Definitions

1 Manifolds

Let m and n be non-negative integers, and V and open subset of R^{m}. Then a mapping $V \xrightarrow{\kappa} R^{n}$ is said to be smooth provided all partial derivatives of all orders of the corresponding n functions of m variables exist and are continuous.

Let M be a set, and n a non-negative integer. An n-chart on M is a subset U of M, together with a mapping $U \xrightarrow{\phi} R^{n}$, such that i) the subset $\phi[U]$ of R^{n} is open, and ii) the mapping ϕ is one-to-one.

Let M be a set and n a non-negative integer; and let (U, ϕ) and $\left(U^{\prime}, \phi^{\prime}\right)$ be two n-charts on this set. These two charts are said to be compatible provided i) the subsets $\phi\left[U \cap U^{\prime}\right]$ and $\phi^{\prime}\left[U \cap U^{\prime}\right]$ of R^{n} are both open, and ii) the maps $\phi\left[U \cap U^{\prime}\right] \xrightarrow{\phi^{\prime} o \phi^{-1}} R^{n}$ and $\phi^{\prime}\left[U \cap U^{\prime}\right] \xrightarrow{\phi o \phi^{\prime-1}} R^{n}$ are both smooth.

An n-manifold, where n is a non-negative integer, is a set M, together with a collection \mathcal{C} of n-charts on M, such that i) any two charts in the collection \mathcal{C} are compatible, ii) the U 's of the charts in \mathcal{C} cover M, and iii) every n-chart compatible with all the charts in \mathcal{C} is itself in the collection \mathcal{C}.

Note: Condition iii) is sometimes omitted, in light of the following fact: Given set M and collection \mathcal{C} of n-charts satisfying i) and ii) above, then $(M, \hat{\mathcal{C}})$, where $\hat{\mathcal{C}}$ is the collection of all n-charts on M compatible with all those in \mathcal{C}, satisfies all three conditions above, i.e., is a manifold as here defined. Let us agree that, hereafter, whenever we say " n-manifold", then " n is a non-negative integer" is implied.

Let (M, \mathcal{C}) be an n-manifold. A (smooth) function on M is a map $M \xrightarrow{f} R$ with the following property: For every chart (U, ϕ) in the collection \mathcal{C}, the map $\phi[U] \xrightarrow{f \circ \phi^{-1}} R$ is smooth.

Note: Each constant function on M is smooth, as is the pointwise sum and product of any two smooth functions.

Let (M, \mathcal{C}) be an n-manifold. A (smooth) curve on M is a map $R \xrightarrow{\gamma} M$ with the following property: For every chart (U, ϕ) in the collection \mathcal{C}, i) $\gamma^{-1}[U]$ is open in R, and ii) the mapping $\gamma^{-1}[U] \xrightarrow{\text { фo }} R^{n}$ is smooth.

Let (M, \mathcal{C}) be an n-manifold, and let $p \in M$. A tangent vector at p is a mapping $\mathcal{F} \xrightarrow{\xi} R$, where \mathcal{F} denotes the collection of all smooth functions on this manifold, such that: i) for f any constant function, $\xi(f)=0$; and for f and g any two smooth functions, ii) $\xi(f+g)=\xi(f)+\xi(g)$, and iii) $\xi(f g)=f(p) \xi(g)+g(p) \xi(f)$.

Note: The set of tangent vectors at p has the structure of an n-dimensional vector space (under the obvious definitions of addition and scalar multiplication of tangent vectors).

Let (M, \mathcal{C}) be an n-manifold, $R \xrightarrow{\gamma} M$ a smooth curve on this manifold, and λ_{o} a real number. Set $p=\gamma\left(\lambda_{o}\right) \in M$. The tangent to γ at λ_{o} is the tangent vector ξ at p such that: For every smooth function f on M, $\xi(f)=d(f \circ \gamma) /\left.d \lambda\right|_{\lambda_{o}}$ (noting that the right side does indeed define a tangent vector).

Let (M, \mathcal{C}) be an n-manifold, $p \in M, \xi$ a tangent vector at p, and (U, ϕ) an n-chart in the collection \mathcal{C}, such that $p \in U$. The components of ξ with respect to this chart are the n numbers $\left(\xi^{1}, \cdots, \xi^{n}\right)$ such that: For any smooth function f on M,

$$
\begin{equation*}
\xi(f)=\left.\sum_{i=1}^{n} \xi^{i}\left[\partial\left(f \circ \phi^{-1}\right) / \partial x^{i}\right]\right|_{\phi(p)} . \tag{1}
\end{equation*}
$$

Let (M, \mathcal{C}) be an n-manifold, and let $p \in M$. A covector at p is a linear mapping $T \xrightarrow{\mu} R$, where T is the n-dimensional vector space of tangent vectors at p.

