Kant, Riemann and Reichenbach on Space and Geometry

William L. Harper, Western Ontario

Classic examples of ostensive geometrical constructions are used to clarify Kant's account
of how they provide knowledge of claims about rigid bodies we can observe and manipu-
fate. It is arpued that on Kant's account claims warranted by ostensive constructions must
be limited to scales and tolerances corresponding to our perceptual competencies. This
fimitation opens the way to view Riemann’s work as contributing valuable conceptual re-
sources for extending geometrical knowledge beyond the bounds of obscrvation. It is ar-
gued that neither Reichenbach's descriptions of non-Euclidean visualizalion nor his argu-
ments for conventionalism about gcometry undercut this view of Kant's account of gco-

metrical knowledge.

I. Kant on Ostensive Constructions and Space
1. Plato’s stave boy passage in the Meno

Readers, of the Meno are confronted with Socrates’ elicitation from the slave
boy of a constructive proof that a square with twice the area of a given one will
have sides of length equal to that of the diagonal of the original. Socrates
encourages the slave boy to add three more squares to the original to generate a
square of 4 times the area of the original. Then he makes the key suggestion that

they consider the diagonals.
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The slave boy is made to recognise that the smaller square formed by the
diagonals of these 4 has an area equal to half of the total.
Socrates: Does not cach of these lines cut cach of the spaces, four spaces, in hal 7 s that
right? {Rouse, 49)
The slave boy is, thereby, brought to understand that the square made from the

diagonal has twice the area of the original.
The demonstration is very convincing, so much so that Plato used it to argue

that the slave boy (and all the rest of us) must have already known geometry

—Proceedings of the Eighth International Kant Congress, Memphis 1995, vol. 1.
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before our experiences in this life. The warrant provided, without any explicit
appeal to previous learning experiences, seems better than what would count as
inductive support from a whole series of successful trials construed as, merely,
empirical experiments.

Plato is able to appeal to the incommensurability of the diagonal with the
side of a square to make this construction essential, in a way that it would not
have been if there had been a rational number to multiply the length of the
original side to double the area. According to Torretti (1984, 10), the discovery
of incommensurables brought about the end of the Pythagorean program of
reducing elements of things to elements of numbers. Eudoxus, who was
associated with Plato’s academy, invented a theory of proportions that would
allow such an irrational quantity to be approximated by constructing a series of
ratios of rational numbers. (see Euclid bk. V, Heath Vol.2, 112-186) Plato’s use
of the diagonal, thus, allowed him to associate his discussion with the very latest
and most impressive developments in greek mathematics.

There is an interesting analogy between the absence of numbers that might
have made the appeal to ostensive construction unnecessary, had they been
available, and the absence of predicate logic, which, Friedman (19835, reprinted
in Posy 1992 and Friedman 1992) has argued, made appeal to oslensive
constructions in geometry essential in Kant’s day. Had irrational numbers closed
under root operations been available, algebra could have been employed to give
the answer ‘the square root of 8’ as the length of the side required to double the
area of a square with sides of length 2 units. Such a proof might have been more
difficult to plausibly elicit {rom an untutored slave boy. More importantly,
whatever sense in which it would make appeal to the ostensive proof unncces-
sary must be compatible with the fact that getting agreement with the ostensive
geometrical constructions is part of what made the introduction of the new
numbers and operations count as adequate.

2. Euclid’s proof of the angle sum theorem

This is one Kant’s own examples. Here is some of his discussion from the
chapter of the Critique of Pure Reason he calls “The Discipline of Pure Reason”
(A 716-717, B 744-745)":

Supposc a philosopher be given the concept of a triangle and he be left to find out, in his
own way, what relation the sum of ils angles bears to a right angle. He has nothing but the
concept of a figure enclosed by three straight lincs, and possessing three angles. However
long he meditates on this concept, he will never produce anything new. Ile can analyze
and clarify the concept of a straight line or of an angle or of the aumber three, but he can
nevers arrive at any property not already containcd in these concepls. Now let the
geomelrician take up these questions. He at once begins by constructing a triangle. Since
he knows that the sum of two right angles is exactly equal to the sum of zll the adjacent
angles, which can be constructed from a single point on a straight line, he prolongs one
side of his triangle and obtains two adjacent angles, which together are equal to two right
angles. He then divides the extemnal angle by drawing a line parallc] to the opposite side of

——— —

The procedure Kant attributes to the geometrician
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rves that he has thus obtained an external adjacent angle whicﬁ is
through a chain of inferences guided
d universally valid solution of the

the triangle, and obse! > ;
cqual to an internal angle—and so on. In this fas.hlon,
throughout by intuition, he arrives at a fully evident an

problem.
Here is pr;)position 32 from Euclid’s elements (Heath, 316):

In any triangle, if onc of the sides be produced, the exterior ang}c is cqual to the two
interior and opposite angles, and the three interior angles of the triangle are cqual to two

right angles.
is that of Euclid’s proof.

and let one side of it BC be produced to D;
CD is equal to the two interior and opposite a.nglt.:s CAB,
of the triangle ABC, BCA, CAB are equal to two right an-

Let ABC be a riangle,

 say that the exterior angle 4
ABC, and the three interior angles
gles.
For let CE be drawn through the point C parallel to A
the straight line AB. [1.31]

Then, since AB is parallel to CE,
and AC has fallen upon them,
the altemate angles BAC, ACE are
equal to one another. [4,29]

Again, since AB is paralle! to £ L 5

CE,
and the straight linc 8D has fallen upon them,
the exterior angle ECD is equal 10 the interior and opposite angle 4 BC. {1.29]
But the angle ACE was proved cqual to the angle BAC,
Therefore the whole angle ACD is equal to the two interior an

ABC.

1.ct the angle ACB be added 10 cach; .

Thesefore the angles ACD, ACB arc cqual to the three angles ABC, BCA, CAB.
But the angles ACD, ACB are equal to two right angles; [1.13}

thercfore the angles ABC, BCA, CAB are also equal to two right angles.

Therefore etc.

d opposite angles BAC,

Q. E. D. (ilcath, 316-317)

Euclid begins by extending side BC to D to form straight line BCD.? Next,

line CE is drawn through point C parallel to the straight line AB. T_his construc;
tion is provided for by proposition l.31, to which Euclid explicitly appeals.

Euclid then appeals to proposition 1.29 ~ to argue that angle BAC equals angle
ACE and that angle CBA equals angle DCE. Given these equalities, the exterior
angle ACD equals the sum of the opposite interior angles CBA and BAC. Adding
interior angle BCA to the exterior angle ACD is, thus, equal to the sum of }he
three interior angles BCA, CBA, BAC. But the angie BCD formed by addu!g
BCA to the exterior angle ACD is equal to two right angles. (Here Euclid
appeals 1o proposition I. 13).” Therefore, the sum of the three interior angles

BCA, CBA, BAC is also equal to two right angles.



426 WILLIAM L. HARPER

3. Philip Kitcher’s objection.

Philip Kitcher (1975, reprinted in Posy 1992) suggests that the appeal to the
constructed diagram, in Kant’s discussion of Euclid’s proof, introduces a
problem of distinguishing those features that are to count as propetties of all
triangles from accidental features of the particular constructed triangle. His
specific example is a proof of the side sum property.

Supposc that | construct a scalene triangle. From my figure I can generalize that all
t{iangles have the side-sum property (the property that the sum of the lengths of any two
sides is greater than the length of the third); but I must not infer that all triangles are
scalene. Why is the one inference legitimate and not the other? (1992, 123)

Kitcher begins his discussion of Kant’s answer by considering the following
passage, which immediately precedes the paragraph (quoted above) in which
Kant introduces Euclid’s proof.
———llmll}emaliss can achieve nothing by concepts alone but hastens at once lo inluition, in
wh!ch it considers the concept in concrelo, though not empirically, but only in an intuition
which it pre.scnts a priori that is which it has constructed,and in which whatever follows
from the universal conditions of the construction must be universally valid of the object of
the concept thus constructed. (A 715-716, B 743-744)

He points out that this passage is illuminated by Kant’s discussion of schemata:

it is schemata, not images of objects, which undertic our pure sensible concepts. No image
could ever be adequate to the concept of a triangle in general. (A 140-141, B 180)

According to Kilcher, the schema is the rule for constructing triangles and
Kant’s solution to the problem is to generalize only those features of the image
on which the rule has pronounced.
Kitcher does not find this answer adequate. He suggests that it would make
the appeal to the particular construction unnecessary.
"l'hc‘ltoublc with this reply is that it scems to make the exhibition of a particular triangle in
intuition unnecessary. For if all we are allowed to do is to draw out features of triangles
prescribed by the schema of the concept “triangle,” then we can do this by conceptual
analysis alone. (124)
llg goes on (124) to suggest that the way for Kant to answer this further
objection is to consider an analogy to lcarning the geometry of a surface by
exploring properties of figures drawn on it. Those properties not analytically
cc?ntalned in the concept “triangle”, but which nevertheless are features of all
triangles on the surface he calls § properties. (124-125)
Like the answer to the previous problem, he takes this answer to raise prob-
lems of its own.
The upshot of this is thal, to recognize something as an S-property we already have to
know what the properties of space are. Without knowing that we were not confronting the

'Rcicfrtcnb'achian space we could not take the angle-sum property 10 be an S-property. The
intuition is supposed, however, to show us that we are confronting Euclidean space. But
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we cannol draw this conclusion until we have distinguished the S-properties. Clearly the

account is turning in circles. (125-126)
The Reichenbachian space Kitcher refers to is a plane with a protruding
hemisphere. (Reichenbach 1958, 11) A triangle on the hemisphere would not
have angles that summed to 180 degrees.

