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1. Introduction

A key activity in mathematics is the attempt to capture certain intuitive ideas.
By “capture”, we mean to express these ideas in a form which is precise
and clear, i.e., in a form which can be communicated without requiring that
one’s listener be instilled with all the nuances of one’s own intuition. Two
closely related activities are those of isolating and generalizing. One wishes
to know exactly which features of some collection of mathematical objects
are relevant to which conclusions, and how these various features are related
in more general contexts.

One example of these activities involves the system of real numbers. One
knows that one can, among other things, add numbers, and that this opera-
tion satisfies certain properties. [For example, 3+19 = 19+3; (3+19)+31 =
3 + (19 + 31).] These properties are, of course, intuitively clear, and indeed
represent part of our mental picture of what “addition” means. The response
of the mathematician to this state of a↵airs would be the following. What is
really relevant here? The key elements are apparently a set (in this example,
the set of real numbers), together with a specified operation on this set (in the
example, addition of numbers). The “addition-ness” of this operation would
be expressed by demanding certain properties (such as those above) of this
operation. One thus “captures” addition of real numbers by introducing the
notion of a set together with an operation, subject to certain properties. This
“distilled essence of addition” is called an abelian group. One example of an
abelian group is of course the numbers under addition. But it turns out that
there are many others. For example, the non-zero numbers under multiplica-
tion (which operation, of course, has all the same properties as addition, e.g.,
2⇥ 3 = 3⇥ 2; (2⇥ 3)⇥ 7 = 2⇥ (3⇥ 7)) also form an abelian group. There are
also examples in geometry, for instance, the set of rotation about the origin
in the plane, or the set of translations in Euclidean three-dimensional space.
An abelian group, then, is just “the numbers under addition”, but shorn of
all extraneous elements (such as the issue of which numbers are larger than
which others; which are written with straight and which with curved lines),
and generalized to allow other examples. at least two benefits flow from, in
this example, formulating the notion of an abelian group. First, one acquire
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2 1.

a sense of a deeper understanding of what “addition” is all about.
The second is more practical. It turns out that many facts about addition

of numbers are actually true more generally for any abelian group. Thus,
one has only to establish such facts once – for the general abelian group –
whence they will automatically be available within each particular example.

Mathematics proceeds on two levels: the intuitive, in which one forms
a mental picture of the objects with which one deals and their relationships
with each other, and the more formal, which consists of the definitions, the-
orems, and proofs. It is the interplay between these two levels – and in
particular the translation from the first to the second – which is one of the
essential and exciting features of mathematics.

It is our purpose here to see mathematics in action: how this interplay
works, how mathematics operates and builds, how mathematicians think.
This can apparently only be done by means of an example, and our example
is to be the branch of mathematics called topology, Why topology? It has
several attractive futures. First, this is an area in which all of us have already
a rich and strong intuition, on which we shall be able to draw. Second,
topology has the feature that interesting theorems are very near the surface.
That is to say, topology has a particularly high ratio: (what comes out as
theorems) / (what has to be put in as definitions, etc.). A third attractive
feature is that topology is very di↵erent from the mathematics with which
one may be familiar, e.g., algebra, and so one is provided the opportunity to
see the breadth that is mathematics. Finally, topology is attractive because it
is an active field of current research in mathematics.



2. Sets in the Plane

In this section we do two things. First, we shall try to indicate, by means
of some examples, the kind of structure one is (and the kind one is not)
trying to capture in topology. That is, we indicate what topology is all about.
Second, we shall discuss the intuitive meaning of certain notions which are,
ultimately, to be defined, i.e., to be made precise in topology. Both of these
goals are to be accomplished by a discussion and description of certain sets
in the plane.
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Recall the Euclidean plane, i.e.,
the space of plane geometry. We
may represent points in the plane
by the usual Euclidean coordinates,
x and y. That is, we introduce or-
thogonal x� and y�axis, as shown
on the right. Than any point in the
plane is represented, by two num-
bers, its x� and y�coordinates as follows. First, drop perpendicular from the
point to the x� and y�axes, as shown. Then the x�coordinate of the point is
the distance from the origin to the foot of the perpendicular along the x�axis,
and similarly for the y�coordinate. The point in the figure, then, would be
represented (x, y). Any point in the plane is represented in this way by two
numbers, and, conversely, any two numbers represent a unique point of the
plane.
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We shall be interested, for the moment, in
various sets in the plane. To characterize a set,
one must give some clear, unambiguous pre-
scription for deciding which points of the plane
are in the set and which are not in the set. This
can be done in a number of di↵erent ways. For
example, one could give an equation in the co-
ordinates (x, y), e.g., “the set of all points (x, y)
in the plane for which y = x

2”. This is, of
course, such a prescription: To decide whether or not a given point, rep-
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4 2.

resented (x, y), is in this set, one computes x

2, and checks to see whether
or not it is equal to y. The resulting set is of course that represented by the
parabola in the figure.
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One could also specify a set by giv-

ing an inequality in the coordinates, e.g.,
“the set of all points (x, y) for which
x

2 + y

2 < 1”. This set is of course the
disk shown. More generally, any com-
bination of equations and inequalities on
(x, y) will provide a clear, unambiguous
prescription, and thus will define a set in
the plane.
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For example, “the set of all
points (x, y) for which x

11 �
13/6 x

3
y  .16 y

5 or y

3 � xy , 0,
except that all points with y =
3 are excluded” describes a set
in the plane, for again, given a
candidate, (x, y), one could de-
cide whether or not it is in the
set. Sets can also be specified by
other than algebraic equations. For instance, “the set of all points (x, y) for
which x is a rational number” describes a set. This set, for example, consists
of a collection of vertical lines in the plane, one for each rational x�value.
Thus, there are vertical lines at x = 1/2 and at x = �237/359, but none at
x = ⇡, for ⇡ is of course not rational. As other examples, “the set of all points
(x, y) for which the decimal expansion of y contains no digit 7” or “the set
of all points (x, y) for which the area of that part of the circle of radius x

2

and center (x, y) which lies to the left of the y�axis is less than 3” specify
sets in the plane.

The following are examples of things which would not be regarded as
specifying sets in the plane: “If you want to know whether (x, y) is in the
set, flip a coin: heads, in; tails, out.” “Point (x, y) is in the set if y is a
positive integer, and the Bears win Super Bowl y.” These would be regarded
as unclear and/or ambiguous.

I hope these few examples make the distinction clear. In fact, there is
an active branch of mathematics which deals in part with the issue of what,
precisely, “specify a set” should mean.

We next wish to discuss certain intuitive features of various sets in the
plane. We emphasize that the purpose of this discussion is merely to develop
some common ground for later use. What follows is not mathematics.
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Given a set in the plane, we wish to mean by
its boundary the set of all points “on the edge of
the given set”. Consider, for example, the disk, the
set of points (x, y) with x

2 + y

2 < 1. Its boundary
should be circle shown, i.e., the set of points (x, y)
with x

2 + y

2 = 1. This circle is also the bound-
ary of the “disk with its edge included”, i.e., of
the set of points (x, y) with (x

2 + y

2  1. For the
more complicated set illustrated in the second fig-
ure, its boundary would again be its edge, as indi-
cated. Given a set in the plane, we wish to mean by
its interior the set of all points which are “actually
inside the set, i.e., neither external to the set nor on
its boundary”. Thus, for the two examples illustrated above, the interiors are
to be the cross-hatched regions, excluding in each case the boundary.
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Thus, we have two intuitive features of sets, the boundary and interior.
Each is to assign to a given set another set which is its interior. Each is
to assign to a given set another set (i.e., to a given set the set which is its
boundary), or the set which is its interior). The next two features will have
a somewhat di↵erent character: They will be properties which a given set
is to either have or not have. We wish to describe a set as being connected
if it “consists of just one piece, not of two or more”. As examples, the sets
illustrated above (a disc, a segment of a curve, a disk with a segment of a
curve going o↵ of it and another segment of a curve crossing it) are to be
regarded as connected. By contrast, the sets below (two disks, a disc and a
point, a curve with a point missing) are not to be regarded as connected, for
each “consists of two or more pieces”.
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Finally, we wish to regard a set as bounded (nothing to do with “bound-
ary”) if it “remains in a finite region of the plane; does not go o↵ to infinity”.
As examples, all of the sets illustrated on the previous page were bounded.
Some examples of sets which are not to be regarded as bounded are the en-
tire plan (“the set of all points (x, y)”), and an infinitive straight line (for
example, “the set of all (x, y) with x = 1”).
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1 γ 
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 y

 x
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 y
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distorted disk 

 y

 x

set 

The four features described above,
boundary, interior, connected, and bounded,
will, as it turns out, all be incorporated into
topology. By way of indicating in a general
sense what topology is about, we can also
give some examples of “features of sets”
which will have no place in topology. Such
features include “being a disk”, “being a
straight line”, “being more than one foot in
size”. What is it about these features which
will make them “non-topological”? It is a distinction which is di�cult to
make clearly at this point. All of these features refer to how the points of
the plane are arranged to form the plane. The essence of the distinction is
the following. Imagine that our sets are drawn, not on the rigid plane we
have been imagining, but rather on a rubber sheet. We now allow our rubber
sheet to be stretched and pulled (but not folded or torn), and ask which of
our features thereby remain the same. For example, “being connected” does
remain the same. A disk, for instance, is connected. If we were to draw our
disk on a rubber sheet, and then stretch and pull, there might result (when
the stretched and pulled sheet is imprinted back on the rigid plane) the set
illustrated on the right. But this set (a “distorted disk”) is of course also
connected.

More generally, one convinces oneself that such a distortion (by imprint-
ing on a rubber sheet, stretching and pulling, and then imprinting back onto
a rigid plane) always leaves any connected set connected, and any set not
connected not connected. In a similar way, the boundary remains the same
under our distortion. What “remains the same” means, in this case, is the
following. Fix a set (say, a disk), and determine its boundary (in this exam-
ple, its circular edge). Now imprint both the set and its boundary (say, with
the set in blue and the boundary in orange, to keep them separate) on a rub-
ber sheet. Stretch and pull the sheet, and then imprint both colors back onto
the rigid plane. Then, as seems clear, the boundary of the resulting blue set
will be just the resulting orange set. Similarly, interior and bounded remain
the same under this stretching and pulling. But note, by contrast, that our
non-topological properties are altered by this operation. That is to say, a set
which is a disk, which is a straight line, or which is less than one foot in size,
need not remain so under stretching and pulling of the rubber sheet. We thus
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have at least a rough criterion for what is likely to be a topological feature
of sets in the plane and what is not. Topology is sometimes called “rubber
sheet geometry”.

Two other possible features of sets which will play no role in topology
are “being excessively large” and “being attractive”. For these, one does not
perhaps have a su�ciently clear intuitive notion – or at least none which is
likely to be in reasonable agreement with others – to even get started. It
would be very di�cult to pin down what it is one is trying to capture.

So, we have decided to focus on four features of set in the plane: bound-
ary, interior, connected, and bounded. Why did we call our treatment of
these features an “intuitive discussion”? Why did we not instead regard
“The boundary of a set is its edge.”, “The interior of a set consists of the
points inside the set.”, “A set is connected if it consists of no more than one
piece.”, and “A set is bounded if it remains in a finite region of the plane.”
as the definitions of these four terms? The reason is that these sentences
are not su�ciently precise to be regarded as proper definitions in mathemat-
ics. A definition in mathematics is supposed to be unambiguous, i.e., such
that someone, on reading the definition but without using subtle nuances
of what words mean in English, can decide in every case whether or not
the conditions of the definition are applicable. But our characterizations of
“boundary”, “interior”, “connected”, and “bounded” are ambiguous. Some
examples will illustrate this point. Consider the set in the plane consisting
of the single point (0, 0), i.e., the point at the origin. What is the boundary
of this set? One may have an opinion on this question (presumably, either
that the boundary consists of no points, or that the boundary is just the sin-
gle point at the origin), but I would venture that one is not so confident that
others will share that opinion as one was, say, with the disk. What is the
interior of this set? Is it this one point or no points. Consider, as a more
extreme example, the set illustrated in the second figure on page 4. What is
the boundary of this set? Is it all points in the plane? Just those (x , y) with x

rational? Those with x irrational? None of the points in the plane? What is
the interior of this set? Is this set connected? Clearly, our discussion of the
terms “boundary”, “interior”, “connected”, and “bounded” did not provide
a clear prescription for deciding what the boundary or interior of a set is,
whether a set is connected or bounded. Our discussion, in short, was not a
definition in the sense of mathematics.

We see that a definition is a somewhat di↵erent thing in mathematics
than in everyday English. [It is too bad that a single word is used for both.]
For example, my dictionary defines “chair” as “a seat, usually movable, for
one person”. Clearly, this definition is intended merely to give one a general
idea of what sort of objects are conventionally called chairs and what sort are
not. It is certainly not intended to permit one to make, unambiguously for
every object one sees throughout one’s life, the decision as to whether or not
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that object is a “chair”. In particular, “usually . . .” could never be inserted
in a definition in mathematics. We shall see some examples of mathematical
definitions shortly.



3. Distance in the Plane

We now have before us a typical example of the “raw material” of mathe-
matics. We have some intuitive notions (namely, that of the boundary and
interior of a set; that of whether a set is connected or bounded), and also a
general idea of the limits of our intuition. The task we face, as mathemati-
cians, is to “capture” these notions, i,e,. to formulate some precise defini-
tions, within mathematics, of the words “boundary”, “interior”, connected”,
and “bounded”. We remark that we are not exactly trying to “discover” the
definitions (as though they already exist, somewhere out there, and we are
merely trying to bring them to paper) – but rather we must “concoct” them.
The only requirements on our concocted definitions are, first, that they be
clear and unambiguous, and, second, that they seem to reflect our intuitive
ideas of what these words mean. In this section, we make a preliminary
attempt at such definitions. This attempt will be refined shortly.
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The first decision we face – a
critical one – is that of what struc-
ture we shall use in the formula-
tion of our definitions. The plane,
of course, has a great deal of struc-
ture: that of “straightness” of lines,
of “orthogonality” of intersecting
straight lines, of “circle-ness” of
circles, etc. But presumably only
a small part of all this structure is
relevant to the sorts of things we are after. What we want to do, then, is
somehow isolate what it is about the plane which gives rise to our ideas
about “boundary”, etc. In practice, one would normally try several di↵er-
ent structures, selecting them initially based on one’s judgment as to what
looks promising, and finally based on what choices actually lead to appro-
priate definitions. [How accurate one’s judgment is on such issues is one of
the important distinctions between a good and a poor mathematician.] We,
however, do not have the time to explore all of these false starts (e.g., to try
“straightness”, decide that it seems very di�cult to formulate a definition for
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“boundary” in terms of straightness, and then finally realize that straightness
was not a very good choice in the first place, since of course stretching and
pulling of the rubber sheet certainly destroys straightness). We, therefore,
merely jump to that structure which, as it turns out, works. Recall the notion
of the geometrical distance (e.g., as measured by a ruler) between two points
in the plane. We denote the distance between points p and q by d (p, q),
There is, of course, a simple formula for this distance in terms of the co-
ordinates for the points. Let p have coordinates (x, y), and q coordinates
(x

0, y

0). Then, as shown in the figure, one constructs a right triangle, one leg
of which has length (x

0 � x), the other, length (y0 � y). But the hypotenuse
of this triangle is the line segment joining p and q – a segment whose length
we have agreed to denote d (p, q). So, by the Pythagorean theorem, we have
d (p, q)2 = (x

0 � x)2 + (y0 � y)2. Taking the square root of both sides, we
obtain our formula for d (p, q):

d (p, q) =
q

(x

0 � x)2 + (y0 � y)2

Thus, for example, the distance between the point labeled (1, 2) and the point
labeled (4, 6) is

p
(4 � 1)2 + (6 � 2)2 =

p
32 + 42 =

p
9 + 16 =

p
25 = 5.

Our program. then, is to give expression to our ideas about “boundary”,
etc., using this distance.
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We begin with the notion “bound-
ary”. Let us, to fix ideas, focus on one
particular set A, say the unit disk cen-
tered at the origin, i.e., the set of all
points (x, y) with x

2 + y

2 < 1. Consider
some point p, such as the point (2, 2), as
shown in the figure. Now we clearly do
not want this point p to be in the bound-
ary of our set A. The question is: What is the basis for this attitude toward
the point p? One might answer by saying that the distance of the point p

from the set A is greater than zero. But this, unfortunately, is not a very use-
ful expression of our attitude, for we do not know what “distance of a point
from a set” means (only “distance of a point from a point”). Alternatively,
one might say that the distance of the point p from the point at the origin (a
distance, in this example, of about 2.8) is greater than 1, the radius of the
disk A. Although this statement certainly does say what we want to say for
this particular example, it is, unfortunately, rather strongly tied to the exam-
ple itself (i.e., to the fact that A is a disk). If, for example, A were some more
complicated set, then we would not be able to say“. . . the radius of the disk
A. What we want to say, of course, is that our point p should not be on the
boundary of the disk because it is “well away” from the disk. After a few
more similar tries, one might hit upon the following statement: There is no
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point within distance 1/2 of p which is also in A. This statement is, of course
true. Indeed, the locus of points within distance 1/2 of p is just the disk of
radius 1/2 centered at p, and this disk does not intersect the set A, i.e., it has
no points in common with A. So, one might be tempted to regard a point p

as “well outside” of set A (so, not on the boundary of A) if there is no point
within distance 1/2 of p which is also in A. But this, unfortunately, is still
not quite right.
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Consider, for example, the
point p

0 of the figure. Now
this p

0 is certainly “well out-
side” the disk (perhaps not as
“well outside” as was p, but at
least “well enough outside” so
that we do not want p

0 to be
on the boundary of A). How-
ever, there is a point within dis-
tance 1/2 of p

0 which is also in
A, namely the point indicated in
the figure. So, one might think of changing our statement to: Point p is well
outside of set A if there is no point within distance 1/10 of p which is also
in A. This statement of course holds for both our point p and our point p

0.
But this will not work either. Consider the point p

00 in the figure. It is still
to be “well outside” of A, but now there is a point within distance 1/10 of
p

00 and also in A. Our mistake is that we are committing ourselves to “how
well outside” (i.e., to the distance, 1/2 or 1/10) before we know which point
(p or p

0 or p

0’) we are to consider. All we have to do is reverse the order of
commitment (i.e., allow ourselves to choose the distance after we know the
point to be considered). This we do by the following statement: We regard
a point p as “well outside” of A if, for some positive number ✏, no point is
within ✏ of p and also in A. [Note the word “some”: We get to choose ✏,
the distance, after we know what p is.] This statement works. Consider, for
example, the figure above. The point p, according to this statement, is well
outside of A, for we may choose ✏ = 1/2: There is no point within 1/2 of p

which is also in A. That is, there is some positive ✏ (namely, 1/2) such that
no point within ✏ of p is also in A. The point p

0 is also “well outside” of A,
for some positive ✏ (namely, 1/10), there is no point within ✏ of p

0 which is
also in A. Finally, the point p

00 is also “well outside” of A, e.g., by choosing
✏ = 1/100.

All we have done so far is identify certain points which we do not want
to be in the boundary of our set, namely those which are “well away” from
the set, in the sense above. But we also want to exclude from the boundary
those which are “well inside” the set. Consider, for example, the point p

in the figure, given, say by (1/2, 1/2). This p, of course, is not to be on
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our boundary. How do we express the fact that it is “well inside” our set
A? Again, one would try various criteria, most of which would not look too
promising. [E.g., the distance of p from the origin (about .7 in this example)
is less than the radius of the disk. But this criterion depends on our particular
set A.]
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Finally, one would notice that
the “well inside-ness” of p can be
expressed thus: Every point within
distance 1/4 of p is also in A. In-
deed, the locus of points within dis-
tance 1/4 of p is the small disk
shown, and all such points are in
our set A. Again, however, the
criterion “all points within distance
1/4 of p be also in A” turns out not
to be quite right. The point p

0 of
the figure, which we would certainly wish to regard as being “well inside”
A, does not have the property that all points within distance 1/4 of p

0 are
also in A. Again, we must allow ourselves to choose “how well within”, i.e.,
to choose the distance, after we know which point we are to consider. Thus,
as before, end up with the following: We regard point p as “well inside” set
A if, for some positive ✏, every point within ✏ of p is also in A. With this
criterion, then, the point p in the figure above is “well within” A (choosing
✏ = 1/4), as is the point p

0 (now choosing, say ✏ = 1/100).
We now have all the ingredients to formulate our definition. We want the

boundary of A to be what is left over after one excludes all the points which
are “well outside” A, in the sense above, and also all points which are “well
inside” A, in the sense above. All we have to do is figure out how to say
all this in one sentence. One convinces oneself (e.g., by reexamination of
the figure on page 11) that point p fails to be “well outside” of A provided
that, for every positive ✏, there is a point within ✏ of p and also in A; and
that point p fails to be “well inside” A provided that, for every positive ✏,
there is a point within ✏ of p and also outside of A. But the boundary of A

is supposed to be just those points which both fail to be “well outside” of A

and fail to be “well inside” A. Thus, we arrive at:
Definition. Let A be a set in the plane. Then the boundary of A is the set
of all points p such that, for every positive number ✏, there is a point q with
d (p, q)  epsilon and q in A, and also a point q

0 with d (p, q

0)  ✏ and q

0

outside of A.
A few remarks are in order. First, the words which follow “Definition”

above are the first things we have written which may be regarded as “real
mathematics”. All else – all the discussion, false attempts, examples, and
so on – was merely some general remarks to motivate and get one in the
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mood. What preceded the definition, on the other hand, is a good example
of the sort of activity in which mathematicians are engaged. [Only a small
fraction of the time of a mathematician is normally spent “calculating”, or
“working with formulae”.] Good judgment is no less important an attribute
for a mathematician than for anyone else. The second remark involves again
the issue of what a definition is supposed to do in mathematics. The role of
this definition is to permit one to decide, unambiguously, which points are
to be in the boundary of any given set A and which are not. This is quite
a di↵erent role from that of the definition of “chair”. To decide whether or
not an object is a “chair”, one may use the dictionary definition as a rough
guide, but one also uses one’s lifetime of experience with chairs. The dic-
tionary definition is not intended to replace that experience. But not so in
mathematics. The following point, which sounds trivial when stated, but
which seems often to be overlooked in the heat of the moment, cannot be
overemphasized: To decide what the boundary of a set is, one uses precisely

what it says in the definition, nothing more and nothing less. One does not
use one’s ideas or thoughts about boundaries; one does not think. Indeed,
this is why we had to work so hard to get the definition. This is one feature
which sets mathematics apart from other disciplines.

We shall denote the boundary of set A by bnd (A).
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We now give some examples of
application of the definition to de-
termine the boundaries of various
sets. Let us consider first the set we
have just used as our example, the
disk. Is the point p in bnd (A)? Is it
true that, for every positive ✏, there
is a point q within ✏ of p and in A,
and also a point q

0 within ✏ of p and
outside of A? The answer is again
no. Set ✏ = 1/2. Then there is no
point q within distance ✏ of p and in
A. Indeed, the locus of points within 1/2 of p is the disk shown. Is p

0 in bnd
(A)? Is it true that for every positive ✏, there is a point q within ✏ of p and in
A, and also a point q

0 within ✏ of p and outside of A? The answer is again
no. Set ✏ = 1/4. Then there is no point q within distance ✏ of p and outside
of A, for the disk shown lies entirely within A. Finally, we consider the point
p

00. Is p

00 in bnd (A)? Is it true that, for every positive ✏, there is a point q

within ✏ of p and in A, and also a point q

0 within ✏ of p and outside of A?
The answer, we claim, is yes. Consider, for example, ✏ = 1/2. The locus

of points within distance 1/2 of p

00 is the disk shown. Is there within this
disk a point in A, and also in this disk a point outside of A? There certainly
is, namely the two points shown.
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Consider, then, another value
for ✏, say ✏ = 1/10. Then the lo-
cus of points within distance 1/10
of p

00 would be a smaller disk. Is
there within this disk a point in A,
and also in this disk a point outside
of A? Again, there is. Clearly, then,
for every positive ✏, there is a point
within ✏ of p

00 and in A, and also a
point within ✏ of p

00 and outside of
A. That is to say (recalling the defi-
nition), the point p

00 is on the boundary of A. It should now be clear that bnd
(A), the boundary of A, is just the circular “edge” of A, that is, the set of all
points (x, y) with x

2 + y

2 = 1.
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Suppose next that we let A in-
stead be the disk with its boundary,
i.e., the set of all points (x, y) with
x

2 + y

2  1. Repeating the previous
paragraph word for word, we find
that bnd (A) is the same as the set
above, namely the set of all points
(x, y) of the plane with x

2 + y

2 = 1.

Next, let A be the rectangle in the plane given by all (x, y) with 0 < x < 2
and 0 < y < 1. We determine bnd (A). Just as above, the point p is not in
bnd (A) (for it is not true that, for every positive ✏, there is a point within
✏ of p and in A, and also a point within ✏ of p and not in A. Specifically,
choose ✏ = 1/3 as shown. Then no point within 1/3 of p is in A.) Similarly,
the point p

0 is not in bnd (A). The point p

00, however, is in bnd (A), for,
given any positive ✏, there is indeed a point within ✏ of p

00 and in A, and
also a point within ✏ of p

00 and outside of A. Thus, the boundary of this set
A is again its “edge”. More precisely, bnd (A) is the set of all points (x, y)
satisfying either i) x = 0 and 0  y  1, or ii) x = 2 and 0  y  1, or iii)
y = 0 and 0  x  2, or iv) y = 1 and 0  x  2. [These four choices define
the four “sides” of the rectangle.]
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We now modify this last exam-
ple slightly. Let A now be “two
squares side by side, but without the
line between them included”, i.e.,
the set of all (x, y) with 0 < y < 1
and either 0 < x < 1 or 1 < x < 2.
Is the point p shown (e.g., (1, 1/2))
in bnd (A)? Is it true that, given any
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positive ✏, there is a point within ✏ of p and in A, and also a point within ✏
of p and outside of A? The answer is yes. The locus of all points within ✏ of
p, for a typical ✏, is shown. There is indeed a point (namely, q in the figure)
within ✏ of p and in A, and also a point (namely, q

0 in the figure) within ✏ of
p and outside of A. Clearly, this holds for any ✏. So, our point p is in bnd
(A).
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We consider next a somewhat
more exotic example. Let A be the
line given by: the set of all (x, y)
with y = 1. We determine bnd
(A). The point p, for example, is
not in bnd (A), for it is not true that,
for any positive ✏, there is a point
within ✏ of p and in A, and also a
point within ✏ of p and outside of
A. Choose, say, ✏ = 1/4, as shown.
Then no point within 1/4 of p is in A. The point p

0, by contrast, is in bnd
(A). Given any ✏, choose q (within ✏ of p and in A), and q

0 (within ✏ of p and
outside of A) as shown. We conclude, then, that the boundary of this set A is
just the set A itself.
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Let A be the single point at the origin,
(0, 0). Is this point itself in bnd (A)? It is.
Is it true that, given any positive ✏, there is a
point within ✏ of p (the origin) and in A, and
also a point within ✏ of p and outside of A?
There certainly is: For the point within ✏ of
p and in A, choose p itself (clearly within
✏ of p, and certainly in A); for the point
within ✏ of p and outside A, choose the point indicated q

0 in the figure. Thus,
for this set A, we have bnd (A) = A.

Let A be entire plane, i.e., the set of all points (x, y) in the plane. What is
bnd (A)? Let’s pick a point p, say the origin, and try it. Is it true that, given
any positive ✏, there is a point within ✏ of p and in A, and also a point within
✏ of p and outside of A? There is not, and in fact there is no point in the plane
“outside of A”, for now A is the entire plane. So, the origin p is not in bnd
(A). Similarly, any other point p we choose will not be in bnd (A). Thus, in
this example bnd (A) is the set having no points. [It is customary to express
our conclusion in this way, and not “There is no bnd (A).] The set having no
points, i.e., the set such that for all (x, y) this point is not in the set, is called
the empty set. [Note that this is an unambiguous statement of what is in and
what is out of the set, namely, everything is out.] Our conclusion, then, is
that the boundary of the entire plane is the empty set.

Let A be the empty set. What is bnd (A)? Pick a point p, say the origin
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(0, 0). Is it true that, given any positive ✏, there is a point within ✏ of p and
in A, and also a point within ✏ of p and outside of A? It is not true, and in
fact there is no point whatever in A”, since now A is the empty set. So, this
p is not in bnd (A) – and clearly no other point will be in bnd (A) either. We
conclude, then, that the boundary of the empty set is the empty set.

These examples are intended, not only to illustrate what our definition of
the boundary gives under various circumstances, but also to make the follow-
ing point: When confronted with a definition in mathematics, one should, in
the first instance, apply it mechanically to various examples, and see what
it gives. Eventually, after one has “experimented” with enough examples,
one acquires a feeling for how the definition works, and in particular one
becomes able to apply the definition without going through all the words
every time. If you do not feel that at this point you can do this for “bound-
ary”, I would suggest that you make up some sets of your own, and apply
the definition to determine their boundaries.

We next turn to the definition of the second of our notions, that of the
interior. Recall that we would like the interior of a set to consist of the points
“well inside” that. But we have already obtained, on page 11, a precise
formulation of this intuitive notion. We are thus led immediately to:
Definition. Let A be a set in the plane. Then the interior of A is the set
of all points p such that, for some positive number ✏, every point q with
d (p, q)  ✏ is in A.

Again, we apply the definition to various examples. We shall denote the
interior of set A by int (A).

Let A be the disk, as shown in the figure on page 13. Is the point p in int
(A)? Is it true that, for some positive ✏, every point within ✏ of p is in A? The
answer is no: Indeed, for any positive ✏, the point p itself is certainly within
✏ of p, but is not in the set A. Is p

0 in int (A)? Is it true that, for some positive
✏, every point within ✏ of p

0 is in A? Now, the answer is yes. Indeed, choose
✏ = 1/4 (certainly some positive ✏). Then the locus of all points within 1/4
of p

0 is the disk shown in the figure, and clearly every point within this disk
(i.e., every point within ✏ of p

0) is in A. So, this p

0 is in int (A). Is p

00 in int
(A)? Is it true that, for some positive ✏, every point within ✏ of p

00 is in A?
The answer is now no. The locus of points within ✏ of p

00, for a typical ✏,
is shown in the figure. But there is, within this small disk about p

00, a point
not in A, namely the point indicated in the figure. Clearly, this will hold for
every ✏. So, it is not true that, for some ✏, every point within ✏ of p

00 is in
A. So, p

00 is not in int (A). We conclude, then, that int (A) is just the disk
itself, i.e., the set of all points (x, y) within x

2 + y

2 < 1. Note that this is of
course the answer we wanted, i.e., that our definition seems to do what it is
supposed to.

The interior of the rectangle A shown in the second figure on page 14 is
just A itself.
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Consider next the “two squares” shown in the last figure on page 14. Is
p in int (A)? Is it true that, for some positive ✏, all points within ✏ of p are in
A? The locus of points within ✏ of p, for a typical ✏, is shown in the figure.
But it is not true that every point in this disk is in A, for example, the point
q

0 shown in the figure. So, p is not in int (A).
Next, let A be the line as in the first figure on page 15. Clearly, p is not

in int (A). What about p

0? It is not either. Indeed, for any ✏ (a typical one
shown in the figure), there is a point, such as the q

0 shown, which is written
✏ of p but which is not in A. So, p

0 is not in int (A). Clearly, then, there are
no points in int (A). That is to say, int (A) is the empty set.

For A the single point, as in the second figure on page 15, int (A) is also
the empty set.

What is the interior of the entire plane? Consider the point p at the origin.
Is it true that, for some positive ✏, every point within ✏ of p is in A? It sure
is: Choose any ✏ you want (say, ✏ = 187), because every point in the entire
plane is in A. Clearly, the interior of the entire plane is the entire plane.

The interior of the empty set is the empty set.
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Finally, let us consider the “disk
with a hole in it”, i.e., the set A given
by all points (x, y) with x

2 + y

2 < 4 and
x

2 + y

2 > 1. [The second condition “re-
moves the hole”.] Is the point p at the
origin in int (A)? It is not, for it is not
the case that, for every positive ✏, all
points within ✏ of p are in A. Indeed,
for ✏ = 1/2, there is not even any point
within ✏ of p and in A. This example
suggests, then, that one should think of
the interior as consisting, not so much of the points which are “surrounded”
by A, but rather of the points which are “overrun” by A..

We turn next to the intuitive notion “bounded”. Recall that bounded is
supposed to mean “does not go o↵ to infinity; remains in a finite region”.
How are we to express this precisely? What we want to say, roughly speak-
ing, is that “the points of A do not keep getting farther and farther away from
the ‘bulk’ of A”. After a few false starts, one realizes that this is essentially
the same as demanding that “the points of A do not keep getting farther and
farther away from some point p of the plane.”

But this idea, finally, can be expressed as follows.
Definition. A set A in the plane is said to be bounded if, for some point p of
the plane and some positive number c, all points q of A satisfy d (p, q)  c.

What the definition requires, in other words, is that A lie entirely within
some disk (with center p and radius c).

We give some examples.
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p = (1,1) 

Let A be the usual disk, i.e., the
set of all points (x, y) with x

2+y

2 <
1. This set A is bounded. Indeed,
choose, say, p the point (1, 1), as
shown, and let c = 4. The locus
of points within distance 4 of p is
indicated in the figure. Clearly, all
points of A are in this region, i.e.,
all points of A are within distance ✏
of p. So, A is bounded. [Clearly,
many choices of p and c are possible to show that A is bounded. We could,
for example, have chosen p = (0, 0), and c = 1, or p = (20, 20), and c = 50.]

Similarly, the rectangle (the set represented by the second figure on page
14), and the “two squares” (the set represented by the last figure on page 14)
are bounded. The set consisting of a single point (say, the origin) is bounded.
Choose, say, p = (0, 0), and c = 738. Then clearly all points of A (namely
the one point which is in A, the origin) is within 738 of p.

The empty set is bounded. Choose anything you want for p and c (say,
p the point (�13, 4) and c = 2/3). Then every point in A (the empty set)
is within 2/3 of p, because there are no points in A. The entire plane is not
bounded. Is it true that, for some point p and some positive c, all points of A

(the entire plane) are within c of p? Hardly, for A is the entire plane, so if all
points of A are to be within c of p, then all points of the plane would have
to be within c of p. But for no choice of p and c are all points of the plane
within c of p. That is, one cannot find p and c such that all points of A are
within c of p. That is, our set A, the entire plane, is not bounded.
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Let A be the line given by the
set of all (x, y) with y = 1. Is A

bounded? Is it true that, for some
point p and positive number c, all
points of A are within c of p? Let’s
try a choice, say p the origin, and
c = 5. But this doesn’t work, for
it isn’t true that all points of A are
within 5 of the origin. Clearly, no
p and c will work. We conclude,
then that this set A is not bounded.
[This little discussion isn’t quite a
full proof of our conclusion. It would not be di�cult to give a full proof at
this point, but we shall not do so because the result isn’t worth the e↵ort. We
shall discuss proofs in a moment.]

Finally, let A be the set of all (x, y) with y = 1 and x an integer. This
set is a “bunch of equally spaced points”, as shown. This set, clearly, is not
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bounded.
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We turn, finally, to our last in-
tuitive notion, that of “connected”.
[In order to avoid having sentences
with many “nots” in them, let us
deal with its opposite, “discon-
nected”.] Recall that we wish to
regard a set in the plane as discon-
nected if it “consists of two or more pieces, not joined together”. Again, we
wish to make this idea precise.
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Consider, as an example, the set
A consisting of two disks in the
plane, as shown. What is it about
this set which suggests to us that
it consists of “two pieces”? One
might say that the essential feature
is how A is expressed, in this case,
“A is the set of all (x, y) with either
x

2 + y

2 < 1 or (x � 4)2 + y

<100. Note the use of “either . . . or . . .”. Is this
the tipo↵ that the set is disconnected? It is a good clue, but this would never
serve as a mathematical definition of “disconnected”. The problem is that it
refers to how the set is expressed (in English), and not to what the set is (i.e.,
which points are in and which out).
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A more promising possibility
might be based on the following ob-
servation. In the case of our two
disks, one can find a curve (such as
that shown) such that part of the set
is on one side of the curve, part is
on the other side, and none of the
set meets the curve. This curve,
then, makes explicit the feature that
the set “consists’ of two or more
pieces”. A definition along these lines, however, involves various other
complications. What are we to mean by a “curve” in the plane? What is
“one side” of the curve, and the “other side” to mean? That one has a good
intuitive idea of what these words mean is not enough, for after all, one
also has a good intuitive idea of what “disconnected” means. Perhaps one
could resolve these di�culties as follows. Recall, from plane geometry, that,
given two points in the plane, the perpendicular bisector of the segment join-
ing those points, the line indicated in the figure, is just the locus of points
equidistant from the two points. The points on one side of that perpendicular
bisector are nearer to p than to p

0; those on the other side nearer to p

0 than
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to p.
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In this way, one might formu-
late the following: A set A is dis-
connected if there exit points p and
p

0 such that some point of A is
closer (using our distance) to p than
to p

0, some point of A is closer to
p

0 than to p, and no point of A is
equidistant from p and p

0. This
works, for example, for our set A

consisting of two disks. Unfortu-
nately, this is also not a very good definition. The problem now is that it
doesn’t give the “intuitive answer” for certain examples.
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curve which “separates 
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Consider, for instance, the set A con-
sisting of “horseshoe and a disk” as shown.
[We do not bother with writing the equa-
tions.] We would presumably wish to re-
gard this set as disconnected. But it would
not be recognized as disconnected accord-
ing to the trial definition above. The prob-
lem here is that, although this set clearly
seems to “consist of two pieces”, and al-
though one can, intuitively “separate these
pieces by means of a curve”, one can-
not “separate those pieces by means of a
straight line, i.e., by means of a perpendicular bisector”. [No straight line
can “wander inside the horseshoe to have the disk on the other side of the
line from the horseshoe”.] The problem with this definition, then, is that it
doesn’t properly reflect our intuition.

The key to what will ultimately be the definition of “disconnected” is
to ask if we already have in our repertoire of definitions anything which is
rather “curve-like”. The answer is that we have: boundaries tend, in a very
rough and general way, to be “curve-like things which separate the interior of
a set from the exterior of that set”. [Recall, for example, the situation for the
disk.] Thus, we do not really need to find fancy definitions of “curve”, “one
side of the curve” and “the other side of the curve”’. We can use as surrogates
“the boundary of a set”, “the set itself” (which one may think of as being “on
one side of the boundary”), and “the points outside of that set” (which one
thinks of as being “on the other side of the boundary”). These observations,
then, suggest that we try to capture the essential intuitive content of “there
exists a curve such that part of the set is on one side, part on the other, and
none of the set meets the curve” as follows.
Definition. Set A in the plane will be said to be disconnected if there exists
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a set B in the plane such that some point of A is in B, some point of A is not
in B, and no point of A is in bnd (B).

