
Measure Theory

1 Measurable Spaces

A measurable space is a set S, together with a nonempty collection, S, of
subsets of S, satisfying the following two conditions:

1. For any A, B in the collection S, the set1 A − B is also in S.
2. For any A1, A2, · · · ∈ S, ∪Ai ∈ S.
The elements of S are called measurable sets. These two conditions are

summarized by saying that the measurable sets are closed under taking finite
differences and countable unions.

Think of S as the arena in which all the action (integrals, etc) will take
place; and of the measurable sets are those that are “candidates for having
a size”. In some examples, all the measurable sets will be assigned a “size”;
in others, only the smaller measurable sets will be (with the remaining mea-
surable sets having, effectively “infinite size”).

Several properties of measurable sets are immediate from the definition.
1. The empty set, ∅, is measurable. [Since S is nonempty, there exists

some measurable set A. So, A−A = ∅ is measurable, by condition 1 above.]
2. For A and B any two measurable sets, A ∩ B, A ∪ B, and A − B

are all measurable. [The third is just condition 1 above. For the second,
apply condition 2 to the sequence A, B, ∅, ∅, · · ·. For the first, note that
A ∩ B = A − (A − B): Use condition 1 twice.] It follows immediately, by
repeated application of these facts, that the measurable sets are closed under
taking any finite numbers of intersections, unions, and differences.

3. For A1, A2, · · · measurable, their intersection, ∩Ai, is also measurable.
[First note that we have the following set-theoretic identity: A1 ∩ A2 ∩ A3 ∩
· · · = A1 − {(A1 − A2) ∪ (A1 − A3) ∪ (A1 − A4) ∪ · · ·}. Now, on the right,
apply condition 1 above to the set-differences, and condition 2 to the union.]
Thus, measurable sets are closed under taking countable intersections and
unions.

Here are some examples of measurable spaces.
1. Let S be any set, and let S consist only of the empty set ∅. This is a

(rather boring) measurable space.

1By A − B, we mean A ∩ Bc, i.e., the set of all points of A that are not in B.
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2. Let S be any set, and let S consist of all subsets of S. This is a
measurable space.

3. Let S be any set, and let S consist of all subsets of S that are countable
(or finite). This is a measurable space.

4. Let S be any set, and fix any nonempty collection P of subsets of
S. Let S be the collection of subsets of S that result from the following
construction. First set S = P. Now expand S to include all sets that result
by taking differences and countable unions of sets in S. Next, again expand
S to include all sets that result by taking differences and countable unions
of sets in (the already expanded) S. Continue in this way2, and denote by S
the collection that results. Then (S,S) is a measurable space. Thus, you can
generate measurable spaces by starting with any set S, and any collection
P of subsets of S (i.e., those that you really want to turn out, in the end,
to be measurable). By expanding that original collection P, as described
above, you can indeed achieve a measurable space in which the chosen sets
are indeed measurable.

5. Let (S,S) be any measurable space, and let K ⊂ S (not necessar-
ily measurable). Let K denote the collection of all subsets of K that are
S-measurable. Then (K,K) is a measurable space. [The two properties
for (K,K) follow immediately from the corresponding properties of (S,S).]
Thus, each subset of a measurable space gives rise to a new measurable space
(called a subspace of the original measurable space).

6. Let (S ′,S ′) and (S ′′,S ′′) be measurable spaces, based on disjoint un-
derlying sets. Set S = S ′ ∪ S ′′, and let S consist of all sets A ⊂ S such that
A ∩ S ′ ∈ S ′ and A ∩ S ′′ ∈ S ′′. Then (S,S) is a measurable space. [The
two properties for (S,S) follow immediately from the corresponding prop-
erties of (S ′,S ′) and (S ′′,S ′′). For instance, the first property follows from:
(A−B)∩ S ′ = (A∩ S ′)− (B ∩S ′) and (A−B)∩ S ′′ = (A∩S ′′)− (B ∩S ′′).]

2 Measures

Let (S,S) be a measurable space. A measure on (S,S) consists of a

nonempty subset, M, of S, together with a mapping M µ→ R+ (where R+

2In more detail: Set S1 = P . Let S2 the set that results from applying the above
process to S1; then by S3 the set that results from applying the process to S2, etc. Then
set S = S1 ∪ S2 ∪ · · ·.
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denotes the set of nonnegative reals), satisfying the following two conditions:
1. For any A ∈ M and any B ⊂ A, with B ∈ S, we have B ∈ M.
2. Let A1, A2, · · · ∈ M be disjoint, and set A = A1∪A2∪· · ·. Then: This

union A is in M if and only if the sum µ(A1) + µ(A2) + · · · converges; and
when these hold that sum is precisely µ(A).

A set A ∈ M is said to have measure; and µ(A) is called the measure

of A. Think of the collection M as consisting of those measurable sets that
actually are assigned a “size” (i.e., of those size-candidates (in S) that were
successful); and of µ(A) as that size. Then the first condition above says that
all sufficiently small measurable sets are indeed assigned size. The second
condition says that the only excuse a measurable set A has for not being
assigned a size is that “there is already too much measure inside A”, i.e.,
that A effectively has “infinite measure”. The last part of condition 2 says
that measure is additive under taking unions of disjoint sets (something we
would have wanted and expected to be true).

