Definitions

1 Manifolds

Let m and n be non-negative integers, and V' and open subset of R™. Then
a mapping V 5 R" is said to be smooth provided all partial derivatives
of all orders of the corresponding n functions of m variables exist and are
continuous.

Let M be a set, and n a non-negative integer. An n-chart on M is a

subset U of M, together with a mapping U 2, R™, such that i) the subset
¢[U] of R™ is open, and ii) the mapping ¢ is one-to-one.

Let M be a set and n a non-negative integer; and let (U, ¢) and (U’, ¢')
be two m-charts on this set. These two charts are said to be compatible
provided i) the subsets ¢[U NU'] and ¢'[U NU'] of R™ are both open, and ii)

the maps ¢[U N U’] 74" R and PUNU *¢"" R" are both smooth.

An n-manifold, where n is a non-negative integer, is a set M, together
with a collection C of n-charts on M, such that i) any two charts in the
collection C are compatible, ii) the U’s of the charts in C cover M, and iii)
every n-chart compatible with all the charts in C is itself in the collection C.

Note: Condition iii) is sometimes omitted, in light of the following fact:
Given set M and collection C of n-charts satisfying i) and ii) above, then
(M, é), where C is the collection of all n-charts on M compatible with all
those in C, satisfies all three conditions above, i.e., is a manifold as here de-
fined. Let us agree that, hereafter, whenever we say “n-manifold”, then “n
is a non-negative integer” is implied.

Let (M,C) be an n-manifold. A (smooth) function on M is a map
M L R with the following property: For every chart (U, ¢) in the collection
C, the map ¢[U] 729" R is smooth.

Note: Each constant function on M is smooth, as is the pointwise sum
and product of any two smooth functions.



Let (M,C) be an n-manifold. A (smooth) curve on M is amap R % M
with the following property: For every chart (U, ¢) in the collection C, i)

~~Y[U] is open in R, and ii) the mapping v~ ![U] ¥ R is smooth.

Let (M,C) be an n-manifold, and let p € M. A tangent vector at p is

a mapping F N R, where F denotes the collection of all smooth functions
on this manifold, such that: i) for f any constant function, {(f) = 0; and
for f and g any two smooth functions, ii) £(f + g) = &(f) + £(g), and iii)
§(f9) = f(p)&(9) + 9(p)E(S)

Note: The set of tangent vectors at p has the structure of an n-dimensional
vector space (under the obvious definitions of addition and scalar multipli-
cation of tangent vectors).

Let (M,C) be an n-manifold, R -5 M a smooth curve on this manifold,
and A, a real number. Set p = v()\,) € M. The tangent to v at A, is
the tangent vector ¢ at p such that: For every smooth function f on M,
E(f) =d(f ov)/dA |\, (noting that the right side does indeed define a tan-
gent vector).

Let (M,C) be an n-manifold, p € M, £ a tangent vector at p, and (U, ¢)
an n-chart in the collection C, such that p € U. The components of &

with respect to this chart are the n numbers (€', - -+, £") such that: For any
smooth function f on M,
E(f) =3, € [0(f 0 071) /02" (- (1)

Let (M,C) be an n-manifold, and let p € M. A covector at p is a linear
mapping T % R, where T is the n-dimensional vector space of tangent
vectors at p.

Note: The set of covector at p has the structure of an n-dimensional vec-
tor space (under the obvious definitions of addition and scalar multiplication
of covectors).

Let (M,C) be an n-manifold, let f be a smooth function on M, and let
p € M. The gradient of f at p is the covector, written V f, at p with the
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following action: For any tangent vector & at p, (Vf)(&) = &(f) (noting that
the right side does indeed define a covector).

Let (M,C) be an n-manifold, p € M, u a covector at p, and (U, ¢) an
n-chart in the collection C, such that p € U. The components of i with
respect to this chart are the n numbers (pq,---, u,) such that: For any
tangent vector & at p,

n(€) =3y i &, (2)

where (&1, -+, £") are the components of £ with respect to this chart.

