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1. Introduction

Here is a little game.1 Begin with string consisting solely of letters “a”
and “b”,e.g., “ababbbabaa”. The leftmost letter of this string is “a”.
So, append the letters “aa” to the right of the string and delete the
leftmost three letters. There results “bbbabaaaa”. The leftmost letter
of this new string is “b”. So, append the letters “bbab” to the right
and delete the leftmost three letters. There results “abaaaabbab”.
Now continue in this way, at each step appending “aa” or “bbab” on
the right according as the leftmost letter is “a” or “b”, and deleting
the leftmost three letters.Thus, in this example the next few steps will
yield “aaabbabaa”, “bbabaaaa”, “baaaabbab”, and “aabbabbbab”.

What would happen were we continue to play in this way? Clearly,
there are just three possibilities. First, we could ultimately arrive at
the empty string – the string with no letters – thus terminating the
game. This would happen, for example, were the initial string just
“aa”, for the next step would yield just “a”, and the next step the
empty string. Second, the string could ultimately repeat itself. Then
we would continue to play in a cycle, going through the same sequence
of string over and over. This would happen, for example, were the
initial string “aabbab”, for the next step would yield “babaa”, and
the next step “aabbab”, the same as the initial string. Finally, it is
possible that the game go on forever, without terminating or cycling.

More generally, one specifies a tag game by giving the alphabet
for the game (in this example, “a” and “b”; but it could consist of
more letters), the rules for what is to be added on the right according
to which alphabet letter is leftmost (in this example, “aa” if “a” is

1
From Ann Yasuhara’s book on recursive functions.

1



2 1.

leftmost and “bbab” if “b” is leftmost; but there could be given any
string), and the number of leftmost letters to be deleted (in this ex-
ample, three; but it could be any number). Then given the tag game
and the initial string, one of the outcomes above must occur. How
would one determine which outcome will occur in a given case? Well,
one could merely play the game. If it terminates or goes into a cycle,
one would notice it, and this would be the answer. But what if the
game continues, for days, months, decades? Clearly, mere play of the
game will not always answer the question of which outcome will occur.
Alternatively, one might devise some general argument – not involving
actual play – for what the outcome will be. (A simple example is the
tag game with alphabet “a” and “b”, with “a” ! “aaaa” and “b”
! “bbbb”, and with three letters deleted at each step. Then every
game, no matter what the initial string, goes on without terminating
or cycling.)

For any given tag game and initial string one presumably could,
given su�cient time and e↵ort, devise some way to determine which
of the three outcomes will occur. Let us now ask a more sophisticated
question. Can we do more than this? Can we devise some general pro-
cedure that will determine, for any given tag game and initial string,
which outcome will occur?

This last question goes to the heart of the subject of this course. We
are interested in well-posed questions (such as, in the example above,
the question of whether a given tag game on a given initial string
terminates, cycles, or neither), and whether there are procedures for
answering those questions (as is asked above). The remarkable result –
that has extensive implications both within and without mathematics
– is that one can in fact specify well-posed problems that can be solved
by no procedure whatever. (In fact, there is no procedure to answer
the tag-question above, but the actual example we shell give will be
slightly di↵erent.)

It is our purpose to understand this result. The first step is to gain
a somewhat firmer sense of what “well-posed problem” and “proce-
dure” are to mean.



2. Games

Let us consider games of the following type. There are two players –
call them “x” and “o”. There is a board, visible to both players at
all times, the possible configurations of which give the entire status
of the game at any one moment. The players alternate turns, and
each player in his turn makes a move – makes one of certain allowed
changes in the board configuration. Certain board configurations are
designated as “x wins”, certain as “o wins”, and certain as “draw”.
If, as the game proceeds, one of these configurations is reached, then
the game terminates, with the corresponding outcome. If none is ever
reached, then the game is declared a draw.

Examples of games that fall within the framework above are tic-
tac-toe, checkers, chess, nim (see problem 2 Set 1), and five-in-a-row
(Set 1). An example that doesn’t is poker (concealed hands violate
the board-configuration provision).

Such games provide good examples of well-posed problems, their
solutions, and the issue of whether there are procedures for finding
the solutions. The problem is posed to a given player in his turn by
the board configuration: He must decide which of the allowed moves
to make. The solution to the problem is to make the best move –
one that will result in a win if possible, but if not that a draw. More
on this in a moment. Whether there is a procedure for solving the
problem asks whether one can give explicit instructions such that a
technician, merely following those instructions and having no insight,
can play expertly, i.e., in every case make the best move (or one of the
best, if there are several such).

Let us now detour for a moment to describe in more detail the
“best move”. Consider the following rules:

3



4 2.

1. A board configuration is x-winnable if it is one of the “x-wins”
configurations above.

2. A board configuration is x-winnable if it is x’s turn, and there
is some move for x that results in an x-winnable configuration.

3. A board configuration is x-winnable if it is o’s turn, and every

possible move for o results in an x-winnable configuration. The x-
winnable configurations, roughly speaking, are those for which “x, if
he plays carefully and skillfully, is assured of winning no matter what
o does”. In tic-tac-toe, for example, the first configuration below is
x-winnable, by rule 1.

X O#

X

X X

X X

X

X

X

XX

X

X

XX

O#

O#

O#O#O#

O#

O#

O#

O#

O#

Therefore, the second configuration with x’s turn, is x-winnable,
by rule 2. Finally, the third configuration, with o’s turn, is also x-
winnable, by rule. (No matter what o does in his turn, there will
result a configuration, like that of the second figure above, that is x-
winnable.) In a similar way, we define the o-winnable configurations.
Thus, for example, a configuration is o-winnable if it is an “o wins”
configuration; or, if it is o’s turn and there is some move for o that
results in an “o wins” configuration; or, if it is x’s turn and, no matter
what move x does, there is some move for o that results in an “o wins”
configuration; or, if it is o’s turn and there is some move for o such
that, no matter what move x then does in his turn, there is some move
for o that results in an “o wins” configuration. It continues in this way.
In short, an o-winnable configuration is one from which o can, against
any play by x (good play, bad, or whatever), force eventually an “o
wins” configuration.

X O#
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X X
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X

X
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XX
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O#
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O#

O#
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Finally, a configuration that is neither x-winnable
nor o-winnable will be called drawable. The drawable
configurations, roughly speaking, are those from which
neither player, with su�ciently skillful play, will lose. In
tic-tac-toe, for example, the initial board, before anyone
has moved, is drawable. If x takes his first move at the
center, then the configuration is still drawable. If, however, o then
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moves to the side, then the configuration becomes x-winnable. (A
move by o to the corner would have made another drawable configu-
ration.)

Suppose that it is x’s turn. Let, first, the board configuration
be x-winnable before x’s move. Then, by rule 2 above, there must
exist some move for x such that the configuration is x-winnable after
x’s move. This would be a good move for x. There may, of course,
also be moves for x that result in a drawable or even an o-winnable
configuration. These are clearly bad moves. Let, next, the board
configuration be drawable before x’s move. Then there is no move
for x that results in an x-winnable configuration (for by rule 2, were
there such a move then the configuration would already by x-winnable,
not drawble); and there must exist some move for x that results in a
drawable configuration (for were there none then the configuration
would already be o-winnable, not drawable). Thus, a good move for x
(the best x can do) is one that results in a drawable configuration after
x’s move. There, may, of course, also be moves for x that result in
an o-winnable configuration. These are clearly bad moves. Finally, if
the board configuration before x’s move is o-winnable, then it doesn’t
make any di↵erence what x does: The configuration after x’s move
will in any case again be o-winnable.

We can summarize all this by saying that one can never, on one’s
move, improve the situation (go from winnable by the opponent to
drawable, or from drawable to winnable by oneself). One can always
keep it the same. There may also be moves that keeps the situation
worse. By a good move, we mean one that keeps the situation the
same, i.e., that does the best one can do. (You are invited to think
through these definitions – of x-winnable, o-winnable, drawable, and a
good move – in the case of tic-tac-toe. You should be able to convince
yourself that, at least for this game, these terms all take on their usual
meanings.)

So, at least for games that fall within our framework, there al-
ways exists at one’s turn a good move – one that will not cause one’s
situation (winnable for oneself, drawable, winnable for opponent) to
deteriorate. The problem is to find such a good move. For any one
specific board situation one could, with some luck and hard work, per-
haps come up with a good move. But we now ask for more: We ask for
a procedure by which, given the board configuration, one can generate
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a good move. Is there, given the game, such a procedure?
In the case of tic-tac-toe, there certainly does exist a procedure for

finding good moves. Indeed, we all, at least intuitively, know such a
procedure. It is not even that hard to write out a procedure in detail.
(See problem 1, Set 1.)

Does there exist a procedure for finding good moves in checkers?
It is not as obvious as tic-tac-toe, for we are not as skillful checker
players. But, I claim, there must exist such a procedure. The reason
is that there are just a finite number of possible board configurations
in checkers. (This is clear, for each square of a checker board can be in
just one of five possible situations – blank, my single piece, my king,
your single piece, or your king. Hence, the number of possible config-
urations of a checker board cannot exceed 5 x 5 x ... x 5 (32 times),
which is about 23,300,000,000,000,000,000,000.) Having noticed this,
one can, at least in principle, use the following procedure. Purchase a
book with 23,300,000,000,000,000,000,000 pages. On each page, draw
the corresponding configuration of the checker board (so every config-
uration is included). Then, at the bottom of each page, write out a
good move for that configuration. This is a procedure in every sense of
the word. A technician can well play expert checkers using our book.
(At each turn, he merely looks up the board configuration in his book,
and makes the corresponding move.) Note that a similar argument
could have been used for tic-tac-toe (but was unnecessary there, for
we actually knew the strategy).

Thus, we could conclude so far that for every game within our
framework there exists an expert strategy – a choice of a good move for
every board configuration. (This is essentially by definition of “good
move”.) Further, in the case of a finite number of board configurations,
there always exists a procedure for finding the good moves. A suitable
procedure is merely to list every possible board configuration, and for
each one, a good move for that configuration. In particular, then,
there exists a procedure for expert play in chess.

But what of games with an infinite number of possible board con-
figurations? One such game is nim. (See problem 2, Set 1.) There is
a procedure for expert play in this game, as we saw in that problem.
In fact, on x’s turn, the x-winnable configurations are those for which
the remainder on dividing the number of beans in the bowl by three
is one or two; and the o-winnable configurations are those for which
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the remainder is zero. There are no drawable configurations (which
figures, since there are no draws in this game).

As a final game, consider five-in-a-row (problem 4, Set 1). This
game also has an infinite number of possible board configurations (for
the size of the grid on which the marks are made is potentially infinite).
Because of this feature, it would be hopeless to try to give a procedure
for expert play by writing a “book”, because there is no limit to the
number of pages that would be required. Does there exist a procedure
for expert play in this game? I do not know the answer. The game
is very much more complicated than nim, so the rules for expert play
would certainly be substantially longer than the rules for nim.

We conclude that, for games within our framework having an infi-
nite number of board configurations, there is no way to assert (as with
checkers) that there does exist a procedure for expert play. We may
be able to find such a procedure and show it works (as is the case with
nim), or we may simply fail to find a procedure, and then not know if
there is one at all. So far, at least, we do not have the tools to show
in any case that there exists no procedure.
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3. Arithmetic

We now turn to a new class of problems – those involving arithmetic.
These problems will on the one hand serve to refine our understanding
of the notion of a “procedure”. Indeed, problems involving arithmetic
are better suited than those involving games to illustrate what we wish
to mean by a procedure. Further, some of the methods we use here
will arise later in our formal discussion of procedures.

By an integer we mean a (positive, negative, or zero) whole number.
Thus, 13, –845621, 0 and 2 are integers, while 2.3, 1/2, and ⇡ are not.
The basic idea is now quite simple: We wish to introduce various
questions and problems about integers, and then consider what the
solutions are and whether or not there exist procedures for obtaining
those solutions.

Is the integer 6 even? We certainly know what the answer is! Is
there a procedure to produce the answer? (Recall that a procedure is
to be instructions that can be followed mechanically, with no insight,
to produce the desired answer.) There certainly is such a procedure.
Here is one: “Just say ‘yes’. ” This is indeed a set of instructions, and
it does indeed yield, mechanically, the desired answer. What about
the instructions: “Place 6 beans in a pile, and remove them two at a
time. If at the end there remains one, say ‘no’; if none, then ‘yes’.”?
This is also a perfectly good procedure. But what makes it good
is not that it is germane to the problem, but only that it gives the
right answer. Thus, the following is also an acceptable procedure for
answering our question: “Place 17 beans in a pile, and remove them
five at a time. If, when no more can be removed in this way there
are still beans in the pile, then say ‘yes’.” In short, for a procedure
we are only interested in whether we get the right answer or not.

9
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We are not interested in whether the technician is doing something
germane, interesting or whatever. It is only the final answer emitted
that counts. The situation here is somewhat analogous to that in tic-
tac-toe, in which one can give a procedure for expert play by merely
listing every possible board configuration and, for each configuration,
a good move. This is an acceptable procedure. It is not necessary,
for a good procedure, that the technical actually do anything germane
to tic-tac-toe (such as make arguments about “if I do this, then my
opponent will do this...”). In short, returning to our original question,
a suitable procedure for answering it is any explicit instructions for a
technician that result in his producing eventually the answer “yes”.

Is the number 7 even? All the remarks above apply, and we have
only to produce instructions that result in “no”.

Given integer between 1 and 10, is it even? It will be recognized
that this is not a single question, but rather is ten questions (“Is 1
even?”, “Is 2 even?”,. . ., “Is 10 even?”) all assembled together. So,
there is not a single answer, but ten answers, one of each choice of
integer. There clearly is a procedure for answering any one of these
questions (and, indeed, we have just done two of them, above). But
now we ask for more. We ask for a single procedure, given once and
for all to our technician, such that our technician can, armed with
that procedure, answer all ten questions correctly. Let’s try a few
possibilities. Consider “Just say ‘yes’.” This is certainly a procedure,
but it is not a correct procedure for our problem (for, e.g., it gives the
wrong answer if “7” is presented). Our procedures, then, had better
require that the technician actually use the number presented. Here
is a suitable procedure: “If the given integer is 2, 4, 6, 8, or 10, then
say ‘yes’; if 1, 3, 5, 7, or 9, then say ‘no’.” Note that this does in
fact produce the correct answer – and that is all we care about in the
procedure. Another suitable procedure, for example, is “Place in a
bowl a number of beans equal to the given integer, then remove them
two at a time until this is no longer possible. If a bean then remains,
say ‘no’; if none remain, say ‘yes’.” But, again, the procedure need
not be germane to the problem. Thus, here is a suitable procedure:
“If the number, when spelled out, either ends in an ‘e’, or contains
two ‘e”s, then say ‘no’; otherwise, say ‘yes’.” Again, the situation here
is similar to that of tic-tac-toe: Any procedure that results in expert
play is ok, whether or not that procedure gives any particular insight
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into the game itself. In particular a mere list of board configurations
and corresponding good moves is acceptable.

Given any positive integer, is it even? This will be recognized as
not one question, not ten questions, but rather an infinite number
of questions. Our previous methods for obtaining procedures do not
work in this case. “Just say ‘yes’.” does not, of course, always produce
the correct answer. And a listing of all possible integers that might
be presented, together with the answer to give for that integer, is not
possible with an infinitive number of possible integers. Is there, then,
a procedure for answering these questions? There certainly is. One
procedure is bean-counting: “Place in a bowl a number of beans equal
to the integer given, and remove them two at a time until that is no
longer possible. If a bean then remains, say ‘no’; if not, say ‘yes’.” In
fact, there are easier procedures. For example: “If the given integer
ends in 2, 4, 6, 8, or 0, then say ‘yes’; if in 1, 3, 5, 7, or 9, then say
‘no’.” Note that this last procedure “just happens” to work. Being
even is quite di↵erent from ending in 2, 4, 6, 8, or 0. But it just
happens to be the case that the two are equivalent. This example just
further illustrates our point: All that matters of a procedure is that it
produce the right answer, not whether the details of that procedure are
relevant to the problem, or interesting, or anything else. The situation
for this question is rather like that of the game of nim. In the game,
there are an infinite number of board configurations, in analogy with
an infinite number of questions here. Yet, despite the infinite numbers
in both cases, we can find a procedure – for expert play in nim, and
for answering the questions here.

