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There is, in the lore of quantum mechanics, a parable that goes something
like this. One evening, a long time ago, a forest elf returned to his hut, weary
and hungry. He filled a pot of water, and placed it on the fire, to make stew
for his supper. As he waited, he watched the pot continuously to see when
it would boil. Alas, first hours . . . and then days . . . passed, and the pot
never did come to a boil! The explanation is quite simple. Each observation
collapsed the wavefunction of the pot into either a boiling state or non-boiling
state, with relative probabilities depending on the wavefunction just prior to
that observation. But, taking the limit of observations made continuously,
the net probability for for ever achieving a boiling state vanishes, in the same
manner as a sequence of polarizers, each with a plane of polarization rotated
slightly from its predecessor, will rotate the plane of polarization of a light
beam through a finite angle, with no attenuation whatever.

What is unsettling about this account is not the incident itself — for
I have not the slightest doubt that it did occur, exactly as related above.
Rather, it is the explanation of this incident in terms of quantum mechanics,
an explanation that is inadequate in two respects. First, the explanation is
merely a rough heuristic argument, e.g., employing slogans such as ”collapse
of the wavefunction”. Preferable would be an explanation within the struc-
ture of quantum mechanics itself. Second, the explanation does not make it
clear what is the difference between the elf and his pot on the one hand, and
me and mine on the other (for when I place a pot of water on the fire and
watch it continuously, it very definitely does boil).

Fix Hilbert spaces H (interpreted as the space of pot-states) and Ĥ (in-
terpreted as the space of instrument- (i.e., elf-) states), and consider their
tensor product, H ⊗ Ĥ (interpreted as the space of states of the combined
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system). Consider, on this tensor-product Hilbert space, the self-adjoint op-
erator H ⊗ Î + P ⊗ Â + I ⊗ Ĥ, where H is some self adjoint operator on
H (interpreted as the Hamiltonian of the pot when not under interaction),
Ĥ is some self-adjoint operator on Ĥ (interpreted as the Hamiltonian of
the instrument when not under interaction), P is some projection operator
on H (interpreted as the projection to ”non-boiling states” of the pot, so
P⊥ = I − P is interpreted as the projection operator to ”boiling states”),
and Â is some self-adjoint operator on Ĥ (the effect of the interaction on the
instrument). Thus, we interpret1 Ut = exp[i(H⊗ Î+P ⊗ Â+ I⊗ Ĥ)t] as the
time-evolution operator for the combined pot-instrument system, under an
interaction we interpret as ”continuous observation by the instrument as to
whether the pot is boiling”. We demand, finally, that Ĥ and Â commute with
each other (which we interpret as the demand that the instrument’s records
not be altered in time via evolution of the instrument). Consider now the
element ψ ⊗ µ̂ ∈ H ⊗ Ĥ, where ψ is some unit vector in H (interpreted as
the initial pot-state) satisfying Pψ = ψ (interpreted as meaning that ψ is
a ”non-boiling” state), and µ̂ is some unit vector in Ĥ (interpreted as the
initial instrument state).

The key theorem, whose proof we defer to the end, is the following:

Theorem. Under the conditions of the previous paragraph, we have, for
every t ≥ 0, the bound

‖(P⊥ ⊗ Î)Ut(ψ ⊗ µ̂)‖2 ≤ [4 |H|2 t e4|H|t]
∫ t

0
dτ | < µ̂|eiÂτ |µ̂ > |. (1)

The physical meaning of this theorem is the following.
The left side of Eqn. (1) is the result of taking the initial state, ψ ⊗ µ̂,

evolving for time t, projecting into the ”boiling subspace”, and taking the
squared norm. This side, in short, may be interpreted as ”the probability
that the pot is boiling, as a function of time t” (understood, in the usual
way, as the result of an observation made on an ensemble).