Several properties of measures are immediate from the definition.
1. The empty set ∅ is in M, and µ(∅) = 0. [There exists some set A ∈ M.

Set B = ∅ and apply condition 1, to conclude ∅ ∈ M. Now apply condition
2 to the sequence ∅, ∅, · · · (having union A = ∅). Since A ∈ M, we have
µ(∅) + µ(∅) + · · · = µ(∅), which implies µ(∅) = 0.]

2. For any A, B ∈ M, A∩B, A∪B, and A−B are all in M. Furthermore,
if A and B are disjoint, then µ(A ∪ B) = µ(A) + µ(B). [The first and third
follow immediately from condition 1, since A∩B and A−B are both subsets
of A. For the second, apply condition 2 to the sequence A−B, B, ∅, ∅, · · · of
disjoint sets, with union A∪B. Additivity of the measures also follows from
this, since when A and B are disjoint, A − B = A.]

3. For any A, B ∈ M, with B ⊂ A, then µ(B) ≤ µ(A). [We have, by
the previous item, µ(A) = µ(B) + µ(A − B).] Thus, “the bigger the set, the
larger its measure”.

4. For any A1, A2, · · · ∈ M, ∩Ai ∈ M. [This is immediate from condition
1 above, since ∩Ai ∈ S and ∩Ai ⊂ A1 ∈ M.]

Thus, the sets that have measure (i.e., those that are in M) are closed
under finite differences, intersections and unions; as well as under countable
intersections. What about countable unions? Let A1, A2, · · · be a sequence
of sets in M, not necessarily disjoint. First note that ∪Ai = A can always be
written as a union of a collection of disjoint sets in M, namely of A1, A2 −
A1, A3 − A2 − A1, · · ·. If the sum of the measures of the sets in this last list
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converges, then, by condition 2 above, we are guaranteed that A ∈ M. And if
the sum doesn’t converge, then we are guaranteed that A is not in M. Note,
incidentally, that convergence of this sum is guaranteed by convergence of
the sum µ(A1)+µ(A2)+µ(A3)+ · · · (but, without disjointness, this last sum
may exceed µ(A)). In short, the sets that have measure are not in general
closed under countable unions, but failure occurs only because of excessive
measure.

Here are some examples of measures.
1. Let S be any set, let S, the collection of measurable sets, be all subsets

of S, let M = S, and, for A ∈ M, let µ(A) = 0. This is a (boring) measure.
2. Let S be any set, S all countable (or finite) subsets of S, M the

collection of all finite subsets of S, and, for A ∈ M, let µ(A) be the number
of elements in the set A. This is is called counting measure on S. Note
that the set S itself could be uncountable.

3. Let S be any set and S the collection of all subsets of S. Fix a

nonnegative function S
f→ R+ on S. Now let M consist of all sets A ∈ S

such that ΣA f converges. Thus, M includes all the finite subsets of S; and
possibly some countably infinite subsets (provided there isn’t too much f on
the subset); and possibly even some uncountable infinite subsets (provided
f vanishes a lot on the subset). For A ∈ M, set µ(A) = ΣAf . This is a
measure. For f = 1, it reduces to counting measure.

4. Let (S,S,M, µ) be any measurable space/measure. Fix any K ∈ S
(not necessarily in S). Denote by K the collection of all sets in S that are
subsets of K; and by MK the collection of all sets in M that are subsets of
K. For A ∈ MK, set µK(A) = µ(A). Then (K,K,MK, µK) is again a mea-
surable space/measure. [This is an easy check, using for each property, the
corresponding property of (S,S,M, µ).] Thus, any subset of the underlying
set S of a space with measure gives rise to another space with measure. This
is called, of course, a measure subspace.

5. Let (S ′,S ′,M′, µ′) and (S ′′,S ′′,M′′, µ′′) be measurable spaces/measures,
with S ′ and S ′′ disjoint. Set S = S ′ ∪ S ′′; let S consist of A ⊂ S such that
A ∩ S ′ ∈ S ′ and A ∩ S ′′ ∈ S ′′. Let S (resp, M) consist of A ⊂ S such that
A ∩ S ′ ∈ S ′ and A ∩ S ′′ ∈ S ′ (resp, ∈ M′ and ∈ M′′). Finally, for A ∈ M,
set µ(A) = µ′(A ∩ S ′) + µ′′(A ∩ S ′′). This is a measurable space/measure.
Thus, we may take the “disjoint union” of two measurable spaces/measures.

6. Let (S,S) be a measurable space, and let (M, µ) and (M, µ′) be two
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measures on this space. [Note that they have the same M.] Define M µ+µ′

→
R+ by: (µ + µ′)(A) = µ(A) + µ′(A). This is a measure, too. And, similarly,

for any number a > 0, the mapping M aµ→ R+ with action (aµ)(A) = aµ(A)
is a measure. Thus, we can add measures, and multiply them by positive
constants. [Why did we impose “a > 0”?]

