
ISBN 978-1-927763-40-7
http://minkowskiinstitute.org/mip/

R
. G

eroch P
erspectives in C

om
putation

Robert Geroch

PERSPECTIVES
IN

COMPUTATION

Second Edition

The subject of computation deals with solutions to mathematical problems
by procedures, i.e., solutions that could be generated by a machine; that
require no original thought. For which problems are there such
procedures, and when they do exist how efficient can they be? In recent
years, the landscape of this subject has changed somewhat by the
introduction of "machines" that utilize quantum mechanics in their
operation.

Perspectives in Computation covers three broad topics: the computation
process and its limitations, the search for computational efficiency, and
the role of quantum mechanics in computation. The emphasis is
theoretical: Robert Geroch asks what can be done, and what, in principle,
are the limitations on what can be done. Geroch guides readers through
these topics by a combination of general discussions of broader issues,
the mathematical formulation of those issues and examples.

Requiring little technical knowledge of mathematics or physics,
Perspectives in Computation will serve both advanced undergraduates
and graduate students in mathematics and physics, as well as other
scientists working in related fields.

MIP

ISBN 978-1-927763-40-7
http://minkowskiinstitute.org/mip/

R
. G

eroch P
erspectives in C

om
putation

Robert Geroch

PERSPECTIVES
IN

COMPUTATION

The subject of computation deals with solutions to mathematical
problems by procedures, i.e., solutions that could be generated by a
machine; that require no original thought. For which problems are
there such procedures, and when they do exist how efficient can they
be? In recent years, the landscape of this subject has changed
somewhat by the introduction of "machines" that utilize quantum
mechanics in their operation.

Perspectives in Computation covers three broad topics: the
computation process and its limitations, the search for computational
efficiency, and the role of quantum mechanics in computation. The
emphasis is theoretical: Robert Geroch asks what can be done, and
what, in principle, are the limitations on what can be done. Geroch
guides readers through these topics by a combination of general
discussions of broader issues, the mathematical formulation of those
issues and examples.

Requiring little technical knowledge of mathematics or physics,
Perspect ives in Computat ion wi l l serve both advanced
undergraduates and graduate students in mathematics and physics,
as well as other scientists working in related fields.

MIP

Robert Geroch

Perspectives in

Computation

Second Edition

Robert Geroch
Enrico Fermi Institute
University of Chicago

c� Robert Geroch 2015
All rights reserved. Published 2015

ISBN: 978-1-927763-40-7 (softcover)
ISBN: 978-1-927763-41-4 (ebook)

Minkowski Institute Press
Montreal, Quebec, Canada
http://minkowskiinstitute.org/mip/

For information on all Minkowski Institute Press publications visit our website
at http://minkowskiinstitute.org/mip/books/

Contents

1 Introduction 1

2 Characters and Strings 5

3 Problems 7

4 Computability 11

5 Turing Machines 15

6 Noncomputable Problems 23

7 Noncomputable Numbers 27

8 Formal Mathematics 31

9 Di�culty Functions 37

10 Di�cult Problems — Best Algorithms 41

11 A Language for E�ciency 49

12 Are There Better Languages? 57

13 Probabilistic Computing 61

14 Quantum Mechanics 71

15 Grover Construction 73

16 Grover Construction: Six Issues 77
16.1 Initial State . 77
16.2 Final Observation on Hin . 78
16.3 Building the Operator W . 78
16.4 Building the Operator V . 80
16.5 Errors . 86
16.6 What Is The Problem? . 86

i

ii CONTENTS

17 Quantum-Assisted Computing 91

18 Quantum-Assisted Computability 97

19 Quantum-Assisted Di�culty Functions 103

20 Quantum-Assisted E�ciency I 111

21 Quantum-Assisted E�ciency II 115

22 Conclusion 121

Appendix A. Formal Systems 125

Appendix B. A Perspective on Mathematics 133

Appendix C. Blum Example Revisited 145

References 153

About the Author 155

1. Introduction

This book comprises the lecture notes for a course I taught for a small group
of graduate students in physics at the University of Chicago in Winter quarter,
2005 and 2007. Our subject was the theory of “computation”, broadly defined.

This is a fascinating field. It is full of open questions, many of which look
deceptively easy but turn out to be extremely di�cult. It is made all the richer
by its position on the borderline between mathematics and physics. This is also
an extremely active field, with an enormous literature. We shall take a brief
walking tour through this subject, trying to pin down a few of the issues that
struck me as the most illuminating and interesting. Our emphasis is on what
might be called “conceptual issues” — the formulation of precise definitions, how
questions are to be framed, what is possible or not possible in principle, etc —
as opposed to other, more practical, issues. This — the conceptual background
of computation — constitutes a coherent subject in its own right; and we focus
on it in order to arrive, quickly and clear-headedly, at some of the central ideas
of this field.

This volume should be understandable to readers who know what mathe-
matics is (i.e., what a definition is; what a theorem is; etc); and, for the last half
of the volume, who have a rudimentary knowledge of quantum mechanics. We
require virtually no technical knowledge in either mathematics or physics. Thus,
the volume should be accessible to many graduate students (and even advanced
undergraduates) in mathematics or physics.

The topics that we discuss may be divided into three broad classes: i) the idea
of computability; ii) the notion of e�ciency in the carrying out a computation;
and iii) the possibilities for using quantum mechanics in the computation process.
Each of these is an entire field all by itself; and each would require for a proper
treatment several courses and several volumes. It is thus well beyond our scope
to provide an in-depth survey of even the smallest portion of these subjects.

The first collection of topics — involving the idea of computability — is
covered in Sects. 2-8. Sects. 2 and 3 introduce some preliminary notions: the
idea of strings over a character set (the currency of the computation process);
and the idea of a problem (a “sequence of questions”, expressed in terms of such
strings). Sects. 4 and 5 introduce the notion of computability — of having an
algorithm (expressed as a suitable computer program) to answer each of the
questions in succession. It turns out that there exist problems that are not
computable. That is, each question in the sequence has a definite answer, but

1

2 1.

there is no single algorithm for answering them all. In fact, one can write down
explicit examples of such problems. (The strategy is to construct the problem
by using the computing language itself.) These topics are discussed in Sects. 6
and 7.

The second collection of topics — involving computational e�ciency — is
covered in Sects. 10-13. Fix a computable problem, together with an algorithm
to compute that problem. The key idea (Sect 9) is to introduce a number
representing the “di�culty” of that computation, i.e., roughly, the number of
steps required to carry it out. The di�culty of a problem as a whole is thus a
function of the input string. Sect. 10 contains two remarkable results, due to
Blum, which serve to illustrate how computational di�culty works. The first
result asserts that there exist essentially “arbitrarily di�cult” problems (suitably
defined). The second is to the e↵ect that there exist problems for which there is
no “best” algorithm: Given any program P that computes such a problem, there
exists another program that computes the same problem, but more e�ciently
than P does. This last result seems to destroy any hope of ever assigning, to
every problem, an intrinsic di�culty.

This whole idea of computational di�culty su↵ers from a, potentially seri-
ous, drawback. Whereas the notion of computability is essentially language-
independent, that of di�culty is not — there are, for example, intrinsically
ine�cient languages. Better would be a notion of di�culty that attaches to the
problem and the method for its solution (but not directly to the language in
which that method is written). Sects 11 and 12 represent a proposal to cap-
ture such a notion. The strategy is to look for a language that is “as simple
as possible, without sacrificing e�ciency”. It might be interesting to look for a
theorem to the e↵ect that this proposed language really does what it is designed
to do. Finally, Sect. 13 introduces the idea of incorporating probability into
the computation process. It turns out that there is a natural notion of a proba-
bilistic program; of such a program’s computing a problem; and of the di�culty
function of such a program. Probability does not add anything to computabil-
ity: The probabilistically computable problems turn out to be identical to those
computable by a regular program. But — remarkably enough — it remains an
open question as to whether the use of probability can e↵ectively reduce the
di�culty of a computation.

The third collection of topics — involving the use of quantum mechanics in
the computation process — is covered in Sects. 14-21. This is a very active area
of research. Rather than trying to summarize this large body of work, we will
focus on two — rather narrowly drawn — issues. The first is to translate, into
mathematics, the physics of utilizing quantum mechanics in the computational
process. The second is to examine the issue of whether quantum mechanics can
enhance computational e�ciency. Sect. 14 is a very brief review of quantum
mechanics — for people who already know quantum mechanics. Sect. 15 is a
self-contained, four-page exposition of one example, called the Grover construc-
tion, in which quantum mechanics seems to hold out the prospect of enhanced
e�ciency. Those interested only in the role of quantum mechanics in computa-
tion may wish to start with this section. Sect. 16 discusses various issues —

3

some of which turn out to be rather subtle — that arise in connection with the
Grover construction. These three sections, 14-16, are intended as an informal
introduction to the idea of using quantum mechanics as an aid to computation.
They serve as motivation for Sects. 17-19, the key sections of this volume. In
Sect. 17, we specify precisely what we mean by a “quantum-assisted compu-
tation”: We introduce a certain precise (mathematical) computer language (a
language that involves certain Hilbert spaces and operators on those spaces).
This language is designed to reflect what could be done, in the laboratory, us-
ing quantum systems. In Sect. 18, we show that, provided matters are set up
correctly, quantum-assistance, as here defined, will not enable us to “solve” any
otherwise-noncomputable problems. This comes as no surprise (although the
“setting up” must be done with some care). In Sect. 19, we define the di�culty
function for a quantum-assisted computation.

We now have, for any given problem, the notion of its being computed, and
the di�culty in doing so, by a regular program; and also by a quantum-assisted
program. We have a “level playing field” — a well-posed mathematical frame-
work within which we may compare quantum-assistance with the lack thereof.
There are indications that, for certain problems, quantum mechanics may be
utilized in the course of the computation in such a way to enhance the e�ciency
of that computation. And yet, these indications notwithstanding:

We have today not one single example of a problem, together with
a quantum-assisted computation of that problem, such that we can
actually prove that at least the same e�ciency cannot be achieved
already without using quantum mechanics.

This is, to my mind, a remarkable state of a↵airs. The basic obstacle here is,
not any uncertainty about how quantum mechanics works in the computation
process, but rather the lack of good lower bounds on the di�culty of regular
computations. Such bounds seem to be lacking for even the simplest problems,
e.g., that of multiplying two integers! These issues are discussed in Sects. 20
and 21. In Sect. 20, we prove a theorem to the e↵ect that, if there does exist
a problem for which quantum mechanics produces any gain in e�ciency, then
that gain can never be more than exponential. Finally, Sect. 21 discusses a few
ideas about how one might prove (or disprove) that quantum mechanics has the
ability to enhance computational e�ciency.

I hope that these lecture notes will provide a brief glimpse into this most
fascinating field.

4 1.

2. Characters and Strings

Fix a finite set, C , having at least two elements. This C will be called the
character set; and its elements the characters. We shall normally introduce
various symbols to denote the various elements of C . For example, C might
have just two elements, and these might be denoted 0, 1. Or, C might consist
of twenty-six elements, with these denoted a, b, · · · , z; or 36 elements, denoted
a, b, · · · , z, 0, 1, · · · , 9. Or, as a final example, C might consist of 256 elements,
denoted by the various ASCII characters.

The underlying choice of character set makes no significant (i.e., no interest-
ing) di↵erence to anything that follows; although a poor choice can turn out to
be inconvenient. Eventually (but not right now) we shall allow ourselves to be
a little sloppy as to exactly what our character set is.

Fix a character set, C . By a string over C , we mean a finite, ordered list
of characters. Examples of strings, for the character sets above, are: “001010”,
“unblowupable”, “3dafrq”, and “$ = log8+}��r&C”, respectively. The empty
list of characters, which we denote ;, is also allowed as a string; and it is called
the empty string. [Thus, in order to avoid confusion, we shall avoid denoting
any character by “;”.]

The set of strings, over a given character set C , will be denoted S (or SC , if
there is a chance of confusion as to what the character set is). Note that S is an
infinite set; in contrast to C , which is a finite set. A critical idea in this subject
is to pass to “the infinite” in a careful, controlled way. Here, that passage is
taking place in the construction of S from C . This is something that we carry
out directly, as opposed to letting C already be infinite on its own, in any old
manner that it chooses.

Part of the reason why the “choice of character set makes no significant
di↵erence” is that it is possible to pass from one character set to another. For
example, let C = {0, 1} and C 0 the ASCII character set. Then “writing a byte as
eight bits” provides a mapping from SC 0 to SC . For example, string “ab” 2 SC 0

might be sent to the string “0000100100001010” 2 SC . Unfortunately, this
mapping is not invertible: It is not true that every string over C arises in this
way from some string over C 0. [Indeed, a string over C does arise in this way if
and only if the number of characters of which it consists is divisible by eight.]

Next, fix a character set, C ; and fix also an ordering of the characters in that
set (i.e., a choice of a “first” character, a “second” character, etc. through all the
characters in the set). For example, C might be the lower-case Latin letters (the

5

6 2.

set of 26 characters, {a, b, · · · , z}), and the ordering might be alphabetical. Hav-
ing made these choices, we now construct an ordering also of the set S of strings
over C , in the following manner. First is the empty string, ;; then all the one-
character strings, in the ordering of the characters; then all two-character strings,
in dictionary ordering; then all three-character strings, etc. So, for instance, in
the example above the ordering of S is: ;, “a”, · · · , “z”, “aa”, “ab”, · · · , “az”,
“ba”, “bb”, · · · , “zz”, “aaa”, · · · . Now assign, to these strings so ordered, suc-
cessive integers, beginning with the integer 1. In this way, we set up a corre-
spondence between the set S and the set Z + of positive integers. In short,
strings are really just positive integers, in thin disguise. Indeed, we shall allow
ourselves to speak of “the nth string”, by which we shall mean the nth string
in this ordering, where some fixed ordering of the character set C is implicit
(or explicit). When dealing with mathematical issues (such as the manipulation
recursive functions), it is sometimes more convenient to stick entirely with the
integers, ignoring character sets and strings altogether. But the strings seem
better adapted to dealing with physical issues.

The reason that we required that the character set contain at least two
elements is that, for C having but a single element, the length of the nth string
grows linearly with n (rather than logarithmically, when C contains two or more
characters). This behavior would be inconvenient when we come to discuss
computational di�culty.

The ordering above leads to a di↵erent way to pass from strings over one
character set to those over another. First order both character sets (in any
way whatever); and then identify, for n = 1, 2, · · · , the nth string over the first
character set with the nth string over the second. Consider, for example, the
character sets given by {0, 1} and {a, b, · · · , z}, in the indicated orderings. Then
the string “1101” over the first character set would be identified, in this manner,
with the string “ab” over the second character set. Note that (in contrast with
the earlier method) this really is a correspondence between the two sets of strings,
i.e., this mapping from SC to SC 0 is one-to-one and onto.

3. Problems

Fix a character set, C . A problem is a mapping S
⇡! S , i.e., a mapping from

strings over C to strings over C . Here is an example of a problem:

Example. Let the character set have thirteen elements, 0, 1, · · · , 9,
y, n, f , and let the mapping ⇡ be the following. If the string S 2 S
is an integer greater than or equal to two (i.e., if it is not ; or “1”,
does not contain the characters “y”, “n”, or “f”, and does not have
an initial character “0”)1 then let ⇡(S) be “y” [“yes”] if the integer
S is prime, and “n” [“no”] if that integer is not prime. If the string
S is not an integer greater than or equal to two, then set ⇡(S) = “f”
[“forget it”]. This is indeed a mapping S

⇡! S , and so is a problem.

Note that, in the example above, we are actually only interested in certain
strings (namely, those that represent integers greater than or equal to two).
But we cannot confine ourselves simply to these strings, for, by definition of
a “problem”, the mapping must apply to all strings. So we send the ones we
aren’t interested in to the trash [“f”]. It is convenient to set things up in this way.
Suppose, for example, that we had defined a problem to be a mapping from a
mere subset of S to S . Then, e.g., it would be false that the composition of two
problems is a problem. Even worse, we would have to confront eventually the
issue of how we shall determine whether or not a given string is in the “certain
subset”. The present definition — requiring that the mapping ⇡ have domain
all of S — puts the burden of sorting all this out back on the mapping ⇡ itself
(where, as we shall see, it belongs).

In the example above, the problem is really the question “Is integer S prime,
or is it not?” Note that we could ask essentially this same question by any
number of other maps (i.e., by any number of other problems). For instance, we
could eliminate “y”, “n”, and “f” from the character set, and then encode the
answer as a digit (e.g., “0” for “prime”; “1” for “integer � 2 but not prime”; and
“2” for “not an integer � 2”). We could also modify the input. For example,
we could let the character set consist of the twenty-six lower-case Latin letters,
impose alphabetical ordering, and let ⇡ ask whether, given string S (say, the nth

1In order to avoid having to say all this repeatedly, let us agree, here and hereafter, on the
following definition: Over any character set that includes the digits, 0, 1, · · · , 9, a string will
be called an integer if it contains only those ten characters, is not ;, and (unless it is actually
the string “0”) does not have initial character “0”.

7

8 3.

string in the induced ordering on S) the integer n is prime. Thus, we see that
a given question may give rise to many problems.

We emphasize that a problem is a map, and not the process by which we
arrived at that map. Consider, for example, the following problem:

Example Let the character set again be 0, 1, · · · , 9, y, n, f , and let
⇡(S) be “f” if S does not represent an integer greater than or equal
to two, “y” if it does represent such an integer, and that integer is
the largest prime, and “n” if it does represent such an integer, and
that integer is not the largest prime.

This is the same problem (i.e., the same map) as that which sends string S
to “n” if S represents an integer greater than or equal to two, and “f” other-
wise. [This follows, since there is no largest prime.] But this is a very di↵erent
characterization of the problem than our earlier one. Thus, we see that several
apparently di↵erent questions may give rise to precisely the same problem.

Think of a problem ⇡ as a “broad question”; of a particular value for the
argument S as a “specific instance” of that broad question; and of ⇡(S) as
the answer to that question in that instance. Thus, a problem represents the
answers to an infinite number of questions (since there is an infinite number of
possible input strings). The prime problem above illustrates this point. But it
is also possible to design a problem that answers a single question. For example,
consider

Goldbach’s Conjecture: Every even integer n � 4 is equal to a
sum of two primes.

Let the character set be 0, 1, · · · , 9, y, n, f , as above, and let, for each string
S 2 S , ⇡(S) = “y” if Goldbach’s conjecture is true, and ⇡(S) = “n” if Gold-
bach’s conjecture is false. [Note that ⇡ doesn’t care what S is. No law says
it must.] Since the conjecture above is, presumably, either true or false, this
is indeed a problem. However, this problem is either the problem ⇡0(S) = “y”
for all S; or the problem ⇡00(S) = “n” for all S. But these are both rather un-
interesting problems. Thus, even though the original question (“Is Goldbach’s
conjecture true?”) is interesting, translating it in this way into a problem yields
what is guaranteed to be a pretty boring problem. Of course, to know whether
⇡ is ⇡0 or ⇡00 would be interesting.

Here are some other candidates for problems.

1. Let the character set be {0, 1, · · · , 9, f}, and let ⇡(S) be “f” if S
is not a positive integer, and the Sth digit in the decimal expansion
of the number ⇡ if S is a positive integer. This is a problem.

2. Let the character set be the same, but again let ⇡(S) be “f” if S
is not a positive integer. But if S is a positive integer, let ⇡(S) be a
string of the form {digits of a positive integer i}f{digits of a positive
integer i0}, where i/i0 is within 10�S of the number ⇡. This is not a

9

problem (since the actual mapping has not been specified). Rather,
this is a description of a class of problems. There does indeed exist
a problem in this class (e.g.: expand the number ⇡ decimally, as in
the first example; stop as soon as you reach a rational within 10�S

of the number ⇡; and finally reduce that fraction to lowest terms).

3. Let the character set be {0, 1, · · · , 9, y, n, f}. Let ⇡(S) be “f” if
S is not an integer � 4. If S is an integer � 4, let ⇡(S) be “y” if S
is a counterexample to the Goldbach conjecture, and “n” if it is not.
This is a problem. The question of whether Goldbach’s conjecture
is true is the question of whether or not the problem ⇡ is equal to a
suitable simple problem (which always answers “f” or “n”).

4. Let the character sets consist of the upper-case and lower-case
Latin letters, together with an appropriate set of punctuation marks
(period, comma, semicolon, question mark, exclamation mark, etc).
Let ⇡(S) be “yes!” if S is the Gettysburg address, and “no” other-
wise. This is a problem.

5. Let the character set be any ordered set that includes at least the
ten digits (not necessarily in their natural order). Let ⇡ send string
S over this character set to that integer n which is such that S is the
nth string. This is a problem.

It is interesting to note that there has taken place a progression to ever
greater levels of the infinite. The character set is finite; the set of strings over
that character set is countably infinite; and, finally, the set of problems on
those strings is uncountably infinite. We pause to give a proof of this last
assertion because it illustrates a method, called a diagonal argument, that we
shall use several times later. Fix C , and suppose, for contradiction, that we had
a countable collection of problems, ⇡1,⇡2,⇡3, · · · , that exhausted all problems
on this character set. We now introduce a new problem, ⇡, as follows. Say, one
of the characters is “a”. On the nth string, Sn, set ⇡(Sn) = ; if ⇡n(Sn) = “a”;
and ⇡(Sn) = “a” otherwise. Then this problem ⇡, so constructed, is not equal
to ⇡n for any n, since by construction ⇡(Sn) 6= ⇡n(Sn). Thus, the list ⇡1,⇡2, · · ·
could not have been exhaustive — a contradiction.

Finally, we remark that this notion of a problem is rather robust. For vir-
tually the entirety of the remaining discussion, we shall have before us some
problem, as here defined, or other.

10 3.

4. Computability

Fix a character set, C . We next wish to introduce the notion of computability
of a problem over this character set.

Roughly speaking, a problem S
⇡! S is computable provided there exists

a computer that, when run with any given input string S, will ultimately halt,
displaying at that point as output precisely the string ⇡(S). But what is a
“computer”? We cannot take this to mean a physical computer, because no
such computer is ever capable of solving any problem. My desktop, for example,
has a hard drive with capacity of only 10 GB. Thus, if I let the character set
be, say, ASCII, and let the input string S consist, say, of 1011 characters, then
surely this computer will be unable run with this input.

More promising would be to consider, rather than a physical computer, a
computer language. Consider Fortran2. A given Fortran program has no space
limitations whatever associated with it. You begin by purchasing some physical
computer, and running the given program on it. Then if, during the course
of the calculation, it turns out that there is insu�cient space to complete that
calculation, you will be invited to purchase a larger computer and rerun the
program on it. So, let us call a problem S

⇡! S “Fortran-computable” if there
exists a Fortran program with a single, initial, “Input” instruction (allowing the
user to input some string, S), a single, final, “Print” instruction (allowing the
program to display to the user some final string), having the following property:
For every choice of the input S, the program ultimately halts (as opposed, e.g., to
getting caught in an infinite loop), having printed precisely the string ⇡(S)3. For
instance, every example of a problem we have given so far is Fortran-computable
in this sense. Indeed, one might even imagine at this point that every problem
is Fortran-computable.

The di�culty we now face is that there are many computer languages.
That is, we also have, defined in a similar way, “C-computable”, “Applesoft-
computable”, etc. But our goal here is to capture by a general definition an
abstract notion of “computable” — i.e., to isolate the general structure of the
computing process itself. The danger we face is that the various types of com-

2We shall not be concerned here with details of any specific computer languages. In partic-
ular, we take “Fortran” as a generic term, which describes languages having such commands
as “Set x = ...”, “If (· · ·), go to ...”, “Do, for I = 1, n{· · · } Next”, “Print ...”, “Cat x, y”, etc.

3To make this idea into a proper definition, we would have to specify the details of the
language “Fortran”. We shall not do this, since this entire discussion is intended merely as
motivation for what follows.

11

12 4.

putability, as defined here, will say more about the individual languages that
gave rise to them than they do about this general structure. But anyone who
is familiar two or more languages will realize that this di�culty is more one of
principle than one of practice. Consider two languages, e.g., Fortran and C. You
can write a Fortran-emulator in C (and, indeed, this is probably what “Fortran”
really is!). That is, you can write a C program that will accept as input lines of
Fortran code: “Set x = 7”, etc. The C program will then parse each such Fortran
command, figure out what the Fortran language would have done to implement
that command, and then itself do precisely that. From the mere existence of
such a Fortran-emulator in C, it follows that every Fortran-computable problem
is also C-computable. [To see this, consider any Fortran-computable problem
⇡. Taking the Fortran program that computes this ⇡ and applying to it our
emulator, we obtain a C program that computes ⇡.] In a similar way, we can
write a C-emulator in Fortran. We conclude, then, that the Fortran-computable
problems are precisely the same as the C-computable problems. A similar ar-
gument shows that all the standard languages of the computer world generate
precisely the same computable problems.

Exercise. Consider three languages, A, B, and C. Suppose you
were given an A-emulator in B, and a B-emulator in C. Could you
use these two to construct an A-emulator in C? As a second question,
consider two languages, A and B. Suppose that the A-computable
problems are precisely the same as the B-computable problems. Can
you exploit this fact to build an A-emulator in B?

How shall we turn this intuitive discussion into mathematics? Lest you imag-
ine that this will be an easy exercise, we now introduce two new “languages”.

The first, which we might call “MiniFortran”, has just two commands: “In-
put”, which allows the user to input any string S; and “Print ;”, which causes the
computer to print the empty string. There is just one MiniFortran-computable
problem, namely that with ⇡(S) = ; for every input string S. Clearly, then, there
are many fewer MiniFortran-computable problems than Fortran-computable prob-
lems. The problem with MiniFortran, of course, is that it is absurdly barren.
A language must have a certain degree of richness [essentially, i) the ability to
store plenty of intermediate data, ii) the ability to manipulate the data, and iii)
the ability to branch, in response to those data] if it is to reach the mainstream
(Fortran, C, etc) of computable problems.

Our second language, “HyperFortran”, contains all the commands of For-
tran, together with one additional command, with the following structure: “Do,
for I = 1,1{· · · } Next”. Here, “{· · · }” consists of various Fortran commands,
including those that may reset certain variables. The rule is that the computer
will always exit from such a command (i.e., it will never hang here), and on
doing so the variables will be set as follows. Consider any one variable, “x”.
If, in the course of the execution of this Do-loop, the variable “x” was set to
some value, and did not ever change that assigned value beyond some particular
iteration (i.e., beyond some particular I-value), then on exit from this command
“x” is to be assigned that value. If, on the other hand, “x” changed its value

13

an infinite number of times during the course of the Do-loop, then on exit “x”
is assigned value ;. This is, arguably, a legitimate computer command, at least
in the sense that it is completely determined what is to be done in response to
such a line of code. I grant that HyperFortran seems a little strange at first
sight, but, absent a careful definition of the term “language”, a reasonable case
could, perhaps, be made that it is one. Note, incidentally, that in HyperFortran
we can solve Goldbach’s conjecture. We would use a program of the following
form:

Do, for I = 1,1
If (x == ; and I is a Goldbach-counterexample) set x = I

Next
Print x

If Goldbach’s conjecture is true, then there will be returned the empty string.
If it is false, then there will be returned a counterexample to that conjecture.

We all know in our hearts that HyperFortran is unacceptable, but it is not so
easy to spell out exactly why. True, you cannot run it on a physical computer –
but you can’t run Fortran, either; and in any case it is usually a bad idea to try
to base mathematics on physical implementability. What HyperFortran does is
illustrate that some care is going to be necessary in order to formulate a suitable
definition of “computable”.

So, to summarize, all “reasonable” computer languages (in some sense we
have yet to pin down) seem to produce the same computable problems. Our
challenge is to turn this intuitive idea — which is called Church’s Thesis — into
a piece of mathematics. There are at least three di↵erent strategies by which
one might imagine doing this.

The first strategy begins by producing a formal definition of “reasonable
language”. This definition would be along the following lines. A “reasonable
language” must have some commands. [Presumably, there would be just a finite
number of types of commands, but, since arbitrary strings can normally appear
in certain commands, there would be within these types an infinite number of
actual commands. (Just like Fortran.)] With each command there would be
associated something to “do” (such as manipulating a string, going somewhere,
etc). We would require, as part of this definition, that these commands be
rich enough to allow one to do “the necessary things for computing” (i.e., store
arbitrary amounts of data, manipulate data, input/output, branch), but not so
rich that they do “ridiculous things” (such as “Do, for I = 1,1”). Note that
we are not specifying any specific language here, but rather are describing by
the definition the characteristics that we will demand of a language in order
that we deem it “reasonable”. Then given such a language, L , we would call a
problem ⇡ L -computable if there exists a program in L that, for every input
string S, eventually halts, returning exactly ⇡(S). Finally, (the crowning result
of this strategy) we would prove the following Theorem: For L and L 0 any two
reasonable languages as defined above, the L -computable problems are precisely
the same as the L 0-computable problems. The key to this strategy, of course,

14 4.

is discovering the right definition: It has to look simple and not contrived, and
at the same time be just right so that the Theorem really is a theorem. I feel
that it might be enlightening to carry out this strategy — but it looks like a lot
of work.

The second strategy begins by noting that, since strings can be replaced by in-
tegers, each problem thereby becomes an integer-valued function on integers. We
would now introduce some axioms that are intended to characterize the “com-
putable functions”. There might be a few simple ones, such as “Every constant
function is computable.”; and “The composition of two computable functions is
computable.” But then there would be some more complicated ones, requiring
that certain constructions involving computable functions result in computable
functions. Then, a function would be deemed computable if it arises from these
axioms. This strategy has in fact been carried out: It is the subject called re-
cursive function theory. [Recursive functions are precisely the computable (to
be defined shortly) problems.] This strikes me as an elegant and promising ap-
proach. Its downside is that recursive function theory doesn’t seem especially
well-matched to physics — and, in particular, not to quantum mechanics. Fur-
thermore, the subject of computational di�culty doesn’t, as far as I am aware,
fit in naturally with this strategy.

The third strategy consists of inventing the “simplest possible language” that
is still (barely) rich enough that that it generates the same computable problems
as the real-world languages. We then take computability to mean computability
in this language. This is the strategy we shall pursue, in the following section.

5. Turing Machines

Fix a character set, C . A Turing machine, operating with this character set, has
two parts.

First, there is the machine itself. It is capable of being in any of a finite list
of machine states, q1, q2, · · · , qn, qH . Of these (n + 1) states, the last one, qH ,
has a special role, as we shall see shortly. These machine states serve as the
RAM: The machine will store data temporarily by the choice of the particular
state in which it currently resides.

Second, there is a semi-infinite tape, divided into a succession of square boxes.
Thus, at the beginning of the tape there appears the first box, followed, moving
along the tape, by the second, then the third, etc. There is no “final end” of
the tape, i.e., there is available as much tape and as many boxes, so arranged,
as might be needed. Each of these boxes may have printed within it a single
character from the set C , or the box may be blank (having no character). We
denote this blank box-state by ; (not to be confused with the empty string).
This tape serves as the hard drive: The machine will store data here on a more
permanent basis for later use in the computation.

The machine also has a read/write head, which at any one moment resides
over one of the squares of the tape. Thus, the complete state of this system
(machine, tape, and head), at any moment, is characterized by specifying i) the
internal state of the machine, ii) the characters printed on the tape, and iii) over
which square the head currently resides. For example, a typical system-state
might be: “machine state q7; tape configuration ‘3 $ v Z x ; ; ; · · · ’; head over
the fourth square”. In this configuration, the head would be read the character
“Z”; and would print to the fourth square. It will turn out that the only tape-
configurations of interest will be those in which all squares of the tape beyond
a certain one are blank.

This machine operates by going from one system-state to the next according
to certain rules that are set down in a table (the “program”). A typical row in
this table is given below:

Curr Curr ! New New Move
State Char State Char
q7 Z q3 p L

This row demands that, if the computer finds itself in machine state q7, with
the head reading character “Z” on the tape, then the computer is to i) change

15

16 5.

its internal state to q3, ii) erase the character “Z” from that square on the tape
and print instead character “p”, and iii) move the head one square to the left
(i.e., toward the beginning of the tape). Thus, this particular row in the table
would send the system from the system-state given in the previous paragraph
to the following system-state: “machine state q3; tape configuration ‘3 $ v p x
; ; ; · · · ’; head over the third square”. The full table for our Turing machine
will consist of many such rows. In each row: The first entry must be one of
the machine states q1, · · · , qn (but not the state qH); the second entry must
be a character, or the blank, ;; the third entry must be a machine state (with
qH allowed here); the fourth entry must be a character or the blank; and the
fifth entry must be either “R” (“right”) or “L” (“left”). Finally, the full table
must contain one and only one such row for every possible choice of the first two
entries. Thus, if there were ten machine states (including qH), and the character
set had six elements, then the full table would have exactly 63 (= 9 ⇥ 7) rows.
The Turing machine now operates in the obvious way. At each stage, it looks
up its current machine-state and character-under-the-head in this table. It then
reads o↵ from the table what should be its next machine state, what the head
should print on that square of the tape, and what movement the head should
make (just one square, either to the right or to the left). If ever the machine
finds itself in state qH , then the machine halts (stops computing). That is why
we do not allow the qH -state as the first entry of any row.

The crucial features of this design are i) that the number of internal machines
states is finite, while the number of tape-squares is infinite, and ii) what the
machine will do next depends only on on the current machine-state and the
character under the head, and not on what is printed elsewhere on the tape or
whether the head resides over the fourth square or the nineteenth square.

To run a Turing machine, select the input string S and print it, one character
at a time, at the beginning of the tape, leaving all the other tape-squares blank.
Begin with the head over the first square and the machine in initial state q1.
Now let the machine run, step by step, for each step looking up in the table
what to do next. If the machine, during the course of its running, never achieves
the halt-state, qH , then it will continue running forever. Well, that’s life. If,
however, it does eventually achieve qH and halt, then we read the output string
from the tape, starting from the first square and continuing until we reach the
first blank square. Note that, during the running of every Turing machine, the
tape always contains but a finite number of non-blank characters (although, of
course, the number of such characters may, as S runs over all possible input
strings, grow without bound). The crucial feature of this operation is that the
table is to be fixed, once and for all, before we are given the input string S.

So, a Turing machine is a sort of mini-computer — a computer reduced
to its essentials. First write the program. Then, input an initial string S.
The computer computes away. Either it eventually halts, presenting an output
string to you; or it runs forever, never presenting anything. A problem ⇡ over
a given character set is said to be Turing-computable if there exists a Turing
machine (i.e., a choice of the number of internal states and of the table) that
computes it (in particular, never halting, no matter what the input string S), as

17

just described. To check whether you understand how a Turing machine works,
try to convince yourself that you could write a Fortran-emulator of Turing.
Assuming you have convinced yourself, then we may conclude (from the mere
existence of such an emulator) that the Turing-computable problems is a subset
of the Fortran-computable problems.

We give just one example of a Turing-computable problem. A string S is
called a palindrome if it reads the same backwards as forwards, e.g., “K9s4q4s9K”.
Let the character set contain “y” and “n” (to make answers easier to express);
and let the problem S

⇡! S be the following: ⇡(S) is “y” if S is a palindrome,
and “n” if it is not. This problem is Turing-computable. We shall not write out
the full table (which would have hundreds of rows!) that demonstrates this, but
rather merely indicate how the machine would work.

The machine, in initial state q1, reads the first entry in the string: Say it is
a “K”. The machine then goes into a state we call pK , (whose description is
“I’ve just read character ‘K’, and I’m now going to check to see if this is also the
last character”), prints ;, and moves one square to the right. If the head now
reads anything other than ;, the head moves another square to the right without
changing anything. [That is, the table entry for “current state pK and current
character {nonblank}” requires remaining in pK , reprinting whatever is already
in that square on the tape, and then moving one square to the right.] The head
thus continues moving to the right, one step at a time, until it encounters a blank
square. On encountering a blank square, the machine goes into a new state we
call rK (whose description is “I’m now ready to compare the last character of the
string with K”), reprints ;, and moves one square to the left. The table entry for
“current state rK , and current character anything but K” puts the machine into
a new state qn (whose description is “This string is not a palindrome. Tough
luck. I’m going to go back to the beginning now, to report that fact.” We’ll
return later to how this is done.) The table entry for “current state rK , and
current character K” puts the machine into a state q2 (whose description is “So
far so good. I’ll go back to the beginning now and get the next character.”),
prints ;, and moves one square to the left. As long as the head continues to
encounter nonblank squares, it continues to move leftward back over the string.
[That is, the table entry for “current state q2, current character {nonblank}”
retains the state q2, reprints whatever is already under the head, and moves one
square to the left.] However, as soon as the head meets a blank square, the
machine goes back to state q1, prints ;, and moves one square to the right. The
process now starts over (but now with a shorter string, for we have just removed
from the original string S its first and last characters). That is, the machine
reads the current square (yielding, say, character “9”) goes into state p9, moves
to the right until it encounters a blank square, goes into state r9, carries out a
comparison of “9” with the current character, goes into either state qn or qs, etc.
Continue in this way. If, eventually, the string is exhausted, then the machine
goes into state qy (whose description is “It is a palindrome! I can’t wait to to
back to the beginning and deliver the good news”). [That is, the table entry for
“current state q1, current character blank” places the machine in state qy, prints
;, and moves one square to the left.]

18 5.

The process above eventually places the machine in either the state qn or
the state qy. How does the reporting of the news (“y” or “n”) work? We want
the machine states qn and qy to move the head to the left, for that is where the
reporting must take place. But how will our Turing machine know when it has
reached the leftmost square? [There will just be blanks back there, for we have
now erased the initial portions of our original string S.] One way to accomplish
this is to move, initially, the entire string S up the tape a little bit, to make
room for a marker at square one. Here is how to move the entire string S one
square to the right. Read the first character (say, “K”, again). Go to state sK
(whose description is “I’m about to move a ‘K’ one square to the right”), and
move the head one square to the right. If, say, the next square read by the head
contains the character “9” then print the “K” in this square, go to state s9,
and move another square to the right. [That is, these are the instructions for
“current machine state sK , current character 9”.] Continue until you reach a
blank square (i.e., to the end of the string S). Then print the last character (as
determined by what s-state you happen to be in at the time), and go into a state
that causes movement to the left until you encounter a ;. You have now moved
the entire initial string S one square to the right. In a similar way, we may move
the initial string to the right a second square, and print anything (say, “v”) in
the first square of the tape. All of this would be done before the program of the
previous paragraph. Do this, and then run that program (on the original string
S, as now displaced).

We next describe how the reporting works. The state qy will require motion
of the head to the left continue as long as that head encounters only blank
squares. But as soon as it encounters character “v” on the tape (i.e., as soon as
it reaches the first square of the tape), it will print “y” and go to the halt state,
qH . In this way there is returned that the original string S was a palindrome.
The state qn has to work a little di↵erently. It will cause the head to continue
moving to the left as long as there is encountered nonblank characters. But,
according to qn, as soon as the head encounters a blank, the machine goes into
still another another state, qnn (whose description is “OK. Now all I need is to
is find that “v” o↵ to my left, to whom I must my report”). So, the table entry
for “current state qnn, current character v” is “Go to state qH , print character
‘n’, and move one square to the right.” In this way there is reported that the
original string S was not a palindrome.

Well, that was exhausting. Suppose our initial character set contained m
characters. Then we must introduce 3m machine states, for the p’s, r’s, and
s; as well as additional nine machine states, for the various q’s, including qH .
Thus, there will be a total of (3m + 8)(m + 1) rows in the table. Even for just
ten characters, for instance, this is a total of 418 rows! You might think it would
have been easier to have the machine simply remember the string S as it passes
over it the first time, and then just make a single check for palindrome-ness when
it reaches the far end of the string. But that won’t work, because the machine
is allowed only a finite number of internal states, and this number must be fixed
already in the original table — and there is no adjusting that number depending
on the string S.

19

Exercise. Why do we not, in our definition of a Turing machine, fix
the total number of machine states, once and for all? Because that
doesn’t work. Fix the character set, C . Prove that, for every integer
n, there exists a problem (over that character set) that cannot be
solved by any Turing machine with just (n+ 1) internal states.

Exercise. Let the character set be any one that includes the ten
digits together with “n”. Convince yourself that you could build a
Turing machine that returns “n” if input string S is not an integer;
and S + 1 if it is an integer. Convince yourself that you could build
a Turing machine that, whenever the string S is two digits separated
by a single “n”, returns their sum; and otherwise returns “n”. Con-
vince yourself that you could build a Turing machine that not only
solves the problem of the last paragraph, but cleans up the tape (i.e.,
removes everything but the answer-string) before reporting.

The next step in learning this subject is to play with Turing machines so
as to get a feeling for what they can do. Convince yourself that you could
build machines (but don’t actually do it!) to solve successively harder problems.
Start with easy problems, such as those of the exercise above. Then try harder
ones: multiplication of integers, division of integers with remainder, deciding
whether or not an integer is prime, deciding whether or not an integer is a
counterexample to the Goldbach conjecture, etc. Through this process, you must
eventually convince yourself of the following key fact: There exists a Fortran-
emulator in Turing. [See, e.g., [14] for some details.] As a consequence of this
fact, the Turing-computable problems are the same as the Fortran-computable
problems; and, by similar arguments, as the C-computable problems, as the
Applesoft-computable problems, etc. The idea, then, is that the Turing-language
is the simplest one that still has su�cient richness that it generates the “right”
computable problems.

Here is our main definition: A problem ⇡, over a given character set C , is
said to be computable if it is Turing-computable — that is, if there exists a
Turing computer T that, run on any string S 2 S , always eventually halts,
returning ⇡(S). What you have done in the paragraph above should convince
you that this is a reasonable definition. What most people do in this subject,
I believe, is “talk in terms of Turing machines, but think in terms of their
favorite language (whatever it happens to be)”. We emphasize that, while the
psychological situation here is complex, the mathematical one is not: We define
a Turing machine; and, using it, we define a computable problem.

Every problem we have discussed so far is computable (including the one
that sends every string to “y” if Goldbach’s conjecture is true; and every string
to “n” if that conjecture is false). The composition of two computable prob-
lems is computable. [This fact is useful in showing that suitable changes in the
input/output grammar do not a↵ect computability.] For ⇡ and ⇡0 computable
problems, the problem ⇡00 with ⇡00(S) = ⇡(S) ⇡0(S) (concatenation of strings on
the right) is computable.

Many constructions involving Turing machines rest on the following fact:

20 5.