Note: The set of covector at p has the structure of an n-dimensional vector space (under the obvious definitions of addition and scalar multiplication of covectors).

Let (M, \mathcal{C}) be an n-manifold, let f be a smooth function on M, and let $p \in M$. The gradient of f at p is the covector, written ∇f, at p with the
following action: For any tangent vector ξ at $p,(\nabla f)(\xi)=\xi(f)$ (noting that the right side does indeed define a covector).

Let (M, \mathcal{C}) be an n-manifold, $p \in M, \mu$ a covector at p, and (U, ϕ) an n-chart in the collection \mathcal{C}, such that $p \in U$. The components of μ with respect to this chart are the n numbers $\left(\mu_{1}, \cdots, \mu_{n}\right)$ such that: For any tangent vector ξ at p,

$$
\begin{equation*}
\mu(\xi)=\sum_{i=1}^{n} \mu_{i} \xi^{i} \tag{2}
\end{equation*}
$$

where $\left(\xi^{1}, \cdots, \xi^{n}\right)$ are the components of ξ with respect to this chart.
Let (M, \mathcal{C}) be an n-manifold. A tangent vector field (resp, covector field) on M is a mapping that sends each point p of M to a tangent vector (resp, covector) at p. Fix such a field ξ (resp, μ), and let (U, ϕ) be an n-chart in the collection \mathcal{C}. Consider the following map from the open set $\phi[U]$ in R^{n} to R^{n} : It sends $\left(x^{1}, \cdots, x^{n}\right) \in \phi[U]$ to the components of ξ (resp, μ), evaluated at $\phi^{-1}\left(x^{1}, \cdots, x^{n}\right)$. We say that the tangent vector field ξ (resp, covector field μ) is smooth if this mapping is smooth.

Let (M, \mathcal{C}) be an n-manifold, and f a smooth function on M. The gradient of f is the smooth covector field (also written ∇f) on M whose value at each $p \in M$ is the gradient of f at p.

Let (M, \mathcal{C}) be an n-manifold, and μ a smooth covector field on M. This field is said to be exact if there exists a smooth function f on M such that $\mu=\nabla f$.

2 Measure Theory

Let X be a set, and $X \xrightarrow{f}$ real-valued function on X. Then we say that $\Sigma_{X} f$ converges to $a \in R$ provided: Given any $\epsilon>0$, there exists a finite Y, $Y \subset X$ such that, for any finite $Y^{\prime}, Y \subset Y^{\prime} \subset X,\left|\Sigma_{Y^{\prime}} f-a\right| \leq \epsilon$. Here, the sum of f over a finite set has the obvious meaning: the sum of the values of f on that set.

Note: This is what (absolute) convergence of a sum really is. We may replace the reals, above, by the complexes (or, indeed, by any abelian topological group). Note that we can, potentially, "sum" over even an uncountable
set X ! [If you know the definition of a net, you can formulate the above even more elegantly: Let the directed set be that of the finite subsets of X.]

A measurable space is a set S, together with a nonempty collection, \mathcal{S} of subsets of S, satisfying the following two conditions:

1. For any A, B in the collection \mathcal{S}, the set ${ }^{1} A-B$ is also in \mathcal{S}.
2. For any $A_{1}, A_{2}, \cdots \in \mathcal{S}, \cup A_{i} \in \mathcal{S}$.

Note: Sometimes the additional condition $S \in \mathcal{S}$ is included in which case (S, \mathcal{S}) is called a σ-algebra.

Let (S, \mathcal{S}) be a measurable space. A measure on (S, \mathcal{S}) consists of a nonempty subset of $\mathcal{S}, \mathcal{M} \subset \mathcal{S}$, together with a mapping $\mathcal{M} \xrightarrow{\mu} R^{+}$(where R^{+}denotes the set of nonnegative reals), satisfying the following two conditions:

1. For any $A \in \mathcal{M}$ and any $B \subset A$, with $B \in \mathcal{S}$, we have $B \in \mathcal{M}$.
2. Let $A_{1}, A_{2}, \cdots \in \mathcal{M}$ be disjoint, and set $A=A_{1} \cup A_{2} \cup \cdots$. Then: This union A is in \mathcal{M} if and only if the sum $\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\cdots$ converges; and when these hold that sum is precisely $\mu(A)$.