4. What can be said to respond to Kitcher?

Let us begin with his initial objection. How are we 10 avoid generalizing
accidental features of the particular triangle we construct? Kitcher interprets
Kant's account of schemata as an attempt to provide an answer to the problem
of how to avoid generalizing such indifferent features as the particular magni-
tudes of the angles. | interpret Kant’s remark in the schematism passage as an
appeal to Euclid’s practice to help clarify schemata by pointing out how it is
schemata and not mere images that are appealed to in geometrical constructions.

Euclid’s proof of the angle sum theorem carefully avoids appeal to any fea-
tures of the constructed triangle that are not generalizable to the construction of
any plane triangle. According to Euclid’s postulates the further constructions,
extending a side beyond a given angle followed by constructing 2 straight line
from the base of that angle parallel to the opposite side, are ones that can be
carried out on any angle and side of any constructed plane triangle. The proof is
carefully formulated to appeal only to those features unavoidably generated by
any such constructions. For Euclid, this is what makes the angle sum theorem
hold for any plane triangle. lis proof demonstrates how to produce, for any
constructed plane triangle, further constructions that generale the compelling
recognition that the constructed exterior angles are equal to the opposite interior
angles and together with the remaining angle make up two right angles.

Kant's discussion of pure intuition in section | of “The Discipline of Pure
Reason” appeals to just this aspect of Euclid’s proofs.

Thus | construct a triangle by represenling the object which corresponds to this concept

cither by imagination alone, in pure intuition, or in accordance therewith also on paper, in

empirical intuition—in both cases completely a priori, without having borrowed the

pattern from any experience. The single figure which we draw is empirical, and yet il

serves 10 cxpress the concept, withoul impairing its universality. For in this empirical

intuition we consider only the act whereby we construct the concept, and abstract from its
many determinations (for instance,the magnitude of the sides and of the angles), which arc

quite indiffercnt, as not altering the concept ‘triangle’. (A 713-7 14, B 741-742)

As | see it, Kant is not attempting to provide additional warrant for Euclid’s
proofs. Kant assumcs that Euclid's proofs are quite compelling. Hlis account of
ostensive constructions is an appeal to details of Euclid’s proof to help explain
how such proofs provide the warrant that he assumes they obviously do provide.

Kant’s discussion of schemata contributes 1o his explanation of the warrant
provided by Euclid’s ostensive constructions. The schema for the concept
“triangle” is a rule for producing images or empirical figures that can count as
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constructed plane triangles. Part of the subtle doctrine of the role of what Kant
calls the “productive imagination” in empirical recognition of shapes and
figures is his idea that the rules for drawing figures are also the rules for
recognising figures presented to us in empirical intuition.

We cannot think a line without drawing it in thought, or a circle without describing it. (B
154)

When, for instance, by apprehension of the manifold of a housc | make the cmpirical
intuition of it into a perccption, the mecessary unity of space and of outer sensible intuition

in general ies at the basis of my apprehension, and | draw as it were the outline of the
house in conformity with this synthetic unity of the manifold in space. (B 162)

According to Kant, the rules for drawing a triangle on a piece of paper, or for
pacing off a triangle on a football field, are the same rules we use when we see
that a figure before us counts as a plane triangle.

What about Kitcher's second objection? Why isn’t the ostensive construction
unnecessary because the angle sum theorem is already analytically contained in
the schema for the concept “triangle™? Consider, first, the analogous question
about the schema for the square figurc drawn by Plato’s slave boy. Knowing
how to draw and recognise plane square figures didn’t, immedialely, lead the
slave boy to recognise that a square of twice the arca will have a side equal to
the diagonal of the original. It was only after first constructing the three
additional squares, and then the four connected diagonals, that the way was
clear to directly recognise that the square formed by the diagonals is exactly
twice the area of the original. The creative construction required to generate the
diagram, in which the result could be immediately recognised, shows that the
result is not a trivial analytic consequence of the schema for constructing and
recognizing plane square figures.

Similarly, the need for creative constructions, such as Euclid’s extending the
base and his constructing of a parallel to the opposite side which divides the
external angle, shows that the angle sum property is not a trivial analytic
consequence of the schema for recognizing and constructing plane triangles.
The construction leads, by steps each of which could be carried out on any
figure that could be a constructed plane triangle, to a figure in which a straight
angle is exactly divided by three angles, which have been shown to cqual the
three angles of the original triangle.

The role of the final constructed figure, in what counts as direct witnessing
of the angle sum equalling a straight angle, is analogous to measurcment. Emnst
Mach provides an interesting operational demonstration of the angle sum
theorem that emphasizes the connection between geometry and empirical
measurement procedures.

If a draughtsman draw a triangle by successively turning his ruler round the interior
angles, always in the same direction (Fig. 6), he wili find on reaching the first side again
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that if the ruler Jay toward the outside of the triangle on starting, it will now lic toward the
inside. In this procedure the ruler has swept out the interior angles

U

ST

of the triangle in the same direction, and in doing so has performed half a revolution.
(1960, 57 arrow diagram added)

For somewhat larger triangles we can think of rotating and sliding an arrow or
pointer according 10 the correspondingly numbered operations. At the end of the
operation of swecping out the interior angles of the triangle it will be exactly
reversed in dircction. This measures the sum of the angles to be 180 degrees.

Euclid’s careful restriction to features unavoidably gencrable for any con-
struction of a plane triangle is part of a tradition of searching for rigor in
mathematical demonstrations that eventually led to conceptions of logical proof
that do not depend on ostensive constructions of geometrical figures at all. Mach
regards this tradition as having the unfortunate consequence of divorcing
geometry from its proper roots in empirical measurement operations. (1960,
112-114) Mach’s measurement operation, just as Euclid’s constructive proof,
invites our confidence in the expectation that we would get the same outcome
on any figure we could recognise to be a plane triangle.

As Friedman has argued (1985 op. cit.), Kant’s notion of what counts as an
analytic consequence of the concept plane triangle was unavoidably limited by
the logic available to him. When we consider that Euclid’s geometry is three
dimensional, so that plane geometry holds only for figures on what can count as
flat two dimensional surfaces, there may well be reason to suppose that the
angle sum theorem follows logically [according to modern predicate logic] from
axioms sufficient to characterize flat surfaces and the definition of a plane
triangle. Does this make it analytic that the angle sum theorem holds for any
figure we can recognise to be a plane triangle? Whether or not this is so for
geometry of what can count as a flat plane, can it be analytic that the space in
which we observe and manipulate objects satisfies Euclid’s three dimensional

geometry?
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5. Ostensive Construction and the bounds of observation.

What can count as ostensive constructions for us are limited to scales and
. . 6 .

tolerances corresponding to our perceptual competencies.” As James Hopkins
(1973) pointed out, we cannot visualize a scale drawing in which the relative
sizes and distances of two stars are accurately represented.

A simple principle is involved. If a picture is to be taken in, the elements (for example,

dots, lines) which compose it must be simultaneously visible. They will therefore have

certain spalial properties and relations. Scale pictures like geometric diagrams show

spatial situations by the spatial characteristics of their clements. Those characteristics

requircd by considerations of scale may conflict with those nceded for visibility, A
distortion results from the sacrifice of scale to visibility. (Hopkins 1973, 25)

As Reichenbach (1958, 46) and many others have pointed out, we cannot
visually distinguish a right angle from one of e.g. 89 degrees 59 minutes. Ina
classic paper, Charles Parsons (1964, reprinted in Wolf 1967) pointed out a
conflict between the ability to infinitely iterate the bisection construction and the
idca that diagrams in what count as ostensive constructions be possible objects
of experience.

‘One of Kant’s examples of a claim warranted by ostensive construction is
that a straight line is the unique shortest distance between two points (e.g. A 24;
B 16; A 163, B 204; A 220, B 268). This is a uniqueness appealed to in Euclid
when, in the proof of proposition 1.4, it is claimed that two straight lines cannot
enclose a space.” Hopkins considers attempting to draw diagrams designed to
show that two distant points could not be connected by two paths each of which
is equally short and both of which are shorter than any other paths.®

Owing (o the distortion required lo make the lines visible, the only way to make two lines

visible would be (o bend one away from the other. Then one line would be and appear

curved. Hence the only usable (visible) pictures fail to show two lines, or show one

curved, (Hopkins 1973, 33)

At this scale and in this casc we can only disregard our images; we cannot lake them as
showing how things are. So despite the impression, our images are not really Euclidean;
rather they are two crude to serve. (ibid, 33)

As Hopkins argues, our inability to draw or visualize such an image does not
show that there cannot be more than one shortest path connecting these points.

The same holds for Euclid’s ostensive proof of the angle sum theorem. Ac-
cording to Kant, this angle sum theorem applies to any figure we could appre-
hend to be a plane triangle because the rules for recognizing plane triangles are
the same rules that underwrite the ostensive constructions in Euclid’s proof. But
the tolerances to which this applies to figures we can meet in space are limited
by what | have called our perceptual competencies. Any figure too large for us
to survey will not be covered.