Every Turing machine can be represented as a string. Here is one way to do
this. Consider a Turing machine T over character set C . Let, for example, the
first few rows of the table for T be:

Curr Curr ! New New Move
State Char State Char
q7 Z qH p L
q11 ; q7 $ R
q8 2 q8 Z R

The first step in rewriting this T as a string is to introduce the new character
set, C 0, that results from adding one additional character, say “⇤”, to C . [We
are assuming here that “⇤” does not denote any element of the original character
set C itself. This element “⇤” will serve as a marker. More on this later.] The
next step is to choose a string over C to represent each machine state for the
Turing machine T . For example, we might represent states q7, qH , q11, and q8
by strings “s6”, “$B4”, “uU”, and “8”, respectively. Then the rows of the table
above would be represented by a string as follows:

⇤ s6 ⇤ Z ⇤ $B4 ⇤ p ⇤ ⇤uU ⇤ ⇤s6 ⇤ $ ⇤ ⇤ ⇤ 8 ⇤ 2 ⇤ 8 ⇤ Z ⇤ ⇤ ⇤ · · · (1)

We have simply written the entries in the table (replacing each machine state
by its string), row by row, one after another, using the “⇤” to separate the
entries. The reading or writing of a blank square is indicated by placing nothing
between the two separators: “⇤⇤”. Movement of the head to the left is indicated
by placing nothing between the separators (“⇤⇤”); to the right by a “⇤” between
them (“⇤ ⇤ ⇤”).

Thus, each Turing machine over C gives rise to some string over C 0 = C [
{⇤}. The machine for the palindrome problem with ten characters, for example,
results in a string of about 4,800 characters. Note that a given Turing machine
can be represented by a string in many ways — e.g., by choosing di↵erent strings
to represent the various machine states, or by changing the order in which the
rows of the table are presented.

The time has come to simplify our language a little bit. In Sect. 3, we
introduced a problem ⇡, on character set {0, 1, · · · , 9, f, y, n}; with ⇡(S) equal
to “f”, “y”, or “n” according as S is not an integer greater than equal to two,
is a prime integer, or is a nonprime integer. We shall now allow ourselves to
describe this as “the problem of deciding whether or not an integer is prime”.
Thus, in this description, it is understood that i) the character set has su�cient
characters to describe the input strings of interest (i.e., here, the digits), ii) any
strings constructed from those or other characters, that are not the strings of
interest (e.g., here, “007”), will be suitably branded by the problem (e.g., sent to
“f”), and iii) the outcomes of interest (here, “prime” and “not prime”) will be
suitably encoded as strings over our character set. We can safely ignore how such
details are arranged, and thereby avoid an unnecessary distraction. Next, recall,
from the previous paragraph, that a Turing machine over character set C can be
represented as a string over the character set C 0 = C [{⇤}, the extra character
“⇤” having been introduced as a marker. Now fix any ordering for C 0, thus

21

obtaining, as we noted earlier, an ordering (dictionary) for the strings over C 0,
and thereby an assignment of an integer to each such string. Combining these
two constructions, then, we assign, to each Turing machine over C , an integer
(although, of course, not every integer arises from some Turing machine). Here
is a somewhat more useful assignment. Consider the first string over C 0 (in
this ordering) that represents a Turing machine, and call that machine number
one; then consider the second string that represents a Turing machine, and call
that machine number two; then the third; etc. In this way, we assign to each
Turing machine an integer, such that now each integer also represents some
Turing machine. Thus, we may speak of “the nth Turing machine”, implicitly
invoking this numbering. Next, we may combine this construction with our
correspondence between strings over (the now ordered) C and integers. There
results an assignment, to each Turing machine over C , of a string over this same
character set; such that each string now represents some Turing machine. We
denote by TS the Turing machine associated with string S. Shortly, we will
want to turn a pair, such as (T, S), where T is a Turing machine over C and
S a string over C , into a single string over C . We may do this, e.g., in the
following manner. First take the string over C 0 = C [{⇤} that represents T (as
above), then append “⇤ ⇤ ⇤ ⇤ ⇤” (a marker, to separate the representation of T
from S), and finally append the string S. In this way, we represent (T, S) as
a string over C 0. But now we may convert this to an integer — or to a string
over C — using the techniques above. If you find yourself uncomfortable with
all these conventions, you might try to restore the missing material for a short
while, until you get used to them.

Exercise. Convince yourself that each of the following problems
is computable: i) that of deciding whether or not a string over C 0

represents some Turing machine; ii) that of deciding whether or not
two strings represent the same Turing machine (where by “same” we
mean “di↵ering only in rearrangement of the machine states (pre-
serving q1 and qH), and in the order in which the rows are presented
in the table”); iii) that which sends integer S to the string for the
Sth Turing machine; iv) that which sends integer S to the string for
the Sth Turing machine, eliminating repetitions (via “same”); v) any
problem ⇡ such that ⇡(S) = ; for all but at most a finite number of
strings vi) the problem that assigns, to each string S, the positive
integer that is the number of steps Turing machine T takes, on string
S, before it halts; where T is some fixed Turing machine that does
halt for every input string. Much more di�cult, e.g., is the problem
of deciding whether two Turing machines compute the same problem
(or, indeed, whether a given Turing machine T computes any prob-
lem at all, i.e., whether that machine always halts, no matter what
the input string).

22 5.

6. Noncomputable Problems

It is not hard to convince yourself that every problem is computable. A problem,
after all, is merely a mapping S

⇡! S . So, to specify a problem, you must
specify what the mapping is; i.e., specify how to determine, for any string S 2 S ,
some string, ⇡(S); i.e., specify how to compute, given any S, some ⇡(S). But
“compute”, we’ve come to realize, means “Turing-compute”.

But, while this intuitive argument may seem plausible, it is simply wrong:
There do indeed exist non-computable problems. The easiest way to prove this
is by a cardinality argument. The set of all Turing machines that compute
problems is countable (since it is a subset of the set of all Turing machines;
which in turn can be represented as a subset of the (countable) set of strings
over some character set). But the set of all problems, as we saw in Sect. 3, is
uncountably infinite. Therefore, the mapping “send machine to the problem it
computes” from the former to the latter cannot be onto.

While the above proof is simple, it doesn’t give much insight into which
problems are noncomputable and which are not. Fortunately, it turns out that
there is an example that is both simple and illuminating.

The halting problem is that mapping S
⇡! S that sends Turing

machine T and string S to “halt” if the machine T , running on input
string S, eventually halts, and to “not halt” if that machine on that
string continues running indefinitely without halting.

Note that the halting problem is indeed a problem, for, given machine T
and string S, then T on S either halts, or it does not. You might imagine that
we could build a master Turing machine, H, that would compute the halting
problem, in the following manner: Given (T, S), where T is some Turing machine
and S some string, H would merely simulate the action of T on S, doing what
T would do, step by step, and ultimately reporting the result: “halt” or “not
halt”. But, unfortunately, this doesn’t work. There is no di�culty if T , applied
to S, ultimately halts. Then H will discover this eventually, and duly report
“halt”. But what if T , applied to S, never halts? There will in this case never
be a moment when H discovers this fact; and so no moment when H will report
“not halt”.

Now comes the central result of this subject:

23

24 6.

Theorem. The halting problem is not computable.

Proof: For S any string, denote by TS the Turing machine represented by that
string, as described above. Suppose, for contradiction, that there existed a
Turing machine, H, that computes the halting problem, reporting H(T, S) =
“halt” or H(T, S) = “not halt”, according as machine T , applied to string S,
halts or not. We now construct a new Turing machine, T̃ , as follows. Given
string S, T̃ first runs machine H on (TS , S), and then proceeds as follows; If
H(TS , S) = “halt”, then T̃ continues running, without ever halting; while if
H(TS , S) = ”not halt”, then T̃ immediately halts. [In other words, we build a
Turing machine T̃ that, given string S, asks H about (TS , S), and then does the
opposite of whatH reports.] Now, T̃ is a Turing machine, and so it is represented
by some string: T̃ = TS̃ , for some S̃. We now ask: What happens when machine
T̃ is run on string S̃? Suppose, say, that it eventually halts. But this means, from
the way we defined machine T̃ , that H(TS̃ , S̃) = “not halt”. But this means,
from the defining property of H that machine TS̃ (= T̃), when run on string S̃,
does not halt. This is a contradiction. Similarly, the supposition that machine T̃ ,
run on string S̃, does not halt leads to a contradiction. We thus conclude, since
the assumption that there exists a Turing machine H that computes the halting
problem leads to a contradiction, that the halting problem is not computable. \

This proof — essentially, a diagonal argument — is at the same time very
simple and very confusing. I urge you to return to it in the coming weeks, as
often as necessary, until you have mastered it. The discussion below is intended
to give you a feeling for what the theorem means.

Note that the theorem does not assert that there is a specific machine T and
string S such that we will be unable to decide whether that T , run on that S,
halts. Indeed, we expect that, given (T, S), we could, given enough time and
ingenuity, determine whether halting occurs. What the theorem does assert is
that there is no single algorithm that will correctly decide halting in every case,
i.e., for every (T, S).

Here is a more poignant restatement of the paragraph above. Imagine having
the following job: Occasionally, there is brought to you a Turing machine, T ,
and string, S, and you are to determine and report to your boss whether or
not that machine, applied to that string, ever halts. In some cases — e.g., a
machine for which qH never appears in the third column of the table; or for
which all states in the third column are qH — your decision will take but a few
minutes. In other cases — e.g., that in which there is a collection of machine
states i) from which the machine cannot exit, ii) such that qH does not appear
in the third column for any of these states, and iii) into which the machine, by
virtue of the given S, will enter — it may take take hours. In more complicated
cases it might take days . . . or even years. As you continue working in this
job, you will build a repertoire of arguments for settling this question in specific
cases. And you will note that you are continually adding new, ever more clever,
arguments to your collection. At some point, you may ask yourself: “Will this
job ever become routine? Will I ever reach the point at which I have developed
all the arguments that are needed to solve these puzzles — the point at which no

25

further originality will be required for this job?” These questions are answered
by the theorem above: The answers are all “No”.

Suppose for a moment that we had felt inclined to include use of the addi-
tional command “Do, for I = 1,1 {· · · } Next” (i.e., the infinite Do-loop) in our
notion of “computable”. As a result, as we have noted, there would be more
computable problems. However, we could still define the halting problem (now
referring to Turing machines in which this additional command is allowed). But
the theorem above would still hold in this case (for its proof would go through
in the same way). In other words, we would conclude that, even in this stronger
language, we cannot compute the halting problem for that language.

Next, suppose for a moment that we had a master Turing machineH that did
compute the halting problem. Then, we claim, we could resolve the Goldbach
conjecture. We do this as follows. Construct a Turing machine T that, applied
to any string S, ignores S completely, and starts searching the even integers
(4, 6, · · ·) looking for a Goldbach-counterexample. If it finds a counterexample,
it halts, announcing this result. As long as T hasn’t yet found a counterexample,
it just keeps looking. Now, all we have to do, having built this machine T , is run
the master machine H on machine T and any string S. If the result is H(T, S) =
“halt”, then the Goldbach conjecture is false; if “not halt”, true. Note that
we settle this conjecture without doing any real work: We don’t have to have
deep thoughts about the structure of the primes, or about any other relevant
mathematics. All we need in order to resolve the conjecture is, essentially, an
understanding of what it is asking for. In a similar way, we could use H to
resolve, again without doing any real work, many of the other open questions
in mathematics. In short, a great deal of mathematics can be encoded into
the question of whether certain Turing machines halt. Perhaps this observation
makes the theorem seem less surprising.

One occasionally reads, in the Sunday supplement, an article suggesting that
physics is dead: that we have now discovered the fundamental structure of Na-
ture — the “theory of everything” — and that all that remains is working out
the details. Of course, this is a mere guess on the part of the writer: Nobody has
(or can have?) any real insight into this question. But note that mathematics is
very di↵erent from physics in this regard. Mathematics isn’t dead yet; and, we
suggest, it never will be. Indeed, we have a theorem to the e↵ect that new and
di↵erent insights will always be required in the development of mathematics!

Exercise. Show that the following problems are not computable: i)
the problem that asks whether a given Turing machine solves some
problem; ii) the problem that asks whether, given a Turing machine,
there is some string S on which it halts; iii) the problem of deciding
whether two Turing machines (both of which do solve some prob-
lem) solve the same problem. [Hint: Show that a Turing machine
that computes these problems could be reconfigured to give a Turing
machine that computes the halting problem.]

This paragraph is mere whimsy, which you should feel free to ignore. I
would like to suggest that the expression “X never happens” (as well as its

26 6.

various siblings) has no real meaning whatsoever. Rather, this expression is
merely a part of a sociological convention: We have all agreed that, when we
hear it, we shall nod our heads knowingly (rather than, say, rolling our eyes).
Certainly, this idea is not necessary to function in our daily lives. Wolves, for
example, neither use nor understand this expression, and yet they get along, in
the woods, quite well. Imagine an individual who has been raised by wolves,
and shares their sociology. You wish to explain to this person that “This Turing
machine, when run on this string, never halts.” This individual replies “I have
no idea what you are talking about.” You say “Well, the machine doesn’t halt
after 9 steps.” “Right.” ”It doesn’t halt after 137 steps.” “Right.” “And, in
fact, it doesn’t halt after any number of steps.” “I have no idea what you are
talking about.” Or, you might try to argue using the structure of a particular
Turing machine T . “The state qH nowhere appears as the third entry in any
row.” “Right.” “Therefore, the machine doesn’t halt after 19 steps, because it
couldn’t be in the state qH then.” “Right.” “Similarly, it doesn’t halt after n
steps, for any n = 1, 2, · · · .” “I have no idea what you are talking about.” Your
growing sense of frustration arises from your inability to express this idea in
terms of anything else. Here is another perspective. Imagine that you were
transported to another planet, the residents of which have decided to explain
to you a term, “swerm”, in their language. You find yourself on the other side
of the conversation. They say “Horses are brown.” “Right.” “And three is an
integer.” “Right.” “And swerm.” “I have no idea what you are talking about.”
They try to argue in more detail — exploring the light reflection from horse’s
coats, and counting up to three — but still you cannot understand. They feel a
growing frustration with your skepticism. The residents of this planet, it turns
out, have introduced the notion of a Turing machine, which they may use to
compute problems. Particularly famous is the swerm problem: Given string
S let ⇡(S) be “swerm” or “not swerm” according to whether or not the string
S is swerm. [You, of course, suspect that this is not a problem at all, but just
nonsense-talk.] In fact, they have even proven what they regard as an important
theorem: The swerm problem is not computable. “At last.”, you think, ”Surely
now, by merely going through their proof, I will be able to understand what
this ‘swerm’ is all about.” So, you go to their library, find the paper containing
this proof, and begin to read. But you quickly discover, to your dismay, that
their so-called “proof” tells you nothing whatever – for it uses, in an essential
way, the very concept of swerm. [Apparently, the people of this planet have
decided that it is appropriate to use swerm within proofs.] You conclude that, at
worst, the residents of this planet are delusional. At best, they have managed to
discover that it is not possible to construct a Turing machines that will explicate
their strange sociology. As an exercise, try rereading the previous several pages,
mentally substituting, everywhere, “swerm” for “halt”.

7. Noncomputable Numbers

As an example of an application of Turing machines, we now consider briefly the
subject of noncomputable numbers.

A positive real number x is said to be computable if there exists a Turing
machine that, when applied to any positive integer S as input, returns some
rational number, a/b, such that |x�a/b| 1/S. In other words, the computable
numbers are those to which we may compute approximations. Note that the
two integers a and b in the fraction must be encoded into a single string in the
output (e.g., by using a separator, and then translating back to the original
character set). The reason that we approximate x by rationals is that it is easy
to express a rational number in terms of a string. Note also that many Turing
machines may compute the same number x (e.g., by providing di↵erent rational
approximations to it). And finally, note that the function “1/S” on the right
of the equation above could as well be replaced by any (computable) function
of S that decreases monotonically to zero, e.g., 1/S7, or e�S , resulting in the
same notion of computable number: You can easily retrofit a Turing machine
designed for one function on the right to one designed for another. The problem
of whether a given Turing machine “computes” some real number x in this sense;
as well as that of deciding whether two machines compute the same number, is
not computable.

Exercise. Call a number x hypercomputable if there exists a Turing
machine that, given integer S as input, returns a Turing machine that
computes (in the sense above) some real number y such that |x�y|
1/S. Clearly, every computable number is hypercomputable. Is every
hypercomputable number computable?

The number e, for example, is computable. An appropriate Turing machine
might use the formula e = 1 + 1/1! + 1/2! + · · · , keeping enough terms and
computing the terms with su�cient accuracy to determine a rational within
1/S of e. Similarly, the number log(sin�1(.714)+sinh(e/4))/⇡2.7 is computable,
as is every other other number you might think of o↵hand. Note that whether
or not a number is computable depends only on the number itself, and not how
that number is expressed. Thus, every rational number is computable, as is the
number that is “1” if Goldbach’s conjecture is true; and “0” if it is false. Indeed,
it is tempting to imagine that every number might be computable. But, there do
indeed exist noncomputable numbers, as follows immediately by a cardinality

27

28 7.

argument: The set of real numbers is uncountably infinite, while the set of
Turing machines is only countable infinite.

Again, as with the case of noncomputable problems, we would like, not merely
an existence argument, but a “concrete” example. Here is one. Set

c =
1X

n=1

an/3
n, (2)

where an = 2 if, for the nth pair (T, S), the result of running the Turing machine
T on the string S halts; and an = 0 if that machine on that string does not halt.
Note that, since each Turing machine T on each string S either halts or does
not halt, each an is a definite number; and so this c is also a perfectly definite
number. If you know this c to su�cient accuracy, then you know whether each
of the first n Turing machines/strings halts. Indeed, either c < 1/3 (the case
in which the first Turing machine/string does not halt), or c > 2/3 (the case in
which it does halt); so knowing c within (1/6) determines whether or not the
first machine/string halts. Similarly, knowing c to within 1/(2 ⇤ 3n) determines
whether each of the first n machine/strings halt. It follows from these remarks
that the number c is not computable. Indeed, suppose we were given Turing
machine, T̃ , that computes c, in the sense described above. Then, we could
easily rebuild that machine into one that computes the halting problem, as
follows: If you wish to know whether the nth pair (T, S) halts, apply this T̃ to
string 2 ⇤ 3n (written out as its digits), and interpret the rational number that
results. But we know that the halting problem is not computable, and so no
such machine T̃ exists. Here is a curious corollary of these observations: The
number c above is not rational. Note that this is not at all obvious from the
formula (2).

Exercise. Show that there exists a Turing machine that accepts
as input a positive integer S, returning a rational a/b, such that
the resulting sequence of rational numbers increases monotonically
and converges to c from below. [Hint: Given n, run, for each k <
n, the kth (T, S)-pair for (n � k) steps.] Prove that if number x
is such that there exists a Turing-generated monotonic sequence of
rationals converging to it from below (in the sense of the previous
sentence), and also one from above, then x is computable. Does there
exist a non-computable number such that there exists neither such a
sequence from above nor one from below? What about the number
that results from (2) by replacing 3 by �3 on the right?

It is interesting to speculate what might happen if ever a physical theory
were to predict, for the outcome of some experiment, a noncomputable number,
e.g., the c above. Then, since c really is a number, the theory would be making
a perfectly definite prediction for the outcome of the experiment. However, to
evaluate that predicted number, to higher and higher precision, would require
new and ever more sophisticated insights (for that is the meaning of not being

29

computable). Thus, we might some day reach the situation in which the ex-
perimentalists, who have carried out the experiment to, say, one part in 107,
are way ahead of the theoreticians, who have only been able to carry out the
computation of what the theory predicts to one part in 102! And there would
be no guarantee that any greater precision would be forthcoming from the the-
oreticians any time soon. [A more accurate determination of the prediction of
the theory might require, for example, that Goldbach’s conjecture be settled.]
This speculation is not entirely idle, for there are some (very weak) indications
that noncomputable numbers may actually arise in some future quantum theory
of gravity.

30 7.

8. Formal Mathematics

The most famous application of computability is to a certain program for for-
malizing mathematics. We here merely touch on a few highlights of this subject:
For more details, see, e.g., ([8]). Nothing in this section will be used later, so it
may be skipped.

The idea is to apply the notions of the previous sections — strings, prob-
lems, computability, etc — to mathematics itself. But this program immediately
runs into a serious roadblock: The ingredients of ordinary mathematics — the
definitions, theorems and proofs — are informal in character. Here is an example.

Theorem. There is no largest prime integer.
Proof: Let, for contradiction, n be the largest prime integer. Set
a = n! + 1. Factor this integer a as a product primes, and let p
denote one of those prime factors. Then p cannot be 2, for the for-
mula above shows that a is an even integer (namely, n!) plus 1, i.e.,
that the division of a by 2 leaves a remainder of 1. And, similarly,
p cannot be 3, for the division of a by 3 also leaves a remainder of
1. So on, up to n. We conclude that p > n. Thus, this p is a prime
number greater than n, which contradicts our choice of n.

What appears above is merely eight English sentences, so designed to cause
the reader to nod in agreement. True, it is also a string (over some character
set), but these are not the sorts of strings that can easily be manipulated by
Turing machines, or about which we can easily prove theorems.

The idea of formal mathematics is to introduce a certain class of particularly
simple strings, together with certain manipulations of those strings, which will
reflect the content of ordinary mathematics. Thus, for example, certain strings
will be deemed “assertions”. Of course, these strings will be merely meaningless
lists of symbols: They won’t actually “assert” anything. And, similarly, other
strings will be designated “proofs of assertions” (although they will not actu-
ally “prove” anything). This framework opens up the possibility of applying
mathematics to mathematics itself, i.e., of proving (informal) theorems about
the assertion-strings and proof-strings. We further arrange matters so that the
problem of deciding whether a given string is an assertion-string, or whether it is

31

32 8.

a proof-string, is computable. Thus, ultimately, we will be able to apply Turing
machines and the ideas of computability to mathematics itself.

Mathematics is, essentially, set theory, and thus our goal is to formalize
(i.e., render as strings) the subject of set theory. We emphasize again that
mere string-manipulation should not be confused with mathematical “Truth”.
Think of “formal mathematics” as just another area of mathematics, analogous,
e.g., to group theory — instead of manipulating group-elements according to
the rules laid down for group theory, we shall manipulate various mathematics-
strings according to some other set of rules we shall lay down. Adopting this
perspective is more easily said than done.

Fix a character set, C (e.g., the set of lower-case Latin letters). We next
introduce a new character set C̃ , consisting of the characters in C , together
with the following ten additional characters: =, 2, ¬, ^, 8, }, {, :,), and (.
Next, we introduce a certain collection of strings over C̃ , called the formulae.
The rules are the following: i) For x and y any nonempty strings over C , each
of “x = y” and “x 2 y” is a formula. ii) For A and B any formulae, each
of “¬A ” and “(A ^ B)” is a formula. iii) For A any formula, and x any
nonempty C -string, “8x(A)” is a formula. iv) The two expressions in item i)
also result in formulae if either or both of x and y is instead replaced by a C̃ -
string of the form “{z : A }”, where z is any nonempty C -string and A is any
formula. Using these rules, we may generate an enormous number of formulae,
e.g., “8x((y 2 x ^ ¬8s(z = y)) ^ z 2 {w : x 2 w})”. A crucial fact about this
construction is this: The problem of deciding whether or not a C̃-string is a
formula is computable.

The nonempty strings over C are called classes (which we think of as “sets”,
the name having been changed for certain technical reasons). We also give these
new symbols suggestive names: “=” is called “equals”; “2” is called “is an
element of”; “¬” is called “not”; “^” is called “and”; “8” is called “for all”;
and “{z : A }” is called “the collection of all sets z such that A ”. The purpose
of these names is merely to make the strings easier to remember and to think
about: These names are not to be construed as bestowing any “meaning”.

A definition is merely a shorthand way of a writing certain, commonly oc-
curring, C̃ -strings. Here are a few examples of useful definitions (and their
names): “A _ B” stands for “¬(¬A ^ ¬B)” (“or”); “A) B” stands for
“¬A _ B” (“implies”); “9x(A)” stands for “¬8x(¬A)” (“there exists an x
such that”); “x [y” stands for “{z : z 2 x _ z 2 y}” (“union”); “x ⇢ y” stands
for “8z(z 2 x) z 2 y)” (“subset”); “;” stands for “{z : ¬z = z}” (“empty
set”); “{x}” stands for “{z : z = x}” (“set whose only element is x”); The inte-
gers are now defined as follows: 0 is defined as ;; 1 as 0 [{0}; 2 as 1 [{1}; etc.
Thus, for example, 5 denotes the set with precisely the following five elements:
0, 1, 2, 3, and 4. There is also a definition (which we shall not give) of a set !
that deserves to be called the integers. Note that we cannot, e.g., merely write
“! = {0, 1, 2, · · · }”, for neither “,” nor “· · · ” are allowed symbols. We emphasize
that these various definitions add nothing whatever to the logical structure (nor
are we incorporating their symbols into our character set): Their only role is to
make it easier to write certain long strings.

33

You probably once learned a version of set theory in which one begins with
some basic universal set, e.g., “the set of all dogs”; then introduces various
subsets of this basic set, e.g., “the set of all brown dogs”; and finally introduces
the various set-relations — subsets, unions, etc. — on these subsets. Here, things
are structured a little di↵erently. Think of the class “x” (or any nonempty C-
string) as having elements (just like a set), i.e., we might have “y 2 x”. But,
on the other hand, this x might also be a member of some “z”, i.e., we might
have “x 2 z”. There is no basic “universal set”, fixed at the beginning, from
which flows all the other sets. All we have, instead, is this abstract hierarchy,
running indefinitely in both directions: Classes are elements of classes that are
themselves elements of classes, etc; and classes have elements that are themselves
classes that have elements, etc.

You must now convince yourself that every assertion you have ever made —
or are likely to make — in mathematics can be translated into a corresponding
formula, as defined above. This exercise is similar to that of convincing yourself
that everything you would have called a “procedure” or “algorithm” can be
translated into a corresponding Turing machine. The following remarks are
intended to get you started in this process. A rational number is defined, as
usual, as a certain ordered pair of integers; and we may introduce the set of
all rationals. A real number is defined as a certain set of rationals (namely,
all rationals less than that number); and we may introduce the set of all reals.
Thus, for example, the English sentence “x is a real number” is translated into
a certain formula (i.e., into a certain string over C̃). The arithmetic operations
on real numbers are defined as corresponding manipulations of these sets. A
mapping from set x to set y is defined as a set of ordered pairs, (a, b), with
a 2 x and b 2 y, such that every element of x is included once and only once
as the first entry of one of these pairs. We now can introduce, for example,
the real (or complex) functions of one (or more) real variables. Continuity and
smoothness of such functions (“for every positive number ✏ there exists a number
� such that ...”) is translated directly into the language of C̃-strings. Thus, for
example, the English sentence “f is a continuous real-valued function of one real
variable” is translated into a certain formula. Now consider some mathematical
assertion, e.g., “Every smooth vector field on the 2-sphere vanishes somewhere.”
This assertion will be translated into a certain formula. Within this formula will
be the definition of a 2-sphere (ordered triples, (x, y, z) of real numbers satisfying
x2 + y2 + z2 = 1) and of a vector field (a certain map sending each point of this
2-sphere to a tangent vector at that point). This formula will further include
(using the symbol “^”) the condition that this vector field be smooth. Then,
after all this, there will appear in our formula “)” (actually, the C̃-string this
represents). And then, finally, there will appear the translation of “there exists
a point of this 2-sphere at which that vector field vanishes”. I urge you to play
around with this, and other, examples until you have convinced yourself that the
formulae, i.e., the C̃-strings specified above, are rich enough to encompass the
language of mathematical objects and of mathematical assertions about those
objects.

The next step is to isolate a certain collection of formulae, called the axioms.

34 8.

We shall not attempt to write out any axiom system (of which there are several)
in detail, but rather merely indicate what those systems look like. Typical
axioms might include “¬¬A) A ” and “A ^ B) A ” (logical axioms); “x =
y) 8z(z 2 x) z 2 y)” and “8z(z 2 {z : A }) A)” (tying “=” and “{z : · · · }
in with “2”); “9y((x 2 y) 9w(x 2 w^w 2 z))^(9w(x 2 w^w 2 z)) x 2 y))”
(existence of infinite unions); “8x((¬x = ;)) (9y(y 2 x ^ x \ y = ;)))” (which
will, among other things guarantee that no class is an element of itself) and
“9x(9y(; 2 x ^ 8z(z 2 x) z [{z} 2 x) ^ x 2 y))” (which will, essentially,
guarantee the existence of “infinite sets”). Other candidates for axioms might
include formulae that reflect the axiom of choice, the axiom of the excluded
middle, the axiom that every subset of [0, 1] is measurable, etc. The crucial thing
about these axiom systems is that they are so constructed that the problem of
deciding whether or not a formula is an axiom is computable.

So, fix a suitable system of axioms. A pruf is a finite list of formulae, each
of which is either i) an axiom, or ii) a formula A , such that both “B” and
“B) A ”, for some formula B, appear earlier in that list. A formula is a
thurem if it is the last formula of some pruf.

Note that the prufs and thurems are both merely meaningless strings of
symbols constructed in a certain way. They are not to be confused with the
proofs the theorems of (informal) mathematics (which we think of as saying that
“something is true”). You must now convince yourself that every argument you
would accept as a proof in ordinary (informal) mathematics can be translated
into a pruf, as defined above; and that every assertion you would accept as a
theorem can be translated into a thurem. This is comparatively easy, once you
have accepted that mathematical assertions can be translated into formulae, for
the prufs and their thurems are structured just like the proofs and theorems of
ordinary mathematics.

The above, then, outlines a scheme for formalizing mathematics.

Now let there be given some axiom system. Then there exists a Turing
machine that will decide whether a list of formulae is a pruf or not (since that
machine can check whether that list satisfies the conditions for a pruf). Hence,
there is a machine that, given any integer S as input, will write out a thurem;
and is such that every thurem is included in this list. [The machine simply tries
lists of strings over C̃ one at a time, checking for, and then reporting, those that
are prufs.] That is, we can “mechanically generate all thurems”. On the other
hand, there is no obvious way to check, mechanically, whether a given formula is
a thurem, for, although we can certainly write a Turing machine that looks for
prufs of that formula, we have no way to determine whether or not that machine
will halt.

The Godel incompleteness theorem states that, for every such axiom system,
one of two things is true. First, the system could be inconsistent. This means
that there is some formula A such that both “A ” and “¬A ” are thurems.
Whenever this occurs, then (at least, for every reasonable axiom system) every
formula becomes a thurem. Second, the system could be incomplete. This
means that there is some formula A that is closed (i.e., is such that every
free variable is subject to a “8”), and is such that neither “A ” nor “¬A ” is

35

a thurem. In informal terms, there is an assertion that is neither provable nor
disprovable via the axioms. When this occurs, we could, of course, always add
one of these to get a new axiom system — but then the incompleteness theorem
again guarantees inconsistency or incompleteness of that new system. The proof
of the incompleteness theorem is like the proof that the halting problem is not
computable. The crucial step is that the statements “there exists a pruf of A ”
and “there does not exist a pruf of A ” can, using the set ! of integers, be
reflected as formulae in the formal system (just as the crucial step in the halting
problem is that Turing machines can query Turing machines).

As one example, let us take as our axioms a standard system, but without
the axiom of choice (the formula that represents the assertion that, for every set
x of disjoint sets, there exists a set having exactly one element in common with
each element of x). Then it is known that neither the axiom of choice, nor its
negation, is a thurem of that system. We may add the axiom of choice (or its
negation!) as a new axiom.

36 8.

9. Di�culty Functions

So far, we have been interested largely in which problems can be computed and
which cannot. We now turn to a somewhat di↵erent set of issues, involving
what resources are required for the computation process. These “resources”
can be of several types, e.g., of memory space, of program length, or of time.
We shall be interested in the last of these, for the benefit of utilizing quantum
mechanics during the computation process appears to lie in the time required
for that computation. It is entirely possible that there might be other benefits.

Let us begin with a simple example. Consider a (regular) Turing machine
T , which computes some problem, ⇡. Then for any string S, T , when run with
S as the initial string, will eventually halt. Denote by f(S) the total number
of steps the machine T will execute before halting — a measure of the “time”
required for the computation. We call this f the step-di�culty function of T .
This function f clearly depends on the problem ⇡ itself; but may also depend
on the particular algorithm we implemented (via T) in the computation of ⇡.
Note that every step-di�culty function satisfies f(S) � 1 for every string S.

With this example in mind, we now introduce the following definition. Fix

a character set, C . By a di�culty function over C , we mean a function, S
f!

R, from the C -strings to the reals, which is positive and bounded away from
zero, i.e., which, for some number b > 0, satisfies f(S) � b for every string
S. Think of the number b as the time required to boot the computer: We
do not wish to address the possibility that, for a couple of very simple input
strings, the computer might be able to provide an answer in “zero time”, or in
an arbitrarily small time. The step-di�culty function of a Turing machine that
solves a problem is, of course, just one example of a di�culty function. [Note
that, while the step-di�culty functions are all integer-valued, we allow (for later
convenience) our di�culty functions to be real-valued.]

While the above is of course merely a definition within mathematics, it is
our intention to apply it to certain computations — both Turing and other-
wise. In light of this intended application, we realize that this definition has
an unfortunate feature: The di�culty functions provide too much detail. For
example, it might be argued that a Turing machine should be allotted less time
for a step in which the character under the head remains unchanged than for
a step in which the machine has to print a whole new character. Or, we might
purchase for our Turing machine a new chip, which runs twice as quickly as the
old (but, say, takes longer to boot). These changes in the computing set-up

37

38 9.

would, arguably, require a di↵erent choice of di�culty function. But, while such
technological improvements can certainly be important, they are not the subject
of interest here. We, rather, are concerned with issues such as comparing, with
respect to their di�culty, several problems, or several algorithms for computing
the same problem. These ideas motivate the following definition: Given two
di�culty functions, f and f 0, we write f ⇠ f 0 provided that, for some number
a > 0, f(S) af 0(S) and f 0(S) af(S) for all strings S. We note that this
is indeed an equivalence relation on di�culty functions. It is the equivalence
classes that reflect the sense of di�culty that we are concerned with here; and
we shall always be interested in di�culty functions only up to this equivalence.

Exercise. i) Fix a Turing machine, with step-di�culty function f ,
that solves a problem. Let f 0 be the di�culty function that results
if the charge is only half a unit for a Turing-step that leaves the
character on the tape unchanged, but still a full unit for a Turing-
step that prints a new character. Prove that f ⇠ f 0. A similar result
holds for new allocations of units depending on the machine internal
state, on whether the head is to be moved to the left or right, etc.
ii) Prove that, for a any positive number, f ⇠ af and f ⇠ f + a.
iii) Prove that, for a < glb(f), f ⇠ f � a (where ”glb” denotes the
greatest lower bound). iv) Prove that, if f and f 0 are equal for all
but a finite number of strings S, then f ⇠ f 0. v) Characterize the
functions h with the following property: Whenever f ⇠ f 0, then
h(f) ⇠ h(f 0). vi) Let Turing machines T and T 0 compute problems
⇡ and ⇡0, respectively. Then we have seen how to build from these
two a new machine, T 00, that computes ⇡00 = ⇡ � ⇡0. Show that the
corresponding di�culties (up to equivalence) are related by f 00(S) =
f 0(S) + f(⇡0(S)).

These examples show, among other things, that the equivalence classes have
some very desirable properties: The di�culty equivalence class does not depend
on how units are allocated for various types of Turing steps, on how much time
is required for booting, on the purchase of a better chip, on the act of learning
how to treat a few S’s very quickly.

We next introduce two notions that compare di�culty functions.
Let f and f 0 be two di�culty functions. We write f f 0 provided that,

for some number a > 0, we have f(S) af 0(S) for every string S. We note
that: i) replacing f and f 0 by equivalent di�culty functions does not change
this relationship; ii) both f f 0 and f 0 f hold if and only if f ⇠ f 0; iii)
f f 0 f 00 implies f f 00; and iv) for f bounded above, we have f f 0 for
every f 0. That is, “” has the properties one would associate with “less than
or equal to”. But note that, given two di�culty functions f and f 0, it is not
necessarily the case that either f f 0 or f 0 f . For example, on the positive
integers, let f(n) =

p
n and f 0(n) = 1 + n sin2(n/20).

There is, in addition to “”, a second type of inequality on di�culty func-
tions. For f and f 0 two di�culty functions, we write f ⌧ f 0 provided that,
for every number a > 0, we have f(S) af 0(S) for all but at most a finite

39

number of strings S. We note that: i) replacing f and f 0 by equivalent di�culty
functions does not change this relationship; ii) f ⌧ f 0 and f 0 ⌧ f cannot both
hold; iii) f ⌧ f 0 ⌧ f 00 implies f ⌧ f 00; iv) f ⌧ f 0 implies f f 0; and iv) either
of f f 0 ⌧ f 00 or f ⌧ f 0 f 00 implies f ⌧ f 00. Again, these are precisely the
properties suggested by the notation. Since these special meanings of “” and
“⌧” relate only functions, there will be no confusion with the usual meanings
of these symbols, which relate only numbers.

We think of f f 0 , with f 6⇠ f 0, as meaning that “on every string, f reflects
no more di�culty than does f 0; and there is an infinite number of strings on
which f reflects strictly less di�culty”. We think of f ⌧ f 0 as meaning that
“f reflects less di�culty than f 0 on every string”. The following example will
illustrate these ideas

Example. Consider the palindrome problem of Sect. 5. Denote by
f the step-di�culty function (counting steps) for the Turing machine
T described in that Section. Set L = length(S)+1, another di�culty
function on S . [The “+1” in this formula merely allows us to avoid
treating the empty string separately.] Then we have L f L2.
The first follows because T must in any case traverse the entire string
S (in order to examine the last character), and that traversal already
requires L steps. The second follows because in the worst case, when
S actually is a palindrome, T must go back and forth across the
string (or a substantial portion thereof) a total of L times, together
with a few extra steps at the ends. Note that these relations are
not approximations: They hold exactly. Although L ⌧ L2, we have
neither L ⌧ f nor f ⌧ L2. Here is another Turing machine, T̃ for
computing this problem. Machine T̃ works the same as T , except
that, on the first pass, it makes an extra check to see if the string S
is of the form “aaa · · · a”. If it finds that form, then T̃ immediately
returns to the beginning and reports “yes”. Denote by f̃ the step-
di�culty function of T̃ . Then, for every string S that is not all “a”’s,
f̃ requires more steps than f (since T doesn’t have to carry out those
extra checks that T̃ does), but f̃(S) and f(S) di↵er at most by some
numerical multiple of L (since this checking for “a”’s requires just a
few extra steps for each character in S). However, for a string S that
is all “a”’s, f(S) is the order of L2 (since T will have to go through
the laborious process of checking for palindrome-ness), while f̃(S) is
the order of L (since T̃ will recognize this special form on the first
pass). Note that there is an infinite number of such strings. It follows
from all this that f̃ f , but neither f̃ ⌧ f nor f̃ ⇠ f . We thus
think of the computation represented by machine T̃ as “definitely
(but only slightly) more e�cient” than that of T . It seems plausible,
intuitively, that: Given any Turing machine T 0 (step-di�culty f 0)
that computes this problem, there exists a Turing machine T 00 (step-
di�culty f 00) that also computes this problem, such that f 00 f 0

and f 00 6⇠ f 0. This means that, no matter how e�cient you feel
your present Turing machine is, there always exists one that is a

40 9.

little more e�cient. It would be interesting to find a proof. On the
other hand, it is known ([6]) that there exists no Turing machine T 0

(step-di�culty f 0) that computes the palindrome problem and has
f 0 ⌧ L2. In other words, there is no way to compute the palindrome
problem with e�ciency substantially greater than L2.

This example illustrates the idea that this equivalence relation and these inequa-
lity-relations on di�culty functions are the “right” notions: They allow us to
express, in a simple way, what we want to say; and they don’t draw us into a
discussion of what we don’t want to say.

One could imagine inventing other, inequality-like, relations on di�culty
functions. For example, one could compare averages of the values of the func-
tions over certain strings; or consider the relative frequencies of the S’s for which
f(S) f 0(S) or f 0(S) f(S) occur. But these relations tend not to be very
interesting, probably because they typically require some choice of an ordering
for the strings, or they are are too sensitive to relatively benign relabelings of
the strings.

10. Di�cult Problems —
Best Algorithms

In this section, we discuss two results of Blum [3]. Both of these results are
insensitive to the particular di�culty-measure — or even language — employed;
and both are proved by diagonal arguments. For ease of exposition, we shall
discuss both results for the Turing case (i.e., the “machines” will be Turing
machines, and the di�culty measures will be step-di�culty). But it should be
noted that these restrictions are not necessary.

A “di�cult” problem is, intuitively, one that requires many steps for its
computation. It is easy to think of problems that appear, o↵hand, to be quite
di�cult in this sense, e.g., that which sends any integer S to the integer that
is the third-to-last digit of the (10S!)!-th prime. But it is hard to be certain
that this problem really is as di�cult as it appears: There might, for example,
be some marvelous theorem that asserts that this particular problem ⇡ merely
returns “7” when S is even; and “1” when S is odd. If this, or something like it,
should turn out to be the case, then this problem ⇡ would turn out to be easy
to compute.

Can we give an example of a problem ⇡ that is computable, and is such
that we can guarantee that any Turing machine that computes it has step-
di�culty, say, � (10S!)!) ? The answer is yes, but for a silly reason. Let ⇡ be the
problem that, applied to positive integer S, returns the string a · · · a, where the
total number of a’s is (10S!)!. Then certainly the step-di�culty f of any Turing
machine that computes this ⇡ satisfies (10S!)! f , since it takes this many steps
for the Turing machine merely to print out (never mind compute) the answer.
This isn’t exactly what we had in mind. So, to avoid this sort of foolishness, we
introduce the following definition. A problem ⇡ will be said to be bounded if the
lengths of the strings ⇡(S) as S ranges through all input strings, are bounded
above.

So, are there very di�cult — perhaps even “arbitrarily di�cult” — bounded
problems? We formulate this question precisely as follows:

Assertion. Let f̃ be any di�culty function. Then there exists a bounded,
computable problem ⇡ with the following property: Every Turing machine T
(step-di�culty f) that computes ⇡ has f � f̃ .

41

42 10.

This assertion states, in other words, that you tell me how hard (f̃) you want the
problem to be, and I’ll find a problem (⇡) such that every method of computing
it (T) is at least f̃ -di�cult (i.e., has f � f̃). Unfortunately, this assertion turns
out to be false.

Here is a counterexample. First note that, for any Turing machine T that
computes a problem, the step-di�culty function, f , of that machine is com-
putable. Indeed, consider the Turing machine T 0 that, on any string S, merely
simulates the action of T on S, counting the number of steps T runs before halt-
ing, and reporting that number. This T 0 computes f . Now let f1, f2, · · · be a
list of all computable, integer-valued di�culty functions (noting that the collec-
tion of such functions is countable, since the collection of all Turing machines is
already countable); and let S1, S2, · · · be a list of all strings. Now define a new
function, f̃ , on strings by

f̃(Sn) = n⇥max[f1(Sn), f2(Sn), · · · , fn(Sn)]. (3)

[In other words, the value of f̃ on string Sn is n times the largest of the values
taken by the first n of our computable functions fi, acting on that Sn.] This
f̃ is our counterexample. To see this, fix any positive integer m. Then, for
any n � m, we have f̃(Sn) � nfm(Sn) (for, since n � m, fm is included in
the functions maxed-over in (3)). But this last inequality (for all n � m), and
the fact that there is only a finite number of n < m, imply fm ⌧ f̃ . But the
fm exhaust step-di�culties of Turing machines that compute problems, and so
there can be no such di�culty function f satisfying f � f̃ .