We now obtain two results to the effect that “if a sequence of sets ap-
proaches (in a suitable sense) another set, then their measures approach the
measure of that other set”. In short, the measure of a set is “a continuous
function of the set”.

Theorem. Fix a measure space (S,S,M, µ), let A1 ⊂ A2 ⊂ · · · with Ai ∈
M; and set A = ∪Ai. Then: A ∈ M if and only if the sequence µ(Ai) of
numbers converges (as i → ∞); and when these hold that limit is precisely
µ(A).
Proof. Since the Ai are nested, we have the following set-theoretic identities:

A = A1 ∪ (A2 − A1) ∪ (A3 − A2) ∪ · · · , (1)

Ai = A1 ∪ (A2 − A1) ∪ (A3 − A2) ∪ · · · ∪ (Ai − Ai−1). (2)

Note that the sets in the unions on the right are disjoint, and in M. Since
the union on the right of Eqn. (2) is finite, we have

µ(Ai) = µ(A1) + µ(A2 − A1) + µ(A3 − A2) + · · ·+ µ(Ai − Ai−1). (3)

Hence: The µ(Ai) converge if and only if the sum µ(A1) + µ(A2 − A1) +
µ(A3 −A2) + · · · converges {by Eqn. (3)}; which in turn holds if and only if
A ∈ M {by Eqn. (1) and the definition of a measure}; and that when these
hold µ(A) = lim µ(Ai) {by Eqns. (1) and (3) and the definition of a measure}.

Theorem. Fix a measure space (S,S,M, µ), let A1 ⊃ A2 ⊃ · · ·, with
Ai ∈ M; and set A = ∩Ai. Then A ∈ M, and limi→∞µ(Ai) = µ(A).
Proof. The proof is similar to that above (but easier), using the fact that
A1 = A∪ (A1−A2)∪ (A2−A3)∪· · ·, where the sets on the right are disjoint,
and in M.

As a final result on measure spaces, we show that, under certain circum-
stances, a (M, µ) that is “not quite a measure” can be made into one by
including within M certain additional sets.
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Let (S,S) be a measurable space. Let M be a nonempty subset of S,

and let µ be a mapping, M µ→ R+. Let us suppose that this (M, µ) satisfies
the following two conditions:

1*. For any A ∈ M and any B ⊂ A, with B ∈ S, we have B ∈ M.
2*. Let A1, A2, · · · ∈ M be disjoint, and set A = A1 ∪ A2 ∪ · · ·, their

union. Then, provided A ∈ M, the sum µ(A1) + µ(A2) + · · · converges, to
µ(A).

Thus, this (M, µ) is practically a measure on (S,S). Condition 1* above
is identical to condition 1 for a measure; and condition 2* is only somewhat
weaker than condition 2 for a measure. All that has been left out, in condition
2*, is that portion of condition 2 that states: Whenever Σµ(Ai) converges,
then A ∈ M. That is, this (M, µ) is very nearly a measure, lacking only the
requirement that disjoint unions of elements of M, if not too obese measure-
wise, are themselves in M.

The present result is that, under the circumstances of the paragraph
above, we can recover from that (M, µ) a measure. The idea is to enlarge
the original M to include the missing sets. Denote by M̂ the collection of
all subsets of S that are of the form ∪Ai, where A1, A2, · · · is a sequence
of disjoint sets in M for which Σµ(Ai) converges; and let µ̂(A) = Σµ(Ai).
Note that every set A in M is automatically in M̂; with µ̂(A) = µ(A). This
M̂, then, is just M, augmented by certain unions of M-sets. The present
theorem is: This (M̂, µ̂) is a measure.

The first step of the proof is to show that the function µ̂ is well-defined.
To this end, let A = A1 ∪ A2 ∪ · · · be in M̂ via condition ii) above. Let
B1, B2, · · · be a second disjoint collection of elements of M, with the same
union: ∪Bj = A. We must show that Σµ(Bj) = Σµ(Ai), i.e., that µ̂(A),
defined via the Bj, is the same as µ̂(A) defined via the Ai. To see this, set,
for i, j = 1, 2, · · ·, Cij = Ai ∩ Bj. Then the Cij are disjoint and in M, and
their union is precisely A. But by condition 2* we have Σiµ(Cij) = µ(Bj)
and Σjµ(Cij) = µ(Ai). That Σµ(Ai) = Σµ(Bj) follows.

