
Definitions

1 Manifolds

Let m and n be non-negative integers, and V and open subset of Rm. Then
a mapping V

κ
→ Rn is said to be smooth provided all partial derivatives

of all orders of the corresponding n functions of m variables exist and are
continuous.

Let M be a set, and n a non-negative integer. An n-chart on M is a

subset U of M , together with a mapping U
φ
→ Rn, such that i) the subset

φ[U ] of Rn is open, and ii) the mapping φ is one-to-one.

Let M be a set and n a non-negative integer; and let (U, φ) and (U ′, φ′)
be two n-charts on this set. These two charts are said to be compatible
provided i) the subsets φ[U ∩U ′] and φ′[U ∩U ′] of Rn are both open, and ii)

the maps φ[U ∩ U ′]
φ′
◦φ−1

→ Rn and φ′[U ∩ U ′]
φ◦φ′−1

→ Rn are both smooth.

An n-manifold, where n is a non-negative integer, is a set M , together
with a collection C of n-charts on M , such that i) any two charts in the
collection C are compatible, ii) the U ’s of the charts in C cover M , and iii)
every n-chart compatible with all the charts in C is itself in the collection C.

Note: Condition iii) is sometimes omitted, in light of the following fact:
Given set M and collection C of n-charts satisfying i) and ii) above, then
(M, Ĉ), where Ĉ is the collection of all n-charts on M compatible with all
those in C, satisfies all three conditions above, i.e., is a manifold as here de-
fined. Let us agree that, hereafter, whenever we say “n-manifold”, then “n
is a non-negative integer” is implied.

Let (M, C) be an n-manifold. A (smooth) function on M is a map

M
f
→ R with the following property: For every chart (U, φ) in the collection

C, the map φ[U ]
f◦φ−1

→ R is smooth.
Note: Each constant function on M is smooth, as is the pointwise sum

and product of any two smooth functions.
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Let (M, C) be an n-manifold. A (smooth) curve on M is a map R
γ
→ M

with the following property: For every chart (U, φ) in the collection C, i)

γ−1[U ] is open in R, and ii) the mapping γ−1[U ]
φ◦γ
→ Rn is smooth.

Let (M, C) be an n-manifold, and let p ∈ M . A tangent vector at p is

a mapping F
ξ
→ R, where F denotes the collection of all smooth functions

on this manifold, such that: i) for f any constant function, ξ(f) = 0; and
for f and g any two smooth functions, ii) ξ(f + g) = ξ(f) + ξ(g), and iii)
ξ(fg) = f(p)ξ(g) + g(p)ξ(f).

Note: The set of tangent vectors at p has the structure of an n-dimensional
vector space (under the obvious definitions of addition and scalar multipli-
cation of tangent vectors).

Let (M, C) be an n-manifold, R
γ
→ M a smooth curve on this manifold,

and λo a real number. Set p = γ(λo) ∈ M . The tangent to γ at λo is
the tangent vector ξ at p such that: For every smooth function f on M ,
ξ(f) = d(f ◦ γ)/dλ |λo

(noting that the right side does indeed define a tan-
gent vector).

Let (M, C) be an n-manifold, p ∈ M , ξ a tangent vector at p, and (U, φ)
an n-chart in the collection C, such that p ∈ U . The components of ξ
with respect to this chart are the n numbers (ξ1, · · · , ξn) such that: For any
smooth function f on M ,

ξ(f) = Σn
i=1 ξi [∂(f ◦ φ−1)/∂xi] |φ(p). (1)

Let (M, C) be an n-manifold, and let p ∈ M . A covector at p is a linear

mapping T
µ
→ R, where T is the n-dimensional vector space of tangent

vectors at p.
Note: The set of covector at p has the structure of an n-dimensional vec-

tor space (under the obvious definitions of addition and scalar multiplication
of covectors).

Let (M, C) be an n-manifold, let f be a smooth function on M , and let
p ∈ M . The gradient of f at p is the covector, written ∇f , at p with the
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following action: For any tangent vector ξ at p, (∇f)(ξ) = ξ(f) (noting that
the right side does indeed define a covector).

Let (M, C) be an n-manifold, p ∈ M , µ a covector at p, and (U, φ) an
n-chart in the collection C, such that p ∈ U . The components of µ with
respect to this chart are the n numbers (µ1, · · · , µn) such that: For any
tangent vector ξ at p,

µ(ξ) = Σn
i=1 µi ξi, (2)

where (ξ1, · · · , ξn) are the components of ξ with respect to this chart.