Given a positive integer, is it evenly divisible by 3? This question
is rather like that above, except that we need for it a somewhat a
di↵erent procedure. Divisibility by 3 is not revealed by the final digit
alone. We could, for example, use bean-counting. Or, one could write
out a procedure that includes an explanation of how to do long division
(for that, after all, is itself a procedure). Then, our procedure would
dictate that the given number be divided by 3, and the remainder
examined. Of course, our instructions for long division would have to
include the multiplication table, but that is ok: We merely include it.

For the next few examples, we need the following definition. An
integer two or greater is called prime if it is evenly divisible only by
the integers one and itself. Thus, for example, 2, 3, 7, 19, 97, and 5737
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are prime integers, while 4, 6, 35, 111, and 5767 are not.
Given a positive integer, is it prime? This is, of course, an infinite

number of questions. There is, as it turns out, a procedure for an-
swering them. Suitable instructions might direct that the technician
divide the given integer in turn by each integer from 2 up to one less
than the given integer, and find in each case the remainder if any. If
in every case there is a remainder, then answer “yes”; if in any case
there is none, then answer “no”. Thus, for example, were the given
integer 13, then one would try to divide it, in turn, by 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, and 12. In each case one would obtain a remainder,
and so one would answer “yes”. Of course, these instructions for our
technician would also have to include detailed instructions for how to
perform long division (including, e.g., the multiplication table), but
there is no di�culty in including this. Alternatively (or actually, if
you think about it, the same thing), we could direct that the techni-
cian write down in order the integers from 1 up to the given integer.
Cross out every second in this list, then every third, every fourth, and
so on up to one less than the given integer. If the given integer is not
in this process crossed o↵, then say “yes”; if it is, say “no”. So, for
example, if the given integer were 13, the technician would write 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. He would then cross o↵ every second
number (namely 2, 4, 6, 8, 10, 12), then every third (namely 3, 6, 9,
12), and so on, up to every twelfth. In this process, “13” would never
be crossed o↵, and so the technician would answer “yes”.

Given a positive integer, is it the sum of any two prime integers?
There is a procedure for answering this question. Suitable instructions
might direct that the technician consider in turn each integer from
one up to one less than the given integer, and determine whether that
integer, and the given integer minus that one, are both prime. If in any
case they are both prime, answer “yes”: if never both prime, answer
“no”. Of course, the technician could determine whether these various
integers are prime, using the procedure we just described above. Thus,
for example, if the original integer were 16, then the technician would
ask “Are 1 and 15 both prime?”, “Are 2 and 14 both prime?”, ‘Are
3 and 13 both prime?”, and so on. In this example, one would find a
case in which both are prime (namely, 3 and 13), and so the technician
would answer “yes”. On the other hand, were the given integer 11, the
technician would, as one can check directly, ultimately answer “no”.
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Given a positive integer, is it the di↵erence of any two prime in-
tegers? This question is of course quite similar to the one above, and
so one might try a similar procedure. Thus, one might direct that the
technician consider in turn each integer beginning with one more than
the given integer, on up, and determine whether that integer, and that
integer minus the given integer, are both prime. If in any case they
are both prime, then answer “yes”; if never both prime, answer “no”.
Thus, for example, if the original integer were 16, then the technician
would ask “Are 17 and 1 both prime?”, “Are 18 and 2 both prime?”,
“Are 19 and 3 both prime?”, and so on. In this example, one would
find a case in which both are prime (namely 19 and 3), and so the
technician would answer “yes”. Yet this is not a procedure! The prob-
lem is that the technician is being asked to test an infinitive number
of cases (from one more than the given integer “on up”). It all works
very well if, as in the example above, a case is found with both prime,
for then the technician can stop and say “yes”. But what if no such
case is found – after a day, after a month, after decades? When will the
technician be directed to say “no”? Indeed, if you have a lot of time
on your hands, you may wish to play technician, say, starting with the
given number 19. In short, without a guarantee that the technician’s
e↵orts will at some point come to an end, this is not a procedure as
we wish to use this term. The key di↵erence between this example
and the preceding one, of course, is that before there were only a finite
number of cases to be tested for any given integer, whereas here there
could be an infinite number. So, our given candidate for a procedure
fails. That does not mean that there exists no procedure, only that
we have not found one yet. I do not know whether or not there exists
such a procedure.

Given a positive integer, is it the largest prime? This question ap-
pears on its face to be very similar to the previous question. Thus, the
obvious “procedure” here would be to test for primeness each positive
integer starting with one more than the given integer, on up. If and
when one is found to be prime, answer “no”. But this, as it stands,
may not be a procedure, for we have as yet no guarantee that the
technician’s task will not go on forever, But what sets this question
apart from the previous one is the following:

Theorem. There is no largest prime integer.
Proof: Let n be any positive integer. We show that there is a prime
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integer larger than n. Consider the number z = 1 x 2 x 3 x . . . x n
+ 1. That is, z is the result of multiplying 1 times 2 times 3, and so
on all the way up to the given integer n, and then adding 1 to the
result. Now z is either a prime integer or it is not. If it is prime, then
– since z is certainly larger than n – we have indeed found our prime
integer larger than n. But what if z is not prime? Then by definition,
we may write z as a product of two integers. If either of these is not
prime, we may in turn write it is a product of two other integers.
Substituting, we will have an expression for z as a product of three
integers. Continuing in this way, always replacing any non-primes in
our expression by products of other integers, we will eventually end up
with an expression for z as a product of prime integers. What prime
integers can appear in this final expression? Well, 2 cannot appear,
for z is not evenly divisible by 2. (Indeed, z was originally given as
a product of 2 and something (namely 3 x 4 x . . . x n) plus 1. So,
the reminder on dividing z by 2 is 1.) Similarly, 3 cannot appear in
this final expression; nor can 4; and so on up to n. That is, the prime
integers that appear in our final expression must all be greater than
n. Thus, we again find a prime integer greater than n.

What we have shown, then, is that given any positive integer n
– no matter how large – there exists a prime integer larger than n.
Clearly, then, there can be no largest prime integer.

Armed with this result, let us now return to our original question.
We can claim, now, that what we originally gave for this question
was indeed a procedure. Our theorem guarantees that the e↵orts of
the technician will indeed terminate, and so he will indeed eventually
produce an answer (in fact, “no”). But there are, of course, alternative
procedures for this question. We could, for example, tell the technician
“Just say ’no’.” What we learn from this example, then, is that a set
of instructions, to be a procedure, need only have the property that it
does indeed terminate and lead to the correct answer. It need not be
obvious to the technician that the instructions will terminate.

Given positive integer n, do there exist positive integers x, y, and
z, such that x

n + y

n = z

n? (That is x raised to the nth power, plus
y raised to the nth power, must equal z raised to the nth power.) If,
for example, n = 2, then the answer is “yes”. Indeed, set x = 3, y =4,
and z = 5. We have 32 = 9, 42 = 16, and 52 = 25, while 9 + 16 = 25.
For n = 3, the answer, it turns out, is “no” (but the proof is somewhat
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di�cult). For general n, the answer is not known. Is there a procedure
to answer this question. The obvious method would be, given n, to
try various x’s, y’s, and z’s. But this does not look promising, for we
have no way to guarantee that the process terminates. Thus, it seems
di�cult o↵hand to come up with any suitable procedure. But note
that, on the other hand, we are not in a position to assert that no
procedure exists. There is a fair chance, for example, that the only
n’s that work are n = 1 and n = 2, all others failing. Then, suitable
instructions would be “If n is either 1 or 2, say ’yes’; otherwise, say
’no’.” Here, then, is an example of a question such that we just do not
know whether or not there exists a procedure for answering it. Some
day, perhaps our knowledge of mathematics will have risen to the point
that we do know. We emphasize, however, that, for a given question,
there either is a procedure or there is not. It is not a function of our
state of knowledge in mathematics. As we learn more mathematics, we
will merely know in more cases whether or not there exists a procedure.

It is true that, for all n greater than 2, there are no positive integers,
x, y, and z, such that xn+y

n = z

n? It is not presently known that the
answer to this question is. Does there exist a procedure for answering
it? Note that this is a single question: The answer is either “yes” or
“no”. Thus, there certainly does exist such a procedure. It is either
the one with instructions “Say ‘yes’.”, or the one with instructions
“Say ‘no’.” Of course, we do not happen to know, currently, which of
these is the correct procedure. Perhaps we will some day. But in any
case we do know that one of them is, and so we know that there exists
a procedure to answer this question. In short, we wish to distinguish
between the existence of a procedure for answering a question and the
act of actually answering the question. We wish to allow the existence
of a procedure if we can show it exists, whether or not we happen to
have it in hand.

Given positive integer n, what is the nth digit in the decimal ex-
pansion of ⇡ (= 3.1415926535. . .)? (Thus, for example where n given
as 7, then the correct answer is “6”, the seventh digit in the above
expansion.) There does in fact exist a procedure for answering this
question. There are available any number of formulas that allow one
to compute the value of ⇡ to any desired degree of accuracy.

Given integer from 0 to 9, does it occur ten times in a row in
the decimal expansion of ⇡? We do not happen to know the answer
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to this question for any value of the integer. Nonetheless, there is
a procedure to answer the question. We can basically consider all
possibilities. Thus, we have “Say ‘yes’.”, “Say ‘yes’ for 0, 3, 5, and
6; and ‘no’ for 1, 2, 4, 7, 8, and 9.”, and so on. There is a grand
total of 1024 such possibilities. Since each of these ten questions has
an answer (either ‘yes’ or ‘no’), one of these possibilities is the correct
procedure. Hence, there exists a procedure to answer the question.

Given any positive integer, does it recur ten times in a row
in the decimal expansion of ⇡? (Thus, for 37, we ask whether
“37373737373737373737” appears anywhere in the expansion.) The
above procedure will not work here, for there are an infinite number
of questions, and so we cannot make a list of answers. I do not know
whether there is a procedure for answering this question. It may, for
example, turn out that the answer is always ‘no’, or always ‘yes’, in
which case there certainly does exist a procedure. On the other hand,
it is at least conceivable that the yes’s and no’s are so scattered around
in the answers that no procedure will reproduce them.



4. Encoding

There is clearly an enormous variety of questions with respect to which
one could ask for procedures. A first step in understanding procedures
better would be to standardize these questions. (Ultimately, indeed,
we shall even standardize the procedures themselves.) For example,
some of our earlier questions required as input a board configuration;
those more recent, a positive integer. A question such as “Given pos-
itive integers a, b, and c, does a + b = c?” requires as input several
integers. It would be helpful, then, if we could have a standard input –
as opposed to all this variety – for our questions. This standardization
is carried out by encoding various types of information into integers.

We seek first a method for encoding two positive integers into a
third. That is, we wish a rule that allows us, given the two integers,
to compute a third – but this rule must be such that, given only the
third integer, one can “decode” to determine the original two. (Thus,
for example, adding the two integers would not do, for one could not
in general recover the two addends given only their sum.) We shall
adopt the following rule: Write the two integers one after the other,
but between them insert a number of “0” ’s equal to the total number
of digits of the two integers combined. Thus, for example, were the
integers 30060 and 72, then we would encode these to obtain the single
integer 30060000000072. (Note that we insert 7 “0” ’s between the two
integers, since those integers together have 7 (= 5 + 2) digits.) This
rule indeed satisfies our criterion. To decode, take the total number of
digits of the given number, divide by two, find the first that many “0”
’s in a row, starting from the right, and cross them out. There results
the original two integers, Thus, for example, given 1900000300, there
are ten digits. Removing the first five o’s in a row, starting from the
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right, we are left with ‘19 300”. These are the original two integers.
Of course, there are many integers that cannot be obtained as a result
of encoding others, e.g., 2064 and 2000064.

Given positive integer n, is it the result of encoding positive integers
a and b, with a greater than b? There is, of course, a procedure to
answer this question. But note the role that encoding plays. This is
really a question about two integers (a and b), but, by use of encoding,
it has as its input a single positive integer, n.

How would one encode three positive integers into a single integer?
There is a simple way. First encode the second and third, to obtain
a new positive integer. Then encode the first and that integer. Thus,
for example, let the three numbers be 111, 60, and 21. We first en-
code the second and third, to obtain 60000021. We then encode 111
and 60000021, to obtain 1110000000000060000021. From this single
integer we can, in turn, recover our original three. Indeed, we first
decode 1110000000000060000021, to obtain 111 and 60000021. Then
we decode the latter, to obtain 60 and 21. Thus, we recover our three
integers, 111, 60, and 21. Note that there will never be any ambiguity
in this, as long as one knows the code.

Similarly, to encode four positive integers, we first encode the third
and fourth, then the second with the result, then the first with the
result. There results a positive integer that can be decoded to obtain
the original four. It works similarly with any given number of positive
integers.

Given positive integer n, is it the result of encoding three positive
integers, a, b, and c, with a + b = c? There is of course a procedure.
By encoding, this question (actually about three integers) is made to
require as input just a single integer.

In each of the examples above, we are given, beforehand,
the number of integers that are being encoded. Thus, for
1110000000000060000021, if we knew it was to be decoded into three
integers we would obtain 111, 60, and 21; while if we knew it was
into two integers we would obtain 111 and 60000021. Is there some
way we can arrange that not only the integers themselves, but also
the number of integers, is included in the encoding process? That
is, we wish to be given a single integer – and no other information –
and obtain from it both how many other integers are to be obtained,
and what they are. This is actually quite easy. Let there be given
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any list of positive integers we wish to encode. Count the number of
integers in this list, append this number to the beginning of the list
(to obtain a new list, with one more integer), and finally encode this
new list as above. Thus, for example, let the original list of integers
to be encoded consist of 13, 9, and 6. There are three integers in this
list, and so our new list consists of 3, 13, 9, and 6. Finally, the result
of encoding these four integers is 30000000000000130000009006. It is
clear that all this can be decoded. Thus, in the example above, given
30000000000000130000009006, we first decode once, to obtain 3 and
130000009006. The first integer, “3”, tells us how many integers re-
main encoded in the second integer, 130000009006. Thus, we decode
this twice more, to obtain finally ‘13”, ‘9”, and “6” our original three
integers. Try with 200000000010300005.

Given positive integer n, is it the encoding of a list of two or more
integers such that the last is the sum of the others? Here is a question
about an indeterminate number of integers that, through encoding, is
rendered as a question about a single integer.

Much more detailed information could also be encoded into a single
positive integer. Consider, for example, the novelWar and Peace. One
could first assign numbers to the various symbols that appear in the
book, e.g., “a” = 1, “b” = 2,. . ., “z” =26, “.” = 27, “?” = 28, “ ”
= 29, and so on. Since the book itself is merely a sequence of such
symbols, we could replace it, first, by the corresponding sequence of
integers. Thus, if the book begins “It was a . . .”, our sequence would
begin 9, 20, 29, 23, 1, 19, 29, 1, . . . Now, we simply take the resulting
sequence of integers, and encode it as above (using the final version, for
an indeterminate number of integers, since we do not know, a priori,
how many there are to be) into a single integer. War and Peace, in
this way, is rendered as a single positive integer.
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One might also encode information about the various
games discussed earlier. Consider, for example, tic-tac-
toe. Let us number the squares of the board as shown
on the right. Then we may represent a given board
configuration by a nine-digit number, where each digit
represents the corresponding square. Each digit, in turn,
will tell us what is in that square, say using the following code: “x” =
1, “ ” = 2, “o” = 3. Thus, for example, the board configuration shown
on the right would be encoded as the integer 122312223. Clearly, one
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can decode to determine the board configuration from the integer.
One could also include whose move it is, e.g., by including a tenth
digit on the right that is “1” if it is “x” ’s move, and “3” if “o” ’s.
Thus, the above configuration, with “x” ’s turn, would be represented
1223122231.
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Given positive n, is it the encoding, above, of a tic-
tac-toe board configuration and whose move it is such
that this configuration is x-winnable? Drawable? These
questions about tic-tac-toe thus, by encoding, become
questions about positive integers.

We could represent a “move” in tic-tac-toe by giving
a 19-digit number consisting of the initial board configuration (first 9
digits), whose turn it is (next digit) and the final board configuration
(last 9 digits). Thus, if it is x’s turn above and x takes the upper right
hand corner, this move would be represented as 1223122231121312223.
Clearly, one can decode to recover the move in the more familiar form.

Given positive integer n, is it the encoding, above, of a good move
in tic-tac-toe?

In a similar way, one could encode positions and moves in checkers.
(Number the squares on the board, assign numbers to represent what
can be on those squares, and then represent the board configuration
by some large integer, etc.) One could encode a nim move by first
determining the number of beans in the bowl before the move, whose
turn it is (say, “x” = 1, “o” = 3), and the number of beans in the bowl
after the move. These three integers could then be combined, using
our encoding above, into one. Thus, for example, 28000000300027 is
a good move in nim, while 28000000300026 is not.

