, at least, he does not want to advance a solid doctrine of body and

its makeup. But Leibniz’s project is quite different. Leibniz, too, is interested

in motion and the behavior of bodies in motion. But his interest in force is

broader than that. What Leibniz seeks is the big picture: the nature of body as a

grounding for an account of motion and its laws. Force plays a role in Leibniz’s
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account of the behavior of bodies. But he is just as interested, if not more, in

the way the notion of force can illuminate the nature of body. In that way, force

plays a central role in his proposed replacement for the Cartesian/Hobbesian

account of the nature of body.

Let me put this difference in broader terms still. Earlier in the century, there

is a tension between two great traditions in thinking about the natural world.

Descartes is working in a broadly Aristotelian tradition of natural philosophy.

His aim is ultimately to give a view of the world that includes an account of

the behavior of bodies as such, but grounded in an understanding of the true

first causes: the nature of bodies, the causes of their motion, the way in which

the laws that govern their behavior are grounded in the first cause, i.e. God.

A different strand was the Galilean project. Galileo’s project was within the

domain of mixed mathematics, as it was called, a quantitative account of the

world that favored mathematical description over an account of the ultimate

first causes. I would claim that Leibniz is a heritor of the natural philosophical

tradition of Descartes, and Newton is a heritor of the mathematical tradition

that Galileo followed. The very different ways in which Leibniz and Newton

treat the notion of force are, I would claim, reflections of that fundamental

difference.
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3

Locke’s qualified embrace of Newton’s Principia

mary domski

3.1 Introduction

The Commonwealth of Learning, is not at this time without Master-

Builders, whose mighty Designs, in advancing the Sciences, will leave

lasting Monuments to the Admiration of Posterity; But every one must

not hope to be a Boyle, or a Sydenham; and in an Age that produces such

Masters, as the Great – Huygenius, and the incomparable Mr. Newton,

with some other of that Strain; ’tis Ambition enough to be employed as

an Under-Labourer in clearing Ground a little, and removing some of the

Rubbish, that lies in the way to Knowledge.

(Essay, pp. 9–10)1

The above, now famous passage is included in the Epistle to the Reader that

begins the first edition of John Locke’s An Essay Concerning Human Under-

standing (1689). For interpreters of the Essay who have granted attention to

the impact of Locke’s natural philosophical context on the development of

his empiricist stance towards knowledge,2 Locke’s self-appointed role as an

“Under-Labourer” has offered something of a mystery. For based on these

Portions of the work completed for this paper have been presented at several venues over the
last few years. I especially thank audience members at the 2006 History of Science Society
Annual Meeting, the Sixth Biennial Congress of the International Society for the History of
the Philosophy of Science (HOPOS), the UC, San Diego History of Philosophy Roundtable,
the University of Houston, and SPAWN 2009 for their comments. Special thanks are owed
to Margaret Atherton, Nico Bertoloni Meli, Daniel Garber, Helen Hattab, Sam Rickless,
Don Rutherford, and George Smith for their helpful and constructive feedback. Finally,
my thanks to Eric Schliesser for his insightful comments on the penultimate version of this
paper and to Ken Winkler for sharing his paper with me prior to its publication. I hope in
what follows I have done his arguments justice.

1 All citations to the Essay refer to Locke (1975), edited with an introduction by Peter H.
Nidditch. Aside from references to the Epistle to the Reader, citations refer to book, chapter,
and section.

2 Recently, there have been several such commentators. See, for instance, the references cited
in Winkler (2008, note 6) as well as works by G. A. Rogers (1978a), (1978b), (1979a),
(1979b), (1982).
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brief remarks, it is not altogether clear what lessons we should draw about

Locke’s understanding of the “Master-Builders” who were “advancing the Sci-

ences” in the late seventeenth century. Specifically, and as will be my focus in

this chapter, it is not altogether clear what Newton’s inclusion on this list of

“Master-Builders” indicates about Locke’s interpretation of Newton’s natural

philosophical achievements in the Principia mathematica (1687), which was

published just two years prior to the first edition of the Essay.3

One popular reading of this passage, and of Locke’s general attitude towards

Newton’s natural philosophical achievements, points to Newton’s experimen-

talism as a primary influence on Locke. Given Newton’s association with nat-

uralists such as Boyle and Sydenham in the Under-Labourer passage,4 Locke’s

strong ties to the natural history tradition (primarily developed through his

close association with Boyle), and Locke’s emphasis on the use of experiment

and observation in natural philosophy in Book IV of the Essay, it seems that, for

Locke, Newton’s great achievement lay in grounding his natural philosophy on

an observational and experimental method.5 Though prima facie a reasonable

reading, such a view leaves us questions regarding Locke’s explicit advocacy for

Newton’s mathematical method of natural philosophy, which he voices in his

correspondence with Stillingfleet as well as in other texts written in the 1690s.

Taking these passages regarding Newton’s mathematical approach to nature

seriously, Kenneth Winkler (2008) has recently offered an alternative reading

of Locke’s embrace of Newtonian natural philosophy. Drawing on evidence

from Locke’s writings during the 1690s as well as revisions to the fourth (1700)

edition of the Essay, Winkler aims to show that Locke did in fact appreciate the

distinctively mathematical character of Newton’s Principia achievement and,

moreover, made revisions to the Essay that were intended to defend Newton’s

“mathematical physics.” Thus, according to Winkler’s account, neither New-

ton’s association with natural historians such as Boyle and Sydenham in the

Under-Labourer passage, nor Locke’s emphasis on natural history in the Essay,

should determine how we read Locke’s interpretation of Newton’s achieve-

ment in advancing the sciences. As he puts it, “What I want to show in this

paper is that in spite of this natural-historical emphasis [in Book IV of the

Essay], Locke provides a way of interpreting – and defending – a mathematical

3 Though there is the reference to Newton in the “Under-Labourer” passage of 1689, Rogers
reveals that the body of the Essay was in near finished form when Locke first read Newton’s
masterpiece and thus discounts claims that Newton’s Principia had a substantial influence
on the stated doctrines of the first edition Essay (Rogers 1978b). As I discuss below, there
are signs that Newton’s work influenced the later fourth edition of the Essay.

4 In what follows, I follow Feingold (2000) and use the term “naturalist” in a very narrow
sense to refer to those working in the natural history tradition.

5 Commentators such as John Yolton and Roger Woolhouse propose just such a reading
of Locke’s attitude toward Newton’s Principia achievement. See especially Yolton (1969,
1970) and Woolhouse (1994).
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physics, and that there is a reason to believe that in doing so, he was respond-

ing directly to Newton’s achievement in the Principia” (Winkler 2008, p. 232).

Moreover, on Winkler’s score, Locke’s revisions and writings from the 1690s

reveal that he “voices an optimism about mathematical natural philosophy that

goes beyond the as-good-as-we’ll-get sort of praise that he confers on natural

history” (Winkler 2008, p. 233).

While Winkler is right to bring Locke’s writings from the 1690s to bear on

our interpretation of Locke’s attitude toward Newton’s natural philosophical

achievements, his strategy is not without problems. On the one hand, it is not

clear why Locke would maintain his emphasis on natural historical methods in

all editions of the Essay if, as Winkler claims, Locke had in his later career come

to embrace Newton’s mathematical methods as a viable alternative to the natu-

ralist investigation of bodies. The very fact that there are no extensive revisions

to the discussion of natural philosophy in the Essay already raises questions

about just how far Locke’s acceptance of Newton’s method extended.6 On the

other hand, and most importantly, the texts to which Winkler appeals do not

definitively show Locke trying to defend Newton’s physics. As I will discuss

in greater detail in Section 3.2, Locke lays emphasis on Newton’s success as a

mathematician (not a mathematical natural philosopher) in the fourth edition

of the Essay, and in other writings from the 1690s, Newton is praised for his

application of mathematics to a very specific domain of nature, namely, the

motions of planetary bodies. In light of these qualifications, and given Locke’s

career-long advocacy of natural historical methods for natural philosophy in

the Essay, I suggest in what follows that we temper our assessment of Locke’s

acceptance of Newton’s Principia methods, and specifically, read Locke’s accep-

tance of Newton’s mathematical natural philosophy in light of his naturalist

commitments. On such a reading, we find that, pace Winkler, Locke took New-

ton’s work to be emblematic, not of a general physics, but of a sub-discipline

of natural philosophy dealing only with the forces and motions of heavenly

bodies.7

To make my case, I draw on Robert Boyle’s attempt to reconcile the naturalist

mode of investigation with the use of mathematics in natural philosophy, and

6 My thanks to George Smith for emphasizing this point to me at SPAWN 2009.
7 There is, of course, the related question of whether Locke’s reading of Newton’s Principia

achievement agrees with how Newton himself understood the significance of his work.
While an important issue, I lay focus on how we ought to read Locke’s remarks regarding
Newton’s Principia method in light of the account of human knowledge and natural
philosophy that we find in the Essay. Whether Newton would agree with this assessment
is a question that goes beyond the limited scope of this chapter, though at the end of
Section 3.4 I offer some suggestions about how to understand the difference between
their readings. For an interpretation of how we might contrast the methods of natural
philosophy proposed by Newton in the Principia and by Locke in the Essay, see Section
10.1 of De Pierris (this volume).
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specifically, his distinction between the tasks and methods of practical and

speculative naturalists. The practical (or experimental) naturalist investigating

terrestrial bodies, which we can sense as well as manipulate, is assigned a

method of historical observation and experiment as she attempts to collect

a store of facts that will inform the construction of principles and theories.

In contrast, the speculative naturalist investigating celestial bodies is granted

a theoretical method, and specifically, a mathematical method to deepen our

understanding of an area of nature where experiment cannot carry us forward.

To put this differently, practical naturalists take a “bottom-up” approach to

nature and use sense data to fashion a more complete idea of body by reference

to the qualities and properties knowable through observation and experiment.

Speculative naturalists instead take a “top-down” approach to nature and begin

with laws and principles, which rest on observational data collected by the

practical naturalist, and then apply these laws and principles to other areas

of nature. On my reading, Locke invokes this Boylean framework for natural

philosophy, where the proper methods for investigation are determined based

on our experimental access to the objects investigated, to reconcile Newton’s

success with the natural historical methods promoted in the Essay.

3.2 Locke on Newton’s mathematical natural philosophy

In his effort to show that Locke was both familiar with and an advocate for the

“mathematical physics” presented in Newton’s Principia, Winkler marshals tex-

tual evidence from Locke’s correspondence with Stillingfleet in the 1690s and

the revised fourth (1700) edition of the Essay.8 In the Stillingfleet correspon-

dence especially, we find Locke highlighting the distinctiveness of Newton’s

mathematical-demonstrative method and promoting it as a method that can

enlarge our knowledge of nature. For instance, when Stillingfleet voices worry

about the use of demonstrations in natural philosophy, Locke offers a defense of

the demonstrative method.9 Though he agrees with Stillingfleet that Descartes

was ultimately unsuccessful in establishing the truth of his natural philosophical

system, Locke thinks it wrong for Stillingfleet to place blame on Descartes’s cho-

sen method. Descartes failed, according to Locke, not because he used demon-

strations, but because he lacked demonstrations that adequately captured

planetary motions (1823, IV, p. 427).10 And to support his claim, Locke refers

8 The second and third editions of the Essay appeared in 1694 and 1695, respectively.
9 Winkler points out that there are important differences between Stillingfleet’s stated

position in his letters to Locke and Locke’s construal of Stillingfleet’s position in his replies
(Winkler 2008, pp. 239–241). In my discussion I focus on Locke’s sometimes misleading
interpretation of Stillingfleet’s claims, for it is in the context of his replies to what he
interprets as Stillingfleet’s objections that we gain insight into Locke’s reading of Newton.

10 Excluding references to the Essay, citations to Locke’s writings refer to the volume and
page numbers of the 1823 edition of The Works of John Locke.
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Stillingfleet to Newton’s demonstration, from Book II of the Principia, that

Descartes’s vortex theory of planetary motion is incorrect.11

Locke also appeals to Newton’s mathematical approach to nature to sup-

port his critical evaluation of Scholastic natural philosophy. In response to

Stillingfleet’s alleged Scholastic worries about using mathematics in natural

philosophy, Locke accuses the Scholastics of subscribing to a program of natu-

ral philosophy that is no help in combating skepticism and suggests, in a rather

strong tone, that they resist a mathematical approach to nature because it is

difficult to master.12 He claims moreover that Newton’s success has authorized

the use of mathematics in our investigations of material things and finds it

“a great pity that Aristotle had not understood mathematics as well as

Mr. Newton, and made use of it in natural philosophy with as good success”

(1823, IV, p. 427).

Aside from appealing to Newton’s Principia achievement to challenge Carte-

sian and Scholastic natural philosophy, Locke also admits to Stillingfleet that,

in light of the results presented in “Mr. Newton’s incomparable book,” he must

revise the claim made in earlier editions of the Essay that bodies act upon

one another only by impulse (1823, IV, pp. 467–468).13 Locke also revises

and expands other sections of the Essay, which, according to Winkler, reveal

the imprint of Newton’s mathematical natural philosophy on its fourth edi-

tion. Specifically, Winkler identifies changes to the fourth edition that Locke

allegedly made “precisely in order to defend mathematical physics (particu-

larly Newtonian physics) against (what he took to be) Stillingfleet’s criticisms”

(Winkler 2008, p. 243). Winkler admits that

This is a conjecture I cannot possibly establish, but the elements of a

defense of Newton are undeniably present in the fourth edition, and absent

from earlier editions. The controversy with Stillingfleet, which reached its

11 Based on Locke’s remarks, it is not altogether clear what Locke thinks Newton actually
demonstrated. As Winkler points out, it could be that Newton establishes a conditional
claim (“If my assumptions about nature are correct, then Descartes’s theory is wrong.”)
or an affirmative denial of Descartes’s vortex theory. Given the strictures of Locke’s
account of knowledge, Winkler claims that Locke can only sustain the demonstration of
the conditional claim (cf. Winkler 2008, p. 237).

12 Locke remarks to Stillingfleet, “Mathematics in gross, it is plain, are a grievance in natural
philosophy, and with reason: for mathematical proofs, like diamonds, are hard as well as
clear, and will be touched by nothing but strict reasoning. Mathematical proofs are out of
the reach of topical arguments, and are not to be attacked by the equivocal use of words
or declamations, that make so great a part of other discourses; nay, even of controversies.
How well you have proved my way of ideas guilty of any tendency to scepticism, the reader
will see; but this I will crave to leave say, that the secluding mathematical reasoning from
philosophy, and instead thereof reducing it to Aristotelian rules and sayings, will not be
thought to be much in favour of knowledge against skepticism” (1823, IV, p. 428; cited
in Winkler 2008, p. 238).

13 I will return to the passage sent to Stillingfleet in Section 3.4 below.
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climax as Locke was contemplating changes in the fourth edition, might

well explain their appearance there.

(Winkler 2008, p. 243)

While I agree there are good reasons to connect the changes to the Essay that

Winkler cites to Newton’s Principia achievement, upon closer examination, it

is not altogether clear that these changes reveal Locke’s attempted defense of

Newton’s physics as Winkler maintains.

For instance, Winkler turns our attention to the four pages added to Locke’s

chapter on maxims. As in his correspondence, Locke pits Aristotle against

Newton and presents himself as a proponent of Newton’s method. However, he

does not reiterate the point made to Stillingfleet that Newton has authorized

the use of mathematics in natural philosophy. Rather, in the passage from the

fourth edition Essay that Winkler cites, Newton is presented as a mathematician

who successfully used a demonstrative method to establish true and certain

propositions. Locke writes,

Maxims are not of use to help Men forwards in the Advancement of

Sciences, or new Discoveries of yet unknown Truths. Mr. Newton, in his

never enough to be admired Book, has demonstrated several Propositions,

which are so many new Truths, before unknown to the World, and are

farther Advances in Mathematical Knowledge: But for the Discovery of

these, it was not . . . general Maxims . . . that help’d him. These were not

the Clues that lead him into the Discovery of the Truth and Certainty of

those Propositions. Nor was it by them that he got the Knowledge of those

Demonstrations; but by finding out intermediate Ideas, that shew’d the

Agreement or Disagreement of the Ideas, as expressed in the Propositions

he demonstrated.

(IV.vii.11; cited in Winkler 2008, p. 239).

Winkler does not expand on Locke’s appeal to “intermediate ideas” here, but

we can get a better handle on the method Locke is attributing to Newton by

considering Locke’s example of demonstrating that the three angles of a triangle

are equivalent to two right angles (IV.ii.2). When we attempt to connect these

ideas, namely, the idea of “three angles of a triangle” and the idea of “two right

angles,” the mind “cannot by an immediate view” discover their “Agreement or

Disagreement,” and thus, in this case, “the Mind has no immediate, no intuitive

Knowledge.” The mind is therefore “fain to find out some other angles, to which

the three Angles of a Triangle have an Equality; and finding those equal to two

right ones, comes to know their Equality to two right ones” (IV.ii.2). Though

Locke is not explicit, the “intermediate idea” we must “discover” to complete

the demonstration is the idea of “angles that lie along a straight line.” For by

appealing to the properties of parallel lines, we can show that the angles of a

triangle are equivalent to the angles lying along a straight line, and since two

right angles are supplementary, these angles also are equivalent to angles lying
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along a straight line. Given the transitivity of the equality relation, we can thus

establish that the angles of a triangle are equivalent in measure to two right

angles.

In line with the above example as well as Locke’s claim that Newton demon-

strated “new Truths” that are “farther Advances in Mathematical Knowledge,”

what Locke is claiming of Newton is that he used a method of discovering “inter-

mediate ideas” to establish mathematical propositions, not natural philosoph-

ical ones. Importantly, this assessment of Locke’s remarks is consistent with

his pronouncement that demonstrative knowledge is only possible in math-

ematics and morality (IV.iii.1–7), and not in natural philosophy (IV.xii.10).

Admittedly, in the discussion dedicated to improving our knowledge, Locke

heralds the method of discovering intermediate ideas as a means of enlarging

our knowledge of nature. As Locke puts it in this context, rather than “rely-

ing on Maxims, and drawing Consequences from some general propositions”

(IV.xii.15) in our natural philosophical endeavors, we should instead “practice

the Art of finding out those Intermediate Ideas, which may shew us the Agree-

ment, or Repugnancy of other Ideas, which cannot be immediately compared”

(IV.xii.14).14 On my reading of these remarks, it is not Newton’s natural philo-

sophical achievements that Locke is trying to defend. Rather, Locke is praising

Newton the mathematician and claiming that Newton’s mathematical achieve-

ments can and should serve as a model for natural philosophers to emulate,

even though truth and certainty are out of reach in this domain.15

Further questions arise for Winkler’s reading when we consider other texts

from the 1690s in which Locke offers his explicit endorsement of Newton’s

Principia achievement. For instance, in Section 43 (“Fundamental Verities”) of

his posthumously published Of the Conduct of the Understanding (1697) Locke

reiterates his acceptance of universal gravitation and deems it as “the basis of

natural philosophy.” He writes,

There are fundamental truths that lie at the bottom, the basis upon which a

great many others rest, and in which they have their consistency. These are

teeming truths, rich in store, with which they furnish the mind, and, like

the lights of heaven, are not only beautiful and entertaining in themselves,

but give light and evidence to other things, that without they could not

be seen or known. Such is the admirable discovery of Mr. Newton, that

14 While no specific example of a natural philosophical “demonstration” is offered by Locke,
we can assume that at least some of the “intermediate ideas” needed in this context would
be ideas drawn from our sensory experience. We would not, that is, simply rely on
ideas generated by our study of mathematics to establish natural laws. My thanks to Eric
Schliesser for urging me to consider this point more carefully.

15 On this score, I think Winkler has to say more to strengthen his argument against
Phemister, who claims that Locke “refuses to countenance demonstration in natural
science” (Phemister 1993, p. 243). For Winkler’s discussion of Phemister’s position, see
Winkler (2008, pp. 233 and 237).
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all bodies gravitate to one another, which may be counted as the basis of

natural philosophy; which, of what use it is to the understanding of the

great frame of our solar system, he has to the astonishment of the learned

world shown; and how much farther it would guide us in other things,

if rightly pursued, is not yet known. Our Saviour’s great rule, that “we

should love our neighbors as ourselves,” is such a fundamental truth for

regulating human society, that, I think, by that alone, one might without

difficulty determine all the cases and doubts in social society.

(1823, IV, p. 282; cited in Winkler 2008, p. 243)

According to Locke, universal gravitation can serve as a starting point for

understanding nature; it is, in fact, the foundational and “fundamental truth”

on which Newton’s program rests. But notice as well that, for Locke, New-

ton’s great success was to apply this principle to a specific province of nature,

namely, he used universal gravitation to improve our “understanding of the

great frame of our solar system.” According to Winkler, this claim points to

Locke’s acceptance of Newton’s general physics – his account of both celestial

and terrestrial bodies.16 However, there is strong evidence from Some Thoughts

concerning Education (1693) that Locke is intentionally distinguishing Newton’s

work from the investigation of terrestrial bodies.

As Locke presents it in this earlier work, it was via the application of math-

ematics to “our planetary world and the most considerable phenomena in it”

that Newton was able to offer a “good and clear” account of this particular

province “of the incomprehensible universe.” Locke also explicitly contrasts

Newton’s Principia achievement with “the systems of physics” that he has

encountered thus far, claiming that Newton has done what physicists have not:

used mathematics to deepen our understanding of “the motions, properties,

and operations of the great masses of matter in this our solar system.” He writes

in section 194,

Though the systems of physics, that I have met with, afford little encourage-

ment to look for certainty, or science, in any treatise, which shall pretend to

give us a body of natural philosophy from the first principles of bodies in

general; yet the incomparable Mr. Newton has shown, how far mathemat-

ics, applied to some parts of nature, may, upon principles that matter of fact

justify, carry us in our knowledge of some, as I may so call them, particular

16 Though Winkler does not state this explicitly, his reading of this passage and his general
characterization of “mathematical physics” point to astronomy as a branch of physics.
He claims, in particular, that “By a ‘mathematical physics’ I mean a physics that makes
essential use of mathematics in formulating its fundamental claims, and in deriving
other claims – explanations or predictions of particular facts, for example – from them”
(Winkler 2008, p. 241). While in general, and from our contemporary standpoint, it is
natural to say that the physics of Newton’s Principia encompasses study of planetary forces
and motions, my point above is that, for Locke, physics and astronomy were importantly
and essentially different sub-disciplines of natural philosophy in general.
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provinces of the incomprehensible universe. And if others could give us so

good and clear an account of other parts of nature, as he has of this our

planetary world, and the most considerable phaenomena observable in it,

in his admirable book “Philosophiae naturalis principia mathematica,” we

might in time hope to be furnished with more true and certain knowledge

in several parts of this stupendous machine, than hitherto we could have

expected. And though there are very few that have mathematics enough

to understand his demonstrations; yet the most accurate mathematicians,

who have examined them, allowing them to be such, his book will deserve

to be read, and give no small light and pleasure to those, who, willing to

understand the motions, properties, and operations of the great masses of

matter in this our solar system, will but carefully mind his conclusions,

which may be depended on as propositions well proved.

(1823, IX, pp. 186–187; emphasis added)17

On my reading of Locke’s remarks, it is the first line of this passage that is most

telling, for here, Locke makes clear the contrast between physics and Newton’s

study of nature. Specifically, what Locke indicates in the passage above is

that physics, as it is currently practiced, offers little hope for establishing “a

body of natural philosophy from the first principles of bodies in general,”

whereas Newton’s mathematical examination of planetary motions gives us

reason to believe that, in time, we can “be furnished with more true and

certain knowledge in several parts of this stupendous machine, than hitherto

we could have expected.” In other words, it is Newton’s study of the heavens

that engenders a hope that the areas of nature studied by the “physicist” can

be brought to the level of certainty Newton has already achieved. With these

sentiments, Locke is thus pointing not only to Newton’s Principia as a work of

astronomy. He is also pointing to an important, and, I claim, essential difference

between the methods and objects of astronomy and physics, which I discuss in

further detail below.

3.3 Dividing the labor of natural philosophers

At this point, careful readers of the Essay may have suspicions about the reading

of Locke’s attitude toward Newton’s program that I am forwarding, since

the division of natural philosophy into physics and astronomy that I claim

Locke accepts in the 1690s is not present in the Essay. Rather, in all editions

Locke promotes an experimental, natural historical program for improving

our knowledge of nature. In Book IV in particular, Locke heralds the use of

17 Winkler appeals to this passage in support of his claim that Locke was trying to defend
Newton’s mathematical physics (Winkler 2008, p. 244), though importantly, he omits
the first sentence of the passage where we find Locke contrasting physics with Newton’s
mathematical program of natural philosophy.
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experience, experiment, and natural history as the means by which we can

better catalogue the qualities of bodies and in turn, better understand the

causal operations between bodies and the causal processes that give rise to the

qualities we observe. He says, for instance,

In the Knowledge of Bodies, we must be content to glean, what we can,

from particular Experiments: since we cannot from a Discovery of their

real Essences, grasp at a time whole Sheaves; and in bundles, comprehend

Nature and Properties of whole Species together. Where our Enquiry is

concerning Co-existence, or Repugnancy to co-exist, which by Contem-

plation of our Ideas we cannot discover; there Experience, Observation,

and natural History, must give us by our Senses, and by retail, an insight

into corporeal Substances. The Knowledge of Bodies we must get by our

Senses, warily employed in taking notice of their Qualities, and Operations

on one another.

(IV.xii.12)

In a similar vein, Locke remarks that crafting “rational and regular experiments”

and amassing “historical observations” will allow us greater (albeit not perfect)

insight into the properties of those bodies we are investigating. Though these

methods ultimately prohibit us from establishing a perfectly scientific natural

philosophy characterized by demonstrative knowledge and certainty, they are

the best we have at our disposal:

I deny not, but a Man accustomed to rational and regular experiments

shall be able to see farther into the Nature of Bodies, and guess righter at

their yet unknown Properties, than one, that is a Stranger to them; But

yet, as I have said, this is but a Judgment and Opinion, not Knowledge and

Certainty. This way of getting, and improving our Knowledge in Substances

only by Experience and History, which is all that the weakness of our

Faculties in this State of Mediocrity, which we are in in this World, can

attain to, makes me suspect, that natural Philosophy is not capable of

being made a Science. We are able, I imagine, to reach very little general

Knowledge concerning the Species of Bodies and their several Properties.

Experiments and Historical Observations we may have, from which we

may draw Advantages of Ease and Health, and thereby increase our stock

of Conveniences for this Life: but beyond this, I fear our Talents reach not,

nor are our Faculties, as I guess, able to advance.

(IV.xii.10)

According to Anstey (2002, 2003), the above pronouncements in Book IV

of the Essay, as well as evidence from Locke’s own investigations into the

properties of air and blood, reveal that Locke accepted the construction of

natural histories as constitutive of natural philosophy (Anstey 2002, p. 68;

Anstey 2003, p. 27). That is, he promoted and employed a method of historical

observation that, following Bacon and Boyle, demanded the compilation of
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“vast collections of facts about particular objects or qualities” (Anstey 2002,

p. 71). These collections of facts in turn supply the foundation both for our

knowledge of particular things and for the construction of “true axioms” that

express causal explanations for the qualities of and interactions between bodies,

which we witness in nature.18

Though I agree with Anstey that claims made in the Essay support Locke’s

embrace of natural historical methods, Locke’s claims from the 1690s reveal

that natural history is constitutive of one arena of natural philosophy. Namely,

natural historical methods ought to be used when investigating those objects

on which we can conduct experiments, that is, when doing physics. When, in

contrast, we investigate bodies on which we cannot conduct experiments, as

Newton does when investigating the forces and motions of planetary bodies,

Locke opens the door for the natural philosopher to adopt different methods

of inquiry.

To be clear, I am not suggesting that Locke took a step away from his naturalist

commitments. Rather, I am suggesting that Locke came to embrace a general

framework for natural philosophy set out by Robert Boyle in the early 1660s, a

time when, Milton (1994) notes, “Locke seems to have been reading everything

that Boyle was having published” (Milton 1994, p. 37).19 During this period, as

Boyle attempted to account for the use of mathematics in natural philosophy,

he developed an important distinction between the methods and objects of

the “practical” and “speculative” naturalists. As I argue in Section 3.4, it is

this distinction that we see at play in Locke’s later writings as he was trying to

meet the challenge Newton’s Principia posed to his earlier account of natural

philosophy.

18 My account of natural history is drawn from Anstey (2002), whose more detailed account
relies on the “Preparative toward a Natural and Experimental History” that Bacon
appended to the Novum Organon (cf. Anstey 2002, pp. 71–72). Anstey’s overall aim
in Anstey (2002) is to establish the influence of Bacon’s account of natural history, as
filtered primarily through the writings and work of Boyle, on Locke’s interpretation of
how to properly practice natural philosophy. While I do not dispute the importance of
Bacon’s work for Locke, I lay emphasis below on the impact of a distinctively Boylean
feature of natural history on Locke’s understanding of natural philosophy. As a note, it is
to Anstey’s work that Winkler appeals when he admits that the primary image of natural
philosophy presented in the Essay is natural-historical rather than mathematical (Winkler
2008, p. 232). For a reading of Locke’s method for natural philosophy in the context of
his embrace of a deductive ideal for scientific knowledge, see Section 10.1 of De Pierris
(this volume).

19 Boyle was the natural historian who arguably exerted the greatest direct influence on
Locke’s account of natural philosophy: Locke shared a close professional association
with Boyle, and Boyle was the most well represented author in Locke’s library. Recent
commentators who discuss the impact of Locke’s connection to Boyle on his philosophical
outlook include (but are certainly not limited to) Alexander (1985), Anstey (2002), Rogers
(1966), Stewart (1981), and Woolhouse (1971).
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Now, according to Boyle, the practical (or experimental) naturalist and

the speculative (or theoretical) naturalist play complementary roles in natural

philosophy: the practical naturalist conducts experiments and gathers empirical

evidence, while the speculative naturalist posits hypotheses concerning the

causal interactions that give rise to what we observe.20 As Francis Bacon before

him, Boyle emphasizes that the order of events is crucial to the success of

natural philosophy: the key is to put the practical and speculative naturalist in

proper conversation with each other.21 And as his naturalist predecessor, Boyle

grants the practical naturalist the lead role so that the speculative naturalist can

formulate better, more accurate causal hypotheses. Thus, in the Preface to “A

Defense of the Doctrine Touching the Spring and Weight of the Air” (1660),

Boyle explains his own role as a practical naturalist:

For first, as I elsewhere declare, it was not my chief design to establish

theories and principles, but to devise experiments, and to enrich the his-

tory of nature with observations faithfully made and delivered; that by

these and the like contributions made by others, men may in time be fur-

nished with a sufficient stock of experiments to ground hypotheses and

theories on.

(Boyle 1772, I, p. 121)22

The same sentiment is repeated in his “Proëmial Essay” (1661), where Boyle

admits his “disabilities” as a speculative naturalist and appoints himself as a

practical “under-builder” who will establish natural histories that can serve as

the foundation for those more adept at positing causal hypotheses.23

20 See Anstey (2005) for a nice overview of the different ways the distinction between
“practical” (or “experimental”) and “speculative” natural philosophers was used during
the second half of the seventeenth century.

21 My reading of the ties between Bacon and Boyle is indebted to Rose-Mary Sargent’s very
important work on this topic (see Sargent 1994, 1995). Sargent draws three important
parallels between the naturalism of Bacon and Boyle: both inverted the order of proof
and discovery, both accepted the link between knowledge and power, and where Bacon
promoted the marriage of “rationalism” and “empiricism,” Boyle promoted the marriage
of the “speculative” and “practical” parts of learning (Sargent 1994, pp. 58–59).

22 Citations to Boyle’s writings refer to the volume and page numbers included in The Works
of Robert Boyle (1772).

23 In a modest tone, he writes, “I have often found such difficulties in searching into the
cause and manner of things, and I am so sensible of my own disability to surmount
those difficulties, that I dare speak confidently and positively of very few things, except
matters of fact. And when I venture to deliver any thing, by way of opinion, I should, if
it were not for mere shame, speak more diffidently than I have been wont to do . . . I am
content, provided experimental learning be really promoted, to contribute even in the
least plausible way to the advancement of it; and had rather not only be an under-builder,
but even dig in the quarries for materials towards so useful a structure, as a solid body
of natural philosophy, than not do something towards the erection of it” (Boyle 1772, I,
p. 307).
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The division of labor that Boyle establishes for the practical and speculative

naturalists informs his attitude toward the integration of mathematics with

natural philosophy.24 Boyle places clear limits on how we should integrate

mathematics with our study of nature and resists an approach to nature that

takes a mathematical view of natural bodies as its starting point. For instance,

he cautions that

we must not expect from mathematicians the same accurateness, when

they deliver observations concerning such things, wherein it is not only

quantity and figure, but matter and its other affections, that must be

considered.

(Boyle 1772, I, p. 347)

He elaborates further that

the phenomena which the mathematician concurs to exhibit, do really

belong to the cognizance of the naturalist. For when matter comes once

to be endowed with qualities, the consideration how it comes by them, is

a question rather about the agent or efficient, than the nature of the body

itself.

(Boyle 1772, III, p. 427)25

Nonetheless, Boyle recognizes the usefulness of mathematics for natural

philosophy as detailed in his aptly titled “Of the Usefulness of Mathematicks

for Natural Philosophy” (1663; Boyle 1772, III, pp. 425–434). At the very outset

of the tract, he notes that intense study of mathematics can “much improve

reason, by accustoming the mind to deduce successive consequences” (Boyle

24 Boyle’s attitude toward the integration of mathematics with natural philosophy is also
informed by his nominalist commitments. For more on this issue, see McGuire (1972),
who suggests that in subscribing to an ontology of particular entities and rejecting the
reification of concepts, Boyle “dissociates himself from the Paracelsians, the Helmontians,
the Cambridge Platonists, and by implication from Newton himself who was very much
in the tradition of the Platonists” (McGuire 1972, p. 528). As Eric Schliesser has stressed
to me, given Boyle’s distaste for the mathematical natural philosophy of the Cartesians,
Descartes should also be included on McGuire’s list.

25 Following Shapin (1988), the hesitancy Boyle voices towards mathematical natural phi-
losophy in these passages is intertwined with Boyle’s embrace of a “particularist” ontology
according to which “[w]hat had real physical existence in nature were particulars: par-
ticular things, particular bodies, particular events” (Shapin 1988, p. 39). In other words,
because of Boyle’s commitment to an ontology of particulars, “the legitimate search for
natural regularities implied . . . the use of observational and experimental methods and
the exclusion or limitation of rationalist practices” (ibid., p. 39). In this respect, “mathe-
matical representations of reality pointed to an improper ontology” (ibid., p. 33), because
there are, for Boyle, no natural entities that correspond to the abstract a priori objects
employed by the mathematicians. Nonetheless, as we will see immediately below, there
are cases where Boyle does in fact promote the use of mathematics in natural philosophy,
namely, in our investigations of celestial bodies.
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1772, III, p. 426) – a skill, of course, required by the speculative naturalist in his

attempts to establish causal laws that hold between natural bodies. However, the

practical naturalist can also reap rewards from mathematics by appealing to the

diverse properties of figures and the proportions that hold between them as she

endeavors to construct experiments. In general, Boyle urges that the doctrine of

proportions assume a central place in the practical naturalist’s examination of

observational data, for “as it is the soul of the mathematics themselves,” it not

only “helps the naturalist . . . to understand diverse phenomena of nature, . . . it

may enable him to perform diverse things, which he could not perform without

it” (Boyle 1772, III, p. 432).

Boyle’s strongest support for the use of mathematics is voiced in his discus-

sion of astronomy, where he endorses the use of a mathematical method to

chart the motions and positions of heavenly bodies. On his score, we will only

be able to decide whether the Ptolemaic or the Copernican system is the true

system of the world by appealing to the doctrine of the sphere and applying

a mathematical framework to the heavens (Boyle 1772, III, p. 429).26 And as

his remarks indicate, mathematics can be of greater help in this arena, because

using mathematics, we are able to to catalog the positions and motions of

distant celestial bodies without relying on hypotheses about the true nature

of these remote bodies or the causes of their motions. In other words, math-

ematics enables the astronomer to generate a map of the heavens that can

serve as a reliable, metaphysics-free basis upon which causal hypotheses can be

established. He writes,

That then the knowledge of celestial bodies is not well to be attained, nor

consequently the theories proposed of them, to be intelligently judged of,

without arithmetick and geometry (those wings on which the astronomer

soars as high as heaven) he must be very little acquainted with astronomy,

and particularly with the various and too often intricate theories of planets,

that can doubt. And truly, when I consider the astonishing distance and

immensity of the celestial bodies, and those almost numberless fixed stars

(each of them perhaps much vaster than the whole earth) which in a clear

night I take pleasure to gaze at through the better sort of telescopes, both

26 He writes, “indeed what satisfactory account can be given of the varying lengths and
vicissitudes of days and nights, and eclipses of the sun and moon, the stations and
retrogradations observed in planets, and other familiar celestial phenomena, without
supposing these great mundane bodies to have such situations in respect to one another,
and to move in such lines, or at least to be made to appear to move in them by the motion
of the earth in such a position, and in such lines? Nay, how without the knowledge of the
doctrine of the sphere will the naturalist be able to make any sober and well grounded
judgment in that grand and noble problem, which is the true system of the world?
Which is endeavored to be solved after such differing manners by the Ptolomaens and
Peripateticks, by the Tychonians and by the Copernicans, both less and more modern”
(Boyle 1772, III, p. 429).
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in the milky way, and in other parts of the sky, that seem not so much as

whitish to our eyes; I cannot but highly prize a science that acquaints us,

that what we know of so much of the universe as the globe we inhabit and

call the world, is but a point to it, taking up a little more room in it, than

physical center in the sphere.

(Boyle 1772, III, p. 429)

As indicated by these remarks, the proper methods of astronomy are deter-

mined by the types of objects under investigation. Given the “astonishing

distance and immensity of the celestial bodies,” and specifically, their distance

from our senses, we should not speculate about the metaphysical constitution

of these bodies in our astronomical pursuits (as, for instance, Scholastic nat-

ural philosophers do when they propose the fifth element of ether to explain

planetary motion). Rather, we should rely on what we can observe of these

bodies, namely, their shapes and positions, and use these observations as the

foundation of our investigations. And, as Boyle has it, these observations will

best serve the speculative naturalist, who is attempting to establish the “true

system of the world,” if they are rendered in mathematical form. For just as

geography offers a helpful mathematical framework for navigation (Boyle 1772,

III, pp. 429–430), so too does astronomy offer a mathematical, metaphysically

neutral framework that allows us to understand our terrestrial place among the

stars.

According to Boyle’s discussion of the practical and speculative naturalists,

the type of object under investigation helps determine the extent to which math-

ematics can be fruitfully employed in natural philosophy. When we investigate

terrestrial objects with which we have direct sensory access and upon which

we can conduct experiments, the practical naturalist ought to remain cautious

about reducing these bodies to their quantitative features. However, when we

investigate celestial objects that are more removed from our senses and upon

which we cannot conduct experiments, the practical naturalist can catalog the

observed positions and motions of these bodies more effectively when these

positions and motions are placed in a mathematical framework. For without

immediate or direct sensory contact with these objects, geometry and arith-

metic – “those wings on which the astronomer soars as high as heaven” – allow

the astronomer to map the positions and motions of these heavenly spheres

without also having to speculate about the metaphysical constitution of the

objects under investigation.27

27 In this respect, Boyle appears to share Bacon’s general stance toward the relationship
between observation, mathematics, and astronomy. According to Bacon – and consistent
with his pronouncement in the Novum Organon that “inquiries into nature have the best
result when they begin with physics and end in mathematics” (II, p. 8) –, the natural
historian ought to take a lead role even in our investigations of the heavenly bodies.
Though Bacon admits that the current success of astronomy “owes little to observation
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3.4 Locke’s qualified embrace of Newton’s mathematical
natural philosophy

Though Locke does not explicitly employ Boyle’s distinctions between the prac-

tical and speculative naturalists or appeal to the discussion of mathematics in

the 1663 “Of the Usefulness,” Boyle’s remarks can help us make better sense

of Locke’s simultaneous advocacy for the natural history model of natural phi-

losophy and Newton’s mathematical model of natural philosophy. For texts

from the Essay and Locke’s later writings suggest that the natural historical

method is the method for the practical naturalist investigating terrestrial bod-

ies, whereas the mathematical-demonstrative method is the method for the

speculative naturalist investigating celestial bodies.

Notice, for instance, that when Locke endorses natural historical methods in

Book IV of the Essay, the natural investigations he describes take our sensory

access to nature as their starting-point, and the methods Locke recommends –

observation, experiment, and natural history – are methods that enable us to

improve and better organize the data that our senses report. These data, in

turn, enable the naturalist natural philosophy to “see farther into the Nature

of Bodies, and guess righter at their yet unknown Properties” (IV.xii.10), that

is, they enable the naturalist to craft a more complete idea of body and thereby

enlarge our knowledge of nature (IV.xii.14). The insight we gain about the

nature of corporeal substances by applying the naturalist method is thus not

grounded on conjectures or principles;28 it is rather focused on cataloging the

properties of those bodies we can observe and on which we can conduct exper-

iments. In other words, it is a “bottom-up” project assigned to the practical

naturalist who aims to gather and organize empirical evidence that will inform

the construction of principles and theories.

Importantly, Newton’s methods and aims are not couched in the same terms.

First and foremost, as we saw above, Newton’s work is characterized by Locke

as a work of astronomy – as an investigation of bodies which are more distant

from our senses. Certainly, we can observe these bodies and carefully chart

their positions, but a method of “rational and regular experiment” will be of

no help in this domain. And thus we find Locke situating Newton among the

and axioms of nature,” he suggests that astronomy, like all other sciences, can be improved
by assimilating it with the observations and axioms of the naturalist (I, 85). For more on
Bacon’s attitude towards astronomy, see Rees (1986).

28 Locke does make room for the use of hypotheses when describing naturalist natural
philosophy in the Essay (IV.xii.13), but following Anstey (2003), Locke is highly cautious
and limits the use of hypotheses. They are, for Locke, aids for our memory and can, when
used correctly, direct us to new discoveries (cf. Anstey 2003, pp. 31–33). As such, my
main point above remains: the naturalist natural philosopher is urged not to begin her
investigations with hypotheses and must take care not to ground her knowledge claims
on anything other than the evidence gained via sensory interaction with natural bodies.
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speculative naturalists that Boyle describes, that is, as a natural philosopher

who takes a theoretical, “top-down” approach to celestial bodies and begins his

investigation of planetary motions with laws and principles in hand.

For instance, in his Elements of Natural Philosophy (1698ff.), Locke remarks

that “It appears, as far as human observation reaches, to be a settled law of

nature, that all bodies have a tendency, attraction, gravitation towards one

another”; this “fact is made evident to us by experience” and, Locke claims, can

safely be taken as “a principle in natural philosophy” (1823, III, pp. 304–305;

emphasis added). He claims as well in Of the Conduct of the Understanding

(1697) that “all bodies gravitate toward one another” is included among the

“fundamental truths that lie at the bottom, the basis upon which a great many

others rest.” Locke’s descriptions of gravitation as a “fundamental truth” and

“principle” of natural philosophy are important, because they help separate

Newton from the practical naturalist. While the practical naturalist aims to

increase the store of “facts” regarding the particular bodies and qualities in

nature, and should do so using the natural historical method outlined in

Book IV of the Essay, Newton instead establishes a law of nature – the law

of universal gravitation – based on empirical evidence, namely, based on his

empirically derived laws of motion, and then uses this law to explain other

natural phenomena. That is, on Locke’s reading, Newton establishes and accepts

gravitation as a “fundamental truth,” and this truth, or principle, then guides

his further investigations of nature.29

This reading of Newton’s method also helps us make sense of why Locke

suggests to Stillingfleet that Newton’s proposal of universal gravitation is not

grounded on the same sort of empirical evidence that we use to improve our

idea of body. Whereas the practical naturalist is focused on the properties of

bodies that we learn via sense experience, Newton proposes a law that helps

make sense of how bodies interact, and also grants us a broader view of how

God may govern bodies than our senses and understanding may indicate. Thus,

in explaining why he is willing to revise his understanding of how bodies act

upon one another, Locke writes:

It is true, I say [at Essay II.viii.8], “that bodies operate by impulse, and

nothing else.” And so I thought when I writ it, and can yet conceive no

other way of their operation. But I am since convinced by Mr. Newton’s

incomparable book, that it is too bold a presumption to limit God’s power,

in this point, by my narrow conceptions. The gravitation of matter towards

matter, by ways inconceivable to me, is not only a demonstration that God

can, if he pleases, put into bodies powers and ways of operation, above

29 The proposal of attraction-at-a-distance was, of course, historically contentious. Even
Newton himself appears to back away from the proposal, or at least become more cautious
about action-at-a-distance, in the letters written to Bentley during 1692 to 1693. For more
on this issue, see Schliesser (2010b).
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what can be derived from our idea of body, or can be explained by what

we know of matter, but also an unquestionable, and every where visible

instance, that he has done so. And therefore in the next edition of my book,

I shall take care to have that passage rectified.

(1823, IV, pp. 467–468; cited in Winkler 2008, 243)

What is striking about Locke’s remarks is that he is contrasting the notion of

attraction proposed by Newton with what we learn about bodies from our

sensory interaction with matter. As he suggests, to claim that bodies share a

gravitational attraction is to claim at the same time that “God can, if he pleases,

put into bodies powers and ways of operation, above what can be derived from

our idea of body, or can be explained by what we know of matter” (emphasis

added). In line with the interpretation I forward above, Locke is suggesting

that Newton starts with a principle of nature – the law of attraction – that is

not grounded simply on what we learn about the properties and qualities of

matter from our sensory experience.30 While there is empirical evidence that

supports Newton’s assumption of gravitational attraction, Newton has taken

a step beyond what careful observation reveals about those bodies before our

senses. He has, in particular, proposed a principle of nature that places these

bodies into a certain kind of causal relation and thereby grants us insight into

how God may govern these very bodies.31

30 Here I depart from Winkler, who takes the passage to Stillingfleet as evidence that Locke
credits Newton with improving our idea of body by discovering that bodies obey an
inverse-square law (cf. Winker 2008, p. 242). My reading of this passage does agree with
that presented by Downing (2007, p. 375).

31 We also notice in these remarks Locke’s willingness to extend gravitation to terrestrial
bodies as he claims that there are “every where visible” instances of attraction in nature.
However, the emphasis of my treatment remains: on Locke’s reading, Newton adopted a
“speculative” methodology in his astronomy, one that commences with the proposal of
a “fundamental truth” of nature. In this respect, the contrast between Lockean “physics”
and Lockean “astronomy” remains intact. However, to be clear, I am not attributing
to Locke the claim that Newton has successfully transformed natural philosophy into a
demonstrative science. Even though, on Locke’s reading, Newton has established uni-
versal gravitation as a “principle” and “fundamental truth” of natural philosophy, his
results will still retain the status of “judgment and opinion,” because he is applying his
claims to imperfectly known natural bodies. Reiterating the point originally made in
the Essay (IV.xii.10), Locke states in Section 190 of Some Thoughts Concerning Education
(1693/1989), entitled “Natural Philosophy,” “Natural philosophy, as a speculative science,
I imagine, we have none; and perhaps I may think I have reason to say, we never shall be
able to make a science of it. The works of nature are contrived by a wisdom, and operate
by ways, too far surpassing our faculties to discover, or capacities to conceive, for us ever
to be able to reduce them into a science. Natural philosophy being the knowledge of
the principles, properties, and operations of things, as they are in themselves, I imagine
there are two parts of it, one comprehending spirits, with their nature and qualities [i.e.,
metaphysics]; and the other bodies” (1823, VII, p. 182; emphasis added).
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Appreciating the qualifications Locke uses to characterize Newton’s Prin-

cipia achievement, we are in a better position to see how Locke can maintain

his simultaneous commitment to a natural historical model of natural philos-

ophy and Newton’s mathematical-demonstrative natural philosophy. Since on

my reading Locke was defending Newton’s mathematical astronomy, not his

mathematical physics, Newton could use a speculative, mathematical method

for investigating the motions of heavenly bodies that does not violate the nat-

uralist commitments presented in the Essay.32 While the practical naturalist

should not invoke hypotheses and theories as she observes the particular bod-

ies and qualities in the terrestrial world, the speculative naturalist is assigned

the very task of proposing hypotheses and theories in order to establish laws

of nature based on the evidence amassed by the practical naturalist. And in

line with Boyle’s remarks, the speculative astronomer, who examines objects on

which experiments cannot be conducted, should invoke a mathematical system

in order to better chart their positions and motions. For in this arena, where

experiment cannot help natural philosophy progress, mathematics offers a way

of reaching a better understanding of the solar system that does not force the

astronomer to make unnecessary metaphysical assumptions. On my reading,

this is precisely what Locke’s Newton does: he first establishes the law of uni-

versal gravitation as a “fact . . . made evident to us by experience” and then, by

accepting this law as a “fundamental truth,” applies mathematics to the heav-

enly realm of nature and thereby provides us a “good and clear account . . . of

this our planetary world, and the most considerable phaenomena observable

in it.”33

32 On this point I depart from Stein (1990), who claims that Locke’s acceptance of the
truth of universal gravitation, as evidenced in the Stillingfleet correspondence, “suggests
that [Locke] is less firmly committed to his ‘official’ epistemology (and metaphysics)” as
presented in the Essay (Stein 1990, p. 33). My claim is that by appeal to Boyle’s general
framework for natural philosophy, Locke can consistently accept universal gravitation as
a “fundamental truth” of natural philosophy, as qualified above, and maintain the stated
doctrines of the Essay.

33 While a detailed treatment of the accuracy of Locke’s reading goes well beyond the scope
of this chapter, some brief remarks are certainly in order. To some readers, the reading I
attribute to Locke may seem extremely misguided if not categorically wrong, since now,
some 300 years after the first edition Principia appeared, it is standard to look to Newton’s
masterpiece as a work that collapsed the divide between the celestial and terrestrial. In
other words, from our contemporary standpoint, Newton was not doing astronomy but
a general physics and mechanics that encompassed all the motions and forces in nature.
However, what we have to bear in mind is that Locke had access only to the first edition
Principia, and immediately after its publication, the full significance of Newton’s achieve-
ment was not yet appreciated. For instance, Locke’s qualified embrace of Newton’s use of
gravitation receives some support from the position taken by Christiaan Huygens, who
was not convinced that, in the first edition Principia, Newton had succeeded in confirming
the existence of universal gravitation. Namely, Huygens claimed, on empirical grounds,
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3.5 Conclusion: revisiting the mystery of the
“Under-Labourer” Passage

What we have then from Boyle and, I claim, also from Locke, is a general

framework for natural philosophy where the proper methods for investigation

are determined based on our sensory access to the objects investigated. The

practical naturalist investigating terrestrial bodies, which we can sense as well

as manipulate, is assigned a method of historical observation and experiment

as she attempts to collect a store of facts that will allow us to improve our

ideas of bodies. In other words, their “historical observations” help ground our

systems of physics on the “first principles of bodies in general” – on the qualities

and properties that all bodies seem to share. As such, the practical naturalist

takes a “bottom-up” approach to nature and uses sense data to fashion a more

complete idea of body by reference to the qualities and properties gathered

from observation and experiment. In contrast, the speculative naturalist, on

the other hand, takes a “top-down” approach to nature and begins with laws and

principles, which rest on observational data collected by the practical naturalist,

and then applies these laws and principles to other areas of nature. And as we

see in both Boyle’s comments about the speculative naturalist investigating

celestial bodies and Locke’s characterization of Newton’s success in natural

philosophy, the speculative naturalist investigating celestial bodies on which

experiments cannot be conducted is granted a theoretical and mathematical

method to deepen our understanding of an area of nature where experiment

cannot carry us forward.

Adopting this general framework for natural philosophy allows Locke to

embrace the mathematical-demonstrative method Newton employed in the

Principia while still holding firm to the natural historical commitments voiced

in the Essay. It also allows us to address the apparent mystery posed by the

“Under-Labourer” passage with which I began the paper. On the face of it,

the association of Newton with Boyle – a mathematical natural philosopher

with a naturalist natural philosopher – seems odd, if not grounded on some

gross misunderstanding of Newton’s work in the Principia. However, as I have

argued, the key to unlocking this puzzle is to resist trying to locate a common

feature of the methods which Newton and Boyle employed. The key is rather to

focus on Locke’s claim that they are “Master-Builders” who are “advancing the

that Newton’s first edition succeeded in establishing only inverse-square celestial gravity,
not terrestrial gravity. (See, for instance, on this issue, Schliesser and Smith (forthcoming)
and Section 2 of Maglo (2003).) When later editions emerge (the second in 1713 and the
final third edition in 1726), the evidence for terrestrial gravity is strengthened, as detailed
in Smith (2002a) and (2002b); however, these are editions to which Locke did not have
access (he died in 1704).
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Sciences” – in the plural. On my reading, Locke’s Newton and Locke’s Boyle are

advancing different sciences – Newton astronomy and Boyle physics. To place

them together as Master-Builders is thus not to attribute to them a common

method or even a common domain of inquiry. It is rather to underscore that

each has mastered the methods appropriate to their chosen sub-discipline of

natural philosophy.
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What geometry postulates

Newton and Barrow on the relationship

of mathematics to nature

katherine dunlop

An outstanding challenge facing Newton scholars is to understand his Pref-

ace to the Principia as a unified introduction to the work. The first half of

the Preface explains how geometry is related to mechanics: it is a “part of

universal mechanics.” In the second half of the Preface, Newton asserts the rel-

evance of mechanics to natural philosophy. He outlines how he will solve “the

whole difficulty of natural philosophy,” which is “to discover the forces of nature

from the phenomena of motion.” He will first (in Books I and II) demonstrate

propositions mathematically, then (in Book III) use them to derive actual grav-

itational forces from celestial phenomena. He can be taken to hint that forces

are already “discovered from phenomena” in Books I and II when he says

of Book III only that it “illustrates their results” as it explains [explicare] the

“system of the world” (p. 382). To find unity in the Preface, we must relate

Newton’s discussion of the relationship between geometry and mechanics to

his approach to forces in Nature.

What emerges most clearly from these remarks is Newton’s opposition to

Descartes. Descartes famously failed to derive mathematical laws of motion

from the “mechanical” interactions (characterized more precisely in Section

4.3.2 below) to which his science limited itself. Newton promises to discover

fundamental interactions from quantitative relations of motions and forces,

deduced in the first two Books. Newton’s opposition to Descartes’s classification

of curves, which features in important recent commentary, provides one link

between the Preface’s halves. In (1637) Descartes claims that “mechanical”

curves – those not generated by sufficiently determinate motions – are not
“geometrical,” meaning that their magnitude cannot be known exactly. The

distinction is inimical to Newton’s project because it curtails mathematical

treatment of the phenomena represented by curves.

I wish to acknowledge very helpful comments by Helen Hattab, Andrew Janiak, Charles
Larmore, George E. Smith, and especially Douglas Marshall and Eric Schliesser.
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Without taking away from the importance of Descartes for Newton’s remarks,

I wish to consider them in relation to another historical figure, Isaac Barrow.

Newton claims that geometry is specifically “that part of universal mechanics

which reduces the art of measuring to exact propositions and demonstrations”

and thus has its “foundation” in “mechanical practice.” Before him, Barrow

contended that the physical import of mathematical sciences is guaranteed by

their postulates. My thesis is that in emphasizing the practice that grounds the

postulates, Newton pursues Barrow’s strategy for demonstrating mathemat-

ics’ relevance to causality. He can thus make good on his bold claims for the

“mathematical” treatment of force contained in the Principia’s first two Books.1

4.1 Synopsis of the chapter

Barrow contends that mathematics qualifies as science by (broadly) Aristotelian

standards. He is thus obliged to show that the properties it invokes in demon-

stration function as causes of its conclusions. He argues (as I explain in Section

4.2.1) that the (so-called auxiliary) constructions used in geometrical proof are

just the processes that give rise to its objects, and so cause the objects to have the

properties shown of them. To make clear that these processes are presupposed

as a foundation, he emphasizes that they occur in geometry’s definitions and

postulates. But definitions and postulates as Barrow understands them pertain

to a wide range of activities, not limited to the generation of objects. Barrow

introduces a notion of “formal” causality (which would not be recognized by

an Aristotelian), on which all of these qualify as causes. He maintains that

this notion is preferable to that of efficient causation for purposes of scientific

explanation. Barrow further argues, although his purpose does not require

it, that objects answering to geometrical conceptions can be found in nature
through the activities enjoined by postulates. In Section 4.2.2, I present his

case and suggest that his liberal understanding of postulates leads to difficulty.

Where the activities licensed by postulates do not first create objects, it is not

clear how they ensure the objects’ conformity to geometrical conceptions.

Section 4.3.1 presents evidence of the relevance of Barrow’s views for New-

ton’s Preface. Beginning in Section 4.3.2, I explain how Barrow’s views are useful

for Newton’s purposes. I first outline a difficulty faced by Newton. As Andrew

Janiak has made especially clear, Newton’s readers would expect him either to

explain gravity in terms of interactions at the surface of bodies, or to retract his

claim to have discovered the cause of motions. To escape the dilemma, Newton

1 To be sure, Newton later distinguishes the content of Books I and II from “physical” argu-
ment, and claims that only the latter can establish the “physical varieties and relationships”
and “physical causes and seats” of forces (Def. VII, p. 407) or attribute them “in a true
and physical sense” to loci (p. 408). But he does not pronounce on the question whether
mathematical argument is capable of relating forces in any way to effects.
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claims to pursue “mathematical” investigation of force – specifically to mea-
sure things, to geometry’s standards of precision – while deferring “physical”

investigation of the conditions under which they are possible. An important

difference between his view and Barrow’s is that Barrow aims to supplant the

prevailing conception of causality, while Newton leaves open that the concep-

tion assumed by his readers will apply at a later stage of investigation. Still (as

I argue in Section 4.3.3), Newton follows the precedent set by the division of

labor between geometry’s first principles, as both he and Barrow understand

them. What Newton thus derives from Barrow is at least a way to distinguish

his approach from those that then dominated natural philosophy. This demar-

cation of research topics has also been singled out as the element that gives

Newton’s method its power.2

Next, I consider how Newton can justify his claim to capture causal rela-

tionships. Because Newton frankly acknowledges that mathematical results can

fail to correspond to Nature,3 he is obliged to find conditions under which a

result can be regarded as physically significant. I draw on George E. Smith and

William Harper’s accounts of how, according to Newton, phenomena can be

taken as measures of gravitational force. Smith, in particular, finds Newton to

be deeply concerned with the conditions on scientific measurement. My aim is

to embed Newton’s procedure still more deeply in a philosophical context: in,

namely, reflection on the way geometry’s first principles secure physical signif-

icance for its conclusions. In Section 4.3.4, I show that the approach attributed

to Newton by these scholars exemplifies the use of postulates in geometry, as

conceived by Barrow. In Section 4.3.5, I argue that on Newton’s more precise

understanding of postulates, they justify treating results as measurements. I

hope thereby to make clear how the beginning of the Preface, with its focus on

postulates as the link between geometry and mechanics, lays the ground for

the results that follow.

4.2.1 Barrow on the definition of geometrical objects

In his first year as Lucasian Professor at Cambridge, Barrow gave a series of

lectures “aimed at reviving interest in mathematics” (Mahoney 1990, p. 181).

The content of the lectures is what would now be recognized as foundations of

mathematics. They primed the audience not to do mathematics, but to consider

2 By I. Bernard Cohen, to take one prominent example. See for instance his (1980, p. 75).
Similar views are expressed by Charles Larmore (1987, p. 94) and Patrick Suppes (1962,
p. 118).

3 Most explicitly in a draft of Book II of the Principia, published in 1728 as A Treatise on
the System of the World. Newton contrasts “mathematical” and “natural” points of view,
claiming that the “distinction between” attracted and attracting bodies belongs “more”
to the former than the latter. (Thanks to Eric Schliesser for calling my attention to this
passage.)
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it “as a body of learning and as a mode of reasoning,” thus “fixing its place and

role in the catalogue of the sciences” (Mahoney 1990, p. 183).

Barrow’s overarching goal is to show that metaphysics qualifies as a science by

traditional standards. These criteria, which derive from the Posterior Analytics,
concern the manner in which conclusions are drawn. They require inferences to

be explanatory in at least two ways. The principles of the science must be more

general than its conclusions, and whatever is deductively prior must also be

“prior in the order of nature,” meaning that it functions as the (formal, material,

final, or efficient) cause of its consequence. In an Aristotelian framework,

inferences can be rigorously expressed only as syllogisms. Thus, to demonstrate

a conclusion with scientific rigor was to link it to the major premise by a “middle

term” that functions as its proximate cause. Typically, the middle term involves

properties that belong to the subject (of which the conclusion is predicated) in

virtue of what it is. Middle terms thus function as answers to the question of

what a thing is, i.e. (real) definitions; they articulate essence, in the sense of an

inner principle that explains all properties of the object that are relevant for the

science. (However, they cannot be assumed to pertain to natures, i.e. the inner

principles of change that comprise the subject-matter of natural science.)

At the basis of Barrow’s defense of the scientific status of mathematics is his

conception of definition. He points out that “Mathematicians do sometimes

define [magnitudes] and deduce their properties” by “their Generations.” In

these cases, names are affixed to the objects that result from certain processes.

For example, a circle is defined as the figure “described by the carrying about

of a Right Line one of whose extremes is fixed” (p. 61) as follows: “The plane
Figure which is produced from the Rotation of a Right Line may be called a Circle:

Or a Circle is a plane Figure which is produced by the Circumduction of a Right
Line” (p. 129).

Barrow’s point is that the constructions that occur in definitions of this kind,

and are therefore essential to the objects, are also the steps by which geometrical

proof proceeds. In the preceding century, Jesuit writers familiar to Barrow had

argued that mathematical argument is not fully rigorous in form, in particular,

that the middle terms of mathematical syllogisms do not relate the conclusions

to the objects’ essences.4 They took as an example the proof that the internal

4 The debate over the scientific status of mathematics was shaped by the arguments of
Alessandro Piccolomini. In his 1547 Commentarium de certitudine mathematicarum disci-
plinarum, Piccolomini challenges the view, common to Averroës and Latin commentators
on Aristotle, that the reasoning used in mathematics is so rigorous as to place it first
among the sciences in certainty. His attack was carried further by Benedictus Peyrera in De
communibus omnium rerum naturalium principiis et affectionibus (1576) and answered by
Christopher Clavius in his commentary on Euclid’s Elements (1591) and Josephus Blan-
canus (Giuseppe Biancani) in De Mathematicarum Natura Dissertatio (1615), all fellow
Jesuits. On this debate, which became known as the Quaestio de Certitudine Mathemati-
carum, see Mancosu (1996, chapter 1) and Feldhay (1998). Barrow was exposed to it during
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angles of a triangle sum to 180◦ (proposition 32, Book I of Euclid’s Elements).

In the proof, the base of the triangle is extended to create an “external” angle,

this angle is divided by constructing a parallel to the triangle’s opposite side,

and the sum of the internal angles is shown to equal the sum of the angles thus

formed. The objection is that the extension of the base and the construction of

the parallel are not essential to the triangle, since it could perfectly well exist

without them.5 Barrow replies:

[B]ecause a Triangle is constituted of Right Lines, the Properties of a Right

Line do so far pertain to it. But it is the Property of a Right Line that it

may be produced; therefore this Production is not altogether accidental or

extrinsecal to a Triangle. In like manner it is also the Property of a Right

Line, as was before demonstrated, that another Right Line may be drawn

parallel to it through any Point without itself. Therefore this also agrees

essentially with a Triangle, as far as Right Lines (i.e. its Sides) do enter its

Constitution.

(p. 98)

But as Barrow was well aware, in geometry objects are often defined without

mention of the processes by which they are generated. (Indeed, Euclid defines

a circle as “a plane figure contained by one line such that all the straight lines

falling upon it from one point,” the center, “along those lying within the figure

are equal to one another” (p. 153)). Barrow maintains that every definition

is nonetheless “a Proposition wherein a Name is imposed, or ascribed from

some possible Supposition of a Thing clearly resulting; which Supposition,

being expressed in the Proposition, determines and circumscribes that Name”

(p. 129). So definitions, in general, determine that names are to apply to

whatever results from “suppositions,” of which generative procedures are a

special case. It matters only that the “supposed” possibilities “agree with their

Subject both necessarily and solely, i.e. . . . do so reciprocate with their Subject,

that if they be supposed, it is also supposed of Necessity.” For instance, it

agrees with a circle “that if any Point be assumed in the Diameter, and a Right
Line be erected perpendicular to the said Diameter meeting the Circumference,
the Square of the intercepted Line is equal to the [Product] of the Segments of the

travels in Italy, and in the Mathematical Lectures he refers to Peyrera and Blancanus by
name.

5 Thus, Piccolomini endorses the objection of ancient geometers that that from which the
angle-sum property is deduced is not essential to the triangle: “For even though there be
no exterior angle, the interior angles are equal to two right angles; for it is a triangle even
if its side is not extended” (in Proclus’s commentary on the Elements, quoted in Cozzoli
(2007, p. 166)). Peyrera charges, similarly, that the demonstrated property “will belong”
to the triangle “whether the side is produced and the external angle is formed or not, or
rather even if we imagine that the production of the one side and the bringing about of
the external angle is impossible.” Quoted in Mancosu (1996, p. 15).
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Diameter”, and “that every two Right Lines that can be drawn from the Extremities
of the Diameter to any Point in its Circumference will make a right Angle”, and

conversely “every Figure” that agrees with either of these is a circle (p. 85).

In order to show that mathematical proof is causal, Barrow must explain how

these defining properties can be causes.

The alternative definitions of a circle are equivalent in the important sense

that any one of them can be deduced from the others. Barrow claims that

whenever an “Affection be taken at pleasure before others for the Definition of

its Subject,” so that the others “necessarily follow and become known” through

it, it “so far supplies the place of a Cause” (p. 86). He contends that the “most

close and intimate Connection” or “mutual Causality and Dependence” of “the

Terms of a Mathematical Demonstration . . . may be called a formal Causality,

because the remaining Affections do result from that one Property, which is

first assumed, as from a Form” (88). In supposing that the defining property

determines the others as a formal cause, Barrow sides with the Aristotelian

tradition (Mancosu 1996, p. 14) rejected by the Jesuits.

Yet an orthodox Aristotelian conception does not have room (at any one level

of description) for alternative forms, each of which can be arbitrarily taken as

the explanatory basis for other properties. And Barrow shows little interest in

reconciling his view with tradition. Instead, he argues that nothing more can be

demanded of causal argument: it is not possible to link an effect with a unique

cause. Barrow claims, in particular, that “there can be no such Connection of

an external, ex. gr. efficient Cause with its Effect” through which either an effect

or a “determinate” cause is “necessarily supposed” by supposing the other.

His attack on efficient causation relies on a strongly voluntarist conception of

connections in nature, according to which “the Free-Will and Power of Almighty
God” to “hinder the Influx and Efficacy of any Cause”6 or produce an effect

by any means “at his Pleasure” makes “every Action of an efficient Cause, as

well as its consequent Effect, depend” on Him (p. 88).7 While Barrow knew

other ways to understand God’s power of choice, which would reconcile it with

the necessity of finite causes, he does not acknowledge them here.8 On his

6 For instance, it “does not follow that the Moon undergoes an Eclipse” in “that most
celebrated and trite Example of a Demonstration from the Efficient Cause . . . of the Earth’s
Interposition between the Sun and Moon.” For “if God please, the solar Rays may pass
through the Body of the Earth, or reach the Moon by an indirect Passage without touching
the Earth; or otherwise the Moon may be enlighted some other Way” (p. 90).

7 As Antoni Malet makes clear, it is by giving God a “decisive role in the day-to-day workings
of his creation” that Barrow can hold that His “‘free-will and power’ preclude us from
attributing necessity to any would-be efficient causal connection” (1997, p. 268).

8 For instance, prominent Scholastics held that God’s power can be understood in two ways,
“absolutely” (potentia absoluta) or as “ordained” (potentia ordinata) (see Osler 1994). Taken
absolutely or “in itself,” God’s power extends to all that is not logically contradictory. The
power to block the efficacy of causes is attributed to God in this sense. To understand God’s
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view, the connections between final and material causes and their effects are

likewise without the necessity required for demonstrative argument. Barrow

concludes that since “there is [no] other Causality in the Nature of Things,

wherein a necessary Connection can be founded” (p. 88), we have “nothing to

wonder at, that . . . no Demonstrations in Geometry” pertain to any other kind

of cause (p. 90). The thrust of his remarks is that if a framework for scientific

reasoning cannot accommodate mathematical argument, so much the worse

for that framework.

In dismissing efficient causes and reinterpreting formal causality, Barrow

seems to clear the way for an alternative conception of scientific explanation.

It has been suggested that by putting God “in direct control of the opera-

tions of nature” and emphasizing His immutability, Barrow “provides a greater

guarantee of the regularity of nature than when nature had been governed

by immanent powers and countless intermediaries”.9 Mathematical inference,

with its characteristic necessity, would then be an appropriate model for the

workings of Nature. Barrow’s rather cavalier treatment of the traditional frame-

work can thus be taken to reflect his confidence that mathematical reasoning

pertains to the natures of objects.10 In the context of the dispute over mathe-

matics’ status as a science, the question is whether mathematical inference as

he conceives it can legitimately take the place of more traditional notions of

causality.

As we have seen, the properties (or “affections”) stated in definitions can

be causal in the more familiar sense of bringing the defined object into being.

Barrow claims that definitions which “shew [the] possible Existence, and evi-

dently discover the Method of ” constructing a magnitude are of all “the most

lawful and the best” (p. 223; cf. p. 87), and accordingly focuses on them in his

attempt to exhibit the relevance of mathematical reasoning to nature. But the

generations of mathematical objects need not be understood as processes in

the natural world.11 To understand Barrow’s position, we must know what is

power in the second way is to relate it to what He has actually chosen in creating the natural
order. It is not necessarily a defect of His power, thus understood, to be constrained by
finite causal relations. In his sermons, Barrow acknowledges a distinction between the
“special interposition of [God’s] hand” and “the natural power” or “ordinary course of
inferior causes” (Hughes 1831, p. 378). However, his considered view appears to be that
“God performs miracles with the same actions that He takes care of the world,” as Malet
puts it (1997, p. 271).

9 Harrison (2002, p. 16). See also Malet (1997, p. 274).
10 As Mancosu puts it, Barrow “begins with the basic presupposition that mathematics is

the science par excellence. Nothing can be more remote from his perspective than the
subtle scholastic distinctions that had characterized the Renaissance contribution to the
Quaestio” (1996, p. 23).

11 This is shown by the example of Blancanus, who holds that the properties studied in
mathematics are essential to its objects, but denies that they pertain to objects in the
domain of natural science. See Mancosu (1996, p. 180).
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supposed, as a possibility, in a mathematical definition. It takes care to specify

the kind of possibility at issue, for Barrow’s text points in two directions.12

Barrow’s account includes two conditions for the possibility of the things

supposed in mathematical definitions. As a positive condition on possibility,

Barrow maintains that a thing can exist only in virtue of its efficient cause.

With his voluntarist conception of efficient causation, he is in position to

assert that all demonstrative knowledge depends on God, “not only on the

part of the knowing . . . Faculty, but also on the part of the knowable Object.”13

He also states a negative condition: that “nothing hinders, but there may be

such” (p. 111), or more formally, that what is supposed contains “nothing

impossible or inconsistent” (p. 108). Like the positive condition, the negative

one is given content by “the infinite and incomprehensible” power of God.

Barrow interprets it to mean that something is possible as long as God can

create a world in which it is the case. This is clear from the way he defends

the possibility of Galileo’s supposition “that heavy Things are naturally carried
towards the Center of the Earth with a Motion uniformly accelerated” and thus

his right to call his work “a new Science.”

But if it be false (as I think it not always true concerning many Causes) that

there is such a Motion in the present OEconomy of Nature; yet because

such a Motion may exist at the Pleasure of God, as implying nothing

in it contrary to Possibility, therefore the Conclusions, which result by a

lawful Inference from such a Supposition, ought to be accounted for lawful

Demonstrations.14

(p. 110)

Similarly, the demonstrations that astronomers base upon the Suppositions

“That the Motion of the Stars is in perfect Circles or Ellipses, and That they
are every Way regular and equable, also That they keep the same Periods of the

12 Cf. Mancosu (1996, p. 141).
13 Because “all Possibility intrinsically denotes a Respect to the Cause or Power by which the

Things do exist, which are called or conceived to be possible; therefore a Demonstration
supposes the Power which effecteth all Things that are conceived or supposed under
the Notion of Possibles, i.e. the infinite and incomprehensible Power of God, which can
produce whatever Effects we are able to conceive as possible, and innumerable other
beyond our Comprehension” (p. 110).

14 Barrow takes Galileo to correctly distinguish two kinds of investigation, but to locate his
own work on the wrong side of the contrast. In the Third Day of the Discorsi, Galileo
endorses the way of “pretending” by which some “have laudably demonstrated” the
“essentials” of “spiral and conchoidal lines” derived “from “certain motions,” paths of
which “nature makes no use.” Galileo claims, however, that he is not merely theorizing
about “some kind of motion invented at pleasure,” because his own definition of accel-
erated motion “agrees with the essence of naturally accelerated motion” (that is, with
nature’s use of “a certain kind of acceleration for descending heavy things”) (Galileo 1974,
p. 153).
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Times, and the same Orbits, with a perpetual Constancy” are “most true, and

their Astronomy true, not indeed of this World, but of ” one which “God may

create . . . , where the Stars will exactly agree with such Motions” (p. 111).

Moving from the mixed sciences to geometry, Barrow asserts that “though no

such Motions be ever found in the Nature of Things, as Geometricians suppose

to be described by Spiral Lines, Quadratrices, Conchoids, Cissoids, &c.,” whatever

follows from these suppositions is “rightly demonstrated.” For “God has given

us the Power of creating innumerable imaginary Worlds in our Thoughts, which

himself, if he please, can cause to be real” (p. 111). The objects of mathematical

demonstration thus seem to exist only in the intellect, as ideas of worlds that

God can create. So the causality Barrow attributes to mathematical reasoning

seems to fall short of relevance to Nature.15

4.2.2 Barrow on the justification of postulates

Yet Barrow adamantly denies that mathematical objects should “have no other

Existence in the Nature of Things than in the Mind alone.”16 He holds “what

is most opposite to it,” “viz. That all imaginable Geometrical Figures are really

inherent in every Particle of Matter, I say really inherent in Fact and to the

utmost Perfection” (p. 76). Barrow is particularly concerned to deny that math-

ematics is about “things intelligible” as opposed to “things sensible,” for in the

debates of the preceding centuries, the involvement of the senses in reasoning

was at least a sign that it pertains to objects and powers in Nature. Those

who denied mathematics’ relevance to nature typically held that it “abstracts”

from the “sensible matter” characteristic of objects in the natural world.17 But

Barrow maintains that mathematical abstraction is in fact “such as agrees with

15 Accordingly, David Sepkoski takes Barrow to regard the objects of mathematics as “fic-
tional entities” in the mathematician’s mind which need not exist in the domain of
“material substance” (2005, p. 50). Thus mathematical reasoning proves of principles
“only that they might” apply “to this world” (p. 51). Sepkoski does not consider Barrow’s
claim that manual practice “sensibly prov[es] the Reality and Possibility” of mathematical
suppositions (ML 188, quoted at length in Section 4.2.2 below). The affinity between the
“constructivism” attributed by Sepkoski to Barrow and the “Newtonian style” as Cohen
describes it (see note 42, below) has been noted by Guicciardini (2003, p. 418).

16 He objects specifically to the view held by Blancanus. See note 11 above.
17 In the Posterior Analytics, Aristotle claims that because the mixed sciences consider objects

as possessed of sensible matter, they follow a “perceptual” reasoning distinct from that
of mathematics (79a2–6). Abstraction from sensible matter is taken as the distinguishing
feature of mathematical reasoning by Blancanus (among other Thomists). It does not
have the same significance for the Averroists Piccolomini and Peyrera. Yet they hold that
in mathematics, the intellect does not deduce the essential traits of particulars perceived
through the senses (with their accidents), as it does in natural science (see Cozzoli
2007, p. 164). Rather, it derives universal principles from quantities that “are formed
in the imagination, the occasion being afforded by quantities found in sensible matter”
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all other Sciences,” namely “a distinct Consideration of certain things more uni-

versal, others less universal being omitted and as it were neglected” (p. 14). As a

“Doctrine of Generals,” there is “no reason [why] it should be separated from

the Consideration of Particulars”; why one science should “treat of an intelli-

gible Sphere, and another of a sensible one,” which are “altogether the same”

as to “the Verity of the Thing.” All of mathematics’ objects are, “in reality,” “at

the same time both intelligible . . . as the Mind apprehends and contemplates

their universal Ideas, and sensible as they agree with several particular Subjects

occurring to the Sense” (p. 19).

Because Barrow holds that nothing can be “attributed to the intelligible

Sphere (i.e. one understood universally) which does not perfectly agree with

the sensible (i.e. with every particular one)” (19), he faces the problem of

how figures conceived with geometrical precision can “perfectly agree” with

the irregular surfaces apprehended by sense. He explicitly poses the question

“Who ever did see or perceive by Sense an exact Right Line or a perfect Circle?”.

In response, he concedes that “the Occasion of contemplating” mathematical

objects is “taken from the Senses,” but the things themselves are not “immedi-

ately and directly” presented (p. 75). But we can make precise shapes apparent

to the senses by taking away the material stuff that overlies them. Accord-

ing to Barrow, the figures “really inherent in matter” are hidden from “the

Sense” in the same way that “the Effigies of Caesar lies hid under the unhewn

Marble,”

and is no new Thing made by the [sculptor], but only is discovered and

brought to Sight by his Workmanship, i.e. by removing the Parts of Matter

which involve and overshadow it. . . . So if the Hand of an Angel (at least

the Power of God) should think fit to polish any Particle of Matter without

Vacuity, a Spherical Superfice of a Figure exactly Round would appear

to the Eyes; not as created anew, but as unveiled and laid open from the

Disguises and Covers of its circumjacent Matter.

(pp. 76–77)

But this appeal to the practice of arts and crafts will appear ad hoc unless

these activities have a place in mathematical science. To resolve the difficulty,18

(Piccolomini 1565, p. 95). Thus the objects of mathematical reasoning never come before
the senses. Cf. Feldhay (1998, pp. 83–84).

18 Although I cannot make the case here, I suspect Barrow intends to improve on Galileo’s
view. Galileo famously claims in the Dialogue that the “geometrical philosopher” must
“deduct the material hindrances” in order “to recognize in the concrete the effects which he
has proved in the abstract,” in the same way as “the computer who wants his calculations
to deal with sugar, silk, and wool must discount the boxes, bales, and other packings”
(Galileo 1967, p. 207). The question this raises is why the activities of tradesmen and
artisans should be part of mathematical science. In his appeal to postulates, Barrow has
an answer.
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Barrow argues that the activity by which material things are brought into

accord with mathematical description is enjoined by geometry’s first principles,

specifically its postulates.

In Euclid’s Elements, proofs begin with principles of three kinds, namely

axioms, postulates, and definitions. Because Euclid does no more to character-

ize them than to list them under these headings,19 their taxonomy was a matter

of philosophical dispute. Barrow shows little compunction in departing from

classical views, or even the surface structure of the Elements. For instance, he

demotes axioms from the ranks of first principles, claiming instead that they

are proved from definitions and postulates (pp. 77–80). His view of postu-

lates is also revisionary. Barrow defines a postulate as a proposition “assuming

or affirming some evidently possible Mode, Action, or Motion of a Thing”

(p. 128). This understanding of postulates does not fit the last two principles

(namely, the assertion that all right angles are equal and the infamous Postulate

of Parallels)20 of the five Euclid lists under this heading. Barrow accordingly

narrows the list to three in his edition of the Elements: “From any given point

to any other given point to draw a right-line; To produce a finite right-line,

strait forth continually; Upon any center, and at any distance, to describe a

circle.”21

We can understand what kind of possibility is supposed in mathematical

definitions by considering how, on Barrow’s view, first principles are justi-

fied. First principles are traditionally held not to require proof because they

are self-evident. Barrow does not think it wrong to say that demonstration

“reaches . . . to some thing simply indemonstrable, confirmed by its own Force,

and evident from its own Light” (p. 104). But he cautions that the principles

need not “appear necessarily true in themselves, or immediately evident to

every Capacity; but only to him who comes ready and prepared for learning

that particular Science, to which the said Principles are subservient, i.e. to the

studious and teachable Mind” (p. 105). This reflects the traditional conception

of (“synthetic”) argument from first principles as both maximally rigorous

19 They can be distinguished, but only roughly, by their content and form. The definitions
and axioms differ in that the definitions concern geometrical objects (points, lines,
figures, and planes), while the axioms hold of mathematical objects in general, including
quantities treated in arithmetic and algebra. The postulates also concern specifically
geometrical objects, and are further distinguished by their grammatical form. They are
infinitive constructions, preceded by a passive imperative (‘�������) which can be
translated “Let it be asked that.”

20 “Let it be asked: that, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than the two right angles” (p. 155).

21 In the 1732 translation (London: D. Midwinter and A. Ward) of Barrow’s edition. In the
Latin original, they are “Postuletur, ut à quovis puncto ad quodvis punctum rectam lineam
ducere concedatur; Et rectam lineam terminatam in continuum recta producere; Item, quovis
centro, & intervallo circulum describere.”
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and the mode in which established doctrine is presented to a learner. Barrow’s

concern is to explain what is required, on the part of the teacher and pupil, for

the learning of science.

Barrow rejects the classical distinction between postulates and hypotheses.

On Aristotle’s view, as Barrow understands it, a postulate is “besides, or con-

trary to the Notion of the Learner” (p. 119), while a hypothesis is accepted by

the pupil. Barrow objects that it “matters nothing” whether the pupil’s “pre-

conceived opinions” “agree or disagree with the Mind of the Teacher.” They

are nothing “to the Purpose of the Science” and must be discarded. But while

it is the student’s duty to throw off mere prejudices, “the Teacher of a Science

is bound by his Office . . . to take away all reasonable Scruple from the Stu-

dent.” Principles “not only may, but ought to be” justified by “the Master, if

the Scholar requires it” (p. 104). So what Barrow requires of the pupil is not

baseless assent, but readiness to “be convinced by the Master’s Arguments, or

instructed by clear Examples of the Matter proposed” (p. 122).

Examples, in particular, are central to the learning of first principles. Def-

initions as Barrow conceives them “are no otherwise demonstrable, than the

Hypotheses [sc. postulates] themselves are, from which they proceed, i.e. than

by shewing that the Name is adapted to a Thing having a manifestly possible

Condition.” Since the name can be shown suitable “by arrogating to one’s self

that Right, which belongs to any Teacher” (if not “by appealing to the Authority

of Lexicons, to vulgar Use, [or] to the Suffrages of the Learned” (p. 113)), the

work is to show that the supposed condition is possible. Barrow maintains that

postulates, and thus the suppositions they express, are “explained and demon-

strated by some Example or Experiment more intelligible, and suitable to the

Capacity of the Learner.” Such examples are easy to come by, for mathematical

reasoning is carried out on “the most simple and common” objects, “such as

lie exposed to Senses.” It is “seen and experienced to be done daily” that “a
Right Line may be either drawn, or conceived to be Drawn through any two points
assignable” (p. 57). More specifically, it can be shown “by the obvious Use of

a Pair of Compasses, or the Revolution of a Wheel above its Center” that it

“can be done or conceived” that the “Rotation of a Right Line” produces “the

plane Figure (which is called a Circle).” Whoever “obstinately refuses” to admit

possibility that is in such a way “made evident as far as it may be done” can be

at best “admonished to apply himself to some other Study” or only “left to his

own Liberty, as an unfit Learner” of geometry (p. 112).

On Barrow’s view, the role of the senses in mathematical reasoning is to

demonstrate the possibility of the processes by which objects come to exist

and agree with geometrical descriptions (that is, to verify what is expressed by

postulates). Some of these processes are just events in the physical world: “if

not all, yet the most and chiefest Effects” of those studied in geometry are the

figures obtained and motions executed by bodies themselves (p. 21). To reason

about what follows if, for instance, “a Star or celestial Point in the Heavens be
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carried through a right, circular, elliptic, or any other Line, with an uniform

or apparently equable Motion respecting some determinate Point, in a certain

Time” is to do geometry (p. 27). Barrow argues that both the mixed sciences

and physics itself are branches of geometry because the objects they study are

just the concrete, extended quantities created by these processes (pp. 21–22).

The required motions can also be brought about by human design, for instance

“by the obvious Use of a Pair of Compasses, or the Revolution of a Wheel”

(p. 112).

It is clear enough how the possibility of these events is proved by sense, but

less clear that the traces they leave match geometrical descriptions. Barrow

holds that the senses also prove the possibility of a more important class of

processes, which bring sensible objects into agreement with geometry. Having

conceded that we are “far from” finding the attributes of mathematical objects

or gathering universal propositions by the senses, Barrow rejoins:

By Sensation indeed may be deduced the Possibility of Mathematical

Hypotheses: Thus ex. gr. we know that a Right Line can be drawn between

two assigned Points; because we perceive by the Sense, how a Progress may

be made from one Point to another, wherein if there be any Unevenness or

Deflection, it can be so far rectified by the Hand as to make a Line sensibly

Right; from whence we infer by our Reason, there being no Repugnance

on the Part of the Thing, that all other Roughness and Exorbitances may

be pared off and corrected, and so the Line become perfectly Right.

(p. 75)

The ability to rectify unevenness or deflection “by the Hand” falls within the

scope of what we “perceive by the Sense.”22 So the experience that proves

the possibility expressed by the first postulate is not only of the motion that

progresses from one point to the other, but also of the activity of “paring

off ” excess. Thus, the practice that removes “the Disguises and Covers of

circumjacent Matter” is not alien to geometry; on the contrary, it is assumed

at the foundation of the science, as the way in which its first principles win

acceptance.

This practice also proves the “reality,” i.e. the relevance to substances and

their powers, of mathematics. The practice of “rectifying by hand” can be

compared to the sculptor’s “discovery” of Caesar’s image: if it does not first

create a concrete, extended object, yet it makes the underlying matter match

some particular geometrical conception. In spelling out his negative condition

on possibility, Barrow claims that “the Dominions of Reason do far exceed

22 As is indicated by the use of the subjunctive in both the first and second clauses: “Sentimus
enim ab uno ad alterum utcunque fieri posse progressum, in quo si quid inest asperum et
a rectitudine deflectens, illud abradi possit, eatenus quidem manu nostrâ, donec ad sensum
recta videatur effecta linea” (Whewell 1860, p. 84).
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the Limits of Nature; the intelligible World is vastly farther extended and

more diffusive than the sensible World, and the Understanding contemplates

many more Things than the Sense” (pp. 111–112). Through manual practice,

we can know the extent to which these “dominions” are realized by concrete

things. So Barrow claims that the comparison of geometrical objects requires

“nothing . . . which savours of Mechanism,”

but only as far as every [object] is involved in some sort of Matter, is exposed

to the Senses, or is visible and palpable; so that what the Mind demands to

be understood, the Hand can execute in Part, and the Praxis can in some

Measure emulate the Theory. Which Imitation notwithstanding, is so far

from weakening or depressing the Strength and Dignity of Geometrical

Demonstration, that it affords it a much more strong Confirmation and an

higher Advancement, by sensibly proving the Reality and Possibility of the

assumed Supposition, which indeed (as we have often insinuated) is the

genuine Foundation of all Science; and thus establishing the Authority of

Reason by the Suffrage of Experience.

(p. 188)

It is central to Barrow’s argument that the constructions that confer existence

and geometrical precision on objects are also the means by which theorems

are proved. Since these processes are elements of mathematical inference, his

account of them completes the case that mathematical inference is tantamount

to causality.

But because Barrow fails to resolve an important ambiguity, his argument

appears not to succeed. If the practice that is supposed to prove “reality and

possibility” is understood as God’s activity of making bodies move, of course

it has the necessity that finite causes lack. But contrary to Barrow’s suggestion,

it does not seem that the extent of this power can be known to us through the

senses. On the other hand, the practice can be taken to consist of our activities of

manipulating instruments and paring off excess. On Barrow’s view, the extent

of these capacities is indeed known by the senses: he introduces the notion of

“sensibly right” to mark the point at which our activities of fabricating and

refining eliminate all discernible discrepancy between a material thing and its

geometrical template. But what we thereby accomplish seems to fall short of

what Barrow needs. It is not clear that “sensible” accord between geometry and

nature constitutes true agreement, for there can still be discrepancy, even if we

cannot perceive it. Barrow himself indicates that we succeed only “in part” or

“in some measure” in bringing material things into accord with geometrical

description. And even if our activity sometimes produces true agreement, there

is no reason to suppose that it brings about its effects with any more necessity

than the natural finite causes dismissed by Barrow. Thus, it remains unclear

whether Barrow’s appeal to practice yields a genuine alternative to efficient

causation.
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4.3.1 “The foundation of geometry appertains to mechanics”

There can be no question that Newton was familiar with Barrow’s conception of

mathematical objects as products of motion. For in a rare acknowledgement of

intellectual debt, he reports that “its probable that Dr Barrow’s Lectures might

put me upon the consideration of figures by motion, tho I not now remember

it.”23 I will now set out the echoes of Barrow’s view in Newton’s Preface.

In his Preface, Newton is out to overturn the distinction between mechanics

and geometry “by the attribution of exactness to geometry and of anything less

than exactness to mechanics” (p. 381). In an unfinished treatise on geometry

from the 1690s (now called Geometria), Newton inveighs against this “common

opinion.” He maintains that it “defines mechanics” from “the ignorance and

imperfection of mechanicians,” in that “mechanics as it is commonly practiced

is imperfect and without exact laws,” while the operations of and mechanical

practice required for geometry are “exact” (NMP VII, p. 289). In the Preface

to the Principia, Newton likewise contends that the imperfection that seems to

distinguish mechanics comes “not from the art” but “from those who practice

the art,” for “anyone who works with less exactness is a less perfect mechanic,

and if anyone could work with the greatest exactness, he would be the most

perfect mechanic of all” (p. 381).

Newton here takes his readers to understand mechanics as an art. As Alan

Gabbey explains, mechanics was “a theoretical discipline in that it dealt mathe-

matically with problems arising out of the construction and use of machines.”

But it was also a practice, dedicated to the construction and use of devices to

“re-arrange things contra naturam and for human ends” (1993b, p. 134). It

was an art both in the sense of producing outcomes not in accordance with

nature, and in the sense of requiring ingenuity and skill. Newton highlights this

conception of mechanics, reminding us in the Preface’s second sentence that

“the ancients divided mechanics into two parts,” “rational” and “practical.”

According to Newton, the latter, which “comprises all the manual arts,” has

given its name to the whole (p. 381).

In Geometria (NMP VII, p. 289, quoted above), Newton makes the point that

the standard for geometrical exactness is set (in that it is among the demands

made) by geometry’s postulates. In the Principia’s Preface, he stresses that

mechanics meets this demand. Whoever can work with the greatest exactness

is still a mechanic, because

the description of straight lines and circles, which is the foundation

of geometry, appertains to mechanics. Geometry does not teach how to

describe these straight lines and circles, but postulates such a description.

23 Add MS 3968.41, f 86v. Quoted in Westfall (1980, p. 131). It should be noted that Newton
may be referring to Barrow’s “Geometrical,” rather than his “Mathematical,” lectures.
See note 37 below.
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For geometry postulates that a beginner has learned to describe straight

lines and circles exactly before he approaches the threshold of geome-

try . . . To describe straight lines and to describe circles are problems, but

not problems in geometry. Geometry postulates the solution of these prob-

lems from mechanics, and teaches the use of the problems thus solved.

(pp. 381–382)

In assigning the description of straight lines and circles to mechanics, Newton

goes against the ancient tradition that counts these figures as “geometrical”

solutions to problems, while disallowing more complex “mechanical” curves,

on the grounds that they are generated through a use of instruments that

precludes genuine understanding.24 In Geometria, Newton explicitly challenges

the basis of this distinction. He states unequivocally that all constructions are

mechanical – and qualify as exact by the standards of the postulates:

any description of curves by instruments, even that of the circle itself

by compasses and of the straight line by a ruler, is mechanical, and [the

ancients] consequently postulated the descriptions of those they received

into geometry – not that these might, insofar as they are geometrical, be

described by men (for who has seen a line without breadth?) but that, once

their description is granted, all the rest of what geometers derive therefrom

shall accurately follow from it.

(NMP VII, p. 383)

Newton’s rhetorical question is of the same sort as Barrow’s “Who ever did see

or perceive by Sense an exact Right Line . . . ?” (p. 75). His answer also takes the

same form as Barrow’s: the postulates license the ascription of exact attributes

even to objects whose crudity is apparent to the senses.

Newton also follows Barrow in taking the postulates to secure the conditions

under which alone geometry can be learned: in his words, to specify what the

“beginner” must be able to achieve, with exactitude, “before he approaches the

threshold of geometry.”

Even as these passages demonstrate that Newton adopts Barrow’s strategy

for proving the relevance of geometry to natural phenomena, they raise the

question of why. It does not profit Newton to argue that geometry qualifies as

a science by Aristotelian standards, for by the 1670s the Aristotelian model of

science had been supplanted by the quantitative theories of Galileo, Descartes,

and Huygens.

One possibility, pursued to illuminating effect by Mary Domski and Niccoló

Guicciardini, is that Newton’s allegiance to ancient standards of demonstration

bolsters his opposition to Cartesian method in the sciences.25 In particular,

24 See Mancosu (1996, pp. 71–74).
25 In Domski (2010) and Guicciardini (2006). Kargon (1966) also argues that Barrow

supplies Newton with an alternative to Cartesian methodology. But Kargon (following
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they show how Descartes is a target of the argument of the Preface. Newton

writes that the distinction between mechanics and geometry “by the attribution

of exactness to geometry” “has now come to be usual” (NMP VII, p. 289).

These scholars emphasize that it became prominent in Descartes’s Géométrie.

Shifting the classical boundary, Descartes relegates to “mechanics” those figures

not “described by a continuous motion or by several successive motions, each

motion being completely determined by those which precede” (Descartes 1954,

p. 43). Newton, however, must defend geometry’s prerogative to “treat an

unbounded variety of curves in the plane” in order to extend it to natural

philosophy, where “the curves represent motions in nature” and so make it

possible to specify the forces required for them.26

I will show how Barrow’s conception of geometrical reasoning also opens up

an alternative to the way systems of bodies in motion came, under Descartes’s

influence, to be treated in natural philosophy. Perhaps the most obvious way

in which Barrow’s strategy suits the purposes of the Principia is in giving

mathematical reasoning the authority to speak of causes, without supposing

them to operate in any accepted modality. Barrow is under pressure to fit causes

under the Aristotelian headings, and in response he argues that geometrical

demonstration pertains to causes which are neither material, efficient, nor

final, nor formal in any but an etiolated sense. I show (in Section 4.3.2) that

unlike Barrow, Newton intends to leave it open that the causes established by

mathematical reasoning can ultimately fit into the dominant scheme of modes

of causation (which is no longer Aristotelian). But I argue (in Section 4.3.3)

that in the Principia he takes himself to have laid celestial and terrestrial motion

to the same cause, although he has not satisfied this demand.

4.3.2 The “mathematical/physical” distinction and the question of cause

The distinctive reasoning of the Principia has proved highly controversial. In

Book III, Newton treats (sufficiently precise) observational results that stand in

the mathematical relationships demonstrated in the first two Books as measure-

ments of gravitational force. Important examples are that the times of orbits of

satellites are as the 3/2 power of their distances from the center of the body they

orbit and the proportionality, to distance from the center of the Earth, of the

acceleration towards it of both the Moon and terrestrial bodies. At the close of

Book III, Newton claims to have “explained [exponere] the phenomena of the

heavens and of our sea by the force of gravity” (p. 943), which seems to mean

nothing other than that gravity causes celestial and terrestrial motions. What

the lead of E. A. Burtt) takes Barrow’s contribution to be the rejection of “hypotheses,”
and does not address the positive role of postulates in the development of science.

26 Domski (2003, p. 1123). Guicciardini (2004) gives examples of curves treated by Newton
that are “mechanical” by Descartes’s criteria.
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has most struck his readers is that he claims to explain them without specifying

any mode by which the force of gravity operates.

From the outset, critical discussion of the Principia has centered on the

question of whether it really establishes the causes of these motions. For some

of Newton’s contemporaries, this was the question whether the Principia con-

sists in mechanics in its traditional acceptation, namely the application of

mathematics to phenomena of weight and motion, which lacks the power

to determine their causes. Newton’s critics insisted that the reality of a force

could be established only by “physical” reasoning, not its “mathematical” or

“mechanical” variant. For instance, the review of the Principia in the journal

of the French Academy of Sciences claims that the demonstrations of Books

I and II must be regarded “as only mechanical; indeed, the author recognizes

himself . . . that he has not considered their principles as a Physicist, but as a

mere geometer.” The reviewer complains that the hypotheses by which Newton

purports to explain the world system “serve as the foundation only for a treatise

of pure mechanics” because they are “arbitrary for the most part.” A “Physics

as exact as [Newton’s] mechanics” would have to “substitute true motions for

those he has supposed.”27

Newton’s claim to explain the phenomena of nature was resisted by his

more innovative peers as well. The preceding generation of motion theorists –

the most qualified readers of the Principia – held that a natural phenomenon

was not explained until it was shown to result from “mechanical” principles.

Insofar as mechanical explanation takes as its model the working of machines,

it shows phenomena to result from something like pushing or pulling, localized

to the surface of a body.28 In the Principia, Newton seeks to avoid this demand:

to identify the cause of celestial and terrestrial motions, without specifying a

mechanism by which gravity operates. Newton resists the demand because he

does not accept the reasoning by which such explanations were purportedly

established. Because they invoke configurations too small to be observed, they

could only be regarded as hypotheses.29 Newton insists that it is far from “rigid

Consequence” to infer that an hypothesis is “thus because not otherwise or

because it satisfies all phaenomena.”30 For without a complete enumeration of

alternative accounts, “numerous hypotheses may be devised, which shall seem

27 Journal des Sçavans vol. 16 (August 2, 1688), 237–238. Translated in Koyré (1968, p. 115).
I have altered the translation, following Gabbey (1992, p. 321).

28 The objection that attraction is unintelligible absent such a mechanism is most closely
associated with Leibniz. For discussion, see Janiak (2007). It is also attributed to Huygens.
See, for instance, Koyré (1968, p. 118) (where the relevant passage is quoted); Larmore
(1987, p. 88); Smith (2002a, p. 150); and Maglo (2003, p. 147). But (as Maglo notes)
Huygens also had empirical grounds for opposing attraction. See Schliesser and Smith
(forthcoming).

29 See Nadler (1998, p. 520).
30 Letter to Oldenburg, 6 February 1671/2, in Newton (1959–1977 I, pp. 96–97).
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to overcome new difficulties,” making it appear that certainty can never be

obtained.

But while Newton resists the demand, he sees justice in it. It is commonly

observed that throughout his life, Newton continued to try to find a cause for

gravitational attraction in the immediate operation of some “agent” on the

interior or surface of a body.31 Since he finds it repugnant to conceive gravity

as the immediate action (at a distance) of passive matter,32 he appears forced

to demote it from a cause of motion to a mere phenomenological rendering

of the tendency to move. A number of writers note that Newton’s distinction

between “mathematical” and “physical” treatment of attraction is intended to

relieve this pressure.33 The distinction is elaborated at a crucial juncture of

Book I. As George Smith points out, Newton revisits it in a Scholium following

a proposition (I.69) that “lays the groundwork for Newton’s law of gravity by

asserting that in the relevant inverse-square case the forces directed towards

the various bodies must be proportional to the masses of those bodies” and

preceding two Sections (12 and 13) that “lay the groundwork for Newton’s

claim that his law of gravity holds universally between individual particles of

matter.” Because “no hypothetical contact mechanism seems even imaginable

to effect ‘attractive’ forces among particles of matter generally,” this Scholium

thus occurs just “where adherents to the mechanical philosophy would start”

to reject Newton’s reasoning (2002a, p. 141). At this point, Newton asserts

the prerogative to consider “attraction, impulse, or any sort of propensity

toward a center” both mathematically, without “defining a species or mode

31 John Henry shows (in 1994a) that Cohen, Koyré, McMullin, and A. Rupert Hall hold
in common that because Newton could not accept that a quality internal to matter
could exert attractive power at a distance, he continued to seek an alternative account
of gravitation. Henry concludes that it is “almost canonical” to read Newton as denying
that “gravity could be an inherent property of matter” and that “action at a distance
[is] possible ‘without mediation’”. However, Henry challenges this interpretation, as does
Schliesser. See the following note.

