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SERIES PREFACE 

With publication of the present volume, The University of Western Ontario 
Series in Philosophy of Science enters its second phase. The first fourteen 
volumes in the Series were produced under the managing editorship of 
Professor James J. Leach, with the cooperation of a local editorial board. 
Many of these volumes resulted from colloguia and workshops held in con­
nection with the University of Western Ontario Graduate Programme in 
Philosophy of Science. Throughout its seven year history, the Series has been 
devoted to publication of high quality work in philosophy of science con­
sidered in its widest extent, including work in philosophy of the special 
sciences and history of the conceptual development of science. In future, 
this general editorial emphasis will be maintained, and hopefully, broadened 
to include important works by scholars working outside the local context. 

Appointment of a new managing editor, together with an expanded 
editorial board, brings with it the hope of an enlarged international presence 
for the Series. Serving the publication needs of those working in the various 
subfields within philosophy of science is a many-faceted operation. Thus in 
future the Series will continue to produce edited proceedings of worthwhile 
scholarly meetings and edited collections of seminal background papers. How­
ever, the publication priorities will shift emphasis to favour production of 
monographs in the various fields covered by the scope of the Series. 

THE MANAGING EDITOR 

vii 

W. L. Harper, R. Stalnaker, and G. Pearce (eds.), lIs, vii. 
Copyright © 1980 by D. Reidel Publishing Company. 



PREFACE 

This volume is intended for students and professionals in philosophy of 
language, linguistics, decision theory and logic, and for any others who are 
interested in the exciting recent developments relating conditionals to subjec­
tive probability, chance and time. A number of the papers make use of the 
probability calculus, but they are accessible to the general philosophical 
reader. Indeed, these papers constitute a good introduction for students of 
philosophy to those aspects of probability theory that have been used to 
illuminate conditionals. The volume also contains a good introduction to the 
possible worlds approach to conditionals for philosophy students and for 
decision theorists and probability theorists who want to exploit the newly 
articulated relationships between conditionals and probability. 

Included are the classic papers by Robert Stalnaker and David Lewis on 
the possible worlds approach to conditionals, and their classic papers on the 
relationship between conditionals and conditional probability. In addition 
there are a number of more recent papers which extend this work and 
develop new and exciting ways in which research on conditionals and 
research on probability can illuminate each other. Most of these more recent 
papers were delivered at the May 1978 University of Western Ontario work­
shop on pragmatics and conditionals. It became clear at this workshop that 
the interactions between probability and conditionals have resulted in inter­
related new work on the roles of English subjunctive and indicative con­
ditionals and on the proper relationships among subjective probability, 
chance and time. The papers are arranged so as to display these themes along 
the lines on which they naturally developed. An introduction traces the 
development of these themes through the various papers in the volume. 

We are grateful to the following for permission to include the articles 
contained in this volume: 

Robert Stalnaker, " A Theory of Conditionals" which fIrst appeared in 
Studies in Logical Theory, American Philosophical Quarterly Monograph 
Series, No.2, Oxford: Blackwell, 1968. It was reprinted in Ernest Sosa (ed.), 
Causation and Conditionals, Oxford: University Press, 1975. 

David Lewis, "Counterfactuals and Comparative Possibility" which fIrst 
appeared in Journal of Philosophical Logic, 2, 1973. It was reprinted in 

ix 

w. L. Harper, R. Stalnaker, and G. Pearce (eds.), Its, ix. 
Copyright © 1980 by D. Reidel Publishing Company. 



x PREFACE 

D. Hockney et al. (eds.), Contemporary Research in Philosophical Logic and 
Linguistic Semantics, Western Ontario Series in the Philosophy of Science, 
Vol. 4, Dordrecht: Reidel, 1975. 

Robert Stalnaker, "A Defense of Conditional Excluded Middle" which was 
presented at the 1978 U.W.O. Conference and will also appear in Journal 0/ 
Philosophical Logic. 

Robert Stalnaker, "Probability and Conditionals" which first appeared in 
Philosophy o/Science, 37, 64-80,1970. 

David Lewis, "Probabilities of Conditionals and Conditional Probabilities" 
which first appeared in Philosophical Review, 85,297-315,1976. 

Robert Stalnaker, "Letter to David Lewis" which is previously unpublished. 
Gibbard and Harper, "Counterfactuals and Two Kinds of Expected Utility" , 

which first appeared in C. Hooker et al. (eds.), Foundations and Applications 
of Decision Theory, Western Ontario Series in the Philosophy of Science, 
Vol. 13, Dordrecht: Reidel, 1978. 

Robert Stalnaker, "Indicative Conditionals", which first appeared in 
Philosophia, 5, 1975. It also appeared in A. Kasher (ed.), Language in Focus, 
Boston Studies in the Philosophy of Science , Vol. 43, Dordrecht: Reidel, 1976. 

Allan Gibbard, "Two Recent Theories of Conditionals", which was pres­
ented at the 1978 U.W.O. workshop and is not published elsewhere. 

John Pollock, "Indicative Conditionals and Conditional Probability", 
which is a write up of an objection to Gibbard that Pollock raised at the 1978 
workshop. Neither this comment nor Gibbard's reply are published elsewhere. 

Brian Skyrms, "The Prior Propensity Account of Subjunctive Conditionals", 
which grew out of Skyrms' talk at the 1978 workshop and is not published 
elsewhere. 

David Lewis, "A Subjectivist's Guide to Objective Chance", which was 
presented at the 1978 U.W.O. workshop and also appears in R. C. Jeffrey 
(ed.), Studies in Inductive Logic and Probability, Vol. II (pp. 263-93), 
Berkeley and Los Angeles: University of California Press, 1980. 

Thomason and Gupta, "A Theory of Conditionals in the Context of 
Branching Time", which grew out of a paper by Thomason and comments by 
Gupta at the 1978 workshop. It also appears in Philosophical Review. 

Bas van Fraassen, "A Temporal Framework for Conditionals and Chance", 
which was presented at the 1978 workshop and also appears in Philosophical 
Review. 



PART 1 

INTRODUCTION 



WILLI A M L. H A R PER 

A SKETCH OF SOME RECENT DEVELOPMENTS 

IN THE THEORY OF CONDITIONALS 

INTRODUCTION 

The papers discussed in this sketch represent what I take to be a very exciting 
stream in recent work on conditionals. The first section includes two classics, 
Stalnaker's 'A Theory of Conditionals' and Lewis' 'Counterfactuals and 
Comparative Possibility', together with Stalnaker's new paper 'A Defence of 
Conditional Excluded Middle'. These papers contrast sharply with the earlier 
work of Goodman, Chisholm, and others, which attested to the problematic 
character of talk about alternative possibilities by drawing attention to the 
ambiguity and extreme context dependence of our linguistic intuitions about 
counterfactuals. 1 Stalnaker and Lewis proceed by constructing abstract 
models that take as primitive the very sort of alternative possibilities that 
these earlier writers found problematic. They use these models to formulate 
new and interesting questions which can then be used to suggest examples on 
which to test linguistic intuitions. Whatever one thinks about the ultimate 
suitability of the possible worlds account, as an analysis of English condi­
tionals, he must agree that the dispute between Stalnaker and Lewis in these 
papers has considerably sharpened and clarified our linguistic intuitions. 

In addition to the direct testing of models against linguistic intuition, 
Stalnaker attempted, in 'Probability and Conditionals', to defend his account 
by appeal to intuitions about subjective probability. The connection between 
these intuitions and conditionals is suggested by Frank Ramsey's test for 
evaluating conditionals. If this test is correct then one's evaluation of a con­
ditional should be given by his corresponding subjective conditional proba­
bility. Stalnaker showed that this Ramsey test idea forced his conditional 
logic. Lewis responded in 'Probabilities of Conditionals and Conditional 
Probabilities' with a surprising trivialization result that has proved to be one 
of the main constraints on all recent attempts to relate probability and con­
ditionals. It looks as though the price of Ramsey's test, as a paradigm, is to 
either make conditionals radically context dependent or to give up conditio­
nal propositions altogether and endorse a conditional assertion account of 
conditional sentences. 

In 'Counterfactuals and Two Kinds of Expected Utility' Allan Gibbard and 
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4 WILLIAM L. HARPER 

I developed a suggestion of Stalnaker's to show that Ramsey test reasoning 
is not appropriate to guide decision making in certain interesting situations 
like Newcombe's problem and the Prisoner's Dilemma. In these situations 
an act can count as evidence for something even though the agent knows 
it can't causally influence it. Hypothetical reasoning appropriate to guide 
choices must be sensitive to beliefs about causal influence in ways that 
Ramsey test reasoning is not. This suggests that decision making can provide 
a rival to the Ramsey test paradigm. It turns out that the Ramsey test para­
digm seems appropriate for indicative conditionals while the distinct decision 
making paradigm seems appropriate for subjunctive conditionals. 

In 'Indicative Conditionals' Stalnaker defended his theory as an account 
of indicative as well as subjunctive conditionals. On this account indicative 
conditionals are context dependent. Allan Gibbard in 'Two recent Theories 
of Conditionals' extends the Ramsey test account of indicative conditionals 
along conditional assertion lines developed by Ernest Adams. He argues 
against both the classical material truth functional account and against 
Stalnaker's account. In 'Indicative Conditionals and Conditional Probability' 
John Pollock attacks Ramsey's test as a paradigm for indicative conditionals 
and Gibbard responds in 'Reply to Pollock'. 

The decision making paradigm for subjunctive conditionals is developed by 
Brian Skyrms in 'The Prior Propensity Account of Subjunctive Conditionals'. 
He proposes that the appropriate evaluation of such conditionals ought to 
be given by the subjective expectation of the relevent objective conditional 
chance. In 'Subjectivists Guide to Objective Chance' Lewis illuminates the 
controversial idea of objective chance by calling attention to intuitions 
relating subjective probability and beliefs about objective chance. These 
suggest important connections between objective chance and branching 
time. Thomason and Gupta, 'A Theory of Conditionals in the Context of 
Branching time', investigate conditionals in the context of worlds with 
branching time and van Fraassen builds on their investigation to model 
both conditionals and chance in 'A Temporal Framework for Conditionals 
and Chance'. 

I. THE CLASSIC STALNAKER-LEWIS DEBATE 

1. In his 1968 paper 'Theory of Conditionals' Robert Stalnaker motivated 
his account by calling attention to Frank Ramsey's test for evaluating the 
acceptability of hypothetical statements (Stalnaker, 1968, this volume, 
pp. 41-55). With some modifications introduced to handle antecedents 



A SKETCH OF SOME RECENT DEVELOPMENTS 5 

believed to be counterfactual, Ramsey's test can be summed up in the fol­
lowing slogan: 

First, hypothetically make the minimal revision of your stock of beliefs required to 
assume the antecedent. Then, evaluate the acceptability of the consequent on the basis 
of this revised body of beliefs. 

Stalnaker suggested that an appropriate account of truth conditions for con­
ditionals ought to correspond to this Ramsey test account of acceptability 
conditions (Stalnaker, 1968, this volume, p. 44). The obvious counterpart 
to the minimal revision of a body of belief that would be required to make 
an antecendent acceptable is the minimal revision of a world that would be 
required to make an antecedent true. So, he makes his conditional true 
just in case the consequent would be true in the minimal revision of the 
actual world required to make the antecendent true. 

Stalnaker's theory is an application of this idea to the kind of possible 
worlds semantics used in modal logic. He uses a selection function to re­
present minimal revisions of worlds. Such a function f assigns to each world 
w and sentence A a world f(A, w), that is to count as the minimal revision 
of w required to make A true. In possible world semantics the content of 
a statement is given by specifying which of the possible worlds would make 
it true. Where A > B is a conditional with antecedent A and consequent 
B Stalnaker's account specifies. 

A > B is true in w iff B is true in j{A, w). 

This makes the semantical content of a conditional sentence relative to 
selection of a nearest world. 

Stalnaker proposes a number of general conditions of any reasonable 
way of selecting what is to count as the nearest antecedent world (1968, 
this volume, pp. 46-47). These conditions generate an interesting logic for 
conditional sentences? A number of features of this logic fit very well 
with linguistic intutitions about specific arguments involving conditionals. 
For example, the antecendent strengthening law, 

A>B 
:. (A 1\ C) > B 

is not valid in Stalnaker's logic, though it is valid for material conditionals. 
Consider the following English argument: 
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If I put sugar in this cup of tea it will taste frne 

:. If I put sugar and diesel oil in this cup of tea it will taste fine 

This is clearly of the same form as the antecedent strengthening law, and it 
is equally clearly not valid. 

Of special interest for our purposes is the following principle which 
Stalnaker takes as an axiom for his conditional logic : 

(SA) OAJ[~(A>B) == (A>~B)]. 

Validity of this schema, which we shall call Stalnaker's axiom, corresponds 
to the idea that the negation of a conditional with a possible antecedent 
is equivalent to a conditional with the same antecedent and negated con­
sequent. In the presence of the rest of his logic, Stalnaker's axiom is equi­
valent to conditional excluded middle, 

(CEM) (A> B) v (A > ~B). 
Validity of both of these principles corresponds directly to the assumption 
that a single world is selected as the closest antecedent world. If f(A, w) 
is the world selected, then either B is true there or· ~ B is true there and the 
corresponding conditionals are true or false in w accordingly. Thus, either 
(A> B) or (A > ~B) is true, and ~(A > B) is true just in case (A > ~B) 
is true. 

2. In his 1972 paper 'Counterfactuals and Comparative Possibility' (Lewis, 
1972, this volume, p. 60), Lewis points out that it is not plausible to assume 
that comparative similarity of possible worlds is such that there will always 
be a unique nearest antecedent world. For an antecedent such as 'Bizet and 
Verdi are compatriots' a world where they are both French and a world 
where they are both Italian might be equally close to the actual world, and 
both might be closer than any others. If this were so then selecting one over 
the other would be arbitrary. (Lewis, 197:2, this volume, p. 60). He pro­
poses an analysis that does not make the semantical content of a counter­
factual depend on any arbitrary tie breaking selection in such cases. (Lewis, 
1972, this volume, pp. 63-64). 

I shall use Lewis' notation to formulate his truth conditions. Lewis re­
stricts his theory to conditionals of the sort we usually express in English 
with subjunctive constructions, while Stalnaker intends his theory to apply 
to indicative as well as to subjunctive conditionals. j It will be useful to have 
a notation for explicitly subjunctive conditionals, so let 
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AD+B 

abbreviate "If it were that A, then it would be that B". This notation is 
suggestive of the relationship Lewis proposes between would and might 
conditionals, which parallel the relation between necessity and possibility. 

Lewis' truth conditions are formulated directly in terms of comparative 
similarity of possible worlds. Where A is possible, he specifies: 

A D+ B is true at w iff, some (A 1\ B)-world is closer to w than 
any (A 1\ ~ B) world. 

Where the antecedent A is impossible Lewis makes the conditional true 
vacuously, as does Stalnaker.4 If there is a unique closest A-world, Lewis' 
analysis agrees with Stalnaker's. If there are ties, however, Lewis' analysis 
will make A D+ B true just in case every nearest A -world is a B world. 

Given the plausible assumption about comparative similarity of worlds 
where Bizet and Verdi would be compatriots, Lewis' analysis makes both of 

(1) "It is not the case that if Bizet and Verdi were compatriots 
Bizet would be Italian." 

and 

(2) "It is not the case that if Bizet and Verdi were compatriots 
Bizet would not be Italian." 

come out true. This would be a counter-example to Stalnaker's axiom, 
and conditional excluded middle; but, as Lewis himself suggests (Lewis, 
1973, p. 80), asserting both these sentences together sounds like a contra­
diction.5 

According to both Stalnaker and Lewis (Stalnaker, 1968, this volume, 
p. 49; Lewis, 1972, this volume, p. 61) one reason this sounds like a contra­
diction is that, in English, a common way of negating a conditional is to 
assert the corresponding conditional with negated consequent. Stalnaker's 
axiom corresponds directly to this practice. 

Lewis counters this appeal to common usage by introducing the might 
conditional. Let, 

A o-+B 

abbreviate "If it were that A then it might be that B". According to Lewis, 
it is very natural to have 

~ (A D+ B) iff (A 0-+ -B) 
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so that the might conditional provides an idiomatic way of negating a would 
conditional. It does not sound at all contradictory to assert both 

(1') "If Bizet and Verdi were compatriots Bizet might be Italian" 

and 

(2') "If Bizet and Verdi were compatriots Bizet might not be Italian". 

If (1') is an idiomatic way of asserting what (1) asserts in a contrived way, 
and similarly for (2') and (2), then asserting (1) and (2) together is, perhaps, 
not really contradictory after all. On his side, Lewis challenges Stalnaker 
to provide an analysis of English might conditionals. (Lewis, 1972, this 
volume, p. 63). 

3. In 'Defense of Conditional Excluded Middle', (Stalnaker, 1979, this 
volume, pp. 87-103), a new paper delivered at the 1978 U. W.O. Spring 
Workshop on Pragmatics and Conditionals, Stalnaker responds to Lewis' 
criticisms. He grants that it is not reasonable to assume there will always 
be a unique nearest antecedent world, but likens his relativization of con­
ditionals to selection functions to the relativization of quantifiers to a 
universe of discourse and the relativization of predicates to propositional 
functions. In each case the abstract semantic theory assumes well defined 
sets with sharp boundaries, but realistic applications present indeterminacies. 
Stalnaker suggests that an account of vagueness adequate to handle this 
problem for the usual semantics for quantifiers and predicates will also handle 
it for his semantics for conditionals. (Stalnaker, 1979, this volume, pp. 89-90). 

He gives substance to this suggestion by endorsing van Fraasen's general 
account of vagueness (Stalnaker, 1979, this volume, p. 90).6 On this account 
a context with indeterminacies is represented by a set of sharp valuations­
all the various possible ways of arbitrarily settling the indeterminacies. A 
sentence is true (false) in such a vague context just in case it would come out 
true (false) in every one of these corresponding sharp valuations; otherwise, 
it is indeterminate. When this account is applied to the Bizet-Verdi example 
the sentences 

(1 a) "If Bizet and Verdi were compatriots then Bizet would be Italian" 

and 

(2a) "If Bizet and Verdi were compatriots then Bizet would not be 
Italian" 
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are both indetenninate; but, their disjunction is true, because it comes out 
true on both ways of arbitrarily breaking the tie by selecting a world as 
nearest. 

Lewis discussed this way of reconciling Stalnaker's selection function with 
ties. In addition to arguing that it cannot meet his challenge to account 
for the might conditional, Lewis faults it because it required for its appli­
cation another assumption about nearness which he calls the limit assump­
tion (Lewis, 1972, this volume, p. 63; Lewis, 1973, pp. 30, 81). This is 
the assumption that there always be some antecedent worlds that are at least 
as close as any others. Lewis suggests that there may be cases where there 
are no closest A-worlds at all, but only an infinite sequence of ever closer 
A-worlds (leWis, 1972, this volume, pp. 63, 69, 70; Lewis, 1973, pp. 19,20). 
Perhaps, worlds where I am over seven feet tall, are ordered according to 
how much my height in them differs from my actual height. If so, then for 
any world where I am 7 + e feet tall there will be a closer world where I am 
7 + (eI2) feet tall. Lewis' analysis is designed to work even in this kind 
of case, but without some closest worlds to select from, a selection function 
would be worse than arbitrary. It would have to strongly violate the nearness 
relation by choosing some world over closer worlds. 

One counterintuitive feature of the example was pointed out by Nollaig 
MacKenzie when Lewis gave a talk at Toronto in 1971. For every positive 
e, the counterfactual "If I were over 7 feet tall then I would be under 7 + e 
feet tall" comes out true. In recent years John Pollock (Pollock, 1976, pp. 
18-21), and Hans Herzberger (Herzberger, 1979), as well as Stalnaker 
(Stalnaker, 1979, this volume, pp. 97-98) have argued that this leads to 
serious difficulty for Lewis' rejection of the limit assumption. Let 

rCA) = {B:A D-+ B is true}. 

If A is "I am over 7 feet tall" and worlds are ordered as we have supposed, 
then, according to Lewis' account, rCA) will contain A together with all 
sentences of the fonn "I am under 7 + e feet tall", for - say every positive 
rational. But, this insures that for every real number x, my height would 
not equal x feet if I were over 7 feet tall. Stalnaker points out that Lewis' 
relation between would and might conditionals makes this yield the even 
more damaging result that there is no real number x such that my height 
might be x if I were over seven feet tall (Stalnaker, 1979, this volume, p. 
97).7 Problems of this kind are always available to plague the intelligibi­
lity of any situation where an antecedent is purported to lead to violation 
of the limit assumption. 
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If the limit assumption is justified, then lewis' case against Stalnaker 
depends on his challenge to account for might conditionals. Stalnaker 
responds by proposing 

O(A >B) 

as a rendering of "If it were that A then it might be that B". This makes the 
might conditional a special case of more general might constructions and 
Stalnaker suggests that 'might' has the same range of senses, in his conditional 
constructions, as it has generally. Normally it expresses epistemic possibility, 
but sometimes it expresses non-epistemic possibility of one sort or another 
(Stalnaker, 1979, this volume, p. 99). 

lewis has already rejected this proposal on the basis of the following 
counter example (lewis, 1973, pp. 80-81): Suppose there was no penny 
in my pocket, but I did not know it. Consider, 

"If I had looked, I might have found a penny". 

According to lewis, this English might conditional is plainly false, but the 
corresponding O(A > B) construction comes out true whether 0 is interpreted 
as epistemic or as alethic possibility. On the epistemic interpretation it 
comes out true; because, for all I know, I would have found a penny if I 
had looked. On the alethic interpretation it comes out true; because, having 
no penny in my pocket was merely a contingent fact, not a necessary truth. 

Stalnaker grants that the non-epistemic sense Lewis intends is one possible 
interpretation of the example, and he proposes a quasi-epistemic reading 
of might on which his construction captures it (Stalnaker, 1979, this volume, 
pp. 100-101). Consider what would be compatible with an idealized state of 
knowledge in which all the relevant facts were known (Stalnaker, 1979, this 
volume, p. 101). On this reading the example comes out plainly false, as 
Lewis intends. Moreover, so long as there are indeterminacies in the language 
this kind of possibility does not collapse into truth (Stalnaker, 1979, this 
volume, p. 100). Indeed, in cases like the Bizet and Verdi example it makes 
Stalnaker's might construction behave very like lewis' (Stalnaker, 1979, 
this volume, p. 101). 

One advantage Stalnaker attributes to his construction is that it includes 
the epistemic might as another special case (Stalnaker, 1979, this volume, 
p. 101). This lets it explain why denying a would conditional while affirming 
the corresponding might conditional has the same air of anomaly while 
affirming the corresponding might conditional has the same air of anomaly 
as Moore's paradox (Stalnaker, 1979, this volume, pp. 99, 100, 102).8 This 
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runs counter to the prediction Lewis' construction gives. Moreover, the 
pervasiveness of the anomaly suggests that in might conditionals, just as 
for might generally, the epistemic reading is usually dominant. 

II. CONDITIONALS AND CONDITIONAL BELIEF 

(The Ramsey Test Paradigm) 

1. In his 1970 paper 'Probability and Conditionals' (1970, this volume, 
pp. 107-128), Stalnaker defended his conditional logic by developing con­
nections between the Ramsey test idea and the Bayesian account of rational 
conditional belief. He suggests that a rational agent's subjective probability 
assignment to a conditional he evaluates by Ramsey's test ought to be the 
same as the subjective conditional probability he assigns to its consequent 
given its antecedent. This suggestion has come to be known as Stalnaker's 
Hypothesis: 

(SH) peA > B) = PCB I A), 

where peA > B) is the agent's degree of belief in the conditional A > B, 
and PCB I A) is his conditional degree of belief in B given A. In the Bayesian 
model, an agent's conditional degree of belief in B given A is just the evalu­
ation of B he would deem appropriate on the basis of the minimal revision 
of what he now believes required to assume A. But, such an evaluation is 
just Ramsey's test, so that P(B I A) measures how well A > B does on this 
test, and if degree of belief in A > B is guided by this test performance 
then peA > B) should be equal P(B I A). 

Consider Stalnaker's axiom and conditional excluded middle for cases 
where the agent's degree of belief in an antecedent A is non-zero. For such 
cases, the basic conditional probability law for negations is 

(PN) P(-B I A) = 1-PCB I A). 

Given Stalnaker's Hypothesis, this corresponds to Stalnaker's Axiom 

(SA) OA ::> (-(A> B) == (A> -B». 

We have 

(1) P(-(A > B» 1 -peA >B) I-P(B IA) 

and 

(2) peA > -B) = P(-B I A), 
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so that (PN) insures that -(A> B) and (A > -B) always get the same sub­
jective probability assignment. This in turn insures that 

(CEM) (A >B)v(A >-B) 

always gets assigned subjective probability one. 
In the orthodox Bayesian model conditional belief on A is only dermed 

when the agent's degree of belief in A is non-zero. In order to extend the 
Stalnaker Hypothesis to cover Ramsey tests for counterfactuals, the Bayesian 
model must be extended so that PCB I A) can be well defined even when 
P(A) is zero. Stalnaker constructs such an extension by explicating the idea 
of minimal revisions of bodies of belief. Let K be the content of all the 
sentences to which an agent assigns subjective probability 1, and let K(A) 
be the content of all the sentences to which he assigns subjective conditional 
probability 1, given A. The core of Stalnaker's construction is a set of 
conditions motivated by the idea that K represents what the agent accepts 
(we may call it the agent's acceptance context), and K(A) represents the 
minimal revision of K required to accept A (we may call this the agent's 
A-assumption context). These conditions allow the A-assumption context, 
K(A), to be consistent even when A is inconsistent with K.9 

Stalnaker relativises the orthodox Bayesian coherence requirement to 
assumption contexts, so that 

P(B IA) 

is to be a coherent guide to decisions where the possible outcomes are 
exactly those consistent with K(A). For cases where A is treated as im­
possible, so that no outcomes are consistent with K(A), he adopts the conven­
tion that PCB I A) = 1 for every B. The result of these restrictions is a repre­
sentation theorem that allows as extended conditional belief functions on 
the sentential calculus (sentences closed under negation and conjunction) 
exactly those functions that satisfy Karl Popper's axioms for conditional 
probability.1O The important feature of Popper's axiomatization is that 
PCB I A) can be non-trivial even when peA) is zero. Stalnaker's represent­
ation theorem allows Popper functions to be interpreted as possible sub­
jective belief states of a Bayesian agent who can entertain non-trivial con­
ditional beliefs relative to counterfactual assumptions. 

In order to formulate the Ramsey test restriction on extended conditional 
belief for languages closed under a primitive conditional connective, Stalnaker 
introduces subfunctions. For each sentence C and extended conditional belief 
functionP, the sub function of Pwith respect to Cis defined as follows: 
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Pe(B IA) == P(A >B 1('). 

The restriction then is that P, all sub functions of P, sub functions of sub­
functions, and so on, must satisfy the Stalnaker Hypothesis as well as all the 
other conditions. This adds the Ramsey test evaluation of P(A > B) to the 
general requirements on rational extended conditional belief. 

A sentence A for a language L with a primitive conditional connective 
is Ramsey Test valid just in case it receives conditional belief 1 on every 
sentence in L for every Ramsey-Test extended belief function on L. That is 
to say, 

A is Ramsey Test valid iff for every Ramsey test P on L, 
P(A I (') == 1 for all sentences C of L. 

Stalnaker was able to prove that the Ramsey Test valid sentences are exactly 
the theorems of his conditional logic. 

2. Stalnaker's conditional belief semantics generated his conditional logic 
from the Ramsey test paradigm for evaluating the acceptability of condi­
tionals. This provided a strong argument in favor of his side of the debate 
with Lewis on the validity of the Stalnaker axiom and conditional excluded 
middle. Lewis' counter argument was a surprising trivialization result. In 
'Probability of Conditionals and Conditional Probability' (Lewis, 1975, 
p. 129 below) he proved that no probability function meeting Stalnaker's 
conditions can assign positive probability to three or more pairwise incom­
patible statements. This is a devistating result, for it shows that Stalnaker's 
conditional belief functions cannot represent non-trivial belief states. 

Lewis' trivialization does not depend on Stalnaker's extension of con­
ditional belief to include counterfactual conditional probabilities. Any 
probability function (a classical one where p(B I A) is undefined when 
P(A) == 0 as well as any Popper function) which satisfies the Stalnaker 
hypothesis and 

(CSH) P(A -+ B I C) == P(B I A 1\ (,), if peA 1\ C) =1= 0 

for any binary connective -+, is shown to be trivial by Lewis' result. The 
condition (CSH) is just the result of extending the Stalnaker hypothesis 
to conditional probabilities and requiring that conditional probabilities 
satisfy the standard laws. 

Lewis first presented his result in June 1972 and began circulating it 
in manuscript shortly afterwards.ll It received so much attention that a 
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number of papers (and part of one book) devoted to working out its conse­
quences for the Ramsey test idea were in print (or forthcoming) before 
Lewis' paper was finally published in 1976_12 van Fraassen (1976a) 
developed a Stalnaker Hypothesis conditional that can be incorporated 
in non-trivial belief systems, by making the conditional radically context 
dependent so that the conditional proposition evaluated for assigning the 
unconditional probability 

p(A >B) 

need not be the same as the conditional proposition evaluated in assigning 
the conditional probability 

p(A >B I C). 

van Fraassen proved that the Stalnaker hypothesis can hold non-trivially 
if the Stalnaker logic is weakened by dropping a conditional antecedent 
substitution principle 

(CAS) (A> B)" (B > A)" (A > C) J (B > C) 

which both Lewis and Stalnaker share. He also showed that the Stalnaker 
hypothesis can hold non-trivially with the full Stalnaker logic if compounds 
involving conditionals are limited to 

A>B 

(A >B»C 

A >(B>C) 

where none of A, B, or C contains conditionals. Stalnaker (I974, pp. 302-
306) proved that the trivialisation cannot be avoided for the full Stalnaker 
logic if one allows arbitrary truth functional compounds with conditionals 
in them, such as 

as consequents. 
Ernest Adams had been working on the Ramsey test for some years before 

these developments (Adams, 1966). He used Lewis' result to argue that 
English indicative conditionals are used to make conditional assertions 
rather than to assert conditional propositions (Adams, 1975, pp. 7, 8). 
According to Adams, the Ramsey test paradigm is right in that assert ability 
of indicative conditionals goes by the corresponding conditional probability, 
but this is not to be construed as the probability that a conditional 
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proposition is true. For Adams, it may well be that there is no such thing 
as an indicative conditional proposition.14 

3. Lewis' paper (Lewis, 1975, this volume, pp. 129-147) also contains 
a probability argument supporting H. P. Grice's (William James 'Lecture 
manuscript) defense of the truth functional material conditional as an inter­
pretation of the English indicative conditional. According to Grice's account 
of conversation, it would be misleading to assert a material conditional 
(A -:J B) to the extent that the probability of vacuity, p( -A), is high and 
the probability of falsity, P{A /\ -B), is a large fraction of the probability 
of non-vacuity, P{A). Lewis calls attention to the following probability 
result, which holds so long asp{A) > 0: 

P{B I A) = P(A -:JB) - [P(-A)'(p(A /\ -B)/P(A»] 

This tells us that the conditional probability of the consequent on the ante­
cedent is just the result of diminishing the probability of P(A -:J B) by the 
factors which would make its assertion misleading. According to Lewis, 
the Ramsey test idea is right in that the conditional probability P(B I A) 
is the appropriate evaluation of the assertability of the indicative conditional 
"If A then B". Moreover, Adams is right that this is not the same as the 
probability that the proposition asserted is true. But, this need not be because 
there is no indicative conditional proposition, as Adams suggests. Rather, 
the conditional probability is just that diminution of probability of truth 
needed to account for factors which would render assertion misleading. 

Lewis suggests that an important advantage of this account over Adam's 
conditional assertion account is that the material conditional interpretation 
automatically includes embedded conditionals while the conditional assertion 
account fails to do so. 

III. DECISION MAKING CONDITIONALS 

(Another Paradigm) 

1. When Lewis first presented his trivialization result in 1972, Stalnaker 
was on hand to respond. His reaction was to give up the Stalnaker hypo­
thesis and to go on to argue that conditionals appropriate to guide decisions 
ought to violate the Stalnaker hypothesis in certain interesting kinds of 
decision contexts. These contexts are ones where an act is epistemically 
relevent to a desired outcome without being able to causally influence the 
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outcome. Newcomb's problem and the prisoner's dilemma provide examples 
of such contexts. The following example from 'Counterfactuals and Two 
Kinds of Expected Utility' (Gibbard and Harper, 1978, this volume, pp. 153-
190), which develops Stalnaker's suggestion, should make it clear that 
decision making provides a role for conditionals for which Ramsey's test is 
not the appropriate guide. 

Robert Jones is one of several rising young executives competing for a 
very important promotion. The company brass have found the candidates 
so evenly matched that they have employed a psychologist to break the 
tie by testing for personality qualities correlated with long run success in 
the corporate world. The test was administered to Jones, and the other 
candidates, on Thursday morning. The promotion was decided Thursday 
afternoon on the basis of the test scores, but it will not be announced until 
Monday. On Friday morning Jones learnt, through a reliable company 
grapevine, that the promotion went to the candidate who scored highest 
on a factor called ruthlessness; but, he is unable to discover which of them 
this is. 

It is now Friday afternoon and Jones is faced with a decision. Fred Smith 
has failed to meet his minimum output quota for the third straight assessment 
period, and a long standing company policy rules that he should be fired 
on the spot. Jones, however, has discovered that Smith's recent work diffi­
culties have been due to a fatal illness suffered by his now deceased wife. 
Jones is quite sure that Smith's work will come up to a very high standard 
after he gets over his loss, provided he is treated leniently. Jones also 
believes he can convince the brass that leniency to Smith will benefit the 
company. Unfortunately, he has no way to get in touch with them before 
they announce the promotion on Monday. 

We may represent Jones' preferences by the following matrix, where 
J is the event of Jones getting his promotion, -J is the event of Jones failing 
to get his promotion, F is the act of firing Smith, and -Fis the act of Jones 
not firing Smith. 

J -J 

F 100 o 
-F 105 5 

Jones' utilities reflect the fact that he would rather not fire Smith in the 
event that he got his promotion, and that he would also rather not fire 
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Smith in the event that he did not get his promotion. These utilities also 
show that Jones cares twenty times as much about his promotion as he 
does about firing Smith. 

Jones believes that his behaviour in the decision he now faces will pro­
vide evidence about how well he scored on the ruthlessness factor in 
Thursday's personality test. These beliefs are summed up in the following 
subjective conditional probability assignments he makes: 

p(J I F) = 0.75 p(~J I F) = 0.25 

p(J I ~F) = 0.25 p(~J I ~F) = 0.75. 

If Jones were to use these conditional probabilities to guide his expected 
utility reasoning in this decision he would fire Smith. Using these condi­
tional probabilities and Jones' utilities the expectation of firing Smith is 

(l00 x 0.75) + (0 x 0.25) = 75 

and the expectation of not firing smith is 

(l05 x 0.25) + (5 x 0.75) = 30. 

But, Jones believes that his promotion is causally independent of his firing 
Smith or not firing Smith. He knows that his promotion is already decided 
on the basis of the test yesterday, and that nothing he does today can change 
the relevant test scores. 

These important causal beliefs of Jones are not reflected in the conditional 
probabilities that appear in his matrix. Let 

A~O 

abbreviate the subjunctive conditional 

If I were to perform A then 0 would obtain. 

According to Stalnaker's suggestion, the appropriate probabilities for com­
puting expected utility in Jones' matrix ought to be 

P(F~J) 

p(~F~J) 

p(F~~J) 

p(~F~~J). 

In place of the conditional probability of the event given the act, we propose 
the unconditional probability of the corresponding subjunctive conditional. 
This gives a simple way of representing Jones' belief that what he does now 
cannot causally influence whether he got the promotion. He will accept, 
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assign probability 1 to, the following biconditionals 

and 
(F~-J) == (-F~J). 

But, if he accepts a biconditional he must assign the same subjective proba­
bility to each side. So P(F ~ J) is the same as P( - F ~ J) while 
p(F~-J) is the same as p(-F~J). With such agreement in probabi­
lities the expected utility of not firing Smith will be higher than that of firing 
Smith. Not fuing Smith seems, clearly, to be the rational decision for Jones, 
given the utilities and beliefs we have ascribed to him. 

Using conditional probability to compute expected utility in cases like 
Jones' is to confuse stochastic dependence with the causal dependence 
that ought to count in decision making. Such cases are not common, and 
subjective stochastic dependence (and independence) is often a good guide 
to the agent's relevant causal beliefs. Therefore, our model ought to insure 
that Stalnaker's hypothesis will hold when conditional probability reasoning 
would be appropriate. Given certain weak constraints on the logic of a 
decision making conditional we have P(A ~ 0) = p(0 I A), provided that 
P(A~OIA)=P(A~O) (Gibbard and Harper, 1979, this volume, 
pp. 155-156). This restricts violations of the Stalnaker hypothesis to just 
those cases, like Jones', where whether an act is performed or not counts 
as evidence about what would happen if it were to be performed. 

2. Situations of the sort faced by Jones provide contexts where a conditional 
appropriate to guide decision making should not be evaluated by Ramsey's 
test. One can give a rough and ready account of conditions under which such a 
decision making conditional ought to be accepted. One ought to accept 

A~O 

just in case he believed that one of the following two cases obtained: 

(a) Doing A would bring it about that O. 

(b) 0 will obtain, and doing A would not change this. 

With a little generalization to handle antecedents other than actions, one can 
obtain a rival to the Ramsey test paradigm for evaluating the acceptability of 
conditional sentences. On this rival account 

P~Q 
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would be acceptable just in case one accepted either of 

(a') P would bring about Q. 

or 
(b') Q, and P would not change this. 

These claims are infected with the vague and difficult notion of causal 
bringing about; but, as the Jones example illustrates, this may be all to the 
good, for, as such examples show, some way of bringing in an agent's beliefs 
about what he can causally influence is required by an adequate account 
of rational decision making. 

Let us tryout these two acceptability accounts, the Ramsey test and 
our rough causally sensitive paradigm, on a version of an example used by 
Ernest Adams (Adams, 1970) to illustrate differences between English 
indicative and subjunctive conditionals. 

Consider: 

(1) If Oswald didn't shoot Kennedy, then someone else did. 
(S) If Oswald hadn't shot Kennedy, then someone else would have. 

The Ramsey test seems to accord quite well with the way we evaluate the 
acceptability of the indicative conditional (1). For most of us, the claim that 
Kennedy was shot is a salient piece of what we take to be our accepted 
body of knowledge. When each of us hypothetically revises his body of 
knowledge to assume the antecedent that Oswald didn't shoot Kennedy, 
he retains this salient claim that Kennedy was shot. This in turn, forces 
high creedence for the consequent that someone shot Kennedy. This 
Ramsey test reasoning seems to be the right account of the high creedence 
most of us place in the indicative conditional (I). 

When we turn to the subjunctive conditional (S) the causal paradigm is 
much more appropriate than Ramsey's test. Presumably, we would not 
accept (S) unless we believed something like the following story: 

Other marksmen were in position to shoot Kennedy if Oswald 
missed or failed to fire, or were there to shoot Kennedy regard­
less of Oswald. 

This is exactly the kind of story that would render (S) acceptable on the 
causally sensitive paradigm. 

These examples suggest that the differences between these two para­
digms for evaluating the acceptability of conditional sentences correspond, 
in some case at least, to a difference one wants to have between acceptability 
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evaluations appropriate for English indicative and subjunctive conditionals. 
When one realizes that the kind of hypothetical reasoning exemplified 
by Ramsey's test plays an important role in organizing our knowledge and 
planning for knowledge change, and that the kind of hypothetical reasoning 
exemplified in our causally sensitive paradigm plays an important role in 
guiding action, then he should not be surprized to discover that English 
provides conditional constructions appropriate for each of these important 
kinds of job .IS 

I V. I N DIe A T I VEe 0 N D I TI 0 N A L S 

1. In 'Indicative Conditionals' Stalnaker defends his theory as an account 
of English indicative conditionals by developing pragmatic principles to 
explain away the apparent validity of the following argument: "Either 
the butler or the gardener did it. Therefore, if the butler didn't do it, the 
gardener did it". Stalnaker calls this the direct argument and warns that 
its validity would establish that the indicative conditional is logically equi­
valent to the truth functional material conditional (Stalnaker, 1975, this 
volume, p. 193).16 In order to have its apparent validity not count against 
his theory he argues that the inference is reasonable even though it is not 
valid. (Stalnaker, 1975, this volume, p. 194). 

Reasonable inference is a pragmatic relation between speech acts. 
According to Stalnaker, an inference is reasonable just in case, in every 
context in which the premisses could be appropriately asserted, it is im­
possible to accept the premisses without being committed to the conclusion 
(Stalnaker, 1975, this volume, p. 195). An argument is valid, on the other 
hand, just in case the propositions asserted in its premisses semantically 
entail its conclusion. The two notions can differ because what some sentences 
assert is context dependent. Thus, 

:. "I am here now" 

is a zero premissed reasonable argument, but its conclusion does not assert 
a semantically valid proposition. 

For Stalnaker's purposes, the most important feature of a context is 
the presumed common knowledge or common assumption of the partici­
pants in the discourse. Using possible worlds, these background presuppo­
sitions can be summarized as a set of worlds. Stalnaker calls this the context 
set. An assertion is appropriate in a given context only if the proposition is 
neither inconsistent with nor entailed by the context set. When an 
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appropriate assertion is made the context set is reduced to just those 
worlds in it that are consistent with the proposion asserted. Think of the 
context set as the relevent candidate situations which the presumed back­
ground knowledge leaves open. An appropriate assertion of proposition 
A acts as the claim that the actual situations is one of the A-candidates. 

Stalnaker imposes a Grice-like (H. P. Grice William James Lectures 
manuscript) condition on appropriate assertion of disjunctions 

(G) Asserting a disjunction is appropriate only in a context which 
allows either disjunct to be true without the other. 

He also imposes a condition on selection functions that makes indicative 
conditionals context dependent 

(C) If an antecedent is compatible with a context set then the ante­
cedent world selected in that context should also be compatible 
with it. 

This principle need not apply to subjunctive conditionals, according to 
Stalnaker, because the subjunctive mood in English is a conventional device 
for indicating that presuppositions are being suspended (this volume, p. 
200). 

These conditions are sufficient to render the direct argument reasonable .17 

Suppose that A vB is appropriate to a given context. Then, according to 
condition (G), B" -A is compatible with its context set. Now add A vB 
to the presumed background knowledge, thus reducing the context set to 
just its A v B-worlds. Consider the conditional, 

If-A thenB. 

The antecedent -A is compatible with the new context set, since all the 
B" -A-worlds of the old context set will remain after A vB is assumed. 
By condition (C) therefore, the A-world selected to interpret the conditional 
must also be in the new context set. But, since all these are A vB-worlds, 
any -A-world in it must be a B-world. 

2. In 'Two Recent Theories of Conditionals' Gibbard shows that Adams' 
version of the Ramsey test account and Stalnaker's theory give the same 
logic on the limited domain to which Adams' account applies. But, he argues 
that the interpretations given by the two accounts make them appropriate 
for quite different jobs. Roughly, Adams' account is appropriate for indi­
cative conditionals, while Stalnaker's is appropriate for subjunctives. Indeed, 
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Gibbard's paper gives substance to the suggestion that the decision making 
and Ramsey test paradigms correspond to the different ways in which sub­
junctive and indicative conditionals are typically used. He explicates the 
grammatical features that distinguish subjunctive from indicative conditionals 
and argues that these correspond to the important semantical differences 
one would expect from our two paradigms. He interprets the subjunctive 
conditional as a proposition, but defends Adams' conditional assertion 
interpretation of indicative conditionals. 

Adams' version of the Ramsey test paradigm is based on his defmition 
of probability consequence. This defmition applies to a propositional calculus 
L of truth functions, together with the result of adding compound of the 
form 

(A -+ B) 

where A and B are propositions in Land -+ is a primitive conditional con­
nective. This simple conditional extension of L has no conditionals con­
stituents, nor does it have any truth functional compounds of conditionals. 
The Stalnaker hypothesis, 

(SH) P(A -+ B) = P(B I A), 

uniquely determines any extension of any classical probability function 
P on L to all conditionals in the simple conditional extension of L for which 
P assigns non-zero probability to the antecedent. Where B is in the simple 
conditional extension of Land r is a fmite subset of the simple conditional 
extension of L, 

B is a probability consequence of r iff for every f > 0 there is 
a l) > 0 such that for any probability function P on L with 
P(A) > 1 -l) for every A in r we have P(B) > 1 - f. 

On the limited domain to which this defmition applies, probability con­
sequence agrees, not only, with Stalnaker's logic, but with Lewis' logic 
as well. Compounds, such as conditional excluded middle 

(A -+ B) v (A -+ ~B) 

which distinguish Lewis' logic from Stalnaker's are not represented in Adams' 
simple conditional extension of a propositional system. But, there is a 
natural constraint on negations of conditionals 

P(-(A -+ B)) = 1 - p(B I A) 
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which will extend the domain enough to support Stalnaker's logic against 
Lewis'. 

Gibbard proposes examples which show that Stalnaker's contextual 
propositional account of indicative conditionals will require sometimes 
making the propositional content of an indicative conditional depend on 
the utterer's subjective probabilities (pp. 29-33). He then goes on to use 
a variant of Lewis' argument to show that such radical context dependence 
must be required if assertability goes by Ramsey's test and also corresponds 
to probability that the conditional proposition asserted is true (pp. 33-34). 
He suggests that when context dependence becomes this radical there is 
little to choose between Stalnaker's contextual conditional proposition 
account and Adam's non-propositional conditional assertion account. 

The advantage one expects a propositional account to have is a natural 
way of handling embedded conditionals. Gibbard proves that if we want 
the indicative conditional to be a propositional function (even if only relative 
to a given context) and want it to conform to the fact that we treat 
embedded indicative conditionals of the form 

A -'>-(B-'>- C) 

as logically equivalent to 

A I\B -'>- C,lS 

then the indicative conditional must be logically equivalent to the material 
conditional. The only way a Stalnaker type account can avoid this result 
is to make the propositional function depend on place in the sentence so 
that the two arrows in A -'>- (B -'>- C) correspond to different propositional 
functions. 19 According to Gibbard, this suggests that Stalnaker's account 
of such embedding would have to be just as ad hoc as an attempt to extend 
Adams' account in an appropriate way. 

Against the material conditional propositional interpretation defended 
by Grice and Lewis, Gibbard suggests the following embedded indicative 
conditional sentence of the form (D -'>- B) -'>- F: 

If the cup broke if dropped, then it was fragile. 

This idiomatic English sentence is assertable by someone who knows that 
the cup was being held at a moderate height over a carpeted floor, even if 
he assigns very low subjective probability to the cup's being dropped and 
also assigns very low subjective probability to its being fragile. Interpreted 
truth functionally, the sentence would be logically equivalent to: (D 1\ ~ B) v F, 
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Either the cup was dropped and didn't break, or it was fragile. 

But, a speaker might very well assign low subjective probability to this 
disjunction, while assigning quite high subjective probability to the indi­
cative conditional that is supposed to be equivalent to it. The Grice-Lewis 
diminution of assertability device does not help here, because this is an 
example in which the indicative conditional is highly assertable while the 
corresponding material conditional is not. 

In 'Indicative Conditionals and Conditional Probability' John Pollock 
proposes a counterexample to the thesis that indicative conditionals are to 
be evaluated by Ramsey's test. In his 'Reply to Pollock' Gibbard argues 
that Pollock's example does not undercut his Ramsey test thesis. 

V. SUBJUNCTIVE CONDITIONALS CHANCE AND TIME 

1. In 'The Prior Propensity Account of Subjunctive Conditionals' Brian 
Skyrms proposes a measure of asssertability for the kind of causally sen­
sitive conditional our decision making paradigm requires (Skyrms, 1979, 
this volume, pp. 259-265). According to Skyrms the assertability of a 
subjunctive conditional ought to go by the subjective expectation of the 
objective conditional chance of the consequent given the antecedent. Let 
HI ... Hn be the hypotheses concerning the relevent objective chances 
that I deem open alternatives, and for each i let q be the conditional chance 
according to~. Using Lewis' notation for the subjunctive conditional Skyrms 
proposal may be rendered 

i=n 

P(A ~ B) = L P(~).q (B given A), 
i=1 

where .P(A ~ B) is my present degree of assertability for A ~ B, and 
each P(~) is my degree of belief that ~ is true. 

Let us tryout Skyrms' proposal on Jones' decision problem. In this 
example the relevent objective conditional chances depend on whether 
or 110t he was the candidate with the highest test score, There are only 
two hypotheses that matter 

HI : He was the candidate that scored highest on the ruthlessness 
factor. 

H2 : He wasn't. 

where F(-F) stand for his firing (not firing) Smith and J(-1) stand for 
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his getting (not getting) the new job, the relevent conditional chances are 
as follows: 

Cj (J given F) 

Cj (~J given F) = 0 

C2 (J given F) 0 

C2(~JgivenF) = 1 

Cj (J given ~ F) 

Cj(~J given ~F) 

C2 (J given ~ F) 

C2(~J given ~F). 

On Skyrms' proposal the decision making conditionals are evaluated so that, 

Similarly, 

and 

P(FD-+J) P(Hd'Cj (J given F) + P(H2 )'C2(J given H2 ) 

P(Hj )'1 + P(H2 )'O 

p(Hj ). 

p(~FD-+J) = P(Hd 

P(FD-+~J) = P(H2 ) = p(~FD-+~J). 

Whatever P(Hd and P(H2 ) are, the agreement of P(FD-+J) withP(~FD-+J) 
and of P(F 0+ ~ J) with P( ~ F 0+ ~ J) insures that the dominate act of 
not firing Smith will have higher utility than the dominated act of firing 
Smith. This is exactly the result we want. Skyrms' proposal represents the 
agent's beliefs about causal influences and independencies by his beliefs 
about objective conditional chances?O 

Skyrms does not claim that his measure of assertability for subjunctive 
conditionals is a probability of truth of a conditional proposition. As far as 
his account goes, the subjunctive conditional may be just as much a matter 
of conditional assertion as Adams and Gibbard claim the Ramsey test 
indicative conditonal is. 

2. Propensity or objective chance is about as much a subject for controversy 
as causality, and it is about as hard to do away with as well.21 Frequentists, 
the orthodox theorists who interpret probability as a matter of objective 
empirical fact (e.g. Von Mises, 1957; Cramer, 1955; Reichenbach, 1949), 
have not found it easy to make sense of probability assertions about a single 
case. Yet assertions about chance in a single case, such as my claim that this 
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newly made die is biased so that its chance of coming up a six when I next 
toss it is 25%, seem to be paradigms of probability assertions.22 

Subjectivists have no trouble with the idea of single case probabilities, 
but orthodox subjectivists such as De Finetti (1975) reject as nonsense 
interpretations of probability assertions as claims about objective empi­
rical facts. Yet, my assertion about the chance of six on the next throw 
of my new die seems to be intelligible as just such an empirical claim. 

In 'A Subjectivists Guide to Objective Chance' Lewis takes both objective 
chance and creedence or rational subjective degree of belief as primitive. 
In this respect he follows Carnap's (Carnap, 1945) policy of making room 
for both empirical and epistemic probability. Lewis illuminates the diffi­
cult concept of objective chance by explicating some clear connections 
between creedence and beliefs about chance.23 

Lewis offers a questionnaire, with answers, designed to bring out the 
way our beliefs about objective chance ought to guide our subjective pro­
bability assignments. If you are certain that the chance of my die coming 
up a six when I throw it later today is 25%, then your degree of belief in 
the proposition that it comes up a six on that toss ought to be 0.25. Suppose 
now that you find out that my die is really an ordinary one after all, and that 
it has been tossed many times in the past with a relative frequency of about 
one sixth for outcome six, but that you, nevertheless, continue to be certain 
that the chance of a six on my toss is 25%. Here also you should continue 
to assign degree of belief 0.25. The degree of belief in the proposition con­
ditional on the chance statement oUght to be resilient with respect to this 
kind of evidence, because this kind of evidence guides creedence by its 
effect on beliefs about chance. Lewis calls such evidence admissible. 

Not all evidence is admissible. Suppose after the toss you find out that 
the actual outcome was a three. Even if you continue to believe that the 
objective chance just before the toss of its outcome being a six was 25%, 
you no longer guide your creedence about the outcome by that belief. Now, 
you assign zero to the proposition that the outcome was six. 

Finally, suppose you have no inadmissible evidence and are uncertain 
about which of several alternative hypotheses correctly describes the 
objective chance. Perhaps you assign degree of belief .6 to the hypothesis 
that the chance is 25% and degree of belief 0.4 to the hypothesis that the 
chance is 1/6. You should now assign 

(0.6)(0.25) + (OA)(!) = 0.217 

as your degree of belief in the proposition that the die comes up a six. Your 
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subjective creedence in the proposition is to be guided by your subjective 
expectation of its objective chance. 

Lewis sums up the intuitions that guided our answers to his questionnaire 
in a principle he calls the Principle Principle (Lewis, 1978, this volume, 
pp.270-271). 

Let C be any reasonable initial creedence function. Let t be any time. Let x be any 
real number in the unit interval. Let X be the proposition that the chance, at time t, 
of A's holding equals x. Let E be any proposition compatable with X that is admissible 
at time t. Then, 

C(A I X 1\ E) = x. 

According to Lewis, this principle seems to capture all we know about 
chance. He illustrates it by showing how our answers to his questionnair 
all follow from it and goes on to deduce other interesting consequences. 
Among these consequences are just the sorts of connection with long run 
frequencies that have guided the frequency interpretation of objective pro­
bability (Lewis, 1978, this volume, pp. 286 ft). 

For our purposes the important thing about Lewis' principle is its explicit 
relativization to time. He uses a Labyrinth story to illustrate the fact that 
we regard chance as time dependent and contingent (Lewis, 1978, this 
volume, p. 274). 

Suppose you enter a labyrinth at 11 :00 a.m., planning to choose your turn whenever 
you come to a branch point by tossing a coin. When you enter at 11 :00, you may have 
a 42% chance of reaching the center by noon. But in the first half hour you may stray 
into a region from which it is hard to reach the center, so that by 11: 30 your chance 
of reaching the center by noon has fallen to 26%. But then you turn lucky; by 11 :45 you 
are not far from the center and your chance of reaching it by noon is 78%. At 11 :49 you 
reach the center; then and forevermore your chance of reaching it by noon is 100%. 

At each of these times your reaching the center by noon depends on such 
contingent features of the world as the structure of the Labyrinth, the 
speed with which you walk through it and where you are in it. (Lewis, 1978, 
this volume, p. 274). 

According to Lewis, propositions entirely about historical facts no later 
than t are, as a rule, admissible at t. If proposition A is about such matters 
of fact at some time (or time interval) tA and t is later than tA, then A is 
admissible at t for claims about the objective chance of A. This has the 
effect that the objective chance of A becomes 100% during tA and stays 
that way ever after. This asymmetry of chance with respect to past and future 
lends itself to tree diagrams. 
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future 

present 

past 
The trunk is the only past that has any present chance of being actual while 
the branches are the various alternative futures with some present chance 
of being actual (Lewis, 1978, this volume, p. 277). For Lewis this asymmetry 
of fixed past and open future is a broad contingent feature of our world, 
not a matter of logical necessity. (Lewis, 1978, this volume, p. 277)). 

3. In 'A Theory of Conditionals in the Context of Branching Time' 
Thomason and Anil Gupta explore the interactions of conditionals with 
tense. They begin with a straight forward adaption of Stalnaker's theory. 
Moments construed as world-states are ordered into a tree structure by a 
relation earlier than (<). The branches (maximal chains relative to <) 
represent alternative possible histories. 

An equivalence relation (~) picks out moment pairs that are to count 
as copresent, that is as alternative possible presents to one another. The 
Stalnaker selection function is relativised to both a moment: and to a poss­
ible history h. Where A is a sentence, seA i h) must pick out a pair <i'h'> that 
is to count as the A-pair closest to (i h>. The moment i must be co-present 
with i and the history h' must pass through it. Selection must also satisfy 
a principle of past predominance so that past similarity outweighs future 
similarity. 

Thomason and Gupta argue that the following inferences relating con­
ditionals and what is settled (i.e. what is true on all branches leading from 
moment i) ought to be valid.24 

Let SA symbolize that A is settled as true now. 

(Edelberg) S ~ A, SeA > B) :. A > SeA :::l B) 

(Weak Edelberg) S ~ A, A > SA, SeA > B) :. A > SB. 

They show that these inferences are not valid on the simple extension of 
Stalnaker's theory they began with. In order to insure validity of these 
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principles without giving up conditional excluded middle they add more 
structure to their model. In place of the history h they propose a future 
choice function Y which assigns a history Y(i) to every moment i, Y(i) may 
be regarded as the course of events that would obtain if moment i were 
actual. With a number of appropriate restrictions to make Y respect the 
tree structure and to make the settled operator behave properly they are 
able to produce a model that does what they want. 

They suggest that natural extension of such models is to restrict the set 
of future choice functions to those that satisfy some conditions of causal 
coherence. This kind of extension seems promising as a way to investigate 
the causal dependencies that the decision making conditional must respect. 

4. In 'A Temporal Framework for Conditionals and Chance', van Fraassen 
introduces conditionals and chance into a general state space model for 
tensed language. In this model each possible world x comes with a state 
function hx giving its state hAt) at each moment t. The function hx re­
presents the historical development of world x through time. Of considerable 
interest is the set H(x, t) of worlds that agree historically with x up through 
time t. This t-cone of x plays the same role as Thomason's branching time. 
A proposition A is settled as true in x at t just in case every world in 
H(x, t) is an A-world. van Fraassen, also, introduces backward looking 
propositions. A proposition A is backward looking at t just in case for any 
world x, A is true in x only if every world in H(x, t) is an A-world. If SA 
symbolizes A is settled, then it turns out that A is backward looking at t 
just in case A :J SA holds at t for every world. Backward looking propo­
sitions are important both for conditionals and for chance. 

van Fraassen works with a weak Stalnaker logic where the conditional 
antecedent substitution axiom 

(CAS) (A ~ B) 1\ (B ~ A) 1\ (A --;. C) :J (B ~ C), 

which is valid for both Lewis and Stalnaker, does not hold. Where SX A is 
the world selected as closest A-world to x, this corresponds to giving up 
Stalnaker's condition. 

which is to give up the idea that selection respects some notion of closeness 
that has ordering properties. 

When conditionals are evaluated from times as well as worlds some 
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temporal conditions are imposed on selection. Thomason's idea of past 
predominance is embodied in 

(I) st A is in H(x, t), if A is compatable with H(x, t). 

The world selected as closest A-world to x at moment t agrees with x's 
history through t, if possible. In order to validate the Edelberg inference 

(E) S-A, S(A -+ H) :. A -+ S(A ::) H), 

van Fraassen proposes 

(II) If z = st A and u E H(z, t) n A, then u = S/A for some x' in 
H(x, t). 

This has the effect that z is selected as closest A-world to x at t only if every 
A-world in the t-cone of z is selected as closest A-world for some world 
in the t -cone of x. 

Anil Gupta proposed an additional principle which should hold for any 
proposition E that is backward looking at all times. 

A -+-S-H, H-+-S-A, H-+E :.A -+E. 

This principle does the job for the conditional substitution axiom van 
Fraassen rejects, when the consequent E is universally backward looking. 
van Fraassen validates it by imposing: 

(III) If x = StWA and H is compatable with H(x, t), z = StH and 
A is compatable with H(z, t), then H(z, t) = H(x, t). 

The world selected as closest A -world to w at t and the world selected as 
closest H-world to w at t should have the same history through t if possible. 

van Fraassen introduced chance in world x at time t as a measure on 
H(x, t). Where CtA is the chance at time t that A is true in x, he imposes 

(1) Ct(A) = Ct(H(x, t) n A). 

This assigns to each proposition A the ct measure of its intersection with 
H(x, t). He also requires 

(2) Ify EH(x, t) then C'l = c'/" 

so that past history determines chance. This has the effect that any propo­
sition A which is backward looking at t has Ct(A) either one or zero. 

van Fraassen proposes the following relation between creedence and 
chance. Where Pt is an agent' subjective probability assignement t: 
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(Basic Principle) 

f Ct(X)dPt 
y 

provided Y is backward looking at t and Pt(Y) =1= O. 
Conditional creedence is to go by the subjective conditional expectation 

of the objective chance. When Lewis' admissible evidence at t is interpreted 
as propositions which are backward looking at t, this principle is equivalent 
to the principle principle. 

The subjective conditional expectation of the objective chance used 
in van Fraassen's principle is different from the subjective expectation 
of the objective conditional chance that Skyrms proposes as the appro­
priate evaluation of a decision making conditional. 

One way of formulating the Skyrms' idea in van Fraassen's system would 
be 

f [ctX(X A Y)/ct(Y)] dPt , 

K 

where the integral is taken over the whole set of worlds K. Another would be 

f [ct(X given Y)] dPt , 

K 

where objective conditional chance is taken as a primitive that mayor may 
not always be defined by the classical ratio. When Y is an act that the agent 
can choose the later formulation seems preferable, since the agent, as decision 
maker, ought to control, rather than wonder about, the objective chance 
that he will choose one way rather than another.25 

When the distinct t-cones compatable with what I accept are a fmite set 
HI ... Hn then 

i:n 

ctX(B given A) dPt =L. Pt(Hi)-C/(B given A), 
i=1 

where each C/ is the common ctX (B given A) for worlds x in~. Here the 
distinct t-cones play the role of Skyrm's fmite set of alternative hypo­
theses about the relevent conditional chance. Whether ctX (B given A) is 
taken as primitive or defined by usual ratio, Skyrms' subjective expecta­
tion of objective conditional chance is representable in van Fraassen's 
Framework. 
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VI. CONCLUD ING REMARK S 

One of the main difficulties in making abstract models illuminate real pro­
blems is getting interesting constraints on what features the models ought 
to have. linguistic intuitions have long been the main source of constraints 
on models of conditionals. These papers show a unified and exciting devel­
opment in which such linguistic intuitions are supplemented by intuitions 
generated by Ramsey's test and decision making. Each of these paradigms 
corresponds to an important kind of hypothetical reasoning with its own 
job to do. Ramsey test reasoning plays an important role in organizing 
knowledge and accounting for rational belief change. It draws on intuitions 
generated by this role. The distinct kind of causally sensitive hypothetical 
reasoning used to guide decisions draws on intuitions about the relations 
between time and objective chance and especially about the relation between 
subjective probability and beliefs about objective chance. 

Among the fruitful problems suggested by the developments sketched 
here are the proper account of objective conditional chances and the formu­
lation of a conditional with probability of truth equal to the subjective 
expectation of the relevant objective conditional chance. Both jobs for 
hypothetical reasoning are intimately involved in these problems. This inter­
action suggests that investigating these problems can provide illumination 
for the fields and problem areas involved in each kind of hypothetical reaso­
ning as well as further advances in our understanding of conditionals. 

I want to call attention to three important papers that were not included 
in our volume. One is David Lewis' paper 'Counterfactual Dependence 
and Times Arrow' which generates the temporal tree structures so important 
for both chance and conditionals from some interesting criteria for judging 
overall similarity of worlds. Another paper is Howard Sobel's long working 
manuscript 'Probability, Chance and Choice'. This monograph, which unfor­
tunately was too long to be included in our volume, is the most developed 
account of conditional chance yet available. Nancy Cartwright's paper 
'Causal Laws and Effective Strategies' relates the issues raised by our deci­
sion making paradigm to causal laws. 

University of Western Ontario 

NOTES 

1 This comparison with Chishobn and Goodman was suggested to me by Stalnaker's 
survey lecture at the 1979 American Philosophical Association meetings in New York. 
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2 Stalnaker's system is extended to include quantification in a joint paper with 
Richmond Thomason (Stalnaker and Thomason, 1970). Thomason provided a Fitch 
Style formulation of Stalnaker's conditional logic (Thomason, 1970). 
3 Lewis endorses Grice's defense of the material conditional as an account of the 
English indicative conditional (Lewis, 1975, this volume, pp. 137-139). Stalnaker 
defends his theory as an account of indicative, as well as subjective, conditionals in 
Stalnaker, 1975, this volume, p. 198). 
• Where A is impossible in w, Stalnaker makes f(A w) an absurd world where every 
sentence is true. (Stalnaker, 1968, this volume, p. 46). 
S Lewis' passage only claims that asserting both of these together with "If Bizet and 
Verdi were compatriots, Bizet either would or would not be Italian" sounds like a 
contradiction. 
6 The suggestion that van Fraassen's account of vagueness be used to help Stalnaker's 
theory deal with ties was first proposed in print by Thomason (Thomason, 1970). 
7 Pollock (Pollock, 1976, pp. 18-21; Herzberger, 1979; and Stalnaker, 1979) all argue 
that giving up the limit assumption requires giving up a desirable feature of counter­
factual inferences. Stalnaker and Pollock formulate this as a principle of counterfactual 
closure: 

If r(A) semantically entails C, then C E r(A). 

Herzberger argues that Lewis' violations of the limit assumption require also giving up 
a weaker principle of counterfactual consistency 

r(A) is consistent, if A is possible. 

Violating counterfactual consistency would not make Lewis' system formally incon­
sistent; nevertheless, counter factual consistency and counterfactual closure, as well, 
are intuitively desirable features for a conditonallogic. 

Neither of these principles corresponds to the validity of any single sentence; there­
fore, Lewis (Lewis, 1972, this volume, p. 83) was able to point out that giving up the 
limit assumption does not require giving up any theorem not already lost by giving 
up uniqueness. 
B John Mackie has challenged this intuition. In a letter to me he suggests that if my 
pocket contains a concealed coin it would be appropriate to deny the would conditional 

"If I were to look I would find the coin" 

while affirming the corresponding might conditional. 
9 A somewhat simplified formulation of these conditions and some additional argu­
ments defending them are to be found in Harper (1975), Harper (1976), and Harper 
(1978). 
10 In addition to the references in Stalnaker (1970), axiomatizations and various pro­
perties of Popper functions are explored in Van Fraassen (1976b), and in Harper et al. 
(1979). 
11 Lewis dropped his bombshell at the June 1972 meeting of the Canadian Philosophical 
Association in Montreal. He, Stalnaker and William Rozeboom were commenting on a 
paper I gave extending Stalnaker's probability semantics to quantified conditional 
logic. This work was a major part of my Ph.D. dissertation (Harper, 1974) and Lewis' 
result led to many improvements. 
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12 I used the Ramsey test idea restricted to certainty, 

p(A ->B) = 1 iffp(B IA) = 1, 

without the full Stalnaker hypothesis, to construct non-trivial models of iterated rational 
belief change (Harper, 1976). Stalnaker (Stalnaker, 1976) modified Lewis' result to 
trivialize an earlier version of this model (Harper, 1974; Harper, 1975). The successful 
model, which was developed in response, requires making the conditional even more 
radically context dependent than van Fraassen's. A Ramsey test conditional is inter­
preted relative to the acceptance context from which it is evaluated. Conditionals 
nested to the right, e.g. A -> (B -> C), play an important role in modeling iterated 
rational belief changes. The first conditional is evaluated from the basic acceptance 
context, the next (B -> C) is evaluated from the point of view of the result of mini­
mally revising the basic context to assume the antecedent of the first conditional. 
This makes the propositional function corresponding to the first -> different from the 
propositional function corresponding to the second .... Though this is a very radical 
kind of context dependence, it results from a quite natural account of right hand nesting 
as representing hypothetical sequences of assumption. This account has been employed 
to extend the Bayesian learning model to handle revisions of previously accented 
evidence (Harper, 1978). 

Peter Giirdenfors (1978) has recently applied this kind of certainty Ramsey test 
model to explore the effect on conditional logic of making various conditions on the 
idea of minimal revision of a body of knowledge. 
13 See Gibbard (1979) for an exposition of van Fraassen's construction and Stalnaker's 
proof that this construction cannot be extended to the Stalnaker logic. See this essay 
(p. 29) for the difference between van Fraassen's Logic and Stalnaker's. 
14 Brian Ellis (Ellis, 1973), John Mackie (Mackie, 1973), and Issac Levi (Levi, 1977) 
have also developed conditional assertion accounts of conditionals. 
15 John Mackie (manuscript and letter to me) and Isaac Levi (Levi, 1977) each suggest 
that a Ramsey Test approach can be made to work for both examples by putting dif­
ferent restriction on subjunctive and indicative suppositions. 
16 Validity of the direct argument would show that ~ A ::> B (which is equivalent to 
A v B) entails that If -A then B. This would show their logical equivalence, because 
the converse entailment is obviously valid. 
17 It is interesting to consider the corresponding argument from A ::> B to If A then B: 

"Either the butler didn't do it or the gardener did. Therefore, if the butler 
did it the gardener didn't. " 

This argument does not seem reasonable; but, apparently, Stalnaker's account would 
call it reasonable. 

Stalnaker pointed out (private communication) that it is hard to know just what 
to make of 

"Either the butler didn't do it or the gardener did." 

Perhaps, he suggests, this is because we presuppose that ''The butler did it" and "The 
gardener did it" are exclusive. This presupposition violates (G), because -A vB is 
only appropriate in contexts compatable with both (A 1\ B) and (-A 1\ -B). When 
the example is changed to make it clear that we are in a context where (G) is obeyed 
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the inference seems ime. Consider: "Either the butler didn't do it or the gardener 
was his accomplice. Therefore, if the butler did it the gardener was his accomplice." 
18 This equivalence is challenged by Adams (1975, p. 33). Gibbard answers in a foot­
note (Gibbard, 1979, p. 246). It is not at all clear that this equivalence ought to hold 
for examples where p(B I A) = O. Consider a variant on Gibbard's poker example. 
(Gibbard, 1979, p. 241). I know that Pete is a crafty player who has been informed 
what his opponent's hand is. Consider: 

(1) Given that Pete is going to fold, he will lose if he calls. 

and 

(2) If Pete folds and calls he will lose. 

The itrst seems moderately sensible and even assertable while the second seems to be 
nonsense. Perhaps, (1) only seems sensible because the reading of the second conditional 
is implicity subjunctive. Moreover, it may be that nested indicatives of the form 
A ..... (B ..... C) are not assertable unless peA AB) > O. Even if this does turn out to be 
a limitation on English indicative conditionals it is not a desirable limitation on the 
Ramsey test idea of epistemic minimal revision. One ought to be able to distinguish 
between epistemic and causally sensitive conditional reasoning even when the assump­
tions are regarded as counterfactual. This is so because, in addition to its role in planning 
for knowledge aquisition, Ramsey test reasoning is also important in organizing the 
knowledge we already have. Comparisons of relative immunity to revision are an impor­
tant part of such organization and such comparisons are elicited by counterfactual 
assumptions. 
19 This kind of relativisation to nesting is just what happens quite naturally on my 
account of Ramsey test conditionals were nesting to the right corresponds to sequential 
assumption making. (See note 10 and references therein.) 
20 Several other proposals for using subjective expectation of objective conditional 
chances as the relevent probabilities for decision making have been put forward (Jeffrey, 
1979; Sobel, 1979). Sobel's proposal is the most developed yet available. He presents 
it in a very long and very interesting manuscript. (Sobel, 1979), which is the latest 
version of a series of revisions going back to 1977. 
21 Since Popper proposed a propensity interpretation of probability (Popper, 1959) 
controversy about single case chances has been sharp and extensive. Kyburg (1974) 
provides an overview of some of this literature. Perhaps the most extensive develop­
ment of an approach taking propensity as primitive is that of Mellor (Mellor, 1971). 
22 Kyburg and van Fraassen propose modal frequency accounts of single case chance 
(Kyburg, 1976; van Fraassen, 1977). These attempts to make empirical sense out of 
the idea that hypothetical frequencies can explicate propensities. 
23 Skyrms proposes an analysis of chance as resilient subjective conditional belief 
(Skyrms, 1977). Such resilience will play a large role in Lewis' account, but, unlike 
Skyrms, Lewis doe not attempt to reduce chance to resilient belief. 
24 Thomason's student Edelberg first proposed that these inferences ought to be valid. 
25 If we use the latter version and set c'f (B given A) to be the measure according to 
ci of the set of worlds z in H(x, t) where sf A is a B-world, While keeping van Fraassen's 
constraints on chance and selection, then we have 
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Pt(A D-+ B) = f Cf (B given A) dPt 
K 

as is required for a conditional with the appropriate generalization of Skyrms' evaluation 
as its probability of truth. Lewis has shown that this induces a function 

Pt[A I (B) = Pt(A D-+ B) 

that counts as a kind of minimal revision of Pt required to have a belief function where 
A is accepted. (Lewis, 1976, p. 140). He calls this the result of imaging on A. All 
the probability weight is moved into A with the weight of each -A-world w going to 
StW(A) - its nearest A-world. The probability weight is moved into A with minimal 
shifting of weight. This is a rival to the kind of minimal revision involved in classical 
conditionalization where all the weight is shifted into A by normalizing so that pro­
bability ratios within A are undisturbed. Recently, James Fetzer and Donald Nute 
(1979) have proposed imaging as the appropriate formulation of a causally sensitive 
probability calculus. The core of Sobel's (1979) interesting proposals also consists in 
using a generalization of imaging to represent causally sensitive conditional chances. 
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ROBERT C. STALNAKER* 

A THEORY OF CONDITIONALS 

I. INTRODUCTION 

A conditional sentence expresses a proposition which is a function of two 
other propositions, yet not one which is a truth function of those prop­
ositions. I may know the truth values of "Willie Mays played in the American 
League" and "Willie Mays hit four hundred" without knowing whether or not 
Mays. would have hit four hundred if he had played in the American League. 
This fact has tended to puzzle, displease, or delight philosophers, and many 
have felt that it is a fact that calls for some comment or explanation. It has 
given rise to a number of philosophical problems; I shall discuss three of these. 

My principal concern will be with what has been called the logical problem 
of conditionals, a problem that frequently is ignored or dismissed by writers 
on conditionals and counterfactuals. This is the task of describing the formal 
properties of the conditional function: a function, usually represented in 
English by the words "if ... then", taking ordered pairs of propositions into 
propositions. I shall explain informally and defend a solution, presented 
more rigorously elsewhere, to this problem.l 

The second issue - the one that has dominated recent discussions of con· 
trary-to-fact conditionals - is the pragmatic problem of counterfactuals. This 
problem derives from the belief, which I share with most philosophers writing 
about this topic, that the formal properties of the conditional function, 
together with all of the facts, may not be sufficient for determining the truth 
value of a counterfactual; that is, different truth values of conditional state­
ments may be consistent with a single valuation of all nonconditional state­
ments. The task set by the problem is to find and defend criteria for chOOSing 
among these different valuations. 

This problem is different from the first issue because these criteria are 
pragmatic, and not semantic. The distinction between semantic and pragmatic 
criteria, however, depends on the construction of a semantic theory. The 
semantic theory that I shall defend will thus help to clarify the second prob­
lem by charting the boundary between the semantic and pragmatic com­
ponents of the concept. The question of this boundary line is precisely what 
Rescher, for example, avoids by couching his whole discussion in terms of 
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conditions for belief, or justified belief, rather than truth conditions. Con­
ditions for justified belief are pragmatic for any concept.2 

The third issue is an epistemological problem that has bothered empiricist 
philosophers. It is based on the fact that many counterfactuals seem to be 
synthetic, and contingent, statements about unrealized possibilities. But con­
tingent statements must be capable of confirmation by empirical evidence, 
and the investigator can gather evidence only in the actual world. How are 
conditionals which are both empirical and contrary-to-fact possible at all? 
How do we learn about possible worlds, and where are the facts (or counter­
facts) which make counterfactuals true? Such questions have led philosophers 
to try to analyze the conditional in non-conditional terms3 - to show that 
conditionals merely appears to be about unrealized possibilities. My approach, 
however, will be to accept the appearance as reality, and to argue thAt one 
can sometimes have evidence about nonactual situations. 

In Sections II and III of this paper, I shall present and defend a theory of 
conditionals which has two parts, a formal system with a primitive conditional 
connective, and a semantical apparatus which provides general truth con­
ditions for statements involving that connective. In Sections IV, V, and VI, I 
shall discuss in a general way the relation of the theory to the three problems 
outlined above. 

II. THE INTERPRETATION 

Eventually, I want to defend a hypothesis about the truth conditions for 
statements having conditional form, but I shall begin by asking a more 
practical question: how does one evaluate a conditional statement? How does 
one decide whether or not he believes it to be true? An answer to this ques­
tion will not be a set of truth conditions, but it will serve as a heuristic aid in 
the search for such a set. 

To make the question more concrete, consider the following situation: 
you are faced with a true-false political opinion survey. The statement is, "If 
the Chinese enter the Vietnam conflict, the United States will use nuclear 
weapons." How do you deliberate in choosing your response? What con­
siderations of a logical sort are relevant? I shall first discuss two familiar 
answers to this question, and then defend a third answer which avoids some 
of the weaknesses of the first two. 

The first answer is based on the simplest account of the conditional, the 
truth functional analysis. According to this account, you should reason as 
follows in responding to the true-false quiz: you ask yourself, first, will the 
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Chinese enter the conflict? and second, will the United States use nuclear 
weapons? If the answer to the fIrst question is no, or if the answer to the 
second is yes, then you should place your X in the 'true' box. But this 
account is unacceptable since the following piece of reasoning is an obvious 
non sequitur: "I fIrmly believe that the Chinese will stay out of the conflict; 
therefore I believe that the statement is true." The falsity of the antecedent is 
never suffIcient reason to affIrm a conditional, even an indicative conditional. 

A second answer is suggested by the shortcomings of the truth-functional 
account. The material implication analysis fails, critics have said, because it 
leaves out the idea of connection which is implicit in an if-then statement. 
According to this line of thought, a conditional is to be understood as a state­
ment which affIrms that some sort of logical or causal connection holds 
between the antecedent and the consequent. In responding to the true-false 
quiz, then, you should look, not at the truth values of the two clauses, but at 
the relation between the propositions expressed by them. If the 'connection' 
holds, you check the 'true' box. If not, you answer 'false'. 

If the second hypothesis were accepted, then we would face the task of 
clarifying the idea of 'connection', but there are counter-examples even with 
this notion left as obscure as it is. Consider the following case: you fIrmly 
believe that the use of nuclear weapons by the United States in this war is 
inevitable because of the arrogance of power, the bellicosity of our president, 
rising pressure from congressional hawks, or other domestic causes. You have 
no opinion about future Chinese actions, but you do not think they will 
make much difference one way or another to nuclear escalation. Clearly, you 
believe the opinion survey statement to be true even though you believe the 
antecedent and consequent to be logically and causually independent of each 
other. It seems that the presence of a 'connection' is not a necessary con­
dition for the truth of an if-then statement. 

The third answer that I shall consider is based on a suggestion made some 
time ago by F. P. Ramsey.4 Consider fIrst the case where you have no 
opinion about the statement, "The Chinese will enter the Vietnam war." 
According to the suggestion, your deliberation about the survey statement 
should consist of a simple thought experiment: add the antecedent (hypo­
thetically) to your stock of knowledge (or beliefs), and then consider whether 
or not the consequent is true. Your belief about the conditional should be the 
same as your hypothetical belief, under this condition, about the consequent. 

What happens to the idea of connection on this hypothesis? It is sometimes 
relevant to the evaluation of a conditional, and sometimes not. If you believe 
that a causal or logical connection exists, then you will add the consequent to 
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your stock of beliefs along with the antecedent, since the rational man accepts 
the consequences of his beliefs. On the other hand, if you already believe the 
consequent (and if you also believe it to be causally independent of the ante­
cedent), then it will remain a part of your stock of beliefs when you add the 
antecedent, since the rational man does not change his beliefs without reason. 
In either case, you will affirm the conditional. Thus this answer accounts for 
the relevance of 'connection' when it is relevant without making it a necessary 
condition of the truth of a conditional. 

