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t On the Origin and Significance1 of the Geometrical Axioms

Lecture held in the Docentenverein of Heidelberg in the year 1870

(Translated from PopulaTe Wissenschaftliche Vortriige von H. Helmholtz [Braunschweig, 18761, Heft 3, pp. 23-
51.)

The fact that there can be a science of such a character as that of geometry-that a science can be built
lip in such a way--has from ancient times necessarily laid the highest claims upon the attention of all who
felt a concern for the fundamental questions of epistemology. Among the branches of human science
there is no other that makes its appearance so: sprung forth complete, light a brazen-armed Minerva out
of the head of Zeus;2 there is none before whose annihilating CEgiScontradiction and doubt have so little
dared to raise their eyes. With this, geometry is exempt from the wearisome tedious task of gathering
facts of experience, as the natural sciences in the narrower sense have to do; instead, the exclusive form of
its scientific procedure is deduction. Conclusion is developed from conclusion; and yet no one of sound
sense doubts in the end that these geometrical propositions must find their very practical employment
upon the reality that surrounds us. Land-surveying as well as architecture, machine-construction as well
as mathematical physics, continually calculate spatial relationships of the most varied sorts on the basis of
geometrical propositions; they expect the results of their constructions and experiments to conform to
these calculations; and to this day, no case is known in which they have been deceived in this
expectation-provided they have calculated correctly, from adequate data.

And indeed the fact that geometry exists and performs such things has always been used, in the
controversy over the question that constitutes as it were the central point of all the oppositions of
philosophical systems, in order to demonstrate by an imposing example that a cognition of propositions
having real content is possible without any corresponding foundation drawn from experience. In
particular, in the answer to Kant's famous question: "How are synthetic a priori propositions possible?",
the geometrical axioms constitute just those examples that seem to show most evidently that synthetic a
priori propositions are possible at all. Further, the circumstance that such propositions exist and compel
our conviction with necessity is regarded by him as a proof that space is an a priori given form of all outer
intuition. He appears thus not just to claim for that a priori given form the character of a purely formal
schema, in itself contentless, in which every arbitrary content of experience would fit, but rather to
include certain particularities of the schema as well, in virtue of which only a content restricted by laws in
a certain way can enter into that form and become intuitable:)

Now it is just this epistemological interest of geometry that gives me the courage to speak of
geometrical things in a gathering whose members have penetrated only the smallest part further, in
mathematical studies, than required by the school-curriculum. And fortunately, the geometrical

1[Or "meaning": Ger., Bedeutung.]
2[The hybrid mythological nomenclature--Roman and Greek--is the author's. (Here and in the

following, numbered footnotes are notes of the translator; those marked by single or multiple asterisk's
are H.'s own.--A few of H.'s notes, referring to other essays in the collection, are omitted. Matter in
brackets is supplied by the translator.)]

")In his book "Uber die Grenzen der Philosophie", Mr. W. Tobias maintains that earlier statements of
mine to this same effect are a misconstruction of Kant's view. But Kant specifically cites the propositions
that the straight line is the shortest (Critique of Pure Reason, Introduction V, 2nd ed. p. 16); that space has
three dimensions (ibid. Part I, Sect. 1. §3, p. 41); that only one straight line is possible between two points
(ibid. Part II, Sect. I, of the Axioms of Intuition p. 204); as propositions "which express the conditions of
sensible intuition a priori". But whether these propositions are given originally in spatial intuition, or
whether the latter only gives the starting-point from which the understanding can develop such
propositions a priori--a question on which my critic lays weight--is of no concern here.



information ordinarily taught in the Gymnasium will suffice, as I believe, to make the propositions to be
discussed in the following at least intelligible to you. Q

I intend, namely, to report to you on a series of recent mutually connected mathematical works that
bear upon the geometrical axioms, their relations to experience, and the logical possibility of replacing
them by others.

Since the original works of the mathematicians upon these matters, designed in the first instance
only to furnish proofs for the experts in a field that demands a greater power of abstraction than almost
any other, are rather inaccessible to the non-mathematician, I want to try to make plain,3 for a non-
mathematician as well, what these works are about. I need hardly remark that my discussion makes no
claim to give a proof of the correctness of the new insights .. Whoever seeks such a proof must take the
trouble to study the original works.

He who has once passed through the gates of the first elementary propositions into geometry--that
is, the mathematical theory of space--finds before him on his further way that gap-free chain of
ar ments I have already spoken of, through which ever more manifold and complicated space-forms
receive their laws. But in those first elements a few propositions are set up, of which geometry herself
eclare rove them-that she must sim I count unit that eve one who understands

the sense of these ropositions will concede thei correctness These are the so-called axioms of geometry.
To these belongs first t e proposition that, if one calls the shortest line that can be drawn between two
points a straight line, there can be between two points only one such straight line, and not two different
ones. It is further an axiom that through any three points of space that do not lie in a straight line a plane
can be passed-that is, a surface in which every straight line that joins two of its points is contained
entirely. Another (much-discussed) axiom states that through a point lying outside a straight line there
can be passed only one single line parallel to that first one, and not two different such lines--(one calls two
lines parallel if they lie in one and the same plane and never intersect, no matter how far they may be
prolonged). In addition, the geometrical axioms express propositions that specify the number of
dimensions of space and of its surfaces, lines, and points; and that elucidate the concept of the continu'ity
of these structures--such propositions as that the boundary of a body is a surface, that of a surface a line,
that of a line a point, and that the point is indivisible; and such propositions as that by motion of a point a
line is described, by motion of a line either a line or a surface, by motion of a surface either a surface or a
body, but by the motion of a body always just again a body.

Where, then, do such propositions come from-unprovable, and yet undoubtedly correct, in the field
of a science where everything else has yielded to the mastery of argument? Are they an inheritance from
the god-like source of our reason, as the idealistic philosophers believe; or has the ingenuity of the
generations of mathematicians that have arisen so far just not been sufficient to find the proof? Naturally,
every new disciple of geometry who approaches this science with fresh ardor attempts to be the fortunate
one who surpasses all predecessors. And it is quite right that each should attempt this anew: for only
through the fruitlessness of his own attempts could one convince oneself, in the state of affairs heretofore,
of the impossibility of the proof. Unfortunately there have also been, recurrently from time to time,
individual brooders who have entangled themselves so long and so deeply in complicated trains of
argument that they could no longer discover the errors committed along the way, and have believed
themselves to have solved the problem. The proposition of parallels, in particular, has called forth a great
number of s~ous proofs.