32 In his letter to Bentley of 25 February 1692/3, Newton insists that gravity must “be caused
by an agent acting constantly according to certain laws,” whether material or immaterial,
for that “gravity should be innate, inherent, and essential to matter, so that one body may
act upon another at a distance and through a vacuum without the mediation of anything
else by and through which their action and force may be conveyed from one to another
is to me so great an absurdity that I believe no man who has in philosophical matters any
competent faculty of thinking can ever fall into it.” (In Newton 1959–1977 III, pp. 253–
254, and Newton 2004, pp. 102–103.) Henry (in 1994a) and Schliesser (2010b) stress that
Newton’s concern in this passage is to differentiate his view from Epicureanism.

33 Janiak in (2007); Smith in (2002a); McMullin in (1989), (2001, pp. 295–297), and (2002).
These writers differ as to how much of the Principia’s argument is conceived by Newton
as “physical.” On Janiak and Smith, see note 50 below. According to McMullin, later
portions of the Principia are “physical” by the criteria of the Scholium in Section 11, but
not by those of Definition VIII. McMullin concludes that “Newton’s use of these terms is
not entirely consistent” throughout his works (2002, p. 291).
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of action or a physical cause or reason” for them, and as forces (Definition

VIII, p. 409).

From Newton’s discussion, it is clear that “mathematical” treatment brackets

at least some questions of causation. To his mechanist readers, he says

I use the word “attraction” here in a general sense for any endeavor what-

ever of bodies to approach one another, whether that endeavor occurs as a

result of the action of the bodies either drawn toward one another or acting

on one another by means of spirits emitted or whether it arises from the

action of [any medium] impelling toward one another the bodies floating

therein. I use the word “impulse” in the same general sense, considering

in this treatise not the species of forces and their physical qualities but

their quantities and mathematical proportions, as I have explained in the

definitions. Mathematics requires an investigation of those quantities of

forces and their proportions that follow from any conditions that may be

posited [quae ex conditionibus quibus eunque positis consequentur].

(pp. 588–589)

“Then,” Newton continues, “coming down to physics, these proportions must

be compared with the phenomena, so that it may be found out which conditions

of forces apply to each kind of attracting bodies.” In leaving it to physics to

determine which of these alternatives causes the endeavor, “mathematical”

treatment leaves it open that a mechanism will be found.34 But Newton does

not make clear whether “mathematical” treatment suspends all consideration

of cause. That he conceives attraction as a force does not settle the question,

for it can still be taken (in the same way as what is now called “Coriolis force”)

as a mere calculating device.35

Thus, many mechanist natural philosophers take Newton to deny gravity

the status of a cause. Like the early reviewer who takes Newton to “himself

recognize” that he treats forces only under the “arbitrary” suppositions made

in mechanics, they in effect put Newton’s work in the tradition of the “mixed

sciences,” understood as mathematical descriptions intended only to “save” the

phenomena (cf. Janiak 2007, p. 131). Thus, both the traditional understanding

of mechanics, and the explanatory standards of the mechanical philosophy,

34 It is left open, specifically, that a “corporeal medium” will be found that “impels the bodies
floating therein” by local action. As Janiak puts it, Newton’s “use of the terms ‘attraction’
and ‘attract’ is intended to be compatible with any physical account of gravity in the sense
that it is not intended to rule out any physical medium that ‘pushes’ or ‘pulls’ bodies”
(2007, p. 135). Newton thus contrasts “mathematical” consideration of centripetal forces
“as attractions” with “physical” consideration of them as “impulses” at the start of Book
I’s Section 11 (p. 561).

35 Janiak gives this as “a classic example” of a “fictitious force,” such that “any phenomenon
associated with” it “would in fact be caused by some combination of factors independent
of the Coriolis force” (2007, n. 1).
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encourage the view that Newton’s “mathematical” reasoning is not intended to

specify any cause.

4.3.3 Postulates and Newton’s mathematical/physical distinction

In the context of the Principia, the interpretation of the “mathemati-

cal/physical” distinction just bruited is hard to sustain. As Janiak points out,

Newton “does not dodge the implication” that gravity “bears causal relations”:

for instance, he proclaims dramatically that it is “that force by which the moon

is kept in its orbit” (2007, p. 130). Koffi Maglo argues that in light of the “philos-

ophy of mathematics” adumbrated at the start of the Preface, “mathematical”

treatment of force cannot be held to lack “ontological content” or “assump-

tions about a referent in nature.”36 The Preface indeed seems to make explicit

that the mathematical portion of the argument deals with causally efficacious

features of the natural world. After declaring that geometry is, in virtue of its

dependence on mechanical practice, a part of “universal mechanics,” Newton

allows that it can yet be distinguished from mechanics proper. For “geometry
is commonly used in reference to magnitude, and mechanics in reference to

motion”. The mechanics on offer in the Principia is thus “the science, expressed

in exact proportions and demonstrations,” of the “forces that are required for

any motions whatever” and of the motions that result from them [Motuum qui
ex viribus . . . resultant] (p. 382).

Consideration of the precedent Newton has in Barrow’s work casts further

doubt on this interpretation of the “mathematical.” Barrow makes a distinction

between mathematical and physical treatments of “force or motive power,” on

which mathematics conceives it as both “a quantum” (and so “subject to

calculation”) and as “the efficient cause of motion,” “whatever its nature or

the origin whence it arises, for we leave this discussion to physicists.”37 More

important, however, is the analogy between Newton’s mathematical/physical

distinction and the way geometry is related to other sciences by its postulates,

on his and Barrow’s conception of their role. According to this analogy, the

questions deferred to physics for investigation concern only the modality and

physical character of causation.38

36 (2007, pp. 581–582). Cf. de Gandt (1999, p. 13) and Jammer (1954, p. 95), who traces
Newton’s “realistic conception of mathematics” to Barrow.

37 Barrow’s Geometrical Lectures, in Whewell (1860, p. 166). Translation in de Gandt (1995,
p. 109). Newton probably attended these lectures, and later helped prepare the text for
publication.

38 Andrew Janiak explains how the argument of the Principia can show that gravity is
genuinely the cause of certain motions yet fall on the “mathematical” side of Newton’s
“mathematical”/“physical” contrast, namely by remaining neutral as to its “underlying
physical basis” (2007, p. 130). See note 50 below.
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Newton claims to use the term “attraction” in a mathematical sense for

“any endeavor whatever,” whether it “occurs as a result of the action of the

bodies either drawn toward one another or acting on one another by means of

spirits emitted or whether it arises from the action of aether or of air or any

medium whatsoever” (p. 588). What he here describes as the “mathematical”

consideration of force appears to be just the way in which geometry relates,

through its postulates, to its objects. In Geometria, he claims that plane figures

“executed by God, nature or any technician you will are measured by geometry

in the hypothesis [sc. postulate] that they are exactly constructed,” no matter

how, in physical reality, they are formed:

A technician is required and postulated to have learnt how to describe

straight lines and circles before he may begin to be a geometer. And it

consequently does not matter how they shall be described. Geometry does

not posit modes of description: we are free to describe them by moving

rulers around, using optical rays, taut threads, compasses, the angle given

in a circumference, or finally any mechanical means whatsoever. Geometry

makes the unique demand that they be described exactly.

(NMP VII, p. 289)

Then, just as mathematics in general investigates the quantities and propor-

tions that follow from whatever conditions are posited, so geometry finds the

“properties and proportions” (NMP VIII, p. 179) of figures however described.

And just as mathematics leaves it to physics to find the conditions of forces,

so geometry leaves it to another science to find modes of description. Newton

makes the point succinctly in the Principia’s Preface: “To describe straight lines

and circles are problems,” because they present the reader with something to
do rather than a result to prove,39 “but not problems in geometry. Geometry
postulates the solution of these problems from mechanics” (p. 382).

This remark recalls the traditional view that what is assumed as a first prin-

ciple in a “mixed” or “subordinate” science is proved in a higher science.40

Newton seems here to rank the sciences in just such a hierarchy, while reversing

the traditional priority of geometry over mechanics. The traditional conception

of “subordination” also seems to fit the relationship, as conceived by Newton,

39 Newton is extending the distinction between problems and theorems, propositions proved
in Euclid’s Elements, to its first principles. Problems are propositions demonstrated by
showing “what it was required to do,” while theorems are demonstrated by showing
“what it was required to prove” (in Heath’s translation). Problems and theorems differ in
the sumperasma, which summarizes what has been shown, and in the protaseis, the initial
statement of the proposition (Mueller 1981, pp. 11–13). Formally, “a problem is cast as an
infinitive expression seeking the construction of a geometric term in a specified relation to
other given terms,” while a theorem “is typically set in the form of a conditional asserting
a property of a specified geometric configuration” (Knorr 1986/1993, p. 348).

40 For discussion, see Dear (1995, chapter 2).
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between mechanics and physics. To consider force mathematically, in the way

that geometry relates to its objects through its postulates, is “rational mechan-

ics” as Newton defines it in the Principia’s Preface: the science, made exact,

“of the motions that result from any forces whatever and of the forces that

are required for any motions whatever.” As mathematical doctrine, mechanics

assumes the possibility of the forces required for the motions it specifies, while

physics finds the features of interacting bodies that give rise to these endeav-

ors. Mechanics thus appears poised between geometry and physics, depended

upon by the one and dependent on the other. For it makes real the opera-

tions assumed as possible in geometry: namely, the description and generation

of lines “through the continuous motion of points,” and of circles and other

“surface-areas through the motion of lines,” which “are daily witnessed in the

motion of bodies” (De Quadratura Curvarum, NMP VIII, p. 123).

Geometry and rational mechanics are, however, safe in assuming that what

they require is possible. They depend on mechanical practice and physics

(respectively) only to work out how it happens in the material world.

The tradition that Barrow takes himself to continue from ancient geometry

thus allows Newton to assign certain topics to physics, without denying causal

relevance to mathematical reasoning. I will now explain how this tradition

motivates elements of Newton’s reasoning that might otherwise seem heroic.

4.3.4 Turning discrepancy into measurement

So far, I have shown how Newton’s conception of mechanics helps to distinguish

the “mathematical” argument of the Principia from a mere description of

phenomena. Clearly, mathematical reasoning as Newton conceives it has causal

implications. But more is required to see how it can have the relevance Newton

intends.

It is hard to understand the mathematical portion of the Principia as anything

other than a series of mathematical constructs, successively revised to agree

more closely with the data of observation and experiment. The first question

we face is how the positing and refinement of these constructs differs from

the hypothetico-deductive (HD) reasoning that Newton so clearly opposes.

The physical content of the constructs makes them models in a central sense

of that term: they are stipulated to be identical to the actual world in certain

respects. But they are still hypotheses (as the tendency to interchange the terms

suggests)41 in that they are always liable to be replaced by alternatives that better

41 Models are distinguished from hypotheses in terms of how each compares with experience
on some standard (but not consistently followed) usages. In general, while a hypothesis
is proposed as a conjecture subject to decisive refutation, a model is proposed to explain
a set of data and can be refined (Glass and Hall 2008). In a Bayesian framework, a model
can be understood as a disjunction of hypotheses, such that the latter predict specific
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agree with the data.42 For, to begin with, it is not clear what constrains the

introduction of new conditions (as modifications to or replacements of a given

construct). Consideration of arbitrary conditions is supposed to be blocked

by the Rules of Reasoning (added in the second (1713) edition), especially the

Fourth: “In experimental philosophy, propositions gathered from phenomena by
induction should be considered either exactly or very nearly true notwithstanding
any contrary hypotheses, until yet other phenomena make such propositions either
more exact or liable to exceptions” (p. 796). But to apply it, we need to better

understand what entitles a proposition to “be considered either exactly or very

nearly true.”

Secondly, there appears to be no end to the progression in which each math-

ematical construct is replaced by another that better fits the data. Newton sees

it as an acute problem to prove a fit between nature and any one mathematical

construct. In drafts of a predecessor to the Principia, he reasons that in the

system comprised of the Sun and planets, the Sun must deviate from the center

of gravity, because it is drawn by attractive forces toward the planets, while the

center cannot move. So

the centripetal force does not always tend to that immobile center, and

hence the planets neither move exactly in ellipses nor revolve twice in the

same orbit. There are as many orbits of a planet as it has revolutions . . . and

the orbit of any one planet depends on the combined motion of all the

planets, not to mention the action of these on each other. But to consider

simultaneously all these causes of motion and to define these motions by

exact laws admitting of easy calculation exceeds, if I am not mistaken, the

force of any human mind.

(NMP VI, p. 78).

values while predictions from the former require the adjustment of parameters (Sober
2006).

42 On I. Bernard Cohen’s understanding of the Newtonian “style,” it is especially hard to
distinguish from HD method. According to Cohen, consequences deduced from mathe-
matically specified “artificial worlds created in the mind” are “transferred” to the onto-
logically distinct “level” of physical nature by substituting “physical equivalents” for
“mathematical entities” (e.g. bodies with mass for mass points) and comparing them
with experimental and observational data (1982, pp. 50–51). A mathematical construct is
assured to be “not fictive” just as a hypothesis is confirmed: to the extent that it retrodicts
known phenomena and predicts new effects (confirmed by observation) (1980, p. 110).
But as long as it is legitimate to introduce further conditions, to produce a system that
better agrees with observation and experiment, there can be no confidence that “the
system and its conditions” match “the realities of the external world” (p. 64). So for the
same reasons that hypotheses lack “certainty,” according to Newton, it remains unclear
whether the “ultimate system” arrived at in the Principia (of many interacting bodies) is
“so congruent with reality that its laws and principles” are those of the Universe. Cohen
takes Newton to acknowledge the tentative character of his reasoning, or at least to leave
open whether it matches reality (1980, pp. 66–67).
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Whatever darker morals we might draw from this passage, it suggests at least

that for any mathematical system that calculates the trajectories of the planets,

there will be a more complex alternative that better captures their true motions.

So if phenomena can somehow be made to select a true description from among

the alternatives, there is still no prospect of establishing one with certainty.

Of course, the human mind’s “force” is limited in the complexity of alter-

natives it can formulate, and observational accuracy limits our ability to test

them. Newton’s point may then be that we can hope, not to bring mathematical

systems into “exact correspondence [with] physical reality,” but to make them

unfalsifiable: elaborate them to the point that the “aspects of the system” they

disclose are “of so small a magnitude that they [can] be ignored within the

limits of observation, even with the best telescopes of the time.”43 We would

then have an analogue, in Newton’s terms, of Barrow’s notion of making a line

“sensibly Right”, i.e., making it the case that no discrepancy between construct

and reality can be discerned by the senses. But if Newton can only bring con-

structs into “sensible” accord with reality, his claim to mathematically exact

and certain knowledge of nature will not be secure. We thus confront a second

question: how the appeal to practice (in conjunction with postulates) can take

Newton further than it does Barrow.

The groundbreaking work of George Smith and William Harper reveals

how Newton’s aspirations can be fulfilled. They make it their goal to explain

how Newton’s method differs from HD. For Smith, it is “exactly right” to

say “that Newton saw empirical science as progressing by successive approx-

imations” or idealizations. But by identifying conditions that the idealized

mathematical constructs must satisfy, Smith makes clear that they are not arbi-

trarily proposed. He emphasizes that each of them can be, and is, “used to draw

conclusions from phenomena.” These conclusions are far more than failures

of the phenomena to falsify the idealizations. According to Smith, they often

“take the form of inferred measures of quantities” (2001b, p. 250). Similarly,

Harper shows how the mathematical portion of Newton’s argument establishes

“systematic dependencies that make [what is] inferred count as” a parameter

value “measured by the phenomena from which [it is] inferred” (2002b, p. 78).

In virtue of their role in inferring conclusions from phenomena, the constructs

have undeniable physical content.

One important condition on the constructs is that it must be possible to

infer consequences from them even when they agree only approximately with

phenomena. The effect of this restriction is clear in Proposition 2 of Book III,

which asserts that the planets (Mercury, Venus, Mars, Jupiter, and Saturn) are

43 As I. Bernard Cohen puts it (1980, p. 92). He observes that Newton writes in the contin-
uation of the draft that the physical situation, “the simple orbit and the mean among all
errors,” can be identified with the construct, “the ellipse of which I have already treated,”
if “those minutiae” are “ignored” (p. 265).
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kept in orbit by forces directed towards the Sun and inversely as the squares

of their distances from it. Newton cites the phenomena that the planets obey

Kepler’s second and third rules: that they sweep out equal areas in equal times

and that their periods are as the 3/2 power of their distances from the Sun. He

does not take as a premise Kepler’s first rule, that the planets move in ellipses

with the Sun at a focus, although he shows in Book I (Proposition 11) that

under these conditions their force toward it is inverse-square. Instead he uses

a proof of the inverse-square relationship for bodies that move in concentric

circles with uniform motion (Proposition 4). Smith makes clear that Newton

did not believe, nor take his readers to believe, that the planets move uniformly

in concentric circles. In fact, the ellipse was taken as the best approximation of

their orbits by the leading orbital astronomers of the time – in sharp contrast

to Kepler’s second and third rules, which fit the data no better than alternative

constructions.44 Smith argues persuasively that Newton takes the second and

third rules as premises because if they hold to a high degree of approximation,

the force will be at least approximately centripetal and inverse-square. Newton

proves as much in Book I.45 Crucial evidence for Smith’s interpretation is that

Newton also treats orbits in which the force varies as a complicated function

of the distance from the attracting center,46 which can closely approximate

Keplerian ellipses without the force being even approximately inverse-square.

Part of Newton’s response to the challenge posed by the complexity of the

true motions is thus to grant that generalizations such as Kepler’s rules must

be approximate to some degree, and to make his inferences from phenomena

as secure as possible in light of the impossibility of eliminating equally precise

alternatives.

But by proceeding in this way, Newton can infer only that the force law holds

to some degree of approximation. His overarching aim is to show that exact
mathematical generalizations are satisfied. Smith explains how Newton’s way of

dealing with the discrepancy between mathematical generalizations and actual

phenomena serves this goal. According to Smith, the idealized representations

are to be taken as approximations that would hold exactly under specified

physical conditions. Newton’s approach in Book III of the Principia is thus to

seek physical conditions under which the phenomena taken as premises would

hold exactly (and, in accordance with the Fourth Rule of Reasoning, to take

the inferred force law as exactly true under these conditions). He proves, for

44 By Ismaël Boulliau, Nicholaus Mercator, and Vincent Wing. See Smith (2002b, p. 34) and
the first of Smith’s Suppes Lectures (2007a).

45 Specifically, in Corollary 2 to Proposition 3 and Corollary 7 to Proposition 4.
46 In the Scholium concluding Section 3, Newton considers ellipses in which the force tends

to a point between the focus and (geometrical) center, and in Proposition 7, he considers
circles in which the force is directed at, and Kepler’s second rule is satisfied relative to, a
point off the (geometrical) center. See Smith (2002b, pp. 37–41).
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instance, that the planets would revolve in exactly the same orbits each time,

and describe exactly equal areas in equal times, if they were subject to no force

other than the gravitational force of the Sun.47

On this way of proceeding, mathematical generalizations are taken to express

physical conditions, which may or may not be realized. Accordingly, discrepan-

cies between the generalizations and actual motions are treated as indicative of

physical factors. Smith claims that the “main purpose” of the idealizations is “to

bring to light ways in which the observed world systematically deviates from

the ideal” (2002b, p. 52). So the detail that a mathematical description fails

to capture is no longer an “impediment limiting the quality of empirical evi-

dence” (2002a, p. 155), but is instead harnessed to drive ongoing research. The

rationale for treating a generalization in this way is precisely that deviations

from it are capable of driving the process Smith calls “successive approxi-

mation.” Here, then, is a further condition that mathematical systems must

satisfy.

As Smith elaborates the condition, it is that it must be possible to construe

“systematic differences between the idealized representations of the motions

at any stage and observation themselves” as “evidence either for the original

theory or for a refinement of it” (Smith 2002b, p. 47). For an idealization to be

taken as a good approximation at a given stage, deviation from it must be small

in magnitude. But for the process to succeed in the long run, there must be

deviation that cannot be attributed to observational imprecision or inaccuracy.

So residual discrepancy is not written off, as below the sensible threshhold,

but made into information. When differences are systematic, they count as

evidence that the world matches the mathematical system at least well enough

that it can signal that the specified conditions are not met. Further evidence for

the theory comes in the form of physical factors (sources of perturbing force)

accounting for the discrepancy. Ultimately, continued iterations of what Smith

calls “the process of successive approximations” constitute evidence of a third

kind. When they yield “increasingly small residual deviations from current

theory,” they serve to more deeply entrench the presupposed force law as well

to “tighten the range over which” it holds to a close approximation (2002a,

p. 161).

This approach may well seem to beg the question of mathematics’ relevance

to nature (in the form that it confronts Newton, whether a mathematical

result is also the specification of a cause). For it begins with the assumption

that mathematical generalizations express physical conditions. According to

Smith, the justification for “viewing every deviation from” a mathematical

generalization “as physically significant” is just that the generalization “be well

suited to initiate science by successive approximations” in the sense that “it

47 In Propositions 14 and 13, respectively, of Book III. See Smith (2005, p. 133) and the first
of Smith’s Suppes Lectures (2007a).
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would hold exactly in certain identifiable circumstances.”48 Smith concedes

that such an “hypothesis,” which can be “established” only through the success

of research “predicated on” it, must involve “an element of wishful thinking.”

But he holds that it is appropriate to venture one in a situation in which “if

it does not [hold] – if the empirical world does not cooperate – then there is

no apparent way to get beyond mere conjecture,” while if it does, “there are

prospects for empirically driven, sustained research” (2005, p. 151). To venture

such assumptions is thus a condition under which alone a certain practice is

possible. The risk they carry is “of being misled by the apparent high quality

of the initial evidence obtained from the readily accessible data,” when this

evidence owes its promise to “accidental or parochial factors” (2005, p. 149).49

Newton’s response is to “immediately [push] the theory for all it is worth,” in

application to “problems that prima facie have nothing to do with the original

evidence for it” (2002a, p. 165), and so expose limitations on the research

strategy. The assumption is thus retrospectively justified by the success of the

practice.

When mathematical generalizations drive research in this way, their content

is causal in a sense that Janiak makes precise. First, they limit a range of

(“previously disparate”) phenomena that “have the same cause.” Secondly, as

they set topics for physical research they help to delineate the modalities of

causation. To say, for instance, that “gravity is as the masses of the objects in

question and inversely proportional to the square of the distance” is to say that

“mass and distance are the only salient variables” in the “causal chain” from

gravity from phenomena (2007, p. 142), leaving it to physics to fill in its links.50

This stepwise procedure for securing the physical significance of mathemat-

ical generalizations has an antecedent in the way postulates prove the reality

of mathematical reasoning, according to Barrow. Barrow holds both that the

possibility asserted by the postulates must be granted at the outset by a learner,

and that it can in a way be proved by the senses, specifically by the experience

48 “[F]or then observed deviations from it would indeed reflect specific physical factors, and
not just imprecision in a description” (2002b, pp. 50–51).

49 Smith gives as an example Newton’s assumption (in later versions of Book II of the
Principia) that when a body falls vertically in a fluid, the resistance is dominated by the
inertia of the fluid, at least to such an extent that a law can be established for this force.
The failure of his attempts to isolate species of resistance forces reveals the “‘law’” to be
“a mere curve-fit over a restricted domain.” See (2005, p. 141) and (2002a, p. 164).

50 Smith gives a similar formulation of the conditions under which “a component of a
mathematically characterized force can be considered” as a causal factor. He includes
among them that the “respects in which [the force’s] magnitude can vary must be given
by a general law that is independent of the first two laws of motion.” But Smith’s point is
that the force is characterized “physically” when this and further conditions are satisfied.
In this respect, Smith differs from Janiak, who denies that the treatment of force in Book
III is “physical” because Newton does not there “delineate the physical cause of the force”,
as would be “crucial to such a treatment” (Janiak 2007, n. 45).
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of “correcting” roughness and excess. We have seen that for him, the activity

that proves this possibility brings underlying matter into accord with geomet-

rical conceptions (if it does not first create extended concrete objects). Barrow

understands this activity concretely, as one of literally “paring away.” But he

emphasizes that the processes whose possibility is asserted by the postulates, and

proved through experience of this activity, include the auxiliary constructions

executed in the course of Euclidean proof. It is thus open to him (although not

his stated view) to understand the practice that proves the possibility asserted

in the postulates more abstractly, simply as mathematical argument. Then the

“correcting” that vindicates the concession demanded at the outset could be

understood as the derivation of results more adequate to physical reality, that

is, such as to leave no unaccounted-for roughness or excess. As proof of the

relevance of mathematics to nature, it would of course be less direct.

The way in which Newton’s method is justified, on Smith’s interpretation,

is thus only a short reach beyond the work done by postulates on Barrow’s

conception. What remains is to explain how Newton can hold that postulates

justify reasoning of the sort Smith outlines. I will suggest that not only can

Newton draw on this understanding of postulates, but he can be seen to address

one of its weaknesses, namely the unclarity in Barrow’s conception of postulated

activities.

4.3.5 Postulates and the practice of measurement

Newton agrees with Barrow that practice of a certain kind founds geometry.

We can see this by revisiting Newton’s conception of the relations between

the sciences. It is only by having both theoretical and practical aspects that

mechanics holds the place between geometry and physics. While mechanical

theory and practice are merely two sides of a single discipline, this discipline’s

links to physics, on the one hand, and geometry on the other, are not of the

same kind. As doctrine, mechanics is founded on physics.51 But what suits it for

its role in founding geometry, that of finding the required technique or craft,

is its heritage as art. Because the operations assumed as possible in geometry

are made real by making bodies move, to which “the manual arts are especially

applied” [praecipue versentur], its foundation is mechanical practice (p. 382).

Newton maintains in his Preface that mechanics secures the possibility

of, specifically, the operations postulated by geometry. So on his view, as on

51 Mechanics as practice does not depend on physics, or indeed on any other science. For
it seems to have no principles of the kind that are proved in another science. At least,
Newton claims at one point that mechanics “holds a place among the mathematical
sciences through its axioms and demonstrations,” but “not among the mathematical
arts. Its practice is not founded on postulates but is purely manual” (NMP VIII, p. 179).
Elsewhere, however, he lists postulates that are “lawful in mechanics” (177).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 19:05:23 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.006

Cambridge Books Online © Cambridge University Press, 2012



98 katherine dunlop

Barrow’s, a certain practice proves the possibilities asserted by the postulates.

We have seen that this practice can be understood in different ways: as human

or divine; as operating on extant objects, or first bringing objects into being;

abstractly or concretely. It is not clear how Barrow understands it, other than as

concrete. Newton articulates the alternatives more precisely – without, however,

seeming to choose among them.

In Geometria, Newton distinguishes between the genesis of geometry’s

subject-matter and the operations that comprise its practice. He makes clear

that “the intention of postulates” is not to “teach the genesis” of figures (NMP
VII, pp. 292–293). Postulates pertain, rather, to operations, and only the oper-

ations which geometry does not “teach how” to effect.

Geometry neither teaches how to describe a plane nor postulates its

description, though this is its whole foundation. To be sure, the planes

of fields are not formed by the practitioner but merely measured. Geome-

try does not teach how to describe a straight line and a circle but postulates

them; in other words, it postulates that the practitioner has learnt these

operations before he attains the threshold of geometry. Once, however,

these are previously understood and granted it teaches all the other oper-

ations of mensuration . . .

(NMP VII, pp. 288–289)

Newton insists that “both the genesis of the subject-matter of geometry” and

“the effection of its postulates” are the concern of mechanics (pp. 288–289).52

Though he refers to figures as “executed by God, nature or any technician

you will” [a Deo Natura Artifice quovis confectas], he says little to explain how

mechanics makes possible processes of the first sort.

The operations postulated by geometry, on the other hand, can be character-

ized more precisely. Newton extends the traditional division between practical

and theoretical parts beyond mechanics into all of mathematics. Postulates,

in general, pertain to the activity that makes mathematics art. Thus Newton

writes that “the mathematical sciences” are “sciences inasmuch as they teach

the truth by means of definitions, axioms, and theorems, but arts (skills) insofar

as they deliver and exhibit its practice by means of postulates and construc-

tions of problems” (NMP VIII, p. 179).53 (And, as if to counter the implied

distinction between art and science, he claims that “to set the very principles

52 A dimension of Newton’s view is thus left out when he is taken to understand postulates
as existence-claims (as in Garrison 1987, p. 611, and Guicciardini 2003, p. 417).

53 Newton writes in Geometria that the postulates of geometry ought to be “useful” “in
that any practitioner should find them readily applicable in his measuring” (NMP VII,
p. 291). Similarly, Barrow contends that “every Science is both Speculative and Practical:
Speculative, as it speculates, i.e. seeks, investigates, and demonstrates Truths agreeable to
its Object: and Practical, as those Truths when found and demonstrated, may be referred
to Use, and reduced into Practice” (p. 50).
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[of science] useless . . . would render the whole of science – and even its very

name – empty and futile.”) According to Newton, the practice that geometry

“delivers and exhibits” is measurement: in it, problems are solved by applying

postulates to “determine and set forth measures of all figures and magnitudes

which are proposed by the definitions.” Indeed, it can leave to others the prob-

lem of forming its objects precisely because its purpose “is neither to form

nor move magnitudes, but merely to measure them” (NMP VII, p. 291). The

operations it postulates are thus “those most necessary, useful, and expedient

in the technique of measurement” (NMP VIII, pp. 179–181).

Newton suggests that the activity of measurement may have a divine practi-

tioner. But because measuring is within our power in a way that creating bodies

and initiating movement are not, on Newton’s view the activity to which pos-

tulates pertain is shown by experience to be possible. Newton further improves

on Barrow in that the practice whose possibility is asserted by the postulates,

as he conceives it, more decisively proves the physical reality of mathematical

conceptions. While the activity of making things “sensibly right” may leave

discrepancy beyond our sensory threshold, which we can only ignore, Newton

harnesses discrepancies to drive research that ultimately vindicates the mathe-

matical theory as a description of nature. I believe what enables Newton to go

further is his conception of the role of postulates in science. It is important to

him that postulates should be acceptable to knowers facing constraints, because

they are (on his view) key in overcoming those constraints. In particular, they

secure the relevance of mathematical generalizations – to whose precision alone

are our finite capacities suited – to causality in Nature.

Newton often speaks of measurement in concrete terms, as the laying-out

of measuring sticks or rods,54 so that its dependence on mechanics is obvious.

When geometry is taken to deal with measures in this sense, its relevance

to nature is likewise clear. But Newton also has a more abstract conception

of measurement, under which even the theory of the Principia is included.

Although he distinguishes between geometry and “rational mechanics” in the

54 In the conjectural history of geometry that opens Geometria, Newton clearly thinks of
it this way. He reminds us that “geometry” “means the art of ‘earth-measure’”, and “a
geometer was called by the Romans a ‘ten-footer’ from his measuring stick” (NMP VII,
p. 287). He is thus led to qualify the distinction between the genesis of geometry’s subject-
matter and the operations that comprise its practice (which he presents as exclusive at
e.g. NMP VII, p. 291). Newton charges geometry with the formation of those magnitudes
used to measure others. His history begins with problems of measuring terrain that “were
very speedily and accurately constructed by descriptions of straight and circular lines.”
While the practitioner “measured plane figures universally as he met with them,” he
“formed none by measuring other than rectilinear and circular ones. These, then, are
the sole instruments of geometry” (NMP VII, p. 287; cf. p. 293: The description of “the
sphere, the cylinder and the cone” was not postulated because they “were regarded not
as measuring instruments but as magnitudes to be measured”).
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published Preface, he writes in the draft of a revision that the Principia’s contents

are geometry in the “rather broad sense” of “that which instructs how to

measure magnitudes described and defined not only by local motion but in

any other manner whatever” (NMP VIII, p. 451). Since Newton counts the

Principia as a mathematical science comprising a practice, he must conceive a

role for postulates in it.

Their role can be understood as securing the presuppositions of the method

Smith calls “successive approximation.” The first step of this reasoning is to

suppose of a mathematical generalization that under certain physical conditions

it would hold exactly. This is to take it as an exact measure of physical factors.

According to Newton, the assumption that physical items can be measured

with exactitude is licensed by postulates. He writes in Geometria that plane

figures “are measured by geometry in the hypothesis [sc. postulate] that they

are exactly constructed,” no matter how, in physical reality, they are formed

(NMP VII, p. 289).

Newton goes on to say that geometry postulates “a technician who knows

how to form straight lines and circles” in order to teach “how through their

formation appointed magnitudes are to be measured” (NMP VII, p. 291).

Postulates thus license the further assumption that the items dealt with in

geometry can be not only objects, but instruments, of exact measurement. In

this way, they secure the condition under which the method can continue into

further stages. For the method iterates, not by measuring the deviation from

a particular generalization, but by treating observed deviation as a measure of

quantity. For example, in the argument of Book III the system comprised of

Earth and the Moon is initially treated as isolated, as though it were subject to

the force of no other bodies. In this way, Newton can establish the relationship

between the weight of a satellite towards its central body and its “quantity of

matter” (inertial mass).55 The approximation is good, as Newton argues in

Proposition 3, because the Moon is so much closer to Earth than to the Sun.

But after asserting the universality of gravitational attraction, Newton returns

to this system and indicates how mathematical results of Book I (Proposition 66

and its corollaries) can be employed to “find the forces of the sun that perturb

the motions of the moon” given the deviations of the Moon’s orbit from Kepler’s

first and second rules. Thus the discrepancies, like the original phenomena, are

taken as measures of force, and the reasoning in progress is further justified by

associating them with physical sources. Postulates thus ground a way of making

mathematics ever more adequate to the infinitely complex totality of causes.

55 First, of course, by comparing the Moon’s acceleration towards the Earth with the value for
gravitational acceleration at the Earth’s surface (measured by pendulum experiments).
But also, by comparing the acceleration of the satellites towards the Sun with their
acceleration towards their central bodies (Newton 1999, p. 808). See Harper (2002a,
pp. 187–189).
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Conclusion

I have contended that if we take Newton to address the relevance of mathemat-

ical reasoning to causal relationships in Nature in the opening remarks of his

Preface, we see how they pertain to the “mathematical”/“physical” distinction

drawn there, and the results that follow.

As Newton’s manuscripts show, he holds (with Barrow) that postulates guar-

antee that bodies and motions in Nature can be found to agree with the

exact descriptions of geometry. Like Barrow, Newton emphasizes that geome-

try comes to have objects by means of certain activities: thus he claims in the

Preface that what geometry postulates (namely the finding of straight lines and

circles) depends specifically on the practice of mechanics. Newton appears to

resolve the ambiguity in Barrow’s conception of this practice. As I interpret

him, he takes it to consist of the reasoning carried out in the course of the

Principia.

Barrow aims to reconcile geometry’s precision with the observable crudity

of Nature. He forswears the attempt to specify the causal powers of bodies

and varieties of matter, on the grounds that there are none. In stark contrast,

Newton is concerned with the unceasing multiplicity of causal factors, on

account of which every mathematical description of a natural process is liable

to be replaced by a more complex alternative. I have explained that when he

takes as a postulate that magnitudes can be measured exactly, he can be taken

to mean that the postulates license us to take some of these approximations as

exact. By asserting the possibility of this practice of mathematical reasoning,

they rationalize the “wishful thinking” it involves. They thus make it possible

to cross the threshold of a science which, as Smith, Harper, and Janiak explain,

can specify causes in Nature.

Note regarding citations

Newton’s Principia is cited according to the Cohen and Whitman edi-

tion (1999). Citations from Newton abbreviated NMP are from Newton

(1967–1981). Blancanus’s De Mathematicarum Natura Dissertatio is cited

according to the translation in Mancosu (1996). Barrow’s Lectiones Mathe-
maticae are cited according to the translation by John Kirkby (1734/1970).

Euclid’s Elements are cited according to the Heath edition (1956).
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5

Cotes’s queries

Newton’s empiricism and conceptions of matter

zvi biener and chris smeenk

5.1 Introduction

The relation of Isaac Newton’s natural philosophy to his method of inquiry is

of central importance to Newtonian scholarship. In this chapter, we investi-

gate this relation as it concerns Newton’s ideas about the nature and measure

of matter. We argue that a conflict between two conceptions of “quantity

of matter” employed in a corollary to proposition III.6 illustrates a deeper

conflict between Newton’s view of the nature of extended bodies and the con-

cept of mass appropriate for the Principia. The conflict was first noted by the

editor of the Principia’s second edition, Roger Cotes. His “two globes” objec-

tion demonstrates that Newton employed two different measures of “quantity

of matter,” related to competing views on the nature of matter. On what

we call the “dynamical conception of matter” – dominant in the Principia –

quantity of matter is measured through a body’s response to impressed force.

On the “geometrical conception of matter,” quantity of matter is measured

by the volume a body impenetrably fills. The discussion with Cotes reveals

Newton’s commitment to the geometrical conception: he assumes all atoms

have a uniform specific gravity; i.e., that the inertia of completely filled bodies

is proportional to their volume. On the dynamical conception of matter, there

is no reason for this proportionality to hold. A purely dynamical conception is

consistent with the inertia of completely filled bodies varying in proportion to

their volumes, or with bodies treated as non-extended point particles. By ana-

lyzing the exchange with Cotes (and related texts), we show that before Cotes’s

Many thanks to J. E. McGuire, who along with B. R. Goldstein, was our first guide to Newton,
for insight and encouragement. Additional thanks to others who provided us with comments
and discussion: Katherine Brading, Tyler Burge, John Carriero, William Harper, Andrew
Janiak, Eric Schliesser, George Smith, Sheldon Smith, Howard Stein, Wouter Valentin and
other participants in the “Newton and/as Philosophy” conference. Our treatment of Newton’s
method of inquiry is indebted to Howard Stein’s work.
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prodding in 1712, Newton held both conceptions of matter and apparently saw

no conflict between them.

We trace Newton’s failure to recognize the conflict between the two con-

ceptions to Newton’s allowance for the justification of natural philosophical

claims by two types of a posteriori, empiricist methodologies, which both turn

away from the a priori Cartesian approach Newton deplored. Although both

proceed “from the phenomena,” we argue that there are important differences

between them. The first, underlying the dynamical conception, is mathematical

and relies on a nuanced interplay between specific phenomena and their the-

oretical descriptions. Recent work by George Smith, Bill Harper, and Howard

Stein has shown how this methodology was used in the Principia to justify the

laws of motion. Drawing on their analyses, we briefly characterize this method,

using Newton’s reply to Cotes’s better-known “invisible hand” objection as an

illustration. The second empiricist method, underlying the geometrical con-

ception, also proceeds from the phenomena, but does not draw on the technical

resources used in the first. Instead, its conclusions are intended to follow from

general features of our experience, in a way articulated most clearly in De grav-

itatione (hereafter, DG) and through certain of Newton’s examples in Rule III

of the Regulae Philosophandi. We argue that although both methods of inquiry

are based on empirical considerations, the relationship of theory to evidence

in each is distinct. Centuries of debate attest to the difficulty in extracting from

Newton’s methodological discussions a clear account of evidential warrant that

spans all of his work. We do not tackle this general project here. Instead, we

highlight two different types of arguments from the phenomena endorsed by

Newton, and argue that he failed to clearly distinguish them. He thus failed

to recognize that one was not as secure as the other. In the Principia and DG,

the two conceptions of matter are justified by these different types of argu-

ments, yet prior to Cotes’s “two globes” objection, Newton treated the two

conceptions as if on equal footing, without recognizing their different sources

of warrant. Cotes’s objection forced Newton to reconsider the status of the geo-

metrical conception. Although he never drew general conclusions regarding

the relation between his two methods of inquiry, he came to side with the more

sophisticated method of inquiry and, in revisions prompted by Cotes, stated

the geometrical conception hypothetically. Given the deep-seated Cartesian

and atomistic roots of the geometrical conception in Newton’s thought, this

was a profound shift.

We begin (in Section 5.2) by introducing the geometrical and dynamical

conceptions of matter and the associated measures of quantity of matter. To

do so, we review the reasons that led Newton to abandon aether theories of

gravitation and accept the existence of void spaces. Although these forced

Newton to reject much of the Cartesian analysis of space and body, we show

that the geometrical conception of matter present in DG and later work betrays

a lingering debt to Descartes. At the close of Section 5.2, we explicate the a
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posteriori method of inquiry underlying the geometrical method of quantifying

matter. In Section 5.3 we turn to the a posteriori method underlying the

dynamical conception of matter and the argument for universal gravitation

(AUG). Drawing on these accounts of the contrasting methods, we investigate

the conflict between the two conceptions of matter in Section 5.4.

5.2 Newton’s conceptions of matter

5.2.1 Against the mechanical aether and Cartesian body

In the years leading up to the Principia, Newton’s natural philosophy under-

went a “radical conversion” (borrowing Westfall’s phrase); he abandoned the

fundamentals of Cartesian natural philosophy and replaced them with novel

conceptions of space, motion, and body. This radical conversion was motivated

in large part by Newton’s rejection of the idea that the planets are carried in

their orbits by an aetherial vortex. We begin by elucidating two empirical rea-

sons that led Newton to abandon a gravitational aether and clarifying how this

a posteriori line of reasoning undermined Cartesian philosophy.

As early as 1664, Newton took the cause of terrestrial gravitation to be

mechanical and formulated a mechanical aether theory akin to other contem-

porary theories. The central idea of these theories – that a body’s weight could

be explained in terms of an aetherial fluid exerting pressure on a body’s inner

surfaces – appears to have persisted in Newton’s accounts through the 1670s,

even as the gravitational aether became more intricately tied to active principles

inspired by his alchemical studies.1 The central role played by the gravitational

aether in the 1670s makes its nearly complete (if temporary) disappearance

from Newton’s natural philosophy in the period preceding the composition of

the Principia remarkable.2

In E1 Newton gave two decisive empirical reasons for abandoning the aether.

(Principia editions are abbreviated as E1, E2, and E3.) First, he became con-

vinced that the planets and comets encounter negligible resistance to their

motion. In the first two theorems of the De motu corporum in gyrum, Newton

derived Kepler’s area law and the harmonic law for a central force with no resis-

tance. The accuracy of Kepler’s law in describing planetary motions implied

that there was no need to introduce a resisting force alongside the centripetal

force holding the planets in their orbits.3 Newton strengthened his case in later

1 See “Of Gravity and Levity,” in Newton (1983, pp. 362–365, 426–431), and Wilson (1976,
pp. 192–195) regarding Newton’s early views, and Dobbs (1991, chapter 4) regarding the
development of Newton’s views through the 1670s.

2 Dobbs (1988) details Newton’s abandonment of the aether at the time of E1; McGuire
(1966) discusses later shifts in Newton’s views.

3 Newton was aware that even if there is no resistance Kepler’s laws fail to hold exactly
for universal gravity due to the perturbing effects of each planet on the other planets’

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 19:21:31 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.008

Cambridge Books Online © Cambridge University Press, 2012



108 zvi biener and chris smeenk

drafts and in the Principia. The persistence of planetary motion over thou-

sands of years is also incompatible even with slight aetherial resistance, which

would lead to a steady decrease in quantity of motion (Herivel 1965a, p. 302).

Although the negligible resistance encountered by the planets is compatible

with an aetherial vortex in which the planets move with the aether, reconciling

the motion of comets, especially retrograde and highly eccentric ones, with an

aetherial vortex is difficult.

Second, Newton failed to detect aether resistance in a series of pendulum

experiments reported in Book II. Based on the realization that a gravitational

aether must penetrate to the inner surfaces of bodies – without such penetra-

tion, the aether’s action could only depend on a body’s surface area – Newton

designed experiments to measure the internal resistance due to the aether.4

Newton constructed a pendulum consisting of a “round firwood box” sus-

pended from a cord. He measured the oscillations of the empty box, then filled

the box with various metals, adjusting the cord to the same length. The metal-

filled box weighed 78 times as much as the empty one; in the absence of internal

resistance Newton expected the oscillations of the full pendulum bob (from the

bob’s increased inertia) would take 78 times as long to decay. Newton initially

assumed that filling the box would not change its external resistance. Because

the decay only took 77 times as long, Newton concluded that the internal resis-

tance must be over 5,000 times less than the external resistance. In E2 and E3,

Newton interpreted this to mean that aether resistance caused the damping:

This argument depends on the hypothesis that the greater resistance

encountered by the full box does not arise from some other hidden cause

but only from the action of some subtle fluid upon the enclosed metal.

(Newton 1999, p. 723)

However, in E1 (in a passage subsequently omitted), Newton proposed a dif-

ferent cause:

But I suppose that the cause is very different [than the aether acting on

the internal surfaces of the box]. For the times of the oscillation of the

full box are less than those of the empty one, and therefore the resistance

to the external surface of the full box is greater, by virtue of its velocity

and the length of its oscillations, than to the empty box. From which it

follows that the resistance [due] to the internal parts of the box is either

zero or entirely insensible.

(translated in Kuhn 1970b, pp. 106–107)

orbits (Herivel 1965a, p. 301). However, these departures from Keplerian motion differ in
character from the departures Newton expected for a resisting medium.

4 See Newton (1999, pp. 722–723). Note that external resistance may arise due to the air
alone or the air and the aether conjointly, but the experiment is designed so that external
resistance (as well as buoyancy of the air) is held constant. Cf. Kuhn (1970b, pp. 106–108).
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Newton’s conclusion is phrased cautiously. He did not claim that the aether does

not exist; instead, he inferred only that if there is an aether, then its resistance is

either nil or negligible. However, he had also concluded from other experiments

(reported in the same scholium) that the primary contribution to resistance

is proportional to the material density of the fluid through which an object

moves. Thus, the experiments gave Newton grounds to reject a mechanical

aether, although with his usual care he did not claim that they rule out an

aether altogether (cf. Smith 2001b).

Although these considerations triggered Newton’s radical conversion, they

were not decisive for his contemporaries and successors. In Newton’s later treat-

ment in the Principia, fluid resistance arises primarily from the inertia of the

fluid, and the dominant component of the force of resistance is proportional

to ρv2 (ρ is the density of the fluid, and v is the relative velocity). Leibniz

demurred to Clarke regarding this assumption, arguing that “it is not so much

the quantity of matter as its difficulty in giving place that makes resistance”

(Alexander 1956, p. 65). Leibniz had earlier distinguished between two sources

of resistance, viscosity and density, and argued that they make distinct con-

tributions to the overall resistance for different types of fluids. Drawing this

distinction between different types of resistance opens up the possibility of an

aetherial fluid with resistance not proportional to density – which would avoid

Newton’s arguments. In fact, the possibility is much easier to realize than New-

ton had anticipated (Smith 2001b). In 1752, d’Alembert showed that a fluid

without viscosity has exactly zero resistance, undercutting Newton’s proposal

that the dominant contribution to fluid resistance arose from the fluid’s inertia.

This error does not detract from Newton’s insight that a single force law was

sufficient to account for planetary motions, but it does undermine Newton’s

empirical case against the aether. Yet the problem was not solely with Newton’s

arguments against the aether. Contemporary versions of aether theory were

also based on misconceptions regarding fluids and the nature of resistance,

and any aether theorist faced the challenge of elucidating how the aether pro-

duced gravitational effects without causing appreciable resistance (cf. Aiton

1972).

Newton’s rejection of a mechanical aether left him without a mechanical

explanation of gravitation, along with an awareness of the obstacles to providing

one. Here we focus on one fundamental consequence of this awareness for

Newton’s thought: he was forced to reconsider Descartes’s doctrines regarding

the nature of body and space, and replace them with ones compatible with the

existence of void spaces.

Newton’s most sustained critical discussion of Descartes appears in DG. The

stated aim of the manuscript is the study of the gravitation and equilibrium

of fluids. Written in the geometrical style, it begins with a series of definitions

and closes with two theorems. Newton makes room for his own definitions of

space, body, and motion with a long philosophical discussion expressly devoted
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to undermining the corresponding Cartesian definitions – to “dispos[ing] of

[Descartes’s] figmenta.” The main thrust of this digression is that an adequate

definition of motion requires an appropriate structure relating locations over

time.5 Descartes’s plenum lacked the necessary structure, leaving Descartes

with a definition of motion that failed to support distinctions fundamental to

his physics. Newton overcame this defect by introducing space as a distinct

entity with a sufficiently strong structure, albeit an entity that did not fit neatly

into traditional ontological categories.6

Even in this overtly philosophical context Newton supported his arguments

against Descartes with empirical evidence in favor of void space. On the basis of

pendulum experiments (that may have been either the experiments discussed

above or precursors), Newton asserted that the resistance of the aether is

“over ten or a hundred thousand times less” than the resistance of quicksilver

(Newton 2004, p. 35, emphasis added).7 Newton also took resistance to moving

through a medium as a consequence of the material nature of the medium’s

parts. As he put it, “if we set aside altogether every resistance to the passage of

bodies, we must also set aside the corporeal nature [of the medium] utterly and

completely” (Newton 2004, p. 34). Because two bodies cannot simultaneously

occupy the same region of space, one body resists the passage of another body

through the region it occupies. Though controversial, if this view is accepted

then the failure to detect resistance is decisive evidence against the Cartesian

plenum.

Rejecting the plenum posed a clear challenge to the Cartesian identification

of extension as the principal attribute of body. In DG, Newton singled out

Descartes’s so-called “elimination argument” (Principles of Philosophy, II.4 &

II.11) as the main argument for this thesis. According to Newton, Descartes

argued that various sensory properties such as hardness, weight, and color can

be abstracted from a body without endangering its status as a body. Only the

elimination of extension can destroy a body’s corporeality, and so extension

alone constitutes body’s principal attribute, or, as Newton put it, “pertain[s]

to [body’s] essence” (Newton 2004, p. 21). To Descartes’s argument, Newton

countered that to be recognized as body, a body had to possess not only

extension, but “faculties,” particularly the ability to stimulate perceptions and

5 What is actually required in the Principia is the distinction between inertial and non-
inertial motion; this only requires an affine connection and not the stronger structure
that would be provided by identifying the “same position” over time; see Stein (1967).
However, Newton was apparently unclear on this issue in DG; some of his criticisms of
Descartes presume a stronger structure than necessary.

6 See Stein (1967), Rynasiewicz (1995a,b), DiSalle (2002).
7 Based on this brief allusion it is unclear how these experiments relate to discussions in

other texts. See Dobbs (1991, pp. 134–143), and Westfall (1971a, pp. 341, 375–77) for
further discussion.
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“transfer action” to other bodies.8 The core of Newton’s critique was the claim

that “although philosophers do not define substance as an entity that can

act upon things, yet everyone tacitly understands this” (Newton 2004, p. 21).

Newton – contra Descartes – held that what we should primarily care about is

not what a substance is, but what it does.

This difference of orientation is also evident in the stated aim of Newton’s

speculation regarding body. By contrast with Descartes, Newton’s goal in DG

was the development of an account of body sufficient to serve as a basis for

physical theory and sufficient to capture the phenomenal properties of bod-

ies, the properties of “a kind of being similar in every way to bodies, and

whose creation we cannot deny to be within the power of God, so that we

can hardly say that it is not body” (Newton 2004, p. 27). Newton was clear,

however, that he could not establish more than the sufficiency of his account.

In particular, he made no claims to reveal the necessary essence or nature of

body.9

5.2.2 The geometrical and dynamical conceptions of matter

But we must not stress only the differences between Newton and Descartes.

Although Newton’s conception of body in DG differed from Descartes’s both in

its content and metaphysical pretensions, it still possessed vestiges of Cartesian-

ism. While defining body in terms of regions of space endowed with additional

attributes – attributes foreign to Descartes’s account – Newton still followed

Descartes by treating bodies as regions of space, as extended geometrical struc-

tures, albeit not geometrical structures simpliciter. In DG, the character of

bodies is partially dependent on the character of space. Space, in turn, has

geometrical structure – it is full of “all kinds of figures, everywhere spheres,

cubes, triangles, straight lines, everywhere circular, elliptical, parabolical, and

all other kinds of figures, and those of all shapes and sizes, even though they

are not disclosed to sight” (Newton 2004, p. 22 ff.). Bodies, as regions of space,

are consequently geometrical, although they admit non-geometrical properties

as well.

8 Newton was also familiar with the predecessor of the argument of Principles II.4 in the
Second Meditation, but does not address it explicitly in DG; see Harrison (1978, p. 132)
and Newton (1983, p. 23).

9 The epistemological status of Newton’s accounts of space and body differs. While Newton
emphasized the tentative status of his account of body – as one possible account compatible
with experience – he did not treat his account of space as similarly conjectural and tentative,
as Stein (2002) emphasizes. Consequently, when we speak of the “nature” of body according
to Newton, we do not mean to impute to him any form of essentialism or a conception
of natural philosophy according to which the goal of philosophizing is to draw observable
consequences from the natures of ontological primitives.
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In DG, Newton treated bodies as “determined quantities of extension which

omnipresent God endows with certain conditions,” namely:

(1) that they be mobile; and therefore I did not say that they are numerical

parts of space which are absolutely immobile, but only definite quantities

which may be transferred from space to space;

(2) that two of this kind cannot coincide anywhere; that is, that they may be

impenetrable, and hence that oppositions obstruct their mutual motions

and they are reflected in accord with certain laws;

(3) that they can excite various perceptions of the senses and the imagina-

tion in created minds.

(Newton 2004, pp. 28–29)

Central to this account of body is the notion that bodies are primarily “deter-

mined quantities of extension.” The reliance on a determinate spatial sub-

stratum as a precondition for the existence of bodies is one of the main features

of Newton’s account. After providing the above definition of body, Newton

emphasized one of its main anti-Aristotelian implications; namely, that it does

away with the need for a property-less substratum as the metaphysical support

for properties and forms and instead makes do with space itself:

[F]or the existence of [bodies] it is not necessary that we suppose some

unintelligible substance to exist in which as subject there may be an inher-

ent substantial form; extension and an act of the divine will are enough.

Extension takes the place of the substantial subject in which the form of

the body is conserved by the divine will; and that product of the divine

will is the form or formal reason of the body denoting every dimension of

space in which the body is to be produced.

(Newton 2004, p. 29)

Newton’s analogy between his account and hylomorphism demonstrates that

extension was as central to his conception of body as the substantial subject

was for the conception of body of his Aristotelian adversaries. On Newton’s

account, extension is necessary for the application of so-called “form” and thus

for the existence of body. “Body,” as defined in DG, “is that which fills space”

(Newton 2004, p. 13). It is not necessarily that which gravitates, nor that which

moves, nor that which is tangible and visible (although it may also be any of

those).

The conception of body as impenetrable extension takes precedence in DG

over the nascent conception of body defined by laws of motion. In DG Newton

held that bodies must move “in accord to certain laws,” but the phrase does not

acquire special significance without the juxtaposition of DG against later texts.

Taken by itself, DG defines body primarily as a region of filled-in extension

and only secondarily in terms of laws governing motion. On Newton’s account,
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tangibility, visibility, and other traits that constitute the “corporeality” of mat-

ter according to our senses all depend, primarily, upon the impenetrability

of regions of space (Newton 2004, pp. 27–28). Motion has a secondary role

in constituting that corporeality because motion only makes impenetrability

manifest to our senses. Newton only introduced motion once regions of space

were rendered impenetrable:

[W]e may suppose that there are empty spaces scattered through the world,

one of which, defined by certain [spatial] limits, happens by divine power

to be impervious to bodies, and by hypothesis it is manifest that this

would resist the motions of bodies and perhaps reflect them, and assume

all the properties of a corporeal particle, except that it will be regarded as

motionless. If we should suppose that that impenetrability is not always

maintained in the same part of space but can be transferred here and

there according to certain laws, yet so that the quantity and shape of that

impenetrable space are not changed, there will be no property of body

which it does not possess.

(Newton 2004, p. 28)

Even if mobility has only a secondary status in this passage, it is still essential

to Newton’s account both here and in the “determined quantities of exten-

sion” passage. However, our point is that mobility of impenetrable regions is

essential, not mobility taken by itself. The centrality of the impenetrability of

the extensional substratum reveals Newton’s residual Cartesianism: in DG he

considers bodies to be essentially extended geometrical structures – geomet-

rical structures made real by further conditions, but geometrical structures

nevertheless.

Newton’s manner of quantifying body in DG further illustrates his residual

Cartesianism. Newton measured quantity of matter through a body’s geomet-

rical rather than dynamical properties. After defining the absolute quantity

of force as a product of the force’s intension (“the degree of its quality”) and

extension (“the amount of space or time in which it operates”) Newton wrote:

[M]otion is either more intense or more remiss, as the space traversed in

the same time is greater or less, for which reason a body is usually said to

move more swiftly or more slowly. Again, motion is more or less extended

as the body moved is greater or less, or as it is diffused through a larger or

smaller body. And the absolute quantity of motion is composed of both

the velocity and the magnitude of the moving body.

(Newton 2004, p. 37)

In modern terminology, Newton equated momentum (the “force of motion”)

to the product of the velocity (intension) and the “magnitude of the moving

body” (extension). The latter is measured by the body’s volume (“the amount

of space in which [the force of motion] operates”) rather than by the body’s
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resistance to impressed forces (i.e., inertia). Given that (from the Waste Book

onward) Newton equated force of motion with the product of velocity and

quantity of matter, here Newton measures quantity of matter through its volume

or quantity of extension (see Herivel 1965a, p. 26). We call this method of

quantification, along with Newton’s account of the nature of bodies as primarily

determined quantities of extension, Newton’s geometrical conception of matter.

Two caveats must be made regarding this geometrical conception. First, it

is Cartesian in inspiration without being wholly Cartesian. Newton did not

attempt to reduce all of a body’s properties to geometrical properties, nor to

treat any single property as a body’s principal attribute. However, Newton did

follow Descartes in considering extension as essential to our understanding of

body and to the practice of physics vis-á-vis the measure of the quantity of

matter associated with body. Second, although we have highlighted the geo-

metrical conception’s indebtedness to Newton’s Cartesianism, the conception

is also closely tied to Newton’s atomism, particularly his belief in the uniformity

of nature. This is an important aspect of Newton’s thought, but we can only

touch on it briefly in Section 5.4 below.

In DG, the geometrical measure of quantity of matter is not supplemented

with a precise dynamical measure, as it is in the De Motu drafts and the

Principia. According to what we call the dynamical conception of matter, a

quantity of matter is measured by its response to impressed force, not by the

volume of space which it impenetrably fills. As with the geometrical conception,

the dynamical conception also incorporates a view regarding the nature of

bodies, which we consider shortly. Newton introduced the dynamical measure

of quantity of matter in Definitions I and III of the Principia. In Definition

III, Newton states that the internal force of a body (its vis insita) “is always

proportional to the body and does not differ in any way from the inertia [vis

inertia] of the mass except in the manner in which it is conceived” (Newton

1999, p. 404). We are to understand that vis insita is also proportional to a

body’s quantity of matter since Definition I states that:

I mean this quantity whenever I use the term “body” or “mass” in the

following pages.

(Newton 1999, p. 404)

Together with Law II, these two definitions establish a proportionality between

a body’s quantity of matter and the force responsible for the body’s dynamical

properties.10

Although Definition I also states that “Quantity of matter is a measure

of matter that arises from its density and volume jointly,” the quantification

10 See McGuire (1994) on the nature of vis insita and Bertoloni Meli (2006a) on its connec-
tion to vis centrifuga.
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method implied by Definition III is used throughout the Principia almost

exclusively. Even in Definition I Newton made explicit that quantity of matter

“can always be known from a body’s weight for – by making very accurate

experiment with pendulums – I have found it to be proportional to the weight.”

This is a far cry from DG. Of course, Newton did define force in DG as either

“external” – “one that generates, destroys, or otherwise changes impressed

motion in some body” – or “internal” – “by which existing motion or rest is

conserved in a body, and by which any body endeavors to continue in its state

and opposes resistance” (Newton 2004, p. 36). But, unlike in the Principia, the

dynamical method is not used to quantify body.11 Lacking a clear statement of

Law II, the dynamical measure of a quantity of matter remains vague in DG and

intertwined with the conception of body as that which fills space. De gravitatione

adumbrates the dynamical conception of matter, but does not contain it fully

and certainly does not contain its central element, the measurement of quantity

of matter by a body’s response to impressed force. In the Principia, the two

methods of quantifying matter co-exist, but the geometrical conception is

relegated to the wings while the dynamical conception takes center stage.

What account of the nature of bodies accompanies the dynamical measure

of matter in the Principia? The term “body” appears in the definitions and laws,

but Newton does not explicitly define “body” or provide an account of body’s

possible nature like the one provided in DG.12 Nevertheless, in contrast to DG,

in the Principia Newton characterizes material bodies almost exclusively by

their dynamical properties. This suggests a transformation in Newton’s view:

the Principia provides clear formulations of the concept of force and the laws

of motion, but bodies are defined only derivatively – as the entities subject

to forces and for which the laws of motion hold. The nature of body in the

Principia thus depends upon whatever constraints are implied by satisfaction of

the laws. Furthermore, empirical support for this view of bodies derives from

the empirical support for the laws of motion and the physical theory based

on them.

Yet the dynamics of the Principia place surprisingly weak constraints on

the nature of body. In particular, “bodies” satisfying the laws of motion need

11 In DG Newton used the term vis inertia for the internal principle of motion (Newton
2004, p. 36) in much the same sense as he used the term in an excised portion of Definition
1 in the Lucasian lectures (1685, Newton 1967–1981: Vol. V). This contrasts with his use
of vis insita in the early De Motu drafts (see Herivel 1965a, pp. 26–28). We thank George
Smith for this point. Yet despite the appearance of the term vis inertia, DG is a transitional
text which only hints at the concept of vis inertia developed in the Principia. This is not
surprising, since in DG Newton is working out the metaphysics of “natural power” on
which vis insita depends; see Stein (1990).

12 Newton did define “body” in unpublished definitions intended for E3 of the Principia,
but these only bolster the argument below, cf. McGuire (1966). We discuss them briefly
in Section 5.4.
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not have any geometrical properties whatsoever. This may appear to conflict

with Newton’s various theorems regarding extended bodies, such as the famous

proofs to the effect that a spherical body can be treated as if the mass were con-

centrated at a point (Propositions I.71–75). However, even these proofs only

require that the force acting on or produced by the whole body is the sum over

forces related to its constituent parts. They do not require the attribution of

geometrical properties to the parts of the spherical bodies, and are compatible

with bodies treated as Boscovichian point-particles characterized by parame-

ters such as “quantity of matter” that have no geometrical basis. The austerity

of the dynamical conception of matter stems from the limited mathematical

framework of the Principia. The generalization of Newtonian theory to con-

tinuum mechanics leads to a richer notion of body that does have implications

for the geometrical properties of bodies.13

That said, DG’s geometrical conception of matter did not disappear from

Newton’s thought following the elaboration of the dynamical conception in the

Principia. In drafts of corollaries to III.6 written in the 1690s, Newton assesses

the connections between gravitational aethers, matter theory, and the existence

of void (McGuire 1967). In doing so, he assumes that the appropriate measure of

quantity of matter is the volume of the basic particulate constituents of matter.

These manuscripts indicate that Newton continued to take the geometrical

conception of matter seriously post-Principia. Finally, Newton’s reply to Cotes’s

“two globes” objection – also concerning III.6 – relies on the geometrical

conception, and took place over 20 years later, in 1711. We return to the two

globes objection in §IV. We now turn to the two types of a posteriori, empiricist

arguments we believe are associated with the two conceptions of matter.

5.2.3 The a posteriori character of the geometrical conception of matter

How did Newton establish his geometrical conception of body a posteriori?

Two distinct a posteriori contributions can be discerned. First, the results of

pendulum experiments and the accuracy of Kepler’s “laws” pushed Newton

to reject the Cartesian identification of body with extension. In this regard,

his path towards a new conception of body is similar to his path towards a

new conception of light in his optical work (Shapiro 2004; Stein ms.) In both,

Newton took a narrow set of experimental results to be sufficiently crucial to

warrant revision to a fundamental concept of natural philosophy.

But there is an important difference: whereas the prism experiments, the

crucial experiments in Newton’s research on colors, were used to both refute

13 For example, Cauchy’s generalization of Newton’s laws involves contact forces and the
outward normal defined over the contact boundary; Boscovichian point particles lack
boundaries and Cauchy’s formulation does not apply, cf. Truesdell (1968) and Smith
(2007).
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the extant conception of light and suggest a new conception (i.e., that white

light is not a natural kind but is composed of individually homogeneous rays

of differing refrangibilities), the pendulum experiments were used only to

refute the Cartesian doctrine. On our view, Newton rejected an account of

gravity based on the results of pendulum experiments along with his success in

modeling planetary motions using a single force law. This rejection undercut

the associated Cartesian accounts of body and space. However, the constructive

element of Newton’s geometrical conception of body was not secured by an

experimentum crucis; rather, it seems to have been secured by a different type

of argument from the phenomena.

This argument proceeds from the experience of any body whatsoever. New-

ton attempted in DG to provide an account of body that is sufficient for

capturing the “evidence of our senses” (Newton 2004, p. 28). The traits of body

he aimed to save were all quite generic and are reflected in the overall character

of our experience; for example, that body is visible, tangible, audible, etc. New-

ton’s account of body as mobile, impenetrable, and sensible extension is able to

save these traits because it is set against a framework of natural philosophical

presuppositions – e.g., that an object is visible because it reflects light and audi-

ble because it can move adjacent air – but, given this framework, the evidential

basis for Newton’s account includes any and all experiences of body. Impor-

tantly, success within this framework does not rely on any quantitative notion

of “strength of evidence” that can help arbitrate between Newton’s account and

possible competitors – where by “strength of evidence” we mean any measure

of the fit between a given theory and its evidential basis that allows discrimi-

nation among competing theories according to degree of evidential warrant.

Rather, it relies on a notion of warrant akin to the one mechanical philosophers

used to justify their mechanical models, but one that does not appeal to first

principles or privileged modes of explanation. Strikingly, it does not rely on

the sophisticated notion of warrant used in the AUG. Note Newton’s explicit

reference to the underdetermination of DG’s account of body:

[I]t is hardly given to us to know . . . whether matter could be created

in one way only, or whether there are several ways by which different

beings similar to bodies could be produced . . . [H]ence I am reluctant to

say positively what the nature of bodies is, but I would rather describe a

certain kind of being similar in every way to bodies, and whose creation

we cannot deny to be within the power of God, so that we can hardly say

that it is not body.

(Newton 2004, p. 27)

Newton is explicitly open to the possibility that another hypothesis regarding

the nature of body can save the phenomena equally well.

This a posteriori method of arriving at claims regarding the nature of matter

resembles the one offered in Rule III and its drafts (McGuire 1968; 1970). In Rule
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III, Newton claimed that certain qualities of bodies are “universal,” qualities

that can be attributed to any body whatsoever and so constitute the core of our

understanding of body (Newton 1999, p. 796). Often, Newton referred to such

claims of universality as being “deduced from phenomena” (e.g., Newton 1999,

p. 943). Body’s universal qualities are extension, hardness, impenetrability,

mobility, and inertia. However, Newton’s evidence for their universality is not

homogeneous. One of our theses is that deducing or gathering propositions

“from phenomena” does not have a univocal meaning for Newton, and so the

resemblance of Rule III to DG concerns some universal qualities – more will be

said about the others in Section 5.3.3.

First, Rule III, like DG, appeals to our general experience of bodies as the

evidential basis from which claims regarding the extension, hardness, and

impenetrability of bodies ought to be drawn. Newton wrote, echoing DG, that:

The extension of bodies is known to us only through our senses . . . [and]

because extension is found in all sensible bodies, it is ascribed to all bodies

universally. We know by experience that some bodies are hard . . . [and]

justly infer from this not only the hardness of the undivided particles of

bodies that are accessible to our senses, but also of all other bodies. That

all bodies are impenetrable we gather not by reason but by our senses.

We find those bodies that we handle to be impenetrable, and hence we

conclude that impenetrability is a property of all bodies universally.

(Newton 1999, p. 795)

In each case, our experience of bodies broadly conceived forms the evidential

basis of the generalization. Still, the evidential basis recommended by Rule III

is more restrictive than the one used in DG. According to Rule III, only those

qualities found in “all bodies on which experiments can be made” and passing

the intension and remission criterion may be “taken as qualities of all bodies

universally” (Newton 1999, p. 795). Thus only some features of our experience

of bodies remain relevant to generalization about body; visibility and audibility,

for example, are eliminated. Nevertheless, the remaining features are those that

are truly general and are present in all experiences of body. Achieving this

generality is precisely the point of Newton’s application of the intension and

remission criterion. Any quality that is not always present in our experience of

bodies – i.e., one that can be remitted to zero and thus disappear, or one that

is not present in some bodies – is not universal.

Second, regarding the first four qualities mentioned, Rule III, like DG, does

not invoke a notion of evidential warrant similar in complexity to the one used

throughout the Principia. This is because, while the intension and remission

criterion can be made precise, it is unclear when in the course of empirical

investigation we can be content that it is satisfied for “all bodies on which

experiments can be made.” Newton’s examples do not help. According to New-

ton, the extension of bodies is made manifest in all sensible bodies. However, we
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know by experience that hardness is only found in some bodies while impene-

trability is only found in “those bodies that we handle” – presumably a smaller

class than “all sensible bodies.” Is the judgment of universality regarding one of

these better than the others? Newton suggested, but did not elaborate, a notion

of strength of evidence: “the argument from phenomena will be even stronger

for universal gravity than for the impenetrability of bodies, for which . . . we

have not . . . even an observation, in the case of the heavenly bodies” (Newton

1999, p. 796, emphasis added). Something like simple enumerative strength

seems to be at work here: the more instances of a quality we have, the stronger

the judgment of its universality. This is a far cry, however, from the sophisti-

cated and more robust relation between theory and evidence implicit in the

Principia.

The lack of a robust notion of evidential warrant or strength would not be

bothersome by itself, but we argue in Section 5.4 that, on at least one occasion,

Newton overstated the evidence in favor of the geometrical conception of

matter. The reason, we argue, is that Newton failed to distinguish the type

of argument given in DG for the geometrical conception of matter from the

type of argument used in the Principia. In order to clarify the latter type of

argument and its notion of evidential strength, we will use Cotes’s invisible

hand objection.

5.3 The invisible hand

As the editing of E2 neared completion in 1713, Cotes began writing a pref-

ace contrasting Newton’s “experimental philosophy” with Cartesian and Aris-

totelian approaches. To exemplify Newton’s method he intended to present a

“short deduction of the Principle of Gravity from the Phænomena of Nature,

in a popular way” (Newton 1959–1977, V, p. 391). However, he encountered a

difficulty.

Cotes accepted the first two steps of Newton’s AUG: (1) the planets are held

in their orbits by an inverse-square centripetal force directed towards the Sun,

and (2) this force can be identified with terrestrial gravity, via the Moon test.

What troubled him was the next step, discussed in III.5.c3 and III.7. In this step,

Newton applied the third law to the centripetal force holding planets in their

orbits, and concluded that a given planet also attracts the Sun. Newton argued

that gravity is a mutual interaction between the Sun and planet. Cotes objected

that this step requires further hypotheses about the nature of gravitation:

ye Force by which they [the planets] are continually diverted from the

Tangents of their Orbits is directed & tends towards their Central Bod-

ies. Which Force (from what cause whatever it proceeds) may therefore

not improperly be call’d Centripetal in respect of ye revolving Body &

Attractive in respect of the Central. . . . But in the first Corollary of the 5th
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[proposition of Book III] I meet with a difficulty, it lyes in these words

Et cum attractio omnis mutua sit. I am persuaded they are then true when

the Attraction may properly be so call’d, otherwise they may be false. You

will understand my meaning by an Example. Suppose two Globes A & B

placed at a distance from each other upon a Table, & that whilst A remains at

rest B is moved towards it by an invisible Hand. A by-stander who observes

this motion but not the cause of it, will say that B does certainly tend to

the centre of A, & thereupon he may call the force of the invisible Hand

the Centripetal force of B & the Attraction of A since ye effect appeares the

same as if it did truly proceed from a proper & real Attraction of A. But

then I think he cannot by virtue of this Axiom [Attractio omni mutua est]

conclude contrary to his Sense & Observation that the Globe A does also

move towards the Globe B & will meet it at the common centre of Gravity

of both Bodies. This is what stops me in the train of reasoning by which I

would make out as I said in a popular way the 7th Prop. Lib. III. I shall be

glad to have Your resolution of the difficulty, for such I take it to be. . . . For

’till this objection be cleared I would not undertake to answer one who

should assert that You do Hypothesim fingere. I think You seem tacitly to

make this Supposition that the Attractive force resides in the Central Body.

(Newton 1959–1977, V, p. 392)

There are two ways of reading Cotes. On the first, there is a stark empirical

contrast between the “invisible hand” scenario and Newton’s account of gravi-

tation. According to Cotes, the invisible hand moves Globe B without moving

Globe A. According to Newton, however, true interactions are mutual, and

so the central body of a gravitational system (Globe A) is predicted to move,

however slightly. The mismatch between prediction and observed motion is

Cotes’s problem: “I think [an observer] cannot by virtue of this Axiom [Attrac-

tio omni mutua est] conclude contrary to his Sense & Observation that the Globe

A does also move towards the Globe B” (Newton 1959–1977, V, p. 392, empha-

sis added). Cotes presumed that in a gravitational system, like in the invisible

hand case, “Sense & Observation” will show that the central body does not

move. Determining the motion of a central body in a real-world case is not

straightforward, but it is possible. For truly mutual interactions between two

bodies there is a “two-body” correction to Kepler’s third law (see, e.g., Smith

2002b, p. 44). Neither Newton nor Cotes could have made an empirical case in

favor of this correction based on contemporary observations, but the question

was open to empirical resolution.

Newton shifted the terms of the debate rather than treating this as an unre-

solved empirical question. To account for the subsequent exchanges we focus

on a second reading. On this reading, we take Cotes to suggest that two invisible

hands are acting jointly to move the globes in a way identical with the predic-

tions of Newton’s theory. This scenario is not empirically distinguishable from

Newton’s description of planetary motions; instead, it suggests that Newton’s
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argument for extending the third law to the central body rested on an unac-

knowledged assumption about the nature of gravity.14 Although Cotes claimed

that Globe A does not move, Newton seems to have responded to Cotes as if he

had posed this more telling objection.

Newton’s replies to Cotes focused on two points, both ultimately reflected in

changes to the Principia. First, Newton defended the third law as a crucial feature

of his conception of force by showing that it is necessary for extending the first

law to systems of interacting bodies. This reply missed the point (of the second

reading). Cotes did not challenge the third law itself, but rather the identifica-

tion of the bodies involved in its application. Nonetheless, Newton’s discussion

reveals the third law’s importance in going from a mathematical characteriza-

tion of force based on the first two laws to a physical characterization of forces

treated as mutual interactions among bodies. Second, Newton responded to

the charge of feigning hypotheses: he clarified the nature of hypotheses in his

method and argued that objections of a certain kind, exemplified by Cotes’s

invisible hand, should simply be set aside. By following Newton’s response to

Cotes and considering the status of the laws of motion, we argue that Newton

properly answered Cotes here. We contrast the limited sense in which the laws

are “hypothetical” on Newton’s account with the role of hypotheses for his

contemporaries (and the a posteriori character of the geometrical conception

of matter), and by doing so describe the sophisticated a posteriori reasoning of

the Principia, the basis for the dynamical conception of matter.

5.3.1 Applying the third law

The invisible hand highlights the ambiguity in Newton’s application of the third

law in the third step of the AUG. Suppose that invisible hands and an attractive

force produce indistinguishable motions of an orbiting and a central body. The

third law implies that there is an equal and opposite force corresponding to

the force holding the body in its orbit, but it does not specify the nature and

location of this force. Should it be a reaction force acting on the central body,

or a force pushing against the invisible hand?

Newton’s argument depends on one of two assumptions. Either, first, gravity

is a force of attraction causally residing in the interacting bodies alone, an attrac-

tive force “properly so call’d”, as Cotes put it; or, second, whatever underlying

mechanism is responsible for gravitation must itself produce a reaction force

on the central body. Suppose, for example, that an aether mediates the gravita-

tional interaction. Newton’s application of the third law would be appropriate

only if there is no net momentum transfer from the two gravitating bodies

14 See Densmore (1996), Koyré (1968), Harper (2002b), Stein (1990a), and Harper in this
volume. Kant rediscovered the problem, apparently independently of Cotes; see Kant
(2002, pp. 225–226) and Friedman (1992, pp. 149–159).
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to the aether. In this case, even though the third law properly applied yields a

reaction force on the aether pressing against the planet, the aether interacts

with the planet and Sun in precisely the right way to produce a reaction force

on the Sun. Either option conflicts with Newton’s claim that the validity of the

AUG does not depend upon “hypotheses” regarding the nature of gravity.15

Newton responded to Cotes by defending the validity of the third law of

motion itself. He asked Cotes to consider two bodies A and B acted on by no

net external forces, such that the forces between A and B do not satisfy the

third law. Say, for example, that A exerts a greater force on B than vice versa.

Newton emphasized that the resulting imbalance of forces would cause the

bodies to accelerate off to infinity, a result that conflicts both with experience

and the first law of motion (Newton 1959–1977, V, p. 397). Newton added text

to the Principia to the same effect. In the scholium following the Laws, Newton

considered sections of the Earth cut off by parallel planes equidistant from the

center. As before, an imbalance of the gravitational forces felt by these two parts

of the Earth would lead to the Earth accelerating off to infinity with no net

external force.16 These examples reveal the intimate connection between the

third and first laws. In order for the first law to hold for the center of mass of a

closed system of interacting bodies, the third law must hold for the interactions

among the bodies, although Newton’s examples only involve contiguous bodies

pressing against one another.

This line of response highlights the importance of the “mutuality” of force,

Newton’s crucial novelty. As Stein (2002) emphasizes, speaking of separate

forces acting on two bodies, which happen to come in an action–reaction pair,

is misleading. In Newton’s usage, the “force” corresponds to an interaction

between bodies that is not broken down into separate “actions” and “reactions,”

except in our descriptions of it. Newton’s own “popular” version of the third

book, the System of the World, included a clear statement to this effect:

It is true that we may consider one body as attracting, another as attracted;

but this distinction is more mathematical than natural. The attraction

resides in each body towards the other, and is therefore of the same kind

in both. . . . In this sense it is that we are to conceive one single action to be

exerted between two planets arising from the conspiring natures of both.

(Newton 1934, p. 568)

15 There is a second, distinct objection that Cotes did not raise (discussed in Harper 2002b):
are the motions sufficient to establish that the motive forces of two interacting bodies are
equal in magnitude? The equality can fail if, in modern terms, one allows the gravitational
constant G to vary rather than treating it as a universal constant. The assumption that
G is a universal constant amounts to treating the various acceleration fields produced by
the celestial bodies as instances of the same type of force.

16 Applying this line of reasoning to orbital motion is less straightforward; see Harper
(2002b) for discussion.
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This conception of force as an interaction manifested by equal and opposite

impressed forces is built into the Laws of Motion. It also plays a crucial role

in distinguishing apparent forces from real forces. Given a body in motion,

the first two laws allow one to infer the existence of a force producing the

motion that may be well defined quantitatively (given a definite magnitude

and direction), without considering the question of what produces the force.

But the third law further requires that the force results from an interaction

between the body in motion and some other body. (Coriolis forces illustrate

this distinction: the force is well defined quantitatively and can be inferred from

observed motions, but there is no “interacting body” responsible for the force.)

The first two laws figure primarily in treating forces from a mathematical point

of view, whereas the introduction of the third law marks an important physical

constraint. Although Newton famously abstained from requiring a full account

of the “physical cause or reason” of a force as a precondition for establishing

its existence, any further account of the physical nature of the force would have

to satisfy the constraint imposed by the third law.17

But even granted this conception of force as mutual interaction, Cotes’s query

prompted justification for Newton’s identification of the second “conspiring”

body. The first two steps of the AUG established that the force producing

orbits of the celestial bodies is closely related to their respective central bodies:

it is directed toward the central body, and it varies as the inverse square of

the distance from the central body. These features make plausible Newton’s

identification of the central body as the second body whose “conspiring nature”

produces the interaction. If the list of candidates is limited to other known

bodies, there are few plausible choices other than the central body. Cotes

accepted the first two steps of the AUG, and so accepted those features of the

force law apparently related to the central body. However, Cotes was correct to

insist that this plausibility argument is inadequate. Newton’s rivals pursuing a

vortex theory of planetary motion aimed to recover both these aspects of the

force without introducing a truly mutual interaction with the central body.

They did so by introducing an analog of the “invisible hand” – an aether that

was unobservable except for its gravitational effects.

In sum, although this part of Newton’s response emphasizes the viability of

the third law, this clarification is not sufficient to answer Cotes without further

stipulations regarding the bodies referred to by the law. However plausible these

further stipulations may seem, they beg the question as a reply to Newton’s con-

temporary critics. One may charge that these stipulations are inconsistent with

17 Smith (2002a: 150) argues that Newton imposes five further conditions that must be
satisfied for a component of a mathematically characterized force to qualify as physical;
cf. Janiak (2007, 2008), regarding Newton’s mathematical and physical characterizations
of force.
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Newton’s own method, that they are feigned hypotheses. Newton responded

to this charge directly.

5.3.2 Status of the laws and the dynamical conception

Since Cotes concluded that Newton did indeed “feign hypotheses” in the AUG,

Newton offered two clarifications. First, Newton reprimanded Cotes for apply-

ing the term hypothesis too broadly:

as in Geometry the word Hypothesis is not taken in so large a sense as

to include the Axioms & Postulates, so in experimental Philosophy it is

not to be taken in so large a sense as to include the first Principles or

Axiomes wch I call the laws of motion. These Principles are deduced from

Phænomena & made general by Induction: wch is the highest evidence

that a Proposition can have in this philosophy.

(Newton 1959–1977, V, pp. 396–397)

To make this clear in the Principia, Newton added the well-known passage

immediately following “hypotheses non fingo” to the General Scholium (New-

ton 1999, p. 943). Thus, apart from defending his application of the third law,

Newton argued that the laws of motion had a distinctive status.

Characterizing this status is a delicate matter, but the exchange with Cotes

and a comparison of Newton with his contemporaries sheds light on New-

ton’s position. Newton regarded the laws of motion as having a more secure

status than the hypothetical models pursued by “mechanical philosophers”

such as Huygens. Huygens characterized the aim of physics as the construction

of mechanical models that rendered various phenomena intelligible. Confi-

dence in a hypothetical model was based on the caliber of explanations it

offered, its ability to predict novel phenomena, and other theoretical virtues

such as simplicity. The well-recognized problem with this approach was the

possibility of alternative, yet equally satisfactory, models. Mechanical philoso-

phers often addressed it by insisting that their models satisfied further con-

straints, such as the compatibility of the models with privileged first principles,

particularly with the ontology of matter in motion. These constraints, how-

ever, did not eliminate underdetermination worries; they merely limited their

scope.

Newton, however, did not conclude that certainty was unattainable in natural

philosophy.18 His criticisms of mechanical theories were combined with the

assertion that his own method could establish results with as much certainty “as

the nature of things admit,” a certainty guaranteed by a criterion of evidential

warrant distinct from that of the mechanical philosophers (cf. Harper and

Smith 1995). Propositions that met this more stringent criterion qualified as

18 See, e.g., Newton’s evaluation of his optical work; Newton (1978, p. 106).
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“deduced from the phenomena” or “proved by experiments,” and Newton

claimed that they were not susceptible to the problems faced by mechanical

hypotheses. Specifically (cf. Section 5.2.3), confidence in Newton’s reasoning

about natural phenomena did not depend on its conformity with first principles

regarding fundamental natures.

But there is more to “deduction from phenomena” or “proof by experiment”

than a disregard for first principles, particularly in the context of the Principia.

Specifying the difference is no mean feat, but we are able to draw on prior work

on the implicit methodology of the Principia by Howard Stein, Bill Harper,

and George Smith.19 Despite disagreements on several finer points, this line

of work highlights two general contrasts between Newton and the mechanical

philosophers. First, Newton’s predecessors – such as Galileo – did not deal with

the complexity of actual motions as Newton did. Although the consequences

of Galileo’s theory of uniformly accelerated motion were not taken to apply

exactly to actual motions, a rough conformity between actual and theoretically

described motions was taken as evidence in favor of the theory. More refined

judgments of conformity, however, require an assessment of factors such as air

resistance and measurement imprecision, and these are problematic precisely

because they are not treated in the original theory.20 By way of contrast, New-

ton had an elegant way of handling the complexity of actual motions. He took

the care to prove theorems that could underwrite “robust inferences,” that is,

inferences whose conclusions (usually claims regarding forces) hold approxi-

mately if their antecedents (usually observational claims) hold approximately

(Smith 2002b). For example, Newton’s use of the precession theorem in the first

step of the AUG makes it possible to infer properties of the gravitational force

from actual motions even if they only approximately satisfy a simple mathe-

matical description, such as Kepler’s laws. An initial theoretical description is

not blocked by the complexity of actual motions. The argumentative structure

of the Principia further illustrates that Newton approached the complexity of

actual motions piecemeal, building up to increasingly complicated descrip-

tions in what Cohen called the “Newtonian Style” (Cohen 1980). As we shall

see below, this style is also crucial for establishing the epistemological warrant

of Newtonian mechanics.

Second, the Newtonian laws of motion by themselves do not entail specific

predictions about directly observed motions – falling bodies, for example – but

must be supplemented with assumptions regarding the forces at play. The laws

19 See Harper (1990, 2002b), Harper and Smith (1995), Smith (2001b, 2002a,b), Stein (1991,
ms), and Harper and Smith in this volume.

20 Many mechanical philosophers expected that such effects could not be incorporated into
theories of motion; Galileo, for example, doubted whether air resistance could ever be
handled theoretically, but defended mathematical idealization nevetheless, see McMullin
(1985).
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are thus not directly “deduced from phenomena” on the basis of successful pre-

dictions. This claim apparently runs counter to Newton’s defense of the laws in

the scholium following the Laws and Corollaries (Newton 1999, pp. 424–430).

There, Newton discussed phenomena (such as the ballistic pendulum) which

could plausibly be taken as the basis for a “deduction” of each of the laws. For

example, Newton defended the third law as a natural extension of the static

treatment of forces to cases wherein the mutually balanced forces apply to dif-

ferent bodies. Although the successful treatment of these phenomena provides

evidence in favor of the laws of motion, this is not a case of simple predictive

success. For each, further assumptions regarding the forces at play are required.

The scholium persuasively establishes that a variety of phenomena are compat-

ible with the laws of motion when motion is characterized dynamically using

Newton’s definitions, but it does not uniquely entail the laws. The challenge

in giving an account of the status of the laws – and the status of Newtonian

mechanics more generally – is to clarify the sense in which indirect empirical

support accrues to the laws, and thus the dynamical conception of matter,

that is nonetheless stronger than that offered by mere predictive success of

hypothetical models.

Harper’s and Smith’s reconstructions of the status of Newton’s laws help here.

Harper holds that empirical success is judged according to whether observed

motions provide multiple agreeing measurements of theoretical parameters

used to describe them (Harper 1990). This approach shifts the focus from

the predictive success of a single model to the stability of parameter values

across a set of theoretical descriptions. Smith emphasizes the importance of

approaching actual motions by a series of approximations (Smith 2002b). An

initial inference establishes the approximate validity of the gravitational force

law as applied to actual motions, but one can further calculate trajectories on

the assumption that the gravitational force holds exactly in a precisely specified

situation – such as two point-masses interacting solely via the gravitational

force. Discrepancies between this initial theoretical account and the actual

motions may indicate that some idealizing assumptions are flawed, and the

next step is to drop these assumptions and provide a more elaborate theoretical

description. On Smith’s account, the laws of motion accrue empirical support

with each stage in a series of approximations when discrepancies between

actual motions and a particular stage can be explained by relaxing idealizing

assumptions in a way that is self-consistent and that identifies further physical

details of the system.

This brief sketch is sufficient to contrast the methods of inquiry associ-

ated with the dynamical and geometrical conceptions of matter. Clearly, both

Harper’s and Smith’s accounts of Newton’s method depend crucially on the

exactness provided by the mathematical framework of Book I. But Newton

claimed to have established “from the phenomena” not only the laws of motion
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and gravity, but also the impenetrability and extension of bodies (see Sections

5.2.2–5.2.3). Can similar accounts be given for these claims?

Certainly, Newton does not introduce parameters characterizing impene-

trability and show how various phenomena give agreeing measurements of

them. Nor does he give controlled idealizations that can be utilized as first

approximations in order to derive the properties of impenetrability and exten-

sion from observed motions, and then proceed to develop successively more

detailed approximations. The evidential warrant for such inferences “from the

phenomena” relies on a less sophisticated chain of reasoning than does the

warrant provided for the laws of motion. We return to this issue shortly, when

we consider a case in which a deduction from the phenomena that uses a

sophisticated mathematical framework is pitted against one that does not.

Before doing so, however, we must note a feature that is shared by both

types of inferences “from the phenomena.” Newton also warned Cotes against

overstating the certainty of any a posteriori deductions:

Experimental philosophy proceeds only upon Phenomena & deduces gen-

eral Propositions from them only by induction. And such is the proof of

mutual attraction. And the arguments for ye impenetrability, mobility &

force of all bodies & for the laws of motion are no better. And he that

in experimental Philosophy would except against any of these must draw

his objection from some experiment or phænomena & not from a mere

Hypothesis, if the Induction be of any force.

(Newton 1959–1977, V, p. 400)

Newton acknowledged that the laws of motion were “hypothetical” in the sense

of being open to revision, but limited in how they may be revised. In modern

terminology, “provisional” or “corrigible” are more apt for capturing Newton’s

meaning. For Newton, the laws of motion are not hypothetical due to the threat

of underdetermination and alternative models. Rather, they are hypothetical –

provisional, corrigible – because in establishing them one must generalize

from a limited set of phenomena, and this necessarily inductive step may be

overturned by new evidence. In an unsent draft of the letter above, Newton

elaborated:

One may suppose that God can create a penetrable body & so reject the

impenetrability of matter. But to admitt of such Hypotheses in opposi-

tion to rational Propositions founded upon Phænomena by Induction

is to destroy all arguments taken from Phænomena by Induction & all

Principles founded upon such arguments. And therefore as I regard not

Hypotheses in explaining the Phenomena of nature so I regard them not

in opposition to arguments founded upon Phænomena by Induction or

to Principles setled upon such arguments . . . This Argument holds good

by the third Rule of philosophizing. And if we break that Rule, we cannot
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affirm any one general law of nature: we cannot so much as affirm that all

matter is impenetrable.

(Newton 1959–1977, V, p. 398)

By the time of this exchange, the earlier portions of Book III had already

been printed and new material could not be added. In E3, however, Newton

added Rule IV, a claim much to the same effect but now no longer treated

as a consequence of Rule III (Newton 1999, p. 796). Rule IV clarifies that the

uncertainty Newton associated with deductions from the phenomena was quite

different than that associated with mechanical models. Taking the results of such

a deduction to apply without exception introduced uncertainty, but merely the

uncertainty of any inductive generalization. Newton further acknowledged

the possibility that the results of a deduction may only be approximations to

further, more exact theoretical descriptions. But in both cases, Newton held

that the way to handle the associated uncertainty was to continue to compare

observations and their theoretical descriptions, with the hope of turning up

contrary phenomena indicating error. Pursuing “hypotheses” in the sense of

the mechanical philosophy had no part in this effort.

5.3.3 Gravity as an essential property

How did Cotes respond to Newton’s elaboration of his method? Cotes was

tempted to bite the bullet and assert that the matter of the central body actively

produces the gravitational force felt by the orbiting body, that it is the phys-

ical seat of the force of gravitation.21 The third law applies in this instance

because the central body, rather than some intermediary, is directly responsi-

ble for the force felt by the orbiting body. However, this suggests an intimate

connection between matter and gravitation, and so a question arises about

how to characterize this connection. In writing the preface to E2 Cotes initially

called gravitation an essential property of matter – a property “without which

no others belonging to the same substance can exist” (Newton 1959–1977, V,

pp. 412–413) – but was reprimanded by Clarke. In response, Cotes substituted

“primary” for “essential,” but still treated gravitation as on par with impene-

trability, extension, and mobility; it has, he wrote, “as fair a claim to that title”

as the other properties.22

21 There are two senses in which gravitation can be ascribed to matter (McMullin 1978,
pp. 59–61). First, gravity causes deviations from inertial motion in accordance with the
second law, and matter plays a passive role by responding to the impressed force (gravity).
But a body must also produce the impressed force felt by other bodies, and this second,
active sense is more problematic for Newton. For the third law to apply to an attractive
force between two bodies, without any mediation, each body must respond to and also
produce the force.

22 See also Newton (1999, p. 392).
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Cotes did not elaborate, but he might have defended himself as follows.

Inertia is taken to be essential to material bodies because the laws of motion –

the laws detailing the relations between inertia, impressed force, and motion in

bodies – require it. To be a body subject to the laws of motion is necessarily to be

a body with inertial properties. Likewise, gravity has a “fair claim” to the title of

an essential property because the understanding of attractive forces at work in

the Principia requires it. The Principia demonstrates that all bodies attract one

another according to a single force law, and so, taking this force law as his guide

in determining the essential properties of matter, and having no indication

that this force law could be explained by some deeper mechanism, Cotes is

ready to claim that gravity is essential to material bodies. For Cotes, physical

theory itself is the guide to determining essential properties. As promised in

Section 5.2.3, we can now also see why the list of qualities generalized by

Rule III of the Regulae Philosophandi is heterogeneous. The force of inertia,

for example, is essential for the Newtonian theoretical description of actual

motions. But extension, hardness, and impenetrability are not.23 Moreover,

gravity and inertia are established by the complex method outlined in the

previous section, but extension, hardness, and impenetrability are not. As we

shall see in Section 5.4, Cotes recognized that the qualities treated by Rule III

are not on an equal footing and thus that not all “deductions from phenomena”

generalized by Rule III are equally meritorious.

For Newton, however, responding to the objection by taking gravity as an

essential property was a misstep. The physical characterization of gravity as

a real rather than merely apparent force requires at least that it is a mutual

interaction satisfying the third law. This is an important constraint on the nature

of the force and it runs deeper than might be expected, but Newton does not

follow Cotes in taking this to have direct implications for the ultimate cause of

gravitation or the essential properties of matter. Newton’s original reprimand –

that Cotes applied the term “Hypothesis” too broadly – is instructive. For

Newton, the application of the third law to the orbiting and central body is

a crucial step in moving from a mathematical characterization of a force, as

a well-defined quantity inferred from observed motions, to a characterization

of the physical causes, species, and proportions of real forces. But taking this

step does not require determining the cause of gravity or the relation of gravity

to the essential properties of matter. The application of the third law has a

“hypothetical” or provisional character, in the limited sense in which the overall

framework of the laws of motion is “hypothetical.” However, this sense is not

analogous to the hypothetical character of mechanical models. The true nature

of the gravitational force – i.e., whether or not it acts immediately as a force of

interaction between the orbiting and central bodies – is a separate question,

23 Mobility has a curious status as an object of the intension/remission criterion, so we leave
it aside here.
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not directly related to the status of laws of motion, and Newton reserved

judgment regarding it.24 To speculate, as Cotes did, that the application of the

third law is inconsistent with the true, yet unknown, cause of gravitation is

to repeat a common mistake of the mechanical philosophers, namely to judge

an experimentally established proposition on the basis of its compatibility

with claims regarding the fundamental nature of bodies. Given his skepticism

regarding such claims, Newton rejected the need for such a compatibility check,

and this was one of the most distinctive aspects of his method.

In sum, in our opinion Newton’s answers to Cotes only seem to fail to recog-

nize the question of whether gravity is mutual per se because Newton purposely

rejected any discussion of what gravity is, per se. Newton’s reference to the

conspiring nature of both orbiting and central bodies should not be taken to

mean that gravitational attraction resides essentially in either. Had Newton

explicated his own methodological tenets with enough clarity, he could have

made it clearer to Cotes that he chose to remain agnostic about the implica-

tions of his own theory regarding the essential natures of bodies. However,

his lack of explicitness on this occasion, the fact that he often entertained

deeper explanations (albeit with sufficient caveats), and the fact that he was

the sole natural philosopher endorsing this approach, all contributed to Cotes’s

confusion and willingness to consider such implications. The same pattern of

misunderstanding recurs in Cotes’s query about the proportionalities that hold

between weight, inertia, and quantity of matter. There, however, Cotes shows

Newton to be mistaken about the claims warranted by his own method.

5.4 Proportionalities

In III.6, Newton demonstrated that:

All bodies gravitate toward each of the planets, and at a given distance from

the center of any one planet the weight of any body whatever toward that

planet is proportional to the quantity of matter which the body contains.

(Newton 1999, p. 806)

The weight of a body does not depend on properties such as form or texture. This

distinguishes gravity from forces such as magnetism, and also sets Newton’s

view apart from several contemporary accounts that left open the possibility

that gravity could depend upon a wide variety of a body’s properties.25 In the

text of the proposition, Newton described a pendulum experiment meant to

establish that near the surface of the Earth the weight of a body is proportional

24 Newton famously denied that his characterization of gravitational force implied that
brute matter could act directly at a distance; see, for example, the oft-quoted letter to
Bentley (Newton 1959–1977, III, pp. 240–44).

25 See Westfall (1967, pp. 246–251), Koyré (1965, pp. 173ff., 185ff.).
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to its quantity of matter, and further that the weight of Jupiter’s moons is pro-

portional to their quantities of matter.26 The experiment was first mentioned

in two manuscripts which follow the initial De Motu drafts.

Newton constructed two equal-length pendulums with wooden boxes as

bobs and filled the wooden boxes with equal weights of gold, silver, lead, glass,

sand, common salt, wood, water, and wheat. For each pair of materials, he

measured the periods of oscillation. According to II.24, the mass of a pen-

dulum bob is proportional to the product of its weight and the square of its

period, m ∝ wp2. This proposition is based on two basic assumptions. First,

fm ∝
m�υ
�t

, where fm is the motive force, υ is the velocity and t the time –

a restatement of definition 8 (motive force). Second, fm ∝ w, motive force is

proportional to the weight of the pendulum bob.27 For a simple pendulum near

the Earth’s surface, the period depends upon both the length of the pendulum

and the acceleration due to gravity. Since Newton used pendulums of equal

length, the pendulums would only have different periods if the gravitational

acceleration varied for different materials. Newton reported that the periods of

two pendulums containing different materials were in fact the same, to within

an accuracy of 1/1000, and so concluded that m ∝ fm ∝ w for all materials

tested. Citing Rule III, he then generalized to “all bodies universally,” even those

composed of materials not tested in the experiment (Newton 1999, p. 809).

In corollary 3 of E1, Newton highlighted an important implication of this

proportionality for matter theory; namely, that a vacuum exists:

And thus a vacuum is necessary. For if all spaces were full, the specific

gravity of the fluid with which the region of the air would be filled, because

of the extreme density of its matter, would not be less than the specific

gravity of quicksilver or gold or of any other body with the greatest density,

and therefore neither gold nor any other body could descend in air. For

bodies do not ever descend in fluids unless they have a greater specific

gravity.

(Newton 1999, p. 810)

Cotes objected that this argument implicitly assumes that completely filled

regions of space possess identical specific gravities, which can be the case if and

only if those regions contain identical quantities of matter. He illustrated the

objection with a thought-experiment:28

26 See Harper’s contribution to this volume.
27 As Newton notes in II.24.c5, the result also holds with “relative” (or buoyant) weight of

the pendulum bob in place of w, because for a body immersed in a medium the motive
force is the relative weight.

28 Cotes’s Cambridge contemporary Robert Greene lodged essentially the same objection
in Chapter VI of Greene (1712), albeit not nearly as perspicaciously as Cotes.
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Let us suppose two globes A & B of equal magnitudes to be perfectly fill’d

with matter without any interstices of void Space; I would ask the question

whether it be impossible that God should give different vires inertia to

these Globes. I think it cannot be said that they must necessarily have the

same or an equal Vis Inertia. Now You do all along in Your Philosophy,

& I think very rightly, estimate the quantity of matter by the Vis Inertia

& particularly in this VIth Proposition in which no more is strictly proved

than that the Gravitys of all Bodys are proportionable to their Vires Inertia.