Fix any subset of the reals, $X \subset R$. Let I_{1}, I_{2}, \cdots be any countable collection of open intervals (not necessarily disjoint) in R such that $X \subset I_{1} \cup I_{2} \cup \cdots$ (noting that there exists at least one such collection); and denote by m the sum of the lengths of these intervals (possibly ∞). By the outer measure of $X, \mu^{*}(X)$, we mean the greatest lower bound, over all such collections, of m. Thus, $\mu^{*}(X)$ is a non-negative number, or possibly " ∞ ".

For X and Y be any two subsets of the reals, R, set $d(X, Y)=\mu^{*}(X-$ $Y)+\mu^{*}(Y-X)$, so $d(X, Y)$ is a nonnegative or the symbol " ∞ ".

Denote by \mathcal{M} the collection of all subsets A of $S=R$ with the following property: Given any $\epsilon>0$, there exists a $K \subset R$, where K is a finite union of open intervals, such that $d(A, K) \leq \epsilon$. And, for $A \in \mathcal{M}$, set $\mu(A)=\mu^{*}(A)$, a nonnegative number. A set $A \subset R$ is said to be Lebesque measurable if it is a countable union of sets in \mathcal{M}; and, for $A \in \mathcal{M}$, the number $\mu(A)$ is called the Lebesque measure of A.

[^0]Let (S, \mathcal{S}) be a measurable space, and $S \xrightarrow{f} R$ a function on S. We say that this f is measurable if, for every open $O \subset R, f^{-1}[O] \in \mathcal{S}$.

Let (S, \mathcal{S}) be a measurable space. By a step function on S we mean a measurable, real-valued function on S with finite range.

Let $(S, \mathcal{S}, \mathcal{M}, \mu)$ be a measure space, with $S \in \mathcal{M}$, and let f be a step function (with values a_{1}, \cdots, a_{s} on disjoint sets $A_{1}, \cdots, A_{s} \in \mathcal{M}$, where $A_{1} \cup \cdots \cup A_{s}=S$) on S. The integral of f (over S, with respect to μ) is the number $\int_{S} f d \mu=a_{1} \mu\left(A_{1}\right)+\cdots a_{s} \mu\left(A_{s}\right)$.

Let $(S, \mathcal{S}, \mathcal{M}, \mu)$ be a measure space, with $S \in \mathcal{M}$, and let f be a bounded measurable function on S. Then the integral of f (over S, with respect to μ) is the number $\int_{S} f d \mu=\lim _{\epsilon \rightarrow 0} \int_{S} g_{\epsilon} d \mu$, where the g_{ϵ} are step functions such that $\left|f-g_{\epsilon}\right| \leq \epsilon$.

Let $(S, \mathcal{S}, \mathcal{M}, \mu)$ be a measure space (not necessarily finite), and let $f \geq 0$ be a measurable function (not necessarily bounded) on S. We say that f is integrable over $A \in \mathcal{S}$ provided there exist disjoint sets A_{1}, A_{2}, \cdots each of finite measure and on each of which f is bounded, such that $\cup A_{i}=A$ and $\sum\left(\int_{A_{i}} f d \mu\right)$ converges. We write $\int_{A} f d \mu$ for that sum.

Let $(S, \mathcal{S}, \mathcal{M}, \mu)$ be a measure space, and f a measurable function (not necessarily nonnegative) on S. We say that f is integrable over $A \in \mathcal{S}$ provided each of the (nonnegative, measurable) functions $f^{+}=(1 / 2)(|f|+f)$ and $f^{-}=(1 / 2)(|f|-f)$ is integrable over A. We write $\int_{A} f d \mu$ for the difference of these two integrals.