The idea of this example is to so construct f̃ that it “grows very quickly as
the string S gets larger — so quickly that no computable, integer-valued function
(and therefore certainly no Turing step-di�culty function) can keep up with it”.
This growth is very fast indeed, for we can think of some pretty fast-growing
computable f ’s, e.g., (for S an integer) f(S) = 2 to the power of 2 to the power
of 2 . . . S times. Well, that particular f (being, as it is, computable) is child’s
play in the hands of the really fast-growing f̃ of the theorem. This situation
may seem paradoxical at first sight: How can f̃ grow more quickly than any
computable function, when Eqn. (3) appears to be a computation of f̃? But
closer inspection reveals that we do not actually “compute” f̃ above, for we
cannot Turing-construct a list of Turing machines, T1, T2, · · · , that compute the
original list f1, f2, · · · (without, that is, computing the halting problem). Yet,
although we cannot Turing-construct this sequence, it certainly does exists, for
the set of all Turing machines is already countable, and so therefore is the set
of all computable integer-valued di�culty functions.

So, to summarize, it is possible to invent absurd levels of di�culty (such as
that described by the f̃ of the example above): There exist no computable prob-
lems that are that di�cult. But what about more reasonable levels of di�culty?
One might think of demanding that f̃ be computable, for, by the remarks above,
this condition would prevent f̃ from growing too fast. But this demand must
be implemented with some care. First, di�culty functions are real-valued, and
so “computable” does not make sense for them. [Indeed, most real numbers are
not even computable.] But note that every di�culty function f̂ is equivalent

43

to an integer-valued one (namely the function whose value, on each string S, is
the smallest integer exceeding f̂(S)); and, for integer-valued di�culty functions,
“computable” certainly does make sense. This suggests that we demand, of the
function f̃ of the assertion, that it be integer-valued and computable. It turns
out that, with this additional condition, our assertion is true:

Theorem. (Blum) Let f̃ be any computable, integer-valued, di�culty function.
Then there exists a bounded, computable problem ⇡ with the following prop-
erty: Every Turing machine T (step-di�culty f) that computes ⇡ satisfies f � f̃ .

Proof: Let T1, T2, · · · be a list of all Turing machines (over the given character
set), and S1, S2, · · · a list of all strings. Now fix any positive integer n, and
consider the following prescription (ignoring for the moment the words in braces):

Prescription(n): Attempt to run each of the first n machines,
T1, · · · , Tn, in this order, on the initial string Sn, for a total of f̃(Sn)
steps each. If none of the {uncanceled}machines, so run, halts before
reaching f̃(Sn) steps, set ⇡(Sn) = ;. Otherwise, denote by Ti the
first {uncanceled} machine in this list that does halt before reaching
f̃(Sn) steps4. Then set ⇡(Sn) equal to a string other than Ti’s out-
put: Set ⇡(Sn) = “a” if Ti, on Sn, halted with output string ;; and
⇡(Sn) = ; otherwise. {Finally, cancel that Ti.}

This prescription, carried out for all values of n, defines a problem ⇡ (since
it prescribes what string, ⇡(S), is to be assigned to each string S). We note
that this ⇡, so defined, is bounded (since its only possible output strings are
; and “a”). Furthermore, this ⇡ is computable. This follows because we can
build a Turing machine that i) produces the sequence T1, T2, · · · of (all) Turing
machines and the sequence S1, S2, · · · of all strings; ii) simulates the running
of the first n machines, as in the prescription; iii) finds the first {uncanceled}
machine that fails to run for at least f̃(Sn) steps (here, using the fact that f̃ is
computable!); and iv) sets ⇡(Sn) accordingly.

We now reinstate the braces. We carry out the prescription above, in turn, for
successive values of n: 1, 2, · · · . Each time this prescription (for some n-value)
is carried out, that machine Ti (if any) used to set ⇡(Sn) is now “canceled”,
i.e., excluded from consideration in subsequent (i.e., larger-n) applications of
the prescription. Thus, the new construction is identical to the old, except that,
because of this cancellation, the list of Turing machines included at each stage
may be smaller than it was before. But in any case the result is again some
bounded, computable problem, ⇡ (di↵erent from the old ⇡, with which we are
no longer concerned).

This ⇡ is the problem whose existence is guaranteed by the theorem. To
see that it has the required property, consider any Turing machine T (step-
di�culty function f) that computes ⇡. Then this T must appear somewhere

4Note that T
i

is the first machine in this ordered listing of machines that halts at all before
the f̃(S

n

) steps; and not that machine, among these n machines, that halts in the fewest steps

44 10.

in our list of machines: Say, T = T7. Consider the machines T1, · · · , T6. Let
no be an integer such that every one of these six machines either was canceled
already by the time n reached no; or never will be canceled for any n. [Such
an no exists: Indeed, each of the machines T1, · · · , T6 either i) is at some point
(i.e., for some specific n-value) canceled, or ii) is never canceled. Let no be the
largest of the specific n-values that occur in i).] Now fix n > no, and apply
the prescription above to determine ⇡(Sn). Which, if any, machine is canceled
during this application of the prescription? It could not be any of T1, · · · , T6

(by definition of no). Therefore, T7 is on the bubble: It will not be saved by
cancellation of any of the machines before it in the list, and so will be canceled
if it halts before completing all f̃(Sn) steps. But T7 cannot be the one canceled
either, for, by definition of ⇡(Sn), cancellation implies that T7 on Sn di↵ers from
⇡(Sn), while T7 was assumed to compute ⇡. We conclude from all this that T7,
on Sn, must run for at least f̃(Sn) steps without halting. That is, we conclude
that f(Sn) � f̃(Sn). Since this holds for all n > no (i.e., for all but at most a
finite number of n), we conclude that f � f̃ . \

This is quite a proof. For each n, we stage a contest between the first n
Turing machines, applying each to Sn and seeing who can go at least f̃(Sn)
steps without halting. We find the first machine that fails, arrange for ⇡ to be
di↵erent from what that machine computes, remove that machine from further
competition, and then repeat the contest for the next n. Since f̃ generally
increases, the successive contests will generally get harder and harder. In this
way, ⇡ avoids the losers (the machines that halt early), and thus emerges as a
problem that can only be computed by a consistent winner — a machine with
step-di�culty satisfying the condition of the theorem. Note that the no in the
proof is not computable. Note also that computability of f̃ is used at a critical
place: To get computability of ⇡.

Exercise. Show that the theorem above continues to hold if the
last formula in its statement is replaced by f � f̃ . Does there exist
a Turing machine that accepts as input the Turing machine that
computes f̃ , and returns a Turing machine that computes a problem
⇡ whose existence is guaranteed by the theorem?

So, there are some pretty hard problems out there. We now turn to a related
issue. It would be of great interest to define, for any given problem, a di�culty
intrinsic to a problem itself (rather than to whatever method is currently being
used to compute that problem). A possible line for introducing such a notion
would be to let the “intrinsic di�culty” of a problem mean the minimum step-
di�culty function of Turing machines that compute that problem. But, in order
to implement such an idea, we would need some result to the e↵ect that this
minimum is actually achieved. One result that would certainly do the trick is
the following:

Conjecture. Let ⇡ be any computable problem. Then there exists a Turing
machine T (step-di�culty f) that computes this problem, with the following
property: Given any other Turing machine T 0 (step-di�culty f 0) that computes

45

this problem, we have f 0 � f .

Then we would take the f of the conjecture as a measure of the intrinsic dif-
ficulty of the problem ⇡. Unfortunately, this conjecture is false. Indeed, even
for the case of the palindrome problem we have observed that, for any Turing
machine T (step-di�culty f) we can think of o↵hand to compute this problem,
there exists another, T 0 (step-di�culty f 0) with f 0 f and not f 0 ⇠ f . [Em-
barrassingly enough, we don’t understand even this simple little problem well
enough to generate from it an actual counterexample to the conjecture above!]
Here, however, is a possible alternative conjecture — weaker than the one above,
but perhaps retaining enough strength to salvage some sort of notion of intrinsic
problem-di�culty.

Conjecture. Let ⇡ be any computable problem. Then there exists a Turing
machine T (step-di�culty f) that computes this problem, with the following
property: There is no Turing machine T 0 (step-di�culty f 0) that computes this
problem, such that f 0 ⌧ f .

This conjecture, for example, is true for the palindrome problem. Indeed, we
gave a Turing machine that computes this problem with a di�culty function f
with f L2, but not f ⌧ L2; and it is known ([6]) that there is no Turing
machine that computes this problem with di�culty ⌧ L2.

Thus, this last conjecture looks promising. But, much as we might wish it
to be otherwise, this conjecture is also false. Indeed, we have

Theorem. (Blum) There exists a computable problem ⇡ with the following
property: Given any Turing machine T (step-di�culty f) that computes ⇡,
there is another Turing machine T 0 (step-di�culty f 0) that also computes ⇡,
such that f 0 ⌧ f .

Thus, according to this theorem, for this particular problem ⇡, no matter
how much e↵ort you put into finding an e�cient machine of computing ⇡, there
always exists a much more e�cient machine waiting in the wings. You can, if
you wish, submit that new, more e�cient machine to the theorem, and it will
then go ahead and guarantee the existence of a still more e�cient machine, and
so on. Thus, for the problem ⇡ of the theorem, there is an infinite succession
ever more e�cient Turing machines that compute it. There would seem to be
no hope of defining an “intrinsic di�culty” for this problem, at least.

We shall merely sketch the proof of the theorem. First, let h be the integer-
valued function on nonnegative integers defined by: h(0) = 1, and, for n >
0, h(n) = 2(h(0)+···+h(n�1)). This function is rather rapidly-growing: h(1) =
2; h(2) = 8; h(3) = 2048, h(4) would take about ten lines to write out; and
h(5) could not be written on all the paper ever manufactured on this planet.
We next construct the problem ⇡ of the theorem, as follows. This construction
is identical with the construction of the problem ⇡ in the proof of the previous
theorem, with just one small change. In carrying out the prescription, for some

46 10.

n-value, instead of running each of the machines T1, T2, · · · , Tn for the same
number, f̃(Sn), of steps, we now run the i-th machine in this list for h(n � i)
steps. Thus (since h is rapidly growing), the early machines in the list are run
for vastly more steps (to see if they halt) than are the later machines in the list.
In any case, the result, after this one change, is a certain computable problem
⇡ (di↵erent, of course, from the ⇡ of the previous theorem). This ⇡, believe it
or not, has the property required in the theorem.

To see this, let Turing machine T (step-di�culty f) compute ⇡. Then this T
must be one of the Ti in our list, say T = T7. By construction, using the same
argument as in the previous proof, it follows that f(Sn) � h(n � 7) for every
n. We now introduce a new problem, ⇡0. We set ⇡0(S1) = ;, · · · ,⇡0(S7) = ;.
For n > 7, we define ⇡0(Sn) by exactly the same prescription that defined ⇡
above, except that we use for our list of machines, not the T1, · · · , Tn as was
used above, but rather just T8, T9, · · · , Tn. This ⇡0 is of course also computable.

We next note that ⇡0 and ⇡ are actually equal on all but at most a finite
number of strings. This follows because for su�ciently large n, say, n � no, each
of T1, · · · , T6 that ever will be canceled in the computation of ⇡ has already been
canceled (while T7, of course, will never be canceled). Once no more cancellation
of these seven machines is possible, then ⇡0 and ⇡ are left to examine precisely
the same machines at each step, namely, T8, · · ·Tn, and so these two will end up
with the same values.

We next introduce a Turing machine T 0 that computes ⇡ in the following
manner. For n no, T 0 simply simulates T , in this way finding out what ⇡(Sn)
is, and returns that string. On the other hand, for n > no, T 0 computes ⇡0 in
the manner described above (i.e., using, in the prescription at each stage, only
machines T8, · · · , Tn). Denote by f 0 the step-di�culty of this T 0.

Finally, we claim that f 0 ⌧ f . It su�ces to compare these two di�culty
functions on Sn with n > no (since these Sn include all but a finite number of
strings). Fix n > no. Then, in order to compute ⇡0(Sn) (= ⇡(Sn)), machine
T 0 must simulate Turing machine T8 (on Sn) for h(n� 8) steps, machine T9 for
h(n� 9) steps, and so on up to machine Tn for h(0) steps. Thus, T 0 must run a
total of not more than h(0)+h(1)+ · · ·+h(n� 8) = log2(h(n� 7)) steps, where
the last equality follows from the construction of h. Thus, we conclude that for
n > no, 2f

0(Sn) h(n � 7) f(Sn), where the last step is the bound on f(Sn)
found earlier. The result follows.

The first thing to notice about this argument is that it contains a flaw: Right
at the end, we are comparing the number of steps that T actually executes with
the number that T 0 must simulate. Simulating looks like a lot more work that
merely executing. But for reasonable di�culty-measures in reasonable languages
(although not for step-di�culty in Turing) a machine can be simulated in the
same number of steps (up to equivalence) as it can be run. In these cases, which
include all those of serious interest, the argument is complete. But for the Turing
case, a further, somewhat complicated, workaround is necessary, which we shall
not discuss.

Actually, we prove more than is stated in the theorem, namely that 2f
0

f . In fact, one can obtain a similar result for other, specific, choices of an

47

inequality relating f and f 0, by simply changing the choice of the function h.
It is interesting to note that, although the theorem guarantees the existence of
T 0, it does not tell us how to compute it. The crucial non-computable step is
that in which no is found. In fact, there exists no Turing machine that, with
input a Turing machine T that computes the ⇡ of the theorem, returns a Turing
machine T 0 the existence of which is guaranteed by the theorem.

So, to summarize, the prospects for assigning to each problem an “intrinsic
di�culty”, in some reasonable way, look pretty dismal. It may be possible to
do better by some appropriate restriction on the class of problems considered.
Or, there may be some way to take the greatest lower bound of the di�culty
functions for machines that compute the problem, even though that lower bound
is itself not realized by any machine.

48 10.

11. A Language for E�ciency

Clearly, Turing machines are highly ine�cient. The key problem is that storing
scratch work on a single long tape requires that the machine plod, again and
again, over the same portion of tape, looking for one little piece of data after
another. In the case of the palindrome problem, for example, no Turing machine
can compute this problem in step-di�culty ⌧ L(S)2; and yet we might expect
a “normal” computer to require only L(S) steps. Thus, Turing step-di�culty
functions tell us too much about Turing language and too little about the subject
of real interest: the “intrinsic di�culty” of the problem or algorithm. It is time
to upgrade.

We might do so, e.g., to Fortran. We would assign, in some “reasonable”
way, a number of steps to each Fortran command; and thereby arrive at a
Fortran-di�culty function for each Fortran-computed problem. We could, of
course, do the same for C language, etc. While these new di�culty functions
would certainly be more realistic than Turing step-di�culty, there remains the
danger that they, too, would manifest excessive language-dependence. But it
seems, intuitively, that such dependence may be small, or — if things are set up
carefully — even absent. One might imagine, for example, that we could write
a C-emulator in Fortran that is di�culty-function preserving.

This situation with respect to di�culty, then, is very like that we faced earlier
with respect to computability: There appears to be a universal notion lurking in
the background, but that notion finds expression through many languages. We
want to distill out the notion itself. The answer, in the case of computability,
was Turing machines. We find the simplest language that is still rich enough to
encompass our idea of computability, and then define computability in terms of
that language. We would now like to do the same thing for di�culty. That is, we
would like to invent a language, with an associated di�culty function, that is as
simple as possible, but not so simple that it generates unnecessary ine�ciencies.
In short, we want to find a language that is to di�culty as Turing language is
to computability. It will turn out, unfortunately, that our innate sense of what
is the “correct” di�culty function is somewhat less firm that that of what is
“computable”. But, in any case, we propose, below, a language that seems to
capture a more or less reasonable notion of “di�culty”. There may very well be
better proposals.

Fix a character set C . For S any string over C , we write L(S) for the number
of characters in the string S plus one [The “plus one” is so we don’t have to

49

50 11.

treat S = ; as an exception.]
Let there be created an infinite number of storage locations, each labeled

by some string over C ; and each capable of holding an arbitrary string over
C . Thus, we impose no upper bound on the number of storage locations being
utilized, nor on the lengths of the strings in the various locations (although each
location, at any one moment, contains merely a string, i.e., a finite sequence of
characters; and it will turn out that only a finite number of storage locations
are in play at any one moment). We write C(S) for the string in the location
labeled S. The idea here is that in this way we create an ample amount of highly
accessible storage space.

In the present language there will be commands, each of which directs that
a certain action (mostly involving what is stored in certain locations) be taken.
There is a total of five classes of commands in this language: two for in-
put/output; two for manipulating strings; and one for branching. Listed be-
low are these five classes of commands (with, for each, a brief explanation of
what is to be done; and, in braces, a number representing the “di�culty” of the
command, which we shall discuss shortly).

A command results if, in any of the five items below, “S” is replaced
by any explicit string, “x” by any explicit character, and “n” by any
(positive or negative) explicit integer:

1. input to C(S): allows the user to enter any string, which is then
placed in location S. {L(whatever string is entered)}]
2. output from C(S): allows the user to retrieve the string stored
in location S. {L(C(S))}
3. append x to C(C(S)): replace whatever string is stored in
location C(S) with that same string, but with character x appended
on the right. {L(C(S))}]
4. delete last of C(C(S)): replace whatever string is stored in
location C(S) with the string that results from deleting its rightmost
character (if any). If C(C(S)) = ;, do nothing. {L(C(S))}
5. if (last C(C(S)) == x) skip n lines: if the last character
(if any) of the string in location C(S) is “x”, then skip forward n
program lines (if n is positive), backward |n| lines (if negative). If
C(S) = ;, or if the last character of C(S) is other than x, or if the line
to be skipped to is an input command, or if there are insu�cient
lines in the program to carry out the indicated skip, do nothing.
{L(C(S))}

By “explicit” above, we mean that the character x or the string S or the
integer n must actually be written out, within the command, as some specific
character or string: It cannot be indicated only implicitly, e.g., as whatever
happens to be stored in some location.

A program is a finite ordered list of commands, with the following property:
The program contains exactly one input command, and it is the first command

51

of the list; and exactly one output command, and it is the last command of
the list. Here is an example of a program

input C(abc)
append d to C(C(yzr574))
if (last C(C(m)) == a) skip -1 lines

output C(yes)

To run a program, place ; in every storage location, begin at the first program
line (input), and enter any string. The machine then carries out the instruction
of each command in turn, then moving on to the next command in the list
(except for the case of command 5 (if), for which the next command to be
executed is the one indicated above). If and when the machine reaches the last
command (output) of the list, the machine halts, allowing the user to read the
output string.

Any program, run on any input string, either halts or does not halt. If it
halts for every input string, then that program computes some problem ⇡, where
⇡(S) is the output string when string S is entered at input. The program above,
for example, indeed computes a problem, namely that with ⇡(S) = ; for every
string S. Note that we have so structured the commands that the program
cannot “hang” within a single command: As long as the command follows the
grammatical rules above, then — no matter how pointless that command might
be — the machine will always do something (or maybe nothing, as the case may
be) and move on. Failure to halt can only occur by continuing to execute com-
mand after command, indefinitely, as in the following example:

input C(x)
append d to C(C(x))
if (last C(C(x)) == d) skip -1 lines

output C(x)

We could have modified the way the if command works, in the following
manner. We could, first, require that each command in the program be labeled
by a unique string. Then, we could revise the command if so that it directs, not
that some number of program lines be skipped, but rather that there be executed
next that command with some explicit string-label. Clearly, this modification
adds nothing new.

The numbers in braces, accompanying each of the five commands above,
give the number of “steps” we deem the computer to require to execute that
command. We call this number the di�culty of the command; and, for a program
that, acting on a certain string, halts, we call the total number of steps executed
the di�culty of that run of the program; and, for a program that computes a
problem, we call the total number of steps executed before halting (a function
now of the input string) the di�culty function of the program. As always, we
are interested in di�culty functions only up to equivalence. There follows a
discussion of the di�culties assigned, above, to the five classes of commands.

52 11.

If, in response, to an input command, there is entered a string of, say, 13
characters, then the execution of that command requires, as dictated above, 14
steps. This surcharge for entering long strings turns out to be very convenient
(e.g., already in the following paragraph).

The number of steps assigned to the output command is L(the string re-
turned). This formula was chosen merely for aesthetics: Even changing it, e.g.,
to “1” would result in equivalent di�culty functions. To see this, first note that,
for any program on any string that runs up to the output command, the total
di�culty up to that point will be greater than or equal to the length of the
longest string stored. [This follows since each command adds at least as much
to the cumulative di�culty as it adds to the length of the longest string.] Thus,
changing the di�culty for the output command to “1” would, at most, reduce
the total di�culty function by a factor of two. But such a reduction results in
an equivalent di�culty function.

For the append command, we append a character to the string in the location
given by the string in the location S. We have to look up location S, to find
C(S), and then look up location C(S) to find the string to be appended. Think
of the di�culty, L(C(S)), of this command as a “lookup charge”. Why is not
the formula instead L(C(S)) + L(S), i.e., why don’t we also have a charge for
“looking up” S? The reason is that this change results in an equivalent di�culty
function. Indeed, in any given program there will be a finite number of append
commands, and so a finite number of explicit strings S in those commands. So,
there will be a longest such string, say seven characters. Thus, a change in
the di�culty of append to L(C(S)) + L(S) will add at most eight steps for
this command, i.e., will increase the di�culty for this command by a factor
of at most nine. As a result, the final di�culty function for this program will
increase by at most a factor of nine. But such an increase results in an equivalent
di�culty function. Note that the same argument does not apply to the term
L(C(S)) in the di�culty of append: This number (one more than the number
of characters stored in location S) depends on what happens to be stored in S
at the time, and so cannot be bounded a priori. Thus, this term may make a
nontrivial contribution to the final di�culty function. Why not include a term
L(C(C(S))) in the di�culty function of the append command? After all, we
have to travel to the end of the string C(C(S)) to append the x, and there
should be some travel allowance. This is a reasonable position, which might be
worth pursuing. But we have to make some decision here, and we have elected
the viewpoint that there has been constructed some sort of pointer that allows
us to find the end of the string easily. Similar remarks apply to the delete and
if commands.

In the if command, why not include also a term |n|, the number of command-
lines skipped? After all, skipping lines is hard work, and there should be some
compensation. But, again, a given program has but a finite number of if com-
mands, each with an explicit n; and so a maximum value of |n| for all such
commands in the program. Therefore, such a change in the di�culty for the if

command would always result in an equivalent di�culty function.

We now have to deal with two matters. First, we need to show that the com-

53

putable problems in this new language are precisely the computable problems
(defined earlier, using Turing machines). And, second, we would like to argue
that the di�culty functions generated by this language are “reasonable”, i.e.,
that they correctly capture our intuitive sense of what the di�culty “should”
be. We shall attempt to resolve both of these matters in one sweep, by gener-
ating a list of illustrative subroutines — i.e., of short program-fragments. On
the one hand, these subroutines will show the richness of what can be computed
in this language. On the other hand, the di�culties of these subroutines, com-
puted from the command-di�culties above, will illustrate the typical di�culty
functions this language generates. In these subroutines, S, S0, · · · stand for any
explicit strings, x for any explicit character, and n for any explicit integer.

l. append x to C(S). {1}
2. delete last of C(S). {1}
3. if (last C(S) == x) skip n lines. {1}

For subroutine 1, let, say, S = “yzr”. First, rewrite the program, if necessary, so
that location “;”, as well as some location, say “h8”, are not used elsewhere in
that program, so C(;) = ; and C(h8) = ;. Then: append y to C(C(h8)); ap-
pend z to C(C(h8)); append r to C(C(h8)); append x to C(C(;)); delete
last of C(C(h8)); delete last of C(C(h8)); delete last of C(C(h8)).
The first three lines achieve C(;) = “yzr”; the last three restore C(;) to ;.
The total di�culty, for any one instance of this subroutine, is some fixed integer
(in the example above, 10), depending only on the explicit string S, and not
on what is in the various memory locations at the time. But this subroutine
can appear at most a finite number of times in any program, and so the actual
di�culty contributed by this subroutine, each time it is run, is bounded above.
So, we may assign this subroutine a di�culty 1, up to equivalence of di�culty
functions. Similar remarks apply to subroutines 2 and 3.

4. skip n lines. {1}
5. if (C(S) == ;) skip n lines. {1}
6. if (C(S) == C(S0)) skip n lines. {L(C(S)) + L(C(S0))}
7. set C(S) = ;. {L(C(S))}

For subroutine 4, use append a to C(;); if (last C(;) == a) skip n lines;
and then place delete last of C(;) as the first command executed after the
skip. For subroutine 5, use the commands if (last C(S) == x) skip .. as
x runs over all possible characters; arranging the skips so that we skip n lines
if all the if’s fail, but merely proceed to the next line if any succeeds. The
di�culty of this subroutine, 1, results from the fact that the total number of
characters is fixed. For subroutine 7, use, repeatedly, delete last from C(S)),
in conjunction with subroutine 5 (to test whether C(S) is empty yet). Note that
subroutine 7 has a variable di�culty: Its value depends on how many characters
will have to be removed from C(S).

For the subroutines below, we suppose that we begin with C(S) = ;. [If this

54 11.

location were not empty, then it would be necessary to use subroutine 7 first, to
achieve C(S) = ;; and to adjust the di�culty appropriately.]

8. set C(S) = S0
. {1}

9. set C(S) = C(S0). {L(C(S0))}

For subroutine 9, we first use if (last C(S0) == x) skip ..., skipping to the
command append x to C(h8) (where “h8” is some location with C(h8) = ;).
Continue to test in this way each possible candidate, x, for the last character of
C(S0). Then delete last of C(S0), test whether C(S0) == ; (subroutine 5);
and, if not, repeat. In this way, we place C(S0), with its characters in reverse
order, into C(h8). Now do this all again, placing C(h8), in reverse order, into
C(S). It should be clear at this point that we can carry out complicated string-
manipulations, e.g.: Place in C(S) every other character of C(S0), up to the first
occurrence of “a”, and with each “c” replaced by “8k”, provided that C(S00)
contains at least 6 characters not including the combination “yzr”; otherwise ...

For the next three subroutines, we assume that the digits, 0, 1, · · · , 9, are
included in the character set; that strings subject to arithmetic operations are
already integers; and that, again, we begin with C(S) = ;.

10. set C(S) = C(S0) + C(S00). {L(C(S’))+L(C(S”))}
11. set C(S) = C(S0) ⇤ C(S00). {L(C(S’))*L(C(S”))}
12. set C(S) = L(C(S0)). {L(C(S’))}

For subroutine 10, for example, we first use if (last C(S0) == x) skip ... and
if (last C(S00) == y) skip ..., for the one hundred possible combinations of
digits substituted for x and y; placing, for each combination, the appropriate
digit in C(h8), say, as well as a marker in C(h9), which tells whether or not we
are carrying the 1. Then delete last of C(S0); delete last of C(S00), test
whether either C(S0) = ; or C(S00) = ;, and repeat. We will end up with the
sum, with digits in reverse order, in C(h8). Now transcribe C(h8) into C(S),
reversing the order of digits. For subroutine 11, use the usual pencil-and-paper
multiplication (in the course of which each digit of C(S0) must be multiplied by
each digit of C(S00)). Using similar techniques, we can write write subroutines
for loops, e.g., while and do; and also for complicated branchings, such as if

((... and not ...) or ...) carry out ...; else carry out
It should be clear by this point that a problem is computable in this language

if and only if it is (Turing) computable. After all, we have in this language the
ability to enter and recover strings (input, output), the ability to manipulate
strings (append, delete) freely, and the ability to branch (if).

Note that all of the subroutines 4-12 were constructed solely from commands
1 and 2 together with subroutines 1-3. That is, we have not so far used com-
mands 3-5, other than to construct subroutines 1-3. Why, then, did we not omit
commands 3-5, making our basic commands consist instead of commands 1 and
2, together with subroutines 1-3? The role of the “C(C(S))” in commands 3-5
is to allow indexed arrays (which, as we shall see shortly, play a role in e�cient

55

programming). Here are three subroutines that use this feature in an essential
way:

13. set C(S01) = first character of C(S), C(S02) = second

character of C(S), etc. {L(C(S)) log(L(C(S)))}
14. set C(S) = C(C(S0)). {L(C(S0)) ⇤ L(C(C(S0)))}
15. set C(S) = C(C(C(S0))). {L(C(C(S0))) ⇤ (L(C(S0)) +L(C(C(C(S0)))))}
In subroutine 13, we are assuming that the character set contains the digits; and
“S02” means the string resulting from appending the character “2” to the string
S0, etc. Thus, this subroutine allows us to place the individual characters of the
string C(S) in separate locations. This makes those characters directly accessible
(without having to go through all of C(S) each time a character is needed). The
factor “log(L(C(S))” in the di�culty reflects the fact that the length of the
locations (S0n, for n = 1, 2, · · ·) increases logarithmically as the length of C(S).
Note that the base for this logarithm is irrelevant, up to equivalence. Subroutine
15 shows that we can index arrays with indexed arrays. This subroutine is given
by set C(e8k) = C(C(S0)); set C(S) = C(C(e8k)); and this construction
yields the indicated di�culty.

Exercise. Explain how to write a subroutine skip C(S) lines

(which, say, does nothing if C(S) is not an integer). What is its
di�culty?

This concludes our treatment of the present language. We conclude this
section with a few additional remarks.

First note that, for any program that computes a problem, the di�culty
function is � L(S). This follows, since input already imposes a di�culty equal
to the length of the string entered plus 1. Next, consider two programs, which
compute problems ⇡ and ⇡0. Then it is easy to write a program that computes
problem ⇡ � ⇡0: Simply juxtapose the two programs, and remove the two lines
where the output of one abuts the input of the other (and, possibly, change
a few explicit strings). The di�culty of the new program is the sum of the dif-
ficulties of the two components. It is easy to write short programs that change
the grammar of inputs and outputs: Encoding “yes” and “no” in di↵erent ways,
changing the number base, changing character set, using character-orderings in
various ways, rejecting uninteresting inputs, inserting and removing separators,
etc. These always have di�culty L(S), where S is the string entered. It fol-
lows from all these remarks, taken together, that the di�culty function (up to
equivalence) is independent of the input-output grammar.

For f and f 0 di�culty functions, denote by glb(f, f 0) the function whose
value, for each string S, is the smaller of the values of f(S) and f 0(S). Then
glb(f, f 0) is also a di�culty function, and, up to equivalence, depends only on
the equivalence classes of f and f 0. We have: glb(f, f 0) f and glb(f, f 0) f 0;
and glb(f, f 0) ⇠ f if and only if f f 0. Now let ⇡ be a problem, and let P
(di�culty function f) and P 0 (di�culty function f 0) be programs that compute
⇡. Then there exists a program, P 00, that computes ⇡, with di�culty function
glb(f, f 0). This P 00 is constructed as follows. Program P 00 first makes a copy of

56 11.

the initial string S, then simulates the running of P on S for ten steps; then the
running of P 0 on the copy of S for ten steps; then continues the simulation of
P for ten more steps; then P 0 for ten more steps; etc. Eventually, during these
interlaced simulations, P 00 will detect a halt, and when it does so P 00 itself halts,
returning the appropriate output string.

Here is a program that computes the palindrome problem. First input

C(zz) (di�culty L(S), where S is the string entered). Then dump C(zz) into
C(zzz), with the order of the characters reversed (di�culty L(S)). Then use
if (C(zz) == C(zzz)) skip ... {L(S)} to check for palindrome-ness. This pro-
gram has di�culty function L(S). So, by the discussion above, this program is at
least as e�cient as every program computing this problem. Note also that this
program has di�culty function ⌧ the step-di�culty for the Turing computation.

Here is a naive program that computes whether or not a string is prime.
To compute whether integer m divides integer n (by the usual long-division
method) requires L(m)(L(n) � L(m) + 1) steps (for we have to multiply m by
a digit (L(m) steps) a total number of times given by (L(n) � L(m) + 1). So,
we merely check whether the integer n � 2 entered is divisible, in turn, by each
of the integers 2, 3, · · · ,

p
n. The di�culty function of this program (at mostp

n runs, each of di�culty not exceeding (log n)2) is
p
n (log n)2 (but is not

equivalent to this function, for, e.g., the even integers will be disposed of very
quickly by this program). It is easy to write programs that are more e�cient
than this naive one, e.g., by checking first to see if n is a perfect square, and
only if this fails looking for factors of n, as above. In fact, there exist [1] [9]
programs (based on very di↵erent methods) that are much more e�cient than
that above.

Exercise. Find a program that computes whether or not a positive
integer is a perfect square; and find its di�culty function.

Conjecture. Given any program (di�culty function f) that computes whether
or not an integer is prime, there exists another program that computes that
problem, whose di�culty function, f 0, satisfies f 0 f and f 0 6⇠ f .

We remark that we could have introduced this language, instead of Turing
language, right from the beginning, using it, instead of Turing, as the definition of
“computable”. Had we done so, then the determination of what can be computed
would have been considerably simpler, if perhaps somewhat less illuminating.

12. Are There Better Languages?

Recall that our goal is to obtain the simplest possible language that still captures
what we hope is a universal notion of “di�culty”. The language constructed in
the previous section is intended, as we noted, as merely a suggestion. Here, we
comment on a few possible alternatives.

What about dispensing with indexed arrays altogether, i.e., replacing the
append, delete, and if commands with subroutines 1-3? This would simplify
everything, including the di�culty functions. But, we claim, doing so will likely
result in a genuine loss of e�ciency. Here is an example. Let the input, S, be a
sequence of digits, and set m = L(S). [This will be easier to follow if you think
of m as being about 1,000,000, so S is written down, say, in book of some 200
pages.] Now set, for 1 x m, fm(x) = xdigit(x) + 1 mod(m), where digit(x)
means the xth digit of S. Thus, fm(x) is also an integer between 1 and m. The
problem is now the following. Let there be given some input string, S. Start
with x = 7: Then find fm(7), then fm(fm(7)), etc, up to a total of m iterations.
Report the result. Let us first compute this problem without benefit of indexed
arrays. To determine fm(x), we must i) find digit(x) (m steps, since we must
search through S); and then ii) raise x to a small power ((logm)2 steps, since x
contains at most (logm) digits). So, the di�culty to compute fm(x) is m, and
so the total di�culty to compute the problem (which entails computing fm(x)
m times) is m2. But with indexed arrays, we may first dump the characters of
S into individual locations (via subroutine 13), for a one-time di�culty of m log
m. But having done this, computing fm(x) requires only (log m)2 steps (one log
for locating digit(x), one log for taking the power). This yields a final di�culty
function of m(logm)2. Thus, using indexed arrays is much more e�cient than
not. The idea of this example is that computing this problem requires that we
repeatedly find characters in S, and things are so arranged that which character
is to be found is almost random, making it, apparently, impossible to do all
the “finding” on a single pass or two through S. It thus becomes more e�cient
to dump the characters of S into an array, once and for all at the beginning:
The resulting easy access to the characters of S ultimately pays o↵. Of course,
we have not proved that there exists no way to compute this problem, without
indexed arrays, that is much more e�cient than the way above, although this
looks unlikely. So, the critical issue here is whether our intuitive sense is that
the di�culty of this problem should be m2, or m(logm)2. If it is the latter, then
we must retain indexed arrays.

57

58 12.

Even if we begin with commands 1-2 and subroutines 1-3, we could still re-
cover indexed arrays in a simpler way: Introduce two additional basic commands,
set C(S) = C(C(S0)) and set C(C(S0)) = C(S). These would allow us to trans-
fer strings currently in indexed arrays to regular locations for further processing,
and then to transfer the results back again to the indexed array. What di�culty
shall we assign to these commands? We might use L(C(S0)) ⇤ L(C(C(S0)), the
di�culty of current subroutine 14. If we do this, then the new language will,
apparently, be less e�cient than the old. If, for example, we merely want to
deal with the last character of a string in an array, C(C(S0)), then the original
language permits this in just L(C(S0)) steps (lookup charge only), while the new
language requires that the entire string be copied into a regular location before
its last character is accessed. We could avoid this by making the di�culty, for
the two new commands above, just L(C(S0)). But then the new language would
be more e�cient than the old, for we could copy an entire string from one regular
location to another in just 1 step — by copying to an indexed location, and then
back. Again, the issue here is what we would like our di�culty function to be.

These complications are caused by lookup charges. Then why not eliminate
them entirely, i.e., imagine a world in which looking something up is free, but
charges are still made for printing and erasing? This could be achieved, e.g., by
retaining the present five classes of commands, but changing the di�culties for
each of the last three classes to one. Consider, in this version, subroutine 15.
Its di�culty will now be L(C(C(S0))) ⇤L(C(C(C(S0)))). Thus, a lookup charge
has crept back in: It is reflected in the factor L(C(C(S0))), which arises from
the necessity to store the string C(C(S0)) in order to implement this subroutine.
It seems unnatural to have a lookup charge in this case but not in others. We
could eliminate that charge here with a new basic command: set C(S) =

C(C(C(S’))). {L(C(C(C(S0))))}. But then how will we deal with set C(S) =
C(C(C(C(S0))))? Again, there will arise a lookup charge if this is made a
subroutine, rather than an additional basic command. Are there examples in
which such exotic indexed arrays actually impact the final di�culty functions?

Here is a more systematic method by which we might find a natural language
with a natural di�culty function. We introduce machine language(2), as follows.
Storage locations are labeled by strings of exactly two characters, and each
such location always contains exactly one character. Thus, “C(h8)” denotes the
character in location h8; while “C(C(h8)C(21))” denotes the character in the
location described by the two-character string whose first character is C(h8)
and whose second character is C(21). In this machine language(2) there are (in
addition to input, output, with which we are not concerned right now) four
commands:

1. set C(xy) = z.

2. set C(C(xy)C(zw)) = C(pq)

3. set C(pq) = C(C(xy)C(zw))

4. if (C(xy) == z) skip n lines

where x, y, z, w, p, and q are to be replaced by arbitrary explicit characters, and n

59

by an arbitrary (positive or negative) explicit integer. You can convince yourself
that this is enough to carry out simple computations: manipulate strings (whose
characters are now stored in individual locations), utilize indexed arrays, branch,
count, etc. Indeed, machine language(2) is the actual machine language of my
(very) old Apple II+. There are 256 characters; and, thus, the total RAM of the
computer is just over 65 KB! The good news about machine language(2) is that
there is an obvious choice of what di�culty to assign to each command: One
step. The bad news is that machine language(2) cannot compute any problem
at all (as we have defined those terms), for it utilizes a finite total memory.
You can make available more memory by passing to machine language(3) — the
same as that above, except that now three characters are needed to describe a
location, with the obvious modifications of the basic commands above — or, if
still more space is needed, to machine language(4), etc.

The idea, now, is the following. We would introduce a certain basic language,
much like that of the previous section; together with a compiler, which would
compile programs written in that language into machine language(n) for some
n. [Indeed, this is what the Apple II+ does: Here, n = 2, and the basic language
is Basic.] Given an input string S, the program that is actually run would be
the compiled one, written in machine language(n). In this way, we obtain an
unambiguous count of steps. If, in the course of that run, it emerged that more
memory was needed, then the compiler would kick in again, to recompile the
basic-language program in machine language(n0) for some n0 > n. Computation
in machine language would then continue. Best if these recompilations could take
place seamlessly, e.g., if the machine-language commands could be adjusted so as
to be n-universal. Thus, we are free to introduce any sorts of exotic commands we
wish in our basic language — the only burden being that these be compiled into
machine language. And, we needn’t make hard choices as to what the di�culties
of these commands are to be: They are whatever follows from their execution
in machine language. Thus, since it is the machine language that assigns the
di�culties, we might hope that those assignments will be the natural ones. Of
course, it would still be required that we decide how to compare number of steps
as carried out by machine language(n) with number as carried out by machine
language(n0), for n0 6= n. It might be interesting to see if this scheme could be
implemented.

In any case, let us imagine that there has been introduced a natural language,
which gives meaning to “algorithm”; as well as an assignment of di�culty to each
command in that language, which gives meaning to “di�culty of that algorithm”.

Perhaps the major challenge in this subject is to obtain good lower limits on
the di�culty functions for computing various problems. That is, one would like
to have theorems of the form: ”There is no program that computes this problem
⇡ and has di�culty function f satisfying f ⌧ (something).” Here, “something”
is some explicit di�culty function of interest.

Consider, as an example, multiplication of integers. The elementary multi-
plication that we all learned in school has di�culty function f̃(S) = mn + 1,
where m and n are the numbers of digits of the two numbers. [This follows,
since, in the course of the multiplication, each digit of the first number must be

60 12.

multiplied by each digit of the second.] Note that there do exist programs that
multiply integers, with di�culty function f mn + 1, and f 6⇠ mn + 1. [Such
a program, for example, might first check to see if both integers are integral
powers of ten, in which case it writes the product immediately; otherwise, it
multiplies the numbers in the usual way.] But does there exist a program that
computes this problem, with di�culty function f ⌧ mn+ 1? It turns out that
there does ([7]). It is an open question, as far as I am aware, whether there
exists a program (with di�culty function f) for multiplication of integers, such
that there exists no program with di�culty function f 0 ⌧ f .

A more famous example is the prime problem, the problem that, given an
integer n, returns the prime factors of that integer. The naive program that
computes this problem (by trying each integer up to n1/2 to see if it divides
n) has di�culty just over n1/2. It is known that there are much more e�cient
programs. But what we don’t have is a theorem that sets a good lower limit on
the di�culty for any possible computation of this problem.

This key fact — that we lack good lower limits on the di�culty of computing
various problems — has far-reaching implications for the structure of this sub-
ject. For instance, as we shall see later, there are examples of problems for which
the use of quantum mechanics seems to allow a very e�cient computation. In
these examples, in particular, it appears that quantum mechanics is more e�-
cient than any known regular computation of that problem. But we cannot prove
that quantum mechanics is more e�cient, for we cannot eliminate the possibility
that there exists some — miraculously e�cient — regular computation that, for
some reason, we have not yet discovered.

13. Probabilistic Computing

As a prerequisite to our study of quantum-assisted computing, we consider here
briefly the case of an ordinary computer that has access to a “random number
generator”. That is, we consider computing in a context in which the actions of
a computer, at various stages during its operation, are subject to probabilities.
Our purpose here is merely to understand how computing works in this environ-
ment. This will allow us, later, to separate e↵ects due to the full structure of
quantum mechanics from those arising solely from its probabilistic character.