Let (M,C) be an n-manifold. A tangent vector field (resp, covector
field) on M is a mapping that sends each point p of M to a tangent vector
(resp, covector) at p. Fix such a field £ (resp, u), and let (U, ¢) be an n-chart
in the collection C. Consider the following map from the open set ¢[U] in
R" to R™: Tt sends (z',---,2") € ¢[U] to the components of & (resp, p),
evaluated at ¢~ 1(z!, -+, 2™). We say that the tangent vector field £ (resp,
covector field 1) is smooth if this mapping is smooth.

Let (M,C) be an n-manifold, and f a smooth function on M. The gra-
dient of f is the smooth covector field (also written V f) on M whose value
at each p € M is the gradient of f at p.

Let (M,C) be an n-manifold, and p a smooth covector field on M. This
field is said to be exact if there exists a smooth function f on M such that

w=Vf.

2 Measure Theory

Let X be a set, and X 7, real-valued function on X. Then we say that Xx f
converges to a € R provided: Given any € > 0, there exists a finite Y,
Y C X such that, for any finite Y, Y C Y’ C X, |¥y/f —a| < e. Here, the
sum of f over a finite set has the obvious meaning: the sum of the values of
f on that set.

Note: This is what (absolute) convergence of a sum really is. We may
replace the reals, above, by the complexes (or, indeed, by any abelian topolog-
ical group). Note that we can, potentially, “sum” over even an uncountable
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set X! [If you know the definition of a net, you can formulate the above even
more elegantly: Let the directed set be that of the finite subsets of X']

A measurable space is a set S, together with a nonempty collection, &
of subsets of S, satisfying the following two conditions:

1. For any A, B in the collection S, the set’ A — B is also in S.

2. For any Ay, Ay,--- € S, UA; € S.

Note: Sometimes the additional condition S € S is included in which
case (5,8) is called a c—algebra.

Let (S,S) be a measurable space. A measure on (S,S) consists of a
nonempty subset of S, M C S, together with a mapping M % R* (where
R™ denotes the set of nonnegative reals), satisfying the following two condi-
tions:

1. For any A € M and any B C A, with B € S, we have B € M.

2. Let Ay, Ay, - -+ € M be disjoint, and set A = A;UA5U---. Then: This
union A is in M if and only if the sum p(A;) + u(As) + - - - converges; and
when these hold that sum is precisely u(A).

Fix any subset of the reals, X C R. Let Iy, I5, - - - be any countable collec-
tion of open intervals (not necessarily disjoint) in R such that X C I;UlLU- -
(noting that there exists at least one such collection); and denote by m the
sum of the lengths of these intervals (possibly co). By the outer measure
of X, p*(X), we mean the greatest lower bound, over all such collections, of
m. Thus, p*(X) is a non-negative number, or possibly “co”.

For X and Y be any two subsets of the reals, R, set d(X,Y) = p*(X —
Y)+ p (Y — X), so d(X,Y) is a nonnegative or the symbol “c0”.

Denote by M the collection of all subsets A of S = R with the following
property: Given any € > 0, there exists a K C R, where K is a finite union of
open intervals, such that d(A, K) <e. And, for A € M, set u(A) = p*(A),
a nonnegative number. A set A C R is said to be Lebesque measurable
if it is a countable union of sets in M; and, for A € M, the number u(A) is
called the Lebesque measure of A.

By A — B, we mean AN B¢, i.e., the set of all points of A that are not in B.



Let (S5,8) be a measurable space, and S L, R a function on S. We say
that this f is measurable if, for every open O C R, f~1[0] € S.

Let (S,S) be a measurable space. By a step function on S we mean a
measurable, real-valued function on S with finite range.

Let (S,S, M, 1) be a measure space, with S € M, and let f be a step
function (with values aq,---,as on disjoint sets Ay, ---, A, € M, where
Ay U---UA; = S) on S. The integral of f (over S, with respect to )
is the number [y fdp = a; p(Ar) + - - - as u(As).

Let (S, S, M, 1) be a measure space, with S € M, and let f be a bounded
measurable function on S. Then the integral of f (over S, with respect to
w) is the number [y fdp = lim. . [ gc du, where the g. are step functions
such that |f — g <e.