Ramsey's suggestion covers only the situation in which you have no 
opinion about the truth value of the antecedent. Can it be generalized? We 
can of course extend it without problem to the case where you believe or 
know the antecedent to be true; in this case, no changes need be made in 
your stock of beliefs. If you already believe that the Chinese will enter the 
Vietnam conflict, then your belief about the conditional will be just the same 
as your belief about the statement that the U.S. will use the bomb. 

What about the case in which you know or believe the antecedent to be 
false? In this situation, you cannot simply add it to your stock of beliefs 
without introducing a contradiction. You must make adjustments by deleting 
or changing those beliefs which conflict with the antecedent. Here, the 
familiar difficulties begin, of course, because there will be more than one way 
to make the required adjustments.s These difficulties point to the pragmatic 
problem of counterfactuals, but if we set them aside for a moment, we shall 
see a rough but general answer to the question we are asking. This is how to 
evaluate a conditional: 

First, add the antecedent (hypothetically) to your stock of beliefs; second, make what­
ever adjustments are required to maintain consistency (without modifying the hypo­
thetical belief in the antecedent); finally, consider whether or not the consequent is then 
true. 

It is not particularly important that our answer is approximate - that it skirts 
the problem of adjustments - since we are using it only as a way of fmding 
truth conditions. It is crucial, however, that the answer may not be restricted 
to some particular context of belief if it is to be helpful in fmding a definition 
of the conditional function. If the conditional is to be understood as a func­
tion of the propositions expressed by its component clauses, then its truth 
value should not in general be dependent on the attitudes which anyone has 
toward those propositions. 

Now that we have found an answer to the question, "How do we decide 
whether or not we believe a conditional statement?" the problem is to make 
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the transition from belief conditions to truth conditions; that is, to find a set 
of truth conditions for statements having conditional form which explains 
why we use the method we do use to evaluate them. The concept of a possible 
world is just what we need to make this transition, since a possible world is the 
ontological analogue of a stock of hypothetical beliefs. The following set of 
truth conditions, using this notion, is a first approximation to the account 
that I shall propose: 

Consider a possible world in which A is true, and which otherwise differs minimally from 
the actual world. "If A, then B" is true (false) just in case B is true (false) in that 
possible world. 

An analysis in terms of possible worlds also has the advantage of providing a 
ready made apparatus on which to build a formal semantical theory. In making 
this account of the conditional precise, we use the semantical systems for 
modal logics developed by Saul Kripke.6 Following Kripke, we first define a 
model structure. Let M be an ordered triple (K, R, A). K is to be understood 
intuitively as the set of all possible worlds; R is the relation of relative possi­
bility which defines the structure. If a and {3 are possible worlds (members of 
K), then aR{3 reads "{3 is possible with respect to a". This means that, where 
a is the actual world, {3 is a possible world. R is a reflexive relation; that is, 
every world is possible with respect to itself. If your modal intuitions so 
incline you, you may add that R must be transitive, or transitive and sym­
metrical.? The only element that is not a part of the standard modal seman­
tics is A, a member of K which is to be understood as the absurd world - the 
world in which contradictions and all their consequences are true. It is an 
isolated element under R; that is, no other world is possible with respect to it, 
and it is not possible with respect to any other world. The purpose of A is to 
allow for an interpretation of "If A, then B" in the case where A is impossible; 
for this situation one needs an impossible world. 

In addition to a model structure, our semantical apparatus includes a selec­
tion function, f, which takes a proposition and a possible world as arguments 
and a possible world as its value. The s-function selects, for each antecedent A , 
a particular possible world in which A is true. The assertion which the con­
ditional makes, then, is that the consequent is true in the world selected. A 
conditional is true in the actual world when its consequent is true in the 
selected world. 

Now we can state the semantical rule for the conditional more formally 
(using the corner, >, as the conditional connective): 

A >B is true in a if B is true inf(A, a); 
A> B is false in a if B is false inf(A, a). 
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The interpretation shows conditional logic to be an extension of modal 
logic. Modal logic provides a way of talking about what is true in the actual 
world, in all possible worlds, or in at least one, unspecified world. The 
addition of the selection function to the semantics and the conditional con­
nective to the object language of modal logic provides a way of talking also 
about what is true in particular non-actual possible situations. This is what 
counterfactuals are: statements about particular counterfactual worlds. 

But the world selected cannot be just any world. The s-function must 
meet at least the following conditions. I shall use the following terminology 
for talking about the arguments and values of s-functions: where f(A, a) = {3, 
A is the antecedent, a is the base world, and (3 is the selected world. 

(1) For all antecedents A and base worlds a, A must be true in 
f(A, a). 

(2) For all antecedents A and base worlds a, f(A, a) = A only if there 
is no world possible with respect to a in which A is true. 

The first condition requires that the antecedent be true in the selected world. 
This ensures that all statements like "if snow is white, then snow is white" are 
true. The second condition requires that the absurd world be selected only 
when the antecedent is impossible. Since everything is true in the absurd 
world, including contradictions, if the selection function were to choose it for 
the antecedent A, then "If A, then B and not B" would be true. But one can­
not legitimately reach an impossible conclusion from a consistent assumption. 

The informal truth conditions that were suggested above required that the 
world selected differ minimally from the actual world. This implies, first, that 
there are no differences between the actual world and the selected world 
except those that are required, implicitly or explicitly, by the antecedent. 
Further, it means that among the alternative ways of making the required 
changes, one must choose one that does the least violence to the correct 
description and explanation of the actual world. These are vague conditions 
which are largely dependent on pragmatic considerations for their application. 
They suggest, however, that the selection is based on an ordering of possible 
worlds with respect to their resemblance to the base world. If this is correct, 
then there are two further formal constraints which must be imposed on the 
s-function. 

(3) For all base worlds a and all antecedents A, if A is true in a, then 
f(A, a) = a. 

(4) For all base worlds a and all antecedents Band B', if B is true in 
f(B', a) andB' is true inf(B, a), thenf(B, a) = feB', a). 
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The third condition requires that the base world be selected if it is among the 
worlds in which the antecedent is true. Whatever the criteria for evaluating 
resemblance among possible worlds, there is obviously no other possible 
world as much like the base world as the base world itself. The fourth con­
dition ensures that the ordering among possible worlds is consistent in the 
following sense: if any selection established {3 as prior to {3' in the ordering 
(with respect to a particular base world a), then no other selection (relative to 
that a) may establish {3' as prior to {3.8 Conditions (3) and (4) together ensure 
that the s-function establishes a total ordering of all selected worlds with 
respect to each possible world, with the base world preceding all others in the 
order. 

These conditions on the selection function are necessary in order that this 
account be recognizable as an explication of the conditional, but they are of 
course far from sufficient to determine the function uniquely. There may be 
further formal constraints that can plausibly be imposed on the selection 
principle, but we should not expect to find semantic conditions sufficient to 
guarantee that there will be a unique s-function for each valuation of non­
conditional formulas on a model structure. The questions, "On what basis 
do we select a selection function from among the acceptable ones?" and 
"What are the criteria for ordering possible worlds?" are reformulations of 
the pragmatic problem of counterfactuals, which is a problem in the 
application of conditional logic. The conditions that I have mentioned 
above are sufficient, however, to define the semantical notions of validity 
and consequence for conditional logic. 

III. THE FORM,AL SYSTEM 

The class of valid formulas of conditional logic according to the definitions 
sketched in the preceding section, is coextensive with the class of theorems 
of a formal system, C2. The primitive connectives of C2 are the usual ::> and 
~ (with v, &, and == defined as usual), as well as a conditional connective, > 
(called the corner). Other modal and conditional concepts can be defmed in 
terms of the corner as follows: 

DA =DF ~A >A 

OA =DF ~(A > ~A) 
A ~B =DF (A>B)&(B>A) 
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The rules of inference of C2 are modus ponens (if A and A :::J B are theorems, 
then B is a theorem) and the G6del rule of necessitation (If A is a theorem, 
then DA is a theorem). There are seven axiom schemata: 

(al) Any tautologous wff (well-formed formula) is an axiom. 

(a2) D(A :::J B) :::J (DA :::J DB) 

(a3) D(A :::J B):::J (A > B) 

(a4) OA :::Jo(A >B):::J~(A >~B) 

(as) A > (B v C) :::J 0 (A > B) v (A > C) 

(a6) (A > B) :::J (A :::J B) 

(a7) A ~ B :::J 0 (A > C) :::J (B > C) 

The conditional connective, as characterized by this formal system, is inter­
mediate between strict implication and the material conditional, in the sense 
that D(A :::J B) entails A > B by (a3) and A > B entails A :::J B by (a6). It can­
not, however, be analyzed as a modal operation performed on a material con­
ditional (like Burks's causal implication, for example).9 The corner lacks 
certain properties shared by the two traditional implication concepts, and in 
fact these differences help to explain some peculiarities of counterfactuals. I 
shall point out three unusual features of the conditional connective. 

(1 ) Unlike both material and strict implication, the conditional corner is a 
non-transitive connective. That is, from A > Band B > C, one cannot infer 
A > C. While this may at first seem surprising, consider the following example: 
Premisses. "If J. Edgar Hoover were today a communist, then he would be a 
traitor." "If J. Edgar Hoover had been born a Russian, then he would today 
be a communist." Conclusion. "If J. Edgar Hoover had been born a Russian, 
he would be a traitor." It seems reasonable to affirm these premisses and 
deny the conclusion. 

If this example is not sufficiently compelling, note that the following rule 
follows from the transitivity rule: From A > B to infer (A & C) > B. But it is 
obvious that the former rule is invalid; we cannot always strengthen the ante­
cedent of a true conditional and have it remain true. Consider "If this match 
were struck, it would light," and "If this match had been soaked in water 
overnight and it were struck, it would light."lo 

(2) According to the formal system, the denial of a conditional is equivalent 
to a conditional with the same antecedent and opposite consequent (provided 



A THEORY OF CONDITIONALS 49 

that the antecedent is not impossible). That is, 0 A - -(A> B) == (A > -B). 
This explains the fact, noted by both Goodman and Chisholm in their early 
papers on counterfactuals, that the normal way to contradict a counterfactual 
is to contradict the consequent, keeping the same antecedent. To deny "If 
Kennedy were alive today, we wouldn't be in this Vietnam mess," we say, "If 
Kennedy were alive today, we would so be in this Vietnam mess." 

(3) The inference of contraposition, valid for both the truth-functional 
horseshoe and the strict implication hook, is invalid for the conditional 
comer. A> B may be true while -B > -A is false. For an example in 
support of this conclusion, we take another item from the political opinion 
survey: "If the U.S. halts the bombing, then North Vietnam will not agree to 
negotiate." A person would believe that this statement is true if he thought 
that the North Vietnamese were determined to press for a complete with­
drawal of U.S. troops. But he would surely deny the contrapositive, "If North 
Vietnam agrees to negotiate, then the U.s. will not have halted the bombing." 
He would believe that halt in the bombing, and much more, is required to 
bring the North Vietnamese to the negotiating tableY 

Examples of these anomalies have been noted by philosophers in the past. 
For instance, Goodman pointed out that two counterfactuals with the same 
antecedent and contradictory consequents are "normally meant" as direct 
negations of each other. He also remarked that we may sometimes assert a 
conditional and yet reject its contrapositive. He accounted for these facts by 
arguing that semifactuals - conditionals with false antecedents and true con­
sequents - are for the most part not to be taken literally. "In practice," he 
wrote, "full counterfactuals affIrm, while semifactuals deny, that a certain 
connection obtains between antecedent and consequent... The practical 
import of a semifactual is thus different from its literal import."l2 Chisholm 
also suggested paraphrasing semifactuals before analyzing them. "Even if you 
were to sleep all morning, you would be tired" is to be read "It is false that if 
you were to sleep all morning, you would not be tired."l3 

A separate and nonconditional analysis for semifactuals is necessary to 
save the 'connection' theory of counterfactuals in the face of the anomalies 
we have discussed, but it is a baldly ad hoc manoeuvre. Any analysis can be 
saved by paraphrasing the counter-examples. The theory presented in Section 
II avoids this diffIculty by denying that the conditional can be said, in general, 
to assert a connection of any particular kind between antecedent and con­
sequent. It is, of course, the structure of inductive relations and causal con­
nections which make counterfactuals and semifactuals true or false, but they 
do this by determining the relationships among possible worlds, which in tum 
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determine the truth values of conditionals. By treating the relation between 
connection and conditionals as an indirect relation in this way, the theory is 
able to give a unified account of conditionals which explains the variations in 
their behavior in different contexts. 

IV. THE LOGICAL PROBLEM: GENERAL CONSIDERATIONS 

The traditional strategy for attacking a problem like the logical problem of 
conditionals was to find an analysis, to show that the unclear or objection­
able phrase was dispensable, or replaceable by something clear and harmless. 
Analysis was viewed by some as an unpacking - a making manifest of what 
was latent in the concept; by others it was seen as the replacement of a vague 
idea by a precise one, adequate to the same purposes as the old expression, 
but free of its problems. The semantic theory of conditionals can also be 
viewed either as the construction of a concept to replace an unclear notion of 
ordinary language, or as an explanation of a commonly used concept. I see 
the theory in the latter way: no recommendation or stipulation is intended. 
This does not imply, however, that the theory is meant as a description of 
linguistic usage. What is being explained is not the rules governing the use of 
an English word, but the structure of a concept. Linguistic facts - what we 
would say in this or that context, and what sounds odd to the native speaker 
- are relevant as evidence, since one may presume that concepts are to some 
extent mirrored in language. 

The 'facts', taken singly, need not be decisive. A recalcitrant counter­
example may be judged a deviant use or a different sense of the word. We 
can claim that a paraphrase is necessary, or even that ordinary language is 
systematically mistaken about the concept we are explaining. There are, of 
course, different senses and times when 'ordinary language' goes astray, but 
such ad hoc hypotheses and qualifications diminish both the plausibility and 
the explanatory force of a theory. While we are not irrevocably bound to the 
linguistic facts, there are no 'don't cares' - contexts of use with which we are 
not concerned, since any context can be relevant as evidence for or against an 
analysis. A general interpretation which avoids dividing senses and accounts 
for the behavior of a concept in many contexts fits the familiar pattern of 
scientific explanation in which diverse, seemingly unlike surface phenomena 
are seen as deriving from some common source. For these reasons, I take it as 
a strong point in favor of the semantic theory that it treats the conditional as 
a univocal concept. 
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V. PRAGMATIC AMBIGUITY 

I have argued that the conditional connective is semantically unambiguous. 
It is obvious, however, that the context of utterance, the purpose of the 
assertion, and the beliefs of the speaker or his community may make a dif­
ference to the interpretation of a counterfactual. How do we reconcile the 
ambiguity of conditional sentences with the univocity of the conditional 
concept? Let us look more closely at the notion of ambiguity. 

A sentence is ambiguous if there is more than one proposition which it 
may properly be interpreted to express. Ambiguity may be syntactic (if the 
sentence has more than one grammatical structure, semantic (if one of the 
words has more than one meaning), or pragmatic (if the interpretation 
depends directly on the context of use). The first two kinds of ambiguity are 
perhaps more familiar, but the third kind is probably the most common in 
natural languages. Any sentence involving pronouns, tensed verbs, articles or 
quantifiers is pragmatically ambiguous. For example, the proposition 
expressed by "L'etat, c'est moi" depends on who says it; "Do it now" may be 
good or bad advice depending on when it is said; "Cherchez la femme" is 
ambiguous since it contains a definite description, and the truth conditions 
for "All's well that ends well" depends on the domain of discourse. If the 
theory presented above is correct, then we may add conditional sentences to 
this list. The truth conditions for "If wishes were horses, then beggers would 
ride" depend on the specification of an s-function. 14 

The grounds for treating the ambiguity of conditional sentences as prag­
matic rather than semantic are the same as the grounds for treating the 
ambiguity of quantified sentences as pragmatic: simplicity and systematic 
coherence. The truth conditions for quantified statements vary with a change 
in the domain of discourse, but there is a single structure to these truth con­
ditions which remains constant for every domain. The semantics for classical 
predicate logic brings out this common structure by giving the universal quan· 
tifier a single meaning and making the domain a parameter of the interpret­
ation. In a similar fashion, the semantics for conditional logic brings out the 
common structure of the truth conditions for conditional statements by 
giving the connective a single meaning and making the selection function a 
parameter of the interpretation. 

Just as we can communicate effectively using quantified sentences without 
explicitly specifying a domain, so we can communicate effectively using con­
ditional sentences without explicitly specifying an s-function. This suggests 
that there are further rules beyond those set down in the semantics, governing 
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the use of conditional sentences. Such rules are the subject matter of a prag­

matics of conditionals. Very little can be said, at this point, about pragmatic 
rules for the use of conditionals since the logic has not advanced beyond the 
propositional stage, but I shall make a few speculative remarks about the 
kinds of research which may provide a framework for treatment of this prob­
lem, and related pragmatic problems in the philosophy of science. 

(l) If we had a functional logic with a conditional connective, it is likely 
that (VxXFx > Gx) would be a plausible candidate for the form of a law of 
nature. A law of nature says, not just that every actual F is a G, but further 
that for every possible F, if it were an F, it would be a G. If this is correct, 
then Hempel's confirmation paradox does not arise, since "All ravens are 
black" is not logically equivalent to "All non-black things are non-ravens." 
Also, the relation between counterfactuals and laws becomes clear: laws 
support counterfactuals because they entail them. "If this dove were a raven, 
it would be black" is simply an instantiation of "All ravens are black."ls 

(2) Goodman has argued that the pragmatic problem of counterfactuals is 
one of a cluster of closely related problems concerning induction and con­
firmation. He locates the source of these difficulties in the general problem of 
projectability, which can be stated roughly as follows: when can a predicate 
be validly projected from one set of cases to others? or when is a hypothesis 
confirmed by its positive instances? Some way of distinguishing between 
riatural predicates and those which are artificially constructed is needed. If a 
theory of projection such as Goodman envisions were developed, it might 
fmd a natural place in a pragmatics of conditionals. Pragmatic criteria for 
measuring the inductive properties of predicates might provide pragmatic 
criteria for ordering possible worldS. 16 

(3) There are some striking structural parallels between conditional logic 
and conditional probability functions, which suggests the possibility of a con­
nection between inductive logic and conditional logic. A probability assign­
ment and an s-function are two quite different ways to describe the inductive 
relations among propositions; a theory which draws a connection between 
them might be illuminating for both.17 

VI. CONCLUSION: EMPIRICISM AND POSSIBLE WORLDS 

Writers of fiction and fantasy sometimes suggest that imaginary worlds have a 
life of their own beyond the control of their creators. Pirandello's six charac­
ters, for example, rebelled against their author and took the story out of his 
hands. The skeptic may be inclined to suspect that this suggestion is itself 
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fantasy. He believes that nothing goes into a fictional world, or a possible 
world, unless it is put there by decision or convention; it is a creature of 
invention and not discovery. Even the fabulist Tolkien admits that Faerie is a 
land "full of wonder, but not of information.,,18 

For similar reasons, the empiricist may be uncomfortable about a theory 
which treats counterfactuals as literal statements about non-actual situations. 
Counterfactuals are often contingent, and contingent statements must be 
supported by evidence. But evidence can be gathered, by us at least, only in 
this universe. To satisfy the empiricist, I must show how possible worlds, even 
if the product of convention, can be subjects of empirical investigation. 

There is no mystery to the fact that I can partially defme a possible world 
in such a way that I am ignorant of some of the determinate truths in that 
world. One way I can do this is to attribute to it features of the actual world 
which are unknown to me. Thus I can say, "I am thinking of a possible world 
in which the population of China is just the same, on each day, as it is in the 
actual world." I am making up this world - it is a pure product of my inten­
tions - but there are already things true in it which I shall never know. 

Conditionals do implicitly, and by convention, what is done explicitly by 
stipulation in this example. It is because counterfactuals are generally about 
possible worlds which are very much like the actual one, and defined in terms 
of it, that evidence is so often relevant to their truth. When I wonder, for 
example, what would have happened if I had asked my boss for a raise yester­
day, I am wondering about a possible world that I have already roughly 
picked out. It has the same history, up to yesterday, as the actual world, the 
same boss with the same dispositions and habits. The main difference is that 
in that world, yesterday I asked the boss for a raise. Since I do not know 
everything about the boss's habits and dispositions in the actual world, there 
is a lot that I do not know about how he acts in the possible world that I have 
chosen, although I might fmd out by watching him respond to a similar 
request from another, or by asking his sectetary about his mood yesterday. 
These bits of information about the actual world would not be decisive, of 
course, but they would be relevant, since they tell me more about the non­
actual situation that I have selected. 

If I make a conditional statement - subjunctive or otherwise - and the 
antecedent turns out to be true, then whether I know it or not, I have said 
something about the actual world, namely that the consequent is true in it. 
If the antecedent is false, then I have said something about a particular 
counterfactual world, even if I believe the antencedent to be true. The 
conditional provides a set of conventions for selecting possible situations 
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which have a specified relation to what actually happens. This makes it 
possible for statements about unrealized possibilities to tell us, not just about 
the speaker's imagination, but about the world. 

Yale University 
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DAVID LEWIS 

COUNTERFACTUALS AND COMPARATIVE 

POSSIBILITY* 

In the last dozen years or so, our understanding of modality has been 
much improved by means of possible-world semantics: the project of 
analyzing modal language by systematically specifying the conditions 
under which a modal sentence is true at a possible world. I hope to do the 
same for counterfactual conditionals. I write A D~ C for the counter­
factual conditional with antecedent A and consequent C. It may be read 
as 'If it were the case that A, then it would be the case that C' or some 
more idiomatic paraphrase thereof. 

1. ANALYSES 

I shall lead up by steps to an analysis I believe to be satisfactory. 

ANALYSIS O. A D~ C is true at world i iff C holds at every A-world such 
that -. 'A-world', of course, means 'world where A holds'. 

The blank is to be filled in with some sort of condition restricting the 
A-worlds to be considered. The condition may depend on i but not on A. 
For instance, we might consider only those A-worlds that agree with i in 
certain specified respects: On this analysis, the counterfactual is some 
fixed strict conditional. 

No matter what condition we put into the blank, Analysis 0 cannot be 
correct. For it says that if A D~ B is true at i, jj holds at every A-world 
such that -. In other words, there are no AB-worlds such that -. Then 
ABD~ C and ABD~ C are alike vacuously true, and - (ABD~ C) and 
-(ABD~E) are alike false, for any C whatever. On the contrary: it 
can perfectly well happen that A D~ B is true, yet AB D~ C is non­
vacuous, and AB D~ C is false. In fact, we can have an arbitrarily long 
sequence like this of non-vacuously true counterfactuals and true denials 
of their opposites: 

A D~B and -(A D~B), 
AB D~ C and - (AB D~ C), 
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ABC 0- jj and - (ABC 0- D), 
etc. 

Example: if Albert had come to the party, he would not have brought 
Betty; for, as he knows, if he had come and had brought Betty, Carl would 
not have stayed; for, as Carl knows, if Albert had come and had brought 
Betty and Carl had stayed, Daisy would not have danced with him; ... 
Each step of the sequence is a counterexample to Analysis O. The counter­
factual is not any strict conditional whatever. 

Analysis 0 also says that AO-C implies ABO-C. If C holds at 
every A-world such that -, then C holds at such of those worlds as are 
B-worlds. On the contrary: we can have an arbitrarily long sequence like 
this of non-vacuously true counterfactuals and true denials of their op­
posites: 

A 0- Z and - (A 0- Z), 
AB 0- Z and - (AB 0- Z), 
ABC 0- Z and - (ABC 0- Z), 
etc. 

Example: if! had shirked my duty, no harm would have ensued; but if! 
had and you had too, harm would have ensued; but if I had and you had 
too and a third person had done far more than his duty, no harm would 
have ensued ... For this reason also the counterfactual is not any strict 
conditional whatever. 

More precisely, it is not anyone, fixed strict conditional. But this much 
of Analysis 0 is correct: (1) to assess the truth of a counterfactual we must 
consider whether the consequent holds at certain antecedent-worlds; (2) 
we should not consider all antecedent-worlds, but only some of them. 
We may ignore antecedent-worlds that are gratuitously remote from 
actuality. 

Rather than any fixed strict conditional, we need a variably strict condi­
tional. Given a far-fetched antecedent, we look perforce at antecedent­
worlds remote from actuality. There are no others to look at. But given 
a less far-fetched antecedent, we can afford to be more fastidious and 
ignore the very same worlds. In considering the supposition 'if I had just 
let go of my pen ... ' I will go wrong if I consider bizarre worlds where the 
law of gravity is otherwise than it actually is; whereas in considering the 
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supposition 'if the planets traveled in spirals .. .' I will go just as wrong 
if I ignore such worlds. 

It is this variable strictness that accounts for our counter-example 
sequences. It may happen that we can find an A-world that meets some 
stringent restriction; before we can find any AB-world we must relax the 
restriction; before we can find any ABC-world we must relax it still more; 
and so on. If so a counterexample sequence of the first kind definitely will 
appear, and one ofthe second kind will appear also if there is a suitable Z. 

We dream of considering a world where the antecedent holds but every­
thing else is just as it actually is, the truth of the antecedent being the one 
difference between that world and ours. No hope. Differences never come 
singly, but in infinite multitudes. Take, if you can, a world that differs 
from ours only in that Caesar did not cross the Rubicon. Are his predic­
ament and ambitions there just as they actually are? The regularities of 
his character? The psychological laws exemplified by his decision? The 
orders of the day in his camp? The preparation of the boats? The sound 
of splashing oars? Hold everything else fixed after making one change, 
and you will not have a possible world at all. 

If we cannot have an antecedent-world that is otherwise just like our 
world, what can we have? This, perhaps: an antecedent-world that does 
not differ gratuitously from ours; one that differs only as much as it must 
to permit the antecedent to hold; one that is closer to our world in 
similarity, all things considered, than any other antecedent world. Here is 
a first analysis of the counterfactual as a variably strict conditional. 

ANALYSIS 1. AD-C is true at i ijJC holds at the closest (accessible) 
A-world to i, if there is one. This is Robert Stalnaker's proposal in 'A 
Theory of Conditionals', Studies in Logical Theory (A.P.Q. supplementary 
monograph series, 1968), and elsewhere. 

It may be objected that Analysis 1 is founded on comparative similarity 
- 'closeness' - of worlds, and that comparative similarity is hopelessly 
imprecise unless some definite respect of comparison has been specified. 
Imprecise it may be; but that is all to the good. Counterfactuals are im­
precise too. Two imprecise concepts may be rigidly fastened to one an­
other, swaying together rather than separately, and we can hope to be 
precise about their connection. Imprecise though comparative similarity 
may be, we do judge the comparative similarity of complicated things like 
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cities or people or philosophies - and we do it often without benefit of 
any definite respect of comparison stated in advance. We balance off 
various similarities and dissimilarities according to the importances we 
attach to various respects of comparison and according to the degrees of 
similarity in the various respects. Conversational context, of course, 
greatly affects our weighting of respects of comparison, and even in a 
fixed context we have plenty of latitude. Still, not anything goes. We have 
concordant mutual expectations, mutual expectations of expectations, etc., 
about the relative importances we will attach to respects of comparison. 
Often these are definite and accurate and firm enough to resolve the 
imprecision of comparative similarity to the point where we can converse 
without misunderstanding. Such imprecision we can live with. Still, I grant 
that a counterfactual based on comparative similarity has no place in the 
language of the exact sciences. 

I imposed a restriction to A-worlds 'accessible' from i. In this I follow 
Stalnaker, who in turn is following the common practice in modal logic. 
We might think that there are some worlds so very remote from i that they 
should always be ignored (at i) even if some of them happen to be A­
worlds and there are no closer A-worlds. If so, we have the wherewithal 
to ignore them by deeming them inaccessible from i. I can think of no 
very convincing cases, but I prefer to remain neutral on the point. If we 
have no need for accessibility restrictions, we can easily drop them by 
stipulating that all worlds are mutually interaccessible. 

Unfortunately, Analysis I depends on a thoroughly implausible as­
sumption: that there will never be more than one closest A-world. So 
fine are the gradations of comparative similarity that despite the infinite 
number and variety of worlds every tie is broken. 

Example: A is 'Bizet and Verdi are compatriots', Fis 'Bizet and Verdi 
are French', lis 'Bizet and Verdi are Italian'. Grant for the sake of argu­
ment that we have the closest F-world and the closest I-world; that these 
are distinct (dual citizenships would be a gratuitous difference from ac­
tuality); and that these are the two finalists in the competition for closest 
A-world. It might be that something favors one over the other - for all I 
know, Verdi narrowly escaped settling in France and Bizet did not nar­
rowly escape settling in Italy. But we can count on no such luck. The case 
may be perfectly balanced between respects of comparison that favor the 
F-world and respects that favor the I-world. It is out of the question, on 
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Analysis 1, to leave the tie unbroken. That means there is no such thing 
as the closest A-world. Then anything you like holds at the closest A-world 
if there is one, because there isn't one. If Bizet and Verdi had been com­
patriots they would have been Ukranian. 

ANALYSIS 2. A 0-C is true at i iff C holds at every closest (accessible) 
A-world to i, if there are any. This is the obvious revision of Stalnaker's 
analysis to permit a tie in comparative similarity between several equally 
close closest A-worlds. 

Under Analysis 2 unbreakable ties are no problem. The case of Bizet 
and Verdi comes out as follows. A 0-F, A 0-F, A 0-I, and A 0-I 
are all false. A O-(Fv I) and A O-(Fv 1) are both true. A O-FI and 
A 0'" FI are both false. These conclusions seem reasonable enough. 

This reasonable settlement, however, does not sound so good in words. 
A 0-F and A 0-F are both false, so we want to assert their negations. 
But negate their English readings in any straightforward and natural way, 
and we do not get - (A 0-F) and - (A 0-F) as desired. Rather the 
negation moves in and attaches only to the consequent, and we get sen­
tences that seem to mean A 0-F and A 0-F - a pair of falsehoods, 
together implying the further falsehood that Bizet and Verdi could not 
have been compatriots; and exactly the opposite of what we meant to say. 

Why is it so hard to negate a whole counterfactual, as opposed to 
negating the consequent? The defender of Analysis 1 is ready with an 
explanation. Except when A is impossible, he says, there is a unique closest 
A-world. Either C is false there, making - (A 0-C) and A 0-C alike 
true, or C is true there, making them alike false. Either way, the two agree. 
We have no need of a way to say - (A 0-C) because we might as well 
say A 0-C instead (except when A is impossible, in which case we have 
no need of a way to say -(AO-C) because it is false). 

There is some appeal to the view that - (A 0-C) and A 0-Care 
equivalent (except when A is impossible) and we might be tempted thereby 
to return to Analysis I. We might do better to return only part way, using 
Bas van Fraassen's method of supervaluations to construct a compromise 
between Analyses I and 2. 

ANALYSIS I t. A 0-C is true at i iff C holds at a certain arbitrarily 
chosen one of the closest (accessible) A-worlds to i, if there are any. A sen-
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tence is super-true iff it is true no matter how the arbitrary choices are made, 
super-false iff false no matter how the arbitrary choices are made. Otherwise 
it has no super-truth value. Unless a particular arbitrary choice is under dis­
cussion, we abbreviate 'super-true' as 'true', and so on. Something of this 
kind is mentioned at the end of Richmond Thomason, 'A Fitch-Style 
Formulation of Conditional Logic', Logique et Analyse 1970. 

Analysis It agrees with Analysis 1 about the equivalence (except when 
A is impossible) of -(AO~C) and AO~C. If there are accessible 
A-worlds, the two agree in truth (i.e. super-truth) value, and further their 
biconditional is (super-)true. On the other hand, Analysis It tolerates 
ties in comparative similarity as happily as Analysis 2. Indeed a counter­
factual is (super-)true under Analysis It iff it is true under Analysis 2. 
On the other hand, a counterfactual false under Analysis 2 may either be 
false or have no (super-)truth under Analysis It. The case of Bizet and 
-Verdi comes out as follows: AD-+F,AD-+P,AD-d,AD-+I, and 
their negations have no truth value. AD -+ (Fv I) and AD -+ (Pv I) are 
(super-)true. AD -+ FI and AD -+ PI are (super-)false. 

This seems good enough. For all I have said yet, Analysis 1 t solves the 
problem of ties as well as Analysis 2, provided we're not too averse to 
(super-) truth value gaps. But now look again at the question how to deny 
a counterfactual. We have a way after all: to deny a 'would' counterfac­
tual, use a 'might' counterfactual with the same antecedent and negated 
consequent. In reverse likewise: to deny a 'might' counterfactual, use a 
'would' counterfactual with the same antecedent and negated consequent. 
Writing A O~ C for 'If it were the case that A, then it might be the case 
that C' or some more idiomatic paraphrase, we have these valid-sounding 
equivalences: 

(1) - (A O~ C) is equivalent to A 0 -+ C, 
(2) - (A O~ C) is equivalent to A O~ C. 

The two equivalences yield an explicit definition of 'might' from 'would' 
counterfactuals: 

A 0 -+ C = de - (A O~ C); 

or, if we prefer, the dual definition of 'would' from 'might'. According to 
this definition and Analysis 2, A 0 -+ C is true at i iff C holds at some 
closest (accessible) A-world to i. In the case of Bizet and Verdi, A O~ F, 
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AO-F, A 0-+/, AO-I are all true; so are AO-+(FvI) and 
A 0 -+ (Fv 1); but A 0-F/ and A 0-FI are false. 

According to the definition and Analysis 1 or It, on the other hand, 
A 0-C and AD- C are equivalent except when A is impossible. That 
should put the defender of those analyses in an uncomfortable spot. He 
cannot very well claim that 'would' and 'might' counterfactuals do not 
differ except when the antecedent is impossible. He must therefore reject 
my definition of the 'might' counterfactual; and with it, the equivalences 
(1) and (2), uncontroversial though they sound. He then owes us some 
other account of the 'might' counterfactual, which I do not think he" can 
easily find. Finally, once we see that we do have a way to negate a whole 
counterfactual, we no longer appreciate his explanation of why we don't 
need one. I conclude that he would be better off moving at least to Anal­
ysis 2. 

Unfortunately, Analysis 2 is not yet satisfactory. Like Analysis 1, it 
depends on an implausible assumption. Given that some A-world is 
accessible from i, we no longer assume that there must be exactly one 
closest A-world to i; but we still assume that there must be at least one. 
I call this the Limit Assumption. It is the assumption that as we proceed 
to closer and closer A-worlds we eventually hit a limit and can go no 
farther. But why couldn't it happen that there are closer and closer 
A-worlds without end - for each one, another even closer to i? Example: 
A is 'I am over 7 feet tall'. If there are closest A-worlds to ours, pick one 
of them: how tall am I there? I must be 7 + e feet tall, for some positive e, 
else it would not be an A-world. But there are A-worlds where I am only 
7 +e/2 feet tall. Since that is closer to my actual height, why isn't one of 
these worlds closer to ours than the purportedly closest A-world where 
I am 7 +"e feet tall? And why isn't a suitable world where I am only 7 +e/4 
feet even closer to ours, and so ad infinitum? (In special cases, but not in 
general, there may be a good reason why not. Perhaps 7 +e could have 
been produced by a difference in one gene, whereas any height below that 
but still above 7 would have taken differences in many genes.) If there are 
A-worlds closer and closer to i without end, then any consequent you like 
holds at every closest A-world to i, because there aren't any. If I were 
over 7 feet tall I would bump my head on the sky. 

ANALYSIS 3. AD-C is true at i iff some (accessible) AC-world is closer 
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to i than any AC-world, if there are any (accessible) A-worlds. This is my 
final analysis. 

Analysis 3 looks different from Analysis 1 or 2, but it is similar in 
principle. Whenever there are closest (accessible) A-worlds to a given 
world, Analyses 2 and 3 agree on the truth value there of A 0-C. They 
agree also, of course, when there are no (accessible) A-worlds. When there 
are closer and closer A-worlds without end, AO-C is true iff, as we 
proceed to closer and closer A-worlds, we eventually leave all the AC­
worlds behind and find only AC-worlds. 

Using the definition of A 0 - C as - (A 0-C), we have this derived 
truth condition for the 'might' counterfactual: A 0-C is true at i iff for 
every (accessible) AC-world there is some AC-world at least as close to i, 
and there are (accessible) A-worlds. 

We have discarded two assumptions about comparative similarity in 
going from Analysis 1 to Analysis 3: first Stalnaker's assumption of 
uniqueness, then the Limit Assumption. What assumptions remain? 

First, the Ordering Assumption: that for each world i, comparative 
similarity to i yields a weak ordering of the worlds accessible from i. That 
is, writing j::S:; jk to mean that k is not closer to i than j, each ::s:; j is con­
nected and transitive. Whenever j and k are accessible from i either j::S:; jk 
or k::S:;j; whenever h::S:;;jandj::S:;jk, then h::S:;jk. It is convenient, if some­
what artificial, to extend the comparative similarity orderings to en­
compass also the inaccessible worlds, if any: we stipulate that each ::s:; j 
is to be a weak ordering of all the worlds, and that j is closer to i than k 
whenever j is accessible from i and k is not. (Equivalently: whenever 
j::S:;jk, then if k is accessible from i so iSj.) 

Second, the Centering Assumption: that each world i is accessible from 
itself, and closer to itself than any other world is to it. 

2. REFORMULATIONS 

Analysis 3 can be given several superficially different, but equivalent, 
reformulations. 

2.1. Comparative Possibility 

Introduce a connective -<. A-<B is read as 'It is less remote from actuality 
that A than that B' or 'It is more possible that A than that B' and is true 
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at a world i iff some (accessible) A-world is closer to i than is any B-world. 
First a pair of modalities and then the counterfactual can be defined from 
this new connective of comparative possibility, as follows. (Let .L be a 
sentential constant false at every world, or an arbitrarily chosen contra­
diction; later, let T=df_L ) 

o A = df A -<.L ; DA = df -0-A; 
A 0- C =dfOA => (AC-< AC). 

The modalities so defined are interpreted by means of accessibility in the 
usual way. OA is true at i iff some A-world is accessible from i, and DA 
is true at i iff A holds throughout all the worlds accessible from i. If 
accessibility restrictions are discarded, so that all worlds are mutually 
interaccessible, they became the ordinary 'logical' modalities. (We might 
rather have defined the two modalities and comparative possibility from 
the counterfactual. 

DA =dfAD_.L; OA =df-D-A; 
A -< B =df OA &«A v B) 0- AB). 

Either order of definitions is correct according to the given truth condi­
tions.) 

Not only is comparative possibility technically convenient as a primi­
tive; it is of philosophical interest for its own sake. It sometimes seems 
true to say: It is possible that A but not that B, it is possible that B but 
not that C, C but not D, etc. Example: A is 'I speak English', B is 'I speak 
German' (a language I know), C is 'I speak Finnish', D is 'A dog speaks 
Finnish', E is 'A stone speaks Finnish', F is 'A number speaks Finnish'. 
Perhaps if I say all these things, as I would like to, I am equivocating -
shifting to weaker and weaker noncomparative senses of 'possible' from 
clause to clause. It is by no means clear that there are enough distinct 
senses to go around. As an alternative hypothesis, perhaps the clauses are 
compatible comparsions of possibility without equivocation: A -<B-< C 
-<D-<E-<F. (Here and elsewhere, I compress conjunctions in the obvious 
way.) 

2.2. Cotenability 

Call B cotenable at i with the supposition that A iff some A-world acces­
sible from i is closer to i than any B-world, or if there are no A-worlds 
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accessible from i. In other words: iff, at i, the supposition that A is either 
more possible than the falsity of B, or else impossible. Then A D~ C is 
true at i iff C follows from A together with auxiliary premises Bl , ... , each 
true at i and cotenable at i with the supposition that A. 

There is less to this definition than meets the eye. A conjunction is 
cotenable with a supposition iff its conjuncts all are; so we need only 
consider the case of a single auxiliary premise B. That single premise may 
always be taken either as A (if A is impossible) or as A:::) C (otherwise); 
so 'follows' may be glossed as 'follows by truth-functional logic'. 

Common opinion has it that laws of nature are cotenable with any 
supposition unless they are downright inconsistent with it. What can we 
make of this? Whatever else laws may be, they are generalizations that we 
deem especially important. If so, then conformity to the prevailing laws 
of a world i should weigh heavily in the similarity of other worlds to i. 
Laws should therefore tend to be cotenable, unless inconsistent, with 
counterfactual suppositions. Yet I think this tendency may be overridden 
when conformity to laws carries too high a cost in differences of par­
ticular fact. Suppose, for instance, that i is a world governed (in all re­
spects of the slightest interest to us) by deterministic laws. Let A pertain 
to matters of particular fact at time t; let A be false at i, and determined 
at all previous times to be false. There are some A-worlds where the laws 
of i are never violated; all of these differ from i in matters of particular 
fact at all times before t. (Nor can we count on the difference approaching 
zero as we go back in time.) There are other A-worlds exactly like i 
until very shortly before t when a small, local, temporary, impercep­
tible suspension of the laws permits A to come true. I find it highly 
plausible that one of the latter resembles i on balance more than any of 
the former. 

2.3. Degrees of Similarity 

Roughly, A D~ C is true at i iff either (1) there is some degree of simi­
larity to i within which there are A-worlds and C holds at all of them, or 
(2) there are no A-worlds within any degree of similarity to i. To avoid the 
questionable assumption that similarity of worlds admits somehow of 
numerical measurement, it seems best to identify each 'degree of similarity 
to i' with a set of worlds regarded as the set of all worlds within that degree 
mof siilarity to i. Call a set S of worlds a sphere around i iff every S-world 
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is accessible from i and is closer to i than is any S-world. Call a sphere 
A-permitting iff it contains some A-world. Letting spheres represent 
degrees of similarity, we have this reformulation: A 0---+ C is true at i 
iff A::J C holds throughout some A-permitting sphere around i, if such 
there be. 

To review our other operators: AO--+ C is true at i iff AC holds some­
where in every A-permitting sphere around i, and there are such. OA is 
true at i iff A holds throughout every sphere around i. 0 A is true at i iff 
A holds somewhere in some sphere around i. A -<B is true at i iff some 
sphere around i permits A but not B. Finally, B is cotenable at i with the 
supposition that A iff B holds throughout some A-permitting sphere 
around i, if such there be. 

Restated in terms of spheres, the Limit Assumption says that if there 
is any A-permitting sphere around i, then there is a smallest one - the 
intersection of all A-permitting spheres is then itself an A-permitting 
sphere. We can therefore reformulate Analysis 2 as: A 0---+ C is true at 
i iff A::J C holds throughout the smallest A-permitting sphere around i, 
if such there be. 

These systems of spheres may remind one of neighborhood systems in 
topology, but that would be a mistake. The topological concept of close­
ness captured by means of neighborhoods is purely local and qualitative, 
not comparative: adjacent vs. separated, no more. Neighborhoods do not 
capture comparative closeness to a point because arbitrary supersets of 
neighborhoods of the point are themselves neighborhoods of a point. The 
spheres around a world, on the other hand, are nested, wherefore they 
capture comparative closeness: j is closer to i than k is (according to the 
definition of spheres and the Ordering Assumption) iff some sphere 
around i includes j but excludes k. 

2.4. Higher-Order Quantification 

The formulation just given as a metalinguistic truth condition can also be 
stated, with the help of auxiliary apparatus, as an explicit definition in the 
object language. 

A 0---+ C =df OA ::J 3S(4)S & OSA & 0 (SA ::J C)). 

Here the modalities are as before; 'S' is an object-language variable over 
propositions; and 4> is a higher-order predicate satisfied at a world i by a 
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proposition iff the set of all worlds where that proposition holds is a 
sphere around i. I have assumed that every set of worlds is the truth-set 
of some - perhaps inexpressible - proposition. 

We could even quantify over modalities, these being understood as 
certain properties of propositions. Call a modality spherical iff for every 
world i there is a sphere around i such that the modality belongs at i to 
all and only those propositions that hold throughout that sphere. Letting 
• be a variable over all spherical modalities, and letting • abbreviate 
-.-, we have 

This definition captures explicitly the idea that the counterfactual is a 
variably strict conditional. 

To speak of variable strictness, we should be able to compare the strict­
ness of different spherical modalities. Call one modality (locally) stricter 
than another at a world i iff the second but not the first belongs to some 
proposition at i. Call two modalities comparable iff it does not happen 
that one is stricter at one world and the other at another. Call one mod­
ality stricter than another iff they are comparable and the first is stricter 
at some worlel. Call one uniformly stricter than another iff it is stricter at 
every world. Comparative strictness is only a partial ordering of the 
spherical modalities: some pairs are incomparable. However, we can 
without loss restrict the range of our variable. to a suitable subset of 
the spherical modalities on which comparative strictness is a linear order­
ing. (Perhaps - iff the inclusion orderings of spheres around worlds all 
have the same order type - we can do better still, and use a subset linearly 
ordered by uniform comparative strictness.) Unfortunately, these linear 
sets are not uniquely determined. 

Example: suppose that comparative similarity has only a few grada­
tions. Suppose, for instance, that there are only five different (nonempty) 
spheres around each world. Let OlA be true at i iff A holds throughout 
the innermost (nonempty) sphere around i: let 02A be true at i iff A 
holds throughout the innermost-but-one; and likewise for 03, 04, and 
05. Then the five spherical modalities expressed by these operators are a 
suitable linear set. Since we have only a finite range, we can replace quan­
tification by disjunction: 
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A 0- C=dCOA =>.(OlA & oleA => C» 

v ... v (0 sA & 0 s (A => C» 

See Louis Goble, 'Grades of Modality', Logique et Analyse 1970. 

2.5. Impossible Limit-Worlds 

We were driven from Analysis 2 to Analysis 3 because we had reason to 
doubt the Limit Assumption. It seemed that sometimes there were closer and 
closer A-worlds to i without limit - that is, without any closest A-worlds. 
None, at least, among the possible worlds. But we can find the closest A­
worlds instead among certain impossible worlds, if we are willing to look 
there. If we count these impossible worlds among the worlds to be con­
sidered, the Limit Assumption is rescued and we can safely return to 
Analysis 2. 

There are various ways to introduce the impossible limits we need. The 
following method is simplest, but others can be made to seem a little less 
ad hoc. Suppose there are closer and closer (accessible, possible) A-worlds 
to i without limit; and suppose 1: is any maximal set of sentences such that, 
for any finite conjunction C of sentences in 1:, A 0-C holds at i accord­
ing to Analysis 3. (We can think of such a 1: as a full description of one­
possible or impossible - way things might be if it were that A, from the 
standpoint of i.) Then we must posit an impossible limit-world where all 
of 1: holds. It should be accessible from i alone; it should be closer to i 
than all the possible A-worlds; but it should be no closer to i than any 
possible world that is itself clossr than all the possible A-worlds. (Ac­
cessibility from, and comparative similarity to, the impossible limit­
worlds is undefined. Truth of sentences there is determined by the way in 
which these worlds were introduced as limits, not according to the or­
dinary truth conditions.) Obviously the Limit Assumption is satisfied 
once these impossible worlds have been added to the worlds under con­
sideration. It is easy to verify that the truth values of counterfactuals at 
possible worlds afterwards according to Analyses 2 and 3 alike agrees 
with their original truth values according to Analysis 3. 

The impossible worlds just posited are impossible in the least objection­
able way. The sentences true there may be incompatible, in that not all of 
them hold together at any possible world; but there is no (correct) way 
to derive any contradiction from them. For a derivation proceeds from 
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finitely many premises; and any finite subset of the sentences true at one 
of the limit-worlds is true together at some possible world. Example: 
recall the failure of the Limit Assumption among possible worlds when 
A is 'I am over 7 feet tall'. Our limit-worlds will be impossible worlds 
where A is true but all of ' 1 am at least 7.1 feet tall', 'I am at least 7.01 feet 
tall', 'I am at least 7.001 feet tall' etc. are false. (Do not confuse these with 
possible worlds where 1 am infinitesimally more than 7 feet tall. For all 1 
know, there are such; but worlds where physical magnitudes can take 
'non-standard' values differing infinitesimally from a real number pre­
sumably differ from ours in a very fundamental way, making them far 
more remote from actuality than some ofthe standard worlds where 1 am, 
say, 7.1 feet tall. If so, 'Physical magnitudes never take non-standard 
values' is false at any possible world where 1 am infinitesimally more than 
7 feet tall, but true at the impossible closest A-worlds to ours.) 

How bad is it to believe in these impossible limit-worlds? Very bad, 1 
think; but there is no reason not to reduce them to something less objec­
tionable, such as sets of propositions or even sentences. 1 do not like a 
parallel reduction of possible worlds, chiefly because it is incredible in 
the case of the possible world we happen to live in, and other possible 
worlds do not differ in kind from ours. But this objection does not carry 
over to the impossible worlds. We do not live in one of those, and possible 
and impossible worlds do differ in kind. 

2.6. Selection Functions 

Analysis 2, vindicated either by trafficking in impossible worlds or by 
faith in the Limit Assumption even for possible worlds, may conveniently 
be reformulated by introducing a function/that selects, for any antecedent 
A and possible world i, the set of all closest (accessible) A-worlds to i (the 
empty set if there are none). A D-C is true at a possible world i iff C 
holds throughout the selected set/(A, i). Stalnaker formulates Analysis I 
this way, except that his/(A, i) is the unique member of the selected set, 
if such there be, instead of the set itself. 

If we like, we can put the selection function into the object language; 
but to do this without forgetting that counterfactuals are in general con­
tingent, we must have recourse to double indexing. That is, we must think 
of some special sentences as being true or false at a world i not absolutely, 
but in relation to a worldj. An ordinary sentence is true or false at i, as the 
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case may be, in relation to any j; it will be enough to deal with ordinary 
counterfactuals compounded out of ordinary sentences. Let IA (where A 
is ordinary) be a special sentence true atj in relation to i iffj belongs to 
f(A, i). Then IA => C (where Cis ordinary) is true atj in relation to i iff, if 
j belongs to f(A, i), C holds at j. Then OVA => C) is true at j in relation 
to i iff C holds at every world inf(A, i) that is accessible fromj. It is there­
fore true at i in relation to i itself iff C holds throughout (fA, i)- that is, 
iff A 0-C holds at i. Introducing an operator t such that t B is true at i 
in relation to j iff B is true at i in relation to i itself, we can define the 
counterfactual: 

A 0- C=dftOVA => C). 

An I-operator without double indexing is discussed in Lennart Aqvist, 
'Modal Logic with Subjunctive Conditionals and Dispositional Pre­
dicates', Filosofiska Studier (Uppsala) 1971; the t-operator was intro­
duced in Frank Vlach, ' "Now" and "Then" '(in preparation). 

2.7. Ternary Accessibility 

If we like, we can reparse counterfactuals as [A 0-]C, regarding 0-
now not as a two-place operator but rather as taking one sentence A to 
make a one-place operator [A 0-]. Ifwe have closest A-worlds -possible 
or impossible - whenever A is possible, then each [A 0-] is a necessity 
operator interpretable in the normal way by means of an accessibility 
relation. Callj A-accessible from i (or accessible from i relative to A) iff 
j is a closest (accessible) A-world from i; then [A O-]C is true at i iff C 
holds at every world A-accessible from i. See Brian F. Chellas, 'Basic Con­
ditional Logic' (in preparation). 

3. FALLACIES 

Some familiar argument-forms, valid for certain other conditionals, are 
invalid for my counterfactuals. 

Transitivity 

A O-B 
BO- C 

A 0- C 

Contraposition Strengthening Importation 

A 0- C AO- C A 0- (B => C) 

C 0- A AB 0- C AB 0- C 
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However, there are related valid argument-forms that may often serve 
as substitutes for these. 

AD~B C A <>~B A <>~B 
ABD~C AD~C AD~C A D~(B::> C) 

AD~C CD~A ABD~C ABD~C 

Further valid substitutes for transitivity are these. 

BD~A B<>--+A 
AD~B AD~B AD~B 

o (B::> C) BD~C BD~C 

AD~C AD~C AD~C 

4. TRUE ANTECEDENTS 

On my analysis, a counterfactual is so called because it is suitable for 
non-trivial use when the antecedent is presumed false; not because it 
implies the falsity of the antecedent. It is conversationally inappropriate, 
of course, to use the counterfactual construction unless one supposes the 
antecedent false; but this defect is not a matter of truth conditions. Rath­
er, it turns out that a counterfactual with a true antecedent is true iff the 
consequent is true, as if it were a material conditional. In other words, 
these two arguments are valid. 

A, C 
(-) -(A D~ C) 

A, C 
(+) A D~C· 

It is hard to study the truth conditions of counterfactuals with true an­
tecedents. Their inappropriateness eclipses the question whether they are 
true. However, suppose that someone has unwittingly asserted a counter­
factual A D~ C with (what you take to be) a true antecedent A. Either 
of these replies would, I think, sound cogent. 

( -) Wrong, since in fact A and yet not C. 
( +) Right, since in fact A and indeed C. 
The two replies depend for their cogency - for the appropriateness of 

the word 'since' - on the validity of the corresponding arguments. 
I confess that the case for ( - ) seems more compelling than the case for 

( +). One who wants to invalidate ( +) while keeping (-) can do so ifhe is 
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prepared to imagine that another world may sometimes be just as similar 
to a given world as that world is to itself. He thereby weakens the Center­
ing Assumption to this: each world is self-accessible, and at least as close 
to itself as any other world is to it. Making that change and keeping every­
thing else the same, ( - ) is valid but ( + ) is not. 

5. COUNTERPOSSIBLES 

If A is impossible, A 0- C is vacuously true regardless of the consequent 
C. Clearly some counterfactuals with impossible antecedents are asserted 
with confidence, and should therefore come out true: 'If there were a 
decision procedure for logic, there would be one for the halting problem'. 
Others are not asserted by reason of the irrelevance of antecedent to 
consequent: 'If there were a decision procedure for logic, there would be 
a sixth regular solid' or ' ... the war would be over by now'. But would 
these be confidently denied? I think not; so I am content to let all of them 
alike be true. Relevance is welcome in the theory of conversation (which 
I leave to others) but not in the theory of truth conditions. 

If you do insist on making discriminations of truth value among coun­
terfactuals with impossible antecedents, you might try to do this by ex­
tending the comparative similarity orderings of possible worlds to 
encompass also certain impossible worlds where not-too-blatantly im­
possible antecedents come true. (These are worse than the impossible 
limit-worlds already considered, where impossible but consistent infinite 
combinations of possibly true sentences come true.) See recent work on 
impossible-world semantics for doxastic logic and for relevant implica­
tion; especially Richard Routley, 'Ultra-Modal Propositional Functors' 
(in preparation). 

6. POTENTIALITIES 

'Had the Emperor not crossed the Rubicon, he would never have become 
Emperor' does not mean that the closest worlds to ours where there is a 
unique emperor and he did not cross the Rubicon are worlds where there 
is a unique emperor and he never became Emperor. Rather, it is de re with 
respect to 'the Emperor', and means that he who actually is (or was at the 
time under discussion) Emperor has a counterfactual property, or po­
tentiality, expressed by the formula: 'if x had not crossed the Rubicon, x 



74 DAVID LEWIS 

would never have become Emperor'. We speak of what would have befal­
len the actual Emperor, not of what would have befallen whoever would 
have been Emperor. Such potentialities may also appear when we quantify 
into counterfactuals: 'Any Emperor who would never have become 
Emperor had he not crossed the Rubicon ends up wishing he hadn't done 
it' or 'Any of these matches would light if it were scratched'. We need to 
know what it is for something to have a potentiality - that is, to satisfy a 
counterfactual formula A(x) D-C(x). 

As a first approximation, we might say that something x satisfies the 
formula A(x)D-C(x) at a world i iff some (accessible) world where x 
satisfies A(x) and C(x) is closer to i than any world where x satisfies A(x) 
and C(x), if there are (accessible) worlds where x satisfies A(x). 

The trouble is that this depends on the assumption that one and the 
same thing can exist - can be available to satisfy formulas - at various 
worlds. I reject this assumption, except in the case of certain abstract 
entities that inhabit no particular world, and think it better to say that 
concrete things are confined each to its own single world. He who actually 
is Emperor belongs to our world alone, and is not available to cross the 
Rubicon or not, become Emperor or not, or do anything else at any other 
world. But although he himself is not present elsewhere, he may have 
counterparts elsewhere: inhabitants of other worlds who resemble him 
closely, and more closely than do the other inhabitants of the same world. 
What he cannot do in person at other worlds he may do vicariously, 
through his counterparts there. So, for instance, I might have been a 
Republican not because I myself am a Republican at some other world 
than this - I am not - but because I have Republican counterparts at 
some worlds. See my 'Counterpart Theory and Quantified Modal Logic', 
Journal of Philosophy 1968. 

Using the method of counterparts, we may say that something x 
satisfies the formula A(x)D-C(x) at a world i iff some (accessible) 
world where some counterpart of x satisfies A(x) and C(x) is closer to i 
than any world where any counterpart of x satisfies A(x) and C(x), if 
there are (accessible) worlds where a counterpart of x satisfies A(x). This 
works also for abstract entities that inhabit no particular world but exist 
equally at all, if we say that for these things the counterpart relation is 
simply identity. 

A complication: it seems that when we deal with relations expressed 
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by counterfactual formulas with more than one free variable, we may need 
to mix different counterpart relations. 'It 1 were you I'd give up' seems 
to mean that some world where a character-counterpart of me is a pre­
dicament-counterpart of you and gives up is closer than any where a 
character-counterpart of me is a predicament-counterpart of you and does 
not give up. (I omit provision for vacuity and for accessibility restric­
tions.) The difference between Goodman's sentences 

(1) If New York City were in Georgia, New York City would be 
in the South. 

(2) If Georgia included New York City, Georgia would not be 
entirely in the South. 

may be explained by the hypothesis that both are de re with respect to 
both 'New York City' and 'Georgia', and that a less stringent counter­
part relation is used for the subject terms 'New York City' in (1) and 
'Georgia' in (2) than for the object terms 'Georgia' in (1) and 'New York 
City' in (2). 1 cannot say in general how grammar and context control 
which counterpart relation is used where. 

An independent complication: since closeness of worlds and counter­
part relations among their inhabitants are alike matters of comparative 
similarity, the two are interdependent. At a world close to ours, the in­
habitants of our world will mostly have close counterparts; at a world 
very different from ours, nothing can be a very close counterpart of any­
thing at our world. We might therefore wish to fuse closeness of worlds 
and closeness of counterparts, allowing these to balance off. Working 
with comparative similarity among pairs of a concrete thing and the world 
it inhabits (and ignoring provision for vacuity and for accessibility restric­
tions), we could say that an inhabitant x of a world i satisfies A(x) 0--+ C(x) 
at i iff some such thing-world pair (y,j) such that y satisfies A(x) and 
C(x) atj is more similar to the pair (x, i) than is any pair (z, k) such that 
z satisfies A(x) and ('(x) at k. To combine this complication and the pre­
vious one seems laborious but routine. 

7. COUNTER COMPARATIVES 

'If my yacht were longer than it is, 1 would be happier than 1 am' might be 
handled by quantifying into a counterfactual formula: 3x, y (my yacht is 
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x feet long&I enjoy y hedons&(my yacht is more than x feet longD-I 
enjoy more thany hedons)). But sometimes, perhaps in this very example, 
comparison makes sense when numerical measurement does not. An 
alternative treatment of countercomparatives is available using double 
indexing. (Double indexing has already been mentioned in connection 
with the I-operator; but if we wanted it both for that purpose and for this, 
we would need triple indexing.) Let A be true at j in relation to i iff my 
yacht is longer at j than at i (more precisely: if my counterpart at j has a 
longer yacht than my counterpart at i (to be still more precise, decide 
what to do when there are multiple counterparts or mUltiple yachts)); let 
C be true atj in relation to i iff I am happier atj than at i (more precisely: 
if my counterpart ... ). Then A 0-C is true at j in relation to i iff some 
world (accessible fromj) where A and C both hold in relation to i is closer 
to j than any world where A and C both hold in relation to i. So far, the 
relativity to i just tags along. Our countercomparative is therefore true at 
i (in relation to any world) iff A 0-C is true at i in relation to i itself. It 
is therefore teA 0-C). 

8. COUNTER FACTUAL PROBABILITY 

'The probability that C, if it were the case that A, would be r' cannot be 
understood to mean any of: 

(1) Prob (A 0- C) = r, 
(2) Prob (C I A) = r, or 
(3) A 0- Prob(C) = r. 

Rather, it is true at a world i (with respect to a given probability measure) 
iff for any positive e there exists an A-permitting sphere T around i such 
that for any A-permitting sphere S around i within T, Prob(C'1 AS), 
unless undefined, is within e of r. 

Example. A is 'The sample contained abracadabrene', C is 'The test 
for abracadabrene was positive', Prob is my present subjective proba­
bility measure after watching the test come out negative and tentatively 
concluding that abracadabrene was absent. I consider that the probabil­
ity of a positive result, had abracadabrene been present, would have been 
97%. (I) I know that false negatives occur because of the inherently in­
deterministic character of the radioactive decay of the tracer used in the 
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test, so I am convinced that no matter what the actual conditions were, 
there might have been a false negative even if abracadabrene had been 
present. Prob(A O-C)~ I; Prob(A D-C) ~O. (2) Having seen that the 
test was negative, I disbelieve C much more strongly,than I disbelieve A; 
Prob(AC) is much less than Prob(A); Prob (C I A)~O. (3) Unknown to 
me, the sample was from my own blood, and abracadabrene is a powerful 
hallucinogen that makes white things look purple. Positive tests are 
white, negatives are purple. So had abracadabrene been present, I would 
have strongly disbelieved C no matter what the outcome of the test really 
was. A D-Prob(C)~O. (Taking (3) de re with respect to 'Prob' is just as 
bad: since actually Prob(C)~O, AD-Prob(C)~O also.) My suggested 
definition seems to work, however, provided that the outcome of the test 
at a close A-world does not influence the closeness of that world to ours. 

9. ANALOGIES 

The counterfactual as I have analyzed it is parallel in its semantics to 
operators in other branches of intensional logic, based on other com­
parative relations. There is one difference: in the case of these analogous 
operators, it seems best to omit the provision for vacuous truth. They 
correspond to a doctored counterfactual D=> that is automatically 
false instead of automatically true when the antecedent is impossible: 
AD=>C=dfOA & (AD-C). 

Deontic: We have the operator AD=>dC, read as 'Given that A, it 
ought to be that C', true at a world i iff some AC-world evaluable from 
the standpoint of i is better, from the standpoint of i, than any AC-world. 
Roughly (under a Limit Assumption), iff C holds at the best A-worlds. 
See the operator of 'conditional obligation' discussed in Bengt Hansson, 
'An Analysis of Some Deontic Logics', Nolls 1969. 

Temporal: We have AD=> fC, read as 'When next A, it will be that C', 
true at a time t iff some AC-time after t comes sooner after t than any 
AC-time; roughly, iff C holds at the next A-time. We have also the past 
mirror image: AD=>pC, read as 'When last A, it was that C'. 

Egocentric (in the sense of A. N. Prior, 'Egocentric Logic', Nolls 1968): 
We have A D=>eC, read as 'The A is C', true for a thing x iff some AC­
thing in x's ken is more salient to x than any AC-thing; roughly, iff the 
most salient A-thing is C. 
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To motivate the given truth conditions, we may note that these operators 
all permit sequences of truths of the two forms: 

AD=> B, 
ABO=> C, 
ABCD=> D, 
etc.; 

A D=>Z, 
and AB D=> Z, 

ABCD=> Z, 
etc. 

It is such sequences that led us to treat the counterfactual as a variably 
strict conditional. The analogous operators here are likewise variably 
strict conditionals. Each is based on a binary relation and a family of 
comparative relations in just the way that the (doctored) counterfactual 
is based on accessibility and the family of comparative similarity order­
ings. In each case, the Ordering Assumption holds. The Centering As­
sumption, however, holds only in the counterfactual case. New assump­
tions hold in some of the other cases. 

In the deontic case, we mayor may not have different comparative 
orderings from the standpoint of different worlds. If we evaluate worlds 
according to their conformity to the edicts of the god who reigns at a 
given world, then we will get different orderings; and no worlds will be 
evaluable from the standpoint of a godless world. If rather we evaluate 
worlds according to their total yield of hedons, then evaluability and 
comparative goodness of worlds will be absolute. 

In the temporal case, both the binary relation and the families of com­
parative relations, both for 'when next' and for 'when last', are based on 
the single underlying linear order of time. 

The sentence (A v B)D=> fAB is true at time t iff some A-time after t 
precedes any B-time after t. It thus approximates the sentence 'Until 
A, B', understood as being true at t iff some A-time after t is not preceded 
by any B-time after t. Likewise (A v B)D=>pAB approximates 'Since 
A, B', with 'since' understood as the past mirror image of 'until'. Hans 
Kamp has shown that 'since' and 'until' suffice to define all possible tense 
operators, provided that the order of time is a complete linear order; see 
his Tense Logic and the Theory of Order (U.C.L.A. dissertation, 1968). 
Do my approximations have the same power? No; consider 'Until T, .L', 
true at t iff there is a next moment after t. This sentence cannot be trans­
lated using my operators. For if the order of time is a complete linear 
order with discrete stretches and dense stretches, then the given sentence 
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will vary in truth value; but if in addition there is no beginning or end of 
time, and if there are no atomic sentences that vary in truth value, then no 
sentences that vary in truth value can be built up by means of truth­
functional connectives, 0=" and O=p. 

Starting from any of our various O=-operators, we can introduce 
one-place operators I shall call the inner modalities: 

c:JA =dfT 0= A, 
OA =df -c:J-A, 

and likewise in the analogous cases. The inner modalities in the counter­
factual case are of no interest (unless Centering is weakened), since c:JA 
and OA are both equivalent to A itself. Nor are they anything noteworthy 
in the egocentric case. In the deontic case, however, they turn out to be 
slightly improved versions of the usual so-called obligation and permis­
sion operators. c:JdA is true at iiffsome (evaluable) A-world is better,from 
the standpoint of i, than any A-world; that is, iff either (I) there are best 
(evaluable) worlds, and A holds throughout them, or (2) there are better 
and better (evaluable) worlds without end, and A holds throughout all 
sufficiently good ones. In the temporal case, c:J,A is true at t iff some 
A-time after t comes sooner than any A-time; that is, iff either (I) there 
is a next moment, and A holds then, or (2) there is no next moment, and A 
holds throughout some interval beginning immediately and extending 
into the future. c:J,A may thus be read 'Immediately, A'; as may O,A, but 
in a somewhat different sense. 

If no worlds are evaluable from the standpoint of a given world - say, 
because no god reigns there - it turns out that c:JdA is false and OdA is 
true for any A whatever. Nothing is obligatory, everything is permitted. 
Similarly for c:J,A and O,A at the end of time, if such there be; and for 
c:JpA and OpA at its beginning. Modalities that behave in this way are 
called abnormal, and it is interesting to find these moderately natural 
examples of abnormality. 

10. AXIOMA TICS 

The set of all sentences valid under my analysis may be axiomatised tak­
ing the counterfactual connective as primitive. One such axiom system -
not the neatest - is the system Cl of my paper 'Completeness and Deci-
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dability of Three Logics of Counterfactual Conditionals', Theoria 1971, 
essentially as follows. 

Rules: 

Axioms: 

If A and A ::> B are theorems, so is B. 
If (Bl & ... ) ::> C is a theorem, so is 

«A 0- Bl ) & ... )::> (A 0- C). 

All truth-functional tautologies are axioms. 
AD-A 
(A 0- B) & (B 0- A) . ::> • (A 0- C) == (B 0- C) 
«A v B) 0- A) v «A v B) 0- B) v «(A v B) 0- C) == 

(A 0- C) & (B 0- C» 
A 0- B. ::> • A ::> B 
AB ::>.A 0- B 

(Rules and axioms here and henceforth should be taken as schematic.) 
Recall that modalities and comparative possibility may be introduced 
via the following definitions: OA=dfAO_.L; OA=df-O-A; 
A«B=dfOA & «A v B)O-AB). 

A more intuitive axiom system, called VC, is obtained if we take com­
parative possibility instead of the counterfactual as primitive. Let 
A~B=df -(B«A). 

Rules: 

If A and A ::> B are theorems, so is B. 
If A ::> B is a theorem, so is B ~ A. 

Basic Axioms: 

All truth-functional tautologies are basic axioms. 
A ~B~ C.::>.A ~ C 
A~B.v.B~A 

A ~ (A v B). v . B ~ (A v B) 

Axiom C: 

AB ::>.A «B 

Recall that modalities and the counterfactual may be introduced via the 
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following definitions: OA=dfA-<.t; OA=df-O-A; AO_C=df 
OA::J(AC-<AC). 

VC and Cl turn out to be definitionally equivalent. That is, their re­
spective definitional extensions (via the indicated definitions) yield exactly 
the same theorems. It may now be verified that these theorems are exactly 
the ones we ought to have. Since the definitions are correct (under my 
truth conditions) it is sufficient to consider sentences in the primitive 
notation of VC. 

In general, we may define a model as any quadruple (I, R, ~, [ ]) 
such that 

(1) I is a nonempty set (regarded as playing the role of the set of 
worlds); 

(2) R is a binary relation over I (regarded as the accessibility 
relation); 

(3) ~ assigns to each i in I a weak ordering ~ i of I (regarded as the 
comparative similarity ordering of worlds from the standpoint 
of i) such that whenever j ~ i k, if iRk then iRj; 

(4) [ ] assigns to each sentence A a subset [A] of I (regarded as 
the set of worlds where A is true); 

(5) [- A] is I - [A], [A & B] is [A] n [B], and so on; 
(6) [A -<B] is {ieI: for somej in [A] such that iRj, there is no k 

in [B] such that k ~d}. 

The intended models, for the counterfactual case, are those in which I, 
R, ~, and [ ] really are what we regarded them as being: the set of 
worlds, some reasonable accessibility relation, some reasonable family of 
comparative similarity orderings, and an appropriate assignment to sen­
tences of truth sets. The Ordering Assumption has been written into the 
very definition of a model (clause 3) since it is common to the counter­
factual case and the analogous cases as well. As for the Centering Assump­
tion, we must impose it on the intended models as a further condition: 

(C) R is reflexive on I: and j ~ i i only if j = i. 

It seems impossible to impose other purely mathematical conditions on 
the intended models (with the possible exception of (U), discussed below). 
We therefore hope that VC yields as theorems exactly the sentences valid 
- true at all worlds - in all models that meet condition (C). This is the 
case. 
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VC is sound for models meeting (C); for the basic axioms are valid, 
and the rules preserve validity, in all models; and Axiom C is valid in any 
model meeting (C). 

VC is complete for models meeting (C): for there is a certain such model 
in which only theorems of VC are valid. This model is called the canon­
ical model for VC, and is as follows: 

(1) I is the set of all maximal VC-consistent sets of sentences; 
(2) iRj iff, for every sentence A inj, OA is in i; 
(3) j:::;; ik iff there is no set I of sentences that overlaps j but not 

k, such that whenever A ~ B is in i and A is in I then B also 
is in I; 

(4) i is in [A] iff A is in i. 

In the same way, we can prove that the system consisting of the rules, 
the basic axioms, and any combination of the axioms listed below is 
sound and complete for models meeting the corresponding combination 
of conditions. Nomenclature: the system generated by the rules, the basic 
axioms, and the listed axioms - is called V-. (Note that the conditions 
are not independent. (C) implies (W), which implies (T), which implies 
(N). (S) implies (L). (A - ) implies (U - ). (W) and (S) together imply (C). 
(C) and (A-) together imply (S) by implying the stronger, trivializing 
condition that no world is accessible from any other. Accordingly, many 
combinations of the listed axioms are redundant.) 

Axioms 

N: OT 
T: OA:;) A 
W: AB :;). 0 A & A ~ B 
C: AB :;) A -<. B 
L: (no further axiom, or some tautology) 
s: A 0- C. v . A 0- C 
U: OA :;) OOA and OA:;) OOA 
A: A~B:;) O(A~B) and A-<.B:;) O(A-<'B). 

Conditions 

(N) (normality): For any i in I there is some j in i such that iRj. 
(T) (total reflexivity): R is reflexive on I. 
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(weak centering): R is reflexive on J; for any i andj in J, i ~ J. 
(centering): R is reflexive on J; andj~ii only ifj = i. 
(Limit Assumption): Whenever iRj for some j in [A], [A] 
has at least one ~ i-minimal element. 
(Stalnaker's Assumption): Whenever iRj for some j in [A], 
[A] has exactly one ~ i-minimal element. 
(local uniformity): If iRj, then jRk iff iRk. 
(local absoluteness): If iRj, thenjRk iff iRk and h ~Jk iff 
h~ik. 

The Limit Assumption (L) corresponds to no special axiom. Anyone 
of our systems is sound and complete both for a combination of condi­
tions without (L) and for that combination plus (L). The reason is that 
our canonical models always are rich enough to satisfy the Limit Assump­
tion, but our axioms are sound without it. (Except S, for which the issue 
does not arise because (S) implies (L).) Moral: the Limit Assumption is 
irrelevant to the logical properties of the counterfactual. Had our interest 
been confined to logic, we might as well have stopped with Analysis 2. 

Omitting redundant combinations of axioms, we have the 26 distinct 
systems shown in the diagram. 

vcus 

The general soundness and completeness result still holds if we replace 
the local conditions (U -) and (A-) by the stronger global conditions 
(U) and (A). 
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(U) 
(A) 
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(uniformity): For any i, j, k in I, jRk iff iRk. 
(absoluteness): For any h, i,j, k in I,jRk iff iRk and h ~jk iff 
h~ik. 

Any model meeting (U - ) or (A - ) can be divided up into models meeting 
(U) or (A). The other listed conditions hold in the models produced by 
the division if they held in the original model. Therefore a sentence is 
valid under a combination of conditions including (U) or (A) iff it is valid 
under the combination that results from weakening (U) to (U - ), or (A) 
to (A-). 

In the presence of (C), (W), or (T), condition (U) is equivalent to the 
condition: for any i andj in I, iRj. VCU is thus the correct system to use 
if we want to drop accessibility restrictions. VW, or perhaps VWU, is the 
correct system for anyone who wants to invalidate the implication from 
A and C to A 0-C by allowing that another world might be just as close 
to a given world as that world is to itself. VCS, or VCUS if we drop 
accessibility restrictions, is the system corresponding to Analysis I or 
11-. VCS is definitionally equivalent to Stalnaker's system C2. 

The systems given by various combinations of N, T, U, and A apply, 
under various assumptions, to the deontic case. VN is definitionally 
equivalent to a system CD given by Bas van Fraassen in 'The Logic of 
Conditional Obligation' (forthcoming), and shown there to be sound and 
complete for the class of what we may call multi-positional models meeting 
(N). These differ from models in my sense in that a world may occur at 
more than one position in an ordering ~ j. (Motivation: different posi­
tions may be assigned to one world qua realizer of different kinds of value.) 
Technically, we no longer have a direct ordering of the worlds themselves; 
rather, we have for each i in I a linear ordering of some set Vi and an as­
signment to each world j such that iRj of one or more members of Vb 
regarded as giving the positions of j in the ordering from the standpoint 
of i. A-<B is true at i iff some position assigned to some A-worldj (such 
that iRj) is better according to the given ordering than any position as­
signed to any B-world. My models are essentially the same as those multi­
positional models in which no world does have more than one assigned 
position in any of the orderings. Hence CO is at least as strong as VN; but 
no stronger, since VN is already sound for all multi-positional models 
meeting (N). 
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All the systems are decidable. To decide whether a given sentence A is 
a theorem of a given system, it is enough to decide whether the validity 
of A under the corresponding combination of conditions can be refuted 
by a small countermodel - one with at most 2" worlds, where n is the 
number of subsentences of A. (Take (U) and (A), rather than (U - ) and 
(A-), as the conditions corresponding to U and A.) That can be decided 
by examining finitely many cases, since it is unnecessary to consider two 
models separately if they are isomorphic, or if they have the same I, R, 
~,and the same [P] whenever P is a sentence letter of A.1f A is a theorem, 
then by soundness there is no countermodel and a fortiori no small counter­
model. If A is not a theorem, then by completeness there is a counter­
model <I, R, ~, [ ]). We derive thence a small countermodel, called a 
filtration of the original countermodel, as follows. Let Db for each i in I, 
be the conjunction in some definite arbitrary order of all the subsentences 
of A that are true at i in the original countermodel, together with the 
negations of all the subsentences of A that are false at i in the original 
countermodel. Now let <1*, R*, ~*, [ ]*) be as follows: 

(1) 1* is a subset of I containing exactly one member of each 
nonempty [D;]; 

(2) for any i andj in 1*, iR*j iff i is in [ODj ]; 

(3) for any i, j, kin 1*, j ~ fk iff i is in [Dj ~ Dk]; 

(4) for any sentence letter P, [P]* is [P] n 1*; for any compound 
sentence B, [B]* is such that (/*, R*, ~*, [ ]*) meets con­
ditions (5) and (6) in the definition of a model. 

Then it may easily be shown that <1*, R*, ~*, [ ]*) is a small counter­
model to the validity of A under the appropriate combination of condi­
tions, and thereby to the theoremhood of A in the given system. 

Princeton University 

NOTE 

• The theory presented in this paper is discussed more fully in my book Counterfactuals 
(Blackwell and Harvard University Press). My research on counterfactuals was sup­
ported by a fellowship from the American Council of Learned Societies. 
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A DEFENSE OF CONDITIONAL EXCLUDED MIDDLE* 

This paper is a polemic about a detail in the semantics for conditionals. It 
takes for granted what is common to semantic theories proposed by David 
Lewis,l John Pollock,2 Brian Chellas,3 and myself and Richmond Thomason4 

in order to focus on some small points of difference between the theory I 
favor and the others. I will sketch quickly and roughly the general ideas which 
lie behind all of these theories, and the common semantical framework in 
which these ideas are developed. Then I will describe the divergences between 
my theory and the others - I will focus on the difference between my theory 
and the one favored by Lewis - and argue that my theory gives a better 
account of the way conditionals work in natural language. 

The differences between the theories I will be comparing may seem small 
and unimportant. Does it really matter very much whether we conclude that 
conditionals like If Bizet and Verdi had been compatriots, Bizet would have 
been Italian are false or (as I will suggest) neither true nor false? This judg­
ment may not be important in itself, but it is not an isolated judgment. Con­
ditionals interact with negation, quantifiers, modal auxiliaries like may and 
might, adverbs like even, only and probably. Small differences among 
analyses of conditionals may have consequences for many complex construc­
tions involving conditionals. A small distortion in the analysis of the con­
ditional may create spurious problems with the analysis of other concepts. So 
if the facts about usage favor one among a number of subtly different 
theories, it may be important to determine which one it is. 

All of the semantic analyses of conditional logic that I have in mind are 
given within the possible worlds framework. All begin with the general idea 
that a counterfactual conditional is true in the actual world if and only if 
the consequent is true in some possibly different possible world or worlds. 
The world or set of worlds in which the consequent is said to be true is 
determined by the antecedent. These must be possible worlds in which the 
antecedent is true, and which are otherwise minimally different from the 
actual world. To make sense of this idea, the semantic theory needs a seman­
tic determinant which selects the minimally different world or worlds, or 
which orders the possible worlds with respect to their comparative similarity 
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to the actual world. Truth conditions for conditionals are given relative to 
such a semantic determinant. 