Kant, Riemann and Reichenbach on Space and Geomeltry 431

The need for this sort of limitation on scale can be illustrated by extending
Mach’s empirical measurement proof to very large triangles on the surface of
the earth. Suppose you are at the north pole with a long pointer directed down
the 180th meridian (the one of the international dateline). Now tumn the pointer
90 degrees counter-clockwise so that it now points down the 90th meridian.
Now carry it right down the 90th meridian, keeping it always pointed due south,
until the point just reaches the equator. Now swing the butt end 90 degrees
counter-clockwise so that it points due west along the equator. Now carry the
pointer due west along the equator, keeping the butt end directed west, until the
butt end just touches the 180th meridian. Now swing the point 90 degrees
counter-clockwise so that it faces north and carry the pointer right up the 180th
meridian toward the north pole. When the point reaches the north pole you wiil
find that the pointer has exactly reversed direction. Its point is now at the north
pole with its butt end directed due south down the 180th meridian, but you
started with the butt end at the north pole and the point facing due south down
that meridian. Has your application of Mach’s operational demonstration of the
angle sum theorem to this large spherical friangle really measured the sum of
three 90 degree angles to be 180 degrees?

6. Geometry and Kant’s Empirical Realism

Kant believed that his appeal to a priori Euclidean constraints on space
made possible his empirical realism, thereby preventing his transcendental
idealism from collapsing into what he regarded as Berkeley’s objectionable
form of idealism.” Two aspects of Euclidean geometry are relevant to its role in
underwriting Kant’s empirical realism. First, the three dimensionality of space,
together with the theorems connecting three dimensional shape with appear-
ances that would be apprehended from alternative perspectives, is what makes it
possible to demonstratively refer to unapprehended appearances that are
included in the empirical content that the object of an outer empirical intuition
must satisfy. Second, even judgements about appearances make commitments
about what would be apprehended from other perspectives. Such judgements are
not incorrigible.

These allow inferences from such judgements to expectations about further
judgements which are based on more than the sort of Humean inductions of
which, according to Kant:

We can properly only say, therefore, that, so far as we have hitherto observed, there is no
exception (o this or that rule. (B 4)

If the judgements are taken as incorrigible subjective episodes then expectations
about future episodes cannot be based on more than habitual extensions of past
regularities. Kant’s refutation of idealism argues that the actual sequence of past
subjective episodes is no more incorrigibly accessible than our corrigible
judgments about outer things. Unless the sort of objective reference to addi-
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tional appearances made possible by the geometrical constraints on shape and
perspective are made available, there is nothing to count as remembering
anything about the actual sequence of past episodes. This would collapse the
sequence of experiences into a solipsism of the present moment.

I1. Riemann on Space and the Foundations of Geometry.
1. Riemann’s plan of investigation

On June 10 1854, Riemann gave his Inaugural Lecture “On the Hypotheses
which lie at the foundation of Geometry”. Here is the plan of investigation
which opens Riemann’s lecture and motivates his investigation of what he calls
“multiply extended quantities”.

As is well known, geometry presupposes the concept of space, as well as assuming the
basic principles for constructions in space. It gives only nominal definitions of these
things, while their essential specifications appear in the form of axioms. The relationship
between these presuppositions [the concept of space, and the basic properties of space] is
lef in the dark; we do not see whether, or to what extent, any connection between them is
necessary, or a priori whether any connection between them is even possibic.

From Euclid to the most famous of the modern reformers of geometry, .cgendre, this
darkness has been dispelled neither by the mathematicians nor by the philosophers who
have concerned themselves with it. This is undoubtedly because the general concept of
multiply extended quantities, which includes spatial quantities, remains completely
unexplored. I have therefore first set myself the task of construcling the concept of a
multiply extended quantity from general notions of quantity. It will be shown that a
multiply extended quantity is susceptible of various metric relations, so that Space
constitutes only a special case of a triply extended quantity. From this however it is a
necessary conscquence that the theorems of geometry cannot be deduced from general
notions of quantity, but that those properties which distinguish space from other
conceivable triply extended quantities can only be deduced from experience. Thus arises
the problem of sceking out the simplest data from which the metric relations of Space can
be determined, a problem which by its very nature is not completely determined, for there
may be several systems of simple data which suffice to determine the metric relations of
space; for the present purposcs, the most important system is that laid down as a
foundation of gcometry by Euclid. These data are—like all data—not logically necessary,
but only of empirical certainty, they are hypotheses; one can therefore investigate their
likelihood, which is certainly very greal within the bounds of observation, and afterwards
decide upon the legitimacy of extending them beyond the bounds of observation, both in
the direction of the immeasurably farge, and in the direction of the immeasurably small.
{Spivak, 135-6)

For Riemann, Euclidean geometry is one among other conceivable triply
extended quantities that might count as candidates for representing the metrical
relations of Space. His concept of a multiply extended quantity is the source of
our present concept of a differentiable manifold. It provides the resources 10
represent whole families of alternatives to Euclidean geometry. If what Riemann
refers to as Euclid’s system of data for determining the metrical relations of
Space are the postulates of Euclid’s Elements, then he is claiming that Proposi-
tion 32 is contingent on empirical hypotheses. He holds that, while the likeli-
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hood of these hypotheses is certainly very great within the bounds of observa-
tion, the legitimacy of extending them to the very large or very small is to be

decided by later investigation.
What Riemann refers to by “the bounds of observation” may well be the

same as the limits our perceptual competencies put on Kant’s account of how
ostensive constructions underwrite Euclid’s propositions. Extension to the very
large or very small is, at best, by reasoning analogous to what Kant says about
ideas of reason. I have earlier argued that the sort of a priori status appropriate
to such an idea is subject to challenge by producing an alternative that can
seriously rival the original’s capacity for organizing experience. (Harper 1986)
On this view of Kant’s philosophy of geometry, Riemann, rather than in
diametric opposition, is providing valuable conceptual resources for making
application of geometry to the very large and small less dependent on accidental
poverty of thought."’

Riemann’s rather informal presentation does not explicitly show that he had
reached the conception of differentiable manifold that grew out of efforts of
Jater mathematicians to develop his work. According to Spivak, however, it is
obvious that Riemann was clear on the notion and its basic property that n-
dimensional manifolds are locally like n-dimensional Euclidean space.

flowever, il is quite obvious that the notion was thoroughly clear in his own mind and that
he recognized that manifolds were characterized by the fact that they are locally like n-
dimensional Euclidian space. (Spivak, 155)

An n-dimensional space is locally Euclidean if in a neighbourhood of any point
it admits a metric homeomorphic to the standard Euclidean distance metric
(d(x,y) = [Zi(xi-yi)zl“z) in R". This metric on R’ is exactly the distance relation
between points construed as triples of real numbers that corresponds to three
dimensional Euclidean geometry. On Riemann’s internal characterization of n-
dimensional curvature a region of a manifold counts as flat—having zero
curvature—just in case the distance between any pair of points in it satisfies this
Euclidean metric. (Spivak, 143)

While Riemannian manifolds are compatible with the idea that what counts
as locally Euclidean holds up to the bounds of observation they do not require
it." Riemannian manifolds can represent spaces that are quite non-Euclidean at
scales corresponding to what we can optimally discriminate by our observations.
We shall want to ask to what extent Riemann’s suggestion that the likelihood of
Euclidean data is very great within the bounds of observation is supported by
Kant’s account of Euclidean constructions. We shall also want to ask whether
such constructions can support anything that could count as more than empirical

certainty.
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2. Topology

Riemann distinguishes what we would now call topological properties of
manifolds from metrical properties. Among such properties are the unbounded-
ness and three dimensionality of Space, which he takes to be known with
empirical certainty greater than that of any experience of the external world.

That $pace is an unbounded triply extended manifold is an assumption which is employed
for every apprehension of the external world, by which at every moment the domain of
actual perception is supplemented, and by which the possible locations of a sought for
object are constructed; and in thesc applications it is continually confirmed. The
unboundedness of space consequently has a greater empirical certainty than any
experience of the external world. (Spivak, 150)

The focus on unboundedness reflects the role of this passage as part of a larger
discussion pointing out that our certainty about unboundedness is compatible
with our uncertainty about the infinitude of space. (150-151) One may presume
that, for Riemann, the claim that space is triply extended shares the same
extreme empirical certainty as the claim that it is unbounded.

A single topology is compatible with a variety of different metrical geome-
tries. Torretti suggests that the distinction between topology and metric can be
exploited to inform an interpretation of Kant which would allow for alternative

metrical gcometries.

Since Kant conceived the “manifold of a priori intuition” called space, nol as a mere
point-set, but as a (presumably three-dimensional) continuum, we must suppose that he
would have expected “the mere form of intuition” to constrain the understanding to
bestow a definite topological structure on the object of geomelry. But, apart from this, the
understanding may freely determine it, subject to no other laws than its own. Since the
propositions of classical geometry are not logically necessary, nothing can prevent the
understanding from developing a variety of altemalive geometries (compatible with the
prescribed topology), and using them in physics. (T orretti 1984, 33)

On this suggestion topological properties, such as continuity, three dimension-
ality, orientability and unboundedness, count as constraints directly imposed by
the mere form of intuition, while metrical constraints, such as the angle sum
theorem, do not.

One difficulty with this suggestion is that global topology is not obviously
more accessible than global metric geometry. For example, black holes would
generate discontinuities in space-time thus distorting topology. (Earman 1995;
Wald 1984, 148ff) Should event horizons associated with such singularities be
counted as boundaries? Whatever we say about this, we do not want to rule out
singularities by demanding that only manifolds without discontinuities could
count as models of space-time. Just as the notion of differentiable manifold
developed from Riemann’s lecture provides for manifolds with different metric
geometries at different locations so does it provide for manifolds with quite
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radically differing local topologies at separated submanifolds. (see e.g. Spivak
Vol.1, p. 4)
One advantage Riemann points out for topological features such as three
dimensionality is the discreteness of the set of alternatives.
In this connection there is an essential difference between mere relations of extension and
meltric relations, in that among the first, where (he possible cases form a discrete manifold,
the declarations of experience are to [be] sure never completely certain, but they are not
inexact, while fouj the second, where the possible cases form a continuous manifold, every
determination from experience always remains inexact—be the probability ever so great
that it is ncarly exact. (Spivak, 150 [be] added)

Measuring curvature, like measurement in general, does not fix exact values,
however great the precision to which nearness to an exact value is established.
Thus, as Torretti (104-105) points out, the extent to which space could be
known to have the zero-curvature characterizing Euclidean metric geometry is
limited by measurement tolerances. Such tolerances could allow ruling out, with
very high probability, curvatures outside an interval (-¢, +¢) for some positive
bound e, but they would not allow us to establish that the curvature is exactly
zero, even locally.

