Definitions

1 Manifolds

Let m and n be non-negative integers, and V and open subset of \mathbb{R}^m. Then a mapping $V \xrightarrow{\phi} \mathbb{R}^n$ is said to be smooth provided all partial derivatives of all orders of the corresponding n functions of m variables exist and are continuous.

Let M be a set, and n a non-negative integer. An n-chart on M is a subset U of M, together with a mapping $U \xrightarrow{\phi} \mathbb{R}^n$, such that i) the subset $\phi[U]$ of \mathbb{R}^n is open, and ii) the mapping ϕ is one-to-one.

Let M be a set and n a non-negative integer; and let (U, ϕ) and (U', ϕ') be two n-charts on this set. These two charts are said to be compatible provided i) the subsets $\phi[U \cap U']$ and $\phi'[U \cap U']$ of \mathbb{R}^n are both open, and ii) the maps $\phi[U \cap U'] \xrightarrow{\phi'} R^n$ and $\phi'[U \cap U'] \xrightarrow{\phi^{-1} \circ \phi'} R^n$ are both smooth.

An n-manifold, where n is a non-negative integer, is a set M, together with a collection \mathcal{C} of n-charts on M, such that i) any two charts in the collection \mathcal{C} are compatible, ii) the U's of the charts in \mathcal{C} cover M, and iii) every n-chart compatible with all the charts in \mathcal{C} is itself in the collection \mathcal{C}.

Note: Condition iii) is sometimes omitted, in light of the following fact: Given set M and collection \mathcal{C} of n-charts satisfying i) and ii) above, then $(M, \hat{\mathcal{C}})$, where $\hat{\mathcal{C}}$ is the collection of all n-charts on M compatible with all those in \mathcal{C}, satisfies all three conditions above, i.e., is a manifold as here defined. Let us agree that, hereafter, whenever we say “n-manifold”, then “n is a non-negative integer” is implied.

Let (M, \mathcal{C}) be an n-manifold. A (smooth) function on M is a map $M \xrightarrow{f} \mathbb{R}$ with the following property: For every chart (U, ϕ) in the collection \mathcal{C}, the map $\phi[U] \xrightarrow{f \circ \phi^{-1}} \mathbb{R}$ is smooth.

Note: Each constant function on M is smooth, as is the pointwise sum and product of any two smooth functions.
Let \((M, C)\) be an \(n\)-manifold. A **(smooth) curve** on \(M\) is a map \(R \xrightarrow{\gamma} M\) with the following property: For every chart \((U, \phi)\) in the collection \(C\), i) \(\gamma^{-1}[U]\) is open in \(R\), and ii) the mapping \(\gamma^{-1}[U] \xrightarrow{\phi \circ \gamma} \mathbb{R}^n\) is smooth.

Let \((M, C)\) be an \(n\)-manifold, and let \(p \in M\). A **tangent vector** at \(p\) is a mapping \(F : \mathbb{R} \to M\), where \(F\) denotes the collection of all smooth functions on this manifold, such that: i) for any constant function, \(\xi(f) = 0\); and for \(f\) and \(g\) any two smooth functions, ii) \(\xi(f + g) = \xi(f) + \xi(g)\), and iii) \(\xi(fg) = f(p)\xi(g) + g(p)\xi(f)\).

Note: The set of tangent vectors at \(p\) has the structure of an \(n\)-dimensional vector space (under the obvious definitions of addition and scalar multiplication of tangent vectors).

Let \((M, C)\) be an \(n\)-manifold, \(R \xrightarrow{\gamma} M\) a smooth curve on this manifold, and \(\lambda_0\) a real number. Set \(p = \gamma(\lambda_0) \in M\). The **tangent** to \(\gamma\) at \(\lambda_0\) is the tangent vector \(\xi\) at \(p\) such that: For every smooth function \(f\) on \(M\), \(\xi(f) = d(f \circ \gamma)/d\lambda\big|_{\lambda_0}\) (noting that the right side does indeed define a tangent vector).

Let \((M, C)\) be an \(n\)-manifold, \(p \in M\), \(\xi\) a tangent vector at \(p\), and \((U, \phi)\) an \(n\)-chart in the collection \(C\), such that \(p \in U\). The **components** of \(\xi\) with respect to this chart are the \(n\) numbers \((\xi^1, \cdots, \xi^n)\) such that: For any smooth function \(f\) on \(M\),

\[
\xi(f) = \sum_{i=1}^{n} \xi^i \left[\frac{\partial(f \circ \phi^{-1})}{\partial x^i} \right] \big|_{\phi(p)}.
\]

Let \((M, C)\) be an \(n\)-manifold, and let \(p \in M\). A **covector** at \(p\) is a linear mapping \(T \xrightarrow{\mu} R\), where \(T\) is the \(n\)-dimensional vector space of tangent vectors at \(p\).