The semantic determinant for the account I prefer is a world selection 
function: a function f which takes a proposition and a possible world into a 
possible world.s A conditional, if A then B, is then said to be true in a world 
i if and only if B is true in f(A, i) - the possible world which is the value of 
the function for arguments A and i. Various constraints are placed on the 
selection function, constraints which are motivated by the intuitive idea that 
the nearest, or least different, world in which antecedent is true is the one 
that should be selected. For example, it is required that the world selected 
relative to proposition A be an A-world - a possible world in which A is true 
(f(A, i) E A). And if the actual world meets this condition, it is required that 
it be selected. (If i EA, then f(A, i) = i). 

David Lewis's theory of conditionals is formulated in terms of a different 
semantic determinant. It states truth conditions for conditionals in terms of a 
three place comparative similarity relation instead of a selection function. Let 
CiCi, k) mean that j is more similar to i than k is to i. For any ftxed i, the 
relation is assumed to be transitive and connected, and so to determine a 
weak total ordering of all possible worlds with respect to each possible world. 
A counterfactual, if A, then B, is then said by Lewis's theory to be true if and 
only if there is anA-worldj such thatB is true in it, and in all A-worlds which 
are at least as similar to i asj.6 

Part of the difference between the two theories of conditionals that I have 
sketched is superftcial. The theory I favor could have been formulated in 
terms of a comparative similarity relation instead of a selection function, and 
a comparative Similarity relation is deftnable in terms of the selection func­
tion as follows: Ci(j, k) if and only iffor some proposition A such that bothj 
and k are members of A, f(A, i) = j. It can be shown, ftrst, that this defined 
relation meets all the conditions Lewis imposes on his comparative similarity 
relation, and second, that Lewis's truth conditions, applied to the deftned 
relation, coincide with the truth conditions given in my theory. The theories 
are not equivalent since the deftned comparative similarity relation necessarily 
has properties beyond those imposed by Lewis's theory; speciftcally, the com­
parative similarity relation defined in terms of a selection function determines 
not just a weak total ordering, but a well ordering of all possible worlds with 
respect to each possible world. So my theory, formulated in terms of a 
comparative similarity relation, is a special case of Lewis's. 

Lewis identiftes two assumptions about the comparative similarity relation 
which my theory makes and this does not: he calls them the limit assumption 
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and the uniqueness assumption. The nrst is the assumption that for every 
possible world i and non-empty proposition A, there is at least one A-world 
minimally different from i. The second is the assumption that for every world 
i and proposition A there is at most one A-world minimally different from i. 
Lewis's theory, with the addition of these two assumptions, is essentially 
equivalent to mine. 

Each of the two assumptions about the comparative similarity relation 
corresponds to an entailment principle in the semantics for conditionals: To 
accept the limit assumption is to accept the following consequence condition 
for conditionals: for any class of propositions r and propositions A and C, if 
r semantically entails C, then {A > B: B E r} semantically entails A > C. To 
accept in addition the uniqueness assumption is to accept the validity of the 
principle of conditional excluded middle: 

11- (A > C) v (A > -C). 

Lewis argues that it is not reasonable to make the two assumptions which 
distinguish his theory from mine. I will argue that one of the assumptions is 
reasonable to make, and that the other need not be made in application. I 
will also discuss a number of examples which I think tend to show that the 
analysis I have proposed gives a better account of the phenomena. 

Let me look nrst at the uniqueness assumption. This is the assumption 
which rules out ties in similarity. It says that no distinct possible worlds are 
ever equally similar to any given possible world. That is, without a doubt, a 
grossly implausible assumption to make about the kind of similarity relation 
we use to interpret conditionals, and it is an assumption which the abstract 
semantic theory that I want to defend does make. But like many idealized 
assumptions made in abstract semantic theory, it may be relaxed in the 
application of the theory. In general, to apply a semantic theory to the 
interpretation of language as it is used, one need not assume that every 
semantic determinant is completely and precisely defined. In application, 
domains of individuals relative to which quantifiers are interpreted, sets of 
possible worlds relative to which modal auxiliaries are interpreted, prop­
ositional functions used to interpret predicates all may admit borderline cases 
even though the abstract semantic theory assumes well dermed sets with 
sharp boundaries. To reconcile the determinacy of abstract semantic theory 
with the indeterminacy of realistic application, we need a general theory of 
vagueness. But given such a theory, we can reconcile the uniqueness assump­
tion, as an assumption of the abstract semantics for conditionals, with the 
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fact that it is unrealistic to assume that our conceptual resources are capable 
of well ordering the possible worlds. 

The theory of vagueness that I will recommend is the theory of super­
valuations first developed by Bas Van Fraassen.7 The main idea of this theory 
is this: any partially defmed semantic interpretation will correspond to a class 
of completely defined interpretations - the class of all ways of arbitrarily 
completing it. For example, a partial ordering will correspond to a class of 
total orderings, and a domain with fuzzy borders will correspond to a class 
of domains with sharp borders. The theory of supervaluations defines the 
tru th values assigned by partial interpretations in terms of the corresponding 
class of complete, two-valued, classical valuations. In this way, it explains the 
values under partial interpretations in terms of the kind of valuations assumed 
by idealized abstract semantic theories. A sentence is trne according to a 
supervaluation if and only if it is true on all corresponding classical valuations, 
false if and only if it is false on all corresponding classical valuations and 
neither true nor false it it is true on some of the classical valuations and false 
on others. 

Using the method of supervaluations, we may acknowledge, without 
modifying the abstract semantic theory of conditionals, that the selection 
functions that are actually used in making and interpreting counterfactual 
conditional statements correspond to orderings of possible worlds that admit 
ties and incomparabilities. In doing this, we are not resorting to an ad hoc 
device to save a theory, since the method of supervaluations, or some account 
of semantic indeterminacy, is necessary anyway to account for pervasive 
semantic underdetermination in natural language. Whatever theory of con­
ditionals one favors, one must admit that vagueness is particularly prevalent 
in the use of conditional sentences.s 

What effect does the recognition of indeterminacy by the introduction of 
supervaluations have on the logic of conditionals? None at all: it is one of the 
virtues of this method of treating semantic indeterminacy that it leaves 
classical two-valued logic virtually untouched.9 Classical logical truths are 
true in all classical valuations, and so will be true in all classical valuations 
defined by any partial interpretation. Therefore, they will be true in all 
supervaluations. Also, since classical valuations are themselves special cases 
of supervaluations, any sentence true in all supervaluations will be true on all 
classical valuations. So, whatever the details of the particular classical seman­
tic theory, the concept of logical truth defined by it will not be changed by 
the introduction of supervaluations. 

For example, in the conditional logic C2 (the logic of the theory I am 
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defending), the principle of conditional excluded middle, (A > B) v (A > -B), 
remains valid when supervaluations are added, even though there may be 
cases where neither (A > B) nor (A > -B) is true. It may be that neither dis­
junct is made true by every arbitrary extension of a given partial interpret­
ation, but it will always be that each arbitrary extension makes true one dis­
junct or the other. The theory of supervaluations, applied to this logic of con­
ditionals, gives the principle of conditional excluded middle the same status 
as it gives the simple principle of excluded middle. (B v -B) is logically true 
even though sometimes neither B nor -B is true. 

My aim so far, in this defense of my analysis of conditionals against its 
close relatives, has been simply to neutralize one important objection to the 
analysis: that it makes an implausible assumption about our conceptual 
resources, the assumption that we need a well ordering of all possible worlds 
with respect to each possible world in order to interpret conditional state­
ments. I have argued that in the context of a general recognition of semantic 
indeterminacy, the dispute over the uniqueness assumption should be 
regarded not as a dispute about how much and what kind of structure there is 
in the actual contextual parameter we use to interpret conditionals, but 
rather a dispute about what degree and kind of structure that parameter is 
aiming at: about what would count as a determinate complete interpretation. 
In practice, what the issue comes down to is a disagreement about whether 
certain counterfactual conditionals are false or neither true nor false, and 
about whether certain inferences involving conditionals are valid. 

Before looking at some examples of inferences and judgments which I 
think support the analysis I have proposed, I should point out, as Lewis 
does, that the limit assumption cannot be neutralized by the introduction of 
supervaluations in the same way as the uniqueness assumption. In my defense 
of the principle of conditional excluded middle, I shall take for granted that 
this assumption is a reasonable assumption to make. Later, I will explain and 
defend this decision. 

Let us look at some examples. I will begin with a familiar pair of counter-
factual conditionals first discussed in 1950 by W. V. QuineY 

If Bizet and Verdi had been compatriots, Bizet would have been 
Italian. 

If Bizet and Verdi had been compatriots, Verdi would have been 
French. 

These examples have been taken, in the context of possible worlds analyses of 
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conditionals, to illustrate the possibility of virtual ties in closeness of counter­
factual possible worlds to the actual world. Worlds in whic~Bizet and Verdi 
are both French or both Italian, it seems plausible to assume, are more like 
the actual world than worlds in which both are Argentinian or Japanese. But 
there is no apparent reason to favor a world in which both are French over 
one in which both are Italian, or vice versa. This seems right; it would be 
arbitrary to require a choice of one of the above counterfactuals over the 
other, but as we have seen, this is not at issue. What is at issue is what con­
clusion about the truth values of the counterfactuals should be drawn from 
the fact that such a choice would be arbitrary. On Lewis's and Pollock's 
analyses, both counterfactuals are false. On the analysis I am defending, both 
are indeterminate - neither true nor false. It seems to me that the latter con­
clusion is clearly the more natural one. I think most speakers would be as 
hesitant to deny as to affIrm either of the conditionals, and it seems as clear 
that one cannot deny them both as it is that one cannot affIrm them both. 
Lewis seems to agree that unreflective linguistic intuition favors this con­
clusion. He writes: 

Given Conditional Excluded Middle, we cannot truly say such things as this: 

It is not the case that if Bizet and Verdi were compatriots, Bizet would be Italian; and it 
is not the case that if Bizet and Verdi were compatriots, Bizet would not be Italian; 
nevertheless, if Bizet and Verdi were compatriots, Bizet either would or would not be 
Italian . .. 

I want to say this, and think it is probably true; my own theory was designed to make it 
true. But offhand, I must admit, it does sound like a contradiction. Stalnaker's theory 
does, and mine does not, respect the opinion of any ordinary language speaker who cares 
to insist that it is a contradiction. 12 

Lewis goes on to say that the cost of respecting this 'offhand opinion' is too 
great, but as I have argued, the introduction of supervaluations avoid the need 
to pay the main cost that he has in mind. 

Quine originally presented this example, not to defend one analysis of 
counterfactuals against another, but to create doubt about the possibility of 
any acceptable analysis. "It may be wondered, indeed," he writes introducing 
the two Bizet-Verdi counterfactuals, "whether any really coherent theory of 
the contrafactual conditional of ordinary usage is possible at all, particularly 
when we imagine trying to adjudicate between such examples as these.,,13 
There is a problem, Quine suggests, because we are required to adjudicate 
between the two. But why are we required to adjudicate? The argument is 
implicit, but I suspect that what Quine had in mind might be reconstructed 
as follows: "It is clear that if Bizet and Verdi had been compatriots, then 
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either Bizet would have been Italian, or Verdi French. But then one (and only 
one) of the two counterfactuals, If Bizet and Verdi had been compatriots, 
Verdi would have been French, or If Bizet and Verdi had been compatriots, 
Bizet would have been Italian must be true. How are we to adjudicate 
between them?" The crucial inference in this reconstructed argument relies 
on the distribution principle, (A > (B v C)), therefore (A > B) v (A > C), a 
rule of inference that is equivalent, in the context of conditional logic, to 
the principle of conditional excluded middle. Quine takes for granted, by 
tacitly using this principle of inference, that a counterfactual antecedent 
purports to represent a unique, determinate counterfactual situation. It is 
because counterfactual antecedents purport to represent unique possible 
situations that examples which show that they may fail to do so are a prob­
lem. One should respond to the problem, I think, not by revising the truth 
conditions for conditionals so that it does not arise, but rather by recognizing 
what we must recognize anyway: that in application there is great potential 
for indeterminacy in the truth conditions for counterfactuals. 

The failure of the distribution principle we have been discussing is a symp­
tom of the fact that, on Lewis's analysis, the antecedents of conditionals act 
like necessity operators on their consequents. To assert if A, then B is to 
assert that B is true in every one of a set of possible worlds defined relative to 
A. Therefore, if this kind of analysis is correct, we should expect to find, 
when conditionals are combined with quantifiers, all the same scope distinc­
tions as we find in quantified modal logic. In particular, corresponding to the 
distinction between (A > (B v C) and ((A> B) v (A > C)) is the quantifier 
scope distinction between (A> (3x)Fx) and (3xXA > Fx). On Lewis's 
account, even when the domain of the quantifier remains fixed across possible 
worlds, there is a semantically Significant difference between these two 
formulas of conditional logic, and we should expect to find scope ambiguities 
in English sentences that might be formalized in either way. 

Before seeing if such ambiguities are found in conditional statements, let 
us look at a case where the ambiguity is uncontroversial. The following 
dialogue illustrates a quantifier scope ambiguity in a necessity statement: 

X: President Carter has to appoint a woman to the Supreme 
Court. 

Y: Who do you think he has to appoint? 

X: He doesn't have to appoint any particular woman; he just 
has to appoint some woman or other. 
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Y, perversely, gives the quantified expression, a woman, wide scope in inter­
preting X's statement. X, in his response to V's question, shows that he meant 
the quantifier to have narrow scope. The difference is, of course, not a matter 
of whether the speaker knows who the woman is. X might have meant the 
wide scope reading - the reading Y took it to have - and still not have known 
who the woman is. In that case, his response to V's question would have been 
something like this: 

X: I don't know; I just know it's a woman that he has to 
appoint. 

In this alternative response, the appropriateness of the question is not 
challenged. X just confesses inability to answer it. This alternative reply is 
appropriate only if the speaker intended the wide scope reading. 

Now compare a parallel dialogue beginning with a statement that is clearly 
unambiguous: 

X: President Carter will appoint a woman to the Supreme 
Court. 

Y: Who do you think he will appoint? 

X: He won't appoint any particular woman; he just will appoint 
some woman or other. 

X's response here is obviously nonsense.14 There must be a particular person 
that he will appoint, although the speaker need not know who it is. If he does 
not know, the analogue of the alternative response is the one he will give: 

X: I don't know; I just know it's a woman that he will appoint. 

Now look at a corresponding example with a counterfactual conditional 
and consider which of the above examples it most resembles. 

X: President Carter would have appointed a woman to the 
Supreme Court last year if there had been a vacancy. 

Y: Who do you think he would have appointed? 

X: He wouldn't have appointed any particular woman; he just 
would have appointed some woman or other. 

Or, the alternative response: 

X: I don't know; I just know it's a woman that he would have 
appointed. 
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If Lewis's analysis is correct, you should perceive a clear scope ambiguity in 
X's original statement. Y's question, and X's alternative response, should 
seem appropriate only when the strong, wide scope reading was the intended 
one. I do not see an ambiguity; X's first response seems as bad, or almost as 
bad, as the analogous response in the future tense case. And I do not think 
there is any interpretation for which Y's question shows a misreading of the 
statement. 

There is still, on the analysis I am defending, a relevant difference between 
the future tense example and the counterfactual example - a way in which 
the latter is more like the necessity example than the former. In the future 
tense case, if X's initial statement is true, then it follows that Y's question 
has a correct answer, even if no one knows what it is.1S But in the counter­
factual case, this need not be true. There may be no particular woman of 
whom it is true to say, President Carter would have appOinted her if a 
vacancy had occurred. This is possible because of the possibility of under· 
determination, but it does not imply that there is any scope ambiguity in the 
original statement. The situation is analogous to familiar examples of under­
determination in fiction. The question, exactly how many sisters and cousins 
did Sir Joseph Porter have? may have no correct answer, but one who asks it 
in response to the statement that his sisters and cousins numbered in the 
dozens does not exhibit a misunderstanding of the semantic structure of the 
statement.16 It is not surprising, from the point of view of the analysis I am 
defending, that the possible situations determined by the antecedents of 
counterfactual conditionals are like the imaginary worlds created by writers 
of fiction. In both cases, one purports to represent and describe a unique 
determinate possible world, even though one never really succeeds in doing 
so. 

As we have seen, Lewis agrees that the analysis I am defending respects, 
as his does not, certain "offhand" opinions of ordinary language speakers. 
He argues that the cost of respecting these opinions is too high. But Lewis 
also recognizes - in fact emphasizes - that counterfactual conditionals are 
frequently vague, and he adopts the same account of vagueness that allows 
the analysis I am defending to avoid implausible assumptions about our con­
ceptual resources. Why, then, does Lewis still reject this analysis? "Two major 
problems remain," he writes. "First, the revised version [C2, revised by the 
introduction of supervaluations] still depends for its success on the limit 
Assumption ... Second, the revised version still gives us no 'might' counter­
factual.,,17 I will conclude the defense of my analysis by responding to these 
two further problems. I will first argue that the limit assumption, unlike the 
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uniqueness assumption, is a plausible assumption to make about the orderings 
of possible worlds that are determined by our conceptual resources, and that 
the rejection of this assumption has some bizarre consequences. Second, I will 
say how I think might conditional should be understood, and argue that 
Lewis's analysis fails to give a satisfactory account of the relation between 
might and would conditionals. 

When the uniqueness assumption fails to hold for a comparative similarity 
relation among possible worlds, then the selection function in terms of which 
conditionals are interpreted in C2 is left underdetermined by that relation. 
Many selection functions may be compatible with the comparative similarity 
relation, and it would be arbitrary to choose one over the others. But if the 
limit assumption were to fail, there would be too few candidates to be the 
selection function rather than too many. Any selection function would be 
forced to choose worlds which were less similar to the actual world than 
other eligible worlds. This is why the supervaluation method does not provide 
a way to avoid making the limit assumption. 

The limit assumption implies that for any proposition A which is possibly 
true, there is a non-empty set of closest worlds in which A is true. Is this a 
plausible assumption to make about the orderings of possible worlds which 
are relevant to the interpretation of conditionals? If one were to begin with a 
concept of overall Similarity among possible worlds which is understood 
independently of its application to the interpretation of conditionals, this 
clearly would be an arbitrary and unjustified assumption. Nothing that I can 
think of in the concept of similarity, or in the respects of similarity that are 
relevant, would motivate imposing this restrictive formal structure on the 
ordering determined by a similarity relation. But, on the other hand, if one 
begins with a selection function and thinks of the similarity orderings as 
induced by the selection function, the assumption will not be arbitrary or 
unmotivated: the fact that it holds will be explained by the way in which 
the orderings are determined. To the extent that an intuitive notion of 
similarity among possible worlds plays a role, it is a device used for the 
purpose of selecting possible worlds. Given this rule, it is not unreasonable 
to require that the way respects of similarity are weighed should be such 
as to make selection possible. 

Even if we take the selection function as the basic primitive semantic 
determinant in the analysis of conditionals, we still must rely on some more 
or less independently understood notion of similarity or closeness of worlds 
to describe the intuitive basis on which the section is made. The intuitive 
idea is something like this: the function selects a possible world in which the 
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antecedent is true, but which otherwise is as much like the actual world, in 
relevant respects, as possible. So, one might argue, we still need to give some 
justification for the limit assumption. How can we be sure that it will be 
possible to select a world, or a set of worlds, on this basis? Consider one of 
Lewis's examples: suppose that this line, --, were more than one inch 
long. (The line is actually a little less than one inch long.) Every possible 
world in which the line is more than one inch long is one in which it is 
longer than it needs to be in order to make the antecedent true. It appears 
that the intuitive rule to select a world that makes the minimal change in the 
actual world necessary to make the antecedent true is one that cannot be 
followed. 

The qualification in the intuitive rule that is crucial for answering this 
objection is the phrase, 'in relevant respects'. The selection function may 
ignore respects of similarity which are not relevant to the context in which 
the conditional statement is made. Even if, in terms of some general notion 
of overall similarity, i is clearly more similar to the actual world thanj, if the 
ways in which it is more similar are irrelevant, than j may be as good a 
candidate for selection as i. 18 In the example, it may be that what matters is 
that the line is more than one inch long, and still short enough to fit on the 
page. In this case, all lengths over one inch, but less than four or five inches 
will be equally good. 

But what about a context in which every millimeter matters? If relative to 
the issue under discussion, every difference in length is important, then it is 
just inappropriate to use the antecedent, if the line were more than an inch 
long. This would, in such a context, be like using the definite description, the 
shortest line longer than one inch. The selection function will be undefmed 
for such antecedents in such contexts. 

To summarize: from a naive point of view, nothing seems more obvious 
than that a conditional antecedent asks one to imagine a possible situation in 
which the antecedent is true. To say ifpigs could fly is to envision a situation, 
or a: kind of situation, in which pigs can fly. This is the motivation for making 
a selection function the basic semantic determinant. But it is equally obvious 
that the basis for the selection is some notion of similarity or minimal dif­
ference between worlds. The situations in which pigs can fly that you are 
asked to envision are ones which are as much as possible like the actual situ­
ation. The problem is that it is theoretica:lly possible for these two intuitions 
to clash. There could be similarity relations and antecedents relative to which 
selection would be impossible. Lewis's response to this problem is to generalize 
the analysis of conditionals so that selection is no longer essential. The 
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alternative response, which seems to me more natural, is to exclude as 
inappropriate antecedents and contexts in which the relevant similarity 
relation fails to make selection possible. Given that the appropriate similarity 
notion is one that may ignore irrelevant respects of similarity altogether, this 
exclusion should not be unreasonably restrictive. 

I think a closer look at our example will support the conclusion that 
Lewis's response to the problem is intuitively less satisfactory than the one I 
am suggesting. On Lewis's analysis, every conditional of the following form is 
true: If the line had been more than one inch long, it would not have been x 
inches long, where x is any real number. This implies (given Lewis's analysis 
of might conditionals) that there is no length such that the line might have 
had that length if it had been more than one inch long. Yet, the line might 
have been more than an inch long, and if it had been, it would have had some 
length or other. The point is not just that there is no particular length that 
the line would have had. More than this, there is not even any length that it 
might have had. That conclusion seems, intuitively, to contradict the assump­
tion that the line might have been more than one inch long, yet on Lewis's 
account, both the conclusion and the assumption may be true.19 

The second problem that Lewis finds with the analysis I am defending is 
that it gives us no account of the might conditional. Lewis analyzes this kind 
of conditional in terms of his would conditional as follows: the might con­
ditional, if A, it might be that B, is true if and only if the would conditional, 
if A, it would be that not-B., is false. In Lewis's notation, (A <r B) =df 

-(A D+ - B). Ordinary counterfactuals express a kind of variable necessity 
on the consequent, according to Lewis. Might counterfactuals express the 
corresponding kind of possibility. 

It is clear that this definition conflicts with the analysis of conditionals I 
am proposing, since the principle of excluded middle, together with Lewis's 
definition of might conditionals, implies that a might conditional is 
equivalent to the corresponding would conditional. This is obviously an 
unacceptable conclusion, so if Lewis's definition is supported by the facts, 
this counts against an analysis that validates the prinCiple of conditional 
excluded middle. But I will argue that Lewis's defmition has unacceptable 
consequences, and that a more satisfactory analysis, compatible with the 
principle of excluded middle, can be given. 

Note that Lewis's definition treats the apparently complex construction, 
if ... might, as an idiom instead of analyzing it in terms of the meanings of if 
and might. This is not a serious defect, but it would be methodologically 
preferable - less ad hoc - to explain the complex construction in terms of 
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its parts. So I will begin by looking at uses of might outside of conditional 
contexts, and then consider what the result would be of combining the 
account of might suggested by those uses with our analysis of if. 

Might, of course, expresses possibility. John might come to the party and 
John might have come to the party each say that it is possible, in some sense, 
that John come, or have come, to the party. I think the most common kind 
of possibility which this word is used to express is epistemic possibility. 
Normally, a speaker using one of the above sentences will be saying that 
John's coming, or having come, to the party is compatible with the speaker's 
knowledge. But might sometimes expresses some kind of non-epistemic 
possibility. John might have come to the party could be used to say that it 
was within John's power to come, or that it was not inevitable that he not 
come. The fact that the sentence,John might come to the party, although he 
won't, is somewhat strange indicates that the epistemic sense is the dominant 
one for this example. There is no strangeness in John could come to the party, 
although he won't. The epistemic interpretation seems less dominant in the 
past tense example: John might have come to the party, although he didn't is 
not so strange. 

What I want to suggest is that might, when it occurs in conditional contexts, 
has the same range of senses as it has outside of conditional contexts. Normally, 
but not always, it expresses epistemic possibility. The scope of the might, when 
it occurs in conditional contexts is normally the whole conditional, and not 
just the consequent. This claim may seem ad hoc, since the surface form of 
English sentences such as If John had been invited, he might have come to the 
party certainly suggests that the antecedent is outside the scope of the might. 
But there are parallel constructions where the wide scope analysis is uncon­
troversial. For example, If he is a bachelor, he must be unmarried. Also, the 
wide scope interpretation is supported by the fact that might conditionals can 
be paraphrased with the might preceding the antecedent: It might be that if 
John had been invited, he would have come to the party. 

The main evidence that might conditionals are epistemic is that it is 
unacceptable to conjoin a might conditional with the denial of the corre­
sponding would conditional. This fact is also strong evidence against Lewis's 
account, according to which such conjunctions should be perfectly normal. 
On Lewis's account, might conditionals stand to would conditionals as 
ordinary might stands to must. There is no oddity in denying the categorical 
claim, John must come to the party, while affirming that he might come. But 
it would sound strange to deny that he would have come if he had been 
invited, while affirming that he might have come. 
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Consider a variation on the Supreme Court appointment dialogues dis­
cussed above: 

X: Does President Carter have to appoint a woman to the 
Supreme Court? 

Y: No, certainly not, although he might appoint a woman. 

This is perfectly okay. Now compare: 

X: Would President Carter have appointed a woman to the 
Supreme Court last year if a vacancy had occurred? 

Y: No, certainly not, although he might have appointed a 
woman. 

On Lewis's analysis, one should expect Y's second response to be as accept­
able as his first. 

One should not conclude from the conflict between the denial of the 
would conditional and the affirmation of the might conditional that these 
two statements contradict each other. To draw that conclusion would be to 
confuse pragmatic with semantic anomaly. On the epistemic interpretation, 
what Y does is to represent himself as knowing something by asserting it, and 
then to deny that he knows it. The conflict is thus like Moore's paradox, 
rather than like a contradictory assertion. 

My account predicts, while Lewis's does not, that the example given above 
should seem Moore-paradoxical. I think it is clear that the evidence supports 
this prediction. Rich Thomason has pointed out that there are also examples 
of the reverse: cases for which Lewis's account predicts a Moore's paradox, 
while mine does not. Here too, I think it is clear that the evidence supports 
my account. Consider any statement of the form If A, it might be that not-B, 
although I believe that if A then it would be that B. Lewis's definition implies 
that such a statement is equivalent to a statement of the form Not-C, although 
I believe that C, and so implies that such a statement should seem Moore­
paradoxical. But there is nothing wrong with saying John might not have 
come to the party if he had been invited, but I believe he would have come. 
As my account predicts, this statement is as acceptable as the parallel state­
ment with non-conditional might: John might not come to the party, 
although I believe that he Will.20 

Lewis considers and rejects a number of alternatives to his analysis of 
might counterfactuals, including an analysis which treats them as would 
counterfactuals prefixed by an epistemic possibility operator. Here is his 
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counterexample: Suppose there is in fact no penny in my pocket, although I 
do not know it since I did not look. ''Then 'If I had looked, I might have 
found a penny' is plainly false." But it is true that it might be, for all I know, 
that I would have found a penny if I had 100ked.21 

I do not think that Lewis's example is plainly false since the epistemic 
reading, according to which it is true, seems to be one perfectly reasonable 
interpretation of it. I can also see the non-epistemic sense that Lewis has in 
mind, but I think that this sense can also be captured by treating the might 
as a possibility operator on the conditional. Consider not what is, in fact, 
compatible with my knowledge, but what would be compatible with it if I 
knew all the relevant facts. This will yield a kind of quasi-epistemic possibility 
- possibility relative to an idealized state of knowledge. If there is some 
indeterminacy in the language, there will still remain some different possi­
bilities, even after all the facts are in, and so this kind of possibility will not 
collapse into truth. Propositions that are neither true nor false because of the 
indeterminacy will still be possibly true in this sense. Because if Bizet and 
Verdi had been compatriots, Verdi would have been French is neither true 
nor false, If Bizet and Verdi had been compatriots, Verdi might have been 
French will be true in this sense of might. 

Now this interpretation of might conditionals is very close to Lewis's. It 
agrees with Lewis's account that If A, it might be that B is true if and only 
if If A it would be that not-B is not true. But my explanation has the 
following three adv~tages over Lewis's: First, it treats the might as a kind of 
possibility operator on the conditional - an operator that can also operate on 
other kinds of propositions - rather than treating if ... might as a semantic· 
ally unanalyzed unit. With Lewis's analysis of the would conditional, this 
cannot be done. Second, it treats this particular kind of might as a special 
case of a more general analysis - one that includes the ordinary epistemic 
interpretation as another special case. Third, it explains, as Lewis's analysis 
cannot, why it is anomalous to deny the would conditional while affirming 
the corresponding might. 

It may seem strange that I have called the use of might which expresses 
semantic indeterminacy a quasi-epistemic use, but I think that there is a 
general tendency to use epistemic terminology to describe indeterminacy, 
and to think of indeterminacy as a limiting case of ignorance - the ignorance 
that remains after all the facts that are in. I will conclude with an example 
that illustrates this tendency, as well, I think, as the general point that we 
tend to think of counterfactual suppositions as determining a unique possible 
situation. 
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If President Kennedy had not been assassinated in 1963, would the United 
States have avoided the Vietnam debacle? It is a controversial question. We 
will probably never know for sure. If we could look back into the minds of 
President Kennedy and his advisors, if we could learn all there is to learn 
about their policy plans and priorities, their expectations and perceptions, 
then maybe we could settle the question. But on the other hand, it could be 
that the answer turns on possible actions and events which are not deter­
mined by facts about the actual situation. In that case, we could never know, 
no matter how much we learned. In that case, even an omniscient God 
wouldn't know.22 If this is true, then our failure to answer the question is not 
really an epistemic limitation, but we still use the language of knowledge and 
ignorance to characterize it. Even when we recognize that such a question 
really has no answer, we continue to talk and think as if there were an answer 
that we cannot know. This is, I think, because we tend to think of the 
counterfactual situations determined by suppositions as being as complete 
and determinate as our own actual world. 
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which satisfy the limit assumption are equivalent to what he calls regular families of C2 
models - families meeting a certain restriction. I believe that if one drops the regularity 
restriction, then the same equivalence holds between families of C2 models and the 
models of the semantic theory of simple subjunctive conditionals favored by John 
Pollock. For an exposition of Pollock's theory, see [11] . 
11 [12],p.14. 
12 [7], p. 80. 
13 [12],p.14. 
14 Philosophers who deny truth to statements about future contingents may disagree. 
They may want to say that X's reply makes sense, and might be true. Readers who are 
inclined to this view may substitute a past tense example. 
I S I am assuming that statements about future contingents may be true. For one who 
treats future contingent statements as truth-valueless, and uses supervaluations to inter­
pret truth-value gaps, the contrast between future tense and counterfactual examples 
that I am pointing to will disappear. See [16]. 
16 This example from Gilbert and Sullivan's H.MS. Pinafore is borrowed from David 
Lewis, [10]. 
17 [7], pp. 82-83. 
18 David Lewis, in [8], suggests that the similarity ordering relevant to interpreting 
counterfactuals may, in some cases, give zero weight to some respects of similarity. 
19 See [5] and [11] for arguments against the limit assumption. 
'0 This argument was given to me by Rich Thomason, private communication. 
21 [7], p. 80. 
22 Cf. [1]. 
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PROBABILITY AND CONDITIONALS 

ABSTRACT. The aim of the paper is to draw a connection between a semantica1 theory 
of conditional statements and the theory of conditional probability. First, the probability 
calculus is interpreted as a semantics for truth functional logic. Absolute probabilities are 
treated as degrees of rational belief. Conditional probabilities are explicitly deimed in 
terms of absolute probabilities in the familiar way. Second the probability calculus is 
extended in order to provide an interpretation for counterfactual probabilities - con­
ditional probabilities where the condition has zero probability. Third, conditional prop­
ositions are introduced as propositions whose absolute probability is equal to the con­
ditional probability of the consequent on the antecedent. An axiom system for this 
conditional connective is recovered from the probabilistic deimition. Fmally, the 
primary semantics for this axiom system, presented elsewhere, is related to the prob­
abilistic interpretation. 

According to some interpretations of probability theory, a conditional prob­
ability statement represents a semantic or pragmatic relation between two 
propositions. An if-then statement in English, or an analogue in some formal 
language, also represents a relation between two propositions - the antece­
dent and the consequent. A lot of philosophical effort has been devoted to 
the clarification of these two conditional relations, and recently a few philos­
ophers have tried to draw a connection between them.2 There are at least two 
reasons motivating the attempts to bring these two problems together. First, 
although the interpretation of probability is controversial, the abstract 
calculus is a relatively well defmed and well established mathematical theory. 
In contrast to this, there is little agreement about the logic of conditional 
sentences. Diverse systems of strict implication, conditional logic, entailment, 
connexive implication, and causal implication have been proposed and 
defended on the basis of the vague set of linguistic and methodological 
intuitions about conditionality, which is all we have to go on. Probability 
theory could be a source of insight into the formal structure of conditional 
sentences. Second, one approach to the philosophical problems of induction 
and confirmation has linked these problems to the analysis of counterfactual 
conditionals. Other approaches have discussed the problem in the context of 
interpretations of probability. A connection between the semantics of con­
ditionals and the interpretation of probability might help to bring together 
the different treatments of these philosophical problems. 
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In this paper, I shall use probability theory to defend an analysis of con­
ditional propositions which was proposed in another context. My argument 
has three steps; each step consists of the construction of a probability system. 
By analogy with Quine's grades of modal involvement, I might call the sys­
tems three grades of conditional involvement, since each is an extension of 
the preceding one, and with each, conditionality plays a more central role. 

In the fIrst system, an absolute probability function is interpreted as an 
autonomous semantics for propositional calculus, based on the concept of 
knowledge rather than truth. Conditional probabilities are introduced by 
defInition in the usual way, but are left undefIned for some pairs of wffs. 
The fact that conditional probabilities are sometimes undefmed proves a 
crucial limitation to the system. 

The second system provides an interpretation for an extension of the 
probability calculus in which conditional probabilities are primitive. This 
system is also an autonomous semantics for propositional calculus based 
on a concept of conditional knowledge. 

The third system introduces conditional propositions by adding a primitive 
conditional connective to the object language and a requirement to the 
defmition of the conditional probability function. The leading idea of the 
added requirement is that the probability of a conditional statement should 
equal the conditional probability of the consequent on the antecedent. An 
axiom system for the conditional connective is then recovered from this 
probabilistic defmition. This system is the formal system of conditional logic, 
C2, which was developed and interpreted independently. I shall conclude the 
paper by discussing briefly the relation between the probabilistic interpret­
ation of conditional logic and the standard semantics. 

1. ABSOLUTE PROBABILITY FUNCTIONS 

The fIrst system that I shall discuss, P I. consists of two semantical functions, 
an absolute probability function and a truth valuation function. I shall fIrst 
characterize the syntax of the object language, and defIne these functions. 
Second, I shall discuss the intuitive content of the functions, and show how 
one can justify the defmition of the probability function in terms of the 
defmition of the truth valuation function. Finally, I shall introduce con­
ditional probabilities as abbreviations, and discuss their interpretation and 
their limitations. 

The primitive symbols of the object language consist of an infinite set of 
propositional variables, {P, Q, R,P', ... }, two primitive connectives, 1\ and ~ 
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(conjunction and negation, respectively), and parentheses. Any variable is a 
wff. also, if A and Bare wffs, then -A and (A 1\ B) are wffs. The additional 
connectives, J, v, == (material conditional, disjunction and material equiv­
alence, respectively) may be defmed in terms of the primitives. In this 
exposition, we shall abbreviate wffs in the usual way. 

(1) A truth valuation [unction (tvf) is any function v taking wffs into 
{ I , O} which meets the follOwing two conditions for all wffs A 
andB: 

(a) v(-A) = I-v(A) 

(b) v((A 1\ B» = v(A) x v(B) 

(2) An absolute probability function (apf) is any function, Pr, taking 
wffs into real numbers which meets the following six conditions 
for all wffsA,B, and C: 

(a) 1;;;;' Pr(A);;;;' 0 

(b) Pr(A) = Pr(A 1\ A) 

(c) Pr(A 1\ B) = Pr(B 1\ A) 

(d) Pr(A 1\ (B 1\ C» = Pr((A 1\ B) 1\ C) 

(e) Pr(A) + Pre-A) = 1 

(f) Pr(A) = Pr(A 1\ B) + Pr(A 1\ -B) 

(3) A PI interpretation is an ordered pair, < v, Pr) where v is a tvf and 
Pr is an apf, and where for all wffs A, if Pr(A) = 1, then v(A) = 1. 

A tvf and an apf are two ways to provide an interpretation for wffs, the 
first in terms of truth and falsity, the second in terms of knowledge and 
degrees of rational belief. A tvf provides a representation of a possible world. 
Wffs receiving a value of one correspond to propositions which are true in 
that world, and those with value zero correspond to propositions which are 
false. An apf provides a representation of a state of knowledge.3 A state of 
knowledge is here understood to include not only a specification of those 
propositions known to be true and false, but also a measure of the degree to 
which the knower has a right to believe propositions which are neither known 
true nor knoWn false. Values of the function between zero and one exclusive 
represent the degrees assigned to propositions whose truth value is unknown. 
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Wffs having values of one and zero represent propositions known to be true, 
and false, respectively.4 

These two modes of interpretation are not exclusive alternatives, but com­
plementary. A PI interpretation combines the two: it provides a represent­
ation of a possible world and of the state of knowledge of a knower in that 
world. The two components of a PI interpretation are not completely inde­
pendent, since a knower cannot know something that is not true. But any 
probability value between the extremes is compatible with any truth value. 
Therefore, there is a wide range of apfs which are compatible with any given 
tvf; this is to say, there may be a· diversity of knowers in a single possible 
world. Also, most apfs are compatible with a variety of tvfs, which is to say 
that knowledge need not be omniscient: a single state of knowledge may be 
compatible with many possible states of the world. 

For any given state of knowledge, there is a class K of possible worlds 
which are compatible with that state of knowledge. If the relevant state of 
knowledge is represented by the apf, Pr, and possible worlds are represented 
by tvfs, then the class can be defined as follows: 

(4) K =df {v/< v, Pr) is a PI interpretation}. 

The class K is the class of epistematically possible worlds. 
Because an apf is compatible with a range of possible state of the world, it 

is not possible to define 'degree of rational belief' in terms of truth. We can, 
however, justify all of the constraints on the belief function given in definition 
(2) in terms of the defmition (1) of the tvf. This is accomplished by linking 
the general concept of degree of rational belief to the general concept of a 
logically possible world, or a model. This connection is drawn independently 
of any particular language. In terms of it, the specification of the models for 
a particular language can be used to evaluate the specific defmition of the 
belief function for that language. 

A degree of rational belief in a given proposition for a given subject is 
interpreted as a number determining the minimum odds which the subject 
should be willing to accept were he to bet on the truth of that proposition. If 
Pr(A) = r, then the subject should be willing to bet on A at odds r/(1 - r), 
and he should be unwilling to accept a bet at odds less favourable than this. 
The ratio, r/(1 - r) is the ratio of the probability that the proposition is true 
(that he wins the bet) to the probability that it is false (that he loses the bet). 
This characterization seems reasonable, since it is reasonable to act on one's 
beliefs. If you find gambling games a narrow and unsuitable basis on which to 
build the interpretation of a belief function, consider a 'bet' as any action in 
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the face of uncertainty, and the 'odds' as the ratio of the value of what you 
risk by taking the action to the value of what you hope to gain, should the 
uncertain even tum out in your favor. 

A probability assignment to a set of propositions is defmed to be incoher­
ent if there exists a set of bets for or against those propositions that should 
be accepted by the subject (according to the assignment), but are such that 
the subject would sustain a net loss from the set of bets in every possible 
outcome. A probability function is coherent if it is not incoherent. If possible 
outcomes are identified with models of the language, then we have a general 
condition of adequacy, stated in terms of the notion of a model, for any 
belief function. It is obviously reasonable to require that any function deter­
mining odds be coherent. If you are willing to accept bets which you are 
logically certain to lose, then you are as irrational as if you had beliefs which 
are logically certain to be false. 

We may use the general defmition of coherence to evaluate the system Pl. 
It can be shown that the conditions defming apf in (2) above are necessary 
and sufficient to ensure coherence, relative to the class of all models, or tvfs, 
defmed in (1). Every apf is coherent, and every coherent probability func­
tion of propositional logic is an apf.s 

In so far as coherence is our only constraint, the definition of apf is demon­
strably correct. But we may still ask, are there further purely logical conditions 
which should be used to evaluate the adequacy of a defmition of belief func­
tion? One stronger condition - strict coherence - has been suggested.6 Strict 
coherence appears to be a simple and natural strengthening of coherence, and 
has generally been treated as such. It turns out, however, to require the intro­
duction of some rather different considerations. Strict coherence is not a 
logical constraint on the belief function, but rather a constraint on the 
intuitive interpretation of the function, as defined. 

A function determining reasonable betting odds is coherent if there is no 
set of bets consistent with it such that the bettor is certain to suffer a net 
loss. A function determining betting odds is strictly coherent if it is coherent, 
and also, there is no set of bets consistent with it such that the bettor cannot 
possibly win, and might lose. The first criterion rules out bets that must lose; 
the second rules out those that might lose, and cannot win. This strengthen­
ing of coherence seems perfectly reasonable. It is surely irrational to take a 
risk with no hope of gain, even if there is some hope of breaking even. 

Kemeny showed, in his paper on fair betting odds, that to ensure that a 
coherent probability function be strictly coherent, it is necessary and suf­
ficient to add the following requirement: 
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(5) IfPr(A) = 1, then A is true in all possible outcomes. 

The application of this condition depends not only on the truth semantics for 
the language, but also on an independent specification of a class of possible 
outcomes, or models.7 Any PI interpretation can be shown to be strictly 
coherent if we take the possible outcomes to be the epistemically possible 
worlds: the situations consistent with the subject's knowledge. This seems 
reasonable; I take no risk if I bet on the truth of a statement that I know to 
be true, so I should be willing to accept any odds. And no matter what the 
odds, I would not bet on something that I know to be false. The set of 
epistemically possible outcomes is the set K defined in terms of a given apf 
in (4) above. With K as the set of all possible outcomes, Kemeny's condition 
(5) follows from the definition of PI interpretation. Therefore, we may con­
clude that every apf is strictly coherent, relative to the set of possible out­
comes defmed in this way, and that every probability function which is 
strictly coherent relative to some set of possible outcomes is an apf. 

To characterize conditional probabilities in terms of absolute probabilities, 
we use the familiar defmition: 

(6) 
Pr(A" B) 

Pr(A, B) =df Pr(B) (provided Pr(B) "* 0) 

Pr(A, B) is undefined when Pr(B) = O. 
Since a conditional probability is simply an abbreviation for a ratio of two 

absolute probabilities, it is already fully interpreted. We do require, however, 
a justification for calling this ratio a conditional probability. We can get this 
justification by giving a separate interpretation to conditional probabilities 
in terms of odds for conditional bets, and showing that the definition is 
appropriate to this interpretation. 

A conditional bet is a bet that is called off unless a specified condition is 
met. A bet that P on the condition Q is a bet that is won if P and Q are both 
true, lost if P is false, and Q is true, and called off is Q is false. A conditional 
probability is taken as representing reasonable odds for a conditional bet. 
Where Pr(P, Q) = r, the fair odds for a bet that P on the condition Q are 
r/(1 - r). 

We can justify the defmition by showing that such a conditional bet is 
equivalent to a pair of simple bets in the sense that the outcome of the con­
ditional bet (win, lose, or draw) is the same in each possible world as the net 
outcome of the pair of simple bets. Rather than betting X dollars on the truth 
of P, conditional on Q, I can achieve the same result by dividing my X dollars 
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in a specifiable way between two bets, one that both P and Q are true, and the 
other that Q is false. I can always divide the money in such a way that I break 
even in case I win the second bet (and thus lose the first). For any coherent 
belief function, if I do divide the money in this way, then I will obtain a net 
gain or at least break even, should I win the first bet, and lose the second. 

Since the two betting situations are equivalent no matter what the out­
come, I can determine the fair odds for conditional bets by calculating the 
ratio of the net gain (in case P and Q are both true) to the net loss (in case P 
is false and Q true) in the simple betting situation. This calculation gives the 
same result in every case as the above definition of conditional probability. 

Under the intuitive interpretation that we have given to the system PI, 
conditionality is given a meaning only when the condition is consistent with 
the subject's knowledge. In terms of conditional bets, this restriction makes 
sense: there can be no rational criteria for determining the odds on con­
ditional bets where it is known that the condition will remain unfulfilled, and 
the bet neither won nor lost. This restriction also fits in with some interpret­
ations of conditional assertions. Quine, for example, argues that an 

affirmation of the form 'if p then q' is commonly felt less as an affirmation of a con­
ditional than as a conditional affirmation of the consequent. If, after we have made such 
an affirmation, the antecedent turns out true, then we consider ourselves commited to 
the consequent, and are ready to acknowledge error if it proves false. If, on the other 
hand, the antecedent turns out to have been false, our conditional affirmation is as if it 
had never been made ([ 10], p. 12). 

On this view of conditional assertions, to affirm something on a condition 
known to be false is to commit oneself to nothing at all, since in such a case it 
is already known that the affirmation is "as if it had never been made." 

Completely excluded by this concept of conditionality, however, is 
counterfactual knowledge, and partial belief. I may believe that if Kennedy 
had not been assassinated, it is highly probable that he would have won the 
1964 presidential election. I know that the condition is false, but that does 
not prevent me from speculating - and perhaps speculating rationally - about 
what would have happened contrary-to-fact. Perhaps I could not place a bet 
on my counterfactual belief, but this is only because there would be no 
decisive way of telling who wins. For the same reason, I would not normally 
bet, say, that no woman will ever run a four-minute mile, or that Moses was 
actually an Egyptian. For a bet to be practical, there must be an operational 
decision procedure for determining the truth or falsity of the proposition in 
question. There must be some expected future event which both I and my 
gambling opponent would regard as decisively and unambiguously settling the 
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issue. But this is a fact about bets, not about degrees of rational belief or 
knowledge. The lack of an operational procedure for settling disagreements 
about what would have been true contrary-to-fact shows not that counter­
factual conditional probabilities should not be interpreted, but rather that 
their interpretation requires an extension of the idea of coherence. Counter­
factual assertions are the most controversial and interesting conditional state­
ments. If we are to use probability theory to throw light on these cases, we 
must ftrst extend the theory to cover counterfactual probabilities. Section 2 
presents a generalization of the system PI which attempts to do this. 

2. COUNTERF ACTU AL PROBAB ILlTIE S 

The second system P2 , again provides a pair of complementary interpretations 
to a formulation of classical propositional calculus. The object language, and 
its primary semantics given by the truth valuation function, are the same as 
before, but the second semantical function is a conditional probability func­
tion. I shall ftrst characterize this function, and P2 interpretation, and then 
discuss their intuitive rationale. 

(7) An ex tended probability function (epf) is any function, Pr, taking 
ordered pairs of wffs into real numbers which meets the following 
six conditions for all wffs, A, B, C, and D: 

(a) Pr(A,B»O 

(b) Pr(A,A) = 1 

(c) IfPr("'C,C)=I=I,thenPr("'A,C) = I-Pr(A,C). 

(d) IfPr(A,B) = Pr(B,A) = I, then Pr(C,A) = Pr(C,B) 

(e) Pr(A 1\ B, C) = Pr(B 1\ A, C) 

(f) Pr(A 1\ B, C) = Pr(A, C) x Pr(B,A 1\ C)8 

(8) A P2 interpretation is an ordered pair, (v, Pr >, where v is a tvf 
and Pr is an epf, such that for all wffs A and B, if Pr(A, B) = I, 
then v(B J A) = 1. 

An epf represents an extended state of knowledge. An extended state of 
knowledge includes, not only a measure of the degree to which the knower 
has a right to believe certain propositions, but also the degree to which he 
would have a right to believe certain propositions if he knew something 
which in fact he does not know. An epf represents, not just one state of 
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knowledge, but a set of hypothetical states of knowledge, one for each con­
dition. For example, the set of values of Pr(A, B) for all wffs, A and for a 
ftxed wff B represents the state of knowledge that the knower would be in if 
heknewB. 

Absolute probabilities are not represented by a primitive function, but 
they may be deftned as a special case of conditional probabilities as follows: 

(9) Pr(A) =df Pr(A, t), 

where t is some arbitrarily specifIed tautology. 
In the case where the condition is a tautology, conditional knowledge 

coincides with knowledge tout court. It can also be shown that if the con­
dition is known to be true, then the conditional probability is equal to the 
absolute probability defmed in this way. Where Pr(B, t) = 1, Pr(A, B) = 
Pr(A, t) for allA. 

Where the condition is itself not known to be true, but also not known to 
be false, then the conditional state of knowledge will be a function of the 
actual state of knowledge, exactly as in the classical probability system. An 
analogue of defmition (6), will be a simple consequence of the characteriz­
ation of epf, (7) together with the above deftnition of absolute probabilities, 
(9). In this case, the set of epistemically possible worlds relative to the hypo­
thetical state of knowledge will be a proper subset of the set of epistemically 
possible worlds, relative to the actual state of knowledge. 

When the condition has an absolute probability value of zero, however, the 
conditional probability values are logically independent of the absolute prob­
ability values. Where Pr(B) = 0, Pr(A, B) may equal zero, one, or anything in 
between, whatever the absolute probability value of A. In this case, the set of 
epistemically possible worlds relative to the hypothetical state of knowledge, 
will be disjoint from the set of epistemically possible worlds relative to the 
actual state of knowledge. 

In the case where the selected state of knowledge is independent of the 
given one, we require only two things: ftrst, that the resulting hypothetical 
state of knowledge contain the supposition as an item of knowledge, and 
second, that the state of knowledge be itself consistent and coherent. For 
some suppostions, however, it is impossible to meet even these modest 
requirements. For the supposition may be itself inconsistent or impossible, in 
which case no coherent state of knowledge can suppose it. 

A proposition is an impossible proposition if its negation is known 
true no matter what. A represents an impossible proposition just in case 
Pr(-A,A) = 1. A state of knowledge obtained by assuming an impossible 
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proposition to be true, I shall call an absurd state o/knowledge. For reasons 
of detenninateness and formal convenience, it is stipulated that where B is 
impossible, Pr(A, B) = 1 for all A. In the absurd state of knowledge, every­
thing is 'known'. 

An epf, then, is intended to represent an actual state of knowledge and a 
set of hypothetical state of knowledge, related in a certain way. To show that 
it succeeds in this intention, I must prove that the constraints set down in the 
fonnal definition of an epf are necessary and sufficient for this representation. 
A few more defmitions are needed to make this criterion of adequacy precise. 

(10) A bet that A at odds rl(1 - r) is acceptable under condition C if 
and only if Pr(A, C) ~ r. 

(11) A conditional bet that A on condition B at odds rl{1 - r) is 
acceptable under condition C if and only if Pr(A, B A C) ~ r. 

(12) K~r =df {vlfor all A, ifPr(A, C) = 1, then v(A) = I}. 

(13) A knower's probability function, Pr is strictly coherent with 
respect to condition C if and only if there does not exist a set of 
bets and/or conditional bets acceptable to the knower under con­
dition C such that the knower suffers a net loss in some v EK~ 
and a net gain in no v E K ~. 

(14) A function Pr is admissible as an extended belie/ [unction if and 
only if it is a function taking ordered pairs of wffs into real 
numbers which meets the following three conditions: 

(a) For all wffs C, v(C) = 1 for every v EK~ 

(b) Pr is strictly coherent with respect to every C 

(c) If K~ is empty, then Pr(A, C) = 1 for every A. 

Defmition (10) interprets conditional probabilities not as the odds for a 
conditional bet which are actually fair, but rather as the odds for an uncon­
ditional bet which would hypothetically be fair if the knower were in a dif­
ferent state of knowledge. Definition (11), however, requires that conditional 
probabilities also represent fair odds for conditional bets - both actual and 
hypothetical conditional bets. This seems reasonable: the odds that I would 
accept if I knew C to be true for a bet that A should be the same as the odds 
that I will now accept for a conditional bet that A on condition C. 

Defmition (12) defmes a set of tvfs relative to a belief function Pr and 
a condition C. This set represents the set of possible worlds that are 
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epistemically possible with respect to the proposition represented by C, or 
the set of worlds consistent with the hypothetical state of knowledge selected 
by condition C. Note that where C is a tautology, KrJ represents the set of 
worlds which are in fact epistemically possible to the knower, and where Cis 
an impossible proposition,KrJ is empty. 

Defmition (13) is the obvious generalization of the standard definition of 
strict coherence, and defmition (14) states the criterion of adequacy for an 
extended belief function. Requirement (a) ensures that each hypothetical 
state of knowledge be the right one - namely one in which the condition C 
is known to be true. Requirement (b) ensures that each hypothetical state of 
knowledge meet the same standard of strict coherence that a simple state of 
knowledge, represented by an apf, must meet. Requirement (c) isolates the 
absurd state of knowledge and gives the probabilities defmite values for it. 

Using the results discussed in the ftrst section, I shall sketch a proof of the 
following theorem: 

(15) A function is admissible as an extended belief function if and 
only if it is an epf. 

First, the reader can easily verify that for each condition, (a}-(f) of (7), if 
it is violated, then one of the conditions, (a)-( c) of (14) will be violated. This 
sufftces to prove the ftrst half of the theorem: If a function is admissible as an 
extended belief function, then it is an epf. To prove the converse, we shall 
assume that the function, Pr, is an epf and show that each of the three con­
ditions, (a) to (c) of (14) holds. 

(a) By (7b), Pr(C, C) = 1 for all C. Therefore, by defmition of KrJ, for all 
C, v(C) = 1 for every v EKP. 

(b) Let a function taking single wffs into real numbers be defmed for any 
given C as follows: Prc(A) =df Pr(A, C). The function Pre will either be an 
apf, or else it will be a constant function: Prc(A) = 1 for all A. If Pre is an 
apf, then it will be strictly coherent with respect to the class of tvfs, KrJ. 
Therefore, in this case, the strict coherence condition is met. If Pre is the 
constant function, then the strict coherence condition is trivially met, since 
KrJ is empty. 

(c) Finally, if KrJ is empty, then there must be some class ofwffs, r, such 
that (i) for all A E r, Pr(A, C) = 1, and (ii) for every tvf v, there is some 
A E r such that v(A) = O. That is, there is a class of wffs all having prob­
ability values of one on the condition C, which is not simultaneously satisft­
able. Therefore, by the semantical completeness of propositional calculus, 
r I-B for all wffs B, from which it follows that for some ftnite set of wffs, 
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{A I ,A2, . .. ,An}, all members of r, All\ A2 1\ •• • 1\ An r-B. But if 
Pr(AI' C) = Pr(A2' C) = ... = Pr(An' C) = 1, then Pr(AI 1\ A2 1\ •• • 1\ 

An, C) = 1. Therefore, since the probability of a proposition is always equal 
to or greater than the probability of something that entails it, Pr(B, C) = 1 
for all wffs B. This completes the proof. 

To conclude this section I wish to contrast the intuitive content of the 
extended probability system with that of the standard system. What is the 
nature of the additional information which would be contained in an 
extended system? A classical· probability function as I have interpreted it, 
provided a measure of the simple epistemological status of propositions. 
Things are better or less well known according as their probability values are 
greater or less. The standard function does not, however, make any distinc­
tions among propositions which are known to be true, and it can say nothing 
about the relations between propositions which are known to be true. Math­
ematical theorems may be ranked with empirical hypotheses. Simple facts 
are not distinguished from basic scientific principles. And one statement may 
be evidence for another, or independent of it, without this difference being 
reflected in the probability values. An extended function, on the other hand, 
contains information which is relevant to these differences in at least three 
ways: 

First, an epf distinguishes between items of knowledge which are contin­
gent and items of knowledge which are necessary . The former are merely 
known, while the latter would be known in all states of knowledge, or under 
every supposition. That is, A is a necessary truth if Pr(A, C) = 1 for all C. 
What would be known under any condition is the same as what is true in all 
possible worlds, where the set, K of possible worlds is defmed as the union of 
the sets K ~ for all C. A world is ontologically possible if it is epistemologically 
possible relative to some supposition. 

Second, an epf allows for a distinction between superficial facts - things 
we just happen to know - and items of empirical knowledge which have pro­
found systematic interconnections with other parts of our knowledge. A 
superficial bit of information is an item of knowledge which would easily be 
called into question by counterfactual suppositions, and which could be 
hypothetically denied with only minor changes in the state of knowledge. An 
entrenched systematically important truth, on the other hand, would remain 
an item of knowledge under diverse counterfactual suppositions, and its 
hypothetical denial would force a radical change in the state of knowledge. 

Third, an epf contains some information about the inductive relations 
among propositions known to be true. If there is a strong correlation between 
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the rise and fall of the probability values of A and B under different counter­
factual assumptions, for example, then one could conclude that the events 
described by A and B were causally connected in some way. By looking at the 
values of Pr(A, C) and Pr(B, C) for various particular C's, one might deter­
mine how they were causally connected. 

In general, counterfactual suppositions allow us to go beneath the surface 
of our knowledge in order to get at both the inductive and the conceptual 
relations among the things that we know, or believe to various degrees. The 
rules defming an epf do not, of course, provide any procedures for answering 
questions about these underlying relations, any more than logic provides 
criteria for truth. They do, however, offer a framework in which the counter­
factual beliefs, which we undoubtedly have and use, can be represented. 

In the final section, I shall extend this system by introducing conditional 
propositions. This will make it possible for the inductive and conceptual 
relations reflected in an extended probability system to be represented as 
explicit beliefs and items of knowledge. 

3. CONDITIONAL PROPOSITIONS 

The third system, P 3, involves not only an extension of the probability func­
tion defmed in Section 2, but also a change in the object language, and the 
truth semantics. In defming this system, I shall proceed somewhat differently 
than in the first two cases. First, I shall describe the syntax of the new object 
language, C2. Second, I shall add a requirement to the defmition of prob­
ability function which establishes a connection between conditional prop­
ositions and conditional probabilities. Third, I shall ask what logical proper­
ties conditional propositions must have in order that the probability function 
have the form that it does have. Thus, our procedure is here the reverse of 
what it was in Sections 1 and 2. In those sections, the established primary 
semantics was used, in conjunction with an idea of coherence, to justify the 
probability semantics. In this section, a natural extension of the probability 
semantics in conjunction with the idea of coherence will be used to discover 
and justify the rules of tru th for conditional propositions. 

The object language, C2, is as before except that one connective, > (called 
the corner) is added to the list of primitive symbols, and one clause is added 
to the definition of wff as follows: if A and Bare wffs, then (A > B) is a wff. 

A C2-epf is defined as a function taking ordered pairs of wffs of C2 into 
real numbers. The function must meet all of the requirements of an ordinary 
epf, as set down in defmition (7), Section 2 above. It must also meet one 
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additional requirement. Our fIrst problem is to determine exactly what that 
should be. 

The absolute probability of a conditional proposition - a proposition of 
the form A > B - must be equal to the conditional probability of the con­
sequent on the condition of the antecedent. 

(16) Pr(A > B) = Pr(B,A) 

The probability of the proposition, if Nixon is nominated then Johnson will 
win, should be the same as the probability that Johnson will win, on the 
condition that Nixon is nominated. This is the basic requirement, but by 
itself it is too weak, since it sets no limits on the conditional probability of 
conditional propositions. On the basis of the requirement (16), we could 
draw certain conclusions about the absolute probabilities of conditional prop­
ositions- for example that for all wffsA andB, Pr(A > B) = 1 - Pr(A > -B) 
whenever Pr(A >-A) = O. But we could draw no conclusion at all about 
conditional probabilities of conditionals. For example, for any wffs C such 
that Pr(C) < 1, the relation between Pr(A > B, C) and Pr(A > -B, C) would 
be completely open. Thus no real constraints would be placed on the logic of 
conditionals since any set of conditional formulas would be simultaneously 
satisfIable in the sense that there would exist a C2-epf which assigned each 
formula the value one on some consistent condition. 

The follOwing generalization of the proposed requirement suggests itself: 

(17) Pr(A > B, C) = Pr(B,A A C) 

This condition, however, is clearly too strong. 
The antecedent A may be a counter/actual assumption with respect to the 

condition C. That is, the antecedent A may be incompatible with the state of 
knowledge selected by the condition C. In this case the antecedent A cannot 
simply be added to the set of things known in that state of knowledge. Some 
deletions and adjustments will have to be made, and the condition C may be 
one of the things that gets deleted. In fact, the adoption of the strong require­
ment, (17) would trivially give all counterfactual propositions a probability of 
one, collapsing the distinction between knowledge and necessity, and reduc­
ing the probability system, P3 to one roughly equivalent to P 1. This can be 
seen by the following argument: suppose A> B represents a counterfactual­
that is a conditional proposition whose antecedent is known to be false. Then 
Pr(A) = 0, so Pr(-A) = 1. But for all C such that Pr(C) = 1, and for all D, 
Pr(D, C) = Pr(D). Therefore Pr(A > B) = Pr(A > B, -A). But by require­
ment (17), Pr(A >B,-A)=Pr(B,A A-A), which always equals one. 
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Therefore Pr(A > B) = 1. But all we assumed was that A > B was counter­
factual. 

In order to steer a course between the unacceptably weak condition (16) 
and the unacceptably strong (17), we must generalize (16) in a different way. 
In order to carry out this generalization, we need a few more defmitions. 

(I 8) A function, Pre, taking ordered pairs of wffs of C2 into real 
numbers is a sUbfunction of Pr with respect to C iff Pr is also a 
function taking pairs of wffs into real numbers, C is a wff of C2, 
and for all wffsA andB, Pre(B,A) = Pr(A > B, C). 

(I 9) A function Pr taking ordered pairs of wffs of C2 into real 
numbers is acceptable on the first level iff it is an epf and for all 
wffsA andB, Pr(A > B) = Pr(B,A). 

(20) A function Pr taking pairs of wffs of C2 into real numbers is 
acceptable on the (n + 1 )th level if for every wff C, the subfunc­
tion of Pr with respect to C is acceptable on the nth level. 

(21) A function Pr taking pairs of wffs of C2 into real numbers is a 
C2-epf if it is acceptable on the nth level for every n. 

The introduction of sub functions is simply a device to allow the weak require­
ment (16) to be applied more generally without collapsing conditions as does 
the rejected requirement (17). 

Defmition (21) gives a complete semantical characterization of a con­
ditional concept, not in terms of its truth relations, but in terms of its prob­
ability relations. The next step in the investigation is to defme notions of 
satisftability and validity for the wffs of the language C2, relative to this 
probability semantics. Then I shall present an axiom system which implicitly 
defmes syntactical notions of consistency and theoremhood for conditional 
logic. This system, will then be proved semantically sound and complete 
relative to the probability semantics. 

The fmal step of the argument - the construction of an appropriate truth 
semantics - has already been taken. The axiom system for C2 has elsewhere 
been shown to be semantically sound and complete relative to a primary 
semantics which was given an independent philosophical justification.9 In 
the conclusion to this paper, I shall discuss the relation between the two 
semantical systems. 

(22) A class r of wffs of C2 is p-simultaneously satisfiable if there 
exists a C2-epf Pr and a wff C such that Pr(-C, C) i= 1, and for 
anA E r, Pr(A, C) = 1. 

(23) A wff A is p-valid if (-A) is not p-simultaneously satisfiable. 
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A simultaneously satisfIable class, by this defInition, represents a class of 
propositions, all of whose members might be known to be true. A valid 
formula represents a proposition whose negation could not possible be known 
to be true. 

To specify the formal system, I shall use two nonprimitive modal 
operators, defIned as follows: 

(24) Defmition schemata: 

(a) DA =df -A >A 

(b) OA =df -D-A 

These defmitions bring out the fact that by moving from conditional prob­
abilities to conditional propositions, we have also implicitly moved from a 
modal predicate of propositions, in the meta-language, to a modal operator, 
in the object language. In Quine's terminology, we have moved from the fIrst 
to the second grade of modal involvement. In the system, P2 , Pr(A, -A) = 1 
just in case A is a necessary truth. Therefore, in P3 , we have a proposition 
which states that A is a necessary truth. 

The following two rules and seven axiom schemata determine the formal 
system C2: 

(25) Rules: 

(a) If A ::> B and A are theorems, then B is a theorem 

(b) If A is a theorem then DA is a theorem 

(26) Axiom schemata: 

(a) Any tautologous wff is an axiom 

(b) D(A ::> B)::> - DA ::> DB 

(c) D(A ::> B)::>·A > B 

(d) OA ::>·A > B ::> -(A> 'VB) 

(e) A >(BvC)::>· (A >B)v(A >C) 

(f) A> B ::>·A ::> B 

(g) (A > B) 1\ (B > A) ::>. (A > C):>· (B > C) 
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In the usual way, these rules and axioms detennine the syntactical notions, 
C2-provability, C2-derivability and C2-consistency. 

Before stating the semantical completeness theorem, I shall list some 
object language theorem schemata which will be useful in the metaproof. 

(27) Theorem schemata: 

(a) I- (t > A) ==A (where t is any tautology) 

(b) I-A >A 

(c) I-OC:)· (C> A) == -(C> -A) 

(d) I- C> (A" B) == (C> (B" A)) 

(e) I-C>(A"B)==«C>A)" «A "C»B)) 

We are now equipped to sketch a proof of the following semantical 
completeness theorem: 

(28) A class r of wffs of C2 is p-simuItaneously satisfiable if and only 
if it is C2-consistent. 

The fust half of the proof consists of validating the axioms and showing that 
the rules preserve validity. First, note that for any wffs A and C, if there 
exists a C2-epf Pr which satisfies A on condition C then there exists a C2-epf 
which satisfies A on condition t (where t is a tautology), namely the subfunc­
tion of Pr, Pre. Therefore, to validate an axiom, it suffices to show that it is 
not satisfiable on condition t; Second, note that every axiom, in unabbrevi­
ated fonn, is the negation of a conjunction. For each axiom, assume that this 
conjunction has an absolute probability value of one (that is, assume that the 
negation of the axiom is satisfiable on condition t). In each case, a contradic­
tion will fall out relatively easily. To show that modus ponens, (25a), pre­
serves validity, assume that Pr(A :) B) = I and Pr(A) = I for all C2-epfs. 
Then Pr(A" - B) = Pr(A) x Pr(- B,A) = Pr(-B,A) = o. So Pr(B,A) = 1. 
But since Pr(A) = 1, Pr(B,A) = Pr(B), so Pr(B) = 1 in all C2-epfs. To show 
that the necessitation rule, (25b) preserves validity, assume A is valid. Then 
{-A} is not p-satisfiable, so for all C2-epfs Pr and wffs C such that 
Pr( - C, C) * 1, Pre -A, C) < 1. But for all C2-epf's, Pr, Pre -A, -A) = 1, so 
to avoid contradiction we must conclude that Pr( - -A, -A) = 1, and hence 
that Pr(A,-A) = I for all C2-epfs Pr. Therefore Pr(-A >A), which is the 
same as Pr(DA), must be equal to one. So both rules preserve validity. 

To prove the converse, I shall show that given any C2-consistent class of 
wffs, r, it is possible to construct a C2-epf and a wff C such that 
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Pr(-C, C) * 1 and Pr(A, C) = 1 for all A E r. The argument follows the 
familiar method developed by Henkin. First, in the usual manner, construct 
a maximally consistent class, r* which contains r. Then let a function, Pr, 
taking ordered pairs of wffs into real numbers are dermed as follows: For all 
wffs A and B, Pr(A, B) = 1 if (B > A) E r*, and Pr(A, B) = 0 otherwise. Let 
C be an arbitrarily selected tautology, t. Substituting - t for A in theorem 
(27a), we get f-(t>~t)==-t. Since r* is consistent, -tct:r*, and there­
fore t>-t$r*, so Pr(~t,t)=O. Also by theorem, (27a) and the consis­
tency of r*, it is evident that Pr(A, t) = 1 iff A E r*. Since r s r*, 
Pr(A, t) = 1 for all A E r. Therefore, the function, Pr and the wff C that we 
have constructed meet the conditions of definition (22). It remains only to 
show that the function Pr is a C2-epf. This we shall do by going through the 
six derming requirements for epf given in (7), and the added requirement for 
C2-epf given in (21). 

(a) Pr(A, B) = 0 or 1 for all A and B, so Pr(A, B) ~ O. 
(b) f-A >A by (27b), so Pr(A,A) = 1 for alIA. 
(c) Assume Pr(~C, C) * 1. Then Pr(-(C> -C), t) = Pr(OC, t) = 1, so 

OCE r*. Then by (27c), (C> A) ==~(C> ~A)E r*. Therefore Pr(A, C) = 
1(0) iff Pr(~A, C) = 0(1). Hence provided Pr(-C, C) * 1, Pr(~A, C) = 1 -
Pr(A, C). 

(d) Assume Pr(A,B) = Pr(B,A) = 1. In this case, A> BE r* and 
B > A E r*. Therefore, by an axiom, (26g), (A > C) == (B > C) E r*, so 
Pr(C, A) = Pr(C, B), provided Pr(A,B) = Pr(B, A) = 1. 

(e) By (27d), C> (A 1\ B) E r* iff C> (B 1\ A) E r*, so Pr(A 1\ B, C) = 
Pr(B 1\ A, C). 

(f) By (27e) , C> (A 1\ B) E r* iff C> A E r* and (A 1\ C) > BE r*. 
Therefore, Pr(A 1\ B, C) = I iff Pr(A, C) = 1 and Pr(B,A 1\ C) = 1. There­
fore, Pr(A 1\ B, C) = Pr(A, C) x Pr(B, A 1\ C). 

(g) That the function Pr is acceptable on the first level follows from a 
special case of (27a) f-t > (A > B) == (A> B). 

(h) To show the function acceptable on the n-th level, in general, it 
suffices to show that every sub function of Pr, and subfunction of a subfunc­
tion of Pr, etc. meets the fIrst six conditions, and that each is acceptable on 
the fIrst level. We do this by generalizing each of the above seven arguments. 
Using the following derived rules and distribution principles, the generaliz­
ations are quite straightforward, although in a few cases tedious. 

(29) Derived rules and theorems schemata 
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(a) If f-A, then I-CI > (C2 > ... > (Cn > A). 

(b) IfI-A~B,thenf-(C>A)~(C>B) 

(c) I-C>(A =B)=((C>A)=(C>B)) 

(d) I-C>(AI\B)=(C>A)I\(C>B) 
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These generalizations complete the argument. The function Pr is a C2-epf, 
and thus the arbitrary consistent class r is p-satisfiable. 

4. POSSIBLE WORLDS AND KNOWLEDGE 

In conclusion, I shall explain briefly the intuitive idea behind the primary 
semantics for C2 and consider the relation between this system and the one 
based on probability that I have been discussing. 

A conditional statement, according to a theory of conditionals that I have 
defended elsewhere, is a statement about a particular possible world. Which 
possible world it is about is a function of the antecedent. Which statement is 
made about that world is a function of the consequent. The particular 
possible world selected by the antecedent cannot be just any world. First, it 
must be one in which the antecedent is true; when we say "if A ... ". We are 
supposing A to be tme. Second, it must resemble the actual world as closely 
as possible, given the first requirement. This latter restriction means that, 
where the antecedent is true in the actual world, the actual world is the world 
I am talking about. That is why when one asserts a conditional which turns 
out to have a true antecedent, he is committed to the consequent. The latter 
restriction also means that the world selected carries over as much of the 
explanatory and descriptive structure of the actual world as is consistent with 
the antecedent. That is why causal laws and well entrenched empirical 
relations are relevant to the evaluation of a counterfactual. 

These intuitive ideas can be represented in a semantical theory for a formal 
language which includes a primitive conditional connective. An interpretation 
of a set of formulas is defmed on a model stmcture which consists of a struc­
ture of possible worlds. The interpretation on the structure is relative to a 
selection function, f - a function that selects, for each formula A and possible 
world a a possible world in which A is true. The truth rule for conditional 
formulas - formulas of the form (A > B) - can be stated as follows: 

(30) For all wffs A and B, and all possible worlds a, (A > B) is true in 
a iff B is true inf(A, a). 
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These truth conditions, together with constraints on the selection function 
which are appropriate to the intuitive picture sketched above, give rise to 
semantical concepts of satisfiability and validity for the formulas of C2. The 
axiom system given in Section 3 is sound and complete with respect to these 
concepts. 

According to this seman tical theory, the evaluation of a conditional state­
ment involves, implicitly, the weighing of possible worlds against each other. 
To decide about a conditional, I must answer a hypothetical question about 
how I would revise my beliefs in the face of a particular potential discovery. 
We are all, of course, continually making such revisions, both actual and hypo­
thetical, and this process of change reflects methodological patterns and prin­
ciples. There are always alternative ways to patch up our structure of beliefs, 
as Quine has persuasively argued, but the choice among the alternatives is not 
arbitrary. Some opinions acquire a healthy immunity to contrary evidence and 
become the core of our conceptual system, while others remain near the surface, 
vulnerable to slight shifts in the phenomena. The policies by which we make 
distinctions like this lend some stability to the changing process of inquiry. 

A selection function, selecting and ordering possible worlds, is intended as 
a representation of these methodological policies. A probability system is also 
a representation of them, since the same policies would be involved in the 
determination of degrees of belief. The difference is that a probability system 
represents in addition the limited perspective of an individual knower. The 
move through the various grades of conditional involvement - PI to P3 - is an 
attempt to sort out the general principles from the factors that depend on the 
particular part of the actual world a knower has experienced, or learned about. 
The primary semantics for C2 is the final step in this sorting out. 

My intention in developing these formal and intuitive parallels between the 
theory of conditional probability and the semantics for conditional logic has 
been to give some additional support to the analysis of conditional statements 
sketched above. Beyond this, it is hoped that with the further development of 
the theories (for example the addition of quantifiers), this approach may pro­
vide some tools for the philosophical analysis of induction and confirmation. 

University of illinois 

NOTES 

I The preparation of this paper was supported under National Science Foundation 
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2 For some of these discussions, see [4], [1], [2], and [12]. 
3 More properly, I should say that an apf represents an idealized state of knowledge, or 
a state of virtual knowledge, or implicit knowledge. I assume that a knower knows 
implicitly all of the consequences of his knowledge, and more generally, that where A 
entails B, the degree of rational belief in B is at least as great as that in A. Cf. [3], pp. 
31-39. 
4 Some will perhaps be tempted to argue that the identification of knowledge with 
probability of one is too stringent a condition on knowledge. This temptation should be 
resisted, since it misses the point of this identification. I am not using a well-established 
interpretation of probability to provide an analysis of knowledge. Rather, I am using the 
intuitive notion of knowledge to place constraints on the less clear intuitive notion of 
probability. No claims about the nature of knowledge are implied by the identification 
except that knowledge entails truth, and that a state of knowledge is, ideally, deductively 
closed. 
5 The notion of coherence was developed by the subjective probability theorists, F. P. 
Ramsey and Bruno de Finetti. See [6] for the classic papers. For proofs that the prob­
ability calculus provides necessary and sufficient conditions for coherence, see [5] and 
[8]. 
6 Strict coherence was first discussed by Abner Shimony in [11]. 
7 The requirement, "If A is true in all possible outcomes, then Pr(A) = I" may be 
treated as a purely logical constraint, with all possible outcomes interpreted as all tvfs. 
Then the requirement comes down to "If A is a tautology, Pr(A) = I, which is entailed 
by the coherence condition. The converse requirement, however, cannot be treated in 
the same way without making a host of untenable assumptions. To interpret (5) to mean 
"If Pr(A) = I, then A is a tautology," is to confuse a formula with the proposition it 
represents. Under this interpretation, we should have to accept that every necessary 
truth - in fact, everything that is known - is a tautology, and that all atomic formulas 
represent contingent propositions, each of which is logically independent of all the 
others. If we wish to accept the strict coherence condition without accepting logical 
atomism, we must allow for an independent specification of a class of models, represent­
ing the possible outcomes. 
8 The extended probability function is based on one constructed by Sir Karl Popper. Cf. 
[9], appendix iv. Popper presents his system as an abstract calculus rather than as a 
semantics. Also, his system has the additional postulate that there must be elements, A, 
B, C and D such that Pr(A, B) '" Pr(C, D). This has the effect of ruling out the limiting 
case where Pr(A, B) = 1 for all A and B. In [7], Hughes Leblanc presents two formul­
ations of Popper's system without the added postulate, as a measure on formulas of 
propositional logic. One of his two formulations is equivalent to the defmition of epf. 

It shOUld be noted here that Leblanc confuses validity with necessity in the above 
mentioned article, defming validity so that it is a function of the probability assignment 
to the variables. Also, the proof that he offers for the equivalence of his two formul­
ations is defective and the equivalence claim is false. 
9 The completeneess proof is presented in [14]; [13] is an informal exposition and 
philosophical defense of the theory. 
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DA VID LEWIS 

PROBABILITIES OF CONDITIONALS AND 

CONDITIONAL PROBABILITIES 

The truthful speaker wants not to assert falsehoods, wherefore he is willing 
to assert only what he takes to be very probably true. He deems it permissible 
to assert that A only if P(A) is sufficiently dose to 1, where P is the proba­
bility function that represents his system of degrees of belief at the time. 
Assertability goes by subjective probability. 

At least, it does in most cases. But Ernest Adams has pointed out an 
apparent exception.1 In the case of ordinary indicative conditionals, it 
seems that assertability goes instead by the conditional subjective proba­
bility of the consequent, given the antecedent. We define the conditional 
probability functionp(-/-) by a quotient of absolute probabilities, as usual: 

(1) P(C/A) = df P(CA)/P(A), if P(A) is positive. 

(If the denominator P(A) is zero, we let P(C/A) remain undefmed.) The 
truthful speaker evidently deems it permissible to assert the indicative con­
ditional that if A, then C (for short, A -+ C) only if P(C/A) is sufficiently 
close to 1. Equivalently: only if P(CA) is sufficiently much greater than 
P(CA). 

Adams offers two sorts of evidence. There is direct evidence, obtained 
by contrasting cases in which we would be willing or unwilling to assert 
various indicative conditionals. There also is indirect evidence, obtained 
by considering various inferences with indicative conditional premises or 
conclusions. The ones that seem valid turn out to be just the ones that 
preserve assertability, if assertability goes by conditional probabilities for 
conditionals and by absolute probabilities otherwise.2 Our judgements of 
validity are not so neatly explained by various rival hypotheses. In particular, 
they do not fit the hypotheSis that the inferences that seem valid are just 
the ones that preserve truth if we take the conditionals as truth-functional. 

Adams has convinced me. I shall take it as established that the asserta­
bility of an ordinary indicative conditional A -+ C does indeed go by the 
conditional subjective probability P(C/A). But why? Why not rather by the 
absolute probability P(A -+ C)? 

The most pleasing explanation would be as follows: The assertability 
of A -+ C does go by P(A -+ C) after all; indicative conditionals are not 
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exceptional. But also it goes by P(C/A), as Adams says; for the meaning 
of ~ is such as to guarantee that P(A ~ C) and PCP/A) are always equal 
(if the latter is dermed). For short: probabilities of conditionals are con­
ditional probabilities. This thesis has been proposed by various authors.3 

If this is so, then of course the ordinary indicative conditional A ~ C 
cannot be the truth-functional conditional A ~ C P(A ~ C) and P(C/A) 
are equal only in certain extreme cases. The indicative conditional must 
be something else: call it a probability conditional We mayor may not 
be able to give truth conditions for probability conditionals, but at least 
we may discover a good deal about their meaning and their logic just by 
using what we know about conditional probabilities. 