Kant included the three-dimensionality of space among the propositions he
thought could be established with certainty about space. (e.g. B 41) The
following remark from B 154 immediately follows the passage about drawing
figures cited in the discussion of productive imagination above.

We cannot represent the three dimensions of space save by setring three lines at right
angles Lo one another from the same point.

It suggests that Kant would regard our certainty of the three dimensionality of
space as represented by our certainty that three is the maximum number of lines
that we could set to meet at right angles at a single point. Our interpretation of
the role of schemata, as rules for constructing or recognising configurations in
the space in which we move our bodies and manipulate objects, suggests that
Kant interprets ostensive constructions to represent commitment to the same sort
of general features of experience alluded to by Riemann."

On this interpretation, the sort of very general appeal to experience Riemann
alludes to as warranting the three dimensionality and unboundedness of space
may also count as informing the warrant provided by ostensive constructions
underwriting claims about metrical geometry, once those claims are appropri-
ately limited in scale and tolerances to correspond to our perceptual competen-
cies. | suggest, therefore, that limiting what ostensive constructions are sup-
posed to warrant to such scales and tolerances is more promising than trying to
limit what the form of intuition can deliver on to abstract topology rather than
metric geometry.
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3. Movable Rigid Bodies

Metric geometries of constant curvature are salient among the examples of
manifolds discussed by Riemann.

The common character of those manifolds whose curvature is constant may be expressed
as follows: figures can be moved in them without stretching. (Spivak, 147y

Riemann suggests that the empirical notions on which the metric determinations
of Space are based are the concept of a solid body and that of a light ray.
(Spivak, 152) For Helmholtz, the requirement that empirical measuring
operations, corresponding to moving rigid rods about in space, be provided for
counted as a justification for limiting metric geometries to those of constant
curvature. (EW, 56-57)" Helmholtz points out that adding the further condition
that shape be independent of size restricts these metric geometries to the unique
Euclidean case of zero curvature. (PSL, 239)

Like the constraints on topology, scale considerations are relevant here.
When we consider the familiar experiences of empirical measurement on which
activities such as building ships, houses and furniture are based we do see a
centra! role played by moving rods that we count as rigid. At the scales and
tolerances involved, however, we also see uncontroversial appeal to the full
Euclidean metric, up to the relevant tolerances. For example, in the use of scale
models in designing hull shapes of ships.

When we consider astronomical distances, even limited to those exhibited in
the solar system phenomena that provided the main evidence for Universal
Gravitation, the moving of rigid rods plays no direct role at all. It certainly was
never plausible to demand that any geometry that could count as a candidate for
the melric of physical space should provide resources to allow for the concep-
tual possibility of measuring distances between planets with giant measuring
rods. This demand is not made plausible, even if what counted as edges of such
rods were allowed to follow geodesics of geometries of constant curvature. Was
it ever reasonable to demand the conceptual possibility of, even, the idea of
laying a small measuring rod over and over again along a shortest path (a light
ray or an ideally stretched string perhaps?) between planets‘?ls

Considerations of the very small make appeal to light rays, as well as to rigid
bodies, problematic. This is explicitly discussed by Riemann in the following
interesting passage:

Now it scems that the empirical notions on which the metric determinations of space are

based, the concept of a solid body and that of a light ray, lose their validity in the

infinitely small; it is therefore quite definitely conceivable that the metric relations of

Space in the infinitely small do not conform to the hypotheses of geometry; and in fact
one ought to assume this as soon as it permits a simpler way of explaining phenomena.

(Spivak, 152)
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In addition to testifying that Riemann takes the concepts of solid body and light
ray to be the empirical notions on which the metric determinations of Space are
based, this remark shows extraordinary good methodological sense. At very
small, submicroscopic scales, there is even less warrant for imposing geometri-
cal properties as a priori commitments on physical investigations.

Another of the few examples Riemann provides is one in which astronomi-
cal measurements tell us that the total curvature of every measurable region is
not perceptibly different from zero; but, even so, at every point the curvature
can have arbitrary values in each direction.

—; at every point the curvature can have arbitrary values in three directions, providing

only that the total curvature of every portion of Space is not perceptibly different from

2e10.

At more limited scales, and restricted to two dimensions, this sort of example
covers all of what count as flat surfaces we can meet with in our space’l6 Floors,
walls, table tops, even the most polished flat mirror, all count as bumpy at smail
enough scales, even though at scales corresponding respectively to appropriate
tests of their flatness the average curvature does not count as perceptibly
different from zero. For a table top, the appropriate criterion of flatness might be
to be able to slide a level or straight edge about over the surface with no

perceptible rocking or visible gaps between the straight edge and the surface.

11L. Reichenbach on Visualization and Conventionality of Geometry.
1. Visualization of Non-Euclidean Geometry.

Reichenbach provides examples designed to show that people could learn to
visualize according to non-Euclidean geometries. In these examples there is
non-Euclidean topology as well as metric geometry. The first example is a story
of a man exploring and measuring spheres which exhibit topological relations
corresponding to three dimensional analogues of non-intersecting closed curves
on a torus surface. He argues that to retain Euclidean geometry the man would
have to accept a duplication of happenings that would require, in addition to
distorting forces, a causal anomaly. (1958, 65-67)"

Reichenbach does not attempt to give a detailed account of visualization of
the torus space. Within each shell, the standard Euclidean coordinative defini-
tions are employed to interpret measurements. His attempt at a detailed account
is, instead, for a three dimensional spherical geometry that exhibits, for three
dimensional spherical figures, the relativity of enclosure of circles on a two-
dimensional spherical surface. Think of two circles of latitude on a sphere, circle
I is south of the equator, the other, circle 11, is equally far north of the equator.
What Reichenbach calls stereographic projection from the north pole to a plane
tangent to the south pole will make the projection of 1 completely enclose the
projection of 1. (1958, 69-72) An alternative projection, from the south pole to a
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plane tangent to the north pole, would reverse this enclosure. According to
Reichenbach, this relativity of enclosure would be exhibited by spherical
surfaces in a space of three dimensional spherical geometry. (1958, 71-73) He
uses the assumption that light rays travel in geodesics (shortest paths) of this
geometry to make drawings representing how this relativity of enclosure could
be visually experienced by someone exploring an appropriately sized space of

this sort.

Lot us imagine in space two large spherical shells 1 and 1f, made of sheet metal, which
enclose each other and are rigidly connected by beams. An observer climbs around
hetween the shells; howeves, he cannot pass through them but is restricted to the space

between the spheres. He intends 10 determine which shell is the outside one.

In order 1o visualize his experience we construct the following figure. In the stereographic
d 11, the top vicw of which can be seen in

projection we draw two concentric spheres | an
Fig. 10. {1958, 71)

{he observer is stationed at 4 on the fundamental circle. ln order to make our problem
precise we assume that fight rays move along straightest lines in space. Henee we can
determine by means of main circles and main spheres what is visualized by the obscrver,
just as in Luclidcan spacc a representation of his perception is ascertained

Fig. 10. Stereographic projection of spherical space:
perspectives of an observer at A.

by means of straight lines and plancs. We draw two main circles through A which are
tangential to the two circles I and I1; they fumish the angular perspective for A as do the
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corresponding lines of projection in Euclidean space. Since in every plane through 4 and
O the same relations hold, we may conceive Fig. 10 a5 2 cross-section through a three-
dimensional figure which results from a rotation around the axis AQA " If the view of the
obscrver is confined 10 the angular space o he will see shell 1; in the angular space B [y] he
will see shell 11, and in the angular space y [B) he will see the empty space between the
shells .1958, 72-73)"

Reichenbach goes on to give pictures corresponding to the observer’s percep-
tions in the directions of these views.

For the puspose of constructing the picture of his perceptions we must follow the cone of
light rays which begins at 4; since the stercographic projection reproduces the original
angles, this cone is immediately given by the tangents at 4. It is a double cone
symmetrical to the fine 0. lis perceptions are obtained by the intersection of this double
cone with a plane of projection, which must always be assumed to lie perpendicular to the
direction of view. Fig. 12 shows the views which are scen in the three dircctions: (a) from
A towards 1, i.c., along the central axis of «; (b) from A atong a dircction perpendicular to
(e fist, i.e., along the central axis of the adjacent angular space 15; (c) from A towards I,
i.c., along the central axis of y. In these figures the shells are distinguished trom cach other
by different shadings; Fig. 12a shows the shading of shell I, Fig. |2¢ that of sheil 1.

_—

We can now imagine the visual experiences of the observer. From the space between the
shells he sees bath spheres as convex surfaces; i, by looking towards the spheres he
discovers that light rays do not glide along the surface, and that within the space between
the shelis there is no connecting light path between two points on the same surface. [['he
stands in the middfe of the shell space looking toward 1, he sees in front of him the convex
hemisphere of this surface surrounded by free space; when he tuns around, he sces shell IT
in the same manaer, i.c., its convex hemisphere surrounded by free space. (1958, 74-75)

The symmetry of these views suggests that the space generated from the
opposite stereographic projection—where the south pole would be the origin for
projection onto a plane tangent to the north pole and circle I would enclose
circle [l—would not present visual images that could be distinguished from
these."”