Finally, let us consider five-in-a-row. The complication here is that,
as compared with checkers, say, the board is infinite. We may represent
a board configuration in five-in-a-row as an integer, for example, as
follows. Given a board configuration, first draw on the board a large
square that includes all moves made so far. Then number the small
squares within that large square from left to right, top to bottom, as
in tic-tac-toe. To encode the board configuration, first give the integer
that represents the length of a side of the square, and then the integers
that represent what (“x” = 1, “ ” = 2, “o” = 3) is on each small square.
Then take all these integers, and encode them into a single integer as
above.
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Consider, as an example, the five-
in-a-row board configuration at the
right. All the moves can be encom-
passed in the 5 x 5 square shown.
Thus, in the first step we represent
this board configuration by a total of
26 integers, namely 5, 1, 3, 1, 2, 2,
2, 1, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 3, 2. These 26 integers
would then be encoded, using our ear-
lier procedure, into a single positive
integer. Similarly, then, moves, etc. in five-in-a-row could be encoded
into integers. The question of whether a five-in-a-row configuration
is o-winnable, or whether a move is a good move, can thus become a
question about positive integers.

What is important in the above is not so much the details of the
various encoding procedures. Rather, it is the following idea: Any
finite body of information can be suitably encoded into a positive
integer.
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5. Procedure

We now have available a standard input for our questions: We may
take as the input an integer, secure in the conviction that we can
always encode what we really want to ask about into such an integer.
It is time now to standardize the procedures themselves.

The idea is to supply the technician with two things: a scratch
pad, in which the technician can record various intermediate results
for later use as well as the final answer; and a set of instructions, which
will direct the technician in explicit detail what to do.

For the scratch pad, we shall use a number of bowls, each capable
of holding an arbitrary number of beans (9, 1, 2, . . .). At any moment,
a bowl must hold some specific number of beans (say, “13” – It cannot
hold “an infinite number of beans”.) We may indicate the bowls by
drawing them on paper, or, more easily, by giving each one a name,
e.g., “Nancy”,, “C”, “137”, or “? ”. It is only necessary that we
(actually, the technician) be able to identify and distinguish these
names. Any given procedure may use but a finite number of bowls
(so the technician can be guaranteed that, by hunting around, he can
always find the appropriate bowl).

start%

stop%

report%

report%
%%%%%x% x

add%

For the instructions, we shall proceed as follows. We first
introduce seven basic instructions. We then string these to-
gether, to make more complicated sequences of instructions,
by use of flow charts.

The seven basic instructions are the following:
The instruction “start” has only a flow line emerging

from it. The technician will always begin by finding, and
then starting from, a “start” instruction.

The instruction “stop” has only a flow line entering into it. The

23
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technician, on reaching the instruction “stop”, stops.

Start%

Stop%

input%

input%
Fred% Fred%

The instruction “input” has a single flow
line entering into it, and single line emerging
from it. In addition, this instruction must in-
dicate one of the bowls comprising the scratch
pad. This could be done, for example, by draw-
ing a little dashed arrow to the bowl, or by
giving the name of the bowl. On reaching the
“input” instruction, the technician waits for us
(who are overseeing all this) to place within the
indicated bowl some number of beans of our choosing. Once this has
been done, the technician continues. The role of this instruction is to
allow us to supply information to the technician.

start%

stop%

report%

report%
%%%%%x% x

add%

The instruction “report” has a single flow
line entering into it, a single flow line emerg-
ing from it, and also indicates one of the bowls.
On reaching the “report” instruction, the tech-
nician announces to us the number of beans
then in the indicated bowl, and then contin-
ues. The role of this instruction is to allow the
technician to supply information to us.

The instruction “add” has a single flow line
entering into it, a single flow line entering into
it, a single flow line emerging from it, and also
indicates one of the bowls. On reaching the
“add” instruction, the technician drops one ad-
ditional bean into the indicated bowl, and then continues. This in-
struction, which will ultimately allow the technician to “calculate”, is
automatic: We play no role in it.

Start%

Stop%

remove%

remove%
%%%%%%c% c%

add%
%%%x% x

The instruction “remove” has a single flow
entering into it, and also indicates one of the
bowls. On reaching the “remove” instruction,
the technician takes one bean from the indi-
cated bowl (That is, if there is a bean in that
bowl. If the bowl was empty, the technician
leaves it empty.), and then continues.
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Start%

Stop%

remove%

remove%
%%%%%%c% c%

add%
%%%x% x

The instruction “empty?” has a single flow
line entering into it, and two flow lines emerg-
ing from it (these marked “yes” and “no”), and
also indicates one of the bowls. On reaching
the “empty?” instruction, the technician peers
into the indicated bowl to see whether or not it
contains any beans. If the bowl is empty, the
technician continues along the flow line marked
“yes”, if not, along the line marked “no”. The
number of beans in the bowl is not thereby changed.

These, then, are the seven instruction: two to begin and end, two to
communicate with us, two to calculate, and one to “make decisions”.

Start%

Stop%

empty?%

A%%%
empty?% A

add%
%%%x% x

yes%no%

yes% no%

We next use these seven instructions as
building blocks, composing more complicated
tasks from them by means of flow charts. The
rules for flow charts are the following:

1. Every flow chart must have one and only
one “start” instruction (for otherwise the tech-
nician wouldn’t know where to begin).

2. When several flow lines meet at a node,

Start%

Stop%

empty?%

A%%%
empty?% A

add%
%%%x% x

yes%no%

yes% no%

yes%

, any number of lines may come in, but one
and only one flow line may emerge (for other-
wise the technician, on reaching the node, would not know which way
to go).

3. A flow line cannot just come to an end
Start%

Stop%

empty?%

A%%%
empty?% A

add%
%%%x% x

yes%no%

yes% no%

yes%

(for otherwise what
is a technician to do?).

Let us also agree that initially, when the technician starts, all the
bowls are to be empty.

An example of how these instructions operate is provided by the
following flow chart:

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

add%
B%

report%
%%%%%A% stop%

c%

A B

no%

yes%

First note that each instruction has the correct flow lines entering
and/or emerging from it, as well as appropriate bowl indications, and
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that the flow chart itself satisfies our rules. Here, the scratch pad
has two bowls, named “A” and “B”. A technician, following this flow
chart, would proceed as follows. Beginning at “start”, he would first
ask us to place some number of beans in bowl “A”. He would then test
to see if this bowl is empty (i.e., if we put in zero beans). If not, he
would remove a bean from bowl “A”, and place it in bowl “B”. Then,
in either case, he would report to us the number of beans in bowl “A”,
and finally stop.

We now intend to argue in favor of the following assertion: Such

flow charts, with such instructions and such scratch pads, represent

precisely our intuitive understanding of the word “procedure”. That

is, any task represented by such a flow chart would be regarded as a

procedure; and any task we would regard as a procedure can be repre-

sented by a flow chart. You probably would agree already with the
first assertion (that any task represented by a flow chart would be
regarded as a procedure), but are more skeptical of the converse. In
any case, our argument will consist of giving various examples of flow-
chart tasks. (It is almost impossible, by the way, to learn this subject
passively. You must draw your own flow charts, invent your own, and
play technician on your own.)

The flow chart below places five beans in bowl “C”, and then re-
ports the result, “5”:

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

add%
B%

report%
%%%%%A% stop%

c%

A B

no%

yes%

start% add%
C%

add%
C%

add%
C%

add%
C%

add%
C%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x% stop%

x

input%
x%

This flow chart inputs a number, adds three to it, and then reports
the result:

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

add%
B%

report%
%%%%%A% stop%

c%

A B

no%

yes%

start% add%
C%

add%
C%

add%
C%

add%
C%

add%
C%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x% stop%

x

input%
x%

The first flow chart below empties the bowl B. However, this way of
accomplishing the task is an inconvenient one, for it ties up a technician
indefinitely. (Even after B is empty, the technician continues, forever,
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to try to remove additional beans.) A more convenient version is the
second. We ask the technician to test B for emptiness after each bean-
removal.

start% input%
B%

B%%%
empty?%

remove%
%%%%%%B%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

The flow chart below “copies” the contents of bowl A into bowls
B and C, at the same time depleting A to empty.

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
B%

add%
C%

Thus, for example, if at the “input A” we were to place in A seven
beans, then we would wind up, at “stop” with seven beans in each
of B and C, and zero beans in A. How would one make a copy of A
without emptying it? It is simple: One first copies A into B and C,
while emptying A, as above; and then one copies C back into A:

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
B%

add%
C%

C%%%
empty?%

no%

yes%

remove%
%%%%%%C%

add%
A%

Similarly, we can make any number of copies of any bowl. This
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is most useful, for it allows us to employ our scratch pad to “keep
records”.

The flow chart below adds A and B, storing the sum in bowl A and
emptying the bowl B:

start% input%
A%

B%%%
empty?%

remove%
%%%%%%B%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
B%

report%
A%

no%

Suppose, however, that we wished to place the sum of the numbers
in A and B in a new bowl, C say, while restoring A and B to their
original numbers? This could be accomplished by combining the “add”
and “copy” flow charts above: First copy A into C and B into D. Then
add the numbers in C and D, with the sum appearing in C, as above.

The flow chart below takes two nonnegative integers, A and B, and
determines whether A is greater than B, equal to B, or less than B:

start% input%
A%

A%%%
empty?%

remove%
%%%%%%B%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
B%

report%
C%

no%

B%%%
empty?%

B%%%
empty?%

no% no%

remove%
%%%%%%A%

add%
C%

add%
C%

yes%

yes%

Here, the answer is encoded in the number of beans in bowl C,
which is reported just before the end. The code is: 0 beans for A and
B equal, 1 bean for A less than B, and 2 beans for A greater than B.
Combining this with the “copy” flow chart, we could further arrange
that the bowls A and B be restored to their original numbers at the
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end. Similar to this one is the flow chart that subtracts B from A
(reporting zero if B is greater than A):

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
B%

report%
A%

no%

remove%
%%%%%%B%

B%%%
empty?%

yes%

Suppose that one had wanted something something di↵erent re-
ported when B is greater than A, say B minus A? This could be
achieved by combining this flowchart with the one above: One would
first employ the earlier flow chart to determine whether A is greater
than, equal to, or lesser than B, and then require that di↵erent in-
structions be carried out depending on the outcome.

Multiplication is “repeated addition”. Based on this idea, we con-
struct the following flow chart to multiply nonnegative integers A and
B:

start% input%
A%

B%%%
empty?%

remove%
%%%%%%A%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
B%

report%
C%

no% remove%
%%%%%%B%

B%%%
empty?%

yes%

Add%A%%
to%C,%

place%in%C%

The dashed box in this flow chart is not one of our seven basic
instructions. Rather, it stands for that combination of those instruc-
tions that carries out the following task: Cause C to contain at the
end a number of beans equal to the sum of the numbers originally in
A and C, and leave the number of beans in A unchanged. This is
something we already know how to accomplish by means of our seven
basic instructions. In more detail, then, the dashed box stands for the
following:
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start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
D%

add%
A%

D%%%
empty?%

no%

yes%

remove%
%%%%%%D%

add%
C%

Such abbreviations are a great convenience, of wish we shall make
extensive use. In using such abbreviations, it is important that one
i) indicate clearly within the dashed box what is to be done, and ii)
be capable, if pressed, of actually doing this using the seven basic
instructions. Let us also agree on the following: by “place. . . in bowl
C” we mean “cause C at the end to contain exactly. . . beans”; and
all bowls, unless otherwise indicated, are to be restored, within the
dashed box, to their original numbers of beans. As a second example
of such abbreviations, consider the following flow charts:

start% input%
A%

B%%%
empty?%

remove%
%%%%%%A%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
B%

report%
C%

no% remove%
%%%%%%B%

B%%%
empty?%

yes%

Mul6ply%
A%by%C,%

place%in%C%

Here, the dashed box places in bowl C the product of the numbers
of beans in A and C, restoring A to its original number. This is some-
thing we already know, from the discussion above, how to do. What
does this flow diagram do? It raises A to the power B. (It is practically
the same as the “multiplication” chart, but with multiplication now
replacing addition.) Note that we must begin with one bean in bowl
C.

start% input%
A%

Is%A%less%
than%B?%

report%
%%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
B%

Place%
A%in%D%

no%

report%
%%%%%%C%

B%%%
empty?%

yes%

Place%A%
minus%B%
in%A%
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As a final example, we give a flow chart for division. Here, A is
divided by B, with there reported first the quotient (in C), and then
the remainder (in D).

Here, for the first dashed box there is to be determined whether
or not A is less than B, and, with bowls A and B restored to their
original values, the appropriate exit path taken. One could, by means
of our basic instructions, carry this out. (One would use, basically, a
modification of the second flow chart on page 28.) what will happen
if, for “input B” there were placed zero beans in bowl B? How would
one modify the flow chart to make something di↵erent happen?

We have now displayed flow charts to carry out certain bookkeeping
operations on integers – copying and comparing – as well as the basic
operations of arithmetic – adding, subtracting, multiplying, and di-
viding. More complicated operations are now constructed from these.
Some examples follow.

start% input%
A%

Does%A%
equal%B?%

report%
%%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
B%

add%
B%

Place%
A%in%D%

no%

report%
%%%%%%C%

C%%%
empty?%

yes%

Divide%A%by%
B,%place%

remainder%
in%C%

add%
B%

no%

add%
D%

The flow chart above determines, provided A is at least two, whether
or not A is a prime integer. This answer is encoded in the final report
(which can, of course, only be an integer) as follows: 0 if prime, 1
if not prime. The flow chart operates, basically, by testing, for each
number B from 2 up to one less than A, to see if it divides A without
a remainder. What happens if A is zero or one?

start% input%
A%

Does%
B=A?%

report%
%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%
yes%

add%
A%

add%
B%

add%
B%

Place%
A%in%D%

no%

report%
%%%%%D%

C%%%
empty?%

yes%

Place%
A9B%
in%C%

add%
B%

no%

add%
D%

Is%B%
prime?%

Is%C%
prime?%

yes%
yes%

no%
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The next flow chart, given above, answers the questions of whether
or not A is the sum of two primes.

The answer is reported as an integer, with “0” for yes and “1”
for no. Alternatively, one could ask whether A can be written as the
di↵erence of two primes:

start% input%
A%

Place%
A+1%
in%B%

report%
%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
B%

add%
B%

Place%
A%in%D%

no%

report%
%%%%%D%

C%%%
empty?%

yes%

Place%
B:A%
in%C%

add%
B%

no%

add%
D%

Is%B%
prime?%

Is%C%
prime?%

yes%

yes%

no%

But notice an important di↵erence between these two flow charts.
In the first chart, the e↵orts of the technician cease in any case, with
the report as to whether or not A is the sum of two primes. In the
second chart, by contrast, the technician stops and reports only in
the case in which A is found to be the di↵erence of two primes. If
not so found, the technician’s e↵orts continue forever. This di↵erence
reflects, of course, a di↵erence between the two questions. There exists
a procedure to answer the first, but not, as far as we know, the second.

The next flow chart finds, for B a positive integer, the Bth digit
(counting from the right) of A:

start% input%
A%

Divide%A%by%10.%
Place%quo9ent%in%
D%remainder%in%E%

report%
%%%%%D%

stop%

remove%
%%%%%%B%

start%

input%
B%

no%
yes%

add%
A%

add%
B%

add%
B%

copy%D%
into%A%

no%

report%
%%%%%E%

C%%%
empty?%

yes%

add%
B%

no%

add%
D%

B%
empty?%

yes%

yes%

no%

What does this flow chart report if B exceeds the number of digits
in A?