Consider the following programming language. The commands are precisely
the six introduced in Sect. 11, except for the following change. The third com-
mand (append) is replaced by

3. append x, y, · · · , z to C(S) {1}.

Here, x, y, · · · z stand for any finite list (possibly with repetitions) of explicit
single characters from our character set; and, as before, S stands for any explicit
string. A program in this new language is defined just as as before (i.e., as a
finite list of commands, beginning with an input and ending with an output).
Whenever, during the running of such a program, one of these new append

commands is reached, then whatever string is stored in location C(S) is to be
replaced by that same string, but with one of the characters x, y, · · · , z appended
on the right. Which character is appended is to be selected randomly, i.e., with
equal probability for each of the characters in the list. Thus, if there are n � 1
characters in the list, then each of those characters has probability of 1/n of
being appended. Except for this one change, the programs run just as before.
Note that our earlier programming language is a special case of this one, namely,
that in which each append command involves a list of exactly n = 1 character.
We shall call this new language, and its programs, “probabilistic”, when we
wish to distinguish them from the original language and its programs. This
new language is in the spirit of Turing machines and of the old language: We
introduce the minimum that is necessary to get the job done.

Clearly, by allowing repetitions of characters in our list, we can achieve any
rational-valued probability distribution for which character is appended to C(S).
And, combining this new command with the others, we can achieve any ratio-
nal probabilities for deleting (as opposed to not deleting) a character from the
string in any given storage location; as well as rational probabilities for skipping

61

62 13.

various numbers of lines. Why rational probabilities? Why do we not simply
allow arbitrary probabilities for appending various characters? This puts us on
dangerous ground. Suppose, for example, that we allowed a command that ap-
pends “x” to a string, with probability c (the non-computable number of Sect.
7); and appends “y” with probability 1�c. Armed with this command, we could
write a probabilistic program to compute (in a sense we shall make precise in
a moment) the halting problem! In short, we use only rational probabilities in
order to prevent sneaking unauthorized information into the program through
exotic choices of the probability numbers.

So, let us fix a probabilistic program, and an input string. What can be the
result if we run this program on this string? The possibilities in this case are
precisely the same as before: The program can halt, with some output string; or
it can continue forever without halting. But now, of course, di↵erent runs (with
the same program and input string) can give di↵erent results. Denote by S̃ the
set consisting of all strings over our original character set, C , together with one
additional element “⇤”, which we designate “not halt”. Then we can describe
the running of a given program on a given input string by means of a probability
distribution on S̃ . That is, for each ↵ 2 S̃ , we have a nonnegative number
p(↵), called the “probability of outcome ↵”, and these satisfy

P
↵2S̃ p(↵) = 1.

The following example will illustrate these ideas.

Example. Consider the program begins by flipping a coin (i.e., ap-
plying an append command with n = 2). If the coin comes up
“heads”, the program reports the total number of coin-flips it has
carried out (in this case, “1”), and halts. If the coin is “tails”, the
program flips the coin again. Again if “heads” comes up, it reports
the total number of flips (now “2”); if “tails” it flips again. The
program continues in this way. The possible outcomes in this ex-
ample are the positive integers, together with “⇤”. The probability
distribution is: For n a positive integer, p(n) = 2�n; and p(⇤) = 0.

Note that, in this example, we have p(⇤) = 0 even though it is possible that
a given run of this program will never halt. It turns out, however, that this
phenomenon can occur only for this special outcome: We claim: For any ↵ 6= ⇤,
p(↵) > 0 if and only if ↵ is a possible outcome of running the program. The
“only if” is immediate. For “if”, let ↵ 6= ⇤ be a possible outcome. This means
that there exists a sequence of allowed steps in our program that ends with
the program halting, with output string “↵”. There must be only a a finite
total number of steps in this sequence (since the sequence ends up with a halt),
and so a finite number of append-steps. Let r denote the (rational) number
that results from multiplying the probabilities associated with the given passage
through each of these append-steps. Then, clearly, p(↵) � r > 0. Exercise:
Find an example of a probabilistic program such that the probability of some
outcome (say, halting, with output the empty string) is the non-computable
number c of Sect. 7.

Now fix a probabilistic program, and also a problem, S
⇡! S . We say that

this program (probabilistically) computes problem ⇡ provided that, for every

63

string S, the probability distribution resulting from running this program on
initial string S satisfies the following: The probability of failing to halt is zero;
and the probability of output string ⇡(S) is greater than the probability of every
other output string. Think of this definition as requiring that we can extract
⇡(S) by “repeated running of the program on S”. [We shall make this more
precise shortly.] Note that p(⇡(S)) can be very small: We only require that no
other individual string have probability greater than or equal to that of ⇡(S).

Clearly, every (non-probabilistically) computable problem is also probabilisti-
cally computable, since every non-probabilistic program is already a probabilistic
program (namely, one in which each append command happens to have but a
single choice). It turns out that the converse is also true: Every probabilistically
computable problem is also (non-probabilistically) computable. In other words,
the introduction of probability adds nothing to what can be computed.

To prove this, fix a problem ⇡, and a probabilistic program, P, that computes
it, in the sense above. We now construct non-probabilistic program, P̃, as
follows. Given any input string So, this P̃ simulates the action of P on So.
That is, P̃ keeps track, at each step, of which program line P is currently
executing; and what string resides in each of P’s storage locations. Then P̃
simply follows the action of P, step by step. When P, so simulated, reaches
an append command, there will in general be several options for the next state
(corresponding to the several possible characters that could be appended in
response to this command). When this happens, P̃ simply keeps track of each
of these options separately, and also keeps a record of the probability for each.
Thus, for example, if the simulation by P̃ reaches the command append x, y, z
to C(k8), then P̃ will consider separately the cases in which x, or y, or z
is appended to the string C(k8), assigning probability 1/3 to each. Then P̃
will simply simulate the action of P separately for each of the three cases.
This branching continues for subsequent append commands: If, say, one of
these branches reaches another append command, then there will result further
branches (with new probability assignments) for P̃ to follow.

Now, as P̃ continues to follow all these branches, there will occur, every so
often, a branch on which P would have encountered an output command, and
thus would have halted. When P̃ reaches this point of a branch, then, of course,
it can no longer follow that branch, since P itself would be unable to continue
to operate along that branch. The program P̃ maintains a table in which
there is recorded, for each such terminated branch, two pieces of information:
The P-output string at that P-halt, and the probability (a rational number)
of reaching that particular termination. As P̃ continues its simulation new
terminating branches will be found, and this table will continue to grow. Note
that the sum of the probabilities in this table will always be less than or equal
to one. It further follows, from our assumption that p(⇤) = 0, that this sum will
approach one, as P̃ continues to run in this way.

Each time the program P̃ adds a new line to this table, it will also perform
the following calculation. First, it finds that string, S, having the largest to-
tal probability (i.e., that string such that the sum of the probabilities already
assigned to that string in the table is greater than the sum of the probabilities

64 13.

already assigned to any other string). Then, P̃ computes how much probability
remains, i.e., it computes the number given by subtracting, from one, the sum of
all the probabilities listed in the table. Next, P̃ asks: Is there any other string,
S0, such that, if all the remaining probability were allocated to S0 (in addition to
the probability already assigned to S0), then this total would exceed the proba-
bility for S? If the answer to this question is yes, i.e., if there does exist a string
S0 having the potential of ultimately accumulating more probability than has
already been assigned to S, then P̃ continues to run. But eventually P̃ must
reach a point at which the answer to this question is no. That is, it will reach a
point at which some string S has already accumulated enough probability that
no other string is even a candidate ever to accumulate more. [This follows from
the fact that the program P computes the problem ⇡, i.e., that p(⇤) = 0 and
p(⇡(So)) exceeds the probability of every other string.] When this happens, P̃
itself halts, and announces the winning string, S.

Clearly, this (non-probabilistic) program P̃ also computes the problem ⇡.
What we have shown, then, is that, given a probabilistic program that probabilis-
tically computes a problem, we can, using simulation, build a non-probabilistic
program that computes the same problem5. In short, the use of probability adds
nothing to the concept of computability.

We now turn to the issue of assigning a di�culty function to a probabilistic
computation.

Fix a probabilistic program, P, that computes a problem ⇡ (so, for any
input string S, the probability that P fails to halt for this string is zero; and
the most likely output string is ⇡(S)). Fix any input string S, and let us run
the program P on that string. Then during this run, various commands will be
executed, and to each of these we have assigned a di�culty. Let us keep track of
the cumulative total di�culty during the running of the program. Now should
it happen, on this particular run of P, that the program fails to halt, then
the cumulative di�culty will, of course, grow without bound. But if P does
halt, then there will be some total cumulated di�culty, ⌫, as of that halt. On
di↵erent runs, there will be di↵erent cumulated di�culties. Thus we shall have
some probability distribution on the possible cumulated di�culties, i.e., for each
⌫, we have a number p(⌫) � 0, such that

P
⌫ p(⌫) = 1. [That this sum must

actually be one follows from p(⇤) = 0.] Denote by D(S) the mean total di�culty:
D(S) =

P
⌫ ⌫ p(⌫). This D(S) is the di�culty that would be experienced “on

the average” in one run of P with the given input string S. Of course, it is only
an average: On any given run, it is entirely possible that the actual cumulated
di�culty turn out to be much greater than D(S) — or much less. Note that the
sum defining D(S) need not converge: The di�culty ⌫ could grow very quickly
even as p(⌫) approaches zero. [Exercise: Find an example.] If this should occur,
then we assign P infinite di�culty for the input string S, and abandon further

5In fact, this remains true even with certain, even weaker, notions of “probabilistically
computable”. For example, it su�ces to require, instead of p(⇤) = 0, merely that we are given
a program that, for each input string, computes the number p(⇤). We also remark that one can
modify this simulation program P̃ to prove the following: If, for any probabilistic program
acting on any string, p(⇤) is computable, then each of the probabilities for each of the possible
output strings is also a computable number.

65

e↵orts to assign a di�culty function for this program. Note that, by simulating
the running of P on input string S, as described above, we could compute an
increasing sequence of rational numbers that converges to D(S) (or, in the case
in which D(S) = 1, that grows without bound). It seems unlikely, nevertheless,
that D is always computable, in the sense that there always exists a (regular)
program that, given probabilistic program P, string S, and a positive integer
n, returns a rational within 1/n of D(S). Indeed, even the problem of whether
or not D(S) is finite is probably not computable.

In any case, we have the notion of the mean di�culty, D(S), for one run of P
with input string S. But, unfortunately, a single run of this program, with input
string S, does not tell us what the answer to our problem ⇡ is for that string,
i.e., does not tell us what ⇡(S) is. Rather, we must run the program a number of
times, on the same given input string, and keep a record of the various outputs.
The “real” answer will be buried in the statistics of these records (in the form
of the “most likely” output). What me must determine, then, is by what factor
to multiply the mean di�culty, D(S), to correct for this probabilistic character.
To this end, let us run this program a total of r times, keeping a record of the
various outputs that result. At the end of all these runs, we announce as the
answer that output that occurred most frequently. Sometimes we will announce
the correct answer, ⇡(S), and sometimes the wrong answer. Denote by (r)
the probability that our announcement is wrong. The following lemma states,
roughly speaking, that, as the number r of runs increases, this probability (r)
goes to zero as e�Kr, for a certain number K:

Lemma. Consider a collection of positive numbers, with sum one. Denote the
largest by p and the next largest by p0, and assume p > p0. Carry out r runs in
the corresponding probability distribution, and denote by (r) the probability
that the most frequent single outcome is not the most probable outcome (i.e.,
not the p-outcome). Then the limit of [� log (r)/r], as r ! 1, exists, and has
value K = (p� p0)2/2[p(1� (p� p0))2 + p0(1 + (p� p0))2].

The proof uses three facts: i) For large r, any other outcome, say with probability
p00 < p0, has negligible probability (compared with that of p0) of being the
most frequent outcome; ii) the di↵erence between the numbers of p-outcomes
and p0-outcomes is, for large r, normally distributed, with mean r(p � p0) and
squared-variance r[p(1� (p�p0))2+p0(1+(p�p0))2]; and iii) the error function,
erf(x), satisfies limx!1erf(x)/x2 = �1/2. For the present application, the p
of the lemma is p(⇡(S)), and the p0 is the probability of the next-most-likely
outcome. Note that the number K of the lemma here depends on the input
string S (through the dependence of the probabilities p, p0 on S).

Now fix a small number po > 0, which we shall interpret shortly as a confi-
dence limit, i.e., as the “largest probability of error that we are willing to tolerate
in our determination ⇡(S)”. Fix the input string S. Let us now run our program
ro times, keeping track of the outputs for each run, and report as the answer
that outcome that occurs most frequently in these runs. We wish to choose ro
su�ciently large that the probability that this procedure results in the wrong

66 13.

answer does not exceed our confidence limit po. It follows from the lemma that,
at least for su�ciently small po, the choice ro � �(log po)/K su�ces, where K is
the expression given in the lemma. That is, carrying out ro � �(log po)/K runs
and reporting the most frequent outcome will, with probability at least 1 � po,
result in reporting ⇡(S). Note that, as we expect, the number of runs required
grows without bound as po ! 0.

We now take, as the di�culty of computing ⇡(S) using the probabilistic
program P on input string S, the number [�(log po)/K]D(S), i.e., the product
of the minimum number (ro) of runs required and the mean di�culty (D(S))
per run. Repeating this procedure for all possible input strings S, we obtain the
di�culty function f(S) = �(log po)D(S)/K for this probabilistic computation
of the problem ⇡. But note that the confidence limit po appears only in an
overall factor. Thus, up to equivalence, it may be omitted. That is, it makes no
di↵erence how small is the confidence limit po we choose: The resulting di�culty
function, up to equivalence, is independent of po. There results f(S) = D(S)/K.
But this expression is not as it stands suitable for a di�culty function, because
it is not in general bounded away from zero. [Indeed, as p ! 1 (whence p0 ! 0),
K ! 1.] The reason for this phenomenon is quite simple: The argument above
requires, in the limit p ! 1, that the program P be run only a small fraction
of one time! But at least one full run of P is necessary in any case, and we can
take this fact into account by adding D(S) to the f(S) above. Doing this, and
passing to an equivalent di�cult function, we obtain

Let P be a probabilistic program that computes some problem, ⇡.
Then we shall assign to this program the di�culty function given by
f(S) = D(S)(p + p0)/(p � p0)2, where D(S) is the mean di�culty
for running P on input string S, p is the probability that that run
results in output ⇡(S), and p0 < p is the probability of the next most
probable output.

The factor, (p+ p0)/(p� p0)2, by which D(S) is multiplied reflects the increase
in di�culty due to the fact that P computes our problem only probabilistically.
This factor is always at least one, and for p = 1 (and so p0 = 0) this factor is
exactly one, i.e., the di�culty function for a probabilistic program reduces, in
the special case of a non-probabilistic program, to our original di�culty function.
When p and p0 are very close, the factor is large, reflecting the fact that there
must be carried out many runs of P, on the given input string S, in order to
have a reasonable chance of announcing the correct value of ⇡(S).

We have already seen that the introduction of probability adds nothing to
what is computable. But can probability add to e�ciency? Consider

Assertion: Let P be a probabilistic program that probabilistically
computes problem ⇡, with di�culty function f . Then there exists
a non-probabilistic program P 0 that also computes ⇡, and whose
di�culty function f 0 satisfies f 0 f .

This assertion states, in other words, that any probabilistic program can
always be at least matched, in terms of e�ciency, by a corresponding non-

67

probabilistic program. It seems likely, intuitively, that this assertion is true.
Given string S, there is some definite string, ⇡(S), that you wish to compute.
Why would it ever be more e�cient to use a random-number generator to find
this ⇡(S)?

One might imagine that one could prove this assertion by using a simulation,
as described earlier. Given probabilistic program, P, that computes ⇡, then
we can, by simulating P, construct a non-probabilistic program, P̃, that also
computes ⇡. If we could show that the di�culty of P̃ is always less than or equal
to that of P, then we would be done. Unfortunately, this is false in general.

Let ⇡ be the problem that assigns to each string (represented as a
positive integer) the string “a”. Consider the probabilistic program
P that operates as follows. Given input n, P flips a coin n times,
and then simply rolls a die. If the die comes up ”1”, P reports “b”;
otherwise, P reports “a”. This P computes the problem ⇡, and
has di�culty function f given by f(n) = n. Denote by P̃ the non-
probabilistic program that simulates P, as described earlier. Thus,
P̃ also computes ⇡. But, because of the 2n branches created by P
(via its coin-flips), this P̃ has di�culty function f̃(n) = 2n. Thus,
f ⌧ f̃ .

Thus, the program P merely creates 2n branches, and then proceeds to
ignore them! Clearly, there is no need, in this example, for P̃ to follow all 2n

branches: They are all the same, so it su�ces for P̃ to follow a single branch. It
is obvious, in this example, how P̃ can avoid unnecessary computations. But in
order to prove the assertion we need to find a general way for P̃ to do this. For
example, the probabilistic program P could actually ignore many branches, but
could be so written to disguise this fact from P̃. Thus, if such a simulation is
ever going to work to produce a proof of the assertion, then it will be necessary
to design a “smart” simulation program P̃ — one that looks ahead to find
what are the more promising branches. That this idea can be implemented is
by no means obvious. Thus, it is not at all clear whether or not there exists a
problem, and probabilistic program that computes that problem, which stands
as a counterexample to the assertion above.

Amazingly enough, this assertion remains open! Even an example of a prob-
lem, together with a probabilistic computation of that problem, such that it
appears plausible that there is no non-probabilistic computation that is at least
as e�cient, would be most interesting. Here is an possible strategy to obtain
such an example.

Fix a problem ⇡o that accepts as input any pair of positive integers, (N, k),
with k N , and produces as output either ”yes” or ”no”. Thus, for each value
of N a total of N values of k are allowed, 1, · · · , N . Further, let this ⇡o have
the following property6: For each N , either i) ⇡o(N, k) = “yes” for at least two-
thirds of the allowed k-values, or ii) ⇡o(N, k) = “no” for at least two-thirds of

6This property is imposed in a very strong form, for ease of exposition. It can be weakened
considerably.

68 13.

the allowed k-values. From this ⇡o, we construct a new problem, ⇡, acting on
positive integers N , as follows: ⇡(N) is “yes” or “no”, according as whether case
i) or ii) above applies for that N . This ⇡ is the problem of interest.

Now let there be given a program, Po, that computes ⇡o. Then we can
easily write a program, P, that computes ⇡: Given any positive integer N ,
let the program P simply run Po on (N, k) for each of the allowed k-values,
k = 1, · · · , N , and report “yes” or “no” according to which answer resulted
more frequently in those N runs. [Actually, it is enough to run Po for just over
two-thirds of these k-values.]

Denote by fo the di�culty function of Po. For each positive integer N ,
denote by g(N) the maximum value achieved by f(N, k), as k runs through
1, · · · , N . Let us also suppose that, for each fixed N , all of the fo(N, k), for
k = 1, · · · , N , are between, say, g(N)/2 and g(N). [This supposition is made
merely to simplify the discussion: It could be weakened considerably.] Then, up
to equivalence, the di�culty function of the program P (since it merely runs
Po a total of N times) is Ng(N).

Here is a probabilistic program, Pprob that also computes the problem ⇡. For
each positive integer N , let Pprob select, randomly, a positive integer k N , run
the program Po on the pair (N, k), and report whatever Po reports on this single
run. Note that this probabilistic program Pprob always halts; and that, for each
N , the probability of its giving the correct answer is at least two-thirds. Thus,
this Pprob does indeed probabilistically compute ⇡. The probabilistic program
Pprob has di�culty function given simply by g(N). That is, the probabilistic
program Pprob is far more e�cient than the non-probabilistic program P.

So, it would appear to be relatively easy to find an example of a problem
for which the probabilistic program is more e�cient than the non-probabilistic.
All we must do is find a problem ⇡o of the type described above. Here is a
simple example: Let ⇡o(N, k) be “yes” if k is a prime; and “no” if k is compos-
ite. Then this ⇡o (with suitable adjustments for the first few N -values) satisfies
the “two-thirds”-condition above. In this example, then, for given N , the non-
probabilistic program P must check for primeness of each integer k = 1, · · · , N ;
while probabilistic program Pprob checks for primeness of single (randomly se-
lected) integer in this range. Clearly, Pprob is far more e�cient than P. But in
this case there exists a shortcut for computing the problem ⇡ — there exists a
non-probabilistic program that is much more e�cient than either of these two.
This is the program that (except possibly for the first few N -values) always re-
ports “no”. Thus, the probabilistic program Pprob in this example, while more
e�cient than P, is not more e�cient than every non-probabilistic program that
computes ⇡. This example, in other words, fails.

What is needed, then, is a computable problem ⇡o that reports, for each N ,
either “yes” for at least two-thirds of the allowed k-values (1, · · · , N) or “no” for
at least two-thirds of the allowed k-values — but which is such that there is no
shortcut for determining which of these answers is the more frequent. It must be
the case that the only way to determine whether two-thirds of the answers are
“yes” or two-thirds “no” is actually to compute ⇡o(N, k) for the requisite number
of k-values (or, at least, to do some equally di�cult computation). Remarkably

69

enough, no such example of a ⇡o seems to be known! A theorem to the e↵ect
that there exists no such ⇡o — i.e., a theorem to the e↵ect that this type of
example will always fail — would be extremely interesting.

For most probabilistic programs of interest, the probability of the correct
outcome dominates the other probabilities, and when this is the case the formula
above can be simplified. Suppose that there exists a number a > 0, independent
of S, such that p(⇡(S)) exceeds the next-highest probability by at least this
a. This condition is always satisfied, e.g., if all the p(⇡(S)) are greater than
0.501. Indeed, one could take the position that P is not “really computing” the
problem unless this condition is satisfied. In any case, whenever this condition
is satisfied, then the factor (p + p0)/(p � p0)2 in the formula above is bounded
above, and so in this case the di�culty function, up to equivalence, is given
simply by D(S). That is: Under this rather weak condition, we may assign to
a program P that solves the problem ⇡ the di�culty function whose value on
any input string is the mean di�culty of running that program on that input
string.

Exercise. Let P and P 0, with respective di�culty functions f and
f 0, both compute the same problem. Is there a way to alternate
between these two programs, constructing a program P 00 that also
computes this problem, with di�culty function given by f 00(S) =
min(f(S), f 0(S))?

The probabilistic programs that one would typically write will have the prop-
erty that, for every run of the program on every input string, the program will
always halt. [As we have seen from an earlier example, this property is stronger
than merely requiring that p(⇤) = 0.] An example would be a Monte-Carlo pro-
gram: It visits an append command with several outcomes a certain number
of times; keeps track of the results, thus generating a distribution of outcomes;
and then simply halts, reporting, say, some property of this distribution. For
such a program — one that always halts, on every run with every input string
— the discussion above can be simplified considerably. Fix such a program, P,
and an input string S. We claim, first, that, in this special case, there is but a
finite number of possible outcomes. To see this, call a state, during the running
of this program, rich if there is an infinite number of possible outcomes starting
from that state. Suppose, for contradiction, that the initial state — the original
input of the initial string — were rich. Now follow the steps of this program as
it runs. As long as we encounter only non-append commands, we must always
remain in a rich configuration. Now consider the first append-command we
encounter. We are already in a rich state at this point, and so at least one of
the possible branches from this point must itself be rich. Choose any such rich
branch. Continuing in this way (taking, at each probability append-command,
some choice that again results in a rich configuration) we will always remain
in a rich configuration; and therefore we can never halt (since the halt-state is
hardly rich). But this contradicts our assumption that failure to halt, for any
run on any string, is not possible. This shows that our initial supposition —
that there was an infinite number of possible outcomes — must be false. A

70 13.

similar argument shows that, in this situation (a program, running on an input
string, such that the failing to halt is not a possible outcome), there must be
an upper bound to the number of steps that will ever be required to achieve
the halt. The proof is the identical to that above, merely redefining “rich” as
“having no upper bound for the maximum number of steps that could be re-
quired, from that point, to achieve the halt”. These two proofs are essentially
the same as that of the “tree theorem” in mathematics. It also follows, in this
case, that the probabilities for the di↵erent output strings are all rational (since
there is a finite number of possible routes to a given output string, and each of
these, since it encounters a finite number of append commands, has a rational
probability of being the actual route). And finally, the simulation program P̃
that we introduced earlier will, in this case, halt all by itself (without invoking
the special rule involving a probability calculation). This follows, since each of
the branches in the simulation must, eventually, be terminated.

Thus, many of the complications of simulating the running of a probabilistic
program, and of computing its di�culty function, disappear in the special case
that the program, for every run with every input string, always halts.

14. Quantum Mechanics

This section is a very short course in quantum mechanics — for people who
already know quantum mechanics.

A Hilbert space is a complex vector space, equipped with an inner prod-
uct that is antilinear in the first factor and linear in the second, such that
the associated norm is positive-definite. All our Hilbert spaces will be finite-
dimensional/footnote The full definition of a Hilbert space includes an additional
condition of completeness, but in the finite-dimensional case completeness fol-
lows automatically. Vectors in Hilbert spaces are usually written, e.g., as |↵i,
where ↵ is some symbol or word that describes the vector; and the inner product
of vectors |↵i and |�i is usually written h↵|�i. The states of a quantum system
are described by nonzero vectors (up to an overall complex factor) in a suitable
Hilbert space.

Let H and H 0 be Hilbert spaces. The tensor product of H and H 0 is a certain
Hilbert space obtained by taking linear combinations of formal products, where
each product is of one vector in H with one vector in H 0. The tensor product
is written H ⌦ H 0, and has dimension given by the product of the dimensions
of H and H 0. For |↵i 2 H and |↵0i 2 H 0, the corresponding formal product, in
H ⌦ H 0, is written |↵i|↵0i. Now consider two quantum systems, whose states
are described by respective Hilbert spaces H and H 0. Regard these two separate
systems as one. Then the Hilbert space of states of the combined system is
H ⌦H 0. Indeed, |↵i|↵0i represents that state of the combined system with the
H-system in state |↵i and the H 0-system in state |↵0i. Since the Hilbert space
H⌦H 0 allows linear combinations of these simple products, not every state of the
combined system is one in which each of the original systems is in a particular
state.

An operator on a (finite-dimensional) Hilbert space H is a linear mapping
from H to itself. For example, the identity, I, is an operator, as is, for any
|↵i 2 H, the map, written |↵ih↵|, with action |↵ih↵| (|�i) = |↵i (h↵|�i). For A
an operator and |↵i a vector in the Hilbert space, we sometimes write |A↵i for
A(|↵i). For A and A0 operators on Hilbert spaces H and H 0, respectively, we
writeA⌦A0 for the operator onH⌦H 0 with action (A⌦A0)(|↵i|↵0i) = |A↵i|A0↵0i
(extended to all of H ⌦ H 0 by linearity). We shall sometimes not distinguish
between an operator A0 acting on H 0 and the operator I ⌦A0 acting on H ⌦H 0.

An operator U on a Hilbert space is called unitary if it is inner-product
preserving, i.e., if hU↵|U�i = h↵|�i for every ↵,�. For example, if |↵i is unit,

71

72 14.

then I � 2|↵ih↵| is unitary. The evolution of a quantum system through time is
described by a unitary operator U : Initial state | i evolves to |U i.

An operator A on a Hilbert space is called Hermitian if it satisfies hA↵|�i =
h↵|A�i for every ↵,�. For example, I and |�ih�| are Hermitian. In the finite-
dimensional case, every Hermitian operator has a finite number of eigenvalues,
all real, and the corresponding eigenspaces span the entire Hilbert space. Obser-
vations on quantum systems are described by Hermitian operators. Let a system,
initially in state given by unit | i, be observed via Hermitian A. Then the “re-
sult” of the observation is one of the eigenvalues of A; the state of the system
after the observation is the projection of | i into the corresponding eigenspace;
and the probability of that result is the squared-norm of that projection. Given
a basis for H, by an observation via that basis we mean an observation via
a Hermitian operator whose eigenspaces are those generated by the individual
basis vectors.

15. Grover Construction

We now begin a new subject: quantum-assisted computing. Our strategy will be
first to consider, in some detail, one particular example. We shall then generalize.
We choose for our example what is called the Grover construction [4][10][11], for
it has a number of attractive features: It is very simple; it illustrates most of the
constructs and ideas of quantum-assisted computing; and it holds out realistic
hope of generating an example in which the quantum-assist provides a genuine
reduction in di�culty.

Consider the challenge of finding a needle in a haystack. Fix an integer N
(which you should think of as containing, say, 100 digits). The haystack is the
N integers 0, 1, · · · , (N � 1); and the needle is a specific one of those integers,
say ko. We suppose that we have a computer that allows us to search for the
needle in the following manner. The computer accepts as input any integer k
with 0 k (N � 1), and returns either “no” (if k 6= ko) or “yes” (if k = ko).
We wish to find the needle. The obvious way to do this is to run the computer
for various k-values as input. Thus, to be certain of finding ko we would have
to run the computer a total of N times; while a mere 50% chance would require
only N/2 runs. The issue is whether we can discover a way to find the needle in
substantially fewer runs.

Here is a corresponding quantum system. Let there be given anN -dimensional
Hilbert space, Hin, with orthonormal basis |0i, |1i, · · · |N � 1i: This is the quan-
tum system in which the input will be registered. And, similarly, let there be
given 2-dimensional Hilbert space, Hout, with orthonormal basis |noi, |yesi, to
register the output. Then the Hilbert space with which the computer (and we)
interact is Hin⌦Hout. We represent the action of the computer by the following
unitary operator7 on this Hilbert space:

V (|ki|noi) = |ki|noi (k 6= ko) V (|koi|noi) = |koi|yesi, (4)

V (|ki|yesi) = |ki|yesi (k 6= ko) V (|koi|yesi) = |koi|noi. (5)

That is, if the input register is in any state other than |koi, then V does nothing;
while if it is in state |koi, then V flips the output state. This unitary operator
V is a reasonable rendition of what a computer might do. Indeed, suppose we
have agreed to start the system with the output register in state |noi. Then

7The action of V on the linear combinations of these simple product states is, of course,
fixed by linearity.

73

74 15.

Eqn. (4) above specifies that V records the correct answer (for the given |ki) in
Hout. And (5) is the simplest way to extend this V , as a unitary operator, to
all of Hin ⌦Hout.

Let us pause at this point to see how we might search for the needle under
this setup. First select any candidate k, then begin with the registers in the
corresponding initial state, |ki|noi, and then run the computer (i.e., apply V).
When the computer is finished (with final register-state that given in (4)-(5)),
make an observation, on Hout, via the basis |noi, |yesi. If the result is “no”
(which it will be, with probability (N � 1)/N), then we know that our trial k
was not the needle; while if it is “yes” (probability 1/N) then we have found
our ko. This will be recognized as merely the original search, cloaked in a thin
veneer of quantum mechanics.

Let us now change things slightly. Set |�i = 1p
N
(|0i + |1i + · · ·+ |N � 1i),

a unit vector in Hin. This is a state that combines all possible inputs, equally
weighted. Let us now begin with state |�i|noi. Then the running of the computer
produces

V (|�i|noi) = 1p
N

{|0i+ · · ·+ |ko � 1i+ |ko + 1i+ · · ·+ |N � 1i} |noi

+
1p
N

|koi|yesi.

Again, let us see what we can learn from this final state. We first make an
observation on Hout via its basis. With probability (N � 1)/N we will obtain
“no”, in which case we have learned nothing whatever (not even, as in the
previous paragraph, a k known not to be the needle). But, one time out of
N , we will get lucky and obtain “yes”. In this case, we proceed to make an
observation on Hin via its basis |0i, |1i, · · · , |N � 1i. The result (since now the
Hin-state is simply |koi) will tell us what ko is. But note that even this procedure,
using the state |�i 2 Hin, hasn’t gained us anything: This is still basically the
original search, the only essential di↵erence being that now quantum mechanics
is “choosing” our trial k’s for us.

Let us now make still another change, this time to the output register. Let
us now choose as our initial state |�i 1p

2
{|noi� |yesi}. In this case, the running

of the computer produces

V (|�i 1p
2
{|noi � |yesi})

=
1p
N

{|0i+ · · ·+ |ko � 1i � |koi+ |ko + 1i+ · · ·+ |N � 1i} 1p
2
{|noi � |yesi}.

That is, the output register is now always in the state 1p
2
{|noi � |yesi} — both

before and after the running of the computer. All the computer does, now, is
reverse of the sign of the |koi-term in the input register. What can we learn by
making our observations on this final state? Absolutely nothing. An observation
on Hout, via its basis, will give equal probability for “no” and “yes”; and an

75

observation on Hin, via its basis, will return each k = 0, 1, · · · , (N � 1) with
equal probability. It looks as though we have gone backward.

Undaunted, we set Vin = I � 2|koihko|, a unitary operator (reflection across
the plane orthogonal to |koi) on Hin. Then the result of the previous paragraph
can be summarized as follows: For any | i 2 Hin,

V (| i 1p
2
{|noi � |yesi}) = |Vin i

1p
2
{|noi � |yesi}.

That is, provided the Hout-state is set to 1p
2
{|noi � |yesi}, the action of V (the

run-the-computer operator) on Hin ⌦ Hout is represented by the action of this
Vin on Hin, the Hout-state never changing. Next, set W = I � 2|�ih�|, another
unitary operator (reflection across the plane orthogonal to |�i) on Hin. Note
that W does not involve knowing which |ki is the needle in the haystack. We
now have, by an easy calculation,

�WVin|�i =
N � 4

N
|�i+ 2p

N
|koi. (6)

Thus, we are now working solely in Hin, for we begin with Hout-state
1p
2
{|noi�

|yesi}, and this state never changes. Eqn. (6) gives the result of starting with
state |�i 2 Hin, then running the computer (i.e., applying unitary Vin), and then
applying unitary W .

Again, let us pause to interpret this equation. Let us make an observation,
on the state given by the right side of (6), via our basis, |0i, |1i, · · · , |N � 1i,
for Hin. We find (taking the inner product of that right side with |koi and
squaring the result) that the probability of obtaining ko is (3N � 4)2/N3 (the
rest of the probability being distributed equally over the other k’s). For large
N , this probability is about 9/N . After observing via this basis (obtaining a
k-value), we may of course check directly, by running our classical computer,
whether that k is actually the needle. Nine times out of N , we will in this way
find the needle. Note that this is nine times the a priori probability of finding
ko by merely guessing a k-value. It may look as though we are making some
real progress here, but this appearance is misleading. Even a factor of nine
in the probability for success still means that, in order to find the needle, we
must carry out a number of runs proportional to N . But suppose that, instead
of observing the state (6) immediately, we repeat the operation: Apply �WVin

again, and only then observe via the |ki-basis and check the k-value that results?
Our probability of success will then turn out to be twenty-five times the a priori
probability. These remarks motivate what follows.

Now comes the key step: To look, from a geometrical viewpoint, at what
we have just done. Consider the 2-plane in Hin spanned by |koi and |�i. Each
of the operators of interest, Vin and W , when acting on any vector orthogonal
to this 2-plane, is the identity. Thus, all the action is taking place within this
2-plane. Let us choose an orthonormal basis for this 2-plane consisting of |koi
and |koi?, where the latter is that linear combination of |koi and |�i that is unit
and orthogonal to |koi. Denote by ✓ the angle that |�i makes with |koi?. Then
sin ✓ = hko|�i = 1p

N
.

76 15.

Now, each of Vin and �W is a certain reflection within this plane (about
vectors |koi? and |�i, respectively). But the composition of two reflections in a
plane is a rotation. The angle of rotation is given by cos(angle) = h |(�WVin) i,
where | i is any unit vector in our 2-plane. Choosing | i = |�i (or |koi, if you
prefer), we find that this angle is precisely 2✓.

So, vector |�i starts out making angle ✓ with |koi?; and each application
of �WVin increases that angle by 2✓. So, if we apply �WVin to |�i a total
of s times, the resulting vector will make angle (2s + 1)✓ with |koi?. Now
apply the operator �WVin to |�i a total of s times, where s is that number
such that (2s + 1)✓ is closest to ⇡/2. Then this number of times will satisfy
s ⇡/(4✓) (⇡/4)

p
N , where in the second inequality we used ✓ � sin ✓ = 1p

N
.

Having applied �WVin to |�i this many times, the resulting vector in this plane
will be within angle ✓ of |koi. Let us now make an observation on this final
vector, via the |ki-basis for Hin. The probability that this observation results
in ko, by what we just observed, is � cos2 ✓ = 1 � 1

N . That is, our chances are
excellent that this single observation on Hin will find the needle.

So, to summarize, if we apply, to initial state |�i 1p
2
{|noi � |yesi} in Hin ⌦

Hout, the operator �WV a number of times not exceeding ⇡
4

p
N , and then

observe the resulting state via the |ki-basis, we will, with probability at least
1 � 1

N (i.e., almost certainly), obtain the needle, ko. Note that we only have

to run the computer (i.e., apply V) a number of times proportional to
p
N —

not to N itself. It does indeed appear that there has been a significant gain in
e�ciency. This is an example of a quantum-assisted computation.

Note that if you are impatient — insisting on making |ki-basis observations
between the computer runs (“just to see how things are going”), then you will
destroy this e↵ect. This is similar to the familiar “watched pot never boils”
parable in quantum mechanics.

16. Grover Construction:
Six Issues

In the previous section, we gave an example of a construction that appears to
show quantum mechanics providing a clear gain in e�ciency over a non-quantum
computation. We here discuss six issues pertaining to that construction.

16.1. Initial State

The construction requires that the registers be placed, initially, in state |�i 1p
2
{|noi�

|yesi}. Is it feasible to build this state?
The state of Hout would not seem to be much of a problem: After all, this is

merely a 2-dimensional Hilbert space. So, for example, we could represent this
space physically as the spin-states of a spin-1/2 particle, designating |noi and
|yesi as the states corresponding to the spin aligned or anti-aligned in a given
direction. Then 1p

2
{|noi� |yesi} would be the state in which the spin is aligned

in a certain orthogonal direction.
But the state |�i 2 Hin is more complicated. After all, this is a superposition

of N states. To construct these states one at a time, and then “superpose
them” (whatever that means) is a job that threatens to have di�culty N , i.e.,
to overwhelm the di�culty of running the computer

p
N times. Here is a device

— common in this subject — to circumvent this problem. Fix, once and for all,
a 2-dimensional Hilbert space, with basis |0i, |1i (not to be confused with the
vectors of the same name in Hin). So, e.g., this H might be the spin-states of
a spin-1/2 system. Let N = 2n for some positive integer n. [To achieve this —
at most a doubling of the number of input states — should not cause too much
additional complication.] Now set

Hin = H ⌦H ⌦ · · ·⌦H, (7)

where a total of n copies of H appear on the right8. Note that this gives the
correct dimension forHin. Now consider a typical state, e.g., |0i|1i|1i|0i · · · |0i|1i

8Note that we could not, e.g., let the H’s be simply the spin-states for n identical spin-
1/2 particles, because the states on the right in (7) are not in general antisymmetric under
particle-interchange. However, we could, e.g., have a system of n electrons occupying n energy
levels (say, in an atom); where each H, referring some energy level, gives the spin-state of the
occupant of that level.

77

78 16.

(total of n factors) in the Hilbert space on the right. We identify this with the
state |ki of Hin, where k = 0110 · · · 01 in base 2. The k’s that result in this way
range from 0 (for 00 · · · 0) to 2n � 1 (for 11 · · · 1); and so we indeed obtain in
this way the basis we want for Hin. Under this identification, the construction
of the state |�i 2 Hin is quite easy: It is a simple product

|�i = 1p
2
(|0i+ |1i) 1p

2
(|0i+ |1i) · · · 1p

2
(|0i+ |1i)

of the states 1p
2
(|0i + |1i) for each of the H-factors. This follows, expanding

the right side, and using the definitions of |ki and |�i. Thus, with this choice of
how Hin is to be structured, the construction of the state |�i should be relatively
easy. We note that this construction could have been carried out9 with any fixed
dimension for the factor-Hilbert spaces H.

16.2. Final Observation on Hin

The construction requires that, at the end of the computer-runs, an observation
be made on Hin via the |ki-basis. Is it feasible to make such an observation?

Yes, it is. Denote by A the Hermitian operator |0i0h0| + |1i1h1| on H (so
observation of A is observation of H via its natural basis). For example, if H is
spin-states, and the basis is spin-component in a certain direction, then A would
be the observation of spin-component in that direction, plus 1/2. Now consider
the following Hermitian operator on H ⌦ · · ·⌦H: Operator (2n�1A) applied to
the first H-factor, plus operator (2n�2A) applied to the second H-factor, and
so on, until reaching finally operator (20A) applied to the last H-factor. [Here,
we are regarding these operators on the H-factors as operators on the tensor
product in the manner described in Sect. 14.] The resulting sum can, via (7), be
regarded as an operator on Hin; and we note that it does indeed have the |ki as
its eigenstates. [In physical terms, observe the first H-component and multiply
by 2n�1; the second, by 2n�2; etc., and add. The result will be precisely the
k-value of that state.] We would expect to have no di�culty in making an
observation of H via this operator A; and, therefore, no di�culty in making an
observation of Hin, so constructed, via its |ki-basis.

16.3. Building the Operator W

The construction requires that we apply unitary operator W = I � 2|�ih�| to
Hin. Is it feasible to build and apply such an operator?

Note that this by no means follows immediately from the prior point: The
mere fact that we feel capable of placing Hin in state |�i does not lead directly

9In fact, the di↵erent H’s in the product could, if we so desired, be assigned di↵erent
dimensions. Exercise. Set up a system of arithmetic in which each of the various digits of an
integer refers to di↵erent number-system base. Figure out how to add in this system (which
turns out to be quite simple!).

16.3. BUILDING THE OPERATOR W 79

to an interaction on Hin that shifts each state | i 2 Hin to state W | i 2 Hin.
In order to build the operator W , we proceed as follows.