Reichenbach goes on to explore perspectives corresponding to an eye right
next to a shell and to explore the visual experiences that would be generated by
being able to open holes in the shells that could be looked through and climbed
through to produce additional perspectives. He argues that these perspectives are



440 WILLIAM L. HARPER

rovide information that specifies which shell enclos?s the ofher.
According to his description, going into what appears to be the inside 'of either
would produce views of the other, through the holes, t!lat wopld make it appear
that the other shell encloses the one the observer has climbed into. (1958,'755-77)
This is a very clever illustration of visual perceptions that woulc! exhibit the
non-Euclidean relativity of enclosure of spherica! surfaces in a three-
dimensional geometry corresponding to what Reichenbach describes as

. 20
spherical space.
Reichenbach cites
appropriate sequences of such “perceptions” as what w
tion corresponding to the non-Euclidean spherical space.

lize" Helmholtz gave 1he definition:
14 have if something like it

also unable to p

Helmholtz as his authority for taking spcciﬁcation. of
ould count as visualiza-

We shall follow lelmholiz's method; for “visu?
“_that we are able to imagine the serics of perceptions we wou
occurred in an individual case.” (1958, 63)

henbach suggests that to imagine the

In introducing his mapping exercise Reic . :
dimensional plane

sequence of such perceptions it is sufficient to draw two-
figures corresponding to retinal images.

From our drawing we shall be able to infer his perspective, wh‘ich is very different fron:n
the Euclidean one. We can then draw without distortion pictures that {eprescni his
perceptions, because we merely have to draw plane figures \'vhlc'h, whcn. projected on the
retina, will furnish the same pictures as those actually occurring in spherical space. (1958,
68-69)

ures, and pointing out how just as in three-
le visual image of the whole space 1S
rceptions can represent

After generating such pict
dimensional Luclidean space no sing
possible, Reichenbach describes how sequences of pe
spherical space by visual integration.

1o attain a general impression of spherical space by visual
looking around and pacing it off. (1958, 78)

te specifies that measurements, e.g. by rigid rods, agree'with the congru-
ence specified by spherical geometry, though he doesn?’t give many detallf.
(1958, 76) Reichenbach suggests that, once the perce‘puons ot: an observe.r in
such a space have been described, the interesting exercise for epistemology is to
start with the assumption that an observer has such perceptions.

d above; what would he infer? Only
logical analysis. So long as we start
from it, an aprioristic philosophy
niverse does not exist. As

It is quile possible, however,
integration so to speak, i.c., by

Assume that an observer has the perceptions describe
in this form is the problem accessible to an epistemo
from a certain state of the universe and infer perceptions
may contend for any number of reasons that such a sla!c ol'!hc u ist. /
soon as we start from perceplions, however, the objection disappears, bcc§u§€ nothing can
be prescribed for perceptions. No a priori poslula!e can cxclude lh? pOSSIbllll.y that Sum;
person may at some time have certain perceptions. Only the interpretation of suc

perceptions is controversial. (1958, m
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The interpretation is simple for noa-Euclidean geometry. In this interpretation we deal
with spherical space; there is no absolute “exterior” for the spheres; cach of them is the
exterior one with respect to the comesponding point of contraction. The two points of
‘coniraclion are given in the model by the centers of the scaffolds. (1958, 77)

He goes on to argue that, just as with the torus example, maintaining Euclidean
geometry would require not just distorting forces but causal anomalies as well.
(1958, 78-79) '

Reichenbach wants his possible perceptions to be able to count as something
more than illusions or hallucinations.”’ His suggestion that we can assume that
the observer has such perceptions independently of assumptions about their
interpretation is designed to avoid issues that can be raised about whether or not
his examples ought to count as really possible. It is not at all clear that the
stories Reichenbach tells do count as real possibilities. For example, if the force
producing the visible light bending effects he describes were much like gravity
humans would not be able to function in it. In fact it may not be unreasonable to
treat the outcomes of Euclidean constructions, when restricted to scales and
tolerances corresponding to the bounds of observability, as a priori in the sense
that Reichenbach’s examples can be treated as mere conjectures until such time
as actual phenomena require revisions which would allow for such examples.

This sense of “a priori” is one Reichenbach, perhaps, could grant, at least for
Euclidean topology, if the source of the assumed warrant could be counted as
empirical. His target is a notion of a priori warrant based on the idea that it is
impossible to specify visual images corresponding to perceptions in a three
dimensional non-Euclidean geometry that would visibly differ from Euclidean
images. He takes Kant’s thesis to be that the force of Euclidean visualization is
provided by the picture or diagram itsclf. (1958, 38) His clever examples do
show that two dimensional images corresponding to visual perspectives of
visibly non-Euclidean spaces can be specified.

On Kant's account, the warrant provided by ostensive constructions is pro-
vided not just by the diagrams themselves but also by their interpretation as
carrying information about the space in which we move about and manipulate
approximately rigid bodies. To treat a specified sequence of “perceptions” as
evidence for non-Euclidean geometry requires commitment to observer
independent generalizations that can count as phenomena exhibiting the
systematic dependencies underwriting the interpretation. It is not obvious that
specification of two-dimensional pictures that would correspond to retinal
images produced from various perspectives which might be met when visually
exploring such a space is sufficicnt to characterize what should count as non-
Euclidean visualization.

In his comments on lelmholtz’s “On the facts underlying geometry” Paul
Hertz makes the following contrast between the intuitions underwriting Euclid’s
axioms and the successive representations required by Helmholtz.
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On the other hand, Euclid’s axioms have the advantage that their truth is evident
immediately in the intuition of the simultaneously given, whercas with Helmholiz’s
axioms even understanding is nol possible other than in successive representations. Thus
they can compel our asscnl at most on an associative basis. (LW, 61)

Very likely Hertz had in mind the sort of visualization that apparently forces
consent to the uniqueness of the straight line connecting two points according to
Euclid’s first postulate. As our discussion of Hopkins made clear, such visuali-
zation does not justify such uniqueness at scales and tolerances exceeding our
perceptual competencies. At appropriately limited scales and tolerances,
however, the ability to survey the entire figure from a single perspective may
well contribute to the warrant such visualization provides. In the angle-sum
construction, at scales consistent with our optimal perceptual competencies, the
entire figure can be surveyed from a single perspective. This differentiates the
sort of successive representation appealed to by Kant’s account of ostensive
constructions from Helmholtz’s account of visualization.

Hertz suggests that Helmholtz’s limitation to merely successive representa-
tion in his account of visualization makes it able to compel our assent at most on
an associative basis. This suggests that it would be limited to what Kant takes to
be the “merely assumed and comparative universality” conferred by cxperience
through induction. Kant’s appeal to what Reichenbach calls Euclidean congru-
ence makes his perceptual judgments about rigid bodies carry commitments
about what would be apprehended from other perspectives and by touch and
manipulation. These information-carrying commitments would require regard-
ing earlier judgments as having been in error if conflicting information were
Jater to be obtained from such further explorations.

lelmholtz also interprets perceptual judgments as making such commit-
ments. e assumes such commitments to result from a history of perceptual
associations, even though the relevant sequence of experiences may not be

available to conscious memory.

1o previous studics | characterised as unconscious inferences he connexions between
representations which thereby occur—unconscious, inasmuch as their major premise is
formed from a series of experiences, each of which has long disappeared from our memory
and also did not nccessarily Caler our conSCiousnCss formulated in words as a sentence,
but only in the form of an obscrvation of the senses. (1:W, 132)

fn his comments Schlick quotes the following remark from Helmoltz’s Physio-

logiical Optics
‘Thus although a genuine conscious inference is nol present in these cases, the essential
and primary task of one is accomplished and its result achicved, if admittedly only
through the unconscious association of representations. This association goes on in the
obscure background of our memory, and its results also force themsclves upon our
consciousness as if obtained by way of a compelling, scemingly external power, over
which our wili has no authority. (EW, 175-176)
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As Joan Richards (1977, 239) has pointed out, Helmholtz’s appeal to such
unconscious inferences makes the differences between his empiricism and the
nativism he opposed more subtle than one might have expected.

The nativists argued that what Helmholtz calls unconscious inferences based
on a long history of empirical associations are actually based on more or less
wired in features of our sensory systems. If some such nativist doctrine were
correct then the plasticity of geometric interpretation assumed by Reichenbach
might not be available. This might support treating propositions proved by
appeal to Euclidean ostensive constructions, when appropriately limited to
bounds of observability, as a priori commitments in a very strong sense
according to which anything that failed to meet them could not count as a
possible object of experience for us.?

Though his important Handbook of physiological optics was very influential
in gefting a wide audience for his attacks on nativism, it did not lead to a lasting
consensus in favour of his empiricism. In the 1880’s the literature in perception
slowly began to swing toward nativism. (Turner 1993, 198) One factor promot-
ing this trend was the growing acceptance of evolutionary theory, which made it
attractive to regard a spatial sense as based on physiological developments
occurring over the life of the species rather than mercly on associations
occurring anew during the first few months in the life of each individual.
(Turner, 198) Issues over nativism continue to be debated without any conclu-
sive resolution to our present day.”