Similarly, we may have reported the total number of digits in A:
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start% input%
A%

Divide%A%by%10.%
Place%quo9ent%in%
D%remainder%in%E%

report%
%%%%%D%

stop%

add%
B%

start% input%
B%

no%
yes%

add%
A%

add%
B%

add%
B%

copy%D%
into%A%

no%

report%
%%%%%B%

C%%%
empty?%

yes%

add%
B%

no%

add%
D%

D%
empty?%

yes%

yes%

no%

Once we can “count digits”, we can write the flow chart that takes
positive integers A and B, encoding them, according to our prescrip-
tion, into a single integer:

start% input%
A%

Place%#%
digits%of%
A%in%C%

report%
%%%%%D%

stop%

start%

input%
B%

no%
yes%

add%
A%

add%
B%

add%
B%

copy%D%
into%A%

no%

report%
%%%%%F%

C%%%
empty?%

yes%

add%
B%

no%

add%
D%

yes%

yes%

no%

Place%#%
digits%of%
B%in%D%

Place%%%
2%×%C%+%D%

in%E%

Place%%
A%×%10E%+%B%

in%F%

The next flow chart decodes:

start% input%
A%

Place%#%
digits%of%
A%in%B%

report%
%%%%%D%

stop%

start%

input%
B%

no%

yes%

add%
A%

add%
s%

add%
B%

Does%
s=c?%

no%

report%
%%%%%F%

D%%%
empty?%

yes%

add%
B%

no%

add%
D%

yes%

yes%

no%

Place%
F/10s%in%

F%

Are%s+1st%
through%s+cth%
digits%of%A%all%

zero?%

Divide%B%by%2.%
Place%quoFent%in%
C%remainder%in%D.%

Divide%A%by%10s.%
Place%quoFent%in%
F%remainder%in%E.%

report%
%%%%%E%

stop%

In case A is not the encoding of two positive integers, the flow
chart stops, without reporting anything. If A is such an encoding,
those two numbers (in bowls F and E) are reported before stopping.
The encodings of other types of information are treated similarly. For
example, the flow chart below determines whether the integer A is the
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encoding of some tic-tac-toe board configuration:

start% input%
A%

Place%in%
B%#%digits%

of%A%

report%
%%%%%D%

stop%

start%

input%
B%

no%

yes%

add%
A%

add%
c%

add%
B%

copy%D%
into%A%

no%

report%
%%%%%E%

C%%%
empty?%

yes%

add%
B%

no%

add%
E%

yes%

yes%

no%

Place%in%D%
cth%digit%
of%A%

Does%
D=1,2,0,3?%

Place%%
A%×%10E%+%B%

in%F%

Does%
B=q?%

Does%
c=q?%

The number “1” is reported for yes, “0” for no.
The flow chart below determines whether or not there appears a

“4” among the first A digits in the decimal expansion of ⇡:

start% input%
A%

Does%
B=A?%

report%
%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%
yes%

add%
A%

add%
D%

add%
B% Place%

A%in%D%

no%

report%
%%%%%D%

C%%%
empty?%

yes%

Place%in%C%
the%Bth%
digit%of%π%

add%
B%

yes%

add%
D%

Does%
c=4?%

Is%C%
prime?%

no%

yes%

no%

The answer, again, is reported as “1” for yes and “0” for no. Here,
the dashed box marked “place in C the Bth digit of ⇡” represents a
certain (very complicated) flow chart that uses, for example, one of
the series expansions for the number ⇡. The details of this chart are
not of interest here. Alternatively, one could ask whether “4” appears
after the Ath digit:

start% input%
A%

Place%
A+1%
in%B%

report%
%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%
yes%

add%
A%

add%
D%

add%
B% Place%

A%in%D%

no%

report%
%%%%%D%

C%%%
empty?%

yes%

Place%in%C%
the%Bth%
digit%of%π%

add%
B%

yes%

add%
D%

Does%
c=4?%

Is%C%
prime?%

no%

yes%

no%

But notice, in contrast to the previous one, that this flow chart
can only report “yes” (i.e., “1”). If no digit “4” is found, then the
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technician will continue forever within the flow chart. Again, this
behavior reflects the fact that we as yet have no procedure to answer
this question, whereas we do have a procedure for the prior one.

As a final example, we give the flow chart that asks whether, given
positive integer n, there exist positive integers x, y, and z with x

n +
y

n = z

n. Here, we must “try various choices of x, y, and z”, and
one way of doing this is to “try choices of a single integer A, asking
whether it is the encoding of three such integers”.

start% input%
N%

Place%
xN%+%yN%
in%E%

report%
%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
D%

add%
B%

Place%
zN%in%F%

no%

report%
%%%%B%

Does%
E%=%F?%

yes%

Is%A%the%
encoding%
of%three%
posiBve%
integers?%

add%
A%

yes%

add%
D%

Place%
them%
in%x,y,z%

Is%C%
prime?%

no%

yes%

no%

Here, the technician reports “0” and stops if such x, y, and z,
are found, while the technician continues looking forever if none are
ever found. This behaviour reflects the fact that we have currently
no procedures for deciding, given n, whether or not there are positive
integers x, y, and z with x

n + y

n = z

n. The best one can do is “look
around for such x, y, and z”, and indeed that is what our flow chart
does.

It should by this point be clear that we could continue in this way
indefinitely. It should be clear that such flow charts represent precisely
our intuitive understanding of the word “procedure”. It should be clear
that any task represented by such a flow chart would be regarded as
a procedure; and any task we would regard as a procedure can be
represented by a flow chart.
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6. Will the Technician Stop?

Let us consider now flow charts of the following special form: The start
“start” is to be followed in succession by “input A” and then the rest
of the flow chart. This “rest of the flow chart” is to have no further
inputs, and is not to access the “input A”. That is, we consider flow
charts of the form given below.

start% input%
A%

report%
%%%%%D%

remove%
%%%%%%B%

start% input%
B%

no%
“inputs”%

add%
A%

add%
D%

add%
B%

no%

add%
A%

yes%

add%
D%

rest%of%flow%chart%

yes%

no%

This form guarantees, of course, that the technician, on executing the
flow chart, will request from us an input one and only one time. Note
that virtually every flow chart we have considered is already in, or can
easily be cast into, this form. For those having no inputs, we merely
add an “input A” right after the “start”, and then ignore the A-value,
thus generated, in the rest of the flow chart. For those having several
inputs, we merely arrange to encode all the integers to be input into
the single integer A. We then input this single A-value, and have the
flow chart decode.

Let us consider now the following:
Big Question: Given a flow chart of the special form above, and

given the nonnegative integer we shell provide at “input A”, will the
technician, on executing the flow chart, stop eventually, or continue
forever?

This is clearly an infinite number of questions, one for each choice
of flow chart and A-value. Given the choice of flow chart and of A-

37
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value, there certainly exists an answer to our question, for the result
of the technician’s executing the flow chart must certainly be either to
stop or to continue forever. Of course, we may not be able to figure out
what that answer is. (In particular, we cannot guarantee to answer
the Big Question, for given flow chart and A-value, by merely hiring
a technician to execute the flow chart, for were the answer to the Big
Question in that case “continue forever”, the technician would never
be in a position to inform us that that is the answer.) (We might
remark here that the reason for introducing the “special form” for
flow charts on the previous page 37 was merely to standardize what is
to be input to the flow chart, in order to make the Big Question easier
to state.)

The Big Question (really, questions) is about flow charts. But, as
we have seen, many questions within mathematics, as well as vari-
ous questions about games and other things, can be reformulated to
become questions about flow charts. Consider, as examples, the fol-
lowing:

1. Given positive integer n, is it the di↵erence of two prime inte-
gers?

2. Given positive integer n, do there exist positive integers x, y,
and z with x

n + y

n = z

n?
3. Does there exist integer n � 3 and positive integers x, y, and z

with x

n + y

n = z

n?
4. Do there exist ten consecutive “7” ’s in the decimal expansion

of ⇡?
5. Given positive integer n, does there appear a “4” anywhere after

the nth digit in the decimal expansion of ⇡?
6. Given a tag game and initial string, will the game terminate?
7. Given the board configuration and whose move it is in five-in-

a-row, is that configuration x-winnable?
For each of these questions, one could draw a flow chart that trans-

lates our original question into the question of whether or not execu-
tion of that flow chart eventually stops. In other words, each of these
questions is a special case – for some particular choice of flow chart
and A-value – of the Big Question. Indeed, virtually any question in
mathematics of the form “Will a systematic search for blah-blah-blah
be successful?” is some special case of the Big Question.

So, we could be the envy of our tag-playing friends, capture the
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World five-in-a-row championship, and solve many of the heretofore
unsolved problems in mathematics – if only we could answer the Big
Question. But what does “answer the Big Question”, as used here,
mean? For any given instance – for any given choice of flow chart
and A-value – one presumably could answer the question, merely by
working on it hard enough. What is wanted here is, not the answer
to the Big Question for some single instance, but rather the answer
for every instance. In other words, what is wanted is a procedure to
answer the Big Question. But what does “procedure” mean? It means
a flow chart! Thus, we wish to construct a flow chart that will answer
the Big Question. Such a flow chart would have to accept as inputs the
“inputs” of the Big Question, namely flow charts and A-values. There
is of course no problem with A-values. But in order that a flow chart
accept flow charts as inputs, we must encode such charts as integers.
This we now do.

Fix any flow chart. (This flow chart is to be already written in
terms of the seven basic instructions, i.e., is to have all its “dashed
boxes” already eliminated.) The first step is to count the total number
of bowls utilized by this flow chart, and rename them using the integers
from one up to this total number (in any order). The next step is to
count the total number of boxes comprising this flow chart, and label
them using the integers from one up to this total number (in any
order). We now represent this flow chart by the following sequence
of integers: number of bowls, number of boxes, integers referring to
first box, integers referring to second box,. . . , integers referring to last
box. Here, “integers referring to a box” are to be obtained using the
following table:

start: 1, # of next box
stop: 2
input: 3, bowl #, # of next box
report: 4, bowl #, # of next box
add: 5, bowl #, # of next box
remove: 6, bowl #, # of next box
empty?: 7, bowl #, # of next box if “yes”, # of next box if “no”
Thus, for example, there are three integers referring to a box con-

taining a “remove” instruction, namely 6 (the integer code for “re-
move”), the number of the bowl from which the bean is to be removed,
and the number of the box to which the technician is to proceed after
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executing this instruction. Consider, as an example, the following flow
chart:

start% input%
A%

B%%%
empty?%

remove%
%%%%%%B%

add%
A%

report%
%%%%%A% stop%

c% A B

no%

yes%input%
B%

3%
1%8% 5%

7%
2%

c%c%c%c%c%

6%4%

The first step is to number the bowls, say “1” for “A” and “2”
for “B”. The next step is to number the boxes from 1 to 8, say the
numbering already given in the figure. Then this flow chart would be
represented by the following sequence of integers: 2, 8, 3, 2, 5, 4, 1,
7, 1, 8, 5, 1, 5, 7, 2, 2, 6, 6, 2, 4, 2, 3, 1, 1. Translation: There are
2 bowls and 8 boxes. Box numbered 1 is an “input” (type 3) to bowl
number 2 after which one proceeds to box number 5. Box numbered
2 is a “report” (type 4) from bowl number 1 after which one proceeds
to box number 7. . .. Box numbered 8 is an “input” (type 3) to bowl
number 1, after which one proceeds to box 1.

In this way, then, we may represent any flow chart by a sequence of
positive integers. We now merely encode this sequence of integers into
a single positive integer using our earlier method (for an indetermi-
nant number of integers). In this way, then, we may encode any flow
chart to a single positive integer. Of course, we can also decode, to
obtain the chart from the integer: Given the positive integer, we first
decode, as described earlier, to obtain the corresponding sequence of
integers. From this sequence, we read o↵ in turn the number of bowls,
the number of boxes, and for each box, the type of instruction it rep-
resents, the bowl (if any) to which that box refers, and the box (s,
if any) to which one proceeds after executing that instruction. But
this information – what the boxes contain and how they are hooked
together – is precisely what is needed to reconstruct the original flow
chart.

Let us return now to the issue at hand: Whether there exists a
procedure (read, flow chart) to answer the Big Question. Let us call
such a flow chart – whose structure and operation we are about to
describe – Nancy. Now, the Big Question has two “inputs”: In order
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to ask the question, we must select, first, some flow chart (of our special
form), and, second, some A-value. Hence, the flow chart Nancy should
have two input instructions, allowing us to enter, first, the integer that
encodes the selected flow chart, and, second, the selected A-value. The
answer to the Big Question is either “stops” or “continues forever”.
Hence, the flow chart Nancy should have one report instruction, at
which the answer may be reported (say, using the code “0” for “stops”
and “1” for “continues forever”). That is, the flow chart Nancy should
have the following form:

start% input%
x%

report%
%%%%%D%

remove%
%%%%%%B%

start% input%
B%

no%
“inputs”%

add%
A%

add%
D%

add%
B%

no%

add%
A%

yes%

add%
D%

rest%of%flow%chart%

yes%

no%

Nancy:%

input%
y% stop%report%

%%%%%s%

The middle portion should contain only the instructions “add”,
“remove”, and “empty?” (for we do not any starting, stopping or
communicating with us to take place there). So far, we have only
arranged that Nancy have the correct inputs and outputs to match
those of the Big Question. Now comes the important part: We must
demand that Nancy correctly answer the Big Question. In more detail,
we demand:

Let the flow chart Nancy be executed, and let there be entered, at

“input X” the integer that encodes any flow chart of our special form,

and, at “input Y”, any integer. Then the execution of flow chart

Nancy must always stop, there having been reported, at “report S”,

“0” if that flow chart (the one whose encoding was entered at X) with

that A-value (the integer that was entered at Y) stops, and “1” if it

continues forever.

So far, we have merely stated what it is we want the flow chart
Nancy to do. We have certainly not issued any guarantee that there
exists such a flow chart. So let us now, just to get an idea of what is
involved, consider how one might go about trying to construct such
a flow chart. One might think first of having Nancy merely execute
the flow chart (the one whose encoding was entered at X) with the
A-value (entered at Y). Indeed, it is not di�cult to design a flow chart
that will do precisely this. But, although we may construct such a
flow chart, it would not do for Nancy. The problem is that, while it
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would correctly report “0” in the case of “stops”, it would be unable
ever to report “1” for “continues forever”. Trying to construct a flow
chart Nancy along these lines is analogous to trying to answer the Big
Question merely by hiring a technician to execute the selected flow
chart with the selected A-value.

Clearly, the flow chart Nancy must, not merely execute the flow
chart encoded at X, but rather examine the structure of that flow chart
to determine, by some indirect argument, whether or not it (with the
selected A-value) will stop. For example, the flow chart Nancy might
first examine the flow chart encoded at X to determine whether or
not it contains a “stop” instruction. If there is no “stop” instruction,
then that flow chart, when executed, can clearly never stop. Hence,
on so finding Nancy would set S equal to “1” (the code for “continues
forever”) and exit at the instruction “report S”. Similarly, if the flow
chart encoded at X contains no nodes (points where several flow lines
meet), then execution of that flow chart must always stop. Hence,
flow chart Nancy could check to see if the flow chart encoded at X
has such nodes. If not, then Nancy would set S equal to “0” and
exit. Here, then, are two examples of indirect arguments by which
Nancy, on examining the structure of the flow chart encoded at X,
might determine whether or not execution of that flow chart will ever
stop. Clearly, much more sophisticated arguments than these two
would have to be employed by Nancy. But one could in fact invent
more sophisticated arguments showing that a flow chart will or will
not stop, when executed, under various circumstances. Thus, it is at
least conceivable that there could exist an argument so sophisticated
that it could decide in every case (i.e., for every choice of flow chart
of our special form and every choice of A-value), whether or not that
flow chart, with that A-value, will stop. It is at least conceivable, in
short, that there could exist a flow chart Nancy. On the other hand,
one could equally well imagine that there exists no such Nancy.

Does there exist a flow chart Nancy? Is our career as a famous
mathematician and world-champion five-in-a-row player just around
the corner? Alas, it is not to be:

Theorem. There exists no flow chart Nancy.
Proof: Suppose for a moment that we were given a flow chart

Nancy. (We shall obtain X- and Y- values for which this alleged
“Nancy” in fact gives the wrong answer. From this it follows that
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no Nancy can exist.)
We now construct a new flow chart, which we call George, as fol-

lows:

start% input%
A%

report%
%%%%%D%

remove%
%%%%%%A%

start% input%
B%

no%
“inputs”%

add%
A%

add%
x%

add%
B%

no% add%
X%

yes%

add%
D%

rest%of%flow%chart%

yes%

no%

George:%

input%
y%

stop%

report%
%%%%%s%

A%%%
empty?%

add%
Y%

S%%%
empty?%

add%
S%

The first three boxes of Nancy, “start”, “input X”, “input Y”, are
here replaced by six boxes, as shown; and the last two boxes of Nancy,
“report S”, “stop”, are here replaced by three boxes as shown. But
the entire reminder of the flow chart Nancy – the part indicated by
/ / / / / / / ; the part that does the real work – is left intact. The first
three boxes of Nancy served merely to input values for X and Y. There
are replaced in George by five boxes that input a single number A and
then copy it into bowls X and Y. The last two boxes of Nancy served
merely to report the value of S (either “0” or “1”) and stop. These
are replaced in George by three boxes that cause George to continue
forever in the case S is “0”, and stop otherwise. In short :

Flow chart George accepts a single nonnegative integer, copies it

into bowls X and Y, and then has Nancy run with those X- and Y- val-

ues. If Nancy would have reported “0”, then George continues forever;

while if Nancy would would have reported “1”, then George stops. But
recall that reporting “0” is Nancy’s way of saying that the flow chart
encoded at X, with A-value at Y, stops; while reporting “1” is her
way of saying that it continues forever. Thus; flow chart George does

(by stopping or continuing forever) the opposite of what Nancy says

(about the flow chart encoded at X, with A-value at Y).
Thus, given flow chart Nancy (and we are supposing, for the mo-

ment, that we were given a Nancy) we could perfectly well construct
flow chart George as indicated. And it would do what we said it does.
Now George is merely some flow chart. Hence, we may encode it as
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a positive integer. Call this integer G, so G is merely some specific
(although very large, I am sure) integer. We may also note that flow
chart George is of our special form. That is, it begins with “start”,
“input A”, and has no further inputs.