We first require a few preliminaries. We introduce a more convenient basis
for H: |↵i = 1p

2
(|1i + |0i), |�i = 1p

2
(|1i � |0i). In terms of this basis, we

have W = I � 2|↵i · · · |↵ih↵| · · · h↵|. Next, we introduce a unitary operator T on
H ⌦H ⌦H, with the following action: T (|↵i|↵i|↵i) = |↵i|↵i|�i, T (|↵i|↵i|�i) =
|↵i|↵i|↵i, while T the identity on the other six basis elements of H ⌦ H ⌦ H.
That is, this operator T , which is called the To↵oli gate, flips the third H-state
if and only if the first two H-states are10 both |↵i; and so, e.g., we have T 2 = I.
Let us denote by H1, H2, · · · , Hn the n H’s in the tensor product that is Hin.
We now introduce a second Hilbert space, Hscratch = H̃3 ⌦ H̃4 ⌦ · · · ⌦ H̃n+1,
where each of the H̃ in this tensor product is also a copy of our basic Hilbert
space H. This is the Hilbert space in which we shall carry out scratch work.
Thus, our full Hilbert space is now Hin ⌦ Hscratch, a tensor product of 2n � 1
copies of H. Now consider the following operator on this tensor product:

W = T (Hn, H̃n, H̃n+1)T (Hn�1, H̃n�1, H̃n) · · ·T (H3, H̃3, H̃4)

⇥ T (H1, H2, H̃3). (8)

We note that this operator, as a composition of unitary operators, is unitary.
Let us now begin with an arbitrary state in Hin, but with Hscratch in the state
|⌧i = |�i|�i · · · |�i 1p

2
(|↵i � |�i). Let us apply to this state the operator (8),

and see what happens. The rightmost operator T in this composition will place
H̃3 (which began in state |�i) in state |↵i if and only if the H1- and H2-states
are both |↵i. The next T , reading from right to left, will place H̃4 in state |↵i
if and only if H3 and H̃3 are both in state |↵i, i.e., if and only if H1, H2, and
H3 are all in state |↵i. And, similarly, the next T will place H̃5 in state |↵i if
and only if all four of H1, H2, H3 and H4 are in state |↵i. Continue in this way,
working from right to left in (8). Recall that the last H̃, H̃n+1 begins in state
1p
2
(|↵i � |�i) rather than |↵i. Thus, in the last step, an attempt to “flip” the

Hn+1-state will merely introduce a minus sign. We conclude: The operator W
of (8), acting on a state | i|⌧i 2 Hin ⌦Hscratch, where | i is any state in Hin,
and |⌧i is the state in Hscratch given above, indeed generates a sign change if all
the H’s are in state |↵i, and no sign change otherwise.

The operator W , so constructed, is our candidate for W . Of course, it acts,
not merely on the Hilbert space Hin (as W does), but rather on Hin ⌦Hscratch

Nevertheless, it does seem to have the right action and so, it appears, would
seem to su�ce for the Grover construction.

But this appearance is misleading: The above candidate, W , will not work as
a proxy for W , for the following reason. Some scratch work for this calculation

10The general state in H ⌦ H ⌦ H is, of course, not one in which each of the H’s is in a
particular state (|↵i or |�i), but rather is a superposition of all eight possible combinations of
individual H-states. We often describe operators, such as this T , by giving their actions on
each of the combinations that appear in this superposition. Thus, when we say, e.g., “the first
two H-states are ...”, we really mean “that term, in the superposition, in which the first two
H-states are ...”

80 16.

was left in the auxiliary Hilbert space Hscratch. That is, the final state, after
application of W is an entanglement of Hin-states and Hscratch-states. Consider,
for example, n = 4. Then if the initial state ofHin was |↵i|↵i|�i|↵i, say, then the
final state ofHscratch will be |↵i|�i 1p

2
(|↵i�|�i); while if the initial state of ofHin

was |↵i|�i|�i|↵i, then the final state of Hscratch will be |�i|�i 1p
2
(|↵i�|�i). This

entanglement, we claim, will destroy the working of the Grover construction. To
see this, consider Eqn. (6), which gives the result of the first application of
�WVin to |�i: a rotation |�i through angle 2✓. The key to the construction is
that the next application of �WVin (as well as each successive application) must
rotate through an additional angle 2✓. But, in order for this to happen, there
must occur cancellation between the |�i’s and |koi’s that arise from application
of �WVin to the two terms on the right in (6). Now consider what happens if the
W on the left in (6) is replaced by W . Then the terms on the right side of this
equation will become entangled with various elements of Hscratch. Therefore, on
the next application of �WVin the necessary cancellations on the right will not
take place. The Grover construction will thus fail.

In order to obtain an e↵ective W , we proceed as follows. Set

W 0 = T (H3, H̃3, H̃4) · · ·T (Hn�1, H̃n�1, H̃n) W . (9)

That is, W 0 first applies W , and then applies all the operators of W , save the
leftmost, in reverse order. It is easy to check that this procedure undoes the
entanglement. That is, we have W 0(| i|⌧i) = |W i|⌧i for any | i 2 Hin, where
|⌧i 2 Hscratch is the initial state given above. This W 0, then, can be used in
place of W in the Grover construction.

We conclude, then, that the operator W on Hin in the Grover construction
can indeed be built, by introducing an auxiliary Hilbert space Hscratch, and
applying the To↵oli gate (an operator on H ⌦H ⌦H) a total of 2n � 3 times.
So, it would seem that the operator W is feasible — provided the operator T is
feasible. We shall return to this last issue shortly.

16.4. Building the Operator V

No real computer, it might be argued, operates by applying some unitary oper-
ator V to Hin ⌦Hout, as in the Grover construction. After all, real computers
use irreversible operations (such as placing bits in locations). How, then, are we
to construct and interpret the operator V ?

Here is a model for how a computer might operate. We introduce an ad-
ditional Hilbert space, Hcom, to represent the computer states. Then the total
Hilbert space is Hin ⌦Hout ⌦Hcomp. The running of the computer will then be
represented by some unitary operator, V , on this Hilbert space. Let us fix a vec-
tor | initi 2 Hcomp, to represent the initial state of the computer. Then, in the
Grover case (i.e., with Hin spanned by |0i · · · |N � 1i and Hout by |noi, |yesi)),
the action of a suitable V would be as follows:

V (|ki|no/yesi| initi) = |ki|no/yesi| ki, (10)

16.4. BUILDING THE OPERATOR V 81

where the Hout-state on the right is |noi or |yesi depending on whether the
Hout-state on the left is |noi or |yesi, and also on whether or not k = ko. The
| ki 2 Hcomp on the right in (10) is the final state in which the computer finds
itself, depending on the k-value on the left (and also on the choice of initial
state in Hout, which we suppress). This operator V is unitary, and so invert-
ible. Thus, we are suggesting, the operation of any computer must always be
reversible. [Indeed, in a world governed by quantum mechanics, this is necessary,
for dynamics therein is described by an (invertible) unitary operator.] Things
don’t appear to be this way in practice only because we fail to take into account
how large and complicated Hcomp can be. It includes not only the states of the
chips, wires, fan, etc within the box, but also (if, say, the computer is plugged
in) the states of the electric company, and then of its employees, etc. By the
time all this dust settles, things look pretty irreversible.

Unfortunately, the operator V of (10) will not serve as a proxy for the op-
erator V of the Grover construction. The problem is that V introduces en-
tanglements between Hin ⌦ Hout on the one hand and Hcomp on the other, as
reflected in the dependence of the final computer state, | ki, in (10) on k. These
entanglements, in the same manner as for W in the discussion above, will in-
terfere with the cancellation that must take place in Eqn. (6), and will thereby
cause the Grover construction to fail. In order to avoid these entanglements, we
must, e.g., so design our computer that the final computer state, say | finali, is
independent of |ki. Then, when it comes time to repeat the computation, we
could either apply some special treatment to the computer to restore its initial
state to | initi, or discard that computer entirely, bringing in another with the
initial state | initi already preinstalled11. Best would be if we could arrange that
V automatically, at the end of each run, returns the computer to state | initi,
ready for the next run.

So, in any case, in order to carry out the computation implicit in the Grover
construction, we shall have to produce a computer that does not introduce en-
tanglements between computer states and in-out states. This is definitely not
the computer on your desk! We shall have to build our computer anew. The
danger we face is that the building and operating of such computers consumes
resources — in particular, time — and we must be careful that this consump-
tion does not overwhelm the apparent savings we derive from using quantum
mechanics.

Recall that the Hilbert space Hin = H⌦ · · ·⌦H, in the Grover construction,
has large dimension, 2n. Our computer must interact with this large Hilbert
space, but do so relatively e�ciently. It would be of great help if we could de-
sign our computer to interact, not with all n of the H’s at once, but rather with
only a few at a time. Does this restriction entail a restriction on the possible
unitary operators we can generate on Hin ⌦Hout? The following shows that it

11Why not get rid of these awkward entanglements, not by searching for a clever V , but
rather by simply discarding the computer after each run, bringing in a new computer, with
| initi preinstalled, for the next run? The problem with this maneuver is that the act of
discarding a system entangled with another places the latter system in a mixed state, as
described by a density operator. But a mixed state for Hin destroys the cancellation, and so
the Grover construction, as surely as does entanglement

82 16.

does not.

Theorem. Let H be a finite-dimensional Hilbert space. Then any unitary op-
erator on H ⌦H ⌦ · · · ⌦H is equal to a product of unitary operators, each of
which acts on at most two of the H-factors in this tensor product.

Of course, di↵erent combinations of the two H-factors are allowed for the di↵er-
ent unitary operators in this product. Our proof of the theorem will make use
of three facts.

Lemma 1. Every Hermitian operator on H ⌦ · · · ⌦H is a linear combination
of operators of the form A ⌦ · · · ⌦ B, where A, · · · , B are Hermitian operators
on H.
Lemma 2. Every Hermitian operator on a Hilbert space is a linear combination
of commutators of Hermitian operators, and the identity I.
Lemma 3. Fix a connected Lie group G, and a collection of one-parameter
subgroups of G. If the generators of these subgroups generate the entire Lie
algebra of G, then the subgroups themselves generate the entirety of G.

Lemma 1 is easy to prove by a dimensional argument, using that the dimen-
sion of the (real) vector space of Hermitian operators on a Hilbert space is equal
to the square of the dimension of that (complex) space. Let there be n H’s in
the tensor product, each of dimension m. Then the Hilbert space H ⌦ · · · ⌦H
has dimension mn, and so the vector space of Hermitian operators on this space
has dimension (nm)2. The Hermitian operators of the form given in the Lemma
form a subspace of this space, and it has dimension (dimension of Hermitian
operators on H)m = (n2)m. These dimensions are equal, and so the subspace is
the entire vector space12. Lemma 2 (which, apparently, has little independent
interest) follows by direct construction. For m = 2, for example, it is the state-
ment that any linear combination of spin-operators is a commutator of two such
linear combinations. In Lemma 3, the Lie algebra of a Lie group is the tangent
space at its identity element. The “generator” of a one-parameter subgroup is
that element of the Lie algebra given by the tangent to that curve at the identity.
The Lie algebra “generated” by these generators is the collection of all elements
that can be obtained by using linear combinations and brackets on the gener-
ators of the one-parameter subgroups. And, finally, that the elements of these
subgroups “generate” the entirety of G means that every element of G can be
written as a (finite) product of such subgroup-elements. This Lemma, in other
words, states that if you can get the entire group from the subgroups “infinites-
imally close to the identity”, then you can indeed get the entire group from the
subgroups “everywhere”13. [This is the sort of thing that would normally be

12Lemma 1 is not quite as empty as it may appear at first sight. To see this, you might
try to write the Hermitian operator that switches the two H-states in H ⌦ H in the form
guaranteed by the Lemma.

13As an example, let G be the rotation group, let one one-parameter subgroup be the
rotations about some vector ~s, and let the another be rotations about some other, independent,
vector ~t. Then, since the Lie bracket of the corresponding infinitesimal rotations is simply an

16.4. BUILDING THE OPERATOR V 83

used, without mention, in a physics course.]
The theorem is very easy to prove from the three Lemmas. Consider, say,

n = 3. We have, for A,B,C, and D any Hermitian operators on H, and a any
real number

[A⌦ I ⌦ C, I ⌦B ⌦D] + a A⌦B ⌦ I = A⌦B ⌦ ([C,D] + aI). (11)

where “[,]” denotes i times the commutator. Each of the operators that
appears on the left contains an “I”, and so is a generator of unitary operators
on H ⌦H ⌦H that act on only two factors. By Lemma 2, the right side of (11)
includes the general tensor product of three Hermitian operators on H⌦H⌦H;
and, by Lemma 1, these span all Hermitian operators on the tensor product.
The result (for n = 3) now follows from Lemma 3. The case of general n is by
induction on n, repeating the construction of (11) at each step.

It seems likely that the product (whose existence is guaranteed by the The-
orem) involves no more than 5n�2 factors (perhaps substantially fewer), by an
argument that traces the mechanism of Lemma 3. Unfortunately, this number
grows quickly with n. The Theorem is also true (suitably modifying Lemma 1)
when the H’s in the tensor product have di↵erent dimensions.

So, we may expect to build our computer out of operators that act on H-
factors two at a time. But is it feasible to construct even these operators? Let
us take, as an example, the case in which H is 2-dimensional, representing the
spin-states of an electron. Then the general Hermitian operator onH is ~s·~�+b I,
where ~s is any vector in 3-space, ~� is the vector (Pauli) spin operator, and b is any
real number. [Note that these form a 4-dimensional vector space, as required.]
The Hermitian operator ~s · ~� generates the family of unitary operators, written
ei ~s·~�, that correspond to rotations in space about the vector ~s as axis; while
b I generates the family, written eib, that correspond to overall phase-changes
(which have no physical significance).

The unitary operators on a single H can be constructed physically as follows.
The unitary operators corresponding to rotations about ~s result from applying
to the electron a magnetic field in the ~s-direction, for such a field causes the
electron, by virtue of its angular momentum and magnetic moment, to precess
about the magnetic-field direction. The product of the field-strength and the
time for which the interaction is turned on determine the magnitude of this
rotation.

But, in order to invoke the Theorem, we must also construct the unitary op-
erators on H⌦H, i.e., on the two-electron system. It should be clear that merely
subjecting the two electrons, each to its own magnetic field, will not su�ce. We
must introduce some sort of direct interaction between the two electrons. One
such is what is called the spin-spin interaction. The corresponding Hermitian
operator on H ⌦H is ~�1 · ~�2 where ~�1 and ~�2 denote the spin operator acting
on the first and second factor in H ⌦ H, respectively. [Strictly speaking, we
should include a “⌦” between the two �’s in this expression; but the dot gets in

infinitesimal rotation about ~s⇥~t, the hypothesis of Lemma 3 is satisfied. The Lemma asserts
in this case that every rotation can be written as some product of various rotations about ~s
and ~t. This fact is the basis of Euler angles.

84 16.

the way.] This particular interaction actually occurs in nature: If the two elec-
trons are merely brought close together14, then, by virtue of the electromagnetic
interaction between their magnetic moments, the electrons interact in just the
manner we have described. The corresponding unitary operator may be written
eia ~�1· ~�2 , where the number a is determined by how close together the electrons
are placed, and for how long.

That these two physical operations — placing one or both electrons in a mag-
netic field, and allowing the electrons to interact electromagnetically — su�ce
to generate all possible two-electron interactions now follows from:

Theorem. Let H be a 2-dimensional Hilbert space. Then every unitary oper-
ator on H ⌦H is equal to some (finite) product of the operators eib, I ⌦ ei ~s· ~�1 ,
I ⌦ ei ~s· ~�2 , and eia ~�1· ~�2 , where ~s is any vector in 3-space and a and b are any
real numbers.

The proof is virtually identically to that of the earlier Theorem, using the Lem-
mas in the same way. In this case, Eqn. (11) is replaced by

� [~t · ~�1 ⌦ I, [~s · ~�1 ⌦ I, ~�1 · ~�2]] + (~s · ~t) ~�1 · ~�2 = (~s · ~�1)⌦ (~t · ~�2), (12)

where we have used the fact that [~s · ~�, ~t · ~�] = i(~s ⇥ ~t) · ~�. Taking linear
combinations involving the right side of (12) and the Hermitian operators ~s ·
~�1 ⌦ I, I ⌦ ~s · ~�2, and I ⌦ I reproduce the entire Lie algebra of H ⌦H; which is
just what we need to complete the proof.

Here are a couple of examples. Consider the operatorW onHin = H⌦· · ·⌦H,
where H is taken as the two-dimensional Hilbert space of spin-1/2 states. It
follows, from the two theorems above, that this W is equal to a composition of
our basic unitary operators: That (on a single H) generated by a magnetic field,
and that (on two H’s) generated by the spin-spin interaction. It seems likely
that the number of such basic operators that must be composed to construct
W in this manner increases exponentially in n. Note that this construction of
W is di↵erent from that of Sect. 16.3, for there we made use of an auxiliary
Hilbert space Hscratch, whereas here there is none. Next, note, again from the
two theorems above, that the To↵oli operator, T , on H ⌦H ⌦H is also equal
to a product of the basic operators on H. Having constructed T from the basic
operators, we may then proceed to construct W from the basic operators, using
the strategy of Sect. 16.3. While this alternative construction of W requires an
auxiliary Hilbert space Hscratch, it does have the advantage that the number of
basic operators required grows only linearly with n. We may, in addition to W ,
also construct Vin, in the following manner. Denote by U the unitary operator
on H with action U |0i = |1i, U |1i = |0i. Suppose that the needle, written in
base 2, is, say, ko = 01001 · · · 01. Then set U = U ⌦ I ⌦ U ⌦ U ⌦ I · · ·⌦ U ⌦ I,
where the U ’s and I’s on the right correspond to the digits in this expression for
ko. We then claim that Vin = U WU . This is easy to check: U sends |koi to
|1i|1i · · · |1i (but other |ki’s to something else); and then W produces a minus

14This could be done, for example, by keeping the electrons in boxes, with H representing
the spin-state of the occupant of a given box; and then moving the boxes into close proximity.

16.4. BUILDING THE OPERATOR V 85

sign (but, for other |ki’s, a plus sign); and then the final U restores the original
state. Note that, in this construction of Vin, the number of operators that must
be composed grows only linearly with n.

The discussion above shows that there will in general be a variety of ways
to construct a given unitary operator out of some set of basic operators. Some
ways may involve an auxiliary Hilbert space (in which case we must avoid entan-
glement) and some not; some may involve the composition of a large number of
basic operators and some a smaller number. But, unfortunately, none of this is
what we really want for the Grover construction. The Vin above, for example, is
completely useless for our purposes, because it requires that you already “know”
ko, and this is exactly what you are not supposed to know. What we need is, not
a variety of ways to construct some “given” unitary operator on a Hilbert space
out of basic operators, but rather a way to convert programs into operators. In
the Grover case, for example, we begin with a computer program that checks
whether or not a given k is the needle; and we wish to convert that program
to a suitable unitary operator Vin. Here is a general summary of what we are
looking for.

Let there be given a program P that accepts as input nonnegative
integers, and returns nonnegative integers. We may register the in-
puts and outputs in Hilbert spaces Hin and Hout, each of which is
a (finite) tensor product of some finite-dimensional Hilbert space H
with itself. We wish to convert the program P into a unitary oper-
ator on Hin ⌦Hout, such that this operator “computes” the output
from the input in the manner of P , and does so with substantially
the same di�culty function as that of P . This unitary operator may
require an auxiliary Hilbert space Hscratch, but if it does then the
operator must be such that the Hin ⌦Hout-part of the final state is
not entangled with the Hscratch-part.

It is not clear how to make this summary into a precise statement. What,
for example, does “... in the manner of ...” mean; and what is the “di�culty
function” of a unitary operator? We have in mind some sort of compiler, which
turns command-lines in the program into compositions of some basic unitary
operators on the Hilbert spaces. But it is not clear how this is to work. What,
for example, are the operator-equivalents of append and delete? Even more
di�cult would be to find an operator-equivalent of if (last C(S) == x) then

skip n lines. In any case, having constructed such a compiler, then we might
be able to define a suitable di�culty function in terms of the number of basic
operators in the composition. And even after all this, we would have to con-
tend with the fact that programs accept as input arbitrary integers, while our
operators act on just finite tensor products. All this is somewhat reminiscent of
the issue, discussed in Sect. 13, of compiling programs in machine language. It
might be worthwhile to try to resolve that issue first, as a prerequisite to this
one.

There seems to be a sense, in this field, that there may exist some sort of
construction along the lines outlined above.

86 16.

16.5. Errors

Errors abound in the Grover construction. They can appear in the setting
up of the initial state, in the application of the operators W and V , and in the
observation on the final state. Errors could arise, for example, from imperfections
in the apparatus; or from quantum tunneling causing interactions between the
H-states and the thermal fluctuations in the outside world. How shall we take
such errors into account?

Of course, errors abound everywhere in physics. But here, because of the
kinds of questions we are asking, this issue seems particular compelling. Consider
a computation, and suppose that, on the initial run, the input string S is such
that we require just 10 steps. Then we can a↵ord, for this run, to be relatively
cavalier about errors. But the next run, for another S, might involve 1,000 steps,
requiring, in order to keep the e↵ects of errors in check, that we purchase new
and better equipment. And still another run might involve 1,000,000,000 steps,
requiring that we cool the entire Earth down to 0.03o K and move the Sun over
to another part of the Galaxy. All of these extra precautions take time and
e↵ort, and so should be taken into account in the di�culty function. But how
will we be able ever to include such things? How, for example, does the di�culty
of these various precautions scale with the number of steps in the computation?
Similar issues arise already in ordinary computing: Bits are sometimes recorded
incorrectly; and the longer the calculation the greater the care that must be
exercised in this regard.

We shall simply ignore the e↵ects of errors, not out of any conviction these
e↵ects are likely to be unimportant, but rather because we do not know how to
do anything else.

16.6. What Is The Problem?

The Grover construction, as you have undoubtedly noticed, does not compute
any problem at all, at least, not as we have defined that term. A “problem”
entails an output for every possible input string; while the Grover construction
searches for the needle in a finite haystack. Finite input sets are not very inter-
esting: All problems based on them are computable, and all di�culty functions
on them are equivalent.

The obvious way to respond to this situation would be to modify the con-
struction to apply to a variety of haystacks. Given N , we first construct the
Hilbert space Hin (as a tensor product of about log2 N copies of a 2-dimensional
H), then build our computer (i.e, construct our operator V). We are now pre-
pared to apply the Grover construction to find the needle. Of course, the building
of the computer (i.e., of the operator V) is an additional burden, which would,
presumably, be included in the di�culty function for this computation.

So let us suppose, then, that we have suitably modified the Grover construc-
tion along these lines. We would then be in a position to ask the key question:
Is there any problem for which the Grover construction, so configured, is more

16.6. WHAT IS THE PROBLEM? 87

e�cient than any computation-method not using quantum mechanics? Here is
a precise mathematical assertion that reflects these ideas.

Assertion. Let ⇡ be any problem that accepts as input a pair (N, k), where N
is a positive integer and k is one of the integers (0, 1, · · · , N � 1), and returns
either “yes” or “no”, such that: For each N , there is one and only one of those
k’s (call it ko) for which ⇡(N, k) is “yes”. Let ⇡0 be the problem that accepts as
input any positive integer N , and returns this ko. Let P be any program (writ-
ten, say, in the language of Sect. 12) that computes ⇡, with di�culty function f ;
and set h(N) = maxk f(N, k). Then there exists a program P 0 that computes
⇡0, with di�culty function f 0 satisfying f 0

p
Nh (in the sense of di�culty

functions).

The idea of this assertion is the following. Think of the problem ⇡ as a
sequence of needle-in-the-haystack challenges. Here, N represents the haystack
itself, and k is a needle-candidate for that haystack. Thus, the problem ⇡ takes
such a haystack and needle candidate, and returns the answer to the following
question: “Is that k the needle for that haystack?” The program P computes
this ⇡. That is, P tests whether, for a given haystack, a given candidate for the
needle is indeed the correct needle, (ko). By contrast, the problem ⇡0 simply
announces, given the haystack, what the needle is for that haystack. And the
program P 0 computes that problem ⇡0. That is, P 0 takes the haystack and finds
the needle.

Note that, given a program P that computes ⇡, we can immediately write
a program P 0 that computes ⇡0: For each given N , this P 0 merely runs P on
the pair (N, k), for each k = (0, 1, · · · , N � 1) in turn. It then finds that k for
which P returns “yes”, and announces that k-value. [Thus, in particular, if ⇡
is computable, then automatically ⇡0 is.] What will be the di�culty function,
f 0, of this program P 0? Fix N . Then the maximum di�culty to check a single
k-value is the h(N) given in the assertion. Since P 0 must run P at most N times,
we have f 0(N) Nh(N). We conclude: If, in the inequality of the assertion
above, “

p
N” were replaced by “N”, then the assertion would be true, choosing

for P 0 this program that simply runs P a total of N times.

But the assertion as it stands, says that there always exists a shortcut P 0

that is better, in a suitable sense, than the naive P 0 constructed above. It says
that you can always discover some way of finding the needle with di�culty not
exceeding the maximum P -di�culty to check one candidate, multiplied by the
square root of the number of candidates that P 0 would have to check. The
assertion asserts, in other words, that given any family of needle-challenges, and
a way to meet those challenges by trial-and-error, then there exists a way to
meet those challenges that is more e�cient than trial-and-error, by a factor ofp
N .

Why this
p
N? It comes from the Grover construction! Imagine that we had

somehow come up with a counterexample to the assertion above. That is, we
have a problem ⇡, of the type indicated above, and program P that computes
it, such that there does not exist any shortcut program P 0, in the sense of the

88 16.

assertion. Fix N , and consider the action of P on (N, k), for that N . Let
us next imagine that we were able to simulate this action of P by a suitable
unitary operator, V , on H ⌦ · · · ⌦ H (n times, where 2n � N), and that the
total “di�culty” required to apply this operator was just h(N), i.e., the maximal
di�culty that the ordinary program P encounters for the various (N, k), with
this fixed N . And finally, let us suppose further that the additional di�culty
of building the quantum system is su�ciently small that it may be disregarded.
Then the Grover construction would find the needle (with very large probability)
with a total di�culty of

p
Nh(N) (since, as we saw in Sect. 15, the computer

would have to be run only
p
N times). But we began with the assumption that

this P is a counterexample to the assertion, i.e., that it is is such that exists no
shortcut P 0 with f 0(N)

p
Nh(N). What this means, in other words, is that

there is no regular program that solves this problem more e�ciently than does
the Grover construction.

We conclude: A counterexample to the assertion above would provide a road
map for finding (via Grover) an example in which a quantum-assisted compu-
tation is more e�cient than any computation of the same problem without a
quantum-assist. If the assertion were true, on the other hand, then this result
would considerably diminish the prospects for using the Grover construction in
this way.

We emphasize that the assertion above is a statement in mathematics: It does
not involve quantum mechanics, nor any details of how computations work. It is
either true or false. I have neither a proof nor a counterexample to this assertion.
Below are three examples of (failed) attempts to construct a counterexample,
which are intended to give a sense of how the assertion works.

For the first example, let ⇡(N, k) be “yes” if and only if k = N/2 (or (N+1)/2,
if N is odd). Thus, program P would, on receiving (N, k), multiply k by 2, and
see if the result is N (or N+1). The di�culty function is log(N) (i.e., e↵ectively,
the number of digits of N , independent of k); and so we have h(N) = log(N).
This program P is not a counterexample. Let P 0 be the program that accepts
positive integer N , simply computes N/2 (or (N +1)/, and returns that integer.
The di�culty function for this P 0 is also f 0(N) = log(N), and so we certainly
have f 0(N)

p
Nh(N). This candidate for a counterexample was hopeless

right from the beginning. Any time the structure of P is “do some computation
involving N , and then check to see if the result matches k”, then you will never
end up with a counterexample. Program P 0 will overhear this strategy and
proceed to compute the needle ko directly from N in the same manner, ending
up with di�culty function given by f 0(N) = h(N), and thus satisfying the
inequality of the assertion.

For the second example, let ⇡(N, k) be “yes” if and only if k is the largest
prime (N �1). Thus, program P would, on receiving (N, k), first check to see
if k is prime (reporting “no” if it is not), then check the integers from k + 1 to
to N � 1 for primeness (reporting “no” if any is prime), and otherwise reporting
“yes”. The di�culty function, f(N, k), of this program has complicated k-
dependence. But in any case, denote by h(N) the greatest di�culty encountered
as k ranges from 0 to (N � 1). This program P is not a counterexample. Let

16.6. WHAT IS THE PROBLEM? 89

P 0 be the program that works downward from N � 1, checking each integer for
primeness, and reporting the first prime it finds. This P 0, then, computes the
problem ⇡0. The number of steps required by P 0 will be the same as for P to
check candidate ko, i.e., we have f 0(N) = f(N, ko). Hence, f 0 h, and so
certainly the inequality of the assertion will be satisfied. This candidate for a
counterexample was not much more promising. Any time the structure of P is
“check to see if k is the largest integer (N � 1) such that . . . ”, then P 0

will overhear this strategy, and proceed to find the needle directly by starting at
(N � 1) and working down. Similarly for “smallest”; and any other “-est” that
P 0 can figure out how to exploit.

The third example is the following. For N any positive integer, denote by pN
the integer obtained by writing out the digits of ⇡ (314159265...), and stopping as
soon as you arrive at the largest integer less than N2. [For example, p32 = 314.]
Now let ⇡(N, k) be “yes” if and only if either: i) pN is not the product of exactly
two primes, and k = 0, or ii) pN is the product of exactly two primes, and k is
the smaller prime factor of pN . In other words, the needle, for haystack N , is the
smaller prime factor of pN if pN is a product of exactly two prime factors, and
“0” otherwise. [The idea here is that the digits of ⇡ are “pretty random”; and
that it is, presumably, hard to find prime factors other than by trial-and-error.]
Now, most of the time (i.e., for most N) pN will have many factors, and in these
cases it will be easy to find the needle. Program P 0 will have a field day in
these cases, easily achieving f 0(N)

p
Nh(N). But every so often (at least,

we hope so — we, of course, have no theorem to this e↵ect) pN will turn out to
be a product of two primes, and now the needle is harder to find. In this case,
program P will have a relatively easy job of it: Given candidate k, P need only
test to see whether or not k divides pN . The shortcut program P 0, by contrast,
has the duty to find the needle for this N — and it is hard to see how P 0 is going
to do this other than testing various k to see if they divide pN . So, here is an
example in which (at least, sometimes) there doesn’t appear a viable shortcut
over the method of trial-and-error. So, is this a counterexample to the assertion?
Probably not. The problem is that P must do more than merely check whether
k divides pN — it must also check whether or not pN is a product of exactly
two primes (in order to know whether or not ko = 0). The di�culty (for P) of
doing this is comparable to the di�culty P 0 experiences in finding the needle in
this case.

Either the assertion above is true; or it is false. It would be of great help in
thinking about this subject, in my opinion, if we knew which. Indeed, as far as I
am aware, we do not even have a counterexample to the stronger assertion that
results from replacing the inequality with “f 0(N) h(N)”.

90 16.

17. Quantum-Assisted Computing

The discussion of the previous two sections suggests that the use of quantum
mechanics may indeed gain e�ciency for certain computations. But there re-
main at least three issues. First, as discussed in Sect. 16.4, our ability to apply
quantum mechanics to specific problems appears to depend on finding a suitable
technique for converting conventional computer programs to unitary operators.
By “suitable”, we mean a technique that results in no substantial loss of e�-
ciency, and is such that no entanglements are created with any scratch Hilbert
spaces that must be introduced. Second, we must make allowance for the fact
that, while programs act on arbitrary strings (and thus are suitable for comput-
ing real problems), our unitary operators always act on finite tensor products
of H’s. And, finally, we must find a suitable definition of “di�culty” for uni-
tary operators. We now introduce a general framework for computations using
quantum mechanics, a scheme that, among other things, addresses these three
issues.

Fix, once and for all, the following objects: i) a finite-dimensional Hilbert
space H, ii) a unit vector | oi in H, iii) a finite list of unitary operators, each
of which acts on some finite tensor product, H ⌦ · · · ⌦ H, of H’s, and iv) a
finite list of projection operators15, each of which acts on some finite tensor
product of H’s. The individual unitary and projection operators in these lists
may operate on tensor products with di↵erent numbers of H-factors, e.g., some
may act on a single H, some on H ⌦ H, etc. We label each unitary operator
of ii) and each projection operator of iii) by a nonempty string (e.g., as US and
PS0 , respectively); and, for later convenience, we do not use the same string
to label both a unitary and a projection operator. [We shall later impose a
further condition on this arrangement; but for the moment it is convenient to
keep things general.]

We now introduce some terminology. First, we introduce a separator-character,
⇤, in the manner we have done, occasionally, before. Next, we call a string S̃
a unitary operation if it is of the form Š ⇤ S1 ⇤ · · · ⇤ Sk, i.e., consists of (k + 1)
strings (each nonempty and containing no ⇤; and with S1 · · ·Sk distinct), such
that: The first of these strings, Š, labels some unitary operator, UŠ , in our list,
and that UŠ acts on a tensor product of precisely k factors of H. Thus, beyond
the first string, it is only the number of additional strings, and not what those

15A projection operator, P , is self-adjoint operator satisfying P � P = P , i.e., a self-adjoint
operator having no eigenvalues other than 0 and 1.

91

92 17.

strings are, that counts. For example, if, among the unitary operators, there is
one labeled U8k, and if it acts on H ⌦ H, then “8k ⇤ yzr ⇤ 8$9Q” would be a
unitary operation; whereas “8k ⇤ yzr” would not. And, similarly, we call string
S̃ a projection operation if it is again of the above form, S̃ = Š ⇤S1 ⇤ · · ·⇤Sk, such
that PŠ appears on our list of projection operators, and it acts on the tensor
product of exactly k factors of H. Note that no string is both a unitary oper-
ation and a projection operation; and that the problem of deciding whether a
string S̃ is a unitary operation, a projection operation, or neither, is computable
and has di�culty function L(S̃).

We now introduce a new computer language. As before, we have storage
locations, each of which is labeled by a string and each of which contains a string
(where, as before, C(S) denotes the string contained in location S). There is a
total of seven commands in this language, consisting of the five we introduced
in Sect. 12 — input, output, append, delete, and if — together with two
new ones:

6. apply C(S).

7. observe C(S), append result to C(S0).

where, as before, S and S0 denote arbitrary strings. Here is what these com-
mands “do”. In addition to the storage locations, there will now be a separate
quantum system. The Hilbert space, H , of states of this system will be, at any
one moment during the operation of the computer, some tensor product of H’s,
where each factor of H in this tensor product is labeled by a string. Thus, we
might have, at one moment, H = H8 ⌦Habc ⌦HQ3, a tensor product of three
copies of H. The state of this quantum system, at that moment, will be given
by some vector, say | i, in the Hilbert space H . Now, here is what is to be
done in response to the command apply C(S):

1. If C(S) is not a unitary operation, then do nothing.
2. If C(S) (= Š ⇤ S1 ⇤ · · · ⇤ Sk, say) is a unitary operation, and each of the

strings S1, · · · , Sk is already represented by an H-factor in the tensor product
that is H , then apply to the state | i 2 H the unitary operator UŠ on HS1

⌦
· · · ⌦HSk . [That is, the unitary operator that is applied to H is the operator
UŠ applied to the factors HS1 ⌦ · · · ⌦ HSk , and “I” applied to the remaining
factors.]

3. If C(S) (= Š ⇤ S1 ⇤ · · · ⇤ Sk, say) is a unitary operation, and some of the
strings S1, · · · , Sk are not represented by H-factors in the tensor product that is
H , then proceed as follows. First, enlarge H to include those H-factors (i.e.,
replace H by its tensor product with the missing HS). Next, replace the state
| i by the result of taking the tensor product of this state with one copy of | oi
for each new H-factor introduced. And finally, apply UŠ to this state in H (so
enlarged) as in instruction 2.

Here is an example of these rules. Let, at some moment, H = H19 ⌦Hyzr,
let the state be | i 2 H , let our list of unitary operators include an operator
U8k that acts on H⌦H, and let C(S) = 8k ⇤yzr ⇤Q9. Then apply C(S) would

93

replace this H by H19 ⌦Hyzr ⌦HQ9 and state | i by | i| oi; and would then
apply I ⌦ U8k to this state.

Similar rules apply to observe C(S), append result to C(S0). If C(S)
is not a projection operation, do nothing. Otherwise, proceed as follows. First,
enlarge H by including, as necessary, additional H-factors, labeled by those
strings in C(S) not already so represented. Next, replace the state | i by that
state in this enlarged Hilbert space obtained by taking one tensor product with
a | oi for each new factor of H. Then, make an observation on this new state of
this expanded Hilbert space, via the self-adjoint operator PŠ . The result of this
observation must be either 0 or 1, since PŠ is a projection. Append this result
(suitably encoded, if necessary) to the string in location C(S0). [Usually, we
would have previously set C(S0) = ;, to avoid clutter.] After this observation,
the state of our quantum system will, of course, be replaced by its projection
into the appropriate eigenspace, i.e., by either PŠ or (I � PŠ) applied to that
state, according to whether the observation resulted in 1 or 0, respectively. It
is generally more convenient to enlarge H using the apply command, rather
than the observe.

In physical terms, what we are doing here is quite simple. We have some
basic quantum system, described by Hilbert space H. What we call a projection
operation, for example, is a string that describes which projection operator is
to be applied, and to which combination of copies the basic system. If any of
the required copies are missing, we simply supply them, by ordering new copies
of that system (which come with state | oi preinstalled) through the catalog,
and placing those new system-copies next to the old system-copies. When all
the necessary copies of our basic system have been assembled, we observe via
the appropriate (projection) operator, and append the result to location S0.
We remark that no generality has been lost by our making all observations
via projection operators (rather than the more general self-adjoint operators).
This is a consequence of the following fact: Every self-adjoint operator A on
a finite-dimensional Hilbert space can be written as a sum, a1P1 + · · · + asPs,
where the ai are the eigenvalues of A, and the Pi project into the corresponding
eigenspaces (so, in particular, the various Pi commute with each other). By
virtue of this fact, we may, instead of observing via self-adjoint A, observe via
each the Pi, noting that, by commutativity, the order of the latter observations
is irrelevant. These two operations will always produce the same result, in terms
of the outcomes and their probabilities as well as the final state of the system.

A quantum-assisted program is a finite, ordered list of commands, the first
command of which is input and the last of which is output, such that each of
these two commands appear nowhere else in the program. We run a program just
as before, starting with each storage location containing the empty string; and
with H the (one-dimensional Hilbert space of) complexes. We then execute the
commands in order, except as directed by if. The various commands will then
manipulate strings; or operate on, expand, or observe H . So, for example, the
first apply or observe command will require that H be expanded to include
the appropriate copies of H as a tensor product. If and when the program
reaches output, it halts, allowing us to read the output string.

94 17.

When a given quantum-assisted program is run with a given input string,
it must either halt, with some output string returned, or never halt (which
we denote, as before, by “⇤”). From the laws of quantum mechanics, there
will be probabilities for these various outcomes, i.e., we will have a probability
distribution, p, on S [{⇤}. We say that a quantum-assisted program computes
problem ⇡ if, for every input string S, the program, run on that string, has
p(⇤) = 0, and p(⇡(S)) > p(S0) for every S0 6= S. That is, the probability of not
halting must be zero (although, as we have already seen, it may still be possible
that the program fail to halt), and the probability of the “correct answer”, ⇡(S),
must exceed that of every other possible output.

As an example of all this, let us consider the Grover construction. Let H be
the two-dimensional Hilbert space of spin states of an electron, and let | oi be
the state we earlier designated |1i. Let U1 act on H by U1|1i = 1p

2
{|1i + |0i},

U1|0i = 1p
2
{|1i � |0i}; U2 by U2|1i = �|1i, U2|0i = |0i; and U3 by U3|1i = i|1i,

U3|0i = |0i. [A few more U ’s on H might also be required.] Let U4 act on H⌦H
by U4 = exp(i(⇡/2) ~�1 · ~�2). Finally, let there be a single projection operator,
P5, acting on a single H via P5|1i = |1i, P5|0i = 0.

Our program will accept as input a positive integer n. Let us now introduce
three subroutines. The first places, in some location S, the string “1 ⇤ 1”, then
executes apply C(S), then places “1⇤2” in location S, then executes apply C(S)
again, and so on up to a total of n times. The result of running this subroutine
is to set up our Hilbert space, Hin = H1⌦ · · ·⌦Hn, with each Hi-state given by
1p
2
{|1i+ |0i}. [Note how we set up initial states, by starting with | oi = |1i and

applying the appropriate operator.] This is the set-up subroutine: It arranges
the initial configuration. The next subroutine applies to thisHin the operator Vin

followed by the operator �W . We are assuming that we have already been given
the subroutine for Vin, i.e., we have been given some rendering of our original
needle-check program as a quantum-assisted program. The application of Vin

may require an auxiliary Hilbert space, for scratch work). But we are demanding
that in the final state the Hin and the scratch-work states not be entangled. Our
earlier discussion of the construction of the operator W translates immediately
into a quantum-assisted program, in our language, that applies this operator to
Hin. Finally the third subroutine observes Hin via the k-basis. This will, e.g., set
C(S) = 5 ⇤ 1, execute observe C(S), append result to C(S0) and multiply
the result (in C(S0)) by 2n�1; then set C(S) = 5 ⇤ 2, execute observe C(S),
append result to C(S0), multiply the result (in C(S0)) by 2n�2 and add to
the previous result; and so on, for n times around. This subroutine, then, will
end up producing some k-value, where 0 k N � 1, stored in some memory
location.

Now, there are at least three di↵erent quantum-assisted programs that could
be constructed from these subroutines. For the first, run the set-up subroutine,
then the subroutine �WVin once, then the observe subroutine, and finally report
the k-value that results. For this program, we have p(⇤) = 0 (and, in fact, out-
come ⇤ would be impossible), p(ko) = 9/N (for large N), with the probabilities
for the other k-values correspondingly reduced. This quantum-assisted program

95

indeed computes our problem. For the second program, run the set-up subrou-
tine, then the subroutine �WVin the correct number (approximately (⇡/4)

p
N)

of times, then the observe subroutine, and finally report the k-value that results.
For this program, we would again have p(⇤) = 0 (and, again, outcome ⇤ would
be impossible). Now, however, p(ko) is nearly one (for p(ko) > 1� 1/N), while
the remaining k’s have probabilities nearly zero. This quantum-assisted program
also computes our problem. For our final program, we first do the computation
of the previous program, but instead of reporting the k that results from the ob-
servation subroutine, we instead run the (non-quantum) needle-check program
on that k, to find out if is indeed the needle. If it is, we report that k-value.
Otherwise, go through the entire procedure again, finding a new k and check-
ing that one. Continue in this way until we find the k that checks out as the
needle. Note that, for this program, we must assemble a fresh copy of Hin for
each running of the prior program, for that program results in a final Hin-state
di↵erent from the initial state needed by that program. For this program, we
again have p(⇤) = 0, but now the outcome ⇤ is possible (for we could to go
on indefinitely, being unlucky time after time). We also have p(ko) = 1; and
p(k) = 0 for all other k. Thus, this quantum-assisted program also computes
our problem. Thus, we have three separate quantum-assisted programs, each of
which computes the problem (whatever it is).