On Helmholtz's empiricist account, as well as on Nativist accounts, the
warrant provided to Plato’s slave boy by his ostensive construction, the very
first time he performs it, is far more compelling than would be provided by a
single trial on an associationist account of induction. Whether, even if we put
aside worries about whether they could actually occur, examples like the ones
Reichenbach proposes could be expected to provide anything like rich enough
sequences of associations to back up what would count, for non-Euclidean
geometry, as the sort of unconscious inferences Helmholtz postulates for

Euclidean visualization is not obvious.
It is also not obvious that more is not involved in the warrant provided by

Euclidean constructions than any sct of mere associations, however rich they
may be, could provide. Consider attempting to apply Euclid’s angle sum
construction to the large spherical triangle on the surface of the earth to which
we applied Mach’s empirical measurement procedure. Let us also, for the
present, put aside the requirement that the constructed figure be surveyable from
a single perspective. Let the north pole count as the point C and the 90th
meridian from B where it crosses the equator to the pole count as the side BC.
The remaining comer A will be where the 180th meridian crosses the equalor.
The first step in Euclid’s construction, extending BC to some point D, is not
problematic. As we will be attempting to carry out the construction at the north
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pole let D be put some short distance (perhaps even only a meter or two) beyond
the pole on the great circle extending BC. The next step, however, lurns out to
be impossible, if what count as straight lines are limited to great circles. How do
we construct at C, the North Pole, a line parallel to BA, which runs along the
equator. Every straight line (great circle) running through C is exactly perpen-
dicular to BA.

If we attempted to use parallels of latitude to construct a small version of our
figure where points B” and 4 * were just short equal distances down the 90th and
180th meridians the side B4 " would become more and more obviously sharply
curved as the equal distances CA’ and CB’ became shorter. To have a figure
count as a triangle (segments of great circles as sides) with a 90 degree angle
between segments of the 90th and 180th meridians at point C as a vertex, the
sum of the angles at the other vertexes B'and 4"’ would become more and more
constrained toward equalling 90 degrees as the lengths of the sides became
shorter. The capacity to construct at C a segment EC of a great circle such that
angle 4 'CE did not differ from angle B’A’C and angle ECD did not differ from
angle A'B'C by more than specified tolerances would allow fixing tolerances by
which their sum was constrained to approximate 90 degrees. This illustrates how
the capacity to carry out Euclid’s construction carries information forcing
approximations to which the angle sum theorem holds.

One important difference between Euclid’s constructive proof and Mach’s
measurement operation is that the outcome of Mach’s measurement operation,
which is to be interpreted as representing the angle sum equalling 180 degrees,
can be arrived at erroneously unless the surface is independently specified to be
flat. Mach’s procedure does seem to require the sort of circularity of which
Kitcher accused Kant’s account of Euclid. As we have just seen, however,
Euclid’s construction actually provides a test verifying that the surface counts as
sufficiently flat. It is like a null experiment establishing bounds limiting
violations of the theory for figures at scales corresponding to our perceptual
competencies.

2. Conventionality of Geometry.

In his plan of investigation (quoted above) Riemann suggested that there
may be several systems of data which suffice to determine the metric relations
of space. If Reichenbach’s coordinative definitions can count as what Riemann
calls “systems of simple data which suffice to determine the metric relations of
space”, then his thesis that metrical geometry is conventional can be seen as a
particularly radical version of Riemann’s suggestion that the problem of finding
such simple data is not completely determined.

Consider Reichenbach’s example of people using measurements to deter-
mine the shape of a plane with a hump that they are climbing around on.
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Fig. 2. Projection of a non-Luclidian gcometry on a plan.

Let us imagine (Fig. 2) a big hemisphere made of giass which merges gradually into a
huge plass plane; it looks like a surface G consisting of a plane with a hump. Human
beings climbing around on this surface would be able to determine its shage by
geometrical measurements. They would very soon know that their surface is plane in the
outer domains but that it has a tiemispherical hump in the middle; they would arive at this
knowledge by noting the differences between their measurcments and two-dimensional

Euclidean geometry.

Let us assume Lhat the planc E is also inhabited by human beings and let us add another
strange assumption. On the piane a mysterious force varies the length of all measuring
rods moved about in that planc, so that they arc always cqual in length to the
corresponding shadows projected from the surface G. Not only the measuring rods,
however, but all objects, such as ail the other measuring instruments and the bodics of the
people thewmselves, are affected in the same way; these people, therefore, f:annqt directly
perceive this change. What kind of measurcments would the E-people obtain? In (hc.outcr
arcas of the planc nothing would be changed, since the distance P'Q" would be projected
in equal length on PQ. But the middlc area which lies below the glass hemisphere would

not furnish the usual measurements. Obviously the same fesults would be obtained as

those found in the middlc region by the G-people. Assume that the two worlds do not
tside observer able to look at the

know anything about each other, and that there is no oul
surface E—what would the E-people assert about the shape of their surface? )
They would certainly say the same as the G-people, i.¢., that they live on a plane having a

hump in the middle. (1958, 11-12}

Given the usual definitions of congruence based on what standardly count as
rigid bodies, the E people, just as the G people, would count themselves as
having empirically established that their surface is a plane with a hemispherical
hump in the middle.

Reichenbach goes on to characterize the sort of undetectable forces making
the measurements in the flat plane E agree with those of the humped space G as
universal forces—forces which affect all materials in the same way and from
which there are no insulating walls. (1958, 13) Later he argues for the relativity
of geometry by suggesting that any Riemannian metric geometry can be

transformed into an arbitrary alternative Riemannian metric geometry by

. . . 25
imagining a universal force. (1958, 33)
Given a geometry G’ to which the measuring instruments conform, we can imagine a

universal force F which affects the instruments in such a way that the actual geomelry is
an arbitrary geometry G, while the observed deviation from G is duc to 2 universal

deformation of the measuring instruments.
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According to Reichenbach, the usual underlying coordinative definitions of
congruence and rigid body, which rule out universal forces (1958, 22), are
conventions, much like the choice of meters as units of length. (1958, 35)

Suppose the universal force distorting the measurements of the E-people
could be fleshed in sufficient detail to count as an example where the metric
geometry of a flat plane is transformed into the metric geometry of a plane with
a hemispherical hump. Presumably, a corresponding universal force could then
be defined which would transform the humped geometry of the G-world into a
flat plane. Consider G-people who recommended adopting such alternative
coordinating definitions in order to preserve the geometry of a flat plane. These
G-advocates of flat geometry would be like people who have actually succeeded
in working out detailed alternative coordinative conventions to make a flat earth
conjecture compatible with the outcomes of geodetic measurement operations.

According to Reichenbach, these G-world flat plane true believers are not
making what should be counted s a factual mistake. He assumes that they do
manage to appeal to altemate coordinate definitions that really are adequate to a
universal force that distorts measurement outcomes on a flat plane so that they
exactly agree with what the standard coordinate definitions would take to be
measurements of a surface with a hump in the middle. On this assumption, their
assertion that the surface is a flat plane with a force distorting measurements in
the middie would make exactly the same predictions about what congruences
would be obtained between measuring rods and parts of the surface at any
location and orientation. In so far as empirical data are limited to such opera-
tionally defined measurement outcomes, and claims are regarded as empirically
equivalent if they make exactly the same predictions about these empirical data,
the claims of the flat plane advocates are empirically equivalent to those of the
round hump advocates.

Even if we grant these assumptions, we need not be committed to grant that
the flat plane conjecture counts as equally supported as the hump conjecture by
the measurement outcomes which they both predict. In the hump conjecture the
standard definition of rigid body does without the assumption of distorting
forces making the coordinative definitions applying in the central region differ
from those applying at other Jocations. This uniformity, over diffcrent regions,
of the force laws corresponding to the standard coordinative definitions is an
advantage. As far I can see, it is only Reichenbach’s operationalism which
prevents him from counting this as a cognitive or epistemological advantage.26

According to Reichenbach (1958, 12-13, 22), on the standard definition of
rigid bodies the only forces that can be appealed to as distorting bodies are ones
that can be independently measured by what he calls differential effects. This
also counts as an advantage. Newton’s methodology appeals to an ideal of
empirical success according to which a successful theory not only predicts
accurately, but, also, has its theoretical parameters accurately measured by the
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phenomena it purports to explain. (Harper, forthcoming) On such a criterion the
advantage of minimizing claims about forces that are not backed up by inde-
pendent measurements counts as a direct contribution to empirical success. ’
The theory according to which the hump is there does better on Newton’s
criterion of empirical success than the theory of the G-world flat planers which
requires appeal to such undetectable forces.

These considerations suggest that, even if the G-world flat planers could
deliver on altemative coordinating definitions, the empirical evidence would
support the standard theory better than their altemnative hypothesis. Consider,
now, the assumption that the G-world fiat planers couid succeed in formulating
alternative coordinating definitions that correspond to appropriate distorting
forces. By focusing on measurements with rods Reichenbach suggests that such
forces could be specified by just specifying how the lengths of the rods depend
on position and orientation. This focus on measurement, operationally defined
by specifying congruence relations, may have seemed to increase the plausibil-
ity that transformations made available by Riemann’s definition of metric could
count as an adequate specification of such forces.

When other indicators of humped shape are considered it becomes even less
plausible that a transformation in differential geometry will count as enough to
adequately specify appropriate deforming forces. For example, presumably,
gravity also needs to be appropriately distorted. In the G-world balls would role
down the hump, while in the E-world they would not roll unless pushed. Forces
adequate to compose with E-world gravity, which is everywhere normal to the
surface, to produce total force agreeing with G-world gravity would produce
tidal effects proportional to the curvature at locations on the hump. Additional
forces would be needed 1o offset these tidal effects. In the G-world, | presume,
people out on the flat part could see the hump rising up in front of them.
Additional forces would be required to bend light rays so that an E-world would
appear to have a hump.