Here, if I have ever seen one, is an example of a good idea in mathemat-
ics. One combines the intuition we have of “boundary”, the fact that we have
formulated a definition of “boundary”, and what we want to say by “discon-
nected” to obtain a candidate for a precise definition of “disconnected”. To
come up with original ideas, such as this one, for a definition is an activity
to which many mathematicians devote a great deal of e↵ort. [This definition
is an old one. It is not, of course, original with me.] Of course, we do not
wet know whether or not this definition will turn out to be an appropriate
one, i.e., whether it will give the expected answer in simple examples, but it
certainly looks promising, What remains, then, is to simply try it out.
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Let us return, then, to our exam-
ple of two disks. Is this set, accord-
ing to our definition, disconnected?
Can we find a set B such that some
point of A is in B, some point is
not in B, and no point of A is in
bnd (B)? It turns out that we can.
[To find such a set B, one thinks
about how we arrived at the defi-
nition. One, in one’s mind’s eye,
draws “a curve between the two pieces of A”. Then one takes “one side of
that curve”, and designates that set “B”.] Let, then, B be the set of all points
(x, y) with x > 2 – the set illustrated in the figure. Then certainly some point
of A is in B (namely, for example, the center of the “right” disk the point
(4, 0)) and some point of A is not in B (namely, “left” disk, the point (0, 0)).
Further, bnd B is just the line indicated, i.e., the set of all points (x, y) with
x = 2. [One, of course, must check with the definition of “boundary” to get
this.] Clearly, no point of bnd (B) is in A. So, this A satisfies the conditions
of the definition (for we have found a set B such that some point of A is in
B, some point of A is not in B, and no point of A is in bnd (B). So, this set A

is disconnected. Similarly, a set A consisting of two points is disconnected.
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Next, consider the set A consisting of
the “horseshoe and disk”, as on page 20.
This set is also disconnected. Let B, for
example, be the set shown. [Again, we will
not bother to write down equations.] Then,
again, some point of A is in B, some point
of A is not in B, and no point of A is in bnd
(B). So, this set is disconnected.
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Our “two squares” set A, as illus-
trated on page 14, is also disconnected.
Now, let B consist of all points (x, y)
with x > 1. Then bnd (B) is all (x, y)
with x = 1. Now, there is a point (such
as q in the figure) in A and in B, a point
(such as q

0) in A and not in B, while
no point of A is in bnd (B). [For the
latter, the reason is that the “line be-
tween the two squares” through which
“the boundary of B passes” is not included in our set A.] So, this B will do
the job. This set A is disconnected.
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We give two examples of sets which are
connected (= not disconnected). Let A be the
set consisting of the single point at the origin.
Does there exist a set B such that some point of
A is in B, some point of A is not in B, and no
point of A is in bnd (B)? Hardly, for A only has
one point, and this point would have to be ei-
ther in B or not in B, no matter what B is. There
could hardly be both a point of A in B and a point of A not in B, since A has
only one point.
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Now consider, as a second exam-
ple, a line, e.g., the set A consisting
of all (x, y) with y = 1. This set,
we claim, is connected. [A full proof
of this assertion, while not terribly
di�cult, does involve some techni-
cal properties of the real numbers.
Since we are here not particularly in-
terested in the real numbers, we shall
just give an informal argument.] Suppose, on the contrary, that one could
find some set B such that some point of the line A is in B, some point of A

is not in B, and no point of A is in bnd (B) (i.e., a set B which could cause
A to be disconnected). We argue for a contradiction. Let p be the point of A

in B, as shown in the figure. Then p cannot be in bnd (B) (for no point point
of A is to be in bnd (B)). That is, it must be false that, for every positive
✏, some point within ✏ of p is in B and some within ✏ of p is outside of B.
But certainly for every positive ✏, some point within ✏ of p is in B, namely
p itself (clearly within ✏ of p and clearly in B). So, the “other part” must
fail. That is, it must be false that, for every positive ✏, some point within ✏
of p is outside of B. That is, there must be some positive ✏ such that every

point within ✏ of p is in B. But this just means that the point p is in int (B).
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Next, let q be the point of A not in B, as shown in the figure. Then this q

is certainly not in int (B), for q is not even in the set B itself. Now start at
the point p (which is in int (B)) and work toward point q (which is not in int
(B)), and continually ask, as one moves along, whether one is still in int (B).
Eventually, the answer will have to change from “yes” to “no”. Let r be the
point at which this change takes place. [The existence of such an r requires
the “technical property of the real numbers”.] This r, we now claim, must
be in bnd (B). Indeed, for every positive ✏, there is a point within ✏ of r and
in B (since the points “just to right of r along the line” are of course in B).
Furthermore, for every positive ✏, there is a point within ✏ of r and not in
B (for should this fail, i.e., were it the case that for some positive ✏, every
point within ✏ of r is in B, then r would be in int (B). But r was chosen to be
the first point which ceases to be in int (B).) Putting these two together, we
conclude that r is in bnd (B). Now we have our contradiction, for the point
r is certainly in A (i.e., on our line) and is also in bnd (B), while our B was
supposed to have the property that no point of A is in bnd (B).

The above is, admittedly (and unfortunately), a rather complicated argu-
ment, but I hope that its sense is clear. In order that the line A be discon-
nected, one must find set B such that the line gets from a point (p) in B to
a point (q) not in B, all without encountering any point of bnd (B). But this
cannot happen, because a transition must somewhere (on the line) take place,
yielding a point of the line in bnd (B).
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In a similar way, one argues that the
disk is disconnected. Suppose that one
could find a set B such that some point
of A is in B, some point of A is not in B,
and no point of A is in bnd B, as shown.
The line segment joining p (in A and in
B) and q (in A and not in B) will lie en-
tirely within our disk A. But this line
segment goes from a point p in B to a
point q not in B, and so, arguing as be-
fore, we find a point r of this line seg-
ment in bnd (B). We thus obtain our
contradiction, for this r is in A (since r is on our line segment, and the whole
line segment is in A), and also in bnd (B).

Similarly the entire plane and the empty set are both connected.
As an example of all four definitions, we consider again the set A of the

second figure on page 4: the set of all (x, y) with x rational. In this case, bnd
(A) will be the entire plane (for no matter what point p and what positive ✏
one chooses, there will be some point within ✏ of p and in A, and also some
point within ✏ of p and not in A. Int (A) will be the empty set (for, for no
point p can one find a positive ✏ such that every point within ✏ of p is in our
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set A). This A will not be bounded (for, for no point p and positive number
c will every point of A be within c of p), and it will be disconnected (for,
choosing, say, B the set of all points (x, y) with x > ⇡, there will certainly be
a point of A in B and also a point of A not in B, while no point of A is in bnd
(B), for bnd (B) is the set of all points (x, y) with x = ⇡, while, since ⇡ is not
rational, none of these points will be in A).

We shall make extensive use of these, as well as other, similar, examples.
The skills which, it seems to me, are important here are the ability to apply
the definitions mechanically in unfamiliar situation (which is not easy, be-
cause the definitions are filled with “for some positive ✏”, “every point of”,
“for some point”, “and also”, and so on), and the ability to recognize quickly
what the answer is in more familiar situations.



4. Properties of Boundary, Interior,

Bounded, and Connected

We began with certain intuitive notions about sets in the plane. By intro-
ducing the usual distance between points in the plane, we were able to “cap-
ture” these notions, i.e., to formulate mathematical definitions of “bound-
ary”, “interior”, bounded” and “connected’. The next step was to test these
definitions and understand what they are saying. In particular, one wants to
know whether or not the definitions faithfully reproduce our own ideas about
what “boundary”, “interior”, “bounded” and “connected” should mean. This
“testing and understanding” is normal operating procedure following the in-
troduction of any definition in mathematics. The procedure usually consists
of two stages. In the first stage, one applies the definition to various exam-
ples (preferably, to examples as diverse as possible), in order to get a feeling
for the scope of the definition and how it works. We have now completed
this stage. In the second stage, one looks around for properties of the defini-
tion: results, usually of an elementary sort, which involve the thing defined
in some way, i.e., which relate it to itself or to other mathematical ideas
with which one might be familiar. [The line between these two stages is in
practice not as sharp as suggested here.] We now turn to this second stage.
We emphasize at the outset that the properties of “boundary“, “interior”,
“bounded”, and “connected” number well into the hundreds, and probably
into the thousands. It is thus not practical to try to list all of the properties:
nor is it practical to try to memorize those properties one does find. Rather,
one wishes to obtain an overall feeling for what is true and what is false,
what argument is likely to yield a proof of an assertion and what argument
is not, what examples are likely to show that an assertion is false and what
examples are not.

Is there any simple relation between a set A and its interior? Let us try a
few examples. The interior of the entire plane is the entire plane; the interior
of the disk is the disk; the interior of a line is the empty set; the interior of
a point is the empty set; the interior of the empty set is the empty set. Can
one see any pattern to these examples? Thinking about these for a while,
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and possibly trying a few more, one notices that there is indeed a pattern:
the interior of a set seems never to be “larger” than the original set. So, we
have now discovered what seems to be a pattern in various examples. We
next wish to see if we can formulate some precise statement which reflects
the pattern we have found. [The statement above is unsuitable, for we have
no defined “larger”.] In this example, it is easy to say what one really means,
namely that int (A) never “gets outside” of A, i.e., that every point of int(A)
is also in A. Finally, we face the task of deciding whether this pattern is just
a coincidence or a special property of our particular examples, or whether
it will hold for all examples. What does it means for a point p to be in int
(A)? It means that, for some positive ✏, every point within distance ✏ of p

is in A. But what about p itself? It is certainly within ✏ of p (for, in fact,
d (p, p) = 0). So, it would have to be in A too. Clearly, then, it will be true
for any example (i.e., for any set A) that every point of int (A) is in A. So,
we have found a pattern, expressed it, and decided that it will actually hold
for any example. The final step is to express all this in the “theorem-proof”
format of mathematics. For the present case, a suitable rendition is:
Theorem. Let A be a set in the plane. Then every point of int (A) is in A.
Proof: Let point p be in int (A). Then, for some positive number ✏, every
point within distance ✏ of p is in A. But p is within distance ✏ of p, and so p

must be in A.
The writing of theorems and proofs in mathematics is very much an art

form. As such, it is a skill which is learned more through exposure to nu-
merous examples than trough following rules. We shall, of course, see many
examples of theorems and proofs. A few general guidelines at this point
may, however, be useful. Consider first the words and symbols which follow
“theorem”. These should be full sentences (in which symbols, of course, are
allowed). These words must represent a clear and unambiguous assertion
that something is true. Thus, for example, “Let A be a set in the plane.”
would not be appropriate, for it does not assert anything, while “Let A be a
disconnected set in the plane. Then A consists of two or more pieces.” would
not be appropriate either, for, while it certainly seems to be trying to assert
something, it is not clear exactly what (for we do not know what “consists
of two or more pieces” means).

One does not ordinarily omit even obvious conditions in the statement of
a theorem. Thus, for the above, “Every point of int (A) is in A.”: What is A?
a point? a number? [One is in practice a bit more flexible than this. Com-
pletely obvious conditions are sometimes omitted.] It is, however, always
incorrect to omit significant conditions. If, for example, the theorem above
were true only when the set A is bounded, then the omission of this condition
(even if it were made clear in the proof that A has to be bounded, and even if
the preceding discussion was all about bounded sets) would be inappropri-
ate. Finally, there should be nothing in the statement of the theorem which
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is irrelevant to the assertion it makes. The following, for example, would not
be good theorems: “Let A and B be sets in the plane. Then every point of int
(A) is in A.”; “Let A be a set in the plane. Then every point of int (A), which
represents all points which are ’well inside’ A, is in A.” A proof should,
of course, consist of sentences, and represent a clear demonstration that the
assertion of the theorem is in fact true. The proof should be the most direct
line one can find, and should of course contain nothing irrelevant to what is
being demonstrated. Thus, for example, replacing the first sentence by “Last
point p be in int (A), so p is ‘well inside’ A”, replacing the last sentence by
“What about the point p itself? This p is within distance ✏ of p and so p

must be in A.” or adding a sentence at the end such as “For, were p not in A,
then it could not be within ✏ of p, and that would give a contradiction, since
p is within 0 of p, and so is within ✏ of p.” would not be appropriate. Every
sentence of the proof should be clear: It should be clear what one is using,
what one is concluding, and why. Thus, “Since for some positive every point
is within ✏ of p is in A, p must be in A”. is just not clear. [What is this p? Are
we assuming that p is in int (A)?] The various steps in the proof should be
approximately equal in di�culty. That is, instead of five very simple steps
followed by one very di�cult one, one would combine some of the five ini-
tial steps and break up the last one. The di�culties of the successive steps
should be such that one can see clearly how to get from one to the next. The
following proof, for example, contains too many steps. “To show that every
point of int (A) is in A, it su�ces to select one point, p, in int (A), assuming
nothing more about p, and show that this p is in A. But since p is assumed
to be in int (A), it must satisfy the definition.

That is, for some positive ✏, every point within ✏ of p must be in A. But,
no matter what the positive ✏ is, the point p itself is within ✏ of p, for in fact
the distance of p from p is zero. So, since every point within ✏ of p must be
in A, and since p is within ✏ of p, the point p must be in A. So, since we
began with any point p in int (A), and showed that it is in A, we have shown
that every point in int (A) is in A.” Finally, one does not normally let any
motivation or other thoughts one might have creep into the proof.

Is there any simple relation between set A and its boundary? Is, for
example, every point of bnd (A) in A, or every point of A in bnd(A)? Let A

be the disk (all (x, y) with x

2 + y

2 < 1), so bnd (A) consists of all (x, y) with
x

2 + y

2 = 1. In this example, there are points of A not in bnd (A), and points
in bnd (A) not in A. This example, however, suggests that no point can be in
both bnd (A) and A. Is this true? Unfortunately, it is not in general: For A a
line, bnd (A) = A, and so A and its boundary have points in common. There
is, apparently, no simple relationship between A and its boundary.

Since the boundary or interior of a set is again a set, one can take the
boundary or interior again. Are there any simple relations? Consider int
(int (A)), i.e., the set obtained by first determining the interior of A, then the
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interior of the resulting set. We try some examples. For A the entire plane,
int (A) is the entire plane, and so int (int (A)) is the entire plane; for A the
disk, int (A) is the same disk, and so int (int (A)) is the disk; for A a line, or
a point, or the empty set, int(A) is the empty set, and so int (int (A)) is also
the empty set.
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After perhaps trying a few more ex-
amples, one realizes that there is a pat-
tern here: What one gets at the second
step seems always to be just what one
gets at the end. We are led, then, to
guess that, for any set A, int (int (A))
= int (A). Is this true in general? Sup-
pose, first, that we have a point of int
(A)). Then, by the Theorem on page 26
applied to “int (A)”, it follows that our
point must be in int (A). So, we have
only to show the reverse. The idea is the following. Suppose p is a point of
int (A). Then all points within some ✏ of p are in A, as shown in the figure.
Now consider the disk centered at p, with radius 1/2 ✏. All of the points
in this disk are of course in A. But all of these points must also be in int
(A), for clearly, since all points of the larger disk are in A, all points of the
smaller disk must be in int (A). The points of A “fill” the larger disk, and so
A includes the smaller disk in its interior. We see, then, that our guess is in
fact true. All this might be expressed as follows.
Theorem. For any set A in the plane, int (int (A)) = int (A).
Proof: By the Theorem on page 26, every point of int (int (A)) is in int (A).
For the converse, let p be any point of int (A). Then for some positive ✏,
every point within ✏ of p is in A. Let q be any point within 1/2 ✏ of p. Then
every point within 1/2 ✏ of q must be within ✏ of p, and so must be in A. So,
q must be in int (A) Since every point within 1/2 ✏ of p is in int (A), p is in
int (A), p is in int (int (A)).

Are there other such relations? What about int (bnd (A))? For the entire
plane, bnd (A) is the empty set, so int (bnd (A)) is the empty set: for A the
disk, bnd (A) is a circle, so int (bnd (A) is the empty set; for A a line, or a
point, or the empty set, bnd (A) is just A, so int (bnd (A)) is the empty set.
The pattern is obvious: We always get the empty set. So, one might guess
that always int (bnd (A)) is the empty set. One might at this point try for a
while to see if a proof could be found – but one would fail. In fact, this is
false. Consider, for instance, the example at the bottom of page 23: A is all
(x, y) with x rational. Then bnd (A) is the entire plane, and so int (bnd (A))
is the entire plane! There is no simpler expression for int (bnd (A)).

For S any set in the plane, the complement of A, denoted A

C , is the set of
all points not in A. [Note that, given the unambiguous statement of what is in
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and what is not in A, we obtain an unambiguous statement of what is in and
what is not in A

C ,] For example, the complement of the entire plane is the
empty set; the complement of the disk is the set of all (x, y) with x

2 + y

2 � 1
(the plane with “a hole in it”). The complement of the complement of A is
again the set A.

What relations are there between the boundary of interior of A

C and A?
Consider int (AC). For A the disk, A

C is the set of all (x, y) with x

2 + y

2 > 1,
and so int (AC) is the set of all (x, y) with x

2 + y

2 > 1. For A consisting
of the single point (0, 0), A

C consists of all points except (0, 0), and so int
(AC) = A

C . For A the entire plane, A

C is the empty set, and so int (AC) is the
empty set. There is in fact a pattern here, namely that no point is in both A

and int (AC). This is true in general. Indeed, were a point in both A and int
(AC), then, by the Theorem on page 26, it would be in both A and A

C , which
contradicts what “complement” means.

A more interesting relation involves the boundary. Imagine taking a pho-
tograph of the set A, with A itself in white and the background (AC) in black.
Then the negative of this photograph (with A

C in white and A in black) would
be the photograph of A

C . Now think of bnd (A) as the “border” between the
black and white regions of the original photograph. Then one might expect
that this would be the same as the border between the white and black re-
gions of the negative. These intuitive remarks suggest:
Theorem. Let A be a set in the plane. Then bnd (AC) = bnd (A).
Proof: Point p is in bnd (A) if and only if, for every positive number ✏, there
is some point within ✏ of p and in A, and also some point within ✏ of p and
not in A. But, since the points in A are precisely those not in A

C , this holds
if and only if, for every positive number ✏, there is some point within ✏ of p

and not in A

C , and also some point within ✏ of p and in A

C , But this holds,
finally, if and only if the point p is in bnd (AC).

[In mathematics, “. . . if and only if ...” means “whenever ... holds, . . . also
holds, and furthermore whenever . . . hods, ... also holds.”] Our previous two
theorems were rather ugly things, designed primarily just to illustrate how
one discovers theorems, how one states them, and how one proves them.
This theorem, however, is a bit more interesting. Its nice feature is that one
guesses it from one’s ideas about “boundary”. It genuinely seems to reflect
an aspect of what a “boundary” should be. It furthermore, with our definition
of “boundary” turns out to be true. One’s confidence in the appropriateness
of the definition is strengthened.

For A and B sets in the plane, we say that A is a subset of B, written
A ⇢ B, if every point in A is also in B.

For example, every set in the plane is a subset of the entire plane; the set
consisting only of (0, 0) is a subset of the disk; the empty set is a subset of
any set in the plane. If A is a subset of B and B a subset of C, then A is a
subset of C.
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There are apparently no simple relations connecting subsets and bound-
aries. [For example, it is not true that, if A ⇢ B, then bnd (A) ⇢ bnd (B). Let
A consist of the single point (0, 0) and B the usual disk. Then A ⇢ B. But
bnd (A) = A, and bnd (B) consists of all (x, y) with x

2 + y

2 = 1, so it is not
true that bnd (A) ⇢ bnd (B).] For the interior, however, we have
Theorem. Let A and B be sets in the plane, with A ⇢ B. Then int(A) ⇢ int
(B).
Proof: Let p be a point of int (A). Then, for some positive number ✏, every
point within distance ✏ of p is in A. But, since A ⇢ B, every point within
distance ✏ of p is in B. Hence, p is in int (B).
One interprets the theorem as saying “the smaller the set, the smaller its
interior”.
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For A and B sets in the plane, the in-

tersection of A and B, denoted A\ B, is
the set of all points which are in both
A and B. Thus, for example, the in-
tersection of the usual disk and the line
given by all (x, y) with y = 0 is a “seg-
ment of a line”, given by all (x, y) with
�1 < x < 1 and y = 0; the intersection
of this disk and the line given by all (x, y) with y = 2 is the empty set. The
intersection of any set and the entire plane is that set; the intersection of any
set and the empty set is the empty set. For any A and B, A \ B is a subset of
A.

We give one example of a property involving intersections. Think of the
points in the interior of a set as those “well inside” the set. Which points
would one expect to be “well inside” A \ B? Since A \ B consists just of
those points which are in both A and B, one might expect that the points
“well inside” A \ B will be just those which are both “well inside” A and
“well inside” B. One tries a few examples. (For instance, for A the entire
plane and B ant set, A\ B = B, and so int (A\ B) = int (B); but int (A) is the
entire plane, so int (A)\ int (B) = int (B). So, in this example, int (A \ B) =
int (A)\ int (B).), and finds this to be the case. All this leads to
Theorem. Let A and B be sets in the plane. Then int (A \ B) = int (A)\ int
(B).
Proof: Let p be a point of int (A \ B). Then, for some positive number ✏,
all points within ✏ of p are in A \ B. It follows that all points within ✏ of p

are in A, whence p is in int (A); and that all points within ✏ of p are in B,
whence p in int (B). So, p is in int (A)\ int (B). For the converse, let q be
a point of int (A)\ int (B). Then q is in int (A), and so, for some positive
number ✏1, every point within distance ✏1 of q is in A; and q is in int (B), so,
for some positive number ✏2, every point within distance ✏2 of q is in B. Let
✏, a positive number, be the smaller of ✏1 and ✏2. Then every point within ✏
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of q is both in A and in B, and so is in A \ B. That is, q is in int (A \ B).
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This proof, like all
the proofs we have had,
consists merely of un-
ravelling the definitions
to figure out what one
has, and then re-ravelling
then to figure out what
one gets. [Indeed, is
some sense all proofs
in mathematics are just
this. Theorems in math-
ematics never have any
“real content”.] This one, however, is a bit more complicated. for the second
part, in particular, the idea is the following. One has point q in int (A)\ int
(B), i.e., q is in both int (A) and int (B), and one wants to show that q is in
int (A \ B). One has positive number ✏1, which specifies “how well inside”
q is of A, and ✏2 for B. What should one choose for one’s ✏ to describe “how
well inside” q is of A \ B? Suppose, for example, that ✏1 were 1/10, and ✏2
were 3, as shown in the figure. That is, q is “just barely well inside” A, but
“quite well inside” B. How “well inside” will q be of A \ B? The answer
is “just barely well inside”, as one sees from the figure. These observations,
then, suggest what should be chosen for the ✏ in the proof. [Of course, it is
perfectly legitimate to draw a picture to aid in the discovery of a proof. But
the picture should not be part of the actual proof.]
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A     B  ∪B For A and B sets in the plane, the union of
A and B, denoted A [ B, is the set of all points
which are either in A or in B. As examples, the
union of two disks is the striped region illus-
trated at the right. The union of any set and the
entire plane is the entire plane. The union of any set and the empty set is the
original set. For any sets A and B in the plane, A, B, and A\B are all subsets
of A [ B.

What relations are there between the boundary, interior, and union? From
the theorem on the previous page, one might guess that perhaps int (A[B) =
int (A)[ int (B). Indeed, this seems somewhat reasonable intuitively, for the
points “well inside” A [ B ought to be those either “well inside” A or “well
inside” B. Unfortunately, this is false. Let A be the set of all points (x, y) with
x rational, and B the set of all points (x, y) with x irrational (= not rational).
Then int (A) and int (B) are both the empty set. Hence, int (A)[ int (B) is the
empty set. But A [ B is the entire plane (for every point (x, y) in the plane
has either x rational or x irrational, and so will be in either A or B. In fact,
A

C = B.) Hence, int (A [ B) = int (entire plane) = entire plane. So, in this
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example, we do not have int (A[ B) = int (A)[ int (B). In retrospect, we can
see what was wrong with our intuition. It is possible, as in this example, to
have a point “well inside” A[B because A and B work together to “overrun”
the vicinity of the point. However, each of A and B individually contains
“gaps very near the point”, so that the point turns out not to be “well inside”,
either A or B by itself. Perhaps, however, we can save the other half of our
guess. Perhaps every point of int (A)[ int (B) is in int (A[ B). This works.
Theorem. Let A and B be sets in the plane. Then int (A)[ int (B) ⇢ int
(A [ B).
Proof: Let p be a point in int (A)[ int (B), say p in int (A). Then, for some
positive number ✏, every point within distance ✏ of p is in A. But now every
point distance ✏ of p is in A [ B, and so p is in int (A [ B).
[Note that in this proof we omitted “Since p is in int (A)[ int (B), p is in
either int (A) or int (B). We shall do the case p in int (A); that for p in int (B)
is done similarly.”]

We have dealt so far only with properties of the interior and the boundary.
We next consider briefly a few properties of bounded and connected.
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A     B  ∩B 
Is the complement of a bounded

set bounded? Certainly not: A disk
is bounded but its complement is
not. Indeed, quite the opposite is
true: The complement of a bounded
set can never be bounded. If A ⇢ B

and A is bounded, need B be? No:
let A be the disk and B the entire
plane. In fact, this is the wrong way around. “Smaller sets” are more likely
to be bounded.
Theorem. Let A and B be sets in the plane, with A ⇢ B. Then, if B is
bounded, so is A.
Proof: Let B be bounded, and let p be a point and c a positive number such
that every point of B is within distance c of p. Then, since A ⇢ B, every
point of A is within distance c of p, and so A is bounded.

It follows immediately that the intersection of two bounded sets is bounded
(since that intersection is of course a subset of one of the sets). Is the union
of two bounded sets bounded?

Is the complement of a connected set connected? No: Let the set be
a straight line. Then its compliment is “everything except the line”, i.e.,
two half-planes, and this set is not connected. Is the subset of a connected
set connected? The answer is again no. A set consisting of two points is a
subset of the entire plane, the entire plane is connected, but the set consisting
of two points is not. Is the intersection of two connected sets connected? The
answer is again no, but now the example is a bit trickier. The sets illustrated
in the figure will do the job. [Since it is clear how one would write the



33

equations for and do in detail (i.e., using the definition) such an example, we
will not do so here.] Finally, the union of two connected sets need not be
connected: Let each of A and B be a disk of unite radius, but let them be
“well separated in the plane”. Then each is of course connected, but their
union, “two well-separated disks”, is not connected.

Does “connected”, then, have no simple properties? It turns out that it
does have one very nice property. Let us consider again the final example
above: the union of two disks. Why, in that example, was A [ B discon-
nected? The reason, of course, was that “A [ B consisted of two pieces,
namely A and B separately”. It would seem intuitively that this might be the
only situation under which A and B are themselves connected while A [ B

is disconnected. Can we make this general idea into a theorem? How do we
state “for A and B connected, A[B is either connected, or consists just of the
two pieces A and B”. One possibility, recalling the definition and interpreta-
tion of “connected”, would be: “Let A and B be connected, and let C be a set
such that some point of A[B is in C, some point of A[B is not in C, and no
point of A [ B is in bnd (C). Then either A ⇢ C and B ⇢ C

C , or A ⇢ C

C and
B ⇢ C”. [This is the right general idea, for, recall, C and C

C are to be the
“two pieces” into which C divides the plane.] In fact, this statement is true.
It turns out, however, that there is a simpler way to state the same idea. We
simply demand that A and B be not “completely separate from each other”
(so they cannot be the “two pieces” of A[ B) by demanding that they have a
point in common.
Theorem. Let A and B be connected sets in the plane, and let p be a point of
both A and B. Then A [ B is connected.
Proof: Suppose, for contradiction, that C were a set such that some point of
A [ B (say, u in A) is in C, some point of A [ B (say, v in B) is not in C, and
no point of A [ B is in bnd (C). Then no point of A and no point of B is in
bnd (C). But point u in A is in C and no point of A is in bnd (C), and so,
since A is connected, every point of A must be in C. In particular, point p

must be in C. But now point p in B is in C, point v in B is not in C, and no
point of B is in bnd (C), which contradicts the fact that B is connected.

I hope that the structure of the proof is clear. We suppose that A [ B

could be “separated into two pieces” by means of set C. In order for this to
be a “genuine separation”, some point (u in A) must be in C, and some point
(v in B) must be out of C. But A itself cannot be “separated into two pieces”
by C, because A is assumed connected. So, A must be either all in C or all
out of C. But A has the point u in common with C, and so A must end up “all
in” C. But now, having dragged all of A into C, we have also brought the
point p (common to both A and B) into C. Now C goes to work on B. Since
a little bit of B (namely, the point p) has been dragged into C, and since B

is also connected, all of B must be in C too. Here, then, is a contradiction,
since the point v of B was supposed to be not in C. [Of course, one could put
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u and v in other places in A [ B, with the same result.]
This is a nice theorem. It expresses very well an intuitive connotation of

“connected”, and it is even true.
We emphasize that the purpose of this section has been to illustrate what

one does to “understand” a definition in mathematics. The process above
is what a mathematician would do automatically on being confronted with
a new definition. Of course, the various theorems and examples above are
only to illustrate a few of the many possibilities: They are not to be mem-
orized. A second purpose was to illustrate the type of thought-process one
goes through in inventing theorems and inventing proofs. Finally, the stated
theorems and proofs are intended to be examples of that “art form”.



5. Continuous Curves

We conclude our discussion of the plane with a final set of definitions. These
are perhaps a bit more complicated than those we have treated in the previous
sections. Here, we shall merely motivate the definitions, state them, and
indicate what they mean. We shall return to this subject later.
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One has an intuitive idea of what
a “curve” in the plane ought to be:
It is a “line”, or “what results if one
presses a piece of a chalk against a
blackboard, and then moves the chalk
about”. [In mathematics, “curve” is al-
ways a generic term, which does not ex-
clude “straightness”. Thus, a straight line is also to be a “curve”.] Our first
goal is to formulate a definition of “curve”.

Let us begin by looking for a definition of the form “A set A in the plane
is a curve provided . . . ” The “. . .” is supposed to express the idea that the
set A must be “one-dimensional”. How shall we say this idea? Recall that,
for A a straight line (“one-dimensional”), int (A) is the empty set, while for
A a disk (“not one-dimensional”) int A is not the empty set. Thus, one might
be tempted to replace ”. . .” by “int (A) is the empty set”. This, however, is
not a very good choice. For example, let A be the set of all points (x, y) with
x rational. Then int (A) is indeed the empty set, but we would certainly not
wish to call this A a “curve”. Alternatively, recalling that boundaries tend
to be “one-dimensional”, one might replace “. . .” by “for some set B, A =
bnd (B)”. But this is not too good either, for, for example, the entire plane
is the boundary of some set B (namely, B all (x, y) with x rational), while we
would certainly not wish to regard the entire plane as a “curve”. A few more
failures along these lines convince one that this is not a very good task. [Of
course, one possibility at this point would be that there is not going to be any
“good” definition of a curve. But in this case, as it turns out, there will be.]

The key to getting a definition of “curve” is to think again about the chalk
on the blackboard. In the attempt above, we were trying to characterize a
curve in terms of just the set A of points of the plane “visited by the chalk”.

35
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But intuitively a curve would seem to be much more than merely “the set of
all points visited”.
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There is also involved, for ex-
ample, the order in which the-
ses points are visited as the chalk
moves over the blackboard. Can we
somehow find a definition which
somehow brings to mind the actual
physical process of moving chalk
over blackboard? We can. Imag-
ine that a clock were running as the curve is being drawn on the blackboard.
Then at any time t, as read by the clock, the chalk will be at some position
on the blackboard. At various other times, the chalk will be at various other
positions on the blackboard. Thus, as “time” runs through its various values,
“position of the chalk” will run through various points of our plane. The
idea, then, would be to regard a “curve” as, not merely the set of points of
the plane “visited”, but also as the “labelling” of those points by a parameter
t, the “time”. These ideas suggest.
Definition. A curve in the plane is a rule which assigns unambiguously, to
each real number t, a point of the plane.
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We shall represent a curve sym-
bolically by a letter such as �.
Then, for � a curve and t a real num-
ber, we denote by �(t) that point of
the plane assigned to the number t

by the unambiguous rule which is
the curve. Of course, one thinks
of this t as the “time” as recorded
by the clock, and of the point �(t)
of the plane as the “location of the
chalk on the blackboard at time t”.

We give some examples of
curves. Let � be the rule which
assigns, to the real number t, the
point of the plane with x = t and
y = t, i.e., the point with coordi-
nates (t, t). This is certainly an un-
ambiguous rule: For example, it as-
signs to the number 93 the points of
the plane with coordinates (93, 93).
This curve is illustrated in the sec-
ond figure at the right.

It corresponds physically to “moving the chalk at uniform speed along
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a straight line tilted 450 from the vertical”. Next, consider the rule which
assigns to number t the point (2t, 2t) of the plane. Again, this is an unam-
biguous rule: To the number �7, for example, it assigns the point (�14,�14)
of the plane. This curve is that shown. Note that this curve describes the
same set in the plane as our previous curve. It is, however, to be regarded as
a di↵erent curve, because we have a di↵erent rule. [To the number t = 3, for
example, the first curve assigns the point (3, 3); the second, the point (6, 6).]
Physically, we are now “moving the chalk twice as fast along this line”.

disk 

curve 

not in the set 

ticks p = (½ , ½) 

4 

γ 
1 

γ 
2 

γ 
1 γ 

1 γ 
1 

  x
2 + y 2 <1

 y

 x

in the set 

boundary 

2 

A 

!!!!!!!!!!!!

!!!!!!!!!!!!

!!!!!!!!!!!!

not in the set 
locus of points 
within ¼ of p 

locus of points 
within 5 of p  

locus of points 
within ¼ of p' 

q

q' 

p

p'' 
locus of points 
within ½ of p', 
and also in A 

!!!!!!!!!!!!

locus of points 
within 1/10 of p'' 

p = (1,1) 

A 

!!!!!!!!!!!!

  x − 4( )2 + y 2 <1point 
missing 

not in the set 

bnd(B) 

“other side” 

segment 
joining p 
and p' 

point in A 
and not 
in B 

closer to p 
than to p' 

closer to p' 
than to p 

point in A 
and in B 

B 

bnd(B) 

  t = 0  t = 1

 2

 3

  t = 2

 2,3( )
Let � be the rule which assigns, to number t, the

point (2, 3) of the plane. This is unambiguous: It as-
signs, to t = �137.9, the point (2, 3). This is thus a
curve. it just “stay put” at the point (2, 3). Consider
the parabola y = x

2. This is not a curve according to
our definition. It is not an unambiguous assignment
of a point of the plane to each number t – and in fact
it does not even say anything about t. What point does this “curve” assign to
t = 5?
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However, consider the rule which as-
signs, to number t, to point (t, t2). [For ex-
ample, to t = 7 is assigned the point (7, 49).
Clearly, this is “really” y = x

2.] Now, we
do have a curve. In short, one does not
specify a curve by giving “y as a function
of x”; rather, one must give “each of x and
y as a function of t”. The rule which assigns
to number t the point (t13�cos t+ t/(1+ t

2),
t

6 + t sin t) of the plane is a curve. The rule which assigns to the number t the
point of the plane which is (2, 3) if t is a rational number, and (9t, 61) if t is
an irrational number is a curve. All we demand for a curve is an unambigu-
ous rule (which, of course, assigns a unique point, �(t), of the plane to each
number t) – nothing more and nothing less.
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Some curves are bet-
ter than others. Compare,
for example, the curves
illustrated in the figures
on pages 36 and 37 with
the curve of the last ex-
ample above, or with the
curve given by: For t  1,
let �(t) be the point (t, 2),
and for t > 1 let �(t) be the point (t, 1) of the plane. This curve is illustrated
on the right. [Note that the above is indeed an unambiguous rule to get from
t

0s to points of the plane, hence, a curve. But “for t  1, let �(t) be (t, 2),
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and for t � 1 let �(t) be (t, 1)” is not a curve, for it is ambiguous. It assigns
two points of the plane, namely (1, 2) and (1, 1), to t = 1.] The physical
di↵erence between the curves illustrated on pages 36 and 37 and the curve
illustrated above is that the former can be “drawn without ever lifting the
chalk from the blackboard”, while the latter cannot. Our next task is to cap-
ture, by means of a definition, this distinction between curves which do and
do not “skip”.

To see what will be involved in making this definition, let us return to
the curve (with a “skip”) illustrated above. At what time did the skip take
place? At t = 1. Clearly, we must isolate something unpleasant about what
the curve was doing around t = 1. Where was the chalk at t = 1? At the point
�(1), namely, the point (1, 2), of the plane. What is it about the behaviour of
the curve around t = 1 that leads us to regard the curve as having a “skip”
there? The behaviour is the following. Whereas for t = 1 the chalk is at
�(1) = (1, 2), for t just a tiny bit greater than 1, say 1 = 1.001, the chalk
is way over at (1.001, 1). The problem, then, is that, during this “very short
time” (from t = 1) to t = 1.001), the chalk has moved a “rather large amount”
in the plane, namely from �(1) = (1, 2) to �(1.001) = (1.001, 1). Thus, to
say that there is a skip at t = 1, we want to say that “when t moves just
a little bit away from the value t = 1, the corresponding point, �(t) of the
curve moves more than a little bit away from the point, �(1), of the curve
corresponding to t = 1”. All we have to do, then, is express these “little bits”
precisely to obtain our definition. In the above example, the “amount of the
skip”, the “distance �(t) jumped between t = 1 and t = 1.001”, was just a
touch more than one unit. Thus, a statement which is true for this curve,
and which reflects the fact that it has a skip at t = 1, is the following: There
are t�values as close as you wish to t = 1 such that d(�(t), �(0)) � 1/2.
[How close do you want the t�values to be to t = 1?. Within .01 of 1?
Then t = 1.001 is this close. But �(1.001) = (1.001, 1), while �(1) = (1, 2),
and so d(�(t), �(1)) is slightly more than one, and is certainly greater than
or equal to 1/2. Do you want the t�values still closer to 1?. You say you
want them within.0000001 of t = 1? Then t = 1.00000001 is this close. But
�(1.00000001, 1) = (1.00000001, 1), and its distance from �(1) = (1, 2) is
still lightly more than one, and so is certainly greater than or equal to 1/2.] A
more precise version of “as close as you wish” in our statement above yields
the following: Given any positive number �, there is a t�value within � of
1 (i.e., with 1 � �  t  1 + �) such that d(�(t), �(1)) � 1/2. The positive
number � represents of course “how close you wish t to be to 1.” Instead of
“t amount � of 1”, or “1� �  t  1+ �”, we can write |t� 1|  �. Recall that
| | is the absolute value, the operation of reversing the sign if the number
enclosed is negative and keeping the sign if it is positive, so, for example,
|6| = 6, |19| = 19, while | � 3| = 3 and | � 31| = 31. So, |t � 1|  � just says
that “the number t is within amount � of 1, i.e., is between 1 � � and 1 + �.
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In short, the “distance” between numbers a and b is just |a � b|.
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So far, then, we have
the following statement,
which reflects the fact
that there is a skip in the
curve illustrated on the
previous page: Given any
positive number �, there
is a number t satisfying
|t � 1|  � and such that
d(�(t), �(1)) � 1/2. A statement that there is “no skip” at t = 1 would thus
be: There exists a positive number � such that, whenever number t satisfies
|t � 1|  �, d(�(t), �(1))  1/2. What this says is that “ there exists some

range of t�values around t = 1 (namely, the range of t�values consisting of
those t between 1 � � and 1 + �) such that, for all t in this range, the cor-
responding point �(t) of the plane is within distance 1/2 of the point �(0)”.
For example, consider again our curve at the end of page 37. Is it true that
there is a range of t�values around t = 1 such that, for every such t, we
have d(�(t), �(1))  1/2? It is certainly not true. The locus of points within
distance 1/2 of �(1) is the disk shown in the figure. there is no range of
t�values around t = 1 such that for every t in this range �(t) lies within this
disk. No matter what “range” (i.e., positive number �) is given, one can find
a t�value within this range (namely, a t�value very slightly greater than 1)
such that �(t) is outside of this disk.