The greatest difficulty in these investigations has always consisted in this, that all too easily results of
everyday life have mixed in, as a arent necessities of thought, with the 10 ical develo ment of loj' (.l.w .~
concepts--so long as the only method of geometry was the met 0 of intuition taught by Euclides. In 6f1uf~:
particular, it is extraordinarily difficult, proceeding in this way, to be clear at all points as to whether, in . . c:.\..,vJ....
the steps that one arranges one after another for the proof, one has not involuntarily and unwittingly ~i.....L ."-
brought to aid certain very general results of experience, which have already taught us in practice the -r\-<' tr ~
feasibility of certain prescribed parts of the procedure. The well-schooled geometer asks of every t i\l\.~1
auxiliary line that he draws for any proof whether it will always be possible to draw a line of the required L.:» ~L I .r y...
sort. It is well known that construction procedures play an essential role in the system of geometry. ::(I;{v-t: t"
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3[anschaulich: "intuitive" or "visualizable") r ~.:>+-I.,?
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Superficially regarded, these look like pr<\(:ticalapplications, inserted as exercises for pupils. But in truth
they establish the existence of certain structures. They either show that points, straight lines, circles, of the
sort the problem requires to be constructed, are possible under all conditions, or they determine the
possible exceptional cases. The pd\nt on which the investigations to be discussed in the following turn is
essentially of this sort. The foundation of all proofs in the Euclidean method is the proof of the congruence
of the relevant lines, angles, plane figures, bodies, etc. In order to make the congruence evident,4 one
imagines the geometrical structures involved to be brought together-of course without altering their
form and dimensions. That this is in fact possible and feasible we have all experienced from earliest
childhood. If, however, we want to build necessities of thought upon this assumption of free mobility of
fixed spatial structures with unaltered form towards every part of space, then we must raise the question
whether this assumption does not involve some logically undemonstrated presupposition. We shall
presently see that it does in fact involve such a presupposition--and, indeed, one very rich in
consequences. But if it does so, then every proof of congruence is based upon a fact taken only from
experience.

I adduce these considerations in the first instance only to make clear the kind of difficulties we come
upon in the complete analysis of all our presuppositions according to the method of intuition. We escape
these difficulties when we apply to the investigation of principles the analytic methods developed by
modem analytic geometry. The whole execution of the analysis (calculation) is a purely logical operation:
it can yield no relation between the magnitudes subject to calculation that is not already contained in the
equations that form the starting-point of the calculation. The recent investigations mentioned have
therefore ben conducted almost exclusively by means of the purely abstract methods of analytic
geometry.

Yet it is also possible, after the abstract method has taught us to know the points concerned, to give
in some degree an intuition' of these points; and we can do this best if we descend to a narrower domain
than our own spatial world. Let us conceive-there is no impossibility in it--beings, endowed with
understanding, of only two dimensions, living and moving about on the surface of some one of our solid
bodies. We suppose that they do not have the ability to perceive anything outside this surface, but that
they are able to have perceptions, similar to our own, within the extension of the surface in which they
move. If such beings should develop a geometry for themselves, they would of course ascribe to their
space only two dimensions. They would discover that a moving point describes a line and a moving line
a surface-which for them would be the most complete spatial structure they know. But they would be as
little able to form an image of a further spatial structure, that should arise when a surface was moved out
of its superficial space, as we can do of a structure that should arise from the motion of a body out of the
space we know. By the much misused expressions "to imagine" or "to be able to conceive how something
happens" I understand--and I do not see how one can understand an thin else b the . hout
sacn Icmg a sense of the expression-that one can rtra to himself the series of sensibl im ressions
t at one wou ave 1 suc a thing occurred in a particular case. If, then, no sensible impression
whatever is known that would relate to such a never-observed occurrence as a motion along a fourth
dimension would be for us-and, for those surface-beings, a motion along the (to us well known) third
dimension of space-then such an "imagining" is not possible; just as little as a man absolutely blind from
childhood will be able to "imagine" the colors, even if one could give him a conceptual description of
them.

Those surface-beings would, further, be able to draw shortest lines in their superficial space. These
would not necessarily be straight lines in our sense, but what in geometrical terminology we should call

. geodesic lines of the surface on which they live: lines such as a stretched thread describes that one lays
upon the surface, and that can slide along it unimpeded. I shall allow myself in the seguel to designate
such lines as the straightest lines of the designated surface (or of a given space), in order to emphasize
their analogy with the straight line in the plane. I hope by this expression to bring the concept nearer to
the intuition of my non-mathematical auditors, yet without giving rise to confusions.

If, then, beings of this sort lived on an infinite plane, they would set up exactly the same geometry as
is contained in our own planimetry. They would assert that between two points only one straight line is



possible, that through a third point outside that line only one line parallel to the first can be passed, that
moreover a straight line can be prolonged into the infinite without its ends ever meeting, and so forth.
Their space could be of infinite extent; but even if they should come upon limits to their motion and
perception, they would be able to imagine intuitively a continuation beyond these limits, and in this
image their space would appear to them of infinite extent-just as ours does to us, although we too cannot
bodily leaveour earth, and our sight reaches only so far as there are visible fixed stars.

But, now, intelligent beings of this sort could also live on the surface of a sphere. Their shortest or
straightest line between two points would then be an arc of the great circle that passes through those
points. Every great circle that goes through two given points is divided by them into two parts. If these
are unequal, the smaller is, to be sure, the unique shortest line on the sphere that subsists between these
two points. But the other, larger, arc of the same great circle is also a geodesic or straightest line-i.e., each
fairly small piece of it is a shortest line between its own two end-points. On account of this circumstance,
we cannot flatly identify the concept of the geodesic or straightest line with that of the shortest line. If,
now, the two given points are end-points of a single diameter of the sphere, then all the planes that pass
through this diameter cut out of the sphere semicircles, each of which is a shortest line between the two
end-points. In such a case there are thus infinitely many equal shortest lines between the two given
points. Consequently the axiom that only one shortest line exists between two points would not be valid
for the sphere-dwellers without a certain exception.

As for parallel lines, the inhabitants of the sphere would not know them at all. They would maintain
that every arbitrary pair of straightest lines, suitably prolonged, must finally intersect-not just in one but
in two points. The sum of the angles in a triangle would always exceed two right angles-and the more,
the greater the surface of the triangle. For just this reason, the concept of geometrical similarity of form
between larger and smaller figures would be lacking; for a larger triangle must necessarily have different
angles from a smaller one. Their space would have to be found, or at least imagined, to be unbounded
indeed, but of finite extent. .

It is clear that the beings on the sphere, with the same logical abilities as those on the plane. would
yet have to set up an altogether different system of geometrical axioms from those of the latter, or from
those we ourselves set up in our space of three dimensions. These examples' already show us that, I
accordin to the character of their dwellin - lace, different geometrical axioms would have to be set u v-'L~\ _ .t-lr-

by beings whose powers 0 un erstanding could entirely correspond with our own. , ?~U-s ,F .
But let us go further. Let us conceive of inteIIigent beings existing on the surface of an egg-shaped \ y.r..••~'---

body. Among any three points of such a surface one could draw shortest lines and so construct a triangle. ;:'1- J/\\-;r~\.

But if one attempted to construct congruent triangles at different places of this surface, it would become re. .oftt-:\
evident that when two triangles have equally long sides, their angles do not turn out equal. The angle- ~ ?~~ - +'-
sum of the triangle drawn at the sharper end of the egg would differ more from two right angles than if a 0 1. _~ ••.•., .

triangle with the same sides were drawn at the blunter end; from this it foBows that on such a surface not ••, ~ I.",
••...'\1 - V'""'

even so dimple a spatial structure as a triangle could be moved from one place to another without a N"J- <\,p"-' l(\.

change of its form. In the same way, it would be found that if circles of equal radius (the lengths of the r •....\\.) .5(,
radii always measured along shortest lines of the surface) were constructed at different places of such a
surface, the circumfereO'::eof the one at the blunt end would turn out greater than at the sharper end.