Scale considerations also apply here. Suppose the hump on the G-surface is
a hemisphere of only about ten feet in radius. Here the curvature of visible parts
of the surface would be accessible to visual survey. Helmoltz's discussion of
looking at reflections in a convex spherical mirror suggests, in rough general
terms, how mappings definable with the resources of Ricmann’s differentiable
manifolds could represent systematic distortions transforming any given retinal
image of a flat E plane into 2 corresponding image of the G hump from the
given perspective. (PSL, 241-243) But, distorting forces which could produce
such effects, and also mimic the proper coordination of these with motor control
and proprioceptive sensory information about eye and head movement which
normally make a sequence of perceptions carry information about a humped
shage, are not at all plausibly defined by the resources of differential geome-
try.* When, in addition, we include sensory and motor perceptions involved in



448 WILLIAM L. HARPER

approaching to handle and apply instruments to the surface, such complications
are greatly increased.

The problem is finding alternative coordinative definitions that transform a
sequence of perceptions into ones which, instead of accurately carrying
information about a hump, accurately carry information about the orientation
and location relative to the observer of surveyed parts of a flat surface. If the
resources of differential geometry were adequate to define the flat plane as an
alternative to the hump then they would be adequate to define additional
alternatives, such as differently sized humps and other shapes. This undercuts
the very idea that perception can carry information about shape. If it were
extended to shapes of moderately rigid objects we can manipulate manually it is
hard to see that there would be enough left of Reichenbach’s idea of directly
observed measurement outcome (o distinguish his operationalism from an
objectionably radical sceptical relativism.>’

IV. Concluding Remarks

Reichenbach’s own discussions (1958, 37-47) of Euclidean visualization,
and especially the discussions of Helmholtz which may have inspired them (e.g.
EW, 41; PSL, 226, 240, 245-246) suggest that the key to the force of the usual
Euclidean congruence in our ordinary experience is the extent to which it carries
information about shapes and relative positions of what count as the many
approximately rigid objects which we observe and handle. Regularities coordi-
nating sight with touch and motor information, touch with touch and manipula-
tion, as well as those coordinating sight with perspective are included in what
count as phenomena underwriting the normative force of Euclidean congruence,
at the scales and tolerances corresponding to our perceptual competencies.

It may be worth calling attention to the role of phenomena in Riemann’s

'3

proposal for how an empirical answer to the question of determining geometri-
cal structure can be found.

An answer (o these questions can be found only by starting from that conception of
phenomena which has hitherta been approved by experience, for which Newton laid the
foundation, and gradually modifying it under the compulsion of facts which cannot be
explained by it. Investigations like the one just made, which begin from general concepts,
can serve only to insure that this work is not hindered by too restricted concepts, and that
progsess in comprehending the connection of things is not obstructed by traditional
prejudices. (Spivak, 152-153)
The core of Newton's conception is a sharp distinction between propositions
gathered from phenomena by induction and merely conjectured hypotheses, as
expressed in his 4th Rule for reasoning in Natural Philosophy.
In experimental philosophy. propositions gathered from phenomena by induction should
be considered cither exactly or very nearly true notwithstanding any contrary hypotheses,
until yet other phenomena make such propositions either morc exact or liable 10
exceptions. (Cohen and Whitnan, 388)
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For Newton the heart of what counts as gathering propositions from phenomena
by induction is that the propositions can count as assignments of parameter
values that are measured by those phenomena.

On this rule the deliverances of the standard Euclidean congruencies at the
scales and tolerances corresponding to our perceptual competencies would be
maintained unless other phenomena forced revisions. A rival congruence wou id
count as a mere hypothesis, which ought to be ignored, unless it could realize
Newton’s ideal of empirical success comparably well. As we pointed out above,
the G-world flat-plane congruence is clearly inferior to the standard congruence

on this criterion of empirical success.
Commitment to the standard Euclidean congruence at the scales and toler-

ances corresponding to what Riemann calls the bounds of observation allows the
massive array of approximate measurement data provided by rigid rods to count
as maintained knowledge, even when the extension of our investigations to the
very large leads us to alternative metrical geometries.33 On this way of constru-
ing Kant's empirical realism science is a natural extension to less directly
accessible phenomena of the same ideal of empirical success that underwrites
our everyday practical measuring operations.

Notes

* This paper benefited from criticism of a late draft by Robert DiSalle, Lom Falkenstein, Curtis
Wilson, and Clark Glymour, and from consultation with David Malament, John Earman, Michael
Fricdman, Carl Posy, and Kenneth Manders. None of them is responsible for any of my crrors of

content or emphiasis.
1. Passages from Kant's Critique of Pure Reason are referred to by A and B page numbers,

\ransiations are from Kemp Smilh.

Emily Carson has presented excellent discussions of Kant on intuition in mathematics and Kant on
definition in mathematics which bring out positive aspects of Kant’s account of ostensive constructions
and can add to what 1 discuss here.

2. Euclid does not bother explicitly ciling any justitication. Bu, this construction is an immediate
application of his postulate 2-—to produce a finite straight line continuously in a straight line. (Heath,

154 with discussion on 196-199)
3. Proposition 1.31—Through a given point to draw a straight fine parallel to a given straight line.

(tleath, 315-316)

4. Proposition 1.29—A straight line falling on parallel straight lines makes the aliemate angles
equal to one another, the exterior angle equal to the interior and opposite angle, and the interior angles
on the same side equal 1o two right angles. {Heath, 311-314)

5. Proposition 1.13: 1f a straight line sct up on a straight line make angles, it will make cither two
right angics or angles equal Lo two right angles. (Heath, 275-276)

6. 1 use “perceptual competencies™, rather than “perceptual capacilies” (as lopkins does), in order
1o suggest an analogy between knowing how (o make perceptual judgments, at scales and tolerances
where our ability to discriminate is optimal, and the sort of knowledge of grammatical correctness that

makes a person count as a fluent speaker of a fanguage. My point is to emphasise the normativencss of

Euclidean constructions for perceptual judgments about what count as the many approximately rigid

bodies we observe and manipulate. 1 will be arguing that such norms are grounded in aspects of our
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form of life that make them far less conventional than differences between British and American
English usage or the adoption of metric units for measuring.
7. "This uniqueness is said 10 be implicit in Euclid’s first postulate.

{.ct the following be postulated: to draw 3 straight line from any point 1o any point.

See Heath, 195-196 for discussion and 248 for Ruclid’s appeal (in the proof of proposition £4) to
the impossibility ol having two straight lincs enclase a space.

8. Reichenbach (1958, 32) uses our “seeing” that a straight linc we have drawn connccting two
points is shorter than 3 curved line connecting them as an example of visualization of Euclidean

geomelry.
The power of imagination compelling us to make this assertion is catled the ability of
visualization.

As we shall see, Reichenbach argues thal the normative basis for such visualization is a
convention—the notion of rigid body buitt into our coordinative definition of congrucace.

9. According to Kant, Berkeley is unable to provide for an adequate distinction between truth and
illusion, because he attempts to make space a mere empirical representation (Prolegomena, appendix
wanslation in Ellington 1985, 1 14). These issues are discussed in more detail in Harper. (1984,
reprinted in Posy 1992)

10. 1 may be worth pointing out that Riemann, like Kant, did not have available modem predicate
logic. Riemann’s ability to appeal to resources of differential equations to construct his notion of a
manifold suggests that Fricdman’s emphasis on the idea that without modem predicate logic there was
no way 1o conceptualize altematives to Euclidean geometry necds some qualification.

(1. The explicitly required sense of locally Euclidean need only hold up to what count as
infinitesimal limiting displaccments.

12. 1t is, therefore, plausible to construe Kant's remark about setting three lines at ripht anples as
intended 1o carry infonmation about constraints on dimensionality with which the domain of actual
perception may be supplemented when constructing possible locations of a sought for object.

13 The quoted passage continucs as follows:

For obviously figures could not be freely shilted and rotated in them it the cusvalure were
pol the same in all dircctions at all points. On the other hand, the metric properties of the
manifold are completcly determined by the curvature; they are therefore exactly the same
in ail the directions around any one point as in the dizections around any other, and thus
(he same constructions can be effected starting trom either; conscquently, in the manilolds

with constant curvature figures may be given any asbitrary position. (Spivak, 147)

When expanding further with discussion of surfaces of constant curvaiure Riemann points out
some differences between surfaces of posilive and negative curvature.

IF one regards these surfaces as possible positions for picces of surface moving in them, as
Space is for bodies, then pieces of surface can be moved in all these surfaces without
stretching, The surfaces with positive curvature can always be so formed that pieces of
surface can even be moved arbitrarily without bending , namely as spherical surfaces, but
those with negative curvature cannot. (Spivak, 148)

14. Helmholtz, On the Facts Underlying Geomelry, which originally appeased in 1868. In 1921
paul Hertz and Mostz Schlick published a collection of lielmholtz’s epistemological writings with
commentaries which they provided. In 1977 Robert S. Cohen and Yechuda Elkana published a
translation of this collection (Helmholiz, EW). In 1962 Morris Klein published a collection in English
of lectures by Helmholtz (PSL).

15. In Ricmann's day the most dirccl way lo measure planclary distances was by triangulation
with light rays by telescope obscrvations. Where available, Radar and faser ranging now provide more
direct and far more accurate distance measurements (Standish 1990). The operalional definition of
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measurement operations as moving rigid rods into coincidences never did have much relevance to any
measurements that counted as part of the practice of Astronomy.

16. Towetti (1984, 105) points out that this example of Riemann’s played a central role
motivating a “space-thcory of matter” put forward, in 1870, by W.K. Clifford.

17. Reichenbach's book was first published, in German, in 1928, All references are to the English
translation, which appeared in 1958.