In these examples, the observe commands generally come after the apply

commands have already been executed. But that, of course, needn’t be the case
in general: These commands could very well be intermingled. Note that the
brain of this program is the original five commands and the storage locations
with which they interact: These keep track of what is going on, decide when
apply and observe are to be carried out, decide what to do with the results,
handle the input and output, etc. The Hilbert space of the quantum system
serves as a glorified storage register, into which we may place data (via apply),
within which we may manipulate data (via apply), and from which we may
extract data (via observe). We could also arrange, in e↵ect, for there to be
several di↵erent Hilbert spaces to handle data. These would be represented by
di↵erent parts of the tensor product that is H , and we would simply manipulate
and access whatever part we wish to use at any one time, ignoring (i.e., applying
the identity to, and not observing) the other parts. At any one moment in the
program, the Hilbert space of states of the quantum system, H is a finite
tensor product of H’s; although, of course, the number of H’s in this product
is not limited. Had we, for example, replaced each “C(S)” in the apply and
observe commands with “S”, then there would, for any given program, be a
limit (independent of the input string) on this number. Replacing each “C(S)”
in these commands by “C(C(S))” would not make any di↵erence, since we have
a subroutine set C(S0) = C(C(S)). Note that the structure of quantum-assisted
programs does not require, necessarily, that entanglements be avoided; or that
any entanglements that have been created eventually be undone. We simply
apply certain unitary operators and observe certain projection operators; and
whatever follows follows, whether there is entanglement or not. [Of course, it
may be necessary to avoid entanglement in order that the program compute

96 17.

what we want it to compute.]
One point about this language should be emphasized. The quantum elements

— the Hilbert space H, the initial state | oi, the unitary operators, and the
projection operators — are to be specified in full right at the beginning (once
we know what problem it is we are to compute). It is not permitted to change
these objects, depending on the input string.

18. Quantum-Assisted
Computability

We introduced, in the previous section, the notion of a problem being com-
putable by a quantum-assisted program; and we already have, from Sect. 6,
the notion of a problem being computable by a regular program. Clearly, every
regular-computable problem is quantum-assisted-computable (since every regu-
lar program is already a quantum-assisted program, just one happening to have
no apply and no observe commands). Is the converse true? That is, is it true
that every problem that is computable with quantum-assist is also computable
in the regular sense?

This converse, as we have stated it above, turns out to be false. Here is
an example. Let the Hilbert space H be 2-dimensional, with basis | oi (the
initial state) and | oi?. Let there be just one unitary operator in the list,
acting on a single copy of H by U✓| i = | oi cos ✓ + | oi? sin ✓, U✓| oi? =
| oi? cos ✓ � | oi sin ✓, where ✓ is some fixed number. Let there be just one
projection operator in the list, also acting on a single copy of H, by P | oi =
| oi, P | oi? = 0. [You will note that this is a pretty poor excuse for quantum-
assistance: There are no operators in our lists that act on two or more H’s, and
so we will never produce, by means of these operators, entangled tensor-product
states.] The program accepts as input a positive integer n, and proceeds as
follows. It first executes apply U✓ to H1; observe P on H1, and accumulate
the result (0 or 1) in C(a). It then repeats this subroutine, with “H1” replaced
by “H2”, and so on, all the way up to “Hn”. At this point, C(a) will contain an
integer (the number of times “1” was returned by observe during all n runs of
the subroutine). Finally, the program returns, via output, the rational number
C(a)/n. What is this program doing? Well, on each run through the subroutine,
either 1 will be added to the integer in C(a) (probability cos2 ✓), or it will not
(probability sin2 ✓). Thus, what the program returns at the end is a Monte-Carlo
estimate of the value of cos2 ✓, based on these n runs. The fractional error in
this estimate goes down, as the number n of runs increases, as 1/

p
n.

What this program does, in other words, is compute the number cos2 ✓, in
the sense of Sect. 7. What we have shown, then, is that for any number ✓ we can
write a quantum-assisted program that computes cos2 ✓. Now choose for ✓ that
value such that cos2 ✓ = c, where c denotes the noncomputable number given by
Eqn. (2) of Sect. 7. Thus, we have produced a quantum-assisted program that

97

98 18.

computes a number that is not computable with any regular program.
The discussion of the previous two paragraphs will fool nobody. It is ab-

surd to take seriously a unitary operator U✓ that claims to carry out a rotation
through a noncomputable angle: We would not expect to be able to buy and
operate a machine that would apply any such U✓ to any real quantum system.
Suppose, for example, that we acquire a machine that is capable of carrying out
a rotation in the | oi � | oi? plane through any angle ✓, where the value of
✓ is set by adjusting a knob. Then, as we fine-tune this machine, we shall (in
order to know where to set the knob) be called upon to determine, more and
more precisely, what the number ✓ is. That is, we shall have have to decide
whether or not more and more complicated Turing machines will halt. One of
these, for example, is the machine that searches for a counterexample to the
Goldbach conjecture — and so, at this point, the proper adjustment of the knob
will require that we settle this conjecture, one way or the other. And, as soon
as we are finished with this one, we will be asked to resolve some other, even
harder, conjecture in mathematics. How, in this atmosphere, are ever going to
get this experiment finished? It is silly to call this quandary a “piece of labora-
tory equipment”. Note that the fact that there are rational numbers arbitrarily
close to the noncomputable number c is of no help to us here. The issue is one
of determining what c is (in practice, in the lab), not one of approximating c
(in principle, in mathematics-land). To know c within 1%, let us say, will tell
us whether or not the Goldbach conjecture is true. How helpful, in this cir-
cumstance, is it to be reassured that there does indeed exist a rational number
within one-tenth of 1% of c?

Exercise. Consider the unitary operator U✓ above, but let us select
the angle ✓ “randomly, by spinning, and then stopping the knob”.
Then the probability is one that we shall end up with a noncom-
putable number (since the computable numbers in [0, 2⇡] are measur-
able, with measure zero). So here is an example in which a quantum-
assisted computer computes a (regularly-) noncomputable number.
Respond.

So, we might ask, which unitary operators are, and which are not, “physically
realistic”? In fact, the problem goes a little deeper than even this question
suggests. Consider, for example, two unitary operators, U and U 0, each of which
carries out a 90o rotation in the (3-dimensional, say) Hilbert space H, but such
that the planes in which these rotations take place make angle c with each
other. Although each of these two unitary operators, by itself, is quite innocent-
looking, together they allow, in the same manner as above, a computation of c.
The lesson here is that we cannot look at the state | oi, the unitary operators
that appear on our list, and the projection operators that appear on our list, in
isolation. It is the entire list — consisting of | oi, the U ’s and the P ’s; all taken
together — that must rise or fall. So, we might ask, how do we identify which
such lists are, and which are not, physically realistic?

Here is a possible answer to this question. Let us imagine that the box in
which the Hilbert space H is shipped has printed on it a standard basis for

99

this Hilbert space, to be used for reference purposes. Then from this basis we
acquire a standard basis for each tensor product, H ⌦ · · · ⌦ H. Now, before
purchasing a unitary operator U (on some tensor product of H’s), we want to
know what it is we are buying. This is to be provided by the manufacturer,
in the form of a program, printed in the owner’s manual, that accepts as input
any positive integer n, and returns rational numbers each within 1/n of the
respective matrix element of U in this standard basis. We call this a program
that computes U . Without such a program, we simply don’t know what U “is”.
We have, similarly, the notion of a program that computes a projection operator
(on a tensor product of H’s), and of a program that computes the initial state
| oi. We now regard H, state | oi, and the lists of unitary and projection
operators as “physically realistic” if, for some H-basis, there exist programs
that compute all these objects. This appears to be a rather mild condition.

Some terminology will allow us to formulate the idea of the previous para-
graph more neatly. Fix, as before, i) a finite-dimensional Hilbert space H, ii) a
unit vector | oi therein, iii) a finite list of unitary operators (labeled by strings)
on various H-tensor products, and iv) a finite list of projection operators (la-
beled by strings) on various H-tensor products. We call a string S a history if it
is of the form S1 ⇤ ⇤S2 ⇤ ⇤ · · · ⇤ ⇤Sk, where each of the strings S1, · · · , Sk is either
i) a unitary operation (string), or ii) a projection operation (string) to which
either “⇤0” or “⇤1” has been appended. Thus, a typical history string might
be “k9 ⇤ yzr ⇤ 0 ⇤ ⇤B ⇤ xx ⇤ ABC”: The rightmost entry represents the unitary
operator UB applied to Hxx ⌦ HABC ; the other entry the projection operator
Pk9 applied to Hyzr; with “⇤0” appended.

Now consider the running of some quantum-assisted program. Each time
an apply command is executed, some things will be done with respect to the
Hilbert space H : This Hilbert space will be expanded (if necessary) by taking
additional tensor products with H-copies; the state | i will be adjusted (if
necessary) with ⌦| oi’s to lie in this expanded Hilbert space; and a certain
unitary operator will be applied to this state. The same goes for an observe

command, except that in this case either the projection operator P (from the
list) is applied to the state (the case in which the observation yielded “1”), or
the projection operator (I � P) is applied (observation yielded “0”). The other
commands, input, output, delete, append, and if, do nothing with respect
to H . Thus, as of any one moment during the running of the program, H will
have been subjected to some finite number of such operations, in some order.
But this is precisely the information contained in a history. In other words, a
history string provides a complete summary of what has happened with respect
to H as of a certain moment. Perhaps “virtual history” would be a better
term, for we admit as histories all strings formed by the rules of the previous
paragraph, whether or not they happen to represent what has actually occurred.
From the history string we may determine what the Hilbert space H is at that
moment, what state (in H) the quantum system is in, and what information (0’s
and 1’s) has been passed so far from the quantum system to storage locations.
From the history “S = k9 ⇤ yzr ⇤ 0 ⇤ ⇤B ⇤ xx ⇤ABC” of the previous paragraph,
for example, we would determine that H = Hyzr ⌦Hxx⌦HABC , that the state

100 18.

is ((I � Pk9)⌦ I ⌦ I)((I ⌦ UB)(| oi| oi| oi)), and that value “0” was returned
on the execution of the one observe command. The idea, in short, is to reflect
the entirety of the quantum part of quantum-assisted computing by a string,
something we can easily dissect.

For S any history, denote by �(S) the squared norm of the state (as deter-
mined by S) in the Hilbert space (as determined by S). Thus, for example, we
have �(S) = 1 if the history S contains no projection operations (since | oi is
unit, and unitary operators are norm-preserving); and, for a general history S,
0 �(S) 1. This real-valued function � on histories carries all the relevant
information about the workings of quantum mechanics within our quantum-
assisted language, in a sense that will become clear shortly.

Now suppose that, with respect to some standard basis for H, there exists
a program that computes the initial state | oi, as well as ones that compute
each of the unitary and projection operators in our lists, in the sense described
above. Then we may combine these to produce a program that, given any
history S, will compute the components, in terms of this standard basis, of the
state determined by this S. It is now a simple matter to write a program that
computes the function �, in the following sense. This program accepts as input
any history S and positive integer n, and returns some rational number within
1/n of �(S). The existence of such a program implies, of course, that each
number �(S) is computable, but it also implies a great deal more: It means that
there is a single rule that su�ces to provide an approximation for every �(S).

We now return to the issue raised at the beginning of this section. We
claim: Any problem that is computable by a quantum-assisted program, using
computable initial state and operators, is also computable by a regular program.
The proof, much like that of the similar result for probabilistic programs, is by
simulation.

Fix H, and let | oi and the labeled unitary and projection operators be
computable, in the sense above. Now fix a quantum-assisted program Pquant,
together with the input string, Sin, on which this program is to be run. We
are going to construct a regular program, Preg, that will simulate the running of
Pquant on Sin. Suppose that Pquant has been run for a few steps, encountering an
apply command or two, but no observe command. Then the entire state of the
computer (including the quantum system) can be expressed, as of this moment,
by giving three pieces of information: i) which command in the list Pquant is
slated to be executed next; ii) which string is stored in each (nonempty) storage
location; and iii) the history, S, of the quantum system. Let us now carry Pquant

through the next step (say, a non-observe one). To simulate this step, we
update the three pieces of information in the obvious way: For i), we now indicate
what is the new next command; for ii) we make an adjustment (required only
if that step was append or delete; and then to only one of the stored strings)
to reflect the new string-storage; and for iii) we add an entry (required only if
that step was apply) to the history. In this way, we continue our simulation of
Pquant, step by (non-observe) step. What happens when we reach an observe

command? Now there will be two possible outcomes, depending on whether
the observation returns 1 or 0. We reflect this state of a↵airs by splitting our

101

description into two branches, each of which carries three pieces of information
as above. In one branch, corresponding to the observation returning “1”, the
three pieces of information read: for i), the next command to be executed; for
ii), the same stored strings, but with “1” appended to one particular string;
and, for iii) the same history string, but with the addition a certain projection
operation and “ ⇤1”. In the other branch, we enter, similarly, the three pieces
of information appropriate to the case in which observation returns “0”. We
now continue to simulate the behavior of Pquant in each of these two branches
separately. As more observe commands are executed, the number of branches
will grow, as will the burden of separately simulating what happens within each
branch. But at every stage in this simulation, we shall have a finite number of
branches, each described by just these three pieces of information.

So, Preg simulates Pquant, in this way. Every so often, one of the branches
being simulated by Preg will reach an output command (after which there
is nothing more to simulate). When that occurs, the program Preg reads the
output string S and the final history S for that branch, stores this information
in a special section, and drops that branch from further consideration. [We, of
course, know that �(S) is the probability that the actual program Pquant will take
this branch, reaching this output and returning this S.] Thus, as the simulation
by Preg continues, the list of string-history pairs in this special section will grow.
Our program Preg will include, furthermore, a subroutine, which accepts as input
a positive integer n, and operates as follows. The subroutine goes to this special
section, takes each of the history strings in that section, and computes � of that
history, within error 1/n (here using the program that we constructed from the
reference manuals). It then totals these numbers, for each output string listed
in that section. Finally, the subroutine checks to see if any one output string,
say S, has emerged as a clear winner (i.e., is such that no other string S0 will
ever be able to achieve a total exceeding that for S, even if we allocate to S0 all
the so-far unallocated probability, and even if we assume that all the 1/n-errors
in these probabilities are resolved in S0’s favor). If the subroutine finds such a
clear winner S, then it causes Preg to halt immediately, giving that S as output.
If there is no clear winner, then the subroutine returns Preg to its simulation.

The full program Preg now operates as follows: Every so often (say, after
every hundred steps of simulation), Preg runs the subroutine, using an n-value
one higher than that for the previous run. So, this program Preg will continue
to run in this way: continuing to carry out the simulation of Pquant, continuing
to store the results for halted branches in the special section, and continuing to
make ever-finer checks on the status of that special section. Now suppose that
the program Pquant computes a problem ⇡, i.e., that, for every input string Sin,
Pquant has probability zero of failing to halt, and has probability of halting with
output ⇡(Sin) that exceeds that of every other possible output. In this case, our
simulation Preg must eventually halt, for eventually it will have accounted for
su�cient probability to identify ⇡(Sin) as the clear winner. At this point, Preg

will return ⇡(Sin).

What we have shown, then, is that, given any quantum-assisted program that
computes a problem, we can, by simulating it in this manner, build a regular

102 18.

program that computes the same problem. Note that Preg always halts, giving
the correct answer, ⇡(Sin). The quantum-assisted program Pquant, by contrast,
gives this answer only probabilistically. Note also that this argument makes
essential use of the program that computes the function �. In any case, we
conclude that any problem that is computable by a quantum-assisted program,
with computable | oi and operators, is also computable by a regular program.

The result of this section is of perhaps only mild interest. What is important,
and what we shall use extensively in the what follows, is three notions: that of a
history; that of the function �; and the present strategy for simulating a quantum
assisted computation.

19. Quantum-Assisted
Di�culty Functions

In Sect. 10, we defined a di�culty function for every program that computes
some problem, ⇡. This positive, real-valued function represents the amount of
“computer time”, as a function of the input string Sin, required to compute
⇡(Sin). We now wish to do the same thing for any quantum-assisted program
that computes a problem. We shall do so in two steps. First, we assign a
di�culty to each individual command in our quantum-assisted language. This
will entail a certain restriction on the unitary and projection operators that go
into the language. Second, we adapt the notion of a di�culty function to take
into account the fact that quantum-assisted computing provides answers only
probabilistically.

We emphasize again that we have set things up so that the quantum elements
— the Hilbert space H, the initial state | oi, and the unitary and projection
operators – are to be specified as part of the program, i.e., may depend on the
problem to be computed, but not on the particular input string. Imagine that
one had done otherwise — e.g., had allowed the use of di↵erent unitary operators
for di↵erent input strings. Then how would we produce any reasonable notion of
a di�culty function? It could be, for example, that certain input strings would
require unitary operators that are very delicate — that can be created only with
a great deal of time and e↵ort. But this “time and e↵ort” will have to go into
the di�culty for those input strings. That is, in order to produce a di�culty
function in such a language we would have to quantify the delicacy of unitary
operators. Such a project — to put it mildly — does not look easy. We remark
that many of the “quantum computations” that have been proposed su↵er from
precisely this defect.

There are seven types of commands that may appear in a quantum-assisted
program. Five of these — input, output, append, delete, and if — are
the original commands we introduced in Sect. 12; and it is natural to assign
to these commands the di�culties we already chose earlier. But what of the
two new commands — apply and observe? Note that we have finite lists
of the unitary and projection operators that are permitted to appear in these
commands. So, in e↵ect, each of apply and observe represents a finite number
of physical operations. A natural choice would thus seem to be: Assign, to each
apply and observe command, di�culty one. But, unfortunately, things are

103

104 19.

not that simple, as the following example illustrates.

Consider a problem, ⇡, that accepts as input a positive integer n, returning
either 0 or 2; and is such that every program that computes this ⇡ has di�culty
function f that grows very quickly with n (say, faster than 2 to the power of 2
to the power of 2, etc, for n iterations). We have seen in Sect. 11 that there
does indeed exist such a (computable) problem. Now set c0 =

P
n ⇡(n)/3n, a

certain real number. Thus, this c0 is constructed in the same manner as the
noncomputable number c of Sect 6, but, in contrast to that c, is a computable
number (since the problem ⇡ is). The point, however, is that c0 is hard to
compute: The number of computer-steps required to approximate c0 within 1/n
grows very quickly with n. Let us now consider a quantum-assisted language
in which the Hilbert space H is 2-dimensional, and the list of unitary operators
includes a U✓ that applies a rotation, to a single H, through angle ✓, just as
in the previous section. Now, however, we choose cos2 ✓ = c0. We next write
a quantum-assisted program in this language similar to that of the previous
section. That is, this program repeatedly applies U✓ and makes an observation,
resulting in a Monte-Carlo estimate of cos2 ✓. In order to compute ⇡(n), we
must estimate the value of c0 to within 1/(2 ⇤ 3n). But the error in a Monte-
Carlo estimate decreases as the reciprocal of the square root of the number of
runs. Thus, we need about (2 ⇤ 3n)2 = 4 ⇤ 9n applications of U✓ to have a
reasonable chance of recovering the value of ⇡(n). For given n, carry out 10n+1

applications (just to be on the safe side): Then we shall have a probability
of correctly determining ⇡(n) that is high and increasing with n. Thus, we
have written a quantum-assisted program that computes this problem ⇡ with,
presumably, di�culty function 10n+1 — much less than the di�culty function
of any regular program that computes ⇡.

This was a foolish argument in the previous section, and it is no better this
time around. What this argument does show, however, is that we must be
prepared to exercise some care as to which unitary (and projection) operators
will be allowed in quantum-assisted programs, and as to what their di�culties
are to be.

It is tempting to take the position that, since this U✓ is apparently such a
terribly di�cult operator, we can make things right by merely assigning a large
di�culty to to the corresponding apply command. But this isn’t going to work:
There is just one of these U✓’s, and just one corresponding apply command, and
so there is just a one number for us to assign. Changing the di�culty of this single
command from 1 to 1000, for example, will not change the di�culty function
(up to equivalence), and so will not undermine the above argument. In fact, it
appears that any attempt to preserve this particular U✓ in our list of unitary
operators will return us to the issue of how we take into account errors. What is
problematic about this operator U✓ appears only in attempts to “approximate”
it. Imagine a new kind of quantum-assisted program that, when commanded to
apply this U✓, actually applies an operator that is only a rough approximation
to U✓, but which (by virtue of the roughness of the approximation) is also low in
di�culty. If and when, as the running of the program proceeds, a more accurate
application of U✓ becomes necessary, then our program would go back and redo

105

the original apply command, but this time applying something that is closer to
the actual U✓ (and carries a larger di�culty).

So, it appears that the only way we can avoid a very complicated program-
ming environment, in which errors must constantly be taken into account, is to
banish this U✓ from out list of unitary operators. But this is a slippery slope:
Will there be allowed other unitary operators, based on numbers that are a lit-
tle easier to compute, but still pretty hard? Where do we draw the line? Our
approach will be to go ahead and slide down the slope, i.e., to rule out all but
the “simplest” U ’s.

Fix an m-dimensional Hilbert space H, a unit vector | oi in H, and finite
lists of unitary and of projection operators, each acting on some finite tensor
product of H’s. We say that this arrangement is simple if, for every history
string S, the number �(S) is rational; and furthermore there exists a (regular)
program that computes this �, with di�culty function f satisfying

f(S) Nop(S) m
NH(S). (13)

Here, Nop(S) denotes the total number of (unitary or projection) operations
represented by the history string S, NH denotes the total number of copies
of the Hilbert space H that appear in the final tensor product (within which
�(S) is computed), and m is the dimension of H. Note that simplicity implies
immediately that � is computable, in the sense of the previous section.

Here is why this definition is what it is. Fix some basis for H, say |↵1i,
|↵2i, · · · , |↵mi. Then, as we have seen, we may construct from this H-basis a
basis for every tensor product, H ⌦H ⌦ · · ·⌦H, of H’s. For n H’s in the tensor
product, this basis will contain mn vectors, each of which is a product of some n
vectors in our H-basis, e.g., |↵ii|↵ji · · · |↵ki. Now suppose that, with respect to
this basis, the components of | oi and of all the unitary and projection operators
in our list are rational numbers. This is about as simple as | oi and the U ’s
and P ’s could possibly be. Now, in this case each value of � will certainly be
rational. Furthermore, we can easily write a program that computes �. This
program would take the history S and express explicitly, in terms of our basis,
the result of applying in succession each operation contained in S. The program
then takes the resulting final state, again expressed in terms of components in
this basis, and computes its squared norm.

What is the di�culty function of this program? Consider one of the op-
erations — say, application of some unitary U — in the history string S, and
suppose that, at the point at which this U is applied, the Hilbert space is a ten-
sor product of n copies of H. Then, at that point, the dimension of this Hilbert
space will be mn, and so the current state will have mn components, and so the
record of this state in our program will require that mn entries be stored. To
apply the operator U to this state will entail replacing each of these entries by
a linear combination of other entries. That is, in order to compute the e↵ect of
this U we shall have to carry out a number of arithmetic operations given by a
small multiple of mn. Note — and this is a key point — that there is no savings
from the fact that U actually operates on a small number of H’s in that tensor
product. For example, say that H has basis |0i, |1i, and let U act on a single

106 19.

H, by U |1i = 4
5 |1i +

3
5 |0i, U |0i = 4

5 |0i �
3
5 |1i. Let the current tensor product

consist of a large number n of H’s, and suppose that this U is acting on the 73rd

one. Consider any two basis-elements,

|0i|1i|1i|0i · · · |1i · · · |0i|1i,

|0i|1i|1i|0i · · · |0i · · · |0i|1i.

di↵ering only in their entry for the 73rd copy of H. Now, the action of U will mix
these two elements. Thus, to compute how this U acts, we will have to carry out
a small arithmetic computation involving the component-values stored in these
two locations. But the same is true for all mn component-values stored. So, the
order of mn arithmetic operations must be carried out. And, apparently, there
is available no shortcut, by which multiple entries can be calculated or stored all
in one shot. The next application of a U may involve the 194th H in the tensor
product, and to compute its action will again involve the entries in all the mn

locations, grouping those entries in a di↵erent way from that of the previous
application of U .

So, under the assumption of rational components in a certain basis, the
di�culty required to compute the e↵ect of application of one U or P in our list
is a small multiple of mn. So, the total di�culty to compute the rational number
�(S) is a sum of terms, one for each operation in the history S and each of the
form mn, where “n” is the then-number of H’s in the Hilbert space. Eqn. (13)
is a simpler, and somewhat weaker, expression of this bound. We conclude: In
the case in which | oi and the U ’s and P ’s have rational coe�cients in some
H-basis, that arrangement is simple as defined above. In fact, a few other
cases are also allowed by the definition, e.g., that in which U is of the form
U |1i = 1p

2
{|1i+ |0i}, U |0i = 1p

2
{|1i� |0i}. The definition of “simple” as given

has the advantage that it allows these other cases, and also that it makes no
reference to any basis.

So, in short, a system — of | oi, some unitary U ’s and some projection
P ’s — is simple if the only thing that counts in computing �(S) is the number
of operations represented by S and the size of the Hilbert spaces on which
these operations act. There is no factor to represent “how hard” the arithmetic
manipulations are. Simplicity means, in e↵ect, that the operators require only
“easy” arithmetic.

We are now in a position to appreciate the key di↵erence between a quantum-
assisted program and a regular program. The quantum-assisted program can
apply one of its unitary or projection operators in a single step. This is because
the operators themselves are rather simple, and each of them applies to only
a few H’s. The quantum-assisted computer simply assembles the appropriate
two or three H’s, and applies the operator — all without even knowing about
any other H’s that may be involved in the tensor product. But, in order for a
regular program to see what is happening, it is necessary for that program to
consider all the H’s in the tensor product: It cannot simply ignore those H’s to
which the operator does not apply. In short, quantum mechanics is able to do
(easily; probabilistically) what non-quantum mechanics can only compute (with

107

much more di�culty; numerically). This state of a↵airs is reflected by the fact
that the regular program ends up with a di�culty function for � satisfying Eqn.
(13), whereas the analogous inequality for a quantum-assisted program would
read: fquant(S) Nops(S). What quantum mechanics has going for it, in short,
is the tensor product.

So, we have decided what combinations of H, | oi, U ’s, and P ’s (namely
the simple ones) to allow in our quantum-assisted programs; and what di�culty
(namely, one each) to assign to the new commands, apply and observe, in
that language. We must now contend with the probabilistic aspect of quantum-
assisted computing.

Fix a quantum-assisted program, Pquant, that computes some problem, ⇡, in
the sense of Sect. 17. Thus, for every input string, Sin, we have a probability
distribution p on the possible outcomes with this Sin; and these satisfy p(⇤) = 0,
and p(⇡(Sin)) > p(S0) for every S0 6= ⇡(Sin). We wish to assign a di�culty
function to this entire program. The situation here is similar to that we faced
in our discussion, in Sect 13, of probabilistic computing. We must take account
of the fact that di↵erent runs of our program may require di↵erent numbers of
steps; and also that the output from running our program, on input string S,
may be something other than the right answer, ⇡(S). And we adopt the same
formula as we obtained earlier: We assign, for the di�culty for the computation
on input string S, the value f(S) = D(S)(p + p0)/(p � p0)2, where D(S) is the
expected di�culty in running this program on this input string; p denotes the
probability of the correct output, ⇡(S), and p0 denotes the probability of the
next most probable output. The first factor on the right corrects for the fact
that di↵erent runs of our program may encounter di↵erent di�culties — we take
the mean di�culty. The second factor corrects for the probabilistic nature of
the output.

As an example of these ideas, consider again the Grover construction, as
reflected by the three distinct quantum-assisted programs introduced in Sect. 17.
We now determine the di�culty function for each of these programs. For input
n, a positive integer, denote by h(n) the di�culty encountered by a quantum-
assisted subroutine in applying the entire operator WV to the tensor product,
H⌦ · · ·⌦H, of n H’s, so h(n) � n. Then, as part of the lore of this construction,
this same h(n) will be the largest di�culty encountered by a regular program
making a check to see whether a single k is the needle in the n-haystack. Thus,
a regular program can compute this problem with di�culty function freg(n) =
Nh(n), where N = 2n is the total number of needles in the haystack.

In the first quantum-assisted program, there is made a single iteration of
WV , followed by a series of n observations. There results a candidate k for the
needle, which is then immediately reported using output. The probability (p)
that this k is the actual needle is about 9/N ; while the remaining k-values share
the rest of the probabilities (so each p0 is about 1/N). The mean di�culty in this
case is D(n) = h(n)+n (since there is performed a single iteration followed by n
observations). Substituting into our formula, we obtain a di�culty function (for
large N) fquant(n) = (10/64)(h(n) + n)N , which is equivalent to the di�culty
function, above, of the regular program. It should come as no surprise that this

108 19.

strategy for a quantum-assisted computation brings no advantage.
In the second program, there is made a total of

p
N (give or take a couple)

iterations ofWV , again followed by a series of n observations, and the reporting
of a needle-candidate. Here, the mean di�culty is D(n) =

p
Nh(n) + n. The

probability that the reported k is the actual needle is now about p = 1� 1
N , while

the remaining k-values share the rest of the probabilities (so p0 is approximately
1

N2). Substituting into our formula, we obtain di�culty function fquant(n) =

(
p
Nh(n) + n)(1 � 1

N + 1
N2)/(1 � 1

N � 1
N2)2. This function, for large N , is

equivalent to
p
Nh(n). Note that the di�culty function for this program is

⌧ than the di�culty function for the regular program, reflecting a potential
advantage for the quantum-assist (which would, perhaps, be a real advantage,
if only we had a good candidate for what problem is being computed here).

In the third program, we begin, just as above, with a total of
p
N iterations

of WV , followed by a series of n observation. But in this case we check, using
the regular program, whether or not the k that results is indeed the needle. If it
is, report that k (thus incurring total di�culty

p
Nh(n) + n+ h(n)); but if it is

not, go back to the beginning, carrying out the iterations and the observations
again. Repeat until you find the needle. In this case p = 1, p0 = 0 (since we
will either find the needle, or (with probability zero) continue trying forever).
But now the mean di�culty (which really is a mean in this case, for now there
is a nontrivial probability distribution on di�culties) is more complicated. The
probability that we carry out just one group of

p
N iterations of WV is 1� 1

N
(approximately); that we carry out two is 1

N (1� 1
N); etc. So, the mean di�culty

is given by

D(n) = (
p
Nh(n)+n+h(n))[1(1� 1

N
)+2

1

N
(1� 1

N
)+3

1

N2
(1� 1

N
)+ · · ·]. (14)

The sum on the right is (N
N�1). Substituting these into our formula, we ob-

tain, for large N and up to equivalence, the di�culty function of this program:
fquant(n) =

p
Nh(n). This is identical to the di�culty function of the previous

program.
These are precisely the results that we expect. The first program is not really

exploiting the potential advantages of quantum mechanics, and its di�culty
function shows it. The last two are essentially the same program. The only
di↵erence is that the first program has a fixed di�culty per run (as opposed to
a probability distribution in di�culties), but leaves some unfinished business in
form of the output-probabilities; while the second yields certainty for the correct
output, at the cost of possibly requiring several repetitions. Our definition of
the di�culty function of a quantum-assisted program is so constructed to ignore
such window-dressing.

We remark that one way to exploit quantum mechanics in the computation
process is to use it merely as a random-number generator. That is, there would
not, in the course of the computation, be created any entanglements between
the various H-factors in the tensor product. Instead, we would simply create
an H-factor (using apply), with initial state | oi), and then immediately there-
after make an observation on that factor (using observe), resulting in various

109

probabilities for the various outcomes. These two steps would be repeated, as
necessary, throughout the program. Indeed, every probabilistic program (as
defined in Sect. 13) can in this manner be simulated by a quantum-assisted
program. For the quantum-assisted programs in this class, each �(S) that will
have to be evaluated can be computed with (up to equivalence) di�culty one (as
follows from the fact that no entanglements are created between the H-factors).
Note further that the di�culty function for a quantum-assisted program is virtu-
ally a rewrite of the di�culty function for a probabilistic program. There follows
from these remarks:

Theorem. Let ⇡ be a problem, and Pprob any probabilistic program that com-
putes that problem. Then there exists a quantum-assisted program, Pquant,
that also computes ⇡, such that Pquant has precisely the same di�culty func-
tion as Pprob.

In other words, any benefits that probability might bring to the computation
process are also borne by quantum mechanics. In Sect. 13, we remarked that
it is, apparently, an open question whether there exists a problem such that
some probabilistic program computes that problem more e�ciently than any
regular program. If there were such a problem, then it follows from the theorem
that some quantum-assisted program would also compute that problem more
e�ciently than any regular program. Of course, the status of the converse of
this assertion is not clear: It could turn out that there exists no problem for
which probability increases e�ciency, and yet there does exist a problem for
which quantum mechanics increases e�ciency.

110 19.

20. Quantum-Assisted
E�ciency I

This completes our formulation of quantum-assisted computing. This formula-
tion begins by fixing a character set; together with a finite-dimensional Hilbert
space H, a state in that Hilbert space, and finite lists of unitary and projection
operators, each acting on some finite tensor product of H’s. On these objects
we impose the condition of simplicity. We then introduce a quantum-assisted
programming language, consisting of some seven commands. We introduce the
notion of a program’s computing a problem; as well as the di�culty function
associated with such a program. These are the building blocks of quantum-
assisted computing. In this section and the next, we compare quantum-assisted
programs and regular programs with respect to their di�culty functions. Here,
we obtain a result to the e↵ect that the maximum reduction in di�culty that
can be achieved by quantum-assist is logarithmic.

Fix a quantum-assisted program, Pquant, that computes some problem ⇡, and
denote its di�culty function by fquant. We construct a regular program, Preg,
that simulates Pquant, in the following manner. Fix the input string, Sin. Then
Preg simulates the running of Pquant, on this input string, in the same manner as
in Sect. 18. That is, at any one moment Preg is following a number of “branches”
of Pquant (each spawned by the simulated execution of an observe command);
and for each of these branches Preg keeps track of three pieces of information: i)
what is the next command, in the list Pquant, to be executed; ii) what is stored,
by Pquant, in all nonempty storage locations; and iii) what is the history string
S, representing interactions Pquant has initiated with the quantum system. We
now modify that earlier simulation, in two ways.

First, the earlier simulation (implicitly) proceeded along each branch at the
same command-rate. That is, one additional command was executed in every
branch; then one more command in every branch, etc. Now, however, we proceed
along each branch at the same di�culty-rate. That is, we carry out one unit of
Pquant-di�culty in each branch; then one more unit in each branch, etc. Thus,
branches that involve a great deal of di�culty per command are simulated more
slowly than those that involve less.

For the second modification, recall that in the earlier simulation Preg main-
tained in its memory a special section, which was added to each time a branch
under simulation reached a “halt”, i.e., a Pquant-output command. When this

111

112 20.

occurred, the program Preg stored in this section the current history string S, as
of that halt, as well as the string S that would have then been returned by Pquant.
A branch, once reported in this way, was then abandoned by Preg. The present
simulation is a little di↵erent. The special section now contains a certain list of
strings and, for each such string S, a corresponding rational number. When a
branch, while under simulation, reaches a halt, Preg immediately computes the
rational number �(S) (where S is the current history string), adds this number
to the number already stored for string S (where S is the string that Pquant

would have returned), and then again abandons that branch. Thus, the various
strings listed in this special section are, as before, the possible outputs from
Pquant up to this point. But now the (rational) number stored for each string
gives the total probability that Pquant would, by this point, have returned that
string. In addition, Preg contains a subroutine, which operates as follows: It goes
through the list of strings and (rational) probabilities in the special section, and
determines whether any output string in that list can be declared a clear winner
(i.e., has a total that is greater than that which could be achieved by any other
string, even if that string were allocated all so-far unallocated probability). If
the subroutine finds a clear winner, then Preg itself halts, returning the winning
string. This subroutine is run each time Preg finds itself making an addition to
the special section.

So, given the program Pquant, we may write this program Preg, which, for
every input string, simulates the behavior of Pquant, as described above. Clearly,
this Preg always halts, and computes the same problem as Pquant does. Denote
by freg the di�culty function of Preg. The plan is to use (13) to find an inequality
that bounds freg in terms of fquant.

Fix the input string Sin, and denote by p the probability that Pquant will
return ⇡(Sin), and by p0 the probability of the next-most-likely output, so p > p0.
Then Preg will be able to declare a clear winner, and so will halt, at least by the

time it has accounted for an amount 1 � p�p0

2 of probability16. Denote by N
the total amount of Pquant-di�culty that Preg has simulated (in each branch) at
the point at which Preg halts. Then we have

fquant(Sin) = D(Sin)
p+ p0

(p� p0)2
� {N p� p0

2
} p+ p0

(p� p0)2
� 1

2
N . (15)

The first step in (15) is the definition of fquant. The second step uses the fact
that Preg has already gone through amount N of Pquant-di�culty, and yet there

still remains probability at least p�p0

2 that Pquant has not halted. This fact alone
contributes to the mean total di�culty of Pquant an amount equal to the product
of these two numbers.

We must now relate freg to this N . To this end, denote by MH the maximum
number of additional H’s that can be introduced into the tensor product per

16To see this, denote by x the amount of probability that Preg has accounted for up to some
point. In the worst-case scenario, an amount 1� p (the maximum possible) would have been
used on the non-p outcomes (including amount p0 on the p0-outcome), leaving just x � 1 + p
for the p-outcome. So, in order that there be declared a clear winner at this point, p’s amount
(x� 1 + p) must exceed p0’s amount (p0) plus the so-far unallocated probability (1� x).

113

unit di�culty. For example, if no unitary or projection operator in our original
lists requires a tensor product of more than three H’s, then we would have
MH = 3. Note that MH depends only on the our quantum-assisted language
and not on the particular program under consideration. Returning now to our
simulation, since Preg has traversed total Pquant-di�culty N in each branch, the
total number of operators that have been applied in each branch is bounded by
N ; while the total number of H’s that can occur in the tensor product in each
branch is bounded by MHN . We have

freg {2N } {N + N 2 mMHN }. (16)

The first factor on the right is an upper bound on the total number of branches,
where we are using the fact that each observe command spawns the splitting of
one branch into two. The second factor on the right in (16) is an upper bound on
the total Preg-di�culty of each branch. The first term therein covers the case in
which the Pquant-command simulated is input, output, append, delete, if,
or apply. The second term covers the simulation of an observe command: The
bound in this case is the product of our bound (N) on the number of observe
commands in a branch and the di�culty (from (13)) required to compute, for
each observe command, the rational number to include in the special section.
Combining (15) and (16), we obtain17

freg afquant , (17)

where we have set a = 4m2MH .
We conclude: Given any quantum-assisted program, there exists a regular

program that computes exactly the same problem, and has di�culty function
satisfying (17). The benefit in e�ciency from the quantum-assist cannot be more
than exponential. There is a more elegant, if slightly less informative, way of
putting this. For f any di�culty function, denote by log f the di�culty function
obtained by taking the log of f , possibly after adding to f a constant such that
it is bounded away from 1. We note that the logs, so defined, of equivalent
di�culty functions are equivalent. Then (17) implies: log freg fquant. Of
course, these general inequalities are rather coarse. If, in a particular example,
a finer inequality is wanted, it usually can be obtained by applying (13) directly.

As an example of these ideas, let us return to the Grover construction. Here
m = 2. Let us assign to each apply and observe command di�culty one; and
suppose that none of these operators require a tensor product of more than two
H’s. Then Mop = 1 and MH = 2. Choose, for a > 22Mopm2MH , the value
a = 64.

Our quantum-assisted program computes this problem with di�culty func-
tion fquant(n) =

p
Nh(n), where N = 2n. The inequality (17) now implies the

existence of a regular program to compute this problem, with di�culty function
freg(n) (64)

p
Nh(n). We can find a much better bound than this. This particu-

lar program requires, for given n, just n H’s in the tensor product, and it applies

17This equation appears to be nonsensical, in that it is not invariant under replacing fquant
by the equivalent di�culty function, 2fquant. But we broke this invariance in the derivation
by assigning to each append and observe command di�culty one.

114 20.

to this Hilbert space just h(n) operators. Thus, to simulate a single observe re-
quires of Preg di�culty h(n)2n. There is a total of n such observe commands to
be executed, and so we obtain freg(n) nNh(n). Recall, by contrast, that the
actual regular program for this construction has an even smaller di�culty func-
tion, namely freg(n) = Nh(n). The extra factor of n in the former reflects the
fact that our simulation recomputes �(S), from scratch, for each observation,
whereas it is more e�cient to carry out these n computations together.

21. Quantum-Assisted
E�ciency II

Can quantum-assisted programs o↵er any gain in e�ciency over regular pro-
grams? Here is a precise formulation of this question.

Conjecture18. There exists a problem ⇡, together with a quantum-assisted
program Pquant (di�culty function fquant) that computes ⇡, such that: There
exists no regular program, Preg, that computes this same problem and whose
di�culty function satisfies freg fquant.

As far as I am aware, we have neither a proof of nor a counterexample to
this conjecture.

Note that, for a proof of the conjecture, one must actually prove (not merely
suspect) that there exists no regular program at least as e�cient as the given
quantum-assisted one. What makes this conjecture hard is that we do not cur-
rently have good lower limits on the di�culty functions for the regular programs
that compute a given problem. A good example is the prime problem: the prob-
lem of factoring a given integer n into its prime factors. There is no known
method for computing this problem with a regular program whose di�culty
function is (log n)s for every positive number s. Yet, there are indications
([12]) that there exists, for this problem, a quantum-assisted program19 whose
di�culty function does satisfy this condition. Thus, the prime problem is, ar-
guably, a plausible candidate for an example as demanded by the conjecture.
Surely, one might think, the most promising line to prove the conjecture would
be to try to prove that this particular example works, i.e., that there is no reg-
ular program that computes the prime problem, and whose di�culty function
is (log n)s for every s > 0. I would like to suggest, however, that this line

18It is tempting to pose a stronger conjecture, asserting the existence of ⇡ and Pquant

such that every regular program that computes this problem satisfies fquant freg but not
fquant ⇠ freg. But this conjecture is very unlikely to be true (even though, as far as I am
aware, we don’t have a counterexample). The reason is that, given ⇡ and Pquant, one can
normally design a regular program that, while it may have considerably greater di�culty than
Pquant for most input strings, is less di�cult for an occasional string. We saw examples of this
sort of construction in Sect. 12.

19However, it is not entirely clear whether there can be designed such a program that meets
all the requirements of Sect. 17, in particular, that all operators are fixed initially, independent
of the input string.

115

116 21.

may not be as promising as it at first appears. There has been an enormous
e↵ort, by many talented people over many years, to prove that there is no easy
computation of the prime problem. Yet this question remains open — and there
is a good chance that it will remain open for some time to come. It may well
be, in other words, that it is actually easier to settle the conjecture above than
the question of the di�culty of the prime problem. But, of course, the prime
problem is also of interest for other reasons.

We remark, below, on a few possible directions for proving (or disproving)
this conjecture.