Tis possible then, that ye equal spaces possess’d by ye Globes A & B may

be both perfectly fill’d with matter, so no void interstices remain, & yet

that the quantity of matter in each space shall not be the same. Therefore

when You define or assume the quantity of Matter to be proportionable

to its Vis Inertia, You must not at the same time define or assume it to

be proportionable to ye space which it may perfectly fill without any void

interstices; unless you hold it impossible for the 2 Globes A & B to have

different Vires Inertia. Now in the 3rd Corollary I think You do in effect

assume both these things at once.

(Newton 1959–1977, V, p. 228)

Cotes emphasized that contrary to Newton’s assumption in the third corollary,

the two ways of quantifying matter – based on response to impressed force (vis

inertiae) and volume filled – need not agree. If they do not, one can account for

differences in specific gravity without postulating a vacuum. The implications

for Newton’s anti-Cartesian, anti-plenum arguments are clear.29

But Cotes’s objection also has broader implications, implications that tie

together our treatment of the geometrical and dynamical conceptions of mat-

ter. Cotes’s objection shows that he recognized the possibility of measuring

“quantity of matter” in the two distinct, but possibly conflicting, ways. If both

the dynamical and geometrical measures are correct, i.e. if both vis insita and

extension are proportional to quantity of matter, it should follow that both are

proportional to one another. However, a proportionality between the dynamical

and geometrical measures can be justified neither a priori nor empirically. First,

nothing in the concepts of spatial impenetrability or force of inertia necessitates

a determinate proportionality between them. Second, although the pendulum

experiments are intended to prove that gravitation depends upon the quantity

of matter, as Cotes indicated to Newton, “no more is strictly proved [in them]

than that the Gravities of all Bodys are proportionable to the Vires Inertiae.”

Whether the gravities of bodies are further proportional to their quantities of

29 As with the invisible hand objection, Kant also criticized Newton on precisely this point.
See Proposition XII of the Physical Monadology (Kant 1992, p. 64). A passage from the
Critique (Kant 1998: (A173/B215–A174/B216)) more closely parallels Cotes’s argument
(we thank Kent Baldner for bringing it to our attention).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 19:21:31 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.008

Cambridge Books Online © Cambridge University Press, 2012



cotes’s queries 133

matter depends on how one defines “quantity of matter.”30 If one defines it

to be proportional to the inertia of a body, then the experiments support the

desired conclusion. But if one defines it to be proportional to the extension

a body impenetrably fills, they do not. Cotes’s objection reveals, although he

does not say so directly, that the choice of an appropriate definition is crucial

for the AUG: Assume that quantity of matter, defined geometrically, can vary

in relation to vis inertia, as in Cotes’s two globes. We can replace vis inertia with

weight in the conclusion to III.6, since the pendulum experiments show that

they are proportional at a given distance; thus, quantity of matter geometrically

defined is not proportional to weight at a given distance. That is, if quantity of

matter is defined to be proportional to quantity of extension, even at a given

distance, the quantity of matter of a body is not proportional to its weight. Cotes’s

objection undermines not just the III.6.c3, but III.6 itself, and thus the AUG.

If Newton wants to maintain that quantity of matter can be defined by either

quantity of extension or quantity of inertia, he must assume that the two are

determinately proportional, a claim for which he can offer no justification. This

was Cotes’s point.

Newton attempted to rebut Cotes by claiming that matter has inertial prop-

erties proportional to its quantity and geometrical properties due to its impene-

trability, and that these two entail a fixed proportionality of inertia to extension.

Yet this missed Cotes’s point. The point was that these two facts, which Cotes

did not dispute, do not entail the proportionality of inertia to extension.31 New-

ton’s second response to Cotes (after Cotes reiterated his reasoning) illustrates

his misunderstanding and his continued commitment to both the dynamical

and geometrical conceptions of matter and their a posteriori character. He

wrote:

I have reconsidered the third Corollary of the VIth Proposition. And for

preventing the cavils of those who are ready to put two or more sorts

of matter you may add these word[s] to the end of the Corollary: [1]

From pendulum experiments it is established that the force of inertia is

proportional to the gravity of a body. [2] The force of inertia arises from

the quantity of matter in a body and so is proportional to its massiness

[massa]. [3] A body is condensed by the contraction of the pores in it, and

when it has no more pores (because of the impenetrability of matter) it

can be condensed no more; and so in [completely] full spaces [the force

30 One might object that Newton and Cotes are conflating inertial and gravitational mass,
see Densmore (1996, pp. 313–330). The problem is distinct from the objection under
consideration.

31 Cotes’s position shifted slightly during this exchange: whereas initially he objected to
the implicit assumption of the proportionality of inertia to quantity of extension (“You
must not at the same time define . . .”), he later allowed that the proportionality could be
invoked as an unproved assumption. In either case, his objection is that Newton’s explicit
commitments do not entail that the proportionality holds.
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of inertia] is as the size of the space. Granted these three principles the

corollary is valid.

(Newton 1959–1977, V, p. 240)

Since Newton and Cotes explicitly agreed on [1], the source of their disagree-

ment lies in [2] or [3]. In [2], Newton implicitly defined quantity of matter

to be proportional to the force of inertia. Since Cotes had already written to

Newton that “all along in your Philosophy, & I think very rightly, you esti-

mate the quantity of matter by the Vis Inertiae,” the source of conflict must be

[3]. In [3], Newton deduced from [2] and the impenetrability of matter that

the inertia of matter is proportional to the extension it solidly fills. Clearly,

Newton took this to be a valid inference. According to Cotes, however, New-

ton’s reasoning is circular: he implicitly assumed that the force of inertia is

determinately proportional to the extension solidly filled by matter in order

to deduce that, after condensation, the force of inertia would be determinately

proportional to the extension filled by matter. Cotes wrote in his subsequent

response:

I am not yet satisfied as to the difficulty unless You will be pleased to add,

That it is true upon this concession, that the Primigenial particles . . . have

all the same Vis Inertiae in respect to their magnitude or extension in

Spatio pleno. I call this a concession because I cannot see how it may be

certainly proved either a Priori by bare abstracted reasoning; or be inferr’d

from Experiments.

(Newton 1959–1977, V, p. 242)

Cotes took Newton to be putting a uniformity constraint on the fundamen-

tal, “Primigenial” particles of matter, particles that are inaccessible to direct

experimental investigation. The uniformity constraint is the claim that all

fundamental particles have identical specific gravities; or, equally, that their

quantity of matter is uniformly proportional to their extension. Newton had

appealed to the uniformity constraint from his student days: in the Certain

Philosophical Questions, in his draft and final revisions to Hypothesis III of E1,

and in his considered arguments against the vacuum. It is a fixture of Newton’s

thought that had gone unchallenged until this exchange with Cotes, although

Newton appears to have justified the constraint by subtly different means at

different points in his career (McGuire 1970). At the beginning of this exchange

with Cotes, Newton believed that the constraint could be justified a posteriori.

His initial responses demonstrate that, by his own lights, the uniformity of

primigenial particles followed from observable facts regarding the extension,

impenetrability, and inertia of matter. Cotes’s objection pointed to the conflict

between the geometrical and dynamical measures of matter, both of which,

according to Newton, were derived a posteriori.

However, the geometrical definition (and the conception of matter under-

lying it) is derived by a different sort of a posteriori argument than the
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dynamical definition (and the conception of matter underlying it). The geo-

metrical definition is derived from the claim that, as Newton puts it in Rule III

and as he articulated more elaborately in DG, “extension is found in all sensible

bodies.” This derivation is in some sense immediate – it rests on no sophisti-

cated mathematical chain of reasoning, no process of approximation, and no

fixing of causal parameters. Within Newton’s broadly mechanical account of

perception, it simply follows from our experience of any body whatsoever. The

dynamical definition is a crucial part of Newton’s account of force, developed

and used to account for a variety of motions in the Principia.

Ultimately, Newton backed down. In III.6.c4 of E2, he rephrased the anti-

plenum argument in the form of a conditional, acknowledging the assumption

Cotes insisted on:

If all the solid particles of all bodies have the same density and cannot be

rarefied without pores, there must be a vacuum. I say particles have the

same density when their respective forces of inertia [or masses] are as their

sizes.

If the fundamental particles have a fixed ratio between inertia and volume, then

a vacuum must be granted. Yet the interchange with Cotes shows that New-

ton’s initial inclination was to positively maintain that all primigenial particles

are uniformly extended in proportion to their quantities of matter, despite

the fact that his pendulum experiments and the mathematical structure used

to interpret them recommended no such steadfastness. In fact, the dynamical

conception supported by the results of the Principia is compatible with treat-

ing matter as constituted by Boscovichian point-particles, with the quantity of

matter appearing solely as a parameter of these points. The geometrical prop-

erties of matter play no role in physical explanations in this schema, since such

explanations depend solely on the laws of motion and the further specification

of inter-particle forces.

Newton’s initial failure to see this point reflects, on our view, a failure to

clearly distinguish the distinctive a posteriori methods described above. As we

saw in the treatment of Rule III, Newton conceived of properties like extension

and impenetrability as having the same status as inertia, despite the fact that

they were supported by a distinctive line of argument that was not intertwined

with the AUG or the deduction of the laws of motion from phenomena. Cotes,

to his credit, was quite clear that Newtonian mechanics does not support a

geometrical conception of matter. He even pointed out the precarious status of

extension to Clarke:

I understand by Essential propertys such propertys without which no oth-

ers belonging to the same substance can exist: and I would not undertake

to prove that it were impossible for any of the other Properties of Bodies

to exist without even Extension.

(Newton 1959–1977, V, pp. 412–413)
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Cotes obliquely entertained the possibility that Boscovichian non-extended

point-particles can constitute bodies and that our experience of bodies – even

our experience of those qualities that seem immutable and invariably present –

is no guide in questions of essentiality. For Cotes, to repeat a point made in

Section 5.3.3 regarding gravity, physical theory itself is the guide to determining

essential properties. It just so happens that within Newtonian mechanics inertia

plays a central role in giving an account of observed motions whereas extension

does not. Insofar as Cotes is concerned, so much the worse for extension.

Newton was not far behind. After Cotes’s objection highlighted the incon-

gruity between the two conceptions of matter, Newton began to doubt the

geometrical conception more thoroughly. The change of mind for an astute

and tenacious figure such as Newton is significant: Newton did not back down

in response to the invisible hand objection because he was certain of his cor-

rectness. In response to the two globes objection, however, Newton modified

his views. In a series of draft definitions intended for Book III of E3 (dated

by McGuire (1966) to 1716), Newton explicitly addressed his now-changed

conception of body. He wrote:

Definition II Body I call everything which can be moved and touched, in

which there is resistance to tangible things, and its resistance, if it is great

enough, can be perceived.

(p. 115)

Lacking from this definition is any mention of the extension of bodies. The

only definitional property of body here is its inertial resistance. A far cry indeed

from DG’s definition:

Definition 4. Body is that which fills space.32

(Newton 2004, p. 13)

5.5 Conclusion

We have stressed two aspects of Newton’s thought. The first is Newton’s empiri-

cist method, and the two approaches he took to justifying claims in natural

philosophy. The approach exemplified by the AUG contrasts sharply with the

method of the mechanical philosophers. Unlike the mechanical philosophers,

Newton did not allow the satisfaction of intelligibility constraints (e.g., that

only contact action is comprehensible) to serve as justification, even if partial,

for a physical theory; the justification for the laws of motion and universal

32 We take the development of Newton’s views on body to show that DG cannot be auto-
matically taken to reflect Newton’s mature metaphysical views. Rather, it is best taken as
Newton’s relatively early attempt to explicate the philosophical infrastructure in which
his physics is embedded, but by no means the last word.
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gravitation is their ability to serve successfully as a framework for describ-

ing motions. Newton’s response to Cotes’s invisible hand objection reflected

this methodological stance. Cotes objected that Newton had inappropriately

assumed that gravitational force must be produced by the orbiting and central

bodies, despite his professed agnosticism regarding the underlying cause of

gravity. Newton responded by clarifying that his characterization of gravity as

a force obeying the three laws was hypothetical in the same limited sense that

the laws of motion are hypothetical and did not entail further assumptions

regarding the essential properties of matter or the underlying cause of gravity.

The second approach to establishing results a posteriori is exemplified by the

account of body in DG and some of Newton’s statements in Rule III. It involves

a more direct argument, essentially reading off the properties of matter from

the general experience of bodies. It does not draw on a precise mathematical

framework like that of the Principia, and so the ways of clarifying evidential

warrant within the first approach apply. It is consequently unclear how to assess

the strength of the conclusions derived from this type of reasoning.

Second, there is an uncomfortable union in Newton’s thought between

two competing conceptions of matter. The geometrical conception reflects

Newton’s Cartesian roots and was linked to the possibility of an aetherial

explanation of gravitation. Although Newton decisively rejected several aspects

of Cartesian thought in DG, he retained an account of bodies that took their

geometrical properties to be fundamental. Consequently, he took a body’s

quantity of matter to be proportional to the volume it impenetrably fills.

At the same time, Newton developed the distinctive dynamical conception

of matter of the Principia, which measures quantity of matter by a body’s

response to impressed force. Newton apparently treated the two measures as

aspects of a single, coherent account of matter. Cotes’s second objection brought

out the tension between these two conceptions. Cotes argued that Newton’s

claims could not be sustained without an explicit assumption regarding the

fundamental constituents of matter, betraying Newton’s professed agnosticism

on such matters. Although Newton’s response to Cotes reflects his failure to

clearly distinguish the two approaches to a posteriori reasoning characterized

above, there is evidence he took Cotes’s criticism to heart and attempted to

dispense with DG’s geometrical conception.
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Newton’s scientific method and the

universal law of gravitation

ori belkind

6.1 Introduction

When Newton first presented his argument for the law of gravitation not

all were convinced. Huygens, while admiring Newton’s achievement in the

Principia, was skeptical. Since gravitational attraction contradicts the principles

of mechanical philosophy, Newton’s theory seemed counterintuitive and even

absurd.1 Leibniz was also critical of Newton’s argument.2 After all, how is one

to accept action at a distance without relying on any contact forces or whirling

fluids? Newton, on his part, argued that his theory was based on impeccable

reasoning. Even if his gravitational force violates the scientific sensibilities of

the day, one still has to accept it as fact.

Newton explains his attitude towards hypotheses in the General Scholium

to Book III of the Principia:

For whatever is not deduced from the phenomena must be called a hypoth-

esis; and hypotheses, whether metaphysical or physical, or based on occult

qualities, or mechanical, have no place in experimental philosophy. In this

experimental philosophy, propositions are deduced from the phenomena,

and are made general by induction. The impenetrability, mobility, and

impetus of bodies, and the laws of motion and the law of gravity have been

found by this method.

(Newton 1999, p. 943)3

I would like to thank Arthur Fine, Eric Schliesser, Andrew Janiak, George Smith, Bill
Harper, Steffen Ducheyne, Geoff Goddu, and the anonymous reader for CUP for their
helpful comments and suggestions on various versions of this paper. I would also like to
thank the University of Richmond for providing research support and Michele Bedsaul for
help with editing.

1 See Maglo (2003) for an account of the reception of Newton’s gravitational theory.
2 See Leibniz’s letters to Newton from March 7, 1692/3 (Newton 2004, p. 106).
3 It is important to note that the Scholium to Book III was added to the second edition of the

Principia in 1713, some 26 years after the first edition in 1687. In these long years between
the first and second edition, Newton received a lot of criticism for failing to include a
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According to Newton the nature of a hypothesis does not matter; hypotheses

have no place in experimental philosophy. The historical context here is that

Newton is primarily concerned with undermining the Cartesian explanation

for gravitation as a legitimate alternative to his attraction force. According to

Newton, mechanical explanations are no more scientific than occult qualities

if we cannot deduce them from the phenomena. The empiricist rhetoric gives

Newton an important advantage over his Cartesian opponents.

In Rule 4 for the Study of Natural Philosophy, Newton again codifies his

approach:

In experimental philosophy propositions gathered from phenomena by

induction should be considered either exactly or very nearly true notwith-

standing any contrary hypotheses, until yet other phenomena make such

propositions either more exact or liable to exceptions.

(Newton 1999, p. 796)4

Thus even if our scientific intuitions – our hypotheses about how the Universe

works – contradict the propositions we derive from the phenomena, we do

not have good reasons to reject them. The phenomena should dictate what we

take as true. But even if we derive the proposition from the phenomena, we

should not consider it completely safe from refutation. Scientists may extend

the investigation into new domains or discover new phenomena that would

show the proposition to be false. It seems as if according to Newton we must

take the scientific proposition deduced from the phenomena to be true, without

denying the possibility of it being refuted in the future.5

However, it is not exactly clear what Newton means by “propositions gathered

from phenomena by induction.” Is there a rule of induction that tells us how

to produce general statements from our observations? What does this rule look

like? According to a long tradition in the philosophy of science, formal rules

proper explanation of gravity, and we can see the Scholium as an attempt to answer critics.
See I. B. Cohen’s introduction to the Principia (Newton 1999, pp. 274–280).

4 This rule was only added in the third edition of the Principia from 1726, almost 40 years
after the initial publication of the Principia! It is possible that this rule reflects only Newton’s
latest thought on methodology. See I. B. Cohen’s introduction to the Principia (Newton
1999, p. 200).

5 In the preface to the second edition of the Principia, Cotes defends Newton from the charge
that he treats gravity as an occult force:

occult causes are not those causes whose existence is very clearly demonstrated by
observations, but only those whose existence is occult, imagined, and not yet proved.
Therefore gravity is not an occult cause of celestial motions, since it has been shown
from phenomena that this force really exists.

(Newton 1999, p. 393)

While Cotes may not have the same philosophical views as Newton, the defense Cotes
provides here is very much in line with the wording of Rule 4.
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of induction are either extremely hard or impossible to formulate. Perhaps

by “experimental demonstration” Newton means simply that causal laws are

derived from the phenomena through deductive reasoning. Duhem (1982,

pp. 190–195) famously argued that it is impossible for Newton to have used

logical deduction in deriving the law of gravitation from the phenomena.

Newton started with the elliptical orbits of the planets and deduced from

them the inverse-square nature of the law of gravitation.6 He then used the

law of gravitation to calculate corrections in the planets’ orbits, using the

law of gravitation to determine the planets’ deviations from pure elliptical

orbits. Following a strict deductive method cannot reach conclusions that

demonstrate a premise to be false or show it to be only approximately true.

Thus, Newton must have followed some other strategy in deriving his law of

gravitation.

Proponents of the Hypothetico-Deductive (HD) method worry that

hypotheses always extend what can be shown with a few observations or exper-

iments. Moreover, they argue that for any favored hypothesis, there may be

others that are consistent with the phenomena. Thus there is no foolproof

procedure which can be given for generating hypotheses. Newton warned us in

Rule 4 that we ought to be careful when deriving a proposition from the phe-

nomena. In case we discover new phenomena that deviate from the scientific

proposition, it should be rejected. Newton was therefore well aware that induc-

tion is fallible. However, while he admitted that induction is fallible because of

future discoveries, he seemed to think that there is a rule of induction that safely

charts the course from a given set of phenomena to the scientific proposition

derived from it.

It is quite tempting to be swayed by the HD method when considering the

fallibility of induction. If there were a mechanical rule of induction, which

would allow us to directly infer the scientific proposition from the phenomena,

this rule of induction would resemble deduction in its strength. Inferences that

start from true premises would be infallible. However, it is difficult to find a rule

of induction that operates in the same way, in all contexts. If the procedure for

generating scientific propositions from the phenomena is not foolproof, can it

even be formulated? It seems plausible to conclude that the process by which a

scientific proposition is generated could never be universalized and made into

a rule, and so any inductive procedure followed must be merely a contingent

one with no universal validity. We ought to confine the process of generating a

scientific proposition to the “context of discovery.” But in case there is no rule

of induction, all scientific propositions are essentially conjectures since there is

6 A superficial reading demonstrates that the claim that the law of gravitation is derived
from the elliptical orbits of the planets is a mischaracterization of Newton’s argument in
Book III of the Principia. However, Duhem’s point can be made using the actual argument
in Book III. See Smith (2002b) and section 3 for a full discussion.
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an ineliminable gap between the phenomena and the scientific proposition.7

To find a gray area between these two choices, i.e., between there being a rule

of induction and there being no rule, we need to show how an inductive form

of reasoning, starting from a particular set of phenomena, follows a specifiable

procedure while still being fallible.

If proponents of the HD method are right, they must explain Newton’s self-

description as following an inductive method. Either Newton’s methodological

assertions were misinterpreted, and he in fact was endorsing the HD method

despite his explicit assertions; or, the method Newton endorsed explicitly is not

the one he followed as a matter of fact.8 According to Hanson, for example, when

Newton expresses his commitment to inductivism, he is actually endorsing the

7 This is the reasoning that led Karl Popper to his falsificationism:

. . . it is obvious that this rule or craft of “valid induction” is not even metaphysical:
it simply doesn’t exist. No rule can ever guarantee that a generalization inferred from
true observations, however often repeated, is true. . . . And the success of science is
not based upon rules of induction, but depends upon luck, ingenuity, and the purely
deductive rules of critical arguments.

(Popper 2003, p. 70)

This leads Popper to articulate his methodological rule. First a scientist, in virtue of
some leap of the imagination, formulates a hypothesis. Then, he or she derives a testable
implication from the hypothesis. Finally, if the testable implication is shown to be false when
compared with observations, the scientist concludes by modus tollens that the hypothesis
is refuted. Otherwise, we have reason to take the hypothesis seriously. Popper articulates a
methodological rule that encodes this approach:

Once a hypothesis has been proposed and tested, and has proved its mettle, it may not
be allowed to drop out without “good reason”. A “good reason” may be, for instance:
replacement of the hypothesis by another which is better testable; or the falsification
of one of the consequences of the hypothesis.

(Popper 2003, p. 53)

Popper’s HD method therefore suggests that no valid distinction can be made between
a mere hypothesis and the propositions that are deduced from the phenomena. We have
to start with hypotheses. We then use deductive rules to see if they cohere with our
observations.

8 Some commentators doubted that Newton ever meant to espouse the inductive method.
According to Hanson (1970), for example, we should be careful to interpret correctly
Newton’s use of the word “hypothesis,” since Newton did not use this word very con-
sistently. Some occurrences of the word “hypothesis” in the first edition of the Principia
were replaced by the word “phenomenon” in the second edition. The “hypothesis” that
the solar system is at rest is explored by Newton in both the first and the second editions
of the Principia to settle the controversy between the geocentric and heliocentric systems.
Hanson differentiates between four different kinds of scientific propositions: a supposed
observational claim, which functions like the initial conditions we specify when solving
a physical problem; a confirmed observational claim; a supposed theoretical claim and a
confirmed theoretical claim. All of these may be referred to as hypotheses, with varying
meanings, depending on the context.
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HD method. Newton’s use of the word “hypothesis” is simply meant as “an

expression of some philosophical or metaphysical prejudice” (Hanson 1970,

p. 32). This pejorative use of “hypothesis” merely describes impeding meta-

physical stances or prejudices that have no testable consequences and therefore

cannot be confirmed or refuted. We should keep in mind that Newton was

constantly being pestered by the Cartesians about Newtonian gravity being

a force that attracts at a distance. The metaphysical prejudice of his day was

that all physical forces are reducible to mechanical forces of push-and-shove.

But the Cartesian whirling fluids hypothesis, used to explain gravity, has no

testable implications. So Newton’s methodological remarks do not suggest that

hypotheses have no place in experimental philosophy (Hanson 1970, p. 31);

only those hypotheses that have no testable implications should be ignored.

However, as Worrall (2000, p. 47) argued, Hanson’s attempt to mitigate New-

ton’s inductivism renders Newton’s methodological remarks inconsistent with

his scientific practice. There are examples of hypotheses Newton excludes solely

on the basis that they were not derived from the phenomena, even though they

had empirical implications consistent with the phenomena.9

According to another reading of Newton’s methodological remarks, we

should distinguish between Newton the scientist and Newton the rhetorician.

Newton the scientist made conjectures and hypothesized that the motion of the

planets are governed by a force of gravitation obeying the inverse-square law.

Newton the rhetorician claimed to have followed a strict inductive method.10

During the last third of the twentieth century, some philosophers of science

started rehabilitating Newton’s inductive method. Jon Dorling (1973 and 1990)

proposed a method he coined ‘Demonstrative Induction’ (DI). Dorling argued

that general propositions may be inferred deductively from the phenomena

if additional background assumptions are used. According to Dorling, the

history of science demonstrates that the DI method was used in many cases to

derive new theoretical claims from the phenomena. These deductions conferred

scientific credibility on their conclusions that led to the exclusion of other

9 Worrall claims that

Newton’s famous attitude toward material emission (“corpuscular”) theory of light
would be irreducibly mysterious if this Hanson-style view were correct. As is well
known, Newton many times and very heatedly insisted that this emission theory was
a mere hypothesis because it could not be deduced from the phenomena; and yet the
theory is clearly testable.

(Worrall 2000, p. 47)
10 This is how Imre Lakatos put it:

The schizophrenic combination of the mad Newtonian methodology, resting on the
credo quid absurdum of “experimental proof ” and the wonderful Newtonian method
strikes one now as a joke. But from the rout of Cartesians to 1905 nobody laughed.

(Lakatos 1978, p. 212)
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hypotheses consistent with the phenomena. Norton (1993, 1994, and 1995) and

Harper (1990 and 2002a) also demonstrated the importance of the DI method

and of the closely related method of Eliminative Induction.11 According to

Norton, the background assumptions used in these demonstrations belong to

the very core of the theories held by the scientific community. They constitute

the most basic and general assumptions about systems. Thus we may take

these background assumptions to be nearly certain, given that it would take

a scientific revolution to show the falsity of this core set of beliefs. Indeed, as

Norton argues, some of these assumptions are so general and weak that they

survive scientific revolutions. It is not that these assumptions do not carry some

inductive risk, but we should not forget their (almost) universal validity in the

eyes of the scientific community.

Obviously the strength of the DI method depends on the plausibility of the

background assumptions. Some of the assumptions may be justified on a pri-

ori grounds, since, for example, much could be learned from the phenomena

through mathematical reasoning. Some of the assumptions may themselves be

phenomenal laws. However, both these cases are not interesting from a method-

ological perspective, since the propositions derived in such cases are themselves

merely phenomenal laws. Moreover, the conclusions of scientific arguments

frequently involve additional theoretical entities that were not present in the

phenomena. From the observed motions of the planets, for example, New-

ton derived the existence of a gravitational force. This force goes “beyond” or

“behind” the phenomena, and can be taken as the cause that generates the

phenomena.12

There is also a sense in which the conclusions of scientific arguments often

count as “laws of nature” that carry some necessity that extends the regularity

described in phenomenal laws.13 If the DI method is to describe our scientific

11 According to Eliminative Induction, the additional background assumption is a disjunc-
tive statement (with the “exclusive or” connective). One requires only a few observations
to confirm one of the disjuncts and eliminate all the other disjuncts. The methods of
Demonstrative and Eliminative Induction are equivalent from a logical point of view.

12 Granted, Newton did not think that his account of the gravitational force was the whole
story. His search for a mechanical explanation of this force suggests that further elabora-
tion of the mechanism which leads to the inverse-square law may still be discovered. But
this does not undermine the fact that the notion of force by itself is not present in the
phenomena.

13 I should note here that by treating laws of nature as “necessarily true,” I do not mean
propositions whose negation is inconceivable. It is perfectly conceivable for Newton
that bodies could have been created without impenetrability, inertia, or gravity; we can
imagine God creating material bodies without those properties. However, there is a sense
of “necessity” that is relevant in this context, which is the applicability of laws of nature
to both actual and counterfactual scenarios. It is obvious that Newton thinks his laws
of nature apply “universally,” in the sense that we can compare the actual trajectories
of bodies to their counterfactual ones. Laws of nature dictate what the counterfactual
trajectories would have been.
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practice, then we must examine how this method manages to confer on its

conclusions their requisite necessity. A natural assumption is that the origin

of the conclusions’ necessity can be traced to the background assumptions.

However, by doing so we have merely pushed the problem one step back. We

can immediately ask what renders the background assumptions necessary. To

avoid a possible regress, one needs to find a scientific proposition that naturally

presents itself as universally valid.

If we follow Norton’s account, it seems as if the necessity of background

assumptions stems from their central role in a scientific paradigm. The core

assumptions of a scientific paradigm function as near certain propositions in

scientific inferences. However, if the near certainty of the background assump-

tions stems from their role as core assumptions of the scientific paradigm,

then it is not clear to what extent the DI method is distinct from the HD

method. As Worrall (2000 pp. 69–76) argued, the background assumptions

of DI arguments can be overturned during scientific revolutions. Thus, even

though they hold a significant place in a paradigm, these propositions function

as hypotheses. Scientists presume these assumptions are true and rely on their

truth whenever they investigate the phenomena.

On the surface of things, the HD and DI methods conceive of empirical con-

firmation differently. According to the DI method, a new scientific proposition

is deductively inferred from the phenomenal laws together with background

assumptions. In the HD method, the observable implication is logically derived

from the hypothesis together with the background assumptions. Thus, it seems

as if the methods differ in how they think of scientific inferences; either the sci-

entific proposition is the conclusion of a deductive inference (the DI method)

or one of its premises (the HD method). But where the inference begins is

not really essential, since at the end what we are concerned with is the logical

consistency of a set of propositions, some of them theoretical, some of them

empirical. In both methods background assumptions pose constraints on the

new propositions one incorporates into the accepted system of beliefs.14

14 The distinction between the DI and the HD methods is blurred even further when we
recognize that a conclusion of a DI argument may get additional empirical support
from other domains of the phenomena. When evidence gathered from various domains
converges in support of a theoretical claim, we take this convergence as increasing the
plausibility of the claim. Someone endorsing the DI method would justify the added
credibility of converging evidence with the help of a common cause principle. That is, all
else being equal, we would prefer a theory which does not posit multiple causes for the
various phenomena, over a theory which posits separate causes. In fact, the purpose of
Newton’s Rules 1 and 2 for the Study of Natural Philosophy is to guarantee that evidence
gathered from different phenomena in favor of a scientific proposition will bolster its
plausibility. But the common cause principle would be redundant, if we simply assume a
hypothesis to be true, and then try to get confirmation for it from as many domains of
the phenomena as possible. The process of confirmation seems to boil down to the same
procedure (Worrall 2000, pp. 66–67).
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The DI method is caught between two horns of a dilemma. If, on the one

hand, the background assumptions constitute mathematical reasoning or other

phenomenal laws, then we are not in a position to go “beyond” the phenomena

to the causal laws that explain them, nor can we explain why the conclusions

of DI arguments feel as if they are valid necessarily. If, on the other hand, the

background assumptions incorporate more than mathematical reasoning or

phenomenal laws, then the DI method becomes unstable and runs the risk of

collapsing into the HD method. The first horn of the dilemma fails to capture

our intuition that scientific arguments manage to go beyond the phenomena,

and that the conclusion of deductions from the phenomena are not mere

representations of phenomena but explanations of them. In the second horn

of the dilemma the DI method fails in what it purports to do; i.e., to distance

itself from the somewhat arbitrary or contingent status of hypotheses.

In what follows, I will provide an account of Newton’s argument for the

law of gravitation which shows it as following the DI method. An important

aim, however, is to show that Newton’s method does not collapse into the HD

method. In deriving the universal law of gravitation, Newton is following what is

mostly a deductive argument, which begins with Kepler’s phenomenal laws and

ends with the universal law of gravitation. The additional background assump-

tions Newton brings to bear are not hypotheses. These additional assumptions

are grounded in experience, but they take on universal validity; i.e., they are

taken to be true in both actual and counterfactual cases, once they are elevated

into general assumptions about the structure of physical systems.15 The near

certainty attributed to these background assumptions stems not from their

widespread acceptance, but from their unique role in making the structure of

physical systems intelligible.

In one crucial step of the argument, Newton elevates an empirical claim into

a structural assumption before reaching his final conclusion. This additional

structural assumption was not known to his fellow scientists before the publica-

tion of the Principia, so in no way can the universal validity of this assumption

stem from its historical role as a core assumption in a scientific paradigm. This

assumption receives its universal validity from its particular role in making

apparent the structure of physical systems.

15 Some may object to my use of the notion of “universal validity.” Ordinarily, the notion
of validity is taken to be a property of arguments. A valid argument is one where the
conclusion must be true given that the premises are. According to this view, only the
notion of truth is a property of propositions. But I need a notion that would describe
the difference between the generalization, “All A’s are B’s,” which is only true for actual
cases, and the necessary statement, “All A’s are B’s,” which is true in both actual and
counterfactual cases. Kant describes the latter kind of propositions as a priori, but his
use of it carries the prejudice that necessary propositions can be arrived at independently
of experience. I will therefore use “universally valid” to describe a necessarily valid
proposition, without prejudging what sort of necessity is involved.
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We shall describe the process through which a claim that was initially consid-

ered as empirical in nature becomes universally valid. First Newton replaces the

empirical claim with an assumption which relates the properties of composite

systems to properties of their parts. Once this assumption has the original

empirical claim as its logical consequence, Newton takes it to be universally

valid; i.e., he takes it to be valid in both actual and counterfactual circum-

stances. Thus when Newton elevates an empirical claim to the status of a

structural assumption, he takes it to have natural necessity.

After a structural assumption is taken to be universally valid, it provides a

reliable Archimedean point for turning other phenomenal laws into causal laws

of nature. The upshot is that Newton followed carefully constructed inferences

throughout the derivation; i.e., he deduced his universal law of gravitation

from the phenomena. However, this deduction relies on the process of turning

empirical claims into structural assumptions. As we shall see, this process of

elevation is not foolproof. Structural assumptions can still be revised if other

more encompassing or accurate assumptions are found. Thus, that structural

assumptions have natural necessity does not imply that they are metaphysi-

cally necessary. Newton would not claim that it is impossible for him to have

stumbled upon the wrong structural assumptions. Nevertheless, even though

the process of elevation is not foolproof, it is still governed by a particular type

of reasoning, and so we may think of it – and derivations based on it – as some

form of inductive reasoning.

In Section 6.2, I will develop the notion of structural assumption and will

show that structural assumptions are expressed in the law of momentum con-

servation and in a rule of composition governing the gravitational force. In

Section 6.3, I will reconstruct Newton’s argument in Book III of the Principia.

I shall follow William Harper’s (2002a) division of the argument into three

relatively independent parts and will then demonstrate the role of structural

assumptions in each of these parts. I will then conclude by analyzing the sig-

nificance of Newton’s distinction between a scientific proposition and a mere

hypothesis.

6.2 Structural assumptions and their role in inductive reasoning

Throughout his argument in Book III of the Principia, Newton relies heavily

on his three laws of motion as background assumptions. The laws of motion

are partly justified through experiments and observations. Nevertheless, New-

ton applies these laws in domains far exceeding their empirical support. Also,

applying these laws in the context of an attraction force outsteps the conceptual

paradigm in which these laws were introduced. Stein (1991) argued that New-

ton’s application of the third law of motion (equality of action and reaction) to

the system of a central body and a rotating satellite exceeds the empirical basis

of this law. The third law of motion was confirmed for collisions performed on
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the surface of the Earth where there is contact between the bodies. In collisions

it is reasonable to assume that bodies act on one another equally and in oppo-

site directions. Moreover, when Newton explicates the third law of motion in

the Principia, he gives various examples where this law holds; when pressing a

stone with a finger, when a horse draws a stone tied to a rope, and when a body

impinges on another body. All these examples are ones where contact occurs.

In the Scholium to the Laws of Motion, Newton also mentions pendulum

experiments he performed to test the third law (Newton 1999, p. 426). Newton

does argue as well that the third law of motion applies to forces of attraction.

However, this is a conceptual argument, which presupposes the conservation of

momentum, and not an empirical argument. Thus, according to Stein (1991,

p. 217) it is clear that Newton’s third law of motion functions as a hypothesis.

Newton assumed the law to be true in all circumstances and in all contexts,

beyond the domains in which it was empirically tested.

Many of Newton’s contemporaries were astounded with Newton’s bold appli-

cation of laws of motion to the solar system. Leibniz, for example, thought it was

absurd to apply these laws without presupposing they were caused by interplan-

etary fluids or some other mechanical cause. In the context of contact forces, it is

reasonable to assume that action equals reaction. But without supposing forces

are grounded in mechanical explanations, how are we to explain the validity

of the third law of motion? Huygens, while accepting Newton’s inverse-square

result for celestial forces, did not believe that Newton adequately showed the

universal nature of the force of gravitation. Applying the third law of motion

to a central body with a distant satellite seemed nonsensical to him.16

One may think Newton’s three laws of motion are universally valid due to

their foundational role in Book I of the Principia. At least according to Newton’s

presentation of these laws it appears that they are not “deduced” from the

phenomena. Newton asserts these laws before any phenomena are mentioned.

A common strategy during the first half of the twentieth century was to treat

the laws of motion as implicitly defining the meaning of the terms used in

them.17 According to this approach, we may think of the truth of these laws

as stipulated. The law of inertia implicitly defines the state of being force-free

as uniform rectilinear motion. Similarly, part of a definition of “force” implies

the equality of action and reaction. Given that the use of the notion of “force”

presupposes the stipulated truth of the axioms, Newton may legitimately apply

the laws of motion to every place it is appropriate to use the notion of “force.”

A proper critique of the above conventionalist approach is beyond the scope

of this chapter. I shall only say that the main problem with this view is that

the laws seem to have been produced by some arbitrary process. In effect the

16 He also thought he had good empirical reasons to reject Newton’s reasoning (see Schliesser
and Smith 1996).

17 See for example, Poincaré (1905, p. 97).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 19:23:33 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.009

Cambridge Books Online © Cambridge University Press, 2012



148 ori belkind

stipulated laws have the same epistemic status as a conjecture or a guess; only

one cannot get any confirmation or refutation of these laws, because the terms

are used to interpret the evidence. According to this view, the laws of motion are

the “free creations” of the scientists who came up with them, and their treatment

as axioms is not grounded in any reasoning process that could be reconstructed

or analyzed according to scientific principles. A scientific inference that relies

on such stipulations is essentially a version of the HD method.

Stein does not argue that the laws of motion are conventional. But he does

argue that Newton’s application of the third law of motion carries with it some

irreducible element of stipulation. By affirming the universal validity of the

law of equality of action and reaction, particularly in the context of action at a

distance, Newton simply presupposed the law to be valid in all circumstances.

This stipulation renders the third law a hypothesis – other propositions are

compatible with the empirical evidence and the law is not dictated by the

phenomena.

It seems as if Stein is presupposing that any stipulation of universality is

arbitrary, at least in the sense that it is not dictated by the phenomena, and

hence any proposition which extends its empirical and explanatory basis is a

hypothesis. To be sure, the stipulation becomes less and less arbitrary the more

the hypothesis is tested. One can even see the argument in Book III as an overall

justification of the initially stipulated hypothesis. However, a close reading of

Newton’s methodological remarks suggests that he articulated a criterion for

elevating empirical statements into universally valid propositions that precedes

subjecting these propositions to further empirical tests. If such a criterion can

be reconstructed, then much of the arbitrariness of stipulated hypotheses can

be shown to have been eliminated prior to additional tests the hypothesis might

be subjected to. As we shall demonstrate, this criterion for elevating empirical

claims does carry some inductive risks, and it cannot be completely formal.

However, it does place severe limitations on the type of propositions that are

accepted as universally valid.

Newton’s inductive procedure proceeds as follows. To receive their status

as universal laws of nature, empirical claims have to be reconceptualized as

assumptions about the structure of physical systems. A “structural assumption”

is a rule governing the relation between parts of a physical system and their

composite. For example, the property of “extension” is a structural assumption.

Part of the meaning of “extension” is the relation it describes between parts of

a physical system and the system as a whole. By definition, the extension of a

composite body is the sum of the extensions of the parts, so we may say that

the extension of the whole “arises” from the extensions of the parts.18

18 The notion of “part” and “whole” is used in many contexts with varying meanings (see
Nagel 1961, pp. 381–383). But here the notion of part means something like the spatial
part of a physical system. I do not identify part with a spatial part since Newton takes
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When we move in our thought from parts of a physical system to the com-

posite we are guided by assumptions that inform us how to combine the various

descriptions of the parts in forming the description of the whole. At first glance

it may not be clear how Newton’s laws of motion express structural assump-

tions. After all, the first law describes the trajectory of a force-free particle,

the second law describes the equality between the impressed force and the

deflection of a body from its rectilinear motion, and the third law describes

the equality of action and reaction. No parts and wholes of physical systems

are being discussed by the laws of motion. However, it is clear that there is a

strong conceptual connection between the laws of motion and the conservation

of quantity of motion (the seventeenth-century term for linear momentum).

Throughout the Principia Newton analyzes the action of forces by taking them

to be operating through instantaneous impulses. Whenever such a force oper-

ates, it is essentially identified through a change of quantity of motion so that

f = � p. A continuous application of a force requires the identification of a

force with instantaneous changes in quantity of motion, or f = dp/dt. In any

case, it is quite clear that the three laws of motion are logically entailed by

conservation of quantity of motion, since force is identified with the change in

quantity of motion.19

“mass” to be the quantity of matter. Thus, for Newton an ultimate part of a physical
system is given by an infinitesimal small volume of unit mass. This is obviously an
idealization.

19 I am here ignoring a recent controversy about how to interpret the conceptual relationship
between force and quantity of motion. The standard view is that Newton takes force to
be the change in quantity of motion. However, the formulation of the second law in the
Principia does not equate impressed force with the rate of change in quantity of motion,
it simply claims that force is change in motion. Many commentators argue that Newton
takes these changes to be instantaneous, and the force is thought of as impulsive. (See
Cohen’s introduction, Newton 1999, pp. 111–117.) Recently Pourciau (2006) argued that
the standard interpretation of Newton’s second law is mistaken. Pourciau’s argument is
largely based on a revision of the second law that Newton never published (Newton,
1967–1981, vol. VI, pp. 538–543). In his revision to the law, Newton explains that the
force is proportional to the deflection of a body from the place it would have arrived at
without the force (if it had continued moving in a straight line) to the place the body
occupies after the force operated on it. Pourciau uses this unpublished text to argue that

by “change in motion” Newton means something like M
−→P Q

h
where

−→
P Q is the deflection

a body experiences as a result of the force, and h is the time elapsed. This quantity is
change in “motion,” and should be distinguished from change in quantity of motion
given that this quantity is not equated with the mass times the instantaneous velocity of
the body. This enables Pourciau to argue that Newton considered both continuous and
instantaneous applications of force to be legitimate representations of “force.” However,

contrary to Pourciau’s claims, there seems no reason to suppose that the quantity M
−→P Q

h
is not what Newton would consider as the change in quantity of motion that results from
the impressed force operating on a body, whether the force is continuous or not. The
quantity seems to be exactly the difference in quantity of motion between the end and
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The conservation of quantity of motion can be thought of as a structural

assumption. Newton defines quantity of motion as “a measure of motion that

arises from the velocity and the quantity of matter jointly” (Newton 1999,

p. 404). This definition does not look like a structural assumption. However,

in his explication of the definition the structural aspect of the term becomes

clear:

The motion of the whole is the sum of the motions of the individual parts,

and thus if a body is twice as large as another and has equal velocity there

is twice as much motion, and if it has twice the velocity there is four times

as much motion.

(Newton 1999, p. 404)

The definition of quantity of motion as the product of mass and velocity is

actually derived from the idea that the quantity of motion of the composite

is the ‘sum’ of the quantities of motion of the parts. That is, if the motion of

each part of a body is the same (i.e., each part has the same velocity), we take

the quantity of motion of the composite body as the direct numerical sum of

the motions of the parts. Thus, the structural assumption in this case is very

simple, since it is represented with a the rule of addition. The property of the

composite system is proportional to the number of parts in the system.

The conservation of quantity of motion first presupposes that the quantity

of motion of the composite system arises from the “motions” we find in each

part. If, in addition, we accept that a closed composite system doesn’t gain or

lose quantity of motion, then the conservation of this quantity follows. Thus,

to arrive at the three laws of motion we only need to presuppose the structural

assumption about quantities of motion and that a composite system can only

gain or lose quantity of motion by exchanging quantity of motion with another

system.

Our account of momentum conservation as presupposing a kind of struc-

tural assumption faces some interpretive obstacles. First, according to our mod-

ern understanding of Newtonian theory, even dimensionless particles have mass

and momentum. A dimensionless particle doesn’t have parts, and the mass it

possesses is simply an inherent property that resists impressed forces. Thus,

Newton’s description of momentum as a property of a composite system aris-

ing from the properties of the parts does not make sense. Another difficulty

in our interpretation is that in the above quote Newton is not distinguishing

carefully enough between the size of a body and its mass. Newton says that if

beginning of the application of force, even if the application of force is not instantaneous.
Regardless of whether or not Newton admits continuous applications of force, we ignore
this interpretive issue and simply identify force with the rate of change in quantity of
motion, in case the force is continuous, and with change in quantity of motion in case it
is not.
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a body is “twice as large” than another body with the same velocity, it would

have twice as much quantity of motion. So Newton’s explication of momen-

tum “clarifies” the definition only by being careless in distinguishing between

size and mass. Newton might have done better with the simple definition of

quantity of motion as the product of mass and velocity.

Some investigation into the conceptual prehistory of the concept of mass

and quantity of motion may help us alleviate the above two worries. We can

make sense of Newton’s obscure explication of quantity of motion when we

juxtapose this definition over his writing in the De Gravitatione (Newton 2004,

pp. 12–36). Scholars may not agree on the exact date of this text, but almost

all commentators agree that it predates the Principia and provides a window

into the evolution of Newton’s thinking about mechanics. In this text Newton

clearly thinks of material bodies as impenetrable places:

Thus suppose that there are empty spaces scattered through the world, one

of which, defined by certain limits, happens by divine power to be imper-

vious to bodies, and by hypothesis it is manifest that this would resist the

motion of bodies and perhaps reflect them, and assume all the properties

of a corporeal particle, except that it will be regarded as motionless. If we

should suppose that impenetrability is not always maintained in the same

part of space but can be transferred here and there according to certain

laws, yet so that the quantity and shape of that impenetrable space are not

changed, there will be no property of body which it does not possess.

(Newton 2004, p. 28)

Thus Newton’s initial thinking identified bodies with impenetrable parts of

space; that is, places. To understand the origin of the concept of mass, consider

a thought experiment where all material bodies are simply identified as impen-

etrable places that move about. At first, a body’s volume and its mass are the

same in this imaginary world. If we think of the quantity of motion we find in

each rigid body, it is essentially the product of its size and velocity as the size

of the body is a good measure of the “number of parts” the body has. Thus,

quantity of motion can be thought of as a structural assumption. Given that

the quantity of motion of each part of the body is the same as its velocity, the

quantity of motion of the composite body is the “sum” of all the quantities of

motions of the parts, i.e., quantity of motion is the product of size and velocity.

Now, imagine each body experiencing some contraction or expansion. To be

able to describe the process of contracting or expanding a body uniformly by

a factor of α, we give this body after the transformation a density of ρ = 1/α.

The mass of the body, which is the same as its original size before contracting

or expanding is m = ρ × V, where V is the volume of the body. Thus, it

is natural to think of m as giving us the “number of parts” in a body, if we

imagine this number to be preserved throughout the process of expansion or

contraction. The mass is therefore the quantity of matter. But another way to
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think of mass is to identify it with the original volume of an impenetrable place

that undergoes expansion and contraction. This thought experiment makes it

clear why the equation �P = m�v can be thought of as a structural assumption.

Once we take the total quantity of motion of a composite body as arising from

the motion that is found in each of its parts, the definition �P = m�v follows as

a consequence.

While it is not difficult to see why quantity of motion is a structural assump-

tion for solid bodies, it is quite another claim to suggest that the conservation

of this quantity of motion in dynamic cases reflects a structural assumption.

While writing the Principia, Newton had good reasons to think that the con-

servation of quantity of motion for collisions is empirically well confirmed.

Huygens, Wren, and Wallis were able to show that collisions are well described

by the assertion that the quantity of motion of a closed system is conserved.

Moreover, Newton himself conducted pendulum experiments to show that the

equality of action and reaction does not depend on the material nature of the

object. In these experiments, Newton let the bobs of two pendulums collide,

and then measured the change in quantity of motion in each bob. It did not

seem to matter whether the bobs were made out of gold, silver, string, or iron,

the change in quantity of motion in one bob corresponded to the exact opposite

change in quantity of motion in the other bob. It is therefore reasonable using

enumerative induction to conclude that conservation of quantity of motion

applies in collisions. However, Newton applied the third law of motion auda-

ciously to regions far removed from the domain of experiments, and in the

context of an attraction force. Thus either he stipulated the third law to be

universally valid, i.e., as applying in all actual and counterfactual interactions,

or he had some inductive argument for it.

An important inductive step takes place when Newton universalizes struc-

tural properties. His argument is that since the property of a composite body is

reducible via a clear and unambiguous rule to the same property attributed to

the ultimate parts, then it must be a universal property. To understand why we

can universalize structural properties, compare this process with enumerative

induction. Assume we observe that all examined crows are black. We would

be tempted to think that the proposition, “All crows are black,” is universally

valid; i.e., unexamined crows would be black in the same way that examined

crows are. However, this assumption carries great inductive risk, since both the

property “crow” and the property “black” are properties of composite systems.

If we cannot reconstruct these properties from the properties describing the

ultimate parts of the object, there is no guarantee that the property “crow” can-

not be instantiated without the property “black.” In contradistinction, consider

the claim that the quantity of motion of a closed system is conserved. In all

examined cases this quantity was conserved. Do we have reason to believe that

it would be conserved in unexamined cases? We do if we can reconstruct the

quantity of motion of any physical system from quantities of motion belonging
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to the ultimate parts. If we assume that all ultimate parts of matter are alike,

and can demonstrate that properties of composite systems are reducible to

properties of ultimate parts by a known rule, then we have reason to univer-

salize structural assumptions. Because the quantity of motion of any observed

system arises only from the quantities of motion of the parts, it is reasonable

to assume that the quantities of motion of all closed systems arise from the

quantities of motion of their parts. Moreover, if each isolated part does not

change its motion over time unless it transfers quantity of motion to another

part, we may conclude that quantity of motion is universally conserved over

time.

That structural assumptions are significant for taking propositions to be uni-

versally valid is evident in Newton’s Rule 3 for the Study of Natural Philosophy.

The rule states as follows:

Those qualities of bodies that cannot be intended and remitted [i.e., quali-

ties that cannot be increased and diminished] and that belong to all bodies

on which experiments can be made should be taken as qualities of all

bodies universally.

(Newton 1999, p. 795)

In his explication of this rule Newton begins by insisting that the qualities that

can be universalized must have a basis in experiments. But he also asserts that

“qualities that cannot be diminished cannot be taken away from bodies.” It is

difficult to make sense of this criterion, since all properties, including extension,

hardness and mobility, seem to be capable of being increased or diminished in

magnitude. Newton explicates what he means in the following:

The extension, hardness, impenetrability, mobility and force of inertia of

the whole arise from the extension, hardness, impenetrability, mobility and

force of inertia of each of the parts; and thus we conclude that every one of

the least parts of all bodies is extended, hard, impenetrable, movable, and

endowed with a force of inertia. And this is the foundation of all natural

philosophy.

(Newton 1999, p. 795)

Thus for Newton, a quality cannot be intended or remitted when we recognize

it as being governed by a structural assumption. If properties divide neatly into

the parts of a system whenever a process of division occurs, we have to assume

that the ultimate parts of matter have these properties.

The reason for taking extension, hardness, etc. as universal properties is that

for each of them the property of the composite object is compounded from

the same property attributed to the parts. The property of “extension,” for

example, arises from the same property of extension that each of the parts has.

The extension of a composite system is the sum of the extensions of the parts.

Thus, because the property of extension divides neatly into the extension of the
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parts every time we divide the body, we can assume that every division is also

a division of the composite property into the properties of the components.

This implies that the ultimate parts of matter are extended. Also, the extension

that the ultimate part takes up cannot be intended and remitted. A further

conclusion is that we cannot separate the property of extension from material

bodies; it must be a universal property belonging to all material bodies. It

requires only a few observations to confirm that a property survives the division

of an object into parts. Once this structural assumption is confirmed, we may

take it to apply universally.

In Rule 3, Newton argues that the properties of impenetrability, mobility, and

force of inertia apply universally because of their role as structural assumptions.

The impenetrability of a composite body arises from the impenetrability of the

parts, and so this property has to apply universally. The mobility and force of

inertia of the composite body also arises from the parts, as is clear from the

concept of quantity of motion.

We can now see the analogy between quantity of motion and the extension

of bodies. The force of inertia of a composite body is reducible to the force of

inertia of its ultimate parts. And because the tendency to continue moving in

a straight line is reducible in such a way, we find that the quantity of motion

is proportional to the quantity of matter, i.e., we find the motivation for the

equation P = mv. Since the force of inertia of a composite body is governed by a

compositional rule and can be reconstructed from the motion of microscopical

parts, we may take it to be a universal property. This implies that even two

remote bodies that interact have a conjoined force of inertia that is reducible

to the force of inertia of each body (in just the same way that two remote

bodies have a conjoined extension). The two remote bodies, unless disturbed,

would continue to move in a straight line (taking the center of mass as their

common trajectory). Because the conjoined force of inertia of the composite

system is comprised of the forces of inertia of each part, an increase in quantity

of motion in one body must imply a decrease in quantity of motion in the

other body, so as to conserve the tendency of the composite system to move in a

straight line.

The consequence of universalizing the force of inertia and taking it to be gov-

erned by a composition rule implies that the conservation of quantity of motion

must be valid in both actual and counterfactual scenarios. As a consequence,

the three laws of motion, since they are a logical consequence of momentum

conservation, are presumed to be valid in every possible circumstance. For

Newton, therefore, the laws of motion have natural necessity justified through

Rule 3. Nevertheless, that the conservation law applies to all physical systems

universally does not imply that his reasoning is infallible, and that it is not

possible that he has derived the wrong structural properties. It is quite possible

that newly found phenomenal laws or exceptions to known phenomenal laws

would “dictate” alternative structural assumptions. Structural assumptions
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are not metaphysically necessary, even if they are taken to have natural

necessity.20

Newton also utilizes Rule 3 to argue for the universal nature of the gravita-

tional force:

Finally, if it is universally established by experiments and astronomical

observations that all bodies on or near the earth gravitate toward the

earth, and do so in proportion to the quantity of matter in each body, and

that the moon gravitates toward the earth in proportion to the quantity of

its matter, and that our sea in turn gravitates toward the moon, and that

all planets gravitate toward one another, and that there is a similar gravity

of comets toward the sun, it will be concluded by this rule that all bodies

gravitate toward one another.

(Newton 1999, p. 796)

This explication of gravity shows the significance of the structural assump-

tion governing the force of gravitation. Newton derives from the phenomena

the empirical claim that gravitational acceleration does not depend on the

mass of a body. The distance between two bodies, no matter what their shape,

mass or chemical constitution, is enough to determine their rate of gravita-

tional acceleration. The empirical fact regarding gravitational acceleration is

then redescribed by Newton as a rule of composition governing the force of

gravitation, which asserts that the total gravitational force is the sum of the grav-

itational forces operating on each part. The rule of composition is expressed in

the formula fm = mfa where fm is the overall gravitational force operating on

the body, m is the body’s mass, and fa is the gravitational force operating on

each part. Since the gravitational force operating on a composite body survives

the division of the body into parts, we may conclude that the gravitational

force exhibits a structural assumption. The gravitational force operating on a

composite body arises from the gravitational force operating on the ultimate

parts.

Newton uses Rule 3 to argue that the susceptibility to the gravitational force

cannot be separated from any physical body, and thus the gravitational force is

20 In a recent paper, Ducheyne (2005) argued that Newton used autonomous models to
investigate the various properties of forces and interactions. These models are based on
the laws of motion, the definitions in the beginning of the Principia, and various initial
conditions and force laws. Only after these models were developed to various degrees
of complexity were they compared with the phenomena. On the one hand, Ducheyne
argues that the models are developed independently of the phenomena. On the other
hand, he argues that the laws of motion on which the models were based were deduced
from the phenomena. Ducheyne’s account is problematic since it is not clear how the laws
of motion can be derived from the phenomena and then used to construct counterfactual
models.
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shown to have universal validity. The inductive step involved therefore depends

on Rule 3 and on the universalizable nature of structural assumptions.

6.3 Newton’s argument for the universal law of gravitation

Once empirical claims are reconceptualized as structural assumptions, they

function in Newton’s argument as background assumptions in DI arguments.

To show this, we will follow Bill Harper’s (2002) division of Newton’s argument

for the universal law of gravitation into three significant parts. The first step of

the argument relies on Kepler’s Area Law, which asserts that the radius from the

Sun to the planets, or from a planet to one of the moons, sweeps equal areas in

equal times. The second step utilizes Kepler’s Harmonic Rule which asserts that

for all gravitating satellites, the period of rotation T is related to the radius of

rotation as T 2 ∝ R3. The Area Law and the Harmonic Rule are provided as the

Phenomena at the beginning of Book III. Phenomenon 1 describes the motion

of Jupiter’s moons relative to Jupiter. Phenomenon 2 describes the motion of

Saturn’s satellites relative to Saturn. Phenomena 3–5 describe the motion

of the planets relative to the Sun. Finally, Phenomenon 6 describes the Area

Law applied to the Earth’s moon. Newton’s first step of the argument deduces

from Kepler’s Area Law the centripetal nature of the gravitational force. In the

second step of the argument, Newton deduces from the centripetal nature of

the gravitation force and the Harmonic Rule the inverse-square nature of the

force of gravitation ( f ∝ 1/R2). In the third step of his argument, Newton

deduces the universal nature of the force of gravitation, and the formula:

f = G
m1m2

R2
12

. (6.1)

We shall demonstrate the role of structural assumptions in each part of the

derivation.

6.3.1 The first step: deriving the centripetal nature of the
force of gravity from the Area Law

The first step of Newton’s argument infers the centripetal nature of the force

of gravitation from the Area Law. The equivalence between the Area Law and

the centripetal nature of the law is proven in Book I, Propositions 2 and 3.

Figure 6.1 describes Newton’s idealized model for a body traversing equal

areas in equal amounts of time. Newton’s idealization consists of taking the

motion of such a body as governed by an instantaneous force operating at points

B, C, D and E at equal intervals of time. The distances AB, BC, etc. represent the

velocity of the object if we take the force to act at integral multiples of the unit

of time. The law of inertia implies that, had the force not acted on the body at

point B, it would have traveled uniformly and would have reached the point c at
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Figure 6.1 From the Area Law to the centripetal nature of the gravitational force

the same time the body has reached C in its actual motion. The conceptual link

between the Area Law and the law of inertia is established when one compares

the areas of triangles SAB and SBc. Because these triangles are of equal heights

and bases, they are of equal areas. And since the model was constructed to

retrieve the Area Law, by definition the area of triangle SBC equals the area

of SAB. It follows that the area of SBC equals the area of SBc. The following

equivalence holds: the area of the triangle SBC is equal to the area of SBc if and

only if the change in motion Cc is parallel to (i.e., in the direction of) BS (Book

I, Propositions 2 and 3). Thus, Kepler’s Area Law is equivalent to the claim that

change of motion is always directed at the immobile center S.

We may take the Area Law to be “measuring” the direction of the force. If the

area traversed by the radius from S increases or decreases at B, then we know

the direction of the force would have been off the line SB. Thus, it is clear that

Newton was able in this part of the argument to translate a phenomenal law

into a statement about the force generating the phenomena.
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However, notice that Newton presupposes here the universal validity of

momentum conservation in both actual and counterfactual cases. First, the law

of inertia is taken to apply counterfactually. The trajectory Bc is taken as the

trajectory the body would experience had a force not operated on it. Second,

Newton presupposes that the direction of the force is identified with the change

in momentum. The universal validity of momentum conservation far extends

the empirical support of this claim, especially in the case of celestial bodies. But

Newton argues in Rule 3 that mobility and the force of inertia are structural

assumptions. The law of inertia must apply in both actual and counterfactual

cases. Thus crucial to the argument is the natural necessity Newton attributes

to the laws of motion.

We can summarize the structure of the first step of the argument as follows:

Argument I

Premise 1 Kepler’s Area Law (Phenomenal law)

Premise 2 Momentum conservation (Structural assumption)

2.1 The law of inertia applies

counterfactually

2.2 The force equals the change

in momentum

Premise 3 Euclid’s geometry (Background assumption)

Conclusion I The gravitational force operates in the direction of an

immobile center

The first inductive step, therefore, follows the method of Demonstrative Induc-

tion. At this stage the background assumption used as a premise has already

gone through the process of being elevated into a structural assumption. The

natural necessity we attribute to the law of inertia enables Newton to “measure”

the direction of the gravitational force. By comparing the actual trajectory of

the body relative to its counterfactual one, Newton is able to conclude that the

gravitational force operates towards the center of rotation. However, without

applying Rule 3 Newton would not be able to justify his claim that the law of

inertia applies in counterfactual cases.

6.3.2 The Harmonic Rule and the inverse-squared distance nature of
the gravitational force

The second step in Newton’s argument derives the inverse-squared nature of

the gravitational force from the Harmonic Rule, which is:

T 2
∝ R3 (6.2)

where T is the period of the rotation around the center, and R is the radius.

To carry out this part of the derivation, Newton makes an approximating
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assumption by taking the planets to be moving in perfect circular motion

instead of ellipses. Newton proves in Book I, Proposition 4 that the centripetal

acceleration of the body that rotates in a perfect circle is the following:

a =
v2

R
(6.3)

where the velocity v is the instantaneous velocity of the body and R is the radius

of rotation. The proof relies on taking the polygon described in Figure 6.1

and reducing the length of the segments until they are indistinguishable from

motion in a circle.21 We can follow Newton’s reasoning by examining Figure 6.1

again taking the radii SA, SB, etc. to be all the same since the body is now taken to

be moving in a circle. The triangle SBC is again compared with the triangle SBc.

Since AB and BC represent the velocity of the body, BV represents the change

in velocity, and SB the radius of rotation, one can deduce the centripetal

acceleration with the help of Euclidean theorems.22 Since the instantaneous

velocity of the body is related to the period of rotation through the equation

vT = 2πR, we know from (6.2) and (6.3) and the conclusion of Argument I the

centripetal acceleration of the body:

a =
v2

R
=

(2π)2 R

T 2
∝

1

R2
. (6.4)

Thus Newton utilizes the Harmonic Rule to “measure” the gravitational accel-

eration. The assumptions that were employed in the first step of the derivation

were employed in this step as well. In deriving the centripetal acceleration New-

ton relied on the law of inertia and on the identification of force with the change

of momentum. However, here an important approximating assumption was

used in the derivation, namely that the bodies are moving with perfect circular

motion. This part of the deduction could be summarized as follows:

Argument II

Premise 1 Kepler’s Harmonic Rule (Phenomenal law)

Premise 2 The gravitational force is

centripetal

(Conclusion I)

Premise 3 Momentum conservation (Structural assumption)

Premise 4 Satellites move with circular

motion

(Approximating

assumption)

4.1 a ∝
v2

R

Conclusion II a ∝
1

R2

21 See the Scholium to Proposition 4 (Newton 1999, p. 452).
22 See Brackenridge and Nauenberg (2002) for a history of these calculations.
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A complication in the derivation is the approximating assumption. According

to Kepler’s Laws, the planets are moving with ellipses around the Sun, and so

the above argument applies to the motion of these planets only crudely. This

complication is compounded by the fact that the phenomenal laws too hold

only approximately, and one may find different curves to describe the data.

The premises of Newton’s derivation are known to hold only approximately,

or in Newton’s words, they hold quam proxime (very nearly). George E. Smith

(2002a, 2002b) explicated the seemingly perplexing Newtonian procedure of

beginning with phenomenal laws that hold only approximately, and then using

the result of DI arguments to assess the origin of possible discrepancies between

the observed phenomena and the ones predicted by the theory together with

various idealized conditions.

Part of the story has to do with various calculations carried out by Newton

to show that the approximations carried out in the premises of DI arguments

cannot lead us too much astray in deriving the conclusions. As we have seen,

Newton showed the biconditional between small deviations in the Area Law

leading to small deviations of the force from the central gravitating body. Even

if the Area Law does not hold precisely, Newton showed that small deviations

would not have produced significant deviations in the conclusion. The DI argu-

ment is “stable” under small perturbations. Another example is the calculation

Newton carried out to show that small deviations from the inverse-square law

lead to a precession of orbits (i.e., he calculated that the apsidal angle θ is

related to the index n of the exponent of centripetal acceleration – where a =

r(n–3), and r is the radius of acceleration – as n = (180/θ)2). With this calcula-

tion Newton demonstrated that no precession implies the inverse-square law

precisely. Because no precession in the planets’ orbits are observed, we have

indirect confirmation of the inverse-square law. We should therefore be careful

in our evaluation of DI arguments. Newton’s confidence in the conclusions

of DI arguments is not only based on the relation between premises and the

conclusion of the argument. It also relies on estimating the approximating

assumptions made in the premises. Here, one needs to gauge the extent to

which errors might have crept in. For example, Newton could have deduced

from the elliptical orbits the inverse-square nature of the gravitational force.

However, if small deviations from the elliptical orbits yield significant errors in

the calculation of the force’s power, such a derivation cannot be trusted. There

must be some mechanism for mitigating the potential for errors.

Newton’s detailed calculations show that his DI derivations are not sensitive

to small deviations and inaccuracies. However, in order to assess such devia-

tions, he relied on background assumptions that were taken to be valid in both

the actual case and the idealized conditions presupposed in the argument. For

example, the centripetal nature of the law of gravitation is deduced from the

Area Law on the assumption that the first law of motion is valid universally.

The law of inertia helps Newton bolster the validity of his conclusion by
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considering counterfactual scenarios and comparing these scenarios to the

actual ones. But only by assuming that the law of inertia holds universally and

exactly, can Newton show that small deviations from the Area Law correlate

with small deviations from the centripetal direction of the force. We cannot

estimate the inductive risk unless we take certain laws to be valid necessarily.

Smith is well aware of the paradoxical nature of approximating procedures,

which seem to presuppose certain scientific claims as exact in order to calculate

the errors that may arise from approximating assumptions (Smith 2002b, p. 45).

Smith calls this common scientific approach the exact-approximate duality. He

argues that the procedure is that of providing successive approximations, where

each DI argument leads to results that yield further detail that help in evaluating

deviations. What criterion do we use to designate certain scientific propositions

as unquestionable background assumptions? Smith comes close to our account

of structural assumptions in the following passage:

Not just any old first approximation will permit such a sequence of succes-

sive refinements, as it might if this were merely tantamount to curve-fitting.

The theoretical claim for which Newton requires the first-approximation

phenomena to provide crucial evidence is a generic force law – the law of

gravity in the case of orbital motions and his law for the resistance force

arising from the inertia of the fluid in book 2. Moreover, when the force in

question is a net force acting on a macroscopic body, he requires a com-

positional account of it in terms of forces acting on the individual parts of

the body – in terms of microgravitational forces or, in his resistance case,

in terms of the forces of impact of fluid particles on parts of the body.

Finally, once inductively generalized, the force law ought to have as its

consequences a host of idealized phenomena reaching beyond those pro-

viding the original evidence for the law . . . These idealized consequences

are expected to agree with observation to increasingly high approximation,

and to the extent they do, they of course provide further evidence of the

law of force.

(Smith 2002b, p. 48)

Smith identifies in passing Newton’s attempt to provide a “compositional”

account of the forces operating on a composite body. Thus when Newton pro-

vides an account of how composite forces are reduced to microphysical forces

arising from interactions between individual parts of the body, he is safer in

assuming that force-laws hold universally. The compositional account thus bol-

sters the robustness of scientific propositions we take to hold universally and

exactly. In this Smith comes very close to our account of Newton’s reliance on

structural assumptions. The problem with Smith’s account is that he doesn’t

recognize the methodological connection of the compositional accounts to

Rule 3, and Newton’s philosophical attempt to provide a methodological jus-

tification for taking such compositional accounts as evidence that laws hold

universally and exactly. He also does not recognize how Rule 3 was intended to
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secure exactly those background assumptions Newton took as universally valid

in his derivations and to distance Newton from an HD account of justification.

The scientific process of taking the conclusions of a DI argument and using

them to create models of increasing accuracy is crucial and must supplement

the initial derivation. We concur with Smith’s claim that there is a risk that the

conclusion will lead us down a “garden path,” since not all the inductive risk is

located within the initial derivation. But this process of finding more accurate

models depends on finding laws that are valid in all actual and counterfactual

cases. We cannot estimate the errors that creep into our observations without

presupposing some rule that is valid in all circumstances.

6.3.3 Deriving the universal nature of the law of gravitation

In his third step of the derivation, Newton concludes that the gravitational

force operates between any pair of masses, and is proportional to the product

of the masses according to the following equation:

f = G
m1m2

R2
12

. (6.5)

Newton’s argument for the universal nature of gravitation occurs in Book III,

Propositions 6 and 7. The argument in Proposition 6 begins with the observa-

tion that all earthly material objects move with the same gravitational accel-

eration. This fact was first discovered by Galileo. Newton describes pendulum

experiments he conducted to show that all earthly matter gravitates towards

the center of the Earth with an acceleration of g = 9.8 m/s2. Moreover, since all

of Jupiter’s moons obey the Area Law and the Harmonic Rule relative to Jupiter,

it follows that their acceleration toward Jupiter depends only on their distance

from the planet. By the same argument, the acceleration of the planets toward

the Sun depends only on their distance from the Sun. Moreover, the motions

of Jupiter’s moons relative to Jupiter are very regular, which implies that their

acceleration toward the Sun is the same as that of Jupiter and independent of

their relative mass. Thus, an important empirical claim to be deduced from all

observations is that gravitational acceleration is independent of the mass of the

body or its chemical constitution.

An important question remains. How does Newton derive the universal

nature of the force of gravitation from this empirical claim? Some form of

reasoning has enabled Newton to move from a claim that is valid for all observed

bodies, to a universal law of nature asserting that a force of gravitation would

operate between any pair of masses. According to Howard Stein (1970b, 1991)

Newton utilizes the concept of field to make the inductive leap. Even though

Newton does not explicitly use the notion of field, there are indications that

he invented a very similar concept. In the beginning of the Principia, Newton
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makes an important distinction between the “absolute,” “accelerative,” and

“motive” forces. The various forces are given in Definitions 6–8 of the Principia:

The quantities of forces, for the sake of brevity, may be called motive,

accelerative, and absolute forces, and, for the sake of differentiation, may

be referred to bodies seeking a center, to the places of the bodies, and to

the center of the forces: that is, motive force may be referred to a body as

an endeavor of the whole directed toward a center and compounded of the

endeavors of all the parts; accelerative force, to the place of the body as a

certain efficacy diffused from the center through each of the surrounding

places in order to move the bodies that are in those places; and absolute

force, to the center as having some cause without which the motive forces

are not propagated through the surrounding regions, whether this cause

is some central body . . . or whether it is some other cause which is not

apparent.

(Newton 1999, p. 407)

The absolute measure of the force refers to its causal origin located at the center

towards which the force of gravitation is directed. The motive force is defined

as the force a composite body experiences. The accelerative force is the force

experienced by each of the body’s parts. Moreover, Newton asserts that the

motive force is related to the accelerative force as the momentum is related to

velocity, i.e., fm = mfa. The motive force fm is the product of the mass of the

body and the accelerative force fa operating on each part.

Stein argues that Newton’s notion of accelerative force functions as an accel-

eration field. This acceleration field describes the disposition of any body to

accelerate according to the inverse-square law, and it is clear that Newton

ascribes this disposition to the place a body occupies rather than to the body

itself. Newton also describes how these dispositions are distributed from the

center of the attracting body to the surrounding places, and so that the “acceler-

ative quantity of force” describes the efficacy of the gravitational force at these

places.

An important inductive step, according to Stein, is Newton’s hypothesis that

the acceleration field exists:

Newton’s inductive conclusion is that the accelerations toward the sun are

everywhere – i.e., even where there are no planets – determined by the

position relative to the sun . . . that argument cannot be made without the

notion of a field.

(Stein 1970b, p. 268)

Stein’s account suggests that the disposition of the gravitational force to gener-

ate accelerations, where that disposition is attributed to particular places rather

than particular existing bodies, enables Newton to generalize from the partic-

ular cases observed to a universal rule. Thus according to Stein it is the notion
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of a field, describing a set of dispositions spread out throughout space, which

provides the gravitational force its universal validity, including its validity in

counterfactual cases. Only if we assume that the attracting body generates an

acceleration field, can we say that a body would experience a gravitational force

had it been placed at a certain distance from the attracting body.

However, contrary to Stein’s assertion, it seems as if the notion of acceleration

field is not a necessary conceptual tool for making the generalization. If we take

Newton’s laws of motion to hold in counterfactual cases, then every time

the Area Law and the Harmonic Rule apply, the body’s acceleration would be

proportional to 1/R2, independently of its mass or material constitution. If

Newton is able to justify the claim that all gravitating bodies are likely to obey

the Area Law and the Harmonic Rule, then a body would accelerate in proportion

to the “intensity” of the gravitational force at that particular position. Thus,

the notion of field is not necessary for taking the inductive step. If we can

justify extending the premises of Arguments I and II to counterfactual cases,

the acceleration field would be the result of Newton’s inductive conclusion, not

an aid in reaching it.

In fact, there is an alternative explanation for Newton’s inductive step. It

seems as if the inductive leap occurs when Newton takes the empirical claim

(i.e., that gravitational acceleration does not depend on the mass of the body),

and reconceptualizes it as a structural assumption. In the concluding remarks

in Proposition 6 Newton states as follows:

But further, the weights [or gravities] of the individual parts of each planet

toward any other planet are to one another as the matter in the individual

parts. For if some parts gravitated more, and others less, than in proportion

to their quantity of matter, the whole planet, according to the kind of parts

in which it most abounded, would gravitate more or gravitate less than in

proportion to the quantity of matter of the whole.

(Newton 1999, p. 808)

The theoretical fact which best accounts for the empirical fact is the assertion

that the gravitational (motive) force operating on a composite body is the sum

of the gravitational (accelerative) forces operating on the parts. Moreover, we

know that the accelerative force fa operating on each part is independent of

the nature of that part. It does not matter whether a body is made of gold or

of coal, each of its parts will experience the same gravitational acceleration.

Because Newton was able to formulate a structural assumption governing

the gravitational force, and because the force does not take into account any

property restricted to a particular kind of body, Newton reaches the conclusion

that this structural assumption applies to all bodies in all circumstances. He

thus concludes that the motive force is related to the accelerative force via fm =

mfa. This argument can be summarized as follows:
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Argument III-1

Premise Gravitational acceleration is

independent of mass

(Conclusion II)

Conclusion III-1 The motive force fm is the sum of the

accelerative forces fa operating on

the parts; fm = mfa

Argument III-1 is not a deductively valid argument. Rather, it is an argument

where an empirical claim is reconceptualized and elevated to the status of a

structural assumption. Thus, the inductive step that Newton takes does not

rely on the notion of a field. Rather, it relies on the criterion for universalizing

properties implicit in Rule 3. This criterion is not unique for gravitation and

is employed for all universal properties such as extension, impenetrability, and

inertia. Since we can divide the gravitational force operating on the composite

body to the forces operating on the ultimate parts, we cannot separate this

gravitational force from the ultimate parts of matter. Thus, the gravitational

force operates on all ultimate parts of matter in the same way.

The second part of the third step of the derivation concludes with the uni-

versal nature of the force of gravitation. As we have seen from step 2, we know

that the gravitational acceleration is proportional to 1/R2 independently of the

mass of the body, so that:

fa ∝
1

R2
. (6.6)

We also know that the motive force is proportional to the mass, since we take

the acceleration of the composite to arise from the accelerations of the parts,

so that:

fm ∝
m

R2
. (6.7)

Newton then uses the structural assumption governing the gravitational force

together with the third law of motion to conclude the universal nature of the

force of gravitation:

Since all the parts of any planet A are heavy [or gravitate] toward any

planet B, and since the gravity of each part is to the gravity of the whole

as the matter of that part to the matter of the whole, and since to every

action (by the third law of motion) there is an equal reaction, it follows

that the planet B will gravitate in turn toward the whole of the planet as

the matter of that part to the matter of the whole.

(Newton 1999, p. 810)
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The reasoning here may be described as follows. If body A gravitates toward

body B, then the motive force operating on A is proportional to the mass of A

over the distance squared, so that:

f A = kA

mA

R2
AB

(6.8)

where kA is some constant. But according to Newton’s third law of motion,

the gravitational force operating on A is equal in magnitude and is opposite

in direction to the force operating on B. This force is gravitational in nature,

so it too is the composite of the forces operating on B’s parts. Thus, the force

operating on B is:

f B = kB

mB

R2
AB

. (6.9)

From the third law of motion it therefore follows that fA = –fB, which implies

that the gravitational force is proportional to the product of the bodies’ masses:

fG = G
mAmB

R2
AB

. (6.10)

We can summarize the third step with the help of the following two argu-

ments:

Argument III-2

Premise 1 fm = mfa (Structural assumption

– Conclusion III-1)

Premise 2 fa ∝
1

R2
(Conclusion II)

Premise 3 Momentum conservation (Structural assumption)

3.1 Newton’s third law of motion

Conclusion III-2 f = G
m1m2

R2

We can see that arguments I, II, and III-2 all follow the DI method. These argu-

ments use phenomenal laws and background assumptions as premises and

deductive reasoning to conclude the nature of the force generating the phe-

nomena. However, it is important to note that the background assumptions

used in these arguments are of a very particular nature. Other than mathemati-

cal propositions they are all structural assumptions. A necessary inductive step

is the claim that a structural property is a universal property.

It seems tempting to think of these two structural assumptions (i.e., the

conservation of momentum and the rule of composition governing the force

of gravitation), as de facto hypotheses. In a heuristic sense, yes. These are

theoretical propositions that are not deductively entailed by empirical claims.
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It is conceivable that these structural assumptions will be replaced in the future

with new, more adequate assumptions. The universal validity attributed to

these assumptions is not metaphysical in nature, since it may be that a more

adequate structural assumption will be introduced in a future theory.

However, these structural assumptions are not hypotheses in the sense used

by philosophers of science. First, they are not arbitrary conjectures governed

solely by the imagination and luck of individual scientists. It may have required

the imagination and courage of Newton to conceive of these structural assump-

tions and to take them as applying universally, but these assumptions are cer-

tainly not arbitrary, as we have spelled out what singles out these assumptions

over others. Second, it is clear why these assumptions acquire the univer-

sal validity that is attributed to them. Unlike enumerative induction, where

we articulate universal propositions linking composite properties, structural

assumptions enable us to argue that we have stumbled on the properties of the

ultimate parts over which it seems safer to generalize. If structural assump-

tions are valid, they are valid universally in both actual and counterfactual

cases, if we assume that ultimate parts of matter are all alike. Finally, structural

assumptions are not hypotheses because they are closely related to the results

of experiments and observations (i.e., only after carefully assembling all the

evidence, can structural assumptions be introduced into the theory).

6.4 Conclusion

For Newton, the conservation of momentum and the compositional nature

of the gravitational force are more than just hypotheses; they are structural

assumptions. Newton was well justified in perceiving himself as deducing his

universal law of gravitation from the phenomena. He was not employing in his

inductive method hypotheses that function as inspired guesses. He introduced

structural assumptions based on a careful procedure. First, an empirical fact

universally confirmed by all observations is singled out. Then, this empirical fact

is reconceptualized as a structural assumption, in which no property restricted

to a particular kind of material is utilized. Finally, the structural assumption

is recognized as universally valid due to its role in making composite physical

systems intelligible.

It is clear that this procedure does not depend on the sociological role of

background assumptions as standardizing rules for solving scientific problems.

Newton was creating a new paradigm through the introduction of structural

assumptions. Once Newton started using the conservation of momentum as

a universally valid rule, it gave the impetus to the generations that followed

to emulate him. But it is not their currency in the eyes of his peers that gave

Newton the confidence to apply these scientific propositions universally; it

is their nature as structural assumptions. The universal validity of structural
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assumptions are derived from Newton’s belief that the properties of composite

systems must be constructed from properties of the ultimate parts of matter.

Our analysis of Newton’s argument also indicates that Popper is right in that

there is no universal ‘rule of induction’ that applies to all inductive arguments.

The reason why Newton takes his structural assumptions to hold universally is

that it seems unlikely that composite physical processes follow different rules of

composition depending on the context. However, it may be that the particular

theoretical and experimental context determines which structural assumption

is “suggested” by the evidence. It is very possible that new structural assump-

tions will end up replacing older ones. Thus, these structural assumptions

should be treated as local rules of inductive inference. The generation of a

structural assumption follows a regulated procedure, but we should not think

that this procedure is mechanical nor is it incorrigible. Nature dictates the

nature of structural assumptions, but nature does not show how to read them

directly from the phenomena. There is an element of stipulation in formulating

these structural assumptions, however, this stipulation is not arbitrary and is

not a convention.

The conclusions of DI arguments are able to introduce theoretical terms not

present in the phenomena, carry a natural necessity extending the regulari-

ties present in the phenomena, and hold the status of being more exact than

phenomenal laws. The DI arguments are only able to do so because of the New-

tonian procedure of elevating approximate empirical laws into exact structual

assumptions. The success of the DI method crucially depends on anchoring

some of its premises in structural properties.

Our overall conclusion is that Newton followed the method of deduction

from the phenomena. He does take the phenomena to dictate the conclusions

of his scientific inferences. It is now clear that Newton had a valid method

for distinguishing between hypotheses and propositions that are derived from

the phenomena. However, we have to be clear that the derivation does not

rely exclusively on deductive rules. The DI method gets part of the story right,

but not the whole story. There is an important inductive step that Newton

utilizes to secure the background assumptions, which serve as premises in his

DI arguments. The strength of these DI arguments crucially depends on the

strength of these background assumptions.
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Newton, Huygens, and Euler

empirical support for laws of motion

william harper

7.1 Basic empirical support for laws of motion

7.1.1 Huygens’s rules for the motion of bodies arising from mutual impact

Huygens, along with Christopher Wren and John Wallis, responded to the

Royal Society’s invitation to produce their meditations and discoveries on the

laws of motion.1 Huygens’s basic rule is a geometrical method of using line

segments to give velocities after impact from velocities at impact, together with

the center of gravity. Wren, independently, gave the same geometrical method

for determining velocities after impact for perfectly elastic collisions in which

the total velocity is conserved. Huygens’s gives conservation of momentum

and conservation of what we call kinetic energy, for such perfectly elastic

collisions. The following remarks are evidence that Huygens had, already by

1669, achieved for collisions a quite extraordinary understanding of some

important fundamental concepts and results that Newton would present in his

Principia.2

In all these cases the Author considers bodies of the same material, or

would have us estimate the mass [moles] from the weight.

He adds, moreover, that he has observed a certain wonderful law of

Nature, which he affirms he can demonstrate in spherical bodies, what-

ever velocity v be given, and in all others whether hard or soft, and

whether impacting directly or obliquely, namely: The common center

of gravity of two, three, or any number of bodies, always advances uni-

formly in the same direction and in a straight line, both before and after

impact.

1 See Murray, Harper and Wilson (2011) for translations by Curtis Wilson together with
comments by Harper, Wilson and Murray.

2 The translation of this passage is by Curtis Wilson.
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The first sentence suggests that Huygens may have anticipated Newton’s

distinction between mass and weight.3 The second paragraph shows that, for

collisions, Huygens did anticipate the basic idea of corollary 4 of Newton’s laws

of motion.4

7.1.2 Newton on projectiles and pendulums

Newton characterizes his laws of motion as “accepted by mathematicians and

confirmed by experiments of many kinds” (Newton 1999, p. 424). He recounts

the confirmation afforded to the first two laws and the first two corollaries

by their role in accounting for the – by then familiar – idealized patterns

that dominate and make intelligible the ubiquitous phenomena of free fall

and projectile motion. He then cites the confirmation afforded to those first

two laws and corollaries from their application to pendulums and clocks. He

continues with a reference to the papers in which Wren, Wallis, and Huygens

reported finding the rules of the collisions and reflections of bodies and the

following remark about pendulum experiments by Wren:

But Wren additionally proved the truth of these rules before the Royal

Society by means of an experiment with pendulums, which the eminent

Mariotte soon after thought worthy to be made into the subject of a whole

book.

(Newton 1999, pp. 424–425)

For Newton, these pendulum experiments provided measurements of the

equality of actions and reactions for applications of Law 3 to collisions.5 On the –

by then well-known – idealized theory of uninterrupted pendulum motion in

a vacuum, the velocity of a pendulum in its lowest point is as the chord of the

3 Howard Stein (1990, p. 25 and note 31) was the first I know of to argue that Huygens had
anticipated Newton’s distinction between mass and weight. Stein (1990, pp. 21–22) gives
a very informative account of impressive theoretical developments and arguments from
Huygens’s theoretical paper on the motion of colliding bodies. This paper of Huygens was
first published in 1703, eight years after his death. See Blackwell (1977, note 1).

4 Corollary 4:

The common center of gravity of two or more bodies does not change its state
whether of motion or of rest as a result of the actions of the bodies upon one another;
and therefore the common center of gravity of all bodies acting upon one another
(excluding external actions and impediments) either is at rest or moves uniformly
straight forward.

(Newton 1999, p. 421)
5 Law 3:

To any action there is always an opposite and equal reaction; in other words, the actions
of two bodies upon each other are always equal and always opposite in direction.

(Newton 1999, p. 417)
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arc that it has described in falling and as the chord of the equal arc it traverses

from that lowest point to its highest point on the other side. In the application

to collisions, these chords of the arcs before and after reflection represent the

velocities before and after impact.

Newton remarks that these earlier experiments did not take into account air

resistance or the elastic force of the colliding bodies.6 He gives his own improved

versions of these experiments to take into account air resistance. He also extends

such experiments to collisions between bodies of imperfect elasticity, where

there is loss of velocity in the collision. He reported trials which afforded

measurements of the relative elasticities of balls of tightly wound wool, of steel,

of cork, and of glass. This information was then applied in further experiments

which measured the equality of action and reaction when the loss of velocity

appropriate to the elasticities of the colliding bodies was taken into account.

These experiments afford theory-mediated measurements of velocities that are

fit by the equality of action and reaction calculated in accordance with the

reductions appropriate to the differing elasticities.

These experiments suggest that the third law of motion applies to collisions

quite generally. What are to be counted as the action and reaction are to be

appropriately reduced to take into account losses due to imperfect elasticity, as

well as any losses due to damage of the bodies in the collision.

These extensions of the classic pendulum experiments to take into account

air resistance and differing elasticities are examples of Newton’s often-cited

achievement of going beyond idealized cases to take into account details of

interfering factors. Like Huygens’s collision rules, however, Newton’s treatment

of collisions is limited to relations between the states of motion of the bodies

before the collision and the states of motion of those bodies after the collision.

Newton makes no attempt to give any detailed account of the collision process

itself.

7.1.3 Newton on evidence from machines

In his discussion of corollary 2 of the laws of motion (Newton 1999, pp. 418–

420), Newton gives an example of resolving the forces to move a wheel of

weights hung from unequal spokes going out from the center.7 This example

illustrates pulleys, stretched strings, and the law of the lever.8 It is then further

6 Murray et al. (2011) gives a detailed account of Newton’s versions of these experi-
ments.

7 This topic will be treated in somewhat more detail in chapter 3 section II.3 of Harper
(forthcoming).

8 Chandrasekhar (1995, pp. 24–25) provides a very nice explication of Newton’s resolution
of these forces.
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elaborated to show how to resolve forces corresponding to the actions of a

wedge, a hammer, and a screw. He concludes with the following remarks.

Therefore, this corollary can be used very extensively, and the variety of

its applications clearly shows its truth, since the whole of mechanics –

demonstrated in different ways by those who have written on the subject –

depends on what has just now been said. For from this are derived the forces

of machines, which are generally composed of wheels, drums, pulleys,

levers, stretched strings, and weights ascending directly or obliquely, and

the other mechanical powers, as well as the forces of tendons to move the

bones of animals.

(Newton 1999, pp. 419–420)

Newton is not just saying that the forces of machines and the forces of

tendons to move the bones of animals can be derived from this corollary. He

is further saying that all these extensive varieties of applications of mechanics

depend on it. These applications of mechanics would not be available if this

corollary did not hold to sufficiently good approximation.

The last three paragraphs of his Scholium to the laws are devoted to a

recounting of the enormous empirical support afforded to Law 3 from these

applications to machines and devices (Newton 1999, pp. 428–430). He is at

some pains to point out that these applications of Law 3 are not restricted to

idealized cases in which resistance from sources such as friction can be ignored.

Newton gave a detailed account of the applications of Law 3 to weights on

a balance and how such calculations can be extended to account for weights

interfered with by oblique planes or other obstacles, as well as weights raised by

ropes over pulleys and combinations of pulleys. This was followed by instruc-

tions for such calculations for engaged gears in clocks, as well as for the force

of a hand turning the handle of a screw-driving machine to the force of the

screw to press a body. It concluded with the action–reaction calculation of

the forces by which a wedge presses the two parts of the wood it splits to the

force impressed upon it by the hammer. He suggests that if the empirical phe-

nomena corresponding to these applications were to change so as to appreciably

violate these applications of Law 3, we would soon know about it.

7.1.4 Euler on space, time and empirical support for the laws of motion

Euler’s 1748 paper, ‘Reflections sur l’espace et le tem[p]s’ appeals to empirical

support for what he characterizes as two principles of mechanics to defend

Newton’s appeal to absolute space.9 Here, from the first of the twenty-one

9 Kant cites this paper of Euler’s in helping motivate his 1768 appeal to incongruent coun-
terparts to defend Newton’s absolute space from objections based on commitments to a
relational theory of space and time. See Harper (1991) for an account of Kant’s interesting
and powerful appeals to incongruent counterparts.
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numbered paragraphs which constitute this short paper, is his characterization

of the support which makes the principles of mechanics so well established that

it would be wrong to doubt their validity.

1. The principles of mechanics have already been established on such a

sound basis that one would greatly err if he wished to encourage any doubt

as to their validity. Even if one were not in position to demonstrate them

by the use of general principles of metaphysics, the excellent agreement of

all the conclusions which one draws from them by means of the calculus,

with all the movements of bodies both solids and liquids, on the earth, and

likewise with the movements of the heavenly bodies, would be sufficient

to place the truth of the principles of mechanics beyond doubt.

(Koslow 1967, p. 116)

Euler is not claiming that these principles are established by measurement

from phenomena. He, nevertheless, claims that this wonderful conformity of

consequences drawn from them with motions of bodies should be sufficient

for making the truth of these principles beyond doubt.

This first numbered paragraph goes on to give what he takes to be the

principles so established. Euler defends Newton’s provision for distinguishing

absolute rest. He emphasizes this by distinguishing two principles,

a body being once at rest will remain continually at rest unless it be

disturbed in its state of rest by some external force.

(Koslow 1967, p. 116)

and

a body, being once set in motion, will continually move with the same

speed in the same direction provided it does not meet with obstacles

contrary to the preservation of that state.

(Koslow 1967, p. 116)

These correspond to the two states of motion in Newton’s more elegantly

formulated first law of motion.10 Like Newton’s, Euler’s provision for distin-

guishing absolute rest goes beyond what is afforded according to Newton’s

corollary 5 of his laws of motion.11

10 Law 1

Every body preserves its state of being at rest or of moving uniformly straight forward
except in so far as it is compelled to change its state by forces impressed.

(Newton 1999, p. 416)
11 Corollary 5

When bodies are enclosed in a given space, their motions in relation to one another are
the same whether that space is at rest or whether it is moving uniformly straight forward
without circular motion.

(Newton 1999, p. 423)
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The second numbered paragraph endorses the theme that these laws of

motion ought to inform the study of the nature and the properties of bodies.

2. Since these two truths are so certainly verified, it follows with absolute

necessity that they depend on the nature of bodies: and since it is the

purpose of Metaphysics to study the nature and the properties of bodies,

the knowledge of these truths of mechanics is capable of serving as a guide

in these intricate researches (of metaphysics). For one would be right in

rejecting in this science (of metaphysics) all the reasons and all the ideas,

however well founded they may otherwise be, which lead to conclusions

contrary to these truths (of mechanics); and one would be warranted in

not admitting any such principles which cannot agree with these same

truths. The first ideas which we form for ourselves of things, which are

found outside of ourselves, are ordinarily so obscure and so indefinite that

it is extremely unsafe to draw from them conclusions of which one can be

certain. Thus it is always a great step in advance when one already knows

some conclusions from some other source, at which the first principles

of metaphysics ought to finally arrive: and it will be by these conclusions,

that the principal ideas of metaphysics will be necessarily regulated and

determined.

(Koslow 1967, pp. 116–117)

It is interesting to see Euler strongly endorsing this important theme of using

the principles of mechanics to inform the metaphysics of bodies.

After arguing against the capacity of relational accounts of motion to charac-

terize the distinction between rest and motion in his first principle, Euler goes

on to argue that such relational accounts cannot recover his second principle.

17. The reality of space will be found again established through the other

principle of mechanics, which involves the preservation of uniform motion

in the same direction. For if space and place are not the reference of co-

existing bodies, what is meant by the same direction? One would be very

much confused in expressing an idea of the mere relation of mutually co-

existing bodies, without making use of that immovable space. For in some

manner, while bodies move and change the positions of their situation, that

does not prevent one from preserving a distinctly clear idea of one fixed

direction which bodies tend to follow in their movement, in spite of all

the alterations which other bodies experience. From this it is evident, that

the identity of direction, which is a distinctly essential factor in the general

principles of motion, cannot be absolutely explained by the relation, or

the order of co-existing bodies. Thus again there must necessarily be some

other real existence, outside the bodies, to which the idea of one same

direction corresponds; and there is no doubt that this would be the space,

the reality of which we have established.

(Koslow 1967, pp. 122–123)
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This argument by Euler is similar to the sort of argument against relational

accounts of motion given by Newton in his unpublished De Gravitatione

manuscript.12

7.2 Law 3 for attractions?

7.2.1 Euler on Newton’s argument for attractive forces
proportional to masses

Euler expresses his negative assessment of the empirical evidence supporting the

proposition that gravitational attraction toward heavenly bodies is proportional

to their masses in a letter to Mayer dated 25 December 1751.

I consider the objection that the attraction must not necessarily be pro-

portional to the masses, to be of no great importance, as it is still not

decided by any single phenomenon that the attractive forces of heavenly

bodies are proportional to their masses. On the contrary, Newton tried to

determine the masses on this basis since there is no other way of specifying

them. As soon as one now places the statement that the attractive forces

are proportional to the masses (which is founded on a crude hypothesis)

in doubt, this objection against my idea is completely eliminated.

(Forbes 1971, p. 44)

Unlike Newton, who regards the proportionality of attraction to mass as a

requirement that any adequate proposal for a cause of gravity must meet,13

Euler regards it as not sufficiently established.

7.2.2 Cotes’ query about Newton’s application of Law 3

Euler’s characterization of the claim that gravitational attraction is proportional

to the mass of the attracting body as a crude hypothesis, though less tactful,

is in line with an objection by Cotes, the editor of the second edition of the

Principia. Cotes objects to Newton’s application of his Law 3 in corollary 1,

proposition 5, book 3.

And since, by the third law of motion, every attraction is mutual, Jupiter

will gravitate toward all its satellites, Saturn toward its satellites, and the

earth will gravitate toward the moon, and the sun toward all the primary

planets.

(Newton 1999, p. 806)

The following passage is from Cotes’s letter to Newton dated March 18,

1713.

12 Newton (2004, pp. 12–39).
13 See the first part of paragraph 8 of the General Scholium (Newton 1999, p. 943).
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But in the first Corollary of the 5th I meet with a difficulty, it lyes in these

words Et cum Attractio omnis mutua sit. I am persuaded that they are then

true when the Attraction may properly be so call’d, otherwise they may

be false. You will understand my meaning by an Example. Suppose two

Globes A & B placed at a distance from each other upon a Table, & that

whilst A remains at rest B is moved towards it by an invisible Hand. A

by-stander who observes this motion but not the cause of it, will say that

B does certainly tend to the centre of A, & thereupon he may call the force

of the invisible Hand the Centripetal force of B, or the Attraction of A

since ye effect appears the same as if it did truly proceed from a proper

& real Attraction of A. But then I think he cannot by virtue of the Axiom

[Attractio omnis mutua est] conclude contrary to his Sense & Observation,

that the Globe A does also move towards the Globe B & will meet it at the

common center of Gravity of both Bodies.

(Newton 1959–1977, vol. V, p. 392)

He goes on to indicate that this stops him from giving a popular account of the

reasoning in Newton’s argument for the 7th proposition in book 3.14

14 Newton’s proposition 7 is the culmination of his basic argument for universal gravity.
Here is the proposition and its proof.

Proposition 7, Theorem 7
Gravity exists in all bodies universally and is proportional to the quantity of matter in
each.

We have already proved that all planets are heavy [or gravitate] toward one another
and also that the gravity toward any one planet, taken by itself, is inversely as the
square of the distance of places from the center of the planet. And it follows (by book
1, prop. 69 and its corollaries) that the gravity toward all the planets is proportional
to the matter in them.

Further, since all the parts of any planet A are heavy [or gravitate] toward any planet
B, and since the gravity of each part is to the gravity of the whole as the matter of
the part is to the matter of the whole, and since to every action (by the third law of
motion) there is an equal reaction, it follows that planet B will gravitate toward all the
parts of planet A, and its gravity toward any one part will be to its gravity toward the
whole of the planet as the matter of that part to the matter of the whole. Q.E.D.

(Newton 1999, pp. 810–811)

The two paragraphs correspond to two parts of the proof. The first paragraph argues that
the gravity toward each planet is proportional to the quantity of matter of that planet.
This argument appeals to book 1 proposition 69 and its corollaries. Book 1 proposition 69
applies the 3rd law of motion to argue that if bodies attract each other by inverse-square
accelerative forces then the attraction toward each will be as its quantity of matter or
mass.
The second paragraph argues to extend this result to all the parts of planets. This second

argument appeals directly to the 3rd law of motion. In both arguments the forces are
interpreted as interactions between the bodies in such a way as to allow Law 3 to apply,
by counting the attraction of each toward the other as action and equal and opposite
reaction.
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This is what stops me in the train of reasoning by which as I said I would

make out in a popular way the 7th Prop. Lib. III. I shall be glad to have

your resolution of the difficulty, for such I take it to be. If it appeares so

to You also; I think it should be obviated in the last sheet of Your Book

which is not yet printed off, or by an Addendum to be printed with ye

Errata Table. For ’till this Objection be cleared I would not undertake to

answer anyone who should assert You do Hypothesim fingere I think You

seem tacitly to make this Supposition that the Attractive force resides in

the Central Body.

(Newton 1959–1977, vol. V, p. 392)

Cotes points out that what seems to be Newton’s tacit assumption that the

attractive force resides in the central body appears to count as an assumed

hypothesis on which the argument is based, rather than as a conclusion sup-

ported by the evidence adduced.15

7.2.3 Newton’s initial response to Cotes’s query about Attraction

In his initial response, Newton instructs Cotes to follow up the famous hypothe-

ses non fingo passage, in the General Scholium being added to book 3, with what

became the following remarks.16

For whatever is not deduced from the phenomena must be called a hypoth-

esis; and hypotheses, whether metaphysical or physical, or based on occult

qualities, or mechanical, have no place in experimental philosophy. In this

experimental philosophy, propositions are deduced from the phenomena

and are made general by induction. The impenetrability, mobility, and

impetus of bodies, and the laws of motion and the law of gravity have been

15 This objection, originally made by Cotes, has been revivified and extended by Howard
Stein. See his (1991, p. 217) as well as his earlier (1967, pp. 179–180). My discussion
here develops from my more extensive discussion in (Harper 2002b) and in (Harper
forthcoming).

16 Here is Newton’s instruction with the Latin of his proposed revision.

And for preventing exceptions against the use of the word Hypothesis I desire you to
conclude the next paragraph in this manner

Quicquid enim ex phaenomenis non deducitor Hypothesis vocanda est, et ejusmodi
Hypotheses seu Metaphysicae seu Physicae use Qualitatum occultarum sue Mechani-
cae in Philosophia experimentali locum non habent. In hac Philosophia Propositions
deducunter ex phaenomenis & reddunter generales per Inductionem. Sic impenetra-
bilitas mobilitas & impetus corporum & leges motuum & gravitis innotuere. Et satis
est quod Gravitas corporum revera existat & agat secundum leges a nobis expositas &
ad corporum caelestium et maris nostri motis omnes sufficiat.