We now have practically the statement we are after. But where did this
“1/2” come from? It arose originally from our example. We were looking
at a curve with a skip of about 1, so we choose 1/2 as the “amount of skip”
to give ourselves a little leeway. What the statement above really says, then,
is that there is no skip at t = 1 of “amount” greater than 1/2. But we are not
just interested in skips of amount greater than 1/2: We want to rule out skips
of any amount. We do so by: For every positive number ✏, there exists a
positive number � such that, whenever t satisfies |t � 1|  �, d(�(t), �(1))  ✏.
This is to hold for every positive ✏ (the“amount of the skip”). It is to hold
for ✏ = 1/2 (no skips of amount greater than 1/2), for ✏ = 1/10 (no skips of
amount greater than 1/10), and so on. It thus says that there are no skips of
any amount at t = 1. Finally, the discussion above has been for skips at the
t�value t = 1. One can proceed similarly for other t�values. We thus arrive
at:
Definition. Curve � is said to be continuous at t = t0 if, for every positive
number ✏, there exists a positive number � such that, whenever |t � t0|  �,
d(�(t), �(t0))  ✏.

Thus, continuous at t = t0 means “having no skips of any amount at
t = t0”. For “having no skips of any amount anywhere”, we have
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Definition. Curve � is said to be continuous if, for every number t0, � is
continuous at t = t0.

As usual in mathematics, one invests all one’s thoughts and ideas in the
formulation of a definition. However, once the definition has been stated, one
essentially ignores all of one’s ideas, and just mechanically follows the rules
as laid down by that definition. Thus, in order to show that a curve is contin-
uous at t = t0, one has to figure out how, given any positive number ✏, one
can find a positive number � such that, whenever |t�t0|  �, d(�(t), �(t0))  ✏.
We give some examples.
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  | t −1|≤1

Consider the curve
illustrated on the previ-
ous page. Is it contin-
uous at t = 1? Is it
true that, for every posi-
tive number ✏, there ex-
ists a positive number �
such that, whenever |t �
1|  �, d(�(t), �(1)) 
✏? Let’s try an ✏, say ✏ = 3. Is it true that there exists a positive number
� such that, whenever |t� 1|  �, �(t) is within 3 of �(1)? The locus of points
within 3 of �(1) is the disk shown. Does there exist a positive number � such
that, whenever |t � 1|  �, �(t) is in this disk? There certainly does: Choose
� = 1. Then |t � 1|  1 means that t is between 0 and 2, and so the corre-
sponding �(t)’s are those shown in the figure. But this part of the curve is
certainly within our disk. So, there does exist a positive number � such that,
whenever |t� 1|  �, d(�(t), �(1))  3. So, we tried ✏ = 3, and it worked. But
we have to show this for every positive ✏.
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Let’s try another,
say ✏ = 1/2. Is
it true that there ex-
ists a positive number �
such that, whenever |t �
1|  �, �(t) is within
1/2 of �(1)? The locus
of points within 1/2 of
�(1) is the disk shown.
Does there exist a positive number � such that, whenever |t � 1|  �, �(t)
is in this disk? There does not. What value for � will work? What about,
say, � = 1/10. Is it true that, whenever t is between 9/10 and 1 1/10, �(t)
is in this disk? It is not true, as one sees from the figure. Clearly, no

� will work. Thus, there does not exist a positive � such that, whenever
|t � 1|  �, d(�(t), �(1))  1/2. So, it is not true that, for every positive ✏,
there exists a positive � such that, whenever |t � 1|  �, d(�(t), �(1))  ✏ [for,
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as we have just seen, there is none for ✏ = 1/2]. So, our curve is not con-
tinuous at t = 1. [This example gives the clue as to what one should choose
for ✏ in order to show that a given curve is not continuous. Choose ✏ to be
smaller than the “amount of skip”.]

Is that curve continuous? Is it true that, for every number t0, � is contin-
uous at t = t0? It is not true, for this curve is not continuous at t = 1. Our
definitions thus give the expected answers for this example.
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Consider, as a second
example, the curve � with
�(t) = (t, 1). is this curve
continuous at t = 1? Is
it true that, for every posi-
tive ✏, there exists a positive
� such that, whenever t is
within � of 1, �(t) is within
✏ of �(1)? Let’s try ✏ = 3.
Does there exist a positive �
such that, whenever t is within � of 1, �(t) is within 3 of �(1)? The locus of
points within 3o f�(1) is the disk shown. We want to find a positive � such
that, whenever t is within � of 1, �(t) is within 3 of �(1). But there is such a
�, namely for example. � = 3/2. The portion of the curve for |t � 1|  3/2 is
indicated in the figure, and all this portion is within our disk. So, we found a
� for this ✏.
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What about another, say ✏ =
1/2? Does there exist a posi-
tive ✏ such that, whenever t is
within � of 1, �(t) is within 1/2
of �(1)? The locus of points
within 1/2 of �(1) is the disk
shown. What do we choose for
�? Well, � = 1/4 will do, for,
whenever t is within 1/4 of 1
(i.e., between 3/4 and 1 1/4), �(t) is within 1/2 of �(1), as shown in the
figure. Thus, we found a suitable � for this choice of ✏. One tries another,
say ✏ = 1/10. For this ✏, one will have to choose a still smaller �, for de-
termines “how close” t will be to 1, and we are going g to have to make t

“quite close” to 1 if we are going to guarantee that �(t) will be within only
1/10 of �(1). A suitable choice is � = 1/20. It is indeed true that, whenever
t is within 1/20 of 1, �(t) is within 1/10 of �(1). We thus conclude that it
is true that for every positive ✏, there exists a positive � such that whenever
|t � 1|  �, d(�(t), �(1))  ✏ [namely, given positive ✏, we choose � = 1/2✏].
[We have not of course actually proven formally that this � always works,
but it is clear, and a full proof is not di�cult.] We thus conclude that our
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curve is continuous at t = 1.
Is this curve continuous at t = 5? Yes, by exactly the same argument. Is

it continuous at every t�value? Yes. So, this curve, since it is continuous at
every t = t0, is continuous.

Similarly, one verifies that the three curves illustrated on page 36 are all
continuous. The curve � with �(t) = (1, 1) if t is rational and �(t) = (4, 5)
if t is irrational is not continuous at any t = t0. [The curve “jumps between
these two points every time t changes from a rational to an irrational and
back”. To show not continuous, one must find an ✏ such that the definition
will not work. Since here the “skip”, the distance between these points, is 5,
one would choose for ✏ any number less than 5.]



6. Metric Spaces

So far, we have introduced four intuitive notions involving sets in the plane
(or, if “continues curve” is included, five), expressed those intuitive notions
as mathematical definitions, given various examples of those definitions, and
proven a number of theorems which relate the definitions to each other. We
are now at a crossroads: What shall we do next? One possibility would be
to go ahead and look for more intuitive notions, more definitions and more
theorems. It turns out, however that there is a more interesting and fruitful
direction. It consists essentially of trying to isolate what is really relevant
to what we already have, and trying to generalize it. It is the direction of
“quality” as opposed to quantity. In this section, we begin this program.
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Why have we been dealing, all this time,
with the plane, as opposed to some other space?
The reason, frankly, is that it is easy, for the
plane, to draw figures to illustrated what is go-
ing on. Suppose, however, that one got inter-
ested in Euclidean three-dimensional space (the
space of solid geometry)? A point of this space
would be labeled by three numbers, so the coor-
dinates of a typical point would be (x, y, z). One
could, of course, introduce the notion of a set in
this Euclidean three-dimensional space (an un-
ambiguous statement of which (x, y, z) are in the set and which are out.).
One would furthermore have similar intuitive ideas (of boundary, interior,
bounded, and connected) about such sets. How would one go about captur-
ing such intuitive ideas as definitions? The first step would be to observe that
one also has a notion of geometrical distance in Euclidean three-dimensional
space. Indeed, for p = (x, y, z) and q = (x

0, y0, z0) two points in this space,
the distance between these points is given, by the Pythagorean theorem just
as before, by

d(p, q) =
q

(x

0 � x)2 + (y0 � y)2 + (z0 � z)2

So, one might decide, one will use this distance to formulate definitions of

43
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“boundary”, “interior”, “bounded”, and “connected”. One expects that find-
ing suitable definitions this time will be somewhat easier, since we already
have the experience gained with the plane.

But, were one to embark on such a program, a strange thing would hap-
pen. Not only does finding suitable new definitions turn out to be “some-
what easier” than it was before, it further turns out that one can just repeat,
word for word, the old definitions, replacing “point of the plane” and “set in
the plane” everywhere by “point of Euclidean three-dimensional space” and
“set in Euclidean three-dimensional space”. Thus, for example, the defini-
tion of “interior” on page 16 would become: “Let A be a set in Euclidean
three-dimensional space. Then the interior of A is the set of all points p

[now, of Euclidean three-dimensional space] such that, for some positive
number ✏, every point q [now, of Euclidean three-dimensional space] with
d(p, q)  epsilon is in A.” The resulting four definitions not only make
sense (i.e., are genuine mathematical definition), but furthermore accurately
reflect the intuitive ideas they are to capture. One would thus instantly obtain
all four definitions.

One would next seek theorems which relate these definitions. But now a
second miracle takes place, One would soon realize that all our old theorems
remain true for Euclidean three-dimensional space (with, again, the mere re-
placement of “plane” everywhere by “Euclidean three-dimensional space”).
Not only this, but the old proofs are again proofs of the new theorems (with
the usual replacement). Thus, for example, we would translate the theorem
on page 26 as follows:
Theorem. Let A be a set in Euclidean three-dimensional space. Then every
point of int (A) is in A.
Proof: Let point p in int (A). Then, for some positive number ✏, every point
within distance ✏ of p, is in A. But p is within distance ✏ of p and so p must
be in A.
[Now, of course, “p” is a point of Euclidean three-dimensional space.]

In short, we have essentially already done this subject for Euclidean
three-dimensional space.

So, one might turn to another possibility, say, one-dimensional space.
The “coordinate” of a point would just be one number, (x), so our space is a
single “line”. Again, one can introduce sets in this one-dimensional space:
again, one can introduce the geometrical distance between points (for p =
(x) and q = (x

0) points in our one-dimensional space, set d(p, q) = |x�x

0|, the
geometrical distance between the points along the line); again, we can just
repeat our old definitions (replacing “plane” by “line”) to reflect our intuitive
ideas of “boundary”, etc.; again the old theorems remain theorems and the
old proofs remain proofs. We have already done this subject for the line, too.

What would be one’s response to this state of a↵airs? Purchase a large
quantity of paper, and proceed to rewrite everything we have done two more
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times, but with this minor changes? Just say “similarly for Euclidean three-
dimensional space, and for the line”, we have above? The response of the
mathematician would be the following. These “miracles” are an indication
that we did not fully understand what we were doing in the first place. We
were talking plane, but doing much more. A fuller understanding of what
is really going on here is to come by somehow isolating what is genuinely
relevant to our four notions and the relationships between them. What we
want to do, then, is to generalize – to find a broader framework for our dis-
cussion which will at one stroke and encompass the plane, Euclidean three-
dimensional space, the line, and hopefully even more possibilities.

What is the crucial thing which made our treatment of sets in the plane
possible? What is the essential ingredient which our treatments of Euclidean
three-dimensional space, the plane, and the line have in common? This is
obvious: It is this distance d. Now comes the hard part. We have to figure
out what it was about our distances that made things work out as they did for
the plane: what the “distances” for Euclidean three-dimensional space, the
plane, and the line have in common; what features our distances have which
reflect our intuitive, geometrical ideas of what “distance” should be like. It
is a problem not unlike that of inventing, for the first time, a definition of
“boundary”. It is, in the fullest sense, a problem in mathematics.
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An example of an inappropri-
ate property of distance is the fol-
lowing. For any two distinct points
p and q, and any number c greater
than d(p, q), there are exactly two
points r with d(p, r) = c and
d(q, r) = c. This property is true
for the plane, Indeed, the two points
lie on the perpendicular bisector of
the line segment joining p and q,
as shown in the figure. But this
property does not hold is Euclidean
three-dimensional space 9in which there is an infinite number of such “r’ s
”), or in the line (in which there is no such “r”). Furthermore, we never used
this property, and it does not at all seem to be mandated by our intuitive idea
of “distance”. It is much more a property of “plane” than of “distance”.

We now obtain the “distance-like” properties of our distances. The key
to the first property is the theorem on page 26 (int (A) ⇢ A). What property
of distance was used there? It was used in the part of the proof which reads
“But p is within distance ✏ of p, . . .”. Of course, the reason why p is within
distance ✏ of p is that d(p, p) = 0. Here, then, is a property of distance (that
d(p, p) = 0) which is true for Euclidean three-dimensional space, etc. which
was used in our treatment of the plane, and which seems natural for distance.
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[If I have to accept “the distance of p from p is five units”, then I do not want
to think about that “distance”.] A closely related property, which has been
implicit in our discussion of the plane, is: If p = q then d(p, q) is positive.
[That is, one cannot have distinct points with zero distance between them,
or two points distance – 7 apart.] The second property is such a simple and
natural one that, while it has always been in the background, it has never been
mentioned explicitly. [These are often the most di�cult properties to find!]
It is that, for any two points p and q, d(p, q) = d(q, p). The distance from p

to q is the same as the distance from q to p. Again, this property would seem
to be an integral part of what we would wish to mean by “distance”.
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The third property was used, for example, in
the theorem on page 28, in the sentence “Then ev-
ery point within 1/2✏ of q must be within ✏ of p,
. . .” in the proof. Let r be such a point (within 1/2✏
of q). Then what is being used here is the follow-
ing; If d(p, q)  1/2✏ and d(q, r)  1/2✏. then
d(p, r)  ✏. Why is this true? Think of a trian-
gle, with vertices p, q and r. Then if the distance
from p to q is no more than 1/2✏ and the distance
from q to r is no more than 1/2✏, the distance from p to r could hardly
be more than ✏(= 1/2✏ + 1/2✏). It could hardly be that going from p to r

via q is actually shorter than going “directly” from p to r. That is, it could
hardly be that d(p, q)+ d(q, r) (distance from p to r via q) is less than d(p, r)
(distance from p to r directly). The property which is being used, then, is:
d(p, q) + d(q, r) � d(p, r). This is called the triangle inequality. It is true
for the plane, for the line, and for Euclidean three-dimensional space. It
was used in one of our theorems. Again, it seems like a natural property for
“distance”.

It turns out that an appropriate list of properties to reflect “distance” is
just the three given above. In practice, of course, one would have to try many
other properties, trying to make the decision, for each, whether or not it
should be included. One would presumably also have second thoughts about
these three. In any case, one eventually settles on these three properties.
Having decided on the properties, one organizes everything as follows.
Definition. A metric space is a set X together with a rule which assigns,
to any two points p and q of X, a number, d(p, q), such that the following
conditions are satisfied;

1. For any points p and q of X, d(p, q) is zero if p = q and positive if
p , q.

2. For any points p and q of X, d(p, q) = d(q, p).
3. For any points p, q and r of X, d(p, q) + d(q, r) � d(p, r).
A metric space, then, is to represent “the idea of distance” in its purest

form, with no other extraneous features”. A metric space consists of a set
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X (the “points between which distance will be given”), and the rule which
assigns (unambiguously, of course) a number d(p, q) to any two points p

and q (which is to be regarded as, and will be called, the distance between
p and q). But all these assignments of distances cannot be made just by
whim, at least if one expects to obtain a metric space. They must be made
in such a way that these three conditions are satisfied, such that they have at
least some of the character of a “distance”. Of course, to specify a metric
space, one must say what the set X is, one must give some unambiguous rule
for obtaining a number, d(p, q), for any two points p and q of X, and one
must have our three conditions satisfied. Nothing more and nothing less. In
particular, it is not necessary that the metric space be “reasonable” in any
other sense. [After all, we had the option, prior to the definition, to demand
“reasonable”, and in fact we took advantage of that option to impose our
three conditions. Now, it is too late to ask for “still more reasonable”. Of
course, if one happened to come up with some nice additional conditions,
nothing would stop one from defining a new thing to incorporate them.]

We now give some examples of metric spaces.
Let X be the plane, i.e., the set of all pairs, (x, y) of real numbers (cer-

tainly, a set). For p and q any two points of the plane, let d(p, q) be the
number given by the formula on page 10 (certainly, an unambiguous assign-
ment of a number to any two points of X). Then our three conditions are of
course satisfied, as we have already seen. This, then, is a metric space.

Let X be Euclidean three-dimensional space, i.e., the set of all triples,
(x, y, z), of real numbers. For p and q any two points of X, let d(p, q) be the
number given by the formula on page 43. Our three conditions are certainly
satisfied. This is a metric space. Similarly, the line (with d(p, q) for p = (x),
q = (x

0), given by |x � x

0|) is a metric space.
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!!!!!!!!!!!!

Let X be the circle, i.e., the set of all pairs,
(x, y), of numbers, with x

2 + y

2 = 1. Let, for
p and q any two points of X, d(p, q) be the
geometrical distance between these points on
the plane (i.e., use again the formula on page
10). Then the first condition is certainly satis-
fied (d(p, q) is zero if p = q, and is positive oth-
erwise); and the second condition id certainly
satisfied (always, d(p, q) = d(q, p)).
Finally, the third condition is also satisfied. In-
deed, this is immediate, since points of X are “really” points of the plane
(although, of course, not all points of the plane get to be in X), and the trian-
gle inequality is satisfied for the plane.

Let X be the same circle as on this page, and let, for p and q any two
points of X, d(p, q) be the length of the shortest segment of arc of the circle
connecting p and q. Thus, for p and q as shown, d(p, q) would be the length
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of the arc shown. [Note that this is an unambiguous assignment which yields
a number in exchange for two points.] Again, the first two conditions are
immediate. One furthermore easily convinces oneself that the third condition
is also satisfied. We have a metric space. [Which one is right, this metric
space or the previous one? What is the real distance between points on the
circle? There is no “right” or “real” in mathematics. To give a metric space,
one must give a set X and the distances. That is it. The definition does not
require that anything be “real”.]
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Let X be the plane. For p and q any
two points of X, let d(p, q) be the num-
ber which is zero if p = q, and one
if p , q. [This is an unambiguous,
if “unreasonable”, rule. Thus, (0, 0)
and (.0001, 0) are distance 1 apart:
(0, 0) and (23, 926,�189) are distance
1 apart.] Let’s see if the conditions are
satisfied. For p = q, d(p, q) is certainly
zero. For p , q, d(p, q) is one which is
certainly positive. The first condition is
ok. furthermore, d(p, q) = d(q, p) (since both sides are zero if p = q and
both sides are one if p , q). Finally, we come to the third condition. How
could this possibly be violated? Since all “distances” are either one or zero,
the only possibility would be if d(p, q) is zero, d(q, r) is zero, while d(p, r)
is one. But this could never happen, for d(p, q) = 0 would mean p = q, and
d(q, r) = 0 would mean q = r – and so we would have to have p = r, and
so d(p, r) = 0 also. We conclude, then, that even the triangle inequality is
satisfied. This is a metric space!
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Let X be the plane.
For p and q any two
points of X, let d(p, q)
be the usual geometrical
distance between p and
q if that distance is less than one, and one if that geometrical distance is
greater than or equal to one. The distances (with this d) of some points from
p are shown in the figure. Arguing as in the previous example, one sees that
this is a metric space. [Again, the only tricky step is the triangle inequal-
ity. One must consider several cases, according to whether the geometrical
distances between p, q and r are less than or greater than one.]
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Let X be the plane. Let, for p and
q any two points of X, d(p, q) be five
times the geometrical distance between
p and q. This is a metric space.

Let X be the plane. Let for p and q
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any two points of X, d(p, q) be the square of the geometrical distance from p

to q. This “distance” does satisfy the first two conditions for a metric space.
However, it does not satisfy the third condition. Let, for example, p, q and
r be as shown (so the geometrical distance from p to q, and from q to r, are
both one). Then we would have d(p, q) = 12 = 1, d(q, r) = 12 = 1, but
d(p, r) = 22 = 4. It is not true that d(p, q) + d(q, r) � d(p, r). This is not a
metric space.
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N Let X be the plane.
Place a unit sphere on X, as
shown in the figure, and let
N denote the “North pole”.
For p and q any two points
of the plane, we obtain a
number d(p, q) as follows.
First draw a straight line
from p to N, and identify
the point p

0 at which that
line enters the sphere. Similarly, identity the point q

0. Now take the straight-
line distance (in our three-dimensional space of the figure) between p

0 and
q

0. This distance is to be the number d(p, q). Note that this is indeed a rule to
get a number from any two points of X. Points “very far out near the edge of
the plane”, e.g., (23, 234, 9.001), yield points p

0 “very near the North pole
N”. Thus, any two such points will, from our d, be “very close together”,
even though they appear geometrically to be very far apart. That the first
two conditions are satisfied is immediate. It actually turns out (although it
is perhaps a bit complicated to check in detail) that the triangle inequality is
satisfied. This is a metric space.
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Let X be the set consisting of the one point p, and set
d(p, p) = 0. This is a set and a rule. The three conditions
are easily checked. This is a metric space. Let X be the
set consisting of just two points, p and q. Set d(p, p) = 0,
d(q, q) = 0, d(p, q) = 19. This is a metric space.

Let X consist of just four points, with distances as in-
dicated in the figure, and with d(p, p) always zero. There
are a total of sixty-four possibilities for p, q and r in the
triangle inequality. One checks them. [It is actually easy:
Almost all the cases reduce to just a couple.] The first two
conditions are immediate. This is a metric space. If one of the “17’s” above
were changed to a “15”, one would not have a metric space, for the trian-
gle inequality would be violated. [For which p, q, r?]. If one of the “17’s”
were changed to “0”, the first condition would also be violated, and again
we would not have a metric space.

We now consider a couple of more exotic examples.
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Let X be the set of all disks
in the plane. So, a “point” of X

is actually an entire disk. Let
p and q be two “points” of X

as shown. We obtain d(p, q) as
follows. Consider the set of all
points of the plane which are in
p (a disk) but not in q, or else
are in q but not in p, as in the ex-
amples shown above. Then, let
d(p, q) be the area, in the plane,
of this set of points. Thus, in the first example on the right, d(p, q) is rather
large, for the area of the region “in p but not q or in q but not p” is rather
large. In the second example, d(p, q) is rather small, i.e., these “points” of
the set X are “close together”. This X, d we claim, is a metric space. For the
first condition, note that d(p, q), as the area of some region in the plane, is
always greater than or equal to zero.
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Furthermore, in order for
d(p, q) = 0 there would have to
be no points in p but not q, and
no points in q but not p, i.e., p

and q (points of X) would have
to be the same disk in the plane.
That d(p, q) = d(q, p), the sec-
ond condition, is immediate.
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r but not q 

p but not r, or 
r but not p 

Finally, we check
the triangle inequality,
d(p, q)+d(q, r) � d(p, r).
How each of the “d’s”
above of course repre-
sents the area of some
region in the plane. In
order to show this in-
equality, therefore, it
su�ces to show that every point of the plane in the region of the plane cor-
responding to d(p, r) is either in the region corresponding to d(p, q) or in
the region corresponding to d(q, r) (or, of course, possibly in both). Having
shown this, it will follow that the area one takes to compute d(p, r) cannot
exceed the sum of the areas for d(p, q) and d(q, r). Let, then, u be a point in
d(p, r), so that u is either in p but not r or in r but not p. We must show that
this u is either in the region for d(p, q) or in the region for d(q, r). There are
two cases to consider: u in p but not r and u in r but not p. Let us take the
first, so u is in p but not r. We now ask: Is u in the set q? If yes, then u (in p
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but not r, and assumed to be in q) is in q but not r – and so is in the region
whose area represents d(q, r). If no, then u (in p but not r, and assumed not
to be in q) is in p but not q – and so is in the region whose area represents
d(p, q). Similarly for the case u in r but not p. We conclude, then, that this
is a metric space. [In terms of the figure above, what we have shown is that
“the entire region with circles in it has stripes going one way or the other”.]

Similarly, one could let X be the set of all rectangles in the plane, and
define d as above, using the area. Or, one could let X consist of disks and
rectangles, and again define d using the area. In either case, we obtain a
metric space. [Why not just let X be the set of all subsets of the plane,
and again define d by using the areas? This will not work, for it would be
necessary to be able to say what the “area” of an arbitrary subset of the plane
is. What, for example, is the “area” of the set consisting of all (x, y) with x

rational?]
Let X be the set of all finite subsets of the positive integers, so a “point”

of X is just a finite list of integers, with no repetitions. For example, p =
(19, 3, 197, 11) is a point of X. Now consider two such points of X, say this
one and q = (197, 11, 5). We compute d(p, q) as follows. First, strike out any
integers which appear in both p and q (in this example, 197 and 11). Then
add all the remaining integers (in this example, 19, 3, and 5). The resulting
sum is d(p, q), so in this example d(p, q) = 19 + 3 + 5 = 27. One verifies
that this is a metric space. [The argument is essentially the same as for the
example above.]

Let X be the set of all ordered pairs of points in the plane, so a point of
X, p = (u, v), consists of a first point, u, of the plane and also a second point,
v of the plane. [We permit u = v.] Given two such pairs, say the one above
and q = (u0, v0), we define the distance between these two points of X by
d(p, q) = (geometrical distance between u and u

0) + (geometrical distance
between v and v

0). Thus, in order that two points of X be “close together”, the
corresponding first points of the plane must be close together in the plane,
and also the corresponding second points. One easily checks, using for each
of the three conditions the corresponding condition for the plane, that this X,
d is a metric space.
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7. Boundary, Interior, Bounded,

and Connected in Metric Spaces

We decided that, in our discussion of properties of sets in the plane, we
were talking plane, but actually doing much more. Our attempt to better
understand what was going on, to focus on what was really relevant to our
discussion, led to the notion of a metric space, “distilled essence of dis-
tance”. We have some examples of metric spaces – enough examples to see
that, while “metric space” does in some sense capture our ideas of distance,
it also admits some pretty strange-looking things. The next step is to go
ahead and carry out the program for which our metric spaces were invented.
We want to repeat our treatment of sets in the plane, but now for “sets in a
metric space”. We want to carry out this treatment once and for all – for a
general metric space. Then the plane, Euclidean three-dimensional space,
etc. will all be special cases. In this section, we carry out the first half of
this program: We introduce the definitions, with examples, of “boundary”,
“interior”, “bounded”, and “connected” in a metric space. One expects, of
course, that the new definitions will be essentially the same as the old ones,
since it was precisely the fact that our earlier discussion seemed to have a
wider domain of applicability which led us in the direction of a metric space
in the first place.

We begin with “boundary” and “interior”. We have
Definition. Let X, d be a metric space, and let A ⇢ X. Then the boundary of
A is the set of all points p of X such that, for every positive number ✏, there
is a point q of X with d(p, q)  ✏ and q in A, and also a point q

0 of X with
d(p, q0)  ✏ and q

0 not in A.
Definition. Let X, d be a metric space, and let A ⇢ X. Then the interior of
A is the set of all points p of X such that, for some positive number ✏, every
point q of X with d(p, q)  ✏ is in A.
Note that these are just our earlier definitions, but with a few minor changes.
Instead of “A is a set in the plane”, we say “A is a subset of X”, or A ⇢ X”.

53



54 7.

[In the case in which X is the plane, a “set in the plane” is the same thing
as a “subset of X”.] Further, we include for emphasis the fact that all points
considered in the definition are supposed to be points of X. We shall continue
to write bnd (A) and int (A) for the boundary and interior of A.

We give some examples.

Let X be the plane, and d the usual geometrical distance. Then these def-
initions of course reduce to our old definitions of the boundary and interior.
Thus, for any set A in this metric space, bnd (A) and int (A) are the boundary
and interior we have found before.
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Let X be the plane, and let d be: d(p, q) = 1
if p , q, and d(p, q) = 0 if p = q. This, as we
have seen, is a metric space. Let A be the usual
disk (all (x, y) with x

2 + y

2 < 1). We determine
int (A). Consider first the point p (given, say,
by (3, 4)). Is p in int (A)? Is it true that, for
some positive ✏ every point of X within distance ✏ of p is in A? It is not true.
Indeed, no matter what positive ✏ is chosen the point p itself will be within
✏ of p, while of course p is not in A. So, this p is not in int (A). Similarly,
the point q shown in the figure is not in int (A). What about the point r? Is it
true that, for some positive ✏, every point of X within ✏ or r is in A? It is true.
Indeed, consider ✏ = 1/2 (certainly, some positive ✏). What is the locus of
points within 1/2 of r? Well, the distance of a point from r is 1 if that point
is di↵erent from r, and 0 if that point is r itself. Thus, the locus of points
within 1/2 of r is just r itself. [Note; It is not a disk of radius 1/2 centered
at r. For “distance”, we must of course use the “d” of our metric space.] So,
every point within 1/2 of r (since there is only one, namely r) is in A. So,
r is in int (A). Clearly, then, int (A) = A, i.e., we get the same answer as
we obtained before. What is bnd (A)? Is point p in bnd (A)? Is it true that,
for every positive ✏, there is a point within ✏ of p and in A, and also a point
within ✏ of p and not in A? It is not true. Consider, for example, ✏ = 1/2.
The locus of points within 1/2 of p consists of just p itself. Since p is not
in A, there is no point within 1/2 of p and in A. So, p is not in bnd (A). Is
r in bnd (A)? Is it true that, for every positive ✏, there is a point within ✏ of
r and in A, and also a point within ✏ of r and not in A? Again, it is not true:
Chose ✏ = 1/2, and so the locus of points within 1/2 of r consists of r itself,
and so there is no point within 1/2 of r and not in A. Finally, we consider
the point q. It is true that, for every positive ✏, there is a point within ✏ of q

and in A, and also a point within ✏ of q and not in A? This is not true either!
Try ✏ = 1/2. The locus of points within 1/2 of q consists of q itself. But q

is not in A. So, there is no point within 1/2 of q and in A. Clearly, then, bnd
(A) is the empty set.
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Next, let, in this metric space, A

be the line, the set of all (x, y) with
y = 1. Is point p in int (A). Can we
find a positive ✏ such that every point within ✏ of p is in A? Certainly not:
point p will, no matter what positive ✏ is chosen, be within ✏ of p, while p is
not in A. Is point q in int (A)? It is. Choose ✏ = 1/2. Then the locus of points
within 1/2 of q is just q itself. Thus, every point 1/2 of q is in A. Thus, this
q is in int (A)! Clearly, int (A) = A, i.e., is just the line. What about bnd
(A)? Is point p in bnd (A) It is not: For ✏ = 1/2, there is no point within ✏
of p and in A. Similarly, point q is not in bnd (A): For ✏ = 1/2, there is no
point within ✏ of q and not in A (since, of course, the locus of points within
1/2 of q consists of just q itself]. Thus, bnd (A) is the empty set. [In these
examples, we used “1/2” because it is positive and less than 1. For p a point
of X, the locus of points within 2 of p is of course the entire set X.]

We notice a pattern in the examples above. In each case, we had int
(A) = A and bnd (A) the empty set. Inspection of the arguments also reveals
that the arguments for the two choices of A were essentially the same. In
fact, these arguments had virtually nothing to do with A. These observations
suggest
Theorem. Let X, d be the metric space with X the plane and d(p, q) = 1 if
p , q and d(p, q) = 0 if p = q. Thus, for any A ⇢ X, int (A) = A and bnd (A)
is the empty set.
Proof: For p in A, every point within 1/2 of p is in A, and so p is int (A). For
p not in A, there could be no positive ✏ such that every point within ✏ of p is
in A, for p itself, not in A, will always be within ✏ of p, and so p is not in int
(A). So, int (A) = A. For p any point of X, the set of points within 1/2 of p

consists of p itself. So, it cannot be the case that for every positive there is a
point within ✏ of p and in A, and also a point within ✏ of p and not in A. So,
p is not in bnd (A). Hence, bnd (A) id the empty set.

What is going on here? Why do we get answers so di↵erent from what
we might have expected? Are we to conclude that there is something wrong
with the definitions? Our conclusion should be something quite di↵erent.
What the theorem is trying to tell us is that our intuitive ideas about the plane
are intuitively connected with geometrical distance in the plane. Whether we
realized it or not, geometrical distance was an integral part of our intuition
about “interior” and “boundary”. Change the distance (e.g., to obtain the
metric space above), and the answers change. It is through the introduction
of metric spaces, then, that we come to see the constituents of our ideas about
sets in the plane.

Next, let X be the plane, and let d be: d(p, q) is the geometrical distance
from p to q if this geometrical distance is less than one, and d(p, q) = 1 if
that geometrical distance is greater than or equal to 1. This is of course a
metric space. The locus of points within distance 1/2 of point p consists of
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a disk of radius 1/2 centered at p; the locus of points within distance 3/4
of p is a disk of radius of 3/4 centered at p. But, the locus of points within
distance 2 of p is the entire plane (since all “distances” in this metric space
are less than or equal to 1). Now let A again be our disk. [See page 54] Is
point p in int (A)? It is not. No matter what positive ✏ is chosen, point p will
be within distance ✏ or p, while p is not in A. Is point q in int (A)? Again
no, for the same reason. What about point? Is there a positive ✏ such that
every point within ✏ of r is in A? There certainly is, say, ✏ = 1/10. The
locus of points within 1/10 of r is the disk of radius 1/10 centered at r (since
1/10 is less than one), while all points in this disk are certainly in A. So, r

is in int (A). Clearly, int (A) = A, i.e., the same answer we got before. What
about bnd (A)? Point p is not in bnd (A), for say, for ✏ = 1/3 (so the locus
of points within 1/3 of p is the disk of that radius centered at p), there is no
point within 1/3 of p in A. Point r is not in bnd (A) (for there is no point
within 1/10 of r and not in A). What about point q? Is it true that, for every
positive ✏, there is a point within ✏ of q and in A, and also a point within ✏ of
q and not in A? Let us try some ✏’s to see if they work. What about ✏ = 5. Is
there a point within 5 of q in A, and also a point within 5 of q and not in A?
The locus of points within 5 of q is the entire plane, and so there certainly is.
Clearly, there also is for ✏ = 10, or ✏ = 2, or, indeed, for any ✏ greater than 1.
What about something smaller than 1, say, ✏ = 1/2. Is there a point within
1/2 of q and in A, and also a point within 1/2 of q and not in A? The locus of
points within 1/2 of q is the disk of that radius centered at q. Clearly, there
are such points. One now sees that this will work for every positive✏. Hence,
point q is in bnd (A). Clearly, bnd (A) is the “rim” of the disk, i.e. the set of
all points (x, y) with x

2 + y

2 = 1.

Next, let A be the line as illustrated at the end of page 54 As usual, the
point p is not in int (A). Is q in int (A)? We must try to find a positive ✏
such that every point within ✏ of q is in A. Will ✏ = 5 do? No, for the locus
of points within 5 of q is the entire plane, and not all these points are in A.
Will ✏ = 1/2 do? No, for the locus of points within 1/2 of q is the disk of
that radius centered at q, and not all these points are in A. Clearly, we are
not going to find such an ✏. So, point q is not in int (A) either. Thus, int (A)
is the empty set. Is point p in bnd (A)? It is not. For, say, ✏ = 1/10, so the
locus of points within 1/10 of p is the disk of that radius, there will be no
point within ✏ of p and in A. Is point q in bnd (A)? Is it true that, for every
positive ✏, there is a point within ✏ of q and in A, and also a point within ✏
of q and not in A? We try a few ✏’s. Consider ✏ = 5, so the locus of points
within 5 of q is the entire plane. There certainly is a point within 5 of q and
in A, and also a point within 5 of q and not in A. Clearly, ✏ = 10, or ✏ = 2
will work, too. What about, say, ✏ = 1/2? Is there a point within 1/2 of q

and in A, and also a point within 1/2 of q and not in A? The locus in this
case is a disk of radius 1/2, and certainly there are such points. Clearly, this
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will work for any positive ✏. So, point q is in bnd (A). We conclude, then,
that bnd (A) = A, i.e., the same answer as we obtained before for the usual
plane.

Again, we see a pattern to these examples. In both cases, we got the same
answer as we obtained earlier for the ordinary plane. Looking back at the
arguments, one realizes that this is no coincidence. The mechanism is the
following. Let us written, as above, d for the distance in the present metric
space, and d

0 for ordinary geometrical distance in the plane. Then, for any
points p and q of X, d(p, q) is just d

0(p, q) if the latter is less than or equal to
one, and is one if d

0(p, q) is greater than one. Now fix a subset A of X. Let us
write “int” for the interior using distance d, and “int0” for the interior using
geometrical distance d

0. We want to show that int (A) = int’(A). Consider,
then, some point p of int (A). This means of course that there is some positive
✏ such that every q with with d(p, q)  ✏ is in A. We want to show that this
p is also in int0 (A). That is we want to find some positive number ✏0 such
that every q with d

0(p, q)  ✏0 is in A. So, we have ✏ (such that every q

with d(p, q)  ✏ is in A), and we are looking for ✏0 (such that every q with
d

0(p, q)  ✏0 is in A). The question is: What should we choose for ✏0? To see
the answer, recall that d(p, q) is just d

0(p, q) if the latter is less than or equal
to one, and one otherwise. Clearly, then, we always have d(p, q)  d

0(p, q),
i.e., the e↵ect of our “funny” distance is to regard points as at least as close
together as they are geometrically. Because of this, we claim we can just
choose ✏0 = ✏ and it will work. Does this choice of ✏0 satisfy our condition?
Is it true that, every q with d

0(p, q)  ✏0 is in A? Yes, for if d

0(p, q)  ✏0, then
(since d(p, q)  d

0(p, q)), we also have d(p, q)  ✏0, and so (since we choose
✏0 = ✏) we also have d(p, q)  ✏, and so (by the defining property of ✏) we
then have q in A. Thus, we supposed that p was in int (A), i.e., we supposed
a positive ✏ such that every q with d(p, q)  ✏ is in A. We then found an ✏0
(namely, ✏) such that every q with d

0(p, q)  ✏0 is in A. That is, we showed
that p is also in int0 (A). That is, we have shown that every point of int (A) is
also in int0 (A).