Now comes the key part of the argument. Let us now execute flow
chart Nancy, and, at both “input X” and “input Y”, enter the integer
G (the integer that encodes George). We claim that, whatever answer
Nancy gives in this case, it must be the wrong answer.

Suppose, for example, that Nancy, when executed as above, gives
value “0” at “report S”. What Nancy is predicting, then, is that flow
chart George (the flow chart encoded at X), with A-value G (the in-
teger entered at Y) will stop. So let us check this prediction of Nancy
by simply running flow chart George, entering integer G at “input A”.

start% input%
A%

report%
%%%%%D%

remove%
%%%%%%A%

start% input%
B%

no%
“inputs”%

X=G,%Y=G%
A=0%%

add%
x%

1%

no% add%
X%

yes%

add%
D%

Enter%integer%G%

yes%

no%

George:%

input%
y%

stop%

report%
%%%%%s%

A%%%
empty?%

add%
Y%

S%%%
empty?%

add%
S%

2% 3% S=0%%

By position 2 George will have completed his copying of A into
X and Y. Hence, we shall at this position have G beans in each of
bowls X and Y. Next, George runs Nancy with these X- and Y-values.
There results, as position 3 , S = 0 (for that is what we are supposing
of Nancy, by the first sentence of this paragraph). Hence, George will
continue forever (for he has S = 0 on entering the box “S empty?”).
Thus, Nancy’s prediction – that flow charge George with A-value G
will stop – is wrong, for when we actually run flow chart George en-
tering A-value G we find that George continues forever.

But what if Nancy makes the other prediction? What if Nancy,
when executed with integer G entered at both “input X” and “input Y”
gives value “1” at “report S”? What if Nancy predicted that flow chart
George, when run with A-value G, continues forever? Again, we may
check this prediction of Nancy by simply running flow chart George,
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entering integer G at “input A”. Everything will be the same as before,
until position 3 , at which we shall now have S = 1. Hence, George
will stop (for he will have S = 1 on entering the box “S empty?”). So,
this prediction of Nancy would be wrong too.

To summarize, we have shown that, given any candidate for a flow
chart Nancy, there is some choice of X- and Y-values (namely, X =
G and Y = G, where G is the integer that encodes a certain flow
chart George, which, in turn, is constructed from our candidate for
Nancy) for which that alleged “Nancy” must give the wrong answer.
We conclude that there exists no flow chart Nancy. (End of proof.)

This is a di�cult and confusing proof. In order to be fully un-
derstood, it has to be read slowly and carefully – probably on several
di↵erent occasions. But the idea of the proof – stripped of all the tech-
nical details – is quite simple. We suppose that we had a candidate
for our desired flow chart, Nancy. We use this Nancy to construct
flow chart George. George takes a single integer (for instance, 638),
and proceeds to ask Nancy ”What happens if the flow chart encoded
as 638 is run with A-value 638?” If Nancy answers “It stops.”, then
George continues forever: and if Nancy answers “It continues forever.”,
then George stops. That is, George does the opposite of what Nancy
says. The problem arises when we use, instead of integer 638, the in-
teger that encodes George himself, the integer we call G. For this case,
George is asking Nancy “What happens if flow chart George is run
with A-value G?”. But, since George (by design!) does the opposite
of what Nancy says, either answer by Nancy to this question must be
the wrong answer. In short, our candidate for Nancy does not work.
Finally, since every candidate for a Nancy does not work, there can
exist no Nancy.

Note that this proof is constructive: We actually construct, given
a candidate for a Nancy, X- and Y-values for which that candidate
must fail. Imagine that one gave as a test problem “Draw a flow chart
Nancy.” This would of course be an easy problem to grade, for by
the theorem (“There exists no flow chart Nancy.”) everyone receives
a score of “0” on the problem. Nut then, after the tests are graded
and returned, various students come up claiming that their Nancys
actually work. There students are not interested in abstract proofs
about existence or nonexistence of a Nancy: They want to know what
is wrong with their individual Nancys. Fortunately, the proof of the
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theorem is such as to make it easy for the grader to prevail in these
confrontations. A given student has a candidate for a Nancy. The
grader merely takes that student’s candidate for Nancy, constructs
the corresponding George, determines the number G that encodes that
George, and says to the student: “Try your Nancy out with X-value G
and Y-value G”. The student’s candidate for Nancy will not work for
these particular values. So, that student’s score, “0”, is justified. Of
course, di↵erent students will have di↵erent candidates for Nancy, and
so will receive di↵erent numbers (G) to try their candidates on. Thus,
one student might be told by the grader “Try your Nancy out with X-
value 31206 and Y-value 31206.” Another student’s flow chart might
work for these X- and Y-values, but that student would be told “Try
your Nancy out with X-value 4110002142 and Y-value 4110002142.”
Each student would be given values for which his or her particular flow
chart would fail.

Note that there is no “paradox” here. (I have never been able to
understand what this result has to do with the familiar self-reference
paradoxes, with which it is often linked. “A barber shaves everyone
who does not shave himself. So who shaves the barber?”) Here, we
merely state a theorem, and proceed to prove it.

The construction of flow chart George, by modifying a candidate
for a Nancy, is rather delicate. The modification of the beginning of
Nancy serves essentially to reduce the number of “input” instructions
from two (in the case of Nancy) to one (in the case of George). The
reason for this reduction is the following. Nancy deals only with flow
charts “of our special form” (i.e., having “start”, “input A”, and no
further inputs). But Nancy herself is not of this form, for she has two
inputs.Thus, as things stand, Nancy cannot ask about herself. Flow
chart George, on the other hand, is “practically Nancy”, but, because
of the modification of inputs, is of our special form. Thus, Nancy can
ask about George, and so, indirectly, about Nancy herself. It is asking
Nancy, indirectly, through George, about herself that makes the proof
work.

Why are the other details of George as they are? Why does George
copy the same integer into both X and Y? Why does George do the
opposite of what Nancy says, as opposed, e.g., to saying the opposite
of what Nancy says? Or, why not have George do the same as Nancy
says? The easy answer to these questions is “if you construct George
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di↵erently according to one of these proposals, then you do not get a
proof of the theorem.” After all, a proof in mathematics has only the
obligation to be a proof. It does not have to be transparent, natural, or
even interesting. I must confess that I do not have any deeper answers
to these questions. The construction works.

We have agreed to take “procedure” to mean “flow chart”. Thus,
the meaning of the theorem is that there exists no procedure to de-
termine, for any given flow chart of our special form and any given
A-value, whether that flow chart with that A-value will stop or not.
Imagine that it were your job to receive each day a flow chart (of our
special form) and A-value and to determine whether that flow chart
with that A-value will stop. Some would be easy; some would be hard.
But, presumably, one could in every case – given su�cient e↵ort and
ingenuity – find the answer. But e↵ort and ingenuity are hard work.
One might look for an easier way. One might look for some procedure
that could be followed in every case – some procedure that would be
guaranteed in every case to produce the answer. The theorem guar-
antees that no such procedure can ever be found. There is, if you like,
always a place for e↵ort and ingenuity.

This situation should be contrasted with that of problems we have
discussed earlier.

We have given examples of questions for which there is a procedure
(Given positive integer n, is n prime?), and of questions for which we
do not know whether or not there is a procedure (Given positive integer
n, do there exist positive integers x, y, and z with x

n+y

n = z

n?). But
we had not given earlier any example for which one could positively
assert that there is no procedure. Here, from that theorem, we have
our first such example.

There are more levels, than one might have expected naively, at
which one can understand a question. No longer are there merely
questions for which “We know that we can determine the answer.”
and those for which“We do not know whether or not we can determine
the answer.” Now, there are in addition questions for which “We know
that we cannot determine the answer.”
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7. Appendix

Phy Sci 113 Sep 27, 1988
Due: Oct 4, 1988

Problem Set 1

1. Learn to play tic-tac-toe expertly. (By “expertly” I mean such
that yoou can always make the best possible move. Most of you proba-
bly know how to do this already. If you do not know the game, please
ask, a friend.) Explain, in no more than a page, the procedure for
expert play.

2. Nim is a game for two players. A number of beans is first counted
out into a bowl. The players alternate turns, with each player, in his
turn, taking either one or two beans from the bowl. The player taking
the last beans wins. Learn to play nim expertly. Explain the strategy.
(It is easier than it sounds! First try some games with a small number
of beans.)

3. Learn to play checkers passably. (By “passably” I mean knowing
the rules, and playing at a level of competence that comes from having
played a few games. We shall adopt in checkers the following two rules:
i) You must make a jump if one is available; and ii) if, during the course
of the game, the board returns to exactly the same position for the
third time, then that game is declared a draw.)

4. Five-in-a-row is a game played on a grid of vertical and hori-
zontal lines. (The grid is “infinite”, i.e., additional lines on the sides
and top and bottom can be added as needed.) There are two players,

49
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who alternate turns. Each player, in his turn, makes his mark (say,
one player “x”, one “o”) on any unoccupied square. The first player
to get five of his marks consecutively in a row (horizontally, vertically,
or diagonally) wins. Learn to play five-in-a-row passably.

1

O#

2 3

X X

X

X

X

X

XX

X

X

4

X

O#

O#
O#O#

O#

O#

O#

O#

O#

O#

5 6#

7 8 9#
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Phy Sci 113 Oct 4, 1988

Problem Set 1 — Solutions

1.
Rule 1. If you are able to win, i.e., to achieve three in a row, on that
turn, do so.
Rule 2. If you are able to block your opponent’s win, i.e., to take the
third in a row in which he has two, do so.
Rule 3. If the center is available, take it.
Rule 4. If you hold the center only, and your opponent holds just two
opposite corners, take one of the sides.

1

O#

2 3

X

X

X

X

X

X

X

X

X

X

4

X

O#

O#
O#O#O#

O#

O#

O#

O#=#you#O#

5 6#

7 8 9#

Rule 5. If a corner is available, take it.
Rule 6. Take any move.

The strategy is to move according to Rule 1 if you can. If you cannot
then try to move according to Rule 2; if you cannot, then according
to Rule 3; etc. Continue down the rules until you are able to make a
move.

2. It is your move. Take the number of beans then in the bowl,
divide by three, and find the remainder. (Thus, for example, if there
are eleven beans in the bowl, then the remainder is two; if there are
twenty-one, then the remainder is zero.)

If the remainder is zero, then take either one or two beans from the
bowl.
If the remainder is one, then take one bean from the bowl.
If the remainder is two, then take two beans from the bowl.

In the first case, you will lose if your opponent plays expertly.
In the last two cases, you are assured of a win by this strategy.
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Phy Sci 113 Oct 4, 1988
Due: Oct 11, 1988

Problem Set 2

1. Consider the tag game with just two symbols, a and b, and with
the following rules:

A. If the leftmost symbol of the string is “a”, then append “aa” to
the right and remove the leftmost three symbols.

B. If the leftmost symbol of the string is “b”, then append “bbab”
to the right and remove the leftmost three symbols.

a. Show that if the initial string is of the form “axxaxxaxx. . .
axx”, where each “x” stands for either an “a” or a “b”, then the tag
game eventually terminates at the empty string.

b. Show that if the initial string is of the form axxbxxaxxbxx. . .
axxbxx”, then the tag game eventually cycles.

c. Try to find an initial string for which the tag game goes
on indefinitely, without terminating or cycling. (Note: This may be
di�cult. I tried it for an hour or so, without success. So, if you have
not found one after reasonable e↵ort, just describe for your answer
what methods you tried, and how they failed.)

2. Consider the tag game above, but with “a” leftmost append,
instead of “aa”, and “aba”; and with “b” leftmost append, instead
of “bbab”, “bbba”. For this game, give the procedure for deciding,
for any given initial string, whether the game eventually terminates at
the empty string, cycles, or goes on indefinitely without terminating
or cycling.

3. Select any two board games with which you are familiar, other
than those discussed in class. For each of your games, discuss whether
the problem of making expert moves is well-posed, whether it has a
solution, and whether there is a procedure for expert play.

Remark: If, for the tag game of problem 1, you can figure out what
happens with the initial string “bbbbbbbbbbbbbbbbbbbbb” then you
will become famous, for this is an old, much-worked-on, and as yet
unsolved problem.
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Phy Sci 113 Oct 11, 1988

Problem Set 2 — Solutions

1.a. Suppose, e.g., that the initial string were “axxaxxaxxaxxaxx”.
Then the results of the first five moves would be:

axxaxxaxxaxxaa, axxaxxaxxaaaa, axxaxxaaaaaa,
axxaaaaaaaa, aaaaaaaaaa.

Thus, after five moves the string is all “a” ’s. But now each further
move will merely add two “a” ’s to the right while deleting three from
the left, i.e., each further move will again result in a string with all
“a” ’s, but with one fewer “a” for each move. Thus, successive moves
from here will produce: aaaaaaaaa, aaaaaaaa, aaaaaaa, aaaaaa, aaaaa,
aaaa, aaa, aa, a, (empty). Similarly, an initial string with n “axx” ’s
will, after n moves, be all “a” ’s, after which it will shrink to the empty
string.

b. The result of the first two moves on the string “axxbxxaxxbxx. . .
axxbxx” are

bxxaxxbxx. . . axxbxxaa, axxbxx. . . axxbxxaabbab.
Thus, we obtain after two moves a string of exactly the same form

as the original string, but with the “x” ’s in the final six entries
made explicit. (That is, instead of ending in “axxbxx”, our string
now ends in “aabbab”.) Repeating this a number of times equal to
the number of “axxbxx” ’s in our original string, we end up with the
string “aabbabaabbab. . . aabbab” (i.e., the string with each original
“axxbxx” replaced by “aabbab”). But now two further moves on this
string give the same string back. So, we have arrived at a cycle.

c. I still have not found such an example, and I am beginning to
think that I am not going to find one soon. Here is just one possi-
ble strategy (which seems to fail) to search for an example. Suppose
that one could find a string such that, after one has made enough
moves to “use up” (i.e., totally delete) that string, what results is the
original string again, but with some additional letters on the right.
One might then hope that, as the game continues, one will again re-
cover the original string, but with still more letters on the right, etc.
Then, with any luck, one will be able to guarantee that the lengths
of the string will increase without bound. But it seems di�cult to
implement this strategy. Here is a good-looking candidate: bxxbxxbx.
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Here are the results of the first three moves: bxxbxbbab, bxbbabb-
bab, babbbabbbab. Note that we now have the form of the original
string (“bxxbxxbx”, here made explicit, to “babbbabb”) with some
additional letters (namely, “bab”) on the right. It looks promising.
But let us continue the game from here: bbabbbabbbab, bbbabb-
babbbab, abbbabbbabbbab, babbbabbbabaa. It looks very promising
at this point! We once again have our original string, but now with
“babaa” on the right. But if we continue to play from here, things
break down: bbabbbabaabbab, bbbabaabbabbbab, abaabbabbbabb-
bab, abbabbbabbbabaa, abbbabbbabbaaaa, babbbabbaaaaaa. I just
do not see how, from here, to guarantee that we will continue, after
every few moves, to recover our original string, plus more and more
extra letters on the right.

2. First note that, under these rules, no game ever terminate at
the empty string. Indeed, each step in the game either leaves the
length of the string the same (in the case the leftmost letter is “a”), or
increases the length of the string by one (leftmost letter “b”). Thus,
we have only to decide whether the game cycles, or goes on to ever
longer strings.

If, during the course of a game, a “b” were ever hit (i.e., were the
leftmost letter) then we would append “bbba” on the right. But these
three “b” ’s in a row assure that one of them would be hit eventually
(since, at each step, just three are removed from the left). This would
result in three more “b” ’s on the right, and so in another “b” hit, etc.
We conclude: If, in the course of a game, a“b” is ever hit, then the
game will go on to ever longer strings (since, as we have just seen, we
must then continue to hit “b” ’s). But clearly, if no “b” is ever hit,
then the game must cycle (for then only “a” ’s would be hit, and so
the string length must remain the same).