(Newton 1959–1977, vol. V, p. 397)

The printed Latin replaces [, et ejusmodi] in line 2 with [; &]. It also italicizes hypothesis
in line 2 and philosophia experimentali in line 4 (Newton 1972, p. 764).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 19:31:35 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.010

Cambridge Books Online © Cambridge University Press, 2012



178 william harper

found by this method. And it is enough that gravity really exists and acts

according to the laws that we have set forth and is sufficient to explain all

the motions of the heavenly bodies and of our sea.

(Newton 1999, p. 943)

Key additions to what was already there17 include Newton’s specific negative

characterization of his experimental philosophy as one in which hypotheses have

no place, together with his positive characterization of it as one in which propo-

sitions are deduced from the phenomena and made general by induction.18

These, together with his already specified characterization of hypotheses as

whatever is not deduced from phenomena, make it clear that what Newton

counts as deductions from the phenomena have to be construed widely enough

to include propositions made general by induction.19

The other significant addition included in this passage sent to Cotes is

Newton’s specific claim that

The impenetrability, mobility, and impetus of bodies, and the laws of

motion and the law of gravity have been found by this method.

Consider Newton’s claim that the laws of motion and the law of gravity have

been found by this same method. We have seen that Newton’s pendulum

experiments afford theory-mediated measurements supporting his application

of Law 3 to collisions. The key theoretical background assumption is the pro-

portionality of the velocity of a pendulum in its lowest point to the chords of

17 Here is a translation of the corresponding original passage Newton had earlier sent to
Cotes:

For whatever is not deduced from phenomena is to be called a hypothesis; and I do
not follow hypotheses, whether metaphysical or physical, whether of occult qualities
or mechanical. It is enough that gravity should really exist and act according to the
laws expounded by us, and should suffice for all the motions of the celestial bodies
and of our sea.

(Newton 1999, p. 276 [reader’s guide])

18 It appears that this very significant positive characterization of Newton’s method was a
direct response to this challenge from Cotes.

19 As Stein (1991, p. 219) has pointed out, on Newton’s usage any appropriately warranted
conclusion inferred from phenomena as available evidence will count as a deduction from
the phenomena. Newton’s identification of “hypotheses” with “whatever is not deduced
from the phenomena” makes counting something as a mere hypothesis equivalent to
counting it as not appropriately warranted on the basis of available evidence.

The Oxford Classical Dictionary gives a relevant usage of the Latin verb “deduco” as
“derive” in a sense general enough to include the origin of a word (OCD, p. 527). The
Oxford English Dictionary gives as an example for “deduction” as “The process of deducing
or drawing a conclusion from a principle already known or assumed” as late as 1860, “the
process of deriving facts from laws and effects from causes”(OED, p. 358). These usages
are clearly not restricted to logically valid or mathematically demonstrated inferences.
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the arcs of its downward and upward swings. For Newton, this assumption is an

application of his first two laws of motion to an idealized theory of pendulum

motion in a vacuum under a uniform acceleration of gravity. Similarly, the

laws of motion, together with the theorems of books 1 and 2, are accepted as

background assumptions that can be appealed to in supporting the inferences

from phenomena in Newton’s argument for universal gravity in book 3. The

central role of these theorems is to support subjunctive conditionals expressing

the systematic dependencies that make Newton’s classic inferences into theory-

mediated measurements of features of forces from the cited phenomena.20 We

20 For example, Newton infers the centripetal direction of the force maintaining Jupiter in
its orbit about the Sun from Kepler’s area rule. A planet satisfies Kepler’s area rule just
in case it moves in a plane intersected by the center of the Sun and the rate at which it
sweeps out areas by radii from that center of the Sun is constant.

Newton’s inference is backed up by systematic dependencies following from the laws of
motion. The first two propositions of Principia book 1 (together with their corollaries)
yield an equivalence between the area law phenomenon for a body orbiting with respect
to an inertial center and the centripetal direction of the total force deflecting that body
from its own inertial motion. They also yield that having the area rate be increasing
would require that the total force be directed off center forward, while having the area
rate be decreasing would require that the total force be directed off center backward.
These systematic dependencies make the area law phenomenon count as measuring the
centripetal direction of the force.

We can think of the second derivative of area being swept out as a phenomenal magni-
tude, which takes the value zero when the areal rate is constant, is positive when the rate
is increasing and is negative when the rate is decreasing. Propositions 1 and 2 together
make zero value of this phenomenal magnitude equivalent to having the total force
directed toward the center. The additional dependencies (in corollary 1 of prop. 2) make
alternatives to this zero value carry information about alternative directions of the force.
Positive values carry the information that the force is off-center in a forward direction
while negative values carry the information that the force is off center in the opposite
direction.

These systematic dependencies support subjunctive conditionals. The suggestion that
making do with truth functional material conditionals avoids the metaphysically suspect
commitments of subjunctive conditionals is not driven by problems internal to the
practice of science. The claim that subjunctive conditionals are suspect is, rather, a slogan
for a philosophical project of revising the commitments of scientific practice to what can
be accommodated by extensional language alone.

The problematic aspect of this sort of reductive analysis can be illustrated by compar-
ing Newton’s classic inferences from orbital phenomena with Clark Glymour’s proposal
to interpret such inferences as examples of his conception of bootstrap confirmation.
(See Harper 1998 and Harper forthcoming, chapter 3.IV.4–5). Glymour’s bootstrap con-
firmation was an attempt to explicate such theory-mediated inferences using material
conditionals. (See Glymour 1980, pp. 127–133.) The initially enthusiastic response to
Glymour’s proposal was followed by later work raising problems for it. The most influ-
ential of these problems have been counterexamples proposed by David Christensen
based on constructing “unnatural” material conditionals entailed by theory to use as
background assumptions (Christensen 1983, 1990). These eventually led to the demise
of bootstrap confirmation as a serious candidate for explicating scientific inference.
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have seen that Newton shows how to adjust the application of this basic pro-

portionality of velocities to chords of arcs to take into account air resistance.

We shall see that Newton also shows how to correct the application of his basic

theorems about measuring features of forces from orbits, which are one-body

idealizations, to take into account gravitation toward other bodies.

Newton clearly takes this role of the laws of motion and theorems as accepted

background theory for his inferences from phenomena to features of gravity as

compatible with his counting them as empirical. One way this is clear is that

if the empirical phenomena corresponding to machines were to change so as

to appreciably violate the applications of Law 3, we would soon know about

it. Less disruptive of our form of life and more interesting for illustrating the

depth of Newton’s philosophy, I claim that the transition from Newton’s theory

to Einstein’s is in accordance with Newton’s own methodology.21

Let us consider the first part of the paragraph from the General Scholium to

the Principia in which Newton’s hypotheses non-fingo passage and the revision

he sent Cotes occurs. The properties of gravity cited by Newton in this passage

are ones he counts as having been established by the end of his Principia. They

are counted as properties that any adequate account of the cause of gravity

would have to recover. His arguments in support of them can inform our

understanding of what he counts as a deduction from the phenomena.

The first sentence makes the familiar but important claim that Newton’s

failure to yet find a cause of gravity does not undercut his achievement in

explaining the phenomena of the heavens and of our sea by the force of gravity.

Thus far I have explained the phenomena of the heavens and of our sea by

the force of gravity, but I have not yet assigned a cause to gravity.

(Newton 1999, p. 943)

Newton’s explanation of phenomena of our sea includes his explanation of

the basic phenomenon of two high tides, one corresponding to the Moon

above and one corresponding to the Moon on the other side of the Earth. As

The counterfactual supporting nature of the dependencies backing up Newton’s infer-
ences make them immune to counterexamples based on constructing “unnatural” mate-
rial conditionals.

This failure of Glymour’s proposal illustrates the inadequacy of material conditionals for
characterizing the systematic dependencies underwriting theory-mediated measurements
in science.

21 Harper (2007) argues that Newton’s 4th rule would endorse the transition from Newton’s
theory of gravity to Einstein’s theory of General Relativity. (See also Harper 2009, and
George Smith forthcoming b).

I think it is clear that the empirical measurements supporting the constancy of the
speed of light with respect to all inertial frames together with Einstein’s argument for the
relativity of simultaneity would make Rule 4 endorse the transition from Newton’s laws
of motion to Special Relativity.
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Cotes points out in his preface to the second edition, Newton’s explanation

makes such phenomena confirm gravitational attraction of the Earth toward

the Moon. Here is the relevant remark from Cotes’s preface:

Further, by mutual action, the earth in turn gravitates toward the moon, a

fact which is abundantly confirmed in this philosophy, when we deal with

the tide of the sea and the precession of the equinoxes, both of which arise

from the action of the moon and the sun upon the earth.

(Newton 1999, p. 389)

The fact that Newton’s detailed account of the tides, like his detailed account of

the precession, required considerable revision does not undercut the fact that it

was legitimate for Cotes to regard such phenomena as confirming differential

action in accordance with inverse square gravitational attraction toward the

Moon on parts of the Earth and seas at different distances from the center of

the Moon.

Newton goes on to outline some features of gravity that can be inferred from

its explanation of these phenomena.

Indeed, this force arises from some cause that penetrates as far as the

centers of the sun and planets without any diminution of its power to

act, and that acts not in proportion to the quantity of the surfaces of the

particles on which it acts (as mechanical causes are wont to do) but in

proportion to the quantity of solid matter.

(Newton 1999, p. 943)

The phenomena cited in Newton’s argument for proposition 6, book 3, afford

agreeing measurements, for any given distance from the center of any one

planet, of the equality of the ratio of the weight of a body toward that planet to

the quantity of matter contained in that body for all bodies at that distance.22

For example, these measurements afford strong evidence that Jupiter’s weight

toward the Sun is proportional to its total mass, to the total quantity of matter

of this three-dimensional (i.e. solid) body, not to the quantities of its surface

areas exposed to impact from different directions. Janiak has argued that this

very well established proportionality of weight to mass rules out the sort of

contact action on the surfaces of bodies that Leibniz assumed to be the only

physical alternative to action at a distance.23

The passage we have been quoting goes on to characterize additional features

required by a cause from which the force of gravity is to arise:

22 See Harper (1999, pp. 91–93) for an account, together with a table specifying bounds for
phenomena cited by Newton, afforded by data available to Newton, as well as bounds
from later data available today from corresponding tests of the weak equivalence principle.
This will be treated in more detail in Chapter 7 of Harper (forthcoming).

23 See Janiak (2007, pp. 142–144) and Janiak (2008, pp. 74–80).
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and whose action is extended everywhere to immense distances, always

decreasing as the squares of the distances. Gravity toward the sun is com-

pounded of the gravities toward the individual particles of the sun, and at

increasing distances from the sun decreases exactly as the squares of the

distances as far as the orbit of Saturn, as is manifest from the fact that the

aphelia of the planets are at rest, and even as far as the farthest aphelia of

the comets, provided that those aphelia are at rest.

(Newton 1999, p. 943)

Newton’s precession theorem and its corollaries afford systematic dependencies

that make precession of an orbit measure the power law of a centripetal force

maintaining a body in such an orbit.

As Newton (1999, p. 802) points out, even a quite small departure from the

inverse-square would result in a precession that would easily show up after many

revolutions. The famous 43 seconds a century precession of Mercury, unac-

counted for by Newtonian perturbations (but a second-order phenomenon

made possible by the application of the developed Newtonian theory),24 would

measure the − 2.00000016 power of distance for gravitation toward the Sun.25

This example also illustrates the fact that the systematic dependencies can be

applied to planets subject to perturbations. For any planet for which all orbital

precession can be accounted for by perturbations, the zero left over precession

measures the inverse-square variation of gravitation toward the Sun. Newton’s

proposition 45 of book 1 and its corollaries are proved for orbits that are

very nearly circular. The results can be extended to orbits of arbitrarily great

eccentricity.26 Indeed, it turns out that the larger the eccentricity, the more sen-

sitive absence of unaccounted for precession is as a measure of inverse-square

variation of forces maintaining bodies in orbit.27

The passage we have just quoted from the first part of the paragraph, in

which Newton goes on to discuss hypotheses and his experimental philosophy,

highlights Newton’s applications of his precession theorem to infer inverse-

square variation with distance from the Sun of the force of gravity that maintains

planets in their solar orbits. These inferences from the stability of these orbits

are impressive examples of deductions from the phenomena that count as

theory-mediated measurements from the phenomena. Newton also highlights

that gravity toward the Sun is proportional to its quantity of matter and is

compounded of the gravities toward the individual particles of the Sun. The

24 See George Smith (forthcoming b).
25 According to ESAA (Seidelmann 1992, p. 704) the period of Mercury is 0.24084445 Julian

years. This gives (1/0.24084445)(100) = 415.205748 revolutions per Julian century and
43/415.205748 = 0.10356 sec/rev or 0.10356/602 = 0.0000288 degrees per revolution. On
Newton’s formula (corol. 1 Prop. 45 bk1) the corresponding power law for the centripetal
force is as the (360/360.0000288)2 – 3 = − 2.00000016 power of distance.

26 See Valluri et al. (1997) for a modern proof. George Smith (manuscript) has shown that
Newton’s own proof can be so extended.

27 See Valluri et al. (1997).
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phenomena cited in Newton’s argument for proposition 6 do not directly afford

measurements of the proportionality of gravitational attraction to the mass of

the attracting body.

In his argument for proposition 7, Newton appeals to the challenged appli-

cation of the third law of motion to infer that contested proportionality.28

If counting the Sun’s gravitational attraction toward Jupiter as the equal and

opposite reaction of Jupiter’s gravitational attraction toward the Sun can be

adequately supported by reasoning from phenomena, then Newton’s inference

can be counted as a deduction from the phenomena. If the inference cannot be

adequately supported enough to count as a deduction from the phenomena,

then the outcome of Newton’s argument in proposition 7 is threatened to count

as a mere hypothesis.

7.2.4 Newton’s arguments to extend Law 3 to attractions29

In his initial letter to Cotes, Newton supplements his characterizations of

hypotheses and his experimental philosophy with an appeal to arguments for

extending Law 3 to attractions in his Scholium to the laws. These arguments

begin with a thought experiment in which an obstacle is interposed between

two bodies that attract each other so as to prevent their coming together. Unless

these oppositely directed attractive forces were equal, the obstacle would not be

in equilibrium. If they were in empty space, the system of the two bodies and the

obstacle would accelerate in the direction of the push on the obstacle exerted

by the more strongly attracted body. To the extent that the system consisting

of the two bodies and the obstacle can be treated as a body,30 this would

violate the first law of motion. This argument appeals to the first two Laws of

Motion together with the application of Law 3 to contact pushes to extend the

application of Law 3 to some attractions. The immediate applications of Law 3

to pushes between body A and the obstacle and body B and the obstacle make

the equilibrium of the system support the further application of Law 3 to the

attraction between A and B themselves.

Newton goes on to outline an actual experiment in which there is such an

attraction between two bodies.

I have tested this with a lodestone and iron. If these are placed in separate

vessels that touch each other and float side by side in still water, neither one

will drive the other forward, but because of the equality of the attraction

28 See note 14 above.
29 See Harper (2002b) for a more extensive discussion of these Scholium arguments. This

will be further expanded upon in Chapter 9 of Harper (forthcoming).
30 Here we see an example of Newton arguing to extend the concept of body to include what

can be counted as closed systems of interacting bodies. Corollary 4 of the laws insures
that the center of mass of such a system will not be accelerated by the interactions among
themselves of such bodies.
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in both directions they will sustain their mutual endeavors toward each

other, and at last, having attained equilibrium, they will be at rest.

(Newton 1999, p. 428)

The conclusion of the thought experiment is empirically shown to hold for an

actual case of attraction found in nature. Magnetic attraction exhibits general

regularities – phenomena – that make it count as an interaction. You can make

either lodestone or iron move towards the other by holding the other still. You

can feel the pull on the lodestone towards the iron, just as you can feel the

pull on the iron towards the lodestone. Moreover, the directions of these pulls

towards one another are independent of orientation with respect to the still

water on which the vessels containing the lodestone and iron float.

As Newton points out, magnetic attraction does not exhibit the proportion-

ality of attraction to mass that characterizes gravitation. This does not, however,

give grounds to dismiss these experiments as irrelevant to Newton’s controver-

sial application of Law 3 to gravity. Newton appeals to his experiments with

magnetic attraction as measurements affording empirical support to back up

the application of Law 3 to attractions in general argued for in his thought

experiment. Given that Law 3 applies to attractions in general, a defense of

Newton’s controversial application of Law 3 to gravity depends on how well

one can make a case for counting gravity as an attraction.

Newton follows up his discussion of the experiment with lodestone and

iron with an equilibrium argument for the claim that gravity is such a mutual

attraction between the Earth and its outer parts. Suppose the Earth is cut by

a plane to carve off an outer part. The weights toward the center of the Earth

of all its pieces will make this outer part press on the rest of the Earth. In his

earlier System of the World, Newton argued that unless the rest of the Earth

were attracted toward that outer part with an equal and oppositely directed

force, the whole Earth would be accelerated by this outer part pressing upon

it.31 A refined version of this argument in which another outer piece of equal

weight to the first is cut off by a parallel plane on the other side of the Earth

generates the equal and oppositely directed pressings from the assumption that

weights of outer parts of the Earth are directed towards its center of gravity

and distributed about it so as to be in equilibrium. This refined version of the

equilibrium argument was added in the second edition. It shows that the third

law of motion applies to gravity between the Earth and its outer parts. As any

body lying on the Earth can count as an outer part, this argument shows that

all of the large class of cases of gravity as weight toward the center of the Earth

count as attractions between the Earth and terrestrial bodies.

Let us examine the extent to which such arguments, as the foregoing gravi-

tational equilibrium argument or Newton’s appeal to Law 1, can be applied to

extend Law 3 to count gravitation of Jupiter toward the Sun as an attraction

31 See (Newton 1934, p. 570).
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between them. The orbits of the moons of Jupiter afford agreeing measure-

ments of the strength of an inverse-square acceleration field directed toward

Jupiter. The orbits of the primary planets afford agreeing measurements of

the strength of an inverse-square acceleration field directed toward the Sun.

Given the contested application of the third law of motion, these two accelera-

tion fields can be combined to preserve the ratios of the measured centripetal

accelerations toward the Sun and Jupiter by having each orbit their common

center of mass. It turns out, however, that as long as the ratio of their distances

from the center about which they orbit is inversely as the measured strengths

of their respective centripetal acceleration fields, their motions with respect to

one another will be the same, even if the center is not their center of mass.32

We can continue this construction, adding as many bodies as we want, consis-

tently with our information about the relative strengths of their acceleration

fields. This shows that, so long as they do not result in collisions, the motion

phenomena resulting from gravitational interactions among these bodies will

not put any bounds on the ratios among their masses if Law 3 does not apply

to these interactions.

The orbital phenomena corresponding to gravitational interactions do not

directly measure the equality of the relevant oppositely directed weights. They

do, however, provide additional empirical support for the conclusion that

gravity satisfies the crucial criterion – that these bodies maintain forces towards

one another as they move about – which distinguishes what Newton counts as

attraction from Cotes’s example. The oppositely directed weights towards one

another resulting from combining these acceleration fields is maintained as the

bodies move about. Perhaps, this would support accepting that gravity counts

as an attraction. This might make the equalities of the oppositely directed forces

in attractions between bodies cited in Newton’s arguments to extend Law 3 to

attractions support his application of Law 3 to construe gravity as a universal

force of attraction between bodies.

7.3 Rule 4

7.3.1 Newton’s Rule 4 applied

Newton’s Fourth Rule for doing natural philosophy was developed as an addi-

tional response to Cotes’s challenge.33

32 The center of mass will move uniformly on a circle about the center of the orbits. Even
if the center of mass is construed as a body this is not obviously a violation of Law 1
(Harper 2002b, p. 92).

33 Newton’s initial letter to Cotes ends with the remark

I have not time to finish this Letter but intend to write to you again on Tuesday.

(Newton 1959–1977, vol. V, p. 397)

His Tuesday letter, dated 31 March 1713, opens with the following remarks.
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Rule 4. In experimental philosophy, propositions gathered from phenom-

ena by induction should be considered either exactly or very nearly true

notwithstanding any contrary hypotheses, until yet other phenomena

make such propositions either more exact or liable to exceptions.

Newton comments that the point of this rule is to defend arguments based

on induction from being undercut by hypotheses. The rule tells us to consider

propositions gathered from phenomena by induction as “either exactly or very

nearly true” and tells us to maintain this in the face of “any contrary hypothe-

ses.” The defense against undercutting by hypotheses focuses the engine of

revision on empirical phenomena.

We can clarify the difference between what are to count as propositions gath-

ered from phenomena by induction and what are to count as mere hypotheses

Sr
On saturday last I wrote to you representing that Experimental philosophy proceeds
only upon Phenomena & deduces general Propositions from them only by Induction.
And such is the proof of mutual attraction. And the arguments for ye impenetrability,
mobility & force of all bodies & for the laws of motion are no better. And he that
in experimental philosophy would except against any of these must draw his objec-
tion from some experiment or phaenomenon & not from a mere Hypothesis, if the
Induction be of any force.

(Newton 1959–1977, vol. V, p. 400)

The last sentence, which rejects objections from mere hypotheses while endorsing objec-
tions drawn from phenomena, is a clear anticipation of the method advocated in the
Fourth Rule for doing natural philosophy that was first printed in the third edition of
1726.

Newton had included a somewhat longer statement in an un-sent draft of this
letter (Newton 1959–1977, vol. V, p. 401).

Sr
On Saturday last I wrote to you representing that Experimental philosophy proce[e]ds
only upon Phenomena & makes Propositions general by Induction from them. In this
Philosophy neither Explications nor Objections are to be heard unless taken from
phaenomena. Nor are Propositions here made general by arguments a priori by [read
but] only by Induction without exception. And upon such an Induction the mutuall
and mutually equal Attraction is founded. One may suppose that there may be bodies
penetrable or immoveable or destitute of force, or with attraction mutually unequal,
but such suppositions without any instance in Phaenomena are mere hypotheses &
have no place in experi[ment]al Philosophy: & to introduce them into it would be to
overthrow the Arguments from Induction upon wch all the general Propositions in
this Philosophy are built.

This somewhat more extended discussion anticipates Newton’s comment on Rule 4,

This rule should be followed so that arguments based on induction may not be
nullified by hypotheses.

(Newton 1999, p. 796)

as well as the method advocated in that Rule.
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by considering Newton’s explicit appeal to Rule 4 to back up his inference to

extend gravity to all the planets in his Scholium to proposition 5, book 3.34

What would it take for an alternative proposal to succeed in undermining this

generalization of gravity to planets without moons to measure centripetal forces

toward them? Consider the skeptical challenge that the argument has not ruled

out the claim that there is a better alternative theory in which these planets do

not have gravity. Rule 4 will count the claim of such a skeptical challenge as a

mere contrary hypothesis to be dismissed, unless such an alternative is given

with details that actually deliver on measurement support sufficient to make it

a serious rival, or provide other phenomena making the proposition inferred

by Newton liable to exceptions.

On vortex theories it would be the changes in motion of invisible vortical

particles resulting from their pushing the planets into orbital motion – rather

than the gravitation of the Sun towards the planet – that counted as the equal

and opposite reaction to the weight of a planet towards the Sun. On Newton’s

Rule 4, the agreement among the measurements of relative inertial masses

among solar system bodies provided by orbital phenomena counts as evidence

supporting Newton’s application of Law 3 to count gravitation among solar

system bodies as pair-wise interactions between them. To avoid counting as a

mere hypothesis to be dismissed, a theory construing gravitation toward the Sun

as an interaction between planets and vortical particles that did not recover Law

3 between the Sun and planet would have to develop some comparably accurate

way of measuring these relative masses, provide some alternative realization of

agreeing measurements sufficient to offset them, or provide other phenomena

making the propositions inferred by Newton liable to exceptions.

7.3.2 Huygens’s proposal for a cause of gravity

Some years ago I gave a paper at which I dismissed vortex theories as merely

predictive hypotheses that completely failed to realize Newton’s stronger ideal

of empirical success. Mike Mahoney and Simon Schaffer pointed out that

Huygens had been able to use his measurement of the strength of surface

gravity to calculate the speed with which the spherical shells of vortical matter

34 Scholium Hitherto we have called “centripetal” that force by which celestial bodies are
kept in their orbits. It is now established that this force is gravity, and therefore we shall
call it gravity from now on. For the cause by which the moon is kept in its orbit ought to
be extended to all the planets, by rules 1, 2, and 4.
Here are
Rule 1. No more causes of natural things should be admitted than are both true and sufficient
to explain their phenomena.
and
Rule 2. Therefore, the causes assigned to natural effects of the same kind must be, so far as
possible, the same.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 19:31:35 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.010

Cambridge Books Online © Cambridge University Press, 2012



188 william harper

surrounding the Earth would have to rotate to account for surface gravity in

his theory. This is a theory-mediated measurement of a theoretical parameter

by a phenomenon it purports to explain.

For Huygens, as for other proponents of the Mechanical Philosophy – the

dominant approach to Natural Philosophy at this time – applications of prin-

ciples of mechanics in natural philosophy are restricted to making natural

phenomena intelligible by showing how they could be caused by the different

magnitudes, figures, and motions of bodies.35 Huygens makes his hypothesis

recover the phenomenon of weight toward a center by having many differ-

ent very small layers or shells of vortical particles swirling in all different

directions.36 The centripetal tendencies imparted by the actions of these very

tiny layers of vortical fluid matter on the parts of a body will add together to

produce its weight, while the transverse tendencies imparted by the actions of

these very tiny layers of vortical particles will cancel out.37

Huygens appeals to collision experiments to establish that weights of bodies

are proportional to the quantities of matter that compose them.38

To this end, I will point out what occurs during the impact of two bodies

when they meet in horizontal motion. It is certain that the resistance that

causes bodies to be moved horizontally, as a ball of marble or lead placed

on a very level table would be, is not caused by their weight toward the

Earth, since the lateral motion does not draw them away from the Earth,

and so is not at all contrary to the action of gravity that pushes them down.

There is nothing then in the quantity of matter attached together con-

tained in each body that produces this resistance. So, if two bodies each

contain as much matter as the other, they will reflect equally, or both will

remain completely motionless, depending on whether they are hard or

soft. But experience shows that every time two bodies reflect equally in

this way or stop one another, having come to meet with equal velocities,

these bodies are of equal gravity. It follows then from this that those bodies

that are composed of equal quantities of matter are also of equal gravity.

(Huygens 1690b, p. 140)

These experiments measure the equal weights of bodies which collisions have

shown to have equal quantities of matter by their equal reactions when having

come together horizontally with equal velocities. The measured equality of

ratios of weight to quantity of matter are taken to be empirically demonstrated

as a requirement for Huygens’s hypothesis about the cause of gravity.

35 Huygens’s version of this Cartesian Mechanical Philosophy is revisionist in that he rejected
Descartes’s identification of matter with extension to allow for void spaces and corpuscles
(see Stein, 2002).

36 Huygens (1690b, p. 135). 37 Huygens (1690b, p. 137).
38 If this passage was written before Huygens read Newton’s Principia then we have another

striking anticipation of an important result of Newton’s.
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Huygens provides some details which suggest that such a version of his

hypothesis is not obviously impossible.39 The parts of his hypothesized fluid

matter need to be small enough to penetrate through bodies to interact with the

particles which compose them. He construes his account so that the weight of

a body is proportional to the total volume of the impenetrable particles which

make it up.

This matter then passes easily through the interstices of the particles that

compose the bodies, but not through the particles themselves; and this

causes the various gravities (weights), for example, of rocks, metal, etc.

This is because the heavier of these bodies contain more of such particles,

not in number but in volume: For only in their place (only in the places

unoccupied by the particles) is the fluid matter able to rise.

(Huygens 1690b, p. 139)

If the particles are all equally solid (have the same density) then the weights

of bodies will correspond to the quantities of solid matter that comprise them.

Such a version of Huygens’s proposed local acting cause of gravity would recover

weight proportional to mass.40

If we considered Huygens’s theory vs. Newton’s theory just up to proposi-

tion 6, then even if we used Newton’s Rule 4, informed by his richer notion

of empirical success, Huygens might have had a good case. Any version of his

proposal that recovered the inverse-square centripetal attraction toward plan-

ets with weight proportional to mass would recover all of the measurements

cited up to that point in Newton’s argument. Like Newton, Huygens considers

all the features established by these agreeing measurements as features that

any adequate account of the cause of gravity must recover. Also like Newton,

Huygens has not given details of a causal account of gravity that recovers the

inverse-square or the proportionality of weight to mass.

Unlike Newton, Huygens would count his having given a causal account of

centripetal forces, that could be consistently extended to include these addi-

tional features, as a positive achievement unmatched by Newton’s argument to

extend proposition 6 to parts of bodies. The velocities of his spinning shells, a

key causal parameter in his account, are measured by phenomena measuring

the acceleration of gravity at the surface of the Earth. Huygens was able to

exploit Newton’s measurements of surface gravities of the Sun, Earth, Jupiter,

and Mars to measure the velocities of the corresponding spherical shells. The

speed for the Sun is so great,

49 times greater than what we have found near the Earth, which was already

17 times greater than the velocity of a point at the equator.

(Huygens 1690b, p. 168)

39 See Huygens (1690b, pp. 137–140) and Harper (forthcoming, chapter 5 section I.4) for
more details.

40 Contrary to Janiak (2007, p. 145) and Janiak (2008, p. 78).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sat Nov 03 19:31:35 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.010

Cambridge Books Online © Cambridge University Press, 2012



190 william harper

that it suggests a speculation about the cause of the brilliant light of the Sun.

Here we have a second phenomenon, the brilliant light of the Sun, which this

same causal parameter might also be purported to explain. Huygens does not,

however, have systematic dependencies that would turn the brightness of the

light of the Sun into an agreeing measurement of this awesome speed required

to have his rotating shells explain the surface gravity of the Sun.

7.3.3 Accumulating empirical successes affording increased support

The role of accumulating empirical successes in affording increased support

is another important aspect of the methodology of Rule 4. In corollary 2 of

proposition 8, book 3, Newton exploited his application of Law 3 to make

orbital phenomena measure the relative masses of the Sun, Earth, Jupiter and

Saturn from the orbits about them. The agreeing measurements of the mass of

the Sun afforded from the orbits of its six known planets, of the mass of Jupiter

from the orbits of its four known moons, of the mass of Saturn from its five

known satellites, and of the mass of the Earth from the orbit of its moon and

from pendulums measuring its surface gravity, are all realizations of Newton’s

ideal of success as convergent accurate measurements by phenomena. None of

these is available to Huygens’s alternative proposal.

Hypothetico-deductive methodology that construes accurate prediction as

confirmation of assumed hypotheses shares the basic idea that accumulating

empirical success affords increased support. On such hypothetico-deductive

models, empirical success is limited to accurate prediction of data. The above

examples illustrate the superior power of Newton’s richer ideal of empirical

success to afford empirical discrimination among proposed alternative theories.

An important role of accepting the laws of motion and theorems derived from

them is to afford subjunctive conditionals – the systematic dependencies – that

make the phenomena count as theory-mediated measurements of the inferred

features of forces.

Huygens’s alternative can further reinforce this lesson. Huygens resisted

Newton’s arguments to combine the separately argued for inverse-square cen-

tripetal acceleration fields into a single system. He did not accept Newton’s

center of mass resolution of the two chief worlds systems problem on which

Kepler’s orbits are good starting approximations from which to generate more

accurate accounts by correcting for perturbations due to gravitation toward

other planets. Huygens was convinced by Newton’s arguments to inverse-

square attraction of gravity toward the Sun that Kepler’s elliptical orbits with

force toward the Sun at a focus were exact descriptions of the motions of the

planets. This makes empirical establishment of perturbation corrections of the

basic Keplerian elliptical orbits clear empirical counterexamples to Huygens’s

alternative.
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It turns out that it was a surprisingly long time before applications of New-

ton’s theory led to significant, empirically established, corrections to take into

account perturbations. Curtis Wilson offers the following remarks on the astro-

nomical tables of Cassini II, published 1740, and those of Halley, published

posthumously in 1749:

These tables, the most highly respected at the time of their publication,

and still in use in the 1780s, were purely Keplerian in principle, except for

Halley’s inclusion in his tables of an anomalous acceleration of the mean

motion of Jupiter and an anomalous deceleration in the mean motion of

Saturn.

(Wilson 1985, p. 16)

Halley, of course, was aware of and in support of Newton’s contention that

on his theory of universal gravity one would expect Jupiter and Saturn to

mutually perturb one another’s orbital motions. The problem was how to

give a detailed account of the empirical correction needed as well as of the

Newtonian perturbation explaining it.

Wilson plots the dominant Jupiter–Saturn perturbation, the great inequality,

along with the next two largest perturbational inequalities of each.41 This shows

the great inequality to have a period of about 900 years, with Jupiter speeding

up and Saturn slowing down for half the cycle and Jupiter slowing and Saturn

speeding up for the other half.42 It also suggests that the pattern reverses in the

mid 1700s, so that Halley’s correction becomes increasingly inaccurate after the

1760s.43 In 1773, Lambert showed that Halley’s supposition was empirically

untenable.44

Finally, on 23 November 1785, Laplace announced to the Paris Academy that

the anomalies in the mean motions of Jupiter and Saturn could be accounted

for on the assumption of universal gravitation. Wilson goes on to describe the

enormous import of Laplace’s achievement:

in the wake of Laplace’s ‘Théorie de Jupiter et de Saturne’ and primarily as a

result of it, the practice of predictive astronomy had been transformed. On

the basis of the new procedures introduced by Laplace, the way appeared

open to a marked reduction in the gap between tables and observations,

and a new period of advance, both theoretical and observational, was

entered upon.

(Wilson 1985, p. 23)

This new period of advance was the extraordinarily successful research program

that, from the work of Laplace at the turn of the nineteenth century and up

through the work of Simon Newcomb at the turn of the twentieth century,

led to increasingly accurate perturbation-corrected orbits fitting increasingly

41 Wilson (1985, p. 35). 42 Ibid. 43 Ibid. 44 Wilson (1985, p. 20).
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precise data and affording increasingly accurate measurements of the masses

of solar system bodies.45

The solar tables of Lacaille of 1758 were the first to include perturbations

of a planet. They included perturbations of the motion of the Earth, due to

the Moon, Venus, and Jupiter. They also were the first tables to take account

of the aberration of light and the nutation of the Earth’s axis, two effects that

had prevented advances in telescopes and clocks from achieving precision far

exceeding the best naked eye observations. Bradley announced his discovery

of aberration of light in 1729 and of the nutation of the Earth’s axis in 1748.

The successful theoretical treatment of nutation as a Newtonian perturbation

was by d’Alembert and Euler. D’Alembert took his treatment of nutation as

affording striking confirmation of attraction of the Earth toward the Moon.

Wilson quotes the following passage from d’Alembert’s memoir of 1749.

The nutation of the terrestrial axis, confirmed by both the observations and

the theory, furnishes, it seems to me, the most complete demonstration

of the gravitation of the Earth toward the Moon, and consequently of the

principal planets toward their satellites. Previously this tendency had not

appeared manifest except in the ocean tides, a phenomenon perhaps too

complicated and too little susceptible to a rigorous calculation to silence

the adversaries of reciprocal gravitation.

(Wilson 1995, p. 48)

Euler refined d’Alembert’s treatment and was inspired by it to develop the first

treatment of mechanics of rigid bodies.46

7.3.4 Newton vs. Euler on action at a distance

Euler’s objection to Newton’s inference to gravity proportional to the mass of

an attracting body was in a letter to Mayer, who was extending the work of Euler

and Clairaut on the lunar precession to develop the first really accurate lunar

tables. Euler’s reaction to Clairaut’s solution to the lunar precession problem is

expressed in the following quotation from a letter to Clairaut of 29 June 1751:47

the more I consider this happy discovery, the more important it seems to

me . . . For it is very certain that it is only since this discovery that one can

regard the law of attraction reciprocally proportional to the squares of the

distances as solidly established; and on this depends the entire theory of

astronomy.

(Waff 1995, p. 46)

45 See George Smith (forthcoming b). 46 See Wilson (1995, p. 53).
47 See Waff (1995, pp. 35–46), for a brief account of the lunar precession problem and

Clairaut’s eventual solution to it. Waff (1976) is a wonderfully detailed account.
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This allowed the inverse-square to be assumed confidently in the research

project of finding perturbation-corrected orbits. Euler’s letter to Mayer of 25

December shows that removing his doubts about the inverse-square did not

remove his doubts about Newton’s controversial application of Law 3.

Euler wanted to avoid action at a distance. He continued to look for a cause

of gravity that would avoid action at a distance and he continued to look for

phenomena that would afford evidence of an aether that would require mod-

ification of Newton’s theory, even as he developed fundamental contributions

to the analytic treatment of perturbations within Newton’s theory.

Proposition 69 of book 1 is where Newton shows that applying Law 3 to a

system of mutually attracting bodies makes the absolute measure (the strength)

of the centripetal force toward each body proportional to the mass of that

attracting body. In the Scholium to that proposition, Newton tells us:

I use the word “attraction” here in a general sense for any endeavor what-

ever of bodies to approach one another, whether that endeavor occurs as

a result of the action of the bodies either drawn toward one another or

acting on one another by means of spirits emitted or whether it arises

from the action of aether or of air or of any medium whatsoever – whether

corporeal or incorporeal – in any way impelling toward one another the

bodies floating therein.

(Newton 1999, p. 588)

His counting gravity as an attraction is compatible with having it arise “from

the action of aether or of air or of any medium whatsoever – whether corporeal

or incorporeal – in any way impelling toward one another the bodies floating

therein”.

Newton is suggesting that his application of Law 3 does not rule out local

causation. An analogy suggests that causes that would support the application of

Law 3 without action at a distance are indeed conceivable. Suppose the separate

causes pushing the bodies together acted as though they were produced by the

two jaws of a pair of tweezers.48 Even though the direct applications of Law 3

would be between the bodies and the separate causes driving them towards one

another, being able to count on having these impulses so coordinated would

support the additional application of Law 3 to the motive forces of the two

bodies. Such causes would extend to separated bodies the indirect applications

of Law 3 of Newton’s experiment with magnetic attraction and his argument

that terrestrial gravity is an attraction between the Earth and its outer parts.

Newton’s separation of his philosophical commitment to avoid action at

a distance from his methodological commitment to make theory-mediated

measurements afford empirical answers to questions about the force of gravity

that any adequate cause of gravity must account for is sharper than Euler’s.

48 This analogy was suggested to me in conversation by Howard Stein.
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For Newton, the apparent commitment to action at a distance generated by

the proposed application of Law 3 carries no weight to offset the convergent

agreeing measurements to which it leads.49

7.4 A concluding remark

I want to conclude by arguing against turning Newton’s ideal of empirical suc-

cess as theory-mediated measurement into a necessary criterion for counting

a proposition as gathered from phenomena by induction. We have seen that in

his initial response to Cotes, Newton points out that he does not intend axioms

to count as hypotheses. Deductions from the phenomena should include his

characterization of the confirmation afforded to the first two laws and the

first two corollaries by their role in accounting for the patterns that domi-

nate the ubiquitous phenomena of free fall and projectile motion, as well as

the confirmations afforded by applications of the laws of motion to account

for the effectiveness and usefulness of machines. This widening of Newton’s

construal of deductions from the phenomena in their application to laws of

motion suggests that such a widening of what can count as deductions from

the phenomena may be part of Newton’s response to Cotes’s challenge.

It has been pointed out that the first direct measurement establishing the pro-

portionality of gravitational attraction to the mass of the attracting body was

not achieved until Cavendish’s laboratory measurement of the gravitational

constant in 1798.50 Until Cavendish there was no direct measurement sup-

porting the application of Law 3 to count gravitation as a pair-wise attraction

between separated bodies. This might suggest that Newton’s application of Law

3 to count gravity as a pair-wise attraction holding between solar system bodies

should not have been counted as a proposition gathered from phenomena by

induction before Cavendish completed his experiment.

I have suggested that, on Newton’s methodology as explicated in Rule 4,

Newton’s convergent agreeing measurements of relative masses of solar sys-

tem bodies in corollary 2 of proposition 8 of book 3 may well put his theory

sufficiently far ahead to count Huygens’s alternative as a mere hypothesis.

Newton’s own responses to Cotes suggest that he would appeal to the whole of

the Principia.51 Cotes, in his preface, focuses on the tides and precession of the

equinoxes as affording phenomena that testify to attraction of our sea and Earth

49 It is interesting that by Kant’s day the empirical support for gravity as a universal force of
mutual interaction between bodies was so great that it was taken to empirically settle the
causal question in favor of action at a distance.

50 George Smith pointed this out in his vivid masterful presentation in Leiden. As I suspect
he intended, it was a surprise to many that direct measurement of the mutuality of
gravitation between separated bodies was so late in coming.

51 This is also Howard Stein’s position. See Stein (1991).
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toward the Moon. Even if one were to reject Newton’s own treatments of the

tides and precession of the equinoxes as insufficient to count the attraction of

the Earth by the Moon’s gravity as acceptable as an approximation, d’Alembert’s

and Euler’s treatment of nutation and Lacaille’s tables of 1758 with perturba-

tions of the Earth by the Moon would each afford clear empirical support for

attraction of the Earth toward the Moon. According to the methodology of

Newton’s Rule 4, by the time of Laplace’s solution to the great inequality of

the Jupiter–Saturn mutual perturbation the indirect support afforded by con-

vergent agreeing measurements of parameters that had accumulated to back

up universal gravity was sufficiently great that it is no surprise that few, if any,

regarded Cavendish’s measurement as removing a serious obstacle to accepting

Newton’s theory.

There is a long history of philosophers turning powerful sufficient condi-

tions for some apparently clear cases of knowledge into necessary conditions,

which then lead to skeptical arguments designed to undercut other commonly

accepted cases of knowledge. Descartes’s example of knowledge by percep-

tion limited to subjective contents, that not even a malin génie could deceive

one about, got turned into a strict subjectivist empiricism according to which

knowledge of external bodies is problematic. I suggest that turning the New-

tonian ideal of convergent accurate measurement of parameters from diverse

phenomena into a necessary condition for acceptance of theoretical proposi-

tions in natural philosophy would be an example of this practice that promotes

unwarranted skepticism.
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What did Newton mean by ‘Absolute Motion’?

nick huggett

Newton’s Scholium on time, space, and motion is familiar material, but its

relation to some important recent work in philosophy makes it well worth

revisiting. In particular, I wish to discuss Newton’s views on the founda-

tions of mechanics, as they appear in his published works of natural phi-

losophy: what he wished to make public to his intellectual community, what

he took to be crucial to his programme in mechanics, and what he took

to be scientifically defensible in the same way as, say, universal gravitation.

Recent work in the foundations of spacetime theories has developed a new (or

perhaps rediscovered a disregarded) understanding of the nature of space-

time in mechanics; thus expanding the space of known logical possibili-

ties expands the space of interpretational possibilities, and we can fruitfully

ask whether Newton proposed anything like the new/rediscovered account.

Indeed, one of the main purposes of this chapter is to discuss critically such a

reading.

First, a brief sketch of the relevant foundational issue. As we’ll discuss, canon-

ical mechanical theories require space and time to have a geometric structure

that cannot be defined in terms of the relative positions and motions of bod-

ies. The foundational question is what to make of that structure; should we

just think fairly literally of spacetime as a manifold of points endowed with

a geometry, much as Newton’s absolute space is usually conceived? There is

another tradition, starting at least with James Thomson (1884; brother of Lord

Kelvin),1 which views the structure as a feature of the laws, not of ‘spacetime

itself’. This idea can be cashed out by starting with frames (smooth assign-

ments of co-ordinates to the points of space and time) and physical laws

(Newton’s or Maxwell’s, for example). Then take those laws to say that the

Thanks to Ori Belkind, Gordon Belot, Andrew Janiak, Eric Schliesser, Howard Stein,
and Daniel Sutherland for criticisms and comments. In particular, I have received some
illuminating correspondence from Stein on an early draft, for which I am very grate-
ful. Of course, my thanks carry no implication of endorsement of any kind. Parts of
this paper were presented at the Issues in Modern Philosophy Conference at NYU, 10–11
November 2006.

1 See DiSalle (1991) and Barbour (1989, chapter 12) for further discussion.
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laws hold in some frames: by definition, the ‘inertial’ frames. If these frames

are related by Galilean transformations then they correspond to a geometry

of ‘Galilean spacetime’ (discussed below), and if by Lorentz transformations

then to the Minkowski geometry of special relativity. That is, the geometry

is not ascribed to spacetime directly, instead the symmetries of the laws are

projected onto spacetime as a geometry with the same symmetries. That is,

spacetime is interpreted ‘dynamically’, as fundamentally a feature of the laws

of physics (without any implication that the laws couple geometry to matter

so that it evolves). Such a view may or may not be ‘relational’ as that is usually

understood: while the laws can be thought of as governing the relative motions

of bodies, whether the laws themselves can be ‘reduced ’ to relations is a further

issue.

In a recent book that has attracted considerable attention (and the 2006

Lakatos Award), Brown (2005) offers an account along these lines. DiSalle

(1994) develops a similar position (as does Huggett 1999, 2006). The clari-

fication of these ideas makes it possible to look at earlier thinkers in a new

light to see whether their work can be understood in such terms: perhaps they

have been erroneously ascribed views because we were unclear on the concep-

tual possibilities. In a terrific new book, DiSalle (2006) has described how the

understanding of the nature of spacetime structure was developed through the

history of mechanics, from Newton to Einstein. The philosophical question

of the book is how scientists understood the ‘a priori’ assumptions of theo-

ries, particularly spacetime structure, especially as these were discovered and

rejected experimentally. DiSalle’s discussion is extremely insightful, and reveals

a great deal about the relation of philosophy to physics, but here I focus on

his argument – following, he claims, Stein (1967) – that Newton developed

a version of the dynamical interpretation in his Scholium on time, space and

motion. More specifically, I want to demonstrate that DiSalle’s readings of

both Newton and Stein are implausible. Although Stein’s paper appeared over

40 years ago, and is commonly cited by philosophers of physics, it bears fur-

ther scrutiny for a number of reasons: for its relation to the important new

work of DiSalle, because it is often not well understood despite its signifi-

cance, and because it is not as widely known to historians of philosophy as it

should be.

The plan of this paper is to lay out DiSalle’s position (Section 8.2) briefly,

then explain Stein’s views and some of the aspects of the Scholium that they

fail to encompass (Section 8.3–8.4). In particular, I will point out that Newton

does not introduce ‘true motion’ and ‘absolute motion’ as synonyms; instead

the former is the sense of motion implicit in the laws, while the latter is defined

as motion in absolute space – Newton argues that these two conceptions refer

to the same thing. Then, (Section 8.5) I will be able to return to the question of

how DiSalle is at odds with Newton and Stein. But first there is an important

question hanging over the whole discussion.
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8.1 Newton’s definitions

The following discussion of how Newton defined these terms may seem para-

doxical, because he himself thought the concept of motion to be too obvious

to stand in need of definition; he starts the Scholium (to the definitions) by

declaring that he does ‘not define time, space, place and motion, as being well

known to all’.2 But on the other hand, the Scholium clearly tells us what Newton

thinks time, space and motion are, which amounts to telling us what he takes

the corresponding terms to mean – itself tantamount to defining them!

But we can avoid any tension here, if we understand what role Newton

takes to be played by definitions – i.e., those explicitly headed as such in the

Principia. The definitions that he does give under that designation are all of

new or contentious technical terms whose precise senses are appealed to in

the various mathematical proofs of the Principia. Concepts that he takes to be

familiar, such as volume and velocity, he appeals to in making his definitions

without explication; the common meanings of space, time and motion he

takes to be similarly sufficiently precise for the proofs he offers – thus they

need no definitions either. But that is not to say that his work does not raise

further questions about their meanings, and it is those issues that the Scholium

addresses. And thus in the sense that it explicates what the terms mean, he does

offer ‘definitions’ – but since they are not meanings directly appealed to in the

proofs, they are not ‘definitions’ of the formal system of mechanics developed

in the Principia.

To illustrate the point, consider the treatment of time. In formal proofs,

time is of course treated in the ‘well-known’ way, as the parameter with respect

to which positions change, according to the laws of motion: as an ‘absolute’,

rather than with reference to any physical ‘clock’. But in Book III the experi-

mental meaning of time is important, because, for instance, the Phenomena

report the observed motions of the ‘planets’ – the observed variations in their

positions with respect to measured, ‘relative’ time. So, while the parameter of

change is sufficiently ‘well known to all’ for formal proofs, its connection to

time measurements needs to be discussed to make clear how Newton’s for-

mal results are to be brought to bear on observations. And that is exactly

what Newton does in the Scholium, explaining how the solar day must be cor-

rected using the ‘equation of common time’ to take account of its variation as

the Earth moves in its orbit (p. 410; all references to Newton are from 1999,

2 At least he does, according to Cohen and Koyré, in the manuscript and first two editions
of the Principia (Newton 1972, p. 46), and hence in older translations, such as Motte’s
(Newton 1729, p. 9), from which the phrase is quoted. For reasons I do not understand –
though plausibly related to the topics of this essay – the phrase is omitted from the third
edition, and hence from Cohen and Whitman’s translation (Newton 1999, p. 408), from
which I generally quote in this essay. Stein’s work avoids ascribing such definitions to
Newton; DiSalle’s does not.
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unless otherwise indicated).3 Thus there is no formal definition of ‘time’, but

there is discussion of its meaning in physics. We can sensibly also expect dis-

cussions of the meanings of ‘space, place and motion’. Such discussions may

similarly clarify the connection between absolute and experimental quanti-

ties, but it would be hasty to conclude on the basis of the example of time

that Newton will restrict himself to such clarifications. We should consider

the possibility of further, non-experimental elucidations of absolute space and

motion.

With all of the preceding in mind, we can say straight off that in a loose

sense – not in the sense of a definition in the formal system of the Principia,

but in the sense of telling us what he means by the term – Newton does define

‘absolute motion’. Namely, it ‘is the change of position from one absolute place

to another’ (p. 409). We shall have more to say about what is involved here,

but as usually understood, Newton intends absolute motion to be taken with

respect to some enduring Euclidean frame;4 thus bodies have well-defined,

‘absolute’ positions, velocities, accelerations and rotations.

8.2 Understanding Space-Time

In (2002) and (2006) – Understanding Space-Time – DiSalle proposes a reading

of Newton’s views on space and time in the Scholium which is considerably at

odds with that usually offered. There is of course a considerable literature on this

topic, but in most recent treatments there has been considerable agreement that

Newton’s arguments are aimed at establishing that space is ontologically robust;

debate has focused on how Newton argued (see, for instance, Rynasiewicz

1995b). DiSalle instead starts with a new understanding of what space(time)

was for Newton.

According to DiSalle, Newton’s arguments from ‘properties, causes and

effects’ amount to a definition by conceptual analysis of absolute motion

(pp. 16–17, §2.5; all references to DiSalle are from 2006, unless otherwise

indicated). The kind of definition DiSalle has in mind here is more like that

given by a linguist reporting on linguistic practice than by a logician intro-

ducing a new term into a formal language: Newton explicates how natural

philosophers use ‘motion’ in their applications of mechanics, rather than giv-

ing an independent meaning in terms of which laws can then be formulated.

3 In modern terms, Newton is referring to the correction of ‘apparent’ solar time to ‘mean’
solar time. (Thanks to Bill Harper for some discussion of Newton here.) Note further that
advances in physics do not change the underlying point that no real clocks allow perfect
accuracy: even atomic clocks are affected by variations in the ambient electromagnetic
field.

4 Arthur (1994) points out some ways in which Newton’s ‘spaces’ are not reference frames
in the contemporary sense, but those differences are not important for our purposes.
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Newton’s subsequent argument is that Descartes’s definitions are incompatible

with those uses, including his own.

According to DiSalle, the ‘properties’ to which Newton appeals are pre-

scientific and unempirical, and thus fail to give satisfactory definitions: for

instance, ‘bodies truly at rest are at rest in relation to one another’ (p. 411).

However, Newton’s attempts to give a definition of absolute motion in terms of

its causes and effects (i.e., forces and the inertial effects in rotational motion)

are more successful, since they are measurable (p. 31). Specifically, the results

of analysing how the concepts of motion are used in the mechanics of impelled

and rotating bodies are that:

(a) ‘Newton defines true motion as that which cannot change without the

action of a force, and which must change when a force is applied’ (p. 31).

(b) Similarly, ‘true rotations are by definition those that give rise to centrifugal

effects’ (p. 35).

What is important to emphasize here is that the specific definitions identified

by DiSalle are supposed to be ‘empirical’: absolute quantities are defined in

terms of (more) directly observable quantities.

At stake are both Newton’s metaphysical views regarding absolute space in

the Scholium and the overall logic of the text. Canonical views hold that Newton

postulates absolute space as a subsistent background frame relative to which

‘true’ motion should be understood. Interpretations differ on the role of the

following discussion: does Newton fallaciously claim that the convex surface of

the water in his bucket can only be correlated with motion relative to absolute

space (as positivistic critics such as Mach 1893, pp. 279–296, allege)? Or is

absolute space part of the best explanation of the surface (as substantivalist

proponents’ arguments urge: e.g. Earman 1989, p. 125)?

According to DiSalle, when Newton ‘distinguishes’ absolute motion from

relative he is not defending some prior understanding of motion at all; certainly

not that of motion with respect to a subsistent space. Instead he explicates the

meaning of ‘motion’ in the laws of mechanics: in the ‘true, philosophical and

mathematical’ (p. 408) sense. That is, Understanding Space-Time proposes that

the idea of a ‘dynamical’ interpretation of mechanics goes right back to its

origin. The proposed logic of the Scholium is completely different from the

other accounts – and in particular Newton eschews metaphysical claims about

space altogether.5

DiSalle claims (17) that his reading is in agreement with that of Stein’s

(1967) celebrated paper, ‘Newtonian Space-Time’. I want to demonstrate that

his interpretation, as just sketched, is both incompatible with Newton, and

5 In a review of DiSalle (Huggett 2009) I question whether such a dynamical interpretation
of spacetime actually transcends substantival-relationist issues; for one can still ask what
fundamental spatiotemporal properties the laws govern.
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overstates Stein’s in important ways. To that end, and to clarify Stein’s views

and comment on their adequacy as an interpretation of Newton, we will

next turn to his paper; later we shall return to our discussion of DiSalle’s

Newton.

8.3 ‘Newtonian Space-Time’

Until 1967, the prevailing, positivist-influenced reading of Newton’s Scholium

on space, time and motion held it to be a gratuitous metaphysical – therefore

unscientific – intrusion into a scientific treatise. A main goal of Stein’s ‘New-

tonian Space-Time’ (all references to Stein are from 1967, unless otherwise

indicated) is to show that, far from being unscientific, the Scholium serves

an important role in the overall argument of the Principia. First there is the

very important point that Newton is responding to Descartes’s two concep-

tions of motion (from Book II of The Principles of Philosophy); at least his view

that motion is to be taken with respect to arbitrary bodies was a very serious

scientific position at the time. Stein argues that Newton shows the Cartesian

conceptions to be inadequate for the new physics, but that ‘absolute motion’

can do the work demanded of it. His analysis (in part I of the paper) of the

essential role of absolute motion in the Principia, especially in the demonstra-

tion of the absolute motions of the solar system is, by any standard, a classic,

masterful explication of a scientific argument – a revelation.

Here I want to concentrate on what ‘Newtonian Space-Time’ says specifically

about the Scholium.6 According to Stein, and in direct reply to the positivists,

Newton shows that

the principles of dynamics, already discovered by earlier investigators

and applied successfully to many phenomena, distinctly require a view

of motion and therefore place and space that cannot be explicated in

terms simply of the geometrical relations among bodies. [Thus he] adopts

that conception of space and motion on which alone dynamics can be

based – which implies [that] considerations of force . . . must be brought

to bear in order to determine the true state of motion or rest of bodies.

Viewed so, Newton’s analysis is, but for the one shortcoming [discussed

just below], a classic case of the analysis of the empirical content of a set

of theoretical notions.

(p. 197)

In this section and the next my purpose is to evaluate this as a description

of the Scholium. The two main tasks facing us are to elucidate the concepts

that ‘Newtonian Space-Time’ attributes to Newton, and to determine, with

reference to the text, whether those are his concepts and whether it is best read

6 I refer largely to Part II and especially to the remarks on pp. 190–198.
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as an empirical analysis. I want to show that, as an account of the Scholium,

this description leaves out some important points.

An important caveat about this approach: Stein’s paper is as much about

how Newton should be evaluated – not according to some narrow positivistic

conception – as about giving an interpretation of Newton. So in the first place,

it aims to lay out the Scholium in a way that reveals its positive contributions

and, in contrast, its shortcomings; but Stein does not say explicitly that he

intends the above as an exhaustive description of the Scholium.7 Thus it might

seem that I am setting up a straw man, but that would only be the case if the

following were a criticism of ‘Newtonian Space-Time’ – and it is not (nor of

Newton). Instead, my goal is to see how comprehensive this description is to

see what else we can learn about Newton.

Now to elucidate Stein’s description. First, Newton’s conception of absolute

space, and the ‘shortcoming’ identified by Stein: Newton’s conception corre-

sponds to that of full ‘Newtonian spacetime’. Very briefly and informally, in

Newtonian spacetime the relations of temporal and spatial distance are defined

between any pair of points; thus it makes sense to ask how far apart in space and

time two points along a worldline are – and so to ask the (average) ‘absolute’

speed with respect to space, the distance divided by the interval. The problem

with this conception is that Galilean relativity means that absolute velocity can-

not be measured, as Newton demonstrates in Corollary V of the laws: ‘When

bodies are enclosed in a given space, their motions in relation to one another

are the same whether the space is at rest or whether it is moving uniformly

straight forward without circular motion’ (p. 423).

However, the mathematically weaker conception of motion in ‘Galilean

spacetime’ is sufficient for Newtonian mechanics, and avoids this problem.8 In

Galilean spacetime, while any two points have a temporal separation, they

only have a spatial separation if they are simultaneous; thus no absolute

velocity can be assigned to worldlines. However, a relation of co-linearity is

defined over all triples of points; worldlines composed of mutually co-linear

points are those of bodies in uniform linear motion, those of zero accelera-

tion. (In Newtonian spacetime, worldlines of arbitrary, constant absolute veloc-

ity are straight, so also composed of co-linear points.) More generally, the

relations of Galilean spacetime suffice to make acceleration well-defined, as

the laws clearly require, without making an unobservable absolute velocity

well-defined.

7 Indeed, because it is not relevant to my discussion, I have put to one side Stein on the
Scholium’s discussion of the meaning and methods of ‘philosophy’.

8 Stein refers to this spacetime as ‘Newtonian’ (p. 175), but the usage I have followed has
become fairly standard in philosophy of physics since. I apologize for reviewing material
that will be familiar to many, but I was surprised to discover during an earlier presentation
of this work that these ideas are not universally known to historians of early modern philos-
ophy, despite their significance. See Stein for a more thorough and rigorous presentation.
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So, Stein explains, by introducing absolute velocities, Newton presupposed

more than his mechanics needed.9 However, he is not inclined to fault New-

ton too harshly, because a proper understanding took another 300 years of

mathematical development, and because Newton understood and acknowl-

edged the problem. (On the other hand, Stein does take Newton to have failed

here in comparison with his contemporary, Huygens, who, he claims, saw the

possibility of well-defined rotation without a well-defined, unique velocity.)

To summarize, according to Stein, Newton’s postulation of absolute space

is the postulation of the structure of Newtonian spacetime for the ‘spatio-

temporal framework of events’ (p. 182). (He also emphasizes that this structure

is ‘independent’ in the sense that it cannot be defined in terms of the relative

positions and motions of bodies.) Many commentators are tempted thus to

understand Newton as a ‘manifold substantivalist’ (to use Earman’s phrase,

1989, pp. 125–126) – to take the ‘spatio-temporal framework’ as literally a

differentiable manifold, an object of primary predication. It’s easy to see why,

for the alternative seems to be that Newton thought that mechanical processes

merely evolved as if there were a manifold with the appropriate geometry,

while in fact there was none; but Newton does not seem to offer any such

instrumentalist gloss. But ‘Newtonian Space-Time’ takes another view, denying

that the question of whether or not there is ‘really’ a manifold is addressed in

the Scholium at all. All that Newton wishes to establish is that the structure

of Newtonian spacetime (or at least that part that it shares with Galilean

spacetime) is ‘in some sense really exhibited by the world of events’ (p. 193).10

9 Note that motion in Galilean spacetime is, as Newton would have recognized, not fully
observable according to his laws of motion. Just as absolute velocity is unobservable
according to Corollary V, so a common acceleration is shown to be unobservable by
Corollary VI: ‘If bodies are moving in any way whatsoever with respect to one another
and are urged with equal accelerative forces along parallel lines, they will all continue to
move with respect to one another in the same way as they would if they were not acted
on by those forces’ (p. 423). (That is, if at each instant every body in a system accelerates
in the same direction at the same rate, then the system will be indistinguishable from an
identical one in which there is no common acceleration.) For instance, a system in free
fall in a constant gravitational field behaves just like one not in a gravitational field –
indeed what makes Corollary VI important is the existence of a force like gravity in which
all matter has the same acceleration. However, such unobservable differences in motion
correspond to distinct motions in Galilean spacetime, since they differ in the rate of
acceleration.

If in addition to Newton’s laws it is also postulated that there are no source-free forces
then Corollary VI will only apply to subsystems, whose behaviour will be observably
different with respect to some more encompassing system. The point is that motion in
Galilean spacetime is not fully observable according to Newton’s laws of motion, only
according to some stronger set of laws, such as the laws of motion plus Newton’s law of
gravity.

10 In fact, it is not entirely clear that Stein intends to make exactly this claim – hence the
earlier caveat about my approach. Perhaps what he means is that when one evaluates
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The question of just what sense brings us to Newton’s conception of absolute

motion. One of the important themes of ‘Newtonian Space-Time’ is that ‘abso-

lute motion’ is a theoretical term whose meaning is given in part by Newton

in terms of the theory of mechanics (e.g., p. 190). That is, absolute motion

just is, ‘by definition’, that sense of motion appearing in the laws, in their

canonical formulation. If correct, this understanding sheds new light on New-

ton’s bucket argument. Assuming suitable forces (i.e, gravity and inter-atomic

forces), Newtonian mechanics deductively entails the rotation of the water,

which, on the proposed understanding of what Newton means by ‘absolute

motion’, is absolute rotation: absolute rotation is simply a consequence of the

laws (given the physics of the system). Since absolute motion is ‘by definition’

motion in the sense of the laws, then this result has no immediate consequences

at all for the question of manifold substantivalism – consistent with the view

that the Scholium does not take a stand on the issue. Instead, such examples

show that the structure of absolute space is ‘exhibited by events’: mechanical

processes are governed by laws in which ‘motion’ cannot be taken relatively,

but only with respect to the structure of Galilean spacetime. Put another way,

the example shows that absolute space is exhibited by events in the sense

that it shows that absolute motion has empirical content – the term appears

in meaningful, true (supposing Newtonian mechanics) sentences concerning

phenomena.

To make these ideas clearer for further discussion, I want to introduce a more

precise understanding of how terms get meaning from theories in which they

appear. A reasonable answer, which will be of great help to us, is provided by the

Carnap–Lewis account of the definition of theoretical terms (e.g., Lewis 1970).

There are a number of nice features of this account, not least that it explains

how theories can be interpreted even if they contain terms with no antecedent

meanings, and which have no plausible empirical significance. Very briefly,

suppose the vocabulary of a new theory, T[t; U] contains some antecedently

understood terms U – for instance, because they have rather direct empirical

meaning, or because they are understood theoretical terms of existing theories –

plus a novel theoretical term t. Then t is implicitly defined to be the x such that

T[x; U] (the Ramsey sentence for T with all occurrences of t replaced by x).

In the case of absolute motion, we proceed, rather schematically, as follows: let

N[motion] be Newton’s laws, so N[x] is the laws with every occurrence of the

term ‘motion’ replaced by the free variable x; then ‘absolute motion’ is defined

to be the x such that N[x].

Of course Newton does not put things this way, and neither does Stein. But

‘Newtonian Space-Time’ proposes that absolute motion is a theoretical term

Newton the further questions can be logically separated from the empirical analysis of
absolute concepts and postponed. As I indicated earlier, it matters little here, for we seek
to learn more about Newton by seeing what is left out of ‘Newtonian Space-Time’ ’s
description of Newton’s positive achievements.
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of mechanics, and this formulation certainly gives a clear statement of just

what content it obtains from the theory (though, as we shall discuss below,

Newton means more than this). By comparing this more explicit formulation

against the Scholium we can understand more precisely the sense, if any, in

which Newton introduced absolute motion and space as theoretical terms in

the Scholium. But before we pursue that issue, a remark is in order to avoid

confusion.

It is no part of Lewis’ account that such a definition is an ‘empirical’ one, in

terms of some privileged vocabulary; rather the definitions are given in terms

of whatever terms are already understood at the time that the new theory is

formulated. Thus the formulation in no way amounts to a definition of absolute

rotation in terms of what can be observed in, say, a bucket of water – in no way

does it take Newton’s empirical analysis of the concepts as itself a definition.

One might still ask whether all definitions terminate in empirical ones: is there

a chain of Carnap–Lewis definitions that eventually leaves only empirical terms

undefined? But Lewis’ account is simply not aimed at offering a general theory

of meaning, only at showing how new terms can obtain meaning from old terms

and new theory. All that is important in the present case, is that somewhere

in the chain are terms with empirical meaning; for that makes the analysis of

the empirical content of absolute quantities a non-trivial enterprise – i.e., they

have some! So in particular, the definition is not itself intended as an empirical

analysis, but an account of what the term means, a precondition for performing

such an analysis. I stress this point because Stein explicitly rejects the analysis

of empirical content by translation to an observation language (p. 190) – while,

on the contrary, we saw earlier that DiSalle reads Newton’s analyses as empirical

definitions.11

The spacetime framework allows a precise statement of the formal properties

of motion thus defined: it possesses all the properties of motion in Galilean

spacetime (and no more, modulo footnote 9). And so we have the precise sense

in which events exhibit the structure of absolute space: the laws governing

mechanical processes implicitly define a conception of motion which has exactly

the properties of motion in Galilean spacetime. Conversely Galilean spacetime

has structures strong enough to make the motive quantities necessary for the

laws well-defined.

Now, Newton of course intended absolute motion to be a richer conception

of motion, one in which rest is well-defined: that is, motion in Newtonian

11 In addition, the proposed schema is called a ‘definition’, while Newton denied that
he defined motion at all. But we saw that Newton meant something quite specific by
‘definition’, and did not mean to deny that he was saying what he took ‘time’, ‘space’,
‘place’ or ‘motion’ to mean. So the analysis is offered in that sense: if the Scholium’s
absolute concepts are only as wide as mechanics requires, then the proposed schema
captures them. As long as we bear in mind the distinct role of explicit definitions in the
Scholium, it matters little whether we call the formulation a definition or not, though I
will generally refrain.
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spacetime. So the formulation proposed only captures part of his notion, that

part which can properly be considered ‘theoretical’. It is for the additional

‘hypothetical’ content that Stein faults him (pp. 182–183). Equivalently, only

part of the structure of Newtonian spacetime is ‘exhibited by events’ – that part

which it has in common with Galilean spacetime.

The theoretical definition also clarifies the empirical analysis of the concept.

The clearest example of such an analysis in ‘Newtonian Space-Time’ is that

centrifugal forces are ‘associated universally with [absolute rotation]’ (p. 195).12

That fact of course does follow if absolute motion has the proposed meaning,

for it is a consequence of the laws appearing in the definition. And so the

formulation helps clarify how the term gets empirical content, and how the

analysis works – how the structure of ‘absolute space’ is exhibited in particular

phenomena, like the rotating bucket.

To summarize, ‘Newtonian Space-Time’ proposes that in the Scholium New-

ton argues (i) that existing, relative conceptions of motion are inadequate for

mechanics, and (ii) that the laws implicitly (partially) define a new conception

of motion, which he logically strengthens to arrive at the idea of ‘absolute

motion’ with the properties of motion in a Newtonian spacetime; in addition,

(iii) Newton avoids addressing questions of ‘the ontology of spacetime’ beyond

introducing this geometrical structure – which he calls ‘absolute space’ – and

(iv) beyond an explication of the empirical content of his concepts. Stein’s

paper certainly shows that this interpretation of Newtonian mechanics is ade-

quate (substituting Galilean for Newtonian spacetime); the claim that concerns

us though is whether it presents an accurate account of the Scholium – whether

it is an adequate interpretation of of Newton. In the next section (with my earlier

caveat in mind) we will discuss the parts of Stein’s interpretation in turn.

8.4 The Scholium

(i) First, Newton certainly does give incontrovertible arguments showing the

inadequacy of Descartes’s conceptions, even with respect to his own mechanical

pronouncements.13 (However, the arguments of the Scholium, unlike those of

De Gravitatione (2004, II), do not mention Descartes specifically; it’s reasonable

to think they were intended to have force against relational definitions of motion

12 In discussing this proposition Stein does not refer to an argument of Newton’s at all,
but rather analyses Foucault’s pendulum experiment and compares it with Cavendish’s
experiment. This strategy demonstrates that absolute rotation is indeed a theoretical term
with empirical content, but it offers little support for reading the Scholium as making a
theoretical ‘definition’ and analysing its empirical content – after all, these experiments
occurred 164 and 110 years, respectively, after its publication. Presumably the bucket and
globes examples are supposed to do similar work for Newton.

13 The interpretation I defend here is derived from Rynasiewicz (1995a), and makes –
specifically in relation to Stein – a number of similar points.
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in general.) Consider how Newton distinguishes absolute and relative motions

by their ‘properties, causes and effects’.

One ‘property’ of motion is that ‘parts which keep given position in relation

to wholes participate in the motions of such wholes’ (p. 411), for instance,

because in mechanics all parts of a rotating body recede from the axis of

rotation. Indeed, Descartes is in explicit agreement: for example in stating that

the planets move with the ambient ‘heavenly fluid’, in which they are locally at

rest (Principles of Philosophy III.26 and 140; all references to Descartes are to

1991). But an enclosed part is at rest in the sense of Descartes’s motion ‘properly

understood’: with respect to ‘those bodies immediately contiguous to it’ (II.25;

see II.28–31 for the ‘clarification’ of the concept). Hence that definition of

‘motion’ is at odds with Descartes’s use of the term in mechanics.14

Or again, the ‘causes’ of motion – forces, percussive or perhaps otherwise –

can be applied to a body when there is no acceleration relative to a given refer-

ence body (if it also experiences forces), and vice versa (if forces are applied only

to the reference body). So mechanical principles, including Descartes’s Rules of

Motion (II.45–52), are also in conflict with the Cartesian definition of motion

‘ordinarily understood’: with respect to arbitrary reference bodies (II.24).15

And most famously, there are the ‘effects’ of motion, namely the inertial

forces associated with rotation, as illustrated by ‘Newtons’s bucket’. Describing

a spinning bucket of water hanging from a cord, Newton writes:

when the relative motion of the water [with respect to the bucket]

decreased, its rise up the sides of the vessel revealed its endeavor to recede

from the axis, and this endeavor showed the true circular motion of the

water . . . becoming greatest when the water was relatively at rest in the

vessel. [(1)] Therefore, that endeavor does not depend on the change of

position of the water with respect to the surrounding bodies, and thus

true circular motion cannot be determined by means of such changes of

position. [(2)] The true circular motion of each revolving body is unique,

corresponding to a unique endeavor as its proper and sufficient effect,

while relative motions are innumerable in accordance with their varied

relations to external bodies.16

(pp. 412–413)

14 See Garber (1992, chapter 8) for an argument that ‘proper’ motion is the sense used in
Descartes’s mechanics.

15 Two cautions: according to Rule 4 (II.49) the percussive force of a smaller body cannot
put a resting body in motion. And ‘ordinary’ motion is not entirely arbitrary but depends
on a pre-scientific attribution of ‘action’ to moving bodies.

16 The passage continues, ‘and, like relations, are completely lacking in true effects except
insofar as they participate in that true and unique motion’. It is unclear whether the claim
that relative motion is causally inert is a metaphysical premise to a further argument, or
a further conclusion from what has just been shown. I tend to the latter reading, so I will
not discuss it further; but some may read it as another example of Newton’s metaphysical
assumptions.
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I see two arguments (disagreeing slightly with Rynaseiwicz): (1), that inertial

effects are anticorrelated with the motion of the water with respect to the sides

of the bucket – i.e., with Cartesian ‘proper’ motion. (2), the surface of the water

always rises to a unique height, corresponding to a unique rate of rotation, while

its ‘relative motions are innumerable in accordance with their varied relations

to external bodies’. Newton means that while the water has many Cartesian

‘ordinary motions’, the rotation revealed by the tendency of the water to recede

is unique. So, once again, Newton demonstrates how Descartes’s conceptions

fail to work in mechanics, even his own. (In Book III of the Principles, Descartes

regularly appeals to the tendency of bodies in the heavenly vortex to recede

from the center of rotation.) The error is as if Euclid’s definition of ‘circle’ were

incompatible with his use in the theorems.

Pointing out the character of Newton’s arguments is one of the incredibly

illuminating insights of ‘Newtonian Space-Time’, and really changed how we

look at the Scholium. I want to flag two points to which we shall return. First,

as Rynasiewicz emphasizes, the whole series of arguments from ‘properties,

causes and effects’ are clearly intended to have the common end of establishing

the inadequacy of the Cartesian conceptions (and implicitly the adequacy

of the absolute conception in the situations discussed). So, their rhetorical

purpose is the same. Second, DiSalle rejected the arguments from properties as

unscientific, but we have just seen one at least is premised on the mechanical

conception of motion, specifically on centrifugal effects. Later we will return

to the others.

For now, consider point (ii), and hence the question in the title of this paper.

From other texts we know more about what Newton thought about space and

motion than is revealed in the Scholium: but the question here is what sense he

intended to convey to the reader of this text, not what he might have believed in

general. As usual, Newton is trying to avoid superfluous ‘hypotheses’, in part to

establish a foundation of agreement with his contemporary readers: views that

can be reliably ‘gathered from phenomena’ (1999, p. 796). So when Newton

talks about ‘true and absolute’ motion does he mean – did he intend to be

taken as conveying – nothing but that sense of motion implicit in the laws of

mechanics, strengthened to make rest uniquely defined? There is something

right about this idea, but there is rather more to say.

Consider the conjunction: of course Newton took ‘true’ quantities to be

‘absolute’ (and ‘mathematical’), but did he intend the terms to be synonymous?

In the discussion of space and motion, the Scholium first contrasts absolute and

relative space and motion (in the paragraphs numbered 2 and 4) without use

of the modifier ‘true’: relative space is ‘any movable measure’ of absolute space,

and absolute (relative) motion is with respect to absolute (relative) space. Only

when he turns to illustrate the difference between absolute and relative motion

with the example of a ship on the moving Earth does Newton speak of ‘true rest’

as rest with respect to ‘unmoving space’. So read carefully, Newton introduces
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‘absolute space’ as that unmoving space, and absolute motion as motion with

respect to it.

Moreover, in the subsequent arguments distinguishing ‘absolute and relative

rest and motion’, Newton is very consistent in attributing the ‘properties, causes

and effects’ to ‘true’ not ‘absolute’ motion. In the first place I refer readers to

the text (pp. 411–413) to satisfy themselves of this fact. To avoid a long and

tedious discussion here, in support of the claim I will simply report the relevant

statistics: if we look just at the arguments explicitly involving those ‘properties,

causes and effects’ that follow from the laws of mechanics, then of 19 distinct

references to true or absolute motion or rest, 18 are to ‘true’ motion and only 4

to ‘absolute’. (If we look at the entire series of arguments, the numbers are 25,

20 and 8, respectively.) Newton’s use of the modifiers in these passages is very

natural if we take him as accepting a special, ‘privileged’ sense of motion, which

he labels ‘true motion’, picked out by the ‘properties, causes and effects’ – the

concept appearing in mechanics.

Thus, in the natural reading of the Scholium, ‘absolute’ and ‘true’ are not

synonyms, rather ‘true motion’ is implicitly (partially) defined by the laws of

mechanics but ‘absolute motion’ is not. This distinction makes a difference to

the logic of Newton’s arguments. For example, we saw above that if absolute

rotation were, by definition, that rotation implicit in the laws, then it would

follow, from the laws and the forces present, that by definition the water with a

concave surface is rotating absolutely. But on the reading I have just given of the

Scholium Newton argues that from what we know of true motion – especially

from mechanics – it cannot be identified with either Cartesian conception, but

can be understood as the independently defined notion of absolute motion. The

implicit form of argument is that of a disjunctive syllogism: Descartes gives

two possible accounts of motion – ordinary and proper – and Newton a third –

absolute motion – the only one compatible with the properties, causes and

effects of true motion. Logically, such an argument is open to the criticism

(essentially made by Mach) that the disjunction is not exhaustive, but it is

certainly valid.

Of course it is the identification of the two kinds of motion that leads Newton

sometimes to speak of ‘true and absolute motion’: not because the terms are

synonymous but because they refer to the same thing.

Now, even though this (conceptual) distinction changes the logic of Newton’s

argument, there is a way of rereading Stein’s (ii) to accommodate it. That is,

consider the possibility that while Newton defined absolute motion by reference

to a fixed frame, he defined true motion theoretically; then he demonstrated

that, of the possible conceptions available, only absolute motion is compatible

with those of true motion. On this view Newton has a purely theoretical

conception of motion – the concept of true motion is just the concept of

the x such that N[x]. The additional hypothetical features – absolute rest –

arise because he identifies motion thus conceived with the distinct, stronger
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conception of motion relative to absolute space. On a familiar view of identity,

that absolute velocity is a feature of true motion is a synthetic but necessary

fact. If this were how Newton thought, it would make sense of how in (ii) he

opted for a stronger conception of motion than he needed.

However, things are not so straight forward, because the concept of true

motion is itself logically stronger than the theoretical conception. To see this

we shall return to an earlier point: that not all ‘properties’ of motion are

those required by mechanics. The first argument that I postponed follows from

the premise that ‘bodies truly at rest are at rest in relation to one another’

(p. 411). This is contrary to the Cartesian conception of proper motion, since

bodies in relative motion may be at rest in their own immediate surroundings;

also to ordinary motion if we take the motions of different bodies relative

to different reference bodies. Thus Descartes’s conception is inadequate given

Newton’s assumption. But the assumption does not follow from mechanics:

since mechanics does not make a notion of rest well-defined at all, it cannot

imply the premise. What can be said is that Newtonian mechanics is naturally

formulated in ‘rigid Euclidean’ frames, in which points at fixed distances always

have the same co-ordinate distances (i.e.,
√

�x2 + �y2 + �z2 is fixed). In such

frames, Newton’s premise is true, so it’s plausible that he thought here that one

of the frames must be the one (up to Euclidean symmetries) relative to which

true rest is defined. But that is to assume more of true motion than follows

from mechanics; it is of course to assume one of the features of Newtonian

spacetime.17

So, true motion is not just the theoretical concept for Newton, contrary to

the suggestion I mooted above: although the concepts of true and absolute

motion are distinct, they both allow the idea of rest. That is, the concept is only

partially defined by the theory. Moreover, Newton’s argument is that Descartes’s

conceptions do not match that of ‘true motion’, and here we have a case where

it is non-mechanical properties of true motion that are relevant. Hence here

Newton’s argument is not just that Descartes’s conception is inadequate for

mechanics, and (i) is not the full story about the Scholium.

One might – like DiSalle – think that all of the arguments from proper-

ties also assume more than follows from mechanics. But that would be hasty:

we saw above that one appeals to centrifugal forces, and Belkind (2007, §5)

argues convincingly that premises concerning the motions of parts of moving

wholes are connected by Newton to the defined theoretical concept of ‘quan-

tity of motion’ (p. 404), or momentum. If so, they follow the pattern of the

arguments from causes and effects more closely than previously recognized. So

17 That bodies with the same motions are at relative rest follows from the structure of Galilean
spacetime; so it is the additional reference to rest that takes Newton beyond mechanics.
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it is primarily in the first argument, just discussed, that Newton goes beyond

mechanics and a theoretical definition.18

Now to (iii). What is encompassed by Newton’s concept of absolute space?

Compared to other writings, the Scholium is much more cautious about any

metaphysical speculations about space: for instance, claims that space is ‘as

it were’ God’s sensorium (Optiks, 2004, Query 28) or an ‘emanative effect of

God’ that ‘approaches more nearly to the nature of substance’ than accident

(De Gravitatione, 2004, pp. 21–22) are absent from the Principia. Instead,

famously we have only that ‘Absolute space, of its own nature without reference

to anything external, always remains homogeneous and immovable’ (p. 408).

The phrase ‘of its own nature’ avoids a detailed account of just what that nature

is: finite spirit? infinite spirit? matter? accident? substance? nothing? none of

the above? Proposing such a theory – and we know from De Gravitatione that

he held the latter view – would make no difference to the role of absolute space

in mechanics, and moreover would likely cause distracting discord with his

readers. Hence he left his detailed views unstated here; what is required is that

space is not determined by any ‘external’ relations to other bodies, and that

qualitatively indiscernible places persist in fixed relative positions, so space is

‘homogeneous and immovable’.19 With his implicit assumption of Euclidean

geometry (of course made without comment in his mathematical proofs),

absolute space grounds the structure of Newtonian spacetime.20

But that is not quite all that Newton says about absolute space; in arguing

for its immobility he does say more about its ontology, something hypothetical

or metaphysical. He says that ‘It is of the essence of spaces to be places, and

for primary places to move is absurd’ (p. 410). The absurdity follows because

(primary) places are (‘as it were’) the places of all things including themselves;

so if they moved – i.e., changed places – they would move ‘from themselves’,

which is nonsense. It is the idea that parts of space have essences which is

relevant to us; for something cannot be said to have an essence unless it is in

some sense a thing. So Newton is apparently saying more than that the world

18 The final argument (pp. 411–412) is curious for it does not refer to ‘true motion’ like the
others, but consistently to ‘absolute motion’. But it follows in virtue of the meaning of
this term that such motions are referred to unmoving places, so it is not clear what the
argument is supposed to achieve.

19 Of course the contrast here is with Descartes. First, there are the arguments we’ve been
discussing against the Cartesian accounts of place as defined by external relations. Second
there is Descartes’s picture of a mobile, inhomogeneous Universe, with matter (i.e., space)
of different grades of ‘solidity’ at different locations, in constant motion.

20 Note, however, that Newton describes space similarly as having ‘its own manner of
existing’ in the more metaphysical De Gravitatione (p. 21); his point there is to say that
space does not fall in traditional metaphysical categories, not that he won’t discuss its
nature.
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in some way has the structure of Newtonian spacetime, he is saying that it has

it as the structure of some thing – be it accident, substance, or something else.

To make the point stronger, consider a way that the world might possess the

structure other than as the structure of some thing, and how the argument for

immobility then breaks down.

We saw that the structure of Newtonian spacetime is not completely exhibited

by mechanical processes, for these do not depend on an invariant state of rest.

But the world could have the structure in the following way: take the absolute

motive quantities21 to be metaphysically primitive, not possessed in virtue of

motion with respect to anything. Then the world would have the structure

of Newtonian spacetime in the sense that all the well-defined quantities of

Newtonian spacetime are indeed well-defined. And one could introduce ‘space’

in a sense, as a rigid Euclidean frame such that the motion of each body in the

frame agrees with its absolute quantities of motion: so that bodies at true rest

are at rest in the frame, and so on. But this frame is just a logical construct from

the absolute quantities, a way of expressing the correlations between them: e.g.,

that bodies truly at rest are at relative rest. So it is no ‘thing’, except in a loose

sense.

For Newton, places are (occupied) volumes of space (p. 409), and indeed

regions of the frames just constructed are at rest with respect to the frame.

But that follows from the Newtonian structure of the primitive, absolute quan-

tities, not from considerations to do with the ‘natures’ of primary places. It

would twist Newton’s words a good deal to see the argument for immobility as

depending on the absolute quantities of bodies themselves in this way. Rather,

as Nerlich (2006, p. 121) argues, Newton has in mind an ontologically robust

entity (not a construct) with metaphysically essential features.22

Moreover, such a construction goes against the spirit of the claim that abso-

lute space is ‘without reference to anything external’, for the frame would be

with reference to bodies and their primitive absolute quantities. Now per-

haps that statement is supposed to rule out the construction of absolute space

from the relations of bodies, but if Newton had any intention of stretching the

conception of space to a frame in this way then his qualification is remarkably

21 I.e., rest, velocity, acceleration, and rotation. Stein (1967, pp. 183–184) explains how these
quantities are represented in a spacetime theory, and how they are expressed in particular
frames.

22 Note further that De Gravitatione (2004, p. 25) offers the same argument for the immo-
bility of absolute space, together with one based on identity criteria for points (discussed
by Stein 1967, p. 194). As I show in Huggett (2008), that argument does not appear in
the Principia, which is just as well since it entails that all motion is the relative motion
of bodies. DiSalle (2002) uses the argument to try to show that Newton would deny the
possibility of ‘Leibniz shifting’ all matter in space, but that can hardly be attributed to
Newton in the Scholium since the argument is not used there – and in general, for the
reason just given, it can hardly be one of Newton’s core views.
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careless. Additionally, a letter to Maizeaux, co-authored by Newton and Clarke,

concerning the Leibniz–Clarke correspondence, corrects Clarke’s claim that

space is a property, but does not dispute Clarke’s acceptance that the material

Universe could have been ‘shifted’ elsewhere in space (see Koyré and Cohen,

1962, pp. 94–103). This silence is evidence that Newton also accepted such

shifts; but they are only meaningful if the Universe has its place relative to space

as an entity, and not according to the construction, which involves no absolute

position. None of this is to say that if the idea of space as a construct had

occurred to Newton then he would have rejected it in the Scholium; the point

is that as a matter of fact what he does say is incompatible with that concept of

‘absolute space’.

The bottom line is that the ‘hypothetical’ elements of the Scholium are not

exhausted by the additional structure of Newtonian spacetime over Galilean.

Especially, when he defines absolute motion it is relative to a robust thing,

absolute space; he is not simply neutral on the nature of absolute motion,

open to the possibility that it is primitive for instance. However, Newton

makes no specific proposal concerning the nature of space, and so tradi-

tional, positivistic complaints that he detoured into metaphysics here are grossly

over-stated.

It is unremarkable that Newton would think that true motion was change of

position with respect to something since almost everyone who considered the

issue, from Aristotle until the twentieth century, had that conception. In Physics

IV.4 Aristotle argues that motion is with respect to ‘innermost surroundings’, (or

perhaps innermost stationary surroundings) – while the Categories 7 contains a

concept of arbitrary relative motion. These relational conceptions are of course

echoed by Descartes’s ‘proper’ and ‘ordinary’ conceptions.23 This observation

also makes sense of why Newton introduced a stronger conception of motion

than that required by his mechanics; the question of whether a body is at

rest has a well-defined answer if motion is change of position with respect to

something. That is, the theoretical definition is better understood as saying that

true motion is ‘the motion x such that N[x]’, where Newton, quite naturally in

historical context, understood motion to be velocity with respect to something,

in this case ‘unmoving space’.

Finally, (iv): Newton gives an analysis of the empirical content of ‘absolute

motion’. To address this idea we need to distinguish two parts of the Scholium:

there are the arguments that we have discussed, from ‘properties, causes and

effects’, which end after the bucket argument. But there is also the distinct

23 Exceptions to the view that motion is with respect to something, are Leibniz and (perhaps)
Huygens. The former held that relative motion was ideal, and that true motion was really
force. The latter, in his unpublished writings, arguably developed the idea of an inertial
frame. (I am very grateful to Marius Stan for sharing and discussing his draft translation
of Huygens’s Oeuvre with me.)
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subsequent discussion of the rotating spheres (p. 414, after Newton’s comments

on the meaning of ‘motion’ in scripture).

In the former, Newton is arguing that true motion is absolute motion, and in

general not referring to directly observable states of affairs; so it is misleading

to describe it as an analysis of empirical content. It is true that the bucket

argument relies on the observable properties of rotation, but we should read

it as respecting Newton’s intention that the arguments all be taken as a piece –

after all, that is how they are introduced. Thus the argument turns on the

fact that true rotations are correlated with centrifugal effects, while motions in

Descartes’s sense are not. Again, it seeks to show that the conception of motion

relative to absolute space is the only adequate notion on the table. Moreover,

the idea that motion in the sense of mechanics – true motion – was correlated

with centrifugal forces, was not something that required any demonstration:

just what contemporary thinkers, for instance Descartes, Huygens, and Leibniz

meant by the term. So it is somewhat misleading to describe even this argument

as an empirical analysis of absolute motion.

On the other hand, the latter section clearly is concerned to explain how

absolute motions can be determined empirically: Newton has shown them

to be true motions, and hence how they can be inferred from mechanical

processes. For instance, even without observing any relative motions, the rate

and sense of rotation of the sphere system can be determined from the tension

in the connecting rod, and the change in that tension when forces are applied to

the sides of the spheres. So it is correct to say that here Newton explicates how

the truth or falsity of statements about absolute motions can be determined

experimentally – certainly an empirical analysis.

The passage concerning the rotating spheres is a key one for ‘Newtonian

Space-Time’, for it expresses clearly the idea that absolute motions can be

determined by phenomena: ‘the purpose for which [Newton] composed the

[Principia]’ (p. 414). Just as the motion of the spheres can be determined from

phenomena, so can that of the solar system (of course, things are more compli-

cated in the latter case, for the forces themselves also have to be determined).

So it is wrong to see the spheres as another argument for absolute motion;

Newton has completed that part of the discussion, and is explaining how to

find such motions. But to see the bucket argument as part of this discussion

is to make the converse mistake; it is not intended to show how to determine

absolute motions, but that the motion in question is absolute.

The upshot of the last few pages is that while the spacetime formalism and

the idea of empirical analysis of concepts provide a framework that sheds

considerable light on the logic of the Scholium as Stein demonstrated, there are

a number of important aspects that this account leaves out. I have attempted

to lay out various points made in the text that Newton would have expected

his contemporaries to understand, which should be counted in his views, but

which are not captured by ‘Newtonian Space-Time’. I make clear once more
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that despite what I have shown, Newton indeed makes most of the positive

contributions attributed to him by Stein – contributions that were almost

entirely misunderstood by previous commentators.

8.5 DiSalle’s Newton

Let’s now turn to DiSalle’s reading, and see why it does not do full justice to

Newton’s words, or the view developed by Stein (though clearly DiSalle is close

in many ways). Recall, according to Understanding Space-Time, when Newton

distinguishes absolute motion from relative (by their properties, causes and

effects), in addition to demonstrating the failure of Descartes’s conceptions, he

is in fact offering a definition of the term; the specific definitions identified by

DiSalle were labelled (a) and (b) in Section 8.2.

It should be clear from our earlier discussion how this description is at

odds with Stein’s.24 In that account, in addition to demolishing the Cartesian

conceptions, Newton offers an analysis of the empirical content of the concept

of absolute motion. But such an analysis is not a definition. If it were, then

Newton would not be giving a theoretical definition as I described above, but

an empirical one: the meaning of absolute rotation would be nothing but the

empirical criteria for its assertion. Stein explicitly denies that he attributes

such a view to Newton (and indeed questions the general cogency of empirical

definitions). What Stein does say is that Newton’s conception of motion is

(partially) defined to be that sense found in the laws of mechanics, and that

via the laws of mechanics that theoretical quantity is correlated with empirical

quantities – thus it can be meaningfully used in true sentences about the

empirical world. But that is not the same as thinking those correlations are the

meaning, for that ignores the theoretical aspect of the conception.

It should also be clear that I have considerable sympathies with the gen-

eral idea that Newton’s conception of motion – specifically true motion – is

grounded in the laws. What I have argued is that his conception of absolute space

cannot be understood to be nothing more than the corresponding spacetime

structure, manifested in any way. Further, Newton introduces the conception

of absolute motion differently from true motion, and not theoretically. Many

of the comments made previously apply to Understanding Space-Time, but the

idea that the Scholium significantly amounts to a definition faces additional

problems.

First, there is the question of what the purported definitions (a)–(b) actually

say and whether they are sensible ones for Newton to assert. Definition (a)

might sound like a definition of (true) motion through the second law, but it

24 I want to acknowledge here that DiSalle’s account of Stein added enormously to my
understanding; the remarks I have made would not have been possible without DiSalle’s
roadmap.
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is not, because Newton’s discussion of the causes of motion does not involve

quantifying it; there is no statement of proportionality to the forces. Only

the discussion of effects describes quantifying motion, in terms of the mag-

nitude of inertial effects, but in DiSalle’s reading, (a) comes rather from the

discussion of the causes of motion. Thus if Newton’s discussion of causes was

intended as a definition then it was remarkably sloppy, for absolute motion is

quantitative.

But the discussion of effects, from which (b) comes, only quantifies rotational

motions – by the tendency to recede from an axis of rotation – not linear

accelerations. Moreover, that inertial effects do not necessarily quantify linear

accelerations is part of the content of Corollary VI to the Laws (423, discussed

in footnote 9), according to which bodies ‘urged by equal accelerative forces

along parallel lines’ exhibit no inertial effects as a result. Thus (b) does not fully

quantify true motions either. Thus overall, if (a)–(b) were intended to define

true motion, insofar as it can be defined empirically, then they fail to do so,

and in a way that Newton would have seen and could have fixed. It makes more

sense to think that he is offering arguments not definitions.

Second, DiSalle reveals a problem with his own conception, when he claims

that Newton can’t be wrong that the water in the bucket is in absolute rotation

because a tendency to recede is definitional of absolute rotation. But it is hard to

believe that Newton thought that such things were true by definition: even given

the laws, the concave surface of the water is correlated with absolute motion

conditional on the presence of the expected (intermolecular and gravitational)

forces. It is compatible with Newtonian mechanics that bucket and water not

rotate, and yet the the surface be concave – if appropriate forces are present.

Newton would surely accept such possibilities, and would not wish to define

them away, so would not define (true) rotation directly in terms of a ‘tendency

to recede’. Instead it is defined as the concept implicit in the laws, which

under the appropriate circumstances is correlated with centrifugal effects. So

when Newton discusses causes, and indeed relies directly on the correlation, it

makes best sense to think he is talking about the consequence of his theoretical

conception, not defining the conception.

Next there is the fact that DiSalle (pp. 30–31) downplays Newton’s discussion

of the properties of absolute motion, whereas as we have already noted, there

is nothing in the text to suggest that Newton viewed such arguments as playing

any different or lesser role than the arguments from causes and effects. DiSalle

sees these three arguments as unsuccessful attempts to define absolute motion,

because they rely on metaphysical rather than mechanical features; thus they

do not constitute an empirical definition. (Although we have also seen or

mentioned ways in which some of them do appeal to mechanical features.)

Thus this reading of the text artificially divides the arguments, while taking

them as disjunctive syllogisms from premises shared with his interlocutors (as

Rynosiewicz proposes) renders them a whole.
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The final problem facing the view that absolute motion is defined by its prop-

erties, causes and effects, follows from the distinction between absolute and

true motion, pointed out earlier. For (as DiSalle, p. 25, acknowledges) Newton

defines absolute motion as change of absolute place before the purported empir-

ical definition, so Understanding Space-Time has Newton implausibly defining

absolute motion twice over. Perhaps DiSalle means that Newton claims that

motion in a spacetime with the geometry of absolute space and time represents

motion as defined by causes and effects. However, such a reading does not sit

well with Newton’s words: absolute motion ‘is’ change of absolute place, not

merely ‘as if’ it were motion in absolute space. Taken at face value, Newton is

not making a claim merely about isomorphism, but being.

In addition to diverging from ‘Newtonian Space-Time’ in regards to the

definition of absolute motion, Understanding Space-Time also goes further in

attributing metaphysical views about space to Newton. Stein’s position is that

the Scholium takes no stand on the metaphysics of absolute space; it simply has

‘its own nature’. Newton leaves open the options for his contemporary readers:

matter, finite or infinite spirit, accident, and so on. However, according to

DiSalle (pp. 37–38) Newton is not merely neutral, but is in fact a deflationist:

he rejects all views that hold spacetime structure to inhere in any ‘substantial’

manifold, thereby rejecting these metaphysical options.

It’s a small step from thinking that the Scholium proposes no view of the

nature of spacetime, to thinking it proposes a ‘no-view’ view, but it is a step.

DiSalle supports it by the idea that absolute motion is defined empirically;

Newton just rejects any further non-empirical claims about absolute space

(absolute rest aside). That position was criticized above. DiSalle further sup-

ports his claim by reference to De Gravitatione, and Newton’s views on the

identity criteria of the parts of space, invoked in an argument for their immo-

bility (see footnote 22). There is a great deal to say about this argument, but

ultimately I don’t believe Newton’s views there are relevant to the Scholium,

because they entail that all motion is the relative motion of bodies, which he

clearly denies (see Huggett 2008). (At any rate, claiming that Newton’s meta-

physical views in the Scholium are of a piece with those elsewhere is contrary to

the ideas of ‘Newtonian Space-Time’.) So I do not see any support for DiSalle’s

account of Newton’s metaphysics of absolute space.

8.6 Conclusions

The argumentative parts of this essay have focused on revealing limitations

in ‘Newtonian Space-Time’ ’s reading of the Scholium and criticizing Under-

standing Space-Time’s account of Newton’s position. In conclusion I want to

highlight briefly the central positive points of the discussion.

There is something quite accurate and very illuminating to Stein and DiSalle’s

view that Newton has a conception of motion which gets its meaning from the
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role of the concept in the contemporary science of mechanics (drawing not

just on his insights, but on the contributions of Descartes, Huygens, Wren,

and others). But the role the concept plays is subtle. First, ‘absolute’ and ‘true’

are not synonyms: especially, ‘absolute motion’ connotes change of absolute

place, while ‘true motion’ connotes a special privileged sense of motion. More

specifically, the latter concept gets meaning from the laws of mechanics, it is

the concept of motion implicit in the laws. So while Stein’s point is important,

it does not do full justice to the Scholium because it does not illuminate the

meaning of absolute motion, only true. And without this conceptual distinction

it is impossible to make sense of Newton’s arguments, since they are to the effect

that the two concepts denote the same thing.

And even with respect to true motion the theoretical meaning is only par-

tial. True motion’s role in mechanics is central among its definitional char-

acteristics, but Newton’s arguments place non-mechanical features on a par.

As Rynasiewicz emphasized, we should take the arguments from properties,

causes and effects as a whole, working from similar premises; those ‘properties’

of true motion that do not follow from mechanics are just as constitutive as the

mechanical ones.

In other words, in ‘true motion’ especially, Newton consciously held an

extremely sophisticated conception of motion. The theoretical part of the con-

cept is (absolute rest aside) indeed that of contemporary ‘dynamical’ interpre-

tations, which also hold motion to be that which the laws refer to – motion

in the frames in which the laws hold. But for the reasons just explained (and

because of his conceptions of absolute space and motion) Newton cannot be

said to have advocated a purely dynamical view in the Scholium, but rather

the view that motion with respect to absolute space satisfied the dynamical

concept.
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From velocities to fluxions

marco panza

Newton reached the main results that would later constitute his theory of
fluxions between the end of 1663 and the Fall of 1666.1 Many notes dat-
ing back to this period have been conserved, and D. T. Whiteside has pub-
lished them in the first volume of Newton’s Mathematical Papers (Newton
1967–1981, I). They can be used to reconstruct the evolution of Newton’s
ideas at the very beginning of his mathematical researches and his progressive
achievements.2

In none of these notes does the term ‘fluxions’ appear. Newton used it for
the first time in the De Methodis, which he probably composed in the winter of
1670–1671 (Newton 1967–1981, III, pp. 3–372) but never published during his
life.3 The role that this term plays in this treatise and in the later presentations
of Newton’s theory is, mutatis mutandis, played in his first notes by several
other terms like ‘motion’, ‘determination of motion’, and ‘velocity’.

Though the De Methodis results, for its essential structure and content,
from a re-elaboration of a previous unfinished treatise composed in the Fall
of 1666 – now known, after Whiteside, as The October 1666 tract on fluxions

(Newton 1967–1981, I, pp. 400–448) –, the introduction of the term ‘fluxion’
goes together with an important conceptual change concerned with Newton’s
understanding of his own achievements. I shall argue that this change marks a
crucial step in the origins of analysis, conceived as an autonomous mathematical
theory.