From this it further follows that it is a special geometrical property of a surface for figures lying in it
to admit of free displacement without alteration of any of their lines and angles, and that this will not be
the case on every sort of surface. The condition for a surface to possess this important property was
already demonstrated by GaufJ in his famous treatise on the curvature of surfaces.s It is that what he
caBed the "measure of curvature" (namely, the reciprocal of the product of both principal radii of
curvature) have the same magnitude everywhere along the whole extent of the surface.

GaufJ proved at the same time that this measure of curvature does not change when the surface is
bent without suffering an expa.nsion or contraction in any part. Thus, we can roll up a plane sheet of
paper into a cylinder or a cone (or horn), without any change in the measurements--taken along the
surface of the paper--of its figures. And in the same way we can roB the hemispherical closed half of a
pig's bladder into a spindle shape without changing the measurements in this surface. The geometry on a



plane will thus also be the same as in a cylindrical surface. We must only imagine, in the latter case, that
unboundedly many layers of this surface lie, like the layers of a rolled-up sheet of paper, one over the
other; and that on each entire circuit of the cylinder's circumference one comes to another layer, different
from that in which one was before.

These remarks are necessary in order to be able to give you an image of a sort of surface whose
geometry is on the whole similar to that of the plane, but for which the axiom of parallels does not hold.
This is a sort of curved surface which stands, in geometrical respects, as it were opposite to the sphere,
and which has therefore been called the pseudospherical surface by the distinguished Italian mathematician
E. Beltrami,") who has investigated its properties. It is a saddle-shaped surface, of which in our space only
bounded pieces or strips can be connectedly represented, but which one can yet conceive to be continued
in all directions into the infinite-since one can conceive each piece that lies on the boundary of the
constructed part of the surface to be shoved back into the midst of that part, and then to be continued.
The displaced piece of surface must, in this process, change its flexure, but not its dimensions-just as, on
a cone made by rolling a plane into a horn-shape, one can push a sheet of paper about. (Such a sheet
conforms everywhere to the cone-surface; but nearer the vertex of the cone it must be bent more; and it
cannot be moved over and past the vertex in such a way as to stay conformed to both the existing cone
and its ideal continuation beyond the vertex.)

Like the plane and the sphere, the pseudospherical surfaces are of constant curvature, so that every
piece of one of them can be applied with perfect fir to every other place on the same surface; thus all
figures constructed at one place in the surface can be transferred, in perfectly congruent form and with
perfect equality of all dimensions lying in the surface itself, to any other place. The measure of curvature
established by Gauj1, which is positive for the sphere and zero for the plane, would have for the
pseudospherical surfaces a constant negative value--because the two principal curvatures of a saddle-
shaped surface turn their concavities towards opposite sides.

A strip of a pseudo spherical surface can, for example, be developed as a surface of a ring. Conceive a
surface like a a, b b, Fig, 1, rotated about its axis of symmetry AB; the two arcs ab would describe such a
pseudospherical surface.6 The two edgeS of the surface, above at aa and below at bb, would turn outwards

. with ever increasing flexure, until the surface stands perpendicular to the axis--and there it would end,
with infinite curvature at the edge.' It would also be possible to develop one-half of a pseudospherical
surface in the form of a cup-shaped champagne glass with infinitely elongated, ever thinner-growing
stem, as in Fig. 2. But on one side it is necessarily always bounded by a sharply ending

") Saggio di Interpretazione delia Geometric{ Non-Euclidea. Napoli 1868.--Teoria fondamentale degli
Spazii di Curvatura costante. Annali di Matematica. Ser. II, Torno II, pp. 232-255.

6[It should be noted that this depends upon a quite particular specification of the curves ab--not
merely upon their being qualitatively "like" those in the figure.]

7[That is, an infinite curvature of the "profile" --the arcs ab; the Gaussian curvature of the surface
itself is, of course, constant and finite.]



border, across which continuous extension of the surface cannot be directly effected. Only by conceiving
each single piece of the border cut loose and displaced along the surface of the ring or cup-glass can one
bring it to places of different flexure, at which further continuation of this piece of surface is possible.

In this way the straightest lines of the pseudospherical surface can then also be infinitely prolonged.
They do not, like those of the sphere, run back into themselves: rather, as on the plane, there is always
only one single shortest line between two given points.s But the axiom of parallels does not hold. If a
shortest line on the surface is given, with a point outside it, then a whole angular pencil of straightest
lines can be passed through the point, all of them failing to intersect the first-named line (even when they
are prolonged into the infinite). These are all lines that lie between two straightest lines that bound the
pencil. One of these, infinitely prolonged, meets the first-named line in the infinite upon prolongation
towards one side; the other, upon prolongation towards the other side.

Such a geometry, which allows the axiom of parallels to fall, was moreover already fully worked out
in the year 1829by N. 1.Lobachevsky, Professor of Mathematics at Kazan, following the synthetic method
of Euclid:) It turned out that Lobachevsky's system can be carried through consistently and without
contradiction just as well as that of Euclides. This geometry is in complete agreement with that of the
pseudo spherical surfaces, as recently developed by Beltrami.

We see from this that in the geometry of two dimensions the presupposition that every figure can be
moved, without alteration of its dimensions along the surface, characterizes the surface concerned as a
plane or sphere or pseudospherical surface. The axiom that between any two points there is always only
one shortest line separates the plane and pseudospherical surface from the sphere; and the axiom of
parallels separates the plane from the pseudosphere. These three axioms are thus in point of fact

. necessary and sufficient to characterize the surface to which Euclidean planimetry refers as a plane, in
contrast to all other spatial structures of two dimensions.9

The difference between the geometry in the plane and that on the surface of a sphere has long been
clear and intuitive; but the sense of the axiom of parallels could only be understood after the concept of
surfaces that can be bent without stretching had been developed by Gaufl--and, with its help, the concept
of the possible infinite continuation of the pseudo spherical surfaces. We, as inhabitants of a space of three
dimensions and endowed with instruments of sensation to perceive all these dimensions, can to be sure
imagine intuitively to ourselves the various cases in which two-dimensional beings would have to
develop their spatial intuition-because to this end we have only to restrict our own intuitions to a

8[Thisstatement needs to be qualified-or interpreted: On the ring-surface, one easily sees that there
are three infinite classes of geodesics: those that run off both edges (the arcs ab are geodesics of this class);
those that run off the edge aa alone, in two directions; and those that run off the edge bb alone, in two
directions. Between the geodesics of the latter two classes, there lies a single exceptional case: the mid-
circle of the ring, a geodesic that does not run off the realized piece of the surface at all, and that does in
fact close back upon itself. Further, among the geodesics that run off only one edge, there are obviously
some that wind many times around the ring; and these always intersect geodesics of the first class in
many points, and likewise have many self-intersections (as well as multiple meetings with other
geodesics of the same type as themselves). As for the champagne glass (or trumpet?), it has no closed
geodesics; but the multiple meeting phenomenon occurs on it just as on the ring (so that it is untrue that
there is a unique geodesic through two given points). In order to make H.'s statement unqualfiedly true,
one has to conceive these surfaces as "multiply wrapped" --like the cylinder or cone. This is perhaps not
SO easy to visualize: the trouble is that, unlike cylinder or cone, they cannot--within the ambient three-
dimensional Euclidean space-be unwrapped!] .