Thus, there are just three candidates for games that cycle (i.e.,
those for which only “a” ’s are hit), namely those with initial strings
of the form “axxaxx. . . axx”, “axxaxx. . . axxax”, “axxaxx. . . axxa”.
Playing each of these initial strings for one step, we obtain, respec-
tively, “axx. . . axxaba”, “axx. . . axxaxaba, and “axx. . . axxaaba”. We
see that the first and third, but not the second, continue to be of our
form. We thus obtain:

Answer: All initial strings of the form “axxaxx. . . axx” or “axxaxx. . .
axxa” lead to games that cycle. All others continue to ever longer
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strings. No game terminates.
3. For the game of bridge, the problem is not well-posed in our

sense. In the first place, there is concealed information (in that the
hands are not shown to others), and so there is no board configura-
tions giving the entire information about the status of the game. In
this sense, bridge is more like poker. A further complication is that,
in bridge, there are four players, acting in pairs as teams. Thus, a
“player” in our sense would be an entire team, and one would have to
allow the “players” to have two stores of information (those possessed
by the two members of that team), such that information could not
readily be passed back and fourth. Because of these complications,
it is not even clear (to me, at least) that there exists “expert play”
in bridge using probabilities for various moves (as there is, e.g., in
poker). In any case, bridge is very far from the types of games we
have in mind.
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Consider, as a second example, the pencil-and-paper game “boxes”.
One begins with a finite grid of points on a piece of paper. There are
two players, and each in his turn is allowed to connect two adjacent
points by a horizontal or vertical line. Thus, the figure on the next page
illustrates a typical board configuration. The dashed line indicates a
move whose turn it is.

If, in your move, you complete the fourth side of a “box” (one of
the little squares having four of the points as corners), then you are
awarded one point, and you move again. Thus, in the example at
the right, the person about to make the dashed-line move is about to
receive one point (and to take another move). At the end (when all
lines have been drawn in), the player with the most points wins the
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game.
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This game, I claim, satisfies all of our criteria. There is a board
with configurations giving all information about the game. There are
two players, who alternate turns, and make certain allowed moves.
There is a win, lose, and draw. (To make this clearer, one should have
the players mark (with an “x” or “o”) squares they have completed.
Then the “board configurations”, would include these marks on the
squares. The “x-win configurations”, then, would be those in which
the entire board is filled in, and “x” has more squares than “o”.

We conclude that, for the game of boxes, the problem of expert play
is well-posed, and there does exist an expert strategy. It is not clear
whether or not there exists a procedure for expert play. (Certainly
there does if the size of the initial grid is fixed, for then there are but a
finite number of board configurations. But for arbitrary games, there
is no finite number.)

Do you think there is a procedure for expert play? What is your
guess?
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Phy Sci 113 Oct 11, 1988
Due: Oct 18, 1988

Problem Set 3

1. In each of the tic-tac-toe configurations below,
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it is x’s move. For each, decide whether that configuration is x-
winnable, o-winnable, or drawable, and give a good move for x.

2. Show that, for a game within our framework, if it is x’s turn
and the board configuration is drawable, then there exists a move for
x that results in a drawable board configuration.

3. Given a positive integer n,

a. is it the sum of any number of prime numbers?
b. is it the square of a prime number?
c. is it any power of a prime number?
d. is it the sum of two odd integers?
e. is it the di↵erence of two odd integers?

For each of these questions, determine whether or not there is a pro-
cedure for answering the question. If there is a procedure, give it.

4. Given positive integer n, give explicitly the procedure for decid-
ing whether or not it represents an “x-wins” configuration in tic-tac-
toe. (Make sure that your procedure really is that – something that
can be followed mechanically.)
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Phy Sci 113 Oct 19, 1988

Problem Set 3 — Solutions

1. Label the squares on a tic-tac-toe board as shown below.
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a. This configuration is o-winnable. Thus, every move for x results
in an o-winnable configuration, and so every move for x is a good
move.

b. This configuration is drawable. It turns out that every possible
move for x results in a drawable configuration, and so every move for
x is a good move.

c. This configuration is drawbale. A move by x to 4 results in an
o-winnable configuration, while all other moves – to 1, 2, 3, 7, 8, or 9
– result in a drawable configurations. Hence, any of these six moves is
a good move.

d. This configuration is x-winnable. Moves to 6 or 9 result in an
x-winnable configuration; to 5 or 8 in a drawable configuration; and
to 4 and 7 in an o-winnable configuration. Hence, the good moves are
to either 6 or 9.

2. The board configuration is drawable, and it is x’s turn. There
can be no move for x that results in an x-winnable configuration, for
were there such a move then, by the rules that define x-winnable,
the original configuration would already have been x-winnable. So,
every move for x results either in a drawable or an o-winnable con-
figuration. Were it the case that every move results in an o-winnable
configuration, then, by the rules that define o-winnable, the original
configuration would already have been o-winnable. Hence, there must
be some move for x that results in a drawable configuration.

3.a. There does exist a procedure: “If the integer is 1, say ‘no’;
otherwise say ‘yes’.” (Every integer 2 or greater is the sum of some
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number of prime integers. Indeed, every such integer is the sum of
some number of 2’s and 3’s.)

b. There does exist a procedure. Suitable instructions might direct
that the technician take in turn each integer from 2 up to the given
integer. First, test to see if it is prime, and then test to see if its square
is the given integer. If in any case both tests are positive, say ‘yes’; if
none is found by the time you reach the given integer, say ‘no’.

c. There does exist a procedure. Let the given integer be n. For
each integer from 2 up to the given integer, first test to see if it is prime.
Then begin raising that integer to various powers – first, second, and
so on, continuing until the result exceeds n. Test to see whether the
result ever equals n. If in any case both tests are positive, say ‘yes’; if
none is found by the time you reach n, say ‘no’.

d. There does exist a procedure. Say ‘yes’ if the integer is even,
and ‘no’ if it is not.

e. There does exist a procedure. Say ‘yes’ if the integer is even,
and ‘no’ if it is not.

4. Say ‘yes’ if the given integer is one of the forms lxxlxxlxx,
xlxxlxxlx, xxlxxlxxl, lllxxxxxx, xxxlllxxx, xxxxxxlll, lxxxlxxxl, xxlxlxlxx;
and ‘no’ otherwise. Here, “x” can stand for any digit. (Note that we
have, above, merely listed all possibilities for three x’s in a row.) Re-
mark: There is of course also a procedure to decide whether a given
configuration is x-winnable, but that is far more complicated than
this one. Basically, one would have to have the technician reconstruct
the tic-tac-toe board, then play out the game using our earlier expert
strategy, find out who wins, and answer accordingly.
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Phy Sci 113 Oct 18, 1988
Due: Oct 25, 1988

Problem Set 4

1. Given positive integer n, is it the encoding of three positive
integers, x, y, and z, such that x + y = z? Answer this question for
each of the following n:

a. 30000000150008
b. 1300000000000000200000000213
c. 130000000000000200000000213

2. Is there a procedure for answering?
a. Given positive integer n, do ten 7’s occur in a row in the first n

digits in the decimal expansion of ⇡?
b. Given positive integer n, is both n a prime and there exist

positive integers x, y, and with x

n + y

n = z

n?

3. Encode the four positive integers 13, 2, 11, 100 into a single
integer.
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Problem Set 4 — Solutions

1. a. No, The given integer is indeed the encoding of 3, 15, and 8.
But it is not the case that 3 + 15 = 8.

b. Yes. The given integer is the encoding of 13, 200, and 213. It
is the case that 13 + 200 = 213.

c. No. The given integer is not the encoding of any three positive
integers. Indeed, it has an odd number (27) of digits.

2. a. There is a procedure. Use any of the known procedures for
computing the first n digits of ⇡, then inspect those digits to see if
anywhere there occur ten “7” ’s in a row.

b. We do not know whether or not there is a procedure. If the
given n is not a prime, then clearly the answer is “no”. But what if n
is a prime? Then we do not have, o↵hand, any way to tell whether or
not there exist x, y, and z with x

n + y

n = z

n. Thus, at least as the
things stand, we have no procedure.

3. Encoding 11 and 100 yields 1100000100. Encoding 2 and
this yields 2000000000001100000100. Encoding 13 and this yields
130000000000000000000000002000000000001100000100. This last mon-
strosity is the desired answer.
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Phy Sci 113 Oct 25, 1988
Due: Nov 1, 1988

Problem Set 5

1. To specify a tag game, one must tell what is the alphabet, what
is to be appended on the right according to which letter is on the left,
how many leftmost letters are to be deleted, and what is the initial
string. Encode all this information in a single positive integer.

2. Given positive integer n, do there occur n or more consecutive
“7” ’s anywhere in the decimal expansion of ⇡? Is there a procedure
for answering this question? (Note: This is a tricky problem. It is
worth thinking about for a while.)
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Phy Sci 113 Nov 1, 1988
Due: Nov 8, 1988

Problem Set 5 — Solutions

1. There are of course many ways of encoding this information.
Here is one. Given the tag game and initial string, first represent it as
a sequence of integers, as follows:
total number of letters in the alphabet (we represent these letters by
the numbers from 1 up to this total), number of letters in the string
to be appended on the right if the first letter appears on the left, the
successive letters (represented as numbers) in this string, number of
letters in the string to be appended on the right if the second letter
appears on the left, the successive letters in this string,. . . (up to these
things for the last letter in the alphabet), number of letters from the
left to be deleted in each turn, letters (represented as numbers) in the
initial string.
Thus, for example, the tag game of the first test, with initial string
“abbaa”, would be represented by the following sequence of numbers:
2, 2, 2, 2, 3, 1, 1, 1, 3, 1, 2, 2, 1, 1. Translation: There are 2 letters in
the alphabet. If the first (a) appears on the right, append the 2-letter
string consisting of “bb” (2 and 2). If the second (b) appears on the
right, append the 3-letter string consisting of “aaa” (1 and 1 and 1).
Remove each time 3 letters from the left. The initial string is “abbaa”
(1 and 2 and 2 and 1 and 1).

Thus, we have so far represented a tag game, with initial string,
as some finite sequence of integers. We now merely encode these into
a single integer as was shown in class. (Here, of course, we must use
“encoding an indeterminate number of integers”, because we do not
know beforehand how many there will be.) It is clear that the final
integer can be decoded to find the tag rules and initial string.

2. (Note: I only put this problem on because it reflects a point I
wanted to make, but for which I did not wish to use more class time.
I did not really expect anyone to get the answer, below, but rather
wanted to get you thinking about it in preparation for this point.)

There does exist a procedure to answer this question! To see this,
let us consider a few possibilities.
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Suppose that there are sequences of consecutive “7” ’s of arbitrary
length in the expansion. (This means, in more detail, that given any
positive integer there is some sequence of consecutive “7” ’s in the
expansion of length larger than this integer.) Given this supposition,
the answer to our question is “yes” no matter what n is (for there are
such sequence longer than any given n). So, in this case there does
indeed exist a procedure to answer the question, namely “say yes”.

Suppose that the longest sequence of consecutive “7” ’s in the ex-
pansion consists, say, of 188 “7” ’s. In this case, there is also a pro-
cedure to answer the question, namely “Say ’yes’ if n is less than or
equal to 188; and ‘no’ if n is 189 or greater.”

Suppose the longest sequence of consecutive “7” ’s in the expansion
consists of just 5 “7” ’s. Then there is again a procedure: “Say ’yes’
if n is less than or equal to 5; and ‘no’ if n is 6 or greater.”

To summarize, then, there is in every case a procedure. If there
is no longest sequence of consecutive “7” ’s, then the first case above
applies, with that procedure; if there is a longest sequence, then one
of the other cases applies. We conclude: There does exist a procedure
to answer this question.

But this is another example in which, although we know that a
procedure exists (here, because we can list a bunch of procedures and
be sure that one of them is the right one), we do not know which
procedure is right. It is quite similar to those examples of “yes-or-
no” questions in class, in which we knew that one of two procedures
(“say ‘yes’ ” and “say ‘no’ ”) was correct, but not which. The only
di↵erence is that, here there are an infinite number of procedures in
our list. Again, one is correct, but we do not know which one.

This example very well illustrates the point that “not being able
to find a procedure o↵hand” is quite di↵erent from “there is no pro-
cedure”. Here, it turns out that there is a procedure, but it is just
somewhat subtle.
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Phy Sci 113 Nov 1, 1988
Due: Nov 8, 1988

Problem Set 6

Note: There are three skills to be acquired: i) how, given a simple
procedure, to write a flow chart for it, ii) how, given a more compli-
cated procedure, to explain clearly how one could, at least in principle,
write a flow chart for it, and iii) how, given a flow chart, to figure out
what procedure it performs. These skills can be mastered, in my
opinion, only by playing around with these things on your own. The
problems below are intended only to get you started in this.

1. Write a flow chart that accepts two nonnegative integers A and
B, divides A by B (provided B is not zero), and reports the quotient
and remainder.

2. Write a flow chart that accept two nonnegative integers A and
C, and reports A – C if A is greater than or equal to C, and C – A
otherwise.

3. Write a flow chart that accepts three nonnegative integers X,
Y, and Z, and reports the largest.

4. Argue that there exists a flow chart that accepts a nonnegative
integer A and reports the number of digits in A.

5. Argue that there exists a flow chart that accepts a nonnegative
integer A and reports whether or not A is the encoding of two other
positive integers.

6. Argue that there exists a flow chart that accepts positive integers
P and Q, and reports the result of our encoding of these two integers.

7. What does the flow chart below do?
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start%

input%
A%

A%%%
empty?%

remove%
%%%%%%A%

add%
B%

report%
%%%%%B%stop%

c% A B

no%

yes%

start% add%
C%

add%
C%

add%
C%

add%
C%

add%
C%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x% stop%

x

input%
x%

A%%%
empty?%

remove%
%%%%%%A%

no% A%%%
empty?%

remove%
%%%%%%A%

no% A%%%
empty?%

yes%yes%yes% no%
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Problem Set 6 — Solutions

1.

start% input%
A%

A%%%
empty?%

remove%
%%%%%%B%

stop%
remove%
%%%%%%C%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
B%

report%
C%

no%

C%%%
empty?%

B%%%
empty?%

no% no% remove%
%%%%%%A%

add%
C%

add%
B%

yes% yes%

add%
D%

report%
D%

2.

start% input%
A%

A%%%
empty?%

remove%
%%%%%%C%

stop%remove%
%%%%%%C%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
C%

report%
A%

no%

C%%%
empty?%

C%%%
empty?%

no% no% remove%
%%%%%%A%

add%
C%

add%
A%

yes%

yes%

add%
D%

report%
D%

3.

start% input%
X%

X%%%
empty?%

report%
%%%%%A%

stop%

start% input%
B%

no%

yes%

add%
A%

add%
C%

input%
Y%

remove%
Z%

no%

Y%%%
empty?%

yes%

no%remove%
%%%%%%A%

add%
C%

yes%

yes%

add%
A%

report%
D%

input%
Z%

Z%%%
empty?%

yes% yes%

remove%
Y%

remove%
X%

no% no%

4, 5, 6. These three problems were done in class, and also are done
in the notes.

7. As the flow chart stands, the answer is “Always report zero.”
Correcting the flow chart by inserting the extra box “input A” after
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the first box (as I asked you, in class, to do), the flow chart answers
the questions “Is the number A three, or not?” The result is reported
as “1” if the answer is yes, and“0” if no.
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Phy Sci 113 Nov 8, 1988
Due: Nov 15, 1988

Problem Set 7

1. Draw a flow chart that accepts as input three nonnegative inte-
gers, and reports which of these (first, second, or third) is the largest.

2. What does the flow chart below do?

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

add%
B%

report%
%%%%%B%

stop%

c% A B

no%

yes%

start% add%
C%

add%
C%

add%
C%

add%
C%

add%
C%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

A%%%
empty?%

remove%
%%%%%%A%

no% A%%%
empty?%

remove%
%%%%%%A%

no%

A%%%
empty?%

yes%

yes%

yes%

no%

3. Draw a flow chart that accepts as input a nonnegative integer,
and reports whether or not that integer is the largest prime.