To complete the proof, we must show that (M̂, µ̂) satisfies conditions 1
and 2 for a measure. For condition 1: Let A ∈ M̂: We have A = ∪Ai, where
the Ai are disjoint and are in M, and are such that Σµ(Ai) converges. Let
B ⊂ A, with B ∈ S. We must show that B ∈ M̂. But this follows, since
B = ∪(B ∩ Ai), where the B ∩ Ai are disjoint, are in M, and are such that
Σµ(B ∩ Ai) converges. We leave condition 2 as an (easy) exercise.
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Here is an example of an application of this result. Let S = Z+, the
set of positive integers, let S consist of all subsets of S, let M consist of all
finite subsets of S, and, for A ∈ M, let µ(A) = Σn∈A(1/2n), where the sum
on the right is finite. This (M, µ) satisfies conditions 1* and 2* above. But
it is not a measure, for it does not satisfy condition 2 for a measure space.
In this case, the M̂ constructed above consists of all subsets of S, and, for
A ∈ M̂, µ̂(A) = Σn∈A(1/2n), where now the sum on the right is over the
(possibly infinite) set A. The measure space (M, µ) here constructed will be
recognized as a special case of Example 3 above.

Finally, we remark that, when the original (M, µ) of the previous page
happens to be a measure (i.e., happens to satisfy, not only condition 2*, but
also condition 2), then M̂ = M, and µ̂ = µ.

3 Lebesque Measure

We now turn to what is certainly the most important example of a measure
space: Lebesque measure. Let S = R, the set of reals. [The case S = Rn

is virtually identical, line-for-line, to this case; but S = R makes writing
easier.]

Set I = (a, b), an open interval in R. The idea is that we want this
interval to be measurable, with measure its length: µ(I) = b − a. Let’s try
to turn this idea into a measure space. By condition 2 for a measure space,
our collection M will have to include also sets of the form K = I1 ∪ I2 ∪ · · ·,
a union of disjoint intervals, with measure µ(K) = µ(I1) + µ(I2) + · · · —
provided the sum on the right converges. And furthermore, by condition 1
for a measure space, M will also have to include differences of intervals, i.e.,
the half-closed intervals [a, b) and (a, b], with measures again b − a. So, we
expand our original M to include these new sets. Next, let us return, with
this new, expanded M, to condition 2. By this condition, M must include
also countable unions of the half-closed intervals. Returning to condition 1,
we find that our M must include differences of these unions. Continue in
this way, at each stage expanding the then-current M by including the new
sets demanded by conditions 2 and 1. Does this process terminate? That
is, do we, eventually, reach a point at which applying conditions 2 and 1 to
the then-current M does not result in any further expansion of M? If this
did occur, then we would be done. Presumably, we would at that point be
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able to write down some general form for a set in this final M, as well as
a general formula for its measure. We would thus have our measure space.
But, unfortunately, it turns out that this process does not terminate: Each
passage through condition 2 and condition 1 requires that additional, new
sets be included in M. In short, this is not a very good way to construct our
measure space. So, let’s try a new strategy.

Fix any set X ⊂ R. Let I1, I2, · · · be any countable collection of open
intervals that covers X [i.e., that are such that X ⊂ ∪Ii. Note that we do
not require that the Ii be disjoint.] There always exists at least one such
collection, e.g., (−1, 1), (−2, 2), · · ·. Now set m = Σµ(Ii), the sum of the
lengths of the Ii. This m is either a nonnegative number or “∞” (in case
the sum fails to converge). We define the outer measure of X, written
µ∗(X) to be the greatest lower bound of these m’s, taken over all countable
collections of open intervals that cover X; so µ∗(X) is either a nonnegative
number, or “∞” (in case X is covered by no countable collection of intervals
the sum of whose lengths converges).

The outer measure of X reflects “how much open-interval is required to
cover X”, i.e., is a rough measure of the “size” of X. For example, for
X already an interval, X = (a, b), we have µ∗(X) = (b − a), its length (an
assertion that seems rather obvious, but is in fact a bit tricky to prove). As a
second example, let X be the set of rational numbers. Order the rationals in
any way, e.g., 3/5, −398/57, 3, · · ·. Now fix any ε > 0. Let I1 be the interval
of length ε centered on the first rational (3/5); I2 the interval of length ε/2
centered on the second rational (−398/57); and so on. Then these Ii cover
X; and µ(I1) + µ(I2) + · · · = ε + ε/2 + · · · = 2ε. But ε > 0 is arbitarary:
Thus, there exists a covering of X (the rationals) by open intervals the sum
of whose lengths is as close to zero as we wish. We conclude: µ∗(X) = 0.
The same holds for any countable (or finite) subset of the reals.

The outer measure has the sort of behavior we might expect of a measure.
For example: For X ⊂ Y ⊂ R, then µ∗(X) ≤ µ∗(Y ) (which follows from the
fact that any covering of Y is already a covering of X). For X, Y ⊂ R,
µ∗(X ∪ Y ) ≤ µ∗(X) + µ∗(Y ) (which follows from the fact that the intervals
in a covering of X taken together with the intervals in a covering of Y yields
a collection of intervals that covers X ∪ Y ). Thus, it is tempting to try
to construct our measure space using outer measure: Let M consist of all
subsets X of S = R with finite outer measure, and set µ(X) = µ∗(X). But,
unfortunately, this does not work, as the following example illustrates.
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For a and b and two numbers in the interval [0, 1), write a ∼ b provided
a − b is a rational number. This is an equivalence relation. Consider its
equivalence classes. One, for example, is the set of all numbers in [0, 1) of
the form