3 Hilbert Spaces

Recall that a complex vector space is a set H, together with a mapping $H \times H \xrightarrow{\text { add }} H$ (called addition, and written $x+y$) and a mapping $C \times H \xrightarrow{\text { mult }} H$ (called scalar multiplication, and written $c x$), satisfying the nine or so standard vector-space conditions. An inner product on a complex vector space H is a mapping $H \times H \xrightarrow{\text { prod }} C$ (called the inner product, and written
$\langle x \mid y\rangle)$ which i) is antilinear in the first entry and linear in the second (i.e., satisfies $\langle x+c z \mid y\rangle=\langle x \mid y\rangle+\bar{c}\langle z \mid y\rangle$ and $\langle x \mid y+c z\rangle=\langle x \mid y\rangle+c\langle x \mid z\rangle$, for any $x, y, z \in H$ and $c \in C$); ii) complex-conjugates under order-reversal (i.e., satisfies $\langle x \mid y\rangle=\overline{\langle y \mid x\rangle}$ for any $x, y \in H)$; and iii) is such that $\langle x \mid x\rangle \geq 0$, with equality if and only if $x=0$). Fix any complex vector space H with inner product $\langle\mid\rangle$. Then, for $x \in H$, we set $\|x\|=\langle x \mid x\rangle^{1 / 2}$ (called the norm of x). A sequence $x_{1}, x_{2}, \cdots \in H$ is called a Cauchy sequence if, for every $\epsilon>0$, there exists a number N such that $\left\|x_{n}-x_{m}\right\| \leq \epsilon$ whenever $n, m \geq N$. A sequence $x_{1}, x_{2}, \cdots \in H$ is said to converge to $x \in H$ provided $\left\|x-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. A complex vector space with inner product is said to be complete if every Cauchy sequence therein converges to some element of H.

A Hilbert space is a complex vector space with inner product that is complete. [We frequently write $|x\rangle$ to indicate that x is an element of Hilbert space H.]

Let H be a Hilbert space. Element $|x\rangle$ is said to be unit provided $\|$ $x \|=1$; and elements $|x\rangle,|y\rangle$ are said to be orthogonal provided $\langle x \mid y\rangle=0$. We say that $\sum\left|x_{m}\right\rangle$, where the sum is over $m=0,1, \cdots$, converges to $|x\rangle$ provided the partial sums, $\sum_{1}^{n}\left|x_{m}\right\rangle$, converge (as defined above) to x.

Let H be a Hilbert space. A collection $\left|x_{\gamma}\right\rangle$ (where γ ranges through some indexing set Γ) is called a basis for H provided i) each $\left|x_{\gamma}\right\rangle$ is unit; and any two $\left|x_{\gamma}\right\rangle$, for distinct γ, are orthogonal; and ii) for every $|x\rangle$ there exist complex numbers c_{γ} such that $\sum_{\Gamma} c_{\gamma}\left|x_{\gamma}\right\rangle$ converges to x.

Let $(S, \mathcal{S}, \mathcal{M}, \mu)$ be a measure space. By $L^{2}(S, \mathcal{S}, \mathcal{M}, \mu)$ we mean the Hilbert space whose elements are complex-valued, measurable, square-integrable functions f on S, with two functions identified if they differ on a set of measure zero; whose addition and scalar multiplication are pointwise addition and scalar multiplication of the functions; and whose innner product is given by $\langle f \mid g\rangle=\int_{S} \bar{f} g d \mu$ (noting that these operations are independent of representative; and that this last integral converges).

4 Operators

Let H be a Hilbert space. A (bounded) operator on H is a complex-linear map, $H \xrightarrow{A} H$, such that, for some number $a>0,\|A x\| \leq a\|x\|$ for every x. The greatest lower bound of such a 's, written $|A|$, is called the norm of operator A.

Let H be a Hilbert space, and A a (bounded) operator on H. Let c be a complex number, and $|x\rangle$ a nonzero vector in H, such that $A|x\rangle=c|x\rangle$. Then we say that $|x\rangle$ is an eigenvector of A, with eigenvalue c. Fix c, and consider the collection consisting of all eigenvectors of A with eigenvalue c together with the zero vector. This collection is a subspace of H, called the eigenspace of A (corresponding to eigenvalue c).

A (bounded) operator A on H is said to be self-adjoint provided: For every $|x\rangle,|y\rangle \in H, \overline{\langle x \mid A y\rangle}=\langle y \mid A x\rangle$.

A (bounded) operator P on H is said to be a projection if P is selfadjoint and satisfies $P \circ P=P$.

A (bounded) operator U on H is said to be unitary if U is inner-product preserving (i.e., $\langle U x \mid U y\rangle=\langle x \mid y\rangle$, for every $|x\rangle,|y\rangle \in H$) and invertible (i.e., there exists a bounded operator V on H such that $U \circ V=V \circ U=I)$.

[^0]: ${ }^{1}$ By $A-B$, we mean $A \cap B^{c}$, i.e., the set of all points of A that are not in B.