Alas, this most pleasing explanation cannot be right. We shall see that 
there is no way to interpret a conditional connective so that, with suffi­
cient generality, the probabilities of conditionals will equal the appropriate 
conditional probabilities. If there were, probabilities of conditionals could 
serve as links to establish relationships between the probabilities of non­
conditionals, but the relationships thus established turn out to be incorrect. 
The quest for a probability conditional is futile, and we must admit that 
assertability does not go by absolute probability in the case of indicative 
conditionals. 

PRELIMINARIES 

Suppose we are given an interpreted formal language equipped at least with 
the usual truth-functional connectives and with the further connective ~. 
These connectives may be used to compound any sentences in the language. 
We think of the interpretation as giving the truth value of every sentence 
at every possible world. Two sentences are equivalent iff they are true at 
exactly the same worlds, and incompatible iff there is no world where both 
are true. One sentence implies another iff the second is true at every world 
where the first is true. A sentence is necessary, possible or impossible iff 
it is true at all worlds, at some, or at none. We may think of a probability 
function P as an assignment of numerical values to all sentences of this 
language, obeying these standard laws of probability: 

(2) 1 ;;:'P(A);;:' 0, 
(3) if A and B are equivalent, then P(A) = P(B), 
(4) if A and B are incompatible, then P(A vB) = P(A) + P(B), 
(5) if A is necessary, then P(A) = 1. 
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The defmition (1) gives us the multiplication law for conjunctions. 
Whenever PCB) is positive, there is a probability function p' such that 

pl(A) always equals P(A/B); we say that p' comes from P by conditionalizing 
on B. A class of probability functions is closed under conditionalizing iff 
any probability function that comes by conditionalizing from one in the class 
is itself in the class. 

Suppose that -+ is interpreted in such a way that, for some particular 
probability function P, and for any sentences A and C. 

(6) peA -+ C) = P(C/A), if peA) is positive; 

iff so, let us call -+ a probability conditional for P. Iff -+ is a probability 
conditional for every probability function in some class of probability func­
tions, then let us call -+ a probability conditional for the class. And iff -+ is 
a probability conditional for all probability functions, so that (6) holds for 
any P, A, and C, then let us call -+ a universal probability conditional, or 
simply a probability conditional. 

Observe that if -+ is a universal probability conditional, so that (6) holds 
always, then (7) also holds always: 

(7) peA -+ C/B) = P(C/AB), if P(AB) is positive. 

To derive (7), apply (6) to the probability function p' that comes from P 
by conditionalizing on B; such a p' exists if P(AB) and hence also PCB) 
are positive. Then (7) follows by several applications of (1) and the equality 
between p l

(-) and P(-/B). In the same way, if -+ is a probability conditional 
for a class of probability functions, and if that class is closed under condi­
tionalizing, then (7) holds for any probability function P in the class, and 
for any A and C. (It does not follow, however, that if (6) holds for a par­
ticular probability function P, then (7) holds for the same P.) 

FIRST TRIVIALITY RESULT 

Suppose by way of reductio that -+ is a universal probability conditional. 
Take any probability function P and any sentences A and C such that peA C) 
and peAt) both are positive. Then peA), P(C), and P(t) also are positive. 
By (6) we have: 

(8) peA -+ C) = P(C/A). 

By (7), taking B as C or as t and simplifying the right-hand side, we have: 
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(9) 

(10) 
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P(A -+ C/C) = P(C/AC) 

peA -+ C/C) = P(C/AC) 

1, 

o. 
For any sentence D, we have the familiar expansion by cases: 

(11) P(D) = P(D/C) • P(C) + P(D/C) • P(C). 

In particular, take D as A -+ C. Then we may substitute (8), (9), and (10) 
into (11) to obtain: 

(12) P(C/A) = 1 • P(C) + 0 • P(C) = P(C). 

With the aid of the supposed probability conditional, we have reached the 
conclusion that if only P(AC) and P(AC) both are positive, then A and C 
are probabilistically independent under P. That is absurd. For instance, 
let P be the subjective probability function of someone about to throw 
what he takes to be a fair die, let A mean that an even number comes up, 
and let C mean that the six comes up. P(AC) and P(AC) are positive. But, 
contra (12), P(C/A) is j and P(C) is i; A and C are not independent. More 
generally, let C, D, and E be possible but pairwise incompatible. There 
are probability functions that assign positive probability to all three: let 
P be any such. Let A be the disjunction CvD. Then P(AC) and P(AC) 
are positive but P(C/A) and P(C) are unequal. 

Our supposition that -+ is a universal probability conditional has led to 
absurdity, but not quite to contradiction. If the given language were suf· 
ficiently weak in expressive power, then our conclusion might be unobjec· 
tionable. There might not exist any three possible but pairwise incompatible 
sentences to provide a counterexample to it. For all I have said, such a 
weak language might be equipped with a universal probability conditional. 
Indeed, consider the extreme case of a language in which there are none but 
necessary sentences and impossible ones. For this very trivial language, the 
truth·functional conditional itself is a universal probability conditional. 

If an interpreted language cannot provide three possible but pairwise 
incompatible sentences, then we may justly call it a trivial language. We 
have proved this theorem: any language having a universal probability con· 
ditional is a trivial language. 

SECOND TRIVIALITY RESULT 

Since our language is not a trivial one, our indicative conditional must not 
be a universal probability conditional. But all is not yet lost for the thesis 
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that probabilities of conditionals are conditional probabilities. A much less 
than universal probability conditional might be good enough. Our task, 
after all, concerns subjective probability: probability functions used to 
represent people's systems of beliefs. We need not assume, and indeed it 
seems rather implausible, that any probability function whatever represents 
a system of beliefs that it is possible for someone to have. We might set 
aside those probability functions that do not. If our indicative conditional 
were a probability conditional for a limited class of probability functions, 
and if that class were inclusive enough to contain any probability function 
that might ever represent a speaker's system of beliefs, that would suffice 
to explain why assertability of indicative conditionals goes by conditional 
subjective probability. 

Once we give up on universality, it may be encouraging to fmd that 
probability conditionals for particular probability functions, at least, com­
monly do exist. Given a probability function P, we may be able to tailor 
the interpretation of -+ to fit.4 Suppose that for any A and C there is some 
B such that P(B/A) and P(C/A) are equal if both defined; this should be 
a safe assumption when P is a probability function rich enough to represent 
someone's system of beliefs. If for any A and C we arbitrarily choose such 
a B and let A -+ C be interpreted as equivalent to AC v AB, then -+ is a pro­
bability conditional for P. But such piecemeal tailoring does not yet provide 
all that we want. Even if there is a probability conditional for each proba­
bility function in a class, it does not follow that there is one probability 
conditional for the entire class. Different members of the class might require 
different interpretations of -+ to make the probabilities of conditionals and 
the conditional probabilities come out equal. But presumably our indicative 
conditional has a fixed interpretation, the same for speakers with different 
beliefs, and for one speaker before and after a change in his beliefs. Else 
how are disagreements about a conditional possible, or changes of mind? 
Our question, therefore, is whether the indicative conditional might have 
one fixed interpretation that makes it a probability conditional for the 
entire class of all those probability functions that represent possible systems 
of beliefs. 

This class, we may reasonably assume, is closed under conditionalizing. 
Rational change of belief never can take anyone to a subjective probability 
function outside the class; and there are good reasons why the change of 
belief that results from coming to know an item of new evidence should 
take place by conditionalizing on what was learned.s 

Suppose by way of reductio that -+ is a probability conditional for a 
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class of probability functions, and that the class is closed under conditional­
izing. The argument proceeds much as before. Take any probability function 
P in the class and any sentences A and C such that P(AC) and P(AC) are 
positive. Again we have (6) and hence (8); (7) and hence (9) and (10); (11) 
and hence by substitution (12): P(C/A) and P(C) must be equal. But if we 
take three pairwise incompatible sentences C, D, and E such thatP(C), P(D) 
and peE) are all positive and if we take A as the disjunction C v D, thenP(AC) 
and P(AC) are positive but P(C/A) and P(C) are unequal. So there are no 
such three sentences. Further, P has at most four different values. Else there 
would be two different values of P, x and y, strictly intermediate between 
o and 1 and such that x + y '* 1. But then if P(F) = x and peG) = y it 
follows that at least three of p(FG), p(FG), P(FG), and p(FG) are positive, 
which we have seen to be impossible. 

If a probability function never assigns positive probability to more than 
two incompatible alternatives, and hence is at most four-valued, then we 
may call it a trivial probability function. We have proved this theorem: 
if a class of probability functions is closed under conditionalizing, then 
there can be no probability conditional for that class unless the class con­
sists entirely of trivial probability functions. Since some probability func­
tions that represent possible systems of belief are not trivial, our indicative 
conditional is not a probability conditional for the class of all such proba­
bility functions. Whatever it may mean, it cannot possibly have a meaning 
such as to guaranteee, for all possible subjective probability functions at 
once, that the probabilities of conditionals equal the corresponding con­
ditional probabilities. These is no such meaning to be had. We shall have 
to grant that the assertability of indicative conditionals does not go by 
absolute probability, and seek elsewhere for an explanation of the fact 
that it goes by conditional probability instead. 

THE INDICATIVE CONDITIONAL AS NON-TRUTH-VALUED 

Assertability goes in general by probability because probability is prob­
ability of truth and the speaker wants to be truthful. If this is not so for 
indicative conditionals, perhaps the reason is that they have no truth values, 
no truth conditions, and no probabilities of truth. Perhaps they are 
governed not by a semantic rule of truth but by a rule of assertability. 

We might reasonably take it as the goal of semantics to specify our pre­
vailing rules of assertabili ty. Most of the time, to be sure, that can best 
be done by giving truth conditions plus the general rule that speakers should 
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try to be truthful, or in other words that assertability goes by probability 
of truth. But sometimes the job might better be done another way: for 
instance, by giving truth conditions for antecedents and for consequents, 
but not for whole conditionals, plus the special rule that the assertability 
of an indicative conditional goes by the conditional subjective probability 
of the consequent given the antecedent. Why not? We are surely free to 
institute a new sentence form, without truth conditions, to be used for 
making it known that certain of one's conditional subjective probabilities 
are close to 1. But then it should be no surprise if we turn out to have such 
a device already. 

Adams himself seems to favor this hypothesis about the semantics of 
indicative conditionals.6 He advises us, at any rate, to set aside questions 
about their truth and to concentrate instead on their assertability. There 
is one complication: Adams does say that conditonal probabilities are prob­
abilities of conditionals. Nevertheless he does not mean by this that the 
indicative conditional is what I have here called a probability conditional; 
for he does not claim that the so-called "probabilities" of conditionals are 
probabilities of truth, and neither does he claim that they obey the standard 
laws of probability. They are probabilities only in name. Adam's position 
is therefore invulnerable to my triviality results, which were proved by 
applying standard laws of probability to the probabilities of conditionals. 

Would it make sense to suppose that indicative conditionals do not have 
truth values, truth conditions, or probabilities of truth, but that they do 
have probabilities that obey the standard laws? Yes, but only if we first 
restate those laws to get rid of all mention of truth. We must continue to 
permit unrestricted compounding of sentences by means of the usual con­
nectives, so that the domain of our probability functions will be a Boolean 
algebra (as is standardly required); but we can no longer assume that these 
connectives always have their usual truth-functional interpretations, since 
truth-functional compounding of non-truth-valued sentences makes no 
sense. Instead we must choose some deductive system - any standard form­
alization of sentential logic will do - and characterize the usual connec­
tives by their deductive role in this system. We must replace mention of 
equivalence, incompatibility, and necessity in laws (3) through (5) by 
mention to their syntactic substitutes in the chosen system: inter-deducibility, 
deductive inconsistency, and deducibility. In this way we could describe 
the probability functions for our language without assuming that all prob­
abilities of sentences, or even any of them, are probabilities of truth. We 
could still hold that assertability goes in most cases by probability, though 
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we could no longer restate this as a rule that speakers should try to tell the 
truth. 

Merely to deny that probabilities of conditionals are probabilities of 
truth, while retaining all the standard laws of probability in suitably adapted 
form, would not yet make it safe to revive the thesis that probabilities of 
conditionals are conditional probabilities. It was not the connection between 
truth and probability that led to my triviality results, but only the appli­
cation of standard probability theory to the probabilities of conditionals. 
The proofs could just as well have used versions of the laws that mentioned 
deducibility instead of truth. Whoever still wants to say that probabilities 
of conditionals are conditional probabilities had better also employ a non­
standard calculus of 'probabilities'. He might drop the requirement that the 
domain of a probability function is a Boolean algebra, in order to exclude 
conjunctions with conditional conjuncts from the language. Or he might 
instead limit (4), the law of additivity, refusing to apply it when the disjuncts 
A and B contain conditional conjuncts. Either maneuver would block my 
proofs. But if it be granted that the 'probabilities' of conditionals do not 
obey the standard laws, I do not see what is to be gained by insisting on 
calling them 'probabilities'. It seems to me that a position like Adams's 
might best be expressed by saying that indicative conditionals have neither 
truth values nor probabilities, and by introducing some neutral term such 
as 'assertability' or 'value' which denotes the probability of truth in the case 
of nonconditionals and the appropriate conditional probability in the case 
of indicative conditionals. 

I have no conclusive objection to the hypothesis that indicative condi­
tionals are non-truth-valued sentences, governed by a special rule of asserta­
bility that does not involve their nonexistent probabilities of truth. I have 
an inconclusive objection, however: the hypothesis requires too much of 
a fresh start. It burdens us with too much work still to be done, and wastes 
too much that has been done already. So far, we have nothing but a rule of 
assertability for conditionals with truth-valued antecedents and consequents. 
But what about compound sentences that have such conditionals as con­
stituents? We think we know how the truth conditions for compound 
sentences of various kinds are determined by the truth conditions of con­
stituent subsentences, but this knowledge would be useless if any of those 
subsentences lacked truth conditions. Either we need new semantic rules 
for many familiar connectives and operators when applied to indicative 
conditionals - perhaps rules of truth, perhaps special rules of assertability 
like the rule for conditionals themselves - or else we need to explain 
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away all seeming examples of compound sentences with conditional 
constituents. 

THE INDICATIVE CONDITIONAL AS TRUTH-FUNCTIONAL 

Fortunately a more conservative hypothesis is at hand. H. P. Grice has given 
an elegant explanation of some qualitative rules governing the assertability 
of indicative conditionals.7 It turns out that a quantitative hypothesis based 
on Grice's ideas gives us just what we want: the rule that assertability goes 
by conditional subjective probability. 

According to Grice, indicative conditionals do have truth values, truth 
conditions, and probabilities of truth. In fact, the indicative conditional 
A -+ C is simply the truth-functional conditional A :J C. But the assertability 
of this truth-functional conditional does not go just by peA :J C), its 
subjective probability of truth. It goes by the resultant of that and some­
thing else. 

It may happen that a speaker believes a truth-functional conditional 
to be true, yet he ought not to assert it. Its assertability might be diminished 
for various reasons, but let us consider one in particular. The speaker ought 
not to assert the conditional if he believes it to be true predominantly 
because he believes its antecedent to be false, so that its probability of 
truth consists mostly of its probability of vacuous truth. In this situation, 
why assert the conditional instead of denying the antecedent? It is pointless 
to do so. And if it is pointless, then also it is worse than pointless: it is 
misleading. The hearer, trusting the speaker not to assert pointlessly, will 
assume that he has not done so. The hearer may then wrongly infer that 
the speaker has additional reason to believe that the conditional is true, over 
and above his disbelief in the antecedent. 

This consideration detracts from the assertability of A :J C to the extent 
that both of two conditions hold: first, that the probability peA) of vacuity 
is high; and second, that the probability P(CA) of falsity is a large fraction 
of the total probability P(A) of non vacuity. The product 

(13) PC-A) • (P(CA)/P(A)) 

of the degrees to which the two conditions are met is therefore a suitable 
measure of diminution of assertability. Taking the probability peA :J C) 
of truth, and subtracting the diminution of assertability as measured by 
(13), we obtain a suitable measure of resultant assertability: 

(14) peA :JC)-P(A). (P(CA)/P(A)). 
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But (14) may be simplified, using standard probability theory; and so we 
fmd that the resultant assertability, probability of truth minus the dimi­
nution given by (13), is equal to the conditional probability P(C/A). That 
is why assertability goes by conditional probability. 

Diminished assertability for such reasons is by no means special to con­
ditionals. It appears also with uncontroversially truth-functional construc­
tions such as negated conjunction. We are gathering mushrooms; I say to 
you "You won't eat that one and live." A dirty trick: I thought that one was 
safe and especially delicious, I wanted it myself, so I hoped to dissuade 
you from taking it without actually lying. I thought it highly probable 
that my trick would work, that you would not eat the mushroom, and 
therefore that I would tum out to have told the truth. But though what I said 
had a high subjective probability of truth, it had a low assertability and it 
was a misdeed to assert it. Its assertability goes not just by probability but 
by the resultant of that and a correction term to take account of the point­
lessness and misleadingness of denying a conjunction when one believes 
it false predominantly because of disbelieving one conjunct. Surely few 
would care to explain the low assertability of what I said by rejecting the 
usual truth-functional semantics for negation and conjunction, and positing 
instead a special probabilistic rule of assertability. 

There are many considerations that might detract from assertability. 
Why stop at (14)? Why not add more terms to take account of the diminished 
assertability of insults, of irrelevancies, of long-winded pomposities, of 
breaches of confidence, and so forth? Perhaps part of the reason is that, 
unlike the diminution of assertability when the probability of a conditional 
is predominantly due to the improbability of the antecedent, these other 
diminutions depend heavily on miscellaneous features of the conversational 
context. In logic we are accustomed to consider sentences and inferences 
in abstraction from context. Therefore it is understandable if, when we 
philosophize, our judgements of assertability or of assertability-preserving 
inference are governed by a measure of assertability such as (14), that is 
P(C/A), in which the more context-dependent dimensions of assertability 
are left out. 

There is a more serious problem, however. What of conditionals that 
have a high probability predominantly because of the probability of the 
consequent? If we are on the right track, it seems that there should be a 
diminution of assertability in this case also, and one that should still show 
up if we abstract from context: we could argue that in such a case it is 
pointless, and hence also misleading, to assert the conditional rather than 
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the consequent. This supposed diminution is left out, and I think rightly 
so, if we measure the assertability of a conditional A ::) C (in abstraction 
from context) by P(C/A). If A and Care probabilitically independent and 
each has probability .9, then the probability of the conditional (.91) is 
predominantly due to the probability of the consequent (9), yet the con­
ditional probability P(C/A) is high (.9) so we count the conditional as 
assertable. And it does seem so, at least in some such cases: "I'll probably 
flunk, and it doesn't matter whether I study; I'll flunk if I do and I'll flunk 
if I don't." 

The best I can do to account for the absence of a marked diminution 
in the case of the probable consequent is to concede that considerations 
of conversational pointlessness are not decisive. They create only tendencies 
toward diminished assertability, tendencies that may or may not be con­
ventionally reinforced. In the case of the improbable antecedent, they are 
strongly reinforced. In the case of the probable consequent, apparently 
they are not. 

In conceding this, I reduce the distance between my present hypothesis 
that indicative conditionals are truth-functional and the rival hypothesis 
that they are non-truth-valued and governed by a special rule of assertability. 
Truth conditions plus general conversational considerations are not quite 
the whole story. They go much of the way toward determining the asserta­
bility of conditionals, but a separate convention is needed to fmish the 
job. The point of ascribing truth conditions to indicative conditionals is 
not that we can thereby get rid entirely of special rules of assertability. 

Rather, the point of ascribing truth conditions is that we thereby gain 
at least a prima facie theory of the truth conditions and assertability of 
compound sentences with conditional constituents. We need not waste 
whatever general knowledge we have about the way the truth conditions 
of compounds depend on the truth conditions of their constituents. 
Admittedly we might go wrong by proceeding in this way. We have found 
one explicable discrepancy between asssertability and probability in the 
case of conditionals themselves, and there might be more such discrepancies 
in the case of various compounds of conditionals. (For instance the asser­
tability of a negated conditional seems not to go by its probability of truth, 
but rather to vary inversely with the assertability of the conditional.) It 
is beyond the scope of this paper to survey the evidence, but I think it 
reasonable to hope that the discrepancies are not so many, or so difficult 
to explain, that they destroy the explanatory power of the hypothesis that 
the indicative conditional is truth-functional. 



140 DAVID LEWIS 

PROBABILITIES OF STALNAKER CONDITIONALS 

It is in some of the writings of Robert Stalnaker that we fmd the fullest 
elaboration of the thesis that conditional probabilities are probabilities 
of conditionals.8 Stalnaker's conditional connective> has truth condi­
tions roughly as follows: a conditional A > C is true iff the least drastic 
revision of the facts that would make A true would make C true as well. 
Stalnaker conjectures that this interpretation will make P(A > C) and 
P(C/A) equal whenever P(A) is positive. He also lays down certain con­
straints on P(A > C) for the case that P(A) is zero, explaining this by 
means of an extended concept of conditional probability that need not 
concern us here. 

Stalnaker supports his conjecture by exhibiting a coincidence between 
two sorts of validity. The sentences that are true no matter what, under 
Stalnaker's truth conditions, turn out to be exactly those that have positive 
probability no matter what, under his hypothesis about probabilities of 
conditionals. Certainly this is weighty evidence, but is it not decisive. Cases 
are known in modal logic, for instance, in which very different interpre­
tations of a language happen to validate the very same sentences. And indeed 
our triviality results show that Stalnaker's conjecture cannot be right, 
unless we confme our attention to trivial probability functions.9 

But it is almost right, as we shall see. Probabilities of Stalnaker condi­
tionals do not, in general, equal the corresponding conditional probabili­
ties. tO But they do have some of the characteristic properties of conditional 
probabilities. 

A possible totality of facts corresponds to a possible world; so a revision 
of facts corresponds to a transition from one world to another. For any 
given world Wand (possible) antecedent A, let WA be the world we reach 
by the least drastic revision of the facts of W that makes A true. There is 
to be no gratuitious revision: WA may differ from W as much as it must to 
permit A to hold, but no more. Balancing off respects of similarity and 
difference against each other according to the importance we attach to 
them, WA is to be the closest in overall similarity to W among the worlds 
where A is true. Then the Stalnaker conditional A> C is true at the world 
W iff C is true at WA , the closest A-world to W. (In case the antecedent 
A is impossible, so that there is no possible A-world to serve as WA , we 
take A> C to be vacuously true at all worlds. For simplicity I speak here 
only of absolute impossibility; Stalnaker works with impossibility relative 
to worlds.) Let us introduce this notation: 
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W(A) = df {I ~f A ~s true at the world w}. 
o 1f A 1S false at W 
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Then we may give the truth conditions for non vacuous Stalnaker con­
ditionals as follows: 

(16) W(A > C) = WA (C), if A is possible.· 

It will be convenient to pretend, from this point on, that there are only 
ftnitely many possible worlds. That will trivialize the mathematics but not 
distort our conclusions. Then we can think of a probability function P as 
a distribution of probability over the worlds. Each world W has a probability 
peW), and these probabilities of worlds sum to 1. We return from probabilities 
of worlds to probabilities of sentences by summing the probabilities of the 
worlds where a sentence is true: 

(17) peA) = ~wP(W). W(A). 

I shall also assume that the worlds are distinguishable: for any two, some 
sentence of our language is true at one but not the other. Thus we disregard 
phenomena that might result if our language were sufficiently lacking in 
expressive power. 

Given any probability functionP and any possible A, there is a probability 
functionP' such that, for any world W', 

(18) P'(W') = ~ P(W). (I if WA i~ WI)'. 
W 0 otherw1se. 

Let us say that P' comes [rom P by imaging on A, and call P' the image of 
P on A. Intuitively, the image on A of a probability function is formed 
by shifting the original probability of each world W over to W A, the closest 
A-world to W. Probability is moved around but not created or destroyed, 
so the probabilities of worlds still sum to 1. Each A-world keeps whatever 
probability it had originally, since if W is an A-world then WA is W itself, 
and it may also gain additional shares of probability that have been shifted 
away from A-worlds. The A-worlds retain none of their original probability, 
and gain none. All the probability has been concentrated on the A-worlds. 
And this has been accomplished with no gratuitous movement of probability. 
Every share stays as close as it can to the world where it was originally 
located. 

Suppose that P' comes from P by imaging on A, and consider any 
sentence C. 
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(19) P'(C) ~w'P'(W') • W' (C), by (17) applied toP'; 

.... (p, (1 if WA is W'}) ') () = LlW' ~w (W). 0 otherwise . W (C ,by 18; 

P, ( { I ifWA is W'} '») = 1:w (W). ~w, 0 otherwise . W (C ,by algebra; 

~wP(W) • WA (C), simplifying the inner sum; 

= ~wP(W) • W(A > C), by (16); 

= P(A > C), by (17). 
We have proved this theorem: the probability of a Stalnaker conditional 
with a possible antecedent is the probability of the consequent after imaging 
on the antecedent. 

Conditionalizing is one way of revising a given probability function so as 
to confer certainty - probability of 1 - on a given sentence. Imaging is 
another way to do the same thing. The two methods do not in general agree. 
(Example: let P(W), P(W'), and P(W") each equal !; let A hold at Wand 
W' bilt not W"; and let W' be the closest A -world to W". Then the proba­
bility function that comes from P by conditionalizing on A assigns probabi­
lity t to both Wand W'; whereas the probability function that comes from 
P by imaging on A assigns probability i to Wand i to W'.) But though 
the methods differ, either one can plausibly be held to given minimal revi­
sions: to revise the given probability function as much as must be done to 
make the given sentence certain, but no more. Imaging P on A gives a mini­
mal revision in this sense: unlike all other revisions of P to make A certain, 
it involves no gratuitous movement of probability from worlds to dissimilar 
worlds. Conditionalizing P on A gives a minimal revision in this different 
sense: unlike all other revisions of P to make A certain, it does not distort 
the proftle of probability ratios, equalities, and inequalities among sentences 
that imply A. 11 

Stalnaker's conjecture divides into two parts. This part is true: the prob­
ability of a nonvacuous Stalnaker conditional is the probability of the con­
sequent, after minimal revision of the original probability function to make 
the antecedent certain. But it is not true that this minimal revision works 
by conditionalizing. Rather it must work by imaging. Only when the two 
methods give the same result does the probability of a Stalnaker conditional 
equal the corresponding conditional probability. 

Stalnaker gives the following instructions for deciding whether or not you 
believe a conditionalY 
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First, add the antecedent (hypothetically) to your stock of beliefs; second, make what­
ever adjustments are required to maintain consistency (without modifying the hypothe­
tical belief in the antecedent); finally, consider whether or not the consequent is true. 

That is right, for a Stalnaker conditional, if the feigned revision of beliefs 
works by imaging. However the passage suggests that the thing to do is to 
feign the sort of revision that would take place if the antecedent really 
were added to your stock of beliefs. That is wrong. If the antecedent really 
were added, you should (if possible) revise by conditionalizing. The reasons 
in favor of responding to new evidence by conditionalizing are equally 
reasons against responding by imaging instead. 

PROBAB ILITY -REVISION COND IT ION ALS 

Suppose that the connective --+- is interpreted in such a way that for any 
probability function P, and for any sentences A and C, 

(20) peA --+- C) = PA (C), if A is possible, 

where PA is (in some sense) the minimal revision of P that raises the prob­
ability of A to 1. Iff so, let us call --+- a probability-revision conditional 
Is there such a thing? We have seen that it depends on the method of re­
vision. Conditionalizing yields revisions that are minimal in one sense; and 
if PA is obtained (when possible) by conditionalizing, then no probability­
revision conditional exists (unless the language is trivial). Imaging yields 
revisions that are minimal in another sense; and if PA is obtained by 
imaging then the Stalnaker conditional is a probability-revision conditional. 
Doubtless there are still other methods of revision, yielding revisions that 
are minimal in still other senses than we have yet considered. Are there any 
other methods which, like imaging and unlike conditionalizing, can give us 
a probability-revision conditional? There are not, as we shall see. The only 
way to have a probability-revision conditional is to interpret the conditional 
in Stalnaker's way and revise by imaging. 

Since we have not fIxed on a particular method of revising probability 
functions, our defmition of a probability-revision conditional should be 
understood as tacitly relative to a method. To make this relativity explicit, 
let us call --+- a probability-revision conditional for a given method iff (20) 
holds in general whenPA is taken to be the revision obtained by that method. 

Our defmition of a Stalnaker conditional should likewise be understood 
as tacitly relative to a method of revising worlds. Stalnaker's truth condi­
tions were deliberately left vague at the point where they mention the 
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minimal reVlSlon of a given world to make a given antecedent true. With 
worlds, as with probability functions, different methods of revision will 
yield revisions that are minimal in different senses. We can indeed describe 
any method as selecting the antecedent-world closest in overall similarity 
to the original world; but different methods will fit this description under 
different resolutions of the vagueness of similarity, resolutions that stress 
different respects of comparison. To be explicit, let us call -+ a Stalnaker 
conditional for a given method of revising worlds iff (16) holds in general 
when WA is taken to be the revision obtained by that method (and A -+ C 
is true at all worlds if A is impossible). I spoke loosely of "the" Stalnaker 
conditional, but henceforth it will be better to speak in the plural of the 
Stalnaker conditionals for various methods of revising worlds. 

We are interested only in those methods of revision, for worlds and for 
probability functions, that can be regarded as giving revisions that are in 
some reasonable sense minimal. We have no hope of saying in any precise 
way just which methods those are, but at least we can list some fonnal 
requirements that such a method must satisfy. The requirements were given 
by Stalnaker for revision of worlds, but they carry over mutatis mutandis 
to revision of probability functions also. First, a minimal revision to reach 
some goal must be one that does reach it. For worlds, WA must be a world 
where A is true; for probability function, P A must assign to A a probability 
of 1. Second, there must be no revision when none is needed. For worlds, 
if A is already true at W then WA must be W itself; for probability functions, 
if P(A) is already 1, thenPA must beP. Third, the method must be consistent 
in its comparisons. For worlds, if B is true at WA and A is true at WB then 
WA and WB must be the same; else WA would be treated as both less and 
more of a revision of W than is WB • likewise for probability functions, if 
PA(B) andPB(A) both are 1, thenPA andPB must be the same. 

Let us call any method of revision of worlds or of probability functions 
eligible iff it satisfies these three requirements. We note that the methods 
of revising probability functions that we have considered are indeed eligible. 
Conditionalizing is an eligible method; or, more precisely, conditionalizing 
can be extended to an eligible method applicable to any probability function 
P and any possible A. (Choose some fixed arbitrary well-ordering of all 
probability functions. In case P A cannot be obtained by conditionalizing 
because P(A) is zero, let it be the first, according to the arbitrary ordering, 
of the probability functions that assign to A a probability of 1.) Imaging 
is also an eligible method. More precisely, imaging on the basis of any eligible 
method of revising worlds is an eligible method of revising probability functions. 
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Our thc0rem of the previous section may be restated as follows. If-+ 
is a Stalnaker conditional for any eligible method of revising worlds, then 
-+ is also a probability-revision conditional for an eligible method of revising 
probability [unctions; namely, for the method that works by imaging on 
the basis of the given method of revising worlds. Now we shall prove the 
converse: if -+ is a probability-revision conditional for an eligible method 
of revising probability functions, then -+ is also a Stalnaker conditional for 
an eligible method of revising worlds. In short, the probability-revision 
conditionals are exactly the Stalnaker conditionals. 

Suppose that we have some eligible method of revising probability func­
tions; and suppose that -+ is a probability-revision conditional for this 
method. 

We shall need to fmd a method of revising worlds; therefore let us con­
sider the revision of certain special probability functions that stand in one­
to-one correspondence with the worlds. For each world W, there is a prob­
ability function P that gives all the probability to Wand none to any other 
world. Accordingly, by (17), 

(21) peA) = {I ~f A ~s true at W } = W(A) o If A IS false at W 

for any sen~ence A. Call such a probability function opinionated, since it 
would repr-;sent the beliefs of someone who was absolutely certain that the 
world W was actual and who therefore held a firm opinion about every 
question; and call the world W where P concentrates all the probability 
the belief world of P. 

Our given method of revising probability functions preserved opinionation. 
Suppose P were opinionated and PA were not, for some possible A. That 
is to say that PA gives positive probability to two or more worlds. We have 
assumed that our language has the means to distinguish the worlds, so there 
is some sentence C such that PA (C) is neither 0 nor 1. But since P is 
opinionated, peA -+ C) is either 0 or 1, contradicting the hypothesis that 
-+ is a probability-revision conditional so thatPA (C) andP(A -+ C) are equal. 

Then we have the following method of revising worlds. Given a world 
Wand possible sentence A, let P be the opinionated probability function 
with belief world W, revise P according to our given method of revising 
probability functions, and let WA be the belief world of the resulting 
opinionated probability function PA . Since the given method of revising 
probability function is eligible, so is this derived method of revising worlds. 

Consider any world Wand sentences A and C. Let P be the opinionated 
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probability function with belief world W, and let W A be as above. Then if 
A is possible, 

(22) W(A~C) peA ~ C), by (21); 

PA (C), by (20); 

WA(C), by (21) applied to WA . 

So ~ is a Stalnaker conditional for the derived method of revising worlds. 
Quod erat demonstrandum. 13 

Princeton University 

NOTES 

1 Ernest Adams, 'The Logic of Conditionals', Inquiry 8 (1965), 166-197; and 'Prob­
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a positive /) such that if any probability function gives each premise an assertability 
within /) of 1 then it also gives the conclusion an assertability within e of 1. 
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judicious selection of the B's we can give -->- some further properties that might seem 
appropriate to a conditional connective. See Bas van Fraassen, 'Probabilities of Con­
ditionals', in Foundations of Probability Theory, Statistical Inference and Statistical 
Theories of Science, Volume I, ed. by W. Harper and C. A. Hooker, D. Reidel, 
Dordrecht, Holland, 1976, p. 261. 
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Synthese 26 (1973), 218-258. 
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7 H. P. Grice, 'Logic and Conversation', The William James Lectures, given at Harvard 
University in 1967. 
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Robert Stalnaker, 'A Theory of Conditionals', Studies in Logical Theory, ed. by 
Nicholas Rescher, Oxford, 1968. I have discussed the Stalnaker conditional in Counter­
factuals, Oxford, 1973, pp. 77-83, arguing there that an interpretation quite similar 
to Stalnaker's is right for counterfactuals but wrong for indicative conditionals. 
• Once it is recognized that the Stalnaker conditional is not a probability conditional, 
the coincidence of logics has a new significance. The hypothesis that assertability of 
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indicative conditionals goes by conditional probabilities, though still sufficiently well 
supported by direct evidence, is no longer unrivalled as an explanation of our judgements 
of validity for inferences with indicative conditional premises or conclusions. The same 
judgements could be explained instead by the hypothesis that the indicative conditional 
is the Stalnaker conditional and we judge valid those inferences that preserve truth. 
10 Although the probabilities of Stalnaker conditionals and the corresponding condi­
tional probabilities cannot always be equal, they often are. They are equal whenever the 
conditional (and perhaps some non,;onditional state of affairs on which it depends) is 
probabilistically independent of the antecedent. For example, my present subjective prob­
abilities are such that the conditional probability of rmding a penny in my pocket, 
given that I look for one, equals the probability of the conditional "I look for a 
penny> I find one." The reason is that both are equal to the absolute probability 
that there is a penny in my pocket now. 
11 Teller, 'Conditionalization and Observation'. 
12 A Theory of Conditionals', p. 102. 
13 An earlier version of this paper was presented at a Canadian Philosophical Association 
colloquium on probability semantics for conditional logic at Montreal in June 1972. 
I am grateful to many friends an colleagues, and especially to Ernest Adams and Robert 
Stalnaker, for valuable comments. 
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ROBERT C. STALNAKER 

LETTER TO DAVID LEWIS 

May 21,1972 

It does seem to me worth noting that if P is a probability distribution, and if 
for any A and B, PB(A) = PCB > A), then PB is a probability distribution too 
(excepting the absurd case). What it is good for, I would like to suggest, is 
deliberation - the calculation of expected utilities. 

Let S 1, ..• ,Sn be an exhaustive set of mutually exclusive propositions 
characterizing the alternative possible outcomes of some contemplated 
action. Let A be the proposition that I perform the action. My suggestion is 
that expected utility should be defined as follows: 

u(A) = P(A >Sd x U(SI) + ... + peA >Sn) x u(Sn). 

Why peA > Sj) rather than P(SdA)? Because what is relevant to deliberation 
is a comparison of what will happen if I perform some action with what 
would happen if I instead did something else. A difference between peS/A) 
and peS) represents a belief that A is evidentially relevant to the truth of S, 
but not necessarily a belief that the action has any causal influence on the 
outcome. That a person performs a certain kind of action can be evidence 
that makes some state subjectively more probable, even when the action in no 
way contributes to the state. Suppose that this is true for some action A and 
desirable state S. Then peS/A) > peS), but only an ostrich would count this 
as any sort of reason inclining one to bring it about that A. To do so would 
be to act so as to change the evidence, knowing full well that one is in no way 
changing the facts for which the evidence is evidence. 

I am thinking of Nozick's puzzle ("Newcomb's problem", in the Hempel 
festschrift), which I just discovered, but which I assume you know. My 
intuitive reaction to this puzzle was the following: there is only one rational 
choice (assuming there is no backwards causation in the case), and that is to 
choose the dominating action. But this seems to conflict with the principle 
of maximizing expected utility. But from my suggested version of the prin­
ciple, the rational choice follows. The principle of expected utility may be 
held to be universally applicable. 

Since quotient conditionalization is the way to revise your beliefs, it is also 
rational in the Newcomb problem to bet, after having made the rational 
choice, that you will fail to get the million dollars. Had you made the other 
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choice, it would have been rational to bet that you would succeed in getting 
the million dollars. But this is no reason to wish that you had chosen dif­
ferently, since you could have changed only the fair betting odds, not the 
facts, by acting differently. 

The suggested version of the expected utility principle makes it possible 
for a single principle to account for various mixed cases: the probabilistic 
dependence may have two components, one causal and one non-causal. The 
components may reinforce each other, or counteract each other. They might 
cancel out, leaving the evidence irrelevant, even though there is a believed 
causal dependence. Also, it may be unknown whether the probabilistic 
dependence is causal or not. Imagine a man deliberating about whether or not 
to smoke. There are two, equally likely hypotheses (according to his beliefs) 
for explaining the statistical correlation between smoking and cancer: (1) 
a genetic disposition to cancer is correlated with a genetic tendency to the 
sort of nervous disposition which often inclines one to smoke. (2) Smoking, 
more or less, causes cancer in some cases. If hypothesis (1) is true, he has no 
independent way to fmd out whether or not he has the right sort of nervous 
disposition. In such a case, it seems clear that the probability of the con­
ditional (if I were to smoke, I would get cancer), and not the conditional 
probability is what is relevant .... 



ALLAN GIBBARD AND WILLIAM L. HARPER 

COUNTERFACTUALS AND TWO KINDS 

OF EXPECTED UTILITY* 

1. INTRODUCTION 

We begin with a rough theory of rational decision-making. In the first place, 
rational decision-making involves conditional propositions: when a person 
weighs a major decision, it is rational for him to ask, for each act he considers, 
what would happen if he performed that act. It is rational, then, for him to 
consider propositions of the form 'If I were to do a, then c would happen'. 
Such a proposition we shall call a counter/actual, and we shall form counter­
factuals with a connective 'O~' on this pattern: 'If I were to do a, then c 
would happen' is to be written 'I do a O~ c happens'. 

Now ordinarily, of course, a person does not know everything that would 
happen if he performed a given act. He must resort to probabilities: he must 
ascribe a probability to each pertinent counterfactual 'I do a O~ c happens'. 
He can then use these probabilities, along with the desirabilities he ascribes 
to the various things that might happen if he did a given act, to reckon the 
expected utility of a. If a has possible outcomes 01, ... ,On, the expected 
utility of a is the weighted sum 

1:; prob (I do a ~ 0; obtains)9)o;, 

where !!}o; is the desirability of 0;. On the view we are sketching, then, the 
probabilities to be used in calculating expected utility are the probabilities of 
certain counterfactuals. 

That is not the story told in familiar Bayesian accounts of rational decision; 
those accounts make no overt mention of counterfactuals. We shall discuss 
later how Savage's account (I972) does without counterfactuals; consider 
first an account given by Jeffrey (1965, pp. 5-6). 

A formal Bayesian decision problem is specified by two rectangular arrays (matrices) of 
numbers which represent probability and desirability assignments to the act-condition 
pairs. The columns represent a set of incompatible conditions, an unknown one of which 
actually obtains. Each row of the desirability matrix, 

d, d, .. . dn 

represents the desirabilities that the agent attributes to the 11 conditions described by the 
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column headings, on the assumption that he is about to perform the act described by 
the row heading; and tht! corresponding row of the probability matrix, 

p, P, .. ·Pn 

represents the probabilities that the agent attributes to the same 11 conditions, still on 
the assumption that he is about to perform the act described by the row heading. To 
compute the expected desirability of the" act, multiply the corresponding probabilities 
and desirabilities, and add: 

p,d, + P2d2 + ... + Pndn. 

On the Bayesian model as presented by Jeffrey, then, the probabilities to be 
used in calculating 'expected desirability' are 'probabilities that the agent 
attributes' to certain conditions 'on the assumption that he is about to 
perform' a given act. These, then, are conditional prob:lbilities; they take the 
form prob (S/A), where A is the proposition that the agent is about to 
perform a given act and S is the proposition that a given condition holds. 

On the account Jeffrey gives, then, the probabilities to be used in decision 
problems are not the unconditional probabilities of certain counterfactuals, 
but are instead certain conditional probabilities. They take the form prob 
(SIA), whereas on the view we sketched at the outset, they should take the 
form prob (A 0 .... S). Now perhaps, for all we have said so far, the difference 
between these accounts is merely one of presentation. Perhaps for every 
appropriate A and S, we have 

(1) prob (A O .... S) = prob (SIA); 

the probability of a counterfactual A 0 .... S always equals the corresponding 
conditional probability. That would be so if(l) is a logical truth. David Lewis, 
however, has shown (I 976) that on certain very weak and plaUSible assumptions, 
(1) is not a logical truth: it does not hold in general for arbitrary propositions 
A and S.l That leaves the possibility that (1) holds at least in all decision 
contexts: that it holds whenever A is an act an agent can perform and prob 
gives that agent's probability ascriptions at the time. 

In Section 3, we shall state a condition that guarantees the truth of (1) in 
decision contexts. We shall argue, however, that there are decision contexts 
in which this condition is violated. The context we shall use as an example 
is patterned after one given by Stalnaker. We shall follow Stalnaker in argu­
ing that in such contexts, (1) indeed fails, and it is probabilities of counter­
factuals rather than conditional probabilities that should be used in calculations 
of expected utility. The rest of the paper takes up the ramifications for 
decision theory of the two ways of calculating expected utility" In particular, 
the two opposing answers to Newcomb's problem (Nozick, 1969) are supported 
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respectively by the two kinds of expected utility maximization we are dis­
cussing. 

We are working in this paper within the Bayesian tradition in decision 
theory, in that the probabilities we are using are subjective probabilities, and 
we suppose an agent to ascribe values to all probabilities needed in calculations 
of expected utilities. It is not our purpose here to defend this general tradition, 
but rather to work within it, and to consider two divergent ways of develop­
ing it. 

2. COUNTER FACTU ALS 

What we shall be saying requires little in the way of an elaborate theory of 
counterfactuals. We do suppose that counterfactuals are genuine propositions. 
For a proposition to be a counterfactual, we do not require that its antecedent 
be false: on the view we are considering, a rational agent entertains counter­
factuals of the form '( do a D~S' both for the act he will turn out to perform 
and for acts he will turn out not to perform. To say A D~ S is not to say that 
A's holding would bring about S's holding: A D~ S is indeed true if A 's hold­
ing would bring about S's holding, but A D~ S is true also if S would hold 
regardless of whether A held. 

These comments by no means constitute a full theory of counterfactuals. 
In what follows, we shall appeal not to a theory of counterfactuals, but to the 
reader's intuitions about them -- asking the reader to bear clearly in mind that 
'I do a D~ S' is to be read 'If I were to do a, then S would hold'. 

It may nevertheless be useful to sketch a theory that would support what 
we shall be saying; the theory we sketch here is somewhat like that of Stalnaker 
and Thomason (Stalnaker, 1968; Stalnaker and Thomason, 1970). Let a be 
an act which I might decide at time t to perform. An a-world will be a possible 
world which is like the actual world before t, in which I decide to do a at 
t and do it, and which obeys physical laws from time t on. Let Wa be the a­
world which, at t, is most like the adual world at t. Thus Wa is a possible 
world which unfolds after t in accordance with physical law, and whose 
initial conditions at time t are minimally different from conditions in the 
actual world at t in such a way that 'I do a' is true in Wa. TIle differences 
in initial conditions should be entirely within the age'1t's decision-making 
apparatus. Then 'I do a D~ S' is true iff S is true in Wa. 2 

Two axioms that hold on this theory will be useful in later arguments. Our 
first axiom is just a principle of modus ponens for the counterfactual. 

AXIOM I. (A &(A D~S» :::)S. 
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Our second axiom is a Stalnaker-like principle. 

AXIOM 2. (A 0-+ S) = (A 0-+ S). 

The rationale for this is that 'I do a 0-+ S' is true iff S holds in Wa and 'I 
do a 0-+ S' is true iff S holds in Wa. We shall also appeal to a consequence of 
these axioms. 

CONSEQUENCE 1. A :J [(A O-+S) =S]. 

We do not regard Axiom 2 and Consequence 1 as self-evident. Our reason for 
casting the rough theory in a form which gives these principles is that circum­
stances where these can fail involve complications which it would be best to 
ignore in preliminary work.3 Our appeals to these Axioms will be rare and 
explicit. For the most part in treating counterfactuals we shall simply depend 
on a normal understanding of the way counterfactuals apply to the situations 
we discuss. 

3. Two KINDS OF EXPECTED UTILITY 

We have spoken on the one hand of expected utility calculated from the 
probabilities of counterfactuals, and on the other hand of expected utility 
calculated from conditional probabilities. In what follows, we shall not 
distinguish between an act an agent can perform and the proposition that 
says that he is about to perform it; acts will be expressed by capital letters 
early in the alphabet. An act will ordinarily have a number of alternative 
outcomes, where an outcome of an act is a Single proposition which, for all 
the agent knows, expresses all the consequences of that act which he cares 
about. An outcome, then, is a specification of what might eventuate which is 
complete in the sense that any further specification of detail is irrelevant to 
the agent's concerns, and it specifies something that, for all the agent knows, 
might really happen if he performed the act. The agent, we shall assume, 
ascribes a magnitude~O to each outcome O. He knows that ifhe performed 
the act, one and only one of its outcomes would obtain, although he does 
not ordinarily know which of its outcomes that would be. 

Let 0 1 , ••• ,Om be the outcomes of act A. The expected utility of A 
calculated from probabilities of counterfactuals we shall call l¥i(A); it is 
given by the formula 

tl/(A) = Lj prob (A 0-+ OJ)~Oj. 
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The expected utility of A calculated from conditional probabilities we shall 
callr(A); it is given by the fonnula 

rCA) = '2:,j prob (OjIA)5!}Oj-

Perhaps the best mnemonic for distinguishing 'f/ from r is this: we shall be 
advocating the use of counterfactuals in calculating expected utility, and we 
shall claim that /fI(A) is the genuine expected utility of A.1'"(A), we shall 
claim, measures instead the welcomeness of the news that one is about to 
perform A. Remember rCA), then, as the value of A as news, and remember 
'ft(A) as what the authors regard as the genuine expected utility of A. 

Now clearly'f/(A) and 1'"(A) will be the same if 

(2) prob (A 0--+ OJ) = prob (OjIA) 

for each outcome OJ. Unless (2) holds for every OJ such that 5!}Oj *' 0, 
/fiCA) and rCA) will be the same only by coincidence. We know from Lewis's 
work (1976) that (2) does not hold for all propositions A and OJ; can we 
expect that (2) will hold for the appropriate propositions? 

One assumption, together with the logical truth of Consequence 1, will 
guarantee that (2) holds for an act and its outcomes. Here and throughout, 
we suppose that the function prob gives the probability ascriptions of an 
agent who can immediately perform the act in question, and that prob <P = 1 
for any logical truth <p. 

CONDITION 1 on act A and outcome OJ. The counterfactual A 0--+ OJ is 
stochastically independent of the act A. That is to say, 

prob(A 0--+ OdA) = prob (A 0--+ OJ). 

(Read prob (A 0--+ OdA) as the conditional probability of A 0--+ 0; on A.) 

ASSERTION 1. Suppose Consequence 1 is a logical truth. If A and OJ satisfy 
Condition 1, and prob (A) > 0, then 

prob (A 0--+ OJ) = prob (OdA).4 

Proof. Since Consequence 1 is a logical truth, for any propositions P and 
Q, 

prob (P ::) [(P 0--+ Q) == Q]) = 1. 

Hence if prob P> 0, then 

prob ([(P 0--+ Q) == QJ IP) = 1; 
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:. prob (P 0-+ Q/P) = prob (Q/P). 

From this general truth we have 

prob (A 0-+ O;!A) = prob (O;!A), 

and from this and Condition 1, it follows that 

prob (A 0-+ OJ) = prob (O;!A). 

That proves the Assertion. 
Condition 1 is that the counterfactuals relevant to decision be stochasti­

cally independent of the acts contemplated. Stochastic independence is the 
same as epistemic independence. For prob (A 0-+ OdA) is the probability it 
would be rational for the agent to ascribe to the counterfactual A 0-+ OJ on 
learning A and nothing else - on learning that he was about to perform that 
act. Thus to say that prob (A 0-+ O;!A) = prob (A 0-+ OJ) is to say that 
learning that one was about to perform the act would not change the prob­
ability one ascribes to the proposition that if one were to perform the act, 
outcome OJ would obtain. We shall use the terms 'stochastic independence' 
and 'epistemic independence' interchangeably. 

The two kinds of expected utility d// and -r can also be characterized in a 
way suggested by Jeffrey's account of the Bayesian model. Let acts A, , ... , 
Am be open to the agent. Let states S, , ... ,Sn partition the possibilities in 
the following sense. For any propositions S" ... ,Sn, the truth-function 
aut(S" ... , Sn) will be their exclusive disjunction: aut(S" ... , Sn) holds 
in and only in circumstances where exactly one of S I, ... ,Sn is true. Let the 
agent know aut (S, , ... ,Sn)' For each act Aj and state Sj, let him know that 
if he did Aj and Sj obtained, the outcome would be Oij. Let him ascribe each 
outcome Oij a desirability f!}Ojj' This will be a matrix formulation of a decision 
problem; its defining features are that the agent knows that S" ... ,Sn 
partition the possibilities, and in each of these states S, , ... , S'l' each act 
open to the agent has a unique outcome. A set ( S, , ... ,Sn} of states which 
satisfy these conditions will be called the states of a matrix fonnulation of 
the decision problem in question. 

Both d// and -r can be characterized in terms of a matrix formulation: 

d//(Aj) = "1:. j prob (Aj 0-+ Sj)f!}Oij; 
-r(A j) = "1:. j prob (Sj/Aj)f!}Oij' 

If f!}Oij can be regarded as the desirability the agent attributes to Sj 'on the 
assumption that' he will doA j , then -r(A j) is the desirability of Aj as character­
ized in the account we quoted from Jeffrey. 
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On the basis of these matrix characterizations of dII and "f", we can state 
another sufficient condition for the dII-utility and rutility of an act to be 
the same. 

CONDITION 2 on act Ai, states S}, ... ,Sn, and the function prob. For 
each Ai and Sj, 

prob (Ai 0 .... Sj/A i ) = prob (Ai 0 .... Sj). 

ASSERTION 2. Suppose Consequence I is a logical truth. If a decision 
problem satisfies Condition 2 for act Ai, then dII(Ai) = "'f"(Ai)' The proof is 
like that of Assertion I. 

4. ACT-DEPENDENT STATES IN THE SA V AGE FRAM EWORK 

Savage's representation of decision problems (1954) is roughly the matrix 
formulation just discussed. Ignorance is represented as ignorance about which 
of a number of states of the world obtains. These states are mutually exclusive, 
and as specific as the problem requires (p. IS). The agent ascribes desirability 
to 'consequences', or what we are calling outcomes. For each act open to the 
agent, he knows what outcome obtains for each state of the world; if he does 
not, the problem must be reformulated so that he does. Savage indeed defines 
an act as a function from states to outcomes (Savage, 1954, p. 14). 

It is a consequence of the axioms Savage gives that a rational agent is dis­
posed to choose as if he ascribed a numerical desirability to each outcome 
and a numerical probability to each state, and then acted to maximize 
expected utility, where the expected utility of an act A is 

(3) ~s prob (S)90(A, S). 

(Here O(A, S) is the outcome of act A in state S.) Another consequence of 
Savage's axioms is the principle of dominance: If for every state S, the out­
come of act A in S is more desirable than the outcome of Bin S, then A is 
preferable to B. 

Consider this misuse of the Savage apparatus; it is of a kind discussed by 
Jeffrey (1965, pp. 8-10). 

CASE I. David wants Bathsheba, but since she is the wife of Uriah, he fears 
that summoning her to him would provoke a revolt. He reasons to himself as 
follows: 'There are two possibilities: R, that there will be a revolt, and R, that 
there won't be. The outcomes and their desirabilities are given in Matrix I, 
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where B is that I take Bathsheba and A is that I abstain from her. Whether 
or not there is a revolt, I prefer having Bathsheba to not having her, and so 
taking Bathsheba dominates over abstaining from her. 

R 

A RB(O) 
B RH(1) 

Matrix 1 

Rii(9) 
RB(10) 

This argument is of course fallacious: dominance requires that the states 
in question be independent of the acts contemplated, whereas taking Bath­
sheba may provoke revolt. To apply the Savage framework to a decision 
problem, one must find states of the world which are in some sense act­
independent. 

We now pursue a suggestion by Jeffrey on how to deal with states that 
are act-dependent. Construct four new conditionalizeds states: 

SOO: There would be no revolt whatever I did. 
SOl: A would not elicit revolt, whereas B would. 
SIO: A would elicit revolt, whereas B would not. 
S II: There would be a revolt whatever I did. 

If these states hold independently of A and B, we can now work from Matrix 
2 without fallacy. Since in Matrix 2 neither row dominates, the decision must 
be made on the basis of probabilities ascribed to the states Soo , ... ,S II . 

A 
B 

RB(9) 
RB(lO) 

RB(9) 
RB(1) 

Matrix 2 

RB(O) 
RB(10) 

RB(O) 
RB(l) 

What should the probabilities of these states be? One possible answer 
would be this: Each of the four states Soo, ... ,S 11 can be expressed as a 
conjunction of counterfactuals. SOl, for instance, is the proposition (A 0-+ R) 
& (B 0-+ R). The probability of SOl, then, is simply the probability of this 
proposition, prob ([A D-+ RJ & [B 0-+ RJ). 

The expected utility of an act can now be calculated in the standard way 
given by (3). The expected utility of A, for instance, will be 

(4) ~s prob (S)~O(A,S), 
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where the summation is over the new states S, and O(A, S) is the outcome of 
A in state S. 

Does this procedure give the correct expected utility for the act? What it 
gives as the expected utility of A, we can show, is~(A) - at least that is what 
it gives if Axiom 2 is part of the logic of counterfactuals. For (4) expands to 

We have 

prob (Soo )90(A, Soo) + prob (SO\ )90(A,Sol) + 
prob (SIO)~O(A, SIO) + prob (Sll)~O(A,Sll). 

O(A, Soo) = O(A, Sod = RB; 
O(A, SIO) = O(A, Sll) = RB. 

Thus since Soo and SOl are mutually exclusive, (4) becomes 

prob (Soo v SO\ )~RB + prob (S 10 v S II )5'}RB. 

Now Soo v SO\ is ([A O-+- R] & [B O-+- R]) v [A O-+- R] & [B O-+- R]), and 
in virtue of the logical truth of Axiom 2, this is A O-+- R. Similarly, S 10 V S II 

is A O-+- R. Thus (4) becomes 

prob (A O-+- R)5'}RB + prob (A O-+- R)5'}RB, 

which is~(A). This proof can of course be generalized. 
We have considered one way to construct conditionalized states from act­

dependent states; it is a way that makes use of counterfactuals. Suppose, 
though, we want to avoid the use of counterfactuals and rely instead on 
conditional probabilities. Jeffrey, as we understand him, suggests the following: 
ascribe to each new, conditionalized state the product of the pertinent 
conditional probabilities. We shall call this probability prob*; thus, for 
instance, 

prob*(Sol) = prob (R/A) prob (R/B), 

and corresponding fonnulas hold for the other new states Soo, S 10, and S ll. 
Using prob*, we can again calculate expected utility in the standard way 

given by (3). The expected utility of A, for instance, will be 

(5) ~s prob*(S)9O(A, S), 

where again the summation is over the new states Soo, SO\ , S 10, and S 11 . 

Now (5), it can be shown, has the value 'f"(A). For (5) is the sum of terms 

prob* (Soo)5'}O(A, SOO) = prob (R/A) prob (R/B)9RB, 
prob* (SOl )90(A, SOl) = prob (R/A) prob (R/B)5'}i?B, 
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prob* (SIO)!i'O(A, SiO) = prob (RIA)prob (RIB)!i'RB, 
prob* (S 11 )90(A, S 11) = prob (RIA) prob (RIB)!i'RB. 

Thus (5) equals 

(prob (RIB) + prob (RIB)] prob (RIA)!i'RB 
+ [prob (RIB) + prob (RIB)] prob (RIA)!i'RB 
= prob (RIA)!'}RB + prob (RIA)!i'RB, 

and this is r(A). 
Where, then, a decision problem is misformulated in the Savage framework 

with act-dependent states, we now have two ways of reformulating the problem 
with conditionalized states. The first way is to express each conditionalized 
state as a conjunction of counterfactuals. If the expected utility of an act A 
is then calculated in the standard manner and Axiom 2 holds, the result is 
'1I(A). The second way to reformulate the problem is to ascribe to each new 
conditionalized state the product of the pertinent conditional probabilities. 
If the expected utility of an act A is then calculated in the standard manner, 
the result is rCA). If Axiom 2 holds, then, the two reformulations yield 
respectively the two kinds of expected utility we have been discussing. 

So far we have given the two reformulations only for an example. Here is 
the way the two methods of reformulation work in general. Let acts A! , 
... ,Am be open to the agent, let states S! , ... , Sn not all be act-indepen­
dent, and for each A; and Sj, let the outcome of act A; in Sj be Oij. For each 
possible sequence T! , ... , T m consisting of states in {S! , ... ,Sn}, there will 
be anew, conditionalized state S(T!, ... , T m). The outcome of an act 
A; in the new state S(T!, . .. , T m) will simply be the outcome of A; in the 
old state T;. What has been said so far applies to both methods. Now, according 
to the first method of reformulation, this new state SeT! , ... , T m) will be 

and hence, of course, its probability will be the probability of this proposition. 
According to the second method of reformulation, the probability of new 
state SeT! , ... , T m) will be 

prob (T!/Ad X ... X prob (TmIAm). 

Once the problem is reformulated, expected utility is to be calculated in the 
standard way by formula (3). 

Are these two ways of reformulating a decision problem equivalent or 
distinct? They are, of course, equivalent if Axiom 2 hold and '1I(A;) = rCA;) 
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for each act A j , since the first method yieldst¥l(Aj) if Axiom 2 holds and the 
second method yields j";(AJ. We already know that Condition 2 and the 
logical truth of Consequence I guarantee thatt¥l(AJ = 'f'"(AJ. Therefore, we 
may conclude that if Condition 2 holds and Axioms 1 and 2 are logical truths, 
the two reformulations are equivalent. Condition 2, recall, is that the counter­
factuals Aj 0"""* Sj are epistemically act-independent: that for each of the old, 
act-dependent states in terms of which the problem is formulated, learning 
that one is about to perform a given act will not change the probability one 
ascribes to the proposition that if one were to perform that act, that state 
would obtain. 

The upshot of the discussion is this. For the Savage apparatus to apply to 
a decision problem, the states of the dedsion matrix must be independent of 
the acts. We have considered two ways of dealing with a problem stated in 
terms of act-dependent states; both ways involve reformulating the problem 
in terms of new states which are act-independent. Given the logical truth of 
Axioms 1 and 2, a sufficient condition for the equivalence of the two re­
formulations is that the counterfactuals Aj 0"""* Sj be epistemically act­
independent. 

5. ACT·DEPENDENT COUNTER FACTU ALS 

Should we expect Condition 2 to hold? In the case of David, it seems that we 
should. Suppose David somehow learned that he was about to send for 
Bathsheba; that would give him no reason to change the probability he 
ascribes to the proposition 'If I were to send for Bathsheba, there would be a 
revolt'. Similarly, if David learned that he was about to abstain from Bath­
sheba, that would give him no reason to change the probability he ascribes 
to the proposition 'If I were to abstain from Bathsheba, there would be a 
revolt'. In the case of David, it seems, the pertinent counterfactuals are 
epistemically act-independent, and hence for each act he can perform, the 
Olt-utility and the f-utility are the same. 

When, however, a common factor is believed to affect both behaviour and 
outcome, Condition 2 may fail, and Olt-utility may diverge from j"'-utility. 
The following case is patterned after an example used by Stalnaker to make 
the same point.6 

CASE 2. Solomon faces a situation like David's, but he, unlike David, has 
studied works on psychology and political science which teach him the follow­
ing: Kings have two basic personality types, charismatic and uncharismatic. 
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A king's degree of charisma depends on his genetic make-up and early child­
hood experiences, and cannot be changed in adulthood. Now charistmatic 
kings tend to act justly and uncharismatic kings unjustly. Successful revolts 
against charismatic kings are rare, whereas successful revolts against un­
charismatic kings are frequent. Unjust acts themselves, though, do not cause 
successful revolts; the reason that uncharismatic kings are prone to successful 
revolts is that they have a sneaky, ignoble bearing. Solomon does not know 
whether or not he is charismatic; he does know that it is unjust to send for 
another man's wife. 

Now in this case, Condition 2 fails for states Rand R. The counterfactual 
B 0-+ R is not epistemically independent of B: we have 

prob (B 0-+ RIB) > prob (B 0-+ R). 

For the conditional probability of anything on B is the probability Solomon 
would rationally ascribe to it if he learned that B. Since he knows that 8's 
holding would in no way tend to bring about R's holding, he always ascribes 
the same probability to B 0-+ R as to R. Hence both prob (B 0-+ R) = 

prob (R) and prob (B 0-+ RIB) = prob (RIB). Now if Solomon learned that B, 
he would have reason to think that he was uncharismatic, and thus revolt­
prone. Hence prob (RIB) > prob (R), and therefore 

(6) prob (B 0-+ RIB) = prob (RiB) > prob (R) == prob (B 0-+ R). 

Ht:re, then, the counterfactual is not epistemically act-independent. 
(6) states also that prob (B O-+R) <prob (RIB), so that in this case, the 

probability of the counterfactual does not equal the corresponding con­
ditional probability. By similar argument we could show that prob (A 0-+ R) 
> prob (RIA). Indeed in this case a OIl-maximizer will choose to send for his 
neighbour's wife whereas a f-maximizer will choose to abstain from her 
- although we shall need to stipulate the case in more detail to prove the 
latter. 

Consider first OIl-maximization. We have that 

OII(B) == prob (B 0-+ R)!!)RB + prob (B 0-+ R)9RB; 
OII(A) == prob (A 0-+ R)9kiJ + prob (A 0-+ R){/)RB. 

We have argued that prob (B 0-+ R) == prob (R). Similarly, prob (A 0-+ R) 
== prob (R), and so prob (A 0-+ R) == prob (B 0-+ R). Likewise prob (A 0-+ R) 
== prob (B 0-+ R). We know that !!)RB > !!)jijj and {/)RB > !!)RB. There­
fore OII(B) > OII(A). This is in effect an argument from dominance, as we shall 
discuss in Section 8. 
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Now consider j":maximization. Learning that A would give Solomon reason 
to think he was charismatic and thus not-revolt prone, whereas learning that 
B would give him reason to think that he was uncharismatic and revolt-prone. 
Thus prob (RIB) > prob (RIA). Suppose the difference between these 
probabilities is greater than 1/9, so that where prob (RIA) = 0: and prob 
(RIB) = 0: + e, we have e> 1/9. From Matrix 1, we have 

r'"(A) = prob CRIA)!i)jUi + prob (RIA)!i)RB = 9( 1-0:) + O. 
r'"(B) = prob (RIB)!i)RB + prob (RIB)!i)RB 

= 1O(1-o:-e) + 1(0: + e). 

Therefore ~(A)-11:B) = ge - 1, and since e> 1/9, this is positive. We have 
shown that if e > 1/9, then although d/I(B) >t.fI(A), we have ~(A) > ~(B). 
Thus tf/-maximaization and 'f'=maximization in this case yield conflicting 
prescriptions. 

Which of these prescriptions is the rational one? It seems clear that in this 
case it is rational to perform the d/I-maximizing act: unjustly to send for the 
wife of his neighbor. For Solomon cares only about getting the woman and 
avoiding revolt. He knows that sending for the woman would not cause a 
revolt. To be sure, sending for her would be an indication that Solomon 
lacked charisma, and hence an indication that he will face a revolt. To abstain 
from the woman for this reason, though, would be knowingly to bring about 
an indication of a desired outcome without in any way bringing about the 
desired outcome itself. That seems clearly irrational. 

For those who find Solomon too distant in time and place or who mistrust 
charisma, we offer the case of Robert Jones, rising young executive of Inter­
national Energy Conglomerate Incorporated. Jones and several other young 
executives have been competing for a very lucrative promotion. The company 
brass found the candidates so evenly matched that they employed a psycholo­
gist to break the tie by testing for personality qualities that lead to long run 
successful performam;e in the corporate world. The test was administered to 
the candidates on Thursday. The promotion decision is made on the basis of 
the test and will be announced on Monday. It is now Friday. Jones learns, 
through a reliable company grapevine, that all the candidates have scored 
equally well on all factors except ruthlessness and that the promotion will go 
to whichever of them has scored highest on this factor, but he cannot find 
out which of them this is. 

On Friday afternoon Jones is faced with a new problem. He must decide 
whether or not to fire poor old John Smith, who failed to meet his sales 
quota this month because of the death of his wife. Jones believes that Smith 
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will come up to snuff after he gets over his loss provided that he is treated 
leniently, and that he can convince the brass that leniency to Smith will 
benefit the company. Moreover, he believes that this would favorably impress 
the brass with his astuteness. Unfortunately, Jones has no way to get in touch 
with them until after they announce the promotion on Monday. 

Jones knows that the ruthlessness factor of the personality test he has 
taken accurately predicts his behaviour in just the sort of decision he now 
faces. Firing Smith is good evidence that he has passed the test and will get 
the promotion, while leniency is good evidence that he has failed the test 
and will not get the promotion. We suppose that the utilities and probabilities 
correspond to those facing Solomon. j':maximizing recommends firing Smith, 
while 'PI-maximizing reconunends leniency. Firing Smith would produce 
evidence that Jones will get his desired promotion. It seems clear, however, 
that to fire Smith for this reason despite the fact that to do so would in no 
way help to bring about the promotion and would itself be harmful, is 
irrational. 

6. THE SIGNIFICANCE OF 'PI AND f 

From the Solomon example, it should be apparent that the j(utility of an 
act is a measure of the welcomeness of the news that one is about to perform 
that act. Such news may tend to be welcome because the act is likely to have 
desirable consequences, or tend to be unwelcome because the act is likely to 
have disagreeable consequences. Those, however, are not the only reasons an 
act may be welcome or unwelcome: an act may be welcome because its being 
performed is an indication that the world is in a desired state. Solomon, for 
instance, would welcome the news that he was about to abstain from his 
neighbor's wife, but he would welcome it not because he thought just acts 
any more likely to have desirable consequences than unjust acts, but because 
he takes just acts to be a sign of charisma, and he thinks that charisma may 
bring about a desired outcome. 

'PI-utility, in contrast, is a measure of the expected efficacy of an act in 
bringing about states of affairs the agent desires; it measures the expected 
value of the consequences of an act. That can be seen in the case of Solomon. 
The 'PI-utility of sending for his neighbor's wife is greater than that of abstain­
ing, and that is because he knows that sending for her will bring about a 
consequence he desires - having the woman - and he knows that it will not 
bring about any consequences he wishes to avoid: in particular, he knows that 
it will not bring about a revolt. 
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What is it for an act to bring about a consequence? Here are two possible 
answers, both formulated in terms of counterfactuals. 

In the first place, roughly following Sobel (I 970, p. 400) we may say that 
act A brings about state S if A D~ S holds, and for some alternative A * to 
A, A * D~ S does not hold. 7 (An alternative to A is another act open to the 
agent on the same occasion). Now on this analysis, the OlI-utility of an act as 
we have defined it is the sum of the expected value of its consequences plus 
a term which is the same for all acts open to the agent on the occasion in 
question; this latter term is the expected value of unavoidable outcomes. A 
state S is unavoidable iff for every act A * open to the agent, A * O~ S holds. 
Thus A D~ S holds iff S is a consequence of A or S is unavoidable. Hence in 
particular, for any outcome 0, 

prob (A D~ 0) = prob (0 is a consequence of A) 
+ prob (0 is unavoidable), 

and so we have 

t¥t(A) = Loprob (A D~ O)~O 
= ro prob (0 IS a consequence of A )~O 

+ Loprob (0 is unavoidable)~. 

The first term is the expected value of the consequences of A, and the second 
term is the same for all acts open to the agent. Therefore on this analysis of 
the term 'consequence', OlI-utility is maximal for the act or acts whose con­
sequences have maximal expected value. 

Here is a second possible way of analyzing what it is to be a consequence. 
When an agent chooses between two acts A and B, what he really needs to 
know is not what the consequences of A are and what the consequences of B 
are, but rather what the consequences are of A as opposed to B and vice versa. 
Thus for purposes of decision-making, we can do without an analysis of the 
clause'S is a consequence of A', and analyze instead the clause'S is a con­
sequence of A as opposed to B'. This we can analyze as 

(A D~S) & - (B ~S). 

Now on this analysis, /fI(A) > OlI(B) iff the expected value of the con­
sequences of A as opposed to B exceeds the expected value of the consequences 
of B as opposed to A. For any state S, A D~ S holds iff either S is a 
consequence of A as opposed to B or (A D~ S) & (B D~ S) holds. 
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Thus <o/I(A) = "J:,oprob (A D~ O)~O 
= "J:,o prob (0 is a consequence of A as opposed to B)90 

+ "J:,oprob ([A D~ 0] & [B D~ O])~ 
<o/I(B) = "J:,oprob (0 is a consequence of B as opposed to A)~ 

+ "J:,oprob ([A D~ 0] & [B D~ O])~O. 

The second term is the same in both cases, and so <o/I(A) ><o/I(B) iff 

"J:,o prob (0 is a consequence of A as opposed to B)~ > 
"J:,o prob (0 is a consequence of B as opposed to A )~O. 

The left side is the expected value of the consequences of A as opposed to B; 
the right sidp, is the expected value of the consequences of B as opposed to A. 
Thus for any pair of alternatives, to prefer the one with the higher <o/I-utility 
is to prefer the one the consequences of which as opposed to the other have 
the greater expected value. 

We can now ask whether <0/1 or "f'"is more properly called the 'utility' of an 
act. The answer seems clearly to be <0/1. The 'utility' of an act should be its 
expected genuine efficacy in bringing about states of affairs the agent wants, 
not the degree to which news of the act ought to cheer the agent. Since 
<o/I-utility is a matter of what the act can be expected to bring about whereas 
"f'"-utility is a matter of the welcomeness of news, <o/I-utility seems best to 
capture the notion of utility. 

leffrey (1965, pp. 73 -4) writes, 'If the agent is deliberating about per­
forming act A or act B, and if AB is impossible, there is no effective difference 
between asking whether he prefers A to B as a news item or as an act, for he 
makes the news'. It should now be clear why it may sometimes be rational for 
an agent to choose an act B instead of an act A, even though he would 
welcome the news of A more than that of B. The news of an act may furnish 
evidence of a state of the world which the act itself is known not to produce. 
In that case, though the agent indeed makes the news of his act, he does not 
make all the news his act bespeaks. 

7. Two SURE THING PRINCIPLES 

CASE 3. Upon his accession to the throne, Reoboam wonders whether 
to announce that he will reign severely or to announce that he will reign 
leniently. He will be bound by what he announces. He slightly prefers a short 
severe reign to a short lenient reign, and he slightly prefers a long severe reign 
to a long lenient reign. He strongly prefers a long reign of any kind to a 
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short reign of any kind. Where L is that he is lenient and D, that he is deposed 
early, his utilities are as in the Matrix 3. 

D i5 

L 0 80 
I 10 100 

Matrix 3 

The wise men of the kingdom give him these findings of behavioural 
science: There is no correlation between a king's severity and the length of his 
reign. Severity, nevertheless, often causes early deposition. The reason for the 
lack of correlation between severity and early deposition is that on the one 
hand, charismatic kings tend to be severe, and on the other hand, lack of 
charisma tends to elicit revolts. A king's degree of charisma cannot be changed 
in adulthood. There is at present no indication of whether Reoboam is 
charismatic or not. 

These findings were based on a sample of 100 kings, 48 of whom had their 
reigns cut short by revolt. On post mortem examination of the pineal gland, 
50 were found to have been charismatic and 50 uncharismatic. 80% of the 
charismatic kings had been severe and 80% of the uncharismatic kings had 
been lenient. Of the charismatic kings, 40% of those who were severe were 
deposed whereas only 20% of those who were lenient were deposed. Of the 
uncharismatic kings, 80% of those who were severe were deposed whereas 
only 55% of those who were lenient were deposed. The totals were as in 
Table 1. This is Reoboam's total evidence on the subject.8 

TABLE I 

Charismatic Uncharismatic Total 

Severe 
16 deposed (40%) 8 deposed (80%) 24 deposed (48%) 
24 long-reigned 2 long-reigned 26 long reigned 

Lenient 
2 deposed (20%) 22 deposed (55%) 24 deposed (48%) 
8 long-reigned 18 long-reigned 26 long reigned 

Reoboam's older advisors argue from a sure thing principle. There are 
two possibilities, they say: that Reoboam is charismatic and that he is un­
charismatic; what he does now will not affect his degree of charisma. On the 
assumption that he is charismatic, it is rational to prefer lenience. For since 
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40% of severe charismatic kings are deposed, the expected utility of severity 
in that case would be 

O.4£2SD + 0.6£2SD = 0.4 X 10 + 0.6 X SO = 52, 

whereas since only 20% of lenient charismatic kings are deposed, the expected 
utility of lenience in that case would be 

0.2f2LD + O.Sf2LD = 0.2 X 0 + O.S X 10 = 64. 

On the assumption that he is uncharismatic, it is again rational to prefer 
lenience. For since SO% of severe uncharismatic kings are deposed, the 
expected utility of severity in this case would be 

O.S£2SD + 0.2£2SD = O.S X 10 + 0.2 X 100 = 2S, 

whereas since only 55% of lenient uncharismatic kings are deposed, the 
expected utility of lenience in this case would be 

0.55!!)LD + 0.45!!)LD = 0.55 X 0 + 0.45 X SO = 36. 

Thus in either case, lenience is to be preferred, and so by a sure thing principle, 
it is rational to prefer lenience in the actual case. 

Reoboam's youthful friends argue that on the contrary, sure thing con­
siderations prescribe severity. Severity is indeed the dominant strategy. There 
are two possibilities: D, that Reoboam will be deposed, and D, that he will 
not be. These two states are stochastically independent of the acts contem­
plated: both prob (DIS) and prob (DIL) are O.4S. Therefore, his youthful 
friends urge, one can without fallacy use the states D and D in an argument 
from dominance. On the assumption that he will be deposed, he prefers to 
be severe, and likewise on the assumption that he will not be deposed, he 
prefers to be severe. Thus by dominance, it is rational for him to prefer 
severity. 

Here, then, are two sure thing arguments which lead to contrary pre­
scriptions. One argument appeals to the finding that charisma is causally 
independent of the acts contemplated; the other appeals to the finding that 
being deposed is stochastically independent of the acts. The old advisors and 
youthful companions are in effect appealing to different versions of a sure 
thing principle, one of which requires causal independence and the other of 
which requires stochastic independence. The two versions lead to incom­
patible conclusions. 

The sure thing principle is this: if a rational agent knows aut (S 1 , •.. ;S n) 
and prefers A to B in each case, then he prefers A to B. If the propositions 
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S 1, ... ,Sn are required to be states in a matrix formulation of the decision 
problem, so that each pair of state and act determine a unique outcome, the 
sure thing principle becomes the principle of dominance to be discussed in 
Section 8; the principle of dominance is thus a special case of the sure thing 
principle. Now the principle of dominance, we have said, requires a proviso 
that the states in question be act-independent. The sure thing principle should 
presumably include the same proviso. The sure thing principle, then, should 
be this: If a rational agent knows that precisely one of the propositions S 1, 

· .. ,Sn holds and prefers act A to act B in each case, and if in addition the 
propositions S 1, ... ,Sn are independent of the acts A and B, then he prefers 
A toB. 

The problem in the case of Reoboam is that his two groups of advisors 
appeal to different kinds of independence to reach opposing conclusions. 
The older advisors appeal to causal independence; they cite the finding that 
a king's degree of charisma is unaffected by his adult actions. His youthful 
companions appeal to stochastic independence; they cite the finding that 
there is no correlation between severity in kings and revolt. The two appeals 
yield opposite conclusions. 

It seems, then, that the sure thing principle comes in two different versions, 
one of which requires that the propositions in question be causally independent 
of the acts, and the other of which requires the propositions to be stochasti­
cally independent of the acts. 

The principle to which the youthful companions appeal can be put as 
follows. 

DEFINITION. Act A is sure against act B with stochastic independence of 
S 1, •.. ,Sn iff the follOWing hold. The agent knows that independently of 
the choice between A and B, propositions S 1 , ••• , S n partition the possi-
bilities; that is to say, prob (aut (SI, ... ,Sn)/A) = I and prob (aut (S 1, 

· .. ,Sn)/B) = 1. The propositions S 1, ... ,Sn are epistemically independent 
of the choice between A and B, in the sense that for each, prob (S;/A) = 
prob (S;/B). Finally, for each of these propositions Sj it would be rational 
to prefer A to B if it were known that Sj held. 

Sure-thing with Stochastic Independence. If act A is sure against act B 
with stochastic independence, then it is rational to prefer A to B. 

The principle to which the older advisors appeal will take longer to 
formulate. The proviso for this version will be that the propositions S 1, 

· .. ,Sn be causally independent of the choice between A and B; this can be 
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formulated in terms of counterfactuals. To say that a state Si is causally 
independent of the choice between A and B is to say that Si would hold if 
A were performed iff Si would hold jf B were performed: (A D~ Si) == (B 
D~ Sa. We now want to suppose that for each state Si, A would be preferred 
to B given, in some sense, knowledge of Si' This knowledge of Si should not 
simply be knowledge that Si holds, but knowledge that Si holds independently 
of the choice between A and B: that (A D~ Si) & (B D~ Si)' We can now 
state the principle. 