√
2 + r with r rational; another, the set of all numbers in [0, 1)

of the form π + r with r rational; etc. Let X ⊂ [0, 1) be a set consisting
of precisely one element from each equivalence class. So, for example, X
contains exactly one number of the form

√
2 + r with r rational; exactly one

of the form π + r with r rational, etc. Next set, for r any rational number in
[0, 1), Xr = {x ∈ [0, 1)|(x − r) ∈ X or (x − r + 1) ∈ X}. Thus, Xr is simply
the set X, translated by amount r along the real line; and with that portion
that is thereby moved outside [0, 1) reattached at the back. We now claim
that these Xr (as r ranges through the rationals in [0, 1)) have the following
three properties:

1. The Xr are disjoint. {Let x ∈ Xr and x ∈ Xr′ . Then (x − r) and
(x − r′) (possibly after adding one in each case) is in X. But X contains
exactly one element of the equivalence class “x plus a rational”. Therefore,
r = r′.}

2. The union of the Xr is all of [0, 1). {Let x ∈ [0, 1). Then X contains
exactly one element of the equivalence class “x plus a rational”, i.e., x+r ∈ X
for some rational r. That is, x is in Xr (or Xr+1, in case r < 0).}

3. For each r, µ∗(Xr) = µ∗(X). {This follows, since outer measure is
invariant under the translation and reattachment by which Xr is constructed
from X.}

Now suppose, for contradiction, that we had a measure space based on outer
measure. By the first two properties above, we would have Σµ∗(Xr) =
µ∗([0, 1)) = 1, where the sum on the left is over all rationals r ∈ [0, 1).
By the third property, all the µ∗(Xr) in this sum are the same number. But
there exists no number with the property that, when it is summed with itself
a countable number of times, the result is one. From this contradiction, we
conclude: The choice for M of the sets of finite outer measure, and for µ the
outer measure, does not result in a measure space3.

3Note that the example above used (for the construction of X) the axiom of choice
(one of the axioms of set theory). I am told that the rest of the axioms of set theory
(i.e., with the axiom of choice omitted) are consistent with the statement “this (M, µ) is
a measure”.
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Thus, the outer measure is somewhat flawed as a representative of the
“size” of a set, in the following sense. Certain sets (such as the X above)
are, roughly speaking, so frothy that they cannot be covered efficiently by
open intervals, and for these the outer measure is “too large”.

This observation is the key to finding our measure space. For X and Y
any two subsets of S = R, set d(X, Y ) = µ∗(X −Y )+µ∗(Y −X), so d(X, Y )
is a nonnegative number (or possibly “∞”). Think of d(X, Y ) as reflecting
“the extent to which X and Y differ as sets”, i.e., as an effective “distance”
between the sets X and Y . This interpretation is supported by the following
properties:

1. We have d(X, Y ) = 0 whenever X = Y . [But note, that the converse
fails, e.g., with Y consisting of X together with any one number not in X.]

2. For any subsets X, Y, Z of R, we have d(X, Z) ≤ d(X, Y ) + d(Y, Z).
{This follows from the facts that X −Z ⊂ (X − Y )∪ (Y −Z) and Z −X ⊂
(Z − Y ) ∪ (Y − X).} That is, d( , ) satisfies the triangle inequality.

3. For any subsets X, X ′, Y, Y ′ of R, d(X ∪ Y, X ′ ∪ Y ′) ≤ d(X, X ′) +
d(Y, Y ′), and similarly with “∪” replaced by “∩” or “–”. {This follows from
the fact that the set-difference of X ∪ Y and X ′ ∪ Y ′ is a subset of (X −
X ′) ∪ (Y − Y ′); and similarly for “∩” and “–”.} That is, “nearby sets have
nearby unions, intersections, and differences”, i.e., the set operations are
“continuous” as measured by d( , ).

4. For any subsets X, Y of R, |µ∗(X)−µ∗(Y )| ≤ d(X, Y ). {This follows
from X ∪ (Y − X) = Y and Y ∪ (X − Y ) = X.} That is, outer measure is a
d( , )-continuous function of the set.

As we have remarked, the outer measure is sometimes “too large”, and
this fact renders it unsuitable as a measure. But the outer measure is suitable
for generating an effective distance, d( , ), between sets, for in this role its
propensity to be “too-large” becomes merely an excess of caution.

We now turn to the key definition. Denote by M the collection of all
subsets A of S = R with the following property: Given any ε > 0, there exists
a K ⊂ R, where K is a finite union of open intervals, such that d(A, K) ≤ ε.
And, for A ∈ M, set µ(A) = µ∗(A). In other words, the elements of M
are the sets that can be “approximated” (as measured by d( , )) by finite
unions of open intervals. And, similarly, µ(A) is approximated by the sum of
the lengths of the intervals in K (as follows from the fact that d(A, K) ≤ ε
implies |µ∗(A)−µ∗(K)| ≤ ε). It follows, in particular, that µ(A) is not “∞”.