In Section 9.1, I shall distinguish three different senses in which the term
‘analysis’ can be used in historical contexts concerned with classic and early
modern mathematics. This will allow me to clarify what I mean by speaking of
the origins of analysis conceived as an autonomous mathematical theory. This

1 I thank Annalisa Coliva, Mary Domski, Massimo Galuzzi, Michael Friedman, Christian
Houzel, Andrew Janiak, Vincent Jullien, Sébastien Maronne, Eric Schliesser, George Smith,
André Warnstel, and Josu Zabaleta for valuable comments and/or suggestions.

2 This is what I have done in Panza (2005). The present paper develops some points I have
made in that book.

3 The De Methodis first appeared, in an English translation by J. Colson, in 1736: cf. Newton
(1736).
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is what I suggest we call ‘Eulerian analysis’, a term I shall clarify by contrasting
it with ‘Aristotelian analysis’ and ‘Vietian analysis’.

In Section 9.2, I shall compare, in the light of the distinctions introduced in
Section 9.1, the senses in which Newton speaks of analysis in the De Analysis

(presumably written in 1669) and in the De Methodis, and argue that what he
calls, in the latter, ‘field of analysis’ is much more extended than the domain of
application of the analytical techniques described in the former.

In Section 9.5, I shall argue for the main thesis of the chapter, namely that
Newton’s field of analysis is, in fact, the original kernel of Eulerian analysis. My
main point will be that fluxions were conceived by Newton as abstract quantities
related to other abstract quantities called ‘fluents’, whereas that which he called
‘motion’, ‘determination of motion’ or ‘velocity’ in his previous notes were
understood as (scalar components of) punctual speeds of motions generating
particular geometric magnitudes, typically segments.

In order to clarify this point, I shall reconstruct, in Sections 9.3 and 9.4, some
of Newton’s arguments and achievements concerning motion dating back to
the years 1664–1666. This will allow us to appreciate the evolution of his ideas
on this matter up to the October 1666 tract, and also make a comparison with
the new approach of the De Methodis possible.

Namely, in Section 9.3, I shall consider Newton’s proof of a theorem showing
an intrinsic link between the problems of tangents and normals and the problem
of areas for curves referred to a system of Cartesian co-ordinates. This proof
manifests a crucial idea that Newton will henceforth never abandon, that
of considering related geometric magnitudes as generated by motions whose
punctual speeds are mutually dependent on each other. But this theorem is also
relevant in connection with a claim made in another note, according to which –
when these motions are rectilinear and the generated segments are related by a
polynomial equation and are taken as Cartesian co-ordinates of a curve – the
problem of determining the ratio of (the scalar components of) their speeds is
equivalent to the problems of tangents and normals for this curve. It follows
that, for curves like these, these last problems and the problem of areas are
connected with appropriate problems concerned with motion.

In Section 9.4, I shall show how Newton tackles and responds to the question
of knowing whether this link holds also in general for any sort of curve. The
(positive) response will come through his researches into Roberval’s method
of tangents. Newton succeeded in unifying this method in a unique, quite
general proposition (proposition 6 of the October 1666 tract) concerned with
the trajectory of the intersection point of two rigid curves that move separately
from each other. This is a modality of composition of motion to which any
other modality involved in Roberval’s method can be reduced. Hence, Newton’s
theorem provides a recursive rule that can be applied to find tangents for
any curve described by a composed motion. In the light of this proposition,
the connection between the problems of tangents, normals and areas and
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appropriate problems concerned with motions – which Newton had shown to
hold for curves expressed, with respect to a system of Cartesian co-ordinates, by
a polynomial equation – appears to be a particular case of a more fundamental
and general connection. This is the base of Newton’s theory of fluxions. This
theory appeared as such, when Newton, in the De Methodis, replaced the
motions of lines with the variation of fluents, conceived, as noted, as abstract
quantities.

Finally, in Section 9.6, I shall address some conclusions by discussing, in
quite general terms, the links of this theory with Newton’s natural philosophy.

9.1 Analysis

The term ‘analysis’ is highly polysemic. In order to understand the point I
would like to make, it is necessary to distinguish three different senses in which
it is habitually used by historians of mathematics. These senses reflect three
different ways in which this term and its translated forms and cognates have
been used by mathematicians up to the eighteenth century. They do not of
course exhaust the spectrum of significations that it has taken and continues
to take in mathematics and related fields.

In the first of these senses, ‘analysis’ refers to a pattern of argumentation
largely used in Greek, Arabic and early modern mathematics – especially geom-
etry –, often (but not always) in the context of the application of a twofold
method, called ‘the method of analysis and synthesis’. In order to avoid mis-
understandings, call this pattern of argumentation ‘Aristotelian analysis’. This
appellation is justified, since Aristotle used ‘�������	’ and its cognates in this
sense on different occasions.4

Aristotelian analysis is the common pattern of any argument which is based
on the consideration of something that is not actually available as if it were
available. Aristotle’s clearest example (Nicomachean Ethics, III, 5) is delibera-
tion: this is an argument through which one comes back from an imaginary
situation that one aims to obtain to the actual one, so as to suggest a way for
obtaining the former by operating on the latter.

Pappus’ classical description of the method of analysis and synthesis and
the corresponding distinction between theorematic and problematic analysis
(Mathematical Collection, VII, 1–2) clearly refer to Aristotelian analysis.

According to Pappus, a theorematic analysis applies when a certain propo-
sition has to be proved. It consists in deducing from it an accepted principle, a
proved theorem, or their negations.

4 For example in: Posterior Analytics, 78a 6–8, 84a 8, 88b 15–20; Sophistical Refutations, 175a
26–28; Metaphysics, 1063b 15–19; Nicomachean Ethics, pp. 1112b 20–24. For a discussion
of these passages and a reconstruction of Aristotle’s views on analysis, see Panza (1997,
pp. 370–383 and 395).
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A problematic analysis applies, instead, when a geometrical problem asking
for the construction of a geometric object satisfying certain spatial conditions
relative to other given objects, is advanced.5 One begins by supposing that this
problem is solved and representing its solution through a diagram involving
both the given and the sought after objects. Then, by reasoning about this
diagram, and possibly by extending it through licensed constructions, one
isolates a configuration of given objects and known data concerned with them,
based on which the sought after objects can be constructed and thus the problem
solved.6

Both Pappus’ theorematic and problematic analyses are reductions. A the-
orematic analysis in Pappus’ sense can provide ipso facto a proof (by reductio

ad absurdum) if that which is deduced is the negation of an accepted principle
or a proved theorem. This case apart, both a theorematic and a problematic
analysis, as described by Pappus, are preliminary arguments suggesting another
and conclusive argument, generally called ‘synthesis’: a theorematic analysis
suggests a valid proof; a problematic one suggests an admissible construction.

There is no doubt that Pappus’ theorematic and problematic analyses are
both forms of Aristotelian analysis. Still, they are not the only possible forms
that Aristotelian analysis has actually taken in classical, medieval, and early
modern mathematics. Another relevant form of Aristotelian analysis occur-
ring in classical, medieval, and early modern mathematics applies when a
certain geometrical problem, asking for the construction of a geometric object
satisfying certain purely quantitative conditions, is advanced.7 In this case, the

5 An example is the following: suppose that two straight lines, two points on them and a
third point outside them are given (in position); find a straight line from this last point that
intersects the given lines so as to cut on them – together with the given points on them –
two segments that stand to each other in a given ratio. This is the problem considered in
Apollonius’ Cutting-off of a Ratio.

6 To be a little bit more precise, consider the relevant problem as a configuration Cg,x

constituted by a system Og of geometric objects which are taken as given (in the example
mentioned in footnote 5, the two given straight lines and the three given points), an amount
D of data (in the example, the given ratio), and a characterization Ox of some objects to be
constructed based on Og and D (in the example, the sought after straight line, or better,
the points at which it has to intersect the given ones). The analysis begins by supposing
that the problem is solved. This is the same as supposing that some objects satisfying Ox

are given. The configuration Cg,x can thus be represented by a diagram representing both
the objects included in Og and the objects satisfying Ox. Insofar as these last objects are
not taken as given and the solution is only supposed, such a diagram cannot be completely
obtained by applying the licensed constructive clauses, but is partially freely traced, so as
to represent the relevant spatial relations between the relevant objects and to reflect the
data. By reasoning about it and possibly by extending it through licensed constructions,
one isolates a sub-configuration Cg on the basis of which the objects satisfying Ox can be
constructed.

7 An example is the classical problem of finding two mean-proportional segments between
two other given ones.
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analysis aims to transform this condition into another equivalent but different
one capable of suggesting a way for constructing the sought after objects.8 Also
in this case, the analysis is a reduction. But it is now the reduction of a given
problem to a new and equivalent, yet still distinct, one.9

This last form of Aristotelian analysis may also apply if the relevant problems
are not stated using the symbolic language introduced by Viète and Descartes
and the related formalism. The possibility of appealing to some crucial theorems
included in the Elements (especially in books II, V and VI) is enough for
allowing the required transformations.10 Still, this form of Aristotelian analysis
naturally applies to the solution of problems stated by means of equations using
this formalism. In this case, it consists in appropriate transformations of these
equations according to the rules of such a formalism. Viète’s Zeteticorum Libri

(1591)11 contains many examples of this form of Aristotelian analysis. This is
because, after Viète, it became quite usual to employ the term ‘analysis’ to refer –
not to a pattern of argumentation – but to the formalism or family of techniques
that these transformations depend on. In order to avoid misunderstandings,
call this formalism ‘Vietian analysis’.

Under this meaning, the term ‘analysis’ is often used in early modern math-
ematics as a synonym for ‘algebra’, another highly polysemic term. For the sake
of simplicity, I shall not use this last term in the present paper, and I shall use
the adjective ‘algebraic’ in a modern sense, as opposed to ‘transcendent’.

8 To be a little bit more precise, consider the relevant problem as a configuration Cg,x con-
stituted by a system Qg of given quantities (in the example mentioned in footnote 7, the
two given segments), and a characterization Qx of some other quantities to be determined
(that is, calculated or constructed) based on Qg (in the example, the sought after mean-
proportional segments). In this case, the analysis needs no diagram and, rather than
isolating a sub-configuration Cg of Cg,x, transforms the latter into a new configuration
C ′

g ,x constituted by a system Q′
g of given quantities that can be determined based on the

quantities included in Qg, and a new characterization Q′
x of the same quantity charac-

terized by Qx (in the example, the condition a:x = x:y = y = b is possibly transformed
into the system of proportions a:x = x:y and x:y = y:b providing the symptomata of two
parabolas an intersection of which determines the sought after segments).

9 For a more comprehensive description of these two forms of Aristotelian analysis applied
to mathematical problems, cf. Panza (2008).

10 A nice example of this possibility is found in Thābit ibn Qurra’s treatise on the ‘restoring
of the problems of algebra through geometrical demonstrations’ (cf. Luckey (1941));
a French translation of Thābit’s treatise is provided by the conjunction of the three
quotations inserted in al Khwārizmı̄ (2007, pp. 33–34, 37–38 and 41). The first of the
three second-order equations of al Khwārizmı̄ is here understood as the problem of
looking for a segment x such that S(x) + R(a, x) = S(b), where a and b are two given
segments, S(x) and S(b) are the squares constructed on them, and R(a, x) is the rectangle
constructed on a and x. The appeal to proposition II.6 of the Elements is enough to allow
Thābit to transform this problem into that of looking for the segment x such that
S(b) + S( a

2
) = S(x + a

2
), which can be easily solved using the Pythagorean theorem.

11 A recent very comprehensive study of Viète’s treatise is Freguglia (2008).
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Newton’s theory of functions and Leibniz’s differential calculus are largely
dependent on Vietian analysis, which occurs in them under the form that it
takes in Descartes’s Geometry (1637). They can even be viewed as appropriate
extensions of it. The development of these theories went together with other,
and partially independent, extensions of Vietian analysis, for example those
connected with power series expansions. From this process, the crucial notion
of function emerged and acquired a quite central role in mathematics. In
his Introductio in analysin infinitorum (1748a), Euler launched a foundational
programme aimed at a reformulation of any mathematical theory within the
general frame of a theory of functions, defined as appropriate expressions
expressing abstract quantities.12 The following part of the chapter will be
devoted to a partial clarification of this notion of abstract quantity through
the reconstruction of the intellectual path that led Newton to the connected
notion of fluxion. For the time being, it is enough to say that in the first half of
the eighteenth century, the term ‘analysis’ and its cognates began to be used to
refer to a general theory of functions conceived as abstract quantities, and to
some of its features and connected developments. In order to avoid misunder-
standings, call this theory ‘Eulerian analysis’. It is to this form of analysis that I
refer when I claim that the conceptual change that goes together with Newton’s
introduction of the term ‘fluxion’ in the De Methodis is a crucial step in the
origins of analysis, conceived as an autonomous mathematical theory.

9.2 From the De Analysis to the De Methodis

On 20 June 1669, Isaac Barrow, at that time Lucasian Professor of Mathematics
at Cambridge, replied to Collins, who had sent him a copy of Mercator’s
Logarithmotechnia (1668), with these words (Newton 1959–1977, I, p. 13; cf.
also Newton 1967–1981, II, p. 166 (footnote 11), and Westfall 1980, p. 243):13

A friend of mine here, that hath a very excellent genius to those things,

brought me the other day some papers wherein he hath sett downe methods

of calculating the dimension of magnitudes like that of Mr. Mercator

concerning the hyperbola, but very generall; as also of resolving æquations;

which I suppose will please you.

Ten days later, Barrow sent to Collins an example of this genius: a short
treatise that is today known as the De Analysis per Æquationes Numero Termi-

norum Infinitas (Newton 1967–1981, II, pp. 206–247). Collins made a copy of
it and circulated it. As a result, the young Newton and some of his early results
became known in the English scientific community, though he did not allow

12 For a clarification of Euler’s notion of function as I understand it, and some related
bibliographical references, cf. Panza (2007).

13 For the factual pieces of information contained in this section, cf. Westfall (1980) and the
critical apparatus of Newton (1967–1981, vols. II and III).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 11:39:42 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.012

Cambridge Books Online © Cambridge University Press, 2012



from velocities to fluxions 225

the publication of his treatise before 1711, when it appeared, in fact, as a piece
of history (Newton 1711), in order to support the thesis of Newton’s priority
in the famous querelle with Leibniz.

Because of its circulation among the members of Collins’s circle, the De

Analysis is often considered as the first public presentation of Newton’s theory of
fluxions. This is not properly correct, however. It is rather a sort of instant book,
which Newton wrote to expound only some of his results: those equivalent or
similar to Mercator’s.

After presenting two rules (Newton 1967–1981, II, pp. 206–210) for squaring
curves expressed by equations of the form

y = axλ + bxµ + c xν + &c . (9.1)

where λ,µ, ν, . . . are rational exponents and &c . means that the right-side
member is either a finite or an infinite sum, he devotes the main part of his
treatise to the detailed exemplification of a third rule (1967–1981, II, pp. 211–
213; for the examples, cf. 1967–1981, pp. 212–242):14

If the value of y or of some of its terms is more composed than the previous

ones, it should be reduced to simpler terms by operating on letters in the

same way as the arithmeticians get decimal numbers by division, extract

roots and solve equations.

To say it more explicitly, Newton supposes that curves be expressed by algebraic
equations F (x, y) = 0 of different forms, and shows how to operate on these
equations so as to transform all of them into equations of the form (9.1), by
applying to literal expressions procedures derived, by generalization or infini-
tary extension, from the arithmetic rules used for calculating with numbers.

Finally, he considers some mechanical curves, like the cycloid, and shows
how to express also these curves by means of (infinitary) equations of the form
(9.1), through the application of some appropriate yet peculiar tricks.

The term ‘analysis’ and its cognates occur quite seldom in Newton’s treatise
(1967–1981, II, pp. 206, 222, 240, 242), and always to refer to, or to speak
of, Vietian analysis.15 One could say, however, that the De Analysis includes
several examples of Aristotelian analysis performed through Vietian analysis.

14 I quote Whiteside’s translation. Here is Newton’s original (1967–1981, II, pp. 210–212):
‘Sin valor ipsius y vel aliquis ejus terminus sit præcedentibus magis compositus, in termi-
nos sempliciores reducendus est, operando in literis ad eundem modum quo Arithmetici
in numeris decimalibus dividunt, radices extrahunt, vel Æquationes solvunt’.

15 Cf., for example, the following quotation (1967–1981, II, pp. 241 and 240): ‘And whatever
common analysis performs by equations made up of a finite number of terms (whenever
it may be possible), this method [the method of quadrature previously expounded] may
always perform by infinite equations: in consequence, I have never hesitated to bestow
on it also the name of analysis.’ [‘Et quicquid Vulgaris Analysis per æquationes ex finito
terminorum numero constantes (quando id sit possibile) perficit, hæc per æquationes
infinitas semper perficiat: Ut nil dubitaverim nomen Analysis etiam huic tribuere.’]
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They allow for the expression of different families of algebraic curves and some
transcendent curves by equations of the form (9.1). This makes it possible to
apply to these curves the following rules of quadrature:

y = axλ ⇒ A(y) =
a

λ + 1
xλ+1;A(y + z) = A(y) + A(z)

(where ‘A(w)’ denotes the area of the trapezoid delimited by the curve of
Cartesian orthogonal ordinate w, which, in modern terms, corresponds to
∫ x

0
w(t)dt, supposing that w(0) = 0).

This is merely a small fragment of the huge amount of mathematical results
that Newton had obtained between 1663 and 1666. Despite that, on 29 October
1669, based on the samples of his competence offered in the De Analysis and in
some other short notes that he had probably showed to Barrow, Newton was
appointed as Lucasian Professor of Mathematics at the University of Cambridge,
to replace Barrow himself.

Hence, though attracted by other topics, like natural philosophy, spectral
colours and alchemy, he could not refuse Barrow and Collins’ invitation to
prepare some additions to be annexed to the Latin edition of Kinckhuysen’s
Algebra (1661), which Mercator had just translated from Dutch. On 11 July 1670
Newton was convinced that he had finished his work and sent it to Collins.
But Collins had the bad idea of sending it back to Newton with the request
of some further clarifications about the roots of binomials. He never received
back either of these clarifications or the old version of Newton’s additions.

On 27 September 1669, Newton had informed Collins that he had decided
to replace his additions with a new treatise, which he wrote, in fact, but did not
finish before 1683 (1967–1981, V, 54–532). Then he kept silent until 20 July
1670 when he sent a letter to Collins including the following passage (1959–
1977, I, p. 66; cf. also: 1967–1981, II, pp. 288, and III, 5 pp. and 32 (footnote 1),
and Westfall 1980, p. 268):

The last winter . . . partly upon Dr Barrow’s instigation I began to new

methodiz the discourse of infinite series, designing to illustrate it with

such problems as may (some of them perhaps) be more acceptable then

the invention it selfe of working by such series. But . . . I have not yet had

leisure to returne to those thoughts, & I feare I shall not before winter.

But since you informe me there needs no hast, I hope I may get into the

hummour of completing them before the impression of the introduction,

because if I must helpe to fill up its title page, I had rather annex something

which I may call my owne & which may bee acceptable to Artist as well as

the other to Tyros.

This ‘something acceptable to Artist’ that Newton was planning to annex to
Kinckhuysen’s Algebra was just the De Methodis: a treatise quite different from
the De analyisis in which he aimed to expound his own new theory and all of
its extensions.
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Here is the how the treatise begins (1967–1981, III, p. 33):16

Observing that the majority of geometers, with an almost neglect of the

ancient’s synthetic methods, now for the most part apply themselves to the

cultivation of analysis and with its aid have overcome so many formidable

difficulties that they seem to have exhausted virtually everything apart

from the squaring of curves and certain topics of like nature not yet

elucidated: I found it not amiss, for the satisfaction of learners, to draw up

the following short tract in which I might at once widen the boundaries

of the field of analysis and advance the doctrine of curves.

Though he seems reluctant to admit that the ‘neglect of the ancients’ synthetic
methods’ is a symptom of progress, Newton clearly inscribes his own results
into the ‘field of analysis’. But it seems to me that he is no longer speaking of
Vietian analysis, as in the De Analysis: his aim is no longer to show how the
problem of quadratures can be solved by series for any algebraic curve and for
some mechanical ones, based on a preliminary transformation. As a matter
of fact, the methods expounded in the De Analysis are also expounded in the
De Methodis, and a new quite powerful one of the same kind – the so-called
method of Newton’s parallelogram – is added to them. But these methods are
now conceived as nothing but preliminary material only concerned with some
‘modis computandi’ (1967–1981, III, p. 70).

After having expounded them, Newton writes (1967–1981, III, p. 71):17

It now remains, in illustration of this analytical art, to deliver some typical

problems and such especially as the nature of curves will present.

It seems thus that, for him, the ‘analytic art’ does not merely consist in
some appropriate techniques to be used in preparing the solution of some
problems, but is rather concerned with these problems as such, and thus also
with their solutions. It has taken on a peculiar form, and at the least is no longer
Aristotelian or Vietian analysis.

This extension of the ‘field of analysis’ is not independent of an appropriate
reduction of these problems to other ones. But this reduction is no longer the
mere reduction of a certain configuration of given and ungiven quantities to a

16 I quote Whiteside’s translation. Here is Newton’s original (1967–1981, III, p. 32): ‘Animad-
vertenti plerosque Geometras, posthabitâ fere Veterum syntheticâ methodo, Analyticæ
excolendæ plurimum incumbere, et ejus ope tot tantasque difficultates superasse ut pene
omnia extra curvarum quadraturas et similia quædam nondum penitùs enodata videan-
tur exhausisse: placuit sequentia quibus campi analytici terminos expandere juxta ac
curvarum doctrinam promovere possem in gratiam discentium breviter compingere.’

17 I quote Whiteside’s translation. Here is Newton’s original (1967–1981, III, p. 70): ‘Jam
restat ut in illustrationuis hujus Artis Analyticæ tradam aliquot Problematum specimina
qualia præsertim natura curvarum ministrabit.’
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new and more suitable one. It is rather a transformation of the very nature of
these problems.

This is in fact a double reduction. Firstly, problems concerned with curves are
reduced to problems concerned with motion. Secondly, problems concerned
with motions are reduced to problems concerned with fluxions. The former
reduction was already at work in the October 1666 tract. The theory expounded
in that treatise is, indeed, a theory of motions and speeds to be used to solve
geometrical problems: the aim of this treatise is of showing how to solve
geometrical problems by motion. The latter reduction, however, is new and
constitutes the essential novelty of the De Methodis, which I would like to
emphasize.

Let us clarify this matter.
Here is how Newton describes the former reduction (1967–1981, III, p. 71):18

But first of all I would observe that difficulties of this sort may all be reduced

to these two problems alone, which I may be permitted to propose with

regard to the space traversed by any local motion however accelerated or

retarded:

1. Given the length of the space continuously (that is, at every [instant of]

time), to find the speed of motion at any time proposed.

2. Given the speed of motion continuously, to find the length of the space

described at any time proposed.

As a matter of fact, the language used by Newton to state these problems is
more general than that used in the October 1666 tract. Here is, indeed, how
these problems are stated in propositions 7 and 8 of this treatise (1967–1981,
I, pp. 402–403):

7. Haveing an Equation expressing the relation twixt two or more lines x,

y, z &c: described in the same time by two or more moveing bodys A, B, C,

&c: the relation of their velocities p, q, r, &c may bee thus found, viz: . . . 19

18 I quote Whiteside’s translation. Here is Newton’s original (1967–1981, III, p. 70): ‘Sed
imprimis observandum venit quod hujusmodi difficultates possunt omnes ad hæc duo
tantùm problemata reduci quæ circa spatium motu locali utcunque accelerato vel
retardato descriptum proponere licebit. 1. Spatij longitudine continuò (sive ad omne
tempus) data, celeritatem motûs ad tempus propositum invenire. 2. Celeritate motûs
continuò datâ longitudinem descripti spatij ad tempus propositum invenire.’

19 Newton supposes that the equation expressing the relation between x, y, z, &c. is poly-
nomial; the suspension points stand, thus, for the description (in fact for three equivalent
but different descriptions) of the well-known algorithm that, in the simplest case of two
variables, leads from

n
∑

i=0

i
∑

j=0

Ai− j, j x i− j j j = 0
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8. If two Bodys A & B, by their velocitys p & q describe the line x & y. & an

Equation bee given expressing the relation twixt one of the lines x, & the

ratio
p

q
of their motion p & q; To find the other line y.

The difference between these statements and those of the De Methodis

seems to be quite relevant: by avoiding the supposition that the spaces described
are to each other in a relation expressed by a polynomial equation,20 Newton
seems to transform two problems concerned with the transformation of poly-
nomial equations – that is, two algorithmic problems belonging to Vietian
analysis – into two genuinely geometrico-mechanical problems. The compar-
ative consideration of propositions 1–6 of the October 1666 tract (1967–1981,
I, pp. 400–402) and the second reduction that Newton performs in the De

Methodis suggests, however, a quite different picture. Before considering this
second reduction, and in order to understand its real meaning, it is thus nec-
essary to consider these propositions more carefully.

They aim to provide a quite general theory of composition of motions that
is completely independent of the possibility of expressing the relation of the
spaces described by means of algebraic equations. When looked at in light of
this theory, the algorithms involved in the subsequent propositions 7 and 8
thus appear as local tools to be used in this theory in some particular situations
for determining appropriate ratios or relations. The purpose of the next two
sections is to reconstruct the essential aspects of this theory and the evolution
in thought that led Newton to it.

9.3 Motions and geometry

Newton’s first appeal to motions and their properties for proving geometrical
theorems and solving geometrical problems occurs in a note composed in the
Summer of 1664 (1967–1981, I, pp. 219–233; for the dating of this note, cf.
Panza 2005, pp. 183–184), after his reading of the second Latin edition of
Descartes’s Géométrie (1659–1661).

In this edition, Descartes’s treatise is supplemented by a large number of
commentaries, other treatises on connected topics, and notes. Among this
material, there is a letter of H. van Heuraet (Descartes 1659–1661, I, pp. 517–
520), containing an important theorem about quadratures and rectifications:
If curves AML (Figure 9.1) and END are such that, for every point P taken on

to

n
∑

i=0

i
∑

j=0

(i − j )Ai− j, j x i− j−1 j j p +
n

∑

i=0

i
∑

j=0

j Ai− j, j x i− j j j−1q = 0.

20 Cf. footnote 19, above.
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Figure 9.1 Diagram relating to van Heuraet’s theorem about quadratures and

rectifications

their common axis EH, their ordinates PM and PN comply with the following
proportion

PM : MG = K : PN, (9.2)

where MG is the normal to AML in M, and K any constant segment, then
the trapezoid ABDNC is equal to the rectangle constructed on K and another
segment equal to the arc AML.

In his note, Newton applies a slightly modified version of this theorem: if
PM and PN are such that

PM : PG = K : PN, (9.3)

where PG is the sub-normal to AML in M, then the trapezoid ABDNC is equal
to a rectangle constructed on K and BL.

Van Heuraet’s theorem allows one to rectify some curves provided that the
areas of some other appropriate curve is known. Newton’s modified version
allows one to square some curves, provided that the normal or tangent of some
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other appropriate curve is known. More generally, it provides an intrinsic link
between the problem of tangents and the problem of quadratures.

The two theorems can be proved in the same way, by a simple application of
the method of indivisibles. Suppose that OQ = IJ is an indivisible portion of
the base AB and remark that

PM : MG = IJ : IT and PM : PG = IJ : JT.

Then, compare these proportions with the proportions (9.2) and (9.3) respec-
tively, so as to derive that

R(IJ, PN) = QVUO = R(IT, K) and R(IJ, PN) = QVUO = R(JT, K),

where, for any pair of segments α and β, R(α, β) is the rectangle constructed
on these same segments. Finally, sum up all the rectangles such as QVUO,
R(IT, K ), and R(JT, K ), and get the theorems. It is essentially in this way that
van Heuraet proves his theorem.

Newton’s argument for proving the second theorem (1967–1981, I, pp. 222–
229) is quite different. He refers to another figure (Figure 9.2), where the
segment K is identified with the constant base DB = QA of the rectangle
DBCE and the ordinates PM and PN of the curves YV and ZW are, as before,
such that the proportion (9.3) holds, supposing that PG is the sub-normal to
YV relative to M. Then he remarks (1967–1981, I, pp. 228–229):21

. . . supposeing the line PN always moves over the same superficies in the

same time, it will increase in motion from QL in the same proportion that

it decreaseth in length and the line DB will move uniformly from EC, soe

that the space ECBD = NPQL.22

The statement ‘it will increase in motion from QL in the same proportion
that it decreaseth in length’ makes manifest that Newton is here understanding
motions as scalar quantities, that is, as (scalar components of) punctual speeds.
He seems to take for granted that which is the main object of the previous argu-
ment through indivisibles, namely, the equality of the elements of the rectangle
ECBD and the trapezoid NPQL. Then, he appeals to motions for proving that
which is taken for granted in this argument, namely, that the equalities of
elements entails the equality of the whole figures. Instead of appealing to an
infinite sum of indivisibles or infinitely small elements, he considers figures

21 For reasons of uniformity, I change the letters used by Newton to refer to the points in
the diagram.

22 Note that ECBD is the rectangle constructed on QA = K and the difference of the
ordinates QE and PM depends on the choice of point B on the axis HA. It follows that the
equality ECBD = NPQL expresses, with respect to the curves represented in Figure 9.2,
the same result that, with respect to the curves represented in Figure 9.1, is expressed by
the claim that the trapezoid ABDNC is equal to a rectangle constructed on K and BL.
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Figure 9.2 Diagram relating to Newton’s proof of his version of van Heuraet’s theorem

as generated by motion (in the usual sense of this term) and admits that the
relations of these figures depends on the relations of the punctual speeds of
these motions.

This style of argument will not often be repeated by Newton in his later notes.
Still, the central idea will never be abandoned: that of considering related geo-
metric magnitudes as generated by motions whose punctual speeds mutually
depend on each other and vary according to an appropriate rate corresponding
to the geometric relations of these magnitudes.

As this example shows quite well, Newton uses the term ‘motion’ and its
cognates (overall the verb ‘to move’) in two distinct senses: to refer both to
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motions of points or lines in our sense of this term, and to the punctual ‘deter-
mination’ of these motions. The term ‘determination’ as related to motions
had already been used by Descartes, Fermat and Hobbes, in different senses
(Descartes 1637, 17–18; Descartes 1644, II, 55–58; Descartes 1647, II, 41, 99;
Descartes 1897–1910, letters XCVI, CXI, CCXX, CCXXX, CCXXXIV, DXXI),
and Newton will use it later on different occasions (cf. 1967–1981, I, p. 372,
for the first occurrence). When motions are rectilinear, their determination, in
Newton’s sense, reduces to the scalar component of the punctual speed, since
their directional component is constant and there is no need to take it into
account. But things go in a quite different way when these motions are not
rectilinear.

For the time being, let us consider only the simplest case, that of rectilinear
motions. I shall come back to the case of curvilinear motions in Section 9.4.

Let x and y be two variable segments generated at the same time by two points
moving according to a rectilinear motion. The relation of these segments in
any instant of time depends on the (scalar components of the) punctual speeds
of these motions. But also the reciprocal is true: for these segments to be
related by a certain relation, the (scalar components of the) punctual speeds
of these motions have to satisfy some appropriate conditions. Hence, two
problems arise quite naturally: (i) Given the relation of x and y, to look for the
(scalar components of the) punctual speeds of the motions that generate them;
(ii) Given the (scalar components of the) punctual speeds, to look for the
relation of x and y. These are just the two problems that Newton states in the
De Methodis. But why are they relevant for the solution of geometrical problems
concerned with curves?

A first answer comes, implicitly, from a short note probably redacted at the
beginning of the Fall of 1665 (1967–1981, I, pp. 343–347), where these problems
are stated and the first of them is solved, in the particular case where both the
relation between the segments and that between (the scalar components of)
their punctual speeds are expressed by polynomial equations in two variables.
Here is what Newton writes (1967–1981, I, p. 344):

1. If two bodies c, d [Figure 9.3] describe the streight lines ac, bd, in the

same time, (calling ac = x, bd = y, p = motion of c, q = motion of d) &

if I have an equation expressing the relation of ac = x & bd = y whose

termes are all put equal to nothing. I multiply each terme of the equation

by so many times py or
p

x
as x hath dimensions in it. & also by soe many

times qx or
q

y
as y hath dimensions in it. the sume of these products is an

equation expressing the relation of the motions of c & d. . . .

2. If an equation expressing the relation of their motions bee given, tis

more difficult & sometimes Geometrically impossible, thereby to find the

relation of the spaces described by these motions.
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Figure 9.3 Diagram relating to Newton’s proof of the algorithm of speeds

The algorithm described in the first proposition is the well-known direct
algorithm that leads from any polynomial equation

n
∑

i=0

i
∑

j=0

Ai− j, j x i− j j j = 0 (9.4)

to the equality

q

p
= −

n
∑

i=0

i
∑

j=0

(i − j )Ai− j, j x i− j−1 j j

n
∑

i=0

i
∑

j=0

j Ai− j, j x i− j j j−1

. (9.5)

This is a particular case of the algorithm described in proposition 7 of the Octo-

ber 1666 tract.23 If we interpret it within the formalism of differential calculus,
as we know it today, this algorithm allows us to pass from any polynomial
equation P (x, y) = 0 to the equality

q

p
= −

∂ P
∂x
∂ P
∂y

.

Still, no compact and general notion equivalent to that of partial derivative of
a polynomial is available for Newton at this stage of his researches. Hence, this
algorithm is for him nothing but a rule to transform a polynomial P (x, y)
into an appropriate ratio of associated polynomials that is taken to express the
ratio q/p of (the scalar components of) the punctual speeds of the rectilinear
motions generating the segments x and y.

In a note written about one year earlier (1967–1981, I, pp. 236–238), Newton
had claimed that the product of y and the ratio of polynomials providing
the right-hand side of the equality (9.5) – also described, of course, as the
result of an appropriate transformation of an equation like (9.4) – provides the

23 Cf. footnote 19, on p. 228.
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sub-normal on the x-axis and at the generic point (x, y) of the curves expressed,
with respect to a Cartesian orthogonal system of co-ordinates, by this same
equation. From this claim and the equality (9.5), it follows that

q

p
=

s n.x [P (x, y)]

y
, (9.6)

where s n.x [P (x, y)] is just this sub-normal.
Though Newton did not state explicitly this equality in his note of Fall of 1665,

at this date he was certainly aware of it. Once compared with the result about
the intrinsic link between the problem of tangents or normals and the problem
of quadratures that Newton had obtained some months earlier by modifying
the theorem of van Heuraet, this equality provides a way to connect these two
geometric problems with the problems of speeds, in the case of curves referred
to a system of Cartesian co-ordinates and expressed by polynomial equations.

Suppose that x and y are the orthogonal Cartesian co-ordinates of a curve,
and that they remain to each other in a certain relation R. If this relation is
expressed by a polynomial equation P (x, y) = 0, from the equality (9.6) it
follows that the problems of tangents and normals can be solved by passing
from this relation to the ratio q/p according to the equality (9.5) and rewriting
the right-hand side of this equality in terms of only one of the two variables x

and y. Moreover if one sets AP = x , PM = y, PN = z (Figure 9.1 or Figure 9.2),
from the equality (9.6), it follows that the condition (9.3) transforms into

z = K
q

p
.

Hence, according to Newton’s version of the theorem of van Heuraet, the
problem of squaring the curve of orthogonal Cartesian co-ordinates x and z

can be solved by passing from the relation R∗ that links these co-ordinates to
each other to a polynomial equation P (x, y) = 0 such that q/p = z/K . If this
is so, the trapezoid delimited by this curve, taken between the abscissas x = ξ

and x = κ , is indeed equal to K |yκ − yξ |.24

The only difficulty that possibly arises in the solution of the former of these
problems, when R is expressed by a polynomial equation P (x, y) = 0, is that
of rewriting the right-hand side of the equality (9.5) in terms of only one of
the two variables x and y. If the relation R∗ is given somehow, the difficulty
that possibly arises in the solution of the latter problem is that of finding an
appropriate polynomial P (x, y), provided that there is one (which is of course
not warranted, in general).

Two classical problems concerned with curves – the problem of tangents or
normals and the problem of quadratures – are thus reduced, under appropriate

24 Cf. footnote 22, on p. 231.
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restrictive conditions, to problems concerned with punctual speeds of rectilin-
ear motions which are, in turn, equivalent to algorithmic problems belonging
to the field of Vietian analysis. But if these conditions are not met, are the prob-
lem of tangents or normals and the problem of quadratures also connected
in some ways with problems concerned with punctual speeds of rectilinear
motions?

To answer this question, it is relevant to know how the equality (9.6) is
obtained. Did Newton merely get, in two distinct ways, two coincident algo-
rithms (the algorithm of the tangents or normals and the algorithms of speeds)?
Or did he understand in general – based on geometrical-mechanical argu-
ments, independent of any equation – that the ratio of the (scalar components
of the) punctual speeds of the generative motions of two segments y and x is
equal to the ratio of the sub-normal on the x-axis and the ordinate of the curve
of orthogonal Cartesian co-ordinates x and y? If the latter possibility obtained,
then Newton knew, in the Fall of 1665, that the connection between the
problems of tangents, normals and quadratures and problems concerned with
punctual speeds of rectilinear motions – which is manifested by the equality
(9.6) together with his version of the theorem of van Heuraet – does not depend
on the way the relevant curves can be expressed with respect to a system of Car-
tesian co-ordinates. If the former possibility obtained, then he could not have
avoided to wonder if this connection also holds for curves that, though referred
to such a system of co-ordinates, cannot be expressed by polynomial equations.

No direct evidence is available for deciding among these possibilities. Still,
it is perhaps relevant to remark that, in his Geometrical lectures (1670), Barrow
proved a theorem equivalent to a generalization of the equality (9.6) to any
curve referred to a system of Cartesian orthogonal co-ordinates. In lecture III,
he remarked that any curve can be conceived as the result of the composition
of two motions: one of a straight line az (Figure 9.4) that moves parallelwise
from position AZ so as its point a moves along a fixed perpendicular straight
line AY, and the other of a point m that moves on the former of these lines so
as to describe the curve (1670, pp. 28–29 and Child 1916, pp. 49–51).25 Then,
in lecture IV (art. XI), he proved that the ratio of the (scalar components of
the) punctual speeds of these motions at whatever point M of the curve is the
same as that of the segments PM and TP, provided that TM is the tangent to the
curve at M (1670, pp. 32–33 and Child 1916, pp. 55–57). In Newton’s notation,
and supposing that the straight line TP is the x-axis, and AP = x , PM = y, this
reduces to the equality

q

p
=

y

stg .x [y]
, (9.7)

25 For sake of simplicity, I have indicated fixed and moving points with capital and small
letters, respectively.
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where stg .x [y] is the sub-tangent of the curve of ordinate y on the x-axis. If the
co-ordinates are orthogonal and s n.x [y] is the sub-normal of this same curve
on this same x-axis, this equality is equivalent to

q

p
=

sn.x [y]

y
, (9.8)

which is a generalization of the equality (9.6).
It is possible that Newton had attended a lecture, either at Cambridge Uni-

versity or elsewhere,26 at which Barrow proved this result. If this is so, he was
not only aware that equality (9.6) is only a particular case of the much more
general equality (9.8), but he also knew a simple way to prove this last equality.
In the printed version of Barrow’s lecture this theorem is proved as follows. If it
is considered as fixed, the tangent TM also results from the composition of two
motions: the same motion of the straight line az from which the curve results,
and the motion of the point t that moves uniformly on the same straight line
az starting from T and so as to take the position M when az takes the position
LN. The trajectory of a composed motion such as those that describe both the
curve and its tangent depends only on the ratio of the (scalar components of
the) punctual speeds of the motions that compose it, and is a straight line if and
only if this ratio is constant (1670, p. 28 and Child, 1916 pp. 49–50). Hence,
one can suppose, without any loss of generality, that the motions of az and t are
uniform. This being admitted, consider any two positions of az: the position
L∗N∗ on one side of LN, such that the point m takes the position O∗ which is
between the position K∗ of the point t and the point G∗ at which az (in position
L∗N∗) cuts PM; and the position L∗∗N∗∗ on the other side of LN, such that the
point m takes the position O∗∗ which is beyond the position K∗∗ of the point
t which is in turn beyond the point G∗∗ at which az (in position L∗∗N∗∗) cuts
PM. Also admit that these positions are such that the curve does not change
its concavity and has no extreme between them.27 When the straight line az

is in the first of these positions, the (scalar component of the) punctual speed
of the motion of m along it is smaller than that of the motion of the point t

also along it, since the former speed is increasing whereas the latter is uniform,
and the space O∗G∗ covered by m in a certain time28 is smaller than the space

26 Child (1916, p. 7) suggested that Barrow delivered his Geometrical Lectures at Gresham
College and that Newton attended them in 1663–1664. This is however far from sure:
concerning the relations between Barrow and Newton before 1669, and the possibility
that the latter attended some lectures of the former, cf. Newton (1967–1981, I, pp. 10–11,
footnote 26).

27 As a matter of fact, Barrow does not make this restrictive condition explicit. Still, such a
condition is clearly required by his argument, and, as a consequence, this argument does
not apply if M is an extreme or inflection point.

28 Barrow openly considers this time as being ‘represented’ by the segment G∗M.
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K∗G∗ covered by t in the same time. For an analogous reason (considering the
motions as going in the opposite directions),29 when the straight line az is in
the second of these positions, the (scalar components of the) punctual speed of
the point m along it is greater than that of the motion of the point t also along
it. It follows that, when az is in the position LN, these speeds are equal, which
is enough to prove the theorem.30

9.4 Newton and Roberval’s method of tangents

Though no similar proof occurs in Newton’s notes, the way he succeeds in
showing that the equality (9.6) is nothing but a particular case of a much more
general result has a lot of affinities with Barrow’s arguments. Still, Newton goes
much farther than Barrow, since he also shows that the problem of tangents is
intrinsically connected with some appropriate problems concerning motions
(either rectilinear or not) and their punctual speeds even when the relevant
curves are not referred to any system of Cartesian co-ordinates. This became
possible when he became aware of Roberval’s method of tangents.31

In 1665, this method was known in France by some mathematicians,32 but
had not yet been presented in any published text.33 This only happened in 1693,
when a treatise written by a pupil of Roberval, François de Bonneau, Sieur de
Verdus (Roberval 1693), appeared. This treatise certainly communicated notes
taken from Roberval’s lectures. Though Newton never mentions this treatise,
nor the name of Roberval, the content of some of his notes leaves no doubt
that he had somehow become acquainted with his method.34

29 This condition is implicitly expressed by Barrow through the identification of the relevant
time with the segment MG∗∗ (as a matter of fact, Barrow, in setting out the second part
of his argument, takes MG∗∗ to be a time, rather than merely representing it), which is
now described in the opposite direction than G∗M : cf. the previous footnote.

30 The constant ratio of the (scalar components of the) punctual speeds of the motions of
az and of t on this last straight line is, indeed, equal to the ratio of PM and TP, so that,
if the (scalar components of the) punctual speeds of m at M is equal to the constant one
of t, the ratio of the (scalar components of the) punctual speeds of the motions of az and
of m on this last straight line, when this last point is at M, is also equal to the ratio of PM
and TP.

31 On Newton and Roberval’s method of tangents, cf. Wolfson (2001) which I did not yet
know when I wrote my (2005).

32 On Roberval’s method and his diffusion, cf. Auger (1962, pp. 58–77), Hara (1965),
Pedersen (1968) and Pedersen (1969, pp. 20–23). This method is also studied in detail by
A. Warnstel in a chapter of his forthcoming book (in French) on the mathematical works
of Descartes.

33 A similar method had been, however, applied by Torricelli to find the tangent of a parabola
in Torricelli (1644, pp. 119–121).

34 There is no evidence that speaks to the way this method became known to Newton. It was
known by Barrow, who spoke of it in a letter to Collins (Rigand 1841, 34) as a ‘method of
finding the tangents to curved lines by composition of motions’ that had been mentioned
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Here is how Verdus presents its ‘principe d’invention’ (Roberval 1693,
p. 70):35

. . . in every . . . curve, the tangent at whatever point is the direction line

of the motion of the movable that describes this same line. Hence, in

composing some motions in different ways and in knowing the direction

of the composed motion at whatever point of a curve, we shall know, at

the same time, its tangent.

The problem with this principle is that it does not make clear how the
composition of motions is understood, exactly. In fact in Verdus’ treatise at
least three different sorts of compositions of motions are considered:

1. A point is submitted to a composed motion if it moves with respect to a
system of reference that moves, in turn, with respect to another system of
reference.

2. A point is submitted to a composed motion if it is the intersection point
of two rigid curves and moves insofar as these curves move separately from
each other.

3. A point is submitted to a composed motion if it moves insofar as its distances
from two fixed poles, represented by two segments generated by two distinct
motions, change at the same time.

Verdus’ treatise expounds the method in general in a rather vague way, and
then includes different examples each of which is concerned with one or more
of these modalities of composition. In each example, we are told how to find
the punctual direction of the composed motion, supposing that both the scalar
and directional components of the punctual speeds of the two motions that

by Mersenne and Torricelli. This suggests that Barrow became acquainted with it through
Mersenne’s mention of it in the Cogitata physico mathematica (1644, pp. 115–116). But it
is also possible that he knew it in some other way, for instance through Hobbes, who was
close to Verdus (Skinner 1966) and met Roberval himself in 1642 (Auger 1962, p. 72). It
is highly plausible that Barrow mentioned this method in one of his lectures. The third
of his Geometrical Lectures is, indeed, entirely devoted to the composition of motions
which is then used, as we have seen, to investigate tangents. It is possible that Newton
was there, learned the fundamental ideas of this method and some of its paradigmatic
examples (Newton’s notes include many examples occurring in Verdus’ treatise), and
then elaborated on them by himself.

35 The translation is mine. Here is Verdus’ original text: ‘en toutes les . . . lignes courbes
qu’elles puissent estre, leur touchante, en quelque point que ce soit, est la ligne de direction
du mouvement qu’a en ce mesme point le mobil qui la décrit. En sorte que composant
des mouvemens en diverses façons, et venant à connoistre la direction du mouvement
composé en quelque point que ce soit, d’une ligne courbe, nous connoistrons par mesme
moyen sa touchante.’
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compose it are known. Still, these modalities are not explicitly distinguished
and no general procedure or construction is associated with each of them.

Case 1 is that of the motions that generate a cycloid and a spiral, provided
that these motions are described respectively as the motion of a point on a wheel
that advances by rotating on a straight line (Figure 9.5; this is the motion of a
rotating point on a translating plane), and as the motion of a point advancing
on a rotating ruler (Figure 9.6; this is the rectilinear motion of a point on a
rotating plane).

In the first of these two examples, the second motion is rectilinear. In the
second it is not. When it is rectilinear the situation is quite simple: the speed
of the point moved according to the composed motion results from the appli-
cation of the rule of parallelograms to the speeds of the composing motions
(Figure 9.5a).

When the second motion is not rectilinear, there is no guarantee that the
speed of the point moved according to the composed motion results from
the application of the rule of parallelograms, at least if this rule is applied to
the speeds of the composing motions. The reason is the following. Suppose
that v1 and v2 are the punctual speeds of the first and the second motion,
respectively. If the second motion is not rectilinear, we have no guarantee that
v1 and v2 are also the components of the punctual speed v of the composed
motion along their own directions. The same is true also for the two other cases
of composition of motions.

An example of case 2 is the quadratrix, described as the trajectory of the
intersection point of two rules, one of which rotates around the vertex of a
square while the other translates along the direction of a side of this square by
remaining perpendicular to it (Figure 9.7).

An example of case 3 is the ellipse, described as the locus of the points such
that the sum of their distances from two given points is fixed (Figure 9.8).

Suppose now that a curve C is the trajectory of a motion M composed, in
one of the previous three ways, by two other motions M1 and M2. Suppose
also that these two motions are either rectilinear or circular. In both cases
the directions of their punctual speeds v1 and v2 are known (in the case of
a rectilinear motion, this is the same trajectory as the motion; in the case of
a circular motion, this is the perpendicular to the radius of this trajectory).
Suppose also that the ratio of the scalar components of these speeds is known
as well: they can be represented by two segments s1 and s2 which are taken in
the same directions of these speeds and that are in such a ratio to one other. To
find the tangent of C, it is enough to determine the punctual direction of M.
The problem is thus to compose v1 and v2 in the right way, that is, to find a
general construction to be applied to s1 and s2 so as to get a straight line that
provides such a direction. Once the tangent of C is known, this curve can be
added to straight lines and circles as a trajectory of motions of which other
motions are composed so that the tangent of their trajectory can be found
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Figure 9.5 The composition of motions in the description of a cycloid

Figure 9.5a The rule of the parallelogram applied to the case of the cycloid

through the same method. And, of course, one can then continue in the same
way up to other curves conceived as trajectories of motions composed by other,
more and more complex motions.

Roberval treats different cases in different ways. Newton wants, instead, a
general principle to be applied in any particular case. Many of the mathematical
researches of Newton between the Fall of 1665 and the Spring of 1666 are
locating just such a principle. It is finally found, in its definitive and general
form, in May of 1665, and it is expounded in two notes (the second of which
results from a revision of the first) written on May 14th and 16th (Newton 1967–
1981, I, pp. 390–392 and pp. 392–399). This same principle is also expounded
in proposition 6 of the October 1666 tract. Propositions 1–5 of this treatise are
merely used to provide the necessary ingredients of this exposition.
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Figure 9.6 The composition of motions in the description of a spiral

It seems that Newton understood that the first and third among the three
previous modalities of composition of motions can be reduced to the second
one, that is, that there is a way to pass, through appropriate constructions,
from the two former cases to the latter (for details, cf. Panza 2005, 412–414).
It follows that any composed motion can be viewed as the motion of the
intersection point of two rigid curves that moves separately.

If the tangents of these curves and the (ratio of the) punctual speeds of their
respective motions are known, it is moreover easy to find the punctual direction
of the composed motion, and thus the tangent of its trajectory, as follows.

Suppose that YMX and ZMW (Figure 9.9) are the moving curves and M is
their intersection point. Suppose also that UMO and VMP are the tangents to
these curves at the point M, and that the punctual speeds of the motions of
these curves are represented (scalarly and directionally) by the segments MR
and MQ. It follows that the direction of M is provided by the diagonal MT of
the quadrilateral MRTQ which is constructed by drawing from R and Q two
parallel lines to the tangents UMO and VMP, respectively.

The justification is easy. The point M is affected in fact by four motions:
the two motions of the curves YMX and ZMW and the two motions that this
point has on these curves in order to continue to be their intersection point.
The segments MR and MQ represent, respectively, the punctual speeds of
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Figure 9.7 The composition of motions in the description of a quadratrix

the two former motions. The segments RT = MT′ and TQ = MT′′ represent,
respectively, the punctual speeds of the two latter ones. By composing these
four motions two by two according to the rule of parallelograms, one gets
exactly the direction MT.

Provided that the tangents of straight lines and circles are known, one can
easily find, in this way, the tangents of the trajectories of the intersection point
of two moving straight lines, two moving circles, or a moving straight line and
a moving circle. And again, once this is done, the tangents of the trajectories of
the intersection point of two curves corresponding to these trajectories can be
found in the same way, and so on.

But, for this to be possible, the ratio of the scalar components of certain
speeds has to be determined. And, for that, the algorithm of speeds for segments
related by a polynomial equation can be useful.
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Figure 9.8 The composition of motions in the description of an ellipse

The simplest case obtains when the two curves YMX and ZMW reduce
to two straight lines each of which translate along the direction of the other
(Figure 9.10). This is just the configuration involved in Barrow’s previous proof.
But now it is nothing but a particular case of a more general configuration.
In such a particular case, each of the two lines provides, then, the punctual
direction of the motion of the other and is its own tangent. Newton’s general
principle reduces, thus, to the rule of parallelograms (which is consistent with
the fact that the motion of the point M can also, in this case, be described as the
motion of a point with respect to a system of reference that moves rectilinearly
with respect to another system of reference). Hence, if the punctual speeds of
these straight lines are represented by the segments MR and MQ, to solve the
problem it is enough to construct the rectangle MRTQ, for its diagonal MT is
the sought after tangent.

Barrow’s result – that is, the equality (9.7) – is thus quite easily proved as
a particular case of a more general result that concerns tangents of curves
independently of any system of co-ordinates to which these curves might be
referred.

9.5 Back to the De Methodis

With all this in mind, we can now come back to the first reduction of the De

Methodis, which, recall, consists in reducing geometrical problems concerning
curves to two quite general problems concerning motions (cf. p. 228 above).
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Figure 9.9 Newton’s general law for composing motions
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If we compare these problems with propositions 1–8 of the October 1666 tract,
we find that Newton has eliminated both the general context provided by the
theory of composition of motions (propositions 1–6) and the assumption that
spaces (in the first problem) and speeds (in the second) are linked to each other
by a polynomial equation (propositions 7–8: cf. pp. 228–229). So, a question
quite naturally arises: What are the spaces and speeds that Newton is speaking
of? Are they merely segments generated by rectilinear motions of points and the
punctual speeds of these motions (which are nothing but scalar quantities)? Or
are they some sort of trajectories of rigid curves and points on these curves and
the punctual speeds of them (which cannot be reduced to scalar quantities)?

There is no question that Newton’s text is ambiguous. However, Newton
offers some clarifications by presenting a quite simple example (1967–1981,
III, p. 73):36

So in the equation x2 = y if y designates the length of the space described

in any time which is measured and represented by a second space x as

it increases with uniform speed: then 2mx will designate the speed with

which the space y at the same moment of time proceeds to be described.

The letter ‘m’ replaces ‘ p’, here. This is a minor change, but it goes together
with two other, more relevant ones. Newton openly supposes that: (i) the space
x is covered by a uniform motion; and (ii) this space measures and represents
time.

The first supposition is not absolutely new. It had been used by Barrow37

and Newton himself had at times appealed to it in his earlier notes. And, once
it is admitted, the second – also used by Barrow – seems quite natural. Still,
the way Newton employs this second supposition reveals that it is not merely a
local trick for him. It is rather a symptom of a quite deep change in Newton’s
conceptions. Time is not here understood as the real time in which motion takes
place; it is merely the second term of an analogy (Guicciardini 1999, pp. 19–
20). And this is also the case of space. The reason is simple: Newton is no
longer referring to the motions of points or lines; he is no longer considering
geometrical quantities generated by these motions. He is rather referring to
variations of quantities conceived as pure variables. There is no need to insist

36 I quote Whiteside’s translation (but maintain the symbol ‘m’ instead of replacing it with
the symbol ‘ẋ ’ as Whiteside does by using a notation that Newton will only introduce
in 1691: cf. Whiteside’s footnotes 83 and 86). Here is Newton’s original (1967–1981, III,
p. 72): ‘Sic in æquatione xx = y si y designat spatij longitudinem ad quodlibet tempus
quod aliud spatium x uniformi celeritate increscendo mensurat et exhibet descriptam:
tunc 2mx designabit celeritatem qua spatium y ad item temporis momentum describi
pergit . . . .’

37 Cf. the previous footnotes 28 and 29.
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on this point, since Newton himself is quite clear about it (1967–1981, III,
p. 73):38

And hence it is that in the sequel I consider quantities as though they were

generated by continuous increase in the manner of a space which a moving

object describes in its course.

Quantities are, thus, not spaces generated by motions, that is, segments
generated by moving points or surfaces generated by moving lines. They are
instead that which is ‘generated by continuous increase’ in the same way as
space is ‘generated by motion’. But things are even clearer in what follows:39

However, as we have no estimate of time except in so far as it is expounded

and measured by an equable motion, and as, furthermore, only quantities

of the same kind may be compared one with another [as well as only]

their speeds of increase and decrease [can be compared one with another],

I shall, in what follows, have no regard to time, formally so considered,

but, among the quantities propounded which are of the same kind, I shall

suppose some one to increase with an equable flow, and the others to

be referred to it as though it were time, so that the name ‘time’ may, by

analogy, be conferred upon it. And so, whenever in the following the term

‘time’ occurs . . . by that name should be understood not time formally

considered but that other quantity through whose equable increase or

flow time is expounded and measured.

If Newton does not speak of trajectories and composed motions, it is, thus,
because he does not want to refer to real motions, but rather to a more general
kind of change. To say it in Aristotle’s language, he is no longer interested in
displacement of points or local change (
���) as such, but rather in a more
general kind of change (�����	) that includes displacement of points as a
particular case. Let us call it ‘quantitative variation’. What is this exactly?

From the beginning of 1664 – while studying Wallis’ method of quadratures
(1967–1981, I, pp. 91–95) – Newton had understood that it is enough, for a

38 I quote Whiteside’s translation. Here is Newton’s original (1967–1981, III, p. 72): ‘Et hinc
est quod in sequentibus consideratem quantitates quasi generatæ essent per incrementum
continuuum ad modo spatij quod mobile percurrendo describit.’

39 I slightly modify here Whiteside’s translation. Here is Newton’s original (1967–1981, III,
p. 72): ‘Cùm autem temporis nullam habeamus æstimatione nisi quatenus id per æqua-
bilem motum localem exponitur et mensuratur, et præterea cùm quantitates ejusdem
tantùm generis inter se conferri possint et earum incrementi et decrementi celeritates
inter se, eapropter ad tempus formaliter spectatum in sequentibus haud respiciam, sed
e propositis quantitatibus quæ sunt ejusdem generis aliquam æquabili fluxione augeri
fingam cui cæteræ tanquam tempori referantur, adeoque cui nomen temporis analogicè
tribui mereatur. Siquando itaque vocabulum temporis in sequentibus occurrat . . . eo
nomine non tempus formaliter spectatum subintelligi debet sed illa alia quantitas cujus
æquabili incremento sive fluxione tempus exponitur et mensuratur.’
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certain geometric quantity – typically a segment or a portion of space – to be
able to be regarded as a variable, that another geometric quantity be available
and be such that the value of the former depends on its value. This latter
quantity works then as a parameter for the variation of the former. It is the
crucial idea of a principal variable.

For quite a long time, Newton seems to have been convinced that the fun-
damental way to express the relation between a geometric quantity and the
parameter of its variation consists in writing an algebraic – typically a poly-
nomial – equation interpreted on these quantities. His work on tangents and
quadratures, especially that inspired by Roberval’s method, taught him that this
same relation can also be expressed in a quite different, and more general and
fundamental way, by appealing to generative motions and their compositions.

The previous quotation manifests a new, crucial achievement. It reveals that
Newton is not dealing with the variation of geometric quantities – or of any
other particular sort of quantities – and with the way of expressing their mutual
relations. He is rather dealing with quantitative variation as such, understood
as a special kind of change. This is the kind of change characterized by the fact
that any particular example of it – let us say X – is univocally identified and
completely determined insofar as the link that connects it to a principal change
of this same kind, on which any other one depends, is determined by means
of a law that establishes how this principal change is reflected in X . Let T be
the principal quantitative variation. This means that a particular quantitative
variation X is univocally identified and completely determined insofar as an
appropriate particular relation R(X , T ) is determined. The subjects of X

and T (the entities that are supposed to vary) are not relevant here, and the
intrinsic nature of T is also not relevant, and, as a matter of fact, could not
be determined. This is not the principal quantitative variation because it is
uniform. Things go the other way around: T is (taken to be) uniform because
it is the principal variation.

One could argue that this idea is not new, since that which is described is (in
the language of the Scholastics) nothing but the change of intensive qualities.
This is incorrect, however. Newton seems, indeed, to permute the definiens and
the definiendum: quantitative variation is not defined by appealing to the notion
of intensive quality; rather a quantity is conceived, in its abstract generality,
as that which is submitted to a quantitative variation. Though quantities are
designated by atomic symbols – like x or y – they are not the specific objects
that these symbols stand for. They are rather that which varies according to
the relations that are somehow expressed by appealing to these symbols, for
example – but not only – through a polynomial equation. The following passage
is quite explicit about this (1967–1981, III, p. 73):40

40 I quote Whiteside’s translation, with some minor, essentially typographic changes (among
which there is that already mentioned in footnote 36). Here is Newton’s original (1967–
1981, III, p. 72): ‘Quantitates autem quas ut sensim crescentes indefinitè considero, quo
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But to distinguish the quantities which I consider as just perceptibly but

indefinitely growing from others which in any equations are to be looked

on as known and determined and are designated by the initial letters a,

b, c, &c., I will hereafter call them ‘fluents’ and designate them by the

final letters v, x, y and z. And the speeds with which they each flow and

are increased by their generating motion (which I might more readily call

‘fluxions’ or simply ‘speeds’) I will designate by the letters l, m, n, and r.

Newton is thus ready for the second reduction. The two previous problems
about spaces and speeds can now be re-stated as follows (1967–1981, III, pp. 75
and 83):41

Problem 1. Given the relation of the flowing quantities to one another, to

determine the relation of the fluxions.

Problem 2. When an equation involving the fluxions of quantities is exhib-

ited, to determine the relation of the quantities one to another.

The explicit reference to equations that occurs both in the previous passage
where Newton introduces the terms ‘fluent’ and ‘fluxion’ and in the statement
of the second problem is confirmed in the solution of these problems. Though
in the statement of the first problem, Newton is speaking in general of a relation
between fluents and fluxions, he solves the problem (1967–1981, III, pp. 74–
82) under the condition that this relation is expressed through an appropriate
equation: namely, either an algebraic equation (either polynomial or not)
between the relevant fluents, or an algebraic equation including a variable
expressing the area or the length of a curve expressed in terms of one of the
relevant fluents.42 Moreover, in solving the second problem (1967–1981, III,
pp. 82–112), he supposes that one or more algebraic equations among the
relevant fluents and fluxions are given and shows how to determine one of
these fluents in terms of another one through an algebraic, possibly infinitary,
algebraic expression.

distinguam ab alijs quantitatibus quæ in æquationibus quibuscunque pro determinatis et
cognitis habendæ sunt ac initialibus literis a, b, c , &c designantur, posthac denominabo
fluentes, ac designabo finalibus literis v, x, y, et z, Et celeritates quibus singulaæ a motu
generante fluunt et augentur (quas possim fluxiones vel simpliciter celeritates vocitare)
designabo literis l , m, n et r.’

41 I quote Whiteside’s translation. Here is Newton’s original (1967–1981, III, pp. 74 and
82): ‘Prob. 1. Relatione quantitatum fluentium inter se datâ; fluxionum relationem
determinare.’ ‘Prob. 2. Exposita æquatione fluxiones quantitatum involvente, invenire
relationem quantitatum inter se.’

42 Newton’s example (1967–1981, III, p. 78) is the equation z2 + axz − y4 = 0, where z
is supposed to be the area of the circle referred to a system of Cartesian orthogonal
co-ordinates of equation w =

√
ax − x2. This example is tractable, since Newton proves

that r = m
√

ax − x2 (where r and m are the fluxions of z and x, respectively), that is,
according to the differential formalism: dz/dx =

√
ax − x2 or z =

∫ x

0

√
at − t2dt.
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It could seem, thus, that the generalization involved in the passage from
motions to quantitative variations is immediately thwarted by a new regression
to the particularity of algebra merely extended through the appeal to specific
geometric quantities as areas and lengths. Things are not so, however. To under-
stand why, it is convenient to briefly reconstruct the development of Newton’s
ideas described above. Newton began by considering polynomial equations as
the privileged way to express curves with respect to Cartesian co-ordinates,
and showed that, if curves are so expressed, the problems of tangents or nor-
mals and of quadratures can be solved through the consideration of rectilinear
motions that are taken as the generative motions of these co-ordinates. He
passed then from curves so expressed to curves considered as trajectories of
composed motions, independently of any particular system of co-ordinates or
any sort of equation expressing them, and showed that the possibility of solving
the problems of tangents or normals and of quadratures for curves expressed
by polynomial equations, through the consideration of rectilinear motions, is
nothing but a particular consequence of a more general relation between these
trajectories and the components of the relative motions. Finally, he replaced
motions with quantitative variations, rectilinear trajectories with fluents, and
punctual speeds with fluxions. Still, in this new quite general context, the spec-
ification of any particular variation depends on the specification of relations
between fluents and fluxions. And, insofar as fluents are not particular sorts of
quantities – being rather quantities insofar as they are related to each other –,
there is no way to specify these relations by considering particular geometrical
or mechanical configurations. Hence, the formalism of Vietian analysis – that
is, algebraic equations – returns to take a central role as a privileged way for
specifying these relations and thus identifying particular fluents and fluxions.
Even the appeal to areas or the lengths appears, in this context, as an easy way
to introduce a purely algebraic relation between fluents and fluxions.43 Fluents
and fluxions are thus, so to say, abstract quantities: quantities conceived as
nothing but the subjects of quantitative variations, and Vietian analysis is the
tool used to specify these variations.

Of course, the intrinsic limitations of this tool affect the extension of the
domain of quantitative variations. Still, through his double reduction, Newton
has opened a new field for mathematical investigations. This is what, at the
very beginning of the De Methodis, he calls ‘field of analysis’,44 that is, the
general doctrine of abstract quantities, conceived as I have just said. Though

43 Cf. footnote 42, above. The appeal to the area of a circle, in the example considered in
this last footnote, is only useful to introduce the following system of equations:

⎧

⎨

⎩

z2 + axz − y4 = 0

w =
√

ax − x2

r = mw

.

44 Cf. the quotation appended to footnote 16.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 11:39:42 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.012

Cambridge Books Online © Cambridge University Press, 2012



from velocities to fluxions 253

the De Methodis comes back, after the solution of the two previous general
problems, to the usual geometric problems concerned with curves, this field
is largely extended after this first definition, and a large part of the history of
mathematics, after Newton’s De Methodis, consisted in efforts to enlarge it, by
extending the formalism of Vietian analysis (using, among others things, two
crucial ingredients which are already part of the toolbox used in this treatise,
namely, infinite series and fluxional – or better, in the language that later
became common, differential and integral – equations). Eulerian analysis is
just the result of the efforts made to structure this field and to absorb in it other
branches of mathematics. Newton’s field of analysis can thus be viewed as the
original kernel of it.

9.6 After the De Methodis (or concluding remarks)

As is well known, Newton will quickly change his mind and devote his mathe-
matical energy to classical geometry and the possibility of extending it without
modifying its intrinsic nature by using any extraneous formalism.45 There are
many reasons for this change, some of which are certainly not based on math-
ematical concerns. Still, the previous story teaches us something that may help
us to understand this change, which, as far as I know, has gone unnoticed by
commentators.

The theory of composition of motions that Newton elaborated based on
his understanding and development of Roberval’s method of tangents is a
theory according to which punctual speeds are considered as proto-vectorial
magnitudes: they have both a scalar and a directional component, which are
both relevant for composition. Once real motions are abandoned in favour of
quantitative variations, and punctual speeds are replaced by fluxions, only the
scalar component is conserved, since, in Newton’s theory of composition of
motions, the directional one was accounted for only through the positional
relations of the motions involved, which were represented by diagrams. Still,
the problem of considering directions of motions and speeds in the description
of physical phenomena could not be avoided.

Hence, Newton’s field of analysis could appear to be the original kernel of
an autonomous mathematical theory – like Eulerian analysis will later be –
only under the condition that this theory be conceived as a theory of pure
scalar relations, capable, at most, of providing a framework for accounting for
the relations that physical bodies have to each other because of their intensive
qualities. This theory could not provide, as such, a language for describing
physical reality, by idealization, but only a tool for calculating intensive rela-
tions of magnitudes whose particular nature and other sorts of relations had to

45 Among many other possible references about this matter, cf. Guicciardini (1999, pp. 101–
104).
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be independently specified. Briefly speaking, the interpretation of the relations
between abstract quantities as relations between particular quantities could not
develop without a crucial addition of information that this autonomous math-
ematical theory could not account for. The further development of differential
calculus, which allowed for the possibility of changing the principal variable
by passing from some differential ratios to others, captured at least part of this
information. Together with the introduction of appropriate differential and
variational principles, this allowed, during the eighteenth century, the growth
of analytical mechanics (Panza 2002). But in Newton’s theory of fluxions, these
developments were blocked by the presence of a unique independent variable
understood by analogy with time. The appeal to classical geometry – on which
his theory of composition of motions was ultimately founded – should thus
have appeared to Newton as a condition for using mathematics to speak of
the physical world up to a sufficient degree of accuracy. This could, perhaps,
partially explain the absence of the theory of fluxions in the Principia: this
could have, at most, provided a local tool to be used there, but it could not have
been, as such, the basic device of a new natural philosophy.46

Still, Newton’s field of analysis, became – mostly thanks to mathematicians
who did not share Newton’s peculiar geometrical outlook – the nucleus of a
new form of pure mathematics, whose applications depended on modalities
quite different than those proper to classical geometry. This was just eighteenth-
century analytic mathematics. My main aim has been to suggest that Newton
has to be considered as one of the main fathers of this form of mathematics –
better, as its original, first father.

46 To avoid misunderstanding, I repeat myself: this could be, at most, a partial explanation;
other reasons for which I cannot account here, are certainly also relevant.
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10

Newton, Locke, and Hume

graciela de pierris

From the 1690s until at least the second half of the eighteenth century, European

scientific and literary circles standardly perceived Newton’s and Locke’s systems

as resting on very similar principles and methods; these systems were commonly

blurred together as forming a single vision composed of natural and moral

philosophy.1 Moreover, a long tradition of Locke scholars extending to our time

has found close links between Locke’s and Newton’s views on the methodology

of natural science. Indeed there is no denying that Newton and Locke share

a similar conception of scientific method, if this is simply described as one

based on rational and regular experiments and observations, and the use of

generalization and deduction. (These similarities have been emphasized, for

example, by G. A. J. Rogers and John Yolton.)2

This is essentially an abridged version of my (2006). I am grateful to the editors of Hume
Studies for permission to publish the present version here. For discussions related to the
topic of the present paper, see the articles by Mary Domski and Lynn Joy in this volume.

1 Feingold (1988). This article masterfully weaves together the circumstances surrounding
the association of the two thinkers in both the expert and popular minds of the period.

2 Rogers (1978, p. 229), writes, for example: “[W]hat Locke found in the Principia was the
exemplification of a method to which he himself already subscribed. He already believed
that a combination of observation, generalization or induction, and deduction was the only
route to knowledge of nature and that the Principia exhibited just that method in its most
fruitful manner . . . It confirmed for him all his own methodological conclusions . . . The
Principia was for Locke the vindication of a general methodological approach to which
he had subscribed for perhaps twenty years.” (I thank Mary Domski for bringing to
my attention this particular passage as pointedly summarizing Rogers’s overall view of
a close kinship between Locke and Newton.) In this and other articles, Rogers argues
extensively for a close connection between Locke’s and Newton’s scientific methodology
and, in general, for what he takes to be the important influence of Locke on Newton.
Other articles where Rogers develops the same view are, for example, (1979a) and (1982).
In a similar vein, John Yolton, in a more cautious tone, writes, for example in (1969,
p. 193): “In his admiration for Boyle, Newton, and Sydenham, Locke was praising these
men for this method of carefully observing and recording the observed coexistence of
qualities. In his own scientific interests Locke practiced this method also. Theory and
hypothesis must find their place in the context of experience and history. The scientists of
the day had been making new discoveries and advances by using the method praised by
Locke.”
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Hume also explicitly associates his work and his method with Newton’s,

aspiring to be the Newton of a new science of human nature. This is very promi-

nent, in particular, in the Introduction to the Treatise3 and Section One of the

Enquiry.4 Thus, if both Locke and Hume are Newtonians, one could plausibly

identify Hume’s conception of the methodology of science with Locke’s. Never-

theless, as I shall argue, there is a clear and sharp distinction to be drawn between

Hume’s Newtonian inductivism and Locke’s conception of the methodology

of natural science in the Essay.5 In his conception of both the scientific method

and the origin and meaning of our idea of causation, Hume is deeply indebted

to what he takes to be the Newtonian inductive methodology for the study of

nature. This is not to deny Locke’s enormous influence on Hume: as with any

historical development of philosophical ideas, Hume’s epistemological views

would not have been possible without the contributions of his predecessors,

especially Locke’s.6 Yet Locke represents a crucial transition between Carte-

sian rationalism and the full-blown empiricism of Hume, and, in particular,

there are very important vestiges of rationalism in Locke’s epistemology influ-

encing his conception of scientific methodology: the idea of the containment

of the effect in the cause, the postulation of a hidden microstructure of pri-

mary qualities or properties of bodies, the attendant notion of a metaphysical

3 All citations of A Treatise of Human Nature (abbreviated as Treatise or T) are from the
David Fate Norton and Mary J. Norton edition (Hume 2000), and thus include the book,
part, section, and paragraph numbers. All citations of An Enquiry concerning Human
Understanding (abbreviated as Enquiry or EHU) are from the Tom L. Beauchamp edition
(Hume 1999), which includes section and paragraph numbers. All citations of An Enquiry
concerning the Principles of Morals (abbreviated as EPM) are from the Tom L. Beauchamp
edition (Hume 1998), which include sections and paragraph numbers.

4 In the Enquiry, at EHU 1.14–15, Hume expresses the hope that his own science of human
nature might meet with the same success as Newton’s determination of the laws and forces
that govern the motions of the planets. Here Newton is not mentioned explicitly by name,
but it is obvious that Hume refers to Newton when he writes about “the philosopher” who
established the laws and forces of planetary motions: “Astronomers had long contented
themselves with proving from the phaenomena, the true motions, order, and magnitude
of the heavenly bodies: Till a philosopher, at last arose, who seems, from the happiest
reasoning, to have also determined the laws and forces, by which the revolutions of the
planets are governed and directed.” In the Introduction to the Treatise, Hume expresses
the same aspiration of modeling his own science of human nature on Newton’s method.
This is evident in Hume’s desideratum, explicitly stated at T Introduction 8, of avoiding
conjectures and hypotheses in explaining the most general and certain principles derived
from experience. In the present paper I shall dwell on this desideratum, which I take to
be central to Newton’s and Hume’s rejection of the methodological scientific ideal of the
mechanical philosophy.

5 All citations from Locke (1975), include the roman numeral numbers of the book and
chapter, followed by the Arabic number of the section.

6 In particular, as I argue in my book manuscript, Ideas, Evidence, and Method: Hume’s Skep-
ticism and Naturalism concerning Knowledge and Causation, Hume adopts and radicalizes
the Lockean perceptual and imagist model of apprehension of items before the mind,
conceived as the standard of ultimate evidence.
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necessary connection between cause and effect, and the (for Locke unattain-

able) ideal of an a priori demonstrative knowledge or science of nature.

Hume follows Newton in substituting the ideal of inductive proof for the

ideal – characteristic of the mechanical philosophy – of a demonstrative science

of nature based on a postulated hidden microstructure. Although Hume does

not fully do justice to a fundamental aspect of Newtonian methodology – the

mathematization of nature7 – he adopts the basic ideas of Newton’s inductive

method as presented in the Rules for the Study of Natural Philosophy in Prin-

cipia, Book III, especially as articulated in the crucially important Rule III.8

Hume’s notion of inductive proof, which is at the heart of his conception of

causation and scientific methodology, consists in a universalization (whenever

possible and subject to future experimental revisions) of our past and present

uniform experience, with the attendant assumption that nature is, in Newton’s

words, “ever consonant with itself.” Hume’s embrace of Newton’s inductive

method marks a central point of departure from Locke’s conception of scien-

tific methodology, for, as I argue below, the desideratum of achieving Newto-

nian inductive proofs replaces the ideal of demonstrative knowledge of nature

and liberates scientific method from the a priori hypotheses of the mechani-

cal philosophy. In particular, the inductive derivation of laws from manifest

uniform phenomena takes priority over the hypothetical postulation, prior to

what experience can teach us, of a hidden microstructure of primary qualities –

which, according to the mechanical philosophy (shared by both Descartes and

Locke), necessitates the causal relations among bodies and between bodies and

our senses. Therefore, despite Hume’s extensive debt to Locke, Hume does not

have a Lockean conception of causation and scientific methodology.

10.1 Newton and Locke on scientific methodology

The central idea of the Newtonian inductive method, as summarized in New-

ton’s Rules, is that exceptionless or nearly exceptionless universal laws are

7 Neither Hume nor Locke has the resources in their empiricist conception of mathematics
and the relationship of mathematics to physics to incorporate the constitutive role of
mathematics in Newton’s physics. By contrast, precisely this constitutive role is emphasized
in Kant’s reading of Newton: see, for example, Friedman (1992). I. Bernard Cohen (1980)
emphasizes the methodological import of Newton’s mathematization of nature; and this
approach is further developed by George E. Smith (2002a). According to Cohen and Smith,
at the heart of Newton’s method is a process of mathematical idealization and successive
approximations by revision. There is no doubt that, in his adoption of Newton’s inductive
method, Hume ignores the role of mathematics and idealizations.

8 Rule III prescribes (Newton 1999, p. 795): “Those qualities of bodies that cannot be intended
and remitted [i.e. qualities that cannot be increased and diminished] and that belong to all
bodies on which experiments can be made should be taken as qualities of all bodies universally.”
All citations are from Newton (1999). Cohen, in his guide (1999, p. 200), explains that the
terms “intension” and “remission” go back to late-medieval doctrine referring to qualities
that “undergo an intension or remission by degrees.”
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inductively derived from “manifest qualities” or observed “phenomena,” and

only further observed phenomena can lead us to revise these laws. In his official

methodological pronouncements, Newton explicitly and emphatically opposes

the purely hypothetical explanations of the mechanical philosophy standing in

the way of his inductive argument for the law of universal gravitation.

Newton’s Rules III and IV state that his method of inductive universalization

must be applied without the interference of hypotheses, and, in his explanations

of these Rules, Newton explicitly depicts the hypotheses of the mechanical

philosophy as obstructing this method. This is clear in Newton’s explanation

of Rule III, for example:

For the qualities of bodies can be known only through experiments; and

therefore qualities that square with experiments universally are to be

regarded as universal qualities . . . Certainly idle fancies ought not to be

fabricated recklessly against the evidence of experiments, nor should we

depart from the analogy of nature, since nature is always simple and ever

consonant with itself. The extension of bodies is known to us only through

our senses, and yet there are bodies beyond the range of these senses; but

because extension is found in all sensible bodies, it is ascribed to all bodies

universally. We know by experience that some bodies are hard. Moreover,

because the hardness of the whole arises from the hardness of its parts, we

justly infer from this not only the hardness of the undivided particles of

bodies that are accessible to our senses, but also of all other bodies. That

all bodies are impenetrable we gather not by reason but by our senses. We

find those bodies that we handle to be impenetrable, and hence conclude

that impenetrability is a property of all bodies universally. That all bodies

are movable and persevere in motion or in rest by means of certain forces

(which we call forces of inertia) we infer from finding these properties in

the bodies that we have seen . . . Finally, if it is universally established by

experiments and astronomical observations that all bodies on or near the

earth gravitate [lit. are heavy] toward the earth, and do so in proportion

to the quantity of matter in each body, and that the moon gravitates [is

heavy] toward the earth in proportion to the quantity of its matter; and

that our sea in turn gravitates [is heavy] toward the moon, and that all

planets gravitate [are heavy] toward one another, and that there is a similar

gravity [heaviness] of comets toward the sun, it will have to be concluded

by this third rule that all bodies gravitate toward one another. Indeed,

the argument from phenomena will be ever stronger for universal gravity

than for the impenetrability of bodies, for which, of course, we have not a

single experiment, and not even an observation, in the case of the heavenly

bodies. Yet I am by no means affirming that gravity is essential to bodies.9

(Newton 1999, pp. 795–796)

9 Thus, at the end of the exposition of this rule, Newton asks the reader to accept an
immense leap: universal gravitation among all parts of matter in the Universe. Alexandre
Koyré (1968, p. 268), referring to this last claim, exclaims: “This is an affirmation of an
incalculable scope.”
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Here Newton illustrates the use of his method by first describing the inductive

inference to the generalization that all bodies are extended – which proposition,

contrary to Descartes, is not taken to be an a priori assumption known by the

pure intellect alone. Thus, in a way very congenial to Hume, Newton claims that

we inductively infer that all bodies – observed and unobserved – are extended

only on the basis of having uniformly observed that the bodies which are in the

range of our senses are extended.

Moreover, Newton here explicitly contrasts the strength of the argument for

universal gravitation with the case of the impenetrability of the heavenly bodies,

for which, as Newton points out, nobody in his time has a single experiment

or observation on which to ground an induction. Locke and Boyle – contrary

to Descartes – assume that impenetrability is one of the essential (primary)

qualities of all bodies. Indeed, for these empiricist mechanical philosophers,

the property of impenetrability is the most fundamental grounding of what

they – as mechanical philosophers and contrary to Newton – take to be the most

intelligible form of causation in physical nature: motion by impact or impulse.

Thus, one of the morals of Rule III is that the use of the inductive method is

contrary to a procedure which begins from the hypothetical assumption that

impenetrability is a primary quality essential to any piece of matter whatso-

ever. From a Newtonian perspective, laws that might govern the hypothetical

impenetrable parts of celestial bodies could gain equal standing with the law of

universal gravitation only if one could derive these laws from observations by

means of his inductive method. And in Rule IV and its explanation, Newton

prescribes that the conclusions of an inductive universalization from observa-

tions be regarded as true or nearly true until observed exceptions lead to their

revision.10 The laws inductively derived from phenomena are regarded as truly

universal (or very nearly so) – and thus are taken to be exceptionless (or very

nearly so) – until more observations lead to restrictions on their accuracy or

scope. But no mere mechanical hypothesis (such as the vortex theory) can lead

to such restrictions. Only uniform and constant manifest experience can lead

to revisions of the inductively established laws of nature; and the goal of this

entire process is to lead, eventually, to completely exceptionless universal laws

where no further restrictions are necessary.

Newton distinguishes between the status of universal conclusions established

by inductive proof and his own procedure of using experiments to show the

probability of a conjecture or hypothesis. Newton regards propositions proved

or “deduced from the phenomena” and “made general by induction” as hav-

ing the “highest evidence that a proposition can have in this [experimental]

philosophy.” By contrast, Newton explicitly denies that his own hypotheses (or

10 See Newton (1999, p. 796): “In experimental philosophy, propositions gathered from
phenomena by induction should be considered either exactly or very nearly true notwith-
standing any contrary hypotheses, until yet other phenomena make such propositions
either more exact or liable to exceptions. This rule should be followed so that arguments
based on induction may not be nullified by hypotheses.”
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conjectures) have the attributes of inductive proofs. Newton makes this point,

for example, in a letter to Cotes, March 1713:

[A]s in geometry the word “hypothesis” is not taken in so large a sense

as to include the axioms and postulates, so in experimental philosophy

it is not to be taken in so large a sense as to include the first principles

or axioms which I call the laws of motion. These principles are deduced

from phenomena and made general by induction: which is the highest

evidence that a proposition can have in this philosophy. And the word

“hypothesis” is here used by me to signify only such a proposition as is

not a phenomenon nor deduced from any phenomena but assumed or

supposed without any experimental proof.11

At the end of a letter to Boyle, February 28, 1678–9, after proposing various

conjectures about the ether, including one concerning the cause of gravity,

Newton writes: “[B]ut by what has been said, you will easily discern, whether

in these conjectures there be any degree of probability, which is all I aim at.”12

Reading Newton’s inductive Rules in combination with the above-quoted

passages from the Scholium and some of his letters strongly suggests that New-

ton is explicitly targeting the mechanical philosophers in his formulation of the

Rules. Newton’s central target is the rationalist version of this philosophy – as

defended by Descartes, Leibniz, and their followers – and he is most concerned

to prevent their a priori demonstrative ideal from hindering or “nullifying” his

own use of universalizing induction. However, the differences between New-

ton and Locke are more complicated and subtle than the differences between

Newton and these rationalist philosophers, for the obvious reason that both

Locke and Newton hold that observations and experiments are, in the end, all

the evidence we have in the study of nature. Nevertheless, despite this general

common ground, Locke remains wedded to central assumptions of the ratio-

nalist mechanical philosophers, and these prevent him from anticipating, in the

Essay, the key ideas of Newton’s inductive method as characterized in his Rules.

Indeed, this should not be at all surprising, since the crucial Rule III, where

Newton first explicitly emphasizes the tension between his method and the

hypotheses of the mechanical philosophy, was first added to the second edition

of the Principia in 1713, and Rule IV, where Newton completes this polemic by

warning of the dangers of “nullifying” the inductive method by hypotheses, was

only added to the third edition in 1726 – both long after Locke’s death in 1704.13

11 See Newton (2004, p. 118). 12 See ibid. p. 11.
13 Alexandre Koyré, in 1968, Chapter VI, argues that a comparison of the manuscripts show-

ing the changes throughout the three editions of the Principia illustrates the polemical
character of the Rules directed against the continental rationalists, especially Descartes
and Leibniz. Koyré argues, in particular, that Rule IV was added to the third edition
precisely because the defenders of the mechanical philosophy still persisted in rejecting
universal gravitation after the second edition.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 11:41:48 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.014

Cambridge Books Online © Cambridge University Press, 2012



newton, locke, and hume 263

The first important difference between Locke and Newton is that Locke is

an advocate of the mechanical philosophy (Locke is likely to have in mind

Boyle’s empiricist version) – which he calls the “corpuscularean Hypothesis” –

as providing the most intelligible explanation of the operations and qualities

we observe in bodies. The most intelligible such explanation, common to both

rationalist and empiricist mechanical philosophers, conceives all fundamental

causal action as communication of motion by impact or impulse. Locke is

very explicit about this in the first three editions of the Essay, for example (II,

VIII, 11): “Bodies operate one upon another, and that is manifestly by impulse,

and nothing else. It being impossible to conceive, that Body should operate on

what it does not touch, (which is all one as to imagine it can operate where

it is not) or when it does touch, operate any other way than by Motion.”14

Newton, by contrast, is not committed to the privileged intelligibility of the

mechanical communication of motion by impact or impulse, and, in particular,

he explicitly distinguishes the action of the (so far unknown) cause of gravity

from that of all “mechanical causes.”15

14 In the fourth edition (1700) of the Essay II, VIII, 11 and 12, Locke makes some limited
changes in response to Newton’s theory of gravitation. In Locke’s reply to Stillingfleet’s
second letter – (Locke 1824, vol. III, pp. 467–468) – Locke has announced his intention
to change those passages in the Essay which assert “that bodies operate by impulse, and
nothing else.” This is because he has been “convinced by the judicious Mr. Newton’s
incomparable book, that it is too bold a presumption to limit God’s power, in this
point, by my narrow conceptions.” However, in this letter Locke still claims that he can
conceive the operations of bodies one upon another in no other way but by impulse – this
conception derives from our idea of body and what we know of matter. Thus, the letter
continues: “The gravitation of matter towards matter, by ways inconceivable to me, is
not only a demonstration that God can, if he pleases, put into bodies powers and ways of
operation, above what can be derived from our idea of body, or can be explained by what
we know of matter, but also an unquestionable and every where visible instance, that he
has done so.” The change affecting Essay, II, VIII, 11 in the fourth edition commits Locke
solely to the view that the only way we can conceive bodies to operate is by impulse, and
this is how bodies produce ideas in us – Locke now does not make any claim about the
operation of bodies themselves upon one another. Similarly, the first sentence of Essay
II, VIII, 12, which in the previous editions read: “If then Bodies cannot operate at a
distance . . . ” (Nidditch edition, Locke 1975, critical apparatus at the bottom of page
136), is simply eliminated. These changes are really very modest; in particular, the new
sentences incorporated in Essay II, VIII, 11, are still consistent with the belief in the
superior intelligibility of motion by impulse or impact. In addition, there is no reference
to Newton’s theory of gravitation in the Essay in any of its editions. Besides the letter
to Stillingfleet, other writings in which Locke makes similar favorable pronouncements
concerning Newton’s theory of gravitation are Locke (1892) and Locke (1693/1989). For
a different view of the significance of these favorable Lockean pronnouncements, see
Downing (1998).

15 Thus, the famous “hypotheses non fingo” passage from the second edition General
Scholium begins as follows (Newton 1999, p. 943): “Thus far I have explained the phe-
nomena of the heavens and of our sea by the force of gravity, but I have not yet assigned a
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There is a related aspect of the model of intelligibility shared by the rational-

ist mechanical philosophers and Locke which has significant methodological

implications and thus marks a second important difference between New-

ton and Locke. This is the assumption that any proper causal explanation of

the operations and qualities we observe in bodies reduces to a hidden con-

figuration of the primary qualities of their “insensible Parts.”16 In particular,

the microstructure of “insensible Corpuscles” (characterized by their primary

qualities) underlying all observable phenomena is supposed to explain and

necessitate the effects of bodies on one another and on ourselves (Essay, IV,

III, 25): “These insensible Corpuscles, being the active parts of Matter, and

the great Instruments of Nature, on which depend not only all their secondary

Qualities, but also most of their natural Operations, our want of precise distinct

Ideas of their primary Qualities, keeps us in an uncurable Ignorance of what

we desire to know about them. I doubt not but if we could discover the Figure,

Size, Texture, and Motion of the minute Constituent parts of any two Bodies,

we should know without Trial several of their Operations one upon another,

as we do now the Properties of a Square, or a Triangle.”

To be able to penetrate into the exact configuration of the assumed primary

qualities of bodies is the guiding methodological desideratum for achieving

proper causal explanations, and thus what Locke calls “Knowledge” or “Sci-

ence” of nature. To be sure, Locke, unlike the rationalists, emphasizes a skeptical

gap (suggested here and further explained below) between what our faculties

can actually perceive and the particular microstructural configuration of pri-

mary qualities underlying the phenomena. Nonetheless, for both the rationalist

mechanical philosophers and for Locke, the ultimate causal explanations of

what we observe reside in precisely this hypothetical hidden microstructure.

By contrast, Newton, as we have seen, is especially concerned that the favored

cause to gravity. Indeed, this force arises from some cause that penetrates as far as the cen-
ters of the sun and planets without any diminution of its power to act, and that acts not in
proportion to the quantity of the surfaces of the particles on which it acts (as mechanical
causes are wont to do) but in proportion to the quantity of solid matter, and whose action
is extended everywhere to immense distances, always decreasing as the squares of these
distances.” Moreover, when Newton entertains the possibility of explaining the action of
gravity by the pressure exerted by an interplanetary ether in Query 21 of the Opticks, this
pressure is not due to motion by impact (as in the vortex theories of Descartes, Huygens,
and Leibniz) but to short-range repulsive forces acting at very small distances.

16 Locke gives several overlapping lists of primary qualities; perhaps the most complete list
appears at Essay, II, VIII, 9: “These I call original or primary Qualities of Body, which
I think we may observe to produce simple Ideas in us, viz. Solidity, Extension, Figure,
Motion, or Rest, and Number.” Locke then often uses “Bulk” to comprise solidity and
extension together, whereas “Texture” appears to refer to the way in which the various
“insensible Corpuscles,” with their individual sizes and figures, are situated with respect
to one another (so as, for example, to reflect light of various colors).
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hypothetical causal explanations of the mechanical philosophy do not interfere

with his use of the inductive method.

A third important difference between Locke and Newton concerns how they

conceive of “primary” properties. Whereas Newton does talk of “primary,”

“original” or “simple” properties, these, for him, are discovered only by obser-

vations and experiments – as a product of his inductive method. In a ground-

breaking analysis of the extent to which Locke differs from Newton concerning

the methodology of science, Howard Stein argues that, unlike Locke, Newton

does not take his primary and original properties as constituting an antecedently

fixed list, prior to and independently of what experimental inductive investi-

gation may then discover.17 In particular, Newton uses the terminology of

“primary,” “original,” or “simple” properties of light in the early parts of the

Opticks, where these include, for example, the intrinsic degrees of refrangibility

of differently colored rays revealed in his famous prism experiments. Thus, as

Stein points out, Newton’s conception of “primary” or “original” properties is

always open to what experience can teach us by the application of his inductive

method.18

In support of Stein’s point, I should add, first, that whenever Locke gives

lists of primary qualities in the Essay, he does not envision the possibility that

we might modify this list in light of experience. Second, since Newton’s Rules

III and IV explicitly oppose the mechanical philosopher’s method of starting

with hypotheses that cannot be modified by experimental investigation, these

Rules also imply the rejection of a hypothetical fixed list of primary properties

in advance of what experience can teach us. Third, whereas Locke’s primary–

secondary quality distinction is associated with a skeptical gap between our

perceptions and an underlying hidden reality that explains them, Newton’s

notion of “primary” or “original” properties is associated with no such gap:

these, on the contrary, are continually made accessible to us by the inductive

or experimental investigation of manifest phenomena.

The skeptical gap on Locke’s account leads to a crucially important fourth

methodological difference between himself and Newton: in spite of his skepti-

cism, Locke retains the a priori ideal of knowledge of nature. As we have seen

in our discussion of the second point of difference, Locke, at Essay, IV, III, 25,

claims that if we could discover the hidden configuration of primary qualities,

then we would have a priori demonstrative knowledge (“without Trial”) of

the operations of bodies. However, since we cannot in fact penetrate to this

17 See Stein (1990). More generally, in my discussion of the methodological differences
between Newton and Locke, I am very much indebted to this article. However, I espe-
cially emphasize the points that illuminate the closely related methodological differences
between Locke and Hume.

18 G. A. J. Rogers, by contrast, consistently takes the primary–secondary quality distinction
as a central point of agreement between Newton and Locke. See, for example, (1982,
p. 225).
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hidden structure, we are left in “an incurable Ignorance.” Locke’s emphasis on

this problem certainly distances him from the rationalist proponents of the

mechanical philosophy. For Locke, however, we cannot achieve demonstrative

knowledge or science of bodies precisely because we cannot acquire knowledge

of what Locke assumes, together with the rationalists and independently of

observation or experiment, to be the necessary, intrinsic connection between

the primary qualities of bodies and their operations on other bodies and on

ourselves. Because of precisely this ignorance, although we can empirically

arrive at probable connections and regularities among the secondary qualities

we observe, we cannot establish certain and undoubted rules governing them

(see, for example, Essay, IV, III, 14). We can merely conventionally collect qual-

ities under a general name – the nominal essence of a particular substance –

guided by the observation of manifest qualities.19 Thus, nominal essences allow

us to sort individuals into species of things, but we will never know whether

the observed qualities we compile under these nominal essences correspond

with the real essences of things (see, for example, Essay, III, VI, 9).

Therefore, the general prescription to rely on experience and observation in

the study of nature, which Locke undoubtedly shares with Newton and Hume,

does not lead to a rejection of the explanatory ideal of the mechanical philoso-

phy. On the contrary, it is only by fulfilling this ideal, for Locke, that we could

ever attain true “Knowledge” or “Science,” of nature; and, in “experimental

philosophy,” we must instead be content with what Locke calls “Judgment”

and “Opinion” (see, for example, Essay, IV, III, 26).20 In sum, Locke’s skepti-

cism about the possibility of a genuine “Science” of nature depends on central

tenets of the mechanical philosophy, and his view of what experimental inquiry

can achieve (mere “Judgment” and “Opinion”) is a consequence of his demon-

strative ideal of “Knowledge” and “Certainty.”21

19 For Locke’s conventionalism about nominal essences of different kinds of substances,
thus about natural kinds, see Essay, III, VI.

20 The certain knowledge that for Locke we can in fact attain includes (necessary) intu-
itive knowledge, (necessary) demonstrative reasoning (as in Descartes, mathematics, not
logic, is the paradigm of both intuitive and demonstrative knowledge), knowledge of
the existence of God, and sensitive knowledge of the real existence of things without the
mind. However, it does not include the specific nature of existing physical things. See, for
example, Essay, Book IV, Chapters II–IV, VI, and IX–XI.

21 Edwin McCann – for example, in (1983) – has argued against the interpretation I follow in
this paper, according to which Locke adopts a geometrical, deductive model of the powers
and operations of bodies. On McCann’s view, when Locke affirms, for example in passages
such as Essay, IV, III, 28, that the “mechanical affection” (primary qualities) of bodies
have “no affinity at all” with the sensations of secondary qualities produced by them in
our minds, and thus “we can have no distinct knowledge of such Operations beyond our
Experience; and can reason no otherwise about them, than as effects produced by the
appointment of an infinitely Wise Agent, which perfectly surpass our Comprehensions,”
Locke means that there are contingent, divinely established laws of nature, which do not
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We thereby finally arrive at a fifth important difference between Locke and

Newton: unlike Newton’s conception of his own inductive method, probable

opinion in Locke can never result in a truly universal exceptionless law. Locke

does not anticipate an experimental method leading to the formulation of

inductively established, exceptionless universal laws of the kind envisioned in

Newton’s Rules III and IV; and he does not arrive, in particular, at the idea that

such an inductive method can replace the demonstrative ideal of the mechan-

ical philosophy with an alternative ideal of scientific knowledge. In Locke,

experience is merely a source for the modification and revision of what we pro-

visionally regard as nominal essences, but there is no way, as we have seen, that

we could ever know whether such nominal essences correspond to – or even

approximate – the truly necessary connections determined by the real essences.

In devising conventional nominal essences of particular substances, we rank

things by using general names in order to class individuals together into species

or kinds in accordance with our observations and experiments. However, we

could never attain either certainty or necessity or knowable exceptionless uni-

versality in this way. For example, the regularities we have observed in making

general claims about gold – (we have observed that gold, unlike iron, has always

been malleable) – have no knowable connection with the truly exceptionless

universality we could obtain only by a knowledge of gold’s real essence.

Thus, even if we interpret Locke’s nominal essences as generalizations result-

ing from induction (since the formulation of nominal essences depends on

repeated observations), these generalizations could never amount to what New-

ton calls inductive or experimental “proofs” of truly universal exceptionless laws

of nature. Genuine exceptionless universality, for Locke, could only result from

certain and demonstrative knowledge, which, in the case of bodies, is for us

unattainable. For Locke, therefore, corresponding to the unbridgeable skeptical

gap between primary and secondary qualities, real and nominal essences, there

is a parallel unbridgeable gap between the regularities we actually observe and

the truly universal, absolutely certain laws which must demonstratively flow

from the real essences:

follow with necessity from the mechanical nature of bodies. On this view, Locke is not a
pure mechanist: the connection of observable qualities and powers with the microstruc-
ture or real essence of bodies is not strictly a priori, but contingently established by the
arbitrary power of God. In order to have Knowledge of bodies, in addition to knowing their
real essence (which we do not know), we need to know the contingent general connections
ordained by God, which can only be cognized experimentally. Michael Ayers, in (1991),
vol. II, chapter 12, argues against McCann’s interpretation (and other more limited vol-
untarist interpretations, such as Leibniz’s and Margaret Wilson’s). In this controversy I
side with Michael Ayers: not only do I take Locke to endorse the demonstrative ideal of
the knowledge of nature, but I also agree with Ayers that Locke’s pronouncements about
unknown conjunctions possibly established by God are skeptical epistemological claims of
possibility, not ontological claims regarding the contingent character of the laws of nature.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 11:41:48 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.014

Cambridge Books Online © Cambridge University Press, 2012



268 graciela de pierris

The more, indeed, of these co-existing Qualities we unite into one complex

Idea, under one name, the more precise and determinate we make the

signification of that Word; But yet never make it thereby more capable

of universal Certainty, in respect of other Qualities, not contained in our

complex Idea; since we perceive not their connexion, or dependence one

on another; being ignorant both of that real Constitution in which they

are all founded; and also how they flow from it . . . Could any one discover

a necessary connexion between Malleableness, and the Colour or Weight

of Gold, or any other part of the complex Idea signified by that Name,

he might make a certain universal Proposition concerning Gold in this

respect; and the real Truth of this Proposition, That all Gold is malleable,

would be as certain as of this, The three Angles of all right-lined Triangles,

are equal to two right ones.

(Essay, IV, VI, 10)22

Thus, Locke identifies truly universal laws of nature with absolutely necessary

and demonstratively certain laws, grounded in the (forever unknowable) real

constitution or essence of bodies. Because of this conception of the universality

and necessity of the laws of nature, Locke’s empirical scientific methodology is

left with an exclusive emphasis on probable opinion concerning the differences

among particular substances, such as the observable differences in the sensible

qualities of gold and iron. Locke nowhere envisions the third category of

inductive or experimental “proofs” in Newton’s sense.