Let (M, C) be an n-manifold. A tangent vector field (resp, covector
field) on M is a mapping that sends each point p of M to a tangent vector
(resp, covector) at p. Fix such a field ξ (resp, µ), and let (U, φ) be an n-chart
in the collection C. Consider the following map from the open set φ[U ] in
Rn to Rn: It sends (x1, · · · , xn) ∈ φ[U ] to the components of ξ (resp, µ),
evaluated at φ−1(x1, · · · , xn). We say that the tangent vector field ξ (resp,
covector field µ) is smooth if this mapping is smooth.

Let (M, C) be an n-manifold, and f a smooth function on M . The gra-
dient of f is the smooth covector field (also written ∇f) on M whose value
at each p ∈ M is the gradient of f at p.

Let (M, C) be an n-manifold, and µ a smooth covector field on M . This
field is said to be exact if there exists a smooth function f on M such that
µ = ∇f .

2 Measure Theory

Let X be a set, and X
f
→ real-valued function on X. Then we say that ΣX f

converges to a ∈ R provided: Given any ε > 0, there exists a finite Y ,
Y ⊂ X such that, for any finite Y ′, Y ⊂ Y ′ ⊂ X, |ΣY ′f − a| ≤ ε. Here, the
sum of f over a finite set has the obvious meaning: the sum of the values of
f on that set.

Note: This is what (absolute) convergence of a sum really is. We may
replace the reals, above, by the complexes (or, indeed, by any abelian topolog-
ical group). Note that we can, potentially, “sum” over even an uncountable
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set X! [If you know the definition of a net, you can formulate the above even
more elegantly: Let the directed set be that of the finite subsets of X.]

A measurable space is a set S, together with a nonempty collection, S
of subsets of S, satisfying the following two conditions:

1. For any A, B in the collection S, the set1 A − B is also in S.
2. For any A1, A2, · · · ∈ S, ∪Ai ∈ S.
Note: Sometimes the additional condition S ∈ S is included in which

case (S,S) is called a σ−algebra.

Let (S,S) be a measurable space. A measure on (S,S) consists of a

nonempty subset of S, M ⊂ S, together with a mapping M
µ
→ R+ (where

R+ denotes the set of nonnegative reals), satisfying the following two condi-
tions:

1. For any A ∈ M and any B ⊂ A, with B ∈ S, we have B ∈ M.
2. Let A1, A2, · · · ∈ M be disjoint, and set A = A1∪A2∪· · ·. Then: This

union A is in M if and only if the sum µ(A1) + µ(A2) + · · · converges; and
when these hold that sum is precisely µ(A).

Fix any subset of the reals, X ⊂ R. Let I1, I2, · · · be any countable collec-
tion of open intervals (not necessarily disjoint) in R such that X ⊂ I1∪I2∪· · ·
(noting that there exists at least one such collection); and denote by m the
sum of the lengths of these intervals (possibly ∞). By the outer measure
of X, µ∗(X), we mean the greatest lower bound, over all such collections, of
m. Thus, µ∗(X) is a non-negative number, or possibly “∞”.

For X and Y be any two subsets of the reals, R, set d(X, Y ) = µ∗(X −
Y ) + µ∗(Y − X), so d(X, Y ) is a nonnegative or the symbol “∞”.

Denote by M the collection of all subsets A of S = R with the following
property: Given any ε > 0, there exists a K ⊂ R, where K is a finite union of
open intervals, such that d(A, K) ≤ ε. And, for A ∈ M, set µ(A) = µ∗(A),
a nonnegative number. A set A ⊂ R is said to be Lebesque measurable
if it is a countable union of sets in M; and, for A ∈ M, the number µ(A) is
called the Lebesque measure of A.

1By A − B, we mean A ∩ B
c, i.e., the set of all points of A that are not in B.
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Let (S,S) be a measurable space, and S
f
→ R a function on S. We say

that this f is measurable if, for every open O ⊂ R, f−1[O] ∈ S.

Let (S,S) be a measurable space. By a step function on S we mean a
measurable, real-valued function on S with finite range.

Let (S,S,M, µ) be a measure space, with S ∈ M, and let f be a step
function (with values a1, · · · , as on disjoint sets A1, · · · , As ∈ M, where
A1 ∪ · · · ∪ As = S) on S. The integral of f (over S, with respect to µ)
is the number

∫
S f dµ = a1 µ(A1) + · · ·as µ(As).

Let (S,S,M, µ) be a measure space, with S ∈ M, and let f be a bounded
measurable function on S. Then the integral of f (over S, with respect to
µ) is the number

∫
S f dµ = limε→0

∫
S gε dµ, where the gε are step functions

such that |f − gε| ≤ ε.