Here are two examples. Let A be the set of rational numbers. Then
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A ∈ M, with µ(A) = 0. Indeed, given ε > 0, choose K = ∅. Then d(A, K) =
µ∗(A − ∅) + µ∗(∅ − A) = µ∗(A) − µ∗(∅) = 0 ≤ ε. More generally, any set
A ⊂ R with µ∗(A) = 0 is in M. Next, let A = (a, b), an open interval. Then
A ∈ M, with µ(A) = (b − a). Indeed, given ε > 0, choose K = A, whence
d(A, K) = 0.

We next show that this (M, µ) has the properties necessary for a measure
space.

1. Let A, B ∈ M. Then A − B ∈ M. Proof: Fix ε > 0. Let KA

(resp., KB) be a finite collection of open intervals with d(A, KA) ≤ ε (resp,
d(B, KB) ≤ ε). Let K be KA − KB, with any endpoints (arising from the
set-difference) removed. Then d(A − B, K) ≤ d(A, KA) + d(B, KB) ≤ 2ε.

2. Let A1, A2, · · · ∈ M be disjoint, and let µ(A1) + µ(A2) + · · · converge.
Then A = ∪Ai ∈ M, and µ(A) = Σµ(Ai). Proof: Fix ε > 0. Choose integer
n such that µ(An+1) + µ(An+2) + · · · ≤ ε. Next, choose K1, a finite union of
intervals, such that d(A1, K1) ≤ ε; K2, such that d(A2, K2) ≤ ε/2, etc., up to
Kn. Set L = A1∪A2∪· · ·∪An and K = K1∪K2∪· · ·∪Kn, also a finite union
of intervals. Then we have d(A, K) ≤ d(A, L)+d(L, K) ≤ ε+2ε. This proves
A ∈ M. That µ(A) = Σµ(Ai) follows, first choosing the K1, · · · , Kn disjoint
so µ∗(K) = Σn

1µ
∗(Ki), and then using |µ∗(A)−µ∗(L)| ≤ ε, |µ∗(L)−µ∗(K)| ≤

2ε, and |µ∗(Ki) − µ∗(Ai)| ≤ ε/2i−1.
Now let S = R, let S be all subsets of R obtained by taking countable

unions of elements of this M. Then (S,S,M, µ) is a measure space, called
Lebesque measure. The elements of S are called Lebesque measurable

sets, and, for A ∈ M, the number µ(A) is called the Lebesque measure of
A.

In the land of measure spaces, the more sets that are measurable the bet-
ter. Do there exists measures that are better, in this sense, than Lebesque
measure? That is, does there exist a measure (M̂, µ̂) on R that is an exten-
sion of Lebesque measure, in the sense that M̂ is a proper superset of M,
and µ̂ agrees with µ on M? It turns out that there does. Let X denote
any non-measurable set of finite outer measure, e.g., the set constructed on
page 9. Let Ŝ consist of all subsets of R of the form (A ∩ X) ∪ (B − X),
where A and B are measurable. Thus, for example, choosing A = B we
conclude that Ŝ ⊃ S; and, choosing A ⊃ X and B = ∅, we conclude that
X ∈ Ŝ. This collection is closed under differences and countable unions (as
follows immediately from the fact that S is). Let M̂ ⊂ S consist of those
sets of this form with B having finite measure; and, for any such set, set
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µ̂((A∩X)∪ (B −X)) = µ∗(A∩X) +µ(B)− µ∗(B ∩X). Thus, for example,
X ∈ M̂, with µ̂(X) = µ∗(X); and, for A ∈ M, µ̂(A) = µ(A). One checks
that this (M̂, µ̂) is indeed a measure space, and that it is indeed an extension
of Lebesque measure. Since X ∈ M̂ but X 6∈ M, this is a proper extension.

4 Integrals

Let (S,S) be a measurable space (not necessarily Lebesque). A real-valued

function, S
f→ R, is said to be measurable provided: For O any open set in

the reals, f−1[O] is measurable. This definition is hauntingly similar to that of
continuity, the essential difference being that, since the domain in this case is
a measurable space instead of a topological space, we require measurability,
instead of open-ness, of f−1[O]. As an example of this notion, we note

that every continuous function, R
f→ R is Lebesque-measurable (for, for f

containuous, each f−1[O] ⊂ R is open, and hence Lebesque-measurable). As
a second example, let, in a general measurable space, A1, · · · , As be a finite
number of disjoint measurable sets, whose union is S. Fix numbers a1, · · · , as.
Let f be the function such that f(x) = ai whenever x ∈ Ai, for i = 1, · · · , s.
Thus, this function is constant on each of the elements of a finite, measurable
partition of S. This function f is measurable. A measurable function f with
finite range (i.e., a function of the form above) is called a step function.