The obvious way to prove the conjecture would be to construct the problem
⇡ by a diagonal argument. That is, we would introduce the list of all quantum-
assisted programs that compute problems, the list of all regular programs that
compute problems, and the list of all input strings. In order to choose what
⇡ is on the first string, S1, we would run a few quantum-assisted programs on
this string, as well as a few regular programs, determining, for these runs, what
final strings result what the di�culties are. Then, we would select ⇡(S1) so as
to to eliminate the low-di�culty regular programs as well as the high-di�culty
quantum-assisted programs. Continuing in this way through the list of input
strings, we would hope to design a ⇡ with a quantum-assisted program that
computes ⇡, such that no regular program is at least that e�cient. This appears
to be a natural line (similar to the Blum ([3]) proof of Sect. 10). But, despite
its apparent promise, this line has not so far met with success.

Another strategy involves exploiting probabilistic programs. We have seen,
in Sect 19, that every probabilistic program may be simulated by a quantum-
assisted program with the same di�culty function. Suppose, then, that we were
able to find a probabilistic program whose di�culty function is unmatched by
any regular program. This would yield immediately a proof of the conjecture.
This strategy appears promising, for the language of probabilistic programs is
somewhat simpler than that of quantum-assisted programs. Indeed, whereas
quantum-assisted programs require additional objects (the Hilbert space H, the
state | oi, and some unitary and some projection operators on tensor products
of H’s), probabilistic programs do not. Whereas quantum-assisted programs
require two additional commands (apply and observe), probabilistic programs
do not. Whereas quantum-assisted programs require conditions on the function
� on history strings, probabilistic programs do not. The downside of this strategy
is that quantum-assisted simulations of probabilistic programs do not appear to
exploit what appears to be the key advantage of quantum-assistance — use of
entanglements in the tensor product. In any case, as remarked in Sect. 13,
there is no known example of a problem and a probabilistic computation of that
problem for which one can prove that no regular program is at least as e�cient.

Another class of possible examples comes from the Grover construction (Sects.
15-16). Suppose that we could find a suitable example of a needle-in-the-
haystack problem. By “suitable”, we mean one for which there is a regular
program for checking needle candidates; but there exists no regular program
can find the needle any more e�ciently than merely checking all possible can-
didates, one at a time. Then, as discussed in Sect. 16, this arrangement might

117

lead to a problem and quantum-assisted program that satisfy the condition of
the conjecture. But no such example, apparently, is known.

Another strategy is to try to construct, using the quantum-assisted pro-
gramming language itself, a problem for which quantum-assisted programs are
well-suited but regular programs are not. Consider, for example, the following:
Let ⇡ accept as input a pair (Pquant, Sin), where Pquant is a string representing
a quantum assisted program, and Sin is any string; and let ⇡, on such input,
return the string that is determined by running program Pquant on input string
Sin. Quantum-assisted programs are certainly well set up for this ⇡! But, un-
fortunately, this ⇡ is not even a problem, for Pquant, applied to Sin, need not
determine any string at all: There may be a nonzero probability that the pro-
gram, on this string, will fail to halt altogether; or, even if it does halt, it may do
so such that no one output has a probability strictly greater than that of every
other possible output string. It would not help to modify this example to read:
⇡(Pquant, Sin) is the empty string in case Pquant, applied to Sin, fails to compute
any string; and otherwise is whatever string Pquant does compute. Now we do
indeed have a problem ⇡ but, unfortunately, it is not a computable one. Indeed,
there exists no program that will even decide whether or not a given regular
program and input string results in a halt.

More promising is to focus on the essence of quantum-assisted computing:
the function �. Fix a Hilbert space H, an initial state | oi, and finite collections
of unitary and of projection operators, each acting on some finite tensor product
of H’s. Recall, from Sect. 18, that a string S is called a history if it represents a
finite, ordered, list of unitary or projection operators from the collection above,
where for each operator there is specified the particular copies of H on which it
is to act; and for each projection operator there is assigned a result (“0” or “1”)
of an observation via that operator. Fix a history string, S. Then i) assemble
a tensor product of H’s, consisting of those on which the operators in S act; ii)
consider the state | oi · · · | oi in this tensor product; iii) apply to this state the
operators of S, in order, except that, for each projection P that is assigned result
“0”, apply I � P rather than P ; and iv) take the squared-norm of the resulting
state. This is the number we denoted �(S) in Sect. 18; and we required there
that it be rational-valued. In physical terms, �(S) is the probability that the
sequence of operations and observations represented by S will in fact return the
results we have assigned to each of the observations. This function � contains all
the information about quantum mechanics needed to simulate quantum-assisted
programs written in this language.

FixH, | oi, and the collections of unitary and projection operators. Consider
the problem � itself, i.e., the map that assigns to history string S the (rational)
number �(S). This is indeed a problem; and, by virtue of the restrictions we
imposed in Sect. 18, it is a computable problem. If we could compute this
problem � by some relatively e�cient regular program, then we could simulate
each quantum-assisted program by a regular program with the same di�culty
function, and thus would conclude that the conjecture is false. But, as we
remarked in Sect. 18, there is no obvious e�cient method for computing � with
a regular program, and this observation is the essence of the idea that quantum

118 21.

mechanics might make for more e�cient computation.

So, let us take, for the problem ⇡ of the conjecture, the problem � itself.
It is, as we remarked above, unlikely that this ⇡ can be computed e�ciently
by a regular program. But this example does not seem to work either, for
no quantum-assisted program can (at least, not in any obvious way) do any
better! Quantum-assisted programs are very good at taking actions in response
to probability �(S) (for that is the essence of the observe command in that
language), but they do not seem particularly adept at actually computing the
integers that appear in the numerator and the denominator of this fraction.

Here is a more promising way to incorporate this � into a problem. Let, for S
any history string, ⇡(S) be “yes” if �(S) � 1/2, and “no” if �(S) < 1/2. This is,
again, a computable problem; and, again, it is plausible that there is no regular
program that computes it e�ciently. But here is a relatively e�cient quantum-
assisted program, Pquant, for this problem. Let Pquant, given a history S, simply
perform, physically, the operations represented by S, keeping a record of the
results of any observe commands. Then, Pquant compares those actual results
with the results already encoded in S, and reports “yes” if they agree, and “no”
if they do not. This quantum-assisted program, Pquant, computes this problem
⇡, except for one little thing. For any string for which �(S) has exactly the value
1/2, then this Pquant computes nothing (for it will return “yes” or “no”, each
with probability 1/2). But this is easily remedied by slightly modifying Pquant.
First note that, if history string S contains exactly L projection operations, then
�(S) is a fraction with denominator 2L. Thus, we have only to modify Pquant so
that, for input string S, it reports “yes” with probability �(S) + 1/2L+1 (rather
than just �(S) as before); and “no” otherwise. This is easily accomplished by
incorporating into Pquant a quantum-generated additional probability of 1/2L+1

for “yes”.

So, we have a quantum-assisted program, Pquant that computes the problem
⇡. Note that this Pquant is relatively e�cient when �(S) is far from the value
1/2 — say, less than 1/3 or more than 2/3. But, when �(S) is close to 1/2 —
and, in particular, when it is precisely 1/2 — then Pquant will be very ine�cient,
a consequence of the fact that, since the numbers of “yes” and “no” answers
will be nearly equal, many runs of Pquant will be necessary to determine ⇡(S).
Indeed, when �(S) is close to 1/2, Pquant may be less e�cient than the regular
program that computes ⇡. We could (although it is not necessary, in light of the
way the conjecture is structured) adjust for this by modifying Pquant further.
While running its quantum-assisted computation of ⇡(S), Pquant also carries
out the regular computation of �(S). Then, Pquant reports whichever method
terminates first.

So, we have a problem ⇡, and a quantum-assisted program, Pquant that com-
putes ⇡, such that the obvious regular program to compute ⇡ is not more e�cient
that Pquant. But this alone does not establish the conjecture: We must prove
that there exists no regular program whatever more e�cient that Pquant. But —
and this will come as no surprise — obtaining such a proof does not seem to be
easy.

We remark that there are some pretty tough-looking subproblems of this

119

problem ⇡. For example, let the Hilbert space H be two-dimensional, let the
unitary operators include a “spin-flip” operator (that reverses “up-spin” and
“down-spin”) and a To↵oli operator (that flips one spin if and only if two others
are “up”). Let there be just one projection operator, the “spin-up” projection.
Consider history strings that i) create a tensor product of n copies of H (so the
Hilbert space of states has dimension 2n), ii) create some initial state in this
Hilbert space, iii) apply to this state m To↵oli operators, acting on various of
the factors, and iv) observe the spin-state in the first H-factor. Now, for many
such history strings, �(S) will be close to 1/2; but there will also be many for
which �(S) is far from 1/2. For the latter, quantum-assisted program Pquant will
compute ⇡(S) with di�culty n+m. It appears that it will be extremely di�cult
to find a regular program that will be more e�cient for these history strings.
Thus, it appears plausible that this ⇡ and Pquant will satisfy the condition of the
conjecture.

To summarize, there are a number promising-looking strategies one might
employ to try to decide whether the conjecture above is true or false. But none,
so far, has panned out. It appears that the question posed by this conjecture is
a di�cult one.

120 21.

22. Conclusion

We have discussed here three broad aspects of the theory of computation.

The first of these is the notion of computability — what can, in principle,
be computed. This subject is, by any measure, in excellent shape. There is
apparently a unique, natural notion of what it means to “compute” something.
And we can produce simple examples of problems that are computable and of
those that are not.

The second aspect involves the notion of the di�culty of a computation —
roughly speaking, the number of steps required to carry it out. We introduce
what purports to be “the simplest e�cient language”, and, by means of it, define
what we mean by a “method” to compute a problem, as well as by the di�culty
of that method. It has been proven that there exist “very hard problems”; and
that there exist problems for which there is no “most e�cient” computation.
Furthermore, there is a simple, natural way (by merely altering slightly one of
the commands of this language) to incorporate probability into the computation
process. A probabilistic program returns, for a given input string, an “answer”
only probabilistically. Nevertheless, there is a suitable definition of what it means
for such a program to compute a problem; and one can assign, in a natural way,
a di�culty function to such a computation. There are at least three open issues
in this area. First, while our definition of di�culty is perhaps reasonable, there
do exist some technical variants of it, and there is no solid argument that our
scheme is “more reasonable” than these alternatives. Can such an argument be
found? Second, it turns out that, for virtually every interesting problem, we do
not have a good lower bound on the di�culty of the regular computations of that
problem. This lack of good lower bounds is arguably the outstanding gap in this
subject, and an enormous amount of e↵ort has gone into it. And, finally, it is not
known whether there exists a problem along with a probabilistic computation
of that problem such that no regular computation is equally e�cient. It is
surprising, to say the least, that such a question should remain open. It would
be most interesting to settle it.

The third aspect involves the use of quantum mechanics in the computa-
tion process. It turns out that one can introduce a certain, precise computer
language, designed to reflect what (and only what) could be done, in the labo-
ratory, using quantum systems. This language introduces “basic quantum sys-
tems”, with a finite-dimensional Hilbert space, unitary evolution, and certain
observables. Computations are carried out using tensor products of copies of

121

122 22.

these basic systems. One introduces, further, a suitable di�culty function for
computations in this language, designed to reflect physical di�culty of an actual
computation. This, the language of “quantum assisted computing”, allows us
to reformulate questions about physical computers into questions about math-
ematics. Using this formulation, for example, we can prove that, given any
computation of a problem using quantum mechanics, there is a computation
that does not use quantum mechanics, that is at most exponentially more di�-
cult. A central question is whether or not there exist a problem, together with
a quantum-assisted computation of that problem, such that that computation
is more e�cient than any non-quantum computation. Although there certainly
are indications that there does exist such a problem, we have today neither a
proof nor a counterexample. This, to my mind, is one of the most fascinating
questions in the subject of quantum-assisted computing.

Quantum mechanics brings to the computation process two, quite sepa-
rate, potential advantages. One involves the use of probability. We can write
quantum-assisted programs that, essentially, use quantum mechanics only as a
random-number generator; i.e., that merely mimic probabilistic programs. But,
even when restricted to this aspect, quantum mechanics has the potential to
enhance the computation process: It is an open question whether there exists
a probabilistic program (and, therefore, a quantum-assisted program invoking
only random-number generation) that cannot be matched, in terms of e�ciency,
by some regular program. The second involves the use of entanglements, i.e.,
of the ability, with quantum mechanics, to manipulate large numbers of terms
in a tensor product in a single step. It is from this source that the advantages
of quantum mechanics — if there are any at all — are likely to be the most
dramatic. These two appear to be quite separate e↵ects: They rely on very
di↵erent features of quantum mechanics. In light of all this, it is strange that
the example in which the probability-aspect of quantum mechanics might play
a role (Sect. 13), and that in which entanglements might play a role (Sect. 15)
are strikingly similar. Is it possible that, on some deeper level, these two aspects
are somehow related to each other?

It would be interesting to try to do with classical mechanics what has been
done with quantum. That is, we would introduce a precise mathematical lan-
guage of “classical-mechanics-assisted computing”, designed to reflect how clas-
sical mechanics might be used in the laboratory. With such a language in hand,
we could, for example, ask whether or not there exist a problem and a classical-
mechanics-assisted computation of that problem, such that the e�ciency of that
computation cannot be matched with any regular program. Let us, for exam-
ple, posit that “classical mechanics” is to be idealized as follows. A system is
to be described by a manifold of states (e.g., its phase space) together with a
dynamical vector field on that manifold. The integral curves of the dynamical
vector field give the evolution of the system through time. We identify certain
regions of this manifold as corresponding to the various input strings; and cer-
tain other regions to various output strings. This arrangement may now be used
to “compute” in the following manner: Given any input string, begin with the
system in a state lying in the corresponding input-string region of this mani-

123

fold. Then evolve (i.e., follow the dynamical vector field) until we arrive at some
output-string region. But it turns out, unfortunately, that these particular rules
for classical-mechanics-assisted computing are too permissive. It is, for example,
not di�cult to specify a particular manifold, along with a vector field and such
regions, such that the resulting system, under these rules, computes the halting
problem. We have merely to encode, into the vector field and the regions, which
programs halt and which do not. Thus, the problem with the framework above
is that it does not impose, on the vector field and region-assignments, some
suitable requirement to the e↵ect that they be “physically constructible”. It is
very hard to think of any mathematical condition that could be imposed on the
manifold, the vector field, and the regions that would reflect such a requirement.

A similar situation can arise already in the quantum case. Let us idealize
quantum mechanics as follows: A quantum system is described by a Hilbert
space together with a family of unitary operators, giving the time-evolution,
and also with a collection of self-adjoint operators, giving the observables. These
observables are to be interpreted as representing the input and output strings.
This arrangement could be is used to compute, in a manner similar to that of
classical mechanics. Start the system in an appropriate eigenstate of an input-
string observable, evolve the system using the unitary operators, and make a
final observation via an output-string observables. But, just as with classical
mechanics, this arrangement could be used to compute the halting problem.
But there is one crucial di↵erence, in this regard, between classical and quantum
mechanics. Whereas it appears very di�cult, in the case of classical mechanics,
to invent new rules that can be imposed to prevent this sort of thing, it is
relatively easy to do so in quantum mechanics. We first introduce a very simple
quantum system — consisting of a finite-dimensional Hilbert space with a couple
of simple unitary and self-adjoint operators thereon. This system is relatively
structureless — it is not rich enough to encode, for example, the solution to the
halting problem. We now build our quantum-assisted computer by taking (finite)
tensor products of copies of this simple system. In other words, we demand that
the quantum system we use for our computation be explicitly constructed from
these simple building blocks. In this way, we are able to use quantum mechanics
to assist in the (complicated) computation of a problem, without the danger of
encoding the solution of the problem, right from the beginning, in the quantum
system itself. It is di�cult to think of any way to do a similar thing for classical
mechanics. What, for example, are the analogous building blocks?

It is the tensor product that gives quantum mechanics its potential advantage
in e�cient computing. The tensor product of n physical systems, each having,
say, m states, describes a system whose general state is a superposition of mn

states. We thus can, by relatively simple manipulations (i.e., applying operators
to one or two of the n systems), manipulate mn numbers (the coe�cients in the
superposition). Can we find other physical theories that might employ a similar
advantage? That is, do we find, in any other physical theories, a “tensor-product-
like” construction?

Consider electromagnetism. Suppose that we were capable of manufacturing
small boxes, in which there could be stimulated a total of three possible elec-

124 22.

tromagnetic modes. Thus, the electromagnetic states within each box form a
3-dimensional (real) vector space, V . Now take two such boxes, place them side
by side, and regard these two as a single system. What is the space of states of
this combination? Well, each of the two boxes carries a field, in some state in V ,
and so the state of the total system is described by simply specifying these two
elements of V . That is, the vector space of states is V � V , the direct sum of
V and V (with dimension 6 = 3 + 3). Had this instead been V ⌦ V , the tensor
product (with dimension 9 = 3 ⇥ 3), then we would have the beginnings of a
promising theory of electromagnetic-assisted computing.

Tensor products, it appears, do not routinely make an appearance outside
of quantum mechanics. Is there some general principle of non-quantum physics
that rules out the tensor product, once and for all? The following example may
shed some light on this question. Consider a one-dimensional “box”, of length
L, in which the vector space V of allowed states is that resulting from exciting
three modes of a field, given, say, by (sin ⇡x/L, sin 2⇡x/L, sin 3⇡x/L). Here,
for this example, is a mechanism to realize the tensor product, V ⌦V . Consider
fields in the square of side L. The corresponding modes are arbitrary linear
combinations of products, sin a⇡x/L sin b⇡y/L, where a, b = 1, 2, 3. The
vector space of such solutions is indeed the 9-dimensional V ⌦ V . Similarly,
passing to a cubic box, we obtain a space of field states given by V ⌦ V ⌦ V .
Here, in other words, is a situation in which we can, physically, form tensor-
product states. But just this three-fold tensor product is not good enough —
we must be able to take arbitrarily large tensor products if this scheme is likely
to be useful in computations. Alas, we all too soon run out of dimensions.

It might also be of interest to try to characterize all problems (or, at least,
some large class of problems) for which quantum-assisted computation is more
e�cient than computation without quantum mechanics (assuming, for the mo-
ment, that there exist any such problems at all!). Even the question itself must
be stated with care, in light of the dependence of computational-e�ciency on
the method employed. We might like to ask, for example, whether a given
quantum-assisted program for computing a problem is more e�cient that the
non-quantum program “using the same method”. But, unfortunately, we do not
at the moment have any notion of “same method” for quantum-assisted and
non-quantum-assisted programs. Can we find a nontrivial class of problems for
which we can prove that, in some suitable sense, for no problem in this class
does quantum-assist o↵er any advantage?

Finally, it might be interesting to understand in some deeper sense how our
physical theories interact with the mathematics of computation. Can one, for
example, imagine a plausible-looking physical theory within whose framework
certain computations can be speeded-up even more dramatically?

Appendix A
Formal Systems

Fix, once and for all, some computer language; say, that of Sect 11. Let P be
any program. (Recall that have required of a program that it initially accept
some input string, and then, if and when that program halts, it produce some
output string; with no other input or output.) Further, let A and B be any
strings, and n any positive integer. We shall write H(P,A, n,B) to mean “when
the program P is run, with input string A, then that program halts precisely on
the nth step (i.e., not earlier and not later), then returning as output the string
B”. They key thing about this H(P,A, n,B) is that it makes an assertion we
can check explicitly. That is, we can manually run the program P , on the input
string A, and then determine whether or not it continues to run until reaching
the nth step, and that it at that point halts, returning output string B.

We shall allow the arguments of H(, , ,) — i.e., the programs, strings, and
integers — to be of two kinds. The first is the constants, i.e., arguments that
are given explicitly. Thus, the argument “n” could be replaced by the specific
integer “274”; or “A” by the explicit string “x2&.V v”. We shall also allow
arguments that are variables. So, for example, the variable “n” would run over
all positive integers; and “P” over all programs in our language.

We now introduce, in terms of this H(, , ,), formulae, according to the
following rules:

1. Each H(P,A, n,B), where each of P,A, n,B is either a constant or a
variable, is a formula.

2. If F and F 0 are formulae, then F ^ F 0 (read “F and F 0”), F _ F 0 (read
“F or F 0”) and ¬F (read “not F”) are also formulae.

3. If F is any formula, with program-variable P , then 8P (F) (read “for all
P , F”) and 9P (F) (read “there exists a P such that F”) are also formulae.
Similarly for “P” replaced by any other choice of program-variable. And simi-
larly also for 8 or 9 preceeding any integer-variable or any string-variable. (It
will be clear from context which type of variable is intended.)

These three rules, taken together, result in a large variety of formulae —
typically involving many H’s, with constants and variables for their arguments,
strung together in many di↵erent combinations using the symbols ^,_,¬, 8, 9.
Of course, the words we have used to describe these symbols reflect how we shall
interpret those formulae. But — and this point is crucial — these interpretations

125

126

are not part of the formal system itself.

The idea is that the formulae, formed according to these three rules, are
su�cient to express anything might wish to say about the results of running
programs. After all, a program does nothing more than accept an input string,
run, and then possibly halt returning some output string — and this is precisely
what is described by H(, , ,). Here are a few examples. To express that pro-
gram P , with input string A, never halts, we would write 8n8B ¬H(P,A, n,B).
To express the result of using the output from program P as input for program
P 0, we would write 9m9B (H(P,A,m,B) ^H(P 0, B, n, C)). To express “F im-
plies F 0”, where F and F 0 are formulae, we would write (¬F)_F 0. (This formula
is normally abbreviated F) F 0.) To express “for every string A containing the
character z, · · · ”, we first write a program, Q, that accepts as input a string A,
and then halts, reporting “yes” if the string A contains the character “z”, and
“no” otherwise. Then this idea is written as 8A((9m H(Q,A,m, “yes”))) · · ·).
In a similar way, we could quantify, e.g., over all prime integers; or over all strings
of symbols that represent formulae. Exercise: How would you write a program
that utilizes the output from two other programs?

In fact, the formulae above do much more than merely express everything we
might wish to say about programs. Arguably, they express everything we might
wish to say within mathematics as a whole. For example, let P be a program
which, given input string S, converts that string to an integer n, and then
searches systematically for and integer m > n such that m and m+ 2 are both
primes, halting if and when it finds such an m. Then 8S¬(9n9B H(P, S, n,B,))
is the twin-prime conjecture. But what about an assertion such as “Every vector
space has a basis.”? We can hardly write a program that takes as input a vector
space, and then searches systematically for a basis for that vector space. This
assertion is within set theory. (Thus: A basis is a subset of the set of vectors of
the vector space; and the real numbers (which underlie vector spaces) are defined
in terms of Dedekind cuts (subsets of the set of rationals).) So, to formulate this
statement we must turn to a formulation of set theory. One such is the Zermelo-
Frankel. Here, assertions about sets are translated into strings of the symbols of
this formulation. These symbols include 2 (“is an element of”), 8a (“for all sets
a”), ¬ (“not”), etc. The statement above, about vector spaces, thus becomes a
certain string, Ao, of these symbols. The Zermelo-Frankel formulation further
incorporates the notion of a (stylized) “proof”. This is again a string of symbols,
which represent the “steps” in the proof. And there are rules for which strings
represent legitimate proofs of other strings. We needn’t be concerned with the
details of these rules, except for the following: There is a procedure for deciding
whether one string constitutes a proof of another. To put this in other terms,
Zermelo-Frankel provides a certain program, PZF , which accepts as input a
string of symbols of this formulation, searches for a “proof” (i.e., one satisfying
the rules of this formulation) of that string, and, if and when it finds such a
proof, halts, returning “ok”. So, the question of whether “Every vector space
has a basis.” is translated into the following formula: 9n H(PZF , Ao, n, “ok”).
We may summarize this general point as follows: Mathematics, in the final
analysis, consists of nothing more than merely checking things. But computer

127

programs (described via the sentences introduced above) are well-designed for
carrying out just such checks.

It is convenient to write H(P,A, n,) to stand for 9B (H(P,A, n,B));
H(P,A, , B) to stand for 9n (H(P,A, n,B)); and H(P,A, ,) to stand for
9n9B (H(P,A, n,B)).

A formula is called a sentence if all the variables in that formula have been
quantified over, i.e., are subject to either “8” or “9”. Think of a sentence as
a mathematical assertion (about the, possibly complicated, results of running
various programs, in various combinations, on various input strings for various
numbers of steps.) Note that, for S and S0 sentences, so are S ^ S0, S _ S0, and
¬S.

Call a sentence simple if it contains no variables, i.e., if all the arguments that
appear in that sentence are constants. For example, the sentence
H(Po, Ao, no, Bo), where Po, Ao, no, and Bo are all constants, is simple. Fur-
thermore, any sentence formed from simple sentences using only ¬, ^ or _, i.e.,
using only rule 2, is simple. Clearly, every simple sentence arises in this manner,
i.e., a sentence is simple if and only if it does not contain 8 or 9. The key feature
of simple sentences is that they can be “checked” explicitly. Thus, we check the
sentence H(Po, Ao, no, Bo) by running the program Po with input string Ao, for
no steps, and determining whether it halts at that point, with output string Bo.
And, clearly, if we can check sentences S and S0, then we can also check the
sentences ¬S, S ^ S0 and S _ S0. To put this in a broader context: There is
universal agreement as to what “true” and “false” mean when these terms are
applied to simple sentences.

But the situation is considerably less clear-cut for non-simple sentences. For
these, we cannot, in the same way, carry out an explicit verification. For example,
there is no obvious way to “check”, explicitly, that something holds “for every
value of n”.

The above notwithstanding, we have a shared intuition that every sentence
about programs — even one involving 8 or 9 — is, in some ultimate sense,
either true or false. For example, fix a program and input string. Then it is our
intuition that “either that program with that string halts (i.e., that it is true
that it halts); or that program runs on forever (i.e., it is false that it halts)”. We
now wish to understand what this intuition is all about. To this end, we turn
to the notion of a proof.

A program P will be called a proof-program provided i) it accepts as input
any sentence20, as defined above; and ii) it then either halts, returning output
“proven”, or it altogether fails to halt. Think of a P as “systematically searching
for a proof of the given sentence, and, if and when it finds one, announcing the
good news.” Thus, should this proof-program fail to halt, we interpret this as
meaning “there is no proof, at least according to the proof-scheme incorporated
into the program P.” But, thse interpretative remarks notwithstanding, we are
allowing P to be any program with the inputs and outputs described above.

20It will be necessary, for later purposes, to allow such a P to accept as input any string
(not necessarily a sentence), and, say, fail to halt in the case in which that string is not a
sentence.

128

We do not require that P actually search for anything. And we certainly do
not require that it actually “give the proof” (whatever that means!); nor do we
require that P justify or explain how it has reached its decision (or lack thereof).
The announcement itself, coming from the program P, is the proof.

One can, of course, imagine many candidates for such a program P. One is
the program that ignores the input sentence completely, and simply announces
“proven” for every sentence; another, the one that again ignores the input sen-
tence, but now always fails to halt. Ideally, we would like to settle, eventually, on
some proof-program that closely resembles what we would actually do in writ-
ing proofs. We could, if we wished, force some sort of resemblance by imposing
various demands on the program P. For example, we might demand that, ap-
plied to any simple sentence, the program announces “proven” if and only if the
check of that sentence, discussed above, turns out positive. (Exercise: Design a
proof-program having this property.) Or, to take a second example, we might
demand that if P assigns “proven” to sentences S and S) S0, then it must
also assign “proven” to the sentence S021. In any case, we could imagine assem-
bling a list of properties that we would like our proof-program to have, and then
searching for a program that has those properties. We might anticipate that, as
styles change over time, various new properties of proof-programs might become
desirable, and that, as a result, our program P would be subject to occasional
upgrades.

In fact, there is already available a particularly natural candidate for a proof-
program — what is called the Peano program, PP . In general terms, this
program operates in the following manner: The Peano program first converts the
input sentenceX (about programs) into an “equivalent sentence” about integers.
Then, PP searches for a stylized “proof”, involving elementary arithmetic, of
the latter. Here are some more details.

The program PP , first of all, has the capability to construct formulae, in
much the same way as we constructed formulae above, but now restricted to
(non-negative) integers. Thus, in these formulae there appear constant and
variable integers; the arithmetic operations, + (addition) and ⇤ (multiplication),
between integers; and the relations, = (equality) and < (inequality), between
integers. Additional formulae result from applying ¬ to any formula, inserting
^ or _ between formulae, or applying 8n or 9n to formulae (where here “n”
could be replaced by any integer variable). An example of such a formula is:
(1 < n) ^ 8m8p((m = 1) _ (p = 1) _ ¬(n = m ⇤ p)). These formulae, of course,
are to be interpreted as assertions about integers. This one, for example, is
interpreted as the assertion that “n is prime”.

Next, the program PP employs some rule, fixed once and for all, to convert
strings and programs into integers. For example, it might fix some ordering of
the characters that are used, and then use dictionary ordering for the strings and

21We should emphasize at this point that one must be a little cautious about such demands.
For example, it would not be a good idea to demand the following: If P assigns “proven” to
the sentence S _S0, then either it assigns “proven” to S or it does so to S0 (or possibly both).
As we shall see, it frequently turns out that we know that one of two options must hold, but
we don’t know which one!

129

programs composed of those characters. Now consider some input sentence X
(about programs). The program PP converts this sentence into a correspond-
ing sentence, X̂, about integers. The sentence H(P,A, n,B), for example, is
converted into the integer-sentence that states that there exists an integer that
encodes the n steps the program P would go through, starting from string A,
and finally returning B. More complicated sentences, involving many H’s and
using ¬,^,_, 8, 9, become more complicated sentences involving the integers.

The program PP next searches for a “proof” of the integer-assertion X̂, in
the following manner22. First, the program PP has access to a certain library of
assertions, about integers, called axioms. These include various facts about the
arithmetic operations, such as 8m8n8p (p ⇤ (m+n) = p ⇤m+ p ⇤n)). There are
further axioms that represent logical relations on formulae involving integers,
such as: For A and B any two such formulae, (A^B)) A. There is an infinite
number of such axioms, and the program PP is capable of deciding whether or
not a given string of characters is one of these axioms. A proof is a finite, ordered
list of formulae, each of which is either an axiom, or a formula B, such that,
for some formula A, the formulae A and A) B appeared earlier in the list.
The program PP searches systematically for a list of symbols that i) satisfies
the condition above to be a proof, and ii) is such that the final formula in the
list is the original integer-sentence X̂. If and when it stumbles upon such a list,
the program PP halts, returning “proven”. If P never finds such a list, then it
never halts.

The Peano program has a number of attractive features. For example, for
every simple sentence, PP returns “proven” if and only if that sentence checks
out. In addition, PP has various other “logical properties” that one would
expect. For example, if PP announces “proven” for sentence A, then it does so
also for the sentence A _B, where B is any sentence. And finally, the program
PP “discovers” standard arguments involving the behavior of programs. For
example, let Q be the following program: Given an input string S, Q first
converts it to an integer, and then checks, in turn, each integer larger than
that one to see if that integer is a prime. If and when it finds such a prime,
Q halts returning that prime. Now apply the program PP to the sentence
8S H(Q,S, ,), i.e., to the sentence we interpret as saying “for every integer,
there is a larger prime”. Note that this sentence is not simple. We claim that,
nevertheless, PP will indeed return “proven” in this case: PP will find (among
others) the standard Euler proof of the infinitude of primes.

While the program PP is certainly a natural one, it is not written in stone.
One could imagine modifying it in any number of ways. The obvious way would
be to add or remove axioms (a strategy that, apparently, hasn’t proven very
fruitful). Perhaps one could come up with some proposals for more radical
alterations. It would also be of interest, I feel, to try to restate the Peano
program in a way that avoids the integers entirely. After all, the integers are not
playing any substantive role here. There should be some way to rewrite PP so

22The actual Peano system, as usually given, is far more condensed than what we have
indicated here. But this version — which anyway we only sketch — is entirely equivalent, and
is somewhat easier to think about.

130

that, on receiving its input program, it proceeds by directly, by producing and
manipulating only various programs.

Now fix any proof-program P, not necessarily the Peano program. Let
X be any sentence. There are two distinct senses in which this program P
can bestow its approval on this sentence. One is represented by the sentence
H(P, X, , “proven”); the other, by the sentence H(P, X, no, “proven”), where
no is some specific (constant) integer. The first we interpret as the assertion that
the program P, when applied to the sentence X, will ultimately halt (in some
(undetermined) number of steps). We shall abbreviate this sentence Prf(X).
The second sentence goes further, for it specifies the specific number of steps,
no, that P will execute before it halts. Note that this second sentence, in
contrast to the first, is simple. Thus, we can check H(P, X, no, “proven”) —
i.e., there is a universal sense in which it is “true” or “false”. We shall write ` X
to mean that, for some constant integer no, a check of H(P, X, no, “proven”)
has been carried out, with the positive result. If we wish to make it clear which
proof-program is being invoked, we may use subscripts, e.g., write PrfP(X) or
`P X.

Again, fix some general proof-program P. To what extent can such a pro-
gram — maybe the Peano program, or possibly some other — accurately reflect
our intuitive ideas as to which sentences are “true”? It turns out that there
is a sweeping, yet very simple, answer to this question: There exists no proof-
program that even comes close. Indeed, we have the following:

Theorem. Let P be any proof-program. Then there exists a sentence G such
that G is true i↵ and only if P, acting on G, fails to return “proven”.

Proof (virtually the same as that of the halting theorem): Fix, once and for all,
some correspondence between strings and programs (for example, that which as-
signs to each string an integer; and then converts that integer back to a program).
For S any string, denote by PS the corresponding program. We now introduce
the following program, P̃ : Given any string S, P̃ runs the given proof-program
P on the sentence ¬H(PS , S, ,). If and when P, applied to this sentence,
halts, then P̃ is also to halt, announcing, say, the string “ok”. If P, applied to
this sentence, fails to halt, then P̃ is also to fail to halt. Now, this P̃ is certainly
a program, and so P̃ = PS̃ for some string S̃. Let G stand for the sentence
¬H(P̃ , S̃, ,).

Suppose, first, that G were false. Then (by definition of G) H(P̃ , S̃, ,) is
true; whence (by definition of H) P̃ , run on S̃ halts; whence (by definition of P̃)
P, run on ¬H(PS̃ , S̃, ,), halts; i.e., (by definition of G) P, run on G, returns
“proven”. Similarly for the supposition that A were true.

This theorem asserts, in short, that: You give me your candidate for a proof-
program and I’ll construct a sentence on which that program gives the “wrong
answer”. Note that this holds for any proof-program P, no matter how absurd.
As an example of the theorem, let P be the program that always — for any
input sentence — halts, announcing “proven”. Now, the G, constructed in the

131

proof, asserts a circumstance under which P fails to halt, and so, for this choice
of P, G is false. But this particular program P, applied to this sentence G,
halts (as it does for every sentence), announcing “proven”. Thus, for this choice
of the program P: G is false, but P announces, for this G, “proven”. This
outcome is, indeed, consistent with the theorem.

The result above is, in essence, the Godel theorem. In order to extract from
it the more familiar versions of that theorem, we must impose some further con-
ditions on the proof-program P. The following discussion, somewhat informal,
will be clarified in Appendix B. Let us now demand:

1. For any sentences X and Y , if X) Y and Prf(X), then Prf(Y).
2. For any sentence X, if Prf(X), then Prf(Prf(X)).

The first of these is, certainly, a property that we would expect any viable proof-
program P to have. The second is a little more subtle. Consider, as an example,
the Peano program, PP . Given a sentence X, PP looks for a string S (“the
proof”), bearing a certain relation to X. If and when it finds such a string,
PP announces “proven”. Now fix sentence X, and suppose that PrfPP (X),
so there does indeed exist such a string, S. But now we can generate a proof
of Prf(X): This proof simply displays the string S, checks that it bears the
required relation to X, and finally notes that PP , applied to X, will eventually
hit upon this particular S. Now convert this argument, just given, into a Peano
proof. There results Prf(Prf(X)). In short, for P the Peano program PP ,
then from Prf(X) we conclude Prf(Prf(X)). What we have shown, then, is
that the Peano program PP satisfies the second condition above. There are
various other choices for the program P that also satisfy this condition. Roughly
speaking, these consist, for the most part, of programs that operate by searching
for appropriate “proof-strings”. Exercise: Give an example of a program P that
fails to satisfy condition 1; of one that fails to satisfy condition 2.

In any case, fix a program P satisfying these two conditions. Let G be the
sentence constructed, for this program P, in the theorem above. Finally, let
Con stand for the sentence ¬(Prf(G) ^ Prf(¬G)). This we interpret as “the
program P does not assign ‘proven’ to both the sentence G and ¬G”. This is at
least one rendition of the notion of that the system whose proofs are governed
by P is consistent. Now consider:

¬G) Prf(G)) Prf(G) ^ Prf(Prf(G))) Prf(G) ^ Prf(¬G)) ¬Con (18)

The first implication follows from the theorem, the second from condition 2
above, the third from the theorem and condition 1 above and the fourth from the
definition of “Con”. By a similar (but simpler) argument, the same implications
go in the opposite directions. We conclude that G is true if and only if Con is
true. But now, from the theorem, we conclude that Con holds if and only if
the program P, applied to Con, fails to return “proven”. That is, if there is
a proof of consistency (as expressed by the sentence Con), then consistency for
this system must fail! This is called Godel’s second theorem.

132

Appendix B
A Perspective on Mathematics

There is something unsettling about Appendix A.

The whole idea of mathematics, so we are taught at an early age, is to
determine which mathematical assertions are “true”. To this end, we devise the
notion of a proof: Given a mathematical assertion, the proof of that assertion
is supposed to be a convincing argument that that assertion actually is true.
After a certain amount of socialization, we generally come to agree on what sort
of an argument qualifies as a proof. And we all share the conviction that once
an assertion is proven, it really is “true”. Given any integer n, there really does
exist a prime greater than n; and given any continuous function f on [0, 1], with
f(0) < 0 and f(1) > 0, there really does exist a number a 2 [0, 1] with f(a) = 0.
Our proofs turn out to be remarkably successful, in that they do seem to get us
to what is actually true.

Then, at some point, we decide that it would be a good idea to formalize
the notion of a proof — to provide precise rules for what does and what does
not constitute a proof. Why bother? We all harbor at some level, I think, a
nagging suspicion that there is some social component to proofs. To see this,
try to explain what a proof is to someone who is not familiar with this concept.
It would be reassuring if we could remove this component. We have, after
all, managed (via proofs) to place on a more secure footing the issue of which
mathematical assertions are true, so why not do the same thing for the proofs
themselves? Of even greater concern, there may be disagreements, even at this
informal level, as to what constitutes a legitimate proof. Here is an example. Let
there be given a computer program that accepts as input any positive integer n,
and then halts, with output consisting of two things: A certain mathematical
assertion, A(n), and a proof (according to some set of formal rules) of this
assertion. Now consider the following assertion “for all n, A(n)”. We propose
the following proof of this: “For each n, we have a proof of A(n), and therefore
A(n) is true. So, since A(n) is true for every n, the assertion ‘for all n, A(n)’ is
also true.” The question is: Is this a legitimate proof? I’m not sure that there
would be universal agreement on this point. At the very least, this argument
utilizes a novel proof-technique, which might be called into question. (Proofs
don’t usually make explicit use of the idea (plausible though it is) that “If there
is a proof of something, then that something is true.”)

133

134

So, for whatever reason, we decide that we shall set up a formal notion of a
proof. It turns out, as discussed in Appendix A, that there is a simple, general
framework for doing this. In the end, all of mathematics (at least all we have
so far!) can be reduced to statements about what certain computer programs
will do. It is not di�cult to introduce, formally, all possible statements that
could be made about the outcomes of all possible computer programs. The role
of proofs, then, is to decide, among all these statements, which are “true” and
which are “false”. We seek a mechanistic notion of proof. That is, we seek a
proof program — a program, P, that, when provided as input a sentence about
programs, either halts with the announcement “proven”, or else fails to halt.
And, indeed, it is possible to construct programs — such as the Peano program
— that mimic very well the sorts of things we do when we generate acceptable
proofs. True, there may be some debate, around the edges, as to exactly what
is to go into the final program P. But it appears as though the overall idea —
to formalize the notion of a proof — is destined for success.

Now comes the unsettling part: We must confront the (Godel) theorem of Ap-
pendix A. This theorem states, in essence, that, no matter what proof-program
P we settle upon, there will always be some assertion G such that: G is true if
and only if program P fails to bestow upon G the label “proven”. Our proof-
program P — no matter how well-chosen — will sometimes give the “wrong
answer”. In more general terms, there is necessarily a disconnect between where
our proofs are supposed to be getting us (to what is true) and where our for-
mal proof-program actually does get us. And the theorem guarantees that this
problem will not be solved by any future improvements in the proof-program
P.

A natural reaction to this circumstance would be to question the power of
formal systems. The argument would run something like this.

Choose a relatively conservative proof-program P, for example the
Peano program. The proofs generated by this P will use only steps
that are obviously correct (although, admittedly, P may not exploit
some of the more exotic proof-methods). But at least we can be
pretty certain that whatever sentences P designates as “proven”
actually are true. Now consider, for this P, the sentence G given by
the theorem. If this G were false, then, according to that theorem,
P would designate G “proven”, and therefore (since we believe in
P) G must be true. We conclude that in any case this sentence G
is true. But now the theorem itself guarantees that this G, which
we have already accepted as true, will not be designated by P as
“proven”.

In short, the proof-system, represented by P, is inadequate, in that there are
true assertions that P misses. And, of course, this circumstance cannot be cor-
rected by any improvements in P. In other words, there are inherent limitations
in the power of formal systems to discover the truth. We have insight (however
gained) into which mathematical assertions are actually true, but, as we now
learn, this insight cannot be reproduced, in its entirety, by any “mechanical pro-

135

cess”. It is a short step from here to argue, for example, that there can be no
mechanistic explanation for the human mind.

Certainly, the Godel theorem is telling us something, and this would seem to
be a plausible direction to understand what that something is. But I would like
to suggest another direction.

We begin with the following, crucial, point: Our notion of the “truth” of
many mathematical assertions has the character of a shared intuition. Consider,
for example, the statement “for every integer n, there exists a prime greater than
n”. We have the standard Euler proof of this assertion. (Consider any prime
factor of the integer (n! + 1).). But in our mind we go beyond the mere steps of
this proof. We think of this statement as “really true” — as sustained on some
higher level; as true already before we found this proof; as more than a mere
artifice of our particular proof-method. Indeed, we imagine that, if anything, the
fact that our proof-method recovers the right result provides support for that
method. So, this is our mind set — but where does it come from? It is hard to
pin this down. There is, after all, no independent check of this statement: You
cannot manually examine every single integer to see if there really is a larger
prime. All we have is the proof. Imagine the di�culty you would face if you had
to explain your insight to someone who does not share your conviction. How, in
short, do you go about deciding which assertions you will designate as “true”?
Your answer had better be somewhat vague (e.g., along the lines of “I call ’em
like I see ’em.”), for otherwise it will be used as the bluprint for a proof-program.
And yet this intuition, vague as it is, has a very strong hold on us.