•) Prinzipien der Geometrie. Kazan, 1829to 1830.
9[There is one small correction to be made to H.'s account here: He was unaware--the fact was first

pointed out by Felix Klein in 1871,more clearly in 1873-that the sphere is not the only closed surface
with a geometry of constant positive curvature: that on the contrary the projective plane is a closed surface
that admits such a geometry, and one that satisfies the principle that there is a unique geodesic line
through any two points. So it is not the case that this principle distinguishes the plane and pseudosphere:
on the contrary, the principle is compatible with geometries of all three types (positive, zero, or negative
Gaussian curvature).]



narrower domain. To think awa intuitions that one ossesses is easy; but to ima ine sensibl to oneself
intuitions of which one has never possessed an analogue is very ar . When, therefore, we pass to space
of three dimensions, we are hampered in our capacity of imagination by the construction of our organs
and the experiences obtained through them, which conform only to the space in which we live.

But, now, we have another mode for the scientific treatment of geometry. Namely, all the spatial
relations we "'know are measurable: that is, they can be reduced to the determination of magnitudes
(lengths of lines, angles, surfaces, volumes). For just this reason, the problems of geometry can also be
solved by seeking the methods of calculation that enable one to derive the unknown spatial magnitudes
from the known ones. This is done in analytic geometry, in which all the structures of space are just treated
as magnitudes and determined by other magnitudes. The straight line is defined as the shortest line
between two points, and this is a magnitude determination. The axiom of parallels says that if two
straight lines in the same plane do not intersect (are paralle}), the altemate angles, or the opposite angles,
with a third line cutting them, are equal in pairs. Or else one substitutes the proposition that the sum of
the angles in any triangle is equal to two right angles. These, too, are magnitude determinations.

One can thus also start from this aspect of the concept of space, according to which the position of
each point, in relation to some spatial structure (coordinate system) regarded as fixed, can be determined
through measurements of some collection of quantities; and one can then examine what particular
determinations belong to our space, as it presents itself in the measurements actually carried out--and
whether any among these distinguish our space from other magnitudes extended with similar
manifoldness.lO This way was first taken by B. Riemann in Gottingen:} lamentably too soon lost to science.
This way has the characteristic merit, that all operations occurring in it are pure calculating
determinations of magnitude--so that the danger that accustomed facts of intuition could intrude
themselves as necessities of thought falls away entirely.

The number of measurements necessary to give the position of a point is equal to the number of
dimensions of the space concemed. In a line, the distance from a fixed point sufficesll--thus one
magnitude; in a surface one must give the distances from two fixed points-in space, from three--in order
to fix the position of the point; or we use, as on the earth, geographical longitude, latitude, and altitude
above sea-level; or, as ordinarily in analytic geometry, the distances from three coordinate-planes.
Riemann calls a system of distinctions in which the particular can be determined by n parameters an n-
tuply extended manifold, or a manifold of n dimensions. Thus the space we know, in which we live, is a triply
extended manifold of points; a surface is a doubly extended, a line a simply extended, and time as well a
simply extended manifold. The system of colors also forms a triple manifold, in so far as each
color--according to Th. Young's and CI. Maxwell's investigations12--can be represented as the mixture of
three basic colors, of each of which a determinate quantum is to be used. With the color top one can
actually effect such mixings and measurements.

In the same way, we could regard the domain of the simple tones as a manifold of two dimensions, if
we take them as differing only in pitch and volume (and leave aside differences in tone-color). This
generalization of the concept is very well suited to throw into relief the way in which space is
distinguished from other manifolds of three dimensions. In space, as you all know from everyday
experience, we can compare the distance of two points lying one above the other with the horizontal
distance of two points in the ground-plane, because we can apply a measuring-rod now to the one, now

10[This somewhat obscure phrase is borrowed from Riemann (see text immediately following). By
"similar manifoldness"--or "similar multiplicity"-is meant here "the same number of dimensions"; thus
our space is, in this terminology, "extended threefold", or "triply extended" .

•) "Uber die Hypothesen, welche der Geometrie zu Grunde liegen", Habilitationsschrift [sic; but to
speak precisely, this was Riemann's Habilitationsvortrag--his habilitation lecture--not his
Habilitationsschrift; the latter dealt with the theory of trigonometric series] of 10. June 1854. Published in
Ed. XIII of the Abhandlungen der Koniglichen Gesellschaft zu Gottingen.

l1[That is, the distance given with a sign specifying the direction ("sense") of the displacement from
the fixed point; and correspondingly for the cases that follow.]

12[Credit H. here with a bit of modesty: the theory of color vision concerned is generally known as
the Young-Helmholtz, or the Young-Maxwell-Helmholtz, theory.]



to the other pair. But we cannot compare the distance of two tones of equal pitch and different intensity
with that of two tones of equal intensity and different pitch. Riemann showed, through considerations of
this sort, that the essential foundation of every geometry is the expression by which the distance of two
pc>intsin arbitrary direction from one another is ~and indeed, in the first instance, the distance of
two points infinitely little distant from one another. For this expression he took from analytic geometry
the most general form·) that is obtained when the nature of the measurements giving the place of each
point is left quite arbitrary. He then showed that the kind of free mobility with unvarying form that.
belongs to bodies in our space can only subsist if certain magnitudes obtained by calculation-)--which
magnitudes, referred to the relations on surfaces, reduce to the Gaupian measure of surface
curvature-have everywhere the same value~ For just this reason, Riemann calls these calculated
magnitudes, if at a particular place they have the same value for all directions, the measure of curvature
of the space concerned at this place. To prevent misunderstandings-), I want to emphasize here that this ..•Lr .:
so-called measure of curvature of space is a magnitude of calculation. found in a purely analytic way, and \,. . (.
that its introduction in no way rests upon an intrusion of relations . uld have sense onl in r•.(-~;"~L..-

sensible intuition. I e name IS ta en, on y as an abbreviation of a complicated relationship, from the onel~:; ~;~ ~L •

case in which the designated magnitude does have corresponding to it a sensible intuition., 'v<';!'h'o . ;
If, now, this measure of curvature of the space has everywhere the value zero, such a space ., .

corresponds everywhere to the axioms of Euclides. We can all it in this case a flat space, in contrast to other
analytically constructible spaces, which one could call curved (because their measure of curvature has a
value different from zero). Nonetheless, analytic geometry can be carried out for spaces of the latter sort
just as completely and self-eonsistently as the ordinary geometry of our actually existing flat space.

If the measure of curvature is positive, we obtain the spherical space, in which the straightest lines
return upon themselves and in which there are no parallels. Such a space would, like the surface of a
sphere, be unbounded but not infinitely great. A negative curvature, on the other hand, gives the
pseudospherical space, in which the straightest lines run out into the infinite, and in every flattest surface,
through each point, there can be passed a pencil of straightest lines that do not intersect another given
straightest line of that surface.

These last relationships Mr. Beltrami·- has made accessible to intuition, by showing how one can
map the points, lines, and surfaces, of a pseudospherical space of three dimensions, into the interior of a
sphere of the Euclidean space, in such a way that every straightest line of the pseudospherical space is
represented in the sphere by a straight line, every flattest surface of the former by a plane in the latter .

•) Namely, for the square of the distance of two infinitely close points, a homogeneous function of the
second degree in the differentials of their coordinates. [For full accuracy, amend: "a homogeneous
positive-definite function ... :']

-) They are given by an algebraic expression, composed from the coefficients of the single terms in
the expression for the square of the distance of two neighboring points, and from the differential
quotients of those coefficients.