For each Si let Si* be (A D~ Si) & (B D~ Si)' 

DEFINITION. A is sure against B with causal independence of SI, ... , Sn 
iff the following hold. The agent knows aut(SI*' ... ,Sn*), and for each Si 
it would be rational to prefer A to B if S/ were known to hold.9 

(Note that since for each Si' (A D~ Sa == (B D~ Si) follows from aut 
(Sr, ... ,Sn*)' this guarantees that our agent knows that each Si is causally 
independent of the choice between A and B.) We can now state the principle 
to which the older advisors appeal. 

Sure-thing with Causal Independence. If A is sure against B with causal 
independence, then it is rational to prefer A to B. 

In the case of Reoboam, we have seen, Sure-thing with Stochastic In­
dependence prescribes severity and Sure-thing with Causal Independence 
prescribes lenience. Now to us it seems clear that the only rational action 
in this case is that prescribed by Sure-thing with Causal Independence. It is 
rational for Reoboam to prefer lenience because severity tends to bring 
about deposition and he wants not to be deposed much more strongly than 
he wants to be severe. To be guided by Sure-thing with Stochastic Indepen­
dence in this case is to ignore the finding that severity tends to bring about 
revolt - to ignore that finding simply because severity is not on balance a 
sign that revolt will occur. To choose to be severe is to act in a way that tends 
to bring about a dreaded consequence, simply because the act is not a sign of 
the consequence. That seems to us to be irrational. 

The two versions of the sure thing principle we have discussed correspond 
to the two kinds of utility discussed earlier. Sure Thing with Stochastic 
Independence follows from the principle that an act is rationally preferred 
to another iff it has greater futility, whereas Sure Thing with Causal In­
dependence follows from the principle that an act is rationally preferred to 
another iff it maximizes 'fI-utility. 
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ASSERTION. Suppose that in any possible situation, it is rational to prefer 
an act A to an act B iff the qJ.utility of A is greater than that of B. Then Sure 
Thing with Causal Independence holds. 

Proof Suppose A is sure against B with causal independence of S 1 , ... ,Sn, 
and that in any possible circumstance, it would be rational to prefer A to B 
iff A's qJ ·utility were greater than B's. The Assertion will be proved if we 
show from these assumptions that qJ(A) >qJ(B). 

Since A is sure against B with causal independence of S 1 , ... ,S n, for 
each Sj it would be rational to prefer A to B if Sj* were known to hold. 
Therefore if Sj* were known to hold, the qJ·utility of A would be greater 
than that of B. Now the qj·utility that A would have if Sj* were known is 

~o prob (A 0-+ O/Sj*)PJo. 

Call this qJj*(A), and define 'Wj*(B) in a like manner. We have supposed that 
for each Sj, Iftj*(A) >lftj*(B). 

Now by definition of the function 1ft, 

Ift(A) =~oprob (A 0-+ O)Ero; 

Since A is sure against B with causal independence of S 1> ••• ,S n, it is known 
that aut (S 1 *, ... ,Sj*) holds. By the probability calculus, then, for each 
outcome 0 

Therefore 

prob (A 0-+ 0) = ~j prob (A ~ O/Sj*) prob/Sj*. 

Ift(A) = ~o[~j prob (A 0-+ O/Sj*) prob S;*]!'.dO 
= ~j prob Sj* [~oprob (A 0-+ O/Sj*)9'JO] , 
= ~jqjj*(A)probSj*. 

By a like argument, 

ti(B) = ~j Iftj*(B) prob Sj*. 

Since for each Sj, qJj*(A) > Iftj*(B) , it follows that 'W(A) > 'W(B) , and the 
Assertion is proved. 

ASSERTION. Suppose that in any possible circumstance, it is rational to 
prefer an act A to an act B iff the j":utility of A is greater than that of B. 
Then Sure Thing with Stochastic Independence holds. 

Proof Suppose A is sure against B with causal independence of S 1 , .•. , 

Sn, and that in any possible circumstances, it would be rational to prefer A 
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to B iff A's il=utility is greater than B's. The Assertion will be proved if we 
show from these assumptions that 1'"(A) > feB). 

Now since A is sure against B with stochastic independence of S 1, ... , Sn, 
for each Sj it would be rational to prefer A to B if Sj were known to hold. 
Therefore, if Sj were known to hold, then the 1'"-utility of A would be greater 
than that of B. Now the 1'"-utility that A would have if Sj were known to 
hold is 

~o prob (O/Asdf/)()· 

Call this -fl*(A), and define "I'/*(B) correspondingly. We have that for each 
Sj, 17*(A) > "I'/*(B). Now by definition of the function "I', 

1'"(A) = ~oprob (O/A)f/)(). 

Since A is sure against B with stochastic independence of S 1, ... , Sn, we have 
prob (aut (S 1 , ••• , Sn )/A) = 1, and so by the probability calculus, for 
each 0, 

Hence 

1'"prob (O/A) = ~j prob (O/AS j) prob (S;/A). 

f(A) = ~O[~i prob (O/AS j) prob (S;/A)]90 
= ~j prob (S;/A)[};,oprob (O/ASj)~O] 
= ~j prob (S;/A)~*(A). 

By a like argument, 

feB) = ~j prob (S;lB)-f;*(B). 

Since for each Sj, prob (S;/A) = prob (S;/B) and -f;*(A) > -f;*(B) it follows 
that j'(A) > -reB), and the Assertion is proved. 

8. Two KINDS OF DOMINANCE 

We have said that the principle of dominance is the sure thing principle re­
stricted to a special case, and that the sure thing principle has two versions, 
one of which holds for "II-maximization and the other for f-maximization. 
There should, then, be two versions of the principle of dominance, one for 
each kind of utility maximization. The principles can be formulated as follows. 

DEFINITION. Let S 1 , ... , Sn be the states of a standard decision matrix, 
and let A and B be acts. Then A strongly dominates B with respect to 
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S I, ... , Sn if for each Sj, the outcome of A in Sj is more desirable than the 
outcome of Bin Sj. 

Principle of Dominance with Causal Independence. Suppose act A strongly 
dominates act B with respect to states S I , ... , S n. If for each state Sj, the 
agent knows that (A O~Si)=Sj and (BO~Sj)=Sj, then it is rational for 
him to prefer A to B. 

Principle of Dominance with Stochastic Independence. Suppose act A 
strongly dominates act B with respect to states S I, ... , Sn. If for each state 
Sj, prob (SdA) = prob (Sj) = prob (SdB), then it is rational for him to prefer 
A toB. 

The Principle of Dominance with Causal Independence holds if rationality 
requires maximization of 1ft, and the Principle of Dominance with Stochastic 
Independence holds if rationality requires maximization of -rIO 

Although these two principles are respective consequences of two prin­
ciples of expected utility maximization which may conflict, they cannot 
themselves conflict. For suppose A strongly dominates B with respect to 
some set of states S I , ... ,Sn. Then the worst outcome of A is more desirable 
than some outcome of B. For the worst outcome of A is the outcome of A 
in some state Sj, and since A strongly dominates B with respect to S 1, ... ,Sn' 
the outcome of A in Sj is more desirable than the outcome of B in Sj. Thus 
the worst outcome of A is more desirable than the worst outcome of B. It 
cannot be the case, then, that B strongly dominates A with respect to some 
other set of states T 1 , . •• , Tn. For if that indeed were the case, then, we 
have seen, the worst outcome of B would be more desirable than the worst 
outcome of A. We have seen that if A strongly dominates B with respect to 
a set of states, then there is no set of states with respect to which B strongly 
dominates A. For that reason, the two principles of dominance we have 
stated will never yield conflicting prescriptions for a simple decision problem. 

In a weaker form, however, dominance indeed can be exploited to yield 
conflicting prescriptions. 

DEFINITION. Let S 1, •.. ,Sn be the states of a standard decision matrix, 
and let A and B be acts. A weakly dominates B with respect to S 1, ... ,Sn 
iff for each state Sj, the outcome of A in Sj is at least as desirable as the 
outcome of Bin Sj, and for some state Sj with prob (Sj) > 0, the outcome of 
A in Sj is more desirable than the outcome of Bin Sj. 
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We now get two Principles of Weak Dominance by substituting 'weakly 
dominates' for 'strongly dominates' in the two Principles of Dominance 
stated above. 

CASE 4. A subject is presented with two boxes, one to the left and one to 
the right. He must choose between two acts: 

AL Take the box on the left. 
AR Take the box on the right. 

The experimenter has already done one of the following. 

Mil Place a million dollars in each box. 
MOl Place a million dollars in the box on the right and nothing in 

the box on the left. 
Moo Place nothing in either box. 

He has definitely not placed money in the left box without placing money in 
the right box. Now the experimenter has predicted the behavior of the sub­
ject, and before making his prediction, he has used a random device to select 
one of the following three strategies. 

(i) Reward choice of left box: Mil if AL is predicted; Moo if AR is 
predicted. 

(ii) Ensure payment: Mil if AL is predicted; MOl if AR is predicted. 
(iii) Ensure non-payment: MOl if AL is predicted; Moo if AR is 

predicted. 

The subject knows all this, and believes in the accuracy of the experimenter's 
predictions with complete certainty. 

The Principle of Weak Dominance with Causal Independence prescribes 
taking the box on the right. The three states Mll , MOl, and Moo are causally 
independent of the act the subject performs. The possible outcomes are 
shown in the table, where 1 is getting the million dollars and 0 is not getting it. 

MOl 

o 
1 

o 
o 

MOl has non-zero probability, since if AL was predicted it would result 
from the experimenter's using strategy (iii) and if AR was predicted, it would 
result from the experimenter's using strategy (ii). Thus AR weakly dominates 
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AL with respect to M ll , MOl, Moo, and the Principle of Weak Dominance 
with Causal Independence prescribes taking the box on the right. 

The Principle of Weak Dominance with Stochastic Independence, in 
contrast, prescribes taking the box on the left. 

The possibilities can be partitioned as follows: 

5\ the experimenter predicts correctly and follows strategy (i). 
S2 S I does not hold and the subject WillS a million dollars. 
S3 S I does not hold and the subject wins nothing. 

The payoffs are given in the table. 

Now prob (S I) =1= 0, and hence AL weakly dominates AR with respect to 
S I, S2, S3. Moreover, the states S I, S2 , and S3 are stochastically independent 
of AL and A R . For the subject knows that the experimenter has selected his 
strategy independently of his prediction, by means of a random device; 
hence learning that he was about to perform A L , say, would not affect the 
probability he ascribes to the experimenter's having had any given strategy. 
By the subject's probability function, then, which strategy the experimenter 
has used is stochastically independent of the subject's act. Now the subject 
believes that the experimenter has predicted correctly and used strategy (i), 
(ii), or (iii). Hence he thinks that S I holds iff the experimenter has used 
strategy (i), that S2 holds iff the experimenter has used strategy (ii), and 
that S3 holds if the experimenter has used strategy (iii). Hence under his 
probability function, states S I, S2, and S3 are stochastically independent 
of AL and A R . Thus the Principle of Weak Dominance with Stochastic 
Independence applies, and it prescribes taking the box on the left. 

Some readers may object in Case 4 to the subject's complete certainty 
that the experimenter has predicted correctly. It is possible to construct a 
conflict between the two principles of weak dominance without requiring 
such certainty, but the example becomes more complicated. 

CASE 5. Same as Case 4, except for the following. 
The subject ascribes a probability of 0.8 to the experimenter's having 

predicted correctly, and this probability is independent of the subject's 
choice ofAL or A R . Thus where Cis 'the experimenter has predicted correctly', 
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prob (ClAd = 0.8 andprob (CIA R ) = 0.8. 
The experimenter has chosen among the following three strategies by 

means of a random device. 

(0 Mll if AL is predicted; Moo if AR is predicted. 
(ii*) Mll if AL is predicted; MOl or Moo, with equal probability, if 

AR is predicted. 
(iii*) Mll or MOl, with equal probability, if AL is predicted; Moo if 

AR is predicted. 

He has followed (i) with a probability 0.5, (ii*) with a probability 0.25, and 
(iii*) with a probability 0.25. 

In Case 5, as in Case 4, the states Mll • MOl, and Moo, are causally in­
dependent of the actsAR and AL , and from the Principle of Weak Dominance 
with Causal Independence and the facts of the case, it follows that it is 
rational to prefer AR to AL . 

Now let states S I. S2, and S3 be as before: S I is that the experimenter 
predicts correctly and follows strategy (i); S2 is that S I does not hold and the 
subject receives a million dollars; S3 is that S I does not hold nd the subject 
receives nothing. As in Case 4, if S I. S2 , and S 3 are stochastically independent 
of AL and A R , then from the Principle of Weak Dominance with Stochastic 
Independence and the facts of the case, it follows that it is rational to prefer 
AL to AR . It is clear that S I is stochastically independent of the acts AL and 
AR ; we now show that S2 and S3 are as well: that prob (S2IAd = prob 
(S2 IAR) and prob (S3 lAd = prob (S3 IAR)' 

There are two possible acts, two possible experimenter's predictions, and 
three possible experimenter's strategies, some of which may involve the flip 
of a coin. Call a combination of act, prediction, experimenter's strategy, and 
result of coin flip if it matters, a case. For each case, the Table 2 shows. 

(1) The state Mll • MOl, or Moo which would hold in that case. 
(2) The conditional probability of the case given the act. 
(3) The outcome in that case: 1 for getting the million dollars, 0 for 

not. 
(4) The state S I. S2, or S3 which holds in that case. 

The conditional probability prob (S2 lAd is then obtained by adding up the 
conditional probabilities given AL of cases in which S2 holds; a like procedure 
gives prob (S3IAd,prob (S2IA R ), and prob (S3IA R ). 

The conclusion of Table 2 is that the states S I. S2, and S3 are indeed 
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epistemically independent ofthe acts AL and A R . Since AL weakly dominates 
AR with respect to states S I, S2, and S3, it follows that AL weakly dominates 
AR with respect to stochastically independent states. We already know that 
AR weakly dominates AL with respect to causally independent states M I1 , 

MOl, and Moo. In Case 5, then, the two principles of weak dominance are 
in conflict. 

TABLE 2 

AL Performed A-R Performed 

A L Predicted A R PIedicted AL Predicted AR Predicted 
0.8 0.2 0.2 0.8 

Strategy Mll 0.4 Moo 0.1 Mll 0.1 Moo 0.4 
(i) 1 SI 0 S3 1 S2 0 SI 
0.5 

Strategy MOl 0.025 MOl 0.1 
(ii*) 
0.25 Ml1 0.2 0 S3 Ml1 0.05 1 S2 

1 S2 Moo 0.025 1 S2 Moo 0.1 
0 S3 0 S3 

Strategy 
(iii *) Ml1 0.1 Ml1 0.025 
0.25 1 S2 Moo 0.05 1 S2 Moo 0.2 

0 S3 0 S3 
MOl 0.025 

MOl 0.1 1 S2 
0 S3 

Totals prob (S2/Ad = 0.3 prob (S2/AR) = 0.3 
prob (S3/Ad = 0.3 prob (S3/AR) = 0.3 

9. ACT·INDEPENDENCE IN THE SAVAGE FORMULATION 

In Section 4, we said that to apply the Savage framework to a decision problem, 
one must find states of the world that are in some sense act-independent. In the 
last section, we distinguished two kinds of independence, causal and epistemic. 
Which kind i~ needed in the Savage formulation of decision problems? 
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The answer is that the Savage formulation has both a d/I -maximizing 
interpretation and a Y-:-maximizing interpretation. On the d/I-maximizing 
interpretation, the states must be causally independent of the acts, whereas 
on the JY.maximizing interpretation, the states must be epistemically in­
dependent of the acts. That is to say, if the states are causally act-independent, 
then utility as calculated by the Savage method is d/I-utility, whereas if the 
states are epistemically act-independent, then utility as calculated by the 
Savage method is Y-:-utility. If the states are both causally and epistemically 
act-independent, then the d/I-utility of each act equals its Y-:-utility. Thus the 
Savage formulation itself is not committed to either kind of utility: the kind 
of utility it yields depends on the way it is applied to decision problems. 

The expected utility of an act A in the Savage theory is 

(3) ~s prob (S)~O(A, S). 

If the states S are all known to be causally independent of A, so that for 
each state S, the agent knows that (A 0 ..... S) =.S, then for each S, we have 
prob (S) = prob (A 0 ..... S). (3) thus becomes 

~s prob (A 0 ..... S)~(A, S), 

and this, we said in Section 3, is d/I(A). If, on the other hand, the states S 
are stochastically independent of A, so that for each S, prob (S) = prob 
(S/A), then (3) becomes 

~s prob (S/A)90(A, S), 

which is 'f'{A). 

10. NEWCOMB'S PROBLEM 

The Newcomb paradox discussed by Nozick (1969) has the same structure 
as the case of Solomon discussed in Section 3. Nozick treats it as a conflict 
between the principle of expected utility maximization and the principle 
of dominance. On the views we have propounded in this paper, the problem 
is rather a conflict between two kinds of expected utility maximization. The 
problem is this. There are two boxes, transparent and opaque; the trans­
parent box contains a thousand dollars. The agent can perform AI, taking 
just the contents of the opaque box, or A 2 , taking the contents of both 
boxes. A predictor has already placed a million dollars in the opaque box if 
he predicted A 1 and nothing if he predicted A 2. The agent knows all this, 
and he knows the predictor to be highly reliable in that both prob (he has 
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predicted AlIA 1) and prob (he has predicted A 2 IA 2) are close to one. 
To show how the expected utility calculations work, we must add detail 

to the specification of the situation. Suppose, somewhat unrealistically, that 
getting no money has a utility of zero, getting $1000 a utility of 10, that 
getting $1,000,000 has a utility of 100, and that getting $1,001,000 has a 
utility of 101. Let M be 'there are a million dollars in the opaque box', and 
suppose prob (MIA 1) = 0.9 and prob (MIA 2 ) = 0.1. The calculation of 
~A 1 ) and 11:A 2) is familiar. 

1""(A 1) = prob (MIA 1 )9$1 ,000,000 + prob (MIA 1 )91fJ 
= 0.9 (100) + 0.1(0) = 90. 

1"(A 2) = prob (MIA2)~$1 ,001 ,000 + prob (MIA 2)!'}$1000 
= 0.1(101) + 0.9(10) = 19.1 

Maximization of "fI'", as is well known, prescribes taking only the contents of 
the opaque box." 

'¥/(A d and '¥/(A 2) depend on the probability of M, which in turn depends 
on the probabilities of A 1 and A 2 • For any probability of M, though, we have 
'¥/(A 2) >'¥/(A 1). For let the probability of M be 11; then since M is causally 
act-independent, prob (A 1 D~ M) = 11 and prob (A2 ~ M) = 11. Therefore 

,¥/(A 1) = prob (A 1 D~ M)!'}$1 ,000,000 + prob (A 1 ~M)~ 
= 10011 + 0(1-11) = 10011. 

dIJ (A 2) = prob (A 2 D~ M)£ii$1 ,001 ,000 + prob (A 2 D~ M)£i}$1 000 
= 10111 +10(1-11) = 9111 + 10. 

Thus '¥/(A 2) - '¥/(Al) = 10 - 911, and since 11 ~ 1, this is always positive. 
Therefore whatever probability M may have, dIJ(A 2) >dIJ(A 1), and 'PI-maxi­
mization prescribes taking both boxes. 

To some people, this prescription seems irrational. 12 One possible argument 
against it takes roughly the form 'If you're so smart, why ain't you rich?' 
'f=maximizers tend to leave the experiment millionaires whereas dIJ-maximizers 
do not. Both very much want to be millionaires, and the ~maximizers 
usually succeed; hence it must be the 'f=maximizers who are making the 
rational choice. We take the moral of the paradox to be something else: If 
someone is very good at predicting behavior and rewards predicted irrationality 
richly; then irrationality will be richly rewarded. 

To see this, consider a variation on Newcomb's story: the subject of the 
experiment is to take the contents of the opaque box first and learn what it 
is; he then may choose either to take the thousand dollars in the second box 
or not to take it. The predictor has an excellent record, and a thoroughly 
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accepted theory to back it up. Most people find nothing in the first box 
and then take the contents of the second box. Of the million subjects tested, 
1 % have found a million dollars in the first box, and strangely enough only 
1% of these - 100 in 10,000 - have gone on to take the thousand dollars 
they could each see in the second box. When those who leave the thousand 
dollars are later asked why they do so, they say things like 'If I were the 
sort of person who would take the thousand dollars in that situation, I 
wouldn't be a millionaire'. 

On both grounds of c:¥I-maximization and of ~maximization, these new 
millionaires have acted irrationally in failing to take the extra thousand 
dollars. They know for certain that they have the million dollars; therefore 
the j(utility of taking the thousand as well is 101, whereas the f-utility of not 
taking it is 100. Even on the view of f-maximizers, then, this experiment will 
almost always make irrational people and only irrational people millionaires. 
Everyone knows so at the outset. 

Return now to the unmodified Newcomb situation, where the subject 
must take or pass up the thousand dollars before he sees whether the opaque 
box is full or empty. What happens if the subject knows not merely that the 
predictor is highly reliable, but that he is infallible? The argument that the 
"'-utility of taking both boxes exceeds that of taking only one box goes 
through unchanged. To some people, however, it seems especially apparent in 
this case that it is rational to take only the opaque box and irrational to take 
both. For in this case the subject is certain that he will be a millionaire if and 
only if he takes only the opaque box. If in the case where the predictor is 
known to be infallible it is irrational to take both boxes, then,tf/-maximiza­
tion is not always the rational policy. 

We maintain that fI-maximization is rational even in the case where the 
predictor is known to be infallible. True, where R is 'I become a millionaire', 
the agent knows in this case that R holds if A 1 holds: he knows the truth­
functional proposition R == AI' From this proposition, however, it does not 
follow that he would be a millionaire if he did AI, or that he would be a non­
millionaire if he did A 2 • 

If the subject knows for sure that he will take just the opaque box, then he 
knows for sure that the million dollars is in the opaque box, and so he knows 
for sure that he will be a millionaire. But since he knows for sure that the 
million dollars is already in the opaque box, he knows for sure that even if he 
were to take both boxes, he would be a millionaire. If, on the other hand, 
the subject knows for sure that he will take both boxes, then he knows for 
sure that the opaque box is empty, and so he knows for sure that he will be a 
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non-millionaire_ But since in this case he knows for sure that the opaque 
box is empty, he knows for sure that even if he were to take just the opaque 
box, he would be a non-millionaire_ 

If the subject does not know what he will do, then what he knows is this: 
either he will take just the opaque box and be a millionaire, or he will take 
both boxes and be a non-millionaire. From this, however, it follows neither 
that (i) if he took just the opaque box, he would be a miIlionaire, nor that 
(ii) if he took both boxes he would be a non-millionaire. For (i), the subject 
knows, is true iff the opaque box is filled with a million dollars, and (ii), 
the subject knows, is true iff the opaque box is empty. Thus, if (i) followed 
from what the agent knows, he could conclude for certain that the opaque 
box contains a million dollars, and if (ii) followed from what the agent knows, 
he could conclude that the opaque box is empty. Since the subject, we have 
supposed, does not know what he will do, he can conclude neither that the 
opaque box contains a million dollars nor that it is empty. Therefore neither 
(i) nor (ii) follows from what the subject knows. 

Rational choice in Newcomb's situation, we maintain, depends on a 
comparison of what would happen if one took both boxes with what would 
happen if one took only the opaque box. What the agent knows for sure is 
this: if he took both boxes, he would get a thousand dollars more than he 
would if he took only the opaque box. That, on our view, makes it rational 
for someone who wants as much much as he can get to take both boxes, and 
irrational to take only one box. 

Why, then, does it seem obvious to many people that if the predictor is 
known to be infallible, it is rational to take only the opaque box and irrational 
to take both boxes? We have three possible explanations. The first is that a 
person may have a tendency to want to bring about an indication of a desired 
state of the world, even if it is known that the act that brings about the 
indication in no way brings about the desired state itself. Taking just the 
opaque box would be a sure indication that it contained a million dollars, 
even though taking just the opaque box in no way brings it about that the 
box contains a million dollars. 

The second possible explanation lies in the force of the argument 'If you're 
so smart, why ain't you rich?' That argument, though, if it holds good, 
should apply equally well to the modified Newcomb situation, with a pre­
dictor who is known to be highly accurate but fallible. There the conclusion 
of the argument seems absurd: according to the argument, having already 
received the million dollars, one should pass up the additional thousand 
dollars one is free to take, on the grounds that those who are disposed to pass 
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it Up tend to become millionaires. Since the argument leads to an absurd 
conclusion in one case, there must be something wrong with it. 

The third possible explanation is the fallacious inference we have just 
discussed, from 

Either I shall take one box and be a 
millionaire, or I shall take both boxes 
and be a non-millionaire 

to the conclusion 

If I were to take one box, I would be a 
millionaire, and if I were to take both 
boxes, I would be a non-millionaire. 

If, to someone who is free of fallacies, it is still intuitively apparent that 
the subject should take only the opaque box, we have no further arguments 
to give him. If in addition he thinks the subject should take only the opaque 
box even in the case where the predictor is known to be somewhat fallible, 
if he also thinks that in the modified Newcomb situation the subject, on 
receiving the extra million dollars, should take the extra thousand, ifhe also 
thinks that it is rational for Reoboam to be severe, and if he also thinks it is 
rational for Solomon to abstain from his neighbor's wife, then he may 
genuinely have the intuitions of a 'f':maximizer: 'f':maximization then 
proVides a systematic account of his intuitions. If he thinks some of these 
things but not all of them, then we leave it to him to provide a systematic 
account of his views. Our own views are systematically accounted for by 
'?I-maximization. 

11. STABILITY OF DECISION 

When a person decides what to do, he has in effect learned what he will do, 
and so he has new information. He will adjust his probability ascriptions 
accordingly. These adjustments may affect the 'fJ-utility of the various acts 
open to him. 

Indeed, once the person decides to perform an act A, the "'-utility of A 
will be equal to its -Y-utility.13 Or at least this holds if Consequence 1 in 
Section 2, that A :J [(A D--+ C) == C) , is a logical truth. For we saw in the 
proof of Assertion 1 that if Consequence 1 is a logical truth, then for any 
pair of propositions P and Q, prob (P o--? Q/P) = prob (Q/P). Now let Ci'A 
(A) be the 'PI-utility of act A as reckoned by the agent after he has decided 
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for sure to do A, let prob give the agent's probability ascriptions before he 
has decided what to do. Let prob A give the agent's probability ascriptions 
after he has decided for sure to do A. Then for any proposition P, prob A 

(P) = prob (PIA). Thus 

IfIA (A) = L;oprob A (A O~ O)~O 
= L;oprob (A ~ OIA)~O 
= L;oprob (OIA)90 
= 1"'(A). 

The ~utility of an act, then, is what its 'PI-utility would be if the agent knew 
he were going to perform it. 

lt does not follow that once a person knows what he will do, "f=maximization 
and '¥I-maximization give the same prescriptions. For although for any act 
A c&'A (A) = 'f"(A), it is not in general true that for alternatives B to A, 
c¥iA(B) =f(B). Thus in cases where OJI(A) <OJI(B) but rCA) >r(B), it is 
consistent with what we have 3aid to suppose that OJIA (A) < IfIA (B). In such 
a case, "f=maximization prescribes A regardless of what the agent believes he 
will do, but even if he believes he will do A, d/i -maximization prescribes B. 
The situation is this: 

IfIA (B) > OJIA (A) = -f(A) > reB). 

Even though, once an agent knows what he will do, the distinction between 
the Olt-utility of that act and its "f=utility disappears, the distinction between 
Olt-maximization and f-maximization remains. 

That deciding what to do can affect the d/i-utilities of the acts open to an 
agent raises a problem of stability of decision for d/i -maximizers. Consider the 
story of the man who met death in Damascus. 14 Death looked surprised, but 
then recovered his ghastly composure and said, 'I am coming for you to­
morrow'. The terrified man that night bought a camel and rode to Aleppo. 
The next day, death knocked on the door of the room where he was hiding 
and said 'I have come for you'. 

'But 1 thought you would be looking for me in Damascus', said the man. 
'Not at all', said death 'that is why 1 was surprised to see you yesterday. 

1 knew that today 1 was to find you in Aleppo'. 
Now suppose the man knows the following. Death works from an appoint­

ment book which states time and place; a person dies if and only if the book 
correctly states in what city he will be at the stated time. The book is made 
up weeks in advance on the basis of highly reliable predictions. An appoint­
ment on the next day has been inscribed for him. Suppose, on this basis, 
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the man would take his being in Damascus the next day as strong evidence 
that his appointment with death is in Damascus, and would take his being 
in Aleppo the next day as strong evidence that his appointment is in Aleppo. 

Two acts are open to him: A, go to Aleppo, and D, stay in Damascus. 
There are two possibilities: SA, death will seek him in Aleppo, and SD, 
death will seek him in Damascus. He knows that death will find him if and 
only if death looks for him in the right city, so that, where L is that he lives, 
he knows (D 0-+ L) == SA and (A 0-+ L) == S D' He ascribes conditional 
probabilities prob (SA /A) "" 1 and prob (SD/D) "" 1; suppose these are both 
0.99 and that prob (SdA) = om and prob (SA /D) = 0.01. Suppose 9(L) 
= -100 and 9(L) = O. Then where a is prob (A), his probability of going to 
Aleppo, and 1 - a is his probability of going to Damascus, 

Thus 

prob (A 0-+ L) = prob (SD) = aprob (SD/A) + (l-a) prob (SD/D) 
= O.OIa + 0.99(1 - a) = 0.99 - 0.98a 

prob (A 0-+ L) = prob (SA) = 1 - prob (SD) = om + 0.98a. 

t:fI(A) = prob (A 0-+ L )q)(L) + prob (A 0-+ L)f)(L) 
= (0.01 + 0.98a)(-IOO) = -1 -98a. 

By a like calculation, t:fI(D) = -99 +98a. Thus if a = 1, then t:fI(D) = -1 and 
t:fI(A) = -99, and thus 0Jt(D) >t:fI(A). If a = 0, thent:fl(D) = -99 and'1l(A) 
= -1, so that OJ/(A) >'1I(D). Indeed we have t:fI(D) >t:ft(A) whenever prob 
(A) > 1/2, andt:f/(A) >OJt(D) whenever prob (D) > 1/2. 

What are we to make of this? If the man ascribes himself equal probabilities 
of going to Aleppo and staying in Damascus, he has equal grounds for thinking 
that death intends to seek him in Damascus and that death intends to seek 
him in Aleppo. If, however, he decides to go to Aleppo, he then has strong 
grounds for expecting that Aleppo is where death already expects him to be, 
and hence it is rational for him to prefer staying in Damascus. Similarly, 
deciding to stay in Damascus would give him strong grounds for thinking 
that he ought to go to Aleppo: once he knows he will stay in Damascus, 
he can be almost sure that death already expects him in Damascus, and hence 
that if he had gone to Aleppo, death would have sought him in vain. 

j(maximization does not lead to such instability. What happens to j/: 
utility when an agent knows for sure what he will do is somewhat unclear. 
Standard probability theory offers no interpreation of prob A (O/B) where 
prob (B /A) = 0, and so on the standard theory, once an agent knows for sure 
what he will do, the j/:utility of the alternatives ceases to be well-defined. 



TWO KINDS OF EXPECTED UTILITY 187 

What we can say about j(utility is this: as long as an act's being performed 
has non-zero probability, its 1'=utility is independent of its probability and 
the probabilities of alternatives to it. For the -(.utility of an act A depends 
on conditional probabilities of the form prob (a/A). This is just the prob­
ability the agent would ascribe to a on learning A for sure, and that is in­
dependent of how likely he now regards A. Whereas, then, the t¥/-utility 
of an act may vary with its probability of being performed, its f-utility does 
not. t¥/-maximization, then, may give rise to a kind of instability which 
-(-maximization precludes: in certain cases, an act will be t¥/-maximal if and 
only if the probability of its performance is low. 

Is this a reason for preferring ~maximization? We think not. In the case 
of death in Damascus, rational decision does seem to be unstable. Any 
reason the doomed man has for thinking he will go to Aleppo is a reason 
for thinking he would live longer if he stayed in Damascus, and any reason 
he has for thinking he will stay in Damascus is reason for thinking he would 
live longer if he went to Aleppo. Thinking he will do one is reason for doing 
the other. That there can be cases of unstable t:VI-maximization seems strange, 
but the strangeness lies in the cases, not in d/J -maximization: instability of 
rational decision seems to be a genuine feature of such cases. 

12. ApPLICATIONS TO GAME THEORY 

Game theory provides many cases where t:VI-maximizing and 'f'=maximizing 
diverge; perhaps the most striking of these is the prisoners' dilemma, for 
which a desirability matrix is shown. 

-

1 0 
Bo 

1 10 
10 9 

0 9 

Here Ao and Bo are respectively A's and B's options of confessing, while 
A 1 and Blare the options of not confessing. The desirabilities reflect these 
facts: (1) if both confess, they both get long prison terms; (2) if one con­
fesses and the other doesn't, then the confessor gets off while the other 
gets an even longer prison term; (3) if neither confesses, both get off with 
very light sentences. 
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Suppose each prisoner knows that the other thinks in much the same way 
he does. Then his own choice gives him evidence for what the other will do. 
Thus, the conditional probability of a long prison term on his confessing is 
greater than the conditional probability of a long prison tenn on his not 
confessing. If the difference between these two conditional probabilities is 
sufficiently great, then f-maximizing will prescribe not confessing. 

The .;t:utilities of the acts open to B will be as follows. 

f(Bo) = prob (Ao/Bo) X 1 + prob (AdBo) X 10 
-Y(B I ) = prob (Ao/Bd X 0 + prob (AdBI) X 9. 

If prob (A I /B d - prob (A dBo) is sufficiently great (in this case 1/9 or 
more), then -(-maximizing reconunends that B take option B I and not 
confess. If the probabilities for A are similar, then 1'"-maximizing also 
recommends not confessing for A. The outcome if both f-maximize is 
A IB I, the optimal one of mutual co-operation. IS 

For a qJ -maximizer, dominance applies because his companion's choice 
is causally independent of his own. Therefore, "lI-maximizing yields the 
classical outcome of the prisoners' dilemma. This suggests that "lI·maximizing 
and not 'f:maximizing corresponds to the kind of utility maximizing com­
monly assumed in game theory. 

University of Michigan and University of Western Ontario. 

NOTES 

* An earlier draft of this paper was circulated in January 1976. A much shurter versiun 
was presented tu the 5th Internatiunal Cungress of Lugic, Methodulogy, and Philosophy 
of Science, London, Ontario, August 1975. There, and at the earlier University of Western 
Ontariu research culloquium on Foundations and Applications uf Decision Theory we 
benetited from discussions with many people; in particular we should mention Richard 
Jeffrey, Isaac Levi, Barry O'Neill and Huward Sobel. 

1 Lewis first presented this result at the June 1972 meeting of the Canadian Philo­
suphical Assuciatiun. 

2 Although the rough treatment of cuunterfactuals we propuse is similar is many 
respects tu the theuries devduped by Stalnaker and Lewis, it differs from them in sume 
important respects. Stalnaker and Lewis each base their accounts un comparisons uf 
overall similarity of worlds. On our accuunt, what matters is comparative similarity of 
worlds at the instant of decision. Whether a given a-world is selected as Wa depends not 
at all un how similar the future in that wurld is tu the actual future; whatever similarities 
the future in Wa may have to the actual future will be a seman tical consequence of laws 
of nature, conditions in Wa at the instant of decision, and actual conditions at that 
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instant. (Roughly, then, they will be consequences of laws of nature and the similarity 
of Wa to the actual world at the instant of decision.) We consider only worlds in which 
the past is exactly like the actual past, for since the agent cannot now alter the past, 
those are the only worlds relevant to his decision. Lewis (1973, p. 566 and in conver­
sation) suggests that a proper treatment of overall similarity will yield as a deep con­
sequence of general facts about the world the conditions we are imposing by nat. 

3 In characterizing our conditional we have imposed the Stalnaker-like constraint 
that there is a unique world Wa which would eventuate from performing a at t. Our 
rationale for Axiom 2 depends on this assumption and on the assumption that if a 
is actually performed then Wa is the actual world itself. Consequence 1 is weaker than 
Axiom 2, and only depends on the second part of this assumption. In circumstances 
where these assumptions break down, it would seem to us that using conditionals to 
compute expected utility is inappropriate. A more general approach is needed to handle 
such cases. 

4 This is stated by Lewis (1975, note 10). 
• This IS our understanding of a proposal made by -Jeffrey at the colloquium on 

Foundations and Applications of Decision Theory, University of Western Ontario, 1975. 
J. H. Sobel shows (in an unpublished manuscript) that, for all we have said, these new, 
conditionalized states may not themselves be act-independent. This section is slightly 
changed in light of Sobel's result. 

6 Meeting of the Canadian Philosophical Association, 1972. Nozick gives a similar 
example (1969, p. 125). 

7 Sobel actually uses 'A * D~ S does hold' where we use 'A * D~ S does not hold'. 
With Axiom 2, these are equivalent. 

S We realize that a Bayesian king presented with these data would not ordinarily take 
on degrees of belief that exactly match the frequencies given in the table; nevertheless, 
with appropriate prior beliefs and evidence, he would come to have those degrees of 
belief. Assume that he does. 

9 Under these conditions, if A and B are the only alternatives, then Sj* holds if and 
only if Sj holds. If there are other alternatives, it may be that neither A nor B is performed 
and Sj holds without either A D~ Sj or B D~ Sj. In that case, what matters is not 
whether it would be rational to prefer A to B knowing that Sj holds, but whether it 
would be rational to prefer A to B knowing (A D~ Sj) & (B 0 .... Sj). 
10 Nozick (1969) in effect endorses the Principle of Dominance with Stochastic In­
dependence (p. 127), but not 1'"-maximization: in cases of the kind we have been con­
sidering, he considers the recommendations of 1'-maximization 'perfectly wild' (p. 126). 
Nozick also states and endorses the principle of dominance with causal independence 
(p. 132). 
II For 1'"-maximizing treatments of Newcomb's problem, see Bar Hillel and Margalit 
(1972) and Levi (1975). 
12 Levi (1975) reconstructs Nozick's argument for taking both boxes in a way which 
uses prob(M) rather than prob(M/A I) and prob(M/A 2 ) as the appropriate probabilities 
for computing expected utility in Newcomb's problem. This agrees with Ill-maximizing 
in that the same probabilities are used for computing expected utility for A 1 as for A 2 , 

and results in the same recommendation to take both boxes. Levi is one of the people to 
whom this recommendation seems irrational. 
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13 We owe this point to Barry O'Neill. 
14 A version of this story quoted from Somerset Maugham's play Sheppey (New York, 
Doubleday 1934) appears on the facing page of John O'Hara's novel Appointment in 
Samarra. (New York, Random House 1934). The story is undoubtedly much older. 
IS Nozick (1969), Brams (1975), Grofman (1975) and Rapoport (1975), have all 
suggested a link between Newcomb's problem and the Prisoners Dilemma. Brams, Grof­
man and Rapoport all endorse co-operative solutions, Rapoport (1975, p. 619) appears 
to endorse .y-maximizing. 
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PART 5 

INDICATIVE VS. SUBJUNCTIVE 

CONDITIONALS 



ROBERT C. STALNAKER 

INDICATIVE CONDITIONALS 

"Either the butler or the gardener did it. Therefore, if the butler didn't do 
it, the gardener did." This piece of reasoning - call it the direct argument -
may seem tedious, but it is surely compelling. Yet if it is a valid inference, 
then the indicative conditional conclusion must be logically equivalent to 
the truth-functional material conditional,l and this conclusion has conse­
quences that are notoriously paradoxical. The problem is that if one 
accepts the validity of the intuitively reasonable direct argument from the 
material conditional to the ordinary indicative conditional, then one must 
accept as well the validity of many arguments that are intuitively absurd. 
Consider, for example, "the butler did it; therefore, if he didn't, the 
gardener did." The premiss of this argument entails the premiss of the 
direct argument, and their conclusions are the same. Therefore, if the 
direct argument is valid, so is this one. But this argument has no trace of 
intuitive plausibility. Or consider what may be inferred from the denial of 
a conditional. Surely I may deny that if the butler didn't do it, the gardener 
did without affirming the butler's guilt. Yet if the conditional is material, 
its negation entails the truth of its antecedent. It is easy to multiply para­
doxes of the material conditional in this way - paradoxes that must be 
explained away by anyone who wants to defend the thesis that the direct 
argument is valid. Yet anyone who denies the validity of that argument 
must explain how an invalid argument can be as compelling as this one 
seems to be. 

There are thus two strategies that one may adopt to respond to this 
puzzle: defend the material conditional analysis and explain away the 
paradoxes of material implication, or reject the material conditional 
analysis and explain away the force of the direct argument. 2 H. P. Grice, 
in his William James lectures,3 pursued the first of these strategies, using 
principles of conversation to explain facts about the use of conditionals 
that seem to conflict with the truth-functional analysis of the ordinary 
indicative conditional. I will follow the second strategy, defending an 
alternative semantic analysis of conditionals according to which the 
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conditional entails, but is not entailed by, the corresponding material 
conditional. I will argue that, although the premiss of the direct argument 
does not semantically entail its conclusion, the inference is nevertheless a 
reasonable inference. My main task will be to define and explain a concept 
of reasonable inference which diverges from semantic entailment, and 
which justifies this claim. 

Grice's strategy and mine have this in common: both locate the source 
of the problem in the mistaken attempt to explain the facts about asser­
tion and inference solely in terms of the semantic content, or truth con­
ditions, of the propositions asserted and inferred. Both attempt to explain 
the facts partly in terms of the semantic analysis of the relevant notions, 
but partly in terms of pragmatic principles governing discourse. Both 
recognize that since assertion aims at more than truth, and inference at 
more than preserving truth, it is a mistake to reason too quickly from 
facts about assertion and inference to conclusions about semantic content 
and semantic entailment. 

My plan will be this: first, I will try to explain, in general terms, the 
concept of reasonable inference and to show intuitively how there can be 
reasonable inferences which are not entailments. Second, I will describe a 
formal framework in which semantic concepts like content and entailment 
as well as pragmatic concepts like assertion and inference can be made 
precise. Third, within this framework, I will sketch the specific semantic 
analysis of conditionals, and state and defend some principles relating 
conditional sentences to the contexts in which they are used. Fourth, I 
will show that, according to these analyses, the direct argument is a reason­
able inference. Finally, I will look at another puzzling argument involving 
reasoning with conditionals - an argument for fatalism - from the point of 
view ofthis framework. 

Reasonable inference, as I shall define it, is a pragmatic relation: it relates 
speech acts rather than the propositions which are the contents of speech 
acts. Thus it contrasts with entailment which is a purely semantic rela­
tion. Here are rough informal definitions of the two notions: first, reason­
able inference: an inference from a sequence of assertions or suppositions 
(the premisses) to an assertion or hypothetical assertion (the conclusion) is 
reasonable just in case, in every context in which the premisses could ap-
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propriately be asserted or supposed, it is impossible for anyone to accept 
the premisses without committing himself to the conclusion; second, en­
tailment: a set of propositions (the premisses) entails a proposition (the 
conclusion) just in case it is impossible for the premisses to be true without 
the conclusion being true as well. The two relations are obviously differ­
ent since they relate different things, but one might expect them to be 
equivalent in the sense that an inference would be reasonable if and only 
if the set of propositions expressed in the premisses entailed the proposi­
tion expressed in the conclusion. If this equivalence held, then the prag­
matic concept of inference would of course have no interest. I shall argue 
that, and try to show why, the equivalence does not hold. Before discus­
sing the specific framework in which this will be shown, let me try to 
explain in general terms how it is possible for an inference to bereasonable, 
in the sense defined, even when the premisses do not entail the conclusion. 

The basic idea is this: many sentences are context dependent; that is, 
their semantic content depends not just on the meanings of the words in 
them, but also on the situations in which they are uttered. Examples are 
familiar: quantified sentences are interpreted in terms of a domain of 
discourse, and the domain of discourse depends on the context; the refer­
ents of first and second person pronouns depend on who is speaking, and 
to whom; the content of a tensed sentence depends on when it is uttered. 
Thus context constrains content in systematic ways. But also, the fact 
that a certain sentence is uttered, and a certain proposition expressed, may 
in turn constrain or alter the context. There are two ways this may happen: 
first, since particular utterances are appropriate only in certain contexts, 
one can infer something about a context from the fact that a particular 
utterance is made (together with the assumption that the utterance is 
appropriate); second, the expression of a proposition alters the context, at 
the very least by changing it into a context in which that proposition has 
just been expressed. At any given time in a conversation, the context will 
depend in part on what utterances have been made, and what proposi­
tions expressed, previously in the conversation. There is thus a two way 
interaction between contexts of utterance and the contents of utterances. 
If there are general rules governing this interaction, these rules may give 
rise to systematic relations between propositions expressed at different 
points in a conversation, relations which are mediated by the context. 
Such relations may become lost if one ignores the context and considers 
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propositions in abstraction from their place in a discourse. It is because 
entailment relates propositions independently of their being asserted, 
supposed or accepted, while reasonable inference concerns propositions 
which are expressed and accepted, that the two relations may diverge. 

These general remarks are not an attempt to show that the notions of 
entailment and reasonable inference do in fact diverge, but only an attempt 
to point to the source of the divergence that will be shown. To show the 
divergence, I must say what contexts are, or how they are to be represent­
ed formally. I must say, for some specific construction (here, conditionals) 
how semantic content is a function of context. And I must state and de­
fend some rules which relate contexts to the propositions expressed in 
them. 

II 

The framework I will use begins with, and takes for granted, the concept 
of a possible world. While model theory based on possible worlds is 
generally agreed to be a powerful and mathematically elegant tool, its 
intuitive content and explanatory power are disputed. It is argued that a 
theory committed to the existence of such implausible entities as possible 
worlds must be false. Or at least the theory cannot do any philosophical 
work unless it can provide some kind of substantive answer to the question, 
what is a possible world? Possible worlds are certainly in need of philoso­
phical explanation and defence, but for the present I will make just a brief 
remark which will perhaps indicate how I understand this basic notion.4 

It is a common and essential feature of such activities as inquiring, 
deliberating, exchanging information, predicting the future, giving advice, 
debating, negotiating, explaining and justifying behavior, that the partici­
pants in the activities seek to distinguish, in one way or another, among 
alternative situations that may arise, or might have arisen. Possible 
worlds theory, as an explanatory theory of rational activity, begins with 
the notion of an alternative way that things may be or might have been 
(which is all that a possible world is) not because it takes this notion to be 
unproblematic, but because it takes it to be fundamental to the different 
activities that a theory of rationality seeks to characterize and relate to 
each other. The notion will get its content, not from any direct answer to 
the question, what is a possible world? or from any reduction of that 
notion to something more basic or familiar, but from its role in the expla-
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nations of such a theory. Thus it may be that the best philosophical 
defense that one can give for possible worlds is to use them in the devel­
opment of substantive theory. 

Taking possible worlds for granted, we can define a proposition as a 
function from possible worlds into truth values.5 Since there are two truth 
values, this means that a proposition is any way of dividing a set of possi­
ble worlds into two parts - those for which the function yields the value 
true, and those for which it yields the value false. The motivation for this 
representation of propositions is that, as mentioned above, it is an essen­
tial part of various rational activities to distinguish among alternative 
possible situations, and it is by expressing and adopting attitudes toward 
propositions that such distinctions are made. 

How should a context be defined? This depends on what elements of 
the situations in which discourse takes place are relevant to determining 
what propositions are expressed by context dependent sentences and to 
explaining the effects of various kinds of speech acts. The most important 
element of a context, I suggest, is the common knowledge, or presumed 
common knowledge and common assumption of the participants in the 
discourse.6 A speaker inevitably takes certain information for granted 
when he speaks as the common ground of the participants in the conver­
sation. It is this information which he can use as a resource for the commu­
nication of further information, and against which he will expect his 
speech acts to be understood. The presumed common ground in the sense 
intended - the presuppositions of the speaker - need not be the beliefs 
which are really common to the speaker and his audience; in fact, they 
need not be beliefs at all. The presuppositions will include whatever the 
speaker finds it convenient to take for granted, or to pretend to take for 
granted, to facilitate his communication. What is essential is not that the 
propositions presupposed in this sense be believed by the speaker, but 
rather that the speaker believe that the presuppositions are common to 
himself and his audience. This is essential since they provide the context in 
which the speaker intends his statements to be received. 

In the possible worlds framework, we can represent this background 
information by a set of possible worlds - the possible worlds not ruled out 
by the presupposed background information. I will call this set of possible 
worlds the context set.7 Possible worlds within the set are situations 
among which the speaker intends his speech acts to distinguish. I will 
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sometimes talk of propositions being compatible with or entailed by a con­
text. This means, in the first case, that the proposition is true in some of 
the worlds in the context set, and in the second case that the proposition 
is true in all of the worlds in the context set. Intuitively, it means, in the 
first case, that it is at least an open question in the context whether or not 
the proposition is true, and in the second case, that the proposition is 
presupposed, or accepted, in the context. 

Propositions, then, are ways of distinguishing among any set of possible 
worlds, while context sets are the sets of possible worlds among which a 
speaker means to distinguish when he expresses a proposition. 

III 

The semantic analysis of conditionals that I will summarize here is devel­
oped and defended more fully elsewhere.8 The analysis was constructed 
primarily to account for counterfactual conditionals - conditionals 
whose antecedents are assumed by the speaker to be false - but the ana­
lysis was intended to fit conditional sentences generally, without regard 
to the attitudes taken by the speaker to antecedent or consequent or his 
purpose in uttering them, and without regard to the grammatical mood in 
which the conditional is expressed. 

The idea of the analysis is this: a conditional statement, if A, then B, 
is an assertion that the consequent is true, not necessarily in the world as 
it is, but in the world as it would be if the antecedent were true. To express 
this idea formally in a semantic rule for the conditional, we need a func­
tion which takes a proposition (the antecedent) and a possible world (the 
world as it is) into a possible world (the world as it would be if the ante­
cedent were true). Intuitively, the value of the function should be that 
world in which the antecedent is true which is most similar, in relevant 
respects, to the actual world (the world which is one of the arguments 
of the function). In terms of such a function - call it '/' - the semantic 
rule for the conditional may be stated as follows: a conditional if A, then 
B, is true in a possible world i just in case B is true in possible world 
f(A,0. 9 

It may seem that little has been accomplished by this analysis, since it 
just exchanges the problem of analyzing the conditional for the problem 
of analyzing a semantic function which is equally problematic, if not more 
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so. In one sense this is correct: the analysis is not intended as a reduction 
of the conditional to something more familiar or less problematic, and it 
should not satisfy one who comes to the problem of analyzing condition­
als with the epistemological scruples of a Hume or a Goodman. The 
aim of the analysis is to give a perspicuous representation of the formal 
structure of conditionals - to give the form of their truth conditions. Even 
if nothing substantive is said about how antecedents select counter factual 
possible worlds, the analysis still has non-trivial, and in some cases 
surprising, consequences for the logic of conditionals. 

But what more can be said about this selection function? If it is to be 
based on similarity in some respect or other, then it must have certain 
formal properties. It must be a function that determines a coherent order­
ing of the possible worlds that are selected. And, since whatever the 
respects of similarity are that are relevant, it will always be true that 
something is more similar to itself than to anything else, the selection 
function must be one that selects the actual world whenever possible, 
which means whenever the antecedent is true in the actual world. Can 
anything more substantive be said about the relevant respects of similarity 
on which the selection is based? Not, I think, in the semantic theory of 
conditionals. Relevant respects of similarity are determined by the con­
text, and the semantics abstracts away from the context by taking it as an 
unexplained given. But we can, I think, say something in a pragmatic 
theory of conditional statements about how the context constrains the 
truth conditions for conditionals, at least for indicative conditionals. 

I cannot define the selection function in terms of the context set, but the 
following constraint imposed by the context on the selection function 
seems plausible: if the conditional is being evaluated at a world in the 
context set, then the world selected must, if possible, be within the context 
set as well (where C is the context set, if ieC, then f(A, i)eC). In other 
words, all worlds within the context set are closer to each other than any 
worlds outside it. The idea is that when a speaker says "If A," then every­
thing he is presupposing to hold in the actual situation is presupposed 
to hold in the hypothetical situation in which A is true. Suppose it is an 
open question whether the butler did it or not, but it is established and 
accepted that whoever did it, he or she did it with an ice pick. Then it may 
be taken as accepted and established that if the butler did it, he did it with 
an ice pick. 
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The motivation of the principle is this: normally a speaker is concerned 
only with possible worlds within the context set, since this set is 
defined as the set of possible worlds among which the speaker wishes to 
distinguish. So it is at least a normal expectation that the selection func­
tion should turn first to these worlds before considering counter/actual 
worlds - those presupposed to be non-actual. Conditional statements can 
be directly relevant to their primary uses - deliberation, contingency 
planning, making hedged predictions - only if they conform to this 
principle. 

Nevertheless, this principle is only a defeasible presumption and not a 
universal generalization. For some special purposes a speaker may want 
to make use of a selection function which reaches outside of the context 
set, which is to say he may want to suspend temporarily some of the 
presuppositions made in that context. He may do so provided that he 
indicates in some way that his selection function is an exception to the 
presumption. Semantic determinants like domains and selection functions 
are a function of the speaker's intentions; that is why we must allow for 
exceptions to such pragmatic generalizations. But they are a function of 
the speaker's intention. to communicate something, and that is why it is 
essential that it be conveyed to the audience that an exception is being 
made. 

I take it that the subjunctive mood in English and some other languages 
is a conventional device for indicating that presuppositions are being sus­
pended, which means in the case of subjunctive conditional statements, 
that the selection function is one that may reach outside of the context set. 
Given this conventional device, I would expect that the pragmatic prin­
ciple stated above should hold without exception for indicative condi­
tionals. 

In what kinds of cases would a speaker want to use a selection function 
that might reach outside of the context set? The most obvious case would 
be one where the antecedent of the conditional statement was counter­
factual, or incompatible with the presuppositions of the context. In that 
case one is forced to go outside the context set, since there are no possible 
worlds in it which are eligible to be selected. But there are non-counter­
factual cases as well.1o Consider the argument, "The murderer used an 
ice pick. But if the butler had done it, he wouldn't have used an ice pick. 
So the murderer must have been someone else." 11 The subjunctive condi-
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tional premiss in this modus tollens argument cannot be counterfactual 
since if it were the speaker would be blatantly begging the question by 
presupposing, in giving his argument, that his conclusion was true. But 
that premiss does not conform to the constraint on selection functions, 
since the consequent denies the first premiss of the argument, which presu­
mably is accepted when the second premiss is given. 

Notice that if the argument is restated with the conditional premiss in 
the indicative mood, it is anomalous. 

My second example of a SUbjunctive non-counterfactual conditional 
which violates the constraint is adapted from an example given by Alan 
Anderson many years ago.12 "If the butler had done it, we would have 
found just the clues which we in fact found." Here a conditional is present­
ed as evidence for the truth of its antecedent. The conditional cannot be 
counterfactual, since it would be self-defeating to presuppose false what 
one is trying to show true. And it cannot conform to the constraint on 
selection functions since if it did, it would be trivially true, and so no 
evidence for the truth of the antecedent. Notice, again that when recast 
into the indicative mood, the conditional seems trivial, and does not look 
like evidence for anything. 

The generalization that all indicative conditionals conform to the prag­
matic constraint on selection functions has the following consequence 
about appropriateness conditions for indicative conditionals: It is appro­
priate to make an indicative conditional statement or supposition only in a 
context which is compatible with the antecedent. In effect, this says that 
counter/actual conditionals must be expressed in the subjunctive. This 
follows since indicative conditionals are those which must conform to the 
constraint, while counterfactuals are, by definition, those which cannot. 

I need just one more assumption in order to show that the direct ar­
gument is a reasonable inference - an assumption about conditions of ap­
propriateness for making assertions. The generalization that I will state 
is a quite specific one concerning disjunctive statements. I am sure it is 
derivable from more general conversational principles of the kind that 
Grice has discussed, but since I am not sure exactly what form such 
general principles should take, I will confine myself here to a generaliza­
tion which has narrow application, but which can be clearly stated and 
easily defended. The generalization is this: a disjunctive statement is 
appropriately made only in a context which allows either disjunct to be true 
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without the other. That is, one may say A or B only in a situation in which 
both A and not-B and Band not-A are open possibilities. The point is that 
each disjunct must be making some contribution to determining what is 
said. If the context did not satisfy this condition, then the assertion of the 
disjunction would be equivalent to the assertion of one of the disjuncts 
alone. So the disjunctive assertion would be pointless, hence misleading, 
and therefore inappropriate.13 

IV 

All of the ingredients of the solution to the puzzle are now assembled and 
ready to put together. It may seem that this is a rather elaborate appara­
tus for such a simple puzzle, but each of the elements - propositions and 
contexts, the semantic analysis of conditionals, the pragmatic constraint 
on conditionals, and the generalization about appropriateness - is inde­
pendently motivated. It is not that this apparatus has been assembled 
just to solve the little puzzle; it is rather that the puzzle is being used to 
illustrate, in a small way, the explanatory capacity of the apparatus. 

The argument we began with has the form A or B, therefore, if not-A, 
then B. This inference form is a reasonable inference form just in case 
every context in which a premiss of that form could appropriately be 
asserted or explicitly supposed, and in which it is accepted, is a context 
which entails the proposition expressed by the corresponding conclusion. 
Now suppose the premiss, A or B, is assertable and accepted. By the con­
straint on the appropriateness of disjunctive statements, it follows that the 
context is compatible with the conjunction of not-A with B. Hence the 
antecedent of the conditional conclusion, not-A, is compatible with the 
context. Now it follows from the pragmatic constraint on selection func­
tions that if a proposition P is compatible with the context, and another 
proposition Q is accepted in it, or entailed by it, then the conditional, if P, 
then Q, is entailed by it as well. So, since not-A is compatible with the 
context, and the premiss A or B is accepted, the conditional, ifnot-A, then 
A or B, must be accepted as well. But this conditional proposition entails 
the conclusion of the argument, if not-A, then B. So the inference is a 
reasonable one~ 

Since the argument works the other way as well, it follows that the 
indicative conditional and the material conditional are equivalent in the 
following sense: in any context where either might appropriately be 
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asserted, the one is accepted, or entailed by the context, if and only if the 
other is accepted, or entailed by the context. This equivalence explains the 
plausibility of the truth-functional analysis of indicative conditionals, but 
it does not justify that analysis since the two propositions coincide only 
in their assertion and acceptance conditions, andnotin their truth condi­
tions. The difference between the truth conditions of the two propositions 
will show itself if one looks at acts and attitudes other than assertion and 
acceptance. To take the simplest case, it may be reasonable to deny a 
conditional, even when not denying the corresponding material condition­
al. For example, I know I didn't do it, so I know that it is false that if the 
butler didn't do it, I did. But since I don't know whether the butler did it 
or not, I am in no position to deny the material conditional, which is equi­
valent to the disjunction, either the butler did it or I did. I may even 
think that that disjunction is very probably true. 

There are two other familiar inference forms involving conditionals 
which are judged to be reasonable, although invalid, by this analysis: 
contraposition and the hypothetical syllogism. It was one of the surprising 
consequences of the semantic analysis sketched above that these inferen­
ces are, in general, invalid. Nevertheless, these consequences count in 
favor of the semantic analysis rather than against it since there are clear 
counterexamples to both inference forms. But all the counterexamples 
involve SUbjunctive conditionals which are counterfactual-conditionals 
whose antecedents are presupposed to be false. Now we can explain why 
there are no purely indicative counterexamples, and also why the argu­
ments have the appearance of validity which they have. Both argument 
forms can be shown to be reasonable inferences, given that all conditionals 
involved are indicative, and given the assumption that indicative condition­
als always conform to the pragmatic constraint on selection functions.14 

v 

I want to conclude by looking at a notorious argument involving indica­
tive conditionals. The argument for fatalism is, I will argue, unreasonable 
as well as invalid. But it gains its appearance of force from the fact that it 
is an artful sequence of steps, each one of which has the form of a reason­
able or of a valid inference. The trick of the argument, according to the 
diagnosis I will give, is that it exploits the changing context in an illegiti-
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mate way. Subordinate conclusions, legitimately drawn within their own 
subordinate contexts, are illegitimately detached from those contexts and 
combined outside of them. To make clear what I mean, let me sketch the 
argument. The specific form it takes, and the example used to present it, 
are taken from Michael Dummett's discussion of fatalism in his paper, 
'Bringing about the Past.'15 The setting of the example is wartime Britain 
during an air raid. I reason as follows: "Either I will be killed in this raid 
or I will not be killed. Suppose that I will. Then even if I take precautions I 
will be killed, so any precautions I take will be ineffective. But suppose I 
am not going to be killed. Then I won't be killed even if I neglect all 
precautions; so, on this assumption, no precautions are necessary to 
avoid being killed. Either way, any precautions I take will be either in­
effective or unnecessary, and so pointless" 

To give an abstract representation of the argument, I will let K mean 
"I will be killed," P mean "I take precautions," Q mean "precautions are 
ineffective," and R mean "precautions are unnecessary." The argument, 
reduced to essentials, is this: 

1. K or not-K 
2. 

I~P.K 3. 
4. 
5. rnOI

-
K 6. ~ not-P, not-K 

7. 
8. QorR 

Now I take it that the main problem posed by this argument is notto 
say what is wrong with it, but rather to explain its illusion of force. That 
is, it is not enough to say that step x is invalid and leave it at that, even if 
that claim is correct. One must explain why anyone should have thought 
that it was valid. Judged by this criterion, Dummett's analysis of the argu­
ment does not solve the problem, even though, I think, what he says about 
the argument is roughly correct. Dummett argues that any sense of the 
conditional which will validate the inference from 2 to 3 (and 5 to 6) must 
be too weak to validate the inference from 3 to 4 (and 6 to 7). Hence, how­
ever the conditional is analyzed, the argument as a whole cannot be valid. 
Dummett's argument to this conclusion is convincing, but it would be a 
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full solution to the problem only if he supplemented it by showing that 
there are in our language distinct senses of the conditional that validate 
each of those steps. This I do not think he can do, since I do not think the 
force of the argument rests on an equivocation between two senses of the 
conditional. 

According to the semantic and pragmatic analyses sketched above, 
there is one sense of the conditional according to which the inference from 
2 to 3 is a reasonable inference,16 and which is also strong enough to jus­
tify the inference from 3 to 4. The fallacy, according to the diagnosis, is 
thus in neither of the steps that Dummett questions. Both of the sub­
arguments are good arguments in the sense that anyone who was in a 
position to accept the premiss, while it remained an open question whether 
or not the antecedent of the conditional was true, would be in a position 
to accept the conclusion. That is, if I were in a position to accept that I 
were going to be killed even though I hadn't yet decided whether or not to 
take precautions, then I would surely be reasonable to conclude that taking 
precautions would be pointless. Likewise if I knew or had reason to 
accept that I would not be killed. 

The problem with the argument is in the final step, an inference which 
seems to be an instance of an unproblematically valid form-constructive 
dilemma which has nothing essential to do with conditionals. The argu­
ment form that justifies step 8 is this: A or B; C follows from A; D follows 
from B; therefore, Cor D. It is correct that the conclusion follows validly 
from the premiss provided that the subarguments are valid. But it is not 
correct that the conclusion is a reasonable inference from the premiss, 
provided that the subarguments are reasonable inferences. In the fata­
lism argument, the subarguments are reasonable, but not valid, and this is 
why the argument fails. So it is a confusion of validity with reasonable 
inference on which the force of the argument rests. 

VI 

One final remark: my specific motivation for developing this account of 
indicative conditionals is of course to solve a puzzle, and to defend a 
particular semantic analysis of conditionals. But I have a broader moti­
vation which is perhaps more important. That is to defend, by example, 
the claim that the concepts of pragmatics (the study oflinguistic contexts) 
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can be made as mathematically precise as any of the concepts of syntax 
and formal semantics; to show that one can recognize and incorporate 
into abstract theory the extreme context dependence which is obviously 
present in natural language without any sacrifice of standards of rigor.!7 
I am anxious to put this claim across because it is my impression that 
semantic theorists have tended to ignore or abstract away from context de­
pendence at the cost of some distortion of the phenomena, and that this 
practice is motivated not by ignorance or misperception of the pheno­
menon of context dependence, but rather by the belief that the phenomenon 
is not appropriately treated in a formal theory. I hope that the 
analysis of indicative conditionals that I have given, even if not correct 
in its details, will help to show that this belief is not true. 

Cornell University 

NOTES 

• The ideas in this paper were developed over a number of years. During part of this 
time my research was supported by the National Science Foundation, grant number 
GS-2574; more recently it was supported by the John Simon Guggenheim Memorial 
Foundation. 
1 The argument in the opposite direction - from the indicative conditional to the 
material conditional - is uncontroversially valid. 
2 This does not exhaust the options. Three other possible strategies might be mentioned. 
(I) Defend the direct argument, not by accepting the truth-functional analysis of the 
conditional, but by rejecting the truth-functional analysis of the disjunction. (2) Give 
a three-valued interpretation of the indicative conditional, assigning the neutral value 
when the antecedent is false. (3) Interpret the indicative conditional as a conditional 
assertion rather than the assertion of a conditional proposition. Alternative (1) might 
disarm this particular puzzle, but it seems ad hoc and would not help with other per­
suasive arguments for the material conditional analysis. Alternative (2) would conflict 
with some basic and otherwise plausible pragmatic generalizations such as that one 
should not make an assertion unless one has good reason to think that it is true. Alter­
native (3) seems to me the most promising and plausible alternative to the account 
I will develop, but to make it precise, I think one needs much of the framework of a 
pragmatic theory that I shall use in my account. 
3 Photo-copies have been widely circulated; part of it has been recently published in: 
D. Davidson and G. Harman (eds.), The Logic of Grammar, Dickenson, Encino, Ca\., 
1975, pp. 64-75. 
4 See David Lewis, Caunterfactuals, Harvard University Press, Cambridge, 1973, pp. 
84-91 for a defense of realism about possible worlds. 
5 See M. J. Cresswell, Logics and Languages, Methuen, London, 1973, pp. 23-24, and 
Stalnaker, 'Pragmatics,' in G. Harman and D. Davidson (eds.), Semantics of Natural 
Languages, Reidel, Dordrecht, 1972, pp. 381-82 for brief discussions of the intuitive 
motivation of this definition of proposition. 
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8 For a fuller discussion and defense of this concept, see Stalnaker, 'Presuppositions', 
Journal of Philosophical Logic, (1973), 447-457. 
7 Elsewhere, I have called this set the presupposition set, but this terminology proved 
misleading since it suggested a set of presuppositions - propositions presupposed -
rather than a set of possible worlds. The terminology adopted here was suggested by 
Lauri Karttunen. 
8 Stalnaker, 'A Theory of Conditionals', in N. Rescher (ed.), Studies in Logical Theory, 
Blackwell, Oxford, 1968, pp. 98-112, and Stalnaker and R. H. Thomason, 'A Semantic 
Analysis of Conditional Logic', Theoria, 36 (1970), 23-42. See also Lewis, Counter­
factuals. The formal differences between Lewis's theory and mine are irrelevant to the 
present issue. 
9 If A is the impossible proposition - the one true in no possible world - then there will 
be no possible world which can be the value of the function, f(A, i), and so the function 
is left undefined for this case. To take care of this special case, the theory stipulates 
that all conditionals with impossible antecendents are true. 
10 I was slow to see this despite the existence of clear examples in the literature. Com­
ments by John Watling in a discussion of an earlier version of this paper helped me to 
see the point. 
11 This is Watling's example. 
12 'A Note on Subjunctive and Counterfactual Conditionals', Analysis 12 (1951),35-38. 
13 As with the pragmatic constraint on selection functions, there may be exceptions 
to this generalization. One exception is a statement of the form A or B or both. (I 
assume that the meaning of 'or' is given by the truth table for inclusive disjunction.) 
But statements which conflict with the principle must satisfy two conditions if they are 
to be appropriate. First, the statement must wear on its face that it is an exception so 
that it cannot be misleading. Second, there must be some explanation available of the 
purpose of violating the generalization, so that it will not be pointless. In the case of the 
statement A or B or both, it is clear from the logical relation between the last disjunct 
and the others that it must be an exception, so it satisfies the first condition. The ex­
planation of the point of adding the redundant third disjunct is this: the disjunctive 
statement, A or B, requires that A and not-B and Band not-A be compatible with the 
context, but leaves open whether A and B is compatible with the context. The addition 
of the third disjunct, while adding nothing to the assertive content of the statement, 
does change the appropriateness conditions of the statement, and thus serves to indicate 
something about the context, or about the presuppositions of the speaker. 
14 Strictly, the inference to the contrapositive is reasonable only relative to the further 
assumption that the indicative conclusion is not inappropriate. 
15 Philosophical Review 73 (1964), 338-359. 
16 As with contraposition, the inference from 2 to 3 is reasonable only relative to the 
further assumption that the conclusion of the inference is appropriate, which means in 
this case, only relative to the assumption that P, the antecendent of the conditional, 
is compatible with the context. This assumption is obviously satisfied since the setting 
of the argument is a deliberation about whether or not to make P true. 
1? I recognize, of course, that the definitions and generalizations presented here are 
nothing like a rigorous formal theory. But some parts of the apparatus (in particular, 
the semantics for conditionals) have been more carefully developed elsewhere, and I 
believe it is a relatively routine matter to state most of the definitions and generalizations 
which are new in precise model theoretic terms. Just to show how it might go, I will give 
in an appendix a very abstract definition of a logical concept of reasonable inference. 
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APPENDIX 

Entailment and reasonable inference relate propositions and speech acts, 
respectively, but in both cases, given an appropriate language, one can 
define corresponding logical notions - notions of entailment and reason­
able inference which relate formulas, or sentences independently of their 
specific interpretations. 

Let L be a language which contains sentences. A semantic interpreta­
tion of the language will consist of a set of possible worlds and a function 
which assigns propositions (functions from possible worlds into truth­
values) to the sentences, relative to contexts. The formal semantics for the 
language will define the class of legitimate interpretations by saying, in 
the usual way, how the interpretation of complex expressions relates to 
the interpretation of their parts. A context is an n-tuple, the first term of 
which is a context set (a set of possible worlds). The other terms are 
whatever else, if anything, is necessary to determine the propositions 
expressed by the sentences. 

Notation: I will use P, PI' P2, etc. as meta-variables for sentences, 
4J, 4JI, 4J2' etc. as meta-variables for propositions (for convenience, I will 
identify a proposition with the set of possible worlds for which it takes the 
value true); k, klo k2' etc. will be variables ranging over contexts. S(k) 
will denote the context set of the context k. \I P Ilk will denote the proposi­
tion expressed by P in context k under the interpretation in question. 
(Reference to the interpretation is supressed in the notation.) 

Entailment. One may define several notions of entailment. The basic 
notion is a language independent relation between propositions: 4Jl 
entails 4J2 if and only if 4J2 includes 4Jl' The logical concept of entailment, 
entailment-in-L, is a relation between sentences of L: PI entails P 2 if and 
only if for all interpretations and all contexts k, IIP1 11k entails IIP21Ik' 
Logical entailment is entailment in virtue of the logical structure of the 
sentences. Similarly, the logical concept of reasonable inference will 
identify the inferences which are reasonable in virtue of the logical 
structure of the sentences. 

Pragmatic interpretations. To define the logical notion of reasonable 
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inference, we need to expand the concept of an interpretation. A prag­
matic interpretation of L will consist of a semantic interpretation, an 
appropriateness relation, and a change function. The appropriateness 
relation A is a two place relation whose arguments are a sentence of L 
and a context. A(P, k) says that the assertive utterance of P in context k 
is appropriate. The change function g is a two place function taking a 
sentence of L and a context into a context. Intuitively, g(P, k) denotes 
the context that results from the assertive utterance of P in context k. 

Since L is unspecified here, I leave these notions almost completely 
unconstrained, but it is easy to see how the generalizations about dis­
junctive and conditional statements would be stated as postulates which 
give some substance to these notions as applied to a language containing 
these kinds of statements. Just as the semantics for a specific language 
will include semantic rules specifying the elements of the context and 
placing constraints on the allowable semantic interpretations, so the 
pragmatic theory for a specific language will include rules constraining 
the two distinctively pragmatic elements of a pragmatic interpretation, 
as well as the relations among the elements of the context. 

I will give here just two constraints which will apply to any language 
intended to model a practice of assertion. 

1. A(P, k) only if II P Ilk n S(k) # O. 

One cannot appropriately assert a proposition in a context incompatible 
with it. 

2. S(g(P, k» = S(k) n IIPllk' 

Any assertion changes the context by becoming an additional presuppo­
sition of subsequent conversation. (In a more careful formulation the 
second of these would be qualified, since assertions can be rejected or 
contradicted. But in the absence of rejection, I think it is reasonable to 
impose this constraint.) 

Both the appropriateness relation and the change function can be 
generalized to apply to finite sequences of sentences in the following 
way: Let u be a finite sequence of sentences of L, P l , P2 , •.• PD' Let klo 
k2 , ••• kD be a sequence of contexts defined in terms of u and a context k as 
follows: kl =k; ki+ l =g(ki' PJ Then A(u, k) if and only if, for all i from 
1 to n, A(Pi , kJ. g(u, k)=dfkn • 
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Reasonable inference. The inference from a sequence of sentences of L, 
a, to a sentence of L, P is reasonable-in-L if and only if for all interpreta­
tions and all contexts k such that A (a, k), S(g(a, k)) entails II P lI g(<1, k)' 

Note that there is no language independent concept of reasonable infe­
rence analogous to the language independent notion of entailment. The 
reason is that, while we have in the theory a notion of proposition that 
can be characterized independently of any language in which propositions 
are expressed, we have no corresponding non-linguistic concept of state­
ment, or assertion. One could perhaps be defined, but it would not be a 
simple matter to do so, since the identity conditions for assertion types 
will be finer than those for propositions. The reason for this is that diffe­
rent sentences may have different appropriateness conditions even when 
they express the same proposition. 
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TWO RECENT THEORIES OF CONDITIONALS 

In recent years, two new and fundamentally different accounts of condi­
tionals and their logic have been put forth, one based on nearness of possible 
worlds (Stalnaker, 'A Theory of Conditionals', 1968, this volume, pp. 41-
55; Lewis, Counterfactuals, 1973) and the other based on subjective con­
ditional probabilities (Adams, The Logic of Conditionals, 1975). The two 
accounts, I shall claim, have almost nothing in common, They do have a 
common logic within the domain on which they both pronounce, but that, 
as far as I can discover, is little more than a coincidence. Each of these dis­
parate accounts, though, has an important application to natural language, 
or so I shall argue. Roughly, Adams' probabilistic account is true of indi­
cative conditionals, and a nearness of possible worlds account is true of 
subjunctive conditionals. If that is so, the apparent similarity of these two 
'if' constructions hides a profound seman tical difference. 

1. THE TWO ACCOUNTS 

I begin with a rough and simplified sketch of the two accounts and relation­
ships between them. First, some terminology: I shall use 'proposition' as 
a theory-laden word, the theory being a representation of subjective prob­
ability, or credence. On this representation, we start with a set t of all 
epistemically possible worlds (or worlds). Any proposition is identified with 
a set of worlds, the worlds in which the proposition is true. Not every sub­
set of t need be a 'proposition'; rather the 'propositions' comprise a fixed 
set Yof subsets of t. Y is required to be a 'field of sets' whose 'universal 
set' is t. Y is a field of sets iff Y is a set of sets and, where t = U Yo 
t E Y and Y is closed under the operations of union and t-complemen­
tation. t is called the universal set of Y. Members of Yare called propo­
sitions of Y, and members of t are called worlds of Y. A person's 
credences, or degrees of belief, are represented by real numbers from zero 
to one, and the function p which gives them is a probability measure on 
Y: a non-negative real-valued function whose domain is .!T, such that pet) = 1 
and where propositions a and b are disjoint, pea U b) = pea) + p(b). (See 
Kyburg, 1980, pp. 14-18). When pea) *- 0, pCb/a) is defmed as the quotient 
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pea n b)jp(a); when pea) = 0, pCb/a) need not be defmed for purposes here. 
Where p gives a subject's credences, pCb/a) is his conditional credence in 
b given a; it is the credence he would give b were he to learn a and nothing 
else. Logical notation will be used: '&' or juxtaposition for intersection, 
'v' for union, '- a' or 'ii' for the t-complement of a, and 'a ~ b' for iiv b. 
We let f be the empty set, and represent entailment set-theoretically: a 
entails b iff a b b. 

On the Adams account (1975), an indicative conditional need not express 
a proposition in this sense. Indicative conditionals are rather to be under­
stood through their conditions of acceptance or assertability, and where 
a and b are propositions, one accepts the indicative conditional 'If a, then b' 
iff one's conditional credence in b given a is sufficiently high. On this basis, 
a logic for conditionals can be constructed. 

Consider fIrst the logic of propositions. For fmite sets of propositions, 
the notions of consistency and consequence can be formulated in terms 
of probabilities, and the notions so formulated turn out to be equivalent 
to the notions in their standard formulation. Where Y is a field of sets and 
J;/ is a fmite set of propositions of 51, we can define 

J;/is p-consistent iff for every 0> 0, there is a probability 
measure p on Y such that for every A E ~ p(A) > 1 - 0 
(Adams, 1975, p. 51). 

Where cW"is a fmite set of propositions of Yand B is a proposition of Y, we 
can defIne 

B is a p-consequence of Ji/ iff for every e> 0 there is a 0 > 0 
such that for any probability measure on p on Y with p(A) > 1 
- 0 for each A E cW", we have pCB) > 1 - e. 

(If there is such a 0, it turns out, then e/n, where n is the number of 
propositions in Jt"; is such a 0.) It can then be shown that J;/ is p-consistent 
iff it is consistent, and B is a p-consequence of cW" iff B is a consequence of 
%. (Adams, 1975, pp. 57-58). 

Turn now to conditionals, and consider pea ~ b) just to be the conditional 
probability p(b/a). The defmitions of 'p-consistent' and 'p-consequence' 
can then be applied without change to conditionals and sets of conditionals, 
or to mixed sets of conditionals and propositions. (Indeed in these defmi­
tions, we can represent any proposition a by the conditional t ~ a, since 
for any probability measure p, pea) = p(a/t) = pet ~ a).) 

Note that this account applies only to conditionals constructed from 
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propositions, with -+ the main connective. Where a, b, and c are propositions, 
the account deals with a -+ b, but not with (a -+ b) -+ c, a -+ (b -+ c), 
a & (b -+ c), a v (b -+ c), - (a -+ b), and the like. The account is not one of 
conditionals embedded in longer sentences. Formally, we might consider 
a conditional simply to be an ordered pair of propositions; in any case, for 
all the Adams account tells us, a conditional is not itself a proposition and 
cannot be treated as one. l 

On the Stalnaker nearness account (1968), in contrast, a conditional is 
a proposition. What proposition it is is determined by a selection function 
(or s-function), which we may think of as picking out, for each non-empty 
proposition a and world w, the world in a (or a-world) nearest to w. The 
conditional 'If a then b' says that the nearest a-world to the actual world 
is a b-world. In other words, for a given s-function 0, the conditional 
a~ab determined by 0 is the set {wlo(a, w)Eb). Formally, 0 is an 
s-function for Y iff to every non-empty proposition a and world w, 0 

assigns a world, and these conditions are satisfied for every world w, prop­
osition a =1= f. and proposition b. 

(SI) o(a, w) E a. 

(S2) If wE a, then o(a, w) = w. 

(S3) If a b. band o(b, w) E a, then o(a, w) = o(b, w). 