The Godel theorem, then, represents a clash between what our intuition tells
us and what we can recover in concrete terms (i.e., from formal proofs). This
isn’t the first time in science that there has occurred a clash of this type. For
example, it was once our intuition that “position” is an intrinsic property of
every particle; that there can be no “levels” of the infinite; that there is in
the physical world a universal flowing time. But then along came quantum
mechanics; cardinality; and relativity, respectively. All of these earlier clashes
were of course resolved long ago. And their resolutions all had the same general
character. In each case, we learn to reshape our intuition to fit the external
circumstances. This is a struggle, for our intuition is deeply embedded within
us. Our initial reaction is to be confused as to where the new boundaries are —
as to what of our old intuition we can retain and what we must give up. But,
eventually, we adapt: We develop a new intuition, which, ultimately, turns out
to be as strong as, and at least as satisfying as, what it replaced.

The proposal, then, is this: We must abandon our intuition that many math-
ematical assertions are “true” on some deeper level — on a level that goes beyond
the proofs of those assertions.

This is more easily said than done. Fix a program Po, and consider the
sentence 8S H(Po, S, ,), i.e., the sentence we interpret as the statement that
Po halts for every input string. For example, the statement of the infinitude of
primes takes this form. Now, we may obtain a proof (according to some set of
rules) of this sentence. If so, then we regard it as “proven” (according to those
rules). But now we are to think of this as simply a reflection of the rules we

136

happen to be using. We would no longer imagine that it is actually the case,
in some more universal sense, that the program Po really does halt for every
input string S. Indeed, consider the special case in which program Po has just
three lines: The first accepts an input string; the second returns, say, the string
“zz”; and the third halts. It is very hard indeed to resist our intuition that,
at least for this program, the sentence 8S H(Po, S, 3, “zz”) is universally true.
But this is a slippery slope: Once one starts truth-labeling things, it is hard
to know where to stop. It might be helpful to remember that there are some
places in mathematics at which we have already made this transition, at least
in part. Examples include the statement that every vector space has a basis,
or the continuum hypothesis. Perhaps one could ease into this proposal, e.g.,
by first adjusting one’s language to avoid applying the word “true” to various
mathematical assertions, or by imagining that there appears an annual upgrade
of the proof-program P. Eventually, one simply stops thinking in those terms.

This intuition-adjustment, as we shall see, renders the Godel theorem as rel-
atively benign. But I don’t think that that is the central point. This change in
our intuition, I suggest, serves to make mathematics simpler and more transpar-
ent. The Godel theorem merely brings this issue (which we would anyway have
had to face, eventually) to a head.

But now we face an immediate problem. How, if we avoid designating as-
sertions as “true”, are we to get anywhere in mathematics? We may illus-
trate this dilemma with the following conversation. “Is it true that there is no
largest prime?” “Well, we don’t say ‘true’ anymore, but we do have the sentence
8S H(Q,S, ,) (call it A), which expreses this idea.” “So, is this sentence true?”
“Well, we don’t say ‘true’ anymore, but we do have the sentence Prf(A), which
expresses that your proof-program P responds, for sentence A, with ‘proven’.”
“But does it actually respond ‘proven’?” “Well, there is no ‘actually’, but we
do have the sentence Prf(Prf(A)) · · · .” The danger here, in other words, is that
mathematics will degenerate into merely writing down various sentences, with
no value judgements at all about them. This is something, but it is hardly what
we would call “mathematics”.

There is a natural solution to this problem. Recall that, in Appendix A, we
introduced the notion of a simple sentence — a sentence containing only con-
stants but no variables. The simple sentences, we noted there, can be explicitly
“checked”, in some specific, finite number of steps. Thus, for these there is uni-
versal agreement as to whether each sentence is true or false. We now modify
our intuition, in the following manner: We allow ourselves a notion of “true” ap-
plied to these simple sentences — and these only. Let S be any sentence, no any
integer, and consider the sentence H(P, S, no, “proven”). The interpretation is
that, when the proof-program P is run on sentence S, it halts, after precisely
no steps, announcing “proven”. This sentence is of course simple. A positive
outcome of a check of this sentence is written, as in Appendix A, ` S (suppress-
ing the no). For example, let A be the sentence above (about the infinititude of
primes), and let P be the Peano program. Then the Euler proof gives rise to
` A. This ` A (i.e., a report on the existence of a specific proof, under some
specific proof-program), then, is our substitute for “A is true”. This symbol

137

provides the one and only link between the abstract formalism on the one hand
and the “real world” on the other. Once having decided on a proof-program
P, mathematical activity consists of displaying ` A for various sentences A.
Think of ` as a transitive verb, with object a sentence, meaning “to supply the
no-value for the P-proof of”. We may conjugate this verb: “I have `ed A.”, or
“If you ` A, then I will ` B.”

It might be argued that this “formalist” path is not going to be very fruitful,
because it will interfere with progress in mathematics. I do not understand this
argument. I do not see anywhere where mathematics is advanced by having the
ability to say (or to believe) that non-simple sentences are, in some universal
sense, true. Let our proof-program be, say,the Peano program. Then standard
number-theory and basic logical arguments in mathematics are expressed as
` B, for various sentences B concerning the behavior of computer programs.
Furthermore, every theorm, for which we have a proof in Zermelo-Frankel set
theory, can be recast in terms of some such ` B. Note that, even here, we are still
using the same proof-program P; and we are still applying ` only to sentences
about computer programs. So, what is it in mathematics that is missing?

The idea, then, is to confine ourselves to `-ing various sentences S. In order
to execute this idea, we must first fix, once and for all, some specific proof-
program P, which will serve as the basis for this `. We choose the Peano
program PP . This is primarily for convenience, for with this choice basic math-
ematical arguments are indeed reflected by our program P. A further conve-
nience is that, instead of having to say that a simple sentence S “checks out”,
we can (with this choice of P) merely write ` S. Thus, we reduce everything
to `.

As we remarked above, all the standard subjects in mathematics — dif-
ferential geometry, topological vector spaces, group theory, etc — are already
structured, essentially, in the required form. In more detail, we are claiming
that mathematics books on these subjects consist entirely of i) checks of var-
ious simple sentences (specifically, the `-ing of certain (generally, non-simple)
sentences), and ii) statements of how people feel about that mathematics. But
when we come to the mathematics of sentences, proofs, etc., i.e., to the mathe-
matics described in Appendix A, the situation becomes a little more confusing.
We now return briefly to that material.

Consider first the very definition of a formula: A string of symbols formed
according to the three rules given in Appendix A. We proceed as follows. Fix,
once and for all, a specific program, Q, which we interpret as returning “yes”
or “no” according to whether the input string is a formula or not. Note “we
interpret”: We cannot actually prove that our Q has this property, for there
is no way to turn “Q returns ‘yes’ or ‘no’ according to whether the input
string is a formula or not” into a sentence. However, we can write the sen-
tence 8S(H(Q,S, , “yes”) _H(Q,S, , “no”)), which we interpret as “Q always
halts, returning ‘yes’ or ‘no’”. Since this sentence is not simple, we cannot assert
that it is “true”. But (at least, provided our Q was written correctly), we can
` it. For F any string, denote the formula H(Q,F, , “yes”) by Form(F). Now
consider a statement such as “For F any formula, then ¬F is also a formula.”

138

To render this, we must first write a program R, which we interpret as returning
whatever string was input to R, but with the symbol “¬” appended on the left.
Then we shall have ` 8F (Form(F)) 8S(H(R,F, , S)) Form(S))). In similar
ways, we can build up other properties of “formula forming”. (Exercise: Write
down a sentence whose interpretation is that “For F and F 0 any two formulae,
F ^ F 0 is also a formula.” Argue that you can ` that sentence.) In a similar
way, we may describe other properties of strings. For example, we introduce a
formula Sen(F), interpreted as the statement that string F is a sentence; and
Simp(F), interpreted that F is a simple sentence.

A similar situation obtains for the definition of a proof-program. Denote
the formula 8S(H(P, S, , “proven”) _ ¬H(P, S, ,)) by PrfPrg(P). Then, for
example, we can ` PrfPrg(PP), i.e., we can ` a sentence we interpret as the
statement that our Peano program really is a proof program. And we also
have ` 8S(¬Sen(S)) ¬H(PP , S, ,)). Note that, although PP is a con-
stant program, the sentence PrfPrg(PP) is not simple. Let us introduce a
second proof-program, PZF . This is similar in structure to PP — i.e., it
takes as input a sentence (also involving computer programs), and it “looks
for a proof”, also using axioms. But PZF utilizes in those proofs also the
set-theoretic symbol “2” (and, accordingly, the interpretation of variables as
sets). Furthermore, its axioms are those of Zermelo-Frankel (which, e↵ectively,
include those of Peano). Of course, PZF is also a constant program. Now, if
everything has been written correctly, we expect ` PrfPrg(PZF). Indeed, we
further expect that ` 8A (H(PP , A, , “proven”)) H(PZF , A, , “proven”)),
which we interpret as the statement that “If a sentence is Peano-provable then
it is also Zermelo-Frankel-provable”. Can we ` 8A (H(PZF , A, , “proven”))
H(PP , A, , “proven”))?

Fix any sentence A. Recall that we take ` A to mean “we can display an
explicit value of the integer no such that the sentence H(P, A, no, ‘proven0) is
true.” Why did we not instead take for the meaning “there exists an integer n
such thatH(P, A, n, ‘proven0) is true”? The problem is that 9n H(P, A, n, “proven”)
is not a simple sentence (i.e., is a not a sentence to which we assign the term
“true”), while H(P, A, no, “proven”) is. In short, there are two distinct senses
in which we can assert that a given program, with given input, halts: i) we can
actually specify the step-number on which this halt occurs (something that can
be checked), or ii) we can merely provide a proof (under some proof-scheme) of
a sentence that expresses this idea. These are reflected in the two varieties of
“proven”: ` A and Prf(A). Still more generally, there are two distinct notions of
“there exists”: The explicit version, in which you actually give the object; and
the formal version, in which you construct, and then `, a sentence to the e↵ect
that the object exists. Note that there is no intermediate version: “There really
does exists such an object, but I am not specifying it explicitly”.

Fix any sentence A, and suppose that ` A. Then, we might argue, we must
also have Prf(A). After all, ` A provides us with a specific integer, no, at which
the program P, applied to A, halts; while Prf(A) merely asserts the existence of
such an integer. Is there a theorem to the e↵ect that ` A implies Prf(A)? Alas,
there cannot be, for we cannot even form a sentence to this e↵ect. The reason

139

is that the symbol ` is not among those allowed in our formulae. Rather, this
symbol merely provides the link between the formalism and our understanding.
What this argument does give is a rule of thumb: Given ` A, you can (if you
so choose) ` Prf(A), by first using the no provided by the former to argue for
Prf(A) (i.e., to argue that P applied to A, will eventually find this integer
no), and then expressing that argument as ` Prf(A). We do have, of course,
` 8A(H(P, A, 78, “proven”)) Prf(A)). There is, furthermore, a more general
theorem here, namely

` 8A(Prf(A)) Prf(Prf(A))), (19)

To carry out the ` in (19), convert the argument, above, into a Peano proof.
Note that there is nothing even close to “if Prf(A), then ` A”. There are many
other “rules of thumb” for ` — for example, if ` (A) B) and ` A, then we
can ` B. And, there are many other theorems regarding Prf — for example

` 8A8B ((Prf(A) B))) (Prf(A)) PrfB)). (20)

(Note, by contrast, that there are no theorems on `, and no rules of thumb on
Prf.) Exercise: At the beginning of this Appendix, we considered the example
of a program that, for each positive integer n, produces a sentence A(n) and a
proof of that sentence; and asked whether this circumstance represents a proof
of 8n A(n). Reformulate all this in terms of sentences and `.

The paragraph above described some properties of ` and Prf. What is the
link between “what is proven” and “what is true”? There certainly exist specific
sentences Ao such that ` (Prf(Ao)) Ao). An example is the Ao given by the
sentence Bo _ ¬Bo, where Bo is any sentence. That is, there do exist sentences
Ao such that we can ` a sentence to the e↵ect that “If Ao is proven, then Ao is
true.” Is this the case for all sentences Ao? That is, can we

` 8A(Sen(A)) (Prf(A)) A))? (21)

It turns out that we cannot, but for a curious reason: What follows the ` in
(21) is not even a sentence! To see this, first note that the “8A” permits A to
be an arbitrary string. This is not a problem for “Sen(A)”, for this is a formula
for every string A. But it is a problem for the A that appears at the end. (True,
that A is written already after “Sen(A))”, but this doesn’t mean that “A”
thereafter has suddenly become a sentence.) To put this in more concrete terms,
if 8A(something) is a formula, then certainly “something” must be a formula for
every choice of the string A. So, try, in (21), the choice A = “8Z; ;)a”. Indeed,
in still more concrete terms we have

` ¬Sen(8A(Sen(A)) (Prf(A)) A))). (22)

where “Sen” is the formula, introduced earlier, that we interpret as testing for
sentence-status. Of course, if someone wrote down a constant sentence, Ao, and
also managed to ` (Prf(Ao) ^ ¬Ao), that would be of interest. Similar remarks
apply to A) Prf(A).

140

We next turn to the Godel theorem, as discussed in Appendix A. To simplify
the discussion, let us fix the proof-program P, mentioned in that Theorem, to
be the Peano program — the same one we are using for `. (We shall remark later
on what happens when we allow other choices.) With this choice, that theorem
becomes “There exists a sentence G such that G is true if and only if the proof-
program P, applied to G, fails to return ‘proven’.” This statement is, to say
the least, confusing. What does “G is true” mean? We went to this enormous
e↵ort — introducing the notion of a proof-program, selecting a good one as
our standard, etc — precisely in order to formalize proofs. We did all this so
that we wouldn’t have to contend with informal, intuitive proofs, and with their
inevitable fallout: a corresponding informal, intuitive notion of “true”. Instead
of saying that something is true, we are to say that our proof-program, P,
applied to that something, returns “proven”. So, let us make this substitution
in the statement above. The result is: “There exists a sentence G such that
the proof-program P, applied to G, returns ‘proven’ if and only if the proof
program P, applied to G, fails to return ‘proven’.” Surely, this can’t be what
the theorem is saying! Fortunately, we now have at our disposal a direct way
of deciding exactly what the theorem is saying: We go through its (informal)
proof, and determine what sentence that proof is the ` of. Let us denote by Go

the sentence given in that proof, i.e., (in that notation) ¬H(P̃ , S̃, ,). Then,
translating the steps in the proof of the theorem, we find,

` ((Go) ¬Prf(Go)) ^ (¬Go) Prf(Go))) (23)

This, then, is Godel’s theorem.
Note that Godel’s theorem, now, simply provides ` for some, perfectly re-

spectable, sentence. There is, as far as I can see, nothing particularly unset-
tling about (23). We no longer have to consider, and contend with the con-
sequences of, “What if Go is true?” or “What if Go is false?”, for Go is a
non-simple sentence. Eqn. (23) does not seem to suggest any “limitations on
the power of the formal method”, nor indeed, on much of anything. The ar-
gument to this e↵ect, given at the beginning of this appendix, now reduces
benignly to ` (Prf(Go)) Go)) (Go ^ ¬Prf(Go)). (This follows from (23) and
` (Go _¬Go).) These are now merely sentences that (like so many others) woke
up one morning to find themselves `ed.

We next consider briefly the theorem in its original form (for the case of an
arbitrary proof-program, P). Now, there are two proof-programs in play: the
variable program P of the theorem, and the Peano program, PP , that we use
for `. Now (23) is replaced by

`P 8P(PrfPrg(P)) ((G(P)) ¬PrfP(G(P))^(¬G(P)) PrfP(G(P)))).
(24)

Note, first, that the ` in (24) is with respect to the Peano program. This is
necessary, for we need a program here rich enough to encompass the steps of the
proof in Appendix A. Next, there appears in (24) 8P(PrfPrg(P)). That is,
what follows is to hold for every proof program (and not just for one particular
one, as in (23)). Note that the sentence Go, a specific sentence, in (23), is now

141

replaced by a formula, G(P), in (24). In more detail, this formula is (in the
notation of the proof) ¬H(P̃ , S̃, ,). (It depends on P through the dependence
of P̃ and S̃ on P). And finally, we make it explicit that “Prf” is with respect
to the (variable) program P. The expression (24), then, carries the full content
of the theorem in Appendix A. It all seems very straightforward.

We turn next to the issue of consistency of the Peano program, as discussed
at the end of Appendix A. Let us again fix the program P in the statement of
the Theorem to be the Peano program (i.e., the same one we are already using
for `). And, again, let Go be the sentence given, in the notation of the proof, by
¬H(P̃ , S̃, ,). Finally, let us denote by Con the sentence, ¬(Prf(Go)^Prf(¬Go)),
as in that appendix.

Consider now the two conditions listed in that discussion. We have already
translated condition 2 into a theorem (about P), namely (19). But what about
condition 1? We cannot, as we have already seen, form sentences in the manner
of 8X8Y (((X) Y)^Prf(X))) Prf(Y)), for “8X” allows X to be an arbitrary
string, which wouldn’t make sense in this expression. We first note that condition
1 was actually used at only one place in the argument — in the third step of
(18). But this step requires only Prf(Prf(Go))) Prf(¬Go) (and its converse).
But this already follows, from (23) and (20).

Thus, the argument at the end of Appendix A can be restructured as a Peano
proof, i.e., we obtain ` ((Go) Con) ^ (Con) Go)). From this, together with
(23), there follows

` (Prf(Con)) ¬Con) ^ (¬Con) Prf(Con)). (25)

This, then, is Godel’s second theorem. What can we make of it? There has
been considerable speculation, over the years, as to whether or not “the Peano
program is consistent”. This is a conversation we need not join. From the present
perspective, there is no promise of an “ultimate answer” to this question. True
we can ` (Con_¬Con). (This is a general property of the Peano proof-program.)
But at the moment we cannot ` Con, and we cannot ` ¬Con. This is all there is
to say. There is no sentence we can interpret as the statement that, ultimately,
either ` Con or else ¬ ` Con. Indeed, there is no meaning we can attach to
“¬ ` · · · ” (“I am not in the process of presenting to you the no-value for the
proof of · · · ”?), nor, indeed, to “8A ` · · · ”. Mathematics, from this perspective,
consists only of `-ing sentences (and, in some cases, of failing to ` them).

It is my contention that in thinking in this way we lose nothing of the struc-
ture of mathematics itself. After all, as we remarked earlier, mathematics per
se consists solely of checking simple sentences (specifically, of `-ing various sen-
tences).

Yet certainly mathematics, in its entirety, is much more than this. The real
substance of mathematics, of course, consists of figuring out which sentences we
shall try to `, and of actually carrying this out. (Simply running the program
P on randomly selected sentences, for example, is not a very fruitful strategy!)
Indeed, how we feel about what we prove is, arguably, more interesting than the
formal sentences or proofs themselves. For example, it is hard to discern, within
the formal structure of mathematics, how or why mathematics plays such an

142

important role in physics (nor, conversely, why physics has the impact it does
on mathematics). Recognizing what already is — that the core of mathematics
consists of checking simple sentences — does not diminish the role of insight.
Even on learning, from quantum mechanics, that there is no such thing as the
position of a particle, we still have “positional thoughts” about quantum systems.
It is just that our thoughts are of a di↵erent sort.

A key di↵erence between “informal” and “formal” mathematics — and a
key source of confusion — is the relation between “something is proven” and
“something is true”. Indeed, as we remarked earlier, there is not even a sentence
whose interpretation is “For every sentence A, Prf(A)) A.” One might imagine
that, nevertheless, there might be some, more specific, theorems along these
lines. We now return briefly to this issue. Can we, for example, ` Prf(Ao)) Ao

for some large variety of specific (constant) sentences Ao? Such a program
does not look very promising. Consider, for example, the sentence Go of the
Theorem. We claim ` (Prf(Go)) Go)) Con. (This follows from two earlier
results: ` (Prf(Go)) Go)) Go) Con.) This we interpret as “If Prf(Go))
Go, then the Peano proof-program is consistent.” But it now follows directly,
from this, that ` Prf(Prf(Go)) Go)) ¬Con. In other words “But if you
can prove Prf(Go)) Go then the Peano proof program is not consistent.”
(Exercise: ` ((Prf(X)) X)) ¬Prf(X)), where X denotes Prf(Go)) Go.)
Perhaps it is easier just to dwell on the sentences themselves, rather than on
their “interpretations”.

Finally, we remark on one further issue: There is, as it turns out, a cer-
tain ambiguity in the notion of `. Fix a (constant) sentence So, as well as a
choice of a proof-program P. Consider the sentence H(P, So, 2311, “proven”).
This sentence is certainly simple. We can check it, and if that check works
out we are clearly justified in writing ` So. Now consider instead the sentence
H(P, So, 945!, “proven”). Again, we would expect to be able to check this sen-
tence, and, again, to write ` So if that check works out. But this sentence has a
slightly di↵erent character from its predecessor. Here, we aren’t exactly “given”
the value of no. Rather, we are told that, to compute no we must multiply
1 ⇤ 2 ⇤ 3 ⇤ · · · ⇤ 945. That is, we are given the instructions to find no. But if we
accept that instructions for no su�ce, then suppose that we are given instead
a program that will generate no for us. Is this acceptable? Presumably, it is,
provided that program actually halts. But what does “actually halts” mean?
That it be “obvious” that it halts? That I give you my promise that it will
halt? That the Peano program applied to the corresponding sentence, return
“proven”? The issue, then, is what, exactly, it means to give a number “explic-
itly”. Clearly, there is a slippery slope here, from writing out the actual digits of
no to providing some more elusive specification. In order to make sense of ` one
has to draw a line somewhere — one has to establish what degree of specificity
is necessary in order to grant ` status. But where, exactly, is this line to be
drawn? Here, just as an example, is a possible position on this issue. “I maintain
my own private list of sentences that I have personally `-ed. If, for instance,
instructions are given for no, then I personally follow those instructions, recover
the value of no, and then check the (simple) formula. I do not add sentences

143

to my list based solely on any claims by others.” There may be more attractive
positions.

144

Appendix C
Blum Example Revisited

In Chapter 10, we discussed an example, due to Blum, of a computable problem
such that there is no “fastest” program that computes that problem. In more
detail, the problem given there had the following property: Given any program
that computes that problem, there is another that computes the same problem,
but does so, say, exponentially faster than the first. In this Appendix, we look at
that example again, in light of the material in Appendix A. We begin with a few
general remarks on how formal proofs can be applied to computable problems.

Fix, once and for all, a computable problem ⇡o (so ⇡o is a map from in-
put strings to output strings; and there exists some program that computes
this map). We are interested in studying various programs that compute this
problem. It is convenient first to describe informally what we have in mind.

We first introduce a subroutine, R, which systematically searches for pairs,
(P,A), where P is a program, and A is a proof (in some formal system – more
on this later) that P computes the problem ⇡o. It carries out this search in the
following manner. Program R fixes an ordering (say, dictionary ordering) for all
pair of strings. It then systematically goes through those pairs, one at a time, in
a pattern such that every pair is, eventually tested. For each pair, it determines
whether the first of the two strings is actually a program (as opposed, say,
to some gibberish of symbols), and then whether the second string is actually
a proof that that program computes the problem ⇡o. If both these tests are
positive, the subroutine R reports that program.

In this way, R generates a sequence, P1, P2, · · · , of programs, together with,
for each n, a proof that Pn computes the problem ⇡o. Note that, by virtue of
this construction, we are guaranteed that every program that can be proven to
compute ⇡o will be included in our list. In fact, every such program will be in-
cluded many times (for we expect that there will be many proofs). Furthermore,
for each program among the Pn there will be included in this list various trivial
variants of that program, for example, a variant that adds an irrelevant line.
The program R, after all, is not equipped to filter out such duplication.

Next, we introduce the following program, Q. This Q first accepts as input
some string, S. Then Q begins by running the subroutine R above. Eventually,
R will find some program, P1, together with a proof that P1 computes the
problem ⇡o. At this point the program Q splits its e↵orts: It allocates half its

145

146

steps to running P1 with input string S and the other half to continuing to run
R. Eventually, R will find a second program, P2, together with a proof that
P2 computes the problem ⇡o. At this point, program Q again splits its e↵orts:
It continues to allocate half its steps to P1, but now allocates one-quarter of its
steps to running P2 with input string S. With the one-quarter of its steps that
remain, Q continues to run R. Program Q continues in this way: Each time R
finds a new program, Pn, together with a proof that Pn computes the problem
⇡o, program Q devotes half the steps it had been using on R to running program
Pn with input string S, keeping the allocations to the earlier Pi intact.

As time goes by, then, program Q will be running a number of programs,
P1, P2, · · · , all on the input string S. At some point, one of these programs, say
Pn, may halt, returning some output string. If and when this happens, program
Q itself halts, returning that same string.

So, given any computable problem ⇡o we construct in this way a program Q.
We now claim that it has two properties.

First, this Q computes the problem ⇡o. To see this, run Q on some input
string S. Then, Q, by construction, will only halt when it finds that one of the
Pn has halted on string S; and then Q will return as its output whatever Pn

returned. But this Pn was generated by the subroutine R, and so there was
produced (by R) a proof that Pn computes the problem ⇡o. Thus, with input
string S, program Pn, and therefore program Q, returns ⇡o(S). That is, program
Q computes problem ⇡o.

For the second property, consider any program, P , such that there is a proof
that P computes the problem ⇡o. Then, by our construction of R, this P must
have occured among the programs, P1, P2, · · · , that R produced. Say, it was
program Pn. Now run program Q on some string S. Then Q will (since Q is
running R) eventually run across this program Pn. When it does so, it will
allocate a portion 1/2n of its steps to the running of Pn (i.e., to the running
of P itself) on the string S. So, except for a constant (the number of steps Q
used prior to R’s finding Pn), Q, with input string S, will take no more than 2n

times as many steps as does P , with input string S. (It may be much less: For
example, Q may halt even before it gets to Pn.) Note that this constant, and
this factor 2n, are independent of the string S. But di�culty functions make
sense only up to addition of constants and multiplication by constant factors.
We conclude: The di�culty function of Q is < the di�culty function of P .

To summarize: Given any computable problem ⇡o, there exists a program Q
that computes that problem, and is such that Q is at least as e�cient as any
program P for which there is a proof that P computes that problem.

Clearly, this construction is, at least naively, in conflict with the Blum exam-
ple. We are accustomed, in everyday mathematics, to blurring the distinction
between “something is proven” and “something is true”. If we allow ourselves
that luxury here, then we seem to arrive at a contradiction. Our purpose is to
understand this matter.

The first step is to reformulate the construction above within the framework
of Appendix A.

To begin with, we cannot refer directly to “problem ⇡o”, for this is a map-

147

ping from a certain set (that of all strings) to itself; while formal systems are not
adapted to handling sets (at least, not without substantial additional infrastruc-
ture). But it is easy to get around this di�culty. For P any program, denote by
Tot(P) the formula 8A (H(P,A, ,)). We interpret Tot(P) as the statement that
“for every input string P halts”, i.e., as the statement that P computes some
problem. We can now replace the problem ⇡o by some fixed (i.e., constant) pro-
gram Po, such that ` Tot(Po), i.e., we can replace the problem by a program that
computes it. Now, for P and P 0 any two programs, denote by (P ⇡ P 0) the for-
mula 8A8B((H(P,A, ,B)) H(P 0, A, , B))^ (H(P 0, A, , B)) H(P,A, ,B))).
We interpret this as the statement that programs P and P 0 have precisely the
same behavior, i.e., that, for any given input, they produce exactly the same out-
put (or lack thereof). For example, we have ` 8P8P 0 ((Tot(P) ^ (P ⇡ P 0)))
Tot(P 0)). The intuitive idea that “program P computes the problem defined by
Po” is expressed formally by P ⇡ Po.

Now fix program Po, and let ` Tot(Po). We begin with the subroutine
R. This subroutine searches for programs P , together with a “proof” that P
computes the same problem as does Po. The proofs we have in mind now, of
course, are formal proofs, as discussed in Appendix A. Thus, we must fix a
proof-program P, that will serve as our standard for acceptable proofs. For
this purpose, we choose the Peano program, as described in Appendix A. (This
choice merely avoids unnecessary complication. Others are certainly possible.)
The subroutine R works as follows. It both searches for programs P and applies
the proof-program P to the sentences (P ⇡ Po). It does so in an interlaced way,
i.e., it spends some time searching for new programs, then some time running P
on various of these sentences for programs it has already identified, then back
to searching for more programs, etc. The first program P for which it finds that
P, applied to (P ⇡ Po), returns “proven”, subroutine R reports as P1; the next
as P2; etc. In this way, R generates a sequence of programs P1, P2, · · · such
that, for each, R has determined Prf(Pn ⇡ Po).

We now turn to the program Q. As described earlier, this program, given
input string S, divides its time between running R (to search for programs Pn,
such that P, applied to the sentence (Pn ⇡ Po), returns “proven”) and running,
on input string S, the programs Pn so selected. If and when one of these Pn

halts, then Q itself halts, returning whatever Pn returned.

So, this is our program Q. We wish to determine its properties. The first
is that ` Tot(Q), i.e., that that Q computes some problem. This follows from
the fact that, among the programs R finds will be the program Po itself (which,
in turn follows from ` (Po ⇡ Po)). Next, we would like to ` (Q ⇡ Po), i.e., to
prove that the problem that Q computes is in fact the same as the problem that
Po computes. Surprisingly enough, there is no obvious way to do this. To see
why, we first establish a weaker result — that (Q ⇡ Po) holds under a further
hypothesis. Denote by X the sentence

8P (Prf(P ⇡ Po)) (P ⇡ Po)). (26)

The interpretation of (26) is: “If you can prove that a program computes the

148

problem of Po, then it does indeed compute that problem.” We now claim

` X) (Q ⇡ Po)). (27)

To establish (27), we proceed as follows. The key features of the construction of
the program Q can be summarized by two sentences:

` 8S8B (H(Q,S, , B)) 9P (H(P, S, , B) ^ Prf(P ⇡ Po))), (28)

and

` 8S8B((8P (Prf(P ⇡ Po)) H(P, S, , B)))) H(Q,S, , B)). (29)

The interpretation of (28) is: “If Q, with input S, returns output string B, then
there exists a program P such that i) P with input S, also returns B; and ii)
there exists a proof that P and Po have the same outputs.” The interpretation
of (29) is: “If every program P for which there exists a proof that P ⇡ Po has
the property that, with input S, this P returns output B, then program Q also
has the property that, with input S, it returns B.” These two interpretations
do, indeed, reflect the way we constructed the program Q. Now, it follows from
(28) that

` X) (8S8B (H(Q,S, , B)) H(Po, S, , B))). (30)

To see this, first note that, from X and (28) we can achieve (28), but now with
the “Prf” on the right omitted. But from this, and the definition of ⇡, we achieve
8S8B (H(Q,S, , B)) H(Po, S, B)). This yields (30). In a similar way, from
(29) we obtain

` X) (8S8B (H(Po, S, , B)) H(Q,S, , B))). (31)

Combining (30) and (31), there follows (27).
The final result, (27), is what we might have expected. The programQ selects

(through R) programs P based on Prf(P ⇡ Po). But, in order to ` (Q ⇡ Po),
we need that those programs actually satisfy (P ⇡ Po). So, we must get from
Prf(P ⇡ Po) to (P ⇡ Po), and that is what the sentence X of (26) does for us.
Why didn’t we write the subroutine R, right at the beginning, so that it selects
programs P based on (P ⇡ Po) rather than on Prf(P ⇡ Po)? The reason is that
there is no obvious way to do this: Whereas programs can easily search for a
proof of a given sentence, they are unable to search for whether that sentence
actually “holds”23.

In any case, we would, via (27), be able to ` (Q ⇡ Po) if only we could
` X, where X is the sentence given by (26). Can we do this? The sentence
X looks very plausible: Intuitively, We would certainly expect that, if you can
prove something, then that something must be true. This is precisely the issue
we discussed in Appendix B — and that discussion suggests that ` X will be
far from easy! Indeed, even for the case of the simplest programs Po — e.g., the

23 The discussion above suggests that, even though we are unable to ` (Q ⇡ P
o

), it might
be possible to ` Prf(Q ⇡ P

o

) (with no further hypothesis). Is it?

149

one that ignores the input string and always returns, say, the string “zz” — it
is not apparent how to ` X.

For P and P 0 any programs, let us write (P < P 0) for the sentence whose
interpretation is that Tot(P) and Tot(P 0), and that the di�culty function of P
is < (in the sense discussed in Chapter 9) that of P 0. (Exercise: Describe this
sentence in more detail. You will have to write a program or two.) Note that
we do not require in this sentence that P and P 0 compute the same problem.
Similarly for P ⌧ P 0. Then we have, for example ` 8P8P 0 ((P ⌧ P 0)) (P <
P 0)). From the construction of Q (specifically, that Q finds, via R, programs P
with Prf(P ⇡ Po) and then incorporates those programs into the running of Q),
we have

` (8P)((Tot(P) ^ Prf(P ⇡ Po))) (Q < P)). (32)

Eqn. (32) is the formal statement that “program Q is at least as e�cient as any
program that can be proven to compute the problem of Po”.

To summarize, given any program Po, with ` Tot(Po), we construct a certain
program Q, with ` Tot(Q). This Q is so constructed that it has two key features,
represented by (27) and (32), where X is the sentence given by (26).

We would now like to compare this construction — which provides, given
any computable problem, a program that is at least as fast as any program that
can be proven to compute that problem — with the example of Chapter 10 —
a problem for which there is no fastest program. To this end, we now return to
that example.

In Chapter 10, there was written down a certain program, Po, structured as
follows. First, Po employs a subroutine, which finds, in sequence, all possible
programs, T1, T2, · · · . Given an input string S, Po first converts S into an integer,
say k, then uses this subroutine to find the first k of these programs, T1, T2, · · ·Tk,
and finally runs each of these k programs on input string S. These programs
are run for certain numbers of steps (determined using the function h defined
in Chapter 10). From the results of these runs, program Po determines what
its output is to be. This Po, so constructed, is indeed a program, and we have
immediately from this construction ` Tot(Po). Thus, Po defines a problem, ⇡o,
and this is the problem of interest.

The key result of Chapter 10, is that the program Po there constructed has
the property that there is no “fastest” program that computes that problem,
i.e.,

` 8P ((P ⇡ Po)) 9P 0((P 0 ⇡ Po) ^ (P 0 ⌧ Po)). (33)

The argument for this, in more detail, is the following. We introduce a certain
sequence of programs, P1, P2, · · · . Each Pn operates in the same manner as
Po, but with one di↵erence. Whereas Po uses the entire sequence T1, T2, · · · of
programs, Pn uses only Tn+1, Tn+2, · · · . As discussed in Chapter 10, three things
follow from the construction of these Pn:

1. ` 8n Tot(Pn), i.e., each Pn computes some problem.
2. Each Pn produces the same output as Po, except possibly for a finite

number of input strings.
3. ` 8n ((Tn ⇡ Po)) (Pn ⌧ Tn)), i.e., if Tn computes the problem of Po,

then Pn is much faster than Tn.

150

From these three properties, we establish (33), as follows. Let P be any
program that computes the problem of Po. Then P must have been one of the
Ti, say Tn. Now consider the corresponding program Pn. By the third property
above, Pn is much faster than Tn, while, by the first two properties, Pn computes
some problem, and that problem di↵ers from that of Po on only a finite number
of input strings. So, consider all programs whose output di↵ers from Pn only
only a finite number of strings. One of these, call it P 0, must compute the same
problem as Po. Now (33) follows.

Let Po be the problem of Chapter 10, so, as we have just seen, we have (33).
Let Q be the program constructed from this Po in the manner described above,
so we have (27) and (32). Is there any “contradiction” between (33) on the one
hand and (27), (32), for this Po, on the other? There is not. The reason is that
(27) requires the additional hypothesis X, while we are currently unable to ` X.

This circumstance suggests that we turn this whole problem around: That
we use this “near contradiction” — i.e., (33), together with (27), (32) — to
try to establish instead ` X. But, alas, this doesn’t doesnt work either. The
reason is more subtle. For (27), (32), we have that Q is at least as fast as
any program that we can prove computes Po, whereas (33) provides only faster
programs that actually compute Po. How is it that the example, from Chapter
10, only provides faster programs, but not proofs that they are faster? The
key lies in the construction of the programs from the Pn, via property 2 above.
Each Pn has the same output as Po except possibly for a finite number of input
strings. Consequently, we can obtain, from Pn a program that has precisely the
same output as Po. To do this, we consider programs that merely run Pn, but
modify its output on a finite number of input strings. One of these, we are
guaranteed, will be the P 0 of (33). However, we don’t know which one. And
there is no constructive way to determine which one (for this depends on the
halting-behavior of myriad other programs). Thus, not having a specific P 0 to
deal with, we have no way of providing a proof that P 0 has that property. In
short, knowing only that there exists an object having a property, there is no
direct way of showing that there exists an object that can be proven to have
that property. For this reason, then, we are unable to ` ¬X.

Might it be possible to modify the construction of program Q? Let us say
that a program P e↵ectively computes the problem of Po provided: For every
input string S, there exists a proof that P , applied to S, yields the same output
as Po, applied to S. We might now wish to modify Q so that it uses, not
programs that can be proven to compute the problem Po, but rather programs
that e↵ectively compute the problem Po. This would be done by modifying the
subroutine R. But, unfortunately, it is not clear how to do this. The di�culty
is that there is no way to search for programs that e↵ectively compute Po, for
this notion involves the existence of an infinite number of proofs.

To summarize, we have two things — an example of a problem for which
there is no “fastest” program; and a proof that, given any problem there exists
a program that is at least as fast as any program that can be proven to compute
that problem. These two results, it seems, coexist just fine. This coexistence
illustrates a number of points: i) the subtle character of the Blum example, ii)

151

the complications that can arise when one begins to prove things about proofs,
iii) how dramatic is the distinction between proving something and having that
something “true”, and iv) that the strategy of introducing formal sentences, and
then `-ing them (or failing to), often clarifies an issue.

152

References

[1] Agrawal, M, Neerja, K, Nitin, S, “Primes is in P”, Annals of Mathematics
160, 781 (2004). At
http://www.math.princeton.edu/ ãnnals/issues/2004/Sept2004/Agrawal.pdf
This paper shows that there exists a program that computes the problem
of deciding whether or not an integer n is prime, with di�culty function
given by (log n)s, for every s > 15/2.

[2] Arora, S., Barak, B, “Complexity Theory”, at
http://www.cs.princeton.edu/theory/complexity/ This is a readable
summary of (mostly non-quantum) complexity theory.

[3] Blum, M., “A Machine-Independent Theory of the Complexity of
Recursive Functions”, J. Assoc for Comp Mach 14, 322 (1967).
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=321395
This paper deals with properties of di�culty that rely only on some general
features of the di�culty-measure. There are two very nice results here.

[4] Grover, L, “A Fast Quantum-Mechanical Algorithm for Database Search”,
in Proc. 28th Annual ACM Symposium on Theory of Computing, ACM,
New York (1996).

[5] Hartmanis, J, Hopcroft J.E., “An Overview of the Theory of Computa-
tional Complexity”, J. Assoc for Comp Mach 18, 444 (1971).

[6] Hennie, F.C., “One-Tape O↵-Line Turing Machine Computations”, Infor-
mation and Control 8, 553 (1965). It is proved that no Turing machine can
compute the palindrome problem with di�culty function ⌧ L(S)2.

[7] Karatsuba, A, Ofman, Y, “Multiplication of Many-Digital Numbers by
Automatic Computers”, Doklady Akad. Nauk SSSR, Vol. 145 (1962), pp.
293294. Translation in Physics-Doklady, 7 (1963), pp. 595596. This paper
presents a method to multiply two n-digit numbers with di�culty function
⌧ n2.

[8] Kelly, J., “General Topology”, Springer-Verlag (New York), 1975. An ap-
pendix contains the best treatment of axiomatic set theory I have ever
seen.

153

154 REFERENCES

[9] Lenstra, A.K., Lenstra, H.W, eds, in “The Development of the Number-
Field Sieve”, Lecture Notes in Mathematics 1554, pp 11-42, Springer-Verlag
(1993). The sieve method for computing the prime problem is described
here.

[10] Mermin, D., “Quantum Computation”, Lecture Notes, at
http://people.ccmr.cornell.edu/ ˜ mermin/qcomp/CS483.html. These
lecture notes are a nice, elementary, introduction to this subject. See
especially Sect IV.

[11] Pittenger, A., “An Introduction to Quantum Computing Algorithms”,
Progress in Computer Science and Applied Logic, Vol 19, Birkhauser. This
book gives some detail how to do real-world computations with c-not gates.

[12] Shor, P. W., “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”, SIAM J Sci. Statist. Com-
put. 26, 1484 (1997). This paper proposes a method for using quantum
mechanics for e�cient factorizing of integers.

[13] Unruh, W.G., “Maintaining Coherence in Quantum Computers”, Phys Rev
A 51, 992 (1995).

[14] Yasuhara, Ann, “Recursive Function Theory and Logic”, Academic Press,
1971. This is my favorite book on Turing machines, unsolvable problems,
etc.

About the author

Robert Geroch is a theoretical
physicist and professor at the Univer-
sity of Chicago. He obtained his Ph.D.
degree from Princeton University in
1967 under the supervision of John
Archibald Wheeler. His main research
interests lie in mathematical physics
and general relativity.

Geroch’s approach to teaching the-
oretical physics masterfully intertwines
the explanations of physical phenom-
ena and the mathematical structures
used for their description in such a way
that both reinforce each other to fa-
cilitate the understanding of even the
most abstract and subtle issues. He
has been also investing great e↵ort
in teaching physics and mathematical
physics to non-science students.

Robert Geroch with his dog Rusty

	Introduction
	Characters and Strings
	Problems
	Computability
	Turing Machines
	Noncomputable Problems
	Noncomputable Numbers
	Formal Mathematics
	Difficulty Functions
	Difficult Problems — Best Algorithms
	A Language for Efficiency
	Are There Better Languages?
	Probabilistic Computing
	Quantum Mechanics
	Grover Construction
	Grover Construction: Six Issues
	Initial State
	Final Observation on Hin
	Building the Operator W
	Building the Operator V
	Errors
	What Is The Problem?

	Quantum-Assisted Computing
	Quantum-Assisted Computability
	Quantum-Assisted Difficulty Functions
	Quantum-Assisted Efficiency I
	Quantum-Assisted Efficiency II
	Conclusion
	Appendix A. Formal Systems
	Appendix B. A Perspective on Mathematics
	Appendix C. Blum Example Revisited
	References
	About the Author