-) As, e.g., such a misunderstanding occurs in the above-eited book of Mr. W.Tobias. p. 70, inter alia.
[It is perhaps worth mentioning that these misunderstandings continued for decades. In Hilbert's circle in
Gottingen about the turn of the century, Otto Blumenthal--Hilbert's first doctoral student, famous in that
circle for his comic verse--put the case in the following couplet:

Die Menschen fassen kaum es,
Das Kriimmungsma/3des Raumes.

Men's minds can scarceembrace
The curvature of space.]

--) Teoria fondamentale degli Spazii di Curvatura costante. Annali di Matematica. Ser. II, Tom. II,
Fasc. III, pp. 232-255.
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The surface of the sphere itself then corresponds to the infinitely distant points of the pseudospherical
space; the different parts of that space are, in the image in the sphere, the more diminished the nearer
they lie to the surface of the sphere-and more strongly diminished in the radial direction than in
directions perpendicular thereto. Straight lines in the sphere which intersect only outside its surface
correspond to straightest lines of the pseudospherical space that never intersect.

Thus itturris out that space, regarded as a domain of measurable magnitudes, by no means
corresponds to the most general concept of a manifold of three dimensions, but rather contains more
special determinations, which are stipulated by the condition of perfectly free mobility of solid bodies,
with unvarying form, towards all places and under all possible changes of orientation, and further by the
special value of the measure of curvature-which, for the actually~isting2Pace, is to be set equal to zero,
C?rat least does not differ appreciably from zero. This last stipulation is given in the axioms of straight
lInes and of parallels.

While Riemann entered upon this new domain from the most general basic questions of analytic
geometry, I myself arrive, partly through investigations concerning the spatial representation of the
system of colors (thus through comparison of one triply extended manifold with another), partly through
investigations concerning the origin of our visual estimation of measurements in the visual field, at
considerations similar to Riemann's. While the latter proceeds from the algebraic expression mentioned
above, which represents the distance of two infinitely close points in most general form" as his basic
assumption, and derives from it the propositions about the mobility of rigid spatial structures, ~
other hand have proceeded from the fact of observation that in our space the motion of rigid spatial
structures is ossible with the degree of freedom that we know; and I have derived from this fact the
necessit of that algebraic expression w IC zemann sits as an axiom. The assum tions that 1 had to
p ace at the basis of t e ca culation were the following.

fzrst, to make calculating treatment possible at all, it must be presupposed that the position of any
point A with respect to certain spatial structures regarded as invariable and fixed can be determined by
measurements of some collection of spatial magnitudes--whether they be lines, or angles between lines,
or angles between planes, etc. As is well known, one calls the parameters needed to determine the
position of the point A its coordinates. The number of coordinates needed in general for the complete
specification of the position of any point determines the number of dimensions of the space concerned. It
is further presupposed that in the motion of the point A the spatial magnitudes used as coordinates vary
continuously.

Second, the definition of a rigid body-or of a rigid system of points-is to be given, as is necessary in
order to be able to undertake comparison of spatial magnitudes through congruence. Since we may not
here presuppose any special methods of measuring spatial magnitudes, the definition of a rigid body can
only be given through the following distinctive mark: Between the coordinates of every pair of points
belonging to a rigid body there must hold an equation expressing a spatial relation between the two
points that is unchanged in every motion of the body (a relation that finally turns out to be their distance);
and this equation must be the same for all congruent point-pairs. But as to the meaning here of
"congruence", we call two point-pairs congruent if they can be brought successively into coincidence
with the same spatially fixed point-pairs.13

13[H.'s exposition of this postulate is rather cryptic, and a fuller explanation seems desirable: We
have to conceive, on the one hand, a "space" 5, having the structure of an n-dimensional differentiable
manifold (in the case of "physical space", n of course is 3). The points of 5, then, are "fixed points of
space". On the other hand, we conceive a (rigid) 'body" B as itself a set of points ("bodily points"). A
spatial position of the body B means an assignment to each bodily point P of B of a point in 5: the spatial
point "occupied" by P in that position of B, H. in effect postulates the following: (1) To each pair of
distinct points P, Q, of B, there corresponds a function, FPQ of pairs of points of 5, such tha t, for any given
points p, q, of 5, there is a position of B in which P occupies p and Q occupies q if and only if FPQ(p,q) = O.
If we think of p and q as given by their coordinates in a suitable coordinate system, this is an equation
among the 2n coordinates of these two points; it is the "equation between the coordinates of every pair of
points that is unchanged in every motion of the body" to which H. refers. (2) If P, Q, P', Q', are points of B
such that for some pair of points p, q, of 5 we have Fpdp,q) = 0 = FP'Q,(p,q)--i.e., if (P,Q) and (P',Q') can,



Despite its seemingly so indefinite formulation, this stipulation has very strong consequences,
because upon increasing the number of points we increase the number of equations much faster than the
number of coordinates of points governed by those equations. Five points--A, B, C, 0, E--give ten
different point-pairs:

AB, AC, AD, AE,
BC,BD,BE,

CD,CE,
DE,

therefore ten equations,14 which in three-dimensional space contain fifteen variable coordinates-six of
which, however, must remain freely disposable if the system of five points is to be freely mobile and
rotatable. Thus only nine coordinates can be determined by those ten equations as functions of those six
variable ones. With six points we get fifteen equations for twelve variable magnitudes, with seven points
twenty-one equations for fifteen magnitudes, etc. But, now, from n independent equations we can
determine n magnitudes occurring in them. If we have more than n equations, the supernumerary ones
must themselves be derivable from the first n of them. From this it follows that those equations that hold
between the coordinates of every point-pair of a rigid body must be of a special kind, so that, when (in
three-dimensional space) they are satisfied for nine of the point-pairs formed from any five points, the
equation tor the tenth pair follows identically from them. On this circumstance it rests, that the cited
assumption as definition of rigidity suffices to determine the type of the equations that hold between the
coordinates of two points connected rigidly with one another.

Third, it has proved that yet another special property of the motion of rigid bodies must be set as a
fact at the basis of the calculation--a property so familiar to us, that without this investigation it might
perhaps never have occurred to us to regard it as something that might not be so. If, namely, in our space
of three dimensions, we hold two points of a rigid body fixed, the body can then still just execute
rotations about their straight connecting-line as axis. If we turn the body once completely around, it
comes precisely into the position it occupied initially. Now, that rotation without reversal of direction
carries every rigid body recurrently back into its initial position has to be specifically stipulated. A
geometry would be possible in which this was not so. This is easiest to see for the geometry of the plane.15

Imagine that on every rotation of every plane figure its linear dimensions were to grow proportionally to
the angle of rotation; then after a full rotation of 360° the figure would no longer be congruent to its initial
state. However, every other figure that was congruent to it in the initial position would be able to be

successively, be brought to occupy one particular "spatially fixed point-pair" -then the functions F PQ and
F P'Q' are identical ("congruent point-pairs have the same equation"). In addition, H. assumes (3) the \ '1,
existence of a point P of B such that in any spatial position of B all the points in some spatial •
neighborhood of the point occupied by P are themselves occupied by bodily points (P is then an interior
point of B, and always occupies an interior point of any spatial position of B); and he assumes (4) the
postulate of free mobility--which we shall not attempt to formulate here with full precision (in point of
fact, H. himself failed in his attempt to do this--a defect that was pointed out, and repaired, by Sophus Lie
many years later [preliminary report, 1886; with full details, 1890)), but which roughly says: (a) that P can
be brought to occupy any spatial point; (b) that any '1ine" L through P in B can then be made "tangent" to
any spatial line through that spatial point; (c) that any "surface" F through L in B can then be made
"tangent" to any spatial surface through that spatial line; and so on, through structures of dimension n - 1
(i.e., less by one than the dimension-number of the manifold 5 itself); and that this series of specifications
determines the position of B uniquely. (To be more accurate, for the determination to be unique the
"elements" -line, surface, etc.--named in this series of specifications must be oriented elements: a line with a
given "sense" or direction along the line, a surface with a given sense of rotation, etc.)