A Stalnaker conditional as I have defmed it is a set of worlds but may not 
be a proposition. That is to say, let Y be a field of sets, a and b be prop­
ositions of Y with a =1= f, and 0 be an s-function for Y; then a ~ ab 
is a subset of t but may not be a proposition of .!T'. 0 will be called an 
internal s-function for Y if 0 is an s-function for Y and for every a, 
bE Ywith a =1= f. 

(S4) a ~ a b is a proposition. 

Given propositions a and b, different s-functions 0 will yield different 
sets of worlds as the value of a ~ a b. The choice of an s-function, Stalnaker 
says, is a pragmatic matter, which is determined by context (1968), pp. 
109-111; this volume, pp. 51-52, 1975) 

Stalnaker's account allows conditionals to be embedded, so that 
(a -+ b) -+ c, a -+ (b -+ c), a v (b -+ c), and the like are allowed. Let us confme 
ourselves for the moment, though, to expressions of the kind Adams 
countenances, and return to treating conditionals as ordered pairs of prop­
ositions. That way, we can compare what the Stalnaker theory has to say 
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with what the Adams theory has to say within the more limited domain 
of the Adams theory. Where Y is a field of sets, then, a conditional a ~ b 
of Y will be an ordered pair <0, b) of propositions of .!T, with a =1= f. 

Note first that, as with the Adams theory, we may identify a proposition 
a with a conditional t ~ a. For any s-function G, a = (t ~ U b); that follows 
from (S2). Thus instead of talking about logical relations among propositions 
and conditionals here, we may speak simply of conditionals. 

Now using the Stalnaker machinery, we can give new characterizations 
of consistency and consequence of sets of conditionals. Let AI, ... , An, 
C be conditionals of .!T, and let ~= {AI> ... , An}. Henceforth, where 
A is a conditional a ~ b, write a ~ U b as AU. ~ is s-consistent iff for some 
s-function G for ~ the set J)/u = {Af , ... ,A~} is consistent. Here for 
any given G, A lu , ... ,A:: ate sets of epistemically possible worlds, and so 
to say that ~u is consistent is just to say that it has a non-empty inter­
section. C is an s-consequence of ~ iff for every s-function G for Yo CU is 
a consequence ofJ¥'u, or in other words, iff for every such G, 

Ar & ... &Ag kCu . 

Modified versions of these defmitions restrict consideration to s-functions 
which are internal: ~ is s-consistent in the strong sense iff for some internal 
s-function G for Y, ~u is consistent, and C is an s-consequence of ~ in 
the weak sense iff for every internal s-function G for Y, CU is a consequence 
of ~u. Theorem 2 of the Appendix shows that these defmitions are equi­
valent to the ones they modify. 

Now at least for finite sets of conditionals, the relations of p-consequence 
and s-consequence coincide, as do the properties of p-consistency and s­
consistency. That I shall prove in Section 3 and the Appendix. Thus even if 
the two theories are incompatible with each other, if one explains the logic 
of conditionals on their common domain, the other will appear to do so 
equally well. 

2. N EAR N E S SAN D PRO B A BILl TI E S: APR I MER 

Why do the two accounts yield the same logic? It might seem that they do 
so because both employ the same fundamental idea, that of a minimal change 
or minimal revision. They do so, though, in different ways. Here are the 
maxims that guide the two treatments. Adams' maxim: to decide whether 
to believe a conditional a ~ b, hypothetically revise your beliefs in a mini­
mal way so as to believe a, and then see if you believe b. Stalnaker's maxim: 
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Fig. 1. 

to decide whether a conditional a -+ b is true in a world w, change w in a 
minimal way so that a is true, and then see whether b is true in that changed 
world. Adams' system, then, involves changes in states of belief, whereas 
Stalnaker's involves changes in a world - that is, in an epistemically possible 
world. Now a world, as the term is used here, is not a state of belief. A world 
is rather a maximally specific way things might be. A state of belief, in 
contrast, is no more specific than one's beliefs are opinionated; it can be 
represented by a probability measure. Take an illustrative contrast: any 
world is either one in which Richard III had the two young princes killed 
or one in which he did not, but I give some credence to both possibilities. 
Thus my credence measure - the probability measure that represents my 
state of belief - assigns positive credence both to the set of worlds in which 
he had them killed and to the set of worlds in which he did not.2 

The logic of states of belief can be illustrated by Venn diagrams. 3 In a 
Venn diagram, worlds are represented by points and propositions by regions, 
with the area of each region proportional to its probability. The entire 
region of the diagram is a proposition k of probability one. In Figure 1, 
the entire circle represents k, the left half of the circle represent a prop­
osition a, and the lower left part of that half-circle represents a proposition 
b which entails a. A minimal revision of k to accomodate a simply involves 
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erasing the right half of the circle and expanding the left half uniformly. A 
minimal change in w to make a true is a shift from world w to that a-world 
w' which, in some sense, is most like w. 

likeness of worlds need not, in a Venn diagram, be represented by geo­
metric nearness. Suppose, however, that a indeed is an s-function for which 
a(a, w) is always the a-world geometrically nearest to w in Figure 1. Then c 
is the set of a-worlds the nearest a-world to which is a b-world. Thus b ve 
is the Stalnaker conditional a ~ a b for this a. Interesting facts can now 
be read off the diagram. In Figure 1, the conditional probability pCb/a) is 
approximately t, since ab is roughly half the area of a. pCb v c), which is 
pea ~ a b), on the other hand, is considerably less than !. We thus see 
that nothing in the Stalnaker logic requires that pea ~ a b) = pCb/a) when 
pea) i= 0; the probability of a Stalnaker conditional may be distinct from the 
corresponding conditional probability.4 

Moreover, for any conditional proposition a ~ b to be such that 

(1) pea ~ b) = pCb/a), 

a ~ b must divide the a-worlds in exactly the proportion in which b divides 
the a-worlds. In other words, if in Figure 2, e is the a-part of a ~ b, we must 
have 

(2) p(e)jp(a) = p(b)jp(a). 

That should be obvious from Figure 2. The proof assumed only that a ~ b 
is a genuine proposition, and that it is true in every ab-world and false in 
every ab-world, so that 

(3) a&(a~b) = abo 

The question is then how a ~ b should divide the a-worlds. For to treat a 
conditional a ~ b as a proposition a ~ b is to suppose that in every possible 
world in which a holds, there is a fact of the matter whether a ~ b holds 
in that world: the conditional is either true or false in that world. Now we 
have (a ~ b) == (b ve); thus since band e are disjoint, pea ~ b) = pCb) + pee). 
Since b k a, we have pCb/a) = p(b)jp(a). Thus since pea) i= 0, (1) becomes 

pCb) + pee) = p(b)jp(a). 

Given that 1 - pea) i= 0, this is algebraically equivalent to 

pee) _ pCb) 
I-p(a) - pea) , 
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and with p(a) substituted for 1 - p(a), this is (2), which was to be proved. 
c, then, is carved out of a in such a way as to make th ratio p(c)fp(a) equal 
to p(b)fp(a). I shall call this the Fundamental Consequence of requirements 
(1) and (3). A like argument shows that (2) and (3) entail (1); thus given (3), 
we have that (2) and (1) are equivalent. 

It is hard to imagine a natural way of choosing c that would satisfy the 
Fundamental Consequence. We have already seen that not all Stalnaker 
conditionals do: it is not the case that for every p, a, b, and a, 

(4) p(a ~ a b) = p(b/a) if p(a) -=1= O. 

David Lewis (1976, pp. 300-303; this volume, pp. 131-134) has proved 
something stronger: that except in utterly trivial cases, there is no a such 
that for every p, a, and b, (4) holds. Lewis's result, indeed, is even stronger 
than this. Let ~ be any two-place propositional function: function which, 
to any two propositions a -=1= f and b assigns a proposition a ~ b. We do not 
require that ~ be a Stalnaker conditional. We do suppose, for some ftxed 
p, that p(a ~ b) = p(b/a) whenever p(a) -=1= 0, and that the same holds for 
the probability measure obtained from p by conditionalizing on any prop­
osition c of non-zero probability. In other words, we suppose the following. 

(PC) For any a, b, c E Y, if p(ac) -=1= 0, then p(a ~ b/c) = p(b/ac). 
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Fig. 3. 

A probability measure will be called non-trivial iff there are at least three 
mutually disjoint propositions to which it assigns non-zero probability. Lewis 
showeds that (PC) holds for no non-trivial probability measure p. 

The proof is best seen by means of Figure 3. There ii and b are two of 
the three mutually disjoint propositions whose existence is assured by the 
non-triviality of p; thus ab, b, and ii partition the space, all have non-zero 
probability, and ab = b. Now from (PC), 

pea =* bib) = p(b/ab) = o. 
Thus a=> b and b intersect at most in a set of measure zero, so that 
pea =* b)" p(b). But this is absured, since from (PC) and ab = b, 

p(a=*b) = pCb/a) = p(b)/p(a), 

and since pea) < 1, it follows that pea => b) > p(b). 
We began with the question of why two fundamentally different theories 

of conditionals, Adams' and Stalnaker's, yield the same logic on their com­
mon domains. From Lewis' proof, we know that the answer cannot be this: 
that for some s-function a, we have pea D-* a b) = pCb/a) for every prob­
ability measure p and pair of propositions a and b with pea) =1= O. The answer 
cannot even be this: that for some s-function a and probability measure p, 
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Fig. 4. 

we have pc(a Q+ a b) = pc(b/a) for all propositions a, b, e with p(ae) '* 0, 
where Pc is the probability measure obtained from p by conditionalizing 
on e. We might, however, look for a weaker ground for the sameness of the 
two logics. Might it be the case, for at least some internal s-function 0, that 
there is a fIxed probability measure p such that, for any two propositions 
a and b with pea) '* 0, we have pea D+ a b) = pCb/a)? 

Stalnaker (1976, pp. 303-304) has shown that even to this question the 
answer is no.6 For no non-trivial probability measure p on fIeld of setsY is 
there an internal s-function 0 such that for every conditional a ~ b of Y, the 
following hold. 

(i) a & (a D+ a b) = ab 

(li) pea D+ a b) = pCb/a) if pea) '* 0. 

For suppose, as in Figure 4, there are three mutually disjoint propositions 
of non-zero probability, two of which are it and b. Again let e be 
it & (a D+ a b). From (2), the Fundamental Consequence of (i) and (li), 
we know that e must have non-zero probability. Now consider the con­
ditional e D+ a abo For this, the Fundamental Consequence is that where 
d = e & (e D+ a ab), we must have p(d)/ pee) = p(ab)/ pee). Since p(ab) '* ° 
and pee) '* 0, we have p(d) '* 0, and there is ad-world - that is, a world 
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w in which both c and c 0+ a ab obtain. c, though, is precisely the set of 
a·worlds whose nearest a-world is a b-world, and since a ~ c, c cannot contain 
any worlds whose nearest c-world is an ali-world. For if the nearest c-world 
to a c-world is an a-world, it is the nearest a-world, and hence not a b-world. 
That completes Stalnaker's proof. 

Note that the proof involves treating conditionals, and truth-functions 
involving conditionals, as themselves components of conditionals to which 
the requirement that the probability of a conditional equal the corresponding 
conditional probability applies. Van Fraassen succeeds in giving the require­
ment a more narrow scope. Start off with a fmite field Yof sets and a 
fixed probability measure p over Y. The resulting probability space, Van 
Fraassen shows, can be embedded in a larger probability space with an 
internal s-function a such that the probability of any conditional a 0+ a b 
formed from propositions in the original set equals the corresponding con­
ditional probability.7 This result provides the key to answering the question 
of why the Adams and Stalnaker logics are the same in their common 
domain. 

The rough idea of the Van Fraassen construction is this: Let there be 
many possible worlds, and apart from the requirement that each world be 
nearest to itself, decide nearness by chance. That is to say, where w is a 
world, whenever w Ej: a and b ~ a, let the chance that the nearest a-world 
to w is a b-world simply be pCb/a). I shall call such an s-function a p-random 
s-function. Then indeed where a is such an s-function and c = a & (a 0+ a b), 
we have p(c)/p(a) = p(b)/p(a): the Fundamental Consequence is satisfied. 
For p(C)/P(ii) is just the proportion of a worlds whose nearest a-world is a 
b-world, and by selecting the nearest a-world to any a-world randomly, we 
guarantee that this proportion is just p(b)/p(a). 

3. THE EQUIVALENCE OF THE TWO LOGICS 

The possibility of a p-random s-function helps to explain why the logic of 
p-consequence and s-consequence are the same: using such s-functions, we 
can show that any s-consequence is a p-consequence. Let AI, ... , An> C be 
conditionals, let .s<rt' = ~I' ••• ,An}, and let C be an s-consequence of.s<rt'. We 
are to prove that C is a p-consequence of .s<rt'. First we need to prove that 
embedding a field of sets in a larger one does not affect the relation of 
s-consequence; in the Appendix, that is Theorem 1 and the main result is 
Theorem 3. Now given € > 0, let 0 = fin, and suppose p(A) > 1 - 0 for every 
A E J¥. What we are to show is that p(C) > 1 - €. 
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Here is a sketch of the proof, with questions of embedding ignored. Let 
a be a p-random s-function. Since C is an s-consequence of ..w; Ca is a con­
sequence of fA f, ... , A::}, and so since p(A a) > 1 -l) for each A E ~ we 
have p(Ca) > 1 - e, and hence p(C) > 1 - e. Supposing that C is an s­
consequence of..w-; we have shown that C is a p-consequence of Si'. 

One way to prove the converse is this. Adams (1975, pp. 60-61) gives 
a set of inference rules that are complete for p-consequence: any p­
consequence is derivable by those rules. Inspection of those rules reveals 
that each is sound for s-consequence: any conclusion derived by those rules 
is an s-consequence of its premises. Therefore any p-consequence is an s­
consequence.8 

I now sketch an independent proof that any p-consequence is an s­
consequence. In the ftrst place, for any ftnite set Stt' of conditionals and 
conditional c -+ d, c -+ d is a p-consequence of Stt' iff Stt' u {c -+ d} is not 
p-consistent, and c -+ d is an s-consequence of Stt' iff Stt' u {c -+ d} is not 
s-consistent. The fust is noted by Adams, and both are straightforward con­
sequences of the defmitions. Therefore to show that any p-consequence 
is an s-consequence, it will suffIce to show that any s-consistent set of con­
ditionals is p-consistent. For suppose we have shown this, and suppose 
c -+ d is a p-consequence of Si'. Then Stt' U {c -+ d} is not p-consistent. Hence 
by supposition, Stt' U {c -+ d} is not s-consistent, and so c -+ d is an s­
consequence of Stt'. Hence to complete the proof that p- and s-consequence 
coincide, we need only prove that any s-consistent set of conditionals is 
p-consistent, which is Theorem 5 in the Appendix_ 

The idea of its proof is to show how, given a l) > 0 and an s-function 
a such that the set Stt'a is consistent, to construct a probability measure 
p such that all the antecedants have non-zero probability and all the con­
ditional probabilities p(bJD.j) are greater than 1 -l). Here is a sketch of 
the procedure. SinceStt'a is consistent, we can let w* be a world in its inter­
section; thus all of al [}+ a bl> ... , a,. [}+ a bn hold at w*. We now order the 
antecedants al> ... , a,. by their distance from w*, and consider the sequence 
WI> ••• , Wm of worlds nearest to w* in the sequence of antecedants so 
ordered. We can let our probability measure p give non-zero probability 
only to worlds WI> ••• , wm in such a way that the probability of each world 
in the sequence dwarfs the combined probability of the remaining worlds 
in the sequence. That is, for each Wj, P(Wi) ~ (l-l»P(Wi V .. '. vwm ). Then 
for each a" and ~, we have p(~/ak) > 1 -l). For suppose Wj is the nearest 
a,,-world to w*. Then f4 holds at Wj, and holds at no Wi that is nearer than Wj 

to w*. Moreover, since f4 [}+ a bk holds at w*, ~ holds at Wj' Thus the 
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ak-worlds consist of some subset of {wi> ... , wm }, and the tzttbk-worlds 
consist of at least Wj' Hence since p(tztt~) ~ (1 - 8)p(wj v ... vwm ) ~ 

(1 - 8)p(ak), we have p(ak~)/p(tztt) ~ 1-8, or in other words, p(bk/ak) ~ 
1 - 8. The construction has succeeded, and the Theorem is proved. 

We have shown that any s-consequence is ap-consequence and conversely: 
the Adams and Stalnaker logics are equivalent on their common domain. 
A striking aspect of both halves of the equivalence proof is that they draw 
on no important similarity of the pictures that motivate the two logics. 
Rather, each proof is based on a trick. The trick behind the proof that 
any s-consequence is a p-consequence is to find, for any probability measure 
p, a Van Fraassen s-function: a function 0 which has the formal properties 
of a Stalnaker selection function, but is so far from reflecting any intuitive 
idea of 'nearness' of possible worlds that, for proposition a and world W 

in which a does not hold, it selects an a-world as formally 'nearest' to W at 
random. The trick behind the proof that any p-consequence is an 
s-consequence is to fmd, for any s-function 0, a probability measure p which 
corresponds in the needed way, but whose correspondance to 0 is contrived 
and unnatural. We took an arbitrary world w* in the intersection of a set 
of Stalnaker conditionals, ordered the antecedants by distance from w*, 
and concentrated all the probability in the antecedant worlds nearest to 
w*, in decreasing orders of magnitude as the antecedants grew more distant 
from w*. The proofs in both directions, in short, match s-functions and 
probability measures in a contrived way. 

Here, then, is our situation. We saw earlier that the superficial connection 
between the Stalnaker and Adams accounts - that both depend in some 
way on a 'nearest' revision - masked a fundamental disparateness of the 
accounts. Still, the two accounts yield the same logic in the domain on 
which they both pronounce. That suggests that in some deep way the two 
accounts indeed are connected. The proofs I have given, though, display the 
sameness of logics as resting not on a deep connection between the two 
accounts, but on contrivances. That does not preclude there being a deep con­
nection which some other proof might display, but at this point we have no 
reason to regard the sameness oflogics as anything but coincidence. 

4. GRAMM ATICALL Y IND ICA T IVE AND S UBI UNCTIVE 

CONDITIONALS 

I tum now to natural language. Semantically, I shall argue, conditionals 
are of two major kinds, which are alike only superficially. The Adams 
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account applies to conditionals of one kind, which I shall call 'epistemic 
conditionals'; the Stalnaker account applied to conditionals of the other 
kind, which I shall call 'nearness conditionals'. To this seman tical distinction 
there roughly corresponds a syntactical distinction. For the most part, what 
I shall call 'grammatically indicative' conditionals are epistemic conditionals 
and what I shall call 'grammatically subjunctive' conditionals are nearness 
conditionals. The grammatical distinction has little to do with the indicative 
and subjunctive moods, and I use the terms I do only for want of better. 

As grammatical paradigms, take the pair: 

(5) If Oswald hadn't shot Kennedy, no one would have shot Oswald. 

(6) If Oswald didn't shoot Kennedy, no one shot Oswald. 

(5) I shall treat as a paradigm of a grammatically subjunctive conditional; 
(6), as a paradigm of a grammatically indicative conditional. There are two 
grammatical differences between them, one in the antecedent and one in 
the consequent. In the antecedent, (5) uses the past perfect 'hadn't shot' 
where (6) uses the simple past 'didn't shoot'. In the consequent, (5) uses 
'would have shot' where (6) uses 'shot'. Consider each of these in turn. 

Although grammatically, only the antecedent of (6) is in the simple 
past, semantically both antecedents concern the simple past. The antecedent 
of (5) is thus grammatically prior to its time of reference. That can be seen 
most clearly from a variant of (5) with the same meaning and general gram­
matical form, 

(7) If Oswald hadn't shot Kennedy when he did, no one would have 
shot Oswald. 

The situation posited in the antecedent of (7) is one in which Oswald didn't 
shoot Kennedy at the time when in actual fact he did. It is not one in which 
Oswald hadn't shot Kennedy at the time when in fact he did; that could only 
mean that he hadn't already shot Kennedy at the time when in fact he shot 
Kennedy, which is true - or at least would be true in fact, Oswald shot 
Kennedy only once. The antecedent of (7), though, clearly posits a contrary 
to fact situation in which Oswald didn't shoot Kennedy at the very time 
when in fact he shot Kennedy. I shall call this use of a grammatical tense 
prior to the one ordinarily appropriate for the time of the antecedent an 
antecedent tense shift. 

The second feature by which (5) differs from (6) is in its use of 'would' 
in the consequent. It will turn out that grammatically, 'would' acts as the 
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past tense of 'will', and so the feature of (5) to note is that there is a form 
of 'will' in the consequent. 

I shall call a conditional with antecedent tense shift and a model 
auxilliary such as 'will' in the consequent grammatically subjunctive, and 
other conditionals grammatically indicative. The terms are unfortunate in 
a way, since the antecedent of a grammatically subjunctive conditional, we 
shall see, need not be in the subjunctive mood. I use these terms because I 
can fmd no simple, familiar terms to mark the systematic distinction I want 
to make which are not at least equally misleading. 

Here are general directions for constructing conditionals with the features 
I have noted. Conditionals which are constructed in this way and which, 
as a result, exhibit antecedent tense shift, form, I shall claim, a significant 
grammatical class. Begin with a stem conditional, which, because its verbs 
lack tense and person, is not itself a piece of English. 

(8) If he be upset, she comfort him. 

Optionally, either stem may be transformed into a perfect, progressive, 
or perfect progressive. 

(9) If he have been upset, she have comforted him. 

(10) If he be upset, she be comforting him. 

(11) If he have been upset, she comfort him. 

A model auxilliary9 such as 'will' is now applied to the verb stem of the 
consequent, so that (8}-(11) become 

(12) If he be upset, she will comfort him. 

(13) If he have been upset, she will have comforted him. 

(14) If he be upset, she will be comforting him. 

(15) If he have been upset, she will comfort him. 

Finally, either present tense, with appropriate person, is applied to both 
clauses, or past tense is applied to both clauses. (12}-(15) now become 

(16) If he is upset, she will comfort him. 

(17 *) If he was upset, she would comfort him. * 
(18) If he has been upset, she will have comforted him. 



TWO RECENT THEORIES OF CONDITIONALS 225 

(19) If he had been upset, she would have comforted him. 

(20) If he is upset, she will be comforting him. 

(21 *) If he was upset, she would be comforting him. * 

(22) If he has been upset, she will comfort him. 

(23) If he had been upset, she would comfort him. 

(17*) and (21 *) are not securely part of standard English; their antecedent 
need to be in the subjunctive mood. 

(17) If he were upset, she would comfort him. 

(21) Ifhe were upset, she would be comforting him. 

Present antecedents in (16), (18), (20), and (22), on the other hand, seem 
quaint or worse in the subjunctive mood; see (12}-(15). The subjunctive 
mood is now vestigial in English, and applies to antecedents of what I am 
calling 'grammatically subjunctive conditionals' only in the past tense. 

The instructions I have given allow thirty-two grammatically subjunctive 
'will' conditionals to be constructed from the stem conditional (8). Optional 
features are past or present tense, perfect antecedent, progressive antecedent, 
perfect consequent, and progressive consequent. Perhaps not all thirty-two 
are easily interpretable, but I think that for each, some imaginable context 
can be found in which it can be read with antecedent tense shift. 

The rules for the formation of indicative conditionals are much more 
flexible: a modal auxiliary in the consequent is optional, and past and present 
tenses can apply separately to antecedent and consequent. The following, 
for instance, are allowable. 

(24) If he was upset, she is comforting him. 

(25) If he is upset, she had been yelling at him. 

(26) If he was upset, she willleam about it. 

These rules allow the construction both of sentence like (24}-(26) which 
cannot be constructed with the rules for subjunctive conditionals, and of 
sentences which can. In the case of sentences like (22), which can be con­
structed by either set of rules, the sentence is syntactically ambiguous: it 
is read as a grammatically subjunctive conditional if it is read as having 
antecedent tense shift, and otherwise it is read as a grammatically indicative 
conditional. 
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I propose that what I have been calling 'grammatically subjunctive con­
ditionals' form a significant grammatical class. Grammatically subjunctive 
conditionals are those conditionals with the following two features. 

(i) A modal auxilliary is the stem verb of the consequent, its tense 
agreeing with that of the antecedent. 

(li) Feature (i) induces an antecedent tense shift: the time to which 
the antecedent is understood as referring is after the time to 
which if would refer if uttered as an independent sentence .. 

Indicative conditionals lack feature (li) and may lack feature (i). Only gram­
matically subjunctive conditionals have antecedents in the subjunctive mood, 
but many have antecedents in the indicative mood. The next question is 
whether this grammatical distinction has any seman tical consequences apart 
from the antecedent tense shift. 

5. THE SEMANTICAL DISTINCTION 

Sly Pete and Mr. Thomas Stone are playing poker aboard a Mississippi River 
boat. Both Pete and Stone are good poker players, and Pete, in addition, 
is unscrupulous. Stone has bet up to the limit for the hand, and it is now 
up to Pete to call or fold. Zack has seen Stone's hand, which is quite good, 
and signalled its contents to Pete. (Call this moment to). Stone, suspecting 
something, demands that the room be cleared. Five minutes later, Zack 
is standing by the bar, confident that the hand has been played out but 
ignorant of its outcome. (Call this moment t1). He now entertains these 
two conditionals. 

(27) If Pete called, he won. 

(28) If Pete had called, he would have won. 

At t1, Zack accepts (27), because he knows that Pete is a crafty gambler 
who knew Stone's hand; thus Zack knows that Pete would not have called 
unless he had a winning hand. (28), on the other hand, Zack regards as 
probably false. For he knows that Stone's hand was quite good, and there­
fore regards it as unlikely that Pete had a winning hand. Thus he regards 
it as unlikely that if Pete had called, he would have won. 

(27) is grammatically indicative, whereas (28) is grammatically sub­
junctive. To this grammatical difference, we have seen, there corresponds 
a seman tical difference. What is it? Zack knows enough that were he to learn 



TWO RECENT THEORIES OF CONDITIONALS 227 

that Pete had called and to learn nothing else, he would come to believe 
that Pete had won. In other words, because Zack believes that Pete would 
not have called unless he had a winning hand, Zack's conditional credence 
p (Pete won / Pete called) is close to one. (27), then, seems to fit Adams' 
theory: Zack's acceptance of (27) depends on the corresponding condi­
tional probability's being high, the probability in question being Zack's 
credence. 

F. P. Ramsey wrote in a footnote (1931, p. 247), "If two people are 
arguing 'If p will q?' and both are in doubt as to p, they are adding p hypo­
thetically to their stock of knowledge and arguing on that basis about 
q .... We can say they are fixing their degrees of belief in q given p." This 
test - to see whether you accept q if p, add p hypothetically to your know­
ledge and note whether you now accept q - will be called the Ramsey test. 10 

A conditional to which the Ramsey test applies will be called an epistemic 
conditional. A past grammatically indicative conditional like (27), it appears, 
is an episternic conditional: it is accepted by anyone whose corresponding 
conditional credence is sufficiently high. 

Although (27) has a clear acceptance condition, it does not have clear 
truth conditions. Suppose that in fact, as Zack suspects, Pete did not call, 
because he know he held a losing hand. It is not clear what then has to be 
true for (27) to be true. 

(28), on the other hand, Zack regards as unlikely, because he thinks 
it unlikely that Pete had a winning hand. It seems, then, that Zack regards 
(28) as a proposition which is true or false according as Pete has a winning 
or a losing hand. Clearly his acceptance of (28) does not go by the Ramsey 
test, since (28) passes the test but Zack does not accept it. Whereas, then, 
(27) is an epistemic conditional which Zack does not in any obvious way 
treat as a proposition, the grammatically subjunctive conditional (28) is not 
an episternic conditional, but is treated as epistemically eqUivalent to the 
proposition that Pete had a winning hand. 

In many respects, at least, (28) fits Stalnaker's theory. (28) is treated 
as a proposition, whose truth or falsity depends on qualities of its subject 
matter, the game and its players, rather than the state of mind of the person 
who entertains it. Whether (28) is true depends, it seems reasonable to claim, 
on whether Pete wins in a world in which Pete calls, and which of all such 
worlds is nearest to the actual world by the following criteria: it is exactly 
like the actual world until it is time for Pete to call or fold; then it is like 
the actual world apart from whatever it is that constitutes Pete's decision 
to call or to fold, and from then on it develops in accordance with natural 
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laws.ll I do not mean to commit myself here to the details of Stalnaker's 
theory, but to note that the picture that guides Stalnaker applies without 
undue strain to past grammatically subjunctive conditionals like (28). I 
shall call any conditional to which such a picture applies a nearness condi­
tional. 

In the past tense, it seems from the example, a grammatically indicative 
conditional is an epistemic conditional and a grammatically subjunctive 
conditional is a nearness conditional. What of the future tense? For it, there 
is no obvious grammatical contrast to make; the salient relevant future 
conditional is 

(29) If Pete calls, he'll win. 

This I have classified as grammatically subjunctive; semantically is it an 
epistemic conditional or a nearness conditional? Indeed can that distinction 
be made for the future at all? 

Consider (29) as uttered by Zack at to, when Pete is about to fold or 
call. If (27) is an epistemic conditional, the Zack accepts it at to. For at 
to, he knows everything relevant that he knows at tl: that Pete is a skilled 
player who knows Stone's hand, and thus would not call unless he had a 
winning hand. Thus Zack's conditional credence at to, Po (pete will win / 
Pete will call), is close to one, and if he treats (29) as an epistemic condi­
tinal, he accepts (29). If, on the other hand, (29) is a nearness conditional, 
which is true if an only if Pete has a winning hand, then Zack at to regards 
(29) as unlikely. For he regards it as highly likely that Stone has the better 
hand. 

We can, then, distinguish a reading of a future tense conditional as an 
epistemic conditional from a reading of it as a nearness conditional. To 
see whether you read (29) as an epistemic conditional or as a nearness con­
ditional, put yourself in Zack's epistemic situations at to and see 
whether you accept (29). If you do, you read it as an epistemic con­
ditional; if you regard (29) as unlikely, then you read it as a nearness 
conditional. 

My informal polls on whether Zack accepts (29) have been inconclusive, 
but most people I have asked think he does. Thus (29) seems to be read 
as an epistemic conditional, and thus semantically like the future of an 
indicative rather than a subjunctive conditional. 

If Pete were to call, he would win. 

If Pete called, he would win. 
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are generally treated as nearness conditionals: they are regarded as unlikely, 
given the information available to Zack at to, and as true if and only if Pete 
has a winning hand. A reading as an epistemic conditional is perhaps most 
securely elicited by the sentence 

If Pete's going to call, he'll win. 

Grammatically indicative conditionals seem in general to be epistemic 
conditionals; these I shall call simply indicative conditionals. Grammatically 
subjunctive conditionals with 'would' are, I have argued, nearness condi­
tionals, and it is these that I shall call subjunctive conditionals. Conditionals 
with antecedent tense shift and 'will' in the consequent I shall leave aside. 

6. THOUGHT AND COMMUNICATION WITHOUT 

CONDITIONAL PROPOSITIONS 

Nearness conditionals are propositions, whereas nothing so far in our account 
of epistemic conditionals requires that they be propositions. We have given 
acceptance conditions for them but not truth-conditions, and propositions 
need truth-conditions. Moreover, it looks difficult to interpret epistemic 
conditionals as propositions, for the most obvious approaches to doing so 
were ruled out by the results in Section 2. An epistemic conditional a ~ b is 
accepted by a person if and only if, where p is his credence measure, we 
have pCb/a) ~ 1. If we do suppose that a ~ b is a proposition, this amounts 
to the condition 

pea ~ b) ~ 1 iff pCb/a) ~ 1. 

If we suppose further that that is because always pea ~ b) = pCb/a), then 
the results in Section 2 raise obstacles. 

None of this, however, need be disturbing. What a theory of indicative 
conditionals should do is to explain their role in thought and communi­
cation, and that task in no way demands that indicative conditionals be 
construed as propositions. To see this, let me propose a line of explanation 
that does without indicative conditional propositions. 

Take first thought, and consider belief in propositions. One can correctly 
be said to 'believe' or 'accept' a proposition, on this line of explanation, 
iff one's subjective probability for that proposition, or credence in it, is 
as close to one as matters for the purposes at handY For most purposes, 
for instance, I can be said to accept that my house will be standing in its 
usual place when I go home, but for purposes of explaining why I never 
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allow my fire insurance to lapse, even for short periods, I cannot be said 
fully to accept that my house will not burn down before I go home, and 
hence cannot be said to accept that my house will be standing in its usual 
place when I go home. 

Acceptance of an indicative conditional can be explained along the 
same lines, without invoking indicative conditional propositions. One accepts 
an indicative conditional iff one's corresponding conditional credence is 
as close to one as matters for the purposes at hand. (Such a high conditional 
credence I shall call a conditional belief, and I shall call sufficiently high 
conditional credence in b given a belief in b given a. 

Take next communication, and consider first the communication of a 
proposition. In the standard, felicitous circumstances of communication, 
I accept a proposition and express it in a sentence, and my audience, hearing 
the sentence, comes to accept the proposition. That happens because I 
exploit certain conventions to get the audience to accept that I have the 
belief that I do. In felicitous cases, the audience trusts my sincerity and 
command of language, and for that reason it accepts, on account of my 
having uttered a sentence S in the circumstances, that I believe a certain 
proposition a. If the audience accepts a on my authority, it is because the 
audience supposes that I would not believe a unless I had adequate grounds 
for a, and takes my having adequate grounds for a as evidence sufficient 
to warrant accepting a. 14 

Now any such account of communication 15 - take it in your favorite 
version - will extend naturally to communication of conditional belief. 
In felicitous cases, I utter an indicative conditional, and thereby insure 
that the audience comes to accept that I have a certain conditional belief, 
belief in b given a. The audience does so because it trusts my sincerity and 
command of language. The audience then infers from my believing b given 
Q that I have some good grounds for so belieVing, and takes that as a reason 
for itself believing b given Q. Thus is my conditional belief communicated 
to them. 

Conditional propositions, then, need play no role in an account of indi­
cative conditionals. Conditional beliefs - states of high conditional credence 
- are just as much states of mind as are unconditional beliefs. There is no 
reason in what has been said here to suppose that a conditional belief con­
stitutes an unconditional belief in a conditional proposition. We have, more­
over, no reason to suppose that conditional beliefs must be communicated 
by means of conditional propositions: the devices which allow the commu­
nication of unconditional beliefs, we have seen, could just as well allow the 
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communication of conditional beliefs. Conditional propositions, it seems, 
are superfluous in the communication of conditional beliefs. 

7. PROPOSITIONAL THEORIES WITH CONDITIONAL 

NON-CONTRAD ICTION 

Suppose we nevertheless do want to treat indicative conditionals as prop­
ositions. One way to do so is to adopt the theory that indicative conditionals 
are truth-functional; I shall discuss that theory in the next section. Other 
theories that treat conditionals as propositions - Stalnaker's, Lewis's, and 
Van Fraassen's (1976, p. 276, display line (18)) - share a law of Conditional 
Non-contradiction: that a ~ fj is inconsistent with a ~ b. Now any theory 
with Conditional Non-contradiction confronts an anomaly which is illu­
strated by this version of the Sly Pete story. 

Sly Pete and Mr. Stone are playing poker on a Mississippi riverboat. It is now up to 
Pete to call or fold. My henchman Zack sees Stone's hand, which is quite good, and 
signals its content to Pete. My henchman Jack sees both hands, and sees that Pete's 
hand is rather low, so that Stone's is the winning hand. At this point, the room is 
cleared. A few minutes later, Zack slips me a note which says "If Pete called, he won," 
and Jack slips me a note which says "If Pete called, he lost." I know that these notes 
both come from my trusted henchmen, but do not know which of them sent which 
note. I conclude that Pete folded. 

If both these utterances express propositions, then I think we can see 
that both express true propositions. In the nrst place, both are assertable, 
given what their respective utterers know. Zack knows that Pete knew 
Stone's hand. He can thus appropriately assert "If Pete called, he won." 
Jack knows that Pete held the losing hand, and thus can appropriately assert 
"If Pete called, he lost." From this, we can see that neither is asserting 
anything false. For one sincerely asserts something false only when one is 
mistaken about something germane. In this case, neither Zack nor Jack 
has any relevant false beliefs. The relevant facts are these: (a) Pete had 
the losing hand, (b) he knew Stone's hand as well as his own, (c) he was 
disposed to fold on knowing that he had the losing hand, and (d) he folded. 
Zack knows (b) and (c), and he suspects (a) and therefore (d). Jack knows 
(a) and (c), and knowing Pete as he does, may well suspect (b) and therefore 
(d). Neither has any relevant false beliefs, and indeed both may well sus­
pect the whole relevant truth. Neither, then, could sincerely be asserting 
anything false. Each is sincere, and so each, if he is asserting a proposition 
at all, is asserting a true proposition. 
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It follows that 

(27) If Pete called, he won 

as uttered by Zack is consistent with 

(30) If Pete called, he didn't win 

as uttered by Jack. For clearly as uttered by Jack, 

(31) If Pete called, he lost 

entails (30) in any context, so that if (31) as uttered by Jack is true, then 
(30) is. Then since both (27) as uttered by Zack and (30) as uttered by 
Jack are true, they are consistent. The only apparent way to reconcile this 
with Conditional Non-contradiction is to suppose that the sentence "If 
Pete called, he won" as uttered by Zack expresses a different proposition 
from the one the same sentence would express if it were uttered by Jack. 

That fits Stalnaker's contention that the selection function is pragmati­
cally determined (1968, pp. 109-111), so that different contexts of 
utterence invoke different s-functions. If the context in which Zack passes 
his note invokes an s-function a and the context in which Jack passes his 
note invoke a different s-function T, then (27) and (30) may express 
Stalnaker conditionals of the form a D-+ a b and a D-+ T b, so that even 
though Conditional Non-contradiction holds for any fixed s-function, (27) as 
uttered by Zack does not contradict (30) as uttered by Jack. That is to say, 
even though a D-+ a b contradicts a D-+ a b and a D-+ T b contradicts 
a D-+ T b, (27) as uttered by Zack expresses a D-+ a b and (30) as uttered 
by Jack expresses a D-+ T b, and these do not contradict each other. 

The difference in contexts here, though, has a strange feature. Ordinarily 
when context resolves a pragmatic ambiguity, the features of the context 
that resolve it are common knowledge between speaker and audience. If the 
chairman of a meeting announces "Everyone has voted 'yes' on that motion", 
what the audience knows about the context allows it to judge the scope of 
'everyone'. In Example 2, in contrast, whatever contextual differences 
between the utterances there may be, they are unknown to the audience. 
I, the audience, know exactly the same thing about the two contexts: that 
the sentence is the content of a note handed me by one of my henchmen. 
Whatever differences in the context make them invoke different s-functions 
is completely hidden from me, the intended audience. 

That seems strange, for suppose it is so. I trust my henchmen and they are 
not contradicting each other. I presumably believe Zack's message "If Pete 
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called, he won," and that constitutes believing a proposition c. Had Jack 
instead of Zack slipped me the message, I would have believed that message, 
but that would constitute believing a different proposition c'. Yet since 
I don't know which of them slipped me the message, there is no difference 
in my intrinsic mental state in the two cases: whether my mental state 
constitutes believing c or c' depends not on what that state is intrinsically 
like, but on who slipped me the note. 

Perhaps, though, this feature of the context theory is not as bizarre as 
I have made it out, for perhaps sentences with indexicals have the very 
feature I have depicted. Suppose Zack or Jack, I know not which, slips me 
a note which says 

I have swiped Mr. Stone's gold watch chain. 

Perhaps this expresses the proposition 

(32) Zack has swiped Mr. Stone's gold watch chain 

if the note came from Zack and 

(33) Jack has swiped Mr. Stone's gold watch chain 

if the note came from Jack. I believe the message, but that constitutes 
believing neither (32) nor (33), but that the writer of the note swiped Stone's 
gold watch chain. 

What is left of the contextual theory is that indicative conditionals act 
in an indexical-like way, where the workings of the indexical elements can 
depend on things the audience does not know. Now since the assertability 
of an indicative conditional depends on the utterer's credences, it seems 
reasonable to suppose that its propositional content too depends on the 
utterer's credences. Indeed we are driven to accepting this dependence if 
we want conditionals to be propositions to which the Ramsey test applies.16 

For suppose that where p is the utterer's credence measure, the indicative 
conditional a ~ b is assertable iff pCb/a) R:: 1 and it has a propositional 
content c such that a ~ b is assert able iff p(c) R:: 1. A variant of the Lewis 
proof will show that there is no p-independent propositional function ~ 
that satisfies these conditions. 

(i) ab entails a ~ b 

(li) a ~ b is inconsistent with a ~ jj 

(iii) For all p such that pea) "* 0, pea ~ b) R:: 1 iff pCb/a) R:: 1. 
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For let pCb/a) ~ 1 and pea) ~ O. Then by (iii), pea -+ b) ~ 1, and hence 
by (ii), pea -+ b) ~ o. Obtain p I by conditionalizing on (ilj; then P'(b/a) = 1, 
but since p(ab) ~ 1, p' (a"-+ b) remains close to zero. 

That leaves only one way for indicative conditionals to be treated as 
propositions which satisfy Conditional Non-contradiction. Let the prop­
ositional content of an indicative conditional depend on the utterer's 
epistemic state, and do so in such a way that the proposition is accepted 
by the utterer if and only if the utterer's corresponding conditional credence 
is sufficiently high. We might, in other words, have a three-place function 
-+ which yields a proposition a ~ p b as a function of propositions a and b 
and probability measure p, with pea ~ p b) ~ 1 when and only when 
pCb/a) ~ 1. We can interpret the indicative conditional as a propositional 
function satisfying Conditional Non-contradiction only at the cost of such 
radical dependence of the utterer's epistemic state. 

8. EMBEDDING AND THE TRUTH-FUNCTIONAL THEORY 

Why might we even want indicative conditionals to be propositions? Lewis 
(1976, p. 305) offers a reason: we then have an account of embedded indi­
cative conditionals - of sentences of such forms as 

a ~ (b -+ c), (a ~ b) ~ c, a & (b ~ c), a v (b ~ c), and - (a ~ b). 

Now only a truth-functional theory will account for such embeddings 
straightforwardly. Here and from now on, let ~ be the indicative conditional 
connective. It seems l ? to be a logical truth that a ~ (b -+ c) is equivalent 
to ab ~ c. For instance 

If they were outside, then if it rained they got wet 

seems to be equivalent to 

If they were outside and it rained, then they got wet. 

From this equivalence and a few quite weak additional assumptions, though, 
it follows that ~, if it is a propositional function at all, is the truth-functional 
connective :>. The additional assumptions are just that any conditional 
a ~ b is false in all ab worlds, and that if a entails b then a ~ b = t. Our 
assumptions, then, are these: for all non-empty propositions a, b, and c, 

(i) [a~(b~c)] = (ab~c) 
(ii) (a~b) S (a:>b) 
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(iii) If a£. b, then (a ~ b) = t. 

Given (ii), it remains to be shown that (a::> b) £. (a ~ b). Consider the 
sentence 

(34) (a::> b) ~ (a ~ b). 

By (i), this is [(a::> b) & a] ~ b, or equivalently, ab ~ b. By (iii), this is t. 
By (ii), (34) entails 

(a::> b) ::> (a ~ b), 

and to say that t entails a truth-functional conditional is to say that its ante­
cedent entails its consequent. That completes the proof. 

If, then, we want the indicative conditional to be a propositional function, 
and to account in that way for our readings of embedded indicative con­
ditionals, then the function must be ::>. That a non-propositional theory 
of indicative conditionals fails to account for some embeddings, though, 
may be a strength. Many embeddings of indicative conditionals, after all, 
seem not to make sense. Suppose I tell you, of a conference you don't 
know much about, 

(35) If Kripke was there if Strawson was, then Anscomb was there. 

Do you know what you have been told? On the truth functional theory, 
you have been told that either Strawson was there and Kripke wasn't, or 
Anscomb was there. That seems surprising, though perhaps that is because 
some feature of conversational implicatures keeps the iterated conditional 
from being assertable. 

Some iterated conditionals of the same form do seem to be assertable, 
but the way they are read is at odds with the truth-functional theory - at 
odds with it in a way for which conversational implicatures cannot account. 
Take, for instance, the conditional (d ~ b) ~ f. 

(36) If the cup broke if dropped, then it was fragile. 

That seems assertable by someone who knows that the cup was being held 
at a moderate height over a carpeted floor, even if he gives rather low 
credence to the cup's being dropped or to its being fragile. Suppose, though, 
that in fact, things are as he thinks likely: the cup was not dropped and was 
not fragile. Then interpreted truth-functionally, (36) is false. For (d::> b)::> f 
is equivalent to db v f. and neither disjunct is true. The speaker, indeed, 
gives low credence to both disjuncts, and hence gives low credence to the 
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disjunction. (36), then, is assertable, even though on a truth-functional 
interpretation it gets low credence. Conversational implicatures will not 
save the truth-functional theory from this anomaly. Conversational impli­
catures, after all, explain only why a sentence believed true may not be 
appropriately assertable, whereas this is a case of a sentence which is appro­
priately assertable, but according to the truth-functional theory, false. IS 

The advantage of the truth-functional theory over Adams' theory, 
according to Lewis, is that it accounts for embedded conditionals. We have 
seen that it does so incorrectly, and so the alleged advantage turns out to 
yield a reason for rejecting the truth-functional theory of indicative con­
ditionals. 

9. AN ASSESSMENT 

If the truth-functional theory will not handle embedding, will a propositional 
theory with Conditional Non-contradiction? We learned in Section 7 that at 
best, such a theory will do the job only if the propositional function re­
presented by ~ depends on the utterer's epistemic state. We have now learned 
that even that kind of dependence will not suffice, for as we saw at the 
beginning of the last section, if in a flxed epistemic context, ~ represents 
a flxed propositional function, then to account for some of the behaviour 
of the indicative conditional, we must conclude that ~ is truth-functional. 
Since we know that the indicative conditional is not truth-functional, we 
can eliminate that possibility. 

One other possibility remains: that ~ always represents a propositional 
function, but that what that function is depends not only on the utterer's 
epistemic state, but on the place of the connective in the sentence. In 
a ~ (b ~ c), for instance, we might suppose that the two different arrows 
represent two different propositional functions. Nothing we have seen rules 
that out. 

The pursuit of such a theory, though, has now lost its advantage. A theory 
of indicative conditionals as propositions was supposed to give, at no extra 
cost, a general theory of sentences with indicative conditional components: 
simply add the theory of conditionals to our extant theory of the ways 
truth-conditions of sentences depend on the truth-conditions of their com­
ponents. The alternative was to develop a new theory to account for each 
way indicative conditionals might be embedded in longer sentences, and 
that seemed costly. Now it turns out that for each way indicative conditonals 
might be embedded in longer sentences, a propositional theory will have to 
account for their propositional content, and do so in a way that is sensitive 
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to the place of each indicative conditional in its sentence. In a ~ (b ~ c), the 
right and left arrows must be treated separately. What must be done with the 
left and right arrow in (a ~ b) ~ c or with the arrows in a & (b ~ c) and 
a v (b ~ c) we do not yet know. Thus, for instance, no account of sentences 
of the form (a ~ b) ~ c will fall out of a simple general account of indicative 
conditionals as propositions; rather the account of indicative conditionals 
itself will have to confront separately the way left-embedded arrows work. A 
propositional theory would not save labor; instead it would demand all the 
labor that would have to be done without it. 

What, then, of the alternative: to deal ad hoc with each kind of embedding 
without treating indicative conditionals as propositions? Here I think the pros­
pects are not so bleak as might be supposed. In the first place, some sentences 
with indicative conditional components, such as (35), make no sense. An ad 
hoc treatment is more likely to accountfor this fact than is a theory which syste­
matically assigns truth-conditions to every sentence. In the second place, various 
ad hoc accounts do turn out to work. Sentences with the apparent form 
a ~ (b ~ c) can be read as really having the form ab ~ c. A sentence with the 
apparent form (a ~ b) & (c ~ d) can be read as expressing a combination of 
two conditional beliefs, belief in b given a and belief in d given c. 

More difftcult is the conditional (d ~ b) ~ t, 
(36) If the cup broke if dropped, then it was fragile. 

I think, though, that an account can be given that explains why this sen­
tence seems to make sense and others of the same form do not. Consider 
first the antecedent d ~ b, "If the cup was dropped, it broke." Such an 
indicative conditional may have an obvious basis: a proposition c such 
that it is presupposed, for both utterer and audience, that he will believe 
the consequent given the antecedent iff he believes c. The obvious basis 
for the conditional d ~ b is c, 

(37) The cup was disposed to break on being dropped. 

c might hold either because the cup was fragile, or because it was being 
held over an especially hard floor or at an especially great height. Now 
when a conditional of the form (d ~ b) ~ f is understandable, I propose, 
it is because the antecedent d ~ b has an obvious basis c and its obvious 
basis is understood in its place. The compound conditional (d ~ b) ~ t, 
then, is ordinarily understood as c ~ f; (36) is read as 

(38) If the cup was disposed to break on being dropped, then it was 
fragile. 
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This is indeed assertable by someone who knows that the cup was being 
held at a moderate height above a carpeted floor and does not know whether 
it was fragile. For were he to learn that it was disposed to break on being 
dropped, be would come to believe it fragile. 

The obvious basis for an indicative conditional is not synonymous with the 
conditional itself. 'The cup broke if dropped' is assertable by me if! believe this: 

(i) The cup was being held by someone who would not have dropped 
it unless it was highly fragile, but who might well have dropped 
it if it was highly fragile. 

It is also assertable by me if I believe this: 

(ii) A trusted assistant was under order to inform me if the cup 
dropped without breaking, and not to bother me otherwise. 
The cup may have been dropped, for all I know, but I have not 
been informed that it dropped without breaking. 

Neither of these entails that the cup was disposed to break on dropping but 
belief in either would give me grounds for asserting that the cup broke 
if dropped. 

On the account I am giving, understanding (36) as (38) depends on con­
textual prosuppositions that might have been absent. Suppose possibility 
(i) is taken seriously: both utterer and audience take it as something they 
might well come to believe, and there is vivid common awareness of the 
possibility. Then the presuppositions that make (37) the obvious basis for 
d ~ b have broken down. Thus on the account I am giving, (38) ceases to 
gloss (36), and indeed it becomes unclear how (36) is to be interpreted. 
That seems to me to be what indeed would happen in that case. The same 
goes for a case in which (ii) is taken seriously. 

Perhaps, then, what is explainable about sentences with indicative con­
ditional components is explainable in an ad hoc way, without the invocation 
of indicative conditional propositions. The alternative, propositional account 
may require at least as much ad hocum, while rendering strange and mysteri­
ous the central fact about indicative conditionals: that their assert ability goes 
with high conditional credence. 

10. CONCLUSION 

None of the arguments I have given for denying that indicative conditionals 
express propositions apply to subjunctive conditionals. In the first place, the 
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Ramsey test does not apply to subjunctive conditionals, and so no problem 
of reconciling a propositional account of subjunctive conditionals with the 
Ramsey test arises. In the second, place, subjunctive conditionals· embed. 
Take, for instance, (35), and render the antecedant sUbjunctive. 

If Kripke would have been there if Strawson had been, then 
Anscomb was there. 

The result is Delphic but not incomprehensible; with ingenuity, we can 
imagine circumstances that would make this assertable. Finally, with sub­
junctive conditionals, it is often possible to give at least a rough account 
of their truth conditions. "If Pete had called, he would have won" is true 
if normal conditions of play prevailed and Pete had a winning hand, and 
false if normal conditions of play prevailed and Pete has a losing hand. 

There is a clear need for both kinds of conditionals. Epistemic condi­
tionals prepare us for the acquisition of new information, and nearness 
conditionals help us express our understanding of what depends on what 
in the world. It is not surprising, then, that we should have linguistic 
devices for both jobs. The surprise, once we realize how disparate the jobs 
are, should be that similar linguistic devices do both jobs. The devices are 
similar not, as far as I have been able to discover, because of any deep con­
nection between the two jobs, but for these reasons. First, belief in a near­
ness conditional is often grounds for conditional belief: belief in a nearness 
conditional a ~ b is grounds for belief in b given a in the frequent circum­
stances that the proposition a ~ b is epistemically independent of its 
antecedant a. (See Lewis, 1976, p. 309) Thus it is easy to conflate the job 
a nearness conditional does with the expression of conditional belief.19 

Second, in their common domain, the two functions have the same logic. 
That surprising fact itself, though, as far as I have been able to discover, 
manifests no deep connnection between the two function, but only the 
possibility of tricks. 

Indicative and subjunctive conditionals, I conclude, have distinct jobs, 
and do them in ways that have little important in common. 

APPENDIX: EQUIVALENCE PROOFS 

We note frrst that the relation of s-consequence is invariant when possible 
worlds are more closely subdivided. Let Y be a field of sets with universal 
set t, let t* be a set, and let y* be a set of subsets of t*. Where h is a 
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function from t* onto t, we defme what it is for h to 'extend' Y to Y*. 
For any w, let 

w* = {v I vE t*&h(v) = w}, 

and for any a E !T, let 

a* = {v I v E t*&h(v) E a}, 

the h-co"espondant of a. The function h extends field of sets Y to y* iff 
(i) h is a function whose domain is all of t* and whose range is all of t, (ii) 
y* is a field of sets, and (iii) for every a E .:r. a* E Y*. Where a -+ b is 
a conditional A of Yo A * is its h-correspondant a* -+ b*. 

THEOREM 1. Let Y be a Freid of sets, and let h extend Y to Y*. Let 
At. ... , An be conditionals of .:r. and let AI': ... , A,f be their h-co"es-
pondants. Then {AI': ... ,A,f} is s-consistent iff {At. ... ,An} is s-consistent. 

THEOREM 2. A finite set of conditionals is !rconsistent in the strong sense 
iff it is Honsistent. 

Theorem 2 is proved in passing, since like Theorem 1, it follows from the 
three lemmas that are stated and proved below. 

NOTATION: Let N = {I, ... , n}, and let Aj = (aj -+ bj) and Af = (aT-+ bT) 
for each i EN. Let ..91'= {AI, ... ,An} and ..91'* = {AI': ... , A,f}. 

LEMMA 1. Let Y consist of all subsets of a fmite set t, and suppose ..91' is 
s-consistent. Then..9l'* is s-consistent in the strong sense. 

Proof: We are given that for some s-function a for Yand world u E t, 
a(aj, u) E bi for all i E {I, ... ,n). Construct an s-function r for y* as 
follows. Let -< be an arbitrary well-ordering of t*, and for any non-empty' 
subset x of t*, let X(x) be the-<-frrst member of x. For any proposition 
pEY*, let p'={wlwEt&w*(')p=l=f} and for any world vEt*, let 
r(p, v) = vif vEp, and otherwise, let 

(39) r(p, v) = X(P (') a(p I, h(v»*). 

Note that p (') a(p', h(v»* is non-empty, since by (SI), a(p', h(v»Ep', and 
p I is the set of worlds w such that p (') w* =1= f. 

Clearly r satisfies (SI) and (S2). To check (S3), suppose p, q E t*, 
P S q, and r(q, v)Ep. Now if vEq, then by (S2) r(q, v)= v; thusvEp and 
by (S2), r(p, v) = v = r(q, v). Suppose 1/ $ q, so that v $ p. Thus by (39), 
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x(q II a(q I, h(v))*) E p, 

and so where w=a(q',h(v)), w* intersects p and wEp'Sq'. Therefore 
by (S3), w = a(p', h(v)). Since X(qw*)Epw* and pw* S qw*, from the 
construction of X we have X(qw*) = X(pw*), and so (S3) is satisfied. Thus 
r is an s-function. 

r is an internal s-function for Y*. For let p -+ q be a conditional of 
Y*. The proof is this, where the range of the variable v is t*. 

P~Tq = {v I r(p,v)Eq} 

= pqv{v I v$p&r(p,w)Eq} 

= pqv{v I v$p&x(plla(p',h(v))*)Eq} 

= pq vpc 

where c = {v I X(P II a(p', h(v))*) E q}. Now X(P II a(p I, h(v))*) depends 
on v only through its dependence on h(v); thus for any wEt, 
X(P II a(p I, h(v))*) E q either throughout w* or nowhere in w*. Thus c is the 
union of a fmite number of propositions of y* of the form w*, and is 
thus itself a proposition. Therefore pq v pc is a proposition, and r is an 
internal s-function. 

Finally, let Ii E u*. Then for each conditional a -+ b E ..w; 
12 E (a* ~ T b*), and so..w'* is s-consistent. For u E (a ~ C1 b); hence 
either (i) u Eab or (ii) u$a and a(a, u)Eb. In case (i), 12 Ea*b*, and so 
12 E (a* ~ T b*). In case (ii), u $ a*, an so by (39), 

r(a*, u) = x(a* II a(a*', h(u))*) 

= x(a* II a(a, u )*). 

Since a(a, u)Eab, a* II a(a, u)* sa*b*, and so x(a* II a(a, u)*) Eb*. 
Thus r(a*, u) E b*, and u E (a* ~ T b*). That completes the proof of 
the Lemma. 

LEMMA 2. If..w'* is s·consistent, then..w' is s-consistent. 
Proof: Suppose..w'* is s-consistent. Then for some s-function r for y* 

and world 12 E t*, r(a1. 12) E bT for each i EN. Let u = h(12), and for each 
a E Y, let a(a, u) = h(r(a*, 12)). For worlds of Yother than u, take an 
arbitrary s-function a' for Y, and let a(a, w) = a'(a, w). Then a is an s­
function. For from (SI), r(a*, u)Ea*; therefore h(r(a*, 12))Ea, satisfying 
(SI). From (S2), if uEa, uEa*; hence r(a*,u)=u and h(r(a*,u)=u, 
satisfying (S2). If a ~ b and a(b, u) E a, i.e. h(r(b*, 12 )), then r(b*, u) E a*. 



242 ALLAN GIBBARD 

and a*r;b*. Hence by (S3), 7(b*,u)=7(a*,u) and a(b, u)= a(a, u). For 
W =1= u, (SI)-(S3) follow directly from their satisfaction by a'. 

Now from the way b* is defmed, we have that for any conditional a -+ b 
of y, 7(a*, u) E b* iff h(7(a*, u» E b. This last is just a(a, u) E b, and so 
we see that for any conditionals A of Y, u E A a iff U E A *7. Therefore 
u E A f, ... , u E A:{ , and J¥' is s-consisten t. 

LEMMA 3. There exists a function g, a field of sets y" consisting of all 
subsets of a fmite set til, and conditionals A~', ... ,A~ of y" such that 
(i) g extends Y" to y, and (li) At. . .. ,An are g-correspondants of 
A~', ... ,A~ respectively. 

Proof: Take the set {aI> ... , am bI> ••• , bn }, and let y' be its Boolean 
closure: its closure under the operations of union and complementation. 
y' is fmite, and hence has a fmite number of atoms: non-empty sets 
EY' which partition t, none of which has a proper non-empty subset 
EY'. Let til be the set of atoms of Y', and letY" be the set of all sub­
sets of til. Then where g takes each world of t into the atom of Y' of which 
it is a member,g extendsY" to Y. For each i EN, Aj is the g-correspondant 
of a conditional A;' of ylI, for each aj or bj is the union of a fmite number 
of atoms WI> ••• , Wm of Y', and hence is the g-correspondant of proposition 
{WI> ••• ,wm } ofY". 

Proof of Theorem 1: The composition of g and h extends Y" to y* . 
From Lemmas 1 and 2, we have that ~is s-consistent iff.J¥'" is s-consistent, 
and ~* is s-consistent iff ~" is s-consistent. Therefore ~* is s-consistent 
iff J¥' is s-consistent. 

Proof of Theorem 2: Suppose J¥' is s-consistent. Since g extends y" to 
y,~11 is s-consistent by Lemma 3. Thus by Lemma 1, sinceJ¥'" is s­
consistent, J¥' is s-consistent in the strong sense. Therefore if J¥' is s­
consistent, then it is s-consistent in the strong sense. The converse is trivial. 

Here is the part of the Van Fraassen result needed for the equivalence proof. 

THEOREM 3 (Van Fraassen). Let y" be a finite field of sets. Then there 
are h and y* such that h extends Y" to Y*, and for every probability 
measure p" on Y", there are an internal s-function 7 for Y* and a proba­
bility measure p* on y* such that 

(i) For every a" E ,7"'", p*(a*) = p"(a") 

(li) For every a", b" EY" withp"(a") =1= 0, p*(a* D-* T b*) = p "(b"fa"). 
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THEOREM 4. Let AI> ... ,An' C be conditionals of a field of sets Y, and 
let d= {AI> . .. ,An). Then if C is an s-consequence of.>at; then C is a p­
consequence of J4f': 

Proof: Let Aj = (aj ~ bj) for each iEN= {I, ... ,n}, and let C= (c~ d). 
Let C be an s-consequence of ~ Given e> 0, let 6 = e/n. Suppose p is 
a probability measure on Y with p(aj) > ° for each iEN, p(c) > 0, and 
p(bi/ajF::' 1 - 6 for all i EN; we are to prove that p(d/c) ~ 1 - e. Let Y" 
be constructed from the conditionals AI> ... ,Am C as in Lemma 3, and 
for each proposition a" of Y", let p"(a") = p(a) where a is its g-correspon­
dant in Y. Let h extend Y" to y* as in Theorem 3. Then by Theorem 
1, C* is an s-consequence of {Ar, ... , A,n, and so {AtT, ... , A:T} entails 
C*T. Therefore since for each i EN, 

p*(Ar) = p"(b;'/a;') = p(bJaj) > 1-6, 

we have 1 - e < p*(C*T) = p"(d"/c") = p(d/c), and the proof is complete. 

THEOREM 5. Any fmite $-Consistent set of conditionals is p-consistent. 
Proof: Let {at ~ bl> ... , an ~ bn} be s-consistent. Then for some s­

function a, the set 

{al ~ obI> ... , an ~ 0 bn} 

is consistent. Hence we may let w* be a world, fixed for the rest of the proof, 
such that all of at ~ 0 bl> ... , an ~ 0 bn hold at w*. 

Defme a*(aj) = a(w*, aj). We weakly order the set {al> ... , an} of ante­
cedants by 'distance' from w* as follows: aj ~aj iff a*(aj vaJ) = a*(aj). 
Let aj ~ aj iff both aj ~ aj and aj ~ aj. The relation ~ is connected and 
transitive, and aj ~ aj iff a*(aj) = a*(aj). 

(i) aj ;Saj oraj ~aj, and if aj ~ aj. then a*(aj) = a*(aj). 
Proof: Let v = a*(aj v aj). Then by defmition, aj::5 aj iff a*(aj) = v and 

aj;S aj iff a*(aj) = v. It follows that if aj ~ aJ> then a*(a,) = a*(aj). Now 
by (Sl), v E aj vaj. If v E aj, then by (S3), a*(aj) = v, and hence aj ~ aj. 
Similarly, if v E aj. then a*(aj) = v and aj::5 aj. We have seen that either 
a*(a;) = v or a*(aj) = v. Hence if a*(aj) = a*(aj), then both are v, and 
aj~aj. 

(ii) Let aj ;::S aj and aj ;S ak· Then aj ;S ak. 
Proof: Let u=a*(ajVajVak). Case 1. uEaj. Then by (S3), 

a*(aj yak) = u and a*(aj) = u; thus aj ;::sak. Case 2. u Eaj. Then by (S3), 
a*(aj) = u, a*(aj vaj) = u, and hence aj::5 aj. Since by hypothesis aj :::S aj, 
we have aj ~ aj, and by (i), a*(aj) = a*(aj) = u, and so u E aj, and this 
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reduces to Case 1. Case 3. u E ak' Then by similar reasoning, since aj ;:$ ak, 
we have u E aj, and this reduces to Case 2. That proves (ii). 

Let W = {a*(al), ... , a*(an ). Then the relation::5 induces a linear ordering 
on w, again by 'distance' from w*. Where w, w' E W, let W -< w' iff for some 
aj and aj. W = a*(aj), w' = a*(aj), and aj;:$ aj but not aj::5 aj. Since, as we 
have seen, for any wE W, the set {a I a*(a) = w} is an equivalence class 
under R::, the relation -< is a linear ordering. Let Wh ••. , Wm be the members 
of W, with Wl -< ... -< Wm . 

(iii) If a*(ak) = Wj and i <j, then Wi E ak. 
Proof: Since i <j, by the way the w;'s are indexed, Wi * Wi> and for some 

aj, Wj = a*(a,), a,;:$ ak, and not ak ~ a,- By the defmition of ';S', this means 
Wi = a*(a, v ak)' Suppose Wi E ak' Then by (S3), Wj = a(ak), and ak ;S a" 
contradicting what was said earlier. Thus Wi $ ak' 

The proof of the Theorem is this. Let p(wm ) = 8m , and for each i < m, 
let P(Wi) = 8i(1 - 8). For any proposition x, then, we let p(x) = ~r,:!OPx(Wi)' 
where Px(Wi) = P(Wi) if Wi Ex and pAw;) = 0 if Wi $x. Defme 
ri = Wj VWi+l V •.• VWm ; then peri) = 8i, so that in particular 
peW) = p(ro) = 1. 

Now let Wj = a*(ak)' Since by (iii), for i < j, Wj $ ~, we have 
p(ak) ..;;;; p(1J) = 8i . Now we assumed at the outset that ak ~ a bk holds 
at w*, and that is to say that a*(ak) E b,.; thus Wj E akbk' Thus 
p(akb,.);;" p(~) = 8 i (1- 8). Therefore p(b,./ak) = p(akb,.)/p(ak);;" 1 - 8. 
For arbitrary 8, we have shown how to construct a probability measure 
p such that p(b,./ak) > 1 - 8 for all k = 1, ... ,n. Thus {al --+ bh • ••• 

an --+ bn } is p-consistent. 

University of Michigan 

NOTES 

1 Adams himself argues, as I will later, that indicative conditionals are not propositions 
in the sense in which I am using the term (1975, pp. 5-6). 
2 See Lewis (1976, p. 311) for more discussion of the contrast between these two kinds 
of minimal revision. 
3 I get this use of Venn diagrams from Adams (1975). 
4 Stalnaker proposes this requirement (1970, p. 75), but later rejects it (see Stalnaker, 
1976). 
5 Lewis (1976, pp. 300-303). Stalnaker has offered an interpretation of this possible 
divergence, which is developed in Gibbard and Harper (1978). Examples in which one's 
credence in a subjunctive conditional is not equal to one's corresponding conditional 
credence are given in Section 5 of this paper. 
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6 Stalnaker's result, unlike Lewis's, depends on the conditional's having the Stalnaker 
logic; Van Fraassen (1976, pp. 286-291) has shown that a weaker logic of conditionals 
is compatible with the supposition that --+ is a propositional function such that, for some 
fixed p, p(a --+ b) = p(b/a) whenever p(a) 1= O. 
7 I refer here to what Van Fraassen calls 'Stalnaker-Bernoulli models' (1976, pp. 
279-282, 293-295). Here I state only those aspects of Van Fraassen's results that 
are needed in this paper; Van Fraassen's results are not, for instance, restricted to finite 
fields of sets. 
9 The modal auxilliaries are 'will', 'shall', 'can', 'may', and 'must'; I treat the first 
four as having the respective past tenses 'would', 'should', 'could', and 'might'. (See 
Chomsky, 1957, p. 40.) The past tense of 'must' is lacking, and 'should' as a synonym 
for 'ought to' does not act as the past tense of 'shall'. Only examples with 'will' and 
its past tense 'would' are given here. 
• These rules, indeed, are sound for Lewis's semantics (1973). It follows that on the 
domain to which the Adams logic applies, the Lewis and Stalnaker logics are equivalent. 
That should not be surprising: The axiom by which the Lewis and Stalnaker logics differ, 
conditional excluded middle, says in effect that - (a --+ b) is equivalent to a --+ h. The 
constraint it imposes, then, bears solely on negations of conditionals and constructions 
that involve them, all of which include embedded conditionals. 
10 Harper (1976a, p. 97; 1976b) uses the term this way. 
11 This is the interpretation adopted in Gibbard and Harper (1978, p. 127). Lewis 
(1979) offers a more general account of truth conditions for such conditionals, and 
tries to show that the account given here is a consequence of his account and some 
deep contingent facts that, at least in part, constitute the direction of time. 
12 For a contrasting treatment of acceptance, see Harper (1976a, especially pp. 77-81). 
13 Adams (1976) proposes an alternative to the account of subjunctive conditionals 
I have given. On that account, they act much like epistemic conditionals, but the 
relevant conditional probability is not one's conditional credence but a 'prior' condi­
tional probability. In his book (1975, pp. 129-133) he gives a counterexample to 
that theory, and proposes a more complex probabilistic account of subjunctive condi­
tionals. Skyrms (this volume) proposes an account of subjunctive conditionals which I 
think correct: that a SUbjunctive conditional is accepted iff the subjectively expected value 
of the corresponding propensity is sufficiently high. On this view as I would express 
it, subjunctive conditionals involve conditional propositions, but those propositions 
involve objective chance: they take the form "If a had obtained at t, the chance, as of 
t, of b would have been 0'." Sobel (1978) calls the subjectively expected value of this 
propensity 0' the 'probable chance' of b given a. Here I endorse the nearness account 
only as an approximation to Skyrms' view that a subjunctive conditional is accepted 
iff the corresponding expectation is sufficiently high. Roughly, the expectation is 
high iff one puts high credence in a proposition: that the chance, as of t, with which 
b would obtain if a did is high. Thus to adopt the Skyrms account is roughly to treat 
SUbjunctive conditionals as propositions. 
14 Additional factors may be at work in determining what the audience can conclude 
from the fact that I uttered S: my audience may suppose that even if I believed a, I 
would not have said S unless certain other conditions also obtained - say, that I do 
not accept another proposition c. Thus we have conversation implicatures; see Grice 
(c. 1969). 



246 ALLAN GIBBARD 

15 The classical account along these lines is in Grice (1957). 
,. Stalnaker (1975) treats indicative conditionals as context dependent propositions, 
and says ''The most important element of a context, I suggest, is the common know­
ledge, or presumed common knowledge and common assumption of the participants 
in the discourse." He calls this presumed common ground the 'presuppositions' of the 
speaker. The example shows that if an indicative conditional utterance of the form 'If 
a then b' expresses a proposition, what proposition it expresses depends on more than 
a, b, and the speaker's presuppositions. Indeed it seems that the crucial aspect of the 
context that makes the utterance express the proposition it does is the speaker's con­
ditional credence in b on a, and if that were presupposed, the utterance of the condi­
tional would be pointless. 
17 Adams (1975, p. 33) regards the equivalence of a - (b - c) with ab - c as problem­
atical, since with modus ponens, it allows us to infer b - a from a. His argument is 
this: If the equivalence claim is correct, then a - (b - a) is equivalent to ab - a, which 
is a logical truth. Hence from a and a logical truth, we get b - a by modus ponens. 
My intuition are that sentences of the form a - (b - a) indeed are logical truths, and 
are accepted even by someone for whom a is assertable and b - a is not. I am prepared 
to assert 

Andrew Jackson was President in 1836, 

and I am not prepared to assert 

Even if Andrew Jackson died in 1835, he was President in 1836. 

Nevertheless, the following strikes me as something which I accept as a logical truth. 

If Andrew Jackson was President in 1836, then even if he died in 1835, 
he was president in 1836. 

11 Adams (1975, pp. 31-37) gives a number of examples in which the truth-functional 
theory seems to fail for embedded 'will' conditionals. Here is one, adapted to the past 
tense. 

If switches A and B were both on, the motor was running. Therefore, 
either if switch A was on the motor was running or if switch B was on 
the motor was running. 

I do not see how the apparent fallaciousness of this inference could be explained away 
with conversational implicatures. 
19 Adams (1976) argues that the logics of indicative and subjunctive conditionals are 
isomorphic (pp. 6-16), and notes that that is what would be expected on his 'prior 
probability' representation, according to which indicative and subjunctive conditionals 
have similar semantics. The equivalence of the Adams and restricted Stalnaker logics 
shown in Section 3 shows that there is an alternative explanation for a logical iso­
morphism of indicative and subjunctive conditionals. 
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JOHN L. POLLOCK 

INDICA TIVE CONDITION ALS AND 

CONDITIONAL PROBABILITY 

It has been suggested repeatedly in the literature of conditionals that there is 
an intimate connection between conditionals and conditional probability. Let 
us symbolize the indicative conditional as rp..f'6'Qi. Then the simplest 
proposal of this nature is: 

(1) One is justified in believing rpJ'6'Qi iff prob(Q/P) is high. 

'probability' here is taken to be 'degree of rational belief'. The degree to 
which one is justified in believing rpJ'6'Qi would seem to be just 
prob(PJ'6'Q), so the force of(1) is: 

(2) prob(PJ'6'Q) is high iff prob (Q/P) is high. 

It seems eminently reasonable to suppose that what makes (2) true is that 
prob(PJ'6'Q) is determined by prob(Q/P). At the very least: 

(3) prob(PJ'6'Q) is a monotonic increasing function ofprob(Q/P). 

The most plausible initial candidate for such a function is the identity func­
tion, which gives us the Stalnaker Hypothesis: 

(SH) prob(PJ'6'Q) = prob(Q/P). 

'prob' represents the degree of belief one could rationally have under the 
present circumstances. Let 'prob R' represent the degree of belief one could 
rationally have if the proposition R were added to one's evidence. It has 
generally been accepted that: 

(CH) probR(P) = prob(P/R), provided prob(R) =1= O. 

This is the Conditionallzation Hypothesis. (CH) is really just the claim that 
the normal defmition of conditional probability captures what it is supposed 
to capture. I will provisionally assume (CH). Its use at least appears 
unsuspicious in the examples to follow. 

(3) and (SH) are supposed to be general principles not dependent upon our 
particular state of knowledge. Accordingly, they are defensible only insofar as 
the following stronger principles are defensible: 
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(3+) (3f) {f is a monotonic increasing function & 
(VR) [probR(Pf'6'Q) = f(probR(Q/P))}; 

(SH+) (VR) [probR(Pf'6'Q)=probR(Q/P)]. 

The triviality results of Lewis and Stalnaker show that we cannot maintain 
both (SW) and (CH). This suggests rejecting (SH+) and retreating to the 
weaker (3+). However, Gibbard has given a representation of Lewis' triviality 
result in terms of Venn diagrams, and further reflection on those diagrams 
enables us to see that (3+) must also be rejected if we are to maintain (CH). 
To see this, suppose that F is related to I P f'6'Q' and P and Q as indicated 
in the follOWing diagram: 

p Q 

Let R = I-Fl. Assuming (CH), it follows from the probability calculus that 
probR(Q/P) = prob(Q/P&R). As P entails R, prob(Q/P&R) = prob(Q/P), 
so probR(Q/P) = prob(Q/P). But probR(P f'6'Q) < prob(P ..flQ). Thus not 
only is (3 +) false; prob R (P f'6'Q) is not any function at all of prob R (Q/P). 

In an attempt to salvage something like principle (1) in light of the fore­
going, Gibbard has suggested that indicative conditionals do not express 
propositions. They play a different linguistic role, related to 'conditional 
assertion' or 'conditional belief', however that is to be made out. This has 
the effect that indicative conditionals are not included in the domain of the 
probability function, and hence the preceding reasoning is blocked. On this 
view, prob(Q/P) provides the measure of the reasonableness of the con­
ditional belief expressed by 'Pf'6'Q', but that reasonableness cannot be 
expressed as I prob (Pf'6' Q)I. 
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To test Gibbard's suggestion, we must ask whether anything which intuit­
ively counts for or against an indicative conditional affects the conditional 
probability in the same manner. The preceding diagrammatic example suggests 
where to look for a concrete counterexample to this claim. If the claim is 
false, we ought to be able to show that it is false by finding an R of the sort 
required by that example. Such an R would diminish the reasonableness of 
the conditional while leaving the conditional probability unchanged. A 
concrete example of this sort is as follows.! Suppose we know of a vase 
which was included in a certain shipment of vases. Seventy-five percent (or 
however high we want to make this percentage) of the vases in the shipment 
were ceramic and highly fragile, and the other 25% were plastic and virtually 
unbreakable. We know of this shipment that every ceramic vase which was 
dropped broke, and none of the plastic vases broke. Furthermore, we know 
that when the shipment reached its destination, all broken vases and all 
plastic vases were discarded, and of the discarded vases, 75% were plastic. 
This completes our initial background information regarding the shipment. 
On the basis of this information, we can reasonably believe that if the vase 
was dropped, it broke. (If a probability of 75% is considered inadequate for 
this, we can adjust the probability upwards as necessary). 

Suppose we are now informed that the vase under consideration was dis­
carded. This is the proposition R. As 75% of the discarded vases were plastic, 
this makes it unreasonable to believe that if the vase was dropped then it 
broke. Thus R makes the indicative conditional less reasonable. However, 
given our background information, the vase's being dropped entails that it 
was discarded. If it was dropped and ceramic, then it broke and was discarded 
for that reason; if it was dropped and not ceramic, then it was plastic and was 
discarded for that reason. Thus letting B be the proposition that the vase 
broke and D be the proposition that it was dropped, prob(B/D) = 
prob(B/D&R), and assuming (CH), probR(B/D) = prob(B/D&R). Conse­
quently, although R is relevant to the reasonableness of the conditional, 
probR(B/D) = prob(B/D). Thus we have a counterexample to the hypothesis 
that the reasonableness of an indicative conditional is determined by the con­
ditional probability. 

The preceding counterexample does not depend upon supposing that 
indicative conditionals express propositions. However, the only reason for 
denying that supposition was to salvage some version of principle (1). We 
have now seen that such a denial is not efficacious in the desired salvage, so 
the most reasonable move would seem to be to return to the traditional 
supposition that conditionals do express propositions. On that supposition, it 
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seems intuitively reasonable to make some further claims about the preceding 
counterexample. Let rC(x)l symbolize rx is ceramic'. Then for each memo 
ber of the shipment, it seems that we have: 

(4) C(x) == [D(x)J~B(x)]. 

Accordingly, 

(5) probR(DJ~B) = probR(C) = 0.25 

whereas, assuming that prob(D/C) = prob(D/-C), 

(6) probR(B/D) = prob(B/D) = prob(C) = 0.75. 

Thus we have a concrete example in which the probability of the conditional 
and the conditional probability diverge. There seems to be no way to object 
to the use of (CH) in (6), so this example fortifies the triviality results by 
showing that they cannot be avoided by rejecting (CH). Even if (CH) some­
times fails (and I see no reason to think that it does), it surely holds in this 
case, and that suffices to show that the probability of the conditional cannot 
generally be identified with the conditional probability. 

University of Arizona 

NOTE 

I I am indebted to Keith Lehrer for help in the formulation of this example. 
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INDICATIVE CONDITIONALS AND CONDITIONAL 

PROBABILITY: REPLY TO POLLOCK 

In 'Indicative Conditionals and Conditional Probability' (this volume, pp. 
249-252), Pollock constructs an intriguing situation to serve as a counter­
example to the 'Ramsey test' thesis. Here by the Ramsey test thesis, I mean 
the thesis that, in whatever ways the acceptability, assertability, and the like 
of a proposition depend on its subjective probability, the acceptability, 
assertability, and the like of an indicative conditional A ~ B depend on the 
corresponding subjective conditional probability p(B/A). (I shall use '~, 

as a symbol for the indicative conditional connective, and otherwise follow 
Pollock's notation. The systematic development of the Ramsey test thesis 
was the work of Ernest Adams, 1975). I think that I can give an argument to 
show that in Pollock's example, contrary to what he judges, if B ~ D is 
acceptable before one learns R, it is acceptable after one learns R. 