We now do the reverse. We fix a point p in int0 (A), and we want to show
that this p must be in int (A). That is, we have positive number ✏0 (such
that every q with d

0(p, q)  ✏ is in A), and we are looking for ✏ (such that
every q with d(p, q)  ✏ is in A. What should we choose for this ✏? What
about choosing ✏ = ✏0? Let us try an example, say ✏0 = 5. For this example
(choosing ✏ = ✏0) we would have that every q with d

0(p, q)  5 is in A, and
we wish to conclude that every q with d

0(p, q)  5 is in A. Does this follow?
Well, the locus of points with d

0(p, q)  5 is a disk of radius 5 centered at
p (for d

0 is just geometrical distance). However, the locus of points q with
d(p, q)  5 is the entire plane (for, no matter what q is, d(p, q) can be at most
one, and so will always be less than or equal to 5). Thus, we would have
that every point of the disk of radius 5 about p is in A, and would wish to



58 7.

conclude that every point of the plane is in A. Clearly, this does not follow.
Thus, we have ✏0 (such that every q with d

0(p.q)  ✏0 is in A, and are looking
for ✏ (such that every q with d(p, q)  ✏ is in A. We tried making the choice
✏ = ✏0, and found, at least for ✏0 = 5, that it will not work. What ✏ will

work for ✏0 = 5? We claim that ✏ = 1/2 will work. The locus of points with
d(p, q)  1/2 is the disk of that radius centered at p, and all these points are
within the disk of radius 5 about p. Thus, given that every q with d

0(p, q)  5
is in A, it follows that every q with d(p, q)  1/2 is in A. So, for this ✏0
(namely 5), we have found a suitable ✏ (namely 1/2). Let us try another ✏0,
say ✏0 = 137. For this choice we would have that every q with d(0p, q)  137
is in A, and we are looking for ✏ such that every q with d(p, q)  ✏ is in A.
Again, ✏ = 1/2 will do, for every q with d(p, q)  1/2 (i.e., every q in the
disk of radius 1/2 centered at p) will have d

0(p, q)  137 (i.e., will be in the
disk of radius 137 centered at p), and so will be in A. Clearly, then, ✏ = 1/2
will do for these “large” ✏0. Will ✏ = 1/2 work for any positive ✏0? Let us try
✏0 = 1/10. For this choice, we would have that every q with d

0(p, q)  1/10
is in A, and we wish to conclude that every q with d(p, q)  1/2 is in A.
Is this true? The locus of points q with d

0(p, q)  1/10 is the disk of that
radius centered at p: the locus of points q with d

0(p, q)  1/10 is the disk of
that radius centered at p. Can we conclude, knowing that every q in the disk
of radius 1/10 centered at p is in A, that every q in the disk of radius 1/2
centered at p is in A? We cannot. So, this ✏ (namely, 1/2) will not work for
✏0 = 1/10. But clearly, an ✏ which will work for ✏0 = 1/10 is ✏ = 1/10.

The suitable is now clear. We have ✏0 (such that every q with d

0(p, q)  ✏0
is in A), and are looking for ✏ (such that every q with d(p, q)  ✏ is in
A). When ✏0 is “large” (specifically, greater than one), we must choose ✏
something like 1/2 (for if we dare choose ✏ also large, specifically, greater
than one, then the locus of points q with d(p, q)  ✏ will become the entire
plane, and we shall not be able to conclude that these are all in A). However,
when ✏0 is “small” (specifically, less than one), then we must start making
✏ small too (for if we were to continue choosing ✏ = 1/2, then the locus of
points q with d(p, q)  ✏ will continue to be the disk of radius 1/2 centered
at p, and this disk will not remain within the locus of points q with q

0(p, q) 
✏0). A suitable choice for our ✏, then, is this: For ✏0 � 1, choose ✏ = 1/2; for
✏0 < 1, choose ✏ = ✏0. For this choice, it will indeed be the case that, given
that every q with d

0(p, q)  ✏0 is in A, every q with d(p, q)  ✏ is in A. Thus,
we have shown that every point of int0 (A) is also in int (A).

Putting our two conclusions together, we conclude that int (A) =
R

’(A),
for any set A in the plane. The key observations which led us to this conclu-
sion were i) given positive ✏ such that every q with d(p, q)  ✏ is in A, there
exists positive ✏0 (namely, ✏0 = ✏) such that every q with d

0(p, q)  ✏0 is in
A, and ii) given positive ✏0 such that every q with d

0(p, q)  ✏0 is in A, there
exists positive ✏ (namely, ✏ = 1/2 if ✏0 � 1 and ✏ = ✏0 if ✏0 < 1) such that
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every q with d(p, q)  ✏0 is in A. By a similar argument, one concludes that
bnd (A) (the boundary using distance d) is always the same as bnd0 (A) (the
boundary using distance d

0).
What is one to make of all this? We began with the boundaries and in-

teriors of sets in the plane, using the usual geometrical distance. We now
try “changing the distance”. For one such change (making the distance zero
if the points are the same, and one otherwise), our definitions yield strange
answers, which do not at all correspond with our intuition. But for another
change (making the distance the geometrical distance if that is less than or
equal to one, and one otherwise), our definitions yield precisely the bound-
ary and interior we obtained before. What these examples are doing is giving
us detailed information about what facets of “distance” are actually relevant
to our intuition of “boundary” and “interior”. It is clear that not everything

about distance counts for the boundary and interior, for at least one signifi-
cant change in what these distances are to be changes neither the boundary
nor the interior. On the other hand, something about distance counts, for an-
other change in what the distances are to be changes both the boundary and
interior. What, exactly, is it about “distance” which is relevant to our ideas
of boundary and interior? This is a question to which we shall return shortly.

We give a few more examples of interiors and boundaries of sets in met-
ric spaces.
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Let X, d be the metric space of page 50, so
X is the set of all disks in the plane, and d is
computed using areas. Let A be the subset of X

consisting of all disks which lie entirely within
some fixed square in the plane (say, the square
given by all (x, y) with 0  x  1 and 0  y  1).
Thus, for example, the disks p and s in the figure
are not in A. While disk r is in A. [Note that A is
indeed a subset of X. We have clearly specified which points of X are in A

and which are not.] What is int (A)? The point p of X will certainly not be
in int (A): It is not even close to being true that, for some positive ✏, every
point q (disk!) within distance (using areas!) ✏ of p is in A. The point s of
X is also not in A. Given positive ✏, let q be a disk obtained by displacing a
very slightly to the left. Then, if this “very slightly” is small enough, q will
be within distance ✏ of s. But, of course, this q (no matter how small “very
slightly” is) will not be in A. So, it is not true that, for some positive ✏, every
q with d(q, s)  ✏ is in A. So, s is not in int (A). The point r is in int (A).
Clearly, then, int (A) will consist of all disks which lie within the square, and
whose edge does not touch the boundary of the square. On the other hand,
bnd (A) consists of all disks which lie within the square, and whose edge
does touch the boundary of the square (for, in order, that disk p be in bnd
(A), it must be the case that for every positive ✏ there is a disk within ✏ of p
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and in A, and also a disk within ✏ of p and not in A).
Let the metric space be the same, but now let A be the subset of X con-

sisting of all disks with center at the origin, (0, 0). What is int (A)? Clearly,
the only serious candidates for points in int (A) are disks with center the ori-
gin. Is such a disk in int (A)? It is not. No matter what positive ✏ is given,
let q be obtained from p (the one with center the origin) by a small displace-
ment, so q will be within ✏ of p, but q will not be in A. So, int (A) is the
empty set. On the other hand, bnd (A) = A.
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Let X be the set consisting of
all points (x, y) of the plane with
x rational. Let d be the usual ge-
ometrical distance. This is a met-
ric space. Let A be the subset of
X consisting of all points of x with
x > ⇡. Thus, the point (20, 17) is
in A, while (�1, 17) is not (because
we do not have x > ⇡), and (2⇡, 17)
is not (because this “point” is not
even in X: It does not have x ratio-
nal. What is int (A)? The point p, given by (�1, 1) is not even close to being
in int (A). What about the “point” r, given by (⇡, 1)? This is not in int (A),
because it is not even in X. It is not even a “point” of the metric space we
are considering. Finally, consider the point s, given by (4, 1). Is it true that,
for some positive ✏, every point q of X with d(p, q)  ✏ is in A? This is true!
Choose ✏ = 1/2. Then every point q of x with d(p, q)  1/2 is indeed in A.
[What about the point q = (1.2 ⇡, 1) which would seem to be within 1/2 of
s, and not in A? But this is not a “point” of our metric space X, because its
x�value is not rational.] Clearly, then, int (A) = A. What is bnd (A)? Point p

is certainly not in bnd (A). “Point” r is not even under consideration. What
about point s? This point s is not in bnd (A), for it is not true that, for every
positive ✏, there is a point within ✏ of s and not in A. Indeed, choose ✏ = 1/2.
There is, as we just saw, no point q of X within 1/2 of s and not in A. So, in
this example, bnd (A) is the empty set.

Let the metric space be the same, and let A be the line given by all (x, y)
with x = 1. Then int (A) is the empty set, and bnd (A) = A. Let A be “the
closest thing we can have to our disk”: All (x, y) with x

2 + y

2 < 1 and x

rational (a subset of X). Then int (A) = A, while bnd (A) consists of all (x, y)
with x

2 + y

2 = 1 and x rational.
These, then, are some examples of the boundaries and interiors of sets in

metric space.
We turn next to the definition of “connected” for a set in a metric space.

Again, the appropriate definition is suggested by the corresponding defini-
tion (page 20) for a set in the plane.
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Definition. Let X, d be a metric space, and let A ⇢ X. Then A is said to be
disconnected if there exists a subset B of X such that some point of A is in
B, some point of A is not in B, and no point of A is in bnd (B).

Note that we deal only with the possible disconnectedness of a subset of
X. We also require that B be a subset of X. Of course, “bnd (B)” above is the
boundary using the metric space X, d. We give some examples.

Let X be the plane, and d ordinary geometrical distance. Then this defi-
nition of course reduced to our earlier definition (of disconnected for a set in
the plane). Thus, our earlier examples of connected and disconnected sets in
the plane apply.
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Let X be the plane, and let d be:
d(p, q) = 1 if p , q and d(p, q) = 0
if p = q – a metric space. Let, for
example, A be the disk: the set of
all (x, y) with x

2 + y

2 < 1. Is A dis-
connected? Yes. Let, for example,
B be the set of all points (x, y) with
x > 0, as illustrated on the right.
Then some point of A (for example,
(1/2, 0)) is in A, and some point of
A (for example, (�1/2, 0)) is not in
A. Furthermore, no point of A is in
bnd (B), for as we have seen (theorem on page 55) bnd (B) must be the empty
set, and so no point whatever is in bnd (B). Thus, A is disconnected. Clearly,
the key feature which causes this result is the fact that the boundary of any
subset of this metric space is the empty set. In fact, something much more
general is true. Let A be any subset of X (in this metric space) having at least
two points, say p and q. Then, we claim A must be disconnected. [Choose
for B the subset consisting of just the point q. Then some point of A is in
B (namely, q), some point of A is not in B (namely, p), and no point of A is
in bnd (B) (since bnd (B) is the empty set). Thus, any subset of X having
two or more points must be disconnected. On the other hand, a subset of X

consisting of just one point, as will as the empty subset of X, are connected.
Nest, let X be the plane, and let d(p, q) = the geometrical distance from

p to q if that distance is less than one, and d(p, q) = 1 if that geometrical dis-
tance is greater than or equal to one. Which subset of X will be disconnected
in this metric space? The answer, as it turns out, is extremely simple. First
recall that, for any subset B of X, bnd (B) (for this metric space) is precisely
the same set as boundary one would get if the distance were instead the or-
dinary geometrical distance (what we shall call bnd0 (B). It follows from
this, we claim, that the disconnected sets in this metric space are exactly the
disconnected sets in the ordinary plane. Indeed, suppose that A ⇢ X is dis-
connected in this metric space, so there is some B ⇢ X such that some point
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of A is in B, some point of A is not in B, and no point of A is in bnd (B).
Then (since bnd (B) = bnd0(B)), it follows that some point of A is in B, some
point of A is not in B, and no point of A is in bnd0 (B). That is, it follows
that A is disconnected in the plane with the usual geometrical distance. For
the reverse, suppose that A ⇢ X is disconnected with the usual geometrical
distance, so there is a set B ⇢ X such that some point of A is in B, some
point of A is not in B, and no point of A is in bnd0 (B). Then it follows that
some point of A is in B, some point of A is not in B, and no point of A is in
bnd (B). That is, it follows that A is disconnected also in this metric space.
In short, since this “chop the distances’ down to one” metric space gives the
same boundaries as the ordinary plane, it also gives the same connected and
disconnected sets.

Let X be the set consisting of all points (x, y) of the plane with x rational.
Let d be the usual geometrical distance. Set A = X (certainly a subset of X).
Is A disconnected? The answer is yes. Let B ⇢ X consist of all points of X

with x > ⇡. Then certainly some point of A is in B (since A = X), some point
of A is not in B, and yet (since bnd (B) is the empty set) no point of A is in
bnd (B). Next, let A be “the closest thing to a disk” in this metric space: all
(x, y) with x

2 + y

2 < 0 and x rational. Is A disconnected? It is. Let B ⇢ X

consist of all points (x, y) of X with x > ⇡/4. [Where did we get this number
“⇡/4”? It has to be an irrational number (in order to ensure that bnd (B) will
be the empty set. For example, if B were all (x, y) in X with x > 1, then bnd
(B) would be al (x, y) in X with x = 1 – not the empty set). Furthermore,
it has to be less than one (to ensure that some point of A is in B), and also
greater than minus one to ensure that some point of A is not in B). So, any
irrational between �1 and 1 would do.] Finally, let A consist of all points
(x, y) of X with x = 1, a “vertical line”. This subset of X is connected.

In the metric space of the last figure on page 49, the only connected
subsets are those consisting of just one point, and the empty subset.

We turn, finally, to the definition of “bounded” for a set in a metric space.
We begin by nothing that our old definition of “bounded”, for a set in the
plane, can indeed be immediately generalized to a subset of any metric space.
It turns out, however, that the resulting definition is not a very convenient
one. The reason for this is a rather technical one: One would have to look
in detail at various possible applications of this notion of “bounded”, and
see that it just does not seem to fit properly. Perhaps one example will at
least illustrate the idea. Consider the metric space X, d with X the plane,
and d(p, q) = geometrical distance between p and q if this is less than one,
and one otherwise. We have see that this metric space is “very much like
the plane”, in that it always gives the same boundaries, the same interiors,
and the same connected sets as the plane with usual geometrical distance.
Does it give the same bounded sets? Let us try it, using the old definition of
bounded (for X, d a metric space, and A ⇢ X, A is bounded if for some point
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p of X and some positive number c, every point q of A satisfies d(p, q)  c).
Let, for example, A = X. Then, if our metric space is the plane with the
usual geometrical distance, then A of course will not be bounded. Will A

be bounded in this metric space? The answer is yes. Let p be any point
of X (say, (�13, 233)), and let c = 2. The locus of points within distance
(using the “funny” d of this metric space) 2 of p is the entire set X. So, every
point of A is within 2 of p. So, this A is bounded. Thus, if we carry over
directly our old definition of bounded, we will get di↵erent answer for what
is bounded in the plane with usual geometrical distance and the plane with
this distance d.

What is the mechanism for this discrepancy? It is, roughly speaking,
the following. There is only a di↵erence between our distance d and usual
geometrical distance for “larger distances” (namely, those exceeding one).
On the other hand, all that really counts for boundaries, interiors, and con-
nectedness is the “smaller distances”. It was because geometrical distance
and distance d agree for the “smaller distances” that these two metric spaces
yielded the same boundary, interior, etc. On the other hand, what counts
for the present definition of “bounded” is, not the “smaller distances”, but
rather the “larger distances”, for, to show boundedness, one wants to choose
c very large so that all of A will be within distance c of p. What we would
really like, then, is some definition of “bounded” which concerns itself more
with “smaller distances”. An appropriate definition, as it turns out, is the
following.
Definition. Let X, d be a metric space, and let A ⇢ X. Then A is said to
be bounded if, for any positive number ✏, there is a finite set of points of
X, p1, p2 . . . pn

, such that, for any point q of A, there is at least one of the p

i

’s
such that d(p

i

, q)  ✏.
What the definition requires, in other words, is that, given any positive ✏,

one can find a finite set of points in X such that every point of A is within ✏
of at least one of those points.

It is all very nice to write down a definition – but we had better check that
it has at least some correspondence with our intuitive ideas of “bounded’.
The most convincing “check” would be to demonstrated that this definition
yields exactly the same answers as our earlier definition, at least for the usual
plane. The fact is that in this case, it does.
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Let X, d be the usual plane. Let
A be a subset of the plane, and sup-
pose that A is bounded by the def-
inition above. We shall show that
A is bounded by the definition on
page 17, i.e., we shall find a point p

of X and a positive number c such
that every point of A is within c of
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p. Since A is to be bounded by the
definition above, we know that for
every positive ✏, there is a finite set of points of X . . . In particular, then,
this must be true for ✏ = 5. Thus, we have some finite set of points of
X, p1 . . . , pn

, such that every point of A within 5 of at least one of the p

i

..
Let us choose p = p1. [Any of the p

i

would do.] Then we can compute the
distances d(p, p2), d(p, p3), and so on to d(p, p

n

). These will of course all be
just real numbers. Let b denote the largest of those real numbers. What we
have, then, is that all of p1, p2 . . . , pn

are within distance b of p (= p1), since
b was the largest distance. But every point of A is within distance 5 of one
of the p

i

. It now follows from the triangle inequality that every point of A is
within distance b + 5 of p (for given any point q of A, there is some p

i

with
d(p

i

, q)  5, while d(p, p
i

)  b, and so, by triangle, d(p, q)  b + 5). Thus,
we can set c = b + 5: Every point of A is within distance c of p. In short, we
have shown that A is bounded by the definition on page 17.

disk 

¼  

(1/2   , 0) 
ticks p = (½ , ½) 

Within 
   of p 

γ 
1 

grid 

A 

!!!!!!!!!!!!

not in the set 
locus of points 
within ¼ of p 

locus of points 
within 5 of p  

(½, 0) 

q

p' 

p

p'' 

!!!!!!!!!!!!
locus of points 
within 1/10 of p'' 

p = (1,1) 

  γ (t)

 −2  −1  0  2

  t = 1

 3

 ε

 1 −3  γ 1( )

!!!!!!!!!!!! !!!!!!!!!!!!

B

!!!!!!!!!!!!

!!!!!!!!!!!!

!!!!!!!!!!!!

!!!!!!!!!!!!

(-½, 0) 

!!!!!!!!!!!!

 ε

¼   ε

So, every set in the usual plane
bounded according to the definition
on the previous page is bounded ac-
cording to the definition on page 17.
We now show the reverse (which is
a little bit trickier). Let A be a set in
the plane bounded according to the
definition on page 17. So, we have
a point p and a positive number c

such that every point of A is within
c of p. We must show boundedness
according to the definition on the previous page. Let any positive number
✏ be given. We must find a finite set of points of X such that every point
of A is within ✏ of one of them. The method is the following. We intro-
duce a “grid” of points in the plane, consisting of all points (x, y) of the
form n✏/4,= m✏/4), where n and m are integers. This “grid” includes, for
example, the points (13✏/4,�✏/4) and (�7✏/4, 0) – it is a rectangular array
of points in the plane,spaced ✏/4 apart. The point of this grid is that, be-
cause of the spacing between the points,every point of the plane is within
distance ✏ of at least one of them. But, unfortunately, this grid will not do
the job (for the p1, . . . , pn

) for the definition on page 63, because there are
of course an infinite number of points in the grid. So, we do the following.
We consider only the points of our grid which are within distance c of p,
i.e., which are within the disk in the figure. This will be a finite number of
points: call them p1, p2, . . . , pn

. [Of course, “n” may be very large, perhaps
in the millions, depending on how small ✏ is.] Now clearly every point in
our disk, i.e., every point within distance c of p, is within distance ✏ of at
least one of the p1 . . . , pn

(for every point of the whole plane is within ✏ of
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some point of the original grid, and we obtained the p

i

by just throwing away
those points of the grid which do not make any di↵erence as far as points in
our disk are concerned). But every point of A is within distance c of p. So,
we conclude that every point of A is within distance ✏ of at least one of the
points p1, p2, . . . , pn

. Thus, we began with a set A bounded according to the
definition on page 17, chose any positive ✏, and found a finite set of points,
p1, p2, . . . , pn

, such that every points of A is within ✏ of at least one of the p

i

.
We have shown, then, that every set bounded according to the definition on
page 17 is bounded according to the definition on page 63.

Putting these together, then, we have shown (although we have not actu-
ally written out the formal proof for)
Theorem . Let X, d be the metric space which is the plane with usual geo-
metrical distance, and let A ⇢ X. Then A is bounded according the definition
on page 17 if and only if A is bounded according to the definition on page
63.

I hope the discussion above makes it clear what the mechanism of the
definition on page 63 is. In order to show that a set is bounded, one must give
oneself a positive ✏, and find a finite number of points of X such that every
point of A is within ✏ of at least one of those points. Generally speaking,
“the smaller ✏ is, the more points that will be required in the finite set”.
Note that our new definition of “bounded” deals essentially with “the smaller
distances”.

The above is an example of a common practice in mathematics. One be-
gins with a definition which seems “reasonable” in a certain context. (Here,
“bounded” for sets in the usual plane). One broadens the context (here, to
metric space), and then discovers that the old definition does not seem to
work quite right in that broader context. So, one looks for a new definition
(here, that on page 63) which essentially agrees with the old one in the con-
text in which the old one was applicable (here, the new definition not only
“essentially agrees”, but “exactly agrees”), but which seems more appropri-
ate in the broader context.

Hereafter, “bounded”, for a set in a metric space, always refers to the
definition on page 63.

We invented this new definition of “bounded” in part because of a certain
example. Let us now go back and see what the new definition does to that
example. Let X be the plane, and let d(p, q) be the geometrical distance if it
is less than one, and one otherwise. Set A = X. Is A bounded (according, of
course, to the definition on page 63)? Let us try ✏ = 3. Is there a finite set of
points of X such that every point of A (i.e., every point of X) is within 3 of
at least one of them? There is: Let p1, any point be the “finite set of points”.
The locus of points within 3 of p1 is all of X, and no every point of A is
within 3 of “one of them” (namely, the only one, p1). But, to show bounded,
we have to do this for every positive ✏. What about ✏ = 1/2? Is there a
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finite set of points in X such that every point of A is within 1/2 of at least
one of them? The locus of points within 1/2 of a point is a disk of radius
1/2 centered at that point. Can we find a finite number of such disks (all of
radius 1/2) such that every point of X (= A) is in at least one of those disks?
Obviously, we cannot. So, we cannot find such a finite set for ✏ = 1/2. So,
A in this example is not bounded.

Note how clever the new definition is. It “corrects” the answer in this
example, to yield that the entire set X is not bounded. It does so in a way so
that no answers are “corrected” for the usual plane with geometrical distance,
and also such that “small distances are the ones which really count”. Let X

be the plane, and let d(p, q) = 1 if p , q, and zero otherwise. Is A = X

bounded? Try ✏ = 1/2. Is there a finite set p1 . . . , pn

in X such that every
point of X (= A) is within 1/2 of at least one of the p

i

? The locus of points
within 1/2 of a point p consists of just p itself. So, if every point of X is
to be within 1/2 of one of the p

i

, every point of X must be one of the p

i

.
But this is impossible, for one is allowed only a finite number of p

i

, while X

itself has an infinite number of points. So, X itself is not bounded, since we
cannot find such a finite set in X for ✏ = 1/2. Clearly, the only subsets of X

which are bounded are the finite subsets of X. [Of course, every finite subset
of X is bounded. If A, consisting of just points p1 . . . , pn

, is a finite subset
of X, and positive ✏ is given, consider the finite subset of X consisting of A.
Then every point of A will be within ✏ of at least one point of this finite set.]

Let X be the set of all disks in the plane, with d given using areas, as
before. For A = X, A is not bounded. [Try ✏ = 1. Can one find a finite
set of disks such that every disk is within distance (using areas) 1 of one of
these?] The subset of X consisting of all disks with center the origin is also
not bounded. The subset of X consisting of all disks with center the origin
is also not bounded. The subset consisting of all discks which lie within a
square is bounded (but it is a bit tricky to see).

For the metric space of the last figure on page 49, every subset of X is
bounded.

Let X be the points (x, y) of the plane with x rational. For A the subset of
X consisting of all (x, y) with x

2 + y

2 < 1 and x rational, A is bounded; for
A consisting of all (x, y) with x = 1 , A is not bounded. For A = X, A is not
bounded.



8. Theorems on Sets in Metric Spaces

We now have the notion of a metric space, and some examples; the defini-
tions of interior, boundary, connected, and bounded in a metric space, and
some examples. The next step is the same as the corresponding next step for
the plane: We wish to prove some theorems which relate these definitions to
each other. One expects, of course, that many of our old theorems for the
plane will have analogous versions for metric spaces (with only “typograph-
ical changes”, such as “point of the plane” becoming “point of X”, etc). This
feature, after all, was one of our guides in inventing metric spaces. In fact,
one often thinks up theorems and their proofs in metric spaces by “thinking
plane” (or some other very simple metric space), but “writing metric space”.
One must be a bit careful in doing this, however, for, when proving a theorem
about metric spaces, one is of course only allowed to use those properties of
distance which are given in the definition of a metric space. It even turns out
on occasion that it is easier to prove something in the more general context
of a metric space than in the more special context of the plane. Whereas
there are millions of properties of geometrical distance in the plane, there
are only three properties of distance in a general metric space. Thus, in the
case of metric spaces, there are fewer possibilities for what to do if, in the
middle of a proof, one is trying to get from something to something.

Below are various theorems in metric spaces. Most generalize earlier re-
sults for the plane. We occasionally omit proofs which are virtually identical
to earlier proofs.
Theorem. Let X, d be a metric space, and A ⇢ X. Then int (A) ⇢ A. Proof:
Let p be a point of int (A), so, for some positive number ✏, every point within
✏ of p is in A. But p is within ✏ of p, and so p is in A.
[This is of course the theorem on page 26, but now for metric spaces. The
“every point” of the first sentence in the proof means “every point of X”,
and “within” means “within using distance d of the metric space”. That p

is within ✏ of p follows from the first condition in the definition of a metric
space.]
Theorem. Let X, d be a metric space, and let A ⇢ X. Then int (int (A)) = int
(A).

67



68 8.

Proof: By the theorem above, every point of int (int (A)) is in int (A). For the
converse, let p be a point of int (A). Then for some positive ✏, every point
within ✏ of p is in A. Let q be any point within 1/2✏ of p. Then every point
within 1/2✏ of q must, by the triangle inequality, be within ✏ of p, and so
must be in A. So, q must be in int (A). Since every point within 1/2✏ of p is
in int (A), p is in int (int (A)).
[See theorem on page 28. All we added was “by the triangle inequality”.]
Theorem. Let X, d be a metric space, and A ⇢ B ⇢ X. Then int (A) ⇢ int (B).

[See the first theorem on page 30.]
Theorem. Let X, d be a metric space, and A ⇢ X and B ⇢ X. Then int
(A \ B) = int (A)\ int (B).
[See the second theorem on page 30.]
Theorem. Let X, d be a metric space, and A ⇢ X and B ⇢ X. Then int (A)[
int (B) ⇢ int (A [ B).
[See theorem on page 32. The proof is that, word or word.]
Theorem Let X, d be a metric space, and A ⇢ X. Then bnd A

C) = bnd (A).
[See theorem on page 29,] This, recall, was one of our “interesting” theorems
for the plane, for it was suggested by our intuitive ideas of “boundary” and
of sets in the plane. There are some pretty strange things which still get to
be called metric spaces. Yet, this theorem holds for them all.]
Theorem. Let X, d be a metric space, and A ⇢ X. Then every point of X is in
either int A or bnd (A) or int (AC), and no point of X is in more than one of
these sets.
Proof; Let p be a point of X. If for some positive number ✏ every point within
✏ of p is in A, then p is in int (A). If for some positive number ✏ every point
within ✏ of p is not in A, then p is in int (AC). Clearly, p cannot be in both int
(A) and int (AC). If neither of these holds, i.e., if for every positive number ✏
there is a point within ✏ of p and in A and also a point within ✏ of p and not
in A, then p is in bnd (A). Finally, if p is in bnd (A), then (since for every
positive ✏ there is a point within ✏ of p and not in A) p is not in int A, and
(since for every positive ✏ there is a point within ✏ of p and in A) p is not in
int (AC).
[We did not actually state this as a theorem for the plane, although of course
we could have. Note that the second sentence of the theorem could have
been “Then int (A)[ bnd (A)[ int (AC) is the set X, and int (A)\ bnd (A),
bnd (A)\ int (AC), and int (A)\ int (AC) are all the empty set.” In the proof,
one shows in succession: p can be in int (A); p can be in int (AC); p cannot
be in both; if p is in neither. then it is in bnd (A); if p is in bnd (A), then it can
be in neither int (A) nor int (AC). These assertions, taken together, establish
the theorem.]
Theorem. Let X, d be a metric space, and A ⇢ B ⇢ X. Then, if B is bounded,
so is A.
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Proof: Let ✏ be a positive number. Then, since B is bounded, there is a finite
set, p1 . . . , pn

of points of X such that every point of B is within ✏ of one of
them. But A ⇢ B, and so every point of A is within ✏ of one of these points.
So, A is bounded. [See theorem on page 32. Of course, now we must use the
“corrects” definition of bounded, (page 63), and so the present proof is quite
di↵erent from the earlier proof for the plane. It is reassuring that, even with
our new definition of “bounded”, we still get this theorem. Note how the
present proof begins. We are, after all, trying to show that A is bounded, i.e.,
that “given any positive ✏, . . .”. So, we start by giving ourselves a positive ✏,
and we finish by finding a finite set such that every point of A is within ✏ of
at least one of the points of that set.]
Theorem. Let X, d be a metric space, and let A and B be bounded subsets of
X. Then A [ B is bounded.
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Proof: Let ✏ be a positive num-
ber. Since A is bounded, there
is a finite set, p1 . . . , pn

, such
that every point of A is within
✏ of one of these points: since B

is bounded, there is a finite set,
q1 . . . , qm

, such that every point
of B is within ✏ of one of these
points. Consider the finite set p1 . . . , pn

, q1, . . . , qm

. Then every point of
A [ B, since it must be in either A or B, must be within ✏ of one of these
points. So, A [ B is bounded. [Again, we did not state this one as a theo-
rem for the plane. The present proof is actually a bit simpler than would be
the corresponding proof using the old definition of “bounded” in the plane.
Of course, one would have expected this result from one’s intuitive idea of
“bounded”. (Score one for the definition.) How does one think of such a
proof? One knows that A and B are bounded, so one thinks of a figure such
as that on the right, with a “grid” of points such that every point of A is
within ✏ of one of them, and similarly for B. One wants to show that A [ B

is bounded, i.e., one must find a new “grid” such that every point of A[ B is
within ✏ of one of these points. What should one choose for the new “grid”?
Clearly, one should just combine the grids for A and B. Note that the proof
begins “Let ✏ be a positive number.”]
Theorem. Let X, d be a metric space, and let A and B be connected subsets
of X having some point p in common. Then A [ B is connected. [The proof
is, word for word, that of the theorem on page 33. Again, we have a result
which, at least for the plane, reflects our intuitive idea of what “connected”
means. But, despite the fact that there are some very strange metric spaces
around, it even holds in a general metric space. That theorems such as this
one continue to hold gives one confidence that the introduction of a metric
space was the right idea.]
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Finally, we remark that, since the usual plane is of course a metric space,
all our earlier counterexamples for the plane remain counterexamples for
metric spaces. Thus, for example, the following statements (in which “. . .”
stands for “Let X, d be a metric space, and A ⇢ X and (if B is mentioned)
B ⇢ X are false: i) . . . No point of A is in bnd (A). ii) . . . int (bnd (A)) is the
empty set. iii) . . . If A ⇢ B, then bnd (A) ⇢ bnd (B). iv) . . . int (bnd (A[B) =
int (A)[ int (B). v) . . . If A and B are connected, so is A\ B. vi) . . . If A ⇢ B

and B is connected, then A is connected. vii) . . . If A is connected, then A

c is
connected. viii) . . . If A is bounded and A ⇢ B then B is bounded. ix) . . . If
A is bounded, then A

c is bounded.



9. Topological Spaces

We are now at another crossroads. We have the notion of a metric space,
some definitions in metric spaces, some examples, and some theorems which
relate the definitions to each other. What should be done next? Shall we
invent more definitions, more examples, and more theorems? This would
certainly be possible. However, just with the plane before, this is not the
direction in which we wish to proceed.

We begin with the observation that there is still something fishy about
all this. Recall our discussion of stretching and pulling of the rubber sheet.
We decided initially that the kinds of things we were after were those which
remained the same under this operation of stretching and pulling. We in-
deed found four such “things”: the interior and boundary, and the notions
of connected and bounded. We asked what was genuinely relevant to these
notions, and decided that it was distance. This observation was made man-
ifest by expressing interior, boundary, connected, and bounded in a general
metric space (i.e., in “a space in which the only thing one has access to is a
distance”). What is disquieting, however, is the following fact: Whereas in-
terior, etc. certainly seem to remain the same under the operation of stretch-
ing and pulling, “distance” certainly does not. That is to say, the operation
of stretching a rubber sheet will certainly change distances between points
of the sheet. How does it come to be that, in order to express “stretching-
independent” notions, we need something “starching-dependent”, namely
distance? A more explicit example of this phenomenon is a result from Sect.
7. Let X be the plane, d

0 the usual geometrical distance, and d the distance
with d(p, q) = d

0(p.q) if d

0(p, q) < 1, and d(p, q) = 1 otherwise. Then, as
we have seen, for any subset A of X one gets the same interior and boundary
whether one uses d or d

0; the same sets are bounded or connected whether
one uses d or d

0. These two distances are of course quite di↵erent, whereas as
far as the structural features we are interested in are concerned, they “might
as well be the same”. It is as though d and d

0 di↵erent from each other only
by a stretching and pulling of the metric space.

The mathematician would regard it as unpleasant that, in order to treat
certain features of sets in the plane, one has to invoke structure (namely, a
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distance) which seems to go beyond what is inherent in the features one is
after. It would be taken as the sign that one does not yet understand that
one is doing – that one has not yet isolated what is genuinely relevant to
“interior”, etc. One could hardly doubt that distance has something to do
with our notions. It is just that it does not seem to be the essential thing – the
thing which gives us access to our four notions without forcing one to carry
around excess baggage. As the example above makes clear, there is certainly
a great deal of “excess baggage” in distance.

So, what is the essential thing? What is really relevant here? Here is a
problem in mathematics. One might begin, for example, by looking back
at what we have done for some clues to the answer. One might in this way
stumble across the following clues. First, one might notice that we tend to
use our distances in a rather restrictive way. For instance, there never ap-
pears, in anything important, a statement such as “The distance is 17.”. In
fact, the only circumstance in which we actually use our distances is the
following. We have some point p. We then say either “for some positive
number ✏” or “for all positive numbers ✏, and then either “there exists point
q with d(p, q)  ✏” or “for all points q with d)p, q)  ✏”. It seems as though
we do no care about the exact, specific numerical value of d(p, q), but only
whether or not it is � ✏, and then, not for a specific numerical value for ✏, but
rather for either “all ✏ “some ✏”. A second clue is an observation we made,
and even used, in Sect 7. What seems to count about our distances is, not
the larger distances, but only the smaller distances. Thus, for the example on
the previous page, we had two distances which “agreed when they are small,
but not when they are large”. Theses two distances, however, gave rise to
the same interior, etc. But even or the smaller distances, it is not exactly
the numerical values which count. For example, let X be the plane, d

0 usual
geometrical distance, and d twice geometrical distance. These distances are
of course di↵erent – and they are even di↵erent for “small distances”. How-
ever, one easily convinces oneself that d and d

0 give rise to the same interiors
and boundaries, and to the same connected sets and bounded sets.

These clues describe di↵erent aspects about what it is we want to retain
of our distances. It is “the smaller distances, but even then not exactly their
numerical values, but rather their ‘ ✏ for some ✏’ and ‘ ✏ for all ✏’ struc-
ture”. What we want to retain is a sort of shadow of distance which reflects
these features.

But the most revealing clue is the following. Consider the fifth theorem
on page 68. It says that, given any set A in any metric space, each point of
the space is in exactly one of the sets int (A), bnd (A), and int (Ac). But this
means the following. Suppose that one were very good at determining interi-
ors, but rather poor at boundaries. Then one could use interiors to determine
boundaries. Indeed, because of this theorem, one could determine bnd (A)
by finding all points which remain after removing int (A) and int (Ac) from
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X. Now consider the definition of “disconnected” on page 61. Where does
distance enter this definition? At only one place: the “. . . bnd (B).” at the
end (for, of course, distances are needed to determine the boundary). That
is to say, if one has determined the boundaries of all sets, then even if one
has lost one’s sheet giving the distances, one can still determine which sets
are disconnected and which are not. We conclude, then, that if one knows
the interiors then one can determine the boundaries (without otherwise us-
ing the distance), and further that, once one has determined the boundaries,
one can determine the disconnected sets (again, without otherwise using the
distance). [What of “bounded”? It does not seem to fit into this scheme.
We shall return to this shortly.] In short, distance seems to enter this subject
essentially only through the determination of interiors.

Here, then, are the clues. The mystery is how to so formulate this subject
that the essential things are retained, while the excess baggage is eliminated.
Of course, we have very much prejudiced the issue by our choice of clues.
In practice, one might find eighty clues, which point in twelve di↵erent di-
rections. One would begin with the most promising of these directions, and
work one’s way along, hoping eventually to find a formulation which seems
to have the appropriate character.

The solution to our mystery is the following. What did we do when we
passed from the plane to a general metric space? For the plane, we computed

the distance, using the formula on page 10.
For metric spaces, however, distances were not computed: rather, they

were just specified (i.e., invented), as part of the definition of a metric space.
We now want to pass from a metric space to something else. The crucial
thing seems to be the interiors. For a metric space, the interiors are computed

(using the distance in that metric space, and the definition of “interior”). The
idea, then, is that in our new spaces, the “interiors will just be specified by
fiat, and not computed from anything else”. In this way, we shall get rid of
those awkward distances, but retain the essential thing we need about the
distance, namely the interiors it determines.

But how can one tell, in a metric space, if a given set is the interior of
something? That is easy.
Theorem. Let X, d be a metric space, and A ⇢ X. Then there exists a subset
B of X such that A = int (B) if and only if A = int (A).
Proof: If A = int (B) for some B ⇢ X, then, by the last theorem on page 67,
int (A) = A. For the converse, let A = int (A). Then there is a set B (namely,
A) such that A = int (B).

Thus, the sets which are the interiors of something are just the sets which
are the interiors of themselves.
Definition. Let X, d be a metric space, and A ⇢ X. Then A will be said to be
self-interior if A = int (A).