14[Thispresupposes-in the notation of the preceding note--that we always have FpQ = Fp'Q"]

15[it is, in fact, true only for the geometry of the plane: as Klein conjectured, and Lie proved, the ~ f. .-"""~7.
additional assumption made by H. can be proved from his other assumptions when the dimension n is
greater than 2.]



made congruent to it in the second position as well, if the other figure also is turned through 360". A
consistent system of geometry would be possible under this assumption too-a system that does not fall
under the Riemannian fonn.

On the other hand, I have shown16 that the enumerated three assumptions are together sufficient to
ground the starting-point assumed by Riemann for his investigation-and, with it, all further results of his
work that bear upon the distinction of the various spaces according to their measure of curvature.

It could now be asked, further, whether the laws of motion and of its dependence on the moving
forces can also be transferred without contradiction to the spherical and pseudo spherical spaces. This
investigation has been carried out by Professor Lipschitz") in Bonn. It is indeed possible to carry over the
comprehensive fonnulation of all the laws of dynamics, the Hamiltonian principle, directly to spaces
whose measure of curvature is non-zero. Thus on this side as well the deviant systems of geometry fall
into no contradiction.

But now we shall have to ask where these special prescriptions come from, that characterize our
space as a flat space; since they have proved not to be contained in the general concept of an extended
magnitude of three dimensions, with free mobility of the bounded structures within it. Necessities of
thought-flowing from the concept of such a manifold and of its measurability, or from the most general
concept of a rigid structure and of its free mobility within the manifold--they are not.

We now want to examine the antithetical assumption about the origin of these prescriptions: namely,
to investigate the question whether they are of empirical origin: whether they are to be derived from facts
of experience-to be demonstrated, or to be tested and perhaps even refuted, by such facts. The last
eventuality would imply the following: that we should have to be able to imagine series of observable
facts of experience, through which another value of the measure of curvature would be indicated than
that which the flat space of Euclides possesses. But if spaces of other sort are in this sense imaginable, this
very fact would refute the view that the axioms of geometry are necessary consequences of an a priori
given transcendental fonn of our intuition in the Kantian sense.

The difference of the Euclidean, spherical, and pseudospherical geometry rests (as remarked above)
on the value of a certain constant, which Riemann calls the measure of curvature of the space concerned,
and whose value must be equal to zero if the axioms of Euclides hold. If it is not equal to zero, then
triangles of large surface-content would have to have a different angle-sum from that of small ones-a
larger sum in spherical space, a smaller sum in pseudospherical space. Further, geometrical similarity of
large and small bodies or figures is possible only in Euclidean space. All systems of practically executed
geometrical measurements by which the three angles of large rectilinear triangles are separately
measured, and especially all systems of astronomical measurements which yield for the parallaxes of the
immeasurably distant fixed stars the value zero (in pseudospherical space the infinitely distant points
would have to have still positive parallaxes), empirically confirm the axiom of parallels, and show that in
our space and by the use of our methods of measurement the measure of curvature of space appears as
indistinguishable from zero. Of course one must, with Riemann, raise the question whether this would not
perhaps be otherwise if instead of our limited base-lines--the biggest of which is the major axis of the
earth's orbit--we could use bigger ones.

But we must not forget, in this, that all geometrical measurements finally rest upon the principle of
congruence. We measure distances of points by moving compasses or measuring-rod or measuring-chain

16["Uber die Thatsachen, die der Geometrie zum Grunde liegen". Nachrichten von der K6niglichen
Gesellschaft der Wissenschaften zu G6ttingen, 1868. Reprinted in Wissenschaftliche Abhandlungen von
Hermann Helmholtz, Bd. II, pp. 618-639.-H.'s analysis leaves some logical gaps; his point of view was
taken up later, and his theory perfected (d. n. 13 above), in a very famous work by Sophus Lie: "Ober die
Grundlagen der Geometrie". Verhandlungen der Sachsischen Gesellschaft der Wissenschaften, Bd. 42
(890), pp. 284-321, 355-418; also S. Lie and F. Engel, Theorie der Transformationsgruppen, Bd. 3 (893),
pp. 393-543. (This work formed a principal part of a group of investigations that won for Lie the first
award of the Lobachevsky Prize.)]

" ) Untersuchungen uber die ganzen homogenen Functionen von n Differentialen. Borchardt's Journal
fur Mathematik, Bd. LXX, p. 71 and Ed. LXII, p. 1.--Untersuchung cines Problem der Variationsrechnung,
ibid., Ed. LXXIV.



to them. We measure angles by bringing divided circle or theodolite to the vertex of the angle. Besides
this, we determine straight lines through the paths of light-rays, which according to our experience are
rectilinear; but that light is propagated along shortest lines (so long as it remains within a single refractive
medium) is a proposition that would also admit of transfer to spaces of different measure of curvature.
l]ms all.9,,\lr eometrical measurements rest u n the resu sition that the measuring instruments we
treat-as"ri 'dreal are bodies of invariable form-or at least that the su er no ot er sorts of change..QL
form than those that we now, as e.g. the small deformations resulting from c ange of temperature, or
from the difference in the action of gravity in different places.

When we measure, we only effect with the best and most reliable aids known to us the same thing
that we ordinarily ascertain through observation by visual estimation, judgment by touch, or pacing off.
In these cases, our own body with its organs is the measuring instrument that we carry about in space.
Our compasses are now the hand, now the limbs; or the eye, turning towards all directions, is our
theodolite, with which we measure arc-lengths or surface-angles an the visual field.

Every comparison of magnitudes of spatial relations, whether by estimation or by meas~,
thus proceeds from a presupposition about the physical behavior of certain natural bodies, whetb~
own body or the measuring instruments employed; a presupposition which, moreover, may possess t~
highest degree of probability, and may stand in the best a eement with all other h sica I relationshi s,
known to us, ut w IC 10 any case reaches be ond the domain of ure s atial intuition.