As we have seen, Newton, in his remarks on Rule III, explicitly warns against

the danger of allowing mechanical hypotheses to interfere with what he takes to

be an inductively established universal law – the law of universal gravitation –

and Rule IV goes on to emphasize that restrictions in the accuracy or scope of

22 In a similar passage at Essay, IV, III, 25, which I partially quoted before, Locke affirms
again the impossibility of deriving truly universalizing conclusions from observations,
and suggests that knowledge of universal laws (if per impossibile we could have it) would
be demonstrative knowledge as in geometry: “If a great, nay far the greatest part of the
several ranks of Bodies in the Universe, scape our notice by their remoteness, there are
others that are no less concealed from us by their Minuteness. These insensible Corpuscles,
being the active parts of Matter, and the great Instruments of Nature, on which depend
not only all their secondary Qualities, but also most of their natural Operations, our want
of precise distinct Ideas of their primary Qualities, keeps us in an uncurable Ignorance of
what we desire to know about them. I doubt not but if we could discover the Figure, Size,
Texture, and Motion of the minute Constituent parts of any two Bodies, we should know
without Trial several of their Operations one upon another, as we do now the Properties of
a Square, or a Triangle . . . But whilst we are destitute of Senses acute enough, to discover
the minute Particles of Bodies, and to give us Ideas of their mechanical Affections, we
must be content to be ignorant of their properties and ways of Operation; nor can we
be assured about them any further than some few Tryals we make, are able to reach. But
whether they will succeed again another time, we cannot be certain. This hinders our
certain Knowledge of universal Truths concerning natural Bodies; and our Reason carries
us herein very little beyond particular matter of Fact.”
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such laws can only be grounded in further inductive evidence. Proceeding in

this way, we can successively correct for any exceptions that may inductively

be found, so as eventually to approximate closer and closer to a truly universal

and exceptionless inductive generalization. Generalizations grounded by this

method have the “highest evidence that a proposition can have in this [experi-

mental] philosophy,” with which no corpuscularean hypothesis or conjecture

can possibly compete. Newton’s conception of experimental philosophy, unlike

Locke’s, is fashioned in explicit opposition to the demonstrative ideal of the

mechanical philosophy, and his conception of inductive generalization, in par-

ticular, is intended to replace this ideal with a contrary purely inductive ideal.

This is precisely the crucial step that Locke never takes and which, as we shall

see, is taken by Hume.

10.2 Hume’s Newtonian ideal of causation and induction

Newtonian inductivism inspires Hume’s own positive account of causation and

conception of scientific methodology – both in opposition to the mechanical

philosophy of nature which Hume has inherited. As we have seen, in the received

view of causation, shared by both Descartes and Locke, nature or reality has

an ultimate or intrinsic constitution of primary qualities which underlies the

causal relations we can observe – the view of causation is thus intimately related

to a view of the necessity in nature. For Locke, in particular, a material necessity

independent of both our minds and our available empirical methods explains

causal connections and resides in the intrinsic causal powers of bodies – powers

with which the primary qualities of substances are endowed. Locke shares the

mechanical philosophy’s understanding of how a microstructure of primary

qualities in one body can necessitate effects in another: the motions of the

microscopic parts of one body are communicated by impact to the microscopic

parts of another.

This view of causation would explain the causal nexus in a single case – if we

could penetrate into the intrinsic hidden microstructure of the bodies involved.

In my view, Hume’s argument against the very notion of singular causation is

the first instance where we can appreciate Hume’s moves against the mechan-

ical philosopher’s conception of efficient causation. Indeed, it is precisely in

the context of arguing against singular causation that Hume famously argues

against the demonstrative derivation of effects from causes, and this argument

is also explicitly directed against the received view that we have grounds for

claiming that there really is, independently of our observation of causes and

effects, a necessary connection between them. In advancing objections to tak-

ing a singular observation of a relation between objects as causal, Hume is

not merely preparing the ground to claim, following the model of Newton-

ian induction, that the central ingredient in our idea of causation is con-

stant conjunction, that is, uniform experience of like causes followed by like
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effects.23 He is raising, in addition, several interconnected skeptical doubts

regarding the mechanical philosophy’s model of causal explanation: the con-

tainment of the effect within the cause, the ideal of demonstrative knowledge

of causation, and the reality of a necessary connection between cause and

effect – all dependent on the postulation of a hidden configuration of primary

properties.

Contrary to the mechanical philosopher’s conception of the containment of

the effect in the cause, Hume argues that the ideas of cause and effect are distinct

ideas, entirely separable and thus independent from one another (T 1.3.3.3):

“[A]ll distinct ideas are separable from each other, and as the ideas of cause

and effect are evidently distinct, ’twill be easy for us to conceive any object to

be non-existent this moment, and existent the next, without conjoining to it

the distinct idea of a cause or productive principle.”24

Hume also makes it explicit that his rejection of the conception of the

containment of the effect in the cause goes hand in hand with his rejection of

an a priori, demonstrative model of causal explanation:

’Tis easy to observe, that in tracing this relation, the inference we draw from

cause and effect, is not deriv’d merely from a survey of these particular

objects, and from such a penetration into their essences as may discover the

dependence of the one upon the other. There is no object, which implies

the existence of any other if we consider these objects in themselves,

and never look back beyond the ideas which we form of them. Such

an inference wou’d amount to [demonstrative] knowledge, and wou’d

imply the absolute contradiction and impossibility of conceiving any thing

different. But as all distinct ideas are separable, ’tis evident there can be

no impossibility of that kind. When we pass from a present impression to

the idea of any object, we might possibly have separated the idea from the

impression, and have substituted any other idea in its room.

(T 1.3.6.1)

To “consider these objects in themselves” is to consider only the meager evidence

of impressions of sensation or objects before the mind. Any further ideas that

we take to have been inferred from these direct presentations might have

been erroneously inferred, for there is no intrinsic connection in terms of

the content of distinct presentations before the mind such as those we regard

as a cause and an effect. It follows from this that it is intelligible to regard

anything as the cause of anything else; and the reference to the postulation

of an essence, in particular, makes it clear that Hume is here targeting the

mechanical philosophers, including Locke.

23 Hume adds constant conjunction at T 1.3.6 and EHU 4, Part II, after he has argued in
both works against singular causation.

24 See also T 1.3.6.1; EHU 4.6; and so on.
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By emphasizing that all we observe are distinct, separable events, Hume

implies that the only clue to any legitimate postulation at the microscopic level

is provided by the macroscopic observation of separate events. Any connection

that we would find at the microscopic level, if we were to advance by means of

observation to it, would thus be an inductively derived connection, not an intel-

ligible necessary connection of the intrinsic content of the (ideas of) cause and

effect. Hume is not precluding the attempt to advance by the inductive method

into the microscopic level. Yet, because our only guide is what we observe,

we can only inductively generalize from the observed to the unobserved, and

thus claim that if we could penetrate into the microscopic level, we would still

only observe separate, distinct events, just as we do at the macroscopic level.

The postulation of a hidden microstructure prior to what we can observe not

only interferes with the inductive method, but it is also entirely idle, since

claims about the unobserved microscopic level can only be inductively inferred

from regular and constant experience at the macroscopic level. In particular,

the most we can claim concerning laws of impact is that the same inductively

inferred laws holding at the macroscopic level between distinct and separable

events hold for the not-yet-observed microscopic level as well.

In Enquiry, Section 6, Hume places the laws of impact and gravitation (and

common-sense generalizations based on constant conjunctions) on an entirely

equal footing with respect to their legitimacy and intelligibility – which, in all

cases, is based on the inductive method and thus the observation of constant

conjunction. Unlike Locke, in the Essay, who explicitly claims that the only

intelligible explanation of motion is by impulse and suggests that Newton’s

Principia is a work in pure mathematics,25 Hume unreservedly accepts uni-

versal gravitation as a law of nature, and takes Newton’s theory to articulate a

fundamental law of nature on a par with all other inductively established laws

(EHU 6.4): “There are some causes, which are entirely uniform and constant

in producing a particular effect; and no instance has ever yet been found of

any failure or irregularity in their operation. Fire has always burned, and water

suffocated every human creature: The production of motion by impulse and

gravity is an universal law, which has hitherto admitted of no exception.” Notice

the qualification, in accordance with Newton’s Rules III and IV, that these laws

have hitherto been observed to be exceptionless, thus the suggestion that they

are open to revision by experience.

Hume takes the laws or principles of elasticity, gravity, cohesion of parts,

and communication of motion by impulse to be completely equivalent with

respect to legitimacy and intelligibility, for, in all these cases, we have inductively

discovered laws of nature arising from the observation of constant conjunction.

25 At Essay, IV, VII, 3, Locke writes: “Mr. Newton, in his never enough to be admired Book,
has demonstrated several Propositions, which are so many new Truths, before unknown
to the World, and are farther Advances in Mathematical Knowledge.”
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And again, the power or necessary connection, which hypothetically might be

taken to be involved in action by contact, is as unintelligible as gravitational

action at a distance (EHU 7.25): “We surely comprehend as little the operations

of one [the Supreme Being] as of the other [the grossest matter]. Is it more

difficult to conceive, that motion may arise from impulse, than that it may arise

from volition? All we know is our profound ignorance in both cases.” In the

immediately preceding paragraphs, Hume has argued against occasionalism,

and, before addressing occasionalism, Hume has also argued against Locke’s

view that we acquire the idea of power from the actions of the mind. A footnote

to the last quoted words then stresses the equal unintelligibility attending

the idea of a power that allegedly operates in inertia, motion by impact and

gravitational action at a distance: we have to limit our claims to “facts,” that

is, to observed constant conjunctions and the inductively inferred conclusions

from such observations. As Newton’s Rule III prescribes, all we can rely on are

observations, and if the observations are sufficient in number, uniform and

constant, we can generalize by induction to unobserved cases of the same kind.

At T 1.3.6, in the course of answering a question he has posed at T 1.3.2.15

(“Why we conclude, that such particular causes must necessarily have such

particular effects; and what is the nature of that inference we draw from the

one to the other, and of the belief we repose in it?”), Hume adds as an essential

ingredient of the notion of causation the observation of constant conjunction –

that like objects have been always placed in like relations. This experience

amounts to the observation of uniformities of the kind Newton illustrates, as

we have seen, in the explanation of Rule III. But how and why can we generalize

from what we have hitherto uniformly observed to the unobserved? Hume asks

(T 1.3.6.4): “[W]hether we are determin’d by reason to make the transition

[from the experience of the constant conjunction of events of a first kind with

events of a second kind to unobserved events of either kind, or to universal

laws of nature] or by a certain association and relation of perceptions.” In view

of the previous contrasts Hume has drawn between natural and philosophical

relations (at T 1.1.4–5), and between knowledge and probability (at T 1.3.1–2),

Hume’s question here can be taken to be whether we are determined to draw an

inference by natural principles of association of the mind (by natural relations),

or, instead, we base the causal inference on philosophical relations, where

the latter, in my view, involve reflective comparisons that yield legitimizing

reasons.26 Hume then writes (T 1.3.6.4): “If reason determin’d us, it wou’d

26 In De Pierris (2002), I discuss Hume’s distinction between two kinds of philosophical
relations at Treatise 1.3.1–2 – those established either by intuitive and demonstrative
reasons, or by experience itself – and I render it in terms of two methods for justifying
claims about relations: either solely on the basis of comparisons of intrinsic features of
the relata, or on the basis of their extrinsic relations. I shall leave for another occasion my
defense of the view that in asking whether we are determined by reasoning to draw causal
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proceed upon that principle, that instances, of which we have had no experience,

must resemble those, of which we have had experience, and that the course of

nature continues always uniformly the same.”

As we have seen, in Rules III and IV Newton formulates the basic idea of

his inductive scientific methodology, and the explanation of Rule III includes

the guiding principle of the inductive method that nature is always consonant

with itself. In my view, the principle “that instances, of which we have had

no experience, must resemble those, of which we have had experience, and that

the course of nature continues always uniformly the same” in T 1.3.6 is Hume’s

own version of the Newtonian principle, which licenses the universalization

of completely uniform experience into exceptionless laws. As Alexandre Koyré

emphasizes, for Newton this methodological principle has a justificatory role,

since it is precisely on its basis that we are licensed to go beyond the data of the

senses and attribute to all bodies whatsoever – observed and unobserved – the

qualities we have observed so far (1968, p. 267): “And it is just because nature is

consonant to herself that we can generalize the data of experience and attribute

to all bodies the properties that experience shows us in those which are within

our reach.”

Although Hume does not explicitly refer to Newton’s Rule III in his epis-

temological writings, he does explicitly cite it in the Enquiry concerning the

Principles of Morals, in support of his empirical generalization regarding how

we are determined to approve of the social virtues. Hume suggests that because

the principle of usefulness or utility has been found to have a great force or

energy as the (sole) source of the moral approbation paid to the (more artifi-

cial) social virtue of justice, it must have a considerable force or energy in the

case of such (more natural) social virtues as humanity, benevolence, and so on:

The necessity of justice to the support of society is the SOLE foundation

of that virtue; and since no moral excellence is more highly esteemed,

we may conclude that this circumstance of usefulness has, in general, the

strongest energy, and most entire command over our sentiments. It must,

therefore, be the source of a considerable part of the merit ascribed to

humanity, benevolence, friendship, public spirit, and other social virtues

of that stamp . . . It is entirely agreeable to the rules of philosophy, and even

of common reason; where any principle has been found to have a great

force and energy in one instance, to ascribe to it a like energy in all similar

instances. This indeed is Newton’s chief rule of philosophizing1.

(EPM 3.48)

The footnote reads: “Principia, Lib. III.”

inferences, Hume raises the question of whether we have legitimizing or justificatory
reasons (either a priori or a posteriori) for causal inductive inferences to the unobserved.
For the view that at T 1.3.6 Hume does not raise skeptical doubts about induction see
Garrett (1997, chapter 3).
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In order to understand the full import of this example, it is important

to see that there are, both in Newton and in Hume, two ways of applying

Newton’s methodological principle that nature is consonant with itself. In

the first place, this principle licenses the inductive inferences from particular

constant conjunctions of the same type to unobserved cases of, or univer-

sal generalizations over, these same types. The formulation of Newton’s Rule

III articulates this kind of straightforward induction, and, in the explana-

tion of this Rule, Newton mentions the principle that nature is consonant

with itself as guiding such inferences. He illustrates how such a principle

guides the inferences from the experience that particular bodies or parts of

bodies are extended to the generalization that all bodies are extended, from

the experience that particular bodies are impenetrable to the generalization

that all are impenetrable, and the same inductive procedure is followed to

conclude that all bodies are movable and endowed with the power of iner-

tia. However, in his most important application of Rule III, Newton shows

that induction and its justificatory principle of the uniformity of nature have

an even more far-reaching application. At a second stage, a higher level of

generalization can proceed by the same methodological rule: different gen-

eralizations obtained by induction and the principle of the uniformity of

nature in different realms can now be unified with one another under an

even more comprehensive generalization. Thus, in the explanation of Rule III,

Newton illustrates this second type of application of induction and the princi-

ple of the uniformity of nature with his own inference to the law of universal

gravitation. The law of gravitation holds in the realm of objects close to the

Earth; it holds in the different realm of the relation between the planets and

the Sun; it again holds in the different realm of the interaction between the

Moon and the sea, and so on. The law of universal gravitation is general-

ized to all bodies whatsoever starting from these more restricted lower-level

generalizations.

In this way, the principle of gravity, which initially has explanatory power

in one realm (bodies close to the Earth) is shown also to have explanatory

power in another realm (the motions of the planets). Inductive generalization

and the assumption of the uniformity of nature unify all these lower-level

generalizations under a higher-level generalization. Similarly, in Hume, the

principle of public interest and utility is inductively shown to have “sole”

explanatory power concerning the (more artificial) social virtue of justice.

Then, in a second stage, public interest and utility can be further general-

ized so as to explain a “considerable part” of the (more natural) social virtues

of humanity, benevolence, and so on. The result is a higher-level generaliza-

tion that unifies all of the virtues under a single law of public interest and

utility. This unification can be achieved precisely because of a second-level

assumption that human nature is uniform. Hume thus takes Newton’s Rule

III as a model for his own inductive investigation of human nature, and he
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thereby models the moral sciences on the Newtonian method in the natural

sciences.

This general point is further substantiated by Hume’s own “rules by which to

judge of causes and effects” presented at T 1.3.15. The first three rules comprise

the definition of cause in terms of constant conjunction (uniform experience).

Rule four states that we can turn into a rule an operation that we naturally

follow, namely, that when we have (inductively) discovered causes and effects

on the basis of uniform experience, we usually extend our observation to every

phenomenon of the same kind. The fifth rule also depends, as the previous

ones, on the assumption that we establish causes and effects on the basis of

uniform experience: when several different objects produce the same effect it

must be by the same (more properly, by a resembling) quality present in all

of the causes. And the sixth rule is parasitic on the fifth: the difference in the

effects of two resembling causes must proceed from the particular qualities on

which they differ (T 1.3.15.8): “For as like causes always produce like effects,

when in any instance we find our expectation to be disappointed, we must

conclude that this irregularity proceeds from some difference in the causes.”

Rule six thereby registers irregularities, but prescribes what reasoning might

lead us to refine them in the direction of perfect uniformity. It is precisely by

assuming the uniformity of nature – that like causes produce like effects – that

we can then undertake this process of refinement.

In rule seven, however, the crucial Newtonian background stands out even

more clearly. At issue are compound causes of “compounded” effects, and

Hume warns against misapplications of this rule with an example from the

moral sciences.27 Hume illustrates exactly what he has in mind in his earlier

discussion of “the probability of causes”:

We may establish it as a certain maxim, that in all moral as well as natural

phaenomena, wherever any cause consists of a number of parts, and the

effect encreases or diminishes, according to the variation of that number,

the effect, properly speaking, is a compounded one, and arises from the

union of the several effects, that proceed from each part of the cause. Thus

because the gravity of a body encreases or diminishes by the encrease or

diminution of its parts, we conclude that each part contains this quality

27 See T 1.3.15.9: “When any object encreases or diminishes with the encrease or diminution
of its cause, ’tis to be regarded as a compounded effect, deriv’d from the union of the
several different effects, which arise from several different parts of the cause. The absence
or presence of one part of the cause is here suppos’d to be always attended with the
absence or presence of a proportionable part of the effect. This constant conjunction
sufficiently proves, that the one part is the cause of the other. We must, however, beware
not to draw such a conclusion from a few experiments. A certain degree of heat gives
pleasure; if you diminish that heat, the pleasure diminishes; but it does not follow, that if
you augment it beyond a certain degree, the pleasure will likewise augment; for we find
that it degenerates into pain.”
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and contributes to the gravity of the whole. The absence or presence

of a part of the cause is attended with that of a proportionable part of

the effect. This connexion or constant conjunction sufficiently proves the

one part to be the cause of the other. As the belief, which we have of

any event, encreases or diminishes according to the number of chances

and past experiments, ’tis to be consider’d as a compounded effect, of

which each part arises from a proportionable number of chances and

experiments.

(T 1.3.12.16)

Hume here has in mind the conclusion – central to the law of universal grav-

itation – that each part of a gravitating body (like the Earth) also gravitates

(so that the gravity of the whole is the sum of the gravities of the individ-

ual parts), and Hume proceeds to apply this Newtonian model, once again,

to an example from the moral sciences (T.1.3.12.16): “As the belief, which

we have of any event, encreases or diminishes according to the number of

chances and past experiments, ’tis to be consider’d as a compounded effect,

of which each part arises from a proportionable number of chances and

experiments.”

Newton establishes the property of gravity in question in Propositions 6

and 7 of Book III of the Principia, which crucially depend on Rule III.28 We

first show, by experiment, that all bodies falling toward the Earth are attracted

by gravity in proportion to their quantity of matter. We then observe, by the

equality of action and reaction, that all these bodies must attract the Earth

as well, and we conclude, by Rule III, that the latter attraction (for which

we do not yet have experiments) must also take place in proportion to the

Earth’s quantity of matter. Therefore, the Earth’s gravity arises from, and is

compounded out of, the individual gravitational attractions of its parts.29 It

28 I am especially indebted to Michael Friedman here.
29 Cotes’s summary in his Preface to the second edition explains this point especially clearly

(Newton 1999, p. 387): “The attractive forces of bodies, at equal distances, are as the
quantities of matter in these bodies. For, since bodies gravitate toward the earth, and the
earth in turn gravitates toward each body, with equal moments, the weight of the earth
toward each body, or the force by which the body attracts the earth, will be equal to
the weight of the body toward the earth. But, as mentioned above, this weight is as the
quantity of matter in the body, and so the force by which each body attracts the earth, or
the absolute force of the body, will be as its quantity of matter. Therefore the attractive
force of entire bodies arises and is compounded from the attractive force of the parts,
since (as has been shown), when the amount of matter is increased or diminished, its
force is proportionally increased or diminished. Therefore the action of the earth must
result from the combined actions of its parts; hence all terrestrial bodies must attract one
another by absolute forces that are proportional to the attracting matter.”
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therefore appears overwhelmingly likely that Hume not only has Newton’s argu-

ment for universal gravitation clearly in mind in the Treatise, but he also takes

Newton’s Rule III as the fundamental guide for his own inductive investigations

of the moral sciences there – just as he explicitly does so later in the second

Enquiry.30

Yet Hume’s own positive notion of causation modelled on Newton’s inductive

method is not limited to the justificatory role of the principle of the uniformity

of nature in inductive inference. That we must not assume anything before

(or beyond) experience, that the premises of our causal inductive inferences

consist of uniform experience, and the universalizing character of the laws

resulting from such inferences to the unobserved are also essential ingredients

of Newton’s inductive method. As I have shown, Locke did not anticipate

the import of Newton’s Rules III and IV, and he certainly did not envision

replacing the ideal of demonstrative knowledge of nature by the Newtonian

inductive method. In Locke, there is no serious consideration of the merits

or limits of a principle of induction to ground genuinely universal laws – a

principle which legitimizes the formulation of universal exceptionless causal

laws concerning all corporeal substances, or even all corporeal substances of a

particular kind, beyond the narrow scope of our experiments. What might be

taken to be inductive generalizations in the formulation of nominal essences

of substances need not correspond with the ultimate metaphysical explanation

of causal relations involving these substances, which lies at the level of their

hidden microstructure.

According to Hume, as we have seen, the mechanical philosophy’s a priori

model of the causal relation in terms of the intrinsic necessary structure of

substances is not a correct but unattainable ideal model; rather, it provides a

completely misguided model of the causal relation. This ideal is entirely mis-

placed when applied to matters of fact, not because there is an unknowable

inner microstructure of necessary connections that explains the regularities we

observe, but rather because the very idea of necessary connection as an intrinsic

quasi-geometrical containment is itself completely incorrect. As Hume’s char-

acterization of causation (as a philosophical relation) at T 1.1.4–5 revealingly

puts it, causation does not concern relations that we can ascertain by merely

30 Newton himself makes the essential role of Rule III perfectly explicit in the course of
Propositions 6 and 7. According to Corollary 2 to Proposition 6 (Newton 1999, p. 809):
“All bodies universally that are on or near the earth are heavy [or gravitate] toward the
earth, and the weights of all bodies that are equally distant from the center of the earth
are as the quantities of matter in them. This is a quality of bodies on which experiments
can be performed and therefore by rule 3 is to be affirmed of all bodies universally.”
Corollary 1 of Proposition 7 then concludes (p. 811): “Therefore the gravity toward
the whole planet arises from and is compounded of the gravity toward the individual
parts.”
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inspecting the intrinsic features of presentations before the mind. Instead,

causation concerns extrinsic relations among separate, distinct presentations

before the mind (most notably, the relation of constant conjunction), so that

there can be no relation of containment between the two distinct events we call

cause and effect.31

However, from his radical skeptical standpoint, at the last stage of his skeptical

argument concerning causation, necessity, and induction (in both the Treatise

and the Enquiry), Hume argues against the possibility of grounding his own

positive notion of causation in terms of constant conjunction and inductive

inference. In particular, he focuses on the very principle of the uniformity

of nature presupposed by such inferences. Hume thus argues, in particular,

that there is neither an a priori nor an inductive justification of the general

principle guiding Newton’s inductive method. Therefore, from Hume’s radical

skeptical standpoint, the Newtonian inductive leap from what we have hitherto

observed to an exceptionless generalization including the unobserved is also

ultimately ungrounded. Hume’s inquiry into the justification of the guiding

methodological principle of Newtonian induction shows, in my view, that at T

1.3.6 and EHU 4.2 Hume targets what he himself takes to be the best possible

form of causal inference. Nevertheless, the confident use of this method within

the natural standpoint of science and common life is not affected by his own

unsustainable radical skeptical argument. That Hume’s skepticism about the

best possible inductive method is directed at his own Newtonian model of

scientific inference sharply brings out the mutual autonomy of Hume’s two

standpoints.32

31 See footnote 26 above. As I explain in the paper cited there, Hume’s distinction between
two types of philosophical relations (roughly, intrinsic and extrinsic) is essentially the
same distinction he later makes in the Enquiry between relations of ideas and matters of
fact. From Hume’s point of view, therefore, to conceive of causation in terms of quasi-
geometrical containment goes against the very distinction between relations of ideas and
matters of fact.

32 I have developed this theme of the mutual autonomy of Hume’s two standpoints in detail
in my (2001), and also in my (2002). In the latter article I first argued, in particular,
that Hume fully endorses, outside his radically skeptical standpoint, the normativity
of inductive proof with its attendant principle of the uniformity of nature, which he
models on Newton’s Rule III. I also argued, in this way, against Annette Baier, who
takes Hume’s negative conclusion concerning the ultimate justification of the principle
of the uniformity of nature as an argument against rationalist, deductivist attempts at
grounding the inductive inference. In my view, on the contrary, precisely because Hume
argues at T 1.3.6 that there is no inductive justification of the principle of induction, Hume
raises radical skeptical doubts about his own Newtonian inductivist model of scientific
inference. Nevertheless, according to Hume, within the natural standpoint (as opposed to
the radically skeptical standpoint), our best inductive method (following Newton’s Rule
III) enables us to formulate “well-established” and exceptionless (albeit revisable) causal
laws of nature.
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There is, therefore, a fundamental asymmetry between Hume’s skepticism

concerning the a priori model of causal explanation of the mechanical philoso-

phy and his skepticism concerning Newton’s (and his own) inductive method.

Within the naturalistic standpoint of science and common life, Hume emphat-

ically endorses the inductive method but not the a priori model of causal

explanation. Inductive inference, for Hume, even before it is refined into the

ideal Newtonian inductive method by a reflection compatible with common

life and science, follows natural principles of association of the mind and relies

only on experience. But the a priori reasoning of the mechanical philosophers,

involving the postulation of a hidden configuration of primary qualities and

powers demonstratively necessitating effects, does not follow such natural oper-

ations. This asymmetry also reveals itself in the character of Hume’s positive

notion of necessity, within the standpoint of common life and science. Hume

explains (but does not ultimately justify) such a positive notion of necessity as

a projection from our inductive inferences,33 whereas the necessity of hidden

powers postulated by the mechanical philosophy has no analog, for Hume, in

any natural operations of the mind. This inherited notion of necessity is simply

rejected once and for all – from both standpoints.

33 Hume writes (T 1.3.14.20): “Tho’ the several resembling instances, which give rise to the
idea of power, have no influence on each other, and can never produce any new quality
in the object, which can be the model of that idea, yet the observation of this resemblance
produces a new impression in the mind, which is its real model. For after we have observed
the resemblance in a sufficient number of instances, we immediately feel a determination
of the mind to pass from one object to its usual attendant, and to conceive it in a stronger
light upon account of that relation . . . Necessity, then, is the effect of this observation,
and is nothing but an internal impression of the mind, or a determination to carry our
thoughts from one object to another.”
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Maupertuis on attraction as an inherent

property of matter

lisa downing

11.1 Introduction

I begin with a caveat. This paper examines Maupertuis from the very particular
perspective of two issues that come together in his Discours: (1) The history
of regularity-based defenses of Newtonian gravity, that is, the tradition, orig-
inating in Newton himself and prominent in the early eighteenth century, of
defending the law of gravity as a mere regularity, not requiring any account of
underlying causes.1 Maupertuis, in the Discours, is one of the most influential
exemplars of this tradition, but he also steps firmly beyond it, as will be detailed
in what follows. (2) Lockean Newtonianism, that is, the uses of Locke’s thought,
especially his skepticism about knowledge of real essences, as a resource for the
defense of Newton. Such Lockean themes are prominent too in the Discours.2

In this paper I examine the Discours from both of these perspectives, hoping to
illuminate both the text itself and a delicate episode in the history of philosophy
of science.

First, however, I examine an important point of comparison: Willem Jacob
Van s’Gravesande’s 1720 text, Physices elementa mathematica, experimentis con-

firmata. I should, therefore, say a bit about the special importance of these two

texts in the context of the defense of Newton. Newton appeared to require
defense because Newtonian gravity was widely perceived to face a problem:3 it

1 Of course, the question of Newton’s considered view of the status and source of gravity is
a tortured one, and even the seemingly simpler question of his position in the Principia
is subtle, as has been emphasized recently in the work of Stein, Smith, and Janiak (among
others). There is no doubt, however, that Newton’s own words inspired a regularity defense.
Notably, Newton states that he treats forces, including attraction, mathematically, not
physically (Newton 1999, pp. 408, 589), suggests that this leaves questions about the causes
of attraction open (589), and disavows hypotheses about the cause of gravity (943, this in
the General Scholium, where he is responding to criticism).

2 In “Locke’s Newtonianism and Lockean Newtonianism” (Downing 1997) I discuss some of
this same material towards the end of better articulating Locke’s complex attitude towards
the natural philosophy of his day.

3 Indeed, it was perceived to face multiple related problems.
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could not be straightforwardly linked to an acceptable metaphysics, for treating
attraction as a genuine physical quality violated standard doctrines about the
passivity of body. One prominent strategy for defending Newton took its initial
cue from the Newton of the Principia, who eschewed speculation as to the cause
of gravity, and thus apparently treated gravity as a manifest effect and avoided
linking his dynamics to metaphysics.4

This defense of Newton, however, left many readers unsatisfied. Firstly, since
many passages in the Principia seem to describe gravity as an attractive force,
intrinsic to bodies, allowing them to affect distant bodies, it is natural to take
such talk literally, lacking any developed alternative interpretation.5 Further-
more, as Cotes pointed out to Newton himself in correspondence, Newton’s
application of his third law to gravitational attraction between distant bodies
(Book III, prop. V, cor. 1) appears to require that bodies be able to act directly
on one another at a distance.6 Secondly, Newton’s evasive tactics raise point-
edly the question of whether scientific explanation can be had in the absence of
causal explanation. Both these issues were, of course, highlighted by Newton’s
critics, who argued, in effect, that Newton was attributing gravity to bodies as
an (unintelligible) intrinsic attractive power, or he was proposing a perpetual
miracle, or he was offering up a radically incomplete theory.7

A number of early Newtonians saw that a way out of this impasse might be
provided by the following basic strategy: Treat physics and metaphysics as sep-
arate domains, the former concerned with regularities among the phenomena,
the latter with underlying causes. Reconceive scientific explanation accord-
ingly: if an occurrence can be deduced from a more general principle or system
of principles, it has been given a scientific explanation. This strategy begins

4 Again, there are many issues of Newton interpretation lurking here. One question is
whether Newton is consistent in this position, even within the Principia. (The General
Scholium, for example, seems to verge on speculation about the cause of gravity.) A
further question is what it is to treat gravity as a manifest effect. Stein and Janiak have in
effect argued that this doesn’t rule out some modest ontology: that for Newton gravity is
a natural power of bodies (Stein 2002), that gravity is itself a cause, though one not yet
physically characterized (Janiak 2008).

5 See Heilbron (1982, p. 40) and McMullin (1978, p. 116).
6 See Newton (1850/1969, p. 153). Newton’s reply apparently neglects the problem raised

by Cotes and simply asserts that universal gravitation is proven from the phenomena. For
more discussion, see Koyré (1968, pp. 273–283), Janiak (2008, pp. 168–174).

7 Leibniz, Newton’s most philosophically distinguished critic, in effect assumes that Newton
must be giving some sort of causal account and thus makes the first two criticisms (Leibniz’s
letter to Hartsoeker, published 1711, in Newton 2004, pp. 111–112). He implicitly holds
that without a causal account, it is not a genuine piece of physics. This last charge can be
found explicitly in the early anonymous review of the Principia in the Journal des Sçavans,
wherein the author complains that Newton writes as a geometer, not a physicist, and thus
supplies a mere mechanics, but not, as yet, a physics (Cohen 1971, pp. 156–157). Versions of
all three charges can be found in Fontenelle’s much later Théorie des Tourbillons Cartésiens
(1752).
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from Newton’s remarks in the Principia, but isolates this tendency, develops
it, strengthens it, and makes it explicit. Two enormously influential examples
of this strategy were Willem Jacob Van s’Gravesande’s 1720 text, the Elementa,
and Pierre Louis Moreau de Maupertuis’s 1732 tract, Discours sur les différentes

figures des astres.
s’Gravesande’s book appeared in two different English translations in 1720,

immediately following its first publication in Latin.8 It was widely disseminated
and treated as an authoritative exposition of Newtonian physics and Newtonian
methodology.9 It was, in particular, a strong influence on Maupertuis, whose
Discours famously marked an official introduction of Newtonian gravity into
the Cartesian bastion of the Académie Royale des Sciences in Paris.10 More-
over, aspects of their approach to the defense of Newton can be found, to one
extent or another, in a wide range of Newtonians, including Pemberton, Keill,
MacLaurin, Voltaire, and d’Alembert. Further, I will show that the views put
forward by s’Gravesande and Maupertuis in this context are of significant philo-
sophical interest in their own right. Although the fact that early Newtonianism
contains a “positivistic” streak has often been remarked upon,11 not enough has
been done by way of philosophical analysis of the relevant texts: s’Gravesande’s
Elements and Maupertuis’s Discours are the most philosophically rich exam-
ples of this tendency and repay serious study. Indeed, Maupertuis’s Discours

contains the best developed defense of attractionism per se of any published
work in the period. Moreover, as I will argue below, the philosophy of sci-
ence presented in it is complex and points beyond the more straightforwardly
positivistic line carried over from s’Gravesande.

11.2 s’Gravesande

The Dutch natural philosopher s’Gravesande’s Newtonian credentials were
impeccable, having been cemented by a 1714 trip to England, which resulted in
his election to the Royal Society and personal acquaintance with Newton. After
returning to Holland and taking up a professorship at Leiden, where he himself
had been educated, he turned to the composition of the Elementa, subtitled (in
translation) “An Introduction to Sir Isaac Newton’s Philosophy.”

8 I quote from Desagulier’s 1721 (second edition) translation below. The other translation
is credited to Keill.

9 See Heilbron (1982, p. 45), Thackray (1970, p. 102), Ruestow (1973, pp. 113–139). A.
Rupert Hall has called it the most influential book of its kind, at least before 1750 (Hall
1970, p. 510). On s’Gravesande’s importance more generally, see Cassirer (1951, pp. 60–
64).

10 As briefly discussed below, aspects of Newton’s work were already influential in France.
11 E.g. Heilbron (1982), Hankins (1970, p. 3).
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11.2.1 Defense of the necessary priority of laws

The preface to s’Gravesande’s Elementa is in no way an explicitly polemical
work. Nothing about its measured tones suggests a response to controversy,
or even an acknowledgment of controversy. Nevertheless, this introduction to
the introduction to Sir Isaac Newton’s philosophy clearly functions as, and was
intended to function as, a defense of Newton. Although ‘attraction’ occurs not
at all in the preface, and gravity is only mentioned once, the preface contains, as
we will see, the ingredients of a powerful and influential defense of attractionism
and, more generally, significant developments in philosophy of science.

The preface begins by articulating two recurring themes: (1) The subject-
matter of physics is the laws that God has prescribed to the Universe. (2) An
epistemic modesty becomes us in questions of natural philosophy, for “What
has led most People in Errors, is an immoderate Desire of Knowledge, and
the Shame of confessing our Ignorance,” but “there is a learned Ignorance
that is the Fruit of Knowledge, and which is much preferable to an ignorant
learning” (Elements, I, p. viii). These two themes are quickly joined, however,
as s’Gravesande attempts to justify his claim that the natural philosophers
must seek empirical laws, rather than pursuing a more Cartesian method. This
justification is based on an account of our limited epistemic situation:

What Substances are, is one of the things hidden from us, We know, for

instance, some of the Properties of Matter; but we are absolutely ignorant,

what Subject they are inherent in.

Who dares affirm that there are not in Body many other Properties, which

we have no Notions of? And who ever could certainly know, that, besides

the Properties of Body which flow from the Essence of Matter, there are not

others depending upon the free Power of GOD, and that extended and solid

Substance (for thus we define Body) is endowed with some Properties without

which it could exist. We are not, I own, to affirm or deny any Thing concerning

what we do not know. But this Rule is not followed by those who reason in

Physical Matters, as if they had a compleat Knowledge of whatever belongs

to Body, and who do not scruple to affirm, that the few Properties of Body

which they are acquainted with, constitute the very Essence of Body.

(Elements I, p. xi)

Our knowledge of some properties of bodies does not amount to knowledge of
the essence of body. Moreover, even if we did know the essences of bodies, we
could not rule out that bodies had other, inessential, qualities, bestowed upon
them by God.12

12 A direct appeal to superaddition is also found in Keill (1809, p. 419) (originally published
in 1708), where the topic is a short range attractive force distinct from gravitational
attraction.
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These reflections sound, of course, thoroughly Lockean. They begin from the
undeniably Lockean point that we are ignorant of the real essences of things,
including the essence of body in general. Interestingly, they proceed in a way
that suggests two common misreadings of Locke. First, s’Gravesande suggests
that God might superadd to bodies qualities which do not flow from their
essence. Although many, including Leibniz, have understood Locke to have
suggested as much in his correspondence with Stillingfleet, in my view he was
a consistent essentialist; his talk of superaddition is not meant to suggest that
God might attach to bodies qualities that do not derive from their actual real
constitution.13 The problem, as we will see later, lies in s’Gravesande’s failure to
cleanly distinguish between nominal and real essence. Further, the paragraphs
that follow suggest that s’Gravesande has conflated essences with logical sub-
jects, in a way that could easily be inspired by a reading (or misreading) of 2.23
of Locke’s Essay:14

What do they mean by saying that the Properties of Substance constitute the

very Substance?

Can those Things subsist when joyn’d together that cannot subsist separately?

Can Extension, Impenetrability, Motion, &c. be conceived without a Subject

to which they belong? And have we any Notion of that Subject?

(Elements I, p. xi)

Nevertheless, we can see here a reasonably effective, if rather basic, argument
against a Cartesian-style strict mechanism. s’Gravesande assumes that we have
no insight, no intellectual intuition, into the natures of things. Given this, there
cannot be any grounds for a demand that all the properties we observe bodies to
have be reducible to a mechanistic short list of preferred, supposedly essential,
qualities.

s’Gravesande’s further goal, however, is to defend the general irreducibility
of laws in natural philosophy:

It is past doubt, for instance, That a Body once mov’d continues in Motion:

that Reaction is always equal and contrary to Action. And several other such

Laws concerning Body have been discovered: which can no way be deduced

13 See Downing (2007).
14 Michael Ayers has argued convincingly that Locke did not think of “substance” as an

entity distinct from all properties, i.e. as an in principle unknowable logical subject.
However, s’Gravesande was certainly not the last to read Locke in this way. (See Ayers
1977, especially p. 78.)

Of course, I don’t mean to suggest that s’Gravesande was particularly interested in
Locke interpretation. Nevertheless, it is worth examining how Lockean doctrines appear,
sometimes altered or distorted, in many Newtonians. For an interesting discussion of
a variety of ways in which s’Gravesande is influenced by and responds to Locke, see
Schuurman (2004, pp. 129–155).
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from those Properties that are said to constitute Body; and since those Laws

always hold good and upon all Occasions, they are to be look’d upon as general

Laws of Nature. But then we are at a loss to know, whether they flow from

the Essence of Matter, or whether they are deducible from Properties, given

by GOD to the Bodies, the World consists of; but no way essential to Body;

or whether finally those Effects, which pass for Laws of Nature depend upon

external causes, which even our Ideas cannot attain to.

(Elements I, p. xii)

Not even the most basic laws of motion, including the inertial law that a body
in motion continues in motion unless opposed by some force, can be deduced
from the qualities some deem to be essential to bodies. The aim and end of
science, then, can only be the articulation of such laws:

It appears then sufficiently, what is the End of Physics, from what Laws of

Nature the Phænomena are to be deduc’d, and wherefore when we are once

come to the general Laws, we cannot penetrate any further into the Knowledge

of Causes.

(Elements I, p. xiii)15

We should pause, at this point, to note some possible objections, not from
the perspective of a Cartesian who would defend the real use of the intellect
in identifying essences, but from the perspective of an influential set of early
Newtonians: Whiston, Bentley, and Clarke. s’Gravesande’s position that we
can make no claims about the essence of body brings him into fundamental
disagreement with this trio. They unanimously maintained that we can draw
conclusions about the nature of body from experience. Furthermore, they
would have rejected s’Gravesande’s claim that the law of motion according to
which every body in motion remains in motion cannot be shown to follow
from the essence of body. On the contrary, Whiston and Clarke both held
that this law flows directly from the passive nature of matter – as a passive

15 It is interesting to contrast MacLaurin (1748/1968) here, who is similarly empiricist
and anti-metaphysical (for example, attributing to Newton the view that “metaphysical
considerations . . . had often misled philosophers, and had seldom been of real use in
their enquiries” [p. 8]) but who nevertheless would dissent from this last statement. Like
s’Gravesande, MacLaurin defends Newton as not having attempted to give the cause of
gravity, but suggests that “the tracing the chain of causes is the most noble pursuit of
philosophy; but we meet with no cause but what is, itself, to be considered as an effect,
and are able to number but few links of the chain” (p. 17). Thus, science aims at tracing
the chain of causes, although at any point in time, we will have to stop somewhere.
MacLaurin treats the ether as one speculative hypothesis about the cause of gravity, and
implies that further progress on this issue is not ruled out.

D’Alembert, by contrast, positions himself much more closely to s’Gravesande (as well
as to Berkeley) by treating mechanics as “the science of effects, rather than the science of
causes” (D’Alembert 1743/1967, p. xxiii; see also Hankins 1970, p. 153).
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entity it has this one negative power.16 More importantly, in their view, from
our observations of the passivity of matter, we can conclude that attraction
could not flow from its essence. Given that attraction cannot simply be due
to bodies as they are in themselves, it must be due to God. However, if it is
asked how God could bestow such a quality upon bodies, all three of these
authors conclude that he must do so by a continual activity.17 Thus, Clarke,
Bentley, and Whiston conclude not with metaphysical agnosticism but with a
particular metaphysical account of attraction as God’s action. s’Gravesande’s
failure to convincingly address the issue – Why can we not draw conclusions
about essences from experience?– leaves him vulnerable to attack from this
quarter. Maupertuis’s case, as we will see, is somewhat different, both because
his discussion of essence is more nuanced and because he does not attempt to
close off connections between physics and metaphysics.

11.3 Maupertuis

Pierre Louis Moreau de Maupertuis was a member of the Académie Royale des
Sciences in Paris from the age of 25. His most celebrated early work, the Discours

sur les différentes figures des astres, was, like s’Gravesande’s Elementa, written not
long after an influential trip to England. Although historians such as Thackray
(1970, pp. 83–101) and Guerlac (1981, pp. 41–73)18 have made clear that
many aspects of Newton’s thought were widely discussed, even accepted and
transformed, among French natural philosophers quite soon after their initial
publication, Maupertuis’s discourse is still a remarkable historical document,
for it represents the first public defense of attractionism in the Paris Academy,
where Cartesian ideology still dominated. It thus represents a crucial stage
in the early career of Newtonianism in the Cartesian stronghold of France.19

16 Clarke (1738, II, p. 697), Whiston (1696/1978, p. 6). Interestingly, s’Gravesande sounds
much more like Clarke or Whiston in his later commentary on the first law of motion:

We see that Bodies by their Nature are inactive and incapable of moving themselves;
wherefore unless they be moved by some extrinsical Agent, they must necessarily
remain for ever at rest.

(Elements 1: 49)
17 See Clarke (1738, II, p. 601), Whiston (1696/1978, p. 218), Bentley (1838/1996, III, p. 168).

I thus disagree with John Henry’s (1994a) contention that Bentley proposes (and Newton
accepts) an account of gravitational attraction as a superadded quality. Unfortunately, I
cannot provide a full discussion of Henry’s interesting case here.

18 And more recently J. B. Shank (2004).
19 See Beeson (1992), Brunet (1931), Thackray (1970, p. 96). It should be noted that the

views Maupertuis expresses so ably in this early work are not necessarily representative
of those he held later in his career. In particular, although Maupertuis retains a Lockean
skepticism about knowledge of the essence of body, his views about the relation of physics
and metaphysics clearly evolve from those suggested in the Discours. For example, when it
came to his principle of least action, Maupertuis seemed willing to allow that metaphysical
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Maupertuis’s discourse is also notable for its philosophical content: it contains
one of the best developed defenses of attractionism of the period. The second
chapter of Maupertuis’s discourse is devoted to a “discussion métaphysique
sur l’attraction,” in which Maupertuis seeks to identify and defuse sources of
resistance to Newton’s theory of gravity. Thus, unlike s’Gravesande, Maupertuis
specifically acknowledges the existence of a dispute “which divides the greatest
philosophers” (Discours, p. 10).20 He strategically underplays, however, his own
role as a polemicist in that dispute, claiming that he will not “pronounce” on
the question but only “compare the ideas” of the two (Discours, p. 10).

11.3.1 First facts vs. causal explanations

As Maupertuis depicts it, the central dispute between Cartesians and Newto-
nians concerns the question of whether gravity ought to be regarded as the
effect of circulating vortices of matter, or whether it may be treated “as if it
were an inherent property of bodies” “without looking for its cause” (Discours,
p. 10). Maupertuis’s initial defense of the Newtonian position emphasizes this
last proviso, stating that Newton himself officially treats universal attraction
or gravitation as a fact, not a cause, leaving open the possibility of a deeper
causal explanation in terms of subtle matter, perhaps even a fully mechanistic
one (Discours, p. 12).21 This in itself, of course, as we have already seen, is
not an original point; indeed, the observation that Newton did not claim to
have settled the causes of gravity was a sort of Newtonian piety, found, e.g.,
in the writings of Keill (1758, p. 4), Desaguliers (1734, pp. 6, 21), MacLaurin
(1748/1968, p. 10), and Voltaire (1741, p. 186).22

This strategy, however, motivates the following question: Does a theory
which fails to provide an acceptable causal explanation of the phenomena it
discusses count as an acceptable piece of natural philosophy? In returning a
positive answer to the question, Maupertuis follows s’Gravesande, but Mau-
pertuis’s handling of the question is more direct and is specifically focused
on the question of gravity. Whatever gravity may be, he argues, it is always
a “first fact,” from which one can depart in order to explain the other facts
which depend on it (Discours, p. 12). “Every regular effect, though its cause be
unknown, may be the object of the Mathematicians” (Discours, p. 12), and the

argument might have direct implications for natural philosophy. This presumably reflects
the increasing Leibnizian influence on his later thought.

20 Translations of Maupertuis’s text are my own. All references to the Discours are to the
original 1732 edition, unless otherwise noted.

21 As Janiak’s work reminds us, Maupertuis’s interpretation of Newton, while hardly idiosyn-
cratic, may not be entirely correct. The claim that the Principia does not aim to settle
the causes of gravitational attraction does not entail that gravitational attraction may not
itself be regarded as a cause.

22 Also, it is mouthed by Whiston, Bentley, and Clarke.
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resulting theory is indeed explanatory: it explains the phenomena which can
be deduced from it:

Galileo, without knowing the cause of the gravitation of bodies towards

the earth, did not fail to give us a very beautiful and very sure theory on

this gravity and to explain the phenomena which depend on it.

(Discours, p. 12)

Maupertuis is thus making the methodological point that universal attraction
may be taken as a first principle for physics, whether or not it is metaphysically
primary, that is, whether or not gravitational attraction can be causally reduced
to some more fundamental properties of bodies. Maupertuis buttresses this
position by arguing that ultimate causal explanations elude us in any case, so
it would be a mistake to insist on them when it comes to gravity: “I do not
believe that it is permitted to us to ascend to first causes, nor to comprehend
how bodies act upon one another” (Discours, p. 13). He concludes this part of
his case for Newtonian gravity by suggesting that the search for the cause of this
force might be left “to more sublime Philosophers” (Discours, p. 13), implying
that it is not a task for natural philosophers.

Again, the suggestion that the pursuit of physics can be divorced from meta-
physical questions about underlying causes, coupled with and supported by
an agnosticism about ultimate causes, is highly reminiscent of s’Gravesande.
What is most interestingly different about Maupertuis is that, unlike his Dutch
colleague, he is drawn back into the question of the causes of gravity, albeit
framed in terms of possibility rather than actuality.

11.3.2 Attraction as intrinsic quality, real vs. nominal
essences, and primary qualities

As we have seen, Maupertuis’s first defense of Newtonianism invokes agnos-
ticism about causes. Nevertheless, his next step is to address the question of
whether a causal account which makes gravity the effect of an inherent attrac-
tive power in matter can be ruled out a priori as a “Monstre métaphysique”
(Discours, p. 13). A first question to ask here is why Maupertuis felt compelled
to address this question. If regularities may be taken as first principles, why is
any further defense of attraction required? Maupertuis’s willingness to answer
this challenge at length suggests that he believes that if we are in a position to
rule out a priori the possibility of an inherent property of attraction in matter,
the Newtonian is in trouble. The difficulty is two-fold: (1) If the question of the
existence of intrinsic attractive powers can be definitely settled, then progress
can evidently be made on this relatively metaphysical front, which suggests
that neglecting it may not be a legitimate strategy. (2) If the question is set-
tled in the negative, then the insistence that some other explanation (whether
Cartesian impact or God’s action) must be available and ought to be sought
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looks correspondingly compelling. This Newtonian predicament is neatly
flagged by Maupertuis in his subtle first characterization of Newtonianism:
the Newtonians treat gravity as if it were an inherent property. For example,
the rather frequent Newtonian protest that, for all they knew, gravity might
be produced by impulse,23 was pretty clearly disingenuous: for a mechanical
model which worked by simple impact would make gravity proportional to
surface area,24 and, while ether hypotheses were floated to explain gravity,
the ether invoked was typically elastic, i.e. characterized by interparticulate
attractive and/or repulsive forces.25 Maupertuis seeks to legitimate the “as if ”
of attractionism by arguing that the possibility that attraction is an inherent
property26 of bodies cannot be eliminated.27

We would be in a position to definitively rule out or affirm attraction,
Maupertuis asserts, were our epistemic situation quite different from our actual
one:

23 An example is provided by Maupertuis, although he seems to attribute the claim to
Newton, rather than endorsing it himself:

Newton . . . often stated . . . that it might even be that this tendency was caused by
some subtle matter emitted by bodies, and was the effect of a veritable impulsion.

(Discours, p. 12)
24 Newton made this point against the Cartesians in the General Scholium (Newton 1999,

p. 943). It is echoed, for example, in Voltaire (1738/1967, p. 201) and MacLaurin (1748/
1968, p. 387).

25 This was certainly the case with the ether of Newton’s 1717 Queries to the Opticks. See
McGuire (1977, p. 117) and Heimann and McGuire (1971, p. 242).

26 Maupertuis uses the terminology of inherent property, “propriété inhérente.” I under-
stand this as meaning the same as “intrinsic”; thus, the question at issue is whether
attraction can be regarded as if it were a property seated in each body. The contrast would
be an extrinsic quality, externally imposed, e.g. by an aether or by God’s continuous
action. If attraction were intrinsic, this still leaves open the question of whether or not
it is primordial, that is, an ultimate quality irreducible to more fundamental qualities
(which is one thing that might be meant by calling attraction an essential quality). It also
leaves open the question of whether or not we would call something matter/body only
if it possessed attraction (which, following Boyle and Locke, is another thing that might
be meant by calling attraction an essential quality). Newton famously disavows the claim
that gravity is essential to matter (1999, p. 796). Maupertuis does not pronounce on this
question here, though as we will see below he allows that for all we know gravity could
be a primordial quality.

Eric Schliesser (2010b) has argued that Newton himself, in his (posthumously pub-
lished) Treatise of the System of the World, treats gravity as an interaction, thus something
relational, but an interaction partially grounded in an intrinsic property of all matter.
Maupertuis does not specifically consider this position, but I suspect he would include
it under his broad “as if” characterization, since it holds that gravity derives from an
intrinsic property of all matter.

27 s’Gravesande in effect does this as well by arguing that there is no reason to demand
reducibility to mechanist qualities, but the argument is considerably less systematic and
satisfying.
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If we had complete ideas of bodies, such that we well understood what

they are in themselves, and what their properties are to them, how and

in what number they reside in them; we would not be at a loss to decide

whether attraction is a property of matter. But we are very far from having

such ideas; we only know bodies by a few properties, without knowing at

all the subject in which these properties are united.

(Discours, pp. 13–14)

The counterfactual situation described by Maupertuis here is one in which we
would know the real essences of bodies – that which they are in themselves and
that which gives them their properties. This is clearly another version of the
same Lockean point about our ignorance of real essences that we saw above in
s’Gravesande’s “Preface.”28 Maupertuis’s version is more thoroughly Lockean,
however.29 For one thing, Maupertuis explicitly includes a version of Locke’s
doctrine of nominal essences, noting that our actual situation is one in which
we know not the real but only the nominal essences of bodies; that is, we know
what co-existent observable properties we take to be characteristic of such and
such a body (e.g. Rover) or such and such a type of body (e.g. gold):

We perceive some different collections of these properties, and that suffices

for us to designate the ideas of such or such particular body.

(Discours, p. 14)

Furthermore, while s’Gravesande’s grounds for asserting the unknowability of
real essences seem to center on the uncharacterizability of the logical subject,
Maupertuis’s argument, as we will see, is quite different. Indeed, his initial way
of putting the point, in terms of our inability to understand how a thing’s
observable properties hang together, bears a striking resemblance to some of
Locke’s formulations in the earlier drafts of the Essay:

Hence it comes to passe that we have noe Ideas nor notion of the essence

of matter, but it lies wholy in the darke. Because when we talke of or thinke

on those things which we call material substances as man horse stone the

Idea we have of either of them is but the complication or collection of

those particular simple Ideas of sensible qualitys which we use to find

united in the thing cald horse or stone . . . which because we cannot appre-

hend how they should subsist alone or one in an other we suppose they

subsist & are united in some fit & common subject . . .

(Locke 1990, pp. 129–130)

28 A similar point is made by Voltaire (1738/1967, p. 182): “we know nothing at all of what
Matter is; we know only some few of its Properties.”

29 Maupertuis’s admiration for Locke’s Essay was later made explicit in his 1743 address to
the Académie française. He there describes Locke as having shown that “grammar” (what
Locke calls the “doctrine of signs” at 4.21.4, which includes both words and ideas) lies at
the foundation of the other sciences (Maupertuis 1756, III, p. 264), a belief that fuels his
own Réflexions philosophiques (1740).
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What we are missing, according to Locke, and what requires us to employ the
obscure idea of substance in general, is access to real essences that would show
us why particular sets of observable properties accompany each other as they
do. In order to properly characterize Maupertuis ’s argument, however, we will
need to examine its development in some detail.

Maupertuis begins by introducing a notion of primary or primordial prop-
erty. Having accumulated sufficient experience of bodies to collect properties
into nominal essences usable for distinguishing particular bodies or types of
bodies, our next step, as human knowers, is as follows:

We advance one step further, we distinguish these properties into different

orders. We see that while some vary in different bodies, some others are

always the same; and from that we regard the latter as primordial properties

and as the grounds of the others.

(Discours, p. 14)

The universality of extension and impenetrability, Maupertuis continues, leads
us to put them in the order or category of primordial properties, and thus
to regard them as intrinsic and irreducible qualities. He then distinguishes
other properties which are less universal, belonging to bodies only when they
are in a certain state, e.g. the property of moving other bodies at impact,
which is found in all bodies in motion. Maupertuis argues, however, that these
experience-based distinctions that we make among properties do not allow
us to exclude any properties from bodies, other than those which are actually
contradictory to universal properties:

We are right to exclude from a subject only the properties contradictory to

those which we know are found in it: mobility being found in matter, we can

say that immobility is not; matter being impenetrable, is not penetrable.

(Discours, p. 16)

At this point, however, we can pose the challenge to Maupertuis that we posed,
on behalf of Clarke, Bentley, and Whiston, to s’Gravesande: Why can we not
draw conclusions about essences from this uniform experience? Here we reach
the core of Maupertuis’s argument. He argues that, without an understanding
of how the primordial properties stick together, so to speak, we cannot require
that all other properties obviously reduce to them:

But again, was the collection of these properties necessary? And do all the

general properties of bodies reduce to them? It seems to me that it would

be to reason badly to wish to reduce them all to them.

(Discours, p. 15)

If we saw necessary connections among the known properties of body, e.g. if
we apprehended that a body cannot be extended without being impenetrable,
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we might have some grounds to suppose that we had grasped the real essence
of body. This too, I think, is a genuinely Lockean thought: part of what appeals
to Locke about mechanist natural philosophy is that the primary qualities it
posits seem to be internally connected to one another. Maupertuis contends,
however, that while this sort of understanding is not ruled out as a matter of
logic, we clearly do not have it:

But is there some necessary connection between these properties? Could

extension not exist without impenetrability? Should I foresee through the

property of extension which other properties accompany it? That is what

I do not in any way see.

(Discours, pp. 14–15)30

Lacking this, we must be more modest in our claims:

It would be foolish to wish to assign to bodies properties other than those

which experience has taught us are found in them; but it would perhaps be

more foolish to wish, with a small number of properties scarcely known,

to pronounce dogmatically the exclusion of all others; as if we had the

measure of the capacity of the subjects, when we are acquainted with them

only by this small number of properties.

(Discours, pp. 15–16)

Thus, we cannot suppose that we have a knowledge of the real essence of body
which would allow us to proclaim that attraction is excluded from the nature
of bodies.

Maupertuis’s next step in his defense of attraction is to consider whether the
notion of attraction as an intrinsic property of bodies is somehow incoherent
or “less conceivable” than the properties commonly acknowledged to belong
to bodies. He addresses this question by comparing the strict mechanist notion
of impulse with its Newtonian competitor, attractive force:

Common people are not at all astonished when they see one body in motion

communicate this motion to others; because they are accustomed to seeing

this phenomenon, they are prevented from perceiving the marvelousness

of it; but Philosophers . . . take care not to suppose that impulsive force is

30 It is interesting that Maupertuis does not attempt to argue in the other direction, that
impenetrability can exist without extension; thus he has not provided an effective argu-
ment that there are no necessary connections to be found here at all. It seems that he has
in his sights especially the Cartesian claim that the essence of body is extension and all
further properties follow from extension. Descartes of course maintained in his corre-
spondence with More that extension does entail impenetrability (Descartes 1985–1991,
III, pp. 362, 372).
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more conceivable than attractive. What is this impulsive force? How does

it reside in bodies? Who would have been able to divine that it resided in

them before having seen bodies collide?

(Discours, pp. 16–17)

Maupertuis acknowledges the naturalness of mechanism and mechanist expla-
nations, but maintains that this consideration ultimately ought to carry little
weight. He argues that impulse is no more intelligible than attraction; expe-
rience has made the phenomenon of impulse familiar, but philosophers find
that impulsive force is no more conceivable than attractive. Here Maupertuis
again expands on a point made by Locke, namely, that impulse itself is not ulti-
mately intelligible, for we cannot comprehend the communication of motion
at impact.31 This led Locke to include the communication of motion, along
with cohesion and the production of sensation, on the list of phenomena which
we cannot explain except by appealing to God’s omnipotence.32 Maupertuis
concludes that impulse and attraction are on the same footing.33 In doing so,
he was followed by Voltaire, in his influential popularization of the Newtonian
system, Elémens de la philosophie de Neuton.34

One possible response to the perceived problems with impulse, of course,
is the occasionalist one put forward by Malebranche. Maupertuis, however,
considers and neatly rejects this tactic, if it is employed for anti-attractionist
ends:

31 Locke, of course, was not the first to discuss this problem. Malebranche, for example,
uses it as one basis from which to argue for occasionalism.

32 See Essay 4.3.29:

the coherence and continuity of the parts of Matter; the production of Sensation in
us of Colours and Sounds, etc. by impulse and motion; nay, the original Rules and
Communication of Motion being such, wherein we can discover no natural connexion
with any Ideas we have, we cannot but ascribe them to the arbitrary Will and good
Pleasure of the Wise Architect.

33 Indeed, one might wonder why Locke never explicitly draws this same conclusion. Nev-
ertheless, I believe that this was in the end Locke’s view. The only privilege ultimately
assigned to impulse over attraction is its peculiar naturalness, i.e., the fact that it coheres
(via the all-important notion of solidity, which itself has dynamic implications in Locke’s
view) with the commonsense conception of body that we derive from ordinary experience.

34 See Voltaire (1738/1967, p. 85):

We ought to suppose, that we know no more of the Cause of Impulsion, than we do of
that of Attraction. We even have not a greater idea of the one than the other of these
Powers; for no-body can conceive why a Body has Power by them to move another
from its Place.

Right below this remark, Voltaire recommends “Mr. Maupertuis’s Metaphysical Discus-
sion upon Attraction.”
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But perhaps someone will say that bodies do not have impulsive force at

all. A body does not impress movement on the body that it strikes; it is

God himself who moves the struck body, or who has established some laws

for the communication of motions . . . If bodies in motion do not have the

property of moving others; if when a body strikes another, the latter is

only moved because God moves it, and has established some laws for this

distribution of motion; by what right could one affirm that God could not

wish to establish parallel laws for attraction [la Tendance]? As soon as it

is necessary to appeal to an all-powerful agent whom only a contradiction

stops, one must say that the establishment of parallel laws includes some

contradiction: but that is what one will not be able to say; and so is it

more difficult for God to make two distant bodies tend or move towards

each other, than to wait to move them until one body has been struck by

another?

(Discours, pp. 17–18)

While Maupertuis shows little sympathy for this sort of appeal to God’s action,35

he rightly observes that the attractionist has no difficulty telling the same story.36

The last anti-attractionist argument considered by Maupertuis is billed by
him as the most substantive (“le plus solide”) that can be made against attrac-
tion (Discours, pp. 18–19). This argument seeks to show that gravity is less
intelligible than contact action by establishing that we see the necessity of some
sort of contact action, since it logically follows from motion and impenetrabil-
ity, two established properties of bodies, whereas we do not see the necessity of
gravity. As Maupertuis puts it, if bodies are impenetrable, and one body moves
against another, it cannot continue to move without penetrating it, therefore
God must establish some law of impact (Discours, p. 18). However, it is not
clear that God must establish a law of attraction. To this Maupertuis responds:

But if gravity were a property of the first order; if it were attached to

matter, independently of the other properties; we would not see that its

establishment was necessary, because it would not owe its establishment

to the combination of other properties.

(Discours, p. 20)

Maupertuis’s basic point is that the fact that attraction is not evidently nec-
essary in the way that contact action arguably is, i.e. logically derivable from

35 Despite Maupertuis’s clear distancing of himself from the occasionalist element of Male-
branche’s system, J. B. Shank (2008, p. 287) has argued that the Discours invokes a
Malebranchian skepticism about human understanding.

36 This point has its parallel in Berkeley, for whom impulsive forces are no less problematic
than attractive, while ideas can obey laws of attraction as easily as laws of impact.
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uncontroversial properties of bodies (impenetrability and motion), does not
count against its being a primordial property/property of the first order.37

This passage is crucial to understanding Maupertuis’s conception of a pri-
mordial property. What it demonstrates is that the primordial properties are
not simply the universally experienced ones; i.e. the concept of a primordial
property is not the concept of a universally experienced property. If it were,
there would be no open question as to whether gravity is a primordial property
or not: if it is universally experienced, it is, if not, not. Rather, the primordial
properties are properties that are genuinely basic to body, i.e. irreducible to
other properties. Gravity, Maupertuis suggests, may for all we know be one
such property. In the above cited passages (Discours, p. 14) where universal-
ity is invoked, Maupertuis’s point is to explain how it is that we come to
take certain properties as primordial: we suppose that the properties we uni-
versally experience in body are its basic and irreducible properties. While it
seems that Maupertuis regards this as an acceptable working assumption, it is
clear from the example of gravity that he does not suppose that it settles the
question.

Here again, Maupertuis’s thought tracks Locke’s with remarkable subtlety.
Like Maupertuis’s, Locke’s prose suggests, at some points, that he is conflating
epistemic and metaphysical versions of the primary/secondary quality distinc-
tion. However, both make an implicit distinction between the two. Both hold,
moreover, that our epistemic version of the distinction, that is, our common-
sense view about what the metaphysically primary qualities of bodies really are,
is determined by uniformities in experience. Both agree, however, that these
uniformities do not suffice to definitively identify the metaphysically primary
qualities. What our universal experience gives us is the nominal essence of
matter itself. The real essence of matter might in fact be quite different.

This gives us more than one possible metaphysical status for attraction.
It might be a primary quality, part of the (otherwise unknown) real essence
of matter. It might flow as a consequence from the unknown real essence of
matter. Maupertuis’s prose here suggests further that, unlike Locke, he would

37 In making this point he follows Cotes, who in his preface to the second edition of the
Principia (1713) addressed the opponents of attraction as follows:

For either they will say that gravity is not a property of all bodies – which cannot be
maintained – or they will assert that gravity is preternatural on the grounds that it
does not arise from other affections of bodies and thus not from mechanical causes.
Certainly there are primary affections of bodies, and since they are primary, they do
not depend on others. Therefore let them consider whether or not all these are equally
preternatural, and so equally to be rejected, and let them consider what philosophy
will then be like.

(Newton 1999, p. 392)
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not foreclose the anti-essentialist hypothesis that the irreducible properties
of bodies in fact do not come united into internally connected categorical
properties, i.e. real essences, and, thus, that attraction might be basic without
being connected to such a real essence. Here, one might suggest that Maupertuis
expresses a more Lockean view than Locke himself does. I’ve argued elsewhere
that Locke never questions the essentialist metaphysics that he takes to be our
natural metaphysics, required for the world to be in principle intelligible to us.38

However, given that he held that our natural physics, Boylean mechanism, had
in fact been defeated by experience, he should have regarded this metaphysical
assumption as itself defeasible. Interestingly, when Maupertuis returns briefly
to this issue again in a later edition of the Discours, in the concluding chapter,
he hews slightly closer to Lockean essentialism, suggesting that “apparently” “if
attraction has a place in Nature” “to the eyes of someone who understood the
whole essence of bodies, attraction would be a necessary consequence of that
essence.” In our current epistemic situation, however, we can do nothing but
refer to the will of God, who has somehow spread out (“répandre”) attraction
in matter (Maupertuis 1756, 1: 161).39

11.3.3 Implications of Maupertuis’s defense of attractionism

We have seen that Maupertuis’s sophisticated defense of Newtonian gravity/
attraction trades on the following thoroughly Lockean points: (1) A general
knowledge of the natural world based on a grasp of ultimate causes eludes
us; natural philosophy must therefore settle for experience-based regularities.
(2) We know the nominal essences of bodies, but not their real essences; i.e.
there are regularly recurring observable properties through which we iden-
tify bodies, but we don’t comprehend the causal nexus of those properties.
(3) Impulse itself is not fully intelligible, for the communication of motion
at impact is inexplicable by us, given our corporeal concepts. However, in
Maupertuis’s hand they are mobilized towards a new end, the defense of
attractionism.

But what, in the end, are the implications of that account? In particular, how
well does Maupertuis’s defense of the possibility of attraction as an intrinsic
quality fit with the apparent metaphysical agnosticism of his opening remarks?
It is worth remembering that Maupertuis had in fact billed this chapter as a sort
of metaphysical interlude by titling it as he did. Nevertheless, he concludes by
emphasizing that he does not claim to have provided a metaphysics of attraction
and that he wishes to consider questions de fait:

38 Downing (2008, pp. 115–116), Downing (2007, pp. 378–380). Some amendment to this
thesis might be required to take full account of Essay 4.10.18.

39 On the history of the Discours and the differences among its editions, see Terrall (2002,
especially p. 76). This new final chapter dates from 1752.
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All which we have just said does not prove that there is attraction in

Nature; I do not have any further ambition to prove it. I only set out to

examine whether attraction, even when one considers it as an inherent

property of matter, was metaphysically impossible. If it were so, the most

urgent phenomena of nature could not make it be received; but if it does

not contain any impossibility or contradiction, one can examine freely

whether the phenomena prove it or not. Attraction is no more, so to

speak, than a question of fact; it is to the System of the Universe that one

must look in order to find whether it is a principle which really has a place

in Nature, to what extent it is necessary in order to explain the phenomena,

or finally whether it is uselessly introduced to explain facts which are well

explained without it.

(Discours, p. 21)

Maupertuis’s position is cautiously stated, but nevertheless a view can be dis-
cerned here which is in some tension with his apparently forthright initial
endorsement of s’Gravesande’s law-based model of the aims of science.40

Maupertuis’s concluding remarks suggest that what he takes himself to have
established with his “discussion métaphysique” is the following: (1) Abstract
philosophical arguments are relevant to the question of the possibility of attrac-
tion as an inherent quality. (2) The balance of argumentation favors the position
that such qualities are possible. (3) Given this, the question of the actual exis-
tence of attraction as an inherent quality must be settled by experience. This
implies, then, that experience is in principle capable of settling this question.
That is, we might determine (with probability, if not certainty) that the true
cause of gravity is the intrinsic attractive powers of bodies.41 Of course, Mauper-
tuis might still wave off questions of ultimate causes and manners of action as
pertaining to “more sublime philosophers,” and he can still retain his previous
claims that reduction to regularity suffices for satisfactory explanation. Never-
theless, it seems that Maupertuis would not in the end endorse s’Gravesande’s
claim that “when we are once come to the general Laws, we cannot penetrate
any further into the Knowledge of Causes” (Elements 1: xiii, my emphasis).
Although Maupertuis is careful to end by framing the question of the existence
of attractive powers as a mere question of fact, the fact in question seems no

40 A somewhat similar tension might be seen in Voltaire, who on the one hand calls attraction
merely a “constant phenomenon,” and on the other a property with which every atom
of matter in the Universe is invested, and perhaps a primary cause or first principle
(Voltaire 1738/1967, pp. 85, 236, 239). In the end, however, Voltaire is in this work closer
to s’Gravesande than Maupertuis, for his notion of first principle is crucially vague, he
uses ‘property’ loosely, and he states forthrightly that “this Attraction, is not, nor can be,
the simple Power of one Body to draw another to itself ” (Voltaire 1738/1967, p. 237).

41 His view thus recalls Cotes’s in the preface to the Principia, but it is less radical. Cotes not
only suggests that gravity is a primary property of bodies but implies that it is an essential
one: “we should not conceive of any bodies that are not heavy” (Newton 1999, p. 391).
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longer to be one of the “first facts” invoked in his initial defense, i.e. a mere
regularity, but to be a fact about the nature of bodies. The Discours, in the end,
veers closer to a genuine dynamicism or realism about attraction than at first
appears.42 And, while it maintains that physics can function separately from
metaphysics, it suggests that each may still have implications for the other.43,44

42 This aspect of the Discours is commonly neglected; e.g. it seems to be missed by Hankins
(1970, pp. 159–160).

43 A line that is in some respects similar had been taken by Pemberton (1728), who defends
the finding of intermediate causes as a legitimate natural philosophical activity (p. 12)
and notes that “it is not easy to determine, what properties of Bodies are essentially
inherent in the matter, out of which they are made, and what depend upon their frame
and composition” (p. 19). Nevertheless, he clearly takes this latter issue as a genuine
question for natural philosophy, if a difficult one which we may not be able to resolve.

44 Thanks to Eric Schliesser and Andrew Janiak for very helpful comments. Thanks also to
audiences at the Center for Philosophy of Science at the University of Minnesota and at
HOPOS 2008 (Vancouver). Some of the research that went into this paper was supported,
at different points, by the Huntington Library, the Institute for the Humanities at the
University of Illinois at Chicago, and the National Endowment for the Humanities. This
support is gratefully acknowledged.
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The Newtonian refutation of Spinoza

Newton’s Challenge and the Socratic Problem

eric schliesser

What I have in my eye is another passage, where, having mentioned David’s

fool, who said in his heart there is no God, this great philosopher observes,

that the Atheists nowadays have a double share of folly; for they are not

contented to say in their hearts there is no God, but they also utter that

impiety with their lips, and are thereby guilty of multiplied indiscretion

and imprudence. Such people, though they were ever so much in earnest,

cannot, methinks, be very formidable.

(Philo, quoting Bacon, in Hume’s Dialogues Concerning Natural Religion)

This pernicious bigotry, of which you complain, as so fatal to philosophy, is

really her offspring, who, after allying with superstition, separates himself

entirely from the interest of his parent, and becomes her most inveterate

enemy and persecutor. Speculative dogmas of religion, the present occa-

sions of such furious dispute, could not possibly be conceived or admitted

in the early ages of the world.

(Hume, Enquiry Concerning the Principles of Human Understanding)

12.1 Introduction and summary

In this chapter and other papers I seek to make precise a new view of the

ferment within philosophy between the publication of Newton’s Principia and

I thank audiences at the Southwest Seminar in Early Modern Philosophy held at SFSU,
February 2008, especially Michael Friedman, Marleen Rozemond, Gideon Manning, and
Donald Ainslie, at Santa Cruz, department of philosophy, especially Paul Roth, and HOPOS
2008 in Vancouver, especially Lisa Shapiro, and BSHS at Oxford, especially Dan Garber,
for helpful comments. I also received detailed comments on a penultimate draft from
Ryan Hanley, Mary Domski, Yoram Hazony, and Andrew Janiak. Finally, this project was
inspired by Abe Stone, who – despite his misgivings about these concepts – helped me
distinguish among different variants of the Socratic Problem and Newton’s Challenge, and
carefully read and commented on the whole paper. The views expressed here are solely the
author’s.
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Kant’s Critique of Pure Reason. I understand Scottish and French Enlighten-

ment thought prior to Kant’s Copernican Revolution in light of philosophers’

attempts to come to grips with what I call “Newton’s Challenge” by which I refer

to the fact that in the wake of the Principia’s success the authority of science

is used to settle debates within philosophy. The story is complicated because

many thinkers are also struggling with versions of what I call the “Socratic

Problem,” by which I mean that social forces (including religious, political,

and moral) can threaten the independence and authority of philosophy. My

name (“Socratic Problem”) for this is meant to suggest that the submission of

philosophy’s freedom to other political/moral/religious authority is a perennial

issue for philosophy; the Galileo affair is a famous example from the seventeenth

century.1

Much of the philosophical and exegetical excitement stems from the cre-

ative interplay between Newton’s Challenge and the Socratic Problem over the

independent authority of philosophic reflection. For example, I read Voltaire

(and many of the French philosophes that followed him) as embracing New-

ton’s Challenge by using Newtonian science as a club to beat those religious

forces that threaten the independence of the philosopher into submission. I

read Rousseau and Hume as offering diverging attempts to reassert (a secular)

moral control over natural philosophy.2

In this chapter I discuss the philosophic and historical significance of Colin

MacLaurin’s attacks on Spinoza’s metaphysics in his posthumously published,

An Account of Sir Isaac Newton’s Philosophical Discoveries (1748/1968; hereafter

Account). The main point of the chapter is to illustrate how the Socratic Prob-

lem and Newton’s Challenge are debated at the start of the eighteenth century.

Recognizing the importance and nature of these debates can help us both to

understand the partial origin of some canonical versions of our philosophical

history and, if we wish, to correct them in favor of more revealing ones. Finally,

the mere existence of MacLaurin’s treatment undermines a widely accepted his-

toriographic myth that members of the Scottish Enlightenment (Hume, Adam

Smith, Reid, etc.) only knew and thought of Spinoza through Bayle’s treatment.

The chapter has two main sections. First, I use some texts by Euler, Berke-

ley, and Newton to introduce the notion of “Newton’s Challenge.” Second, I

use MacLaurin’s criticism of Spinoza to flesh out this concept. I distinguish

among four different but closely related versions of this challenge: (NC1) a

1 The status of Socrates is ambiguous in the eighteenth century, so the label may be anachro-
nistic. But Condorcet had no doubt, “the death of Socrates is an important event in human
history. It was the first crime that marked the beginning of the war between philosophy and
superstition, a war which is still being waged amongst us between this same philosophy
and the oppressors of humanity and in which the burning of the Pythogorean school was
such a significant event” (p. 45).

2 See, for example, Schliesser (2009) and Schliesser (2007).
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philosopher claims that mechanics/physics must be consulted in the process

of doing metaphysics; (NC2) a philosopher claims that mechanics/physics is

epistemically prior to metaphysics; (NC3) a philosopher appeals to the author-

ity of a natural science to settle argument over doctrine, method (etc) within

philosophy;3 (NC4) a philosopher claims that natural philosophy/science is

immune to metaphysical challenge.

Moreover, in discussing MacLaurin’s attack on Spinoza, which is treated in

Section 12.3 below, I distinguish among five variants of the Socratic Prob-

lem: (SP1) a philosopher claims that practical philosophy takes precedence (in

some way) over theoretical philosophy (for example, because the right/duty to

do theoretical philosophy must be deduced in practical philosophy); (SP2) a

philosopher explains how statements of traditional religious texts (etc.) can be

understood as expressions of his philosophical doctrines; (SP3) a philosopher

appeals to non-philosophical (political, religious, social) sources as authori-

tative; (SP4) a philosopher is forced (or threatened) by outside authorities to

adjust his views; (SP5) a philosopher is held accountable for the impact of his

teachings on his students. These five variants may occur simultaneously or be

blended in various ways.4

12.2 Newton’s Challenge

In this section I discuss some exemplary passages by Euler, Berkeley, and Newton

in order to introduce the concept of “Newton’s Challenge.” I argue that in

the aftermath of Newton’s phenomenal successes, physics came to be seen as

authoritative by some in settling metaphysical questions. Others (Berkeley,

Leibnitzians, etc.) attempted to contest this authority. While I do not make the

case here (and would not know how to do so), it is important for my larger

project5 that “Newton’s Challenge” came to be felt ca 1700. Moreover, I argue

that this issue goes beyond Newton’s intentions and writings.6

3 In this paper I allow that natural science is itself within philosophy. I have a more fine-
grained analysis of Newton’s Challenge in Schliesser (2011), which overlaps with some of
the argument of this chapter.

4 Three caveats: first, here I do not explore the extent to which Newton’s Challenge could
be treated as a species of the Socratic Problem rather than as an alternative kind. Second, I
presuppose for the sake of argument that even if the nature of philosophy or metaphysics
are contested and undergo radical changes over time, there are a set of practices, attitudes,
and commitments that are distinctly philosophical or metaphysical (etc.). Here I cannot
confront the suspicion that this assumption is question-begging. Third, while my taxonomy
of the Socratic Problem and Newton’s Challenge is by no means exhaustive, it is a bit more
fine-grained than necessary for the arguments that follow.

5 Schliesser (manuscript).
6 This chapter, thus, revisits an old theme articulated by A. E. Burtt, although I differ from

Burtt by treating Newton’s philosophic views non-dismissively. I thank Yoram Hazony for
calling my attention to Burtt.
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12.2.1 From natural philosophy to mechanics vs.
metaphysics, evidence from Euler

When Newton published the first edition of the Principia (1687), the fields of

science and philosophy were part of a unified enterprise, which included a wide

swath of learning and topics. The terms “science,” “philosophy,” “physics,” and

“natural philosophy” were often used interchangeably. A part of this enterprise

was metaphysics, traditionally the science of “being as such,” “the first causes

of things,” or the “things that do not change.”7 Of course, within the enterprise

different sub-disciplines (mixed mathematics, geometry, mechanics, etc.) com-

peted for status and attention; there were also serious, even intense, conceptual

and institutional debates over the relative merits of the various methods suit-

able to and the relative prestige of the various branches of the tree of learning

(compare, e.g., Descartes, Bacon, and d’Alembert) even within fairly homoge-

nous intellectual communities like the Royal Society or the French Academy.8

By the early nineteenth century, science and philosophy were becoming clearly

distinguished and sometimes even mutually opposed or indifferent enterprises.

There are exceptions to this narrative, because in Victorian Britain one can find

occasional individuals (Maxwell, Mill) who have large visions reminiscent of

their seventeenth- and eighteenth-century predecessors, and in the German-

speaking world Kantian philosophy sometimes provided an overarching unity

between philosophy and physics and psychology. But nevertheless the clear

trend overall was towards separation. This chapter contributes to our under-

standing of the intellectual and conceptual elements of the process by which

physics came to be seen as a replacement of and competitor to traditional phi-

losophy in the aftermath of Newton’s achievements. Here my own focus is on

the period between Newton and Kant, the time of the flourishing of the French

and Scottish Enlightenment.

A clear statement of the attitude that I have in mind can be found in an influ-

ential piece by one of the leading and influential mathematical thinkers of the

eighteenth century, L. Euler: “[T]he knowledge of these truths [of mechanics]

is [A] capable of serving as a guide in these intricate researches [of meta-

physics]. For one would be right [B] in rejecting in this science [metaphysics]

all the reasons and all the ideas, [B∗] however well founded they may otherwise

be, which lead to conclusions contrary to these truths [of mechanics]; and

[B∗∗] one would be warranted in not admitting any such principles which can-

not agree with these same truths” (“Reflections on Space and Time,” 1748b,

p. 376).9 In context Euler is criticizing Idealist metaphysicians’ attempts to

7 van Inwagen (2007). 8 Feingold (2000).
9 “Reflexions sur l’espace et le temps.” This passage has been quoted by John Stachel in

(1977); Stachel credits Arnold Koslow with calling attention to the passage. Rob DiSalle
also mentions the passage (and translates it more accurately, although misidentifies the
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disagree with Newton’s treatment of body, space, and time. Euler’s first claim,

[A] that mechanics is a guide to metaphysics (which represents a version of NC1

and NC2), even if controversial in some quarters, is not unusual, with variants

of it having a long pedigree going back to Plato. Euler’s second claim, [B] that

with knowledge of mechanics, understood now as having its own privileged

(un-philosophical) method, one can authoritatively settle debates within meta-

physics (NC3), is an expression of a new, post Newtonian attitude.10 Thinkers

in earlier ages would have probably ruled out Euler’s second claim as absurd or

barely intelligible – how could the corruptible, visible, changing world allow

one to settle facts of the eternal, invisible, unchanging world?

Now Euler stacks the rhetorical decks by speaking of the “truths of mechan-

ics”; after all, (almost) nobody would want to oppose truth. He starts the essay

by claiming that “the principles of Mechanics are now solidly established”; he

goes on to assert that one cannot say the same about the “general principles

of Metaphysics.” But he does not give an evidentiary defense of this claim. In

context, it’s clear he has Newton’s first two laws in mind. Nevertheless, Euler

is clear that one can wield the authority of mechanics within first philosophy

in order to reject (i) a certain privileged access to content (“ideas”), (ii) justi-

fication (“reasons”), and (iii) “principles.” (I understand Euler’s “principles”

as explanatory foundations, e.g., axioms, conceptual commitments, general

laws, etc.) Moreover, Euler is clear that mechanics allows one also to rule

out (iv) competing ways of knowing (“however well founded they otherwise

may be,”) when they contradict mechanics – this fits nicely with the rejection

of alternative forms of justification. Finally, Euler insists that (v) one cannot

merely reject content that is contradicted by mechanics, but even possible

claims that might follow from extrapolations from principles that one is com-

mitted to on un-mechanical grounds. In this context, Euler is silent on the

source of mechanics’ authority – if it resided in a particular privileged method

or, say, in superior empirical accuracy. Euler applied these strictures to him-

self in public (he found Newtonian attraction unintelligible and privately was

attracted to Cartesian vortices).11 It would be interesting to explore further

Euler’s grounds for his claim, but here I introduce Euler as illustration of what

I call “Newton’s Challenge,” that is, (to speak directly and a bit anachronisti-

cally) that the authority of physics is used to settle debates within philosophy

(i.e., NC3). I do not mean to suggest, however, that this was an uncontested

authority.

page) in a footnote to his (2002, p. 55 n 31). I have adjusted their translations. For evidence
of the influence of this piece, see Friedman (1992). For context on Euler’s remarks see
Ahnert (2004).

10 For the sake of argument, I am going to ignore how Euler would distinguish between the
“truths” of mechanics and, say, the (auxiliary) hypotheses of mechanics and how such a
distinction might complicate how one adjudicates claims within metaphysics.

11 See Smith (forthcoming b).
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12.2.2 The authority of Newton contested, Berkeley

In fact, I became aware of the significance of Newton’s Challenge by reading

Berkeley’s determined and relentless opposition to the authority of mechanics

within philosophy. As early as 1710 Berkeley writes:

The best grammar of the kind we are speaking of, will easily be acknowl-

edged to be a treatise of mechanics, demonstrated and applied to nature,

by a philosopher [Newton – ES] of a neighboring nation whom all the

world admire. I shall not take upon me to make remarks, on the perfor-

mance of that extraordinary person: only some things he has advanced, so

directly opposite to the doctrine we have hitherto laid down, that we should

be wanting, in the regard due to the authority of so great a man, did we not

take some notice of them.

(Berkeley, 1710, Part I, section 110)

In the British context, Berkeley cannot afford to ignore the authority of New-

ton and his mechanics, which is mathematical in nature (“demonstrated”) and

has empirical adequacy (“applied to nature”). I view this as an instance of

concern over NC4, that is, Berkeley wants to forestall appeals to the authority

of Newtonian science which he takes to be improper metaphysics. Berkeley

removed this passage in later editions but as I have documented elsewhere, he

frequently returns to discussing the appropriate relationship between mechan-

ics and metaphysics.12 For example, in De Motu,13 Berkeley deplores that “today

[natural philosophy] is almost entirely confined to experiments and mechan-

ics.” By contrast, “to treat of the good and great God, creator and preserver

of all things, and to show how all things depend on supreme and true being,

although it is the most excellent part of human knowledge, is, however, rather

the province of first philosophy or metaphysics and theology” (§ 34; see also

the complaint about “some modern readers” at Siris: § 297).

Elsewhere, I have written about and rationally reconstructed Berkeley’s diag-

nosis and criticism of an (implicit) indispensability argument that supporters of

the new natural philosophy would give (Berkeley’s third Dialogue, pp. 241–242,

see also objection 6 at Principles, I.50 and objection 10 at I.58):14

12 I have discussed this in Schliesser (2005a). For more on Berkeley and Newton’s Challenge,
see Schliesser (2011).

13 References to De Motu (Of Motion) or The Principles and Nature of Motion and the
Cause of Communication of Motions are to the section numbers of the translation by
A. A. Luce in Berkeley (1948–57). While De Motu does not explicitly present Berkeley’s
immaterialism, Berkeley cites it approvingly in his criticism of mechanics in The Analyst,
query 9, (Berkeley 1992, p. 78).

14 See Schliesser (2005a) “On the origin of modern naturalism”; see Fogelin, (2001, p. 94),
who also calls attention to the importance of these objections. One might argue that
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(i) Natural philosophy is successful in predicting the empirical phenomena.

(ii) The supposition of “matter” is indispensable to the predictive, empirical

success of natural philosophy.

(iii) Hence we should suppose the existence of matter.

We can think of the argument as an abductive inference to the best explanation.

We can also think of premise (i) as missing an added thought (ib): “and

therefore, Natural philosophy is authoritative today.” The reason why I focus

on this argument is that it is an early example of somebody discussing the

authority of mechanics in attempting to settle metaphysical matters.

Of course, Berkeley would like to reform the existing state of affairs: “And it is

the searching after, and endeavouring to understand those signs instituted by the

Author of Nature, that ought to be the employment of the natural philosopher,

and not the pretending to explain things by corporeal causes” (Principles:

I.66; emphasis added; see also I.107, where philosophers are exhorted to look

for “final causes of things”). A discerning reader will notice that Berkeley’s

immediate target here is not Newton, who also embraced the search for global

final cause(s), but what I have elsewhere called the “pre-Newton mechanical

philosophy,” viz., one that tries to explain in terms of (rational reconstructions)

of collision of small particles; in the wake of Descartes’s and Spinoza’s rejection

of final causes in physics, it’s a science of reductionist and physicalist efficient

causation.

12.2.3 Newton’s role in setting up Newton’s Challenge

The papers by Wallis, Wren, and Huygens of 1668 and 1669 that settled on

a widely shared and recognized mathematical treatment of the laws of colli-

sion made post-Galilean analysis of motion an autonomous practice relatively

insulated from metaphysical and theological concerns. This is why Newton

singles them out for praise (“the greatest geometers of our times”) in the

Scholium to the Corollaries of the Laws of Motion in the Principia. Huygens’s

1672 Horologium Oscillatorium is the paradigmatic work of this sort before

the publication of Newton’s Principia. So, the process I am describing with the

label, “Newton’s Challenge,” is broader than the intentions and aims of the

individual, Isaac Newton.

Berkeley is not worried about any such issues of encroachment, or epistemic priority;
on his view, all that mechanics does (when properly understood, as instrumentalist)
is put forward mathematical principles helping us to predict future phenomena. On
this reading, Berkeley’s worry is not about NC, but is instead concerned to correct
misunderstandings about the nature of mechanics. I thank Lex Newman for putting the
objection to me. While this objection has merit, I would claim that Berkeley is motivated
to correct misunderstandings about the nature of mechanics because of NC1.
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Nevertheless, I focus on Newton because, not only does he play a crucial

rhetorical role in eighteenth-century debates especially in Britain (and thanks

to Voltaire and Mme Du Châtelet in France, too), but by the 1750s, after

Maupertuis measured the shape of the Earth and Halley’s comet returned,

Newton’s achievements were perceived to be unprecedented (see, for example,

Adam Smith’s treatment in “The History of Astronomy”). Moreover, while

here I care more about how Newton’s achievements were used in subsequent

generations, Newton did play a significant role in generating the framework of

“Newton’s Challenge.” To this I turn next.

When Newton publishes the first edition of the Principia (1687), he is careful

to call it the Mathematical Principles of Natural Philosophy. But while the mathe-

matical method matters a great deal to Newton, we should not read Newton’s use

of “natural philosophy” as in itself a limiting claim (somehow excluding other

philosophical projects); in the “Preface” he refers to his work as “mathematical

principles of philosophy,” and in context he is clear that he has a traditional,

broad vision for his enterprise. (Newton’s affirmation of the “Mathematical

Principles” is meant to be distinctive, in that he proposes a superior, new

mathematical-empirical method in addressing traditional concerns.) In the

“Preface,” he discusses Book III as offering an “example” of his general approach

to “Nature”; explicating “philosophy” in terms of “natural powers” and general

“forces.”15 So, it appears that Newton is still using “philosophy” and “natural

philosophy” interchangeably. However, after the polemics with Leibniz politi-

cized matters, Newton emphasized the “experimental” nature of his philosophy,

as did Cotes in his influential preface to the second edition of the Principia.16

A query was added to the second Latin edition of the Opticks (1706) that

is significant for our purposes: “And if, natural Philosophy in all its Parts, by

pursuing this Method, shall at length be perfected, the Bounds of Moral Phi-

losophy will be also enlarged. For so far as we can know by natural Philosophy

what is the first Cause, what Power he has over us, and what Benefits we receive

from him, so far our Duty towards him, as well as that towards one another,

will appear to us by the Light of Nature” (Newton 1979, p. 405). It was main-

tained in the English translation (and subsequent editions), and I view it as

a genuinely Newtonian text.17 It accords well with the inductive argument for

God’s existence in the “General Scholium,” added to the second edition (1713)

of the Principia: “to treat of God from phenomena is certainly a part of natural

philosophy” (emphasis added).18 For Newton the study of motion, duty, and

15 For a terrific introduction to these matters, see Stein (2002). 16 See Shapiro (2004).
17 This is not to say that in any writings after (say) 1700, Newton would have expressed his

full views or would not have tried to obscure them; see Snobelen (1999) on Newton’s
esotericism.

18 See the discussion in Stein (2002, 261). See also Hurlbutt (1965). I quote from Newton
(1999). In Hume’s Dialogues (Part II), Cleanthes concedes that the a posteriori argument
only offers probable evidence.
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unchanging, first causes are part of a shared enterprise (see also his claim in the

Principia’s “General Scholium” that although we will know nothing of God’s

substance, we can “have ideas of God’s attributes”). So, Newton maintains the

unified picture outlined in the “Preface.” Nevertheless, in the passage from

the Opticks, Newton anticipates the first part [A] of Euler’s claim that natural

philosophy can guide the search for first causes, or metaphysics (NC2). More-

over, natural philosophy is clearly the more secure, foundational enterprise

to other forms of knowledge, so Newton approaches the position of Euler’s

second claim [B] (that is, commitment to NC3 because Euler appeals to the

authority of a natural science in order to settle argument over philosophic doc-

trine). There is a further way in which Newton anticipates elements of Euler’s

second claim; his infamous rejection of hypotheses (“General Scholium”) antic-

ipates Euler’s rejection of reasons and ideas “however well founded they may

otherwise be.”

Moreover, Newton facilitated “Newton’s Challenge” by allowing Cotes (the

editor of the second edition of the Principia) to publish a highly influential,

lengthy preface (1713), in which two competing approaches to philosophy, the

Scholastic and Mechanical, are severely criticized from the point of view of

“observations and experiments.” Within a generation opposing schools would

be ridiculed. In part 1 of Hume’s Dialogues Concerning Natural Religion, Clean-

thes, the spokesperson for Newtonian natural religion, leaves no doubt about

his willingness to argue from the intellectual authority of Newton’s natural

philosophy in order to trump philosophical objections against it:

In reality, would not a man be ridiculous, who pretended to reject Newton’s

explication of the wonderful phenomenon of the rainbow, because that

explication gives a minute anatomy of the rays of light; a subject, forsooth,

too refined for human comprehension? And what would you say to one,

who, having nothing particular to object to the arguments of Copernicus

and Galileo for the motion of the earth, should withhold his assent, on

that general principle, that these subjects were too magnificent and remote

to be explained by the narrow and fallacious reason of mankind?

. . .

In vain would the sceptic make a distinction between science and common

life, or between one science and another . . . Many principles of mechanics

are founded on very abstruse reasoning; yet no man who has any pre-

tensions to science, even no speculative sceptic, pretends to entertain the

least doubt with regard to them. The Copernican system contains the most

surprising paradox, and the most contrary to our natural conceptions, to

appearances, and to our very senses: yet even monks and inquisitors are

now constrained to withdraw their opposition to it.19

19 Somewhat surprisingly, Cleanthes does not appeal to Newton’s dynamics in securing the
Copernican system.
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So, while Newton may not have originated nor intended the full version of

“Newton’s Challenge,” Berkeley rightly discerned where things were heading

as Newton’s fame and authority was spreading. I now turn to one of Berkeley’s

antagonists, Colin MacLaurin, whose views formed the inspiration for Hume’s

portrayal of Cleanthes.20 I shall focus on MacLaurin’s treatment of Spinoza,

because it is the most significant discussion of Spinoza’s views among Scottish

Newtonians and we know that Hume and Adam Smith carefully read the piece.

12.3 Colin MacLaurin’s articulation of Newton’s Challenge

Colin MacLaurin (1698–1748) was one of the leading British mathematicians

and most influential expositors of Newton in the second quarter of the eigh-

teenth century. In his work on fluxions, for example, he tried to respond to

Berkeley’s criticisms of the calculus.21 MacLaurin’s posthumously published

Account was not only used by Hume to model Cleanthes’ arguments; it was

also critically discussed by Adam Smith in his highly regarded “The History of

Astronomy.”22 In this section, I discuss how MacLaurin’s treatment of New-

ton illustrates three themes central to my understanding of eighteenth-century

philosophy: first, I show how MacLaurin offers an instrumental defense of the

freedom of philosophizing, thus, instantiating what I call the “Socratic Prob-

lem” (that is, SP1); second, I extend this discussion of the “Socratic Problem”

when analyzing MacLaurin’s criticisms of Spinoza, where we’ll see the “Socratic

Problem” co-mingle with “Newton’s Challenge”; along the way, I clarify how

for MacLaurin a “free” philosopher is to be understood as a responsible thinker;

finally, and most briefly, I argue that MacLaurin’s style of philosophizing offers

us new reasons to reject the standard dichotomy between Rationalists and

Empiricists when analyzing early modern philosophy. In fact, I show that

MacLaurin invented part of the structure of our canon for his own reasons. In

what follows I ignore – for brevity and for the sake of argument – how Spinoza

might respond to these criticisms.23

12.3.1 The Socratic Problem and MacLaurin

Before I document how MacLaurin’s philosophy illustrates “Newton’s Chal-

lenge” in the British context, I should make clear that MacLaurin understands

his own project in terms of another set of guiding principles; these reveal

instances of the “Socratic Problem.” He starts the Account as follows: “To

describe the phenomena of nature, to explain their causes, to trace the relations

20 See Hurlbutt (1965, pp. 141–145). 21 See Niccolò Guicciardini (1989, p. 47ff).
22 Schliesser (2005b); in the middle of the nineteenth century Maxwell was still citing

MacLaurin as an authority, for details see Schliesser (2010b).
23 See Schliesser (forthcoming a) and also Schliesser (forthcoming b).
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and dependencies of those causes, and to enquire into the whole constitution

of the universe, is the business of natural philosophy . . . natural philosophy

is subservient to purposes of a higher kind, and is chiefly valued as it lays a

sure foundation for natural religion and moral philosophy; by leading us, in

a satisfactory manner, to the knowledge of the Author and Governor of the

universe” (p. 2). MacLaurin has a unified project between physics and meta-

physics. He connects natural philosophy to religious and moral purposes. More

pertinently, MacLaurin justifies natural philosophy, at least in part, in terms

of its utility, i.e., its religious and moral pay-off. This is a version of what I

have dubbed the “Socratic Problem” (that is, SP1). In the Theological Political

Treatise (1670), Spinoza had offered a forceful defense of the freedom of philos-

ophizing in speculative matters and insisted that philosophy should not be the

handmaiden of theology (Spinoza 1737, preface, p. 19). Reason is and ought

to be self-justifying. (To be sure Spinoza promised technological, political, and

commercial payoffs as a consequence of this freedom.) As a result, Spinoza

inspired much freethinking literature.24

One reason to separate philosophy and theology is to reduce the stakes for

philosophy. As the second epigraph to this chapter makes clear, Hume thought

that Christianity’s embrace of philosophy had made philosophy a dangerous

enterprise. Hume’s encouragement of fideism in his readers, for example, can

be understood as reducing Christianity’s entanglement with speculative phi-

losophy. This would permit genuine freedom of thought and the possibility

of amicable disagreement: “An Instance of true liberty, of which ancient times

can alone afford us an example, is the liberty of thought, which engaged men

of letters, however different in their abstract opinions, to maintain a mutual

friendship, while they agreed in inclinations and manners. Science was the

subject of disputations, never of animosity. Cicero, an academic, addressed his

philosophical treatises, sometimes to Brutus, a Stoic; sometimes to Atticus, an

epicurean” (Hume 1757, emphasis added).

MacLaurin’s project is a response to attempts to remake philosophy without

appeal to a higher authority. MacLaurin’s enterprise appears to fit squarely

in the tradition of physico-theology,25 popularized, for instance, among the

Boyle lecturers (who are approvingly mentioned by MacLaurin on p. 62).

This tradition makes natural philosophy a handmaiden to theology. For while

MacLaurin is quick to claim “an entire liberty must be allowed in our enquiries,”

it is an instrumental freedom: “that natural philosophy may become subservient

to the most valuable purposes [i.e., religion] . . . but we ought not to abuse this

liberty by supposing instead of enquiring, and by imagining systems, instead

24 See the widely read Israel (2001); Spinoza’s TTP was translated into English in 1737 in
London.

25 See Israel (2001, pp. 456–471) – (MacLaurin is not mentioned). A better treatment is
Hurlbutt (1965), see especially p. 65ff.
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of learning from observation and experience the true constitution of things,”

(p. 6; emphasis in original). I return to this notion of “liberty” below. But

one risk attached to MacLaurin’s strategy, which will be exploited by David

Hume, who also appeals to “observation” and “experience,”26 is that natural

philosophy may not have the moral or social utility claimed for it. This is

by no means an idle concern because throughout the seventeenth and early

eighteenth century, there are debates over the moral, religious, and practical

utility of the study of nature, especially in Boyle’s and Bentley’s concerns over the

utility of astronomy.27 Another risk to MacLaurin’s strategy is that the findings

of empirical sciences stop supporting the claims and practice of Deistic or

Theistic metaphysics. But we shall leave that aside for now.