Note: The set of covectors at \(p\) has the structure of an \(n\)-dimensional vector space (under the obvious definitions of addition and scalar multiplication of covectors).

Let \((M, C)\) be an \(n\)-manifold, let \(f\) be a smooth function on \(M\), and let \(p \in M\). The **gradient** of \(f\) at \(p\) is the covector, written \(\nabla f\), at \(p\) with the
following action: For any tangent vector ξ at p, $(\nabla f)(\xi) = \xi(f)$ (noting that the right side does indeed define a covector).

Let (M, C) be an n-manifold, $p \in M$, μ a covector at p, and (U, ϕ) an n-chart in the collection C, such that $p \in U$. The components of μ with respect to this chart are the n numbers (μ_1, \cdots, μ_n) such that: For any tangent vector ξ at p,

$$\mu(\xi) = \sum_{i=1}^{n} \mu_i \xi^i,$$

(2)

where (ξ^1, \cdots, ξ^n) are the components of ξ with respect to this chart.

Let (M, C) be an n-manifold. A tangent vector field (resp, covector field) on M is a mapping that sends each point p of M to a tangent vector (resp, covector) at p. Fix such a field ξ (resp, μ), and let (U, ϕ) be an n-chart in the collection C. Consider the following map from the open set $\phi[U]$ in \mathbb{R}^n to \mathbb{R}^n: It sends $(x^1, \cdots, x^n) \in \phi[U]$ to the components of ξ (resp, μ), evaluated at $\phi^{-1}(x^1, \cdots, x^n)$. We say that the tangent vector field ξ (resp, covector field μ) is smooth if this mapping is smooth.

Let (M, C) be an n-manifold, and f a smooth function on M. The gradient of f is the smooth covector field (also written ∇f) on M whose value at each $p \in M$ is the gradient of f at p.

Let (M, C) be an n-manifold, and μ a smooth covector field on M. This field is said to be exact if there exists a smooth function f on M such that $\mu = \nabla f$.

2 Measure Theory

Let X be a set, and $X \overset{f}{\rightarrow}$ real-valued function on X. Then we say that $\Sigma_X f$ converges to $a \in \mathbb{R}$ provided: Given any $\epsilon > 0$, there exists a finite Y, $Y \subseteq X$ such that, for any finite Y', $Y \subseteq Y' \subseteq X$, $|\Sigma_{Y'} f - a| \leq \epsilon$. Here, the sum of f over a finite set has the obvious meaning: the sum of the values of f on that set.

Note: This is what (absolute) convergence of a sum really is. We may replace the reals, above, by the complexes (or, indeed, by any abelian topological group). Note that we can, potentially, “sum” over even an uncountable
set X! [If you know the definition of a net, you can formulate the above even more elegantly: Let the directed set be that of the finite subsets of X.]

A **measurable space** is a set S, together with a nonempty collection, \mathcal{S} of subsets of S, satisfying the following two conditions:

1. For any A, B in the collection \mathcal{S}, the set $A - B$ is also in \mathcal{S}.
2. For any $A_1, A_2, \ldots \in \mathcal{S}$, $\bigcup A_i \in \mathcal{S}$.

Note: Sometimes the additional condition $S \in \mathcal{S}$ is included in which case (S, \mathcal{S}) is called a σ--**algebra**.

Let (S, \mathcal{S}) be a measurable space. A **measure** on (S, \mathcal{S}) consists of a nonempty subset of \mathcal{S}, $M \subseteq \mathcal{S}$, together with a mapping $M \to \mathbb{R}^+$ (where \mathbb{R}^+ denotes the set of nonnegative reals), satisfying the following two conditions:

1. For any $A \in M$ and any $B \subseteq A$, with $B \in \mathcal{S}$, we have $B \in M$.
2. Let $A_1, A_2, \ldots \in M$ be disjoint, and set $A = A_1 \cup A_2 \cup \cdots$. Then: This union A is in M if and only if the sum $\mu(A_1) + \mu(A_2) + \cdots$ converges; and when these hold that sum is precisely $\mu(A)$.