Here are two elementary properties of measurable functions. For the

first, let S
f→ R be measurable. It then follows, using directly the properties

of S, that inverse images, under f , of differences of open sets (in R); of
countable unions of such differences; of differences of such countable unions;

etc., are all measurable. For the second property, let S
f→ R and S

g→ R be

measurable. Then S
f+g→ R is also measurable. To see this, let S

w→ R2 be the
map with w(x) = (f(x), g(x)). Then for each open rectangle, (a, b) × (c, d),
in R2, w−1[(a, b) × (c, d)] = f−1[(a, b)] ∩ g−1[(c, d)] is measurable, whence
w−1 of any countable union of such rectangles is measurable, whence w−1

of any open subset of R2 is measurable. Now let O ⊂ R be open. Then
U = {(α, β)|α + β ∈ O} is open in R2, whence (f + g)−1[O] = w−1[U ]
is measurable. More generally, any continuous function applied to two (or,
indeed, to any finite number) of measurable functions is measurable. We
note also that any continuous function applied to two (or any finite number)
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of step functions is a step function.
We are now ready to do integrals. Let (S,S,M, µ) be a measure space.

Let us, for the present discussion, restrict ourselves to the following case: The

set S itself has finite measure. We shall relax this assumption (which
is made solely to avoid, at this point of the discussion, possibly divergent
integrals) shortly.

Let f be any step function (with values a1, · · · , as on measurable (and, by
the assumption above, finitely measurable) sets A1, · · · , As). We define the
integral of this function f (over S, with respect to measure µ) by

∫
S f dµ =

a1µ(A1) + · · ·+ asµ(As). We note that this is the right sort of expression to
be the integral: It multiplies the value of f by the size of the region on which
f takes that value, and sums over the (finite number of) different values
that a step function can assume. As an example, let our measure space be
Lebesque measure on (0, 1), and let f be the (step) function with value 1 on
the rationals (in (0, 1)), 0 on the irrationals. The integral of this function is
zero (since the Lebesque measure of this set of rationals is zero).

This integral has the properties we would expect of an integral. For f any
step function,

∫
S(af) dµ = a

∫
S f dµ {for

∑
(aai) µ(Ai) = a

∑
(ai) µ(Ai)}.

Furthermore, for f and g any two step functions we have
∫
S(f + g) dµ =

∫
S f dµ +

∫
S g dµ. {To see this, let f have values a1, · · · , as on A1, · · ·As;

and g values b1, · · · , bt on B1, · · · , Bt. Then (f + g) has values ai + bj on
Ai ∩ Bj, for i = 1, · · · , s and j = 1, · · · , t. So,

∫
S(f + g) dµ =

∑
i,j (ai +

bj) µ(Ai ∩ Bj) =
∑

i,j ai µ(Ai ∩ Bj) +
∑

i,j bj µ(Ai ∩ Bj). Now carry out the
j-sum in the first term on the right (to obtain

∫
S f dµ), and the i-sum in the

second (to obtain
∫
s g dµ).} In short, the integral is linear in the step-function

integrated. A further, key, property of this integral is that “small (step)
functions have small integral”. We claim: Let step function f satisfy |f | ≤ ε.
Then | ∫S f dµ| ≤ εµ(S). This is immediate, from |∑ ai µ(Ai)| ≤ (max
|ai|)

∑
µ(Ai).

We now expand the applicability of our integral from step functions to all
bounded, measurable functions on our finite measure space. This expansion
is based on the following key fact.

Theorem. Let S
f→ R be a bounded measurable function on (S,S). Then

for every ε > 0 there exists a step function g on (S,S) such that |f − g| ≤ ε.

Proof: Let I1, · · · , Is be a finite collection of disjoint half-open intervals whose
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union covers the range of f . For each i, set Ai = f−1[Ii] ∈ S; and choose
ai ∈ Ii. Then the function g on S with value ai in Ai is a step function, and
satisfies |f − g| ≤ ε.

Now fix any bounded measurable function f on our finite measure space.
Fix a sequence of ε’s approaching zero, and, for each, choose a step function
gε with |f − gε| ≤ ε. Then (since |gε − gε′| ≤ (ε + ε′)) we have | ∫S gε dµ −
∫
S gε′ dµ| ≤ (ε + ε′) µ(S), whence the

∫
S gε dµ form a Cauchy sequence. By

the integral of f (over S, with respect to measure µ), we mean the number
to which this sequence converges:

∫
S f dµ = limε→0

∫
S gε dµ (noting that this

number is independent of the particular sequence of gε chosen).
This integral (of a bounded measurable function on a finite measure space)

inherits, immediately, the corresponding properties of the integral of a step
function: i)

∫
S(af) dµ = a

∫
S fdµ; ii)

∫
S(f + g) dµ =

∫
S f dµ +

∫
S g dµ; and

iii) | ∫S f dµ| ≤ lub |f |µ(S).
Let (S,S,M, µ) be a finite measure space, and let A ⊂ S be measurable.