12.3.2 MacLaurin’s criticism of Spinoza

Here I explore the details of several of MacLaurin’s criticisms of opposing

systems of thought. While Descartes and Leibniz come in for more extensive

criticism, I focus on MacLaurin’s treatment of Spinoza for two reasons. The

first is to undermine a historiographic myth: it is often said that in the Scottish

Enlightenment, Spinoza was only known through Bayle’s discussion (this claim

appears to originate in Kemp Smith, 1941). MacLaurin is clearly familiar with

Bayle’s article (see Account, p. 78, the long footnote), but although he approves

of Bayle’s criticism of Spinoza, he was not much impressed by Bayle – the

“weakest” of Spinoza’s system’s “adversaries” (p. 78, footnote) –, whom he

suspected of “a disposition toward scepticism, in relation to the foundations

of natural religion” (p. 78). MacLaurin also cites Spinozistic passages that are

not in Bayle, and he is clearly familiar with the contents of Spinoza’s Opera

Posthuma – the Letters, the Ethics, and Treatise on the Emendation of the Intellect

are mentioned and quoted by MacLaurin. (Somewhat surprisingly, there is no

mention of or allusion to the Theological Political Treatise, which had been

reprinted in London in 1689 and in 1737.)

The second reason for narrowing my focus on MacLaurin’s treatment of

Spinoza is that Spinoza’s “system” provokes an unusually direct and vehement

reaction in MacLaurin; he returns to criticizing Spinoza throughout the first

hundred pages of his Account. MacLaurin sums up his motives for treating

Spinoza thus: “Our view in giving some account of it, was [I] not only to shew

the absurd consequences to which Des Cartes’ system leads, but likewise [II] to

26 When MacLaurin comes to describe Newton’s “experimental philosophy” he emphasizes
Newton’s use of geometry; for MacLaurin, Newton’s theory is founded on “experiment
and demonstration” (p. 8).

27 See Hurlbutt (1965, p. 86), and the discussion of Richard Bentley in Sermon VIII “A
Confutation of Atheism,” reprinted in Bentley (1838/1996, pp. 175–177) – see Hurlbutt
(1965, p. 58 n 44). For Locke, see Domski’s treatment of Locke’s ambivalent response to
Newton in this volume.
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trace Spinoza’s doctrine to its source (for the sake of some who may have been

misled into a favorable opinion of it), which is no other than the Cartesian

fable,” (78, footnote). Spinoza’s system is offered as a reductio of the Carte-

sian system, and Spinoza is understood strictly as an extension of Descartes’s

philosophy. MacLaurin approvingly quotes Leibniz who “calls spinozism un

Cartesianisme outré; and it is apparent that his method, and many of his doc-

trines, were derived from this source” (Account, p. 75). In my final section, I

return to MacLaurin’s characterization of Descartes, Spinoza, and Leibniz as

having a shared enterprise. In what follows I first explore the details of how

MacLaurin treats Spinoza as an exemplar of a whole dangerous style of doing

philosophy.

12.3.3 MacLaurin on Letter 15

The first mention of Spinoza in the Account is in a footnote that MacLaurin

adds to his claim that “In every kind of magnitude, there is a degree or sort to

which our sense is proportion’d, the perception and knowledge of which is [i] of

the greatest use to mankind. The same is the [ii] ground-work of philosophy,”

(Account, p. 17). The footnote reads:

If we were to examine more particularly the situation of man in nature,

we should find reason to conclude, perhaps, that it is well adapted to one

of his faculties and inclinations, for extending his knowledge, in such a

manner as insight be consistent with other duties incumbent upon him;

and that they have not judged rightly who have compared him in this

respect (Spinoz. Epist. 15) with the animalcules in the blood discovered

by Microscopes. He must be allowed to be the first being that pertains to

this globe, which, for anything we know, may be as considerable (not in

magnitude, but in more valuable respects) as any in the solar system, which

is itself, perhaps, not inferior to any other system in these parts of the vast

expanse. By occupying a lower place in nature, man might have more easily

seen what passes amongst the minute particles of matter, but he would

have lost more than he could have gained by this advantage. He would have

been in no condition to institute an analysis of nature, in that case. On the

other hand, we doubt not but there are excellent reasons, why he should

not have access to the distant parts of the system, and must be counted at

present with a very imperfect knowledge of them. The duties incumbent

upon him, as a member of society, might have suffered by too great an

attention to them, or communication with them. Had he been indulged in

a correspondence with the planets, he next would have desired to pry into

the state of the fixed stars, and at length to comprehend infinite space.

(Account, p. 17, footnote)

In the footnote, MacLaurin admits that we have only a partial knowledge of the

Universe. This is echoed in the conclusion of Book I of the Account: “a compleat
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system indeed was not to be expected from one man, or one age, or perhaps

from the greatest number of ages; could we have expected it from the abilities

of any one man, we surely should have had it from Sir Isaac Newton: but he saw

too far into nature to attempt it,” (p. 96). Newton’s self-limitation is treated

as a virtue. It is to be contrasted with the “folly of philosophical presumption

and pride” that MacLaurin associates with the “Cartesian” approach (p. 79);

in context it is clear that MacLaurin has Spinoza in mind because he had just

spent the previous three pages explicitly criticizing the details of Spinoza’s

philosophy.

We might want to ask why MacLaurin introduces Spinoza in the footnote.

The long sentence which does so is, in fact, puzzling without further clarifi-

cation. (“[A] If we were to examine more particularly the situation of man in

nature, we should find reason to conclude, perhaps, that [B] it is well adapted

to one of his faculties and inclinations, for extending his knowledge, in such a

manner as insight be consistent with other duties incumbent upon him; and

that [C] they have not judged rightly who have compared him in this respect

(Spinoz. Epist. 15) with the animalcules in the blood discovered by Micro-

scopes.”) It is by no means obvious why the part [C] after the semicolon would

tell in favor of the main claim of the first half of the sentence [B], unless either

more is known about the way animalcules in the blood are said to relate to

their environment or the mere mention of Spinoza signals the point of the

passage.

In fact, MacLaurin’s treatment is a thinly disguised account in terms of the

necessity and desirability of final causes. This is the point of the sentence to

which the footnote is added – a dual telos is even mentioned, viz. (a) “the

greatest use to mankind” and (b) the use of “philosophy.” (I return to this dual

telos below.) In particular, man is designed in such a way as to allow for just

enough knowledge to perform one’s duty and to prevent man from extending

enquiry too far; MacLaurin seems to think that (I) important parts of potential

knowledge of microscopic and inter-stellar domains are closed off to humans,

and (II) this is a good thing. MacLaurin’s instrumental defense of the freedom

of philosophizing emphasizes, thus, that pursuit of knowledge should not even

hope for completion and, more importantly, ought not come at the expense of

one’s moral or religious obligations.

This latter point is presumably what MacLaurin has in mind when in crit-

icizing Spinoza’s (and Descartes’s) treatment of the Deity near the end of

Account (p. 380), he substitutes a characterization in terms of “licentiousness”

for “great freedom” in describing their mode of inquiry. In MacLaurin’s ter-

minology “free” enquiry is pursued when natural philosophy is subservient to

the purposes of natural religion and moral philosophy (SP1). The “licentious”

enquiry is not constrained in such a manner – that is, the free philosopher

does not lose himself in, say, the comprehension of “infinite space” without

regard to his religious and moral duties. For MacLaurin the free philosopher
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is responsible.28 This fits nicely with his already quoted remarks about liberty

that should not be abused.

In order to get clear on how to distinguish between the free and the licentious

mode of inquiry, it is instructive to turn to the details of Spinoza’s fifteenth letter

(to Oldenburg), which MacLaurin cites in the long footnote we’re discussing.

Not unlike MacLaurin’s Newton, Spinoza also affirms that he is in “ignorance”

of “knowledge of the whole” (see also Spinoza’s Theological Political Treatise,

chapter 4, p. 1). Moreover, it is precisely an attempt to illustrate this epistemic

modesty that induces Spinoza to introduce an analogy between humans and a

worm in the blood. Recall: “This little worm would live in the blood, in the

same way as we live in a part of the universe, and would consider each particle

of blood, not as a part, but as a whole. He would be unable to determine, how

all the parts are modified by the general nature of blood, and are compelled

by it to adapt themselves, so as to stand in a fixed relation to one another”

(Letter to Oldenburgh, November 1665). Nevertheless, Spinoza introduces the

worm analogy, by insisting that “I do not attribute to nature either beauty or

deformity, order or confusion. Only in relation to our imagination can things be

called beautiful or deformed, ordered or confused.” This is entirely consistent

with Spinoza’s well-known criticism of final causes (in Appendix to Ethics I),

which, after all, are inferred from perceived order or beauty in nature (see,

for example, Newton’s argument in the General Scholium) because of people’s

fears and desires. If nature just is (Newton’s “blind fate”) and cannot be said to

be really ordered or intrinsically beautiful, then arguments from or to design

or beauty do not get off the ground. Spinoza and MacLaurin both emphasize

human epistemic limitations, but because of their other commitments they

end up at very different conclusions about final causes.

Later in the Account we find evidence for thinking that Spinoza’s attack on

final causes is motivating MacLaurin’s remark in the footnote because, when

he turns to some more detailed discussion of Spinoza’s system, MacLaurin is

explicit about his objection to Spinoza’s claim that final causes “are nothing

but human fiction,” and distaste for how Spinoza “laughs at those who imagine

that the eyes were designed for seeing, or the sun for giving light” (Account,

p. 76; in his notes MacLaurin cites Appendix to Prop. 36 of Ethics I).29 In his

footnote (17), MacLaurin, thus, objects to Spinoza’s strategy of making our

knowledge of nature unavailable as evidence for certain kinds of arguments

about our (moral/religious) duty and God’s plan for us.

Thus, MacLaurin’s free philosopher does not pursue truth independent of

other considerations. Philosophic inquiry should be mindful of moral and

religious considerations and, when necessary, self-limiting. This is a version

28 This is not the place to investigate the roots of this notion of freedom.
29 Thus, MacLaurin appears to accept particular and general/providential final causes;

Newton (following Boyle) only accepts general providence.
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of the Socratic Problem (SP1), because the autonomy of philosophy is put at

risk. One might object that there need not be a conflict between religious or

moral duty and pursuit of philosophical truth. Certainly, MacLaurin would

deny there is a problem at all. One might deny this on various grounds, e.g.,

that truth is one (if one believes that our duties track truths) or that the category

‘duty’ is simply never in conflict with truthful claims. Here I am not going to

explore these options; as mentioned above, MacLaurin clearly believes that in

nature there is a dual telos in which “the greatest use to mankind” and the

use of “philosophy” (understood as the needs of inquiry) coincide. For all I

know, this may be a metaphysical necessity or a contingent empirical fact (or

evidence that we live in the best of possible worlds). It wishes away a version

of the Socratic Problem which is not articulated in terms of truth, but more in

terms of how the philosopher relates to the polity/society.

12.3.4 MacLaurin’s attacks on Spinoza

Let’s now turn to the heart of MacLaurin’s treatment of Spinoza. In the span

of three pages MacLaurin ridicules (he calls them “absurd,” p. 78) a number of

characteristic Spinozistic positions: (a) that the existence and essence of sub-

stance are eternal truths; (b) Spinoza’s rejection of final causes; (c) Spinoza’s

claims that the Universe is infinite, necessary and “endowed always with the

same quantity of motion, or (to use his inaccurate expression30) always having

the same proportion of motion and rest in it, and proceeding by an absolute

natural necessity; without any self-mover or principle of liberty,” (Account,

p. 77); (d) Spinoza’s denial of the vacuum; (e) Spinoza’s claim that there is

“one substance in the universe, endowed with infinite attributes, (particu-

larly, infinite extension and cogitation) that produces all other things, in itself,

necessarily, as its own modifications; which alone is, in all things, cause and

effect, agent and patient, in all respects physical and moral” (Account, p. 78).

In all cases, MacLaurin goes out of his way to mention the Cartesian origins of

Spinoza’s views. Rather than discussing these in detail, I focus on MacLaurin’s

own summary conclusion:

In all of these, Spinoza has added largely from his imagination, to what he

had learned from Des cartes. But from a comparison of their method and

principles, we may beware of the danger of setting out in philosophy so

high and presumptuous a manner; while both pretend to deduce compleat

systems from the clear and true ideas, which they imagined they had, of

eternal essences and necessary causes. If we attend to the consequences of

such principles, we shall the more willingly submit to experimental phi-

losophy, as the only sort that is suited to our faculties. It were unreasonable

30 In a footnote here, MacLaurin quotes Spinoza’s Latin text from Letter 15 and Ethics II,
proposition 13, Lemma 3.
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to charge upon Des Cartes the impious consequences which Spinoza may

have been led into from his principles: but we cannot but observe, to the

honour of Sir Isaac Newton’s philosophy, that it altogether overthrows the

foundation of Spinoza’s doctrine, by showing that not only there may be,

but that there actually is a vacuum; and, instead of an infinite, necessary,

and indivisible, plenitude, matter appears to occupy but a very small por-

tion of space, and to have its parts actually divided and separated from

each other.” (Account, p. 77)

There are a number of themes here important to the various arguments I am

presenting in this paper. Initially I ignore MacLaurin’s motives of tying Spinoza

so closely to Descartes. First note that Descartes and Spinoza are presented as

aiming for a complete system in “high and presumptuous manner.” Recall

that this “folly of philosophical presumption and pride” (p. 79) is contrasted

later with Newton’s virtue and wisdom because Newton did not “attempt”

completeness (p. 96). The rejection of completeness and overall systematicity

is reminiscent of Euler’s rejection of alternative forms for justification within

philosophy.31

Incidentally, MacLaurin has hit on an unappreciated feature of Descartes’s

inheritance. Without arguing the case here, we can interpret Spinoza and

Newton as presenting us with a fundamental juncture in the history of

philosophy; both recognize more or less the same conceptual problems in

Descartes’s treatment of substance, motion, and individuation: to simplify

greatly, Spinoza chooses to correct Descartes in the direction of coherence,

simplicity, and completeness, while Newton reforms and narrows Descartes’s

approach in order to provide (among other things) an account of motion that

will permit of exact measurement and further open-ended discovery. New-

ton’s success in doing so generates “Newton’s Challenge.” Spinoza’s achieve-

ment can be understood as defusing the grounds on which the “Socratic

Problem” has been lodged by Christian theology. From my vantage point by

rejecting Spinoza’s separation between philosophy and theology MacLaurin

instantiates “Newton’s Challenge” (NC4) and recreates the “Socratic Problem”

(SP1 and SP3).

Second, MacLaurin attacks Spinoza’s method, principles, and conclusions.

The principles that are attacked are “eternal essences and necessary causes,”

but MacLaurin says little about these. In MacLaurin’s reconstruction Spinoza

derives an “infinite, necessary, and indivisible, plenitude,” (p. 77) from these

principles. He offers extensive quotes (on p. 75) of the Scholium to Ethics I,

Proposition 15 in English and Latin as well as quotes from Spinoza’s fourth letter

to Oldenburg about Spinoza’s rejection of the vacuum. This is no coincidence.

Of the five doctrines (a)–(e) attributed to Spinoza, the denial of the vacuum

31 This theme of completeness and systematicity has a very important afterlife in German
Idealism, see Franks (2005).
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is the only one that would allow for (plausible) “experimental” refutation.

MacLaurin needs it to make his main methodological claim stick.32

Throughout the treatment of Spinoza, MacLaurin attacks and ridicules

the method of deriving “all our knowledge . . . from true ideas.” (Just before

MacLaurin had explained that for Spinoza “true idea” is “a clear and dis-

tinct idea, as he himself explains it.” See also the rest of 78–79.) According to

MacLaurin this method of clear and distinct ideas is really the product of the

“imagination.” (Given that Spinoza sharply distinguishes between the confused

ideas of the imagination from the true ideas of the intellect, this is an ad per-

sonam dig!) MacLaurin concludes his treatment of Spinoza with “He pretends,

indeed, to proceed in the geometrical method and style; but while he assumes a

definition of substance and of its attributes at his pleasure, and passes from his

definitions as true ideas (as he calls them) to the necessary existence of the thing

defined, by a pretended immediate consequence, which he will not allow to be

disputed, his whole superstructure appears a mere petitio principii or fiction.

By his way of proceeding, any system whatsoever might be established,” (p. 78).

Between all the name-calling we can discern a serious issue; I reconstruct the

main gist of MacLaurin’s argument as follows:

(I) One can derive empirically false and impious consequences from the

method of “clear and distinct,” or true, ideas.

(II) In fact, the method of clear and distinct ideas is too unconstrained – one

can derive anything from it – it is, thus, a useless method.

(III) Empirical adequacy (not intelligibility, completeness, ‘clarity and distinct-

ness’ etc.) as revealed by experimental science is a more fruitful criterion

for evaluating philosophical theories (e.g., in discussing Leibniz, McClau-

rin claims: “The criterion of truth is usually placed in clear and evident

perception; but some philosophers seem to value doctrines in proportion

as they are obscure. Who would imagine that, in natural philosophy, such

arguments should be preferred to the plainest facts and experiments for

determining the question concerning a vacuum?” (Account, p. 82))

(IV) By “empirical” MacLaurin means experimental observation with the aid

of “sound” (p. 90) geometry33 (p. 95).

(V) Moreover, “experimental philosophy” is the “only” method “that is suited

to our faculties” (p. 77, see also p. 17, footnote).

32 For an interesting treatment, see Schmaltz (1999). Unfortunately, Schmaltz does not
discuss Spinoza’s potential response to empirical objections.

33 The context of the quote (from p. 90) is criticism of Leibniz. Thus far, I have given no
evidence that for MacLaurin geometry plays a crucial rule within natural philosophy; for
more evidence, see (e.g.) his comments on Galileo (63) and his comments on collecting
data within astronomy (237).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 17:40:35 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.016

Cambridge Books Online © Cambridge University Press, 2012



the newtonian refutation of spinoza 317

(VI) Thus, the method of clear and distinct or true ideas (and other philo-

sophical favorites) should be rejected within philosophy and replaced by

Newtonian geometric “experiment” and “observation.”

MacLaurin, thus, articulates a version of “Newton’s Challenge” (NC3) in the

service of the Socratic Problem (SP1 – see the first premise where Euler attempts

to put mechanics in the service of metaphysics precisely so that he can main-

tain what he sees as the proper marriage of philosophy and morality). His

position is very similar to Euler’s. But he goes beyond Euler’s way of articulat-

ing Newton’s Challenge by stressing methodological concerns. The method of

clear and distinct ideas is too unconstrained; while given cognitive limitations

of human beings, the geometric, experimental philosophy provides the right

kind of constraints on our search for truth. One could do worse than look at

Hume’s writings for seeing what the full argument for the fifth premise would

look like. It should be emphasized that the method of true ideas is not the

only target of MacLaurin. For example, MacLaurin greatly admires Spinoza’s

fellow Dutchman, Huygens, describing him as “one of the greatest geometri-

cians and astronomers that any age has produced.” Nevertheless, MacLaurin

uses Huygens’s youthful, Platonic insistence that because there are only six

secondary planets (which form a perfect number) in the solar system there is

thus no need for further inquiry as a cautionary tale about “borrowed” prin-

ciples or hypotheses “when applying them with too much liberty to natural

enquiries” (51). Again, for MacLaurin, by contrast, the Newtonian method

permits responsible freedom.

So, on my reading MacLaurin offers a nice illustration of Newton’s Chal-

lenge in practice. MacLaurin argues from the empirical success of Newtonian

natural philosophy to the rejection of alternative positions, methodologies, and

foundations within philosophy. (Recall Berkeley’s diagnosis of how an indis-

pensability argument might be used to argue inclusively for a metaphysical the-

sis.) At the same time, MacLaurin argues for a certain form of self-limitation:

aiming for completeness is likely to get us into trouble. In MacLaurin’s hands

Newtonian science also means a lowering of expectations. Finally, MacLau-

rin subordinates his application of Newton’s Challenge to his religious and

moral outlook; his “free” philosopher is an instance of the Socratic Problem in

action.

12.4 MacLaurin, the philosophical historian

Here I conclude by discussing the importance for our historiography and self-

understanding of a final feature of MacLaurin’s strategy – his simultaneous

rejection of the way of ideas and his construction of a Rationalist tradition at

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 17:40:35 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.016

Cambridge Books Online © Cambridge University Press, 2012



318 eric schliesser

the time of the first appearance of “Newton’s Challenge.”34 If we leave aside

MacLaurin’s advocacy of final causes in the name of scientific progress, there is

much in his narrative which seems very familiar to the modern reader. In par-

ticular, he appears to be the first author to systematically tie together Descartes,

Spinoza, and Leibniz as belonging to a shared project. While MacLaurin goes

into far greater detail in discussing Descartes and Leibniz, mention of Spinoza’s

“extravagancies” (94), “impieties” (95; 380), and “most monstrous height”

(380) often completes discussion of the wayward Continental threesome. He is

probably the first philosophical historian to link the style of these three thinkers’

thought together in such a tight manner and at the exclusion of other candi-

dates. MacLaurin’s focus on these three reflects his judgment that Cartesian

“doctrines still prevail so much” (63); this should alert us to the fact that even

in the British Isles the adoption of Newtonian principles and attitudes was a

slow, contested process.

Moreover, while we are familiar with reading empirical criticism of the “big

three” Continental Rationalists originating in the British Isles, it would be mis-

leading to view MacLaurin as a (minor) representative of British Empiricism.

For one, MacLaurin fiercely criticized Berkeley.35 Also, he seems to have had no

interest in Locke (who is unmentioned in the Account). Moreover, his attacks on

the method of clear and distinct ideas do not just threaten Descartes, Spinoza,

and Leibniz; one could marshal similar arguments against Locke, Berkeley, and

even Hume (who relies on a notion of adequacy in the inspecting of ideas in

the Treatise, and there argues from the inconceivability of, say, the vacuum to

its impossibility). That is, while MacLaurin defends an empirical approach, his

arguments cut across the Rationalist–Empiricist distinction because he gives up

on the analysis/inspecting of our ideas as a (privileged) way to make progress

in philosophy. MacLaurin himself is better understood as belonging to a tra-

dition that starts with Newton and Cotes (perhaps anticipated by Galileo),

and which is deeply critical of much of what we would now perceive as the

then-mainstream of Modern philosophy. In his influential preface to the sec-

ond edition of Principia, Cotes had divided the philosophical world into three

camps: the Scholastics, the pre-Newtonian Mechanical philosophers, and the

Newtonian mathematical-experimental philosophers.36

34 My thesis allows that one can find occasional precursors of Newton’s Challenge. In my
view Berkeley also targets the autonomous nature of the mechanical philosophy after the
1668–9 papers on the laws of collision.

35 MacLaurin (1742, volume II, chapter 12 “Of the Centre of Oscillation,” p. 41) acknowl-
edges Berkeley’s criticism (the reference is to Query 9 of the Analyst, which itself cites
Berkeley’s “a Latin Treatise, De Motu, published at London in the year 1721”). As Niccolò
Guicciardini pointed out to me, MacLaurin (1742) treats mathematics as knowledge of
ideas of relations not of ideas of things, see volume I, p. 52. So, a fuller treatment of these
matters requires more careful articulation.

36 See page 43 of Newton (2004). My terminology is anachronistic.
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I claim that it is the signature achievement of the Newtonian philoso-

phers to put the familiar figures of eighteenth-century philosophy (Leibniz,

Berkeley, Hume, Wolff) on the defensive about method and the authority

of philosophical principles not derived from the success of mathematical-

experimental sciences.37 Once we see this, we can also recover how the philoso-

phers responded and help explain how they eventually gained canonical status

and (in the process) not only came to overshadow the Newtonians in the

philosophical imagination, but even displaced such tremendous and ambi-

tious thinkers as Diderot, d’Alembert, Condorcet, Adam Smith, and even

Hobbes.38 Moreover, I hope I have prepared the way for a recovery of under-

standing Berkeley, Hume, Buffon, and, say, Diderot as distinctly reserved about

Newton’s challenge.

37 For Locke’s place in this tradition, see Domski’s paper in this volume.
38 For more reflections on this theme, see Schliesser (2010) and Schliesser (2011).
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Dispositional explanations

Boyle’s problem, Newton’s solution, Hume’s response

lynn s. joy

13.1 Introduction

In his Origin of Forms and Qualities (1666), Boyle famously proposed a dis-

positional explanation of how a body’s sensible qualities such as color come

to be manifested when that body interacts with a human observer. Using his

lock-and-key metaphor, he described the sensible qualities of a body in terms of

its dispositions to manifest such qualities whenever an observer’s body unlocks

the relevant dispositions in it. Qualities like color, he argued, have a merely dis-

positional existence which depends on the size, shape, motion, and combined

texture of the colored body’s atoms and their causal interaction with atoms of

the observer’s body.

However, the very idea of a disposition itself underwent a major conceptual

change when Newton analyzed dispositional properties such as impenetrability

in his De gravitatione (c. 1664–85) and mass in his Principia (1687). Newton

turned Boyle’s philosophical theory of dispositions on its head by showing

that mass could be conceived as an exclusively dispositional property of bodies

without requiring that mass be causally grounded in the categorical properties

of Boyle’s matter. Indeed, as I will argue in this chapter, Newton’s science and

philosophy were open to the revolutionary possibility that the disposition of

mass, when conceived as a natural force acting according to certain mathe-

matical laws, constitutes an existence more fundamental than that of Boyle’s

matter.

13.2 Boyle’s problem concerning the dispositional
explanation of sensible qualities

When Boyle undertook his wide-ranging attack on Aristotelian metaphysics in

his Origin of Forms and Qualities, he challenged in particular the Aristotelian

view that there exist, in natural bodies, sensible qualities that not only are real

entities distinct from matter but also are entities that can exist separately from

320

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 17:41:19 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.017

Cambridge Books Online © Cambridge University Press, 2012



dispositional explanations 321

matter.1 Against this view, he offered his own dispositional explanation of how

a body’s sensible qualities such as color come to be manifested when the body

interacts with another body, either one composed of unthinking matter or one

that is a man or sensitive animal. Invoking the relationship between a lock and

its key, he described a quality like color as a body’s disposition to manifest

a color whenever another body serves as the key that unlocks the relevant

color disposition in the first body.2 Boyle was notably reluctant to define the

sensible qualities themselves beyond giving such dispositional explanations of

their production. “I have chosen to Declare what I mean by Qualities, rather

by Examples, then Definitions,” he said, “partly because being immediately or

reductively the Objects of sense, Men generally understand pretty well what

one another mean when they are spoken of.”3 His examples ranged widely from

saline or sour tastes, to melodious or shrill sounds, to more recondite qualities

such as the capacity of aqua regis to dissolve the metal gold and the incapacity

of aqua fortis to dissolve gold.4

Boyle applied his lock-and-key metaphor to this variety of cases, but a serious

problem arose from his basic account. In the case of aqua regis dissolving the

metal gold, one can indeed regard this mixture of nitric and hydrochloric acids

as the key that unlocks the disposition of gold to dissolve. Likewise one can

regard the gold as the key that unlocks the action of the solvent disposition of

the acid mixture. But, in the case of a human being perceiving a colored body,

the relationship between the two lock-and-key explanations is problematic. It

is unclear whether the colored body serves as a key by unlocking the human

being’s disposition to have the sense idea of a color. Or does the human perceiver

serve as a key that unlocks the body’s disposition to appear colored? Or do both

dispositions – that of the colored body and that of its human perceiver – activate

each other? Because Boyle was pre-occupied with his attack on the Aristotelians’

real qualities, he did not directly address this problem of how the disposition of

the colored body and the disposition of its perceiver are related to each other.

Instead he concentrated on explaining how the colored body’s disposition, and

not the disposition of its perceiver, can be reduced to a causal basis composed

of atoms. It was this one-sided reductive explanation which provided his main

reason for denying the existence of the Aristotelians’ real quality of color:

There is in the Body, to which these Sensible Qualities are attributed,

nothing of Real and Physical, but the Size, Shape, and Motion, or Rest of

its component Particles, together with that Texture of the whole, which

results from their being so contriv’d as they are.5

Of course Boyle did recognize that his dispositional explanation of qualities

like color would be open to challenge by any critic who attended carefully to

1 Boyle (1666/1999, V, p. 308). 2 Ibid. V, pp. 308–310, 316. 3 Ibid. V, p. 314.
4 Ibid. V, pp. 314, 310–311. 5 Ibid. V, p. 317.
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the problem of how the disposition of the colored body and the disposition of

its perceiver were related to each other. A critic might object, he noted:

Whereas we explicate Colours, Odours, and the like sensible Qualities by

a relation to our Senses, it seems evident, that they have an absolute Being

irrelative to Us; for, Snow . . . would be white, and a glowing Coal would

be hot, though there were no Man or any other / Animal in the World:

and ’tis plain, that Bodies do not onely by their Qualities work upon Our

senses, but upon other, and those, Inanimate, Bodies.6

He acknowledged that this would be a serious objection to his dispositional

explanation if he could not reconcile two conflicting claims: (a) the claim that

sensible qualities do really exist because a body still possesses its sensible qual-

ities “though all the Men and sensitive Beings in the World were annihilated,”

and (b) the claim that there are in a body no real qualities beyond the “Size,

Shape, and Motion, or Rest of its component Particles, together with that

Texture of the whole.”7

Boyle’s solution was to stipulate a crucial distinction:

If there were no Sensitive Beings, those Bodies that are now the Objects

of our Senses, would be but dispositively . . . endow’d with Colours, Tasts,

and the like; and actually but onely with those more Catholick Affections

of Bodies, Figure, Motion, Texture, &c.8

In other words, a dispositional property, such as the color of a body, exists even

when it is not manifested to a perceiver because the body always possesses the

categorical properties that are the causal basis of the disposition, namely, the

size, shape, and motion of the body’s atoms and their overall composition, or

texture. By “texture,” Boyle here referred to the posture and order of the several

atoms that together compose a distinct middle-sized body. The body’s color –

if considered independently of any human perceiver – can be said only to exist

dispositively because the color cannot be manifested unless the body interacts

with a perceiver, whereas the atoms and their combined texture can be said

to exist actually because they always exist in the body and they constitute the

causal basis of its color disposition regardless of whether a perceiver interacts

with it.

Having stipulated this crucial distinction between the dispositive existence of

the body’s color, when it is not being perceived, as contrasted with the actual

existence of the body’s categorical properties that constitute the causal basis of

its color disposition, Boyle wrongly believed that he had thereby addressed the

problem of how the disposition of a colored body and the disposition of its

perceiver are related to each other. But his attempted solution to this problem

6 Ibid. V, p. 317. Italics are Boyle’s. 7 Ibid. V, p. 317.
8 Ibid. V, p. 319. Italics are Boyle’s.
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did not adequately distinguish between two sorts of questions: (1) How do

atoms and their combined texture constitute the dispositions of whole, middle-

sized bodies? That is, how does the causal interaction of one body’s atoms with

the atoms of another body operate to make manifest the respective dispositions

of the two bodies? (2) In cases where one of the bodies is a human perceiver,

how does the causal interaction between the observed body’s atoms and the

human body’s atoms produce the human’s idea, or mental representation, of a

sensible quality of the other body?

I will henceforth refer to these two sorts of questions jointly as Boyle’s prob-

lem concerning the dispositional explanation of sensible qualities. To answer

the first sort, he employed his concepts of texture and form, while his answers

to the second sort involved his concepts of texture and sensories, or organs

of sense. These uses of the concept of texture tended to blur the distinction

between the two sorts of questions.

Boyle’s reliance on the concept of texture was evident in his account of how a

Boylean, non-Aristotelian form sets apart each kind of middle-sized body from

all other kinds of middle-sized bodies in the world. He defined a Boylean form

as follows:

This Convention of Essential Accidents being taken . . . together for the

Specifical Difference that constitutes the Body, and discriminates it from all

other sorts of Bodies, is by one Name, because consider’d as one collective

thing, call’d its Forme (as Beauty, which is made up both of Symmetry of

Parts, and Agreeablenesse of Colours,) which is consequently but a certain

Character, . . . or a peculiar state of Matter, . . . or, if I may so name it, an

Essential Modification.9

But he added that such a form is also what enables each individual body belong-

ing to a kind to be “consider’d per modum unius, as one Entire Corporeal

Agent.”10 Its form is the determiner of the identity of each middle-sized body

composed of atoms. Its form determines its identity by specifying the function

that the middle-sized body performs, as illustrated by the body of a watch

whose function is to operate as a time-piece. The parts of the watch, like the

atoms of a body, are organized in a combined texture that constitutes its dis-

position to keep time. The watch’s function – its disposition to keep time –

defines its identity as an individual body despite its composition from separable

parts, such as a spring and wheels, which could otherwise have constituted the

disposition of another middle-sized body quite unlike a watch.

Moreover, according to Boyle, the entire world is an organized “Self mov-

ing Engine” composed of middle-sized bodies, each of which performs its

functional role in relation to the others, and each of whose identities is func-

tionally defined by its role in the world-wide organization of this “Self moving

9 Ibid. V, p. 334. Italics are Boyle’s. 10 Ibid. V, p. 325. Italics are Boyle’s.
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Engine.”11 Hence it is not surprising that he did not seek a further explanation

of how and why a particular group of atoms unites and acquires their combined

texture. Their combined texture – i.e., their middle-sized body’s disposition to

perform its function – is organized by the “Self moving Engine” of the world as

this Engine specifies the changing forms of all middle-sized bodies over various

periods of time:

According to our Doctrine, the World we live in is not a Movelesse or Indi-

gested Mass of Matter, but an ’Aυτóµατoν, or Self moving Engine, wherein

the greatest part of the common Matter of all Bodies is alwaies . . . in

motion . . . The various manner of the Coalition of several Corpuscles into

one visible Body is enough to give them a peculiar Texture, and thereby

fitt them to exhibit diverse sensible Qualities, and to become a Body,

sometimes of one Denomination, and sometimes of another.12

This extensive reliance on his concept of texture also kept Boyle from ade-

quately explaining the relationship between (a) the interacting textures of an

observed body and its perceiver’s body, and (b) the perceiver’s ideas, or mental

representations, of the sensible qualities of the observed body. Beyond describ-

ing the observed body’s effect on the texture of the perceiver’s sense organs, he

had little to say concerning the nature of the perceptions or ideas themselves:

As when a Pin, being run into my Finger, causeth pain, there is no distinct

Quality in the Pin answerable to what I am apt to fancie Pain to be, but

the Pin in it self is / onely slender, stiff, and sharp, and by those qualities

happens to make a Solution of Continuity in my Organ of Touching, upon

which, by reason of the Fabrick of the Body, and the intimate Union of the

Soul with it, there ariseth that troublesome kind of Perception which we

call Pain, and I shall anon more particularly shew, how much that depends

upon the peculiar fabrick of the Body.13

In the pin example, Boyle ignored the need to explain the phenomenon of pain

and its representation in the perceiver’s mind. His account of the functions of

human sense organs focused on the physical texture of the organs and assumed

without further argument that the perceiver also possesses a mind that is both

distinct from her sense organs yet united with them. Nonetheless it is the

perceiver’s mind that must perform those important mental functions which

her sense organs’ textures are incapable of handling alone, functions such as

the perceiving and naming of sensible qualities:

The body of Man having several of its external parts, as the Eye, the

Ear, &c. each of a distinct and peculiar Texture, whereby it is capable to

receive Impressions from the Bodies about it, and upon that account it is

11 Ibid. V, pp. 318, 331–332. 12 Ibid. V, pp. 331–332. Italics are Boyle’s.
13 Ibid. V, p. 317.
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call’d an Organ of Sense, we must consider . . . that these Sensories may be

wrought upon by the Figure, Shape, Motion, and Texture of Bodies without

them, after several waies . . . And to these Operations of the Objects on the

Sensories, the Mind of Man, which upon the account of its Union with the

Body perceives them, giveth distinct Names, calling the one Light or Colour,

the other Sound, the other Odour, / &c.14

In this and other passages of The Origin of Forms and Qualities, Boyle seems

to refer to a mind–body union when describing the mind’s functions of perceiv-

ing and naming.15 Still none of these references are fully spelled out, and hence

Boyle does not satisfactorily explain, for instance, the relationship between an

observed body’s physical color disposition and its perceiver’s mental disposi-

tion to have color perceptions. Although he repeatedly states that the textures

of matter in the observed body and the perceiver’s body constitute the causal

grounding of both dispositions, he allows the perceiver’s mind–body union to

elude his dispositional analysis. Consequently, his reference to the mind’s ine-

liminable role in perception serves as a mere ad hoc assumption supplementing

his theory of dispositions without solving its problems.

It should be recalled, however, that Boyle was a working scientist as well as

a philosophical theorist, and his dispositional analysis of sensible qualities was

formulated chiefly as a philosophical theory, not an empirical investigation.16

As a philosophical theorist, he expressed confidence that his principles con-

cerning the size, shape, and motion of corpuscles of matter and their combined

texture would better explain the nature of sensible qualities than could any

rival Aristotelian metaphysics of substance. But he was also well acquainted

with the practical difficulties of conducting empirical investigations, such as

those in his ambitious unfinished project, The History of Particular Qualities,

where he tried to provide an exhaustive analysis of qualities like fluidity and

firmness, colors, heat and cold, and countless others.17 As a working scientist

investigating dispositions, he thus often expressed a notable lack of confidence

in his own views – a diffidence that Boyle scholars have variously characterized

as his scrupulosity about religion or his epistemological skepticism regarding

14 Ibid. V, p. 316. Italics are mine. 15 See also Ibid. V, pp. 317–321, 334.
16 My distinction between Boyle as a philosophical theorist and a working scientist focuses

only on his theorizing about what are dispositions, and not on the general relations
between philosophical theory and empirical investigations in his overall chemical science.
The latter relations may have been much closer, as Newman (2006, pp. 175–189), has
argued. By contrast, however, Clericuzio (2000, pp. 103–148), and Chalmers (2002) have
drawn a fundamental distinction between what they regard as these two separate domains
of Boyle’s work.

17 M. A. Stewart, “Introduction,” in Boyle (1991, p. xix).
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any scientist’s achievement of a complete knowledge of the interacting bodies

in an ever-changing natural world.18

In Section 13.3, I will examine Newton’s radically different approach to

defining an important dispositional property of bodies, the property of mass.

Newton turned Boyle’s philosophical theory of dispositions on its head by

showing that mass could be conceived as an exclusively dispositional property

of bodies without requiring that mass be causally grounded in the categorical

properties of Boyle’s matter. Newton’s science and philosophy were thus open

to the revolutionary possibility that the disposition of mass, when conceived

as a natural force acting according to certain mathematical laws, constitutes an

existence more fundamental than that of matter itself.

13.3 Newton’s account of mass as a dispositional property of bodies

It is fair to say that Newton regarded Boyle’s corpuscular hypothesis and, espe-

cially, his knowledge of alchemical subjects with genuine interest and respect.19

Although he did not always agree with Boyle’s specific treatments of chemical

and optical phenomena,20 he, too, put a premium on observation and experi-

ment, and sought to distinguish between the merely apparent qualities of bodies

and their real qualities without presupposing an Aristotelian metaphysics that

defined what should count as real qualities. Newton nevertheless discriminated

between apparent and real qualities in ways that were far subtler than many

of Boyle’s treatments. For example, he discriminated between the apparent

motions and true motions of bodies, between the weight and mass of bodies,

and between the color and angles of refrangibility of light. His studies of mass

and motion scrutinized what for Boyle had been the unquestionable categorical

properties of atoms of matter – their size, shape, and motion – properties that

Boyle had argued should be the causal basis of scientific explanations and not

the explananda to be explained. Newton’s willingness to investigate the categor-

ical properties of Boyle’s matter as themselves phenomena, whose fundamental

nature required further scientific explanation, separated his natural philosophy

from Boyle’s as did his mathematical treatment of them.

I begin my analysis of Newton’s dispositional account of mass by identifying

two versions of the account which were developed at successive stages of his

studies of motion in two different works.

(1) Mass was described by him, in his Philosophiae naturalis principia math-

ematica (1687), both in dispositional terms describing a body’s inertial force

and in terms of the mathematical relations describing a body’s changes of

18 See, for instance: Hunter (2000, pp. 132–134, 232–234), Sargent (1995, pp. 205–216),
Henry (1994b, pp. 119–138).

19 Westfall (1980, pp. 268, 282–284, 289, 293, 307–309, 371–377, 388–389).
20 Ibid. pp. 308–309.
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motion, whether instantaneous or continuous over a period of time. A body’s

manifestation of an inertial force, whenever it reacts to an impressed force, was

conceived, in the Principia, as its manifesting a single disposition to which New-

ton’s three laws of motion referred. But even when the body’s states of motion

were described by such mathematical laws, these mathematical propositions

only acquired their sense of physical necessity when they were interpreted as

referring to the dispositions of one or more bodies. The three laws of motion

and their role in Newton’s account of mass will be examined in greater detail

in Section 13.3 after this initial summary. Later, in Section 13.4, I will discuss

how his dispositional account of mass also contained important philosophical

resources for addressing Boyle’s problem of how the disposition of an observed

body and the disposition of its perceiver are related to each other.

(2) Prior to the Principia,21 however, Newton had already explored the ques-

tion of how dispositions might define the nature of bodies in De gravitatione et

aequipondio fluidorum (c. 1664–85): “Whether matter could be created in one

way only, or whether there are several ways by which different beings similar

to bodies could be produced” by the divine power of God.22 He had argued,

“It must be agreed that God, by the sole action of thinking and willing, can

prevent a body from penetrating any space defined by certain limits.”23 This

impenetrability, imagined here by Newton as the disposition of a part of space

to become impervious to bodies, was then elaborated by him as the dispo-

sitional property that might explain all other properties of bodies, including

their shape, tangibility, mobility, and perceptibility:

If we should suppose that that impenetrability is not always maintained

in the same part of space but can be transferred here and there according

to certain laws, yet so that the quantity and shape of that impenetrable

space are not changed, there will be no property of body which it does not

possess. It would have shape, be tangible and mobile, and be capable of

reflecting and being reflected, and constitute no less a part of the structure

of things than any other corpuscle, and I do not see why it would not

equally operate upon our minds and in turn be operated upon . . . For it is

certain that God can stimulate our perception by means of his own will,

and thence apply such power to the effects of his will.24

In these passages of De gravitatione, Newton had envisioned how the dispo-

sitions of parts of space to become impenetrable might explain the way that

imaginary beings similar to bodies could be produced by God’s thought and

21 On the problem of dating De gravitatione et aequipondio fluidorum, see Andrew Janiak,
Introduction, n. 14, p. xviii, and Note on Texts and Translations, p. xxxvii, in Newton
(2004). See also Stein (2002, n. 39, pp. 302–303).

22 Newton (2004, p. 27). Newton (1962, Latin text, p. 105, and English translation, p. 138).
23 Newton (2004, p. 27). 24 Ibid. p. 28.
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action. But he had also analyzed the property of impenetrability as part of

a heuristic model that he believed could explain how real bodies, not merely

imaginary ones, are actually produced in nature. According to the model, there

are three dispositions – mobility, impenetrability, and perceptibility – all of

which the parts of space must actualize if they are to constitute real bodies. He

highlighted these three dispositions in the outline of his model, denoting them

as the three conditions with which God endows extension:

If they are bodies, then we can define bodies as determined quantities of

extension which omnipresent God endows with certain conditions . . . : (1)

that they be mobile, . . . [i.e.,] definite quantities which may be transferred

from space to space; (2) that two of this kind cannot coincide anywhere,

that is, that they may be impenetrable, and hence that oppositions obstruct

their mutual motions and they are reflected in accord with certain laws; (3)

that they can excite various perceptions of the senses and the imagination

in created minds, and conversely be moved by them.25

Such a model, if it were exemplified by real bodies, would have transformed the

ontological status of matter as understood by Boyle. The reality of matter would

become a dependent reality because matter would no longer have an absolute

existence that grounds the dispositional existence of properties of bodies like

impenetrability. Rather, according to this model, the dispositional existence of

properties like impenetrability, which are thought and willed by God, would

instead ground the reality of matter.

I want next to consider how exactly Newton’s three laws of motion defined his

dispositional account of mass in the Principia and how that account, like the one

given in De gravitatione, posed a significant philosophical challenge to Boyle’s

concept of matter. Later, in Sections 13.4 and 13.5, I will discuss other reasons

why the Principia’s account of mass can be profitably interpreted in terms of

Newton’s heuristic model of dispositional properties in De gravitatione.

How exactly should mass be defined? Newton’s multiple treatments of the

concept of mass were a pivotal development in the science of matter because

his concept of mass helped to define a single set of principles that described

the dynamics of moving bodies on Earth, in the solar system, and beyond.

These principles also unified certain of the existing well-confirmed principles

of astronomy, mechanics, and fluid dynamics into an empirically adequate

system of mathematical laws. Nevertheless, stating what exactly is mass was

a philosophical task of the first order. How did Newton pull this rabbit out

of the hat? He did so by employing interchangeably these terms: “quantity of

matter,” “body,” “mass,” “inherent force of matter,” and “inertia, or force of

inertia.”26 Some of these terms were already in use among astronomers and

25 Ibid. pp. 28–29. Italics are Newton’s.
26 Newton (1999, Definitions, pp. 403–408; Axioms, or the Laws of Motion, pp. 416–417).
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natural philosophers, but Newton revised their prior meanings by identifying

them with each other and re-defining them in terms of his own laws of motion.

He also employed ordinary language descriptions of certain observable phe-

nomena such as the density, volume, and weight of middle-sized bodies. But

he nonetheless distinguished carefully between the terms “mass” and “weight,”

and he restricted the use of the ordinary language term “weight” to statements

about measuring the masses of different bodies relative to each other.27

Underlying these re-definitions of his predecessors’ terms was his treatment

of mass as a dispositional property of bodies in three distinct senses. The

disposition of mass could be manifested by a body in three types of behaviors:

the body’s resisting a change in its prior state of motion or rest; the body’s

changing its prior state; and the body’s reciprocally altering another body’s state.

The fact that Newton, in the Principia, described the motions of all physical

objects – including non-living as well as living bodies – in the language of

dispositional behaviors was significant. Indeed even his formulation of the

laws of motion made reference to the dispositional behaviors of animals and

the intentional actions of human beings. Consider his statements of the first

and third laws:

Law 1. Every body perseveres in its state of being at rest or of moving

uniformly straight forward, except insofar as it is compelled to change its

state by forces impressed.

Law 3. To any action there is always an opposite and equal reaction; in

other words, the actions of two bodies upon each other are always equal

and always opposite in direction.

. . . If anyone presses a stone with a finger, the finger is also pressed by the

stone. If a horse draws a stone tied to a rope, the horse will (so to speak)

also be drawn back equally toward the stone, for the rope, stretched out

at both ends, will urge the horse toward the stone and the stone toward

the horse by one and the same endeavor to go slack and will impede the

forward motion of the one as much as it promotes the forward motion of

the other.28

Newton’s three laws of motion, expressed by him not only mathematically

but also in the language of dispositional behaviors, transformed the kinematic

study of moving bodies into a dynamic study of the dispositions of the bodies,

focusing on their capacities to maintain or change their states of motion or rest,

and to act reciprocally on other bodies that exert impressed forces on them.

First, a body was held to possess a disposition called the “force of inertia” or

“inherent force of matter,” which is “the power of resisting by which every

body, so far as it is able, perseveres in its state either of resting or of moving

27 Ibid., Definition 1, pp. 403–404. 28 Ibid., Law 1, p. 416; Law 3, p. 417.
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uniformly straight forward.”29 In this sense, mass is a disposition described by

his first law of motion. Second, any change in a body’s inertial state was held to

be necessarily related to various impressed forces that could act on the body,

including percussion, pressure, and centripetal forces such as gravity.30 Here

mass was conceived by Newton as the disposition that is exhibited whenever

an impressed force causes a body to change its prior state of motion or rest.

By exhibiting such a disposition to change, the body conforms to a law-like

relation between the impressed force and a change in its own prior state of

motion or rest. In this sense, mass is a disposition described by his second law

of motion.31 Finally, according to his third law of motion, whenever a body

changes its inertial state owing to the action of an impressed force, the body

will act reciprocally to alter the state of whatever other body is responsible

for the impressed force.32 In other words, the body will exhibit its disposition

to exert an inertial force not only by resisting a change in its own state but

also by functioning simultaneously as an agent that alters the state of another

body.

Furthermore the manifestations of the types of dispositional behaviors

described by his three laws of motion have a double aspect. These manifes-

tations count as the appearances of motions to observers, but they also count as

the absolute, or true, motions of bodies caused by forces. Before Newton, they

might have been described kinematically as appearances of a body’s merely

apparent motions before and after a given change. But Newton chose to

interpret such appearances differently, in terms of the body’s exhibiting the

relevant dispositional behavior of mass, so that he could specify the relation-

ship between how the body appears to an observer and its true motions. The

merely apparent motions could be analyzed as the differences between two or

more true motions, and, subsequently, the forces that cause them could be

inferred from these true motions. He remarked about this way of interpreting

the appearances in the Scholium to the Definitions at the beginning of the

Principia:

29 Ibid., Definition 3, p. 404. 30 Ibid., Law 2, p. 416; Definition 4, p. 405.
31 The question of whether Newton interpreted his second law of motion as referring to a

body’s “change of motion” (its translation from one location to another) or to a body’s
“change in quantity of motion” (its momentum) is insightfully examined in Pourciau
(2006, pp. 160–161, 165). Pourciau shows that Newton intended his second law to refer
to a body’s translation or displacement, not to its momentum, and that his second law
thus describes motive forces that can be either continuous forces or impulses. It should
be noted that my analysis of Newton’s dispositional account of mass can be applied to
both of these interpretations of the second law.

32 Ibid., Law 3, 417. Howard Stein has argued that it is the conjunction of all three laws
of motion that should be considered as Newton’s principle characterizing the intrinsic
force of matter as a natural power. See Stein (2002, p. 289). In my analysis here, I argue
that the three laws of motion are best understood as alternative manifestations of a single
property, which I call the “dispositional property of mass.”
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Relative quantities, therefore, are not the actual quantities whose names

they bear but are those sensible measures of them (whether true or erro-

neous) that are commonly used instead of the quantities being measured.

But if the meanings of words are to be defined by usage, then it is these sen-

sible measures which should properly be understood by the terms ‘time,’

‘space,’ ‘place,’ and ‘motion,’ and the manner of expression will be out of

the ordinary and purely mathematical if the quantities being measured are

understood here.

. . . It is certainly very difficult to find out the true motions of individual

bodies and actually to differentiate them from apparent motions, because

the parts of that immovable space in which the bodies truly move make

no impression on the senses. Nevertheless, the case is not utterly hopeless.

For it is possible to draw evidence partly from apparent motions, which

are the differences between the true motions, and partly from the forces

that are the causes and effects of the true motions.33

Because the Principia’s account of mass combined all these features – (a) the

behavioral dispositions of bodies to move and to exert forces, (b) the mathe-

matical description of their various motions, and (c) the relationship between

absolute, or true, motion and a human observer’s perceptions of relative as

well as true motions – Newton’s treatment of mass as a dispositional property

amounted to a rejection of Boyle’s theory of the dispositions of bodies. For

Newton’s account showed how mass can be conceived as an exclusively dispo-

sitional property that does not require a causal grounding in the categorical

properties of matter. Ernst Mach famously belittled the Principia’s definition of

mass as circular: “If density is mass per unit volume, how can mass be defined

as jointly proportional to density and volume?”34 This alleged circularity was

one that Bernard Cohen later tried to disprove by attending to the Latin text of

the Principia’s definition of mass, which he translated as follows: “Quantity of

matter is a measure of matter that arises from [orta est] its density and volume

jointly.”35 Yet this disagreement between Mach and Cohen, over whether or

not Newton’s definition of mass is viciously circular, seems benign when com-

pared to the issue of whether or not mass can be conceived as an exclusively

dispositional property of bodies. It may also take a back seat to certain ques-

tions about the role of human and divine observers in a possible Newtonian

solution to Boyle’s problem. Such a solution will be developed in Sections 13.4

and 13.5, where I will use it to show why the Principia’s account of mass should

be interpreted in terms of Newton’s heuristic model of dispositional properties

that he originally outlined in De gravitatione.

33 Newton (1999, Scholium to Definitions, pp. 413–414).
34 I. Bernard Cohen’s paraphrase of a statement by Mach (1893/1960, chapter 2, section 7),

quoted in Cohen (2002, p. 59).
35 Newton (1999, Definition 1, p. 403). See also Cohen (2002, n. 8, p. 82).
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13.4 Newtonian and Humean approaches to Boyle’s problem

Boyle’s problem, as stated in Section 13.2, consisted of two sorts of questions:

(1) How does the causal interaction of one body’s atoms with the atoms of

another body operate to make manifest the respective dispositions of the two

bodies? (2) In cases where one of the bodies is a human perceiver, how does the

causal interaction between the observed body’s atoms and the human body’s

atoms produce the human’s idea, or mental representation, of a sensible quality

of the observed body? These questions had arisen because of Boyle’s denial

that certain sensible qualities like color are categorical properties of bodies. To

explain the phenomenon of color, for example, he had stipulated that color

has a merely dispositive, or dispositional, existence that is somehow grounded

in the actual existence of the size, shape, and motion of the body’s atoms and

their combined texture. But he could not coherently explain the workings of

such a disposition. He had been especially stymied by the question of how a

colored body’s disposition to appear colored is related to a color perceiver’s

disposition to experience the body’s color. Is the quality manifested by the

body the same thing as the observer’s perception of the quality? Or are they

different? Boyle’s concept of a disposition rested on his lock-and-key metaphor,

whereby one body’s disposition is a propensity to exhibit a quality whose actual

occurrence needs to be unlocked, metaphorically speaking, by the key which

is its interaction with another body. Yet he himself did not think his lock-and-

key metaphor fully captured the complexity of a colored body’s interaction

with a human perceiver. Hence he had supplemented this analysis with his

fundamental distinction between a body’s dispositional properties like color

and its categorical properties like size and shape – a distinction that Locke

would later christen “the primary-secondary quality distinction.”36 Boyle had

further stipulated that these categorical properties should be treated as the

unquestionable basic entities in terms of which to explain a body’s dispositional

properties.

When Newton introduced mass as a dispositional property of bodies, treat-

ing mass as the body’s disposition both to react to an impressed force and

to exhibit to an observer a change of motion, he had thereby opened to

scrutiny the unquestionable basic entities of Boyle’s science. Unlike Boyle,

he had also explicitly discussed the ineliminable role of the observer’s percep-

tion of apparent motions in revealing the differences between true motions

and hence the observer’s role in determining the existence of the forces that

cause true motions. His concern about how to interpret the observer’s percep-

tions was evident in his distinction between relative and true motions in the

36 Locke (1975, Book 2, chapter 8, sections 8–26, pp. 134–143). For an analysis of the
differences between Locke’s and Newton’s respective conceptions of primary qualities,
see Stein (1990, pp. 29–31).
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Scholium to the Principia’s Definitions. For, if a body’s mass is understood as

its disposition both to react to an external impressed force and to be perceived

by an observer as changing its motion, then what one means by “perceived by

an observer” will be crucial in defining mass itself.

What could it mean for mass as a disposition to depend in part on its

being perceived by an observer? Why should one entertain this possibility? To

appreciate why a Newtonian scientist should be well motivated to do so, it

is helpful to consider a post-Newtonian philosopher’s skeptical attack on the

primary–secondary quality distinction as it had been formulated by Boyle and

Locke. Hume’s attack on the primary–secondary quality distinction, which he

believed to be the chief error of modern philosophy,37 appeared in his Treatise

of Human Nature (1739) over a half century after Newton had first published

the Principia. As Berkeley had already tried to do, Hume was engaged in

correcting what he took to be the errors in modern accounts of the relationship

between human perceivers and the objects of perception. His philosophical

project thus shared with Berkeley’s project at least one important goal, that of

criticizing the primary–secondary quality distinction, including its use in causal

explanations of perception and its use in epistemological analyses of scientific

knowledge.38 However, Hume’s own argument against the primary–secondary

distinction did not aim to question Boyle’s assumption that corpuscular matter

exists independently of the mind of the observer. Nor did it comprise part

of a general Berkeleyan program of discrediting the prevalence of abstract

ideas and materialist principles in Newtonian science.39 Hume’s argument

focused instead on an example much like one that Newton had cited when

explaining his third law of motion, the man-pressing-a-stone example.40 In

Hume’s version of the example, he argues that the primary quality of solidity,

which is constituted by the mutual interaction between the man and the stone,

would be wholly inconceivable if the secondary quality of touch were eliminated

from the interaction:

The impressions of touch are simple impressions . . . And from this sim-

plicity I infer, that they neither represent solidity, nor any real object. For

let us put two cases, viz. that of a man, who presses a stone, or any solid

body, with his hand, and that of two stones, which press each other; ’twill

37 Hume (2000, 1.4.4.3–9, pp. 149–151).
38 Berkeley (1982, part I, sections 9–10, 18–19, 22, 87; pp. 26–27, 30–32, 60). On Hume’s

familiarity with Berkeley’s views, beginning during his student days at Edinburgh Uni-
versity, see Mossner (1980, pp. 48–49, 133).

39 Berkeley’s general program of discrediting abstract ideas and materialist principles in
Newtonian science was undertaken in several of his works, including Berkeley (1982,
part I, sections 96–117, pp. 64–74). See also Berkeley’s criticisms of Newton’s concept of
force and Newton’s method of fluxions in mathematics in Berkeley (1992).

40 Newton (1999, Law 3, 417): “If anyone presses a stone with a finger, the finger is also
pressed by the stone.”
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readily be allow’d, that these two cases are not in every respect alike, but

that in the former there is conjoin’d with the solidity, a feeling or sensation,

of which there is no appearance in the latter. In order, therefore, to make

these two cases alike, ’tis necessary to remove some part of the impression,

which the man feels by his hand, or organ of sensation; and that being

impossible in a simple impression, obliges us to remove the whole, and

proves that this whole impression has no archetype or model in external

objects.41

This argument is interesting because it probes the nature of a human

observer’s perception of solidity, a quality that Boyle had classified as a cat-

egorical property of matter.42 Hume here resembles Newton in his willingness

to investigate solidity, or impenetrability, as itself a phenomenon whose fun-

damental nature is open to question. His argument targets what he regards

as the conceptual incoherence of the primary–secondary quality distinction

by showing that a modern philosopher’s commitment to this distinction will

ultimately compel the philosopher to give up an even more basic commitment,

his commitment to the existence of a causal relationship between the human

perceiver and the object of his perception. For if the philosopher claims that

the secondary qualities of bodies, unlike primary qualities, have no real exis-

tence in a body apart from their being perceived, he will be unable to explain

the difference between a causal interaction between two stones and a causal

interaction between a man and a stone. This is because there is an ineliminable

phenomenal part, the secondary quality of touch, in the man–stone interaction.

The secondary quality of touch differs both from the solidity of the stone as it

acts on the solidity of the man, and from the solidity of the man as it acts on

the solidity of the stone.

Of course the modern philosopher might try to eliminate such a phenomenal

part from the man–stone interaction by arguing that only the primary quality

of solidity – not the secondary quality of touch – can be truly attributed to

the stone. But, if he insists on denying that there exists such a phenomenal

part of the man–stone interaction, he will then be unable to claim that the

stone possesses the quality of solidity at all. Why? Because, by eliminating

the phenomenal part of the man–stone interaction, the philosopher will have

prevented the man from acquiring any sensation of the stone. But it follows

from such a prevention that the causal relationship between the stone and the

man considered as a perceiver has also been eliminated. Hence the stone will not

be able to manifest its disposition of solidity, or impenetrability, by causally

interacting with the man considered as a perceiver. Therefore the stone will not

possess the quality of solidity, or impenetrability, at all.

41 Hume (2000, 1.4.4.14, p. 152). 42 Boyle (1666/1999, V, pp. 325, 333).
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What did Hume’s version of the man-pressing-a-stone argument reveal about

Newton’s third law of motion and Newton’s own citing of a similar example

to explain the third law? Hume did not intend his argument to question the

third law. Rather his criticism addressed those theories of matter typified by

Boyle’s and Locke’s causal explanations of sensible qualities. This type of theory

had relied on the primary–secondary quality distinction to finesse questions

concerning the causal relationship between a material object’s disposition to

manifest a quality and an observer’s perception of that quality. By contrast,

Newton’s dispositional account of mass, including his third law of motion, did

not rely at all on the primary–secondary quality distinction to determine the

relationship between the phenomena of motion perceived by an observer and

the forces that cause them. For Newton treated mass as a body’s disposition

both to react to an external impressed force and to be perceived by an observer

as changing its motion. Hence, on his account, it is the body’s dispositional

property of mass that necessitates the relationship between the phenomena of

motion perceived by an observer and the inertial and impressed forces that

cause these phenomena. If bodies do actually possess such a disposition, then

Newton will have succeeded in establishing that there must be a causal rela-

tionship between an observer’s perception of a quality and a material object’s

manifestation of the same quality, and furthermore he will have identified the

precise dispositional nature of that relationship. In short, he will have answered

one of the main questions posed by Boyle’s problem concerning sensible

qualities.

13.5 Newton’s divine phenomenalism

But do bodies actually possess such a disposition? The answer to this question

rests largely on whether or not two of the features that define mass as a dispo-

sitional property of bodies are in fact necessarily linked by a single disposition.

According to Newton’s account of mass, a body’s disposition to react to an

impressed force is the same as its disposition to be perceived by an observer

as changing its motion. Thus the existence of the body’s mass depends not

only on its disposition to react to an impressed force but also on its disposi-

tion to be perceived by an observer as changing its motion. However, human

observers may seriously doubt the necessary linking of these two features in

the same disposition. For a human observer can perceive a body’s transla-

tion from one location to another, and this perception does indeed enable her

to experience the body’s disposition to be perceived as changing its motion.

Yet this perception does not necessarily enable her to experience, in addition,

the body’s disposition to react to an impressed force since the observer has

no direct perceptual access – to the body’s exertion of or its reaction to any

forces – beyond her perception of the body’s translation from one location to

another.
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Even in cases of circular motion, such as the case of two balls connected by a

cord and revolving about a common center of gravity,43 it is an open question

in what sense an observer can have direct perceptual access to the tension of

the cord. One might ask, for instance, whether the forces causing the circular

motion of the two balls can be directly perceived as the tension of the cord,

or whether the existence of the tension itself can only be inferred indirectly

when the observer perceives a displacement in the parts of the cord. Therefore,

even in special cases of circular motion, human observers have good reason to

inquire what warrants the treatment of these two features – a body’s reaction

to an impressed force and its being perceived by an observer as changing its

motion or displacing its parts – as manifestations of the same disposition.

Newton believed that the relevant warrant lies in an analogy of reason

between a human being’s direct perceptual access to her own body and God’s

divine access to the bodies and minds comprising the created world. His clearest

statement of this analogy was presented in De gravitatione:

Since each man is conscious that he can move his body at will, and believes

further that other men enjoy the same power of similarly moving their

bodies by thought alone, the free power of moving bodies at will can by no

means be denied to God, whose faculty of thought is infinitely greater and

more swift. And for the same reason it must be agreed that God, by the

sole action of thinking and willing, can prevent a body from penetrating

any space defined by certain limits.

If he should exercise this power, and cause some space projecting above the

earth, like a mountain or any other body, to be impervious to bodies and

thus stop or reflect light and all impinging things, it seems impossible that

we should not consider this space really to be a body from the evidence of

our senses (which constitute our sole judges in this matter); for it ought

to be regarded as tangible on account of its impenetrability, and visible,

opaque, and colored on account of the reflection of light, and it will

resonate when struck because the adjacent air will be moved by the blow.

. . . If we should suppose that that impenetrability is not always maintained

in the same part of space but can be transferred here and there according

to certain laws, yet so that the quantity and shape of that impenetrable

space are not changed, there will be no property of body which it does not

possess. . . . [A]nd I do not see why it would not equally operate upon our

minds and in turn be operated upon, because it would be nothing other

than the effect of the divine mind produced in a definite quantity of space.

For it is certain that God can stimulate our perception by means of his

own will, and thence apply such power to the effects of his will.44

43 Newton (1999, Scholium to Definitions, pp. 414–415).
44 Newton (2004, pp. 27–28). See also Newton (1962, pp. 105–106, 138–139).
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Newton here employed an analogy between the human will and the divine

will that other philosophers had previously invoked for a variety of purposes.

Yet he put the analogy to a new use by relating God’s thinking and willing of

the sensible quality of impenetrability to a material object’s manifestation of

the same quality. Human beings, he noted, are capable of willing their own

bodies’ movements so that there is no essential difference between their men-

tal actions of willing and their bodies’ actual movements – barring external

obstacles that might accidentally constrain their intended movements. Their

thoughts of intended movements and their bodies’ actual movements are linked

by their wills in such a way that they perceive their mental actions of willing

to move and their movements as equivalent states. God, by analogy, is capable

of a comparable sort of willing so that there is, as God perceives it, an equiva-

lence between his willing the impenetrability of a part of space and the actual

impenetrability of a material object at that spatial location. Furthermore there

is, as God perceives it, an equivalence between his willing the impenetrability

of successive parts of space and the actual motion of a material object through

those spatial locations.

Newton’s explanation by analogy of this equivalence between God’s mental

actions and a material object’s properties, such as impenetrability and mass,

constitutes what I call “Newton’s divine phenomenalism.” His phenomenal-

ism was distinctive by virtue of its realist purpose, its attempt to ground the

existence of matter in the dispositional properties of bodies. It differed from

Berkeley’s phenomenalism because, unlike Berkeley, Newton did not claim that

phenomenalism necessitates immaterialism.45 He affirmed instead that the dis-

positional behaviors of material objects, manifested in their changing relations

over time, fully ground the existence of material objects.

However, this grounding depends on something mental which defines what it

means to be impenetrable or capable of reacting to an impressed force. Without

that something mental – such as God’s willing that impenetrability be trans-

ferred to different parts of space according to certain laws – the dispositions of

impenetrability and mass would be unintelligible. It is therefore not surprising

that, on Newton’s view in the Principia, human beings have sufficient warrant

to believe that a body’s disposition to react to an impressed force is the same as

its disposition to be perceived by a human observer as changing its motion. A

human observer is here warranted by an analogy of reason to think, as Newton’s

God does, about the body’s mass as a disposition that necessarily links these

two features. Nor is it surprising that the human observer, who perceives only

one feature of this disposition, namely, the body’s changing motion, can also

acquire – by describing these phenomena in terms of the three laws of motion –

a warranted belief in the body’s disposition to react to an impressed force.

45 Berkeley (1982, part I, sections 7–11, 46–58, 87–96; pp. 26–28, 42–47, 60–64).
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For Newton’s God likewise thinks of the body’s disposition to react to

various forces in terms of the phenomena as described by the three laws of

motion.

Indeed Newton’s God is indispensable to his physics as a whole because, as

I have just shown, to separate his theology from his physics is to challenge

the credibility of his dispositional account of mass itself. God is required to

underwrite his empiricism.46 Newton’s theology is not a compartmentalized

part of his work, separable from the other parts, whose main interest lies in

its providing a cultural context for his science. Our understanding of the Prin-

cipia’s dispositional account of mass is significantly deepened by interpreting

it in terms of his heuristic model of dispositional properties which, in De grav-

itatione, depend on a divine power. What emerges from my integrated analysis

of these works in Sections 13.3, 13.4, and 13.5 is Newton’s development of a

radically new concept of dispositions. His other innovations in various areas of

mathematics, physics, and natural philosophy are well known, and his influ-

ence on early modern philosophical theories of matter and causation has been

the subject of stimulating debate among recent Newton scholars and Hume

scholars, who have explored the similarities and differences between Newton’s

and Hume’s views of causal powers.47 My present contribution to this ongo-

ing discussion is to show how the very idea of a disposition itself underwent a

major conceptual change between Boyle’s theory of the dispositions of bodies

and Newton’s dispositional treatment of impenetrability in De gravitatione and

mass in the Principia. These properties could now be analyzed without pre-

supposing that they possessed a causal grounding in any more basic property

of bodies, including the categorical properties of Boyle’s matter. As such, New-

ton’s new concept of a dispositional property was incompatible with Boyle’s

theory, which required that a body’s dispositions be ultimately reducible to the

size, shape, motion, and combined texture of its atoms. Moreover, as I have

argued in Sections 13.4 and 13.5, Newton’s dispositional accounts of impene-

trability and mass also contained important philosophical resources for trying

to solve Boyle’s problem of how the disposition of an observable body and the

disposition of its perceiver are related to each other.

13.6 Newton’s legacy to Hume, and Hume’s legacy to us

Suppose, however, that you are a religious skeptic and yours is an empiricism

that, while it continues to accept his physics, nonetheless rejects his analogy of

46 See Joy (2006, pp. 99–105) for my account of Newton’s scientific epistemology and the
central role that his conception of God performs in this epistemology.

47 See these excellent studies: Schliesser (2007), Schliesser (2008), Janiak (2007), Janiak
(2008, pp. 87–129), De Pierris (2002), Beebee (2006, pp. 193–225), Strawson (2000),
Winkler (2000).
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reason between human and divine observers. How would your acceptance of his

physics, if it were divorced from its divine phenomenalism, shape your beliefs

about matter and your beliefs about yourself as an observer of phenomena?

Newton’s most important legacy to Hume48 was his showing how mass

can be conceived as an exclusively dispositional property of bodies without

presupposing its grounding in a more basic categorical property of bodies.

Mass, as a dispositional property, did not require any causal grounding in

Boyle’s matter because, when it was conceived as a natural force acting according

to the laws of motion, it constituted an existence more fundamental than that of

matter itself. But Hume never accepted divine phenomenalism, and, as a result,

the Newtonian elements of his own work sometimes subverted certain claims

of the very science which had inspired it. Nowhere was this more evident than

in his re-interpretation of Newton’s dispositional account of mass as instead a

relational account of the perceptual states of an observer of the phenomena of

motion.

Hume’s rejection of Newton’s analogy of reason between human and divine

observers deprived him of the warrant for believing that a body’s disposition

to react to an impressed force is the same as its disposition to be perceived by

a human observer as changing its motion. He was thus left with an account of

the human observer that featured only the observer’s perceptions of changes in

a body’s motion and one that postulated no causal basis of these perceptions

in the body’s disposition. So Hume had no reason to presuppose that material

objects possess dispositions that necessitate a causal relationship between an

object’s manifesting a particular quality and an observer’s perceiving the same

quality. Rather his account of the human observer was focused on the relations

between the observer’s distinct perceptions of a body’s changing motions because

it was these relations between perceptions that now defined Newtonian forces

for him.49

This focus was notable in two ways. First, by questioning Newton’s divine

guarantee of the belief that our perceptions of changes of motion are caused by

a body exerting or reacting to a force, Hume proceeded to examine the nature of

all our beliefs about material objects external to the mind. Yet his examination

was not aimed at discovering a correspondence between our beliefs, on the one

hand, and the forces and material objects external to the mind, on the other

hand. That is, Hume did not try to prove that the impressions and ideas that

constitute our beliefs are true representations of material objects. For given

his refusal to stipulate any divininely guaranteed, necessary causal relationship

48 Several recent studies that differ from my view of the relationship between Newton’s
natural philosophy and Hume’s metaphysics and epistemology are cited in footnotes 47
and 52.

49 Hume (2000, 1.3.14.11–31, pp. 108–115). Hume (1999, sections 5.5–8, 5.20–22, 7.5–8,
7.25 n. 16, 7.28–30; pp. 121–124, 128–130, 136–137, 143–147).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 17:41:19 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.017

Cambridge Books Online © Cambridge University Press, 2012



340 lynn s. joy

between an object’s manifesting a particular quality and an observer’s perceiv-

ing the same quality, he had no reason to infer, from such a causal relationship,

that there exists an additional cognitive relationship of representation between an

external material object and its observer. His only way to evaluate the reliability

of our beliefs was to examine the perceptions that constitute those beliefs and

to analyze the variety of relations among them. Hume’s account of the nature

of our beliefs was therefore directed at discovering and explaining all of the

significant relations among our impressions and ideas themselves.50

Moreover, this aim was notable for a second reason. Hume, in implementing

it, was able to drive a wedge between his own relational interpretation of the laws

of motion and Newton’s dispositional interpretation of those laws. Apprised of

the type of connection between impressions and ideas that constitutes a belief,

he then interpreted an observer’s perceptions of changes of motion as providing

the phenomenal content of the observer’s belief that a body is exerting or reacting

to a force. By thus translating the statement of a belief about a body’s mass into

a statement describing the relations between the observer’s perceptual states,

he could now claim that a justificatory connection exists between the observer’s

perceiving certain impressions and ideas and her forming the relevant belief.

Therefore her belief that a body is exerting or reacting to a force could be

reduced to and hence warranted by regularities in the relations between the

observer’s perceptions. And Hume could, accordingly, explain what makes this

particular belief a reliable belief.51

There is of course much in Hume that we might now question, but his rela-

tional account of the phenomena of motion in terms of the perceptual states of

the observer is still a philosophical position well worth defending. It originated

in his acceptance of Newtonian physics divorced from divine phenomenalism

and greatly aided his efforts to apply a Newtonian methodology more broadly

to his own philosophy of mind. It showed how our beliefs about a body’s phys-

ical disposition can be reduced to the relations between our perceptual states.

Furthermore it anticipated the view that our beliefs about scientific laws of

nature can be interpreted as and warranted by relations between the perceived

phenomena without reference to the dispositions of material objects and the

forces they exert. Unlike Newton, therefore, Hume did not revise and rehabil-

itate Boyle’s lock-and-key concept of a disposition for the purpose of causally

relating the phenomena of motion to the forces that cause them. Rather he

chose to translate previous generations of empiricists’ talk of the dispositions

of matter into talk of a non-dispositional account of bodies based on his rela-

tional account of belief. He could scarcely have done otherwise if he was to

remain a Newtonian – yet a Newtonian for whom God could play no part

50 Hume (2000, 1.1.1.7–12; 1.1.4–5; 1.3.1–2; pp. 9–10, 12–16, 50–55). Hume (1999, sections
2.1–5, 3.1–3, 4.1–13, 5.5–8, 5.20–22; pp. 96–97, 101–102, 108–113, 121–124, 128–130).

51 See Hume (2000) and Hume (1999) references in footnote 49.
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in his theorizing. It has often been thought that it was Hume’s empiricism

which compelled him to exclude God from his explanations of both mind and

body.52 However, I want to conclude by suggesting that, at least in so far as his

beliefs about material objects were concerned, it was the exclusion of God from

Hume’s explanations that compelled him to become an empiricist.53

52 For example, see: Buckle (2001, pp. 325–327); Fogelin (2003, p. 61).
53 In my Dispositions and Intentionality in the Humean Tradition (work-in-progress), I

offer an extended discussion of how Hume’s atheism shaped both his empiricism and
philosophy of mind.
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Newton and Kant on absolute space

from theology to transcendental philosophy

michael friedman

In my previous work on Newton and Kant I have primarily emphasized method-

ological issues: why Kant takes the Newtonian Laws of Motion (as well as certain

related propositions of what he calls “pure natural science”) as synthetic a priori

constitutive principles rather than mere empirical laws, and how this point is

intimately connected, in turn, with Kant’s conception of absolute space as a reg-

ulative idea of reason – as the limit point of an empirical constructive procedure

rather than a self-subsistent “container” existing prior to and independently of

all perceptible matter. I have also argued that these methodological differences

explain the circumstance that Kant, unlike Newton, asserts that gravitational

attraction must be conceived as an “action at a distance through empty space,”

and even formulates a (rare) criticism of Newton for attempting to leave the

question of the “true cause” of gravitational attraction entirely open. In this

chapter I emphasize the importance of metaphysical and theological issues –

about God, his creation of the material world in space, and the consequences dif-

ferent views of such creation have for the metaphysical foundations of physics.

I argue, in particular, that Kant’s differences with Newton over these issues

constitute an essential part of his radical transformation of the very meaning of

metaphysics as practiced by his predecessors. I also suggest that the metaphys-

ical and theological issues in question form an essential part of the intellectual

context for the methodological issues I have emphasized previously – especially

the issue of action at a distance.

It is now well known that the main target of Newton’s rejection of “relation-

alism” in favor of an “absolutist” metaphysics of space was Descartes, and the

locus classicus for Newton’s own metaphysics of space is his unpublished De

Gravitatione.1 What was most important for Newton was decisively to reject

1 This point was first made in Stein (1967), and we can now also cite Stein (2002) for an
authoritative account of Newton’s metaphysics. De Gravitatione first appeared, together
with an English translation, in Newton (1962). An improved translation by Christian
Johnson, made with the assistance of Andrew Janiak, and consulting an earlier unpublished
translation by Stein, appears in Newton (2004): my parenthetical page references to De
Grav. – and to Newton’s writings more generally – are to this edition.

342

Downloaded from Cambridge Books Online by IP 128.214.173.46 on Tue Oct 30 23:53:18 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.018

Cambridge Books Online © Cambridge University Press, 2012



newton and kant on absolute space 343

Descartes’s identification of matter with extension and to defend, accordingly,

the concept of absolute (empty) space existing prior to and independently of

matter. Yet Newton, like Descartes before him, also appropriated philosophical

ideas from the neo-Platonic tradition,2 which he incorporated into his own

metaphysics. For Newton, the most salient source of such ideas was the Cam-

bridge Platonism represented especially by Henry More, and Newton employs

them in his doctrine that absolute space is neither a substance nor an accident,

but what he calls “an emanative effect of God and an affection of every kind of

being” (De Grav., p. 21).3 In particular, absolute space or pure extension is even

an affection of God himself, since God is omnipresent or everywhere. God can

thereby create matter or body (as something quite distinct from pure exten-

sion) by endowing certain determined regions of space with the conditions of

mobility, impenetrability, and obedience to the laws of motion. God can do this

anywhere in space, in virtue of his omnipresence, by his immediate thought

and will, just as our souls can move our bodies by our immediate thought

and will. It is essentially this doctrine which surfaces in Newton’s well-known

published statements, in the General Scholium to the Principia and the Queries

to the Optics, that space is the “sensorium” of God.4

The sharp differences between Descartes’s and Newton’s metaphysics of

space – their different conceptions of the relationships among space, God, and

matter – are of fundamental importance. For Descartes, since space is simply

identical with matter, God creates matter by creating space itself, and it is pre-

cisely this act of creation of space at successive moments of time that is respon-

sible for the laws of motion. In particular, the conservation of what Descartes

called the total “quantity of motion” results from the unity and simplicity of

God, whereby God continually recreates the entire Universe (the whole of pure

extension, whose various parts may have different instantaneous tendencies to

motion at any given time) at each instant while constantly expressing the very

2 For Descartes’s appropriation of neo-Platonic metaphysics, as mediated by Augustine, see
Menn (1998).

3 Some of the most important writings of the Cambridge Platonists are collected in Patrides
(1980). For discussion of the idea that space is an emanative effect of God see the exchange
between J. E. McGuire and John Carriero in Bricker and Hughes (1990). See also the very
careful discussion in Stein (2002, pp. 266–272). In the course of his discussion Stein is
led to claim (p. 269) that “the grounds for thinking that Newton’s theory of emanation
is neo-Platonic, or ‘Cambridge Platonic,’ are very weak.” Whatever one may think of
Stein’s particular reasons for this claim, it seems to me very hard to deny, in any case, that
Newton is appropriating neo-Platonic (and, indeed, ‘Cambridge Platonic’) ideas for his
own purposes here.

4 In Query 31, for example, Newton describes God as (p. 138) “a powerful ever-living agent,
who being in all places, is more able by his will to move the bodies within his boundless
uniform sensorium, and thereby to form and reform the parts of the universe, than we are
by our will to move the parts of our own bodies.”
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same divine essence.5 For Newton, by contrast, matter and space have radically

different statuses vis-à-vis God’s creation. Space is “an emanative effect of God

and an affection of every kind of being,” including God, while matter is the

result of God’s creative activity in space, wherein certain determined regions are

then endowed with the conditions of mobility, impenetrability, and obedience

to the laws of motion. By instituting the laws of motion, in particular, God

thereby endows certain regions of space with Newtonian mass or quantity of

matter (vis inertiae), and the presence of this quantity, specifically, clearly dis-

tinguishes matter from empty space. This not only leads, following earlier work

of Wren, Wallis, and Huygens, to a much more adequate formulation of the

laws of impact (whereas Descartes’s inadequate formulation had no room for

the quantity of mass, and thus no room for momentum or quantity of motion

in the Newtonian sense), it eventually leads to the theory of universal gravi-

tation of Book III of the Principia. And this theory, in turn, puts the notions

of absolute space, time, and motion to real physical work in determining the

center of mass of the solar system as the true “center of the world.”

Nevertheless, despite these fundamental differences, both Descartes and

Newton are using neo-Platonic ideas to support an essentially mathematical

approach to physics over the older qualitative approach of Aristotelian physics.

For Descartes, the world described by physics is, in its essence, the object of pure

geometry. God, in creating this world, not only brings about (what Descartes

takes to be) the (mathematical) laws of motion of the new physics, he also,

in creating us as mind–body composites located within this world, guarantees

that we can use our purely intellectual mathematical knowledge in successively

correcting and refining our knowledge of the material world – as we apply pure

mathematics, that is, to the initially misleading deliverances of our senses.6

For Newton, although the world described by physics is not, in its essence, the

object of pure geometry, space (which is the object of pure geometry) nonethe-

less constitutes the “frame of the world” – an emanative effect of the divine

existence wherein God then creates matter by an immediate act of his will. The

bare existence of space suffices for the existence of all the shapes and figures

studied in pure geometry (De Grav., p. 22): “there are everywhere all kinds of

figures, everywhere spheres, cubes, triangles, straight lines, everywhere circular,

elliptical, parabolical, and all other kinds of figures, and those of all shapes and

sizes, even though they are not disclosed to sight.” And thus pure geometry is

ipso facto applicable to all material bodies as well (pp. 22–3): “the delineation of

any material figure is not a new production of that figure with respect to space,

but only a corporeal representation of it, so that what was formerly insensible

5 Article 36 of the Principles of Philosophy (1644). See the edition by Miller and Miller
(Descartes 1991, pp. 57–58).

6 This, in a nutshell, is how I read the argument for the existence of matter of the Sixth
Meditation: see Friedman (1997), (2008).
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in space now appears before the senses.” Therefore, in virtue of their (differ-

ently) neo-Platonic conceptions of a metaphysics of space, neither Descartes

nor Newton has any room for a necessary gap (as there was in Plato’s original

“Platonism”) between pure mathematics, on the one side, and the sensible and

material world, on the other.

The significance of this point becomes clearer if we contrast the conceptions

of both Descartes and Newton with the quite distinct approach of Leibniz, who

was explicitly opposed to both Descartes and Newton in correspondingly dif-

ferent ways. Leibniz began, in fact, by reacting to Descartes’s failure adequately

to formulate the basic laws of impact, which were supposed to govern, accord-

ing to the then dominant paradigm of the mechanical natural philosophy, all

phenomena in the material or corporeal world. Leibniz responded to this prob-

lem by emphasizing the importance of a new, essentially dynamical quantity,

which he called vis viva or living force (in modern terms, mass multiplied by the

square of the velocity), where the basic law of motion is now formulated as the

conservation of the total quantity of vis viva. Leibniz also strongly emphasized

that living force is not purely geometrical or mechanical, so that, in particular,

this quantity (unlike Descartes’s purely mechanical “quantity of motion”) rein-

troduces an element of Aristotelian teleology into the mechanical philosophy.

For vis viva, on Leibniz’s view, is the counterpart of the Aristotelian notion of

entelechy: namely, that internal (non-spatial) principle by which an ultimate

simple substance or monad determines (by a kind of “appetition”) the entire

future development of its own internal state. Moreover, in accordance with

this same renewed emphasis on Aristotelian teleology, Leibniz then articulated

a doctrine of divine creation in terms of God’s choice of the best among all

merely logically possible worlds. The distinction between what is logically pos-

sible and what is actual – between all merely thinkable worlds available to the

divine intellect and the best and most perfect of these worlds as determined

by the divine will – thereby corresponds to the distinction between principles

of pure mathematics (including geometry) and principles of natural science or

physics (the laws of motion). In particular, the laws of motion, unlike the prin-

ciples of pure mathematics, precisely express the divine wisdom in actualizing

or creating the best and most perfect of all possible worlds.7

Leibniz thereby breaks decisively with Descartes’s metaphysics of space,

for the actual world of material substances results from a special act of the

divine will which introduces additional non-spatial, and essentially teleologi-

cal, elements into the mechanical laws of motion. Indeed, Leibniz’s break with

7 Leibniz first articulated his criticism of Descartes concerning vis viva in “A Brief Demon-
stration of a Notable Error of Descartes and Others Concerning a Natural Law” (1686),
and he developed the wider metaphysical implications of vis viva in his Discourse on Meta-
physics, written in the same year. Both of these, together with a very wide selection of
Leibniz’s works, are translated in Leibniz (1976).
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Descartes on this issue is deeper still, for, on Leibniz’s view, the entire mechan-

ical physical world (including the space in which bodies move) is a secondary

appearance or phenomenon (a “well-founded phenomenon” like the rain-

bow) of an underlying metaphysical reality of mind-like simple substances or

monads – substances which, at this level, are not spatial at all, but rather have

only purely internal properties and no external relations. This point, in turn, is

closely connected with a fundamental disagreement with Descartes about the

nature of the intellect: whereas Descartes entirely rejects traditional Aristotelian

logic and takes purely intellectual knowledge to be exemplified by the proce-

dure of his new analytic geometry instead, Leibniz self-consciously returns to

the idea that purely intellectual knowledge is essentially logical.8 And, although

Leibniz appears to have envisioned some sort of extension of Aristotelian logic

capable of embracing the new algebraic methods of his calculus, there is no

doubt that the traditional subject-predicate structure of this logic pervades

his monadic metaphysics: it is precisely because ultimate metaphysical real-

ity is essentially intellectual in the logical sense that the entire mechanical

world, including space, is a merely secondary reality or phenomenon. Thus,

although Leibniz, like everyone else in the period, holds that there are exact

mathematical laws governing the sensible and material world, he reintroduces

a new kind of necessary gap between reality as known by the intellect and this

sensible world.

For Newton, by contrast, space – the very space in which bodies exist and

move – is metaphysically fundamental, for, as we have seen, it is “an affection

of every kind of being,” including God himself. Indeed, Newton puts the point

even more strongly several pages later (De Grav., p. 25): “Space is an affection of

a being just as a being. No being exists or can exist which is not related to space

in some way.” In particular, God, through his omnipresence, creates matter in

space by endowing certain determined regions with mass (vis inertiae), and God

thereby institutes the (Newtonian) Laws of Motion by singling out momentum

(mass multiplied by velocity) as the fundamental dynamical quantity governing

all changes of motion of matter. For Newton, moreover, impressed force (vis

impressa) is a further dynamical quantity involved in such changes – where this

refers to any action on the body in question by which a change of momentum

is produced. Impressed force, in the Newtonian sense, is an external action on

a body by something else, not an internal principle of change like Leibnizean

vis viva, and, what is more, the changes it effects are not intrinsically limited

to the condition of contact. On the contrary, the principal instantiation of

this concept, in the Principia, is precisely the force of universal gravitation,

whereby one body exchanges momentum with another body immediately and

at a distance; and it is the theory of universal gravitation, as we have said, which

8 See the classic discussion of Descartes’s and Leibniz’s very different conceptions of the
relationship between mathematics and logic in Hacking (1980).
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then puts the notions of absolute space, time, and motion to real physical work

in determining the true “center of the world.”

It is by no means surprising, therefore, that Newton also rejects the traditional

Aristotelian notion of substance, and replaces it, in effect, with space itself – or,

more precisely, with space plus God (De Grav., p. 29):

For the existence of these beings [bodies] it is not necessary that we suppose

some unintelligible substance to exist in which as subject there may be an

inherent substantial form; extension and an act of the divine will are

enough. Extension takes the place of the substantial subject in which the

form of the body is conserved by the divine will; and that product of

the divine will is the form or formal reason of the body denoting every

dimension of space in which the body is to be produced.

For Leibniz, by contrast, space, as we have seen, is a mere “well-founded

phenomenon,” and pure intellectual knowledge is explicitly modelled on Aris-

totelian subject-predicate logic: (a modified version of) the Aristotelian concept

of substance must be metaphysically fundamental.

Newton’s struggles with the problem of action at a distance result in sig-

nificant complications here. Although later Newtonians (including Kant) were

happy to conceive gravitation as an immediate action of one body on another

body across empty space, Newton himself was seriously troubled. He appeared

deliberately to leave it open in the first (1687) edition of the Principia that

gravity may ultimately be explained by mechanical impact; and he also spec-

ulated in the Optics about an interplanetary aetherial medium as the cause

of gravity.9 Moreover, Newton famously declared that the idea of action at a

distance is an “absurdity” in his well-known letter to Bentley of February 5,

1693 (pp. 102–103):

It is inconceivable that inanimate brute matter should, without the media-

tion of something else, which is not material, operate upon and affect other

matter without mutual contact, as it must be, if gravitation in the sense

of Epicurus, be essential and inherent in it. And this is one reason why I

desired you would not ascribe innate gravity to me. That gravity should be

9 Thus, for example, in the Scholium to Section 11 of Book I of the Principia, after discussing
the three-body problem at some length, Newton says (p. 86, my emphasis): “I use the word
‘attraction’ here in a general sense for any endeavor whatever of bodies to approach one
another, whether that endeavor occurs as a result of the action of the bodies either drawn
toward one another or acting on one another by means of spirits emitted or whether
it arises from the action of the aether or air or of any medium whatsoever – whether
corporeal or incorporeal – in any way impelling toward one another the bodies floating
therein.” However, as explained in note 21 below (which also discusses the aetherial
medium proposed in the Optics), Newton definitely appears to exclude mechanical impact
from the possible candidates in the second (1713) edition of the Principia.
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innate, inherent, and essential to matter, so that one body may act upon

another at a distance through a vacuum without the mediation of anything

else, by and through which their action and force may be conveyed from

one to another, is to me so great an absurdity, that I believe that no man

who has in philosophical matters a competent faculty of thinking can ever

fall into it. Gravity must be caused by an agent acting constantly according

to certain laws; but whether this agent be material or immaterial, I have

left to the consideration of my readers.

And what is most striking, from our present point of view, is the suggestion

that the true cause of gravity may be an immaterial agent – perhaps even God

himself.

It is natural, in the first place, that the mediating agent between distantly

gravitating bodies be immaterial, for it is essential to Newton’s argument for

universal gravitation in Book III of the Principia that such mutually attracting

bodies – Jupiter and Saturn, for example – directly and immediately exchange

momentum with one another, entirely independently of any other matter that

may be located in between. Whatever is playing this mediating role must

therefore experience negligible exchanges of momentum with the two attracting

bodies themselves, and the most natural way to achieve this, in general, is to

conceive the mediating agent as massless or immaterial. Moreover, in the second

place, since God exists or is omnipresent everywhere in space, and he thereby

creates matter and its fundamental laws by an immediate act of the divine

will, it is natural to suppose that the ubiquitous immaterial agent ultimately

responsible for gravitational attraction is either God himself or an ubiquitous

immaterial spirit directly resulting from God’s own ubiquity.10 Finally, in the

third place, God is described in the General Scholium added to the second

edition of the Principia in 1713 as an omnipresent acting substance (p. 91):

“God is one and the same God always and everywhere. He is omnipresent not

10 In Query 31 to the Optics (unlike De Grav.), Newton suggests that God’s act of creating
matter in space is responsible not only for impenetrability and mass (in accordance with
the three “passive” laws of motion), but also for specific forces or “active principles,”
including gravity (pp. 136–137): “[I]t seems probable to me, that God in the beginning
formed matter in solid, massy, hard, impenetrable, moveable particles, of such sizes and
figures, and with such other properties, and in such proportion to space, as most conduced
to the end for which he formed them; . . . It seems to me farther, that these particles have
not only a vis inertiae, accompanied with such passive laws of motion as naturally result
from that force, but also that they are moved by certain active principles, such as that of
gravity, and that which causes fermentation, and the cohesion of bodies. These principles
I consider, not as occult qualities, supposed to result from the specific forms of things,
but as general laws of nature, by which the things themselves are formed; their truth
appearing to us by phenomena, though their causes be not yet discovered.” Compare also
the passage quoted in note 4 above, which can easily be taken to suggest that God himself
“moves” the bodies interacting in accordance with universal gravitation.
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only virtually but also substantially; for action requires substance.”11 Therefore,

Newton does not so much entirely reject the traditional notions of substance

and active agency, but reinterprets them in light of his metaphysics of space.

He continues to conceive of efficient causality as the (local) action of one

substance on another, and God, in particular, is the ultimate substantial agent

underlying all causal action in the material world. His true opposition to

Descartes concerns the notion of specifically material substance, and he uses

his neo-Platonic (Cambridge Platonic) metaphysics of space to craft a further

argument against Descartes’s metaphysics from the (apparent) phenomena of

gravitational attraction at a distance.

The importance of Newton’s metaphysics of space in underwriting his princi-

pled rejection of the mechanical philosophy has not, I believe, been sufficiently

appreciated. For, from a post-Newtonian perspective, the requirement that

all causal interaction in the material world be limited to the communication

of motion by impact may appear as an entirely arbitrary restriction on the

basic principles governing the exchange of momentum, and there is then no

reason, from this point of view, that a direct (equal and opposite) exchange

of momentum at a distance via universal gravitation may not be viewed as a

perfectly legitimate example of causal interaction.12 At the time when Newton

was first formulating this theory, however, everyone took it for granted that one

substance could act on another by efficient causality only if the one is locally

present to the other: this principle was shared by contemporary Aristotelians,

by mechanical philosophers, and (as we have just seen) by Newton himself.

11 Immediately following this passage Newton adds (ibid.): “In him all things are contained
and moved, but he does not act on them nor they on him.” And, at the very end of the
General Scholium, after pointing out that he has “not yet assigned a cause to gravity,”
and that, nonetheless, it is not to be reckoned among the “occult qualities,” but is rather
derived by induction from the phenomena, Newton continues (p. 93): “A few things
could now be added concerning a certain very subtle spirit pervading gross bodies and
lying hidden in them; by its force and actions, the particles of bodies attract one another
at very small distances and cohere when they become contiguous; and electrical bodies
act at greater distances, repelling as well as attracting neighboring corpuscles; . . . ” If, in
accordance with the above passage from Query 31 of the Optics, we suppose that this
“very subtle spirit” is also the cause of gravitational attraction, it would follow that it is
this (presumably immaterial or massless) “spirit” which mediates gravitational action in
line with the letter to Bentley. God’s own active agency would then be confined to creating
both matter and the spirit in question, which then interact with one another to produce
the phenomena of gravitational attraction.

12 This, for example, is how Robert DiSalle views the matter in his excellent recent philo-
sophical history of space-time physics. In particular, according to DiSalle (2006, p. 42):
“[I]n the Newtonian view, any interaction is physically intelligible as long as, and just
to the extent that, it conforms to the laws of motion.” This, however, was not the view
of Newton himself; rather, it is a (certainly very natural) conception arising in a post-
Newtonian context where Newton’s physics itself is then taken as a reliable guide to
metaphysics – for example, as we shall soon see, in Kant.
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Everyone also took it for granted that the clearest and most fundamental exam-

ple of causal agency is the creative activity of God. Newton’s metaphysics of

space then made it possible for him to maintain that universal gravitation

involves an immediate exchange of momentum across empty space (as his

physics requires) while, at the same time, preserving the more traditional ideas

of causality and agency he shared with his contemporaries.13

From Newton’s own point of view, his conception of the creation of matter

by God makes maximal room for divine creative activity, and thereby avoids the

threat of atheism opened up by the Cartesian conception of material substance.

Nevertheless, this conception of divine agency is of course highly unorthodox,

and, from a more traditional point of view, one would certainly not constrain

God’s creative activity by the requirement of local presence governing the inter-

actions of material substances. From this point of view, it is Newton who opens

up the threat of atheism (or rather pantheism) by seeming to materialize God.

However, although Leibniz, for example, thus stands on much firmer theolog-

ical ground than Newton, he does not have a competing metaphysics adequate

for natural philosophy and physics. Kant, as we shall see, simply takes Newto-

nian physics (including action at a distance) for granted, while simultaneously

rejecting Newton’s theologically and metaphysically objectionable notion of

absolute space.14 Kant’s problem, accordingly, is to construct a radically new

approach to metaphysics along broadly Leibnizean lines, while also doing full

justice to Newtonian physics.

In the pre-critical period, Kant attempts to fashion a direct unification of

Leibnizean and Newtonian ideas, by starting with a Leibnizean metaphysics of

monads and then building a Newtonian metaphysics of space, as it were, on

top of this monadic metaphysics. The primary reality remains a non-spatial

realm of ultimate simple substances, but these substances, for Kant, now have

both purely internal, intrinsic properties and external or extrinsic relations.

13 My conception of the relationship of the importance of Newton’s metaphysics to his
physics (contrary to views like those of DiSalle) has much in common with the recent
very extensive treatment in Janiak (2008): compare Janiak (2008, p. 174, note 19).

14 Kant famously rejects Newtonian absolute space and time (along with the opposing
Leibnizean conception) in the transcendental aesthetic of the Critique of Pure Reason.
He begins by forcefully rejecting the conception of “mathematical natural scientists,”
who “must assume two eternal and infinite self-subsistent non-entities (space and time),
which are there (yet without there being something actual), only in order to compre-
hend everything actual within themselves” (A39/B56). He then adds (A40/B57): “The
[mathematical natural scientists] succeed in so far as they keep the field of appearances
free for mathematical assertions. On the other hand, they confuse themselves very much
by precisely these conditions when the understanding pretends to go beyond this field.”
Compare note 16 below. (All translations from Kant’s writings are my own, and I cite all
writings – except for the first Critique, which is cited by the “A” and “B” pagination of the
first (1781) and second (1787) editions – by volume and page numbers of the standard
Akademie edition of Kant’s gesammelte Schriften.)
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Such external relations among the monads are not necessary for them to be the

simple substances which they are, but they are necessary for them to exist – or,

more precisely, to co-exist – together in a common world. In this way, God’s

creative activity has two distinguishable aspects: one act by which the simple

substances themselves are created in the first place, and a second by which

a number of such simple substances are joined together into a single world.

This second act occurs in conformity with what Kant calls a “schema of the

divine intellect,” and it is in virtue of just such a schema, in the end, that what

we know as the laws of nature then arise. More precisely, what we know as

the fundamental forces of matter (attraction and repulsion) – together with

the laws that govern them – are a direct expression of the divinely instituted

external relations (of co-existence) between monads; and what we know as space

is then the phenomenal expression of this same system of divinely instituted

relations. Space is thus a secondary reality, derivative from the monads and

their external relations, but, since the external relations between monads, for

Kant, are just as real as their internal properties, it is a reality nonetheless –

and not, as in Leibniz, a merely ideal “well-founded phenomenon.” Indeed,

since the fundamental force of attraction, for Kant, is explicitly modelled on

Newtonian universal gravitation (as an immediate action at a distance through

empty space), Kant explicitly links his pre-critical conception of space with the

Newtonian conception of divine omnipresence.15

It is in the Inaugural Dissertation of 1770 that Kant makes a fundamental

break with the Leibnizean philosophy – and, in a somewhat different fashion,

with the Newtonian philosophy as well. Kant here first articulates his charac-

teristic distinction between two independent rational faculties of the human

mind – the pure understanding or pure intellect, on the one side, and pure

sensibility or pure intuition, on the other. The former embodies the traditional

categories and concepts of rational (Leibnizean) metaphysics, but it is the latter,

for Kant, which now embodies the concepts and principles of pure mathemat-

ics. In particular, Kant now holds that mathematical knowledge is in no way

purely intellectual, but is rather essentially intuitive or sensible, requiring the

forms of pure sensibility, space and time. The world as we know it therefore

bifurcates into two: the intellectual world described by traditional metaphysics

15 Kant makes this connection in the New Exposition of the First Principles of Metaphysical
Cognition and the Universal Natural History and Theory of the Heavens, both appearing
in 1755. For discussion, and references, see Friedman (1992, pp. 5–14). As I point out
there, an echo of the Newtonian doctrine of divine omnipresence occurs as late as the
Scholium to §22 of the Inaugural Dissertation (1770). (Kant of course had no knowledge
of Newton’s unpublished De Gravitatione, but, as observed above, essentially the same
metaphysics of space surfaces in such well-known published writings as the General
Scholium to the Principia and the Queries to the Optics.) For further recent discussions
of Kant’s pre-critical metaphysics see Laywine (1993), Schönfeld (2000), Watkins (2005).
A recent volume of translations is Kant (1992).
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(the Leibnizean metaphysics of ultimate simple substances as modified by the

earlier Kant), and the sensible world as described by mathematics and mathe-

matical physics in space and time. Although something like Newtonian space

therefore remains as the foundation of this sensible world, space can no longer

be conceived, as in Newton, as the sensorium of God – it is rather, as it were, the

form of our sensorium, the form of our pure sensibility. Yet it is an unresolved

problem, in the Inaugural Dissertation, how these two worlds are now supposed

to be related, and, in particular, how the world described by mathematics and

mathematical physics (the world as it appears to us) is related to the ultimate

metaphysical reality of the intellectual world.