Let (S, S, M, 1) be a measure space (not necessarily finite), and let f > 0
be a measurable function (not necessarily bounded) on S. We say that f is
integrable over A € § provided there exist disjoint sets A;, A, - - - each of
finite measure and on each of which f is bounded, such that UA; = A and
> ([fa, fdp) converges. We write [, f du for that sum.

Let (S,S, M, 1) be a measure space, and f a measurable function (not
necessarily nonnegative) on S. We say that f is integrable over A € S
provided each of the (nonnegative, measurable) functions f* = (1/2)(|f|+ f)
and f~ = (1/2)(|f] — f) is integrable over A. We write [, fdu for the
difference of these two integrals.

3 Hilbert Spaces

Recall that a complex vector space is a set H, together with a mapping
add mult

HxH = H (called addition, and written z+y) and a mapping Cx H "—" H
(called scalar multiplication, and written cz), satisfying the nine or so
standard vector-space conditions. An inner product on a complex vector

space H is a mapping H x H ot o (called the inner product, and written



(x|y)) which i) is antilinear in the first entry and linear in the second (i.e.,
satisfies (x+cz|y) = (x|y) +c(z|y) and (x|y+cz) = (x|y) +c (x| z), for
any z,y,z € H and ¢ € (); ii) complex-conjugates under order-reversal (i.e.,
satisfies (x|y) = (y|z) for any x,y € H); and iii) is such that (z|z) > 0,
with equality if and only if = 0). Fix any complex vector space H with
inner product ( | ). Then, for z € H, we set || = ||= (z|z)"/? (called the

norm of z). A sequence xq,xs,--- € H is called a Cauchy sequence if, for
every € > 0, there exists a number N such that || x,, — z,, ||< e whenever
n,m > N. A sequence 1, s, -+ € H is said to converge to x € H provided

| 2 —x, [[— 0 asn — co. A complex vector space with inner product is said

to be complete if every Cauchy sequence therein converges to some element
of H.

A Hilbert space is a complex vector space with inner product that is
complete. [We frequently write |z) to indicate that x is an element of Hilbert
space H ]

Let H be a Hilbert space. Element |z) is said to be unit provided ||
x ||=1; and elements |z), |y) are said to be orthogonal provided (x| y) = 0.
We say that Y |x,,), where the sum is over m = 0,1, --, converges to |z)
provided the partial sums, > 7 |x,,), converge (as defined above) to z.

Let H be a Hilbert space. A collection |z,) (where v ranges through
some indexing set I') is called a basis for H provided i) each |z,) is unit;
and any two |z,), for distinct 7, are orthogonal; and ii) for every |z) there
exist complex numbers ¢, such that Y r ¢, |z,) converges to z.

Let (5,8, M, u) be a measure space. By L%*(S,S, M, u) we mean the
Hilbert space whose elements are complex-valued, measurable, square-integrable
functions f on S, with two functions identified if they differ on a set of mea-
sure zero; whose addition and scalar multiplication are pointwise addition
and scalar multiplication of the functions; and whose innner product is given

by (flg) = [ fgdp (noting that these operations are independent of repre-
sentative; and that this last integral converges).



4 Operators

Let H be a Hilbert space. A (bounded) operator on H is a complex-linear

map, H 25 H, such that, for some number a > 0, || Az |< a || = || for every
x. The greatest lower bound of such a’s, written |A|, is called the norm of
operator A.

Let H be a Hilbert space, and A a (bounded) operator on H. Let ¢ be
a complex number, and |z) a nonzero vector in H, such that Alx) = c|x).
Then we say that |z) is an eigenvector of A, with eigenvalue c. Fix ¢, and
consider the collection consisting of all eigenvectors of A with eigenvalue c
together with the zero vector. This collection is a subspace of H, called the
eigenspace of A (corresponding to eigenvalue c).

A (bounded) operator A on H is said to be self-adjoint provided: For

every |), ly) € H, (e[ Ay) = (y|Az).

A (bounded) operator P on H is said to be a projection if P is self-
adjoint and satisfies Po P = P.

A (bounded) operator U on H is said to be unitary if U is inner-product
preserving (i.e., (Uz|Uy) = (z|y), for every |x), |y) € H) and invertible (i.e.,
there exists a bounded operator V on H such that UoV =V oU =1).