It is the self-interior sets which seem to play the critical role in the study
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of sets in a metric space.
Recall again what happened in the passage from the plane to the gen-

eral metric space. We first isolated distance as the essential thing. We next
obtained a list of the “distance-like” properties of distance. The final step
was to assemble these properties in the definition of a metric space. For the
present situation, the essential thing seems to be the self-interior sets. The
next step, then, is to figure out what are the “self-interior-like” properties of
self-interior sets. With the plane, we were looking for properties of distance
which referred only to distance, and not to anything else about the plane.
Similarly, we are here looking for properties of self-interior sets which refer
only to these sets, and not to anything else about the metric space. Thus, for
example, “For A self-interior, there is a set B such that A = int (B).” is not
appropriate, for it refers to “int”, which requires the distance in our metric
space. By contrast, “For A self-interior, A

c is self-interior.” would be an ac-
ceptable property by this criterion, for it refers only to the self-interior sets
(and, of course, to the complement, but that is ok, because one does not need
the distance to determine the complement). But this property is not a very
good one either, for it is false in a general metric space. [For example, let
the metric space be the usual plane, and A the usual disk. Then A is self-
interior, but A

c is not.] Thus, we are looking for properties which refer only
to self-interior, and which are true in a general metric space. Again, there
are many more properties than we shall want to retain in the final definition
(just as there are many many more properties of distance in the plane than
are retained in the definition of a metric space). For example: “For p and q

points of X, with p , q, there is a self-interior set A with p in A and q not in
A.” is true in any metric space. We shall not retain it. Again, it is a matter
of judgment, to select enough properties to capture the essence of what one
wants, but not so many that one “practically gets all the way back to a metric
space”.

The appropriate list of properties, as it turns out, is the following.
Theorem. Let X, d be a metric space. Then

1. X and the empty subset of X are self-interior.
2. For A and B self-interior, A \ B is self-interior.
3. Given any collection of self-interior sets, their union C is self-interior.

Proof: 1. For p in X, every point within distance 13 of p is in X, and so X

is self-interior. The empty set, since it contains no points, is self-interior. 2.
Let A and B be self-interior. Then int (A \ B) = int (A)\ int (B) = A \ B,
where the first equality follows from the first theorem on page 68, and the
second equality follows from A = int (A) and B = int (B). 3. By the second
theorem on page 67, int (C) ⇢ C. For the converse, let p be a point of C.
Then p must be in one of the self-interior sets of the union, say A. Since
A = int (A), p is in int (A), i.e., there is a positive number ✏ of p is in A. But
A ⇢ C, and so every point within ✏ of p is in C. So, P is in int (C). We
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conclude that C is self-interior.
Note that, in the third property, we show that the union of any collection

(possibly two, possibly nineteen, possibly an infinite number) of self-interior
sets is self-interior. Of course, the union of an arbitrary collection of sets is
the set of all points which are in any one of those sets; the intersection of
an arbitrary collection of sets is the set of all points which are in all of those
sets. For example, let X be the plane, and consider the collection of subsets
of X consisting of all disks (of any positive radius) centered at the origin.
That is, for a any positive number, the subset of X consisting of all (x, y)
with x

2 + y

2 < a is in our collection. Then the union of this collection is the
entire plane (for every point of the plane is in at least one of these disks.) The
intersection of this collection is the set consisting of the single point at the
origin (for this is the only point which is in every one of our disks). In this
example, all the sets in our collection are self-interior in the metric space
with d usual geometrical distance. Note that their union, the entire plane,
is also self-interior, as demanded by the third property. Their intersection,
however, is not self-interior. This example shows, then, that in the second
property of the theorem above, we could not have had that the intersection
of any collection of self-interior sets is self-interior. Thus, for self-interior
sets, one can take intersections of two, but unions of arbitrary numbers, and
still get self-interior sets.

The next step is obvious. Just as the decision as to what are the “ap-
propriate” properties of distance in the plane led to metric spaces, so the
decision as to the appropriate properties of self-interior sets leads to a kind
of space.
Definition. A topological space consists of a set X together with a collection
J of subset of X such that the following conditions are satisfied:

1. X and the empty subset of X are in the collection J .
2. For any sets A and B in the collection J , A \ B is in the collection J .
3. For any collection of sets in J , their union is also in J .
Thus, to specify a topological space, one must say what the set X is, and

what the collection J of subsets of X is (i.e., which subsets of X are to be
in the collection J , and which are not). The subsets in the collection J are
usually called open sets (in the topological space X, J), i.e., “open set” is
just a short way of saying “subset of X which is in the collection J”.

The definition of of a topological space is, in my opinion, one of the most
beautiful definitions in mathematics. On the one hand, the definition itself
is simple and elegant. [One only has to specify a set X and some subsets,
subject to simple conditions. One does not have to give a lot of complicated,
detailed information, such as the distances for a metric space.] On the other
hand, this single definition gives one access to an enormous and rich range of
intuitive ideas – those we have discussed so far as well as many others. The
study of topological spaces is a large and important branch of mathematics –



76 9.

called, of course, topology. This will be the subject of our attention hereafter.
I hope that we shall be able to give some insight into the power and elegance
of this definition.

We give some examples of topological spaces. Just as the plane led im-
mediately to an example of a metric space, so any metric space leads imme-
diately to an example of a topological space. Indeed,
Theorem. Let X, d be a metric space. Denote by J the collection of all
self-interior (using d) subset of X. Then X, J is a topological space.
Proof: This is immediate from the theorem on 74. Note that, given met-
ric space X, d, we specified the information we needed to specify to have a
candidate for a topological space, namely a set (here, X), and a collection
of subsets of X (here, all self-interior subsets, using d). We already have
the necessary properties, since after all it was just these properties for self-
interior subsets of a metric space which suggested our definition of a topo-
logical space. The topological spaces so constructed are important enough
to deserve a name.
Definition. Let X, d be a metric space. The topological space X, J obtained
by the theorem above will be called the underlying topological space of the
metric space X, d.
Thus, we instantly obtain many topological spaces, as the underlying topo-
logical spaces of our various metric spaces. For example, let X be the plane,
and d usual geometrical distance. Then, for the underlying topological space
of this metric space, X is of course the set of points of the plane, while J
(the collection of open sets of our topological space) is the collection of self-
interior sets of the plane (e.g., the empty set, X itself, any disk, any union of
disks, and so on). Next, let X be the plane, but let d be the distance which is
geometrical distance if that is less than one, and one otherwise. Then, as we
have seen, X, d is a metric space. What is the underlying topological space?
The set is of course X, the plane. Now, however, the open sets are to be those
self-interior using this d. What, are these sets? Recall that, on page 68, we
showed that the interior, using this distance d, is always exactly the same
as the interior using the usual geometrical distance. Clearly, then, the self-
interior sets, in this metric space, will be exactly the same as the self-interior
sets using the geometrical d. Thus, we obtain exactly the same underlying
topological space as we obtained above, for the usual distance in the plane.
[How nice! One of the things we were unhappy about was that we seemed,
with metric space, to be carrying around excess baggage, reflected by the
fact that this distance and geometrical distance seemed to be “essentially the
same as far as the things we are interested in are concerned”. The definition
of the underlying topological space automatically throws away the excess
baggage. We get the same underlying topological space in the two cases.]

Let X be the plane, and let d be given by d(p, q) = 0 if p = q, and
d(p, q) = 1 if p , q. This is a metric space. The set of its underlying
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topological space is just the plane X. To find the open sets of this topological
space, we must find the self-interior sets of our metric space. When, in this
metric space, is int (A) = A? This is always true, for any A ⇢ X, in this
metric space. Hence, every subset of X is an open set in this topological
space. More generally, we have
Theorem. Let X be a set, and letJ be the collection of all subsets of X. Then
X, J is a topological space.
Proof: 1. X itself and the empty subset are subsets of X, hence in J . 2. The
interaction of two subsets of X is a subset of X, hence in J . 3. The union of
any collection of subsets of X is a subset of X, hence in J .

Thus, for any set X we obtain, via this theorem, a topological space
(namely, one in which every subset of X is open). These have a special
name.
Definition. A topological space X, J for which every subset of x is in J is
said to be discrete.

Consider the metric space on page 49, in which X consists of just four
points, with distances 17 and 1. Its underlying topological space (in which
the X, of course, will be just this set with four points) is discrete.

Of course, to give a topological space, one must give nothing less, and
need give nothing more, than required by the definition. Every metric space,
as we have just seen, gives rise to a topological space – but this need not
be the only way of obtaining topological spaces. Here is another kind of
topological space.
Theorem. Let X be a set, and let J be the collection of subsets of X consist-
ing of X itself and the empty subset. Then X, J is a topological space.
Proof: 1. X and the empty set (here written ;) are in J . 2. Since X \ X = X,
X \ ; = ;, ; \ X = ;, and ; \ ; = ;, the intersection of any two sets in J
is in J . 3. The union of any collection of sets in J is X if any one of those
sets in the union is X, and ; if none of those sets in the union is X. So, any
such union is in J .
The topological spaces obtained via this theorem have “as few open sets as
possible”, namely just X and the empty set. [Clearly, one cannot have have
fewer open sets than this, because one has to satisfy the first condition for a
topological space.] By contrast, a discrete topological space has “as many
open sets as possible”, namely every subset of X is open. These two, then,
are the extremes for how many open sets there can be. The one with “very
few open sets” also has a name.
Definition. A topological space X,J for which J consists only of X itself
and the empty subset is said to be indiscrete.

Just as, in a metric space, “X does not tell one what distance to choose”,
so, in a topological space, “X does not tell one what open sets to choose”.
One’s only obligation is to specify clearly what subsets of X are or are not
in, J , and check the conditions.
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Let X be the plane, and let J consist of all subsets of X having a finite
number of points (including the possibility of no points). Thus, the usual
disk is not in J , for it has more than a finite number of points. We check
the conditions for a topological space. The empty subset of X is certainly in
J , for it has no points. However, X itself is not in J , for X does not have a
finite number of points. The first condition fails. For the second condition:
Is it true that, if each of A and B has a finite number of points, then A\B has
a finite number of points? This is true, and so the second condition holds.
For the third condition: Is it true that, given any collection of subsets of
X, each with a finite number of points, their union has a finite number of
points? Let us try it for two subsets in the collection. Is it true that, if each
of A and B has a finite number of points, then A [ B has a finite number of
points? This is true. However, this third condition fails in general (i.e., when
we allow ourselves to take the union of any collection of sets in J). Indeed,
consider the collection of all subsets of X having just one point (so the subset
consisting of just the origin is in this collection, while a disk is not). This is
certainly a collection of sets in J (for each set in our collection has a finite
number of points, namely just one point). What is the union of this collection
of sets? It is, we claim, the entire plane X. [Indeed, let p be any point of the
plane. Then the subset of X consisting of just p is in our collection. So, p

is in the union of the sets in our collection.] But the plane, of course, is not
in J . So, we have found a collection of sets in J whose union is not in J .
The third condition fails. Thus, we do not have a topological space (and, in
fact, we only satisfied one condition out of the three).

The “mirror image” of the attempt above, however, works. Let X be
the plane, and let J consist of the empty set, X itself, and any subset of X

consisting of all of X except for a finite number of points. Thus, for example,
the disk is not in J , for it is not the empty set, not X, and it is not all of X

except for a finite number of points. But the subset of X consisting of all
(x, y) except (3,�271) is in J , for it is all of X except for a finite number of
points (namely, except for one point). This X, J , we claim, is a topological
space. 1. X and the empty set are certainly in J . 2. Let A and B be in J . If
either is the empty set, then A \ B is the empty set, and so is in J . Suppose,
then, that neither is the empty set: Say, A is all of X except the finite number
of points p1 . . . , pn

of X, and B is all of X except the finite number of points
q1 . . . , qm

of X. Then A \ B (the set of all points in both A and B) must be
all of X except for points p1 . . . , pn

, q1 . . . , qm

(for every other point of X is
certainly in both A and B, while these points are not in both A and B). But
this set A \ B is all of X except for a finite number of points, and so is in J .
3. Consider any collection of sets in J , and let C be their union. If all the
sets in this union are the empty set, then C is the empty set, and so C is inJ .
Suppose not, so there is some set A in this union which is not the empty set.
Then A, since it is inJ , must be all of X except for a finite number of points.
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But C is a union of A with some other sets, and so A ⇢ C. But, since A is
all of X except for a finite number of points, and A ⇢ C, C must be all of X

except for a finite number of point (for C has to include at least everything in
A). So, C is in the collection J . That is, the union of any collection of sets
in J is itself in J . We conclude, therefore, that this is a topological space.

Compare this last example (in which we obtain a topological space) with
the preceding one (in which we do not). Why is “finite subsets’ of X” so
di↵erent from “subsets of X consisting of all of X accept for a finite number
of points”? One easily traces the reason to the di↵erence between the second
and third conditions for a topological space: Whereas the intersection of just
two open sets must be open, the union of any collection of open sets must be
open.

Let X consist of three points, p, q, and r. Let J consist of the empty
subset of X, X itself, the subset of X consisting of just p, and the subset of X

consisting of just q and r. One checks that this X, J is a topological space.
If, however, J had consisted of the empty subset of X, X itself, the subset of
X consisting of p and q, and the subset of X consisting of q and r, then we
would not obtain a topological space: The second condition would fail.

We introduce one final method for obtaining topological space. Recall
the following construction for metric spaces. Let X, d be a metric space,
and let X

0 be any subset of X. We introduce a distance d

0 in the set X

0, as
follows. Let p and q be any two points of X

0. Then, since X

0 ⇢ X,, p and
q are also points of X. But we already have a distance, d in X. We now
define our distance in X

0 to be just this distance in X, i.e., we set d

0(p, q) =
d(p, q). We indeed have specified a rule which assigns a number (namely,
d

0(p, q0)) to any two points, p and q, of X

0. We finally note that this X, d

0 is
a metric space. [Each of the three conditions for X

0, d0 to be a metric space
follows immediately from the corresponding condition in the metric space
X, d.] There is an analogous construction in topological spaces. Let XJ be
a topological space, and let X

0 ⇢ X. Just as above we used the distances
in X to obtain distances in X

0, now we wish to use the open sets in X (i.e.,
those in the collection J) to obtain our open sets X

0 (i.e., those which will
be in our collection J 0). This we do as follows. Let A be any open set in
the topological space X, J . We cannot of course simply say “We shall then
regard this A an an open set in X

0,J 0.”, for A may not even be a subset of X

0.
We therefore “force” A to e a subset of X

0, as follows. We simply take the
intersection of A (a subset of X) and X

0 (also a subset of X). This intersection
(of course, a subset of X) will of course also be a subset of X

0. It is these
subsets of X

0 (namely, all those obtained by intersecting open sets in X, J
with X

0) that we wish to deem open in X’, J 0. With metric spaces, the fact
that our X

0, d was a metric space was immediate from the fact that X, d was
a metric space. Similarly, here, one shows that X

0, J 0, constructed as above,
is a topological space using the fact that X, J began as a topological space.
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That is,
Theorem. Let X, J be a topological space, and X

0 ⇢ X. Let J 0 denote the
collection of all subsets of X

0 of the form A\X

0, where A is in the collection
J . Then X

0, J 0 is a topological space.
Proof: 1. Since the empty set ; is in J , and ; \ X

0 = ;, the empty set is
in J 0. Since X is in the collection J , and X \ X

0 = X

0, the set X

0 is in J 0.
2. Let A

0 and B

0 be in J 0, say A

0 = A \ X

0 and B

0 = B \ X

0, with A and
B in the collection J . Then A

0 \ B

0 = (A \ B) \ X

0, while, since X, J is
a topological space, A \ B is also in J . Hence, A

0 \ B

0 is in J 0. 3. Let C

0

be the union of any collection of sets in J 0. Then each of the sets in this
union is the intersection, with X

0, of a set in the collection J . Denote by C

the union of the corresponding sets in J . Then, since X, J is a topological
space, this C is also in the collection J . But we have C

0 = C \ X. Hence,
C

0 is in J 0.
In this proof, we have used a few (easy) facts about intersections and

unions. [For example, in the second step, we used the fact that if one takes
the intersection of A \ X

0 with B \ X

0, the result is the same as taking the
intersection of A\B with X

0. In the third step, we used the fact that the result
of taking the union of a collection of sets of the form A\X

0 is the same as the
result of first taking the union of all the A’s, and then intersecting the result
with X

0. One checks these facts by the usual, straightforward, arguments.
(E.g., “Let p be a point of . . .. Then p must be in . . . or . . . but not . . ..
Therefore, p must be in . . . etc.”)] Using this theorem, then, we again obtain
an enormous variety of topological spaces. One begins with any topological
space, X, J . One takes any subset X

0 of X. Then, “restricting” the open
sets of X, J to X

0 (i.e., taking their intersections with X

0), we obtain a new
topological space, X

0, J 0. These topological spaces have a special name.
Definition. Let X, J be a topological space, and X

0 ⇢ X. Then the topolog-
ical space X

0, J 0, obtained via the theorem above, is called the topological

subspace (of X, J , based on the subset X

0).
To summarize, any set X gives rise to two topological spaces (the indis-

crete one and the discrete one); any metric space gives rise to a topological
space (the underlying one); any metric space gives rise to a topological space
(the underlying one); any subset of any topological space rise to a topologi-
cal space (the topological subspace).



10. Interior, etc. in Topological

Spaces

We initially introduced the notion of the interior, boundary, connected, and
bounded for sets in the plane. These notions satisfied certain properties. We
then introduced a sort of “generalized plane”, a metric space. We were able
to recover, in metric spaces, our four notions, with similar properties. We
have now introduced “generalized metric spaces”, i.e., topological spaces.
We now wish to recover our four notions again in a general topological space,
and again find their properties.

In our discussion of sets in the plane, we constantly made use of “disks
of various radii centered at various points”. In metric spaces, the analogous
things were the subsets of X given by “the locus of all points q of X with
d(p, q) < ✏”. Subsets of this form were used in virtually every argument for
metric spaces. In particular, these subsets of a metric space reduce, for the
case of the plane, to our usual disks. There is a similar class of subsets for a
topological space, which subsets will play very much the same role. These
are the following.
Definition. Let X, J be a topological space, and p a point of X. An open

neighborhood of p is an open set in this topological space, containing the
point p.

We intend to use open neighborhood in topological space very much as
we used disks in the plane, and “the locus of points q with d(p, q) < ✏” in
a metric space. Is this at all feasible? Do open neighborhoods bare any re-
semblance to “the locus of points q with d(p, q) < ✏”? We have to ask this
question with a little bit of care, We cannot, for example, just go o↵ and ask
“Are the open neighborhoods just given by the locus of points q . . .?”. The
problem here is that open neighborhoods are defined in topological spaces,
while “the locus of points q . . .” are defined in metric spaces. But topologi-
cal spaces and metric spaces are quite di↵erent things. We do not have any
distance in a topological space, and we do not have any open sets in a metric
space. But there is, fortunately, one area of common ground, on which we
can check things out. We know that every metric space gives rise to a topo-
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logical space, its underlying topological space. Thus, we may begin with
a metric space, X, d, then determine its underlying topological space X, J ,
and finally ask for the comparison between “the locus . . .” in the metric space

X, d and the open neighborhoods in the topological space X, J . [Of course,
this will just represent a rough check that we are on the right track. There
are, as we have seen, topological spaces which do not arise from any metric
space. Nonetheless we permit ourselves the definition “open neighborhood”
in every topological space.] The comparison results in the following.
Theorem. Let X, d be a metric space, X, J its underlying topological space,
p a point of X and ✏ a positive number. Let A be the set of all points q

of X, with d(p, q) < ✏. Then, in the topological space X, J A is an open
neighborhood of p.
Proof: Since (p, p) = 0, which is certainly less than ✏, p is in A. So, we need
only show that A is open in the topological space X, J , i.e., that A is self-
interior in the metric space X, d. Since, by an earlier theorem, int (A) ⇢ A,
we have only to show that every point of A is in int (A). Let q be any point
of A, and set d(p, q) = a, so a < ✏. Choose, by this last inequality, positive
number b such that a + b < ✏. Now let r be any point of X with d(q, r)  b.
Then, by the triangle inequality (since d(p, q) = a and d(q, r)  b), we have
d(p, r)  a + b. But a + b < ✏, and so d(p, e) < ✏, and so r is in A. So, we
have shown that every point within distance b of point q is in A; hence, that
q is in int (A). Since every point of A is in int (A), we have A = int (A).

This is a slightly tricky proof. We are trying to show that A is an open
neighborhood of p, and A is defined using the metric space. What we must
show, then, is that p in A (which is easy), and that A is open (which is more
di�cult). But “open” in our topological space means “self-interior” in the
metric space. It all reduces, therefore, to showing that every point of A is in
int (A). For this, we select any point q of A, and proceed to show that this q

must be in int (A), i.e., proceed to find a positive to show number b such that
every point within b of q is in A.
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Note, however, that a “b” which works
depends on what q is. One could have
guessed that this would happen. Recall,
way back, our demonstration that, for the
disk in the plane, the interior of this disk is
just the disk. There, we picked any point
of the original disk, and found a smaller
disk, centered at that point, which lied en-
tirely within the original disk. Think of p

as the center of the original disk, and of q

as some point in that disk. How small must
our “smaller disk” be, to ensure that it will be a subset of the original disk?
Clearly, “how small” depends on what q is. The radius, b, of the smaller disk
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must be such that a+ b < ✏. This observation about the plane, then, suggests
the choice of b in the proof above.

The theorem above shows that “the locus . . .” in a metric space always
yields an open neighborhood in the underlying topological space. But what
about the reverse? How do we pass from open neighborhoods in the under-
lying topological space to “the locus . . .”? The other half of the comparison
is the following.
Theorem. Let X, d be a metric space, X, J its underlying topological space,
and p a point of X. Let A be an open neighborhood of p in the topological
space X, J . Then there exists a positive number ✏ such that every point q of
X with d(p, q) < ✏ is in A.
Proof: Since A is an open neighborhood of p, p is a point of A. Further, A

is open, i.e., A is self-interior in the metric space X, d, i.e., A = int (A). So,
since p is in A, p is in int (A). That is, there is a positive number ✏ such
that every point q with d(p, q)  ✏ is in A. So, every q with d(p, q)  ✏ is
certainly in A. This half is somewhat easier.

The situation, to summarize, is the following. We begin with metric
space X, d and find its underlying topological space, X, J . Fix point p of
X. Then, for any positive ✏, “the locus of points q of X with d(p, q) < ✏”
(something defined using the metric space) is always an open neighborhood
of p in the topological space. The reverse is that, given any open neighbor-
hood of p in the topological space, there is some positive ✏ such that every
point within ✏ of p is in that open neighborhood (but, of course, the neigh-
borhood need not be all points q with d(p, q) < ✏ – it just has to include all
such points). Using these two theorems, then, we can pass back and forth
between “the locus . . .” and “open neighborhood” – provided we are dealing
with a metric space and its underlying topological space. [Of course, if we
just dealing with a topological space – with no metric space around – then
we do not want to “pass back and forth”, since we do not have any metric
space to “pass” to: We cannot even say “the locus . . .”.]

We turn now to our first definition – that of “interior” in a topological
space. Recall, (page 53) the definition of “interior” for a metric space. What
it says, essentially, is that point p gets to be in int (A) if, for some positive
number ✏, “the locus of points q with d(p, q) < ✏” is a subset of A. But our
“generalized locuses”, for a topological space, are the open neighborhoods.
This immediately suggests how we should make our new definition.
Definition. Let X, J be a topological space, and A ⇢ X. Then the interior of
A is the set of all points p of X such that some open neighborhood of p is a
subset of A.
The first thing to note about this definition is that it makes sense. It does not
refer to distances, i.e., to things we have only in metric spaces. Rather, it
refers to the one thing we have access to in a topological space, namely, the
open sets (or, what is practically the same thing, the open neighborhoods).
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Recall what happened in the passage from the plane to metric spaces.
We first defined the “interior” for a set in the plane. Then, once we got
metric spaces, we defined “interior” for any subset of any metric space. One
example of a metric space is of course the plane, with usual geometrical
distance. Thus, we could ask ourselves the following question. Let A be a
set in the plane. Then, using the definition on page 16, we can determine the
interior of this set in the plane. But we could also do things in a somewhat
di↵erent way. We might, alternatively, regard our plane, with geometrical
distance, as a metric space. Then, we have a metric space X, d (with X the
plane, and d geometrical distance), and we have A ⇢ X. Now, we can turn
to the definition on page 53, and determine the interior of this subset of a
metric space. The question is: Do we obtain the same “interiors”, doing it
in the two ways? The answer, of course, is that we do, as seen at the top
of page 54. Now, we are passing from metric spaces to topological spaces.
We can ask a similar question. Suppose we have a metric space X, d, and
A ⇢ X. Then we can compute the interior of A, using the definition on page
53. However, we can alternatively do things in a di↵erent way. We can take
the underlying topological space of our metric space. Then, we have X, J ,
a topological space, and A ⇢ X. Now, using the definition on the previous
page, we can determine the interior of A. Question: Do we obtain the same
answer as we got from the definition on page 53. That is, do we obtain the
same “interior” if we regard A as a subset of the metric space, and use the
definition for a metric space, as if we regard A as a subset of the topological
space, and use the definition for a topological space? If not, things would get
pretty confusing, because we would always have to specify “which interior”.
[In fact, in practice, if we could obtain di↵erent answers by the two methods,
one would probably use a di↵erent word for the definition on the previous
page, say “interior”.] Fortunately, things work out.
Theorem. Let X, d be a metric space, and X, J its underlying topological
space, and A ⇢ X. Then the interior of A in the metric space X, d is the same
set as the interior of A in the topological space X, J .
Proof: Write int

d

(A) and intJ (A) for the two interiors. Let p be any point
of int

d

(A), so, for some positive number ✏, every point q with d(p, q)  ✏ is
in A. That is, denoting by B the set of all q with d(p, q) < ✏, B is a subset of
A. But, by the theorem on page 82, B is an open neighborhood of p. So, p

is in intJ (A). For the converse, let p be any point of intJ (A), so there is an
open neighborhood C of p, with C ⇢ A. By the theorem on page 83, there is
a positive number ✏ such that every q with d(p, q) < ✏ is in C. So, every q

with d(p, q)  ✏/2 is in C. But C ⇢ A, and so every q with d(p, q)  ✏/2 is
in A. That is q is in int

d

(A).
Note how, in the proof, one just uses the two theorems which relate “open

neighborhood” with “the locus of points . . .”. The “✏/2 – business” near the
end of the proof is necessary to switch from “<” (which comes from the
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theorem on page 83) to “” (which is needed in the definition on page 53).
One does occasionally have to make such switches, and it is always done in
this way (divide by 2).

What this theorem says, then, is that our definition of “interior” on page
83 is a reasonable one. The thing there defined deserves to be called “inte-
rior”, for it is a genuine generalization of “interior” for metric spaces in the
sense that, when both definitions are applicable (i.e., when we work with the
underlying topological space of a metric space), they agree. For X, J any

topological space, and A ⇢ X, we shall write int (A) for the interior of A.
[The use of the same word, “interior”, and the same symbol, “int ( )”, for
metric and topological spaces leads to no confusion, just as there was none
in the passage from the plane to a general metric space.]

The theorem on the previous page produces instantly a long list of exam-
ples of interiors for sets in various topological spaces. Consider any of our
earlier examples of metric spaces. Take the underlying topological space.
Let A ⇢ X. Then int (A) (regarding A as a subset of this space) is just int
(A) (regarding A as a subset of the metric space). For instance, let X be the
plane, and d(p, q) = 0 if p = q and 1 otherwise. Then, by the theorem on
page 55, we have int (A) = A for any subset A of this metric space. Now
consider the underlying topological space. By the theorem on the previous
page, we must have int (A) = A (now, using the definition for “interior” on
page 83) for any subset A of this topological space.

We give a few more examples.
Let X be any set, and X, J the discrete topological space. [That is every

subset of X is deemed an open set in this topological space.] What are the
open neighborhoods in this topological space? An open neighborhood of a
point is an open set containing the point. Since every subset of X is open,
an open neighborhood of p is any subset of X containing the point p. In
particular, the subset of X consisting of p alone is an open neighborhood
of p in this topological space. Now let A ⇢ X. We wish to determine the
interior of this subset of this topological space. Suppose first that p is a point
of A. Then, we claim, p is in int (A), that is, there is an open neighborhood
of p which is a subset of A. Indeed, consider the open neighborhood of p

consisting of p itself. This one is certainly a subset of A (since p is in A).
So all the points of A are in int (A). What about points not in A? These can
never be in int (A), and in fact this is true for any subset of any topological
space.
Theorem. Let X, J be a topological space, and A ⇢ X. Then int (A) ⇢ A.
Proof: Let p be a point of int (A), so there exists an open neighborhood C of
p with C ⇢ A. But p is in C and C ⇢ A. But p is in C and C ⇢ A, and so p

is in A.
[Compare with the first theorem on page 67 Obviously, we are using virtu-
ally the same proof, essentially replacing “locus of points q . . .” by “open
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neighborhood”. It should be emphasized, however, that the theorem above is
not an immediate consequence of that on page 67 One is for metric spaces,
using the definition on page 53; the other for topological spaces, using the
definition on page 83. Not all topological spaces come from metric spaces.]
In any case, we conclude that, for A any subset of the topological space un-
der consideration (that introduced on the previous page) int (A) = A. This, of
course, is the answer we would have expected, from the theorem on page 84.
Recall that for the metric space with distance “zero if the points are equal,
one otherwise”, the underlying topological space is discrete. But in such a
metric space, int (A) = A always; hence, also for the underlying topological
space.

Let X be any set, and X, J the indiscrete topological space. [That is, the
only subsets of X deemed open are the empty subset and X itself.] What are
the open neighborhoods in this topological space? An open neighborhood
of p is an open set containing p. But the only open sets are the empty set
and X itself, while the empty set does not contain the point p. So, in this
topological space, there is just one open neighborhood of a given point p,
namely X itself. Now let A ⇢ X. We determine int (A). Given a point p of X,
when will there be an open neighborhood of p which is a subset of A? But
this is easy, since the only open neighborhood of p is X itself. If A = X, then
clearly our open neighborhood of P will be a subset of A – for every point
p of X. Thus, we have int (X) = X. Suppose, however, that A is not all of
X. Then there cannot be an open neighborhood of p which is a subset of A

(since the only open neighborhood of p is X itself, and this is not a subset
of A). So, no point p will get to be in int (A). So, int (A) will be the empty
set. Thus, for this topological space, int (A) is X if A = X, and the empty
set otherwise. [Note that int (A) is always a subset of A, as required by the
theorem on the previous page.]

We next establish some theorems for interiors. Many of these will be just
the “topological versions” of earlier results for metric spaces. We emphasize
again, however, that each theorem must now be proved anew, using the defi-
nition of a topological space, and of the interior of a subset of a topological
space. But, of course, one uses the proofs for metric spaces as guides.
Theorem. Let X, J be a topological space, and A ⇢ X. Then int (A) is given
by the union of all open subsets of A.
Proof: Point p is in int (A) if and only if p is a point of an open subset of A.
[I hope the proof is clear. Point p being in int (A) just means that it is a
point of an open subset of A. But, clearly, the set of points which are points
of open subsets of A is just the set of points which are in the union of open
subsets of A.] Note that “the union of all open subsets of A” is, by the third
condition for a topological space, an open set, and this is of course a subset
of A. Thus, what this theorem means is that int (A) is the largest open subset
of A. Thus, to determine int (A), all one has to do is look around for open
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subsets of A, and find the largest one.
Theorem. Let X, J be a topological space, and A ⇢ X. Then A is open if
and only if int (A) = A.
Proof: Let int (A) = A. Then, by the theorem above, int (A) is open, and so
A is open. Let A be open. Then any point p of A has an open neighborhood
which is a subset of A (namely, A itself), and so A ⇢ int (A). But by the
theorem on page 85, int (A) ⇢ A. So, int (A) = 1
[This is a bit strange. We motivated our definition of a topological space
by looking for properties of self-interior sets in a metric space, and then de-
manding those properties for a collection of subsets of X in the definition of
a topological space. Again using the analogy with metric spaces, we defined
the interior for a subset of a topological space. So, we end up with topologi-
cal spaces, and interiors therein. Nothing stops us, then, from looking at the
“self-interior” sets in a topological space. When we do so, we find out that
they turn out to be exactly the open sets in our topological space! Note that
this theorem does not follow directly from any of the things about metric
spaces. The definitions for topological spaces stand on their own, and things
must be proven therein afresh.]
Theorem. Let X, J be a topological space. Then the interior of X is X, and
the interior of the empty set is the empty set.
Proof: Since X and the empty set are open, by the first condition in the defi-
nition of a topological space, this is immediate from the preceding theorem.
Theorem. Let X, J be a topological space, and A ⇢ X. Then int (int (A)) =
int (A).
Proof: By the theorem on page 86, int (A) is open. So, by the first theorem
on page 87, int (int (A)) = int (A).
[Compare, the second theorem on page 67. For the corresponding theorem
in metric spaces, we used the triangle inequality. It is as though the triangle
inequality is somehow “hidden” in our conditions for a topological space.
It seems remarkable that this should be possible, for the triangle inequal-
ity seems so “numerical”, while the conditions for a topological space are
so “set-theoretic”. But the definition of a topological space clearly retains
enough of the flavor of the triangle inequality to recover such results.]
Theorem. Let X, J be a topological space, and A ⇢ B ⇢ X. Then int (A) ⇢
int (B).
Proof: Let p be a point of int (A), so there is an open neighborhood C of p

with C ⇢ A. But, since A ⇢ B, this open neighborhood C of p also satisfies
C ⇢ B. So, p is in int (B).
[Compare, first theorem on page 68.]
Theorem. Let X, J be a topological space, and A ⇢ X and B ⇢ X. Then int
(A \ B) = int (A)\ int (B).
Proof: Let p be a point of int(A \ B), so there is an open neighborhood C of
p with C ⇢ A \ B. But, since C ⇢ A \ B, we have C ⇢ A (and so p is in
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int (A)), and C ⇢ B (and p is in int (B)). Hence, p is in int(A)\ int (B). For
the converse, let p be a point of int (A)\ int (B). Then p is in int (A), and so
there is an open neighborhood C1 of p with C1 ⇢ A; and p is in int (B), and
so there is an open neighborhood C2 of p with C2 ⇢ B. Set C = C1 \ C2, so
certainly point p is in C, and C ⇢ A \ B. But, by the second condition for a
topological space, C is open. Thus, C is an open neighborhood of p, which
C ⇢ A \ B. So, p is in int (A \ B).
[Compare, the second theorem on page 68, whose proof is on page 30. Note
that the proof of the analogous result for metric spaces requires that one take
the smaller of two positive numbers, ✏1 and ✏2. In the topological case, these
✏’s get replaced by open neighborhoods, C1 and C2. Instead of taking the
smaller of the ✏’s, we take the intersection of C’s. The result will again be an
open neighborhood, by the second condition for a topological space. Again,
we have managed to replace a “numerical operation” (taking the smaller of
two numbers) by a “set-theoretic operation” (taking the intersection of two
sets). The definition of a topological space retains enough of the flavor of
“comparison of distances” to permit us to recover this result.]
Theorem. Let X, J be a topological space, and A ⇢ X and B ⇢ X. Then int
(A)[ int (B) ⇢ int (A \ B).
Proof: Since int (A) ⇢ A and int (B) ⇢ B, int (A)[ int (B) ⇢ A [ B. That
is, int(A)[ int (B) is an subset of A [ B. The result now follows from the
theorem on page 86.
[Compare, theorem on page 68.]

We turn nest to the definition of “boundary” for a subset of a topological
space. As usual, we use metric spaces as a guide. The definition of “bound-
ary” for a subset of a metric space is on page 53. essentially, all we need do
is replace “locus of points q with d(p, q)✏” by “open neighborhood of p“.
Definition Let X, J be a topological space, and A ⇢ X. Then the boundary

of A is the set of all points p of X such that, for every open neighborhood C

of p, there is a point of C in A, and also a point of C not in A.
Note that the definition even become a bit easier to state for topological
spaces.

Immediately after defining “interior” for topological spaces, we carried
out a check on the definition. We showed that, for the case in which the topo-

logical space is the underlying one of a metric space, the definition reduces
to that of “interior” in a metric space. We can carry out a similar check for
“boundary”.
Theorem. Let X, d be a metric space, X, J its underlying topological space,
and A ⇢ X. Then the interior of A in the metric space X, d is the same set as
the boundary of A in the topological space X, J .
Proof: Write bnd

d

(A) and bndJ (A) for the two boundaries. Let p be a point
of bnd

d

(A), so, for every positive number ✏, there is a point q of A with
d(p, q)  ✏, and also a point q

0 not in A with d(p, q0)  ✏. Let C be any open



89

neighborhood of p. Then, by the theorem on page 83, there is a positive
number ✏ such that every point r with d(p, r)✏ is in C. But, since p is in
bnd

d

(A), there is a point q in A with d(p, q)  ✏/2 (hence, with d(p, q) < ✏,
hence, with q in C), and also a point q

0 not in A with d(p, q0)  ✏/2 (hence,
with d(p, q0) < ✏, hence, with q

0 in C). So, for every open neighborhood
C of p, there is a point of C in A, and also a point of C not in A. So, p is
in bndJ (A). For the converse, let p be a point of bndJ (A). Let ✏ be any
positive number, and let C be the set of points q with d)p, q) < ✏. Then,
by the theorem on page 82, C is an open neighborhood of p. Since p is
in bndJ (A), there is a point q of C (i.e., with d(p, q) < ✏, hence, with
d(p, q)  ✏) in A, and also a point q

0 of C (i.e., with d(p, q0) < ✏, hence
with d(p.q0)  ✏) not in A. So, for every positive number ✏, there is a point
within ✏ of p and in A, and also a point within ✏ of p and not in A. So, p is
in bnd

d

(A).
It is just like the similar result for “interior”. We again use our two theo-
rems, on page 82 and 83, to convert from “the locus of point q . . .” to “open
neighborhood”.

Again, we instantly obtain a long list of examples of boundaries of sets
in topological spaces. We begin with any of our metric spaces, choose a
subset A, and take the underlying topological space. Then the interior of A

in this topological space is exactly the same set at the boundary of A in the
original metric space. Again, we denote by bnd (A) the boundary of a subset
of a topological space.

We give a few more examples.
Let X be a set, and X,J the discrete topological space (every subset of X

open). Let A ⇢ X. In order that point p be in bnd (A), it must be the case that
every open neighborhood of p contain a point of A, and also a point not in
A. But one open neighborhood of p is the set consisting of p itself (certainly
open in this topological space, and certainly containing the point p). But this

open neighborhood C could hardly contain a point of A and a point not in A,
for C only has one point in it. So, no point of X satisfies the condition for
being in bnd (A). So, in this case, bnd (A) is the empty set. Again, compare
with the theorem on page 55.