Indeed, one can deserl a specific behavior of the bodies that appear to us as rigid, upon which
behavior the measurements in Euclidean space would turn out as if they had been performed in
pseudospherical or spherical space. In order to see this, I first remind you that if all the linear dimensions
of the bodies surrounding us, together with those of our own body, were changed in the same proportion
(e.g. all diminished to half, or all increased to double), we should be entirely unable to notice such a
change through our means of spatial intuition. But the same would also be the case if the expansion or
contraction were different in different spatial directions-provided that our own body changed in the
same way, and provided further that a turning body assumed, at each instant, without suffering or
exerting mechanical resistance, that degree of expansion of its various dimensions which corresponds to
its instantaneous position. Think of the image of the world in a convex mirror. The familiar silvered
globes often set up in gardens show the essential phenomena of such an image, though distorted by some
optical anomalies. A well made convex mirror of not too large aperture shows the mirror-image of each
object before it as bodily in appearance and with a determinate orientation and at a determinate distance
behind the mirror's surface. But the image of the far horizon and of the sun in the sky fall at a limited
distance behind the mirror-a distance equal to the mirror's focal length. Between these images and the
surface of the mirror are contained the images of all the other objects before the mirror--but in such a way
that the images are the more diminished and the more flattened, the farther their objects lie from the
mirror. The flattening-that is, the diminution of the dimension of depth--is relatively more considerable
than the diminution of the surface-dimensions. Nevertheless, every straight line of the outside world is
represented by a straight line in the image, every plane by a plane. The image of a man who measures off
with a measuring rod a straight line receding from the mirror would shrink ever more, the more the man
himself recedes; but the man in the image, with his likewise shrinking measuring-rod, would count
exactly the same number of centimeters as the man in the real world; in general, all geometrical
measurements of lines or angles carried out with the regularly varying mirror-images of the real
instruments would yield exactly the same results as in the outside world; all congruent figures would
conform just as well, in the images, upon actual superposition of the bodies concerned, as they would in
the outside world; all lines of sight of the outside world would be replaced by straight lines of sight in the
mirror. In short, I do not see how the men in the mirror should make out that their bodies are not rigid ~~ .1\ ..j.J.
bodies ~nd their experiences not good instances of the correctness of the axioms of Euclides. But if they ,\"<.,,,..., :-"Jil

!:>L- "') rlJl '",
could look out upon our world as we look in upon theirs, without being able to step over the boundary, cvr\ I ~J ...-'I
they would have to declare our world to be the image made by a convex mirror, and to speak of us just as \"".-...JL \,,~
we speak of them; and if men of both worlds could converse with one another, then so far as I see neither ru-i' ~;s
would be able to convince the other that his are the true relationships and the other's the distorted ones; (~\--; <..1 _'"
.!!:'deed, I cannot admit that such a question would have a sense at all, so long as we do not introduce any "'\-kr...,;o,<-)
mechanical considerations. ~ +. tAd. .,+.k
~ 1

, AI'<> .\-kr r:v ( ')
s,l10.. {k r.sILd-~J

~'-< v>;\l ~~ L "J'c
rJ_-t--'VL -\<> oJ")

39



Now Mr. Beltrami's mapping of pseudospherical space into a solid sphere of Euclidean space is of
entirely similar sort; except that the background surface is not, as in the convex mirror, a plane, but the
surface of a sphere, and the proportion in which images contract as they approach that surface has a
different mathematical expression. Thus if one supposes that within the sphere--for whose interior the
axioms of Euclides hold-bodies move in such a way that as they recede from the center they always
contract (anatogously to the images in the convex mirror), and contract in such fashion that their images
(by Beltrami's) construction) in pseudo spherical space retain unaltered dimensions, then observers whose
own bodies were also regularly subject to this alteration would obtain from the geometrical
measurements they could effect just the same results as if they themselves lived in pseudo spherical space.

From this we can even proceed a step further: we can deduce how the objects of a pseudospherical
world would appear to an observer whose visual estimation and spatial experiences have been developed
like ours in flat space, if such an observer could enter such a world. The observer would continue to
regard the lines of light-rays or the lines of sight of his eye as straight lines, just as they are in flat space
and as they are in fact in the spherical image of pseudospherical space. The visual image of the objects in
pseudospherical space would therefore make the same impression upon him as if he sere situated at the
center of the Beltrami spherical model. He would believe himself to see the most distant objects of this
space ranged about him at a finite distance·)-let us say for example a hundred feet away. But if he went
towards these distant objects, they would expand before him--and more so in depth than in surface;
whereas behind him they would contract. He would perceive that his judgment by visual estimation had
been false. If he saw two straight lines which by his estimate were parallel up to this distance of 100 feet
(where the world seems to him to end), then, going along those lines, he would perceive that, upon this
expansion of the objects he approaches, the lines draw apart from one another, and the more so the
farther he advances along them; behind him, on the contrary, their distance would seem to dwindle, so
that as he goes forward they would seem to him ever more divergent and ever farther from one another.
But two straight lines that seem, from the initial standpoint, to converge towards a single point of the
background one hundred feet away, would always seem so, no matter how far he went; and he would
never reach their point of intersection.

Now, we can obtain quite similar images of our actual world, if we take before our eyes a large
[concave] 17 lens of suitable negative focal length--or, alternatively, two [concave] spectacle-
glasses (which must be cut somewhat prismatically, as if they were pieces of a connected larger lens).
Such glasses show us distant objects brought closer (just as does the above-mentioned convex
mirror)--the farthest objects being brought up to the distance of the focus of the lens. lf we move about
with such a lens before our eyes, expansions occur of the objects we approach, quite similar to those I
have described for the pseudospherical space.18 If now someone takes such a lens before his eyes--and not
of hundred foot focal length, but a much stronger one, of focal length only sixty inches-he may notice at

[

first that he sees objects as if brought nearer. But after a little moving back and forth the illusion vanishes,
and he judges distances correctly despite the false images. We have every reason to suppose that it would
very soon fare the same with us in pseudospherical space as it does in fact, within a few hours, with a
new wearer of spectacles: in short, the pseudospherical space would seem to us comparatively not very

.) The reciprocal negative square of this distance would be the measure of curvature of the
pseudospherical space.

17[InH.'s text one finds "convex"; but a lens of negative focal length-one that produces the effects he
describes--is concave. The slip is puzzling; perhaps it was then standard usage to refer to a concave lens as
a "convex one of negative focal length" (as one might say "minus five feet to the right", and mean five feet
to the left.]

. 18[Itshould be noted that H. is speaking here of a qualitative analogy. The quantitative relationships
for what would be seen through such concave eyeglasses are not those of the Beltrami model, and do not
lead to pseudospherical geometry: exactly as with the convex mirror--and for the very same reason--the
geometry that results remains Euclidean. (A genuine--although "ideal" rather than physically
constructible--simulation of pseudo spherical space is described by H. Poincare, Science and Hypothesis,
ch. iv.]



strange at all-only in the beginning should we find ourselves subject to illusions in the estimate of size
and distance of far-away objectsby means of our visual impression of them.

The contrary illusions would result in a spherical space of three dimensions, should we enter it with
the visual judgment developed in Euclidean space. We should regard the more distant objects as farther
away and larger than they are; we should find, on going towards them, that we reach them quicker than
we expected "tromtheir visual image. But we should also see objects in front of us that we can fixate only
by diverging our lines of sight: this would be the case for all objects farther from us than a quadrant of a
great circle. This sort of aspect would hardly seem very extraordinary to us; for we could produce the
same effect for terrestrial objects too, by taking before one eye a weakly prismatic glass whose thicker side
is turned towards the nose. In this case, too, we have to make our eyes diverge in order to fixate distant
objects, This arouses a certain feeling of unwonted strain in the eyes, but does not noticeably alter the
aspect of the objects viewed in this way. The most singular part of the aspect of the spherical world,
however, would be constituted by the back of our own head: all our lines of sight, so far as they can pass
freely between other objects, would come together again there; and so the back of our head would
entirely fill the outermost background of our whole perspectival picture.