4. Argue that there exists a flow chart that accepts as input a
nonnegative integer, and reports whether or not that integer is equal
to the sum of the squares of two integers.
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Phy Sci 113 Nov 15, 1988

Problem Set 7 — Solutions

1.

start% input%
A%

C%%%
empty?%

report%
%%%%%D%stop%

start%
input%
B%

no%yes%

add%
A%

add%
C%

input%
B%

remove%
A%

no%B%%%
empty?%

no%no%

remove%
%%%%%%A%

add%
D%

yes%

yes%

add%
D%

report%
D%

input%
C%

A%%%
empty?%

yes%

yes%

remove%
B%

remove%
C%

no%

yes%

yes%

yes%

B%%%
empty?%

C%%%
empty?%

yes%

no%

report%
%%%%%D%stop% add%

D%
add%
D%

This flow chart (which admittedly, is not very elegant) works provided
there is a largest (as opposed to two- or three-way tie for largest).

2. The user is continually asked to input numbers (a running total
of which is kept in bowl B). As soon as “0” is input, this total is
reported and the execution stops. In short, this flow chart is an adding
machine?, with “0” the signal for for “give me the sum”.

3.

start% input%
A%

C%%%
empty?%

start%
input%
B%

yes%

add%
A%

add%
C%

report%
B%

B%%%
empty?%

no%no%

remove%
%%%%%%A% yes%

report%
D% yes% yes%

yes%

yes%no%

report%
%%%%%D%

stop%

add%
D%

Here, “0” is reported for “is not the largest prime”, and “1” for “is
the largest prime”.
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4.

start% input%
A%

Does%
X=A?%

report%
%%%%%D%

stop%

remove%
%%%%%%B%

start% input%
B%

no%

yes%

add%
A%

add%
X%

add%
B%

Place%
A%in%D%

no%

report%
%%%%%O%

C%%%
empty?%

yes%

Place%
X2+Y2%
in%B%

add%
Y%

no%

add%
O%

Does%
B=A?%

Place%
O%in%Y%

yes%yes%

no%

Does%
Y=A?%no%

stop%report%
%%%%%O%

Here, a “0” is reported for “no”, and “1” for “yes”.
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Phy Sci 113 Nov 15, 1988
Due: Nov 22, 1988

Problem Set 8

1. Translate the flow chart of problem 2, Set 7 into a sequence of
integers. If this were to be encoded into a single integer, approximately
how many digits would that integer contain?

2. Draw the flow chart represented by the following sequence of
integer: 3, 7, 5, 2, 5, 2, 1, 4, 3, 1, 7, 5, 3, 7, 6, 1, 1, 7, 1, 2, 6.
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Problem Set 8 — Solutions

1. 2, 8, 1, 2, 3, 1, 3, 7, 1, 7, 4, 6, 1, 5, 5, 2, 6, 7, 1, 2, 4, 4, 2, 8, 2.
Here, we are numbering the bowls with “1” for “A”, and “2” for “B”.
We have numbered the boxes as shown below:

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

add%
B%

report%
%%%%%B%

stop%

3

A B

no%

yes%

start% add%
C%

add%
C%

add%
C%

add%
C%

add%
C%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

A%%%
empty?%

remove%
%%%%%%A%

no% A%%%
empty?%

remove%
%%%%%%A%

no%

A%%%
empty?%

yes%

yes%

yes%

no%

1 65

8

42

7

2.

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

add%
B%

report%
%%%%%B%

stop%3

A B

no%

yes%

start%

add%
C%

add%
B%

add%
C%

add%
C%

add%
C%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

A%%%
empty?%

remove%
%%%%%%A%

no%

A%%%
empty?%

remove%
%%%%%%A%

no%

A%%%
empty?%

yes%

yes%

yes%

no%

1 65

8

4 27

The bowls “A”, “B” and “C” are numbered “1”, “2”, and “3”, respec-
tively. This flow chart, by the way, is from page 27 of the notes.

1. (continued) Each time we include one more number in our en-
coding (to a single integer), we approximately double the number of
digits (actually, a bit more than double). Here, there are 26 num-
bers to be encoded (including the first number, “25”, the number of
numbers). Hence, there will be over 226 digits. This is more that
60,000,000 digits!
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Phy Sci 113 Oct 25, 1988

Test 1

Please write your name on every page. Please answer and explain

your answer briefly.

Name:

1. (20 points)
a. A tic-tac-toe game has just begun, and it is x’s turn to make

the first move. Is the board configuration x-winnable, drawable, or
o-winnable? Explain briefly.

b. A game within our general framework is underway, and the
board is in some configuration. It is o’s turn, and there are exactly
eleven moves available to o. Six will result in an x-winnable config-
uration, three in a drawable configuration, and two in an o-winnable
configuration. Is the present configuration of the board x-winnable,
drawable, or o-winnable, or is there insu�cient information to tell?
Explain briefly.
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2. (16 points) Give any prescription to encode an arbitrary integer
(i.e., which may be positive or negative) as a positive integer.

3. (16 points) Consider the tag game with “a” and “b”, and with
the following rules: For “a” leftmost, append “bb” on the right, and
for “b” leftmost append “aaa” on the right; and in both cases delete
the leftmost three letters. Give a procedure to determine, given the
initial string, whether the game will ultimately terminate, cycle, or go
on forever without terminating or cycling.
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4. (30 points) You are to be given positive integer n. For each of
the question below, state whether there exists a procedure to answer
the question, there does not exist such a procedure, or you do not
know whether or not there is a procedure. Explain briefly.

a. Has there occurred a “4” by the nth digit in the decimal expan-
sion of ⇡?

b. Does there occur a “4” anyplace after the nth digit in the decimal
expansion of ⇡?

c. Is n either the result of encoding two integers, or the di↵erence
of two primes?
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Test 1 — Solutions

1.a. The configuration is drawable. That is, it is not possible for
x, absent a blunder by o, to be assured of a win; nor is it possible for
o, absent a blunder by x. In other words, with expert play on both
sided the game will certainly be a draw.

b. The configuration is o-winnable. Recall that if it is o’s turn, and
there is any move for o that results in an o-winnable configuration,
then the present configuration is o-winnable. But that is the situation
here.

2. There are many such prescriptions. For example, write out the
digits of the integer, and a�x a “1” on the right if it is positive, and
a “2” if it is negative. Or, as a second prescription, ignore the sign
the integer, double it, and then add one if the original integer was
negative.

3. The procedure is: “Say, no matter what is the given initial
string, ‘It will terminate’.” Clearly, every game will either cycle or
terminate (since one adds at most three letters to the right, while
deleting three, and so the string-length can never grow). The only
possibility for cycling, then, would be if only “b” ’s are hit. But a “b”
hit results in appending “aaa”, which in turn assures that eventually
an “a” will be hit. Hence, the string must ultimately shrink to nothing.

4. a. There is a procedure: “Say ‘no’ if n is one, and ‘yes’ other-
wise.” This works because the digit of ⇡ (= 3.14159 . . .) is a “4”, and
so the answer is ‘yes’ for n two or greater, but, clearly, ‘no’ for n = 1.

b. We do not know whether or not there exists a procedure. There
is no obvious way, given n, to find the answer. Thus, for example,
one could not simply try out every digit past the nth in the decimal
expansion, for there are an infinite number of such digits.

c. We do not know whether or not there exists a procedure. Of
course, if n is the result of encoding two integers, we say ‘yes’. But
what if n is not? Then we know o↵hand of no way, by some finite pro-
cedure, to determine whether or not n is the di↵erence of two primes.
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Phy Sci 113 Oct 27, 1988

Test 1 — Comments

This test was too easy for (or, if you prefer the other way of saying
it, the depth of your understanding exceeded my already very high
expectations). It is not that the average (56, out of a maximum 82)
was so high – although it was somewhat higher than I expected –
but rather that there were a fair number of people who were just not
challenged by the test. This is clear from your comments, and also
from the grade distribution:

Score Nmbr receiving Score Numbr receiving
10-19 1 50-59 31
20-29 6 60-69 46
30-39 9 70-79 30
40-49 24 80-89 11

What I should have done here – and will try to do next time – is
including at least one very hard problem, so those who are having no
trouble with the material will have something to chew on. Also, this
problem should in part take care of itself, for we are now, moving into
somewhat meatier material.

Comments on individual problems:

1.a. This was intended as a “throw-in” problem, to get people
relaxed, and, indeed, very few had much trouble with it. A few did
not realize that either player in tic-tac-toe can, from the beginning,
force a draw. A board configuration must be exactly one of x-winnable,
o-winnable, or drawable – it cannot be two or more of these.

b. The status – x-winnable, o-winnable, drawable – is a property
only of the board configuration (and whose turn it is). It does not
depend on whether people play expertly, badly, or not at all. (Of
course, the definitions of these terms use the rules of the game, i.e.,
they envision players, etc. But ultimately it is just the configuration
itself that is one of these three.) In particular, o-winnable requires
only that there exists a move for o that makes the configuration o-
winnable. It is not necessary that “the game be allowed to continue,
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with o actually making such a move”. Nor is it necessary that o be
an expert player, make good moves, or indeed even be present. If you
like, these terms refer to potentialities, not actualities.

2. Most people (including whoever it was who wrote the solution
sheet) forgot that “0” is also a legal integer, and so must be encoded
into something. Thus, for example, both solutions on the solution
sheet are wrong. (The first could be correct by the change ”. . . if it is
negative or zero.”; the second by the change ”. . . original integer was
negative or zero.”) (Recall that zero is neither positive nor negative.)
This minor issue was assigned one point. All that counts about an
integer is its numerical value, not the details of how it is written. Thus,
one can write the integer “47” as “047” or “0047” or “+47” or “47.000”
or “47” written with orange ink, but they all count as the same integer.
In particular, then, one cannot encode additional information into the
integer by written it in one of these alternative forms. The key thing
about encoding is not only that it can be carried out (in this example,
to obtain a positive integer from any given integer), but that it can
also be decoded (in the example, to recover the given integer from
the positive integer). Thus, for example, “Just drop the sign.” and
“Square the integer.” are not legitimate encodings, for neither can be
decoded. Thus, for the first, if I give you the result is “7” you do not
know whether the original integer was “7” or “-7”; and similarly for
the second. Here you were, of course, to encode a single integer into
a positive integer (as opposed to several integers, before in class). (As
you study this material, try to focus on what is really going on (“the
idea of encoding”) rather than the mechanics (“how to encode”).) The
class as a whole did rather well on this problem (which I thought would
be more di�cult). There were some very original encodings.

3. Please explain your answer briefly. There were a fair number
of papers with “Just say ‘terminates’.” and no further explanation
(these assigned 10 out of 16 points). It was also common to figure
out, by some means, that every initial string would terminate, but
then forget to state what the procedure is (“Just say ‘terminates’.”)
(I assumed that people who had figured all this out knew also what
the procedure is.) While most explanations of why every string must
lead to termination were quite clear, a number were less so. What of
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the answer “Let the technician play out the tag time, starting from the
given initial string, and see what happens.”? Of course, this is general
not a procedure, for it is conceivable that the technician could go on
playing the game forever, without ever being able to announce “This
game goes on forever”. It is curious, however, that for particular

example of the problem, this actually is a procedure. The reason is
that it is in fact the case that every game will terminate, and so the
labors of the technician will also come to an end, with that technician
announcing “terminates”. This is the old story: It need only be the
case that the technician’s e↵orts terminate, not that the technician is
aware of this. (I generally assumed that those giving this answer did
not understand this point, unless there was some indication that they
did.)

4. First, the structure of these questions was intended to be “We
want to know, for each part, whether there is a procedure that, for
every choice of the positive integer n, answers the question.” and not
“The integer n is fixed at the beginning. Now we want to know, for
each part, whether there is a procedure that, for that n, answers the
question.” In short, the procedure is to be given before the n. Each
part represents an infinite number of questions (one for each n), not
a single question. I think that this was fairly clear from both wording
and context, although the wording could perhaps have been improved.

a. The number ⇡ is not exactly 22/7. Indeed, ⇡ to six digits after
the decimal is 3.141592, while 22/7 is 3.142857. The latter is only
a convenient approximation to the former. “Irrational” means only
“cannot be written as the quotient of two integers”, not “lacking ra-
tionality” or “having random digits”. Thus, for example, the number
.12112211122211112222. . . is irrational. (Challenge for doubters: Find
two integers such that one divided by the other gives this number.)
Neither of these points is germane to the subject matter of this course,
and neither had much impact on scoring, but I thought I would men-
tion them. Very few had any real trouble with this part.

b. There was a tendency, here again, to lapse into an answer with
no explanation (e.g., merely “We do not know”, which was assigned
5 points out of 10). Our doubts about their being a procedure arise
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not from the fact that there are an infinite number of questions (one
for each n). Consider, for instance “Given positive integer n, is it
prime?” This is an infinite number of questions (one for each n), and
yet there certainly is a procedure for it. The doubts arise, rather,
because even after we are given the n there is no sure-fire way of
telling whether a “4” occurs after the nth digit of ⇡. What of the
answer “There is no procedure.”? The fact that we may not happen
to have a procedure in hand does not mean that none exists, only that
we do not yet know. (This problem is a particularly good example of
this point, for it turns out that there actually does exist a procedure for
this particular question. But it is a subtle business.) We have as yet
found no example in which we can guarantee that no procedure exists.
One might even, by this point, begin to suspect that a procedure will
always exist – there only remains to find it. The entire thrust of this

course is to produce an example of a question (actually, an infinite
number) for which we can show that no procedure exists. (Those who
said “no procedure” for both parts b and c, for the same reason, were
not penalized twice.)

c. It was intended that the “encoding” for this part be “our par-
ticular encoding”, but it does not seem to make any real di↵erence.
The whole idea of “either. . . or. . .” was apparently confusing, and I do
not think that the note on the board helped much. The question “Is
n either. . . or. . .” is to have the same meaning as “Is the dog either
brown or wet?” The answer is “yes” if the dog is either brown or wet,
or both, and “no” otherwise. So, each n either has the property in
question (either.. . . or. . .), and so for each n the answer is either “yes”
or “no”. But there are an infinite number of questions, namely one
for each n. In particular, you are not being asked, for each n, to say
which is the case (just as for the dog you are not being asked whether
brownness or wetness is the case). You are not being asked for sep-
arate procedures for encoding and for primes. The issue, rather, is a
procedure for the entire question. There is no simple general slogan
for deciding whether there is a procedure for “or” or “and”-questions:
One just has to think it through each time. (By the way, the integer
“1” is not, by definition, a prime.)

The class as a whole did very well on this test. Your answers were
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generally clear, brief, and with good explanations. The next test will
be rather like this one, but I will try to make it a little harder (not
too much!), and a little more interesting. If you have any suggestion
about testing in this course, I would very much appreciate them. If
you feel your paper was misgraded, please follow the procedure given
earlier.
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Phy Sci 113 Nov 22, 1988

Test 2

Name:

Note: “Draw flow chart” means using only our seven instructions, with
no “dashed boxes”.

1. (12 points) Draw a flow chart that accepts as input nonnegative
integer n; and stops if n is odd and continues forever if n is even.

2. (14 points) What does the flow chart below do? What would it
do if the instruction “remove A” were replaced by “add A”?

start% input%
A%

A%%%
empty?%

remove%
%%%%%%A%

report%
%%%%%B%

stop%

3 A B

no%

yes%

start%
add%
C%

add%
B%

add%
B%

add%
B%

add%
B%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

A%%%
empty?%

remove%
%%%%%%A%

no%

remove%
%%%%%%A%

A%%%
empty?%

yes%

yes% yes%
no%

8
3. (10 points) Draw the flow chart represented by the following

sequence of integers: 1, 3, 1, 2, 4, 1, 3, 2.

4. (33 points) Answer (“yes”, “no”, or “we do not know”), and
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explain your answer briefly.

a. Does there exist a flow chart with no inputs that reports “0” if
there exist no positive integers x, y, z, and n � 3 with x

n + y

n = z

n;
and “1” if there do exist such integers?

b. Does there exist a flow chart that accepts as input a single
integer; and reports whether or not that integer is the encoding (by
our encoding scheme) of some flow chart?

c. Does there exist a flow chart that accepts as input an integer
that encodes some flow chart having no inputs; and reports whether
or not that flow chart, when executed, will stop?

5. (24 points) Definition: A number is said to be computable if
there exists a flow chart that accepts as input positive integer n; and
reports the nth digit in the decimal expansion of that number.
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a. Draw the flow chart that shows that 1/4 is computable.

b. Give any example of a number that is not computable.
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Phy Sci 113 Nov 22, 1988

Test 2 — Solutions

1.

start% input%
N%

A%%%
empty?%

remove%
%%%%%%A%

report%
%%%%%B%

stop%

3 A B

no%

yes%

start%
add%
C%

add%
B%

add%
B%

add%
B%

add%
B%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

N%%%
empty?%

remove%
%%%%%%N%

no% remove%
%%%%%%N%

A%%%
empty?%

yes%

yes% yes%

no%

8

N%%%
empty?%

2. The flow chart accepts as input a nonnegative integer; and
reports three times that integer. As modified, the flow chart would
accept as input a nonnegative integer; and report “0” and stop if that
integer is zero, and continue forever if that integer is other than zero.