Next, let X be any set, and X, J the indiscrete topological space. Let
A ⇢ X. In order that p be in bnd (A), it must be the case that every open
neighborhood of p contain a point of A, and also a point not in A. But, in
this topological space, the only open neighborhood of p is the entire set X.
So, in order that p be in bnd (A), there must be a point of X in A, and also
a point of X not in A. Suppose first that A is the empty set. Then there will
never be a point of X in A. So, every point p will fail to satisfy the condition
for being in bnd (A). So, bnd (A) will be the empty set. Next, suppose that A

is all of X. Then there will never be a point of X not in A. So, every point p

will fail to satisfy the condition for being in bnd (A). So, bnd (A) will be the
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empty set. Finally, suppose that A is neither the empty set nor X. Then there
will always be a point of X in A (since A is not empty), and always a point
of X not in A (since A is not all of X). So, every point p of X will satisfy the
conditions for being in bnd (A). So, bnd (A) in this case will be X. Hence,
for the indiscrete topological space, bnd (X) and the boundary of the empty
set are empty, while the boundary of any other subset is X.

We give one final example of the definitions of “interior” and “bound-
ary”. Let X, J be the topological space introduced on pages 78 and 79 (in
which X is the plane, and open sets are X, the empty set, and subsets of X

consisting of all of X except for a finite number of points). Let p be a point
of X. What are the open neighborhoods of p? The empty set, since it does
not contain p, will never do. The set X is of course an open neighborhood
of p. Furthermore, all of X except for a finite number of points (provided,
of course, that the point p was not left out by being in that finite number!)
will be an open neighborhood of p. So, we have the open neighborhoods.
Now, let A ⇢ X. Let us try to find int (A). Point p will be in int (A) provided
there is an open neighborhood of p. (i.e., all of X, or all of X except for a
finite number of points) which is a subset of A. Suppose, for example, that
A is our usual disk. Then no point p will satisfy this criterion (for A is just
a little old disk: X itself is certainly is not a subset of A, and X except for a
finite number of points is not a subset of A either). So, for this A, int (A) is
empty. Clearly, int (A) will always be the empty set unless int (A) is “large
enough” to contain one of these open neighborhoods. That is, int (A) will
be empty unless A is “at least as large as all of X except for a finite number
of points”. Suppose, then, that set A is all of X except for a finite number
of points. Then, of course, A is open in this topological space. But in this
case, by the first theorem on page 87, int (A) = A. So, in this topological
space, int (A) is the empty set unless A consists of all of X except for a fi-
nite number of points (for “smaller” A’s than these do not contain any open
neighborhoods as subsets), while, if A does consist of all of X except for a
finite number of points, int (A) = A (for A is then open). Next, we deter-
mine some boundaries. In order that p be in bnd (A), it must be the case
that every open neighborhood of p contains a point in A and also a point
not in A. The only open neighborhoods of p are X itself and all of X except
for a finite number of points (where p is not one of that “finite number” left
out). Let, for example, A be our disk. Then obviously every one of these
open neighborhoods will contain a point in A and also a point not in A (for
the open neighborhood must be “practically all of X”). So, for A the disk,
bnd (A) will be X (for every point of X will satisfy the condition). Suppose,
however, that A is somewhat “larger”, say all of X except for a finite number
of points, p1 . . . , pn

. Let p be a point not one of the p

i

. Will it be true that
every open neighborhood of p contains a point in A and also a point not in
A? It will not be true: A itself is an open neighborhood of p, while A cer-
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tainly does not contain a point not in A. So, the points of A will not be in bnd
(A). However, let p be one of the p

i

’s, say p = p1. Will it be true that every
open neighborhood of p contains a point in A and also a point not in A? It
will be true: Given any open neighborhood of p, it will certainly contain a
point in A (since A is all of X except for a finite number of points, while any
such open neighborhood must also be all of X except for a finite number of
points). But such a neighborhood will also contain a point not in A, namely
the point p itself. So, if p is one of the p

i

, then p is in bnd (A). In this exam-
ple, then, bnd (A) excludes all points in A, but includes the points p1 . . . , pn

.
In other words, bnd (A) = A

C . Suppose, next, that A consists of just a finite
collection of points, say p1 . . . , pn

. Let point p be none of the p

i

. Is it true
that, for every open neighborhood of p, it contains a point of A and also a
point not in A? It is not true. Let C be all of X except for p1 . . . , pn

. This is
an open neighborhood of p. But it contains no point in A (for we left out of
C just the n points of A). So, this point: p is not in bnd (A). Let p be one of
the p

i

, say p = p1. Now, every open neighborhood of p certainly contains a
point in A (since the open neighborhoods are practically all of X, while “not
in A” is also practically all of X), while every such open neighborhood also
contains a point in A (namely p itself). So, this point p is in bnd (A). Thus,
in this case, bnd (A) = A. To summarize, for this topological space, bnd (A)
is A

C if A is all of X except for a finite number of points, bnd (A) is A if A is
a finite subset of X, and bnd (A) is X otherwise.

We now obtain a few theorems involving boundaries.
Theorem. Let X, J be a topological space, and A ⇢ X. Then bnd (A) = bnd
(AC).
Proof: Point p is in bnd (A) if and only if every open neighborhood of p

contains a point in A and also a point not in A. But points in A are just those
not in A

C . So, point p is in bnd (A) if and only if every open neighborhood
of p contains a point not in A

C and also a point in A

C , i.e., if and only if p is
in bnd (AC).
[Compare, the theorem on page 68, proven on page 29. It is almost exactly
the same.]
Theorem. Let X, J be a topological space, and A ⇢ X. Then every point of
X is in int (A) or bnd (A) or int (AC), and no point of X is in more than one
of these sets.
Proof; Let p be a point of X. If some open neighborhood of p is a subset of
A, then p is in int (A). If some open neighborhood of p contains no points of
A, then p is in int (AC). Clearly, p cannot be in both int (A) and int (AC). If
neither of these holds, i.e., if every open neighborhood of p contains a point
not in A and also a point in A, then p is in bnd (A). Finally, if p is in bnd (A),
then (since every open neighborhood of p contains a point not in A) p cannot
be in int (A), and (since every open neighborhood of p contains a point not
in A

C) p cannot be in int (AC).
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[Compare, the theorem on page 68.]
These two results, at least for the plane, seemed “geometrically reason-

able”, in that they fit in with our intuitive ideas of the words “boundary”
and “interior”. But they continue to hold even in topological spaces! Again,
the definition of a topological space has somehow managed to capture our
intuitive ideas.

As an example of these two theorems, consider the topological space
discussed on page 91 (“all of X except for a finite number of points”). Let
A ⇢ X be a finite set. Then bnd (A) = A, as we saw. Now, A

C is all of X

except for this finite set of points. So, as we saw above, bnd A

C) is that finite
set, i.e., bnd (AC) = A. That is, we have bnd (A) = bnd (AC), as demanded
by the theorem above. In this example, int (A) is the empty set, and int (AC)
is A

C . So, int (A) = empty, bnd (A) = A, and int (AC) = A

C . It is indeed true,
as guaranteed by our theorem on the previous page, that every point is in one
of these three sets, and no point is in more than one. Alternatively, for A the
disk, int(A) = empty, bnd (A) = X, and int (AC) = empty. Again, every point
of X is in one and only one of these sets.

Finally, we turn to “connected” for topological spaces. We can just take
over directly the definition for metric spaces, page 61
Definition. Let X, J be a topological space, and A ⇢ X. Then A is said to
be disconnected if there exists a subset B of X such that some point of A is
in B, some point of A is not in B, and no point of A is in bnd (B).
Of course, “bnd (B)” in this definition refers to the boundary for a subset of

a topological space. [It could hardly be anything else. We do not have any
“distances” now, to use for the definition of boundary for a metric space.]

Again, we check that our definition agrees with that for metric spaces
when both are applicable.
Theorem. Let X, d, be a metric space, X, J its underlying topological space,
and A ⇢ X. Then A is disconnected in the metric space X, d if and only if A

is disconnected in the topological space X, J .
Proof: A is disconnected in the metric space if and only if there exists a
subset B of X such that some point of A is in B, some point of A is not in B,
and no point of A is in bnd

d

(B). But, by the theorem on page 88, bnd
d

(B) =
bndJ (B). So, A is disconnected in the metric space if and only if there exists
a subset B of X such that some point of A is in B, some point of A is not in
B, and no point of A is in bndJ (B), i.e., if and only if A is disconnected in
the topological space.

Again, the theorem produces immediately examples, from those for met-
ric spaces, of connected and disconnected subsets of various topological
spaces. We do our usual two other examples.

Let X, J be a discrete topological space. Then for any A ⇢ X, bnd (A)
is the empty set. Let A ⇢ X. When will A be disconnected? We must find
a set B such that some point of A is in B, some point of A is not in B, and
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no point of A is in bnd (B). But the last will always hold, no matter what B

is, for bnd (B) is the empty set. If A is the empty set, or A consists of just
one point, then A will be connected. [For, under these circumstances, one
could hardly find B such that some point of A is in B and some point of A is
not in B.] Suppose, however, that A consists of two or more points. Let B

be the set consisting of just one point, say p, of A. Then some point of A is
in B (namely, p), some point of A is not in B (since A contains two or more
points, while B consists of just p), and no point of A is in bnd (B) (since bnd
(B) is empty). So, such an A is disconnected. Thus, in a discrete topological
space, the empty subset and a subset consisting of just one point are both
connected, while any other subset is disconnected.

Let X, J be an indiscrete topological space. Then bnd (B), for B ⇢ X,
is the empty set if B is empty or B = X, and bnd (B) = X otherwise. Now
let A ⇢ X. When will A be disconnected? When will one be able to find
B such that some point of A is in B, some point of A is not in B, and no
point of A is in bnd (B)? We claim that one will never find such a B (no
matter what A is). Indeed, since some point of A is supposed to be in B, B

cannot be the empty set; since some point of A is supposed to not be in B, B

cannot be X itself. But if B is neither of these, then bnd (B) = X. How can it
happen, then, that no point of A is in bnd (B)? Only if A is the empty set. But
finally, if A is the empty set, then it could hardly be that some point of A is
in B. Thus, no matter what A is, we shall never be able to find a suitable set
B in this topological space. In short, every subset of this topological space
is connected. [This includes even, for example, an A consisting of just two
points of X. This set, in this topological space, is connected!]

Finally, we recover the old theorem about connected sets.
Theorem. Let X, J be a topological space, A and B connected subsets of X,
and p a point of both A and B. Then A [ B is connected.
Proof: Suppose, for contradiction, that some point of A [ B (say, u in A) is
in C, some point of A [ B (say, v in B) is not in C, and no point of A [ B is
in bnd (C), for some C ⇢ X. Then no point of A and no point of B is in bnd
(C). But point u in A is in C and no point of A is in bnd (C), and so, since A

is connected, every point of A must be in C. In particular, point p must be in
C. But now point p in B is in C, point v in B is not in C, and no point of B is
in bnd (C), which contradicts the fact that B is connected.
Again, the proof is just the old proof (page 33). Again, an “intuitively rea-
sonable” theorem is recovered within the context of topological spaces.

Finally, we remark that all our old examples for the plane, and for metric
spaces, become also examples for topological spaces, since the plane is a
metric space and metric spaces give rise to topological spaces. In particular,
all the things we found to be false before (provided those “things” use only
interior, boundary, etc.) remain false for topological spaces.

I hope that some sense of the beauty of the definition of a topological
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space comes through all this. We put so little in (just give a set X and some
subsets), and yet so much seems to come out. We shall see more of this
shortly.



11. An Example: Connected Sets

with Boundary Attached

All of the theorems we have dealt with so far have been relatively simple
ones. This was necessary in order that complications inherent in the theo-
rems themselves not obscure the transitions from the plane to metric spaces
to topological spaces. We here give one example of a more complicated the-
orem. It will also serve to illustrate the idea that the notion of a topological
space indeed succeeds in capturing a wide range of intuitive ideas.

Let A be a set in the plane. Then, intuitively, the boundary of A is “right
up against A”; it does not contain “parts which are well-separated from A”.
These intuitive observations suggest the following. Suppose that A is con-
nected. Let us now “attach to A its boundary”, i.e., consider the set A[ bnd
(A): Since bnd (A) would seem to be “right up against A”, one might expect
that A[ bnd (A) will also be connected. Each point of bnd (A) is in such
“intimate contact” with A that it is hard to see how the attachment of such
points to A could make a connected set A become disconnected.

All this suggests
Theorem. Let X, J be a topological space, and A a connected subset of X.
Then A[ bnd (A) is connected.

Our next job, as topologists, would be to try to think of a proof. One
might try first the idea of showing that bnd (A) must be connected and that
A and bnd (A) have a point in common. Then, one could use the theorem
that the union of two connected sets having a point in common is connected.
Unfortunately, this will not work. Consider, for example, A the usual disk in
the plane. Then bnd (A) (the “rim” of the disk) will not have points in com-
mon with A. Furthermore, we have seen that it is not true that the boundary
of a connected set is connected. To come up with a proof that works, one
might go back and look at the intuitive ideas which suggested the theorem
in the first place. Suppose for a moment that, with A connected A[ bnd (A)
could be “separated into two separate pieces”. Why might one expect this
to be impossible? Since A is to be connected, if such a separation were pos-
sible, then all of A would presumably have to be in “one of the pieces” –

95
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for otherwise we would have separated A into two pieces. Thus, one of our
“pieces” would have to contain all of A (and possibly also some boundary
points), while the other would have to contain only boundary points. But
now, since these boundary points are not “well separated from A” (bound-
ary points being as they are), it is hard to see how our two pieces could be
“well separated”, as required in the definition of disconnected. These ideas,
written out more formally, generate the proof.
Proof: Suppose, for contradiction, that A[ bnd (A) were disconnected, so
there is a subset C of X such that some point, p, of A[ bnd (A) is in C, some
point, q, of A[ bnd (A) is not in C, and no point of A[ bnd (A) is in bnd (C).
If p is in A, set p

0 = p. If p is not in A, then, since p is in A[ bnd (A), p

must be in bnd (A). But p is in C and not in bnd (C), and so p must be in
int (C). But int (C) is open, and so is an open neighborhood of p. Since p

is in bnd (A), and int (C) is an open neighborhood of p, there exists a point,
designated p

0, in A and int (C). But int (C) ⇢ C, and so p

0 is in A and C.
Thus, in either case (whether p is in A or not), we obtain a point p

0 in A and
in C. Similarly for q. If q is in A, set q

0 = q. If q is not in A, then q is in
bnd (A). But q is in neither C nor bnd (C), and so must be in int (CC). So,
int (CC) is an open neighborhood of q, and q is in bnd (A), and so there is a
point, designated q

0, in int (CC) and A. But int (CC) ⇢ C

C , and so q

0 is in A

and not C. Thus, in either case, we obtain a point q

0 in A and not C.
We now have a set C such that some point (namely, p

0) of A is in C, some
point (namely q

0) of A is not in C, and no point of A is in bnd (C) (since no
point of A[ bnd (A) is in bnd (C)). But this contradicts the fact that A is
connected.

This theorem is perhaps a bit more typical than the others of a nontrivial
theorem in topology. What is perhaps surprising about it is that, while there
is so little in the definition of a topological space, such results are actually
true.



12. Compactness

We have generalized “interior”, “boundary”, and “connected” from metric
spaces to topological spaces. We now turn to the generalization of “bounded”.

One sees immediately that “bounded” is going to be more di�cult. Con-
sider, for example the definition of “interior” for a metric space. It reads
“The interior of A is the set of all points p such that, for some positive num-
ber ✏ . . .”, where “. . .” refers only to the points within distance ✏ of p. So,
the analogous definition for topological spaces becomes “The interior of A

is the set of all points p such that, for some open neighborhood of p, . . .”.
That is, we may just mechanically replace “the locus of points within ✏ of p”
by “open neighborhood of p”. But consider, by contrast, the definition of a
bounded subset of a metric space: “Set A is said to be bounded if, for every
positive ✏, there exists a finite set of points of X, p1, . . . , pn

, such that every
point of A is within ✏ of at least one of these points.” The critical di↵erence
here is that one has to know the value of ✏ before one knows the finite set
of points, p1, . . . , pn

. Indeed, as we have seen, one has to select one’s finite
set of points carefully, depending on what ✏ is. What we are demanding for
bounded is that every point of A be in the locus of points within ✏ of p1, or in
the locus of points within ✏ of p2, or in the locus . . . It is these locuses which
we would like to replace by open neighborhoods. But how is this to be done,
since we are to know the ✏ (i.e., the “sizes” of these open neighborhoods)
prior to knowing which points they are to be open neighborhoods of? Thus,
suppose one tries to write out an analogous definition of “bounded” for topo-
logical spaces: “Set A is said to be bounded if for every open neighborhood,
there exists a finite set of points of X, p1, . . . , pn

, such that every point of A is
in . . .”. How does one finish the sentence? Every point of A is in what? Our
open neighborhood is just sitting there: We do not have open neighborhoods
of p1, . . . , pn

. [If we did, then of course, one would demand that every point
of A be in at least one of these open neighborhoods.] Furthermore, we say
“if for every open neighborhood . . .”. Open neighborhood of what point?
[Surely not of the p

i

’s, for we do not have access to the p

i

’s at this point in
the definition.]

The key to finding something analogous to “bounded”, but for topolog-
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ical spaces, is, as it turns out, to first reformulate somewhat the definition
for metric spaces. This reformulation will be somewhat smoother using the
following, easy, definition.
Definition. A collection of sets is said to cover set A if A is a subset of their
union.
In other words, in order that a collection of sets cover A, it is necessary that
every point of A be in at least one of those sets. [That is, it is essentially the
same meaning as in “cover the wall with paint”.]

Let X, d be a metric space, and A ⇢ X. It is easy to insert the word
“cover” into the definition of boundedness of A. “Set A is said to be bounded
if, for every positive ✏, there exists a finite set of points of X, p1, . . . , pn

, such
that the n sets, B1 (the set of all points within ✏ of p1), B2, (the set of all points
within ✏ of p2), . . . , B

n

(the set of all points within ✏ of p

n

) cover A.” [This
just says the same thing as before, for demanding that the B’s cover A is the
same as demanding that every point of A is within ✏ of at least one of the
p

i

’s.]
Of course, the mere insertion of the word “cover” does not immediately

solve our problem. The next step is the one that contains the idea. Let X, d be
a metric space, and A ⇢ X. Let a positive number ✏ be given. For p any point
of X, let us write B

p

for the set of all points q of X with d(p, q)  ✏. In the
plane, for example, B

p

would be a disk, of radius ✏, centered at the point p.
Now let us consider for a moment all subsets of X of the form B

p

for p any

point of X. In the plane, for example, this would be an enormous collection
of disks, of radius ✏, but with one for each point of the plane, centered at
that point. Here, then, is a collection of subsets of X. This collection of sets
certainly covers A. [Indeed, it even covers X. Given any point p of X, it is
in at least one of the B’s, namely, in B

p

. Of course, this p may also be in
other B’s, but one is enough in order to cover.] So, we so far have A ⇢ X,
we have positive ✏ given, and we have found a collection of sets, the B

p

’s,
which cover A. Nothing has been said yet about “bounded”. We now ask:
How can one express, in terms of the B

p

’s, the statement that A is bounded?
But this is easy. The statement is that a finite number of the B

p

’s will cover
A.
[Indeed, “The finite number of B’s, B

p1 , Bp2 , . . . , Bp

n

, cover A.” means the
same thing as “Every point of A is within distance ✏ of at least one of the
points p1, p2, . . . , pn

.” Thus, “Some finite number of B’s cover A.” is the
same as “There exists a finite set of points, p1, . . . , pn

, such that every point
of A is within ✏ of at least one of them.”]

So far, then, we have the following. Let X, be a metric space, and A ⇢ X.
Then “A is bounded” means the same thing as “For any positive ✏, a finite
number of the B

p

’s (constructed as above using the given ✏) cover A.” Now
for the final step in the translation. The B

p

’s are, of course, unsuitable for
topology, for they are defined using the distance, while we shall not have
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distances in a topological space. By what should they be replaced? But
they are practically self-interior. [They would have been self-interior, had
we defined them as “all points q with d(p, q) < ✏” instead of “ ✏”. But
this di↵erence, as we have seen, is not significant in these matters, for one
can always replace ✏ by 1/2✏.] Thus, the plan is to replace “the B

p

’s” (for
metric spaces) by “open sets” (for topological spaces). In carrying out the
replacement, however, we would wish to retain, in the topological case, as
much of the flavor of the B

p

’s in the metric case as we can. But there seems to
be only one property of the B

p

’s that we say without using distance, namely
that the B

p

’s cover A. So, we decide to replace “the B

p

’s” by a “collection
of open sets which cover A”. By what shall we replace the part about “For
any positive ✏”? Of course, the only role of ✏ is to tell us what B

p

’s we are to
choose. thus, “for any positive ✏” could be replaced by “for any collection of
B

p

’s”. [We emphasize that none of these replacements and translations are
at all obvious. In practice, one would of course have to try a vast number of
things, to see what works and what does not. One could easily obtain three
or four generalizations – or none.]

In any case, these remarks suggest the following.
Definition. Let X, J be a topological space, and A ⇢ X. Then A is said to be
compact if, for any collection of open sets which covers A, a finite number
of these sets cover A.
It is conventional, in topology, to use the word “compact” rather than “bounded”
– indeed, as we shall see, the two words have a somewhat di↵erent meaning.
Thus, to show that a subset of a topological space is compact, one has to
show that, no matter what collection of open sets one is given which covers
A, some finite number of those will su�ce to cover A. To show A not com-
pact, one must find a collection of open sets which covers A, such that no
finite number will do.

Some examples and elementary results will illustrate the definition.
Theorem. Let X, d be a metric space, X, J its underlying topological space,
and A a compact subset of X in this topological space. Then A is bounded in
the metric space.
Proof: Let a positive ✏ be given. for p any point of X, denote by B

p

the set
of all points q with d(p, q) < ✏. Then, by the theorem on page 82, each B

p

is
open in X, J . But the B

p

’s cover A, and so, by compactness, a finite number
B

p1 , . . . , Bp

n

, cover A. That is, every point of A is within ✏ of at least one of
the finite number of points, p1, . . . , pn

. Thus, compact sets in the underlying
topological space are always bounded in the metric space. Compare, for
instance, with the theorem on page 84. (You get the same answer whether
you take the interior in the metric space or in the underlying topological
space.) This might suggest that the converse of this theorem should also
be true: That any bounded set in the metric space must be compact in the
underlying topological space.
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Unfortunately, this converse
is not true. Let X, d be the usual
plane, and A the disk consist-
ing of all (x, y) with x

2 + y

2 <
1. Then, as we have seen, A

is bounded in the metric space.
Is A compact in the underly-
ing topological space? Is it
true that, given any collection of
open sets which covers A, a fi-
nite number will do? For a any
positive number less than 1, de-
note by C

a

the set of points (x, y) with x

2 + y

2 < a

2, so C

a

is “the disk of
radius a centered at the origin”. All of these C

a

’s are of course open in the
underlying topological space. Clearly, they cover A. [Indeed, give any point
p of A, so d(p, origin) < 1, choose a such that d(p, origin) < a < 1. Then p

is in C

a

.]

So, if A is to be compact, some finite number of these open sets had
better cover A. But none will do. Indeed, suppose it was claimed that the
finite number C

a1 , . . . ,Ca

n

cover A. Each of a1, . . . , an

must, of course, be a
positive number less than one. Let a be the largest of these numbers, so a is
less than one. Now choose point q with a < d(q, origin) < 1. Then this q

will be in A, but will not be in any of our finite collection of C’s. Thus, this
disk is not compact.

Thus, at least for the plane, “compact” is stronger than just “bounded”.
However, it turns out that the disk is not compact for what is really a rather
minor reason: We did not “attach to A its boundary”. For sets “with boundary
attached”, in the plane, compactness means the same thing as boundedness.
A simple, precise way to say “with boundary attached” is to demand that A

C

be self-interior. Indeed, if A

C is self-interior, so A

C = int (AC), then since,
by the second theorem on page 91, no point is in both bnd (A) and int (AC),
no point can be in both bnd (A) and A

C . That is, every point of bnd (A) must
be in A. That is, A must include its boundary. We have

Theorem. Let X, d be the usual plane, and A a bounded subset of X with A

C

self-interior. Then, in the underlying topological space, A is compact.

Unfortunately, a full proof of this requires some facts about real num-
bers which, while not terribly di�cult, would require a rather lengthy ex-
planation. So, we merely sketch the idea. Suppose, for contradiction, that
A were not compact, so we have some collection of self-interior sets, B’s,
which cover A, but such that no finite number cover A. Cover A by a “grid”
consisting of non-overlapping squares, each one unit by one unit. Since A is
bounded, only a finite number of such squares will be needed.
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We now ask, for each such
square S : Does a finite number of
the B’s cover A \ S ? The answer
could be yes or no. However, the
answer could hardly be “yes” for
every one of our squares, for, if
a finite number of B’s covered the
“part of A in S ” for every square
S , then, since there are only a finite
number of squares, a finite number
of the B’s would cover A. So, there
are must be at least one square S

such that no finite number of B’s cover A \ S , say, the square indicated.
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Now consider just this one square,
and subdivide it into smaller squares, as
shown. We now ask, for each of these
smaller squares, S

0: Does a finite num-
ber of B’s cover A \ S

0? Again, the an-
swer cannot be “yes” for every one of
the smaller squares, for if this were the
case then a finite number of B’s would have to cover A \ S . So, choose one
of the smaller squares, S

0, such that no finite number of B’s covers A \ S

0.
Now subdivide this S

0, into still smaller squares, ask the same question for
each of these, and find the still smaller square for each the answer is “no”.
Continuing in this way, we find a succession of smaller and smaller squares,
each inside its predecessor. Let p be the point which is common to all of
these squares. [It is for the existence of such a point of the plane that we
need a property of the numbers.] We now ask the crucial question: Where is
p, in A or not in A? Either answer will get us into trouble. Suppose p were
not in A, so p is in A

C . But A

C is self-interior, so p is in int (AC). That is,
there is a positive number ✏ such that no point within ✏ of p is in A. But now
one of our “succession of smaller and smaller squares, converging down on
p” must lie entirely within this locus of points within ✏ of p. Call this square
C, so C is a subset of A

C , i.e., C has no points in common with A. But
recall how this C was to have been chosen (from a subdivision of a larger
square): It was to be the one such that no finite number of the B’s covers
A \ C. But this is a contradiction, for A \ C is the empty set, and certainly
a finite number of the B’s (such as, for example, any one of the B’s) covers
the empty set. Thus, “p not in A” leads to a contradiction. Suppose, then,
that p were in A. But the B’s are supposed to cover A, so one of the B’s, say
B1, must contain the point p. Each B is self-interior. So, there is a positive
number ✏ such that every point within ✏ of p is in B1. But again one of our
“succession of smaller and smaller squares, converging down to p” must lie
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entirely within this locus of points within ✏ of p. Call this square C, so C is
a subset of B1. But again C was to have been chosen, from a subdivision of
a larger square, as the one such that no finite number of B’s covers A \ C.
This is again a contradiction, for some finite number of the B’s does cover
A \ C in this case, namely the finite number consisting of only B1. (For C

is a subset of B1, so B1 covers C, so certainly B1 covers A \ C.) So, “p in
A” also leads to a contradiction. Thus, we began by assuming that we had
a collection of self-interior sets which cover A, but such that no finite num-
ber would do, and we obtain a contradiction. Hence, for any collection of
self-interior sets which cover A, some finite number must cover A. That is,
A must be compact.

Thus, for the plane, “compact” is not quite the same thing as “bounded”,
but it is quite close. One only has to deal with sets “having their boundaries
attached”, and the two notions agree. We give some more examples.
Theorem. Let X, J be a topological space, and A a finite subset of X. Then
A is compact.
Proof: Let the points of A be p1, . . . , pn

. Consider a collection of open sets
which covers A. Then one, say B1, must contain p1; and one, say B2, must
contain p2; and so on to B

n

, containing p

n

. But now B1, B2, . . . , Bn

is a finite
number of sets in our collection which covers A.
Recall that every finite subset of a metric space is bounded. Again, compact
is “similar” to bounded.

Let X, J be indiscrete, and A ⇢ X. Then A is always compact. Suppose
first that A is empty. Then any set covers A. So, given any collection of open
sets which covers A, a finite number (say, any one) will do. Suppose that A

is not empty. Consider a collection of open sets which covers A. Since X,
J is indiscrete, the only open sets are X and the empty set. But, since A is
to be covered by these sets, at least one of them had better be X (for a lot of
empty sets won’t cover a not-empty A). But now a finite number of our open
sets will do, namely just one of them, the “X”.

Let X, J be discrete, and A ⇢ X. If A is finite, then, by the theorem
above, A is compact. Suppose, then, that A is not finite. Then, we claim, A

is not compact either. Indeed for each point of A, consider the subset of X

consisting of just that point. These sets certainly cover A, i.e., every point of
A is in one of them. Since our topological space is discrete, every subset of
X is open, so these sets are open. But no finite number of these sets could
cover A, for each set only contains one point, so a finite number could only
cover a finite set, while A is not finite.

The union of two bounded sets in a metric space is bounded. Similarly,
Theorem. Let X, J be a topological space, and A and B compact subsets of
X. Then A [ B is compact.
Proof: Let there be given a collection of open sets which covers A[ B. Then
this collection covers A, and so, since A is compact, some finite number,
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C1 . . . ,Cn

, covers A. Also, this collection covers B, and so, since B is com-
pact, some finite number, C1

0 . . . ,C
m

0, covers B. But now the finite number
C1 · · · ,Cn

,C1
0 . . . ,C

m

0, covers A [ B.
In a metric space, any subset of a bounded set is bounded. This is false

for compact sets in a topological space. For example, let B be the set of all
(x, y) in the plane with x

2+ y

2  1, the “disk with boundary attached”. Then,
by the theorem on page 100, B is compact in the underlying topological
space. Let A ⇢ B consists of all (x, y) with x

2 + y

2 < 1. Then A is a subset of
a compact set, but A is, as we have seen, not compact. Again, the problem
has to do with “attachment of boundaries”. What is true, however, is that
subset A of compact B, provided A “has its boundary attached” is always
compact.
Theorem. Let X, J be a topological space, B a compact subset of X, and
A ⇢ B with A

C open. Then A is compact.
Proof: Let there be given a collection of open sets which covers A. Include in
this collection the open set A

C . Then, since the original collection covers A,
and A

C covers A

C , the resulting collection covers X. In particular, it covers
B. Since B is compact, a finite number of sets from this collection covers B,
say C1, . . . ,Cn

and A

C , where the C’s are from the original collection. Since
A ⇢ B, it must be that C1, . . . ,Cn

, A

C covers A. But, since no point of A is in
A

C , if C1, . . . ,Cn

, A

C covers A then C1, . . . ,Cn

must cover A.
Thus, a finite number of sets from the original collection covers A.

This is a tricky proof. One begins with a collection, the C’s, of open sets
which covers A. One tosses in an extra open set, A

C . The resulting collection
covers B, and so, by compactness of B, a finite number will do. Of course,
in this “finite collection” there may be included the extra set we threw in,
namely A

C . Since A ⇢ B, this finite collection also covers A. But A

C can
now be left out again, for it is not going to help any in covering A, since it
has no points in common with A. Thus, we find a finite number of C’s to
cover A.

To summarize, “bounded” undergoes a curious transition from metric
spaces to topological spaces. As the definition of “bounded” stands in met-
ric spaces, it looks as though it will be impossible to generalize. One does
obtain a generalization of sorts, to compactness, but it is not quite the same
thing. Very roughly speaking, compact sets are like bounded sets which in-
clude their boundaries. But, compactness at least has much of the flavor of
boundedness. In particular, whenever, in an argument, one would like to
“think boundedness”, one instead “talks compactness”. There are enough
properties in common so that one usually gets by. What is nice about com-
pactness (aside, of course, from the most remarkable thing: that there should
even exist anything analogous to “bounded” in topological spaces) is that the
definition is so simple, and the proofs are so simple. Indeed, the proofs of the
previous two theorems are perhaps simpler than the corresponding proofs for
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boundedness in metric spaces. It turns out that compactness is an extremely
important and useful idea in topology – much more so than, for example,
connectedness. Again, an intuitive idea which could easily have been lost in
the transition to topology in fact survives.



13. Continuous Mappings of

Topological Spaces

One of the central ideas in topology is that of a continuous mapping. In this
section, we define continuous mappings, give some examples, and obtain
some elementary properties.

Recall, from Sect, 5, our treatment of continuous curves in the plane.
A curve was a rule which assigned, to each number t a point �(t) of the
plane. We then considered continuous curves, those which “do not skip”. A
curve was said to be continuous, roughly speaking, if nearby t�values were
assigned, according to the rule �, to nearby points of the plane. The notion of
a continuous mapping of topological spaces is a direct generalization of these
ideas. What is it that goes into a continuous curve? Well, there is the set of
real numbers, the set of points of the plane, and the rule � which assigns, to
each point of the first set, a point of the second. The part about “continuous”,
however, uses more structure; “For every positive number ✏ there exists a
positive number � such that, whenever |t � t0|  �, d(�(t), �(t0))  ✏.” What
is this |t � t0|? It is essentially the “distance”, in the set of numbers between
the point t of that set and the point t0. Indeed, as we have seen, the set of
numbers with this distance forms a metric space. Similarly, d(�(t), �(t0))
makes use of the distance between two points of the plane. In short, what
really goes into the notion of a continuous curve is i) the metric space of real
numbers (with distance |t � t0|), ii) the metric space the plane (with usual
geometrical distance), and iii) a rule � which assigns, to each point of the
first metric space, a point of the second metric space. But the generalization,
in topology, of a metric space is a topological space. Thus, the ingredients
of what we are looking for should be i) a topological space, ii) a second
topological space, and iii) a rule which assigns, to each point of the first
topological space, a point of the second. Just as, for a continuous curve,
one requires a certain property of the rule, so, for a continuous mapping of
topological spaces, one will require a certain property.

These introductory remarks out of the way, we proceed to the definitions.
We first wish to generalize “curve”. This, from the observations above, is
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straightforward. Let X and X

0 be sets. Then a mapping from set X to set X

0

is a rule �which assigns, to each point of the first set, X, a point of the second
set, X

0. For p a point of X, we write �(p) for the point of X

0 assigned by this
rule to p. It is also convenient to use the symbol of X

�! X

0 to mean ”� is
a mapping from set X to set X

0”. We emphasize that, to specify a mapping,
one must i) say what the set X is, ii) say what the set X

0 is and iii) give the
rule �. This rule must of course be unambiguous, it just specify a point of X

0

for any point of X, and it must yield just one point of X

0 in exchange for a
point of X. [In fact, we shall be using mappings primarily when X and X

0 are
the sets for topological spaces. But we do not need the open sets to say what
a mapping is (any more than we needed the distances to say what a curve
is), and so there is no harm in defining “mapping” for any sets X and X

0.] It
is ok if a mapping have the feature that some points of X

0 are not assigned
from any point of X, or if two di↵erent points of X are sent, by the mapping,
to the same point of X

0. As long as � specifies unambiguously a point of X

0

in exchange for a point of X, and as long as this specification is given for any
point of X, this � is a mapping.

“Mapping” is perhaps the second most important idea in all of mathe-
matics. [It would be di�cult to unseat “set” from first place.] We give some
examples of mappings.

A curve (page 36) is just a mapping from the set of real numbers (X) to
the set of points of the plane (X0).

What is usually called a “function of one variable” in elementary math-
ematics is a rule which assigns to each real number, x, another real number,
written f (x). That is, this is just a mapping from X (the set of real numbers)
to X

0 (also the set of real numbers).
Let X be any set, and let X

�! X be the rule which assigns, to point p

of X, the point p of X. [That is �(p) = p.] This rule unambiguously gives
a point of the second set (X) in exchange for a point of the first set (also X),
namely “keep the same point”. This is a mapping.

Let X be any set, and X

0 the plane. Let X

�! X

0 be the rule which assigns,
to any point p of X, the origin of X

0 (the plane), i.e., �(p) = origin. This is
a mapping. [Here, of course, all points of X get sent by the rule to the same
point of X

0, and so most points of X

0 (namely, all but the origin) do not come
from any point of X.]

Let X, d be any metric space, and fix once and for all a point p of X. Let
X

0 be the set of numbers. Let X

�! X

0 be the following rule: Given point q

of X, set �(q) = d)p, q). This indeed assigns a point of X

0 (i.e., a number) to
each point, q, of X. So, we have a mapping. Here, for example, �(p) = 0, by
the first condition for a metric space.

Let Y , J be any topological space. Let X be the set of all subsets of Y .
[Thus, a “point” of the set X is a subset of Y .] Let X

0 be a set consisting of
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just two elements, which we may denote “yes” and “no”. Now let X

�! X

0

be the following rule: Given a point p of X (that is, given a subset of Y), let
�(p) be the point “yes” of X

0 if this subset of Y is open, and “no” if it is not
open. Here is a rule which assigns to each point of X (i.e., subset of Y), a
point of X

0 (i.e., the point “yes” or “no”). This is a mapping.
Let Y , J be any topological space. Let X be the set of all subsets of Y .

Let X

�! X be the rule which assigns, to any point p of X, the point bnd (p)
of X. [In more detail, “point” p is a subset of topological space Y , J . We
can take the boundary, of this subset, and again obtain a subset of Y . That is,
we again obtain a “point” of the set X. This point is �(p).] This is a mapping.

Let X be the plane, and X

0 be the real numbers. Let X

�! X

0 assign, to
point (x, y) of X, the number x

3�3xy. This is a mapping. We shall later need
two easy definitions with mappings.

Definition. Let X and X

0 be sets, and X

�! X

0. Let A ⇢ X. Then the image of
A under �, written �[A], is the set of all points of X

0 of the form �(p), with p

in A.
Definition. Let X and X

0 be sets, and X

�! X

0. Let A

0 ⇢ X

0. Then the inverse

image of A

0 under �, written ��1[A0], is the set of all points p of X with �(p)
in the set A

0.
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The first definition is illustrated in
the figure on the right. We have set X

and X

0, and rule � which assigns, to
each point of X, a point of X

0. further
we are given some subset A of X. Now
� assigns, to each point of X a point of
X

0. In particular, we may consider the
points of A (which of course are also in
X, since A ⇢ X).
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Given any such point, p, in A, we
can apply our rule, and obtain a point,
�(p), of X

0. Let us now do this – ap-
ply � – for every point of the set A. The
result will be some points of X

0. The
set of all points of X

0 so obtained is
the subset �[A] of X

0. Thus, one only

takes the image of a subset of X, and

the result, �[A], is always a subset of

X

0. [Essentially, whereas the mapping
starts out just sending each point of X to a point of X

0, consideration of the
notion of “image” forces the mapping also to send each subset of X to a
subset of X

0.]
The second definition is illustrated in the second figure on the right
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above. Again, we have sets X and X

0, and mapping �. Now, however, we
consider subset A

0
of X

0. Now � assigns, to each point of X, a point of X

0.
Some of the resulting “points of X

0” may happen to wind up in the subset
A

0, and some may not. We now consider all points of X which the rule �
does send into the subset A

0 of X

0. This subset of X is the inverse image,
��1[A0]. Thus, one only takes the inverse image of a subset of X

0
, and the re-

sult, ��1[A0], is always a subset of X. It is just the reverse of the “image”. [It
is easy to remember all this from the terminology. The image sends subsets
of X to subsets of X

0, just as the original mapping sends points of X to points
of X

0. The inverse image is the reverse: It sends subsets of X

0 to subsets of
X. We give some examples.