It is precisely this problem which finally gives birth to the critical philosophy

in 1781. Kant now declares that purely intellectual, metaphysical knowledge –

whether of immaterial things like God and the soul or of the ultimate simple

substances which (according to both Leibniz and the pre-critical Kant) under-

lie the material world – is completely impossible, at least from a theoretical

point of view. The pure intellect, considered entirely on its own and inde-

pendently of any possible relation to sensibility, can issue only in the empty

logical forms of Aristotelian syllogistic: in what Kant calls the “logical forms

of judgement.” And, while it is true that these forms then yield, in what Kant

calls the “metaphysical deduction,” the pure concepts or categories of the

understanding (substance, causality, community, possibility, actuality, neces-

sity, and so on), such pure concepts of the understanding are themselves entirely

empty and without any “relation to an object” (again from a purely theoretical

point of view) considered independently of our particular (human) forms of

sensibility – space and time.16 In short, it is only in virtue of spatio-temporal

16 Kant takes particular pains, in the second edition of the Critique, to emphasize that his
conception of space and time as pure forms of sensibility is the only real alternative to
the theologically disastrous Newtonian view (B71–72): “In natural theology, where one
thinks an object that is not only no object of sensible intuition for us, but cannot even
be an object of sensible intuition for itself, one takes care to remove the conditions of
space and time from all of its intuition (for all of it cognition must be intuition and not
thought, which is always a manifestation of limitations). But with what right can one do
this, if one has previously made both into forms of things in themselves – and, indeed,
into forms which, as a priori conditions of the existence of things, even remain when one
has annihilated the things themselves? (For, as conditions of all existence in general, they
must also be conditions for the existence of God.) There is therefore no alternative, if one
does not pretend to make them into objective forms of all things, except to make them
into subjective forms of our outer and inner mode of intuition. [This kind of intuition] is
called sensible, because it is not original – i.e., it is not such that the existence of objects of
intuition is itself given through it (which, as far as we can comprehend, can only pertain
to the primordial being), but it depends on the existence of the objects, and is thus only
possible in so far as the representative faculty of the subject is affected by them.” This
passage clarifies what Kant had in mind earlier in the aesthetic when he criticized the
Newtonians for extending their conception of space and time beyond the “field of the
appearances” (see note 14 above).
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“schemata” produced by our pure intellect that rational knowledge of the

phenomenal world is possible, and the task of showing how the pure intel-

lect thereby injects itself into pure sensibility (space and time) so as to apply

the pure categories of the understanding to sensible experience then becomes

the problem of the transcendental deduction.17 Such an injection of our pure

intellect into our pure forms of sensibility now takes the place, as it were, of

Kant’s pre-critical doctrine that a schema of the divine intellect, by an analog of

Newtonian divine omnipresence, is ultimately responsible for the order we

perceive in the physical world.18

Pure metaphysical concepts – pure concepts of the understanding – can

now be used for genuine (theoretical) knowledge only when applied to spatio-

temporal “appearances,” and thus only when “schematized” in terms of space

and time: substance in terms of permanence, causality in terms of succession,

and so on. When we do this, moreover, we find that specifically outer or spatial

17 Since, for Kant, the pure mathematician inscribes figures in space – in the process of
Euclidean construction – by this same activity of the understanding, we thereby obtain,
at the same time, an explanation of why all empirical objects in the phenomenal world
(appearances) are necessarily subject to pure mathematics. This explanation essentially
involves the categories of quantity and, in particular, the Axioms of Intuition (A165–
166/B206): “The synthesis of spaces and times, as the essential form of all intuition, is
that which also makes possible the apprehension of the appearance, and thus all outer
experience, and therefore all cognition of the objects of experience; and what mathematics
in its pure use demonstrates of the former [the essential form of all intuition], it is also
necessarily valid for the latter [all outer experience, etc.].” And it is in precisely this
way, too, that Kant demonstrates the necessary applicability of mathematics to sensible
experience (and forestalls any possible Platonic gap between the two) which Newton
secured by his metaphysics of space: compare the paragraph to which note 6 above is
appended.

18 See note 15 above, together with the paragraph to which it is appended. As I observed,
there is an echo of the pre-critical theory of divine omnipresence even in the Inaugural
Dissertation, where Kant has already drawn a fundamental distinction between under-
standing and sensibility. The question Kant raises there (in the Scholium to §22) concerns
precisely the causes of our sensible intuitions, and, in particular, the relationship between
our sensible intuitions and the assumed ultimate substances constituting the intelligible
world. The answer Kant (tentatively) suggests is that, since both our mind and these
“external things” are sustained by a single infinite being, space, as the “sensibly cog-
nized universal and necessary condition for the co-presence of all things” can thus be
characterized as (God’s) phenomenal omnipresence. In light of §22 itself, it appears that
Kant is thereby invoking a pre-established harmony (instituted by God) between the
purely intellectual reality of ultimate substances and our spatio-temporal sensibility to
explain the necessary connection between this reality as it is in itself and as it appears
to us. In §27 of the second edition Transcendental Deduction, Kant explicitly rejects such
an explanation of the agreement between experience and its objects (which he calls a
“preformation-system of pure reason”) in favor of his new, critical explanation (which
he calls an “epigenesis of pure reason”) – where, as I understand it, the understanding
rather creates the a priori order of sensible experience by injecting itself into the pure
forms of sensibility.
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intuitions are also necessarily required, so that, in particular, “in order to give

something permanent in intuition corresponding to the concept of substance

(and thereby to verify the objective reality of this concept), we require an

intuition in space (of matter), because space alone is determined as permanent,

but time, and thus everything in inner sense, is continually flowing” (B291).

There is no longer any room (among the objects of theoretical knowledge) for

mind-like or spiritual substances in the traditional sense, and there is no such

room, therefore, for Leibnizean simple substances having only purely internal

properties:

Only that is internal in an object of pure understanding which has no

relation at all (with respect to its existence) to anything different from itself.

By contrast, the internal determinations of a substantia phaenomenon in

space are nothing but relations, and it itself is nothing but a totality of mere

relations. We are only acquainted with substance in space through forces

that are active in space, either driving others into [this space] (attraction)

or stopping their penetration into it (repulsion and impenetrability). We

are acquainted with no other properties constituting the concept of a

substance which appears in space and which we call matter. As object of

the pure understanding, on the other hand, every substance must have

internal determinations and powers, which pertain to [its] internal reality.

However, what can I entertain as internal accidents except those which my

inner sense presents to me – namely, that which is either itself a thought or

is analogous to it? Therefore, Leibniz, after he had taken away everything

that may signify an external relation, and therefore also composition, made

of all substances, because he represented them as noumena, even the

constituents of matter, simple substances with powers of representation –

in a word, monads.

(A265–266/B321–322)

The entire conception of the Leibnizean monadology – along with the more

traditional conception of purely mental or spiritual substances – is now seen

to rest on a fundamental mistake: neglecting the necessary spatio-temporal

schematization of the pure concepts of the understanding.

But it now follows, similarly, that our basic concepts of action and efficient

causality – by which one substance effects a change in another – must also

be limited to the necessary conditions of specifically outer or spatial intu-

ition (B66–7): “[E]verything belonging to intuition in our cognition (and thus

excluding the feeling of pleasure and displeasure, and the will, which are cer-

tainly not cognitions) contains nothing but mere relations – [relations] of

position in an intuition (extension), change of position (motion), and laws in

accordance with which this change is determined (moving forces). But what

may be present in the position, or what may be active in the thing itself aside

from the change of position, is not thereby given.” Aside from the intuitively
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presented laws governing the spatio-temporal changes of phenomenal sub-

stances, in other words, we have absolutely no conception of inter-substantial

efficient causality at all – at least, once again, from a purely theoretical point of

view.

It is in the Metaphysical Foundations of Natural Science of 1786 (appearing

between the first and second editions of the first Critique) that Kant devel-

ops the “special metaphysics of corporeal nature” governing matter or material

substance.19 In particular, in the second or Mechanics chapter, the three Analo-

gies of Experience governing the pure categories of substance, causality, and

community are here specifically instantiated or realized by what Kant calls the

three “laws of mechanics” – the conservation of the total quantity of matter,

the law of inertia, and the equality of action and reaction – which Kant takes

to be very close to (although not completely identical with) the three Newton-

ian Laws of Motion. In the case of matter or material substance, therefore, its

possible changes and interactions are entirely delimited by these laws, in the

sense that what it now means for one (material) substance to exert a causal

action on another (so as, in this case, to effect a change of motion in it) is

simply for a well-defined exchange of momentum to take place between the

two. Thus, if two bodies exchange momentum at a distance across empty space

(as, in Newton’s theory of universal gravitation, they must), then they do in

fact causally interact with one another at a distance, and there are absolutely

no remaining grounds for raising metaphysical or theological objections.20

The second or Dynamics chapter introduces the two fundamental forces of

repulsion and attraction – the one responsible for impenetrability, the other

for gravitation. Proposition 7 states (Ak. IV, p. 512): “The attraction essential

to all matter is an immediate action of matter on other matter through empty

space.” And, in the first remark to this proposition, Kant argues that to confine

the activity of matter by the condition of contact would be an entirely arbitrary

restriction (Ak. IV, 513):

[T]o say that matters cannot act immediately on one another at a distance,

would amount to saying that they cannot act immediately on one another

except through the forces of impenetrability. But this would be as much

as to say that repulsive forces are the only ones whereby matter can be

19 All translations from this work are taken from Kant (2004).
20 Leibniz’s main theological objection to the Newtonian force of gravity, it will be recalled,

was that it would be a “perpetual miracle” if a body could persist in orbital motion
(without flying off along the tangent in accordance with the law of inertia) unless the
material in a celestial vortex acted upon it by impact or pressure to maintain this orbital
motion. Since Newton himself shared the widespread rejection of action at a distance at
the time, he could not give the straightforward rejoinder later available to Kant: the Sun
itself causes the planets to persist in their orbits, by precisely its immediate attraction
across empty space. Compare notes 12 and 14 above, together with the paragraphs to
which they are appended.
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active, or that they are at least the necessary conditions under which alone

matters can act on one another, which would declare attractive force to

be either completely impossible or always dependent on the action of

repulsive forces. But these are both groundless assertions.

Once we conceive both impenetrability and gravitation as impressed forces in

the Newtonian sense, governed solely by the Newtonian laws of motion, then

there is no longer any reason to take one to be more intrinsically intelligible

than the other.

In the second remark to the same proposition, however, Kant goes on to make

a much stronger claim – that, in explicit opposition to Newton, gravitational

attraction must be conceived as an essential active power of matter, operating

immediately at a distance through empty space (Ak. IV, p. 515):

[O]ne cannot adduce this great founder of the theory of attraction as

one’s predecessor, if one takes the liberty of substituting an apparent

attraction for the true attraction he did assert, and assumes the necessity of

an impulsion through impact to explain the phenomenon of [gravitational]

approach. He rightly abstracted from all hypotheses purporting to answer

the question of the cause of the universal attraction of matter, for this

question is physical or metaphysical, but not mathematical. And, even

though he says in the advertisement to the second edition of his Optics,

“to show that I do not take gravity for an essential property of bodies, I

have added one question concerning its cause,” it is clear that the offense

taken by his contemporaries, and perhaps even by Newton himself, at the

concept of an original attraction set him at variance with himself. For he

could not say that the attractive forces of two planets, those of Jupiter

and Saturn, for example, manifested at equal distances of their satellites

(whose mass is unknown), are proportional to the quantity of matter of

these heavenly bodies, if he did not assume that they attracted other matter

merely as matter, and thus according to a universal property of matter.21

21 The “one question concerning its cause” added to the second edition of the Optics
is of course Query 21, where Newton famously speculates that a universal “Aetherial
Medium” growing denser at greater distances from the heavenly bodies might explain
the gravitational interactions between these bodies. However, this aether does not act by
impact (as in the vortex theory favored by the mechanical philosophers), but is rather
governed by short-range repulsive forces (between the particles of aether) responsible
for its pressure (and thus density). So far, therefore, this particular speculation about a
possible cause for gravity is consistent with Newton’s remarks in the General Scholium
to the second edition of the Principia (compare note 9 above), where he denies that such
a cause can be mechanical (p. 92): “[T]his force arises from some cause that penetrates
as far as the centers of the sun and the planets without any diminution of its power to
act, and that acts not in proportion to the quantity of the surfaces of the particles on
which it acts (as mechanical causes are wont to do) but in proportion to the quantity
of solid matter, and whose action is extended everywhere to immense distances, always
decreasing as the squares of the distances.”
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Kant’s point here, specifically, is that Newton cannot leave the question of the

“true cause” of universal gravitation entirely open, without fatally compromis-

ing the fundamental property of this interaction that the mutual accelerations

in question are directly proportional to the masses or quantities of matter of

the two interacting bodies.

I have considered Kant’s argument in detail elsewhere,22 so let me simply

state it briefly here. Consider the system consisting of Jupiter, Saturn, and two of

their respective moons. Newton’s argument in Book III of the Principia crucially

involves the idea that one can determine the masses of the primary bodies in

question by the gravitational accelerations produced in their satellites. Newton

assumes, in order to make this determination, that there are also gravitational

accelerations of Saturn produced by Jupiter and vice versa. Then, in the most

important step, Newton applies the equality of action and reaction directly

to these two accelerations, so that the acceleration of Jupiter towards Saturn,

multiplied by the mass of Jupiter, is equal and opposite to the acceleration of

Saturn towards Jupiter, multiplied by the mass of Saturn. Newton assumes, in

other words, that we can apply the conservation of momentum directly to this

particular exchange, entirely independently of what other matter may or may

not be found in between.23 For Kant, this amounts, from a methodological

point of view, to assuming, in effect, that no other matter is in fact involved,

and that conservation of momentum within such an exchange is both necessary

and sufficient for true causal action. So it is at precisely this point, therefore,

that any metaphysical conception of cause pretending to compete with the

conservation of momentum must now most definitely fall away.24

The importance of this argument is underscored, for Kant, by the circum-

stance that Newton’s own inductive inference to the law of universal gravitation

crucially involves such direct applications of conservation of momentum to

gravitational interactions at a distance (in showing, for example, that Saturn’s

gravitational acceleration towards Jupiter is proportional to the mass of Jupiter

and vice versa).25 And it is further underscored, in particular, by the fact that

22 See Friedman (1992, pp. 153–159), and compare Friedman (1990).
23 As is well known, Roger Cotes objected to Newton on this score in their correspondence,

and argued that Newton himself must therefore assume that gravitational attraction –
as an immediate action at a distance – is in fact essential to matter. See Koyré (1968,
chapter 7), and also Stein (1967).

24 By contrast, for Newton himself, as we have seen, this particular problem is solved by
taking the ultimate causal agent here to be immaterial and, indeed, divine (compare again
notes 12 and 14 above, together with the paragraph to which they are appended).

25 Thus, Newton’s adherence to a neo-Platonic (Cambridge Platonic) metaphysics of space
is not simply an additional (and arbitrary) assumption on his part, one which could easily
be dropped. On the contrary, his own inductive argument for universal gravitation, in
the context of the prevailing ideas about efficient causation and ultimate (divine) agency,
more or less uniquely single out this metaphysics among the available alternatives.
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the resulting determinations of the masses of the primary bodies in the solar

system play a central role in Kant’s parallel constructive procedure, articulated

in the fourth chapter or Phenomenology, for arriving at the true motions of

bodies from their apparent motions. We begin with our parochial perspective

here on Earth, from which we can record both the observable phenomena gov-

erned by Galileo’s law of fall and the observable relative motions of a variety

of satellites in the solar system with respect to their primary bodies (the Moon

relative to the Earth, the planets relative to the Sun, the moons of Jupiter and

Saturn relative to their planets). The latter are just the phenomena expressed in

Kepler’s laws, and what we now find is that we can first determine the true state

of rotation of the Earth (using small deviations from the law of fall manifesting

what we now call Coriolis forces), and we can then determine the masses of all

the primary bodies in the solar system (at least those actually having satellites) –

with the result (as Newton shows) that the center of mass of the solar system is

always very close to the center of the Sun.

Hence we can empirically determine, from the observable phenomena them-

selves, the true center of motion of the solar system, and this thereby counts

as an approximation, for Kant, of Newtonian absolute space. However, since it

is also true, for Kant, that the solar system itself rotates around the center of

the Milky Way galaxy, this galaxy rotates around the center of a larger system

of such galaxies, and so on ad infinitum, absolute space (the true center of

motion of the entire Universe) is in the end what he calls an “idea of reason” –

a forever unreachable regulative ideal we can only successively approximate in

experience but never fully attain.26

Finally, since Newtonian absolute space is thus viewed as a regulative idea

of reason, there is also an associated reconfiguration, for the critical Kant,

of the relationships among space, the interactions of matter, and the idea of

God. For the idea of God, too, is a regulative idea of reason. Indeed, there is an

important sense in which it is the ultimate such regulative idea, since all human

activity, together with the whole of nature, is ultimately subject to the idea of

the Highest Good – the idea of a perfect community of all rational beings in

a moral realm of ends, for which our only ground even to hope this could

actually be achieved in nature (or, more precisely, successively approximated)

is the idea of God (or, more precisely, divine providence). Moreover, Kant saw

a deep analogy between the community of all rational beings in a moral realm

26 This constructive procedure for approximating absolute space in experience is analogous,
in important respects, to the constructive method of Euclidean geometry (compare
note 17 above). But the circumstance that the former can never be completed marks an
essential difference between the two, closely related to Kant’s view that the mathematical
principles of pure understanding are constitutive with respect to intuition while the
dynamical principles are merely regulative with respect to intuition (but constitutive with
respect to experience): for further discussion see Friedman (1992, pp. 159–164).

Downloaded from Cambridge Books Online by IP 128.214.173.46 on Tue Oct 30 23:53:18 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.018

Cambridge Books Online © Cambridge University Press, 2012



newton and kant on absolute space 359

of ends and the thoroughgoing community effected among all material bodies

in the Universe by universal gravitation, and this is the basis, in fact, for his

late (and very striking) re-interpretation of the Newtonian doctrine of divine

omnipresence in a footnote appended to the General Remark to the Third Part

of Religion Within the Limits of Reason Alone (1793):

When Newton represents [the universal gravitation of all matter in the

world] as, so to speak, divine universal presence in the appearance

(omnipraesentia phenomenon), this is not an attempt to explain it (for

the existence of God in space contains a contradiction), but rather a sub-

lime analogy, in which it is viewed merely as the unification of corporeal

beings into a world-whole, in so far as we base this upon an incorporeal

cause. The same would happen in the attempt to comprehend the self-

sufficient principle of the unification of the rational beings in the world

into an ethical state and to explain the latter from the former. We know

only the duty that draws us towards this; the possibility of the intended

effect, even when we obey this [duty], lies entirely beyond the limits of all

our insight.

(Ak. VI, pp. 138–139)

For the critical Kant, in other words, the only possible meaning the idea of

divine omnipresence (and divine providence) can now have is a purely practical

meaning, in so far as we unconditionally obey the command of morality to

strive to realize the realm of ends here on Earth, and, accordingly, we take the

whole of that material nature of which we are a part to be in principle capable

of such a realization (or, more precisely, its successive approximation). Kant

thereby brings the characteristic mode of metaphysical investigation into the

relationships among space, God, and matter practiced by his predecessors to a

close, and transforms it – without remainder – into transcendental philosophy.
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How Newton’s Principia changed physics

george e. smith

Newton expressly intended his Principia to produce three revolutionary changes

in the way physics and astronomy were being conducted:

1. Theorizing in physics should center on identifying fundamental forces of

nature and characterizing them as quantities related by laws to other mea-

surable quantities.

2. Astronomy should abandon the 1500 year tradition of trying to describe

complex orbital motions directly from observations and instead derive them

from the forces acting on the orbiting bodies.

3. Physics and astronomy should demand of themselves a much higher stan-

dard of evidence in theorizing than just success in deriving observed phe-

nomena from speculative hypotheses.

The Principia did indeed ultimately effect all three of these revolutions – the

first two obvious to anyone familiar with the subsequent history of physics and

orbital astronomy, but the third less obvious. Here accordingly we shall focus on

the third, though explaining how the book changed the standards of evidence

in physics will involve us with the first two as well. While those two emerged in

Newton’s thinking only with the Principia, the third he had set as a goal more

than a decade and a half earlier with the remark, “But truly with the help of

philosophical geometers and geometrical philosophers, instead of conjectures

and probabilities that are being blazoned everywhere, we shall finally achieve a

natural science supported by the greatest evidence” (Newton 1984, p. 87).

One reason why the revolution in evidence is less obvious has been a long-

standing, but nonetheless ill-informed misconstrual of the evidential reasoning

not only in the Principia, but in subsequent research in orbital mechanics as well.

The first two sections of the chapter will contrast that construal of the reasoning

with the evidence problem Newton saw himself as facing when he started

writing the Principia. Another reason for the revolution in evidence being

less obvious has been the complexity of the Principia’s approach to marshalling

evidence, involving as it does several distinct elements that are usually discussed,

when at all, in isolation from one another. Sections 15.3 through 15.6, forming

the main body of the chapter, will lay out those revolutionary elements one by

360
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one, indicating how each reflects this evidence problem. A final section will then

consider the whole formed by those elements, asking how clearly Newton saw

it as a response to the principal worries he had about potential shortcomings

in his evidence.

15.1 Introduction: the question

Prima facie, the evidence put forward on issues about orbital and other kinds of

motion at the time of Laplace’s Celestial Mechanics (1799–1805) was of much

higher quality than the evidence on those issues at the time of Copernicus

or, for that matter, Kepler. Furthermore, of the several advances that were

made between Copernicus and Laplace that enabled more decisive evidence to

be developed, nothing appears to have been more important than Newton’s

Principia. The central question of this chapter is, How did Newton’s Principia

change the way in which evidence was marshalled in orbital research, and

thereby in physics generally?

Prompting that question is a view that empirical science is first and foremost

a process of turning data into evidence. Evidence is a two-place relation between

data and claims that reach beyond them.1 Data, in and of themselves, are not

evidence for one claim more than another; something beyond data is always

needed for them to become evidence for anything. In experimental research

novel data are often generated, sometimes with masterful artifice, precisely

because their likely value as evidence is clear beforehand. Often, however, data

are abundantly available in nature, and the problem is one of figuring out what

they show about the world. Linguistics provides a clear example of this, for

data on the syntax of our native languages are immediately at hand, but we still

do not have a fully adequate account of the syntax of any natural language.2

In orbital astronomy, too, data have always been accessible in the form of

nightly observations of relative positions of objects on the celestial sphere, and

efforts to turn those data into evidence go back at least as far as the Babylonians.

The introduction of the telescope at the beginning of the seventeenth century

provided access to new data, but almost all of the evidence bearing on orbital

astronomy until the middle of the eighteenth century came from instrument-

aided naked-eye observation. New ways of turning those data into evidence

concerning celestial physics emerged between Copernicus and Laplace. Those

1 In deference to Charles Saunders Peirce, who surely would have insisted that evidence
involves a third place as well as the two cited, perhaps I should say “two- (or more) place
relation.”

2 In conversation a few years ago Noam Chomsky and I were unable to figure out which
of us first began speaking of science as an endeavor to turn data into evidence, followed
immediately by the remark that evidence is a relation and being a datum is not. Regardless
of who did, the thought was originally no less his than mine.
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new ways are the central concern of this chapter. How precisely did Newton’s

Principia contribute to them?

Seen from that perspective, the most frequently quoted portion of the Preface

to the first edition of the Principia indicates that Newton saw it as illustrating

a new way of turning data into evidence:

our present work sets forth mathematical principles of natural philosophy.

For the whole difficulty of philosophy seems to be to discover the forces

of nature from the phenomena of motions and then to demonstrate the

other phenomena from these forces. It is to these ends that the general

propositions in books 1 and 2 are directed, while in book 3 our explanation

of the system of the world illustrates these propositions. For in book 3,

by means of propositions demonstrated mathematically in books 1 and

2, we derive from celestial phenomena the gravitational forces by which

bodies tend toward the sun and toward the individual planets. Then the

motions of the planets, the comets, the moon, and the sea are deduced

from these forces by propositions that are also mathematical. If only we

could derive the other phenomena of nature from mechanical principles

by the same kind of reasoning! For many things lead me to have a suspicion

that all phenomena may depend on certain forces by which the particles of

bodies, by causes not yet known, either are impelled toward one another

and cohere in regular figures, or are repelled from one another and recede.

Since these forces are unknown, philosophers have hitherto made trial of

nature in vain. But I hope the principles set down here will shed some light

on either this mode of philosophizing or some truer one.

(Newton 1999, p. 382)

Newton’s approach to turning data from astronomical observations into evi-

dence about forces governing orbital motions and then about those motions

themselves was more multi-faceted than is generally appreciated. This chapter

aims to lay out his approach and the rationale behind it and then to indicate

ways it altered orbital astronomy and physics generally.

There is a commonplace answer to the question of how Newton’s Principia

resulted in exceptionally high quality evidence, an answer that can be extracted

from undergraduate textbooks in physics, if not explicitly found in them: What

Newton did in the Principia was to put forward the law of gravity, together with

his three laws of motion, by way of explaining Kepler’s so-called laws; and the

resulting theory then turned out to explain ever so much more, including the

respects in which actual planetary motions deviate from Kepler’s laws. In other

words, until a small residual discrepancy in the precession of the perihelion of

Mercury emerged in the second half of the nineteenth century, Newton’s theory

turned out to be consistent with all observations, and in that sense passed every

test to which it was put. On this view, the high quality of the evidence coming

out of the Principia lay in the range of observations with which the laws it

proposed turned out to be in agreement and the precision of that agreement.
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That view of the Principia offers a conception of the enterprise of science

in sharp contrast with my “process of turning data into evidence.” Science

is instead first and foremost a process of coming up with basically correct

theories.3 Once such a theory is in hand, the evidence for it will largely just fall

into place as tests of it emerge and it survives them. The task of marshalling

evidence itself presents no special challenge save for an occasional need for

ingenuity in devising new, more telling tests. Granted this is a stick-figure

summary. Even in this form, however, it explains why textbooks in science

include so little discussion of details of the evidence.

As a preliminary step toward motivating the view of the evidence for New-

ton’s theory to be presented below, let me offer two objections to the view

I have just sketched. First, it distorts history. For example, Kepler’s rules for

calculating orbits were far from established at the time Newton began drafting

the Principia. Indeed, they appear never to have been called “laws” before the

Principia.4 Furthermore, a number of so-called tests of Newton’s theory were

not expressly offered as tests of it at the time. A blatant example of this is

Cavendish’s experiment, which in physics textbooks is usually presented as a

decisive test of Newton’s law of gravity even though Cavendish himself said

that what he was doing was to measure the (mean) density of the Earth.5

A second objection lies in Newton’s own outspoken dismissal of hypothetico-

deductive evidence. As quoted above, Newton claimed in the first edition of the

Principia to have derived the law of gravity from phenomena of orbital motion;

and at the end of the second edition he added that “hypotheses, whether

metaphysical or physical, or based on occult qualities, or mechanical, have no

place in experimental philosophy” (Newton 1999, p. 943). Important to note

here is Newton’s lifelong reason for dismissing hypothetico-deductive evidence:

“For if the possibility of hypotheses is to be the test of the truth and reality of

things, I see not how certainty can be obtained in any science; since numerous

hypotheses may be devised, which shall seem to overcome new difficulties”

(Newton 1978, p. 106). That Newton was responding to such worries alone

gives reason for examining whether he had an alternative approach.

This chapter does not aim to argue against deductivist accounts of evidence.

It lays out an alternative account of the logic of the evidential reasoning in

gravitation research and the way in which this logic derives from the Principia.

3 Through most of this chapter theory designates bodies of lawlike relations among quan-
tities. Here, however, it designates more a way of conceptualizing a range of phenomena.
Sylvain Bromberger has labeled those two senses of “theory” “theory1” and “theory2” in
Bromberger (1992).

4 Curtis Wilson (2000, p. 225) has noted that Kepler’s orbital rules appear never to have been
called “laws” in print before Leibniz did so shortly after publication of the first edition of
Newton’s Principia.

5 Cavendish (1798) simply assumed the law of gravity throughout. Had he been trying to
test it, he would have at least varied the masses of the spheres in his trials.
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This alternative, I claim, is more accurate historically and more consistent with

Newton. Most of all, however, I want to claim that, on its very face, it is a more

tenable account of why the Principia had the effects it did on how evidence is

developed in physics.

15.2 Complexity and parochialism: the evidential problem

At the time Newton began drafting the Principia in 1685, there were several

competing approaches to calculating planetary orbits, at least seven of which

were known to him. Kepler’s approach employed the ellipse and his area rule –

planets sweep out equal areas with respect to the Sun in equal times – but he

did not use his 3/2 power rule – the semi-major axes of the ellipses vary as the

2/3 power of the orbital periods – to infer the lengths of the semi-major axes

directly from the periods. Instead, he inferred these lengths from observations.

Jeremiah Horrocks found that he could improve on Kepler’s Rudolphine Tables

by inferring the semi-major axes directly from the periods, which were known

to very high precision (Wilson 1978). The other five approaches employed

some alternative to Kepler’s area rule for determining where each planet is on

its orbit at any given time. Ismaël Boulliau (1657, pp. 29–31) used a geometric

construction involving the empty focus. Thomas Streete (1661, pp. 53f. and

39f.) used this same geometric construction, but followed Horrocks in inferring

the semi-major axes from the periods. Vincent Wing (1651, p. 44ff.) initially

used an oscillating equant – that is, a center of equiangular motion oscillating

about the empty focus – and later (1669, pp. 130, 144, 151, 170, 176) switched to

his own geometric construction. And Nicolaus Mercator (1676, pp. 163–171)

used a still different geometric construction.6

Of these different approaches, Kepler’s was computationally the most com-

plicated. None of them gave predictions that were consistently within the

accuracy of pre-telescopic observations (Wilson 1989). The errors were more

or less comparable in all seven – around a third of the apparent width of the

Moon. The only thing common to all of them was the ellipse, which is striking

because the orbits are actually so near to being circular; the most elliptical of the

orbits then known, Mercury’s, has a minor axis only two percent shorter than

its major axis. Equally striking, the ellipse itself was something that Newton

did not consider appropriate to use as evidence for his law of gravity (Smith

2002b).

A question accordingly at the forefront of orbital astronomy in 1679 when

Hooke first put the matter to Newton, and still in 1684 when Halley did the

same, was which of the different ways of calculating orbital trajectories was

to be preferred. The brief tract Newton had registered with the Royal Society

in December 1684, “De Motum Corporum in Gyrum,” gives an answer to

6 Mercator precedes his account of his new hypothesis with an extensive review of Kepler’s
area rule and alternatives to it.
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the question: “The major planets orbit, therefore, in ellipses having a focus

at the center of the Sun, and with their radii drawn to the Sun describe areas

proportional to the times, exactly as Kepler supposed” (Newton 1967–1981, VI,

p. 49). A plausible construal of Newton’s reasoning here is that Kepler’s (and

Horrocks’s) calculation rules admit of a physical explanation – they result from

an inverse-square centripetal force – while the competing rules of calculation

appear unlikely to do so. On this construal, the evidential problem to which

Newton was offering a solution was one that had been posed by Kepler: given the

imprecision of observation and measurement, any number of distinct curves

can fit observations to any given level of precision; only physical considerations

can pick out the true curve from among these. That, however, is not the

evidential problem Newton addressed in the Principia, for by the time he

began drafting it a few weeks later, he had come to see ways in which orbital

motion poses a far more ramified challenge.

Specifically, Newton had come upon a deep reason why none of the ways of

calculating the orbits were yielding results within observational accuracy. In the

registered version of “De Motu” he had concluded that there are what we would

now call inverse-square centripetal acceleration fields not merely around the

Sun, but also around the Earth, Jupiter, and Saturn.7 He saw no reason why the

inverse-square accelerative tendency toward, for instance, Jupiter exhibited by

its four known satellites would not extend all the way to the Sun, so that Jupiter

and the Sun would be interacting with one another. If they do interact, then

this interaction should not produce any change in the motion of the center of

gravity of the system. (This is just the principle of inertia applied to a system of

interacting bodies.) From this, Newton reached an extraordinary conclusion

in an augmented version of the “De Motu” tract that did not become public

until 1893:

By reason of the deviation of the Sun from the center of gravity, the cen-

tripetal force does not always tend to that immobile center, and hence

the planets neither move exactly in ellipses nor revolve twice in the

same orbit. There are as many orbits of a planet as it has revolutions,

as in the motion of the Moon, and the orbit of any one planet depends

on the combined motions of all the planets, not to mention the action

of all these on each other. But to consider simultaneously all these causes

of motion and to define these motions by exact laws admitting of easy

calculation exceeds, if I am not mistaken, the force of any human mind.

(Newton 1962, pp. 256 and 281)8

7 While Newton never employed the term “field,” my use of it is not so anachronistic as
it might at first seem, for he did speak of centripetal motive forces being “propagated
through the surrounding regions” (Def. 8).

8 I have altered the translation along lines derived from Curtis Wilson. This passage did not
become public until Ball (1893).
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In other words, no calculation scheme like Kepler’s or any of the others was

ever going to yield exact predictions, not for the comparatively uninteresting

reason that observation itself is always imprecise, but for the far more important

reason that the true motions are too complex to allow exact computation.

Newton was not the first to decry the complexity of true motions in the

world. Both Galileo and Descartes had concluded that motion under air resis-

tance forces (the other topic of Newton’s Principia) is too complex to allow a

science (Galileo 1974, 224; Descartes 1985–1991, III, p. 9f). Newton knew that

Descartes had said much the same of the motions of the planets, adding that

their trajectories are sure to change from one epoch to another:

Finally, we must not think that all the centers of the Planets are always

situated exactly on the same plane, or that the circles they describe are

absolutely perfect; let us instead judge that, as we see occurring in all

natural things, they are only approximately so, and also that they are

continuously changed by the passing of the ages.

(Descartes 1991, p. 98)

This raised a second worry: not only might Keplerian motion be but one of

several comparably accurate approximations to the true trajectories, whose

complexity defies exact description; but also, Kepler’s and all the other approx-

imations might be mere epochal parochialisms, projected from a few decades

of observations that were assumed to be representative, but instead were sys-

tematically misleading historical accidents.

As noted earlier, Newton saw his Principia as illustrating a new way of doing

science. I contend that Newton’s new “experimental philosophy” – as he came

to call it – was in response to the complexity of the real world and the risk

that our straightforward empirical access to it is parochial. That is, it is an

approach to developing evidence in the face of, first, a complexity that leaves

room for many competing descriptions of observed regularities and, second,

a lack of any immediate means of obviating respects in which the observed

regularities we invoke as evidence might be misleadingly parochial. In forming

this new approach, Newton introduced a number of changes in approach that

have persisted at least in the subsequent history of gravitational research, if not

in physics generally. It is to these changes that we now turn.

15.3 The Newtonian conception of theory

One change came out of Newton’s realization that physics – or, more specifically,

mechanics – cannot help but include, within its scope, its own theory of

measurement. Newton hints at this in the Preface to the first edition of the

Principia when he concludes that “geometry is founded on mechanical practice

and is nothing other than that part of universal mechanics which reduces the

art of measuring to exact propositions and demonstrations” (Newton 1999,
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p. 382). The point emerges more forcefully in the opening section of the

book, “Definitions.” This section might just as well have been called “Critical

Reflections on Measurement.” The definitions of quantity of matter or mass,

quantity of motion (our momentum), and force, besides indicating how the

terms are going to be used in the Principia, emphasize their measures. Indeed,

the definitions of quantity of matter and quantity of motion expressly identify

each as “a measure.” The discussions following their definitions make clear

that both mass and force are what we now call “theoretical quantities.” That is,

values for them must be inferred from other measurements and the inferences

in question presuppose theoretical claims within mechanics. In the case of mass

Newton even invokes a pendulum experiment to justify inferring values from

weight (Newton 1999, pp. 404 and 807).

Following the explicit definitions is the famous Scholium on space and time,

the central concern of which is the distinction between “absolute, true, or

mathematical space, time, and motion” and “relative, apparent, or common

space, time, and motion.” The space, time, and motion that we observe fall

into the relative, apparent, or common category. Values in the absolute, true, or

mathematical category have to be inferred from them. In the paragraph ending

the Scholium, Newton remarks:

It is certainly very difficult to find out the true motions of individual

bodies and actually to differentiate them from apparent motions, because

the parts of that immovable space in which the bodies truly move make

no impression on the senses. Nevertheless, the case is not utterly hopeless.

For it is possible to draw evidence partly from apparent motions, which

are the differences between true motions, and partly from the forces that

are the causes and effects of the true motions . . . But in what follows, a

fuller explanation will be given of how to determine true motions from

their causes, effects, and apparent differences, and conversely, of how

to determine from motions, whether true or apparent, their causes and

effects. For this was the purpose for which I composed the following

treatise.

(Newton 1999, p. 414f)

Viewed from the perspective of the rest of the treatise, the natural way to

interpret what Newton is saying here is that true motions are ones for which all

theory-mediated measurements of the relevant forces yield the same values. But

then, not just values of mass, force, and quantity of motion, are theory-mediated;

so too are values of velocity.

Newton may not have been the first to realize that physics must include its

own theory of measurement. In one respect the point is obvious, for mea-

surement is itself a physical process and measurements in mechanics involve

mechanical processes. Still, Newton does appear to have been the first to

appreciate two of its implications. One is that any method of measurement
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is provisional, subject to replacement by a method that is deemed preferable at

some later point. Newton expressly calls attention to this in the case of time:

In astronomy, absolute time is distinguished from relative time by the

equation of common time. For natural days, which are commonly con-

sidered equal for the purpose of measuring time, are actually unequal.

Astronomers correct this inequality in order to measure celestial motions

on the basis of a truer time. It is possible that there is no uniform motion

by which time may have an exact measure. All motions can be accelerated

and retarded, but the flow of absolute time cannot be changed. The dura-

tion or perseverance of the existence of things is the same, whether their

motions are rapid or slow or null; accordingly, duration is rightly distin-

guished from its sensible measures and is gathered from them by means

of an astronomical equation. Moreover, the need for using this equation

in determining when phenomena occur is proved by experience with a

pendulum clock and also by eclipses of the satellites of Jupiter.

(Newton 1999, p. 410)

Newton’s defense of sidereal time by appealing to the pendulum clock and the

eclipses of the satellites of Jupiter is striking because both of these presuppose

theories that were first published in the 1670s – the latter including a theo-

retical redetermination of simultaneity in astronomy.9 The evidence for both

the regularity of pendulum clocks and the eclipses of Jupiter’s satellites in turn

invokes sidereal time. In other words, a confluence of theoretical considera-

tions lies behind the choice of sidereal time. But then, if preferred methods of

measurement are subject to change as new theoretical considerations emerge,

any lawlike relationship between measured quantities must also be provisional,

subject to change as science advances.

The second implication of physics having to include its own theory of mea-

surement that Newton appears to have been the first to appreciate is less spec-

tacular, but no less important. It concerns how theory-mediated measurement

can enter into evidence. Insofar as all measurement presupposes theoretical

considerations of one sort or another, there is no reason to insist that a theory

be firmly established first, before new methods of measurement are derived

from it. Huygens in 1659 had used his theoretical laws for the cycloidal and

conical pendulums to measure the strength of surface gravity in two differ-

ent ways, obtaining the same value to four significant figures (Yoder 1988).

Huygens, however, seems never to have viewed the stability, convergence, and

precision of his measurements as evidence for the theory of uniform gravity

from which he derived his pendulum laws. Newton saw not only this, but also

that in the long run such stability, convergence, and precision of measurement

9 The former presupposed the theory of the pendulum in Huygens’s Horologium Oscillato-
rium of 1673, and the latter, Olaus Römer’s determination of the finite speed of light in
1676.
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Figure 15.1 The figure accompanying both Propositons 10 and 11 on elliptical orbits

in the First Edition

cannot help but be a primary form of evidence for any theory in mechan-

ics. But then, success in theory-mediated measurement should be regarded as

evidence for a theory right from the outset, even before any other evidence for

it is available.

Freeing quantities like force and time from any specific way of measuring them

allowed them to be considered in the abstract, as mere mathematical quantities

separate from any question about physical mechanism. This in turn allowed

Newton to introduce a new way of employing mathematical theory in physics.

Galileo and Huygens had used mathematics to derive testable consequences

from their theories of motion. Newton, by contrast, developed a generic theory

of motion under centripetal forces, deriving results not only for inverse-square

forces, but also for forces that vary linearly with distance, that vary as the

inverse-cube of distance, and finally that vary as any function whatever of

distance. Two consecutive propositions of Book I of the Principia illustrate this

new form of mathematical theory (Figure 15.1):

Proposition 10: Let a body P revolve in an ellipse; it is required to find the

law of centripetal force tending toward the center [C] of the ellipse.

Solution: The force varies as CP directly.
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Proposition 11: Let a body P revolve in an ellipse; it is required to find the

law of centripetal force tending toward a focus [S] of the ellipse.

Solution: The force varies inversely as the square of SP.

(Keep these two in mind, for I will be making a further point about them in

the next section.) In both of these, questions about how such centripetal forces

might be physically effected are irrelevant. Book I of the Principia consists of

more than ninety “if-then” propositions linking motions to forces, forces to

motions, and macrophysical forces to microphysical forces composing them;

throughout, force is treated as a quantity, independent of what brings it about.

Book I is best described as giving a generic mathematical theory of motion

under forces directed toward a center with no regard to how such forces might be

physically realized. Mathematical theory of this sort is a second way in which

Newton changed physics.

Late in Book I Newton indicates why he wants a generic mathematical theory

in which forces are treated without regard to the question of the physical

mechanisms producing them:

Mathematics requires an investigation of those quantities of forces and

their proportions that follow from any conditions that may be supposed.

Then, coming down to physics, these proportions must be compared with

the phenomena, so that it may be found out which conditions of forces

apply to each kind of attracting bodies. And then, finally, it will be possible

to argue more securely concerning the physical species, physical causes,

and physical proportions of these forces.

(Newton 1999, p. 588)

The passage brings out two points. First, generic mathematical theory for

Newton is an instrument for turning data into evidence, more specifically for

enabling phenomena to answer theoretical questions about physical forces and

processes. The idea is to have generic mathematical theory and phenomena

together dictate physical theory. Second, Newton is prepared to leave questions

within physical theory open when he can’t find phenomena to answer them. In

particular, he answered questions about the physical species of celestial orbital

forces – they are one in kind with terrestrial gravity – and questions about their

physical proportions – the law of gravity; but he found no way of addressing

their physical causes. His theory of gravity was rejected by many of the leading

figures of his time precisely because it left the question of the cause of gravity

open, and therefore offered no explanation of how gravitational forces can act

over vast distances. A third way in which Newton’s Principia ended up changing

physics was by making limited physical theory – theory without mechanistic

explanations – respectable.

The phrase, limited physical theory, describes a methodological innovation.

I would be remiss not to point out how revolutionary that innovation also was
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from a substantive standpoint. Newton was the first to propose that physical

theory focus on fundamental kinds of force. In doing so he introduced an

intermediate level of theory, between mere description of observed regularities

in the manner of Galileo’s Two New Sciences, on the one hand, and laying out

full mechanisms in the manner of Descartes’ Principia, on the other. Newton’s

Principia showed that this intermediate level of theory, with laws of force but

no mechanism, is still sufficient to answer a whole host of questions about

observed regularities – especially questions about whether observed regular-

ities, as described, are suitable for playing a role in evidence. This, I take to

be the point Newton was making in his remark about his predecessors having

“hitherto made trial of nature in vain” in the passage from the Preface to the

first edition I quoted in Section 15.1. It is to this intermediate level of theory

that we now must turn.

15.4 Evidential reasoning in Newton’s Principia

The features of Newton’s approach identified so far give Newtonian theory what

Pierre Duhem called an “abstract, symbolic” character. But as Duhem himself

showed, that character need not be peculiar to generic theories. To appreciate

the advantage Newton found in insisting on a generic theory of motion under

centripetal forces, we need to look in detail at how he reasoned from orbital

phenomena to physical proportions of force.

Newton inferred that the force acting on the planets is centripetal from

Kepler’s area rule, and he inferred that it is inverse-square first from Kepler’s

3/2 power rule, and then more strictly from the absence of precession of the

orbits. The following three theorems from his generic mathematical theory are

the “inference-tickets” licensing those inferences:

From Propositions 1–3: A body sweeps out equal areas in equal times

with respect to a second body if and only if the net force on the body is

compounded of a centripetal force directed toward the second body and

the whole accelerative force acting on the second body.

(Newton 1999, pp. 444–448)

From Corollaries to Proposition 4: The periodic times of bodies moving

uniformly in circular orbits about a central body vary as the 3/2 power of

their distance from the central body if and only if the centripetal forces

acting on the orbiting bodies vary inversely as the square of the distances.

(Newton 1999, p. 451)

From Proposition 45 and its Examples: The centripetal force acting on a

body moving in a nearly circular orbit is inverse-square if and only if the

perihelion (or perigee) of its trajectory does not precess.

(Newton 1999, pp. 539–545)
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We will discuss below why it was important to Newton to establish not

merely the conditionals licensing his inferences from phenomena, but the

bi-conditionals as well.

Each of these enabling theorems is richer than it first appears to be. In

corollaries to the first Newton adds that an increasing areal velocity with respect

to a point entails that the net force is directed forward of that point, and vice

versa. In a corollary added in the second edition to the second, Newton points

out that the period varies as the distance to the power n (where n need not be

an integer) if and only if the centripetal force varies inversely as distance to the

power 2n − 1. And his precession theorem actually gives an algebraic formula

tying the rate of precession of a nearly circular orbit to the exponent in the

force rule:

Let θ be the angle at the force center from aphelion to perihelion in a very

nearly circular orbit; then the centripetal force varies as R(n − 3), where n =

(180/θ)2.

In other words, the enabling theorems show that a real acceleration is a theory-

mediated measure of the direction of the force on an orbiting body; the expo-

nent in the power rule relating periods to distances of a collection of bodies

moving uniformly in circular orbits is a theory-mediated measure of what we

now call the strength of the acceleration field around the central body; and

the rate of orbital precession is a theory-mediated measure of the exponent of

distance from the center in the centripetal force rule for any one orbiting body.

Still more important, if either clause in any of the three enabling bi-

conditionals holds only approximately – Newton’s phrase is quam proxime,

very nearly – then the other clause still holds quam proxime. This follows triv-

ially from the algebraic relations in the second and third cases, and Newton

expressly points it out in a corollary to the first:

From Proposition 3, Corollaries 2 and 3: The areas with respect to the central

body are as the times quam proxime if and only if the force retaining the

moving body in an orbit around the central body tends toward the central

body quam proxime.

Thus, for every “if-then” statement that Newton uses to reason from orbital

phenomena to conclusions about forces, he takes the trouble to show that

the consequent still holds quam proxime so long as the antecedent holds quam

proxime! In effect, then, the logical form of the propositions that serve to license

Newton’s reasoning from orbital phenomena is not really “if-then”, but rather

“if quam proxime, then quam proxime,” and hence the premises describing

the orbital phenomena in question are required to hold only quam proxime.

Consequently, Newton is not begging any questions about whether the area

rule or some other rule is the proper one for locating planets in their orbits as
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a function of time, for he knew that the area rule agrees with all the other rules

at least quam proxime.10

That Newton was consciously engaged in such a form of approximative

reasoning explains why he did not use Proposition 11, given above, to infer

the inverse-square proportion from the Keplerian ellipse. For, he had shown

that, when the eccentricity is small, as it is in the case of several of the planets,

the contrast between Propositions 11 and 10 – that is, between the proportion

implied by ellipses with equal areas about a focus and about the center –

becomes a problem. It is demonstrably not true that, if the trajectory is a

Keplerian ellipse quam proxime, then the exponent in the force rule is −2

quam proxime. Current textbooks typically do present Newton as reasoning

from the Keplerian ellipse to the inverse-square proportion, and this inference

is certainly inviting on its face. Newton, however, was more careful than these

textbooks. Nowhere, not even in the original “De Motu” tract, did he make this

move. Instead he always relied on the 3/2 power rule and the absence of orbital

precession to infer the inverse-square (Smith 2002b).

Newton’s not inferring the inverse-square from the Keplerian ellipse, together

with his taking the trouble to show that the “if-then” statements he did employ

hold in quam proxime form, provides the strongest evidence that he was self-

consciously engaged in approximative reasoning. There are several other signs

of it as well. The phrase, “quam proxime,” occurs 139 times in the Principia.

The numerical summaries of the observed relations between periods and mean

distances at the beginning of Book III all display some deviation from an exact

3/2 power relation, and Newton openly acknowledges that the Moon is not in

perfect accord with the area rule and that its orbit is not stationary. Moreover,

Newton had decided before he began writing the Principia that the area rule

does not hold exactly for the planets, and he had concluded while writing the

Principia, if not before, that their orbits are not perfectly stationary. Granting

that he was engaged in approximative reasoning is thus a way of absolving

him of accusations of rank hypocrisy (Lakatos 1978). Finally, it undercuts

the complaint made by Duhem and others that the law of gravity cannot

be deduced from Keplerian phenomena, taken as premises, because it entails

these premises are false: the seeming self-contradictory element of Newton’s

“deduction” disappears once the reasoning is construed as approximative.

Of course, what this means is that, strictly speaking, the evidence Newton

offers for his law of gravity shows that it is true of the motions of the plan-

ets and their satellites, but only quam proxime, only to high approximation.

Newton is perfectly aware that the orbital evidence does not show that the

law holds exactly. Nevertheless, he takes the law to hold exactly – or, what in

practice amounts to the same thing, to hold unqualifiedly within the limits of

10 See Mercator (1676).
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observational accuracy. In the third edition of the Principia, he gives a rule of

reasoning to authorize this leap from approximate to exact:

Rule 4: In experimental philosophy, propositions gathered from phenomena

by induction should be taken to be exactly or very nearly true notwithstanding

any contrary hypotheses, until yet other phenomena make such propositions

either more exact or liable to exceptions.

(Newton 1999, p. 796)11

Note the phrase here, should be taken to be. The leap from approximate to exact

amounts to a research strategy.12

This is a fourth way in which Newton’s Principia changed physics. On the

one hand, because the scope and precision of observation are limited and the

real world is complex, evidence in physics can at most show that theoretical

claims hold to certain levels of precision over a limited range of observations.

On the other hand, when appropriate requirements are met – as expressed in

the phrase, gathered from phenomena – physicists should nevertheless proceed

as if these theoretical claims hold exactly. What we need to do now is to see

how this research strategy works.

Newton appears to have required that two conditions be met before he was

willing to take the law of gravity as exact. He expressly states in Proposition 8

of Book III that he did not conclude that the inverse-square proportion holds

exactly until he had established that it holds exactly around a sphere of uniform

(or spherically symmetric) density if it holds with respect to all the particles of

matter forming that sphere (Newton 1999, p. 811). In other words, he required

there to be some configuration for which the macroscopic forces around a

body, composed out of forces toward its parts, would accord exactly with the

law. Second, he also appears to have required that there be some identifiable

circumstances in which the phenomena from which the law was inferred would

hold exactly. As the following quote indicates, the subjunctive here is Newton’s,

not mine:

if the Sun were at rest and the remaining planets did not act upon one

another, their orbits would be elliptical, having the Sun in their common

focus, and they would describe areas proportional to the times.

(Newton 1999, p. 817f.)

11 Newton adds by way of explanation for why the rule is needed, “This rule should be
followed so that arguments based on induction may not be nullified by hypotheses.”

12 Similarly, the inference that Newton can strictly speaking draw from orbital phenomena
has to be restricted as holding only over the period of time for which observations were
available, primarily from Tycho Brahe forward. Newton’s third rule of reasoning licenses
the inference to be taken to hold universally into the past and future, just as his fourth
rule licenses the inference to be taken to hold exactly, or at least to high approximation.
For reasons of space I have chosen not to go into his third rule and its strategic role in
ongoing research here.
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Newton’s theory of gravity did not show that the planets revolve in stationary

Keplerian orbits, but instead that they decidedly do not. Nevertheless, Kepler’s

area and 3/2 power rules, and also the absence of orbital precession, are special

in one crucial respect. According to the theory, each of these phenomena

would hold exactly were it not for small gravitational forces directed toward the

individual planets. (The deductions of these phenomena are where the converse

parts of the enabling bi-conditionals come into play, though here in their exact,

not their quam proxime form.) Because the actual motions of the planets are

exceedingly complex, they can be approximated to any given level of accuracy

in an indefinite number of ways. Newton is requiring the approximations from

which physical theory is “deduced” to be ones, that according to the theory,

would hold exactly in specific identifiable conditions. This is a key element of

Newton’s way of marshalling evidence in the face of complexity.

What Newton has done here is to single out a particular kind of idealiza-

tion in science: an approximation that, according to theory, would hold exactly

in certain specifiable circumstances. For want of a better word, I am going to

call idealizations of this type “Newtonian” because of the special role they

play in his approach to evidence. They include not only the phenomena from

which his theory was inferred, but also further phenomena inferred from his

theory, such as Kepler’s ellipse. Science contains idealizations of all sorts of

kinds – mathematical simplifications, schematics of experiments and appara-

tus, explanatory models, etc. They were commonplace before Newton. Both

Galileo and Huygens, for example, had taken the curved surface of the Earth

as flat in their treatment of projectile and pendular motion. My point is that

Newton singled out and placed great emphasis on one particular kind of ide-

alization: approximations to the actual world that are deduced from his theory

of gravity as holding exactly in specified circumstances. Idealizations of this sort

are not simplifications made in the process of arriving at physical theory;

they are offspring of physical theory. Idealizations of this kind and the use

to which Newton put them are a fifth way in which his Principia changed

physics.

As defined here, a Newtonian idealization requires an overarching theory

from which the claim of exactness in specified circumstances is inferred. Thus,

Newton’s law of universal gravity was not itself a Newtonian idealization,

for there was no overarching theory which entailed its exactness in specified

circumstances. Equally, Galileo’s uniform acceleration in vertical fall in the

absence of air resistance was not a Newtonian idealization; Galileo claimed

it holds exactly in this circumstance, but he did not infer this claim from

an overarching theory. As noted above, the theory of gravity in the Principia

forms an intermediate level of physical theory between mere description of

phenomenal regularities in the manner of Galileo’s Two New Sciences, on the one

hand, and laying out full mechanisms in the manner of Descartes’s Principia,

on the other. Intermediate though it may be, this level of theory is nevertheless

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Sun Nov 04 18:32:01 GMT 2012.
http://dx.doi.org/10.1017/CBO9780511994845.019

Cambridge Books Online © Cambridge University Press, 2012



376 george e. smith

sufficient to assign certain phenomenal regularities the status of a Newtonian

idealization.

In general, what Newtonian idealizations do is to shift the focus of ongoing

research to deviations from the ideal – that is, to discrepancies between theoret-

ically deduced, idealized approximations to the world and the world itself. This

shifting of the focus in research to discrepancies between theory and obser-

vation is a sixth way in which Newton’s Principia changed physics – perhaps,

the most conspicuous way. It was with Newton that the phrase “exact science”

took on its current meaning. Instead of explaining away such discrepancies, as

for example Galileo had invariably done, they became a source of continuing

evidence that had promise of becoming increasingly discriminating. The com-

plexity of the actual motions thus became not an impediment to high-quality

evidence, but historically the source of it! And, having discrepancies between

theory and observation became not a negative, but a positive.

Newton generally left research into such discrepancies and what they tell us

about the world to future generations. The one exception was the non-Keplerian

motion of our Moon. In his solution for the systematic deviation from the area

rule known as Tycho’s variation, Newton starts from the idealization of the

Moon in a circular orbit with the Earth at the center and first determines

how the gravitational force of the Sun would distort this orbit, elongating it

in a direction perpendicular to the line from Earth to Sun. He then calculates

the deviation from the area rule, obtaining seven-eighths of Tycho’s value,

and he ends by pointing out that including the effects of orbital eccentricity

would make the calculation still more accurate. Notice what is happening

here: one idealization, a simple circular orbit, is being replaced by another

idealization that gives a better approximation, the idealization now known

as the “variational” orbit produced by the perturbing effect of the Sun on

the simple circular orbit. This process can continue, yielding a sequence of

successive idealizations that should achieve increasingly closer agreement with

observation. They are nonetheless all idealizations.

Newton gets an even more impressive result for the mean motion of the

line of nodes, the 18-year cycle in lunar and solar eclipses known since the

Babylonians, obtaining a result within three-tenths of one percent without

considering eccentricity. The Moon’s orbit is exceedingly complex; no attempt

just to describe it geometrically had ever come close to the level of accuracy

Kepler and others had achieved for the planets. Newton’s announced purpose

in making his calculations was to show that the best hope for genuine progress

lay not in conventional observational astronomy, but instead in his theory of

gravity and a sequence of deduced successive approximations.

Systematic deviations from Keplerian motion and other Newtonian idealiza-

tions can be thought of as a kind of phenomena in their own right. Only no one

can observe them. They arise from the residual discrepancies between observa-

tion and idealizations deduced from theory – that is, from the difference that
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remains after Newtonian idealizations are subtracted from observation. I prefer

to call them “second-order phenomena” for just this reason. They presuppose

specific theory, and they cease having any meaning – they cease to exist – with-

out that theory. As remarked above, on Newton’s approach the focus in ongoing

research shifts from primary phenomena and pursuit of a theory covering them

to residual discrepancies between that theory and observation. With this shift,

the goal in research becomes one of identifying second-order phenomena and

determining what they are telling us about the world. If indeed the actual

planetary motions are complex to a degree that exceeds exact mathematical

description, then residual discrepancies will always remain. The requirement

put on ongoing research is that the increasingly refined, and hence more com-

plicated, idealizations result in continually smaller discrepancies.

Notice that, when the focus shifts in this way, further research is being pred-

icated on the theory, and hence the theory has become an instrument entering

constitutively into ongoing research. Earlier I said that Newton’s generic math-

ematical theory was a tool for turning data into evidence – more specifically

for turning phenomena into evidence for physical theory. Now we see how his

physical theory was no less a tool for turning data into evidence – this time,

second-order phenomena into evidence about such things as what other forces

are contributing to the complex motions of the planets and their satellites. This

is a seventh way in which Newton and his Principia changed physics. Before

him the primary role of physical theory was to explain observed phenomena.

With him, that role became subsidiary, superseded by the role physical theory

is to play in ongoing research. This was the change that such contemporaries

as Leibniz and Huygens had the most trouble seeing and appreciating.

15.5 Beyond the Principia: the logic of the continuing evidence

The Principia ends up spotlighting a number of potential second-order phe-

nomena beyond the specific lunar inequalities for which Newton obtained

results. There were also the past irregularities in the supposed 75-year return of

what we call Halley’s comet; the thoroughly confusing, not-yet-characterized

departures of Saturn and Jupiter from Keplerian motion; and the as-not-yet-

confirmed precession of the perihelia of the planets entailed by Newton’s theory

of gravity. The discrepancy between Newtonian theory and observation that

became historically most important, however, was the precession of the apogee

(or perigee) of the Moon. The apogee of the Moon shifts in very complicated

ways from one orbit to the next. This precession nevertheless has a well-behaved

mean value: on average the apogee moves forward slightly more than 3 degrees

per revolution. Newton had used his precession theorem to calculate the effect

of the gravitational force of the Sun, obtaining a mean precession of 1 degree,

31 minutes, 28 seconds – essentially half the observed value. A question he

never managed to answer was why the Sun’s gravity could readily account for
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90 percent of the Moon’s mean departure from the area rule and more than

99 percent of the mean motion of the nodes, yet only 50 percent of the mean

motion of its apogee.

Newton was less than candid about this discrepancy in the Principia. In an

appendix to the first English translation in 1729, however, John Machin, the

orbital astronomer who was closest to Newton during the 1720s, made the

problem clear to all:

But the [mean] motion of the apogee, according to this method, will be

found to be no more than 1◦37′22′′ in the revolution of the moon from

apogee to apogee, which (according to observations) ought to be 3◦4′7.5′′.

So that it seems there is more force necessary to account for the motion

of the moon’s apogee than what arises from the variation of the moon’s

gravity to the sun, in its revolution about the earth.

But if the cause of this motion be supposed to arise from the variation of

the Moon’s gravity to the Earth, as it revolves round in the elliptic epicycle,

this difference of force, which is nearly double the former, will be found

to be sufficient to account for the motion, but not with the exactness as

ought to be expected. Neither is there any method that I have ever yet met

with, upon the commonly received principles, which is perfectly sufficient

to explain the motion of the moon’s apogee.

(Machin 1729, p. 30f.)

Machin went on to concede that, so far as he could see, it is impossible to derive

the motion of the apogee and the alteration of the eccentricity “from the laws

of centripetal forces.”

During the 1740s Euler, Clairaut, and d’Alembert took up the problem,

each concluding that solar gravity could account for only half the observed

precession. Clairaut went the furthest, for he took the eccentricity of the lunar

orbit into consideration. Specifically, he adapted a method of Euler’s to derive

all the terms for the Sun’s effect in which eccentricity occurs to the first power,

and still found Newtonian theory giving only half of the observed motion.

Based on this, and some discrepancies between recent geodetic measurements

and Newtonian theory, he registered a paper with the Royal Academy of Paris

proposing that Newton’s law of gravity has to be amended with a 1/r4 term. This

provoked quite a debate within the Royal Academy. As this debate continued,

Clairaut decided to derive the terms for the Sun’s effect to the next highest order,

obtaining terms in eccentricity squared and cubed. When he calculated their

effect, he discovered to his surprise that, even though the lunar eccentricity is

less than 0.06, these higher-order terms are not negligibly smaller in magnitude

than the first-order eccentricity terms. Together with those terms they yield a

nearly exact value for the mean motion of the apogee out of the inverse-square

effect of the Sun’s gravity (Waff 1976). D’Alembert, ever the querulous one,
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went on to calculate the contribution from terms of the next highest order,

confirming that they do not mess up Clairaut’s result.

Two points should be made about Clairaut’s efforts before turning to the

historical importance of his result. First, Clairaut’s reasoning when he pro-

posed adding an inverse r4 term was that the data from planetary orbits which

Newton had used in deriving the law of gravity involved distances that were

too large to expose the need for the additional term; in other words, Clairaut

was saying that the data on which Newton had relied were parochial. Second,

the perturbational approach used in Clairaut’s calculations – and in virtually

all subsequent calculations in celestial mechanics – introduces another layer

of complication in the logic of the evidence: Clairaut was deriving not a New-

tonian idealization for a specific case of the three-body problem of the Sun,

Earth, and Moon, but instead a computational approximation to such an ide-

alization. The intractability of the mathematics stood in the way of a rigorous

derivation of the exact solution called for in my definition of a Newtonian

idealization. Given any remaining discrepancy, then, a question arises about

the extent to which it reflects imprecision in the method of calculation versus

the need for some refinement, like an unaccounted for force, in the idealized

model presupposed in the calculation.

Clairaut’s result was much heralded. In a private letter to him, Euler

remarked,

the more I consider this happy discovery, the more important it seems

to me, and in my opinion it is the greatest discovery in the Theory of

Astronomy, without which it would be absolutely impossible ever to suc-

ceed in knowing the perturbations that the planets cause in each other’s

motions. For it is very certain that it is only since this discovery that one

can regard the law of attraction reciprocally proportional to the squares of

the distances as solidly established; and on this depends the entire theory

of astronomy.13

A year later Euler made the same point in print, arguing that they could now be

certain that there are inverse-square forces between Jupiter and Saturn causing

the confusing irregularities in their motions that had been observed:

since M. Clairaut has made the important discovery that the movement

of the apogee of the Moon is perfectly in accord with the Newtonian

hypothesis . . . , there no longer remains the least doubt about this

proportion . . . And if the calculations that one claims to have drawn from

this theory are not found to be in good agreement with observations, one

will be always justified in doubting the correctness of the calculations,

rather than the truth of the theory.

(Euler 1752, p. 4f.)

13 Letter from Euler to Clairaut, 29 June 1751, in Bigourdan (1929, p. 38f.); translation from
Wilson (1980, p. 143).
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The hyperbole in these pronouncements is not so extreme as it may at first

appear. As Euler explained in his Theory of the Moon’s Motion of 1753,14 the

mean motion of the apogee provides an exceptionally sensitive measure of the

exponent in the rule of centripetal force. The exponent is exactly −2 if and

only if the orbit is perfectly stationary in the absence of any forces beyond the

centripetal force holding it in orbit. The trouble, of course, is that the Moon’s

orbit is not stationary, but precesses on average 3 plus degrees per revolu-

tion. Even so, as Newton showed in the Principia, one can still conclude that

the centripetal force on the Moon is inverse-square, quam proxime. The ques-

tion whether it is exactly inverse-square can then be addressed by identifying

forces beyond the Earth’s gravity and seeing whether any discrepancies remain

once the effects of these forces are taken into account. How is one to iden-

tify such further forces? By first taking into account the gravitational forces

from the Sun and the planets, and then seeing what discrepancies, if any,

remain.

This brings me to an eighth way in which Newton’s Principia changed physics.

His approach opened the way to a new form of evidence – evidence indirectly

accruing to a theory from the success of research predicated on it. The original

evidence for Newton’s law of gravity showed at most that it holds to high

approximation, yet he took it to hold exactly and deduced idealizations from

it. This strategy leaves open the question, how exact is the law? We now see that

ongoing research on deviations from these idealizations can continue to bring

evidence to bear on the law in general and on this question in particular – albeit

indirect evidence. Clairaut’s result, together with the observed lunar precession,

provided direct evidence that, whatever other forces are perturbing the lunar

orbit, they are much smaller than the perturbing force from the Sun’s gravity.

Indirectly, however, it provided evidence that Newton’s law of gravity holds to

a still higher level of approximation than his original evidence implied. More

generally, focusing research on deviations from Newtonian idealizations and

demanding progressively smaller discrepancies between observation and the

idealized model of the world is a strategy for exposing limitations in this law.

Correlatively, because the idealizations are deduced from the law, taken as exact,

evidence accrues to the law from continuing success in pinning down robust

physical sources of still remaining deviations.

I claim that Newton’s new approach to marshalling evidence was a response

to the complexity of the world. Those before Newton despaired of any such

complexity, concluding it would always limit the quality of evidence that can

be achieved in science. What Newton did was to find a way to turn the very

complexity into a source of increasingly more telling evidence. This, to me, was

the ultimate genius of the Principia.

14 Euler (1753, pp. 71–72); translation in Wilson (1980, p. 144).
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The logic of this evidence needs to be made clear, for the Clairaut example

can be misleading. At first glance, one might think that Clairaut deduced the

theoretical mean motion of the lunar apogee, and its close agreement with

observation therefore provided hypothetico-deductive evidence for the law

of gravity. That is a mistake. For Clairaut to have deduced the motion, he

would first have had to assume that no other forces are at work beyond the

perturbing force of the Sun – a question that was surely still open. (Newton

himself at one point intimated that the missing one and a half degrees in the

mean precession of the lunar orbit might be coming from the Earth’s magnetic

field (Newton 1999, p. 880).) Rather, Clairaut was only deducing the effect

of a specific perturbing force entailed by Newton’s theory of gravity. More

generally, all such calculations of orbital motions in celestial mechanics are

merely deducing the effects of the forces specified. When the result of any

such calculation matches observation very closely, the appropriate conclusion

is that any further perturbing forces either do not exist or are of much lesser

consequence. A failure to match observation leaves open the possibility that

some other force is making a significant contribution. A less outspoken version

of Euler’s statements about the strong evidence Clairaut had provided for the

inverse-square would still have been valid even if it had turned out that the

missing one and a half degrees was from the Earth’s magnetic field.

To put the matter differently, the test to which Newton’s theory is put by

the deviations from his idealizations is more subtle than a simple hypothetico-

deductive construal suggests. Newtonian idealizations are by definition ones

that, according to the theory of gravity, would hold exactly in specified cir-

cumstances. But then any deviation from them must result from some physical

departure from those circumstances, an additional celestial force not yet taken

into consideration. The implication, in other words, is that any deviation from

an idealization must be physically significant within the context of the theory –

this in contrast, for instance, to being merely a reflection of the mathematical

scheme that happened to have been chosen in curve fitting. The test to which

Newtonian theory is put in ongoing research centers on the question, Is every

deviation from a Newtonian idealization physically significant? The evidence

that accrues to Newtonian theory comes from pinning down robust physi-

cal sources of deviations – a continuing process that ought to result in ever

smaller discrepancies between observation and the idealized representation of

the world. Whenever all residual discrepancies drop below a then-current level

of accuracy of observation, the appropriate conclusion must have a somewhat

Popperian flavor: at least for the moment, observation has ceased providing

any basis for identifying either further complications in the world or respects

in which theory is inadequate.

The conclusion, any other perturbing forces are of much lesser consequence, is

a variant of a problematic auxiliary assumption, all forces acting on the planets

other than the designated gravitational forces have very small effects, required
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in hypothetico-deductive construals of the evidence. Both are variants of Karl

Hempel’s the constituent bodies of the system are subject to no forces other than

their mutual gravitational attraction – his paradigmatic example of a “proviso”

in his paper, “Provisos: A Problem Concerning the Inferential Function of Sci-

entific Theories” (Hempel 1988). On the account of the logic of the evidential

reasoning I am offering, these are not assumptions in the deductions of celestial

mechanics at all. The deductions are spelling out the (idealized) consequences

of a set of specified forces. The point of the resulting Newtonian idealizations

is not as such to test the theory of gravity by making predictions with it, but

rather to address the question, are any forces beyond those specified of con-

sequence? Hempel’s provisos, instead of being assumptions in the deductions,

are conclusions that emerge when the answer to this question is no – that is,

when the discrepancies between the calculated and the observed motions are

sufficiently small.

Our sense that celestial mechanics over a period of centuries generated

extraordinary support for Newton’s law of gravity stems not from its having

continually yielded predicted motions within observed accuracy (which, in

fact, it never really did), but from the success in pinning down – that is,

identifying and further confirming – the physical sources of forces responsible

for ever more subtle complexities in the observed motions. The extent to which

orbital motions are dominated by gravitational forces has been among the most

remarkable findings of celestial mechanics.

A long tradition of carelessly talking about evidence in celestial mechanics

as if it were straightforwardly hypothetico-deductive has obscured the extent

to which the focus of ongoing research has been on questions about further

forces. In saying that Newton’s theory of gravity has been an instrument in

post-Principia research in celestial mechanics, I mean more than just that this

theory has been presupposed in instance after instance of evidential reasoning

throughout that research. Because the overall pattern has been one of successive

approximations, the evidence for the physical sources of the increasingly smaller

deviations from the current ideal presupposes not only Newtonian gravity, but

also the previously identified sources of the larger deviations from the earlier

ideals. In other words, the ongoing evidential reasoning has presupposed the

theory of gravity in an increasingly ramified fashion. To question the law of

gravity is to throw into question a huge collection of facts (or, if you prefer,

quasi-facts) about the world that post-Principia research has established. The

burden of proof required to discard the law of gravity thus became increasingly

large – which is the same thing as saying that the law became increasingly

entrenched.

At the beginning of this chapter I posed a question about the much higher

quality of evidence after the Principia than before it. The continuing evidence

in gravitation research, and not Newton’s original evidence, is the high-quality

evidence in question. Listing all the evidence of this sort that has unfolded
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over the last 300 years would be a Herculean task. Still, it is instructive to list

a few highlights: (1) Clairaut’s prediction of the month of return of Halley’s

comet in 1759 after taking the gravitational forces of Jupiter and Saturn into

account; (2) Laplace’s 1785 discovery of the 890-year “Great Inequality” in the

motions of Jupiter and Saturn; (3) Leverrier and Adams deducing the existence

of an eighth planet, Neptune, from residual anomalies in the motion of Uranus

(1846); (4) the Hill–Brown theory of the Moon (1919), involving more than

1400 physically significant terms, which finally brought lunar theory to the

level of accuracy of the planets and revealed as well that the Earth’s rotation is

not uniform, and hence that sidereal time is not an exact measure of time.15

The key point, however, is that the process of research is continuing, for

there will always be discrepancies. The difference now is that they are at levels

of significant figures of which Euler and Clairaut, much less Newton, scarcely

ever dreamed.

15.6 Parochialism and the continuity of evidence

The glaring omission in my list of highlights is the precession of the perihelion

of Mercury, the discrepancy that finally falsified, so to speak, Newton’s law of

gravity. Newton already knew that most of the apparent precession of Mer-

cury’s perihelion is just that – apparent, stemming from the precession of the

equinoxes, the 26,000-year wobble of the Earth. He had no way to calculate

the true precession implied by his theory of gravity, in part because he had no

way to determine the mass of Venus. By the end of the nineteenth century it

became clear that Newton’s theory was 8 percent slow for the true 225,000-year

precession of Mercury’s orbit. This 43 arc-seconds per century residual proved

recalcitrant: Newtonian theory was unable to provide any physical source for

it, and hence it appeared not to make physical sense within the context of that

theory. Later, of course, it turned out to be evidence for the new theory of

gravity of Einstein’s general relativity.

This residual discrepancy in the very slow motion of Mercury’s perihelion

shows how Newton’s response to the complexity of orbital motion was, at the

same time, a response to the risk that our observations are somehow parochial.

What better way was there to expose any such parochialism than to push his

theory for all it is worth until some subtle discrepancy emerges that might

shed light on just how it is parochial? The obvious alternative, contra Newton’s

fourth Rule of Reasoning, was to try to obviate parochialism from the outset

by proposing a wide range of competing theories compatible with the available

data and then identifying cross-roads experiments to choose among them or to

falsify them one-by-one. One problem with this alternative was the degree to

15 These four as well as other contributions from continuing research in orbital mechanics
are discussed in Smith (forthcoming b).
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which the complexity of the world would have limited the quality of evidence

in trying to decide early among the competing theories. The more serious

problem, however, was the absence of any way of assuring that the list of

proposed alternatives would cover respects in which the available data were

indeed parochial. The specific respect in which Newton’s data are now known

to have been parochial was not something anyone imagined at the time.

The residual in the precession of Mercury’s perihelion also brings a dis-

tinction into sharper focus that was alluded to in the preceding section, the

distinction between Newtonian idealizations and curve-fits. At the end of the

nineteenth century Simon Newcomb prepared a new set of planetary tables

that, together with the theories of the orbits underlying them, remained the

basis for orbital predictions until the switch to direct numerical integration of

the equations of motion on high-speed computers in the 1980s. Newcomb’s

tables were based on Newtonian gravity plus an added term in the calculation

of the secular precession of the perihelia of the four inner planets. This term,

which turned out to amount to a fudge factor, consisted of a constant times

the mean motion of the planet in its orbit.16 It added 43.37 arc-seconds per

century in the case of Mercury, and less for the other planets. With this term

included, the calculated orbits involved an element of curve-fitting, and hence

they were no longer, strictly speaking, Newtonian idealizations. No longer could

any systematic discrepancy between the calculated and observed precessions

be automatically taken to be symptomatic of some physical source not yet

taken into account. For, the discrepancy might instead represent some physi-

cally arbitrary feature in the curve-fit. In particular, suppose a new systematic

discrepancy were to emerge in the case of Mercury much smaller than the prior

43 arc-seconds, say a discrepancy around 0.4 arc-seconds. Why should that

discrepancy automatically be taken as a sign of some yet-to-be-noted physical

effect when it could just as well be attributed to the choice of mean speed as the

curve-fitting parameter or to the decision not to include terms in mean-speed

squared?

Both Newtonian idealizations and curve-fits can be carried out in sequences

of successive approximations in response to a complex world. Curve-fits aim at

prediction, with the mathematical scheme chosen to reflect a trade-off between

accuracy of fit and calculational ease. Least-squares curve-fits have the virtue of

minimizing the expected value of the square of the error in prediction, relative

to the adopted mathematical scheme, and errors in prediction are expected to

be Gaussian. In general, whether the curve-fitting criterion is least-squares or

otherwise, the goal is for errors in prediction to have a random character; and,

in that regard, curve-fits attempt not to highlight discrepancies, but to achieve

prediction within a certain level of precision, in the process sweeping lesser

16 Specifically 0.0000000806 times the centennial mean motion; see Newcomb (1898, p. 12).
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discrepancies under the rug. Discrepancies between Newtonian idealizations

and observation, by contrast, are not expected (or even desired) to have a

random character, for the driving research question is, what further physical

factors, if any, need to be taken into consideration?

The distinction between Newtonian idealizations and curve-fits is especially

important when worried about the possibility that available data are somehow

misleadingly parochial. With each successive approximation in curve-fitting,

physical sources of features in the data become progressively more submerged

in a welter of choices embedded in the mathematical scheme. As a consequence,

there are multiple potential sources for a recalcitrant discrepancy besides some

respect in which the accessible data are physically parochial. By contrast, the

further a sequence of successive approximations progresses with Newtonian

idealizations, the stronger the grounds are for attributing any recalcitrant dis-

crepancy to some physical parochialism. For, the alternative, that the the-

ory has been (by its own standards) radically wrong all along, is countered

by the record of success so far in pinning down robust physical sources of

discrepancies.

Within two decades of Newcomb’s new orbital tables, Einstein put forward

his theory of general relativity, and Newcomb’s curve-fitting response to the

residual in Mercury’s perihelion ceased to matter. Einstein’s relativity produced

a conceptual revolution in physics, but not really a revolution in evidence. For,

Newtonian gravity holds as an asymptotic limit of Einstein’s, specifically the

static weak-field limit. This had two important consequences. First, save for

qualifications about levels of precision, all the evidence for Newtonian gravity

carried over immediately to Einsteinian gravity. Physics did not have to go back

to an earlier time and begin reconstituting evidence. The data that had been

evidence for Newtonian gravity were guaranteed to be evidence for Einsteinian

gravity as well insofar as, under the conditions of our solar system, Newtonian

gravity amounts to an approximate special case of Einsteinian, and evidence for

a special case counts as evidence, though often of reduced strength, for the more

general theory of which it is a special case. Second, Einstein’s theory did not

out-and-out nullify the evidential reasoning supporting Newton’s theory. That

is, it did not entail that the evidence supporting the prior theory was merely

illusory, and never truly evidence at all. For, the steps in the original reasoning

can still be justified, though the justifications themselves have to be amended to

include qualifications – for example, the qualification that a Euclidean metric

provides a good approximation so long as the gravitational field is weak. If the

reasoning had not remained so justified, then the 43 arc-second residual, taken

in itself, could not have provided evidence for Einstein’s theory in the manner

in which it did, for that residual is a Newtonian second-order phenomenon

that presupposes Newtonian gravity; were the evidence for Newtonian gravity

illusory, the specific value of 43 arc-seconds would be nothing but an artifact

of an illusion.
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This point can be put in another way. The transition from Newtonian to

Einsteinian gravity certainly did entail a revolutionary discontinuity in con-

ceptual structure. Nevertheless, because Newtonian gravity holds in the static

weak-field limit, the transition did not entail any discontinuity in evidence.

The residual 43 arc-seconds per century in the precession of the perihelion of

mercury is a Newtonian second-order phenomenon that turns out to be phys-

ically significant, but only within the context of the less parochial theory. From

the point of view of Einstein’s theory, Newton’s is a limited special case reflect-

ing a systematic bias in the data to which we have ready access, in particular

orbital data from within our solar system. From the point of view of Newton’s

theory, on the other hand, Einstein’s is a more general theory – one among an

indefinite number of possible more general theories – that a strictly Newtonian

phenomenon helped single out and substantiate. The transition from Newton

to Einstein yielded the discovery that one specific respect in which the readily

available gravitational data within our solar system are parochial is that the

fields are so weak and so nearly static.

What we have here is another kind of idealization in physics: a theory that,

even though it would never hold exactly in any realizable circumstance, never-

theless holds in a mathematical limit with respect to a more general theory. Let

me call these “limit-case” idealizations. They have a different role in the devel-

opment of evidence from the Newtonian idealizations I have been emphasizing

so far. Their most important contribution is to allow evidence to remain con-

tinuous and hence cumulative across theory change, especially across theory

change involving removal of parochialisms.

Although it has gone largely unnoticed, continuity of evidence is itself a form

of evidence. Of course, the continuity of evidence from Newton to Einstein

cannot be evidence for Newton’s theory itself, or even Einstein’s. It is evidence

for something more basic that is common to both. In taking the huge inductive

leap from inverse-square gravity and the orbits of six planets to universal

gravity, Newton was making two tacit, but nonetheless indispensable taxonomic

assumptions: (1) gravity marks a distinct natural kind or, to use Newton’s

phrase, a physical species; and (2) orbital motions of our planets and their

satellites represent a pure enough example to typify this species as a whole.

Both of these assumptions, at the time Newton made them, could not help but

fall largely in the category of wishful thinking.

The research predicated on Newton’s law of gravity over the next two cen-

turies succeeded spectacularly in reducing the gap between theory and observa-

tion; and this success provided support for these two taxonomic assumptions.

All of this success nevertheless came from phenomena within our planetary

system over a very short period of astronomical time. Consequently, none

of it spoke directly to the possibility that gravity is an accidental feature of

our solar system, in much the way that many geological phenomena are mere

artifacts of the Earth’s history, and not symptomatic of deep physical laws.
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Besides revealing the weak-field parochialism of our planetary system, gen-

eral relativity has enabled data from the universe at large to become evidence

bearing on gravitation theory. A prerequisite for continuity of evidence in

theory change is that the taxonomy underlying the old theory remain essen-

tially intact within the new theory. The fact that evidence remained continuous

from Newtonian to Einsteinian gravity has accordingly provided much stronger

support than ever before for the claim that gravity marks a distinct physical

species.

Surprising though it may be, limit-case idealizations are something else that

Newton introduced in the Principia and hence a ninth way in which this book

changed physics. Newton, of course, had concluded that the data supporting

the theory of uniform gravity acting along parallel lines developed by Galileo

and Huygens were parochial, coming as they all did from the narrowly con-

fined region near the surface of the Earth. This theory and the evidence for it

were nonetheless important to Newton for a series of reasons: (1) he expressly

invokes results by Galileo confirming that the acceleration of gravity is indepen-

dent of weight as evidence that mass is proportional to weight (Newton 1999,

p. 806); (2) he similarly invokes Galileo’s vertical fall and parabolic projection

and Huygens’s pendulum results as evidence for his first two laws of motion,

and indeed Huygens’s pendulum measurements of surface gravity offered the

best evidence for those laws (Newton 1999, p. 424); and (3) Huygens’s mea-

sured value of surface gravity, which presupposed uniform gravity acting along

parallel lines toward a flat surface, provided crucial evidence that terrestrial

gravity extends to the Moon (Newton 1999, pp. 803–805).

The way in which Newton chose to treat uniform gravity as a limit-case of

universal gravity will surprise anyone not thoroughly familiar with the Prin-

cipia. Newton does not argue that Galilean gravity is simply an approximation

to inverse-square gravity over small distances – that is, distances over which

the variation in the acceleration of gravity is too small to matter. Instead, he

treats it as a limit-case of gravity that varies linearly with distance from the

center of a spherical Earth, specifically the limit at the surface as the Earth’s

curvature approaches zero. The statement of this limit-case idealization occurs

in Section 10 of Book I of the Principia, in a corollary to one of the propositions

on hypocycloidal pendulums – that is, pendulums the arc of which is defined

by the trajectory of a circle rolling not on a flat plane, but on the underside of

a spherical surface (Figure 15.2):

Prop. 52, Cor. 2. Hence also follows what Wren and Huygens discovered

about the common cycloid. For if the diameter of the globe is increased

indefinitely, its spherical surface will be changed into a plane, and the

centripetal force will act uniformly along lines perpendicular to this plane,

and our cycloid will turn into the common cycloid. But in that case the

length of the arc of the cycloid between that plane and the describing

point will come out equal to four times the versed sine of half of the arc
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Figure 15.2 The figure accompanying Propositions 51 and 52 on isochronous motion

of pendulums

of the wheel between that same plane and the describing point, as Wren

discovered; and a pendulum between two cycloids of this sort will oscillate

in a similar and equal cycloid in equal times, as Huygens demonstrated. But

also the descent of heavy bodies during the time of one oscillation will be the

descent Huygens indicated.

Moreover, the propositions that we have demonstrated fit the true consti-

tution of the earth, insofar as wheels, moving in the earth’s great circles,

describe cycloids outside this globe by the motions of nails fastened in their

perimeters; and pendulums suspended lower down in mines and caverns

must oscillate in cycloids within globes in order that all their oscillations

may be isochronous. For gravity (as will be shown in Book 3) decreases in

going upward from the surface of the earth as the square of the distance

from the earth’s center, and in going downward from the surface is as the

distance from that center.

(Newton 1999, p. 555f., emphasis added)
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As Newton shows later in Book I, his universal gravity entails that, below and

up to the surface of a uniformly dense sphere, the net gravitational force varies

linearly with distance, while above the surface it varies as the inverse-square

(Newton 1999, pp. 593–597 and 617f.).

Galileo’s and Huygens’s results can be shown to hold to high approximation

in inverse-square gravity so long as the vertical distances are small.17 What then

does Newton gain with his limit-case idealization? In Huygens’s measurement,

the strength of surface gravity is inferred, via his law of the cycloidal pendulum,

from the measured period, which he had shown does not vary with the length

of the arc of the bob. This isochronism was crucial to Huygens’s measurement

beyond its being explicit in the law. Thanks to isochronism, no attention needed

to be given to the length of the bob’s arc and whether it was varying during the

measurement of the period. Isochronism was accordingly a key factor in the

claimed precision of Huygens’s measurement, a precision important to New-

ton. Now, hypocycloidal pendulums are isochronous under gravity that varies

linearly with distance from the center (Prop. 51), but not under inverse-square

gravity! Therefore, what Newton’s specific limit-case idealization enabled him

to show was that the logic underlying Huygens’s measurement is not nullified

when uniform gravity acting along lines parallel to one another is replaced by

his universal gravity. (Notice that this is precisely what Newton said in the por-

tion of the quotation I italicized above.) Remarkably, the Principia thus actually

goes to the trouble of confirming continuity of evidence in the transition from

Galilean to Newtonian gravity.

15.7 Newton or Newtonian?

Employing limit-case idealizations to maintain continuity of evidence across

theory change is the ninth and last of my ways in which the Principia changed

how evidence is developed in physics. Table 15.1 recapitulates the nine ways for

the convenience of the reader.

I see these not as nine distinct ways, but as nine aspects of a single change: a

new approach in which theory is first and foremost an instrument for developing

evidence, and evidence of increasingly telling quality is then brought to bear

on it indirectly through the research predicated on it. More important than this

summary description, however, is the degree to which these nine elements mesh

with one another to form a coherent whole. I claim that they gain this unity

from their being a response to Newton’s conclusion that the true motions of

the planets are hopelessly complex and his worry that the data to which we

have ready access may be misleadingly parochial. I have trouble imagining a

more reasonable response to the complexity of the true motions and the likely

17 Doing so amounts to treating uniform gravity acting along parallel lines as a mere curve-fit
approximation to Newton’s universal gravity.
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Table 15.1 Nine aspects of how Newton’s Principia changed physics

1. Physics has to include its own theory of measurement

2. Develop generic mathematical theory to provide “inference-tickets”

3. Restrict physical theory to principles that phenomena dictate

4. Leap from approximative evidential reasoning to exact theory

5. Idealizations that would hold exactly in specified circumstances

6. Shift focus of ongoing research to deviations from such idealizations

7. Physical theory becomes an instrument for turning data into evidence

8. Evidence accrues to a theory from success of research predicated on it

9. Limit-case idealizations enable continuity of evidence across theory change

parochialism of our observational situation than this one. One can scarcely

say of those who have traced the path initiated by the Principia that they have

“made trial of nature in vain.”

Two and a half years after the Principia was first published, Huygens published

a response to Newton’s theory of gravity, Discourse on the Cause of Gravity,

bound together with his Treatise on Light. In the Preface to the latter he offers a

wonderfully succinct statement of the then prevailing view about how evidence

is to be developed in empirical science:

One finds in this subject a kind of demonstration which does not carry with

it so high a degree of certainty as that employed in geometry; and which

differs distinctly from the method employed by geometers in that they

prove their propositions by well-established and incontrovertible princi-

ples, while here principles are tested by the inferences which are derivable

from them. The nature of the subject permits of no other treatment. It is

possible, however, in this way to establish a probability which is little short

of certainty. This is the case when the consequences of the assumed prin-

ciples are in perfect accord with the observed phenomena, and especially

when these verifications are numerous; but above all when one employs the

hypothesis to predict new phenomena and finds his expectations realized.

(Huygens 1888–1950, XIX, p. 454)18

Newton’s famous pronouncement in the General Scholium that he added at

the end of the second edition of the Principia twenty-three years later was

presumably, at least in part, a response to this statement by Huygens:

I have not as yet been able to deduce from phenomena the reason for

these properties of gravity, and I do not feign hypotheses. For whatever

is not deduced from the phenomena must be called a hypothesis; and

18 The English translation is from Matthews (1989, p. 126). The hypothesis which Huygens
had most in mind was the longitudinal wave theory of light.
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hypotheses, whether metaphysical or physical, or based on occult qual-

ities, or mechanical, have no place in experimental philosophy. In this

experimental philosophy, propositions are deduced from the phenomena

and are made general by induction.

(Newton 1999, p. 943)

Newton, however, says nothing more about his approach and why it may be

better. In particular, nowhere in the Principia does he invoke the complexity of

the orbital motions to argue either that too many disparate hypotheses can meet

Huygens’s requirements or that a hypothetico-deductive approach offers less

promise of bringing to light the physical sources of small discrepancies between

theory and observation. Indeed, nowhere in the Principia does he even intimate

that his alternative approach involves remotely the logical intricacy that I have

attributed to it. A natural question, then, is whether the approach I have laid out

is better called Newtonian rather than Newton’s. How much of it did Newton

himself see?

While this question is clearly of historical interest, especially to Newton schol-

ars, it is not of central importance to this chapter. The goal of this chapter has

been to lay out a picture of the general logical structure of the evidence across

the history of research in Newtonian gravity and to trace key constituents of this

logical structure to Newton’s Principia. The data entering into this evidence

extends from Tycho Brahe’s efforts a century earlier well into the twentieth

century in the case of orbital motion. As crucial to the history of research in

Newtonian gravity as Newton and his Principia were, this research was carried

out by a large community that stretched across many generations. The indi-

viduals forming that community focused far more heavily on specific, narrow

questions in evidence, and not on the general logic of the evidential reasoning

across the entire history. Consequently, although what those individuals said

and thought is relevant, it is of limited weight when judging the adequacy of the

picture of the logic presented in this chapter. One should think of this chapter

as emulating the perspective of a review article, unusual only in the scope of

time covered and the limited attention given to specific items of evidence. The

decisive issue in judging the picture of the overall logic presented here should

be its coherence.

That said, let me return to the question of how much of my proposed

“Newtonian” approach to evidence Newton himself saw. My guess is, all of its

key constituents and, at least on occasion, their potential for coming together

to form a whole. Much of my reason for saying this is “autobiographical”

and hence not of much moment for others: I came to see this logic from

repeatedly working through the Principia while teaching it cover-to-cover.

On a less personal note, each of the items listed in Table 15.1 has been tied

in this chapter to specific passages in the Principia. I chose Clairaut’s work

to illustrate continuing indirect evidence from success in using the theory
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as a tool in ongoing research, but I could almost as well have used Newton’s

quantitative results on other lunar inequalities. Those results, moreover, are not

the only place where Newton proposes to proceed by successive approximation

to increasingly refined idealizations – what I. B. Cohen (1980, pp. 3–154) called

the “Newtonian style.”

Arguing that the Principia provides explicit basis for each of the nine items

in my list is one thing; arguing that Newton saw much or all of the logical

structure I claim they form is another. The argument for that has to come from

more subtle features of his text, such as his precise phrasing of his Rules of

Reasoning and his careful use of the subjunctive when discussing whether the

orbits of the planets are Keplerian and stationary. There are also features of the

Principia that make totally good sense if he was paying attention to nuances

in the logic I have proposed, but are difficult to explain otherwise. The most

notable of these are his refusal to infer the inverse-square variation from the

Keplerian ellipse and his treatment of Galilean uniform gravity as a limiting

case of gravity that varies linearly with distance. Finally, in a similar spirit, my

picture of the logic of evidence in the Principia absolves Newton of stupidity

(or dishonesty) in claiming to have derived the law of gravity from phenomena.

Saying that Newton saw much of the logic I have described does not mean

that there was some moment when he had a clear, comprehensive vision of the

whole picture and thereafter consciously fashioned the Principia accordingly.

He appears to have been fully aware from early on that his inferences from

phenomena involve “if quam proxime, then quam proxime” reasoning. Propo-

sitions establishing this quam proxime form of relevant “if-then” statements

occur in the very first draft of Book I, and even the registered version of the

“De Motu” tract shows signs of his knowing that the quam proxime form of “if

a Keplerian ellipse, then inverse-square” does not hold (Smith 2002b, p. 40f.).

Not so clear is when, and how fully, Newton saw that deviations from what

I have called Newtonian idealizations can provide an evidential basis for a

sequence of successive approximations in ongoing research. When he first calls

attention to the intractable complexity of planetary motion, in the augmented

version of “De Motu,” he presents the vagaries as an obstacle in determining the

proper Keplerian orbits and seems resigned to never being able to do anything

constructive with the deviations from Keplerian motion (Newton 1962, p. 281).

In the initial draft of what became Book III of the Principia the inequalities in

the lunar orbit are treated only qualitatively, and the intent seems merely to

be to eliminate the apparent counterexample the Moon offers to Kepler’s rules

(Newton 1934, p. 577). My suggestion, then, is that Newton saw the possibility

of using the deviations as the basis for successive approximations when his

quantitative results on the lunar inequalities emerged, between the first draft

of Book III in 1685 and the final draft in late 1686 or early 1687.

Newton had good reasons to be cautious about putting too much of the

evidential burden for universal gravity on success in pinning down the physical
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sources of deviations from Keplerian motion. In contrast to the limited quan-

titative results he achieved on the restricted form of the three-body problem

involving the Sun, Earth, and Moon, he obtained no quantitative results at all

on the three-body problem posed by the Sun, Jupiter, and Saturn. Worse, the

factor of two error in his derivation of the precession of the lunar apogee raised

the distinct possibility that the Earth’s magnetism was contributing to this

effect. Newton tells us that the magnetic force, “in receding from the magnet,

decreases not as the square but almost as the cube of the distance, as far as I

have been able to tell from rough observations” (Newton 1999, p. 810);19 and

he knew that a superposed inverse-cube centripetal force is precisely what is

needed to make an orbit precess (Newton 1999, pp. 535–539). If, however, non-

gravitational forces have any significant effect on the motions of the planets or

their satellites, the prospects for developing continuing evidence for universal

gravity out of the vagaries of the motions is not so straightforward. For, laws of

these non-gravitational forces would first have to be established, independently

of those vagaries, and even with those laws in place, problems would poten-

tially remain in specifying conditions for their applicability to specific celestial

motions – for example, what is the fractional iron content of the Moon?

From his work on the tides Newton knew how much more difficult quanti-

tative analysis becomes when non-gravitational forces are involved. If they are

not virtually negligible in orbital motions, then the process of pinning down

physical sources of deviations would likely be long and maybe tortuous, and

the evidence accruing to universal gravity would be of reduced strength.

Furthermore, we should not lose sight of the limits of observational accuracy

in astronomy during Newton’s lifetime. The need to correct observations for

the effects of solar parallax and atmospheric refraction had long been recog-

nized, but the precise magnitudes of those corrections remained under dispute

throughout Newton’s lifetime, and no consensus had been reached on the need

for a further speed-of-light correction at the time the Principia was published.20

The need for still further corrections for the aberration of light and the nutation

of the Earth emerged shortly after Newton died (Bradley 1728 and 1748). Thus,

the prospects for increasingly precise observation of the sort needed to support

successive approximations beyond the first level of refinements became much

clearer only after Newton.

A prominent physicist responded to the account of the evidence for Newto-

nian gravity given above by remarking, “Newton was lucky.”21 That is surely

correct on two counts. He was lucky that a relationship as mathematically

19 Newton was not in error here, for the dipole effect of a magnet gives rise to an inverse-cube
variation.

20 Cassini still insisted that the irregularity in the timing of the eclipse of Io came from an
inequality in its orbit; see Halley (1694).

21 Kenneth G. Wilson, in conversation.
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simple as his law of gravity remained intact across two centuries of pursuit

of ever greater precision.22 And he was lucky in the degree to which gravity

dominates celestial motions, making the task of marshalling evidence out of

those motions far easier than it would otherwise have been.23 Newton had no

basis for expecting either of these eventualities to work out remotely as well as

they did. Gravitation research has been successful, however, not merely because

the empirical world happened to cooperate, but also because it has followed

an approach that enabled continuing evidence to be brought to bear from

increasingly subtle complexities in the motions. Its following that approach

was not a matter of luck. In his research in optics Newton conducted experi-

ment after experiment, with only slight variations, in order to address possi-

ble loopholes in the experiments that he ultimately published.24 In the Prin-

cipia Newton shows a similar constant concern for evidential loopholes that

22 The algebraic simplicity of the law as Newton formulated it was an automatic consequence
of his inferring the law from phenomena by means of approximative reasoning. For, this
blocked him from incorporating any feature into the law unless the phenomena dictated
it, and insofar as the original phenomena amounted to first-order approximations to the
real motions, nothing in them was going to dictate further complications. But that gave
all the more reason to expect that a need for complications might well emerge as research
went beyond those first-order approximations. For example, the law does not include
time as a variable – something that might at least have raised questions early on.

23 A letter Newton wrote to Leibniz in 1693 shows that he anticipated this possibility:

For since celestial motions are more regular than if they arose from vortices and
observe other laws, so much so that vortices contribute not to the regulation but to
the disturbance of the motions of planets and comets; and since all phenomena of the
heavens and of the sea follow precisely, so far as I am aware, from nothing but gravity
acting in accordance with the laws described by me; and since nature is very simple, I
have myself concluded that all other causes are to be rejected and that the heavens are
to be stripped as far as may be of all matter, lest the motions of planets and comets be
hindered or rendered irregular.

(Newton 1959–1977, III, p. 287; emphasis added)

Perhaps Newton is here being disingenuous with Leibniz, who had published his own
vortex theory of Keplerian motion four years earlier, but he knew perfectly well that
tidal phenomena do not all follow precisely from the laws described by him, and his
suggestion that celestial phenomena follow precisely was at best wishful thinking. (Two
years before this letter Newton had asked Flamsteed for observations of Jupiter and
Saturn over a fifteen-year period, presumably because he wanted to answer the question
of how precisely their motions follow from the law of gravity.) The evidence that gravity
is the overwhelmingly dominant force in celestial motions was incomparably stronger
a century after this letter to Leibniz, when Laplace was setting to work on his Celestial
Mechanics. The extraordinary quality of evidence achieved in gravitation research over
the two centuries following the Principia would have been far more difficult to attain if
non-gravitational forces were more prominent in celestial motions.

24 To quote Alan Shapiro (2002, p. 230), “Sometimes, as in the Optical Lectures, the large
number of experiments with slight variations to establish various points may seem tedious,
but Newton attempted to leave no room for objections.”
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might arise from the gap between complex motions of the actual world and

mathematical representations of them. Each of the items in my list of ways

in which the Principia changed physics surfaces in a context in which explicit

attention is given to this gap. So, regardless of how clearly Newton ever saw the

total package formed by the items listed in Table 15.1, the mutual coherence

they acquire from their forming a response to a specific evidential challenge

truly is owing to him.

A second prominent physicist offered a different response to my account:

“[Smith] makes very clear that Newton’s celestial mechanics was something

truly novel, namely that it displays the currently used method of doing mathe-

matical physics.”25 No comment on my efforts on Newton has ever pleased me

more.
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too long for the volume, I substituted this one.

25 Markus Fierz, in a letter to Silvan S. Schweber.
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