Fix any subset of the reals, $X \subseteq \mathbb{R}$. Let I_1, I_2, \cdots be any countable collection of open intervals (not necessarily disjoint) in \mathbb{R} such that $X \subseteq I_1 \cup I_2 \cup \cdots$ (noting that there exists at least one such collection); and denote by m the sum of the lengths of these intervals (possibly ∞). By the **outer measure** of X, $\mu^*(X)$, we mean the greatest lower bound, over all such collections, of m. Thus, $\mu^*(X)$ is a non-negative number, or possibly “∞”.

For X and Y be any two subsets of the reals, R, set $d(X, Y) = \mu^*(X - Y) + \mu^*(Y - X)$, so $d(X, Y)$ is a nonnegative or the symbol “∞”.

Denote by \mathcal{M} the collection of all subsets A of $S = \mathbb{R}$ with the following property: Given any $\epsilon > 0$, there exists a $K \subseteq \mathbb{R}$, where K is a finite union of open intervals, such that $d(A, K) \leq \epsilon$. And, for $A \in \mathcal{M}$, set $\mu(A) = \mu^*(A)$, a nonnegative number. A set $A \subseteq \mathbb{R}$ is said to be **Lebesgue measurable** if it is a countable union of sets in \mathcal{M}; and, for $A \in \mathcal{M}$, the number $\mu(A)$ is called the **Lebesgue measure** of A.

1By $A - B$, we mean $A \cap B^c$, i.e., the set of all points of A that are not in B.

4
Let \((S, \mathcal{S})\) be a measurable space, and \(S \xrightarrow{f} R\) a function on \(S\). We say that this \(f\) is \textit{measurable} if, for every open \(O \subset R\), \(f^{-1}[O] \in \mathcal{S}\).

Let \((S, \mathcal{S})\) be a measurable space. By a \textit{step function} on \(S\) we mean a measurable, real-valued function on \(S\) with finite range.

Let \((S, \mathcal{S}, \mathcal{M}, \mu)\) be a measure space, with \(S \in \mathcal{M}\), and let \(f\) be a step function (with values \(a_1, \ldots, a_s\) on disjoint sets \(A_1, \ldots, A_s \in \mathcal{M}\), where \(A_1 \cup \cdots \cup A_s = S\)) on \(S\). The \textit{integral} of \(f\) (over \(S\), with respect to \(\mu\)) is the number \(\int_S f \, d\mu = a_1 \mu(A_1) + \cdots + a_s \mu(A_s)\).

Let \((S, \mathcal{S}, \mathcal{M}, \mu)\) be a measure space, with \(S \in \mathcal{M}\), and let \(f\) be a bounded measurable function on \(S\). Then the \textit{integral} of \(f\) (over \(S\), with respect to \(\mu\)) is the number \(\int_S f \, d\mu = \lim_{\epsilon \to 0} \int_S g_\epsilon \, d\mu\), where the \(g_\epsilon\) are step functions such that \(|f - g_\epsilon| \leq \epsilon\).

Let \((S, \mathcal{S}, \mathcal{M}, \mu)\) be a measure space (not necessarily finite), and let \(f \geq 0\) be a measurable function (not necessarily bounded) on \(S\). We say that \(f\) is \textit{integrable} over \(A \in \mathcal{S}\) provided there exist disjoint sets \(A_1, A_2, \cdots\) each of finite measure and on each of which \(f\) is bounded, such that \(\cup A_i = A\) and \(\sum(f_{A_i} \, d\mu)\) converges. We write \(\int_A f \, d\mu\) for that sum.

Let \((S, \mathcal{S}, \mathcal{M}, \mu)\) be a measure space, and \(f\) a measurable function (not necessarily nonnegative) on \(S\). We say that \(f\) is \textit{integrable} over \(A \in \mathcal{S}\) provided each of the (nonnegative, measurable) functions \(f^+ = (1/2)(|f| + f)\) and \(f^- = (1/2)(|f| - f)\) is integrable over \(A\). We write \(\int_A f \, d\mu\) for the difference of these two integrals.