Let X be the set of numbers, X

0 the plane, and X

�! X

0 a curve. Then
�[X], the image X under this mapping, is the set of all points of the plane of
the form �(t) for some number t. This is just “the set of all points of the plane
through which the curve passes”, i.e., the “points marked when we draw the
curve”.

Let X and X

0 both be the set of real numbers, and X

�! X

0 the function of
one real variable given by �(x) = x

2. [Note: indeed a mapping.] Let A be the
subset of X consisting of all numbers between 2 and 5. Then �[A[, the image
of A, is the set of all numbers (points of X

0) of the form �(x) for x between 2
and 5, i.e., the set of all numbers obtained by squaring a number between 2
and 5, i.e., the set of all numbers between 4 and 25. Next, let A

0 be the subset
of X

0 consisting of all numbers between 4 and 25. Then ��1[A0] is the set of
all numbers (points of X) such that �(x) is between 4 and 25. Hence, ��1[A0]
consists of all numbers between 2 and 5, and also all numbers between (�2)
and (�5) (for these also have squares between 4 and 25.

Let X be any set, and X

�! X the identity mapping, with �(p) = p for
every p in X. Then, for A a subset of X, �[A] = A (for the set of all points
of the form �(p), with p in A, is just A, since �(p) = p), and ��1[A] = A (for
the set of all points p with �(p) in A is just A).

Let X be any set, X

0 the plane, and X

�! X

0 be the mapping with �(p) =
origin, for any point p of X. Let A be any subset of X not the empty set.
Then �[A] (set of points of X

0, the plane, one gets by applying � to points of
A) is the subset of X

0 consisting of just the origin. [Of course, � [empty set
= empty set.] Let A

0 be a subset of X

0 not including the origin. Then ��1[A0]
(all points of X with �(p) in A

0 is the empty set (for �(p) is always the origin,
while the origin is not in A

0. So, �(p) is never in A

0, for any p.) For A

0 a
subset of the plane X

0 including the origin, then ��1[A0] is all of X (for every
point p of X has �(p) in A

0, since �(p) is the origin, and that is in A

0).
For the first example of two pages ago, ��1[yes] is just J , the subset of

X consisting of all open subsets of Y .
We can of course consider in particular mappings of topological spaces.
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That is: Let X, J and X

0, J and X

0, J 0 be topological spaces, and X

�! X

0.
Our next task is to define a continuous mapping of topological spaces. The
plan, of course, is to use as guides the definition of a continuous curve, the
observation that what was really involved in that definition was a metric

space of numbers and really a metric space of the plane, and the fact that
every metric space gives rise to its underlying topological space. What we
want to do, in short, is define a continuous mapping of topological spaces in
a way so that the result is reminiscent of the definition of a continuous curve.
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So, let X, d and X

0, d0 be met-
ric spaces, and X

�! X

0. [To be
more concrete, one could let X, d be
the metric space of numbers, with
d(t, t0) = |t� t0|, and X

0, d0 the plane
with geometrical distance.] Fix a
point p of X, and suppose that �
is continuous at p. That is, sup-
pose that, for any positive number
✏, there exists a positive number �
such that, whenever d(p, q)  �
(where q, of course, is in X), d

0(�(p), �(q))  ✏. [Note that this last makes
sense: �(p) and �(q) are points of X

0, and d

0 gives distances between points
of X

0. But “d

0(p, q)”, for example, makes no sense, for d

0 does not give
distances between points of X.] The plan is to eliminate all mention of “dis-
tance”, in favor of “self-interior sets” in our metric spaces. The resulting
statement, using just “self-interior sets”, will then suggest a definition in
topological spaces, replacing “self-interior” by “open”.

So, we had better start by considering a self-interior set somewhere, i.e.,
in either X, d or in X

0, d0. Choosing one in X, d as it turns out, does not get
one very far. [Of course, in practice, if one were trying to invent “continuous
mapping of topological spaces” for the first time, one would have to try
everything in sight. It might take one a full week to come to the realization
that starting with a self-interior set in X, d is not very promising!] In any
case, we decide to consider self-interior sets in X

0. Since we are dealing
with continuity at the point p of X, our self-interior set in X

0, d0 had better
have something to do with p. [We cannot, of course, just demand that p be
in this self-interior set, for p is in X, while our self-interior set is in X

0.] The
next best thing would be to choose a self-interior set C

0 in X

0 such that (p)
(a point of X

0) is in C

0.
So, we so far have metric spaces X, d and X

0, d0, point p of X, mapping
X

�! X

0 continuous at p (as above), and self-interior C

0 ⇢ X

0 with �(p) in
C

0. Now, since C

0 is self-interior, we have C

0 = int (C0). So, since �(p) is in
C

0, it is also in int (C0). That is to say, there exists a positive number ✏ such
that every point q

0 of X

0 with d

0(�(p), q0)  ✏ is in C

0.
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Now things are beginning
to look promising. Recall the
definition of continuous (on the
left of the figure on the previ-
ous page): For any positive ✏,
there exists a positive � such
that, whenever d(p, q)  delta,
d

0(�(p), �(q)  ✏. This must be
true for every positive ✏ – and in
particular for the ✏ we just ob-
tained above (the one so that ev-
ery point of X

0 within ✏ of �(p)
is in C

0). Thus, by continuity:
There exists a positive number
� such that, for every point q of
X with d(p, q)  �, �(q) is in C

0.
Great! So far, by introduc-

ing a self-interior set in X

0, we
have managed to eliminate all
mention of the number ✏. Next,
we must eliminate mention of
the number � – and of course it
must have something to do with self-interior sets in X

0. How shall we do
this? The key is to use the idea of inverse-image.
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Just for fun, let us con-
sider the inverse image of C

0,
��1[C0], i.e., the set of all points
q of X with �(q) in C

0. What
can we say about this ��1[C0]?
Well, first of all, p is certainly
in ��1[C0], for �(p) is in C

0 (for
that is how we choose C

0 in the
first place). What else must be
in ��1[C0]? The last sentence of the previous paragraph includes: “There
exists a positive number � such that, for every point q of X with d(p, q)  �,
�(q) is in C

0.” In other words, using the definition of ��1[C0], ”There exists a
positive number � such that every point q with d(p, q)  delta is in ��1[C0].”
But look at this last statement: It just says that p is in int (��1[C0]). We have
now eliminated mention of the number �!

So far, then, we have the following. We have metric spaces X, d and
X

0, d0, point p of X, mapping X

�! X

0 continuous at p, and self-interior sub-
set C

0 of X

0 with �(p) a point of C

0. We conclude under these circumstances
that p must be in the interior of ��1[C0]. This conclusion, of course, just
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expresses the idea that our mapping � (of metric spaces) is continuous at p.
But it has been cleverly arranged so that it uses words such as “self-interior”,
“inverse image”, and “interior”, and not the word “distance”.

For the final step, we have to work on the point p. Let us now suppose
that X

�! X

0 is continuous, not only at the single point p, but even at every

point of X. [Just as a continuous curve requires continuity at every point.]
Let us keep fixed the self-interior set C

0 and consider changing our choice of
the point p of X. We wish to invoke our conclusion above, “p must be in the
interior of ��1[C0]”. For which p’s will this conclusion follow? Well, all the
conditions were listed above: “. . .metric spaces X, d and X

0, d0, point p of X,
mapping X

�! X

0 continuous at p, and self-interior subset C

0 of X

0 with �(p)
a point of C

0.” What of all this involves point p? First, the mapping � must
be continuous at p: But this is ok, for we have just assumed the mapping
continuous at every point of X. Second, the point p must be such that �(p) is
in C

0. So, this is the only condition on p. That is to say, we have that p must
be in the interior of ��1[C0] whenever �(p) is in C

0. But “�(p) is in C

0” is the
same as “p is in ��1[C0]”. So, we have that “every point p of ��1[C0] must
be in the interior of ��1[C0]”. But look again at this last quote. [Of course,
every point of the interior of ��1[C0] is in ��1[C0], by an earlier theorem.]
It just says that ��1[C0] is self-interior! Thus, not only do we eliminate the
number �, but everything reduces finally to talking about self-interior sets.

What we have shown, then, is the following. Let X, d and X

0, d0 be metric
spaces, and X

�! X

0. Then, if � is continuous at every point of X [that is,
if for every point p of X and every positive number ✏ there exists a positive
number � such that, whenever d(p, q)  �, d(�(p), �(q))  ✏ – what a mess!],
it follows that the inverse image under � of every self-interior subset of X

0 is
a self-interior subset of X. By just going back trough the discussion above,
one convinces oneself that the converse is also true, i.e., that if inverse images
of self-interior sets are self-interior, then � is continuous (i.e., all that ✏ � ��
business holds). In short, we have succeeded in expressing the very messy
idea of continuity for mappings of metric spaces just in terms of self-interior
sets. The resulting expression is extremely simple: no “you choose this and
I choose that”, no complicated business about getting the order of choices
right. All one has to do is take inverse images of self-interior sets in X

0, and
check to see if the resulting subsets of X are also self-interior.

The last step is very easy. We just generalize from metric spaces to
topological spaces by replacing “self-interior” by “open”. All this suggests,
then, the following.

Definition. Let X, J and X

0, J 0 be topological spaces, and X

�! X

0. Then �
is said to be continuous if the inverse images under �, of all open subsets of
X

0 are open subsets of X.
The hope, then, is that this definition captures the idea that the mapping
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sends, “nearby” points of X, to “nearby” points of X

0 i.e., that the point �(p)
of X

0 does not “skip” or “jump around” in X

0 when p moves just a little bit
in X. As we all shall see, it does capture this idea.

We give some examples.
Let X, J be any topological space, and X

�! X the identity mapping.
Then, for any subset A of X (the one of the right), ��1[A] = A (a subset of
the X on the left). Obviously, inverse images of open sets are open. This
mapping of topological spaces is continuous. [Intuitively, �(p) move in the
X on the right just as p moves in the X on the left. There is no “jumping
around”.]
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Let each of X, J and X

0,
J 0 be the topological space of
real numbers (i.e., the under-
lying topological space of the
metric space of numbers, with
distance |t� t0|.) Let X

�! X

0 be
the following: Given a point t of
X (i.e., a real number), let �(t)
be 7 (a point of X

0) if t < 0, and
5 if t � 0. This is a mapping.
[Intuitively, �(t) “jumps” from
the point 7 of X

0 to the point 5
as t increases through 0. One
would not expect it to be continuous.] This mapping is not continuous.
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Let A

0 be the subset of X

0

consisting of all numbers x with
41/2 < x, 51/2. This set is
self-interior in the metric space,
and so is open in the underlying
topological space. Now ��1[A0]
is the set of all numbers t (in
X) with 41/2 < �(t) < 51/2.
But, from � is, this is just the
set of all numbers t in (X) with
t � 0. But this ��1[A0] is not a
self-interior subset of X (for the
number 0 is in this set, but not
in its interior). That is, ��1[A0]
is not open in the topological space X, J . So, we have found an open set
in X

0, J 0 whose inverse image is not open in X, J . So, this mapping is not
continuous.

Let X, J and X

0, J 0 be as above, but let X

�! X

0 be the mapping with
�(t) = 1/2t. [That is, this is the mapping “divide by two”. Intuitively, divi-
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sion by two should take nearby numbers to nearby numbers. So, we expect
this mapping to be continuous.] This mapping is continuous. Let A

0 be any
open subset in X

0, J 0. Then ��1[A0] is just A

0 “blown up by a factor of two”,
i.e., all numbers of the form 2x, for x in A

0. This ��1[A0] must be a self-
interior subset of the metric space. [Indeed, given a point, 2x, of ��1[A0],
find the ✏ which shows that x is in int (A0). Use 2✏ to show that 2x is in int
(��1[A0]).] Thus, the inverse image of any open set in X

0, J 0 is open in X,
J .
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Let X, J and X

0, J 0 be topo-
logical spaces. Fix once and for all
a point p

0 of X

0. Let X

�! X

0 be
the mapping with �(q) = p

0, for
any q in X. [Intuitively, “all of X

is sent to the single point p

0 of X

0”.
There could hardly be any jumping
around of �(q), since it is always the
point p

0. So, one expects continu-
ous.] This mapping is continuous.
Let A

0 be an open subset of X

0, with
p

0 not in A

0. Then ��1[A0] is the empty subset of X – an open set, by the first
condition for a topological space. Let B

0 be an open subset of X

0,with p

0

in B

0. Then ��1[B0] is all of X – an open set, by the first condition for a
topological space. Thus, inverse images of open sets are open.

Let X, J be a discrete topological space, X

0, J 0 a topological space, and
X

�! X

0. Then this mapping is always continuous. Let A

0 be an open set in
X

0, J 0. Then ��1[A0] is certainly some subset of X. But X, J is discrete,
and so this is an open subset of X (for every subset of X is open in this
topology). So, inverse images of open sets are open. [Intuitively, think of
X, J as coming from the metric space, with d(p, q) = 0 if p = q, and 1
otherwise. Continuity is to ask whether “small changes” in the point p result
in “large changes in �(p). But the points “p” are to be in this metric space.
The only way one can get a “small change” from p (at least, if this “small
change” is motion by a distance less than 1) is just to remain at p. Any other
“change” of the point p moves one a whole distance of 1. So, of one only
moves a “little bit” from p, i.e., if one stays at p, then �(p) will not change
at all (because p could not change). So, indeed, “small changes” in the point
p do result in small changes in �(p). So, one would expect continuous.]

Let X, J be a topological space, X

0, J 0 an indiscrete topological space,
and X

�! X

0. Then this mapping is always continuous. Let A

0 be an open
subset of X

0. Then, since X

0, J 0 is indiscrete, A

0 must be either the empty
subset of X

0, or X

0 itself. For A

0 empty, ��1[A0] is the empty subset of X;
for A

0 = X

0, ��1[A0] is all of X. But, by the first condition for a topological
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space, both of these are open subsets of X. [Intuitively, any change of point in
an indiscrete topological space is “small”: The open sets are so insensitive to
the points that can hardly tell one point from another. Since the open sets can
not really tell the points apart, they regard any change of point as “small”.
So, when p chances a little bit, �(p) always changes a little bit, for the latter
is a “change” in X

0, J 0, where everything is a “little bit”. The indiscrete
topological spaces are like “metric spaces” in which all distances are zero
(although, of course, these are not metric spaces). If all distances are zero,
every change of point is always by a “small distance”.]

Every continuous curve defines a continuous mapping on the underlying
topological spaces.

Let X, d be any metric space, and fix a point p of X. Let X

0 be the
set of real numbers, and X

�! X

0 the mapping with, for any point q of X,
�(q) = d(p, q), a point of X

0 (i.e., a number). [Intuitively, the mapping is
“evaluate the distance from p

0”. One would expect that “nearby points in
X will have nearly equal distances from p”. That is, one would expect the
mapping to be continuous.] This mapping is continuous. We sketch the
argument. Let A

0 be self-interior in the metric space of real numbers;: we
must show that ��1[A0] is self-interior in X. Let q be any point of ��1[A0],
i.e., let �(q) = a (a real number, namely d(p, q)) be in A

0. We must show
that q is in the interior of ��1[A0]. That is, we must find a positive number
� such that every point of X within � of q is in ��1[A0]. That is, we must
find positive � such that every point r within � of q has �(r) in A

0. Since A

0

is self-interior (in X

0), there is a positive number ✏ such that every number
within ✏ of �(q) = a is in A

0. Set � = ✏. Let r be any point within � = ✏ of q.
Then by the triangle inequality, d(p, q) + d(q, r) � d(p, r), or a + ✏ �

d(p, r); and d(p, r) + d(r, q) � d(p, q), or d(p, r) + ✏ � a, or d(p, r) � a � ✏.
But these two together say that d(p, r)  a + ✏, and d(p, r) � a � ✏. That
is, they say that d(p, r) is within ✏ of a. That is, they say that �(r) is within
✏ of a. But every number within ✏ of a is in A

0 (for that is how we choose
✏). So, �(r) must be in A

0. Thus, we have found our positive number � such
that every point r within � of q has �(r) in A

0 (namely, � = ✏). So, inverse
images of self-interior sets are self-interior. So, in the underlying topological
spaces, the mapping is continuous.

I hope these examples at least suggest that the definition of “continuous”
is a reasonable candidate for saying what we want to say. One strong piece
of evidence that “topological space” is the right thing to be considering is
that “continuous mapping” becomes so simple an idea in its framework. As
the last example illustrates, a very simple definition can become quite com-
plicated when it is actually applied.



14. Applications of Continuous

Mappings

Many of the more interesting results in topology involve the interaction be-
tween continuous mappings on the one hand, and properties of various sub-
sets of topological spaces on the other. In this section, we give some exam-
ples.

Let X, J and X

0, J 0 be topological spaces, and X

�! X

0 a continuous
mapping. Intuitively, � “sends nearby points of X to nearby points of X

0”,
i.e., it “sends X to X

0 without tearing”. Now let A be a connected subset of
X. Intuitively, A “consists of just one piece in X”. In terms of these intuitive
characterizations, one might expect that “since A is just one piece, and since
no tearing is allowed under the mapping, the corresponding image set in
X

0 must also consist of just one piece” – for, after all, this would seem to
describe what we mean by “no tearing”. These remarks suggest a result in
topology.
Theorem. Let X, J and X

0, J 0 be topological spaces, X

�! X

0 a continuous
mapping, and A a connected subset of X. Then �[A] is a connected subset of
X

0.
Proof: Suppose, for contradiction, that �[A] were disconnected, so there is a
subset B

0, of X

0 such that some point, p

0, of �[A] is in B

0, some point q

0, of
�[A] is in B

0, some point, q

0 of �[A] is not in B

0, and no point of �[A] is in
bnd B

0). Set B = ��1[int(B0)], a subset of X.
We shall show that i) some point of A is in B, ii) some point of A is not

in B, and iii) no point of A is in bnd (B). i) Since p

0 is in �[A], there is a
point p of A with p

0 = �(p). Since p

0 is in B

0 and not bnd (B0), p

0 is in int
(B0). So, since �(p) = p

0, p is in ��1[int(B0)] = B. So, p is in A and B. ii)
Since q

0 is in �[A], there is a point q of A with q

0 = �(q). But �(q) is not in
B

0, and so not in int (B0), and therefore q cannot be in ��1[int(B0)] = B. So,
q is in A and not in B. iii) Suppose, for contradiction, that there were a point
r in A and bnd (B), Then �(r) is in �[A], and so, since no point of �[A] can
be in bnd (B0), �(r) must be in either int (B0) or int (B0C). Were �(r) in int
(B0), then r would be in ��1[int(B0)] = B. But int (B0) is open in X

0, J 0, and

115
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so, by continuity of �, B is open in X, J , and so B = int (B). So, since r is in
B, r is in int (B) – and hence r cannot be in bnd (B). Were �(r) in int (B0C),
r would be in C = ��1[int(B0C)]. But int (B0C) is open in X

0, J 0, and so, by
continuity of �, C is open in X, J . So, C is an open neighborhood of r. But
r is in bnd (B), and so, since C is an open neighborhood of r, there must be
a point u in both C and B. Since u is in C, �(u) must be in int (B0C), while,
since u is in B, �(u) must be in int (B0). But no point of X

0 can be in both int
(B0C) and int (B0). We conclude, then, that the existence of a point r in both
A and bnd (B) leads to a contradiction. Hence, there is no point of A in bnd
(B).

We supposed that �[A] were disconnected, and found a set B such that
some point of A is in B, some point of A is not in B, and no point of A

is in bnd (B), That is, we found A disconnected, But this contradicts the
hypothesis.

q = u1 = u2 
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This is of course quite a complicated proof. We have connected A ⇢ X,
and we suppose that �[A] is disconnected, in order to obtain a contradiction.
We consider the set B

0 which “disconnects” �[A]. The idea is to use this
B

0 to show that A is disconnected, i.e., to arrive at a contradiction. This is
done by taking a lot of inverse images. The “two“pieces” into which �[A] is
separated are represented by int (B), and int (B0C). [All that remains is bnd
(B0) – but no points of �[A] are in there.] These are open sets in X

0, and so,
by continuity, their inverse images, called B and C above, are open sets in X.
These are the two open sets which will “separate A into two pieces”. That B

actually has the three properties necessary to “disconnect” A (some point of
A in B, some point of A not in B, and no point of A in bnd (B)) is shown by
using for each, the corresponding property for B

0 “disconnecting” �[A]. We
essentially “take the inverse image of each property”. The first two are easy,
while the third, iii) above, is a bit tricky – using, for example, the definition
of boundary.

The thrust of the theorem is that, again, the actual definitions of “contin-
uous” and “connected” seem to reflect our intuition.

We give two examples of more “concrete” applications of this theorem.
Consider ordinary real-valued function of one real variable. Such a func-

tion can be represented by its graph (of y as a function of x, say). Continuity
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for such a function means, roughly speaking, that the graph is “one continu-
ous line, with no jumps”. It seems “obvious” that, if a continuous function
somewhere becomes positive (i.e., f (a) is positive for some number a) and
somewhere becomes negative (i.e., f (b) is negative for some number b), then
that function somewhere is zero (i.e. f (c) = 0 for some number c). This is
true.
Theorem. Let each of X, J and X

0, J 0 be the usual topological space of real

numbers, and X

f! X

0 a continuous mapping. Let, for some a in X, f (a) > 0,
and, for some b in X, f (b) < 0. Then, for some c in X, f (c) = 0.
Proof: For contradiction, suppose not. Let A = X, a connected subset of
X. Then, by the previous theorem, f [A] is a connected subset of X

0. Let
B

0 ⇢ X

0 be the set of all positive numbers. Then some point, f (a), of f [A] is
in B

0, and some point, f (b), of f [A] is not B

0. But bnd (B0) consists of just
the number 0, while we have supposed that for no c does f (c) = 0. So, no
point of f [A] is in bnd (B0). We conclude, thus, that f [A] is disconnected, a
contradiction.
That is, we consider the connected subset X of X. Its image must be con-
nected. But this image contains a positive number, f (a), and a negative
number, f (b) – so how could this image be connected unless it also contains
0? [The B

0 makes this explicit.] But f [A] containing zero means exactly that
f (c) = 0 for some c in X.
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The second application of our
theorem is one of a family of re-
sults called fixed-point theorems in
topology. Imagine two rubber rules
(whose markings run, say, say, from
zero to twelve inches). Leave one
ruler alone on the table, and take the
other ruler, stretch or bend it in any
way one wants (but no tearing!),
and lay it next to the first ruler. This
is to be done such that no part of the second ruler extends beyond the first
ruler. A typical example of the result of this operation is shown in the figure.
It turns out that, no matter how one stretches, bends, or folds (provided no
spindling or mutilating) the second ruler, there will always exist some mark
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on the second ruler which winds up directly in the line with the correspond-
ing mark on the first ruler! In the example above, for instance, the mark “3.5
inches” on the second ruler is in line with the mark “3.5 inches” on the first
ruler. A few trials will convince one that this always works out this way (but
it is not entirely obviously).

There is a theorem is topology which reflects this experiment. We replace
the ruler left on the topological space. Let X

0 be the set of numbers x with
0  x  12, and let the topology be the usual one. [That is, first make X

0

a metric space, with distance d(x, x0) = |x � x

0|, the usual distance between
numbers. Then take the underlying topological space.] The ruler which
is stretched and bent is represented by the same topological space, which
we write X, J . So, we so far have our rulers represented by topological
spaces. The operation of “bending and stretching and laying next to” is just
a thinly disguised mapping, X

�! X

0, for this operation indeed assigns, to
each point of the “bent and stretched” ruler, a point of the “left alone” ruler.
That no tearing is allowed is expressed by demanding that this mapping be
continuous. Finally, the conclusion we wish to draw is that some mark on
the stretched ruler ends up directly in line with the corresponding mark on
the stationary ruler. This is expressed by asking that �(a) = a for some point
a of X (the stretched ruler). Thus, we have translated our “experiment” into
mathematics. We have:
Theorem. Let X, J and X

0 and J 0 be the topological spaces above, and
X

�! X

0 continuous. Then, for some point a of X, �(a) = a.
Proof: Suppose, for contradiction, that for no point a of X does �(a) = a.
Let X

00 be the set consisting of just two points, p and q with the discrete

topology. Let X

J! X

00 be the following mapping: If �(a) > a, set J(a) = p;
if �(a) < a, set J(a) = q. This is indeed a mapping, since, by supposition,
�(a) = a for no a.

We show that J is continuous. It su�ces to show that J�1[p] and
J 0�1[q], subsets of X, are open. To this end, let a be a point of J�1[p],
so �(a) = a

0 > a. Set ✏ = 1/2(a0 � a), a positive number. Denote by B

0 the
set of points x

0 of X

0 with |a0 � x

0| < ✏, so B

0 is open in X

0, J 0. By continuity
of �, ��1[B0] = B, the set of points x of X with |�(a) � �(x)| < ✏, is open in
X, J . Let C be the set of points x of X with |a = x| < ✏. Then C is also open
in X. By the second condition for a topological space, B \ C is also open in
X – and clearly a is a point of B \ C. So, B \ C is an open neighborhood of
a in X. Let b be any point of B\C. Then b is in B, and so �(b) is within ✏ of
�(a); and b is in C, and so b is within ✏ of a. But �(a) = a+ 2, by our choice
of ✏. So, we have �(b) > b. That is, b is in J�1[p]. Thus, for any point, a,
of J�1[p], we have found an open neighborhood, B \C, of a, such that any
point of B \ C is in J�1[p]. That is, we have shown that J�1[p] is open in
X, J . Similarly, J�1[q] is open. So, J is continuous.
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Since X is open connected and J is continuous, J[X], by the theorem
on page 115, is connected in X

00. But X

00, J 00 is discrete, and so, in order
that it be connected, J[X] must consist of just the point p or just the point
q. Now certainly �(0) > 0, so J(0) = p, so p is in J[X]; and �(12) < 12, so
J(12) = q, so q is in J[X]. So, both p and q are in J[X[: a contradiction.

The crucial part of the proof is to show that, if �(a) > a, then “su�-
ciently nearby” a

0’s have also �(a0) > a

0. This, of course, is what one would
expect, from continuity of the mapping �. The business about ✏ is just to pin
down “how su�ciently nearby” a

0 must be. Once we have this, we have that
J�1[p], and similarlyJ�1[q], are open – so thatJ is a continuous mapping.
We just “invented” X

00 and J in order to be able to use the theorem on page
115. We now do so, to conclude that both p and q cannot be in J[X] – i.e,.
that either �(a) > a for all a, or �(a) < a for all a. Finally, we obtain a
contradiction, since �(0) > 0 and �(12) < 12. Note that, if we “leave the end
points o↵ the rulers”, i.e., consider only x with 0 < x < 12, then the proof
above fails, in the last step. In fact, it is not di�cult to find, for for “rulers
without endpoints” a way to match up the two rulers so that no mark of X is
aligned with the corresponding mark of X

0.
We give a second example of an application of continuous mappings. Let

X, J and X

0, J 0 be topological spaces, and
�! X

0 continuous. Intuitively,
� “bends and stretches, but does not tear”. Let A be a compact subset of
X, so, intuitively, A is “well bounded in” in X. One might expect, then,
that the image of A, �[A], must also be “well bounded in”, for this could
fail only if the action of � is to “stretch A by an infinite amount, to make
its image become unbounded”, while a “stretching by an infinite amount”
is practically a “tear”. [This “argument”, perhaps, is not a very convincing
one. The problem seems to be that there is not a terribly good description, in
non-technical words, of “compact”.] In any case, such a result is true.
Theorem. Let X, J and X

0, J 0 be topological spaces, X

�! X

0 continuous,
and A a compact subset of X. Then �[A] is compact.
Proof: Suppose, for contradiction, that �[A] were not compact. Let the B

0’s
be a collection of open sets which covers �[A], such that no finite number
covers �[A]. For each B

0 in this collection, set B = ��1[B0], so, by continuity
of �, each subset B of X is open. Foe any point p of A, �(p) is of course in
�[A], and so �(p) is in one of the sets B

0 (since they cover �[A]), and so p is
in B = ��1[B0]. Thus, every point of A is in one of the B’s i.e., the B’s cover
A. But A is compact, and so a finite number of the B’, say B1, B2, . . . , Bn

cover A. We claim that, as a consequence, the corresponding sets in X

0,
B

0
1, . . . , B0n, cover �[A]. Indeed, let p

0 be any point of �[A], so p

0 = �(p)
for some point p of A. Since B1, . . . , Bn

cover A, p must be in one of these,
say B1. But p in B1 = ��1[B001] means that p

0 = �(p) is in B

0
1. So, this p

0 is
in one of B

0
1, . . . , B0n, namely B1.

We conclude, then, that a finite number of the B

0’s cover �[A] – which



120 14.

contradicts our choice of the B

0’s.
The argument is rather like that on page 115. We just use inverse images to
“pull back” things from X

0 to X. Continuity, of course, plays a central role,
for it ensures that we do not ruin open sets when we “pull them back to X”.
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We give one example of an ap-
plication of this theorem. Consider
again real-valued functions of one
real variable. We say that such a
function “assumes its maximum” if
there is a number a such that f (a)
is “at least as large as f of anything
ever gets to be”. For example, the
function illustrated in the first graph
on the right assumes its maximum
– for f (a), as indicated, is at least
as large as any f (b). The second
function illustrated does not assume
its maximum: In fact, it does not
have any maximum at all, for f (x)
“just keeps getting bigger as x gets
bigger”. The third function illus-
trated doe not “keep getting bigger
and bigger” – but still it does not as-
sume its maximum. The problem
here is that, even though the func-
tion itself never exceeds the value
one, the function is so arranged that f (a) is actually �1: The function makes
a “jump” at a, to avoid having f (a) = 1. [Of course, were f (a) one, then
the function would assume its maximum.] Under what conditions might one
expect a function to assume its maximum? The “reason” why the function in
the last example does not assume its maximum is that there is a “jump” just
where it ought to be assuming its maximum. We can prevent this possibility
by demanding that the function be continuous. For the other example, the
problem is that the function “trails up to large values for f (x) as x trails o↵
to infinity”. We can prevent this sort of thing by just considering the func-
tion for x’s in some “finite region”, say 0  x  1. Then, of course, we shall
only be able to show that the function “assumes its maximum compared with
other values it assumes for x with 0  x  1”.

Are these safeguard su�cient to ensure that a function assume its max-
imum? The next theorem will show that they are. In the proof, we shall
make use of two elementary facts about numbers: i) The set of all numbers x

with 0  x  1 is compact (virtually a consequence of the theorem on page
100), and ii) given any compact subset of the set of real numbers, there is an
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element of that subset which is larger than any other element of that subset.
Theorem. Let each of X, J and X

0, J 0 be the usual topological spaces of
real numbers, and X

0 , J 0 be the usual topological spaces of real numbers,
and X

�! X

0 a continuous mapping. Let A ⇢ X be all points x of X with
0  x  1. Then there exists a point a of A such that f (b)  f (a) for any
point b of A.
Proof: By the theorem above, since A is a compact subset of X, f [A] is a
compact subset of X

0. So, there exists a point a

0 of f [A] is such that every
point b

0 of f [A] satisfies b

0  a

0. Since a

0 is in f [A], there is a point a

of A with f (a) = a

0. Then, for any point b of A, f (b) is in f [A], and so
f (b)  f (a).

These, of course, are just a few selected examples. They do not begin
to do justice to the enormous range and complexity of result in this subject.
I hope, however, that they do illustrate the facts that topology does make
contact with more “concrete” things, and that the original program – to build
this subject entirely on the definition of a topological space – is at least a
promising one.
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15. Conclusion

Topology is one of the branches of modern mathematics. It is of course di�-
cult to divide any subject – and mathematics in particular – into neat, clearly
defined, “branches”. An attempt to do so in the case of mathematics might
yield two others: algebra and analysis. Algebra is essentially the study of
“operations”, of the results of manipulating elements of sets according to
certain, prescribed, rules. The objects with which one deals (analogous to
topological spaces in topology) are such things as groups and vector spaces.
If one had to say in a sentence the di↵erence between algebra and topology,
it would perhaps be that in algebra one is concerned primarily with indi-
vidual elements of sets; in topology, with subsets. Analysis, on the other
hand, involves functions (usually, of real or complex variables), derivatives,
integrals, di↵erential equations, and so on. It is, for example, the area in
which calculus largely lies. What is usually called “algebra” in high school,
however, is perhaps 30% algebra, and 70% analysis. Of the three branches,
algebra and topology are perhaps are the most self-contained. Analysis often
drawn heavily on the other two – and in particular on topology. There are,
of course, many areas of mathematics which lie between these branches (for
example, Lie groups, which are almost exactly halfway between algebra and
topology, with a dash of analysis), and others (such as axiomatic set theory)
which are separate from them all.

Mathematics finds application to the other sciences, and so topology, as
a part of mathematics, itself finds application. While it would be impossible
to describe in detail such applications here, a few examples – all to physics
– may illustrate this idea.

Consider a box containing a gas. Denote by X the set of points of the box
(so, for example, we might regard X as the set of points, (x, y, z) of Euclidean
three-dimensional space, with 0  x  1 0  y  1, and 0  z  1). At
each point of the box, one can determine the temperature, T , of the gas. Of
course, di↵erent points could have di↵erent temperatures: The gas could be
cold at the bottom of the box, and warm at the top. Thus, “measurement
of the temperature” could be represented as a rule which assigns, to each
point of X (point of the box), a number (the temperature at that point). We

123
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thus acquire a mapping from X to X

0, the set of real numbers. One knows
in physics that heat flows from regions of high temperature to regions of
low temperature. Furthermore, the faster the temperature changes (say, per
inch of motion in the box), the faster the heat flows from one region to the
other. A consequence of this is that one cannot have the temperature “change
suddenly” between two nearby points of the box, for the flow of heat would
immediately cool the hot region and warm the cold region. That is to say,
the temperature, as a function of position in the box, cannot “jump”. This
would be reflected in the mathematics as follows. We would regard the set
X as a topological space (the underlying one, from geometrical distance in
Euclidean space), and the set X

0 as a topological space (the usual one). Then,
we would demand that our mapping be continuous. Thus, a physical idea,
about the way temperature behaves, would be represented as a mathematical
one, about continuity of a mapping. Then, for example, the theorem on page
115 would say that, if two temperatures are achieved in the box, then every
temperature in between is also achieved, somewhere in box. The theorem on
page 119 would say that there is some “hottest point” in the box.

A mechanical system in physics is initially described by a set X which
represents “the set of all possible configurations of the system”, and is called
the configuration space of the system. For example, consider the system of
a ball free to roll on a table. A point of X would then be represented by
giving the location of the ball on the table, and the origination of the ball in
space. [In this example, the configuration space would be five-dimensional
– two dimensions to tell where the ball is on the table, and three to tell
the orientation of the ball.] One has a physical sense of what it means for
two configurations to be “nearby”. For example, two configurations, each
having the ball at the same point of the table, but with one having the ball
slightly rotated relative to the other, would be regarded as “nearby” – as
would two configurations having the ball with the same orientation but at
slightly di↵erent places on the table. This physical sense would be a reflected
by regarding X as a topological space. Thus, as part of our physical ideas,
the configuration space of a system is to be a topological space.

Now suppose that the table is tilted somewhat, so the ball, when released,
will roll. Consider the experiment “begin with the ball at rest in some config-
uration, release the ball, and see what its configuration is five seconds later
(after the ball has rolled a bit)”. This is a rule which assigns, to each con-
figuration (the initial one), some configuration (the final one). This would
be represented, then, by a mapping from X to X. One aspect of the idea of
dynamical stability in physics is that, if one changes very slightly the ini-
tial configuration of the ball, its ultimate configuration will not be changed
very much, either. If this were not true, then the slightest little disturbance
of the initial configuration would change dramatically what happens to the
ball – something we just do not see happen in Nature. Thus, “dynamical



125

stability” in physics would be reflected in our mathematical description by
demanding that our mapping “with five seconds” be a continuous mapping
of topological spaces.

But topology – as I hope has been made clear, – is not just a handmaiden
of physics. It is an intellectual endeavor in its own right. It seeks to capture,
within the framework which is mathematics, the notion of “closeness”. The
boundary of a set is the set of points which are “close to the set”, and also
“close to being out of that set”; a continuous mapping of topological spaces
is one which preserves the “closeness” characterized by those spaces. This
“captured closeness” – this notion of a topological space – has a sense of
distance in it: Not the exact numerical values for distances, but rather enough
of the shadow of distance to talk about what one wants to talk about.

Topology, at least for me, is a particularly pretty and aesthetic subject.
Two aspects of the subject make it so. First, one puts so little into the defi-
nitions, yet so many tricky theorems come out. There just is not much to a
topological space – just a set with some subsets satisfying a couple of sim-
ple properties. The various definitions – of connected, continuous mappings,
and so on – are about as simple as definitions could be. But, on these few
elements, one can build theorems which are very complicated indeed: for
example, that the continuous image of a connected set is connected; that the
attachment of the boundary to a connected set yields a connected set. These
few theorems, of course, just scratch the surface. There are numerous the-
orems in this subject which are many times more complicated than these.
[And, of course, we have presented only a small fraction of the definitions
in topology.] The definitions build on each other, and intertwine, to produce
a most appealing mosaic. The second remarkable thing about topology is
that, not only does one have access to many complicated theorems, but fur-
thermore these theorems on the whole even “make sense” intuitively. Surely
there is no obvious reason why things work out this way. Look at the defini-
tion of a topological space. It certainly does not seem to scream out “Here is
represented the essence of our ideas of ‘closeness’.” But that is exactly what
is represented! How does it happen that such simple definitions, by means of
complicated theorems which intertwine those definitions, turn out to mean
something to our geometrical intuition? This is the sort of thing one usually
wants in mathematics – and it is exactly what happens in topology.

But topology has also played a second role: It has served as an exam-
ple for all of mathematics. Mathematics, as we have seen in this example,
proceeds on two levels. On the one hand, there is the intuitive level, that in
which one gets ideas, invents definitions which say what they are supposed
to say, decides what statements are likely to be theorems and what are not,
decides what line is likely to produce a proof of a theorem. The other level
is that of precision. One proves theorems. Here on just uses the statements

of the definition, the hypotheses of the theorems, and so on, not what those
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things are as ideas. One mechanically follows the rules, and produces proofs.
Herein, at least for me, lies much of the charm of mathematics. It is almost
as though there are two entirely di↵erent subjects at work here. From each,
one only dimly sees the other. But, despite all this, they end up saying vir-
tually the same thing. The second level – the precise one – is of course the
more di�cult for the beginner. One is used to making great leaps, of get-
ting to the answer, to using every thought one can generate. In constructing
proofs, however, one must hold oneself back. One must simply follow the
rules (which one has made for oneself!) and go where one is led.