18. Reichenbach may have inadvertently interchanged y and B here, since his diagram and later
discussion make it faisly clear that B is the vicew Jooking between the shells. In his diagram it is dillicult
10 read the label on the view toward shell §i. 1 assume that this fabef ought 10 ready.

19. It may be worth remarking, however, that the transformation from the space corresponding (o
one of these projections to the space comesponding to the other would appear 10 1everse incongruent
counterparts. It might be interesting to explore whether Reichenbach’s spaces would count as
oricntable.

20. | have been assuming that Reichenbach's description of his space agrees with what would
result from an appropriately detailed specification by systcms of equations in a Riemannian manifold. |
would be more confident of this assumption if it were backed up by somecwhat more detailed
arguments than those Reichenbach provides.

21. He needs more than a brain in a vat or Cariesian demon Hypothesis, according to which

sequences perceptual experiences are recovered only as sequences of subjective episodes. The radical
jective episodes might seem to

empiricist thesis that ultimate data are sequences of incomigible subj
allow for perceptions thal are completely independent of interpretation, but | don’t think Reichenbach
intends, nor that his argument would be well served by, any such subjective empiricism. Kant's
arguments against this thesis have been reinforced by Wittgenstein's private language argument and
further arguments inspired by it.

22. The aspect of Hent2’s semark | focus on is its implication that the whole figure can be surveyed
from a single perspective, not what might be construcd as his suggestion that the single image itself is
all that is required. As we have noted above, Kant’s (e.g. B 134) discussion of applications of
productive imagination to represent figures we can rccognize, like Helmboltz's discussion of
visualization, suggests a serics of successive pesceptions. See DiSalle 1993 (505(T) for mor¢ on the
relation between the roles of successive tepresentations in Kant and Helmboltz.

23. This would be stronger than the senscs of “a priori” | focused on in Hasper 1986. Indeed, if an
appropriate version of nativism is correct then, with appropriate limitations on scale and tolerances,
propositions proved by Euclidcan ostensive constructions would count as @ priori cven according 10
Kitcher's (1980) very restriclive intespretation.

Kant's vicw that ostensive constructions provide a priori warrant would be supportcd by nativism
about space perception. It is not, however, obvious what, if any, sort of nativism corresponds to Kant’s
views on space perception (sec Hatfield 1990, 104, Indecd, it has been argued that the nativism vs.
empiricism conflict does not reflect the most interesting aspects of Kant’s views on space perception
(Falkenstein, 1990). On the other hand, Patricia Kitcher (1990) has been able to use nativism to
illuminate quite interesting aspects of Kant's views on space perceplion.

24. Helmholtz appeals to our leaming of our mother tongue as an example where compelling
unconscious inferences are clearly supported by empirical association, rather than by any connexion
given by nature (1977, 131). It is somewhat ironic that Chomsky, €.g. in his review of B.F. Skinner’s
Verbal Behavior teprinted in Fodor and Katz eds.1964, argues that our capacity to distinguish
grammatical from ungrammatical strings of symbols testilies 1o a wired in program for a universal
grammar.

In perception the so calied “new look” approach emphasises the dependency of perceptual
judgments on background assumptions that are open fo revision (e.g. Gregory 1974). The Maar model
of vision, especially as developed by Ullmann (1979), builds in commitment to Euclidcan constraints
relating shape and changes of images comesponding to changes of oricnlation to interpret visual
motion.

25. Reichenbach calls this a thcorem, but he provides no proof, nor any citation to a proof. lle

does (footnote 1) provide a formula in tensor notation. His suggestion that this counts as 2 theorem
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showing that undetectable forces distorting measuring rods can be specified by transformalions from
one metsic to another is very puzzling. Einstein's discussion of apparent distortions of measuring rods
comesponding to orientation with respect to spacctime curvature representing pravitation is a
description of behaviour of measuring rods without distorting forces (1916 trans. in 1952, 161). The
one clear case of specifying forces to make altemnative assumptions about spacctime structure agree in
predictions is specifications of alternative Newtonian force potentials to offsct alternative assumptions
about what count as inertial frames (Trautman 1965, 109-1 15). The physics for such a force field for
telativistic gravity has not been worked out. Indeed, acceptance of the geometrization of gravitation in
general relativity came afler attempts to give relativistic theories of Newtonian gravitational force
fields were unsuccessful (Tomesti 1983, 137-143). Moreover, the predictions recovered by the
alternative Newtonian force potentials arc about motions of point masses (Froutman, op. cit.). What
distortions such forces would produce on an extended body cannot be specificd without specifying
some details about the internal forces. A lead bar supported in the middie will bend more in a given
gravitational field than a steel bar of the same size and shape. Such obvious differences make it
incredible that Reichenbach’s undetectable distorting forces can be specificd by the tensor he provides.

Part of what scems 10 motivate Reichenbach’s definition of universal force is Einstein’s discussion
of what he describes as the well known physical fact that uniform acceleration of free fall in a
gravitational ficld cannot be distinguished from inertial motion (1952, 114). Where Linstein made
gravily measurable as local curvature by giving up the requirement that it be interpreted as an
undetectable force potential, Reichenbach defends the conventionality of metric geomelry by
suggesting that one could always assume undetectable distorting forces that would make coordinating
definitions for an alternative metric geaerate the same predictions as the standard metric.

Perhaps, Reichenbach did not intend what he called his theorem to count as a detailed
specilication of the force. Maybe the specification of the force is as whatever is nceded to distort
measuring rods so that operationally defined measuring outcomes for the alternative metric will agree
with those of the standard metric. This would make Reichenbach's hypothesis that such forces could
be defined more like the Cartesian demon hypothesis than like any theorem in differential geometry.

Like Einstein (1952, 112-113), Reichenbach (1958, 210-218) endorses Mach’s criticism of
Newton's bucket experiment. Reichenbach (1958, 216-217) suggests that the coordinate independence
(covariance) built into General Relativity makes rotation conventional (just a matter of choosing
coordinates) and also upsets the Copemican world view by making it 2 matter of convention whether
the earth revolves around the sun or the sun around the earth. The work by Cartan, Trautman and
others on covariant spacetime formulations of Newlonian gravitation has made it clear that covariance
with respect 1o rotating coordinate systems does niot make rotation relative. Tn such formulations what
count as the tnue rotations is built into the struciure represented in every coordinate system (Fricdman
1983, 108-114). As Einstein soon realized, the covariance of General Relativity does not make it
support Mach’s conjecture that all rotation is relative. (Tometti 1983, 194-202) David Malament (1985)
has shown that in General Relativity rotation is fixed by the local causal structure that underwrites
what Reichenbach takes 10 be the objectivity of topology.

26. Putnam (1975, vol. I1, 161-168) argucs that this sort of appeal 10 operationalism counts as an
essentialism about meaning which, if atlowed to override considerations of overall coherence, renders
conventionalism trivial.

27. Newton’s ideal of empirical success shares a number of features of Glymour’s bootstrap
confirmation, but its requirements also include hypothetico-deductive prediction and systematic
dependencies which make phenomena measure parameter values rather than merely entailing the given
value inferred (Harper, forthcoming). Glymour (1980, 356-364) shows that, on his notion of bootstrap
confirmation, dropping the unmeasurable flat background inertial frame built into the Newtonian
spacetime formulation of Newtonian gravitation (sec temark on Troutman note 24) gives an empirical
advantage, cven though the it feads 10 exactly the same empirical predictions. ‘This also happens with
Newton’s stronger ideal of empirical success. (DiSalle, Harper and Valluri, forthcoming)

28. Reichenbach’s remark about no outside observer able to look at the £ surface suggests that
perhaps he never intended his conventionalism about geometry {0 extend to conventionalism about

visually perceived shape.
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29. Consider, for example, using a long carpenter’s straight-edge level: One would need
systematic forces that would bend the-edge to duplicate on a flat surface gaps that would be found
when moving it against different parts of surface with a ten foot hemispherical hump, even when

tuming it over 10 switch the side against the surface. One would, also, necd corresponding visual

images to make it look straight and rigid while undergoing ali these distortions.

30. In his endorscment of Reichenbach’s conventionalism Salmon (1980, 25) suggests that such
conventionalism does not mcan that anything poes, because once the coordinative definition is
specified the correct answer can be empirically determined. To have this count as a defense agafnst
radical refativism requires strongly distinguishing between actually being able to deliver on 3 detailed
altemative and the mere conjecture that one could, in principle, do so. As we have seen, however, it is
not at all plausible that anyone could deliver on details that would make Reichenbach’s proposcd
alternatives seriously rival the standard coordinative definitions.

31.Proper atteation to the role of such phenomena in making what Reichenbach would call a
coordinative definition count as viable reveals that appeal to such definitions does not lead to the
conventionalism about geometry that he supposes. DiSalle (forthcoming Erkenninis) discusses more
general implications of this for spacelime theory as physical geomelry. )

32. Newton's idcal of empirical SUCCESS endorses unifications according 10 which several
phenomena give agrecing measurements of a single parameter as well as generalizations that can be
appropriately backed up by measurement (Harper, forthcoming in Earman and Norton). .

it can be argued that the really radical Newtonian revolution was one that installed his |<§eal of
empirical success as 2 higher level standard that was later used to overthrow his theory of Universal
Gravitation. General Relativity does better on Newton's standard of empirical success than Newton's
theory. ( Harper , 0p. cit.)

mmon sense claims to such tolerances and scales can remove what

33, The idea of limiting co i
Wilfrid Sellars (1963) characterized as a radical conflict between claims of the ma!m'ful and 'lhc
scientific images. Only the filure to s0 limit the claims of the manifest image makes it incompatible

with outcomes of scientific investigation.
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