3 Hilbert Spaces

Recall that a \textit{complex vector space} is a set \(H\), together with a mapping \(H \times H \xrightarrow{\text{add}} H\) (called \textit{addition}, and written \(x+y\)) and a mapping \(C \times H \xrightarrow{\text{mult}} H\) (called \textit{scalar multiplication}, and written \(cx\)), satisfying the nine or so standard vector-space conditions. An \textit{inner product} on a complex vector space \(H\) is a mapping \(H \times H \xrightarrow{\text{prod}} C\) (called the \textit{inner product}, and written
\langle x | y \rangle \) which i) is antilinear in the first entry and linear in the second (i.e., satisfies \(\langle x + cz | y \rangle = \langle x | y \rangle + \overline{c} \langle z | y \rangle \) and \(\langle x | y + cz \rangle = \langle x | y \rangle + c \langle x | z \rangle \), for any \(x, y, z \in H \) and \(c \in C \); ii) complex-conjugates under order-reversal (i.e., satisfies \(\langle x | y \rangle = \overline{\langle y | x \rangle} \) for any \(x, y \in H \); and iii) is such that \(\langle x | x \rangle \geq 0 \), with equality if and only if \(x = 0 \). Fix any complex vector space \(H \) with inner product \(\langle \cdot | \cdot \rangle \). Then, for \(x \in H \), we set \(\| x \| = \langle x | x \rangle^{1/2} \) (called the norm of \(x \)). A sequence \(x_1, x_2, \cdots \in H \) is called a Cauchy sequence if, for every \(\epsilon > 0 \), there exists a number \(N \) such that \(\| x_n - x_m \| \leq \epsilon \) whenever \(n, m \geq N \). A sequence \(x_1, x_2, \cdots \in H \) is said to converge to \(x \in H \) provided \(\| x - x_n \| \to 0 \) as \(n \to \infty \). A complex vector space with inner product is said to be complete if every Cauchy sequence therein converges to some element of \(H \).

A Hilbert space is a complex vector space with inner product that is complete. [We frequently write \(|x\rangle\) to indicate that \(x \) is an element of Hilbert space \(H \).]

Let \(H \) be a Hilbert space. Element \(|x\rangle\) is said to be unit provided \(\| x \| = 1 \); and elements \(|x\rangle, |y\rangle\) are said to be orthogonal provided \(\langle x | y \rangle = 0 \). We say that \(\sum |x_m \rangle \), where the sum is over \(m = 0, 1, \cdots \), converges to \(|x\rangle\) provided the partial sums, \(\sum_1^n |x_m \rangle \), converge (as defined above) to \(x \).

Let \(H \) be a Hilbert space. A collection \(|x_{\gamma}\rangle \) (where \(\gamma \) ranges through some indexing set \(\Gamma \)) is called a basis for \(H \) provided i) each \(|x_{\gamma}\rangle\) is unit; and any two \(|x_{\gamma}\rangle\), for distinct \(\gamma \), are orthogonal; and ii) for every \(|x\rangle\) there exist complex numbers \(c_{\gamma} \) such that \(\sum_{\Gamma} c_{\gamma} |x_{\gamma}\rangle \) converges to \(x \).

Let \((S, \mathcal{S}, \mathcal{M}, \mu)\) be a measure space. By \(L^2(S, \mathcal{S}, \mathcal{M}, \mu) \) we mean the Hilbert space whose elements are complex-valued, measurable, square-integrable functions \(f \) on \(S \), with two functions identified if they differ on a set of measure zero; whose addition and scalar multiplication are pointwise addition and scalar multiplication of the functions; and whose inner product is given by \(\langle f | g \rangle = \int_S f \overline{g} \, d\mu \) (noting that these operations are independent of representative; and that this last integral converges).
4 Operators

Let H be a Hilbert space. A (bounded) operator on H is a complex-linear map, $H \xrightarrow{A} H$, such that, for some number $a > 0$, $\| Ax \| \leq a \| x \|$ for every x. The greatest lower bound of such a’s, written $|A|$, is called the norm of operator A.

Let H be a Hilbert space, and A a (bounded) operator on H. Let c be a complex number, and $|x\rangle$ a nonzero vector in H, such that $A|x\rangle = c|x\rangle$. Then we say that $|x\rangle$ is an eigenvector of A, with eigenvalue c. Fix c, and consider the collection consisting of all eigenvectors of A with eigenvalue c together with the zero vector. This collection is a subspace of H, called the eigenspace of A (corresponding to eigenvalue c).

A (bounded) operator A on H is said to be self-adjoint provided: For every $|x\rangle, |y\rangle \in H$, $\langle x | Ay \rangle = \langle y | Ax \rangle$.

A (bounded) operator P on H is said to be a projection if P is self-adjoint and satisfies $P \circ P = P$.

A (bounded) operator U on H is said to be unitary if U is inner-product preserving (i.e., $\langle Ux | Uy \rangle = \langle x | y \rangle$, for every $|x\rangle, |y\rangle \in H$) and invertible (i.e., there exists a bounded operator V on H such that $U \circ V = V \circ U = I$).