So, when one begins mathematics, there is a hard part (writing proper
proofs), and an easy part (getting ideas, guessing what is true and what
false). But, as one goes on, the roles reverse. One soon becomes accustomed
to writing out correct proofs. it becomes mechanical, once one has seen the
idea of the proof. The hard part – the stu↵ of much research in mathemat-
ics – becomes thinking of new definitions which “say” new things, finding
new and unexpected relationships between old definitions, and even finding
counterexamples to show that “widely expected” relationships simply do not
hold.

The style of mathematics is not well-adapted to everything. It would be
a bit silly, for example, to begin psychology with “Definition. A person is
a . . .”, and later obtain “Theorem. There are exactly two sexes.” For those
things to which it is adapted, however, it delivers certain benefits. The defini-
tions and theorems in mathematics “live forever”. They are not to be changed
by “subsequent evidence”. [But, of course, there are styles in mathematics
as in everything. Some definitions or theorems may later be regarded as un-
interesting because of change of taste.] There is a kind of permanence in
mathematics one does not see in other intellectual endeavors. Mathematics
gives a new meaning to the word “true”. But all this is at a price. Often,
it is that one has to work very hard to show something which is “obvious”.
For example, “if one attaches the boundary to a connected set, the result is
connected.” seems clearly, under any reasonable interpretations of the words,
“true”. But we must, in mathematics, work comparatively hard for the proof.
Sometimes all this work pays o↵. Something which seemed clearly to be true
is just plain false. It usually means that we did not understand intuitively, in
the fullest sense, the nature of the objects with which we were (or thought
we were) dealing. More often, the work does not pay o↵ so directly. It is
just the price one pays for being able to say “true” as a mathematician.

Mathematics is not to everyone’s taste, any more than any other intellec-
tual endeavor. Why, if one does not care for it, should one know anything
about it? I think that there may be something of value in mathematics for
almost everyone. I do not mean in balancing the checkbook: That is hardly
“mathematics”. Mathematics forces one to a way of thinking very di↵erent
from that in which one is accustomed. Perhaps a flexible mind is a viable
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end in itself. Stretching exercises, unfortunately, are not easy to come by.
One might, for example, search for societies out of contact with Western
civilization, join such a society for a few years, and come to understand how
the minds of the members work. We are rapidly running out of these. Fortu-
nately, mathematics, while perhaps not entirely “out of contact with western
civilization”, can serve. In short, I feel that mathematics can be useful be-
cause it is di↵erent in a very real sense – and di↵erent it certainly is.

Finally, I hope that I have managed to convey the fact that there is such
a thing as creativity in mathematics – and such a thing as excitement.
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Phy Sci 112 February 17, 1978

Is the Curve Continuous?

Rules: This is a game for two players, Yes and and No. The two players
begin by agreeing on a curve � (i.e., a rule which assign, to each number t,
a point of the plane), and also on a number t0. The game itself consists of
three moves: 1. No announces a positive number ✏. 2. Yes announces a
positive number �. 3. No announces a number t such that |t0 � t|  �. At the
completion of the three moves, the players together determine (using the rule
�) the points �(t0) and �(t) of the plane, and then the number d(�(t0), �(t)).
If d(�(t0), �(t))  ✏, then Yes wins the game. Otherwise, No wins.
Strategy: No will win at the end if it is not true that d(�(t0), �(t))  ✏. No
wants, with his first move, to make this as unlikely as possible. He does so
by choosing ✏ to be a small positive number. Yes will win at the end if it
is true that d(�(t0), �(t))  ✏. Yes, of course, can do nothing about ✏; but
he does control � in his second move. The role of � is to restrict the range
of No’s choices of t in the third move. Yes wants to restrict No as much
as possible, and so he chooses � to be a small positive number. No, for his
third move, already knows ✏ and �. So, in order to win, he must find t with
|t0 � t|  �, but not d(�(t0), �(t))  ✏.
General Remarks: This is of course a game of pure skill: There is no luck.
Either player can certainly blow the game by using poor strategy. [For ex-
ample, No could lose a winning game in the third move by selecting a poor
t; Yes could choose � too large in the second step, and thus give No too many
possibilities for the t he is to choose in the third move.] Suppose, however,
that both players are experienced, and use the best possible strategy. Then,
clearly, the winner is already predetermined by the choice of the curve �
and the number t0. Problem: State what must be true of � and t0 in order
that Yes, using prefect strategy, can always win the game. Answer: Your
statement will be exactly the definition of a curve continuous at t0.
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Supplementary Problems Due: January 27, 1978

[Not to be turned in. Caution: These problems were “test rejects”. In some
cases, they were rejected because they were too ambiguous, or because they
were too hard.]

1. Think of a set in the plane as “discrete” if every point of A is “separate
from” the rest of A; no point of A is “intermingled with” the rest of A. Invent
a definition of “discrete”.

2. Give a formal proof that the boundary of a bounded set is bounded.
3. Is it true that, for any sets A and B in the plane, bnd (A[ B) is a subset

of bnd (A)[ bnd (B)?
4. Let A, B, and C be connected sets in the plane, and let A and B have

a point in common and B and C a point in common. Does it follow that the
union of all three sets is connected?

5. Is it always true that int (bnd (A)C) = bnd (A)C?
6. Find sets A and B in the plane such that bnd (A) = B and bnd (B) = A.
7. Is bnd (int (A)) ⇢ bnd (A) for every set A in the plane?
8. One thinks of a set as disconnected if it “consists of two or more

pieces”. Try to find a definition of “one of those connected pieces of which
the set consists”. The definition would read: “For A a set in the plane, a
subset of B of A is a connected piece of A if . . .”

9. Let n be a positive integer, and let A be a set with exactly n points. For
which values of n is A connected? For which values bounded? What is int
(A)?

10. Let A be the set of all points (x, y) with x

2 , y

2. Find int (A) and bnd
(A). Is A connected? bounded?

11. Find A such that neither A nor A

C is connected.
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Phy Sc 112 Test 1 January 30, 1978

ξ�  
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γ  γ �  
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 A A

 A

1. (12 points) Let A be the set in the
plane consisting of all points (x, y) with
x

+
y

2 < 1 or y = 0, i.e., a “disk with a line
running through it”. Indicate in a clear dia-
gram the sets bnd (A) and int (A). Give the
formulae for these sets. Is A bounded? Is A

bounded? Is A connected? [Please answer
each of these last two in a sentence or two,
with a reason.]

2. (20 points) Please answer in a sentence or two, with a reason.
i) Is it true that, for A any bounded set in the plane, int (A) is bounded?
ii) Is it true that, for any two sets in the plane having no point in common,

their union is disconnected?
iii) Is it true that, for any set A in the plane with int (A) connected, A

must be connected?
iv) Is it true that, for any set A in the plane, every point of A is in either

int (A) or bnd (A)?
3. (10 points) Theorem. Let A be a set in the plane. Then no point of the

plane is in both int (A) and bnd (A). [Give a formal proof.]
4. (10 points) Definition. A set A in the plane is said to be closed if, for

every point p not in A, there exists a positive number ✏ such that no point q

with d(p, q)  ✏ is in A. Is the usual disk (all (x, y) with x

2 + y

2 < 1) closed?
Is the line (all (x, y) with y = 1 closed)? [Please answer in a sentence or two,
with a reason.]

5. (8 points) Find a disconnected set A in the plane such that bnd (A) is
the line by all (x, y) with y = 1.
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Test 1 – Solutions
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1. The sets bnd (A) and int (A)
are as shown in the diagram. bnd
(A) is the set of all points (x, y) with
x

2 + y

2 = 1, or y = 0 and x > 1, or
y = 0 and x < �1. int (A) is the set
of all points (x, y) with x

2 + y

2 < 1.
Set A is not bounded (and, indeed,
the line itself is not even bounded):
There is no point p of the plane and
positive number c such that every point of A is within distance c of p. The
set A is connected, because each of the line and disk by itself is connected,
these sets have a point in common, and A is their union.

2. i) Yes. Int (A) is a subset of A, and every subset of bounded set is
bounded. ii) No. Let A be be any set in the plane, and set B = A

C . Then
A and B have no points in common, while their union, the entire plane, is
connected. iii) No. Let, for example, A consists of the usual disk together
with the point (17, 17). Then A is certainly not connected, while int (A) is
just the disk, which is connected. iv) Yes. Let p be a point of A. If for some
positive ✏ every point within ✏ of p is in A, then p is in int (A). If this does
not hold (i.e., if for every positive ✏ there is a point within ✏ of p and not
in A), then, since of course there is for every positive ✏ a point, namely p,
within ✏ of p and in A, p must be in bnd (A).

3. Proof: Let p be a point of int (A), so, for some positive number ✏,
every point within distance ✏ of p is in A. Then it cannot be the case that for
every positive ✏ there is a point within ✏ of p and not in A. Hence, p cannot
be in bnd (A).

4. The disk is not closed. The point p = (1, 0) is not in A, and yet for
every positive number ✏ there is a point within ✏ of p and in A. The line
is closed. Given any point p not in A, let ✏ be one-half the perpendicular
distance from p to the line, a positive number. Then it is indeed true that no
point within distance ✏ of p is in A.

5. Let, for example, A be the complement of the line, i.e., the set of all
points (x, y) with y , 1. Then A is disconnected, but its boundary is the
line. [A second type of example is: Let A consist of all (x, y) with y = 1 and
x , 13.]
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Phy Sc 112 Test 2 February 20, 1978

1.(6 points) Give an example of a metric space in which every bounded
set is connected.

2. (16 points) For each of the statements below, tell whether it is true or
false, and explain in a few sentences:

i) Let X, d be a metric space. Then int (X) = X.
ii) Let X, d be a metric space, and A ⇢ X. Then, if A and A

C are both
bounded, X is bounded.

iii) Let X, d be a metric space, and A ⇢ X. Then if A and A

C are both
connected, X is connected.

iv. Let X, d be any metric space with X the plane. Let A be the usual disk
(all (x, y) with x

2 + y

2 < 1). Then int (A) = A.
3. (8 points) Consider the curve in the plane given by �(t) = (1, t) if

t < 1, and �(t) = (1, 1) if t � 1. Is this curve continuous at t = 1? [If yes, tell
how to choose � given ✏; if no, tell how to choose ✏.]

4. (20 points) Let X, d be a metric space, and let p be a point of X. Let A

be the subset of X consisting of all points q of X with d(p, q) < 1/2. Which
of the following are always true (i.e., no matter what X, d, and p are) [Please
answer in a sentence or two.]:

i) int (A) = A

ii) bnd (A) is the set of all points q with d(p, q) = 1/2
iii) A is bounded
iv) A is connected
5. (10 points) Let X, d be a metric space, and let A be a bounded subset

of X. Then bnd (A) is bounded. [Give a formal proof.]
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Test 2 – Solutions

1. Let X be the set consisting of just one point, p and let d(p, p) = 0. This
is a metric space. The subset of X consisting of just p, and the empty subset
of X, are clearly both connected. Thus, every subset of X is connected, and
so certainly every bounded subset of X is connected.

2. i) True. Every point of int (X) is certainly in X. For the converse, let
p be a point of X. Then every point of X within distance 231 of p is in X,
and so p is in int (X). ii) True. X is the union of A and A

C , while the union
of two bounded sets is bounded. iii) False. Let X consist of two points, p

and q, and let d(p, p) = d(q, q) = 0, and d(p, q) = 1. This is a metric space.
Let A consist of just p. Then A

C consists of just q, and so A and A

C are
connected. But X is not connected. iv) False. Let X be the plane, let d

0 be
the usual geometrical distance, and set p = (0, 0) and q = (2, 0). For r and s

points of X neither p nor q, set d(r, s) = d

0(r, s), d(p, r) = d(r, p) = d

0(r, q),
d(q, r) = d(r, q) = d

0(r, p) and d(p, q) = d(q, p) = d

0(p, q). This is a metric
space! In it, int (A) is all points (x, y) with 0 < x

2 + y

2 < 1, which is di↵erent
from A.

3. This curve is continuous at t = 1. Given positive ✏, any � less
than or equal to ✏ will do. Indeed, d(�(t), �(1)) is zero if t � 1, and is
d((1, t), (1, 1)) = 1 � t if t < 1. So, if |1 � t|  �, and �  ✏, then
d(�(t), �(1))  ✏.

4. i) Always true. By a theorem, int (A) ⇢ A. For the converse, let q be
in A, say d(p, q) = a < 1/2. Choose positive ✏ such that a + ✏ < 1/2. Then
any point within ✏ of q is, by the triangle inequality, within 1/2 of p, and so
is in A. Since every point within ✏ of q is in A, q is in int (A). ii) Not always
true. Let X be the plane, and let d(p, q) = 0 if p = q, and d(p, q) = 1/2
otherwise. Then A consists only of the point p, and bnd (A) is the empty set.
But the set of all points q with d(p, q) = 1/2 is all of X except for the point
p. So, bnd (A) is not the set of all q with d(p, q) = 1/2. iii) Not always true.
Let X be the plane, and d(p, q) = 0 if p = q and d(p, q) = 1/4 if p , q. Then
A = X. But X itself is not bounded. iv) Not always true. The example of iii)
in which A is certainly not connected will do.

5. Let positive ✏ be given. Then since A is bounded, there is a finite set
of points of X, p1 . . . pn

, such that every point of A is within distance ✏/2 of
at least one of them. Let p be any point of bnd (A). Then some point, say q,
of A is within ✏/2 of p. But now, by triangle inequality, (since d(p, q)  ✏/2
and d(q, p

i

)  ✏/2) we have d(q, p
i

)  ✏. Thus, we have shown that every
point of bnd (A) is within ✏ of at least one these p

i

. So, since ✏ is arbitrary,
bnd (A) is bounded.
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Phy Sc 112 Test 3 March 10, 1978

1. (20 points) Let X be the plane, and let J consist of the empty set, X

itself, and the subset of X consisting of all (x, y) with x > 0. So, X, J is a
topological space. Let A ⇢ X consist of all (x, y) with x

2 + y

2 < 1.
i) Find int (A), and explain your answer.
ii) Find bnd (A), and explain your answer.
iii) Is A connected? Explain your answer.
iv) Let X

0, J 0 be the plane with the usual topology, and X

�! X

0 the
identity mapping. Is � continuous? Explain.

2. (16 points) true or false? Please explain in a sentence or two.
i) The intersection of any two open neighborhood of point p in a topo-

logical space is an open neighborhood of p.
ii) The union of any two open neighborhoods of point p in a topological

space is an open neighborhood of p.
iii) The image of an open set under a continuous mapping of topological

spaces is an open neighborhood of p.
iv) The image of a disconnected set under a continuous mapping of topo-

logical spaces is a disconnected set.
3. (9 points) Theorem. Let X, J be a topological space, and A and B

open subsets of X having no point in common. Let A ⇢ bnd (B). Then A is
empty. [Give a formal proof.]

4. (15 points) A topological space X, J is said to be locally connected

if every point p of X has a connected open neighborhood. Is every discrete
topological space locally connected? Every indiscrete topological space?
The plane with the usual topology? [Please explain why.]

Note: “The plane with the usual topology” is the underlying topological
space of the plane with usual geometrical distance.
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Problem Set 1 Due: January 16, 1978

1. Draw a picture of the set of points (x, y) in the plane satisfying xy = 1.
2. Find a simples characterization of each of the following two sets in the

plane: i) those (x, y) satisfying x

2 = y

2  0; ii) those (x, y) such that x � 0 or
y � 0 or x + y  0

3. Which of the following describe sets in the plane? i) all (x, y) such
that, for some y, x = y; ii) Start with the three points (0, 0), (0, 1) and (1, 0).
Then include any point lying on a line joining any two of these. Then include
any point lying on a line joining any two of the resulting points. etc. iii) all
(x, y) such that x + y + z = 3.

4. We have given examples of various statements which do, and various
which do not, define sets in the plane. Find the best example you can of a
statement which is borderline between the two.

5. Consider the following two properties of sets in the plane: i) “is a
one-dimensional set”, and ii) “the set includes the point (0, 0)”. Which, in
your opinion, will ultimately be topological properties.
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6. Consider the “disk with a hole in the center”,
i.e., the set in the plane given by x

2+y

2 > 1 and x

2+
y

2 < 1 What do you think its boundary and interior
are? Do you think it is connected? bounded?
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Problem Set 1 – Solutions

1. This set consists of two hyperbolas, as
shown in the figure.
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2. i) Neither x

2 nor y

2 can be negative. So,
we could have x

2 + y

2  0 only if x

2 + y

2 = 0,
i.e., only if both x

2 and y

2 are zero, i.e., only if
both x and y are zero. So, this is the set con-
sisting only of the point (0, 0). ii) In order that
(x, y) not be in the set, all three of x � 0, y � 0,
and x + y  0 must fail. That is, x must be negative, y must be negative, and
x + y must be positive. But this is impossible. So, this set is the entire plane.

3. i) This does not describe a set. We are to be given (x, y), so what does
“for some y” mean? ii) This does describe a set, and in fact it is the entire
plane. iii) This does not describe a set. What is this z?

4. Your guess is as good as mine.
5. i) This problem will be a topological property, since it would seem

to be unchanged under stretching and pulling. [In fact, it is, but it is a very
complicated one to state.] ii) This probably will not be a topological prop-
erty, since stretching and pulling could move a set away from the origin. [In
fact, it is not.]

6. I would have guessed that its boundary will be the two circles x

2+y

2 =
1 and x

2 + y

2 = 4; its interior will be the set itself; and that it will be both
connected and bounded. [In fact, these are precisely the conclusions one
would draw by applying our definitions.]



138 APPENDIX .

Problem Set 2 Due: January 26, 1978
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1. Let A be a “disk sitting on a line”, i.e.,
the set of all points (x, y) with either y = �1 or
x

2 + y

2 < 1. Find bnd (A) and int (A). Is A

bounded? connected?
2. Find an example of a set which is both

bounded and connected; one neither bounded
nor connected; one bounded but not connected;
one connected but not bounded.

3. Is the interior of every connected set connected? The boundary of
every bounded set bounded?

4. Listed below are some proposed modifications of our definitions. In
each case, apply the modified definition to the disk (i.e., for “boundary” or
“interior” find, with the new definition, the boundary or interior of the disk;
for “bounded” or “connected” determine, with the new definition whether
the disk is bounded or connected). i) In the definition of “boundary”, omit
the word “positive”. ii) In the definition of “boundary”, change “. . . and also
a point . . .” to “. . . or a point . . .”. iii) In the definition of “interior”, change
“. . . for some positive number . . .” to “. . . for any positive number . . .”. iv) In
the definition of of “interior”, omit the word ‘positive”. v) In the definition of
“bounded”, change “. . . some point p of the plane and some positive number
c” to “every point p of the plane there exists a positive number c such that
. . .”. vi) In the definition of “disconnected”, omit “. . . and no point of A is in
bnd (B).”

5. Find all sets A such that int (A) is the entire plane.
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Problem Set 2 – Solutions

1. Bnd (A) consists of all points (x, y) with x

2 + y

2 = 1 or y = �1. Int (A)
consists of all points (x, y) with x

2 + y

2 < 1. This set is not bounded, but it is
connected.

2. A disk is both bounded and connected; two parallel lines are neither
bounded nor connected; a set consisting of two points is bounded but not
connected; the entire plane is connected but not bounded.
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3. It is not true that the interior of every
connected set is connected. Let, for example,
A consist of two disks together with a line as
shown. Then A is connected, but its interior
is not. the boundary of every bounded set is
bounded.

4. i) The boundary of the disk would be the empty set (since, for every

✏ one would have to find point q such that d(p, q)  ✏. But what about
✏ = �17?) ii) The boundary of the disk would be the entire plane (since
there will always, for any p, be either a q satisfying the first or a q satisfying
the second). iii) The interior of the disk would be the empty set (for this
is to hold for every positive ✏. What about ✏ = 137?) iv) The interior of
the disk would be the entire plane (for the condition is satisfied for some ✏,
namely ✏ = �13.) v) The disk would still be bounded. vi) The disk would
be disconnected (choosing for C, say, all (x, y) with x > 0).

5. Every point of int (A) is a point of A. So, if int (A) is the entire plane,
A must be the entire plane.
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Problem Set 3 Due: January 30, 1978

1. Find all sets A in the plane such that bnd (A) is the empty set.
2. find all sets A in the plane every subset of which is connected.
3. Find a set A such that int (A) is the disk (all (x, y) with x

2 + y

2 < 1)
and bnd (A) is the complement of this disk.

4. Is every set in the plane a subset of some connected set?
5. If bnd (A) is connected, need A be connected?
6. Can two di↵erent sets in the plane have the same boundary? The same

interior?
7. Theorem. Let A be a bounded set in the plane. Then A

C is not
bounded. [Give a formal proof.]

8. Theorem Let A and B be sets in the plane, with int (A) = A and int
(B) = B Then int (A \ B) = A \ B. [Give a formal proof.]

9. Find disconnected sets A and B in the plane such that both A [ B and
A \ B are connected.

10. Think of a subset A of the plane as being “dense” if every point of
the plane is “intermingled” with the points of A; if no point of the plane is
“out of direct contact” with the set A. [For example, the set of all (x, y) with
x rational is to be “dense”.] Find a suitable definition of “dense”, and state
and prove a few theorems.
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Problem Set 3 – Solutions

1. The entire plane and the empty set have empty boundaries. Suppose
that A were some other set with empty boundary. Then some point of the
plane would be in A (since A is not empty), some point of the plane would
be not in A (since A is not the entire plane), and no point of the plane would
be in bnd (A) (since bnd (A) is empty). That is, we would have that the plane
is disconnected. But the plane is connected. So, the only such A are the
entire plane and the empty set.

2. If A contained two or more points, than one could form a subset of A

consisting of just two points, and this subset would be disconnected. So, A

must be either the empty set or a set with just one point.
3. Let A be the set of all points (x, y) in the plane such that either x

2+y

2 <
1 or x is rational.

4. Yes. Every set in the plane is a subset of the entire plane, which is
connected.

5. It need not. Our “two squares” set on page 22 has connected boundary,
but is not connected.

6. Di↵erent sets, same boundary? Sure: For any set A in the plane, A and
A

C are di↵erent, but have the same boundary, Di↵erent sets, same interior?
Yes: Let A be a disk, and B a disk together with one additional point.

7. For contradiction, let A be bounded (so there is a point p and a positive
number c such that every point of A is within c of p) and let A

C be bounded
(so there is a point p

0 and a positive number c

0 such that every point of A

C

is within c

0 of p

0). Set a = d(p, p0). Then every point of A is within c of p,
and so within c + c

0 + a of p. every point of A

C is within c

0 of p

0, and so
within c

0 + a of p. and so within c + c

0 + a of p. So, every point of the plane
is within c + c

0 + a of p: a contradiction.
8. [This is just a special case of the second theorem on page 30. It was

a misprint: I meant the union,] i.e., int (A [ B) = A [ B. For this, a proof
would be as follows.] That A [ B ⇢ int (A [ B) follows from the theorem on
page 32. That int (A [ B) ⇢ A [ B follows from the theorem on page 26.
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9. Let A consist of all (x, y) with
0  x  1 or 2  x  3, and let B

consist of all (x, y) with 1 < x < 2
or 3 < x < 4. Then each is discon-
nected, while A\B is the empty set
(so, connected), and A[B is a “wide
vertical strip” (so, connected).

10. A set A in the plane is said
to be dense if, for every point p of the plane and every positive number ✏,
there is a point q of A with d(p, q)  ✏. Typical theorems include: i) Let A

and B be sets in the plane, with A ⇢ B and A dense. Then B is dense. ii) The
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union of two dense sets in the plane is dense. iii) Let A be a dense set in the
plane. Then int (A)[ bnd (A) is the entire plane.
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Problem Set 4 Due: February 6, 1978

1. The curve given by �(t) = (t, t2) is continuous at t = 0. For each of the
following ✏�values, find a positive number � such that, whenever |t � 0|  �,
d(�(t), �(0)  ✏, ✏ = 3; 1/2; 1/100.

2. The curve given by �(t) = (0, 0) if t is rational, �(t) = (1, 0) if t is
irrational is not continuous at t = 1. Set ✏ = 1/2. Show that there is no
positive number � such that, whenever t � 1|  �, d(�(t), �(1)  ✏.

3. Let � be a continuous curve in the plane. Define a new curve, �̂, as
follows. For t a number, let (x, y) be the point �(t), and then set �̂ = (x+1, y).
That is, �̂ is just � “displaced one unit to the right along the x�axis”. Show
that �̂ is continuous. [Hint: Fix t0. Since � is continuous, for every positive
✏ there exists a positive � such that . . . for �. Now let ✏ be a positive number.
We must find positive �̂ such that . . . for �̂. What should we choose for this
�̂?]

4. Let X be the plane. For p and q points of X, set d(p, q) = geometrical
distance from p to q + 1. Is X, d a metric space? Why?

5. Let X be the plane. For p and q points of X, let d(p, q) be the area of
the triangle with vertices p, q and the origin, Is X, d a metric space? Why?

6. Let X be the set of positive integers. For p and q points of X (i.e.,
positive integers), set d(p, q) = |p/q � 1|. Is X, d a metric space? Why?

7. Let X, d and X, d0 be metric spaces (i.e., two distances for the same
set X). For p and q any two points of X, set d

00(p, q) = d(p, q) + d

0(p, q). Is
X, d00 a metric space? Why?

8. Let X be the plane. For p and q points of X, let d(p, q) be the length
of a side of the smallest square, with vertical and horizontal sides, which
contains both p and q. Is X, d a metric space? Why?
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Problem Set 4 – Solutions

1. The following are approximately the largest �’s which do the job (i.e.,
any smaller �’s are ok): 1.6, .45, .0009.

2. Since “1” is rational, �(1) = (0, 0). Let some positive ✏ be given.
Then there is some irrational number t such that |t � 1|  �. But, for this t,
�(t) = (1, 0), and so d(�(t), �(0)) = 1, which is not less than or equal to 1/2.
Thus, for every positive �, we have found a t with |t � 1|  �, but such that
d(�(t), �(0))  ✏ fails.

3. Fix t0, and let positive ✏ be given. Then, since � is continuous at
t = t0, there is a positive � such that, whenever |t � t0|  �, d(�(t), �(t0))  ✏.
But, by definition of �̂, we have d(�̂(t), �̂(t0)) = d(�(t), �(t0)). So, whenever
|t � t0|  �, d(�̂(t), �̂(t0))  ✏. We have thus shown that �̂ is continuous at
(t = t0). Since t0 is arbitrary, we have shown that �̂ is continuous.

4. No, d(p, p) = 1, not zero, so the first condition fails.
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5. No. Let p, q, and the origin be arranged
as shown. Then the triangle reduces to a line,
and d(p, q) = 0, while p , q. The first condi-
tion fails.

6. No. It is not true that d(p, q) = d(q, p) (e.g., for p = 1 and q = 2, so
d(p, q) = 1/2 while d(q, p) = 1). Second condition fails.

7. Yes. each of the three conditions for d

00 follows immediately from the
corresponding conditions for d and d

0.
8. Yes. the first two conditions are immediate. To check the third con-

dition, one just has to play around with squares for a while to see that it is
true.
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Problem Set 5 Due: February 13, 1978

1. let X, d be a metric space. For p and q any two points of X, set
d

0(p, q) = d(p, q) if d(p, q)  1, and d

0(p, q) = 1 if d(p, q) > 1. Show that
X, d0 is a metric space.

2. Let X, d be a metric space. Let X

0 be a set consisting of the points of X

together with one additional point, x. For p and q in X, set d

0(p, q) = d(p, q);
for p in X, set d

0(p, x) = 1; set d

0(x, x) = 0. Is X

0, d0 a metric space? Why or
why not?

3. Let � be a continuous curve in the plane. Consider a new curve in the
plane, �̂, given by: for t any real number, �̂(t) = �(2t). Thus, �̂ represents
“the same path as �, but traversed twice as fast”. Show that �̂ is continuous.

4. Consider the following candidate for a set having more elements (as
we have defined it) than the set of integers, but fewer elements than the set
of numbers between 0 and 1: the set of numbers between 0 and 1/2. Why
does this set not work?

5. Let S , S

0, and S

00 be sets, and suppose that S has the same number
of elements as S

0, and S

0 the same number of elements as S

00 (as we have
defined “same number of elements”). Show that S has the same number of
elements as S

00.
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Problem Set 5 – Solutions

1. Since the first two conditions are immediate, we have only to worry
about the triangle inequality, d

0(p, q)+d

0(q, r) � d

0(p, r). Since in this metric
space no distances exceed one, this could fail only if the left side were less
than one (since certainly the right side cannot greater than one). But if the
left side is less than one, we have d

0(p, q) = d(p, q) and d

0(q, r) = d(q, r)
(since each is less than one), and so, by the triangle inequality in X, d, that
d(p, r) is also less than one. Hence, we must also have d

0(p, r) = d(p, r).
Our triangle inequality now follows from that inequality in X, d.

2. This is not in general a metric space. Let p and r be points of X

with d(p, r) = 5, say. Then the triangle inequality would demand d(p, x) +
d(x, r) � d(p, r), which fails.

3. Fix number t0, and let positive ✏ be given. Then, since � is continuous
at 2t0, there is a positive � such that, whenever |t�2t0|  �, d(�(t), �(2t0))  ✏.
That is, setting t

0 = 1/2, whenever |t0 � t0|  �/2, d(�(2t

0), �(2t0))  ✏. But,
since �̂(t) = �(2t), this just means that �̂ is continuous at t0).

4. But the set of numbers between 0 and 1/2 has the same number of
elements as the set of numbers between 0 and 1. Indeed, a correspondence is
the following: With any number x between 0 and 1/2, associate the number
2x (between 0 and 1). Every number of one set is made to correspond with
some number in the other, and vice versa, and no numbers of either set are
left over.

5. We have a correspondence between the elements of S and S

0 (such
that every element of S corresponds to one of S

0, and vice versa, and such
that no elements of S or S

0 are left over); and also a correspondence between
the elements of S

0 and S

00 (etc.). Now consider the following correspon-
dence between the elements of S and S

00: Given an element of X, find the
element of S

0 to which it corresponds (under the first correspondence), and
then the element of S

00 to which that element of S

0 corresponds (under the
second correspondence). One checks that this correspondence between S

and S

00 has all the required properties.
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Problem Set 6 Due: February 20, 1978

1. Let X be the plane, d the usual geometrical distance, and d

0 twice that
geometrical distance. Show that, for any set A ⇢ X, bnd (A) and int (A) are
the same using d as d

0.
2. Is it true that for A any subset of any metric space, with bnd (A = A,

then int (A) is the empty set? Why or why not?
3. Let X be the “circle” metric space of page 47. Find all bounded subsets

of X.
4. Let X, d be a metric space, with A having only a finite number of

points. Prove that, for any A ⇢ X, int (A) = A and bnd (A) is the empty set.
5. Is it true that, for any metric space X, d and for any subset A of X

consisting of just two points, A is disconnected? Why or why not?
6. Let X, d and X, d0 be metric spaces such that, for any A ⇢ X, int (A)

(with respect to d) = int (A) (with respect to d

0). Show that bnd (A) (respect
to d) = bnd (A) (with respect to d

0).
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Problem set 6 – Solutions

1. Let int and int’ denote interiors using d and d

0, respectively. For p in
int (A) there is a positive ✏ such that every point within d�distance of p is
in A. But then every point within d

0�distance 2✏ would be in A, and so p

would be in int (A). Similarly (using 1/2✏ instead of 2✏), every point of int’
(A) is in int (A). That one also gets the same boundaries is immediate from
the fifth theorem on page 68.

2. int (A) must be a subset of A, and can have no points in common with
bnd (A). So, if bnd (A) = A, int (A) must be the empty set.

3. Every subset of X is bounded, because X itself is bounded. Indeed,
given positive ✏, let p1, . . . , pn

be a finite number of points spaced less than ✏
apart around the circle. then every point of X is of course within ✏ of at least
one of these points.

4. Let p be in A, and consider the numbers d(p, q) for q , p. This
is a finite number of positive numbers: Let ✏ be smaller than the smallest.
Then every point within ✏ of p is in A (for we choose ✏ such that the only
such point is p itself). So, p is in int (A). So, int (A) = A. Similarly, int
(AC) = A

C . Since the points of bnd (A) are precisely those points of X in
neither int (A) nor int (AC), bnd (A) must be the empty set (for every point is
in either int (A) = A or int (AC) = A

C).
5. This is true. Let A consist of p and q, with p , q. Fix a positive

number b less than d(p, q), and let B be the subset of X consisting of all
points r with d(p, r)  b. Then, of course, p is in B and q is not. We claim
further that no point of A is in bnd (B), i.e., that neither p nor q is in bnd (B).
Certainly p is not in bnd (B), for it is not true that there is a point within b

of p and not in B, We further claim that q is not in bnd (B). Indeed, choose
a positive number ✏ much that b + ✏  d(p, q). (possible, since b is less than
d(p, q)). Then no point within ✏ of q could be in B (i.e., within b of p), for
were there such a point, r, the triangle inequality, d(q, r) + d(r, p) � d(p, q),
would contradict our choice of ✏ above. So, q is not in bnd (B). So, A is
disconnected.

6. Since, by the fifth theorem on page 68, bnd (A) = [int(A)]C\[int(AC)]C ,
it is immediate that two metrics having the same interiors also have the same
boundaries. [Also, is fact, same connected set.]
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Problem Set 7 Due: February 27, 1978

1. i) Let X, d be a metric space, and p and q points of X with p , q.
Show that there is a self-interior set A with p in A and q not in A.

ii) Let X, d be a metric space, and X,J , its underlying topological space,
and p and q points of X with p , q. Show that there is an open set A in this
topological space with p in A and q not in A.

iii) Let X be the plane with the indiscrete topology, and p and q points of
X with p , q. Show that there is an open set A in this topological space with
p in A and q not in A.

iv) Show that the plane with the indiscrete topology is not the underlying
topological space of any metric space.

2. Let X be a set with just three points. Find all J’s (i.e., all collections
of subset of X) such that X,J is a topological space. [Hint: There are exactly
twenty-nine of them.]

3. Let X, d be a metric space, with X finite. Show that the the underlying
topological space is discrete.

4. Let X be a set, and J a collection of subsets of X such that the second
and third conditions for a topological space are satisfied. Is it true that, if
there is now included in the collection J also X itself and the empty set,
then the result will always be a topological space? Why or why not?
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Problem set 7 – Solutions

1. i) Let d(p, q) = a, a positive number. Let A be the set of all points r

with d(p, r) < a/2. Then clearly p is in A and q is not in A. By the theo-
rem on page 82, A is self-interior. ii) Since the open sets in the underlying
topological space are the self-interior sets, this follows from i). iii) In the
indiscrete topology, the only open sets are X and the empty set. But A empty
will not do, for p will not be in A; and A = X will not do, for q will be in
A. iv) Let X, d be any metric space with X the plane, and let p , q. By ii),
these is an open set, in the underlying topology, containing p but not q: by
iii) there is no open set, in the indiscrete topology, containing p but not q. So
these topologies must be di↵erent.

2. One just has to hunt them down. There is the indiscrete (1) and the
discrete (1). The rest are: [x, y, xy] (3) [Which means: the open sets are the
empty, X itself, the set consisting of just x, the set consisting of just y, and the
set consisting of just x and y; and the total number of such possibilities, when
rearrangements of x, y, and z are included, is 3], [xy](3), [x](3), [x, yz](3),
[x, xy](6), [x, xy, xx](3), [x, y, xy, xz](6).

3. We have seen that, in a metric space with X finite, int (A) = A for every
A ⇢ X, i.e., that every A is self-interior. So, in the underlying topological
space, every subset of X is open. That is, the underlying topological space is
discrete.

4. This is true. Let J 0 denote J , together with ; (empty set), and X

itself. 1. X and ; are certainly in J 0. 2. Let A and B be in J 0. If either is
empty, then A \ B = ;, and is in J 0. If either is X, then A \ B is the other,
and so is in J 0. If neither is empty or X, then each of A and B is in J and so
A \ B is in J , and so A \ B is in J 0. 3. Let C be the union of any collection
of sets in the collection J 0. We might as well leave out empty sets in this
union, since they will not change C. If any of these sets is X, then C = X,
and so is in J 0. If none is X, then they are in J , and so the union is in J ,
and so that union, C is in J 0.
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Problem Set 8 Due: March 8, 1978

1. Let X, J be a topological space in which every subset of X consisting
of a single point is open. Prove that this topological space is discrete.

2. Consider the topological space of pages 78 – 79. Find the connected
subsets of X.

3. Let X be the plane, and let the open sets be the empty set and all subset
of X containing the origin. Let A consist of all (x, y) with x

2 + y

2 < 1.
i) prove that this is a topological space.
ii) Find int (A).
iii) Find bnd (A).
iv) Is A a connected? Why or why not?
4. Let X, J be a topological space, and A a connected subset of X.

Prove that A[ bnd (A) is connected. [Note that one would have expected this
intuitively!] [Hints: Suppose disconnected, so there is a set C such that some
point, p, of A[ bnd (A) is in C, some point, q, of A[ bnd (A) is not in C,
and no point of A[ bnd (A) is in bnd (C). Now it could hardly be that both
p and q are in A (as opposed to bnd (A)), for that would mean that A would
be disconnected. Suppose, then, that p is in bnd (A). Now use i) the fact that
p is in C, ii) the fact that p is in bnd (C) (since no point of A[ bnd (A) is in
bnd (C)), and iii) the fact that p is in bnd (A) to show that there must be a
point p

0 in A and C. Similarly, if q were in bnd (A), show that there must be
a point q

0 in A and not in C. Thus, we wind up finally with a point (p or p

0)
in A and in C, a point (q, or q

0) in A and not in C, and with no point in A in
bnd (C). But this would imply that A is disconnected.]
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Problem set 8 – Solutions

1. In a topological space, any union of open sets is open. But any subset
of X can be written as a union of sets consisting of a single point. So, if these
are open, the space is discrete.

2. For any subset B of X, either int (B) is empty, or int (BC) is empty. So
how, given A, could one find B such that some point of A is in B, some point
of A is not in B, and no point of A is in bnd (B) (since if no point of A is in
bnd (B), the point of A in B must be in int (B), and the point of A not in B

must be in int (BC))? Every subset of X is connected.
3. i) 1. The empty set and X itself are open. 2. The intersection of two

sets containing the origin contains the origin. 3. The union of any collection
of sets containing the origin contains the origin. ii) int (A) = A. Indeed,
this A is open, since it contains the origin. iii) bnd (A) = A

C . Indeed, let
p be in A

C . Then every open neighborhood of p contains a point not in A

(namely, p), and also a point in A (namely, the origin). iv) In order that A be
disconnected, we must find B such that some point of A is in B, some point
of A is not in B, and no point of A is in bnd (B). But, if B contains the origin,
then bnd (B) = B

C – so, the point of A not in B is in bnd (B); if B does not
contain the origin, then bnd (B) = B – so, the point of A in B is in bnd (B).
In either case, there would be a point of A in bnd (B). So, we shall never find
set B which shows disconnected. This A is connected.

4. See notes, pages, 95 and 96.
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