Let (S,S,M, µ) be a measure space (not necessarily finite), and let f ≥ 0
be a measurable function (not necessarily bounded) on S. We say that f is
integrable over A ∈ S provided there exist disjoint sets A1, A2, · · · each of
finite measure and on each of which f is bounded, such that ∪Ai = A and
∑

(
∫
Ai

f dµ) converges. We write
∫
A f dµ for that sum.

Let (S,S,M, µ) be a measure space, and f a measurable function (not
necessarily nonnegative) on S. We say that f is integrable over A ∈ S
provided each of the (nonnegative, measurable) functions f+ = (1/2)(|f |+f)
and f− = (1/2)(|f | − f) is integrable over A. We write

∫
A f dµ for the

difference of these two integrals.

3 Hilbert Spaces

Recall that a complex vector space is a set H, together with a mapping

H×H
add
→ H (called addition, and written x+y) and a mapping C×H

mult
→ H

(called scalar multiplication, and written c x), satisfying the nine or so
standard vector-space conditions. An inner product on a complex vector

space H is a mapping H ×H
prod
→ C (called the inner product, and written
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〈x | y〉) which i) is antilinear in the first entry and linear in the second (i.e.,
satisfies 〈x+ c z | y〉 = 〈x | y〉+ c 〈z | y〉 and 〈x | y + c z〉 = 〈x | y〉+ c 〈x | z〉, for
any x, y, z ∈ H and c ∈ C); ii) complex-conjugates under order-reversal (i.e.,
satisfies 〈x | y〉 = 〈y | x〉 for any x, y ∈ H); and iii) is such that 〈x | x〉 ≥ 0,
with equality if and only if x = 0). Fix any complex vector space H with
inner product 〈 | 〉. Then, for x ∈ H, we set ‖ x ‖= 〈x | x〉1/2 (called the
norm of x). A sequence x1, x2, · · · ∈ H is called a Cauchy sequence if, for
every ε > 0, there exists a number N such that ‖ xn − xm ‖≤ ε whenever
n, m ≥ N . A sequence x1, x2, · · · ∈ H is said to converge to x ∈ H provided
‖ x−xn ‖→ 0 as n → ∞. A complex vector space with inner product is said
to be complete if every Cauchy sequence therein converges to some element
of H.

A Hilbert space is a complex vector space with inner product that is
complete. [We frequently write |x〉 to indicate that x is an element of Hilbert
space H.]

Let H be a Hilbert space. Element |x〉 is said to be unit provided ‖
x ‖= 1; and elements |x〉, |y〉 are said to be orthogonal provided 〈x | y〉 = 0.
We say that

∑
|xm〉, where the sum is over m = 0, 1, · · ·, converges to |x〉

provided the partial sums,
∑n

1 |xm〉, converge (as defined above) to x.

Let H be a Hilbert space. A collection |xγ〉 (where γ ranges through
some indexing set Γ) is called a basis for H provided i) each |xγ〉 is unit;
and any two |xγ〉, for distinct γ, are orthogonal; and ii) for every |x〉 there
exist complex numbers cγ such that

∑
Γ cγ |xγ〉 converges to x.

Let (S,S,M, µ) be a measure space. By L2(S,S,M, µ) we mean the
Hilbert space whose elements are complex-valued, measurable, square-integrable
functions f on S, with two functions identified if they differ on a set of mea-
sure zero; whose addition and scalar multiplication are pointwise addition
and scalar multiplication of the functions; and whose innner product is given
by 〈f |g〉 =

∫
S fg dµ (noting that these operations are independent of repre-

sentative; and that this last integral converges).
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4 Operators

Let H be a Hilbert space. A (bounded) operator on H is a complex-linear

map, H
A
→ H, such that, for some number a > 0, ‖ Ax ‖≤ a ‖ x ‖ for every

x. The greatest lower bound of such a’s, written |A|, is called the norm of
operator A.

Let H be a Hilbert space, and A a (bounded) operator on H. Let c be
a complex number, and |x〉 a nonzero vector in H, such that A|x〉 = c |x〉.
Then we say that |x〉 is an eigenvector of A, with eigenvalue c. Fix c, and
consider the collection consisting of all eigenvectors of A with eigenvalue c
together with the zero vector. This collection is a subspace of H, called the
eigenspace of A (corresponding to eigenvalue c).

A (bounded) operator A on H is said to be self-adjoint provided: For
every |x〉, |y〉 ∈ H, 〈x|Ay〉 = 〈y|Ax〉.

A (bounded) operator P on H is said to be a projection if P is self-
adjoint and satisfies P ◦ P = P .

A (bounded) operator U on H is said to be unitary if U is inner-product
preserving (i.e., 〈Ux|Uy〉 = 〈x|y〉, for every |x〉, |y〉 ∈ H) and invertible (i.e.,
there exists a bounded operator V on H such that U ◦ V = V ◦ U = I).
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