3.

start% report%
A%

A%%%
empty?%

remove%
%%%%%%A%

report%
%%%%%B%

stop%

3 A B

no%

yes%

start%
add%
C%

add%
A%

add%
B%

add%
B%

add%
B%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

A%%%
empty?%

yes%

no%

8

start% report%
A% stop% start% report%

A% stop%
4. a. There does exist such a flow chart. Indeed, this is a single

“yes-or-no” question, and so the desired flow chart is one of these:
start% report%

A%

A%%%
empty?%

remove%
%%%%%%A%

report%
%%%%%B%

stop%

3 A B

no%

yes%

start%
add%
C%

add%
A%

add%
B%

add%
B%

add%
B%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

A%%%
empty?%

yes%

no%

8

start% report%
A% stop% start% report%

A% stop%

b. There does exist such a flow chart. There certainly exists a
procedure to decide whether or not an integer is the encoding of some
flow chart. But we have argued that every procedure can be rendered
by a flow chart.

c. There does not exist such a flow chart. Indeed, assuming there
existed such a flow chart, we could construct a flow chart Nancy, as
follows. Let Nancy i) take the flow chart encoded at X, ii) replace its
instruction “input A” by Y copies of “add A”, iii) encode the resulting
flow chart (which now has no input instructions) as an integer, and
finally iv) run the flow chart whose existence we assumed above. Note
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that this would indeed be a Nancy. But our theorem says there exists
no Nancy. Hence, there cannot exist a flow chart of the type described.

5. a. The flow chart must report “2” when “1” is input, “5” when
“2” is input, and “0” otherwise.

A"""
empty?"

remove"
""""""A"

report"
"""""B"

3 A B

no"

yes"

start"
add"
C"

add"
B"

add"
B"

add"
B"

report"
"""""C" stop"

C

start"

add"
C"

add"
C"

add"
x"

add"
x"

add"
x"

report"
"""""x"

stop"

x

input"
x"

A"""
empty?"

yes"

no"

8

start" input"
N"

stop"

N"""
empty?"

remove"
""""""N"

no"

yes" yes"

N"""
empty?"

remove"
""""""N"

no"

stop" add"
A"

add"
A"

add"
A"

report"
A"

add"
A"

add"
A"

b. Consider the number whose nth digit is “1” if n is the encoding
of a flow chart (of our special form) and A-value such that that flow
chart, with that A-value, stops; and “2” otherwise. Were this number
computable, then, clearly, one could construct a flow chart Nancy. But
there exists no Nancy, and so this number cannot be computable.
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Phy Sci 113 Nov 29, 1988

Test 2 — Comments

This test was harder than the first one. Indeed, the average score,
52, was lower than that of Test 1, although the maximum number of
points, 93 was higher. Here is the distribution of scores:

Score Nmbr receiving Score Numbr receiving
10-19 1 50-59 55
20-29 5 60-69 27
30-39 16 70-79 10
40-49 39 80-89 1

Comments on the individual problems:

1. This problem was basically routine, the little twist being that
one had to have one’s flow chart, not merely report the answer, but
rather do something in response to that answer. People did well on it
on the whole, with mostly minor, technical errors. For example, one
is not supposed to have two flow lines entering an instruction box. (It
is clear what is meant. Logically, but we have adopted the convention
of one line entering a box.) One must use, instead, a node.

2. What a flow chart does refers to whether it stops or not, and
its communications with us (i.e., its inputs and reports). Thus, for
the first part of the problem, one should respond “Reports three times
the integer input.”, rather than “Computes three times A and stores
it in B.” (The latter was assigned five points out of the seven points
allocated to this part of the problem.) Similarly, for the second part,
what counts is that, for A greater than zero, the execution never stops,
rather than that it causes bowls A and B to contain more and more
beans. With these flow charts, one has to be a little careful to check
the special cases, e.g., A = 0 here, and N = 0 in problem 1. It is
not uncommon that a flow chart does the correct thing “in general”,
but fails to do so for such a special case. The class did well on this
problem.

3. Virtually everyone got this easy problem. A few had not, ap-
parently, written down on their crib sheets the rules for encoding flow
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charts, and there were a couple of people who felt compelled to incor-
porate an “input A” somewhere in the flow chart.

4. a. This is a single question, with answer either “yes” or “no”.
As such, there must exist a flow chart to answer it. This is the same
old story we saw before, for procedures. By far the most common
answer was “One can keep searching for such x, y, z, n; but cannot be
sure of finding any. So, we do not know whether or not there is a flow
chart.” (This was assigned 3 points out of the 11 for this part.) Thus,
in this sense, too, flow charts are identical to procedures. A few people
had trouble with the idea of a flow chart with no “input” instruction.
This is fine, as long as the flow chart does what it is suppose to do. It
is just that. Lacking an input, a flow chart can only “do” one thing,
as opposed to a variety of things.

b. Here, 4 points were assigned to the answer (“yes”), the remain-
ing 11 to the reason for that answer. It was surprisingly common for
people to explain why there is a procedure for deciding whether an in-
teger is the encoding of other integers, without any direct reference to
whether it is the encoding of a flow chart. (This response was assigned
4 (for answer) + 2 (for reason) = 6.) Note that not every sequence of
integers is the encoding of some flow chart, and, indeed, the conditions
for such a sequence to be such an encoding are quite stringent. (One
could, in principle, write them all out, but the result would be very
long.) One should not think of there as being “two di↵erent kinds”
of integers – real, ordinary integers and integers that are encodings of
flow charts. An integer is an integer: It is just that one can interpret
integers in various ways.

c. This was a hard problem (as promised): I think only one person
saw it all the way through. The ides is that Nancy deals only with
flow charts with single inputs, whereas here we are asking about flow
charts with no inputs. But if one did have the flow chart asked for
here, then one could use it to build a Nancy. The reason is that one can
always suppress the “input” in the flow charts that Nancy examines,
replacing it with a suitable number of “add” instructions. Anyway,
this is a tricky point – and a good example of the kinds of arguments
one makes using the “There exists no Nancy.”-theorem. One shows
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that procedures for other things do not exist, for it if they did then one
could construct a Nancy. I assigned 4 points for the answer (“no”),
no matter what else was said. A few thought that the desired flow
chart would have to be exactly a Nancy (not noticing the di↵erence
in inputs). There were quite a few papers with an intuitive sense of
the answer, arguing that the desired flow chart would act much “like
Nancy” (despite the di↵erence in inputs), and so was unlikely to exist
(these assigned 7 out of maximum 11). If you wish to understand how
our theorem really works, understand the answer to this problem.

5. This problem, unfortunately, floundered because the definition
turned out to be confusing. Apparently, there is a special style to
mathematical definitions: they are hard to get if one is not used to
it. It seemed, with all the explanations during the test, most people
ultimately understood, basically, what the definition said. (In fact, the
notion of a computable number is an important one in mathematics.)

a. Many of the errors, unfortunately, were traceable to problems
with the basic definition. Thus, some wanted to “input” 1/4 at A,
while others wanted to input the digits of 1/4; 2, 5, 0,. . . But one is
supposed to input n – which digit one wants – and have the flow chart
report the digit. Thus, if 1 is input, 2 is to be reported; if 2 input,
5 reported; if 3 input, 0 reported; etc. The “later” digits of .25, by
the way, are “0” ’s: 1/4 = .25000000000. . . A few who asked during
the test were told that one counts the digits from the left (for there is
no way to do it from the right) – but I do not think this was a real
problem for anyone.

b. This was the second hard problem. It gave rise to an additional
(unintended) issue: What, exactly, is a “number”? For our purposes,
one can think of a number as being nothing more and nothing less
than its digits. Thus, to “specify” a number, one need only give the
rule for determining its digits, in succession. (Note here “rule” and
not “procedure”.) Thus, for example, “1/0” and “infinity” are not
numbers, for they give rise to no rules. (A few people wanted to go to
imaginary numbers. They won’t work because, if they are to be dealt
with by flow charts, one will have to encode them to integers. But,
once so encoded, they lose their apparent “noncomputability”.) What
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the question asks, then, is for a number (i.e., a rule for the digits),
without a procedure for the digits. To find one, then, one must find
a “question” (which of course, will determine the digits) that has an
answer, but no procedure for that answer. But we have just such
a thing: the question of whether flow charts stop. So, we obtain a
noncomputable number by making its digits depend on what happens
to flow charts. In any case, it is very tricky, and I did not expect many
to get it. Note, for example, that pi is very computable (and, indeed,
we have even discussed briefly, the procedure for computing its digits).
In any case, I did not expect people to find this part easy – and you
didn’t. A few, however, did have a general idea of how to proceed.

In terms of di�culty, etc. the final will be rather like this test.
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Phy Sci 113 Dec 6, 1988

Final Examination

Name:
Please answer and briefly explain your answer. “Does there exist flow
chart?” may require answer “We don’t know”.

OX#

X X X
X

XX

X

XO

X XX

O#

O#
O#O#O#

O#

O#

O#

X

O#X#

1. (20 points) consider the tic-tac-toe config-
uration at the right.

a. Suppose first that it is X’s move. Of the
five possible moves for X, which are good moves?

b. Now suppose instead that it is O’s move.
Is this configuration X-winnable, O-winnable, or
drawable?

2. (14 points) Draw a flow chart (using only the 7 basic instruc-
tions!) that accepts integer n, and reports whether or not that integer
is greater than 4.

3. (26 points) Consider the following tag game: The alphabet
consists of “a”, “b”, and “c”; for “a” leftmost, “bc” is appended on
the right, for “b”, “acb”, and for “c”, “bac”; and in every case the
leftmost three letters are deleted. We wish to construct a flow chart
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that will accept as input any initial string (suitably encoded), and
report whether the resulting tag game will terminate, cycle, or neither.

a. describe any suitable encoding for the initial strings.

b. Does there exist such a flow chart?

4. (20 points) We wish to construct a flow chart that will decide
whether or not any given candidate for a Nancy in fact works as a
Nancy.

a. Now many inputs would such a flow chart have? (explain
briefly.)

b. Does there exist such a flow chart?
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5. (30 points) For each of the questions below, we wish to construct
a flow chart to answer the question(s). How many inputs would such
a flow chart have? Does there exist such a flow chart?

a. Given integer n from 1 to 9, do there exist 100 consecutive n’s
in the decimal expansion of ⇡?

b. Is it the case that every integer is the di↵erence of two primes?

c. Given integer n, do there exist positive integers x, y, and z with
x

n + y

n = z

n?

6. (14 points) In our proof of the nonexistence of a flow chart
Nancy, we showed that, given any candidate for a Nancy, there exists
one particular set of X- and Y-values for which this candidate gives
the wrong answer. Show that there exists at least one other such set
of values.
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7. (26 points) Does there exist a flow chart that accepts, at “input
X”, any number that encodes a flow chart of our special form, and, at
“input Y”, any nonnegative integer, and

a. Stops if that flow chart with that A-value stops, and continues
forever if it continues forever?

b. Stops if that flow chart with that A-value continues forever, and
continues forever if it stops?
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Phy Sci 113 Dec 6, 1988

Final Exam — Solutions

1. a. The move at the middle of the bottom row is not a good move.
All others are. This is an X-winnable configuration, and so a move,
to be a good move, need only result in an X-winnable configuration.
This single move does not; and the other four do.

b. This configuration is drawable, That is, it is possible for O,
against any play by X, to achieve at least a draw.

2.

start% input%
N%

A%%%
empty?%

remove%
%%%%%%A%

report%
%%%%%B%

stop%

3 A B

no%

yes%

start%
add%
C%

add%
A%

add%
B%

add%
B%

add%
B%

report%
%%%%%C% stop%

C

start%

add%
C%

add%
C%

add%
x%

add%
x%

add%
x%

report%
%%%%%x%

stop%

x

input%
x%

report%
A%

remove%
%%%%%%N%

no%

remove%
%%%%%%N%

A%%%
empty?%

yes%

yes%

yes%

no%

8

N%%%
empty?%

remove%
%%%%%%N%

remove%
%%%%%%N%

Here, “0” is reported if N is greater than four, and “1” otherwise.

3. a. We could, for example, encode an initial string by the integer
having one digit for each letter in that string, where “1” stands for “a”,
“2” for “b”, and “3” for “c”. The empty string would be represented
as “0”. Thus, for example, initial string “bbac” would be encoded as
integer “2213”.

b. There does exist such a flow chart. First note that, since in no
case are more than three letters appended on the right while three let-
ters are always deleted on the left, the initial string can never grow in
size. Hence, every string will either terminate or cycle: The game can-
not go on forever without doing one of these two. But these two pos-
sibilities could be recognized by a flow chart. Hence, we need merely
construct a flow chart that plays out the tag game, checking after each
step to see whether the tag game has terminated or cycled. Eventually,
one will occur.

4. a. The flow chart would have a single input. Into this input
would be entered the encoding of our given candidate for Nancy.
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b. There does exist such a flow chart. Indeed, here it is:

A"""
empty?"

remove"
""""""A"

report"
"""""B"

3 A B

no"

yes"

start"
add"
C"

input"
X"

add"
B"

add"
B"

add"
B"

report"
"""""C" stop"

C

start"

add"
C"

add"
C"

add"
x"

add"
x"

add"
x"

report"
"""""x"

stop"

x

input"
x"

A"""
empty?"

yes"

no"

8

start" report"
A" stop"

start" report"
A" stop"

Here, our flow chart reports “0” if the candidate (encoded at X) is not
a Nancy, and “1” if it is. (Recall: There exists no Nancy!)

5.a. The flow chart would have a single input, into which we are to
enter the integer n (from 1 to 9). There does exist such a flow chart.
There are only nine questions total, each of which has answer “yes”
or “no”. Hence, there is a grand total of 29 = 512 possible sets of
answers. For each of these, we can draw a flow chart. One (although
we do not know which one!) is the correct flow chart.

b. This is a single “yes-or-no” question. There would be no inputs.
There does exist such a flow chart. Indeed, here it is:

A"""
empty?"

remove"
""""""A"

report"
"""""B"

3 A B

no"

yes"

start"
add"
C"

input"
X"

add"
B"

add"
B"

add"
B"

report"
"""""C" stop"

C

start"

add"
C"

add"
C"

add"
x"

add"
x"

add"
x"

report"
"""""x"

stop"

x

input"
x"

A"""
empty?"

yes"

no"

8

start" report"
A" stop"

start" report"
A" stop"

Here, “0” is reported for “no”, and “1” for “yes”. (Recall: The integer
“19” is not the di↵erence of two primes.)

c. There would be a single input, into which would be entered the
value of n. We do not know whether or not there exists such a flow
chart.

6. Fix a candidate for flow chart Nancy. The X- and Y-values we
used in our proof were x= G and Y = G, where G is the integer that
encodes a certain flow chart George constructed from our candidate
for Nancy. Let us now construct a new flow chart, call it Henry,
that is exactly the same as George, except that an extra “report S” is
added just before the instruction “stop”. (Almost any non-substantive
change in George would do here.) Now try our candidate for Nancy
again, but which X = H and Y = H, where H is the integer that
encodes this flow chart Henry. But Nancy must also give the wrong
answer for these X- and Y-values, by exactly the same argument as for
George. Here, then, is a second such set of values. (Note that H must
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be a di↵erent integer from G, since Henry is a di↵erent flow chart from
George.)

7. a. There does exist such a flow chart. As we have discussed,
there exists a flow chart that merely “runs the flow chart encoded at
X, with A-value at Y, doing whatever it would do”. Such a flow chart
would do nicely here.

b. There does not exist such a flow chart. Suppose, for a moment,
that we had one. Then we could construct a flow chart Nancy. We
would build a flow chart that first runs the flow chart answering (a) for
ten steps, then the flow chart answering (b) for ten steps, then the one
answering (a) for ten steps then the one answering (b) . . . Eventually,
either the flow chart answering (a) or the flow chart answering (b)
would have to stop. By determining which one stops, and reporting the
result (as “stops” if the flow chart answering (a) stops, and “continues
forever” if the flow chart answering (b) stops), we would have our
Nancy. But there does not exist a flow chart Nancy. Hence, there
cannot exist the flow chart required for part (b).
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