To make the example work at all, of course, we have to set the proportion 
of ceramic vases high enough to make it reasonable to assert at the outset, on 
the basis of frequency information, that the vase was ceramic. Suppose this 
proportion is 95%, and adjust the example accordingly. Now to fill in the 
example, we have to suppose that I, the utterer, regard the droppings as 
random. Otherwise I might deny "If the vase was dropped, it broke" on such 
grounds as this: "If the vase was dropped, it was probably plastic, for no one 
would have been careless enough to drop a ceramic vase. Therefore probably 
if the vase was dropped, it didn't break - because it was plastic." Suppose, 
then, that I regard the droppings as random, and suppose further, to avoid 
statistical complications, that the shipment is large, so that in effect I accept 
that 95% of the dropped vases were ceramic. 

A large part of the force that Pollock's example will have for a reader may 
come from a failure to realize the following fact: that even if 95% of the 
discarded vases are plastic, 95% of the discarded vases that were dropped are 
ceramic. This diagnosis will be confirmed if Pollock's conclusion that 
PR(B/D) = p(B/D) comes as a surprise to the reader - as I think it does. 
Now if this diagnosis is correct, then our natural assessments of reasonable 
subjective probabilities in the case are wrong. Hence on the Ramsey test 
thesis, our natural judgments of the reasonable assertability of the indicative 
conditional should be correspondingly wrong. 
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When intuitions are befuddled by a complex situation, it should often be 
possible to present an argument to the correct conclusion. I propose this 
argument. 

(1) This vase was discarded. 

(2) Of the discarded vases that had been dropped, 95% were ceramic. 

(3) Therefore if this vase was dropped, then it was ceramic. 

(4) If this vase was dropped and it was ceramic, then it broke. 

(5) Therefore if this vase was dropped, it broke. 

Here (1) is given and (2) has been shown. (3) begs the point at issue, since it 
uses 95% conditional probability as sufficient for reasonable assertability. It 
does seem to me, though, that a person might well find the step from (1) and 
(2) to (3) intuitively convincing, and the intuition in question is a simple one 
- more on this later. (4) is given, and the derivation of (5) from (3) and (4) is 
sanctioned by disparately based logics of conditionals, including Stalnaker's, 
Lewis's, and Adams'. Where C = The vase was ceramic, the argument takes 
the form 

(3) D~C 

(4) DC-+ B 

(5) D-+B. 

Part of our tendency to regard R as evidence against D -+ B, I have 
suggested, stems from confusion about conditional probabilities in a complex 
situation. Another part of the tendency, I suppose, stems from a tendency to 
regard D -+ B as a proposition which is true if and only if the vase was fragile. 
There is a tendency, in other words, implicitly to accept the dispositional 
thesis: A statement of the form D(x) -+ B(x) expresses a property true of 
those and only those things that are disposed to be B on being D. For me, at 
least, all of the appeal of Pollock's (4) stems from the appeal of the dis· 
positional thesis - although I am not sure whether he wants to accept the 
dispositional thesis. Now I think that the tendency to accept the dispositional 
thesis should be regarded as a temptation rather than a guide. To accept the 
dispositional thesis is to go against other strong tendencies we have in our 
evaluations of indicative conditionals, and I suspect it will be more in accord 
with the central tendencies of our thought to reject the dispositional thesis 
than to accept it. Suppose, for instance, I knew that only plastic vases had 
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been dropped. It seems to me that I could then say, "If this vase was 
dropped, it was plastic" without supposing that I am talking about a vase that 
was disposed to be plastic on being dropped. On the dispositional thesis, to 
do so is incoherent. True, from the dispositional statement one can normally 
infer the indicative conditional, but if we suppose that that is because the 
two are the same and we retain our ordinary judgments of indicative con­
ditionals, we will face contradictions. It seems to me, then, that we should 
reject judgments that seem to derive their plausibility from the dispositional 
thesis as based on a dispositional fallacy. 

My hunch, then, is not that our judgments of indicative conditionals 
clearly and consistently conform to the Ramsey test thesis, but that the pre­
ponderance of them do, and that no alternative account of indicative con­
ditionals will systematize so much of our usage. If that is so, then it would 
seem a good idea to use the indicative conditional consistently as a Ramsey 
test conditional, and regard-any reasoning with indicative conditionals that 
would be invalid for Ramsey test conditionals as fallacious. 

My argument (1}-(5) pits the intuition that (1) and (2) warrant (3) against 
Pollock's intuition that R warrants the denial of B ~ D. Now we cannot 
simply trust either intuition, for we have mistaken intuitions about all sorts 
of things. In Pollock's example, for instance, I would intuitively expect 
PR(B/D) to be lower than p(B/D), but Pollock shows that the two are equal. 
(Tversky and Kahneman (1978) have done a psychological study of fallacies 
involving conditional probabilities, which seem to be systematic and pervasive.) 
It seems that virtually whenever we get clear on how a subject matter works, 
we fmd that some of our previous untutored intuitions went wrong. The 
traditional way of dealing with this problem is by reasoning: by putting 
together intuitions about simple matters to form conclusions about complex 
matters. That is what I have tried to do. It seems to me that a judgment of 
whether (1) and (2) warrant (3) is simpler than our evaluation of the intri­
cately wrought example Pollock gives, and hence should be given more cre­
dence - especially when we consider that one's judgment of the complex situ­
ation Pollock constructs may be infected with the dispositional thesis, which 
is incompatible with going from "Only plastic vases were dropped" to "If this 
vase was dropped, then it is plastic." 

University of Michigan 
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PART 6 

CHANCE, TIME, AND THE SUBJUNCTIVE 

CONDITIONAL 



BRIAN SKYRMS 

THE PRIOR PROPENSITY ACCOUNT OF 

SUBJUNCTIVE CONDITIONALS! 

I agree with Ernest Adams and Brian Ellis that assertability of uniterated 
indicative conditionals goes by epistemic conditional probability. It might be 
thought that subjunctives are mere stylistic variants of indicatives, the counter­
factual being used only to convey the extra information that we are in a 
counterfactual belief state. There are striking examples which argue that this 
is not always the case. 

An unknown sample is placed in the flame and burns green. We will main­
tain "If it is a sodium salt it didn't burn yellow" since it didn't, but will be 
quite confident in asserting "If it had been a sodium salt, it would have 
burned yellow." Or consider Adams' example: we will follow epistemic con­
ditional probability in asserting: "If Oswald didn't kill Kennedy, then some­
one else did" but we will not follow it far enough to assert: "If Oswald hadn't 
killed Kennedy, then someone else would have." The imprint of any stable 
connection between the antecedent and consequent of the conditional on the 
probability distribution has been swamped by our quite certain knowledge 
about the truth value of the consequent in the absence of equally definitive 
knowledge of the antecedent. 

A natural suggestion is that in evaluating the SUbjunctive, we should not 
look at the conditional probability in our present probability distribution, 
but rather look at the conditional probability in a prior distribution in which 
the perturbing knowledge of the truth value of the consequent is suppressed. 
In our belief state prior to putting the sample in the flame - that is, prior to 
conditionalizing on our observation that the sample didn't burn yellow - the 
probability of it burning yellow conditional on it being sodium is indeed high. 
If we imagine a belief state which includes our best knowledge of the events 
leading up to the assassination but suppressing our knowledge that it did in 
fact take place, we will fmd that in that distribution our conditional prob­
abilities coincide with our degree of confidence in asserting the corresponding 
counterfactual. 

Adams makes just this suggestion in 'Counter factual Conditions and Prior 
Probabilities'. He there points out that in simple urn examples, where it is 
quite clear what the appropriate prior is, the account gives just the right 
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results: 

Two urns, A and B are iilled with black and white balls, urn A containing 0.1% white 
and 99.9% black, urn B containing 50% of each color. One urn is selected at random and 
placed before an 'observer' who draws one ball at random from it. This ball proves to be 
white. 

The probability that a black ball would have been drawn if urn A had been 
selected is 0.999 while the probability that a black ball was drawn if urn A 
was selected is zero. 

But although the epistemic prior probability account of counterfactuals 
does a credible job on these examples, it cannot be quite right. Consider 
Adams' counterexample to his own theory: 

Imagine the following situation. We have just entered a room and are standing in front 
of a metal box with two buttons marked 'A' and 'E' and a light, which is off at the 
moment, on its front panel. Concerning the light we know the following. It may go on 
in one minute, and whether it does or not depends on what combinations of buttons A 
and B, if either, have been pushed a short while before, prior to our entering the room. 
If exactly one of the two buttons has been pushed then the light will go on, but if either 
both buttons or neither button has been pushed then it will stay off. We think it highly 
unlikely that either button has been pushed, but if either or both were pushed then they 
were pushed independently, the chances of A's having been pushed being 1 in a thousand, 
while the chances of B's having been pushed is a very remote 1 in a million. In the cir­
cumstances we think there is only a very small chance of 1 000 999 in one billion (about 
1 in a thousand) that the light will go on, but a high probability of 999 in a thousand 
that if B was pushed, the light will go on. 

Now suppose that to our surprise the light does go on, and consider what we would 
infer in consequence. Leaving out numerical probabilities for the moment, we would no 
doubt conclude that the light probably lit because A was pushed and B wasn't, and not 
because B was pushed and A wasn't. Therefore, since A was probably the button pushed, 
if B had been pushed the light wouldn't have gone on, for then both buttons would have 
been pushed. '!he point here is that the counterfactual would be affirmed a posteriori in 
spite of the fact that the corresponding indicative was very improbable a priori, because 
its contrary ''if B was pushed then the light will go on" had a probability of 0.999 a 
priori. 

My suggestion is that the prior probability account can be saved by one small 
change - the probabilities involved are the prior propensities rather than the 
prior epistemic probabilities. In cases where the correct propensities are 
known with certainty,2 the two accounts coincide. But, if we do not know 
for certain the values of the prior propensities, we may have to do with a 
weighted average - the expected prior propensities. The weights in this 
average will be epistemic probabilities, and we should use the best ones avail­
able - for this job - the posterior epistemic probabilities. I will use PR for 
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epistemic probabilities and pr for propensities. I will superscript i and .f for 
prior (initial) and posterior (fmal) respectively. Let the double arrow, =>, sym­
bolize the subjunctive conditional, and BAV be 'Basic Assertability Value'. 
Then the theory that I am suggesting can be succinctly expressed thusly: 

*** BAV (p => q) = L. PR'[prj] • prj (q given p). 
1 

where the prJ's are the appropriate prior propensity distributions. 
let us analyze Adams' example according to this theory. letting A = A 

pushed; B = B was pushed: L = the light goes on, the counterfactual to be 
analyzed is B => L. The relevant prior propensities depend on whether A 
was pushed or not, and are gotten by conditionalizing out on these two 
alternatives: pr!t (P) = PRi(p given A); pr !A(P) = PRi(p given -A). The 
values of PR'[pr!t] = PR'(A) and PR~ [pr !A] = PR'(-A) are gotten by 
Bayes' theorem. The happy result is that PR' (B => L) as defmed by *** is 
appropriately small as desired, as a consequence of the high posterior epistemic 
probability of the prior propensities associated with A being pushed. (Adams, 
in fact, gives an 'ad hoc two factor model' for his example which is equivalent 
to the analysis forthcoming from the prior propensity approach. But from this 
point of view, Adams' model is not ad hoc but entirely natural.) Where p and 
q lie on the future we can usually take PRi = PR'. In other cases, like the 
ones just cited, there is a natural choice for the appropriate prior. But it 
should come as no surprise that choice of the appropriate prior may be less 
than routine. All the vagueness and ambiguities of the subjunctive still exist.3 

let me sketch4 how this analysis works on a few familiar examples: 

1. Fischer: Suppose that smoking and lung cancer are effects of a common 
genetic cause. There are two prior propensity distributions corresponding to 
having the gene or not. A man refrains from smoking and remains healthy. 
His epistemic probability of not having the smoking-cancer gene and the 
corresponding prior propensity is therefore high. He may therefore justifiably 
assert, "Had I smoked, I would still have avoided lung cancer." 

2. Lewis: Suppose that jogging does not strengthen the heart, but rather 
people with strong hearts tend to jog. There are n prior propensity distri­
butions corresponding to prior strength of heart. Within each prior propen­
sity distribution, jogging and heart attacks are statistically independent. We 
may fairly say to the jogging enthusiast who has a strong healthy heart, "You 
would have escaped heart attack, even if you hadn't jogged." 
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3. Spence: College graduates perfonn better in certain jobs, not because of 
what they learn in college, but because college screens out people who lack 
the skills or motivation to do well. Analysis follows the pattern of the fore­
going. We may say: "She would have done just as well if she hadn't gone to 
college." 

4. Newcomb: Prof. L faces two boxes, one transparent and one opaque. The 
transparent box can be seen to contain $ 1000. He may take either the 
opaque box and all its contents, or both boxes and all their contents. A 
predictor who is very good at predicting the choice that people made has 
put $ 1 000000 under the opaque box if he predicted that Prof. L would 
take only the opaque box and nothing if he predicted that Prof. L would 
take both. The predictor is not only very good, but also very good for those 
who take only the opaque box, in the following sense: Of those who take 
the opaque box only, his percentage of correct predictions is very high. 
Likewise for those who take both boxes. In these circumstances, Prof. L 
takes only the opaque box. Under it he fmds $ 1 000 000. "I'm rich," he 
cries. "You would have been $ 1000 richer if you had taken both boxes," 
Prof. G remarks. 

Here again, we have two prior propensity distributions, PR1 and PRz 
corresponding to whether the predictor predicted a choice of only the opaque 
or both boxes respectively: 

PR1 (1 000 000 given take only the opaque box) = 1 

PR1 (1 001 000 given both boxes) = 1 

PR2 (0 given only the opaque box) = 1 

PR2 (1000 given both boxes) = 1 

so Prof. G's remarks are correct. 

5. Nozick-&hlesinger-Gettier: The set up is as in the Newcomb case, 
except that Prof. L has a confederate who has peeked under the opaque 
box, and knows what money is there. Prof. L is disposed to take only 
the opaque box, but his confederate signals him to take both boxes. He 
does, and fmds nothing under the opaque box together with the thousand 
from under the transparent box. Later, when he and his confederate are 
alone, he is furious: "You fool," he says. "If you hadn't signalled me, I'd 
have a million dollars now!" 

The analysis of example 4 shows that Prof. L's outburst is quite 
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unwarranted. Indeed, his confederate would be warranted in the following 
sharp retort: "If I hadn't signalled you, you would have nothing now. And 
you shouldn't need a confederate know that no matter what's under the 
opaque box, you'll be $ 1000 richer taking both boxes than you would be 
taking only the opaque one." 

6. Looking Backward: A: "What is that red light for?" B: "If that light had 
gone on half an hour ago, we would all be dead now. It signals nuclear 
attack, and only gives us 5 minutes to retaliate before we are incinerated." 
A: "But since there was no attack launched, if the light had gone on, it 
would have been a spurious signal, and we would still be alive." B: "Ha, hal 
Der Professor strikes again!" 

Notice that A and B here decompose into possible propensity distributions 
in different ways. For B there are two possible propensity distributions corre­
sponding to whether the warning system is working properly or not. The 
epistemic posterior probability is high that the system is working properly. 
Within the corresponding propensity distribution, the probability of being 
dead now conditional on the light going on half an hour ago is high. For A, 
on the other hand, the two possible propensity distributions correspond to 
whether an attack has been launched (say by an hour ago) or not. The 
posterior probability is high that an attack has not been launched. Within the 
corresponding propensity distribution, the probability of being dead now 
conditional on the light going on half an hour ago is low. 

The Stalnaker conditional has the property that p & q entails p ~ q, so 
that Pr(p ~ q) > Pr(p &q). The prior propensity account of the subjunctive 
does not satisfy the analogous principle. It need not be the case that 
BAV(p~q»Pr(p&q). In this respect, the prior propensity account is 
more similar to Lewis' system with weak centering, than to Stalnaker's 
original treatment. 

There is another way in which this account differs from the classical 
Stalnaker account with respect to chance processes. Suppose I flip a coin 
and it comes up heads (or particle decays in one of several possible ways). 
Consider the conditional: "If I had flipped the coin a millisecond ago, it 
would have come up heads." (If the particle had decayed a millisecond 
ago, it would have decayed in the same way.) On the idea of similarity 
of possible worlds in which the antecedent is true, these conditionals 
should be as strongly assertable as any: making the consequent true 
picks up similarity at no cost. But intuitively, this counterfactual is not 
so unproblematic. The prior propensity account which gives the 
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counterfactual a basic assertabiIity value of 1/2 seems more in line with 
ordinary usage.s 

NOTES 

1 I discuss this, and related matters in greater detail in Causal Necessity, Yale University 
Press, New Haven, 1980; and in 'Randomness and Physical Necessity' (forthcoming). 
2 As in Adams' urn example, where the relevant propensity is known to be 0.999. 
3 Choice of the appropriate prior may depend on the individuation of the relevant 
chance process. A slot machine comes up 3 pears. Would we say "If the left wheel had 
come up apple, the other two would (still) have come up pears"? A coin is flipped twice 
and comes up tails both times. Would we say, "If it had come up heads on toss 1, it 
(still) would have come up tails on toss 2"? It depends on whether we think of the play 
of the slot (the double coin flip) as a single, or multiple chance process. This explains the 
'spinner' example in Adams, pp. 132-133. 
4 As these are only sketches, I rely on the reader to fill in the details that he fmds 
necessary in a sympathetic manner. 
S The preceding sorts of examples might be accommodated within the general Stalnaker 
approach by considering Stalnaker conditionals with propensity-attributing consequents: 

If p then pr(q) = a. 

Then I could fairly say of the coin that if it had been flipped a millisecond ago, then the 
probability of it coming up heads would have been 1/2; and it need not be the case that 
for any true statements, p: q; if p then pr(q) = 1. This, however, would still leave the 
conditional with unqualified consequent "If this coin had been flipped a millisecond ago, 
it would have come up heads" assertable alongside the conditional with probabilistic 
consequent: " ... would have had a SO/50 chance of coming up heads". The proponent 
of the Stalnaker approach might deal with this remaining deviation from usage, by main­
taining that we blur the distinctions between probabilistic consequents and take as the 
assertability value of a subjunctive with an unqualified consequent, the expected value of 
the probability of the consequent of the true conditional with probabilistic consequent. 
The story would then be that a conditional with unqualified consequent is not being 
used literally, but rather doing useful duty as a carrier for an expectation. But this is not 
my story, and I won't attempt to complete it here. 
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DAVID LEWIS 

A SUBJECTIVIST'S GUIDE TO OBJECTIVE CHANCE * 

INTRODUCTION 

We subjectivists conceive of probability as the measure of reasonable partial 
belief. But we need not make war against other conceptions of probability, 
declaring that where subjective credence leaves off, there nonsense begins. 
Along with subjective credence we should believe also in objective chance. 
The practice and the analysis of science require both concepts. Neither 
can replace the other. Among the propositions that deserve our credence we 
find, for instance, the proposition that (as a matter of contingent fact about 
our world) any tritium atom that now exists has a certain chance of decaying 
within a year. Why should we subjectivists be less able than other folk to 
make sense of that? 

Carnap (1945) did well to distinguish two concepts of probability, insist­
ing that both were legitimate and useful and that neither was at fault because 
it was not the other. I do not think Carnap chose quite the righttwo concepts, 
however. In: place of his 'degree of confirmation' I would put credence or 
degree of belief; in place of his 'relative frequency in the long run' I would put 
chance or propensity, understood as making sense in the single case. The div­
ision of labor between the two concepts will be little changed by these replace­
ments. Credence is well suited to play the role of Carnap's probabilityt. and 
chance to play the role ofprobabilitY2. 

Given two kinds of probability, credence and chance, we can have hybrid 
probabilities of probabilities. (Not 'second order probabilities', which suggests 
one kind of probability self-applied.) Chance of credence need not detain us. 
It may be partly a matter of chance what one comes to believe, but what of 
it? Credence about chance is more important. To the believer in chance, 
chance is a proper subject to have beliefs about. Propositions about chance 
will enjoy various degrees of belief, and other propositions will be believed 
to various degrees conditionally upon them. 

As I hope the following questionnaire will show, we have some very fmn 
and definite opinions concerning reasonable credence about chance. These 
opinions seem to me to afford the best grip we have on the concept of 
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chance. Indeed, I am led to wonder whether anyone but a subjectivist is in a 
position to understand objective chance! 

QUESTIONNAIRE 

First question. A certain coin is scheduled to be tossed at noon today. You 
are sure that this chosen coin is fair: it has a 50% chance of falling heads and 
a 50% chance of falling tails. You have rio other relevant information. Con­
sider the proposition that the coin tossed at noon today falls heads. To what 
degree should you now believe that proposition? 

Answer. 50%, of course. 
(Two comments. (1) It is abbreviation to speak of the coin as fair. Strictly 

speaking, what you are sure of is that the entire 'chance set-up' is fair: coin, 
tosser, landing surface, air, and surroundings together are such as to make it 
so that the chance of heads is 50%. (2) Is it reasonable to think of coin­
tossing as a genuine chance process, given present·day scientific knowledge? 
I think so: consider, for instance, that air resistance depends partly on the 
chance making and breaking of chemical bonds between the coin and the air 
molecules it encounters. What is less clear is that the toss could be designed 
so that you could reasonably be sure that the chance of heads is 50% exactly. 
If you doubt that such a toss could be designed, you may substitute an 
example involving radioactive decay.) 

Next question. As before, except that you have plenty of seemingly 
relevant evidence tending to lead you to expect that the coin will fall heads. 
This coin is known to have a displaced center of mass, it has been tossed 100 
times before with 86 heads, and many duplicates of it have been tossed 
thousands of times with about 90% heads. Yet you remain quite sure, despite 
all this evidence, that the chance of heads this time is 50%. To what degree 
should you believe the proposition that the coin falls heads this time? 

Answer. Still 50%. Such evidence is relevant to the outcome by way of its 
relevance to the proposition that the chance of heads is 50%, not in any other 
way. If the evidence somehow fails to diminish your certainty that the coin is 
fair, then it should have no effect on the distribution of credence about out­
comes that accords with that certainty about chance. To the extent that 
uncertainty about outcomes is based on certainty about their chances, it is a 
stable, resilient sort of uncertainty - new evidence won't get rid of it. (The 
term 'resiliency' comes from Skyrms (I 977); see also Jeffrey (1965), § 12.5.) 

Someone might object that you could not reasonably remain sure that the 
coin was fair, given such evidence as I described and no contrary evidence 
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that I failed to mention. That may be so, but it doesn't matter. Canons of 
reasonable belief need not be counsels of perfection. A moral code that 
forbids all robbery may also prescribe that if one nevertheless robs, one 
should rob only the rich. Likewise it is a sensible question what it is reason­
able to believe about outcomes if one is unreasonably stubborn in clinging to 
one's certainty about chances. 

Next question. As before, except that now it is afternoon and you have 
evidence that became available after the coin was tossed at noon. Maybe you 
know for certain that it fell heads; maybe some fairly reliable witness has told 
you that it fell heads; maybe the witness has told you that it fell heads in nine 
out of ten tosses of which the noon toss was one. You remain as sure as ever 
that the chance of heads, just before noon, was 50%. To what degree should 
you believe that the coin tossed at noon fell heads? 

Answer. Not 50%, but something not far short of 100%. Resiliency has its 
limits. If evidence bears in a direct enough way on the outcome - a way 
which may nevertheless fall short of outright implication - then it may bear 
on your beliefs about outcomes otherwise than by way of your beliefs about 
the chances of the outcomes. ReSiliency under all evidence whatever would 
be extremely unreasonable. We can only say that degrees of belief about 
outcomes that are based on certainty about chances are resilient under 
admissible evidence. The previous question gave examples of admissible 
evidence; this question gave examples of inadmissible evidence. 

Last question. You have no inadmissible evidence; if you have any 
relevant admissible eVidence, it already has had its proper effect on your 
credence about the chance of heads. But this time, suppose you are not 
sure that the coin is fair. You divide your belief among three alternative 
hypotheses about the chance of heads, as follows. 

You believe to degree 27% that the chance of heads is 50%. 

You believe to degree 22% that the chance of heads is 35%. 

You believe to degree 51 % that the chance of heads is 80%. 

Then to what degree should you believe that the coin falls heads? 
Answer. (27% x50%) + (22% x 35%) + (51% x 80%); that is, 62%. Your 

degree of belief that the coin falls heads, conditionally on anyone of the 
hypotheses about the chance of heads, should equal your unconditional 
degree of belief if you were sure of that hypothesis. That in turn should 
equal the chance of heads according to the hypothesis: 50% for the first 
hypothesis, 35% for the second, and 80% for the third. Given your degrees 
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of belief that the coin falls heads, conditionally on the hypotheses, we need 
only apply the standard mUltiplicative and additive principles to obtain our 
answer. 

THE PRINCIPAL PRINCIPLE 

I have given undefended answers to my four questions. I hope you found 
them obviously right, so that you will be willing to take them as evidence for 
what follows. If not, do please reconsider. If so, splendid - now read on. 

It is time to formulate a general principle to capture the intuitions that 
were forthcoming in our questionnaire. It will resemble familiar principles of 
direct inference except that (1) it will concern chance, not some sort of 
actual or hypothetical frequency, and (2) it will incorporate the observation 
that certainty about chances - or conditionality on propositions about 
chances - makes for resilient degrees of belief about outcomes. Since this 
principle seems to me to capture all we know about chance, I call it 

THE PRINCIPAL PRINCIPLE I.et C be any reasonable initial credence 
function. I.et t be any time. I.et x be any real number in the unit interval. I.et 
X be the proposition that the chance, at time t, of A 's holding equalsx. I.et 
E be any proposition compatible with X that is admissible at time t. Then 

C(A/XE) =:: x. 

That will need a good deal of explaining. But first I shall illustrate the 
principle by applying it to the cases in our questionnaire. 

Suppose your present credence function is C(-/E), the function that 
comes from some reasonable initial credence function C by conditionalizing 
on your present total evidence E. I.et t be the time of the toss, noon today, 
and let A be the proposition that the coin tossed today falls heads. I.et X be 
the proposition that the chance at noon Gust before the toss) of heads is x. 
(In our questionnaire, we mostly considered the case thatx is 50%.) Suppose 
that nothing in your total evidence E contradicts X; suppose also that it is not 
yet noon, and you have no foreknowledge of the outcome, so everything that 
is included in E is entirely admissible. The conditions of the Principal Principle 
are met. Therefore C(A/XE) equals x. That is to say that x is your present 
degree of belief that the coin falls heads, conditionally on the proposition 
that its chance of falling heads is x. If in addition you are sure that the chance 
of heads is x - that is, if C(X/E) is one - then it follows also that x is your 
present unconditional degree of belief that the coin falls heads. More generally, 
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whether or not you are sure about the chance of heads, your unconditional 
degree of belief that the coin falls heads is given by summing over alternative 
hypotheses about chance: 

C(A/E) = l.:x C(Xx/E)C(A/XxE ) = l.:x C(Xx/E)x, 

where Xx, for any value of x, is the proposition that the chance at t of A 
equalsx. 

Several parts of the formulation of the Principal Principle call for expla­
nation and comment. Let us take them in turn. 

THE INITIAL CREDENCE FUNCTION C 

I said: let C be any reasonable initial credence function. By that I meant, in 
part, that C was to be a probability distribution over (at least) the space 
whose points are possible worlds and whose regions (sets of worlds) are prop­
ositions. C is a non-negative, normalized, fmitely additive measure defined on 
all propositions. 

The corresponding conditional credence function is defmed simply as a 
quotient of unconditional credences: 

C(A/B) =df C(AB)/C(B). 

I should like to assume that it makes sense to conditionalize on any but the 
empty proposition. Therefore I require that C is regular: C(B) is zero, and 
C(A/B) is undefmed, only if B is the empty proposition, true at no worlds. 
You may protest that there are too many alternative possible worlds to 
permit regularity. But that is so only if we suppose, as I do not, that the 
values of the function C are restricted to the standard reals. Many prop­
ositions must have infmtesimal C-values, and C(A/B) often will be defined 
as a quotient of infmitesimals, each infinitely close but not equal to zero. 
(See Bernstein and Wattenberg (I969).) The assumption that C is regular 
will prove convenient, but it is not justified only as a convenience. Also it is 
required as a condition of reasonableness: one who started out with an 
irregular credence function (and who then learned from experience by 
conditionalizing) would stubbornly refuse to believe some propositions no 
matter what the evidence in their favor. 

In general, C is to be reasonable in the sense that if you started out with 
it as your initial credence function, and if you always learned from experi­
ence by conditionalizing on your total eVidence, then no matter what 
course of experience you might undergo your beliefs would be reasonable 
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for one who had undergone that course of experience. 1 do not say what dis­
tinguishes a reasonable from an unreasonable credence function to arrive at 
after a given course of experience. We do make the distinction, even if we 
cannot analyze it; and therefore 1 may appeal to it in saying what it means to 
require that C be a reasonable initial credence function. 

1 have assumed that the method of conditionalizing is one reasonable way 
to learn from experience, given the right initial credence function. 1 have not 
assumed something more controversial: that it is the only reasonable way. 
The latter view may also be right (the cases where it seems wrong to con­
ditionalize may all be cases where one departure from ideal rationality is 
needed to compensate for another) but 1 shall not need it here. 

(I said that C was to be a probability distribution over at least the space 
of worlds; the reason for that qualification is that sometimes one's credence 
might be divided between different possibilities within a single world. That is 
the case for someone who is sure what sort of world he lives in, but not at all 
sure who and when and where in the world he is. In a fully general treatment 
of credence it would be well to replace the worlds by something like the 
'centered worlds' of Quine (1969), and the propositions by something 
corresponding to properties. But I shall ignore these complications here.) 

THE REAL NUMBER x 

I said: let x be any real number in the unit interval. I must emphasize that 'x' 
is a quantified variable; it is not a schematic letter that may freely be replaced 
by terms that designate real numbers in the unit interval. For fixed A and t, 
'the chance, at t, of A's holding' is such a term; suppose we put it in for the 
variable x. It might seem that for saitable C and E we have the following: if 
X is the proposition that the chance, at t, of A 's holding equals the chance, 
at t, of A's holding - in other words, if X is the necessary proposition - then 

C(A/XE) = the chance, at t, of A's holding. 

But that is absurd. It means that if E is your present total evidence and 
C(-/E) is your present credence function, then if the coin is in fact fair -
whether or not you think it is! - then your degree of belief that it falls heads 
is 50%. Fortunately, that absurdity is not an instance of the Principal 
Principle. The term 'the chance, at t, of A's holding' is a non-rigid designator; 
chance being a matter of contingent fact, it designates different numbers at 
different worlds. The context 'the proposition that .. .', within which the 
variable 'x' occurs, is intensional. Universal instantiation into an intensional 
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context with a non-rigid term is a fallacy. It is the fallacy that takes you, for 
instance, from the true premise 'For any number x, the proposition that x is 
nine is non-<:ontingent' to the false conclusion 'The proposition that the num­
ber of planets is nine is non-<:ontingent'. See Jeffrey (1970) for discussion of 
this point in connection with a relative of the Principal Principle. 

I should note that the values of 'x' are not restricted to the standard reals 
in the unit interval. The Principal Principle may be applied as follows: you are 
sure that some spinner is fair, hence that it has infmitesimal chance of coming 
to rest at any particular point; therefore (if your total evidence is admissible) 
you should believe only to an infinitesimal degree that it will come to rest at 
any particular point. 

THE PROPOSITION X 

I said: let X be the proposition that the chance, at time t, of A 's holding 
equals x. I emphasize that I am speaking of objective, single-<:ase chance -
not credence, not frequency. like it or not, we have this concept. We think 
that a coin about to be tossed has a certain chance of falling heads, or that a 
radioactive atom has a certain chance of decaying within the year, quite 
regardless of what anyone may believe about it and quite regardless of whether 
there are any other similar coins or atoms. As philosophers we may well fmd 
the concept of objective chance troublesome, but that is no excuse to deny 
its existence, its legitimacy, or its indispensability. If we can't understand it, 
so much the worse for us. 

Chance and credence are distinct, but I don't say they are unrelated. 
What is the Principal Principle but a statement of their relation? Neither do I 
say that chance and frequency are unrelated, but they are distinct. Suppose 
we have many coin-tosses with the same chance of heads (not zero or one) in 
each case. Then there is some chance of getting any frequency of heads what­
ever; and hence some chance that the frequency and the uniform single-<:ase 
chance of heads may differ, which could not be so if these were one and the 
same thing. Indeed the chance of difference may be infinitesimal if there are 
infinitely many tosses, but that is still not zero. Nor do hypothetical fre­
quencies fare any better. There is no such thing as the infinite sequence of 
outcomes, or the limiting frequency of heads, that would eventuate if some 
particular coin-toss were somehow repeated forever. Rather there are count­
less sequences, and countless frequencies, that might eventuate and would 
have some chance (perhaps infmitesimal) of eventuating. (See Jeffrey (1977), 
Skyrms (1977), and the discussion of 'might' counterfactuals in Lewis (1973).) 
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Chance is not the same thing as credence or frequency; this is not yet to 
deny that there might be some roundabout way to analyze chance in terms 
of credence or frequency. I would only ask that no such analysis be accepted 
unless it is compatible with the Principal Principle. We shall consider how this 
requirement bears on the prospects for an analysis of chance, but without 
settling the question of whether such an analysis is possible. 

I think of chance as attaching in the first instance to propositions: the 
chance of an event, an outcome, etc. is the chance of truth of the proposition 
that holds at just those worlds where that event, outcome, or whatnot occurs. 
(Here I ignore the special usage of 'event' to simply mean 'proposition'.) I 
have foremost in mind the chances of truth of propositions about localized 
matters of particular fact - a certain toss of a coin, the fate of a certain 
tritium atom on a certain day - but I do not say that those are the only prop­
ositions to which chance applies. Not only does it make sense to speak of the 
chance that a coin will fall heads on a particular occasion; equally it makes 
sense to speak of the chance of getting exactly seven heads in a particular 
sequence of eleven tosses. It is only caution, not any definite reason to think 
otherwise, that stops me from assuming that chance of truth applies to any 
proposition whatever. I shall assume, however, that the broad class of prop­
ositions to which chance of truth applies is closed under the Boolean 
operations of conjunction (intersection), disjunction (union), and negation 
(complementation). 

We ordinarily think of chance as time-dependent, and I have made that 
dependence explicit. Suppose you enter a labyrinth at 11 :00 a.m., planning 
to choose your tum whenever you come to a branch point by tossing a coin. 
When you enter at 11: 00, you may have a 42% chance of reaching the center 
by noon. But in the first half hour you may stray into a region from which it 
is hard to reach the center, so that by 11: 30 your chance of reaching the 
center by noon has fallen to 26%. But then you tum lucky; by 11 :45 you are 
not far from the center and your chance of reaching it by noon is 78%. At 
11 :49 you reach the center; then and forevermore your chance of reaching it 
by noon is 100%. 

Sometimes, to be sure, we omit reference to a time. I do not think this 
means that we have some timeless notion of chance. Rather, we have other 
ways to fix the time than by specifying it explicitly. In the case of the laby­
rinth we might well say (before, after, or during your exploration) that your 
chance of reaching the center by noon is 42%. The understood time of 
reference is the time when your exploration begins. likewise we might speak 
simply of the chance of a certain atom's decaying within a certain year, 
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meaning the chance at the beginning of that year. In general, if A is the prop­
osition that something or other takes place within a certain interval beginning 
at time t, then we may take a special interest in what I shall call the endpoint 
chance of A 's holding: the chance at t, the beginning of the interval in ques­
tion. If we speak simply of the chance of A's holding, not mentioning a time, 
it is this endpoint chance - the chance at t of A's holding - that we are likely 
to mean. 

Chance also is world-dependent. Your chance at 11 :00 of reaching the 
center of the labyringth by noon depends on all sorts of contingent features 
of the world: the structure of the labyrinth and the speed with which you can 
walk through it, for instance. Your chance at 11: 30 of reaching the center by 
noon depends on these things, and also on where in the labyrinth you then 
are. Since these things vary from world to world, so does your chance (at 
either time) of reaching the center by noon. Your chance at noon of reaching 
the center by noon is one at the worlds where you have reached the center; 
zero at all others, including those worlds where you do not explore the 
labyrinth at all, perhaps because you or it do not exist. (Here I am speaking 
loosely, as if I believed that you and the labyrinth could inhabit several 
worlds at once. See Lewis (1968) for the needed correction.) 

We have decided this much about chance, at least: it is a function of three 
arguments. To a proposition, a time, and a world it assigns a real number. 
Fixing the proposition A, the time t, and the number x, we have our prop­
osition X; it is the proposition that holds at all and only those worlds w such 
that this function assigns to A, t, and w the value x. This is the proposition 
that the chance, at t, of A's holding is x. 

THE ADMISSIBLE PROPOSITION E 

I said: let E be any proposition that is admissible at time t. Admissible prop­
ositions are the sort of information whose impact on credence about out­
comes comes entirely by way of credence about the chances of those out­
comes. Once the chances are given outright, conditionally or unconditionally, 
evidence bearing on them no longer matters. (Once it is settled that the 
suspect fired the gun, the discovery of his fingerprint on the trigger adds 
nothing to the case against him.) The power of the Principal Principle 
depends entirely on how much is admissible. If nothing is admissible it is 
vacuous. If everything is admissible it is inconsistent. Our questionnaire 
suggested that a great deal is admissible, but we saw examples also of 
inadmissible information. I have no definition of admissibility to offer, but 
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must be content to suggest sufficient (or almost sufficient) conditions for 
admissibility. I suggest that two different sorts of information are generally 
admissible. 

The first sort is historical information. If a proposition is entirely about 
matters of particular fact at times no later than t, then as a rule that prop­
osition is admissible at t. Admissible information just before the toss of a 
coin, for example, includes the outcomes of all previous tosses of that coin 
and others like it. It also includes every detail - no matter how hard it might 
be to discover - of the structure of the coin, the tosser, other parts of the 
set-up, and even anything nearby that might somehow intervene. It also 
includes a great deal of other information that is completely irrelevant to the 
outcome of the toss. 

A proposition is about a subject matter - about history up to a certain 
time, for instance - if and only if that proposition holds at both or neither of 
any two worlds that match perfectly with respect to that subject matter. (Or 
we can go the other way: two worlds match perfectly with respect to a subject 
matter if and only if every proposition about that subject matter holds at 
both or neither.) If our world and another are alike point for point, atom for 
atom, field for field, even spirit for spirit (if such there be) throughout the 
past and up until noon today, then any proposition that distinguishes the two 
cannot be entirely about the respects in which there is no difference. It 
cannot be entirely about what goes on no later than noon today. That is so 
even if its linguistic expression makes no overt mention of later times; we 
must beware lest information about the future is hidden in the predicates, as 
in 'Fred was mortally wounded at 11: 58'. I doubt that any linguistic test of 
aboutness will work without circular restrictions on the language used. Hence 
it seems best to take either 'about' or 'perfect match with respect to' as a 
primitive. 

Time-dependent chance and time-dependent admissibility go together. 
Suppose the proposition A is about matters of particular fact at some 
moment or interval tA, and suppose we are concerned with chance at time t. 
If t is later than tA, then A is admissible at t. The Principal Principle applies 
with A for E. If X is the proposition that the chance at t of A equals x, and 
if A and X are compatible, then 

1 = C(A/XA) = x. 

Put contrapositively, this means that if the chance at t of A, according to X, 
is anything but one, then A and X are incompatible. A implies that the 
chance at t of A, unless undefined, equals one. What's past is no longer 
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future 

- - - --- present 

past 

chancy. The past, unlike the future, has no chance of being any other way 
than the way it actually is. This temporal asymmetry of chance falls into 
place as part of our conception of the past as 'fIxed' and the future as 'open' 
- whatever that may mean. The asymmetry of fIxity and of chance may be 
pictured by a tree. The single trunk is the one possible past that has any 
present chance of being actual. The many branches are the many possible 
futures that have some present chance of being actual. I shall not try to say 
here what features of the world justify our discriminatory attitude toward 
past and future possibilities, reflected for instance in the judgment that 
historical information is admissible and similar information about the future 
is not. But I think they are contingent features, subject to exception and 
absent altogether from some possible worlds. 

That possibility calls into question my thesis that historical information 
is invariably admissible. What if the commonplace de facto asymmetries 
between past and future break down? If the past lies far in the future, as we 
are far to the west of ourselves, then it cannot simply be that propositions 
about the past are admissible and propositions about the future are not. And 
if the past contains seers with foreknowledge of what chance will bring, or 
time travellers who have witnessed the outcome of coin-tosses to come, then 
patches of the past are enough tainted with futurity so that historical infor­
mation about them may well seem inadmissible. That is why I qualifIed my 



278 DAVID LEWIS 

claim that historical infonnation is admissible, saying only that it is so 'as a 
rule'. Perhaps it is fair to ignore this problem in building a case that the 
Principal Principle captures our common opinions about chance, since those 
opinions may rest on a naive faith that past and future cannot possibly get 
mixed up. Any serious physicist, if he remains at least open-minded both 
about the shape of the cosmos and about the existence of chance processes, 
ought to do better. But I shall not; I shall carry on as if historical infonnation 
is admissible without exception. 

Besides historical infonnation, there is at least one other sort of admissible 
infonnation: hypothetical infonnation about chance itself. Let us return 
briefly to our questionnaire and add one further supposition to each case. 
Suppose you have various opinions about what the chance of heads would be 
under various hypotheses about the detailed nature and history of the chance 
set-up under consideration. Suppose further that you have similar hypo­
thetical opinions about other chance set-ups, past, present, and future. 
(Assume that these opinions are consistent with your admissible historical 
infonnation and your opinions about chance in the present case.) It seems 
quite clear to me - and I hope it does to you also - that these added opinions 
do not change anything. The correct answers to the questionnaire are just as 
before. The added opinions do not bear in any overly direct way on the 
future outcomes of chance processes. Therefore they are admissible. 

We must take care, though. Some propositions about future chances do 
reveal inadmissible information about future history, and these are 
inadmissible. Recall the case of the labyrinth: you enter at 11: 00, choosing 
your turns by chance, and hope to reach the center by noon. Your subse­
quent chance of success depends on the point you have reached. The prop­
osition that at 11: 30 your chance of success has fallen to 26% is not 
admissible infonnation at 11: 00; it is a giveaway about your bad luck in the 
first half hour. What is admissible at 11:00 is a conditional version: if you 
were to reach a certain point at 11: 30, your chance of success would then 
be 26%. But even some conditionals are tainted: for instance, any con­
ditional that could yield inadmissible infonnation about future chances by 
modus ponens from admissible historical propositions. Consider also the 
truth-functional conditional that if history up to 11: 30 follows a certain 
course, then you will have a 98% chance of becoming a monkey's uncle 
before the year is out. This conditional closely resembles the denial of its 
antecedent, and is inadmissible at 11:00 for the same reason. 

I suggest that conditionals of the following sort, however, are admissible; 
and indeed admissible at all times. (1) The consequent is a proposition about 



A SUBJECTIVIST'S GUIDE TO OBJECTIVE CHANCE 279 

chance at a certain time. (2) The antecedent is a proposition about history up 
to that time; and further, it is a complete proposition about history up to 
that time, so that it either implies or else is incompatible with any other prop­
osition about history up to that time. It fully specifies a segment, up to the 
given time, of some possible course of history. (3) The conditional is made 
from its consequent and antecedent not truth-functionally, but rather by 
means of a strong conditional operation of some sort. This might well be the 
counterfactual conditional of Lewis (1973); but various rival versions would 
serve as well, since many differences do not matter for the case at hand. One 
feature of my treatment will be needed, however: if the antecedent of one of 
our conditionals holds at a world, then both or neither of the conditional and 
its consequent hold there. 

These admissible conditionals are propositions about how chance depends 
(or fails to depend) on history. They say nothing, however, about how 
history chances to go. A set of them is a theory about the way chance 
works. It mayor may not be a complete theory, a consistent theory, a sys­
tematic theory, or a credible theory. It might be a miscellany of unrelated 
propositions about what the chances would be after various fully specified 
particular courses of events. Or it might be systematic, compressible into 
generalizations to the effect that after any course of history with property J 
there would follow a chance distribution with property K. (For instance, it 
might say that any coin with a certain structure would be fair.) These 
generalizations are universally quantified conditionals about single-case 
chance; if lawful, they are probabilistic laws in the sense of Railton (1978). 
(I shall not consider here what would make them lawful; but see Lewis 
(1973), §3.3, for a treatment that could cover laws about chance along 
with other laws.) Systematic theories of chance are the ones we can express in 
language, think about, and believe to substantial degrees. But a reasonable 
initial credence function does not reject any possibility out of hand. It assigns 
some non-zero credence to any consistent theory of chance, no matter how 
unsystematic and incompressible it is. 

Historical propositions are admissible; so are propositions about the 
dependence of chance on history. Combinations of the two, of course, are 
also admissible. More generally, we may assume that any Boolean com­
bination of propositions admissible at a time also is admissible at that time. 
AdmiSSibility consists in keeping out of a forbidden subject matter - how 
the chance processes turned out - and there is no way to break into a 
subject matter by making Boolean combinations of propositions that lie 
outside it. 
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There may be sorts of admissible propositions besides those I have con­
sidered. If so, we shall have no need of them in what follows. 

This completes an exposition of the Principal Principle. We turn next to an 
examination of its consequences. I maintain that they include all that we take 
ourselves to know about chance. 

THE PRINCIPLE REFORMULATED 

Given a time t and world w, let us write P tw for the chance distribu don that 
obtains at t and w. For any proposition A, Ptw(A) is the chance, at time t 
and world w, of A's holding. (The domain of Ptw comprises those propositions 
for which this chance is dermed.) 

Let us also write Htw for the complete history of world w up to time t: 
the conjunction of all propositions that hold at w about matters of particular 
fact no later than t. Htw is the proposition that holds at exactly those worlds 
that perfectly match w, in matters of particular fact, up to time t. 

Let us also write T w for the complete theory of chance for world w: the 
conjunction of all the conditionals from history to chance, of the sort just 
considered, that hold at w. Thus T w is a full specification, for world w, of 
the way chances at any time depend on history up to that time. 

Taking the conjunction H tw T w, we have a proposition that tells us a great 
deal about the world w. It is nevertheless admissible at time t, being simply a 
giant conjunction of historical propositions that are admissible at t and 
conditionals from history to chance that are admissible at any time. Hence 
the Principal Principle applies: 

C(A/XHtwTw) = x 

when C is a reasonable initial credence function, X is the proposition that the 
chance at t of A is x, and Htw T w is compatible with X. 

Suppose X holds at w. That is so if and only if x equals Ptw (A). Hence we 
can choose such an X whenever A is in the domain of Ptw . HtwTw and X 
both hold at w, therefore they are compatible. But further, HtwTw implies 
X. The theory T wand the history H tw together are enough to imply all that 
is true (and contradict all that is false) at world w about chances at time t. 
For consider the strong conditional with antecedent H tw and consequent X. 
This conditional holds at w, since by hypothesis its antecedent and conse­
quent hold there. Hence it is implied by T w' which is the conjunction of all 
conditionals of its sort that hold at w; and this conditional and Htw yield X 
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by modus ponens. Consequently the conjunction XHtw T w simplifies to 
Htw T w' Provided that A is in the domain of Ptw , so that we can make a suit­
able choice of X, we can substitutePtw(A) for x, and HtwTw for XHtwTw, in 
our instance of the Principal Principle. Therefore we have 

THE PRINCIPAL PRINCIPLE REFORMULATED. Let C be any reasonable initial 
credence function. Then for any time t, world w, and proposition A in the 
domain of P tw 

Ptw(A) = C(A/HtwT w)· 

In words: the chance distribution at a time and a world comes from any 
reasonable initial credence function by conditionalizing on the complete 
history of the world up to the time, together with the complete theory of 
chance for the world. 

This reformulation enjoys less direct intuitive support than the original 
formulation, but it will prove easier to use. It will serve as our point of 
departure in examining further consequences of the Principal Principle. 

CHANCE AND THE PROBABILITY CALCULUS 

A reasonable initial credence function is, among other things, a probability 
distribution: a non-negative, normalized, finitely additive measure. It obeys 
the laws of mathematical probability theory. There are well-known reasons 
why that must be so if credence is to rationalize courses of action that would 
not seem blatantly unreasonable in some circumstances. 

Whatever comes by conditionalizing from a probability distribution is 
itself a probability distribution. Therefore a chance distribution is a prob­
ability distribution. For any time t and world w, Ptw obeys the laws of 
mathematical probability theory. These laws carry over from credence to 
chance via the Prirtcipal Principle. We have no need of any independent 
assumption that chance is a kind of probability. 

Observe that although the Principal Principle concerns the relationship 
between chance and credence, some of its consequences concern chance 
alone. We have seen two such consequences. (1) The thesis that the past has 
no present chance of being otherwise than it actually is. (2) The thesis that 
chance obeys the laws of probability. More such consequences will appear 
later. 
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CHANCE AS OBJECTIFIED CREDENCE 

Chance is an objectified subjective probability in the sense of Jeffrey (1965), 
§ 12.7. Jeffrey's construction (omitting his use of sequences of partitions, 
which is unnecessary if we allow infinitesimal credences) works as follows. 
Suppose given a partition of logical space: a set of mutually exclusive and 
jointly exhaustive propositions. Then we can defme the objectification of a 
credence function, with respect to this partition, at a certain world, as the 
probability distribution that comes from the given credence function by 
conditionalizing on the member of the given partition that holds at the 
given world. Objectified credence is credence conditional on the truth -
not the whole truth, however, but exactly as much of it as can be captured 
by a member of the partition without further subdivision of logical space. 
The member of the partition that holds depends on matters of contingent 
fact, varying from one world to another; it does not depend on what we 
think (except insofar as our thoughts are relevant matters of fact) and we 
may well be ignorant or mistaken about it. The same goes for objectified 
credence. 

Now consider one particular way of partitioning. For any time t, consider 
the partition consisting of the propositions H tw T w for all worlds w. Call this 
the history-theory partition for time t. A member of this partition is an 
equivalence class of worlds with respect to the relation of being exactly alike 
both in respect of matters of particular fact up to time t and in respect of the 
dependence of chance on history. The Principal Principle tells us that the 
chance distribution, at any time t and world w, is the objectification of any 
reasonable credence function, with respect to the history-theory partition for 
time t, at world w. Chance is credence conditional on the truth - if the truth 
is subject to censorship along the lines of the history-theory partition, and if 
the credence is reasonable. 

Any historical proposition admissible at time t, or any admissible con­
ditional from history to chance, or any admissible Boolean combination of 
propositions of these two kinds - in short, any sort of admissible proposition 
we have considered - is a disjunction of members of the history-theory 
partition for t. Its borders follow the lines of the partition, never cutting 
between two worlds that the partition does not distinguish. likewise for 
any proposition about chances at t. Let X be the proposition that the chance 
at t of A is x, let Y be any member of the history-theory partition for t, and 
let C be any reasonable initial credence function. Then, according to our 
reformulation of the Principal Principle, X holds at all worlds in Y if C(A/Y) 
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equals x, and at no worlds in Y otherwise. Therefore X is the disjunction of 
all members Y of the partition such that C(A/Y) equalsx. 

We may picture the situation as follows. The partition divides logical space 
into countless tiny squares. In each square there is a black region where A 
holds and a white region where it does not. Now blur the focus, so that div­
isions within the squares disappear from view. Each square becomes a grey 
patch in a broad expanse covered with varying shades of grey. Any maximal 
region of uniform shade is a proposition specifying the chance of A. The 
darker the shade, the higher is the uniform chance of A at the worlds in the 
region. The worlds themselves are not grey - they are black or white, worlds 
where A holds or where it doesn't - but we cannot focus on single worlds, so 
they all seem to be the shade of grey that covers their region. Admissible 
propositions, of the sorts we have considered, are regions that may cut across 
the contours of the shades of grey. The conjunction of one of these admissible 
propositions and a proposition about the chance of A is a region of uniform 
shade, but not in general a maximal uniform region. It consists of some, 
but perhaps not all, the members Y of the partition for which C(A/Y) takes 
a certain value. 

We derived our reformulation of the Principal Principle from the original 
formulation, but have not given a reserve derivation to show the two formul­
ations equivalent. In fact the reformulation may be weaker, but not in any 
way that is likely to matter. Let C be a reasonable initial credence function; 
let X be the proposition that the chance at t of A is x; let E be admissible at 
t (in one of the ways we have considered) and compatible with X. According 
to the reformulation, as we have seen, XE is a disjunction of incompatible 
propositions Y, for each of which C(A/Y) equals x, If there were only 
finitely many Y's, it would follow that C(A/XE) also equals x. But the 
implication fails in certain cases with infinitely many Y's (and indeed we 
would expect the history-theory partition to be infinite) so we cannot quite 
recover the original formulation in this way. The cases of failure are peculiar, 
however, so the extra strength of the original formulation in ruling them out 
seems unimportant. 

KINEMATICS OF CHANCE 

Chance being a kind of probability, we may define conditional chance in the 
usual way as a quotient (leaving it undefined if the denominator is zero): 

Ptw(A/B) =df Ptw(AB)/Ptw(B). 
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To simplify notation, let us fIx on a particular world - ours, as it might be -
and omit the subscript Ow'; let us fIx on some particular reasonable initial 
credence function C, it doesn't matter which; and let us fIx on a sequence of 
times, in order from earlier to later, to be called 1, 2, 3, .... (I do not 
assume they are equally spaced.) For any time t in our sequence, let the prop­
osition It be the complete history of our chosen world in the interval from 
time t to time t + 1 (including t + 1 but not t). Thus It is the set of worlds 
that match the chosen world perfectly in matters of particular fact through­
out the given interval. 

A complete history up to some time may be extended by conjoining com­
plete histories of subsequent intervals. H2 is HII" H3 is H,I,I2, and so on. 
Then by the Principal Principle we have: 

PiCA) = C(A/HI T), 

Pz(A) = C(A/H2T) 

P3(A) = C(A/H3T) 

and in general 

C(A/H,I,T) = P,(A/I,), 

C(A/H,I,I2T) = P2(A/I2) 

= P,(A/I,I2), 

Pt+n+1(A) = Pt(A/lt ... It+n)· 

In words: a later chance distribution comes from an earlier one by condition­
alizing on the complete history of the interval in between. 

The evolution of chance is parallel to the evolution of credence for an 
agent who learns from experience, as he reasonably might, by conditionaliz­
ing. In that case a later credence function comes from an earlier one by 
conditionalizing on the total increment of evidence gained in the interval in 
between. For the evolution of chance we simply put the world's chance dis­
tribution in place of the agent's credence function, and the totality of 
particular fact about a time in place of the totality of evidence gained at that 
time. 

In the interval from t to t + 1 there is a certain way that the world will in 
fact develop: namely, the way given by It. And at t, the last moment before 
the interval begins, there is a certain chance that the world will develop in 
that way: Pt (It), the endpoint chance of It. Likewise for a longer interval, say 
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from time 1 to time 18. The world will in fact develop in the way given by 
II ... / 17 ' and the endpoint chance of its doing so is PI(/I ... / 17). By 
definition of conditional chance 

PI(/I ... / 17) = PMI) ·PI(/2/11) ·PI(/3/11/2 ) ••• PI(/17/11 ... / 16), 

and by the Principal Principle, applied as above, 

PI(/I ... / 17) = PI(Id ·P2 (/2 ) ·P3(/3) . .. P I7(/17)· 

In general, if an interval is divided into subintervals, then the endpoint 
chance of the complete history of the interval is the product of the endpoint 
chances of the complete histories of the subintervals. 

Earlier we drew a tree to represent the temporal asymmetry of chance. 
Now we can embellish the tree with numbers to represent the kinematics of 
chance. Take time 1 as the present. Worlds - those of them that are com­
patible with a certain common past and a certain common theory of chance -
lie along paths through the tree. The numbers on each segment give the end­
point chance of the course of history represented by that segment, for any 
world that passes through that segment. Ukewise, for any path consisting of 
several segments, the product of numbers along the path gives the endpoint 
chance of the course of history represented by the entire path. 

4 --

3 

2 future 

---------- --------- present 

past 
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CHANCE OF FREQUENCY 

Suppose that there is to be a long sequence of coin tosses under more or less 
standardized conditions. The first will be in the interval between time 1 and 
time 2, the second in the interval between 2 and 3, and so on. Our chosen 
world is such that at time 1 there is no chance, or negligible chance, that the 
planned sequence of tosses will not take place. And indeed it does take place. 
The outcomes are given by a sequence of propositions A I, A2 , .... Each A t 
states truly whether the toss between t and t + 1 fell heads or tails. A con­
junction A I ... An then gives the history of outcomes for an initial segment 
of the sequence. 

The endpoint chance PI(A I ... An) of such a sequence of outcomes is given 
by a product of conditional chances. By definition of conditional chance, 

PI(A I .. . An) = PI(A I) ·PI(Al/A I) ·P1(A 3 /A IA2)·· . 

·PI (An/AI . . . A n- I )· 

Since we are dealing with propositions that give only incomplete histories of 
intervals, there is no general guarantee that these factors equal the endpoint 
chances of the A's. The endpoint chance of A 2 , P2 (A 2), is given by P I(A 2/Id; 
this may differ from P I (A 2/A d because the complete history II includes 
some relevant information that the incomplete history A 1 omits about 
chance occurrences in the first interval. Likewise for the conditional and end­
point chances pertaining to later intervals. 

Even though there is no general guarantee that the endpoint chance of a 
sequence of outcomes equals the product of the endpoint chances of the 
individual outcomes, yet it may be so if the world is right. It may be, for 
instance, that the endpoint chance of A2 does not depend on those aspects 
of the history of the first interval that are omitted from A I - it would be 
the same regardless. Consider the class of all possible complete histories up to 
time 2 that are compatible both with the previous history HI and with the 
outcome A I of the first toss. These give all the ways the omitted aspects of 
the first interval might be. For each of these histories, some strong conditional 
holds at our chosen world that tells what the chance at 2 of A 2 would be if 
that history were to come about. Suppose all these conditionals have the 
same consequent: whichever one of the alternative histories were to come 
about, it would be that X, where X is the proposition that the chance at 2 of 
A 2 equals x. Then the conditionals taken together tell us that the endpoint 
chance of A 2 is independent of all aspects of the history of the first interval 
except the outcome of the first toss. 
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In that case we can equate the conditional chance PI (A 2/A I) and the end­
point chance P2(A 2). Note that our conditionals are of the sort implied by T, 
the complete theory of chance for our chosen world. Hence A I, HI, and T 
jointly imply X. It follows that A IHI T and XA IHI T are the same prop­
osition. It also follows that X holds at our chosen world, and hence that x 
equals P 2(A 2). Note also that A I HIT is admissible at time 2. Now, using the 
Principal Principle frrst as reformulated and then in the original formulation, 
we have 

PI(A 2/A I ) = C(A 2iA IH I T) = C(A2/XA IH I T) = x = P2(A 2). 

If we also have another such battery of conditionals to the effect that the 
endpoint chance of A 3 is independent of all aspects of the history of the first 
two intervals except the outcomes A I and A 2 of the first two tosses, and 
another battery for A 4 , and so on, then the multiplicative rule for endpoint 
chances follows: 

PI(AI ... An) = PI(AI)·P2(A2)·P3(A3) ... Pn(An). 

The conditionals that constitute the independence of endpoint chances mean 
that the incompleteness of the histories A I, A 2, ••• doesn't matter. The miss­
ing part wouldn't make any difference. 

We might have a stronger form of independence. The endpoint chances 
might not depend on any aspects of history after time I, not even the out­
comes of previous tosses. Then conditionals would hold at our chosen world 
to the effect that if any complete history up to time 2 which is compatible 
with HI were to come about, it would be that X (where X is again the prop­
osition that the chance at 2 of A2 equals x). We argue as before, leaving out 
A I: T implies the conditionals, H I and T jointly imply X, HIT and XH I Tare 
the same, X holds, x equals P2(A 2 ), HI T is admissible at 2; so, using the 
Principal Principle in both formulations, we have 

PI(A 2) = C(A 2/HI T) = C(A2/XHI T) = x = P2(A 2). 

Our strengthened independence assumption implies the weaker independence 
assumption of the previous case, wherefore 

If the later outcomes are likewise independent of history after time 1, then 
we have a mUltiplicative rule not only for endpoint chances but also for 
unconditional chances of outcomes at time I: 
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Two conceptions of independence are in play together. One is the familiar 
probabilistic conception: A 2 is independent of A 1, with respect to the chance 
distribution P 1, if the conditional chance P 1 (A 2/A 1) equals the unconditional 
chance P1(A 2); equivalently, if the chance P1(A 1A2) of the conjunction 
equals the product P1(A 1) ·P1(A 2) of the chances of the conjuncts. The 
other conception involves batteries of strong conditionals with different 
antecedents and the same consequent. (I consider this to be causal indepen­
dence, but that's another story.) The conditionals need not have anything to 
do with probability; for instance, my beard does not depend on my politics 
since I would have such a beard whether I were Republican, Democrat, 
Prohibitionist, libertarian, Socialist Labor, or whatever. But one sort of con­
sequent that can be independent of a range of alternatives, as we have seen, is 
a consequent about single-case chance. What I have done is to use the 
Principal Principle to parlay battery-of-conditionals independence into 
ordinary probabilistic independence. 

If the world is right, the situation might be still simpler; and this is the case 
we hope to achieve in a well-conducted sequence of chance trials. Suppose 
the history-to-chance conditionals and the previous history of our chosen 
world give us not only independence (of the stronger sort) but also uniformity 
of chances: for any toss in our sequence, the endpoint chance of heads on 
that toss would be h (and the endpoint chance of tails would be I -h) no 
matter which of the possible previous histories compatible with H1 might 
have come to pass. Then each of the At'S has an endpoint chance of h if it 
specifies an outcome of heads, I -h if it specifies an outcome of tails. By 
the multiplicative rule for endpoint chances, 

P1(A 1 •• • An) = hfn • (l-h)(n-fn) 

where f is the frequency of heads in the first n tosses according to A 1 ••• An. 
Now consider any other world that matches our chosen world in its 

history up to time I and in its complete theory of chance, but not in its 
sequence of outcomes. By the Principal Principle, the chance distribution at 
time I is the same for both worlds. Our assumptions of independence and 
uniformity apply to both worlds, being built into the shared history and 
theory. So all goes through for this other world as it did for our chosen 
world. Our calculation of the chance at time I of a sequence of outcomes, as 
a function of the uniform single-case chance of heads and the length and fre­
quency of heads in the sequence, goes for any sequence, not only for the 
sequence A 1, A 2 , ••• that comes about at our chosen world. 

Let F be the proposition that the frequency of heads in the first n tosses is 
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f. F is a disjunction of propositions each specifying a sequence of n outcomes 
with frequency f of heads; each disjunct has the same chance at time 1, under 
our assumptions of independence and uniformity; and the disjuncts are 
incompatible. Multiplying the number of these propositions by the uniform 
chance of each, we get the chance of obtaining some or other sequence of 
outcomes with frequency fofheads: 

n! _hfn - (1 _h)(n-fn) 

P1(F) = (in)! - (n - frz)! 

The rest is well known. For fIxed hand n, the right hand side of the equation 
peaks for f close to h; the greater is n, the sharper is the peak. If there are 
many tosses, then the chance is close to one that the frequency of heads is 
close to the uniform single.case chance of heads. The more tosses, the more 
stringent we can be about what counts as 'close'. That much of frequentism 
is true; and that much is a consequence of the Principal Principle, which 
relates chance not only to credence but also to frequency. 

On the other hand, unless h is zero or one, the right hand side of the 
equation is non-zero. So, as already noted, there is always some chance that 
the frequency and the single.case chance may differ as badly as you please. 
That objection to frequentist analyses also turns out to be a consequence of 
the Principal Principle. 

EVIDENCE ABOUT CHANCES 

To the subjectivist who believes in objective chance, particular or general 
propositions about chances are nothing special. We believe them to varying 
degrees. As new evidence arrives, our credence in them should wax and wane 
in accordance with Bayesian confIrmation theory. It is reasonable to believe 
such a proposition, like any other, to the degree given by a reasonable initial 
credence function conditionalized on one's present total evidence. 

If we look at the matter in closer detail, we fInd that the calculations of 
changing reasonable credence involve likelihoods: credences of bits of evi­
dence conditionally upon hypotheses. Here the Principal Principle may act as 
a useful constraint. Sometimes when the hypothesis concerns chance and the 
bit of evidence concerns the outcome, the reasonable likelihood is fIXed, 
independently of the vagaries of initial credence and previous evidence. What 
is more, the likelihoods are fIXed in such a way that observed frequencies 
tend to confIrm hypotheses according to which these frequencies differ not 
too much from uniform chances. 
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To illustrate, let us return to our example of the sequence of coin tosses. 
Think of it as an experiment, designed to provide evidence bearing on various 
hypotheses about the single.case chances of heads. The sequence begins at 
time 1 and goes on for at least n tosses. The evidence gained by the end of the 
experiment is a proposition F to the effect that the frequency of heads in the 
first n tosses was t. (I assume that we use a mechanical counter that keeps 
no record of individual tosses. The case in which there is a full record, how­
ever, is little different. I also assume, in an unrealistic simplification, that no 
other evidence whatever arrives during the experiment.) Suppose that at time 
1 your credence function is C(-/E), the function that comes from our 
chosen reasonable initial credence function C by conditionalizing on your 
total evidence E up to that time. Then if you learn from experience by 
conditionalizing, your credence function after the experiment is c(-/FE). 
The impact of your experimental evidence F on your beliefs, about chances 
or anything else, is given by the difference between these two functions. 

Suppose that before the experiment your credence is distributed over a 
range of alternative hypotheses about the endpoint chances of heads in the 
experimental tosses. (Your degree of belief that none of these hypotheses is 
correct may not be zero, but I am supposing it to be negligible and shall 
accordingly neglect it.) The hypotheses agree that these chances are uniform, 
and each independent of the previous course of history after time 1; but they 
disagree about what the uniform chance of heads is. Let us write Gh for the 
hypothesis that the endpoint chances of heads are uniformly h. Then the 
credences C(Gh/E), for various h's, comprise the prior distribution of cre­
dence over the hypotheses; the credences C(Gh/FE) comprise the posterior 
distribution; and the credences C(F/GhE) are the likelihoods. Bayes' Theorem 
gives the posterior distribution in terms of the prior distribution and the 
likelihoods: 

};h [C(Gh/E) • C(F/GhE)] . 

(Note that 'h' is a bound variable of summation in the denominator of the 
right hand side, but a free variable elsewhere.) In words: to get the posterior 
distribution, multiply the prior distribution by the likelihood function and 
renormalize. 

In talking only about a single experiment, there is little to say about the 
prior distribution. That does indeed depend on the vagaries of initial credence 
and previous evidence. 

Not so for the likelihoods. As we saw in the last section, each Gh implies a 
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proposition X h to the effect that the chance at 1 of F equals x h' where x h is 
given by a certain function of h, n, and f. Hence GhE and XhG~ are the 
same proposition. Further, GhE and X are compatible (unless GhE is itself 
impossible, in which case Gh might as well be omitted from the range of 
hypotheses). E is admissible at 1, being about matters of particular fact -
your evidence - at times no later than 1. Gh also is admissible at 1. Recall 
from the last section that what makes such a proposition hold at a world is 
a certain relationship between that world's complete history up to time 1 and 
that world's history-to-chance conditionals about the chances that would 
follow various complete extensions of that history. Hence any member of the 
history-theory partition for time 1 either implies or contradicts Gh ; Gh is 
therefore a disjunction of conjunctions of admissible historical propositions 
and admissible history-to-chance conditionals. Finally, we supposed that Cis 
reasonable. So the Principal Principle applies: 

C(F/GhE) = C(F/XhGhE) = Xh· 

The likelihoods are the endpoint chances, according to the various hypo­
theses, of obtaining the frequency of heads that was in fact obtained. 

When we carry the calculation through, putting these implied chances for 
the likelihoods in Bayes' theorem, the results are as we would expect. An 
observed frequency of f raises the credences of the hypotheses Gh with h 
close to f at the expense of the others; the more sharply so, the greater is the 
number of tosses. Unless the prior distribution is irremediably biased, the 
result after enough tosses is that the lion's share of the posterior credence will 
go to hypotheses putting the single-case chance of heads close to the observed 
frequency. 

CHANCE AS A GUIDE TO LIFE 

It is reasonable to let one's choices be guided in part by one's firm opinions 
about objective chances or, when firm opinions are lacking, by one's degrees 
of belief about chances. Ceteris paribus, the greater chance you think a 
lottery ticket has of winning, the more that ticket should be worth to you 
and the more you should be disposed to chose it over other desirable things. 
Why so? 

There is no great puzzle about why credence should be a guide to life. 
Roughly speaking, what makes it be so that a certain credence function is 
your credence function is the very fact that you are disposed to act in more 
or less the ways that it rationalizes. (Better: what makes it be so that a certain 
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reasonable initial credence function and a certain reasonable system of basic 
intrinsic values are both yours is that you are disposed to act in more or less 
the ways that are rationalized by the pair of them together, taking into 
account the modification of credence by conditionalizing on total evidence; 
and further, you would have been likewise disposed if your life history of 
experience, and consequent modification of credence, had been different; and 
further, no other such pair would fit your dispositions more closely.) No 
wonder your credence function tends to guide your life. If its doing so did 
not accord to some considerable extent with your dispositions to act, then 
it would not be your credence function. You would have some other cre­
dence function, or none. 

If your present degrees of belief are reasonable - or at least if they come 
from some reasonable initial credence function by conditionalizing on your 
total evidence - then the Principal Principle applies. Your credences about 
outcomes conform to your firm beliefs and your partial beliefs about 
chances. Then the latter guide your life because the former do. The greater 
chance you think the ticket has of winning, the greater should be your 
degree of belief that it will win; and the greater is your degree of belief that 
it will win, the more, ceteris paribus, it should be worth to you and the 
more you should be disposed to choose it over other desirable things. 

PROSPECTS FOR AN ANALYSIS OF CHANCE 

Consider once more the Principal Principle as reformulated: 

Ptw{A) = C(A/HtwTw)· 

Or in words: the chance distribution at a time and a world comes from any 
reasonable initial credence function by conditionalizing on the complete 
history of the world up to the time, together with the complete theory of 
chance for the world. 

Doubtless it has crossed your mind that this has at least the form of an 
analysis of chance. But you may well doubt that it is informative as an 
analysis; that depends on the distance between the analysandum and the 
concepts employed in the analysans. 

Not that it has to be informative as an analysis to be informative. I hope 
I have convinced you that the Principal Principle is indeed informative, 
being rich in consequences that are central to our ordinary ways of thinking 
about chance. 

There are two different reasons to doubt that the Principal Principle 
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qualifies as an analysis. The first concerns the allusion in the analysans to 
reasonable initial credence functions. The second concerns the allusion to 
complete theories of chance. In both cases the challenge is the same: could 
we possibly get any independent grasp on this concept, otherwise than by 
way of the concept of chance itself? In both cases my provisional answer is: 
most likely not, but it would be worth trying. Let us consider the two prob­
lems in turn. 

It would be natural to think that the Principal Principle tells us nothing at 
all about chance, but rather tells us something about what makes an initial 
credence function be a reasonable one. To be reasonable is to conform to 
objective chances in the way described. Put this strongly, the response is 
wrong: the Principle has consequences, as we noted, that are about chance 
and not at all about its relationship to credence. (They would be acceptable, 
I trust, to a believer in objective single-case chance who rejects the very idea 
of degree of belief.) It tells us more than nothing about chance. But perhaps 
it is divisible into two parts: one part that tells us something about chance, 
another that takes the concept of chance for granted and goes on to lay down 
a criterion of reasonableness for initial credence. 

Is there any hope that we might leave the Principal Principle in abeyance, 
lay down other criteria of reasonableness that do not mention chance, and 
get a good enough grip on the concept that way? It's a lot to ask. For note 
that just as the Principal Principle yields some consequences that are entirely 
about chance, so also it yields some that are entirely about reasonable initial 
credence. One such consequence is as follows. There is a large class of prop­
ositions such that if Yis anyone of these, and C1 and C2 are any two reason­
able initial credence functions, then the functions that come from C1 and C2 

by conditionalizing on Y are exactly the same. (The large class is, of course, 
the class of members of history-theory partitions for all times.) That severely 
limits the ways that reasonable initial credence functions may differ, and so 
shows that criteria adequate to pick them out must be quite strong. What 
might we try? A reasonable initial credence function ought to (1) obey the 
laws of mathematical probability theory; (2) avoid dogmatism, at least by 
never assigning zero credence to possible propositions and perhaps also by 
never assigning infinitesimal credence to certain kinds of possible prop­
ositions; (3) make it possible to learn from experience by having a built-in 
bias in favor of worlds where the future in some sense resembles the past; and 
perhaps (4) obey certain carefully restricted principles of indifference, 
thereby respecting certain symmetries. Of these, criteria (1 }-(3) are all very 
well, but surely not yet strong enough. Given C1 satisfying (1}-(3), and given 
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any proposition Y that holds at more than one world, it will be possible to 
distort C1 very slightly to produce C2 , such that C1(-/Y) and C2(-/Y) differ 
but C2 also satisfies (1 )-(3). It is less clear what (4) might be able to do for 
us. Mostly that is because (4) is less clear simpliciter, in view of the fact that 
it is not possible to obey too many different restricted principles of indif­
ference at once and it is hard to give good reasons to prefer some over their 
competitors. It also remains possible, of course, that some criterion of 
reasonableness along different lines than any I have mentioned would do the 
trick. 

I turn now to our second problem: the concept of a complete theory of 
chance. In saying what makes a certain proposition be the complete theory of 
chance for a world (and for any world where it holds), I gave an explanation 
in terms of chance. Could these same propositions possibly be picked out in 
some other way, without mentioning chance? 

The question turns on an underlying metaphysical issue. A broadly 
Humean doctrine (something I would very much like to believe if at all 
possible) holds that all the facts there are about the world are particular 
facts, or combinations thereof. This need not be taken as a doctrine of 
analyzability, since some combinations of particular facts cannot be 
captured in any fmite way. It might be better taken as a doctrine of 
supervenience: if two worlds match perfectly in all matters of particular 
fact, they match perfectly in all other ways too - in modal properties, laws, 
causal connections, chances, .... It seems that if this broadly Humean 
doctrine is false, then chances are a likely candidate to be the fatal counter­
instance. And if chances are not supervenient on particular fact, then neither 
are complete theories of chance. For the chances at a world are jointly deter­
mined by its complete theory of chance together with propositions about its 
history, which latter plainly are supervenient on particular fact. 

If chances are not supervenient on particular fact, then neither chance 
itself nor the concept of a complete theory of chance could possibly be 
analyzed in terms of particular fact, or of anything supervenient thereon. 
The only hope for an analysis would be to use something in the analysans 
which is itself not supervenient on particular fact. I cannot say what that 
something might be. 

How might chance, and complete theories of chance, be supervenient on 
particular fact? Could something like this be right: the complete theory of 
chance for a world is that one of all possible complete theories of chance that 
somehow best fits the global pattern of outcomes and frequencies of out­
comes? It could not. For consider any such global pattern, and consider a 
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time long before the pattern is complete. At that time, the pattern surely has 
some chance of coming about and some chance of not coming about. There is 
surely some chance of a very different global pattern coming about; one 
which, according to the proposal under consideration, would make true some 
different complete theory of chance. But a complete theory of chance is not 
something that could have some chance of coming about or not coming 
about. By the Principal Principle, 

Ptw(Tw) = C(Tw/HtwTw) = 1. 

If T w is something that holds in virtue of some global pattern of particular 
fact that obtains at world w, this pattern must be one that has no chance at 
any time (at w) of not obtaining. If w is a world where many matters of 
particular fact are the outcomes of chance processes, then I fail to see what 
kind of global pattern this could possibly be. 

But there is one more alternative. I have spoken as if I took it for granted 
that different worlds have different history-to-chance conditionals, and hence 
different complete theories of chance. Perhaps this is not so: perhaps all 
worlds are exactly alike in the dependence of chance on history. Then the 
complete theory of chance for every world, and all the conditionals that 
comprise it, are necessary. They are supervenient on particular fact in the 
trivial way that what is non-contingent is supervenient on anything - no 
two worlds differ with respect to it. Chances are still contingent, but only 
because they depend on contingent historical propositions (information 
about the details of the coin and tosser, as it might be) and not also because 
they depend on a contingent theory of chance. Our theory is much simplified 
if this is true. Admissible information is simply historical information; the 
history-theory partition at t is simply the partition of alternative complete 
histories up to t; for any reasonable initial credence function C 

so that the chance distribution at t and w comes from Cby conditionalizing 
on the complete history of w up to t. Chance is reasonable credence con­
ditional on the whole truth about history up to a time. The broadly Humean 
doctrine is upheld, so far as chances are concerned: what makes it true at a 
time and a world that something has a certain chance of happening is some­
thing about matters of particular fact at that time and (perhaps) before. 

What's the catch? For one thing, we are no longer safely exploring the 
consequences of the Principal Principle, but rather engaging in speculation. 
For another, our broadly Humean speculation that history-to-chance 
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conditionals are necessary solves our second problem by making the first one 
worse. Reasonable initial credence functions are constrained more narrowly 
than ever. Any two of them, C1 and C2 , are now required to yield the same 
function by conditionalizing on the complete history of any world up to any 
time. Put it this way: according to our broadly Humean speculation (and the 
Principal Principle) if I were perfectly reasonable and knew all about the 
course of history up to now (no matter what that course of history actually 
is, and no matter what time is now) then there would be only one credence 
function I could have. Any other would be umeasonable. 

It is not very easy to believe that the requirements of reason leave so 
little leeway as that. Neither is it very easy to believe in features of the world 
that are not supervenient on particular fact. But if I am right, that seems to 
be the choice. I shall not attempt to decide between the Humean and the 
anti-Humean variants of my approach to credence and chance. The Principal 
Principle doesn't. 

Princeton University 

NOTE 

* I am grateful to several people for valuable discussions of this material; especially John 
Burgess, Nancy Cartwright, Richard Jeffrey, Peter Railton, and Brian Skyrms. I am also 
much indebted to Mellor (1971), which presents a view very close to mine; exactly how 
close I am not prepared to say. 
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RICHMOND H. THOMASON AND ANIL GUPTA 

A THEORY OF CONDITIONALS IN THE CONTEXT 

OF BRANCHING TIME* 

1. INTRODUCTION 

In Stalnaker [9J and in Stalnaker and Thomason [IOJ, a theory of con­
ditionals is presented that involves a "selection function". Intuitively, the 
value of the function at a world is the world as it would be if a certain 
formula (the antecedent of a conditional) were true. 

In these two papers, the notion of a possible world is left entirely blank 
and abstract; worlds are simply treated as points. This approach has the 
advantage of generality, but could also be misleading. Clearly, in a situation 
in which there are likenesses among possible worlds the selection function 
will be affected. Suppose, for instance, that we can speak of those worlds 
that are like w and those that are unlike it. Then the function should not 
choose a world unlike w when one like w would do as well. The moral of 
this is that if we pass to a logical theory in which "possible worlds" are given 
a certain amount of structure, we can't expect the logic of conditionals 
to remain unaffected - for this structure may provide some purchase on 
world similarity.l 

In this paper we want to explore one of the most pervasive and important 
cases of this sort: the interaction of conditionals with tense. This inter­
action can be rather intricate in even the most commonplace examples 
of conditionals: consider, for instance, the following two. 

(1.1) You'll lose this match if you lose this poin t. 

(1.2) If he loves her then he will marry her. 

We believe there is a difference in logical form here: (1.1) has the form 
FQ> FR (or perhaps the form F(Q> FR», while (1.2) has the form 
Q> FR. 2 

Or consider the following pair. 