The factor in square brackets on the right involves only the elapsed time t
and the norm of the pot-Hamiltonian, |H|. Note that this factor can become
very large. For example, for a typical pot (reasonably approximated by a

1It is necessary in what follows to demand that the operator H be bounded. However,
the operators Ĥ and Â may be unbounded, provided only that all linear combinations of
them are self-adjoint.
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bounded Hamiltonian), and an elapsed time of ten minutes, this factor is
about 101040

/sec.
The integral on the right in Eqn. (1) involves only the elapsed time t,

the interaction operator Â on the instrument Hilbert space, and the initial
instrument state µ̂. This integral will be small provided that evolution under
the operator Â as ”Hamiltonian” sends the initial state µ̂ to one that quickly
becomes and remains nearly orthogonal to µ̂. This, in turn, tends to happen
provided that ”the operator Â is sufficiently large and diffuse in its effects
on the Hilbert space Ĥ, while the initial state µ̂ is in general position with
respect to Â.” Here is an exmple. Let Ĥ = L2(R), let Â = iv d/dx where
v is some constant, and let µ̂ be a wave function that vanishes outside some
interval of length a. Then, for all t > 0, we have

∫ t
0 dτ | < µ̂|eiÂτ |µ̂ > | ≤ a/v.

This can be made small by choosing the width, a, of the initial wave packet
small and/or choosing the size, v, of Â large.

The theorem above, then, provides an explanation, within quantum me-
chanics, for the failure of the elf’s pot to boil. But note what an extrordinary
elf he must have been! He was apparently able to adjust his initial state µ̂
and/or his interaction operator Â so finely as to achieve an integral on the
right in Eqn. (1) down from one sec by about 1040 orders of magnitude.

Does there exist a bound significantly better than that of the theorem?
I’m not sure. It is not difficult to modify the proof (below) so as to replace
the factor ”|H|2” on the right by ”|[H,P ]|2”, but that does not appear to
reduce significantly the numerical size of this factor. [Replacing all |H|’s by
|[H,P ]|’s presumbly would, but I doubt that this can be achieved.] Is there
some analogous theorem – having similar physical consequences – that works
without the assumption that H be bounded; or without the assumption that
Â and Ĥ commute? I’m not sure. My guess is that there may indeed be
analogous bounds in these cases, but that, if they exist at all, they will be
far more complicated than that of Eqn. (1).

Proof of the theorem.
The key formula is the following

Ut = P eiHPt ⊗ ei(Â+Ĥ)t + P⊥eiHP
⊥t ⊗ eiĤt (2)

+
∫ t

0
dτ C(t, τ)⊗ eiÂτeiĤt. (3)
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where the operator C(t, τ) on H is given by the sum

C(t, τ) =
∑

im+n+1 P ?HP ?H · · ·HP ?τn(t− τ)m/n!m!. (4)

Here, each of the symbols ”P ?” on the right stands for either P or P⊥, and
n+1 is the number of P ’s that appear in that term, m+1 the number or P⊥’s.
The sum is over all possible arrangements provided only that m ≥ 0, n ≥ 0,
i.e., that there appear at least one ”P” and one ”P⊥” in each term. Eqn. (2)
can be established in a number of ways, all of which are relatively tedious: i)
Note that this equation holds for t = 0, and then, taking d/dt of both sides,
show that the time derivative of this equation holds at t if the equation itself
holds at t. ii) Expand the left side of Eqn. (2) in power series, and collect
the terms according to the power or H they contain. iii) Manipulate the
standard formula, involving the time-ordered products, for the effect of an
interaction (taken in this case as H ⊗ Î) on the time-evolution of a system.
In this regard, the following little formula is useful:

ei(P⊗Â+I⊗Ĥ)t = P ⊗ ei(Â+Ĥ)t + P⊥ ⊗ eiĤt. (5)

Applying, to each side of Eqn. (2), P⊥ ⊗ Î from the left and ψ ⊗ µ̂ from
the right, the first two terms on the right side of that equation drop out.
Taking the norm of what remains, we obtain

‖(P⊥⊗Î)Ut(ψ⊗µ̂)‖2 ≤< ψ|C(t, τ)P⊥C(t, τ)|ψ >
∫ t

0
dτ

∫ t

0
dτ ′ | < µ̂|eiÂ(τ−τ ′)|µ̂ > |.

(6)
The result is now a consequence of the following bound:

|P⊥C(t, τ)P | ≤
∞∑

m,n=0

|H|m+n+1τn(t− τ)m(m+ n)!/(m!n!)2 (7)

≤
∞∑

m,n=0

|H|m+n+1τn(t− τ)m 2m+n/m!n! (8)

= |H|e2|H|t. (9)

In the first step, we used the fact that the number of terms on the right in
Eqn. (4) with given m,n-values is (m+n)!/m!n!; in the second, the fact that
(m+ n)!/m!n! ≤ 2m+n.

Thanks to Gavin Polhemus and James Geddes for many discussions on
this problem.
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