A further remark by way of qualification is required, to be sure: just as a small flat elastic disk--for
instance, a small flat slab of rubber-ean be fitted to the mildly arched surface of a sphere only with some
relative contraction of its periphery and expansion of its central part, so our body, having grown in
Euclidean flat space, could not pass over into a curved space without undergoing similar expansions and
compressions of its parts; and the connection of the parts could be preserved therefore only in so far as
their elasticity allowed a yielding without tearing or breaking. The type of expansion would have to be
just the same as if we conceived a small body to be at the center of Beltrami's sphere, and we then passed
from this to its pseudosphencal or spherical image.19In order for such a passage to appear as possible, it
must always be supposed that the body is sufficiently elastic, and small enough in comparison with the
real or imaginary radius of curvature of the curved space into which it is to pass.

This will be enough 'to show how, upon the way adopted, one can derive from the known laws of
our sensible perceptions the series of sensible impressions that a spherical or pseudo spherical world
would give us, if such a world existed. Here again we nowhere come upon an illogicality or
impossibility-just as little as in the calculating treatment of the measure-relationships. We can depict for
ourselves the appearance, in all directions, of a pseudospherical world, just as well as we can develop the
concept of such a world. We therefore cannot admit that the axioms of geometry are founded in the given
form of our capacity of intuition, or are in any way connected with such a form.

It is different with the three dimensions of space. Since all our means of sensible intuition extend
only to a world of three dimenSIOns,and the fourEhdimenSion would be not merely an alteration of what
is present but something com letel new, we therefore find ourselves sim I b virtue of our bodil
organization in a condition of the absolute im SSII I of imagining to ourselves a mode of intuition of a
ourth dimension.

r should like now, in conclusion, to stress yet again that the geometrical axioms are not propositions
that belong only to the pure theory of space. They speak, as r have already remarked, of magnitudes. One
can only talk of magnitudes when one knows and has in mind some procedure by which these
magnitudes can be compared, subdivided, and measured. All spatial measurements, and therefore in
general all concepts of magnitude applied to space, thus presuppose the possibility of the motion of

19[Theexpression is a little careless: Beltrami's construction does not give us an image of spherical
space. As to the "passage to the pseudospherical image", what is meant more fully is this: We begin with
a body at the center of Beltrami's sphere, and we think of the distances among the parts of that body as
those given by the Euclidean geometry of the interior of the sphere; then we replace those Euclidean
distances by the pseudo spherical ones--those that hold in the pseudospherical space of which the interior
of the sphere is a model; or, in other words, those that would be measured within the sphere by the
appropriately expanding and contracting measuring-rods. On this change of the distances between its
parts, the outer parts of the body will expand, and proportionally more in the radial than the transverse
directions. This is to be thought of, not as a mere redefinition of "distance", but as an-actual change, that
affects the elastic stresses within the body <and,if too drastic, could result, as H. has said, in breakage),)



spatial structures whose shape and size can be regarded as invariable despite their motion. Such spatial
forms one does, to be sure, usually designate in geometry as merely geometrical bodies ..surfaces, angles,
lines-because one abstracts from all other differences of physical and chemical sort that natural bodies
show; but one stilI preserves one physical property of these forms: their rigidity. For the rigidity of bodies
and spatial structures, however, we have no other criterion than that they manifest upon mutual
superposition--at all times and all places and after any rotations--always the same congruences. But
whether the superposed bodies have not both altered in the same way is something which-in a purely
geometrical way-we cannot at all decide.

If we found it useful to some end or other, we could in an altogether cogent way consider the space
in which we live as the apparent space behind a convex mirror, with foreshortened and contracted
background; or we could consider a bounded sphere of our space, beyond whose boundaries we perceive
nothing more, as the infinite pseudospherical space. We should then only have to ascribe to the bodies
that appear to us as rigid-and likewise at the same time to our own body-the corresponding expansions
and diminutions. (We should, to be sure, also have to revise completely the system of our mechanical
principles: for already the proposition that any moving point upon which no forces acts continues to
move in a straight line with unchanged velocity fails to hold for the image of the world in a convex
mirror. The path, indeed, would stilI be straight; but the velocity would vary with the place.)20

11!.-usthe geometrical axioms do not speak at all about the relationships of space alone; rather they
speak at the same time about the mechanical behavior of our most ri id bodies in their motions. One
could (it must granted) take the concept of a rigid geometric spatial structure itself as a transcendental
concept, which is formed independently of e~perience and to which experience does not have to
correspond, 21 as our natural bodies actually do not correspond altogether perfectly and without
variation even to those concepts that we have abstracted from them by the way of induction. With the
addition of such a concept of rigidity, conceived merely as ideal, as strict Kantian could then regard the
geometrical axioms as propositions given a priori through transcendental intuition--propositions that
could neither be confirmed nor refuted by any experience, because only with their help would one be in a
position to decide whether some particular bodies are to be regarded as rigid. But then we should have to
assert that under this conception the geometrical axioms would not be synthetic propositions in Kant's
sense at all. For they would then only say something that follows analytically from the concept of the
rigid geometrical structure necessary for measurement--since only such structures as satisfy those axioms
could be admitted to be rigid.

But if we add to the geometrical axioms propositions that relate to the mechanical properties of
natural bodies-if only just the proposition of inertia, or the proposition that the mechanical and physical
properties of bodies under otherwise constant influences cannot depend upon the place in which they
happen to be-then such a system of propositions receives a real content, which can be confirmed or
refuted by experience; but for just this reason they can then be learned from experience.

For the rest, it is of course not my intention to assert that only through meticulously executed
systems of precise geometrical measurements has mankind achieved intuitions of space that correspond
to the axioms of Euclides. It must rather have been that a series of everyday experiences--in particular, the
intuition of the geometrical similarity of larger and smaller bodies, which is possible only in flat
space--led to the rejection of any geometrical intuition that contradicted this fact. For this, recognition of
the conceptual connection between the observed facts of geometrical similarity and the axioms was not
needed, but only an intuitive knowledge of the typical conditions of spatial relationships, achieved

2°(This last statement requires some care in its interpretation, if H. is not to be taken to assert
something false. The reader should consider (reflect upon?) a game of baseball, or billiards, and its image
in the convex mirror: which of these--and how considered--would require a revision of mechanical
principles?]

21[Note that H. here uses the word "transcendental" in a way that diverges seriously from the sense
tin which that word is used by Kant: for the latter, a transcendental concept is one to which, a priori, any
possible experience is subject; a transcendental principle is one that holds for all experience, either
because it results from the very form of our sensible intuition, or because it is a conceptual condition that
the sensuous flow must conform to if it is to rank as objective experience.]



through numerous and exact observations of such relationships: such an intuition as the artist has of the
objects to be portrayed, by means of which he decides with sureness and finesses whether a ventured
combination corresponds to the nature of the object to be portrayed, or does not. This, to be sure, we have
no other name for In our language than "inruition"; 6ut the knowledge is an empirical knowledge, gained
through the accumulation and reinforcement of homogeneous recurrent impressions in our memory-not
a transcendental (orm of intuition given prior to all experience. That such empirically won intuitions of a
typicallaw(ul behavior or state of affairs, not yet worked through to the clarity of a distinctly expressed
concept, have often enough imposed upon the metaphysicians as propositions given a priori, is
something there is no need to argue further here.