Then, as we have seen earlier, we recover, in the obvious way, a measure space
based on A: The measurable sets in this space are the measurable subsets of
A; and the measure of such a set is simply its µ-measure. Next, let f be any
measurable function on S. Then the restriction of f to A is a measurable
function on this measure (sub-)space. Furthermore, if the original function
f on S was bounded, then its restriction to A is also bounded. Under these
circumstances (f a bounded measurable function on a finite measure space
and A ⊂ S measurable) we define the integral of f over A, written

∫
A f dµ,

to be the integral over the measure (sub-)space A of the function f -restricted-
to-A.

A key property of this integral is that it gives rise to a countable additive
set function, in the following sense. Let A1, A2, · · · be disjoint measurable
sets, with ∪Ai = S. Then, we claim,

∑
(
∫
Ai

f dµ) =
∫
S f dµ. It suffices

to prove this claim for the case in which f a step function (for replacing,
in the formula above, a general bounded, measurable function f by a step
function g with |f−g| ≤ ε changes neither side of that equation by more than
ε µ(S)). So, let f be the step function taking values b1, b2, · · · , bs on disjoint
measurable sets B1, B2, · · · , Bs. Consider the expression

∑
bj µ(Ai ∩ Bj),

where the sum is over i = 1, 2, · · · and j = 1, 2, · · · , s. Fixing j and carrying
out the sum over i, we obtain bj µ(Bj) (by the additivity property of µ); while
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fixing i and carrying out the sum over j, we obtain
∫
Ai

f dµ (by definition of
the integral of a step function). Now apply

∑
j to the first (yielding

∫
S f dµ);

and apply
∑

i to the second (yielding
∑

(
∫
Ai

f dµ)). The result follows.
To summarize, we first defined the integral of a step function over a finite

measure space (by the obvious formula); and then defined the integral of an
arbitrary bounded measurable function over that space (by approximating
that function by step functions). We now wish to relax the conditions that
the measure space be finite; and that the function be bounded. In doing so,
we shall encounter a new phenomenon: Our integrals may in some cases (i.e.,
for some functions and some regions of integration) fail to converge.

Let (S,S,M, µ) be an any measure space; and let f be a measurable
function thereon. We assume for the present that this f is nonnegative (an
assumption we shall relax in a moment). Next, denote by M′ the collection
of all measurable A ⊂ S having finite measure, and on which f is bounded.
[Note that there are many such sets: Take, e.g., f−1[(a, b)], and, if this set
fails to have finite measure, take any finite-measure subset of it.] For any
such A ∈ M′, set µ′(A) =

∫
A f dµ, noting that the integral on the right

makes sense. Now, this (M′, µ′) that we have just constructed will not in
general be a measure space (as defined on page 3): While it always satisfies
condition 1 of that definition, it may fail to satisfy condition 2. However, this
(M′, µ′) does satisfy the conditions 1* and 2* listed on page 6. [Condition 1*
is immediate, while condition 2* is what we just showed two paragraphs ago.]
As we showed on page 6, we may, under these conditions, expand (M′, µ′) to a
measure space. That construction, in more detail, is the following. Consider
any sequence, A1, A2, · · · of disjoint sets in M′ (so each Ai has finite measure,
and on each f is bounded), such that

∑
µ′(Ai) (=

∑
(
∫
Ai

f dµ)) converges.

Let M̂′ consist of all subsets of S given as the union of such Ai; and, for
A = ∪Ai ∈ M̂′, set µ̂′ =

∑
µ′(Ai). Then, as we showed earlier, this (M̂′, µ̂′)

is a measure space. We say that the measurable function f ≥ 0 is integrable

over A ⊂ S provided A ∈ M̂′; and, for such a set A, we write
∫
A f dµ = µ′(A).

Thus, a general nonnegative measurable function on a general measure space
is integrable over measurable A ⊂ S provided that A can be written as a
countable union of disjoint sets, each of finite measure and on which f is
bounded, such that the sum of the integrals of f over those sets converges;
and in this case the integral is given by that sum.

It is easy, finally, to relax the condition f ≥ 0 (which was made solely
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in order to invoke the earlier result on constructing measure spaces). Any
measurable function f can be written uniquely as f = f+−f−, where f+ ≥ 0
and f− ≥ 0 are measurable function. We say that f is integrable on A ⊂ S
provided both f+ and f− are, and we set

∫
A f dµ =

∫
A f+ dµ−∫

A f− dµ. This
integral inherits from its predecessors linearity in the function.

So, the subject of integration (of arbitrary measurable functions over ar-
bitrary measure spaces) is a remarkably simple one. We progress in turn from
integration of step functions over finite measure spaces (the obvious formula)
to integration of bounded functions over finite measure spaces (as limits of
step-function integrals) to integration of nonnegative measurable functions
over arbitrary measure spaces (restricting the region of integration to achieve
convergence of the integral) to integration of arbitrary measurable functions
over arbitrary measure spaces (writing such a function as the difference of
nonnegative functions). It is true that some work has to be invested at the
beginning, to get the notion of a measure in the first place. But, once the
ground is prepared, things go easily and smoothly. General integration the-
ory is much simpler, much more general, and much more useful than the
theory of the Riemann integral.
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