(1.3) If Max missed the train he would have taken the bus. 

(1.4) Max took the bus if he missed the train. 

We believe that the form of (1.3) is P(Q> FR) (so that in this sentence the 
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word 'would' is the past tense of 'will'), while that of (1.4) is PQ > PRo 
(Thus, it is not, on our view, a matter of the form of"(1.4) that one would 
normally expect the bus-catching to have followed the train-missing if (1.4) 
and its antecedent are true; (1.4) has the same form as 'He took the bus 
if he came here from the bus station'.) 

These sentences help to bring out a fundamental point: if you approach 
tense logic with the theory of conditionals in mind that we have just 
sketched, it's natural to want a logic capable of dealing with temporal struc­
tures that branch towards the future. Take example (1.1), for instance, and 
imagine you are evaluating it at a moment of time with a single past but 
various possible futures, some in which you win this point and some in 
which you lose it. We want the selection function to choose a future course 
of events (or scenario, or history) in which you lose this point; the truth of 
(1.1) depends on whether you lose the match on this scenario. Other 
examples, like (1.3), can lead to scenarios that might have occurred, but 
didn't. Given a form like P(Q> FR), we are led to a past moment, at which 
we choose a scenario in which Q is true. Now, it may be that there is no such 
scenario if we confme ourselves to what actually happened. In the example 
under consideration, this will be the case if Max didn't in fact miss the 
train. In this case, we want the selection function to choose a scenario that 
might have been actualized, but wasn't. 

So we will draw on logical work concerning branching temporal struc­
tures. A number of logics are discussed in Prior [6], but the version of tense 
logic that we will use is that of Thomason [13] . 

2. THE FIRST THEORY 

We will begin by developing a theory of tense and conditionals which is 
a simple adaptation of Stalnaker's theory. The difficulties that this first 
theory encounters will motivate some of the central ideas of the second 
and the third theories that we present later on. 

In Stalnaker's theory a conditional A > B is true at a world w if and 
only if B is true at a world w' determined by A and w. Intuitively, w' is 
the world at which A is true (Le., w' is anA-world), and which is the closest 
possible A-world to w.3 Formally, the theory posits a function s which for 
each antecedent A and world w picks out a world w' = seA, W).4 Then clause 
(2.1) gives the truth conditions of a conditional formula. 

(2.1) A> B is true at w if and only if B is true at seA, w). 
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Constraints imposed on the s-function will determine the logical properties 
of conditionals; in Stalnaker [9] and in Stalnaker and Thomason [10] 
such constraints are elaborated, and the corresponding properties explored. 
These constraints can be understood as reflecting the idea that the A-world 
is the "closest" one in which A is true. 

When time is brought in to the picture, worlds give way to evolving his­
tories. Thus, the truth value of a sentence - and you should now think of 
sentences as including tensed ones, whose truth conditions may refer to 
past and future moments - will depend on a history h and a moment i along 
h. That is, formulas are evaluated at moment-history pairs <i, h>. Further, 
in assigning a truth value to A > B, you do not merely want to consider 
the closest A-world. Rather you want to consider the closest moment­
history pair at which A is true. Thus we want the Stalanker function s to 
take as arguments a formula A and a moment-history pair (i, h) and to yield 
as value the closest pair (i', h') to (i, h) at which A is true. Conditionals will 
then be interpreted by (2.2). 

(2.2) A> B is true at (i, h) if and only if B is true at (i', h'), where 
(i', h') = s(A, (i; h»). 

Rule (2.2) brings time into the picture, so that the elements we are 
selecting are complex. This means that we must look more closely at close­
ness. As a first step, we would assume that i' is an "alternative present" to 
i: 'If I were in Rome .. .' amounts to 'If I were in Rome now .. .', 'If I had 
been born in Wales .. .' to 'If it were true now that I had been born in 
Wales .. .', and so forth.5 ' 

Second, we wish to make a claim: closeness among moment-history pairs 
conforms to the following condition, the condition of Past Predominance. 

(2.3) In determining how close (i" hi) is to (i2, h2) (where i l and i2 
are alternative presents to one another), past closeness predomin­
nates over future closeness; that is, the portions of hi and h2 
not after 6 i l and i2 predominate over the rest of hi and h2.7 

This informal principle is to be interpreted as strongly as possible: if h3 up 
to i 3 is even a little closer to hi up to i l than is h2 up to i2, then (i3, h3) 
is closer to (ii' hi) than (i2, h2) is, even if h2 after i2 is much closer to hi 
after ii' than is h3 after i3. Any gain with respect to the past counts more 
than even the largest gain with respect to the future. Our formal theory 
will incorporate the hypothesis that (2.3) is correct. 

Contrast this hypothesis of Past Predominance with the notion that 
neither the past nor the future predominates in evaluating conditionals. Call 
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this, the most natural rival of (2.3), the Overall Similarity Theory. The two 
differ in important logical ways. For one thing, the Overall Similarity Theory 
allows considerations of time and tense to influence the truth conditions 
of A > B only insofar as they affect the truth conditions of the antecedent 
A and the consequent B. But on our theory they can influence the truth 
conditions directly. Thus, when A and B are eternal, A > B is eternal on the 
Overall Similarity Theory, but need not be on ours.8 

For another thing, since they motivate different constraints on the 
ordering of histories and hence on the s-functions, the two theories yield 
different principles of interaction between tenses and conditionals. This 
point is most easily seen in connection with a language having metric tense 
operators Fn and pn. (F n, for instance, may be read "it will be the case 
n minutes hence that.") The Overall Similarity Theory will validate the 
following distribution principles. 

(2.4) Fn(A > B) J (FnA > FnB) 

(2.5) pn(A>B)J(pnA>pnB) 

(2.6) (Fn A> FnB) J Fn(A > B) 

(2.7) (pn A> pnB) J pn(A > B) 

Take (2.4), for instance. Suppose Fn(A >B) is true at (i), h}; this means 
that A> B is true at (i2, h), where i2 is the moment n minutes further along 
h than i). We can safely assume that A is true at 0;, h'} for some i; copresent 
with i2 and h' containing i;, for otherwise (2.4) is vacuously true. So we 
conclude that at the closest pair (if, h*), A and B both are true. On the 
Overall Similarity Theory, h* will be the history most resembling h overall, 
among those histories that meet the condition that A be true on them at 
the moment copresent with i2. But then h* is also the closest history to h 
overall among those that meet the condition that F nA be true on them at 
the moment copresent with i). Thus FnA > FnB is true at (i, h), since B 
is true at 0;, h'}. Similar arguments yield the validity of (2.5}-(2.7) on 
the Overall Similarity Theory. 

But none of these four formulas is valid on our proposal. Again, we take 
(2.4). This may fail to be true at 0), h} because the closest history to h, 
given what has happened before i), need not be the same as the closest 
history to h, given what has happened before i2. Readers who are not con­
tent with this informal account can add metric tenses to the formal language 
we interpret below, and show that (2.4}-(2.7) are indeed falsifiable. 
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Differences like this emerge also with ordinary, nonmetric tense operators. 
The following four formulas, for example, are valid on the Overall Similarity 
Theory but invalid on the Past Predominance Theory. 

(2.8) G(A > B) ~ (FA > FB) 

(2.9) H(A > B) ~ (PA > PB) 

(2.10) (FA> G(A ~B» ~ F(A >b) 

(2.11) (PA > H(A ~ B» ~ P(A > B) 

(G and H are understood respectively as "It will always be the case that" 
and "It has always been the case that.") 

These considerations show that the difference between Overall Similarity 
and Past Predominance is substantive; it affects the logic of tenses and con­
ditionals.9 Why do we choose the latter logic? Firstly, because we are not 
persuaded that (2.4)--(2.11) are logical truths. Consider (2.7). Imagine that 
David and Max have been playing a simple coin-tossing and betting game. 
Max flips the coin. Unknown to David, Max has two coins, one with heads 
on each side and one with tails on each side. If David bets tails, Max flips 
the first coin; if he bets heads, Max flips the second. Two minutes ago David 
bet that the coin would come up heads on the next flip. Max flipped the 
coin and it came up tails. Now the following can be said truly (say, by some­
one who does not know which way David bet). 

(2.12) If two minutes ago David bet tails then he wins now. 

So, it seems that formula 

(2.13) (p2Q> p2R) 

is true, where Q stands for the sentence 'David bet tails' and R for the 
sentence 'David wins now'. But the formula 

(2.14) p 2(Q > R) 

is false. If David had bet tails two minutes ago, he would still have lost. 
So we have a situation in which (2.7) is false. 

Secondly. Past Predominance explains our intuition about the truth 
conditions of English conditionals better than the Overall Similarity Theory. 
Consider the following variant of an example of Kit Fine's. (See Fine [3].) 

(2.15) If button A is pushed within a minute, there will be a nuclear 
holocaust. 
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bnagine ways in which the button may be hooked up, or may fail to be 
hooked up, to a doomsday device. In some of these, (2.15) is true, and in 
others false. And among the former cases, we can well imagine ones in which 
the button is not pushed, and no holocaust occurs; say that one of these 
cases involves a certain moment i and history h. The Overall Similarity 
Theory has difficulties with such cases. For a history h' in which the button 
is disconnected and no holocaust occurs when the button is pressed is much 
more similar to h, overall, than a history h" in which there is a holocaust 
when the button is pressed. But if h' is used to evaluate (2.15), the sentence 
is false. Moreover, (2.16) is true. 

(2.16) If button A is pushed within a minute, it is already disconnected. 

Here, and in other cases too numerous to mention,10 Overall Similarity 
would be hard put to explain our intuitions about truth. On the other hand, 
Past Predominance fits these intuitions. A hypothetical disconnecting of a 
button that is already connected counts for more than any hypothetical 
change regarding what will happen. 

Thirdly, Past Predominance makes possible an approach for explaining 
differences between indicative and subjunctive conditionals. We wish to 
suggest (tentatively) that some examples that have been contrasted simply 
along the indicative·subjunctive dimension also involve scope differences 
with respect to tenses. For instance, consider Ernest Adams' lovely pair 
of examples (Adams [1], p. 90.) 

(2.17) If Oswald didn't shoot Kennedy then Kennedy is alive today. 

(2.18) If Oswald hadn't shot Kennedy then Kennedy would be alive 
today. 

Our proposal is that (2.17) should be formalized as 

(2.19) PQ > R, 

while (2.18) should be formalized as 

(2.20) P(Q > R). 

In (2.19) and (2.20), Q stands for 'Oswald doesn't shoot Kennedy' and R for 
the eternal sentence 'Kennedy is alive today', and we understand the past 
tense operator P to be relativized to an indexically specified interval of time. 
The difference in the truth conditions of the two sentences arises because 
(2.19) requires us to maximize closeness to the present moment while (220) 
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requires us to maximize closeness only up to some past moment. (2.20), 
and hence (2.18), are true because at some past moment the corresponding 
indicative Q > R, Le., 'If Oswald doesn't shoot Kennedy then Kennedy 
will be alive .. .', is true. More generally, we want to propose (tentatively) 
that a subjunctive asserts that the corresponding indicative sentence was true 
in some contextually determined interval of timeY 

We now put these ideas to work by sketching a formal interpretation 
of a propositional language .2" with the usual truth-functional connectives, 
the conditional >, the past and future tense operators P and F, and the 
"settledness" operator L. As far as tenses and settledness are concerned, 
we adopt the theory developed in Thomason [13] . 

Model structures consist of a nonempty set % of moments (to be thought 
of as world states, and not to be confused with clock times)2), and two 
relations < and ~ on %. The relation < orders members of %into a treelike 
structure, the branches of which give various possible courses of events. 
We impose the following conditions on <: (1) it is transitive; and (2) if 
i), i2 < i then i) < i2 or i) = i2 or i2 < i). I3 The relation ~ relates "copresent" 
moments. Branches (Le., maximal chains with respect to <) through a 
moment i give the various possible courses of history at L We let Jfj be 
the set of all branches passing through L The following conditions ensure 
that ~ and < interact irI the proper way: (4) ~ is an equivalence relation; 
(5) ifi) ~ i2, then il <t: i2; (6) Ifi) ~ i2 and i3~ i4 and il < i3, then i4 <t: i2 • 

Models for .2"involve a valuation function V and two Stalnaker functions, 
Sl and S2' These can be thought of as two components of a single Stalnaker 
function. Intuitively, s) gives us the closest moment at which a condition 
is true, and S2 provides a history through this moment. Formally, s) is a 
function which takes a formula A and a moment i as arguments and yields 
a moment sl(A, i). And S2 is a function which takes a formula A, a moment 
i and a history h (it is required that i E h) as arguments and yields a history 
s2(A, i, h), which we require to be a member of ~s)(A, i)' 

Note that s) depends only on i and A, while S2 depends on h as well. 
Now it is clear that S2 should depend on h, for we want s2(A, i, h) = h when 
A is true on h at i. (If this prirIciple is given up, modus ponens will become 
invalid.) On the other hand, s) does not depend on h, because of Past Pre­
domirIance. This principle dictates that any gairI irI past similarity offsets 
any loss irI future similarity. Thus if h, h' E ~ then s2(A, i, h) and 
s2(A, i, h') must have the same past, and therefore sICA, i, h) = sl(A, i, h'). 
Which is to say that s) depends only onA and L 

Lastly the valuation V gives the truth value of each atomic formula at 
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each moment. We defme by the usual recursion the truth value that V gives 
to a formula A on a history h and moment i, namely, the value VP(A). The 
recursion clauses for truth-functional connectives and the tense operators 
are standard. For conditionals and settledness we have the following natural 
clauses. 

(2.21) Vr(A > B) = T iffv::[1: lj h)(B) = T. 

(2.22) Vr(U) = T iffVr'(A) = T for all h' E Jr'i. 

We understand a conditional A> B to be true when the antecedent A is 
impossible. There are several equally effective ways of achieving this formally; 
we suppose that one such way has been adopted. 

The fmal part of the theory consists of constraints on the Stalnaker 
functions SI and ~. These constraints ensure, among other things, that the 
conditionals of 2 are interpreted in accordance with (2.3), the Principle 
of Past Predominance. We will not state the constraints formally, for they 
are analogous to Conditions (i}-(vi) and (ix), stated in Section 3. 

We turn now to the breakdown of this theory. One intimation of the 
problem is that no reasonable conditions on SI and ~ will ensure that the 
following inferences are valid. 

(Edelberg) From L - A and L(A > B) to infer A > L(A ::) B). 

(Weak Edelberg) From L - A, A > LA and L(A > B) to infer A > lB. 14 

These examples involve a claim to the effect that a "counterfactural" 
(where "factual" is taken to mean "settled") conditional is settled. Before 
going any further, we want to point out that we do make claims of the form 
L(A > B) - even when it is understood that L - A is true - and that, in some 
cases at least, we feel that such claims have d~finite truth values. 

Suppose, for instance, that you're waiting on the corner for your morning 
bus to the office. Two buses are scheduled to stop at the corner: first a 
local, then an express. You have a fixed policy of waiting for the express, 
because it almost always gets you to work on time, while the local very 
often arrives later. Now, let's consider the truth conditions of the sentence 
'it is settled that if you were to take the local you wouldn't arrive on time' 
at various clock times that morning. 

Ten minutes before you catch the local, let's suppose that the situation 
is in all relevant respects (traffic and road conditions, the mechanical con­
dition of the bus, etc.) like previous ones in which the local has stopped 
near your office soon enough for you to arrive at work on time. At this 
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time, then, the sentence is false; there is a chance that if you were to take 
the local you would arrive on time. But five minutes after this, let's suppose 
an accident occurs on the local's route (say, a mile or so beyond your stop), 
immediately creating a horrible rush-hour traffic jam. Now the sentence 
becomes true; it's a sure thing that if you were to take the local, you 
wouldn't arrive on time. And afterwards, of course, this continues to remain 
true. So, this is a case of a possibility that is open at one time becoming 
closed at a later one - only it is a counter/actual possibility. 

It strikes us as intuitively clear that the two Edelberg inferences are 
valid. In the above example, for instance, as soon as it becomes true that 
it's settled that if you were to take the local you wouldn't arrive on time, 
it also becomes true that if you were to take the local it would then be 
settled that you would arrive late. Of course, an example doesn't suffice to 
establish that an inference is valid, but it can help to make evident what is in­
volved in an inference, then its validity, if it is valid, is a matter of intuition. 

Before going any further, let us deal with a possible misunderstanding. 
Though in the above example - and in others that will come later - we 
are dealing with what we take to be a natural, everyday conception of 
settledness, this conception is not a part of the logical theory we are pro­
posing. Just as first-order logic is compatible with all sorts of choices of a 
domain for its quantifiers - domains that contain sets, domains that don't, 
domains that are finite, domains that aren't, etc. - the tense logic proposed 
in this paper is compatible (or, at least, is meant to be compatible) with all 
sorts of conceptions of settledness. (No doubt there are many such con­
ceptions, from very liberal ones (for example, perhaps, one associated with 
quantum theory, on which some things that have been taken to be matters of 
physical law on classical theories would not be settled) to very conservative 
ones (one that took the actions of everyone other than ones own to be deter­
mined, or even a strict determinism). All these are supposed to be compatible 
with the logic, though one - strict determinism - is a fairly trivial special case, 
in which the relation < of the model structure is linear. 

We are not trying to argue here for the correctness (in some extralogical 
sense of 'correctness') of any of these interpretations. Indeed, it may be 
that there is more than one viable conception of settledness, so that no one 
interpretation is "the" correct one. The only important thing is that in 
evaluating the validity of inferences - such as those under consideration -
we must be careful to apply the same conception of settledness to all the 
terms of the inference. 
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Back now to the pathology of the formal interpretation we set up. The 
symptom is that it provides a way of making L ~ FQ, FQ> LFQ and 
L(FQ > FR) true, while FQ> LFR is made false, as is illustrated by the 
following model structure. 

(2.23) 

You are to assume here that the ordering relation is the strict partial order 
of the tree, that il ~ i2 and i3 ~ i4 ~ is ~ i6. 

Let V(Q, i3) = V(Q, i4) = F. Then Vnl(FQ) = V~2(FQ) = F, and so 
Vnl(L~FQ) = T. 

Let V(Q, is) = V(Q, i6) = T and VCR, is) = T but VCR, i6) = F. Now, 

VC3(FQ) = Vl~(FQ) = T and therefore, 

(2.24) VC3(LFQ) = T. 

Also, since VC4(FR) = F, we have 

(2.25) VC3(LFR) = F. 

Finally, let sl(FQ, i l) = i2 and s2(FQ, ii, hd = s2(FQ, ij, h2) = h3. This 
last bit is the crucial part of our model - the part that makes the inference 
invalid. Notice how hi and h2 are collapsed counterfactually into h3, which 
is only one among two histories for i2 on which FQ is true. 

Now it is easily seen that the premisses of our inference are true on this 
model, but the conclusion is false. We have already seen that the first premiss 
L~FQ is true at (il>h l>. 

For the second premiss we have Vnl(FQ > LFQ) = T, for VC3(LFQ) = T 

in view of (2.24), and Sl (FQ, id = i2 and s2(FQ, il> hd = h3. 
To see that the third premiss is true observe that Vf3(FR) = T. Since 

s2(FQ, il> hi) = s2(FQ, ii, h2) = h3' we have 2V~I(FQ > FR) = 
V~2(FQ > FR) = T. Hence V~I(L(FQ > FR» = T. 

Lastly, note that Vi~I(FQ > LFR) = F, in view of (2.25). This same model 

shows that the Edelberg inference is invalid. 
Grant that this is a bad thing. Can we patch the theory up so that the 

inference becomes valid? A direct way to do it would be to rule out the kind 
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of situation that makes counterexamples to the inference possible; we could 
simply require the following. 

(2.26) If sl(A, i) = i' then for all h' E ~, such that Vll(A) = T there 
is an h E ~ such that s2(A, i, h) = h'. 

This ensures that ~ will not create gaps in such a way as to invalidate the 
inference. 

But besides beingad hoc, this condition seems to us to be ugly. What makes it 
so is the fact that it seems to rule out structures and assignments of truth 
values that don't at all seem logically impossible. Take the following case. 

(2.27) 

Here, let Yep, i3) = V(!" i4) = F and V(!" is) = Yep, i6) = Yep, i7) = T. This 
makes it combinatorially impossible to match each history through i2 in 
which P becomes true as an image of some history through il . And yet 
nothing seems to prohibit either the structure (2.27) or the truth assignment 
we have placed on it. It is true that we could rule out such cases with no 
effect on validity, by building copies: for instance, we could insert a copy 
of h2 after i l to obtain enough scenarios. But this is ugly, and unless there 
is some independent motivation for this procedure, we find it implausible. 

We note lastly that the analogue of (2.26) is not so implausible, and 
does not rule out the situation portrayed in (2.27), if the Stalnaker function 
S2 yields, as in David Lewis' theory, a class of histories. The problem with 
this account is that it fails to validate the law of conditional excluded 
middle, IS (A > B) v (A > -B). So the difficulty that needs to be solved 
in this: how to validate both conditional excluded middle and the Edelberg 
inference. We present our solution to this difficulty in the next section. 

3. A BETTER THEOR Y 

This section is going to be rather technical. Readers who are not interested 
in the technical details may want to skim it.16 Those who find the brief 
motivation we give for the technical apparatus unsatisfying may want to 
read Section 4 first. 
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Central to the theory we will present is the idea that the concept of truth 
for .!R should be relativised to a future choice function rather than to a 
history. 

(3.1) A future choice junction is a function Yfrom the set % of 
moments to U {J¥';/i E%} such that (1).9j"E Jri and (2) if 
i' E~ and i < i' then Yi =~'. We let ,Q be the set of all future 
choice functions (for a flXed model structure). 

A future choice functionYgives at each moment i a unique history through 
that moment - the history that would be actual if i were actual. Condition 
(2) ensures that the histories Ychooses at later moments are coherent with 
histories it chooses at earlier ones; without this condition, FA would not 
imply PFA. 

One way to understand choice functions is to see them as a natural 
generalization of histories, one that is required by the transition to a tense 
logic in which what is true at moments copresent with i can be relevant to 
what is true at i. A history tells you what will happen only for moments 
that lie along it - for the rest it leaves the future indeterminate. A choice 
function, on the other hand, tells you what will happen at all moments. 
A choice function is a richer history; a history is a partial choice function. 

Now in a tense logic which has only operators like P, F and L, the truth 
value of a formula A at a moment i depends only on histories that pass 
through i. You are not forced to consider moments copresent or incom­
parable with i. So here it is all right to think of the concept of truth as 
relativized to a history. But when you add conditionals to the language the 
truth value of a formula A at i, in general, depends also on what will happen 
at moments i' copresent with i. Different choices as to what will happen at 
i' affect what conditionals hold true at i. Thus in this context histories 
do not contain enough information; though they tell us what will happen, 
they do not tell us what would happen. 

We implement choice functions in our semantics by defIning V{(A). 
We can keep the defmitions of model structures and models as they are 
given in the last section, except that in the present theory the second 
Stalnaker function S2 takes as arguments a formula A, a moment i and a 
future choice function Yand yields as value a future choice function 
s2(A, i,5). The recursion clauses for truth functions, tenses and conditionals 
are adjusted to the new parameter, and except for the clause for settledness 
remain in essentials similar to those of classical conditional and tense logics. 

In the defInition below of V[(A) , we restrict ourselves to choice 
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functions meeting a certain requirement: .7'" must be normal at i, in the 
following sense. 

(3.2) Yis normal at i iff for all j < i, .9j = Y i . We say that a pair 
(i, Y> is normal iff Y is normal at i. The normalization of Y to 
i is the choice function Y' such that Y; = Y i for j < i and 
yj =Yj for j <t:i. 

If Yis normal at i, Ytreats i as "actual" from the point of view of moments 
in the past of Y. Now, the defmition of satisfaction. 

(3.3) V{- (Q) = V(Q, i). 

(3.4) V{ (-A) = T iffV{ (A) = F. 

(3.5) V{ (A :::> B) = T iff either V{ (A) = F or V{ (B) = T. 

(3.6) V( (FA) = T ifffor some i' E ~ such that i < i', vr (A) = T. 

(3.7) 

(3.8) 

V( (PA) = T iff for some i' such that i' < i, V( (A) = T. 

V{ (A > B) = T iff either SI (A, i) is undefined or 

V S2 (A,.i, .!T)(B) = T 
SI(A,1) . 

The clause for L requires forethought. We should not simply say that a 
formula LA is true at i with respect to Y normal at i iff A is true at i with 
respect to all choice functions Y' normal at i. This is because LA says that 
A holds no matter how things will be. Hence, we want Y' to differ from 
Yonly on moments that are after i or after some moment copresent with 

i. (There is also a formal reason for not accepting this account of the truth 
conditions of LA: on it the Edelberg inference is invalid.) 

Before we state the clause for L, we need to define some ancillary 
concepts. 

(3.9) i is posterior to j iff there is a moment j' copresent with j such 
that i > j' or i = j'. 

(3.10) i is antiposterior to j iff either i is not posterior to j or i ~ j .17 

(3.1 1) Yagrees with '§' on moments posterior to i (symbolically, 
Y E Post (,§" i» iff all moments j posterior to i are such that 
Yj ='§'j. 

(3.12) yagrees with'§' on moments antiposterior to i (symbolically, 
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Y E APost( ~ i) iff all moments j, k antiposterior to are 
such thatj E ..9k iff j E ~ k' 

Now clause (3.13) gives the truth conditions for IA. 

(3.13) V{ (IA) = T iff at all choice function ~ normal at i such that 
~E APost( ~ i), V( (A) = T. 

We observe that the cla'use for F and P, (3.6) and (3.7), are correct only 
for choice function Y normal at i; if these are generalized to all choice 
functions then the law A :J PFA becomes falsifiable. This is our motivation 
for restricting the recursive definition above to choice functions that 
are normal at a given moment. Notice that the clauses for P and F never 
take us to non-normal moment-choice function pairs. The same obviously 
holds for all other connectives, except the conditional. Here the constraints 
on the' two Stalnaker functions ensure that s2CA, i, Y) is always normal 
at sICA, i). These constraints are as follows. 

(i) If there is an i' such that i ~ i' and a ~ En such that ~ is normal 

at i' and vt! (A) = T then both sl(A, i) and s2CA, i,Y) are 
defined provided Y is normal at i; and s2CA, i, Y) is normal 
at sICA, i). Otherwise both sICA, i) and s2(A, i,Y) are undefined. 

(ii) VS2(A, !'Y){A) = T 
SICA,I)" . 

(iii) If VS2CA,!, Y)(B) = VS2CB, !'Y)(A) = T th (A' tY') = Sl CA, 1) Sl (B, 1) ,en S2 ,1,..7 

s2CB, i,Y) and sl(A, i) = sl(B, i). 

Civ) If V~(A, i)(A) = T where Y' is the result of normalizing Y to 

sICA, i) then s2(A, i,Y) = Y'. 

(v) If there is an YE n such that .Tis normal at i and V{ (A) = T 
then sICA, i) = i. 

(vi) If there are choice fuctions Y, ~ such that Y is normal at 

sICA, i) and V~A, i)(B) = T, and ~ is normal at sICB, i) and 

V~CB, i)(A) = T then sICA, i) = sICB, i). 

(vii) If YEAPost(W, i), and s2(A, i,Y), and s2(A, i,W) are defined, 
then s2(A, i,Y) E APost (s2(A, i, W), 0. 
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(viii) If ~ is a choice function normal at sl(A, i) such that (a) ~ E Post 
(~, i) where ~ is normal at i, (b)~EAPost(s2(A, i,~'), i) 
for some choice function~' E APost(~ i), and (c) V~(A, i)(A) = 
T, then s2(A, i,Y) =~. 

(ix) If Sl (A, i) is defmed then Sl (A, i) ~ i. 

Conditions (i}-(ili) are direct analogues of ones from Stalnaker's theory. 
Condition (iv) requires S2 to distort the choice function as little as possible. 
Conditions (v}-(vii) embody the Principle of Past Predominance. Condition 
(v) says that if you can preserve all of the past then you should; Condition 
(vi) says that you must not choose a more dissimilar past then you have 
to;18 and Condition (vii) says that even at counterfactual copresent moments 
the past should be preserved, if possible. All these conditions have an effect 
on validity. Thus (iv) and (v) ensure that the inferences 

(3.14) FromA andB to infer A> B 

(3.15) From MA and L(A ::l B) to infer A > B 

are valid, where MA =df -L-A. Conditions (vi) and (Vii) ensure that the 
inferences (3.16) and (3.17), respectively, are valid. 

(3.16) From A > MB,B > MA,A > C, and A > (C> LC) to infer B> C. 

(3.17) From A > L(A ::l B) to infer L(A > B). 

Condition (viii) says that the future histories at all copresent moments 
must be preserved by S2 if doing so is consistent with Past Predominance. 
This condition helps to ensure that the Edelberg inferences are valid. (See 
the Appendix for proof.) Finally Condition (ix) ensures that a conditional 
'If ... then ... ' amounts to 'If ... now then .. .'. 

4. DIGGING DEEPER 

We now want to discuss some problems that lead to refmements of the 
theory we just presented, and these in tum provide some fresh perspectives 
on matters of philosophical interest. 

We begin with an example of Stalnaker's.19 Suppose two coins are tossed 
successively, one in Chicago and the other in Bombay. 
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(4.1) 

At i l the Chicago coin is tossed; at i2 it has come up heads and at i3 tails. At 
i2 [i31 the Bombay coin is tossed; at i4 [i61 it comes up heads and at is[i71 
tails. (You are to imagine that there are no causal connections between the 
two tosses.) Now, intuitively, it seems settled at i2 that if the Bombay coin 
will come up heads then (even) if the Chicago coin had not turned up heads 
the Bombay coin would (still) have come up heads. But unfortunately there 
is a choice function Yat which this is false. Let Y{i l ) = hi and 
Y(i3) = h4. Let Q stand for the sentence 'The Chicago coin comes up 
heads' and R for 'The Bombay coin comes up heads'. Now the formula 
FR > (P-Q > FR) is false at i2 on .!T, since P-Q is true but FR is false on 
the normalization of .!T to i3 (cf. Condition (iv) in Section 3 on Stalnaker 
functions). Hence L(FR> (P-Q > FR)) is false at i2 • This is unwelcome, 
because it does not seem to be an open possibility at i2 that if the Bombay 
coin were going to come up heads then if the Chicago coin had turned up 
tails instead of heads the Bombay coin would be going to come up tails. 
Well, maybe in some sense it isn't alogica/ mistake to consider it an open 
possibility, but in so considering it we would seem to be positing some 
strange causal influence that makes the toss in Maharashtra depend on the 
toss in Dlinois. 

The problem arises because the second theory considers too many choice 
functions in the computation of LA, function like .!T which are causally 
incoherent . .!T, for example, assigns different outcomes to the Bombay 
toss, but the only difference between i2 and i3 is causally irrelevant to this 
second toss. 

What we want to do, then, is to evaluate L not with respect to all choice 
functions that are "logically possible," but rather with respect to a restricted 
class of choice functions: those that are causally coherent. Formally, it comes 
to this. A model structure involves, besides a set % and relations ~ and <, 
a set, n* of choice functions. We then say that Vi{LA) = T if and only if 

V( (A) = T for allY' E n* such that f' E APost (.!T, i). 
If we say only this, however, the Edelberg inference is invalidated. (JIe 

leave details to the reader; pick a class of choice functions that'is lopsided.) 
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But the validity of the inference is restored if we impose some closure con­
ditions on [2*.20 

We have been led to the idea that restricted sets of choice functions 
may be useful in representing certain causal notions. It may be helpful 
in this connection to follow a different path to the same suggestion. To say 
that events el and e2 are causally independent is to say that whether or 
not el occurs is independent of whether or not e2 occurs. Thus, if e2 will 
occur then e2 would occur whether or not e1 does occur. This leads to the 
thought that, e.g., situations in which e1 is followed by e2 are somehow 
incompatible with ones in which el is not followed by e2. But an analysis 
of this incompatibility in terms of necessity is clearly wrong, because things 
can in fact be causally independent without necessarily being so (in any 
interesting sense of 'necessarily,).21 

Such considerations (not to mention the problem of saying what an 
event is) make it very difficult to give an analysis of causal independence. 
But they have established that when a certain causal independence obtains, 
certain choice functions are excluded. If e1 and e2 are independent, among 
these will be choice functions according to which e1 is followed by e2 on 
some designated histories, but the nonoccurrence of e1 is not followed 
by e2 on other designated histories that do not differ from the first history 
in ways material to e2. 

If we wish to construct the kind of model theory that has proved so useful 
in other areas of logic, and which may help to illuminate this philosophical 
topic, perhaps we should look at natural classes of choice functions. These 
should help us to come to grips with causal independence, and perhaps 
even with causality. 

Towards the end of Section 2, we said that our problem was to deveiop 
a logic that endorsed both conditional excluded middle and the Edelberg 
inference. This task led us into a theory that is quite complex. Now it might 
be helpful to stand back a bit and gain some perspective on the topic. This 
will be useful with another matter: how truth-value gaps enter into tensed 
conditionals . 

There are several ways in which we might have avoided the complexities 
of the earlier pages. First, we could rule out model structures that create 
the problem in the first place - model structures like (2.27) which allow 
us to falsify the Edelberg inference. This maneuver seems to us arbitrary and 
implausible. (But see Van Fraassen [15] for an ingenious defense and devel­
opment of this approach.) 

Second, we can give up conditional excluded middle. This allows us to 
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view the conditional as variably strict, not, as we have it in our theory, 
variably material. 22 On one variably strict analysis of conditionals, the 
second Stalnaker function ~ yields at each A, i, h a class of histories 
s2(A, i, h). Then A > B is true at (i, h) if and only if A :::> B holds at 
(SI (A, i), h') for all h' E s2(A, i, h). We can make the Edelberg inference 
vali,d if we require that for all histories h' E ,;r'SI (A, i) such that 

V~(A, i)(A) = T there is a history h E ~ such that h' E s2(A, i, h). On 

the resulting theory we can keep all the desired model structures, and also 
have the Edelberg inference valid, but we give up conditional exluded middle. 

A third option is to give up the Edelberg inference, but explain its 
apparent validity in some more or less devious way. One such way is via 
supervaluations. It is clear that if we accept conditional excluded middle 
we have to supplement our theory with supervaluations on Stalnaker func­
tions to account for cases such as Quine's Bizet-Verdi example. (See 
Stalnaker [12] for a discussion of this.) Thus instead of a single Stalnaker 
function s (where s is a pair (st. S2» we now have a set S of such function s 
compatible with the "facts" about conditionals. The truth is then what is 

common to all these functions: where Vih, s)(A) is the truth value of A 

relative to s and h, on the theory of Section 2, we let Vf(A) = T if 
(h s) h. (h s) 

Vi ' (A)=T for all sES, and Vi (A)=F If Vi ' (A)=F for all sES; 

otherwise Vr(A) is undefmed. Now, we can easily make the Edelberg 
inferences valid, in the sense that if the premisses are true for all members 
of S then the conclusion is also true for all member of S. The inference will 
be valid in this sense if we require that whenever (Sl> S2> E s, SI (A, i) = i', 
and V~' (A) = T, where i' E h', then there is a (Sl> s;> E S, where 

s;(A, i, h) = h'. However, L(A > B) :::> (A > L(A :::> B» will be invalid; it can 
fail to have a truth value. To the extent that we can discover intuitions about 
whether the Edelberg inference should be merely truth preserving or should 
provide a valid conditional, these support the latter alternative. Also, since 
even in those cases where you have to resort to this distinction (e.g. in 
explaining the validity of Convention T) it is difficult to motivate the 
distinction as convincingly as one would wish, it probably is a good strategy 
to avoid using it when it is possible to do so. This secondary consideration 
lends support to the theory of Section 3. 

Note that truth-value gaps can arise in the third theory in two ways, for 
there are two parameters along which supervaluations can be introduced: 
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'Y' and's'. Since choice functions are generalizations of histories, the former 
parameter is what yields the indeterminacy of future contingencies. Thus, a 
sentence like 

(4.2) This coin will come up heads on the second toss if it comes up 
heads on the first toss 

may lack a truth value at a moment i before both tosses, because there is 
a choice function ~ (assigning i a history on which the coin comes up 
heads on the first toss and tails on the second) on which (4.2) is false, and 
there is another choice function ..92 (assigning i a history on which the 
coin comes up heads on both tosses) on which (4.2) is true. And an uncon­
ditional sentence like 

(4.3) This coin will come up heads on the second toss 

will lack a truth value at i for reasons that are exactly the same: ..71, for 
instance, makes (4.3) false and .92 makes it true. 

Now consider a moment j later than i, at which the coin comes up tails 
for the second time, and compare the "past tenses" of (4.2) and (4.3) at j. 

(4.4) It was the case that if the coin were going to come up heads 
on the first toss, it would come up heads on the second toss. 

(4.5) The coin was going to come up heads on the second toss. 

Here we see a difference between conditionals and nonconditionals; 
conditionals can be unfulfilled, and this may cause their "past tenses" to 
lack a truth value. Example (4.5) is simply false at j. But, if you perform 
the calculations according to our theory, (4.4), which is unfulfilled at j 
because its antecedent did not become true, is neither true nor false. (This 
is because there are two choice functions normal at j, one of which makes 
(4.2) true at i and another of which makes (4.2) false at L) 

On our theory, then, the indeterminacy of typical unfulfilled conditionals 
is simply absorbed into the indeterminacy of the future, rather than requiring 
any indeterminacy in the Stalnaker function. This is precisely what choice 
functions were designed to accomplish, by allowing all sorts of counterfactual 
futures to be included in "the future" that is relevant to settledness at a 
moment. 

However, there may be cases in which we would want to make the 
Stalnaker function indeterminate. Quine's Bizet-Verdi example is a good 
one: its antecedent and consequent must both be settled if true. So if this 
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conditional is to be neither true nor false the source of this must be some­
thing other than future indeterminacy. 

In the most general theory, then, we have a set Q* of choice functions 
meeting certain conditions, and a set S of Stalnaker functions. Vi(A) = T 

if v~y,s)(A)=T for all YEU* and all sES; and Vi(A)=F if 
(yl s) 

Vi '(A) = F for allYE u* and all sE S. 

We have sketched a number of ways in Which the complexities of our 
theory might have been avoided. What is striking about these alternatives 
is that they do not solve the problem of preserving simultaneously the 
Edelberg inference, conditional excluded middle and model structures of 
the type (2.27). This suggests strongly that the complexity is one that is 
needed. Our theory is complex because the problem it is designed to solve 
has no simple solution. Also we believe that the central concept of our 
theory - that of a choice function - will prove useful in an account of various 
causal concepts, such as that of causal independence. 

APPENDIX 

We show in this appendix that the Edelberg inference is valid on the second 
theory. 

LEMMA 1. For any choice function Y and 5' there is a choice function 
~such that Post (5, i) n APost(Y', i) = {~}. 

Proof. Derme the function ~ as follows: (1) if moment j is posterior to 
i then let ~ j = Y j ; (2) if j is antiposterior to i and there is a k such that 
i ~ k and k E 5; then let ~ j = Y k (uniqueness of k is obviously guaran­
teed); (3) Otherwise, let ~ j = 5;. It is easily confirmed by a tedious but 
not ingenious calculation that Post (Y, i) n APost(Y', i) = {~}. 

LEMMA 2. Let i be a moment and 5 be a choice function such that 
sl(A, i)(= id and s2(A, i,5)(= ~) are dermed. ~t'~ I be a choice 

function normal at it such that ~IEApost(5!, it) and Vi~'(A)=T. 
Then there is a ~ normal at i such that ~ E APost( .:r; i) and s2(A, i, ~ ) = 
~I. 

Proof. By Lemma 1 there is a ~ such that {~} = Post (~J' i) n APost 
(5, i). Since Y is normal at i and ~ E APost( Y, i), clearly ~ is normal 
at i. Also s2(A, i,~) = ~l by Condition (vii) on Stalnaker functions 
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(cf. Section 3) since ~I E Post (~, i), and ~1 E APost( ..91, i) (Condition 

(ix)), and Vi~'(A) = T. 

THEOREM; The Edelberg inference is valid on the theory of Section 2. 

Proof. Let Ybe a choice function nonnal at i such that vt (L(A > B)) = 

T. We can assume safely that Sl (A, i)(= i l ) and s2(A, i,Y)(= Y I ) are 
defmed for otherwise all conditionals are vacuously true. Let ~I be a choice 

function normal at i l such that ~ I E APost( ..91, i1) and Vi~'(A) == T. 

Now all the hypotheses of Lemma 2 are met. So we infer that there is a <'§ 

normal at i such that ~ E APost( Y, i) and s2(A, i, ~ ) == ~1. Hence 

Vi (A > B) == T. Therefore, y2((AA, ~)' W)(B) == T. That is, Vt'(B) == T. So 
Sl , 1 I 

at all <'§ I E APost (.91, id, ViW'(A :::> B) == T. Thus Vf91(L(A :::> B)) == T, 
y I 1 

and Vi (A > L(A :::> B)) = T. 

University of Pittsburgh and 
McGill University 

NOTES 

* This began as a paper by Thomason, written in February 1977, revised and expanded 
in January 1978, and presented, with comments by Gupta, at the University ofWe5tern 
Ontario in May 1978. The present joint version was completed in October 1978. The 
basic ideas took initial shape in a series of discussions between Thomason and Walter 
Edelberg, who deserves a great deal of credit for his insights into the topic. In particular, 
he was the first to see the importance of the crucial inference we call 'the Edelberg 
inference'. Later parts of the paper owe much to interactions with Robert Stalnaker, 
Bas van Fraassen, and each other. 
, We hope that our use of terms like 'similarity' isn't misleading. We don't believe that 
meditating on the notion of similarity among possible worlds is likely to advance our 
knowledge of conditionals, or that it is very enlightening to explain the world chosen 
by the selection function as the most similar one in which the condition is true. We're 
only saying here that sometimes rather coarse kinds of similarity are available, and that 
when they are available they should be exploited. 
2 Here, we mean only to give these judgements, without attempting to justify them 
or to present a theory of how they should be formalized. It would be appropriate to 
return to these matters after the development of a model theory for tense and condi­
tionals, but we will not attempt this in the present paper. We should mention, however, 
our working assumption about sUbjunctive mood: it has no categorematic semantic 
meaning. For an attempt to use pragmatics to explain mood in conditionals, see 
Stalnaker [UI. We suspect that this account needs to be supplemented with an ex plan-
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ation of how mood interacts with scope. Like 'any' and 'every', indicative and sub­
junctive may serve to signal "logical forms" in which operators are arranged in certain 
ways. 
3 To simplify things, we ignore - and will continue to ignore - necessarily false ante­
cedents. Imagine that they are treated in some suitable way. 
4 Stalnaker originally called these 's-functions', by way of abbreviating 'selection 
function'. But we propose to call them 's-functions', by way of abbreviating 'Stalnaker 
function'. There is a good reason for this change. Later we will be talking a good deal 
about "choice-functions" and these are entirely different from s-functions. 
5 Yes, we also mean this principle to apply to cases like 'If it were 5:00 .. .' and 'If 
it were Christmas .. .'. That is one reason why we chose the phrase 'an alternative 
present' rather than 'simultaneous'. 
• In saying 'not after' here, we wish to make clear that 'past closeness' in this context 
really means 'past-or-present closeness'. 
7 A similar condition is discussed in Bennett [2]. See also Lewis [4], p. 76, Lewis 
[5], and Slote [8]. Note that our condition of Past Predominance makes no reference 
to "the moment" to which the antecedent "refers". If A > B is evaluated at i, then on 
our proposal it is closeness up to i that predominates. 
8 To say A is eternal is to say that for all h, if A is true at (i, h> for any i then A is true 
at <i: h> for all i' along h. 
9 Besides examples like (2.8), that are valid given Overall Similarity but invalid given 
Past Predominance, there are others that are valid given Past Predominance but invalid 
given Overall Similarity. One instance of this is (3.16), discussed in the next section. 
10 See Slote [8] for a discussion of some of these. 
11 A full discussion of the ideas presented in this paragraph requires more space than 
we have in the present paper. We intend to pursue these themes elsewhere. 
12 Since we do not impose a metric on the branches of our structure, there need be 
nothing corresponding to clock times in these structures. The relation of copresence 
introduced below need not be considered to stand in any simple relation to clock times, 
either. In effect, we are ignoring in this paper the technical and philosophical questions 
introduced by thinking of times as quantitative. These questions are not at all super­
ficial; if conceptual problems arise in spreading time over space, what can you expect 
when you spread time over possible worlds? For discussions of some of the issues that 
can arise, see Aristotle's Physics 221a 29-32 and 223a 21-29, and Van Fraassens's 
account of the Leibniz-Clarke correspondence on pp. 41 of [14]. 
13 Do not assume that all moments have a past moment in common. We explicitly 
want to allow "disconnected" moments that can be reached by a counterfactual, to 
provide for epistemic uses of conditionals. Example (2.17), as it would commonly 
be understood, may be one such use. If the Warren Commission was right, the alternative 
to which it takes us is epistemically but not historically possible. 
14 The Edclberg inferences turn out to be valid even without the premiss L-A. But 
we include the premiss because the difficulty we envisage arises for the theory only 
when L-A holds. 
15 For a defence of this law see Stalnaker [12]. 
16 Advice to skimmers: study carefully the definition of a future "hoice function, 
and spend some time on clause (3.13). 
17 The terminology is awkward, and the concepts will probably seem more devious 
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than they should be. The reason for this is that we feel it is important to state a theory 
without assuming that for all moments i and histories h, there is an i' such that j::::. i' 
and j' E h. Thus there may be moments that are neither anterior nor posterior to i. 
Making the assumption in question would simplify things, but would lose the generality 
that we feel is appropriate for a tense logic. In this connection, see Note 12, above. 
11 Conditions (i)-(vi), if they were exchanged for conditions on Stalnaker functions 
taking propositions (rather than formulas) as arguments, would amount to this. There 
is for each normal pair 0, .!T), a well ordering -<0, ,r) of normal pairs consisting of 
moments copresent with i and choice functions, such that (a) (i, .!T) is the least pair 
under this ordering and 0" .!T,) -< 0 .!T) (i" .!T 2) for all i, cop resent with i and all 
.!T2 normal at i" where.!T, is the n~rmalization of_r to i,; (b) if 0" .!T,)-<O .!T) 

O2 , .!T 2) then 0" .!T,)-<O,.!T )(i2 , .!T3) for all .!T3 hormal at i2 ; and (c) a, (A, i) and, 
s,(A, i, .r) are defined iff s, (A, i) = i' and S2 (A, i, .!T) = .!T', where (i',.!T ') is the 

least pair with respect to -<0 .!T) such that v:~ (A) = T. 
, 1 

'9 Communicated to us in correspondence. Independently Gupta discovered an 
example whose import is similar to Stalnaker's and presented it in May, 1978 at London, 
Ontario. 
20 In particular, we must relativize everything in the theory of Section 3 to n *, and 
require that if .;r;, .!T, E n * and i E % then 'll En *, where 'll E Post (.!T" i) n 
A'Post (Y" i). This last condition, as far as we can see, is a reasonable one to place on 
causal coherence. Justifying it, though, would lead to rather deep questions regarding 
the relationship of causality and time. In addition, we should also stipulate that for 
each i E:f{ and history h containing i there is an §' E n* normal at i such that 
.!T i = h. All this says is that no histories are ruled out by causal considerations. 
" For instance, suppose that one evening Peter and Paul are deciding in separate places 
what restaurant to dine at. Peter is also deciding whether to call Paul. If he doesn't 
call, the decisions will be independent. If he does, they will not be. Whether Peter calls 
Paul is contingent. So whether the decisions about where to dine are independent is 
contingent. 
2' We think that the contrast between strict and material theories of the conditional 
is helpful. Lewis and Lewis (C. I. and D. K.) are strict theorists, Russell and Stalnaker 
material theorists. For Russell (cf. [7), pp. 14-15), a material conditional is one 
involving particular, fixed propositions, and so is shown to be true or false by looking 
at one case. (Russell thought of this case as the actual world, and so identified A > B 
with A :J B. He also contrasted material with what he called formal implication, but 
this contrast does not concern us here.) Stalnaker, like Russell and unlike Lewis, 
examines the truth value of A ::J B in some one situation, but does not assume this to 
be a fixed situation, independent of A. This is what we mean by calling Stalnaker's 
theory variably material. C. I. Lewis takes A > B to bc strict, in the sense that it holds 
when A ::J B is true in a multiplicity of situations, and he assumes this multiplicity 
is fixed independently of A. David Lewis relaxes this assumption, while retaining 
the multiplicity of situations. Note that strict theories result in a conditional that 
expresses some necessary connection between the antecedent and the consequent. 
Material theories deny that there is any such necessary connection expressed by a 
conditional. 
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BAS C. VAN FRAASSEN 

A TEMPORAL FRAMEWORK FOR 

CONDITIONALS AND CHANCE* 

In this paper I shall propose a general model for tensed language, and then 
explore the introduction of conditionals and of two sorts of probabilities 
(measures of objective chance and of subjective ignorance). On the subjects 
of tenses and tensed conditionals, I build on the previous work by Richmond 
Thomason, but I shall attempt to provide an exposition which is self-contained. 

1. MODELS FOR TENSED AND TEMPORAL LANGUAGE 

Some years ago I saw a French book written early in the last century which 
developed a system of sign communication for the deaf and dumb. I don't 
believe it can have been easy to learn since it contained among other things 
a taxonomy of about twenty distinct compound tenses (indicative and sub­
junctive). For that same reason, however, it must be a pioneering work in 
the logical study of tensed language. 

The modern form of this subject received its impetus from an insight of 
A. N. Prior: 

Tensed propositions are propositional [unctions, with times as 
arguments (and propositions as values). 

This insight still allows for a plethora of models. I shall propose a general 
model, and then use that (sort of) model for the study of temporal distinc­
tions in conditional and probability judgments. 

1.1. Three Models 

In the simplest model, time is the real line R and the propositions are the set 
K = {T, F}, comprising merely the True and the False. A tensed proposition 
is a map of R into K. For example: 

(The earth has been created) (t) = {; 
for 

for 

t~4004BC 

t<4004BC. 

A second model enlarges K and takes the propositions to form any Boolean 
algebra, for convenience represented by a field of sets. Some name is needed 
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for the elements of these sets and a certain stroke of PR genius produced the 
name 'possible world'. Thus 

(The earth has been created) (t) = {x EK: inx, the earth's 
creation occurred before t}. 

The sentential connectives correspond to operations on tensed propositions in 
obvious ways: 

'A is true in x at t' means 'x E A(t)' 

(A &B)(t) = A(t) nB(t) 

PA(t) = {x E K: (3 t' < t)(x E A(t'))} 

for conjunction and the past tense operator; and so on. We use such special 
tensing connectors as: 

P "It has been (or was) the case that" 

H "It has always been the case that" 

F "It will be the case that" 

G "It will always be the case that" 

L "It has always been, is, and always will be the case that". 

This last connector is sometimes referred to as a temporal necessity, for 
logically it acts like "It is necessarily the case that". 

But of course, it is nothing like a tensed alethic modality such as we find in 

It was at one time still possible to prevent the population 
explosion, but is no longer. 

It will be necessary to increase the price of energy sharply by 
1985, though it is not yet. 

Such operators can be added to this second model; if they are not to be con­
stant in time, we must add a time-indexed access relation R t , reading 'xRty' as 
'there is access from x to y, at t' or 'at t, Y is possible relative to x'. Let 
Rt(x) = {y E K: xRty}, the access region of x at t. We have then: 

that is, 

DA(t) = {x EK: Rt(x) ~ A(t)} 

DA is true in x at t exactly if every y such that xR ty , is also such 
that A is true in y at t. 
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which is the basic idea of the modalities studied for example by Roger 
Woolhouse and Hans Kamp. 

I wish now to propose a third, yet more general model, whose virtues I 
hope to extol. In this model we have a state-space H. Each 'world' (or better, 
'possible system') in K has, at each time t, a certain state (an element of H, 
its location or H at t). The function of hx which gives the state u = hx(t) of 
world x at time t, is called the history or trajectory of x. 

We can now draw certain distinctions among the propositions and the 
worlds that I mean to utilize. Please keep in mind that all the old notions 
apply: 

world 

proposition 

element of K 

subset of K (perhaps restricted to a family 
of subsets) 

tensed proposition = map of R into the propositions. 

Worlds x and y have the same history exactly if hx = h y. A proposition X is 
historical if membership in X depends only on the world's history: that is, if 
x is in X and y has the same history as x, then y is in X too. Other prop­
ositions I shall call ahistorical or metaphysical. A tensed proposition A may 
be called historical (etc.) if A(t) is historical for all t. 

1.2. A historical (Metaphysical) Propositions 

Metaphysical propositions become important when we discuss any sort of 
modality, and disputes in philosophy of science equate 'reduction' of a 
modality with the thesis that the modality does not lead from historical 
to ahistorical propositions. So let us look at some examples. The possible 
world picture suggests some fanciful ones: 

(a) x and yare two possible worlds (neither of them actual) which 
have exactly the same history, but are not identical, for God 
created x, but Y is not created. 

(b) x andy are two possible worlds, which have the same history, but 
are not subject to all the same laws. Specifically, all laws of x are 
laws of y, but x is just that world with those laws in which non­
law governed events happen to satisfy (accidentally) the laws of y. 

Some will no doubt think that such realism about possible worlds, and about 
real necessities 'in nature', is absurd. It is good therefore that there are much 
more mundane examples too. If in practice I construct a model, say of a 
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mechanical system, then I do not accommodate all its features in the state­
space, but only those which vary. For example, the phase-space of classical 
mechanics has moments and positions as coordinates, and there are not 
separate coordinates, for example, for the chemical constitution of the bodies 
or particles studied. If two pendulum bobs are made of different alloys, but 
have the same mass, shape, and size, then their mechanical behaviour is the 
same. So two posssible systems can have the same trajectory in a given state­
space although they are different in other ways. From the trajectory you 
cannot tell. 

There are here two different approaches to models of language: the idea 
that models do or can reflect reality, and the idea that models are constructed 
in special ways for special, limited, purposes. On both approaches, the meta­
physical/historical distinction makes sense. 

1.3. Whatis Settled 

The notion of what is settled was introduced into tense logic by Richmond 
Thomason. He paired its introduction with the view that only what is 
settled, at a given time, is really true then (Wesen ist was gewesen ist?), which 
I find very attractive but will omit from discussion here. 

To begin we note an obvious sort of relation that two worlds can have at a 
time: their histories agree up to and including that time. Their pasts and also 
their presents, are the same but their futures may differ; each represents for 
the other a possible future. If something is true in world x at time t, and also 
true in all worlds agreeing with x through t, we say that it is settled (as true) 
in x at that time. 

DEFINITIONS: 

(a) x and y agree through t (briefly x .t y) exactly if hx{t') = hit') 
for all t' ~ t. 

(b) H(x,t) = {yEK:x.ty}iscalledthet-coneofx. 

(c) SA(t) = {xEK:H(x,t)SA(t)}. 

Thus SA is true in x at t exactly if A is true at t in all worlds in the t-cone of 
x. Logically, S is a sort of tensed S5-necessity operator. The way to picture 
this is to draw a square to represent H, and in it, a tree growing upward with a 
long trunk. Label the point where branches begin with the symbol 't'. The 
lines consisting each of the trunk and one branch, represent the histories of 
worlds agreeing with a given one through time t. 
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Since the logic of what is settled was exhaustively investigated by 
Thomason, I shall here give only a few bits of general information. Entail­
ment in the model is defined by 

At, .. . ,Am . . . If-B exactly if, for every time t, 
At(t) n ... nAn(t) n ... r;B(t). 

It will be clear that SA If-A, for any tensed proposition A. We can call A 
settled as false at time t, in world x, if S -, A is true there then. It will be clear 
that SA is a historical tensed proposition, and that S is rather special in this 
respect: it turns even a metaphysical proposition into a historical one. 

1.4. Backward-Looking Propositions 

Now that we have the ingredients for a general model of tensed propositions, 
I can introduce a number of concepts that will be needed when that model is 
used. To begin, some historical tensed propositions are constant, and some 
are not. They are called constant if the truth-value does not change with time; 
as for example "It always was, is, and will be the case that something is in 
motion": 

(HA &A & GA) (t) = (HA &A & GA) (t') 

for all t and t'. Tautologies and contradictions are special sorts of constant 
tensed propositions, but some are contingent like this example. We can 
additionally distinguish backward-looking and sedate tensed propositions. 
A is backward-looking if membership in A(t) depends solely on the world's 
history up to and including t. Similarly, A is sedate if x being in A(t) guaran­
tees that x is in A(t') for all t' later than t (that world has, so to say, settled 
down into being such that A is true). Note well that a backward-looking 
proposition may be 'about the future', because in some respects the future 
may be determined by the past. 

Here are some examples (I shall talk as if sentences were, rather than 
merely express, tensed propositions). 'It has rained' is both backward-looking 
and sedate. 'It rains' is backward-looking but not sedate. On the other hand, 
'It will have rained' is sedate but not backward-looking. And finally, 'It will 
rain' is neither. 

The notion of backward-looking can be applied to propositions as follows: 
proposition X (a set of worlds) is backward-looking at t exactly if every world 
x is such that, if x is in X, then H(x, t) is part of X. The following are equiva­
lent characterizations: 

(a) X is backward-looking at t. 
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(b) 

(c) 

(d) 

(e) 
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x () H(x, t) is either H(x, t) or empty, for all x. 

X is the union of a set of t-cones. 

XC;:Sx. 

for all x, if x EX thenH(x, t) c;: x. 

Statement (e) is essentially the definition I gave above, for it says that if 
x E X, and x ,.t y then y E X. (If x is not in X and x ,.t y, then y cannot be in 
X either, given that (e) is true, since ,.t is symmetric.) Now 

SX = {x: H(x, t) c;: X} 

so (e) is equivalent to (d). Also (e) implies that X contains the union of all the 
t-cones H(x, t) of members x of X. It cannot contain more than that, since its 
members belong to those t-cones (,.t is reflexive). Hence (e) implies (c); which 
in turn clearly implies (b). But if (b) is true, then if x E X, and since 
x E H(x, t), it follows that all of H(x, t) is part of X. 

The logical principles concerning S can be elaborated by use of these 
notions. Because of (d) above, A is clearly backward-looking exactly if 
D(A ::J SA) is true (in any world, at any time, where D is pure or verbal 
necessity (DA is true in x at t exactly if A is true in all worlds at all times). 
Similarly, A is sedate exactly if D(A ::J GA) is true. The following are 
representative validities: 

SA, D(A ::J GA) If- GSA 

PA, D(A ::J SA) If-SPA 

but backward-looking, at least, is a notion which we shall soon see to be 
important in other ways. 

2. A THEORY OF TENSED CONDITIONALS 

Using the general model for tensed propositions of the preceding section, we 
can now approach the question what tensed conditional propositions are like. 
I shall begin by discussing conditionals in general (without regard to tense) 
beginning with the theory of Robert Stalnaker, and then turn to special con­
ditions on tensed conditionals proposed by Thomason. 

2.1. Conditionals; Weak Stalnaker Logic 

Conditional sentences are interpreted as carrying a tacit ceteris paribus 
clause. Therefore, the statement that his match will light if struck, or that 
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it would have lit if struck, is not contradicted by the observation that it will 
not light (would not have lit) if it were (made) wet and struck. For the tacit 
'other things being equal' meant to 'keep constant' the fact that this match is 
dry. Hence conditionals do not all obey the law of strengthening of the ante­
cedent characteristic of the material and strict conditionals familiar from 
logic: 

A J B If- (A & C) J B 

A""B If-(A & C)""B 

where I use the arrow to symbolize the general conditional which includes 
counterfactual ones. 

Robert Stalnaker proposed a theory in which conditional propositions 
are modelled in a way that I can describe in the terms of the preceding 
section, and he provided the corresponding system of logic of conditionals; I 
shall call that Stalnaker Logic. I have previously (1976) proposed a weaker 
system of logic, formed by deleting one of Stalnaker's axioms; let me call 
that Weak Stalnaker Logic. I shall explain both here, and my motives for 
preferring the weaker system; but refer to the other publications for more 
detail. 

Stalnaker adds to the model a selection function s whose job it is to give 
exact content to the ceteris paribus clause in conditionals. The conditional 
is then defined by 

x is in (Z"" Y) exactly if: sXZ E Y, or Z = A 

where A is the empty set, and sex, Z) is abbreviated by superscriptingx. We 
may read this as: Z .... Y is true in world x exactly if, in the world in which Z 
is true but everything else is as in x, Y is also true. Conditions on this selec­
tion function which are imposed are 

(a) if SX Z is defined for any world x, then it is defined for all worlds; 

(b) sxZ is a member of Z; 

(c) ifx is in Z, then (SXZ) = x. 

These are all the conditions needed for Weak Stalnaker Logic, but Stalnaker 
himself imposed more: 

(d) the propositions Z such that SX Z is defined, plus the null-set, 
together form a field; 

(e) if sXZ is in Y and SX Yis in Z, then (SXZ) = (SX Y). 
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Oause (d) is not perhaps too important; it is there to insure that if 'p ...... Q' 
is a sentence in the language, then there is a proposition X ...... Y for it to 
express. In simple models, this is most easily obtained by letting the domain 
of SX be all the non-empty sets of worlds. In Weak Stalnaker Logic, it is 
always possible to let 'p ...... Q' express the same as 'P:J Q' if no suitable prop­
osition X ...... Y is available. But I believe in any case that it is only a conven­
tion dictated by convenience to think that all sentences should, on any 
interpretation, express propositions; and correlatively, that it is better to 
study propositions directly. 

The main difference lies therefore in condition (e). Its result is that 
Stalnaker Logic has, and Weak Stalnaker Logic does not have, the axiom 

(P ...... Q) & (Q ...... P) & (p ...... R) .:J (Q ...... R). 

It is the only axiom that relates conditionals with logically non-equivalent 
antecedents. Of course I agree that there should be systematic connections 
among such conditionals; but I do not know what they are and I believe that 
this axiom is much too strong. Nor have I ever seen evidence for it that I find 
at all convincing. So I prefer to omit it altogether. 

2.2. Tensed Conditionals 

Turning now to tensed conditionals, Thomason has laid down the following 
principles (see his paper) which I shall accept here without argument: 

(A) ,S,A,SB I~A ...... B. 

(B) SeA ...... B) I~A ...... S(A :JB). 

(C) S ,A, SeA ...... B) does not imply A ...... SB. 

In this development, as in Thomason's, the troublesome part of (B) is 

(B') S,A,S(A ...... B) I~A ...... S(A :JB). 

We may also note that the following will also be validated en passant, as 
consequences 

(A') ,S,A,SB I~A ...... SB. 

(D) S,A,S(A ...... B),A ...... SA I~A ...... SB. 

(E) A ...... SA I~S(A ...... B) == (A ...... SB). 

A further prinCiple, suggested by Anil Gupta and accepted by Thomason, I 
shall discuss after I have considered these. 
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Let us see how the model needs to be adjusted. The selection function 
should now be indexed not only with a world, but also a time. For in select­
ing another world for inspection, we must 'keep fixed' certain parts of this 
world, and what these parts are depends on time. For example, if I were now 
to add one calory of heat to this cubic centimeter of water I would raise it to 
5°C - that is true if the present temperature of the water is 4 °c, and that 
fact must be the case in the selected world. So we shall have: 

x E (A """* B) (t) exactly if: A(t) is empty, or sf(A(t» EB(t). 

The question is: what constraints shall we put on the selection function, in 
addition to (a)-(d), to reflect this new concern with time? 

The first condition I can take almost bodily from Thomason. What is 
settled must be respected first when we try to keep things fixed; nothing 
settled must be non-fixed gratuitously: 

(I) if Y () H(x, t) =1= A, then sf Y E H(x, t). 

In other words, we try first to select a word that is like x through t if we can. 
This condition suffices to validate (A') and hence (A). 

The second further condition I need is more complicated; it is a global 
constraint on the model, with consequences for 'how many' different (sorts 
of) possible worlds there are. It is: 

(II) ifz = sf Y then H(z, t) () Y S; {sf'Y:w,.t x}. 

This is a sort of continuity condition (as Professor Fenstad pointed out to 
me). If we think of worlds that agree through t as being 'close together', and 
think of StY as a map (x into sf Y), then the condition says: 

worlds which are close together come from worlds which are 
close together. 

Another way to put the condition loosely but pictorially, is this 

if z is the nearest Y·world to x at t, and z' is a Y-world, z' agree­
ing with z through t, then z' is the nearest Y-world at t to some x' 
which agrees with x through t, 

though I must say that I do not take this 'nearest' metaphor seriously. 
When Y = A(t) and x is in -,S-,A(t), then (II) is a consequence of (I). But 

when x is in S-,A(t), .(11) does some work; and it validates (B). For suppose 
A """* B is settled in x at t. Then for all x' ,t x, A """* B is true in x' at t. But if 
z = sf A(t), and z' ,t z, then if A(t) is true in z', we conclude that z' = s{A(t) 
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for such an x' ,t x, and hence that B(t) is true in z' as well. Thus A :::> B is 
settled in z at time t, as required. 

In validating the other principles, have I accidentally contravened (C)? But 
I have not, since H(z, t) - A(t) need not be empty; and worlds in that set 
need not be in B(t). The reader is again advised to draw pictures; let one tree 
of lines represent the histories of worlds in H(x, t), and another tree the 
histories of worlds agreeing through t with the world z = sf Y. 

2.3. Gupta's Principle 

There are certainly some important differences between Thomason's models 
and these, but I think that differences in the sets of logical truths can be 
eliminated by restricting my models. For example I could stipulate that the 
trajectories of all members of K, in the state-space H, taken together form a 
tree like structure; that is, for each x and y there exists a time t 'early enough' 
so that x E H(y, t). A special further principle was suggested by Anil Gupta; 
after·some discussion, it was accepted by Thomas in the form: 

(F) DeE :::>SE),A -+ OB,B -+OA,B -+ E If-A -+ E. 

The modality 0 is the pure logical modality, but '0' is defined as ',S,' 

(
K if X=K 

OX = 
A otherwise, 

I believe that this principle becomes validated in my model if I impose, as 
third main condition: 

(III) if x = sF A(t) and some y ,t x is in B(t), and z = sF B(t) and some 
v,t z is in A(t) then z,t x. 

For let us consider a world wand time t in which the premises of (F) are true, 
and let x and y be as in (III). Then the fact that A -+ OB and B -+ OA are true 
in w at t means that the antecedent of (III) is satisfied. Hence z ,t x. But 
because wE (B -+ E) (t), we see that z E E(t). By the first premise of (F), z is 
then also in SECt). Since x is in H(z, t), it follows that x is in E(t) too. Hence 
(A -+ E) is true in w at t. 

It may be useful to think of it this way: Gupta's principle (F) is about 
backward-looking propositions E, and establishes a connection between con­
ditionals with logically non-equivalent antecedents. 
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2.4. Determinism and Metaphysical Conditionals 

Be that as it may (principles A, B, and F are universal, but the evidence for 
them is only through particular examples) there is still a fundamental dif­
ference between Thomason's theory and the present one, which has to do 
with metaphysical propositions. Under quite simple conditions it turns out 
that in my model, some of the conditionals must be metaphysical, not 
historical, propositions. 

We can see this by considering the question of determinism. A world x 
should be called deterministic at t exactly if any world y in H(x, t) has the 
same history after t as well (y EH(x, t) implies hy = hx ). Suppose now that 

B(t) = {x EK: x is deterministic at t} 
=1= K. 

Then there is a world sf IB(t) = z when x is in B(t). That world z is not 
deterministic at t, as it has a distinct z,..t z. But by condition (II), z' = 
s{,B(t) for some x' ..t x. Since z' =1= z, also x' =1= x. Hence we have two 
deterministic worlds that have the same history throughout: hx = hx" If 
C(t) is now any proposition which contains z but not z', we fmd 

(,B -+ C) is true in x at t 
(IB -+ C) is false in x' at t 
hx = h x' , 
So, (IB -+ C) (t) is a metaphysical proposition. 

Hence, regardless of how precisely the state-space is defined, if the model 
has room for both deterministic and indeterministic worlds (systems) then 
some conditionals are metaphysical propositions. 

This is something I have always suspected about conditionals, but it is 
surprising to find it proved. 

3. ON THE COMBINATION OF CHANCE AND IGNORANCE 

3.1. The Two Probabilities 

"I once was blind but now I see" has as hidden parameter the linear con­
tinuum of time. In the same way, "Radium has a relatively short half-life" 
carries in present physical theory a hidden parameter of chance: the chance 
that a radium atom decays into radon, in any given second, equals 1/1012 • 

Chance is a real-valued function, just as, say, time of sojourn. 
In addition, there is epistemic probability, which is a sort of summary of 
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what my beliefs have to say that is relevant to a truth-value. For example, the 
only belief I have relevant to whether a given radium atom will decay in the 
next second, is that chance statement above; and this may be neatly indicated 
by the assertion that/or me, the probability of this decay is 1/1012• 

There are two ways in which my views of chance and probability differ 
from those of various other discussants. I hold to a modal frequency inter­
pretation of chance - with the emphasis on frequency - and I don't think 
that epistemic probability is anything like what the Bayesians call subjective 
probability. But formally, the disagreement can be minimized. Chance, as I 
understand it, does obey the laws of the probability calculus. Secondly, I 
think that my epistemic probability can be characterized through a/amily of 
probability functions, each of which is (in some sense I shall not pursue here) 
compatible with my belief-state. The reader will recognize this as a sort of 
supervaluation view; it will be convenient, and not useless, to study the ideal 
case in which that family has only one member,P. 

In each world x, chance is a function that changes with time, and attaches 
to propositions; let us write 

cHX) = r: x a world, 
t a time, 
X a proposition, 
r a real number. 

P too may pertain to a world (the one the subject inhabits) and will certainly 
change with time. But I have at present nothing useful to say about the first 
dependency. So I shall think of P as being linked to a given world, which is 
kept constant throughout the discussion. 

In the fall of 1977 I discussed with Thomason the question how the prob­
ability which is the measure of my ignorance, is related to objective chance, 
for propositions for which both are defmed. That they are related seems clear 
if we assume that no crystal ball is possible, or at least available. In that case, 
the most precise and complete information I could have about whether it will 
rain tomorrow, is the information that the objective chance of rain is thus or 
so. If I am rational, therefore, it seems that my personal opinion about rain 
tomorrow should be based entirely on my opinions about the chance that it 
will rain tomorrow. 

Thomason proposed, in effect, two links. The first is that the opinion 
about chance that is relevant to my probability now, is about the chance 
there is now. This is perhaps one aspect of the above idea about there being 
no crystal balls, so that the chance there is now of there being rain tomorrow 
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is the only objective guide we can have now to, for example, the chance there 
will be at midnight, or tomorrow morning, of rain tomorrow. The second 
proposed link is that the probability is the expected value of that chance. I 
shall formulate this proposal (emphasizing that it only applies to propositions 
for which both probability and chance are defined) and then give an example. 

(R-principle): The probability at t that X is true equals the expected value of 
the chance at t of X: Pt(X) = Exp Ct(X); 

where Exp is the expected value calculated for Pt, and CtX is a random vari­
able on the set K of worlds, taking value cf X as world x. The expected value 
is given by 

Expf = L Pt(x)f(x) 
xEK 

if K is countable, and 

in the general case. In what follows I mean to defend and generalize this 
R-principle. An example first. 

We have three coins, two fair and one biased 3 to 1 in favour of heads. 
One of these coins is picked at random and tossed. What is the probability 
that it comes up heads? 

Everyone agrees on the answer; the reason for this is that the problem is a 
standard sort of exercise in elementary texts. There are three possible worlds 
that we might be in: the coin tossed may be fair or biased. Call these worlds 
X,Y,z: 

P(x) = P(y) = P(z) = 1/3, 

cf (Heads) = 1/2 = ci (Heads), 

c: (Heads) = 3/4, 

P(Heads) = P(x)cf(Heads) + P(y)ci{Heads) + P(z)ct(Heads) 

= (2/3 x 1/2) + (I/3 x 2/4) = 7/12. 

'Heads' is the proposition that the coin tossed comes up heads at the given 
time t. More generally, if our coins were i = Xl, •.• ,x n then we would have 
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P(Heads) = L p(nd (Heads): i = Xl> ••• ,Xn 

which is just what the R-principle says. To warn you of pitfalls, let us note 
the important fact that full belief in stochastic independence does not imply 
epistemic independence: 

[c;(XjY) = d(X) for all i] does not imply P(XjY) = P(X). 

For example, let Y be: the coin came up heads the first time; X be: the coin 
came up heads the second time. In the above example, X and Yare stochasti­
cally independent no matter which coin we toss. But if the coin comes up 
heads on the first toss, that makes it more likely that the coin in question is 

'ithe biased one. Hence, that makes it more likely that heads also comes up 
on the second toss. 

3.2. Representation of Chance 

Chance develops in time. The chance that something has already happened is, 
if it makes sense at all, just zero or one depending on whether it did or did 
not. To be more precise, chance pertains non-trivially to what is not yet 
settled. It concerns the open future, the possibilities not yet closed to us. 

This suggests that chance ct in world X at time t is a measure, first and 
foremost, on the setH(x, t). We may trivially extend it beyond that, 

(1) cf(X) = ct(H(x, t) n X) 

so that chance is, as it were, naturally conditionalized on what is settled. 
Secondly, I want to say that what is settled, determines chance. If a 

system is such that the immediately preceding state determines present 
chance, we say that it has the Markov property. That is too strong a con­
straint, of course; I suggest only that the total sequence of states up to and 
including now, determines chance: 

(2) ify EH(x,t) thencf = cf. 

Propositions attributing chance are therefore historical, and indeed, backward­
looking: 

[ct(X) = r] = {xEK: cf(X) = r}. 

like every other backward-looking proposition, its chance is zero or one: 

(a) If A is a backward-looking tensed proposition then 
cf(A(t)) E {a, I}. 
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(b) If X is a proposition which is backward-looking at t, then 
ct'(X)E {D, I}. 
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Of course we can write [Ct(X) = r] as [c(X) = r](t), showing that we deal 
here with a tensed proposition, but I shall keep the former for perspicacity. 

Finally, there may be some advantage, and possibly compelling reasons, 
to restrict the domain of cf to historical propositions. I don't know. 

3.3. Combination with Ignorance 

The main question concerning the R-principle which I have thought about, is 
whether it can be generalized from the absolute probability Pt(X) to con­
ditional probability Pt(X/Y). It soon appeared that constraints must be put 
on Y. Just as for the R-principle I shall restrict the discussion to the question, 
what is the probability thatA is true at t? If we add: given thatB is true at t, 
we will answer that by attempting to estimate the chance at t that A(t) is 
true, given that the world is such that B(t) is true. And an answer is forth­
coming provided B(t) is essentially about the past and present, that is, in the 
terminology of Part I, backward-looking. 

Let us begin with a discussion of the fmite case, that is, the set of worlds 
K is fmite. In that case there are only fmitely many distinct histories up to 
time t: 

(1) K = H(xb t) U ... U H(x", t). 

Let aj = H(xj, t). The set {aj} is a partition of K. 
Of course there is some i such that aj represents the actual world history 

through time t. But for probability it does not matter which is actual, but 
only what we think about which is actual. Because {aj} is a partition of K, 

n 

(2) Pt(X) = L Pt(aj)Pt(X/aj). 
j=l 

Of course, if the actual world is in aj, then the chance of X equals c:(X) at 
t (where I abbreviate 'xi' to 'i'). But that should then be the value of P(X/aj); 
hence we deduce: 

n 

(3) Pt(X) = L Pt(aj)C:(X). 
j=l 

Since we are assuming that K is finite, aj is finite too; say aj = {Yb ... ,Ym} 
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where the chance of X at t in Yi is equal to that of X at t in Xi (because 
Yi ,t Xi). So (3) is equivalent to: 

(4) Pt(X) =: L Pt(y)ci(x)· 
yEK 

So far we have simply followed through the reasoning for the R-principle. If 
we now want to conditionalize, we must move back to step (2) above. There 
will be no harm done if we toss out, say, worlds Xk+l' ... ,Xm which means 
discarding sets ak+l' . .. ,an altogether, and renormalize: 

(5) 

where alk = al U ... U ak. By reasoning as above, we get 

(6) 

There is no harm done because whole sets H(x, t) are discarded at once, not 
just parts of them. But that is true not only if we conditionalize on alk, but 
if we conditionalize on any backward-looking proposition. In the finite case 
we have therefore, by generalizing (6) and reasoning as for (4) above: 

(7) 
1 

Pt(XjE) = Pt(E) L {Pt(y)ci(X):yEE} 

provided Pt(E) 0/= 0 and E is backward-looking at t. 

Generalizing also to the non-nnite case, we arrive at the: 

(Basic Principle): Pt(XjY) = Expy Ct(X) 

= Pt~Y) Iv Ct(X) dPt 

provided Y is backward-looking at t, and 
Pt(Y) 0/= O. 

Intuitively, this says that, in appropriate cases, the conditional probability of 
a proposition equals the conditional expected value of its chance. 

To see that the proviso (backward-looking) cannot be eliminated, it suffices 
to consider Y = K - X. This provides no difficulty if Y is backward-looking, 
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but would give absurd results if we allowed the Basic Principle to apply if Y 
was not backward-looking. Suppose fust that Y == (K - X) is backward­
looking, and let us consider the finite case with equation (7). Since Y is 
backward-looking, so is X. Hence cl (X) equals zero or one for each Y in Y. 
Thus 

L {Pt(y)cl(X): Y E Y} 

== pt(ynx) == 0. 

Hence in this particular case, (7) just says that Pt (X/K - X) == 0, as it should. 
But suppose now that Y is not backward-looking. Of course, Pt(X/Y) == 

Pt(X/K - X) is meant to be zero. But then, if (7) is correct, and Pt(Y) =1= 0, 
the sum of Pt(y) ci(X) must be zero. This means that cl(X) must be zero 
for all y in Y == K - X. In other words, X must be proposition which is such 
that its chance equals zero in all worlds in which it happens to be false. This 
is simply not something we can expect in general, and if it is not so, we would 
be drawing the consequence that zero equals a positive number. Hence the 
restriction to backward-looking Y should not be eliminated from the proviso. 

The R-principle follows at once from the Basic Principle. The same is true 
of the principle offered by David Miller (as step one in his 'paradox') and it is 
true of David Lewis' generalization thereof (his 'Principal Principle') if we 
make Lewis' notions precise in our own way. Miller offered: 

(M) Pt(X/Ct(X) == r) == r, provided P(Ct(x) == r) =1= 0, 

if I read him correctly (he omitted considerations of time). This principle is 
correct, for [ct(X) == r] is a backward-looking proposition, and such that if y 
is any world in [ct(X) == r] then ci(X) == r. Hence 

fy ct(X)dPt == r ·pt(y) 

and so the conditional expected value of X is indeed r. David Lewis' Principal 
Principle has in it one undefined notion, which (because time is not an 
explicit parameter in his models) he did not explicate. Reading that my own 
way, it becomes 

(Lewis) Pt(X/[ct(X) == r] n E) == r provided E is backward-looking at t 
and Pt([Ct(x) == r] n E) =1= 0. 

This follows from the Basic Principle by essentially the same argument as for 
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Miller; but in addition, in this form, is equivalent to the Basic Principle. The 
reason is that the set {[Ct(X) = r]: r E [0, I]} is also a partition of K. 

University of Toronto and 
University of Southern California 

NOTE 

* The research for this paper was mainly done before June 1978 and supported by the 
Canada Council, and partly in September 1978, supported by the National Science 
Foundation. Parts of Section 1 and 2 were reported in the paper 'Report on Tense Logic' 
by van Fraassen (1980). 
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